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Abstract

We study a discrete variant of the Airy equation and show that discretization produces a more
intricate Stokes structure than in the continuous case, inducing the higher-order Stokes phe-
nomenon and infinite accumulations of Stokes and anti-Stokes curves. These features are absent in
the continuous Airy equation and are typically seen only in solutions of at least third-order linear
homogeneous, second-order or higher linear inhomogeneous, or nonlinear differential equations.
Remarkably, this behavior is seen here to arise in a second-order homogeneous linear difference
equation. Using exponential asymptotic methods, we derive the asymptotic solutions and the cor-
responding Stokes structure, with numerical simulations confirming our predictions. We conjec-
ture that the higher order Stokes phenomenon is able to be present in other second order linear
difference equations.

1. Introduction

The Stokes phenomenon [1] describes the sudden appearance of exponentially small contributions across
Stokes curves in the complex plane. A more recent discovery, the higher-order Stokes phenomenon
(HOSP) [2-5], first noted in [6], describes the appearance or termination of Stokes curves at Stokes
crossing points (SCPs). In fact, since crossings can only occur when three or more distinct asymptotic
contributions are involved, these features are never seen in homogeneous linear second-order differen-
tial equations and are usually regarded as higher-order or nonlinear effects. Our results reveal a striking
fact: that a HOSP and Stokes curve accumulations may occur in a linear discretization of a second-order
homogeneous linear differential equation.

The Airy function that decays exponentially as x — +o0 is the original, and canonical, example of
the Stokes phenomenon [1] and has a well-known Stokes curve structure. A scaled version of the func-
tion satisfies the singularly perturbed continuous Airy equation

d2
2 y—xyzO

6@ €e—0.

(1)

as

A discrete variant of this equation may be obtained by applying a second-order central difference to
the derivative terms in (1), to obtain

62

ﬁ(}’m—i—l —2Ym+Ym—1) —Xmym =0 as e€—0, (2)

where 0 < € <1, and m € Z indexes solution values yy, defined at points x,, € C. The lattice spacing
h = X1 — Xm, may vary for fixed € and is O(e) in our analysis. We will permit the lattice spacing to be
complex, so h € C. We will subsequently refer to (2) as the ‘discrete Airy equation. The discrete Airy

© 2026 The Author(s). Published by IOP Publishing Ltd
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(¢) e=h=0.02 (d) e =h =0.008

Figure 1. Numerical solutions y,, of the discrete Airy equation (2) along the real axis, which decay as |x,,| — oo, for several real
values of € and h. Each solution is computed with yy =1 at xyp = —2 and rescaled so that the maximum value is 1 for comparison.
The solutions are oscillatory with slowly varying amplitude between the turning points at x =0 and x = 4, and decay exponen-
tially outside this region.

equation arises in implementing transparent boundary conditions [7-10] and non-standard discret-
ization schemes [11, 12] used in numerical studies of wave propagation, including acoustic [7, 9] and
electromagnetic [8] waves.

Figure 1 shows numerical solutions to (2) for y,, — 0 as |x,,| — oo along the real axis (i.e. h € R
and Im(x,,) = 0), computed using the method from section 4. These results motivate the present study,
revealing a central oscillatory region with slowly varying amplitude bounded by exponentially decaying
outer regions. This already contrasts with the solutions of the continuous Airy equation (1), which fea-
ture only one oscillatory region and one (growing or decaying) exponential region.

We will derive the corresponding asymptotic solution to the discrete Airy equation (2) and find two
turning points at x = —4 and x =0. This result will contrast with the continuous Airy equation (1),
which has one turning point at x=0 . The Stokes phenomenon across these points produces the cent-
ral oscillatory region shown in figure 1, and the asymptotic results match these numerical solutions.

We will study the transition between the discrete (2) and continuous (1) Airy equations via a con-
tinuum approximation to the discrete equation (2) with x =hm and y(x) = y,, to obtain

%(y(x—koe)—2y(x)—|—y(x—ae))—xy(x)=0 as €e—0, (3)
where h = oe and x € C. We refer to (3) as the advance-delay Airy equation, and we determine its
asymptotic solutions using the steepest descent method [13]. The advance-delay Airy equation (3) is a
continuous equation which, when sampled at discrete points x,,, provides an approximation to the dis-
crete Airy equation (2).

The method of steepest descent [13] is well suited to linear problems, however, unless recast in terms
of a Borel transform, it is generally not applicable to nonlinear discrete equations. Instead, such prob-
lems may be approached using factorial-over-power methods [14, 15]. We repeat the analysis of (3) in
appendix using factorial-over-power methods, and show that it produces identical asymptotic solutions
and Stokes structure.

We will show that asymptotic solutions to (2) exhibit the HOSP, despite the fact that a HOSC is
generated at a SCP, which requires at least three distinct exponential contributions in order to appear.
Furthermore, we will show that the asymptotic solutions contain infinitely many Stokes and anti-Stokes
curves accumulating onto limiting curves in the complex plane; this behavior is only seen in equations
with an infinite number of distinct exponential contributions, such as nonlinear differential equations.
This will be discussed in more detail in section 2.2.

This paper proceeds as follows. In section 2 we provide background on the Stokes phenomenon,
the HOSP, and previous work on the asymptotics of discrete equations. In section 3, using the steep-
est descent method, we derive the asymptotic solutions and the Stokes structure of the advance—delay
Airy equation (3). Section 4 presents numerical solutions to the discrete Airy equation (2) and compares
them with the asymptotic results of (3) from section 3 and the literature. In section 5, we discuss what

2
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these results imply about the asymptotic behavior of other linear and nonlinear discrete equations and
conclude. Appendix reproduces the results of section 3 using the factorial-over-power method, applicable
to both linear and nonlinear difference equations.

2. Background and definitions

2.1. Asymptotics of discrete equations

The discrete Airy equation (2) belongs to the class of second-order difference equations, also known as
three-term recurrence relations. Such equations appear in special function theory [16, 17], orthogonal
polynomials [18-20], random matrix theory [21], quantum mechanics [22], lattice dynamics [23, 24],
and topological string theory [25]. These applications have motivated the development of asymptotic
methods for discrete systems, broadly classified into two approaches: direct series methods and WKB]
methods.

The series methods developed in [17, 19, 26-30] provide asymptotic solutions to second-order dif-
ference equations with linear potentials and coefficients in x,, in the limit |m| — co. These approaches
extend classical asymptotic methods: see [29, 30] for reviews. The systems considered in these studies
contain two special points in x,,, termed turning points by analogy with WKB] theory [13]. In each of
these problems it is possible to construct solutions which are oscillatory with a slowly varying envelope
between the turning points, while outside this region they grow or decay exponentially [17, 19, 26, 27].

WKBJ methods for second-order difference equations have been developed using discrete and con-
tinuous approaches. Studies such as [31, 32] provide a background of these approaches and propose a
unified framework bridging the two. These results are rigorously developed in [33, 34], where asymp-
totic error bounds are derived. As in the series solutions, the WKBJ solutions predict two turning points
for linear second-order difference equations. Discrete versions of more advanced WKB] methods, such as
complex and exact WKBJ, have been explored in, for example, [23, 25, 35] and allow asymptotic analysis
of discrete equations with complex domains.

The studies [9, 12, 36] use classical asymptotic methods that apply to the discrete Airy equation (2)
only under specific restrictions on variables and parameters. The studies [9, 12] derive asymptotic solu-
tions to (2) as m — oo for e =1 and x,,, = hm, while [9, 36] obtain additional solutions. The authors in
[30, 37] discuss these works, noting that they may be incomplete, and the authors of [9] discuss incon-
sistencies between the asymptotic results in [9, 12, 36].

These prior studies identify some aspects of the Stokes phenomenon in second-order difference
equations, but do not capture the complete Stokes structure. Our results will build on these ideas by
providing a complete picture of the Stokes structure, including the HOSP. By studying the asymptotic
structure of solutions to (2) in the complex plane, and the Stokes phenomenon that they contain, we
will reveal the previously unidentified significance of the HOSP, and explain the significance of this
behavior on asymptotic solutions to (2).

More generally, the HOSP has previously been identified in discrete equations that were not obtained
from discretization, such as the discrete functional equation that generates the gamma function [38—
40]. Our results will suggest that the appearance of the HOSP is generic in discretizations of continu-
ous differential equations, even if such behavior cannot exist in the solution to the original continu-
ous equation, as is the case for linear homogeneous second-order differential equations like the Airy
equation.

2.2. The Stokes and higher-order Stokes phenomenon
A Stokes phenomenon may occur between pairs of exponential contributions with distinct exponents ¢;
and ¢;, across Stokes curves S in the complex plane, defined by

If Re(¢;) > Re(¢;) as the Stokes curve is crossed, the maximally dominant asymptotic contribution
associated with ¢; may switch on the subdominant contribution associated with ¢;. If this switching
occurs when (4) is satisfied, the exponential contributions (and the saddle points that generate them)
are described as being adjacent and the Stokes curve is active. If (4) is satisfied but no switching occurs
between ¢; and ¢;, the two contributions (and the saddle points that generate them) are described as
being non-adjacent and the Stokes curve is described as inactive.

Anti-Stokes curves A, on which neither contribution dominates, are defined by

A={xeC|Re(¢; —¢;)=0}. (5)
3
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These curves are generally associated with a change in relative dominance between the two exponential
contributions.

The HOSP may occur between three exponential contributions with distinct exponents ¢;, ¢;, and
¢k, across a HOSC H in the complex plane, defined by

H:{xGC’Im(m):O}. (6)

which corresponds to co-linearity of singularities in the Borel plane [2, 3].

A HOSC can be generated at a SCP, where three Stokes curves intersect [3]; such a point is required
for the HOSP to occur. Crossing a HOSC alters which exponential contributions are adjacent, and in
some cases, leads to the truncation of the ordinary Stokes curves at the SCP. This property of HOSC:s is
required in order for the asymptotic solution to exhibit monodromy as the solution is continued around
the SCP, and hence for the solution to be analytic near this point. See [2-5, 41, 42] for more detailed
explanations of the mechanism underlying the HOSP, and the necessity of such curves for monodromy
to be preserved around SCPs.

The overall effect of the HOSP is that a Stokes curve may be active (and exhibit Stokes switching)
on one side of the SCP, but inactive on the other side (so that no switching occurs). The condition (6)
describes a HOSC across which the Stokes curve on which the ¢y contribution switches the ¢; contribu-
tion can terminate at the relevant SCP.

The observation that HOSCs are generated at SCPs is important, as it restricts the appearance of the
HOSP to systems with three or more exponential contributions. A homogeneous linear second-order
ordinary differential equation, such as the Airy equation, can produce at most two such contributions
and therefore cannot exhibit the HOSP. In general, the presence of three distinct exponential contribu-
tions instead requires a differential equation that is homogeneous and third-order (or higher) [43-45],
inhomogeneous and second-order (or higher) [4, 46], nonlinear [44, 45, 47], or partial [3, 47, 48].

Olde Daalhuis [46] provided a simple example illustrating how three exponential contributions can
arise in an inhomogeneous second-order linear differential equation with one contribution from the par-
ticular integral and two from the complementary functions. This study calculated the associated Stokes
constants, and demonstrated the activation and deactivation of Stokes curves on either side of the SCP
through a careful examination of the late-term structure and an analysis of the integration constants
appearing in the recurrence relations that generate these terms.

Finally, another significant feature typically associated with nonlinear equations is Stokes curve accu-
mulation, where infinitely many Stokes and anti-Stokes curves accumulate onto limiting curves in the
complex plane. This asymptotic behavior requires interactions to occur between an infinite number of
exponential contributions, which are generic in nonlinear differential equations [44, 45, 47] but cannot
occur in linear homogeneous differential equations of any finite order.

2.3. Stokes phenomenon in the Airy equation
A classic example of the Stokes phenomenon occurs in the solutions of the continuous Airy
equation (1), whose solutions are the Airy functions Ai and Bi [49]. The general solution of (1) is

y=Cii (e x) + GBI (%) (7)

where C; and C, are arbitrary constants and Ai(x) and Bi(x) are linearly independent solutions.

Applying the steepest descent method [13] to the continuous Airy equation (1) produces an asymp-
totic solution that matches the general solution (7) for C; =0 and C; = C,¢%/3, where the asymptotic
solution has the exponential contributions

—ng, 2x3/2/3 C3 —2x3/2/3
Y1~ We and Y2~ We as €—0. (8)

From (8) we observe that ¢, = 2x*/2/3 and ¢, = —2x>/?/3. Using (4) and (5), we obtain the Stokes
structure shown schematically in figure 2, which contains the Stokes curves, the anti-Stokes curves, and a
description of the asymptotic contributions y; and y, (8) in each region of the complex x-plane. As the
Stokes curves with Arg(x) = +27/3 are crossed from right to left, the y, contribution switches on the y;
contribution.

Finally, since the asymptotic behavior in (8) only possesses two exponential contributions, ¢; and ¢,,
the asymptotic solution does not contain any HOSCs. For such behavior to be present in the solution, a
third exponential contribution is required for condition (6) to be satisfied.

4
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D;i: One exponential (y ~ y2)
Dy: Two exponentials (y ~ y1 + y2)
— Stokes curve (active)
4 —— Anti-Stokes curves
~A~ Square root branch cut
© Turning point

—4 -2 0 2 4
Re(x)
Figure 2. Stokes structure of the Ai solution to the Airy equation (1). Stokes (black) and anti-Stokes (red) curves emerge from the
turning point at x = 0. In region D), the solution has a single decaying exponential as x — 0o on the real axis. Crossing the anti-

Stokes curve causes this contribution to grow instead of decay. Crossing the Stokes curve into D, causes a second exponential
contribution to appear, resulting in oscillatory behavior on the negative real axis.

3. Steepest descent analysis of the discrete Airy equation

In this section, we compute asymptotic solutions of the advance-delay Airy equation (3) using the steep-
est descent method [13], and determine the associated Stokes structure.

The steepest descent method is typically only possible for linear (or linearizable) equations. More
general exponential asymptotic methods have been developed for nonlinear equations (e.g. [3, 15, 50,
51]). Appendix illustrates how the factorial-over-power method from [15, 50, 51] can reproduce the res-
ults from this section in a fashion that could be applied directly to nonlinear difference equations.

3.1. The steepest descent method
To perform the steepest descent analysis, we apply the Fourier transform (9)

}7(0.)):/ y(x)e “*dx and y(x):%/ 7 (w)e“*dw, 9)

— 00 — 00

to the advance-delay Airy equation (3) and solve the resulting equations for j. Setting z = oew and using
the inverse transform on y, the solution y has the integral representation

y:/ g(x,2)e ?™D/edz  as e—0, (10)
—o0

where

g(2)

2mo€E

and ¢ (x,z) = fg (szr % (z+isinh(iz))> . (11)

Here, C is an arbitrary constant. The exact solution (10) is a Laplace-type integral, to which we can
apply the steepest descent method to determine asymptotic solutions as € — 0.

3.1.1. Saddle point locations
The saddle points of (10) satisfy

0 (x,25) _ 82¢ (x,2)
B =0 and oz #0, (12)

which yields from (11) an infinite number of saddle points located at
2

2
z; = —icosh™ <1 + azx) 4275 and zf =icosh™' (1 + 02x> +27s, (13)

where s € Z. These saddle points can be grouped into two sets; z;~ in the upper-half z-plane and z;” in
the lower-half z-plane.
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We must specify the branch structure of (13). The inverse hyperbolic cosine can be expressed as
2 2 1
cosh™! <1+02x> =log <1+02x+2\/02x\/4+02x) , (14)

which has branch points at x = —4/02 and x = 0. We place the square root branch cut along the real
interval x € (—4/0?,0); crossing this cut changes the sign of one square root, mapping z;" — z;~ and vice
versa. The logarithmic branch cut lies along x € (—00, —4/0?); crossing thus cut from above adds 27i to
the logarithm, which shifts the saddle point index, such that z- — z | and z;7 >z ,.

3.1.2. Saddle point contributions

Each saddle point z= has an associated saddle height that we denote as ¢, given by

2
2 ) (:I:icosh1 <l—|— (72X> +27r5> Fi x(02x+4)} , (15)

) m (. gt) =
o (x) = (x,25) = - [<x+ =
where the upper and lower signs correspond. Throughout the remainder of this section, we use the same
subscript and superscript notation to denote quantities associated with the saddle points z;~ and z} as
defined in (13).

The asymptotic contributions as € — 0 are found using the saddle point formula from [13] to be

1 +
+ ¢ (x)/€
~ e?s , 16
% V2mext/4 (o2x + 4!/ (e

where the upper and lower signs correspond. Each contribution y* has two singularities; hence, the
solution has turning points at x = —4/0? and x=0.

3.1.3. Stokes, anti-Stokes and HOSCs

Using conditions (4) and (5), we introduce specific notation for (possibly inactive) Stokes and anti-
Stokes curves caused by interactions between contributions from saddle points zF. All such pairings can
be written as

SHE={xeClIm(¢f —¢5) =0} and A5 ={xeC|Re(¢ —¢;) =0}, (17)
where the sign choices on the same side of the equality are independent, but the first sign choice on

each side and the second sign choice on each side correspond.
Using condition (6), we introduce notation for the relevant HOSCs, which we denote by

-+

Im u =0, (18)
¢s _¢5+1
.

Im <¢+¢ﬁjl> :o}. (19)
s T P41

While other triplets exist, only these HOSCs influence the asymptotic behavior of the solution.

==
Ho s = {x eC

+=t
Hs,s,s+1 - {X € (C

3.2. Detailed analysis for o =1
In this section, we determine the Stokes structure and construct the asymptotic solution of the advance-
delay Airy equation (3) for the case 0 = 1. A schematic of the resulting Stokes structure is shown in
figure 3.

The asymptotic solution is an infinite sum of saddle point contributions that depend on the value of
x. In region D, only the upper saddle points z;" contribute. In region D,, only the lower saddle points
z; contribute. In region Ds, both sets of saddle points, z and z;, contribute.

Figure 3 shows the regions D;, D,, and Dj, separated by active Stokes curves. The curves Ss,+s’_
emanate from x =0, while S;’H emanate from x = —4. These curves intersect at two SCPs, located at

x ~ —2=£3.018i. The Stokes curves S,y and S

)Sfl become inactive at the SCPs, and do not continue
past these points. Additional Stokes curves S, '\, and Sst:] extend vertically from the SCPs and are

inactive between them.
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Figure 3. Stokes structure of the advance-delay Airy equation (3) for o = 1, with turning points at x =0 and x = —4 (gray
circles). In region D, contributions from upper saddle points z;" are exponentially decaying on the positive real axis but become
growing after crossing anti-Stokes curves (red). An infinite number of anti-Stokes curves accumulate near the real axis, each for
a different z; (only the first three are shown). Similar behavior occurs for lower saddle points z;~ along the negative real axis.
Crossing Stokes curves (black) causes contributions to switch on and off. In D,, contributions from z;" vanish and z;~ appear. In
D3, all contributions appear. The HOSC (dashed blue) truncate the active Stokes curves at the SCPs (white circles).

Dy: Upper saddles (y ~ 322 yf
D,: Lower saddles (y ~ > o2 v.)
Dy: All saddles (y ~ > (y7 +yT))

— Stokes curves (active)

----- Stokes curves (inactive)

- - = Higher-order Stokes curves

— Anti-Stokes curves

~~~ Square root branch cut

~~log branch cut

@ Turning points

O Virtual turning point

O Stokes crossing points

Im(z)

3
2
1

ok
—1}F
-2
-3

Re(z)

(c) A typical steepest descent contour for z € D3

Im(z)

Figure 4. Steepest descent analysis schematics for the advance-delay Airy equation (3) for o = 1, showing the steepest descent

(b) A typical steepest descent contour for z € Dy

Re(z)

contour (white), saddle points zsi (

ics in regions D, D,, and D3, respectively.

circles), and constant phase contours (dashed). Figures (a), (b), and (c) show typical schemat-

Figure 4 shows typical steepest descent schematics in regions D;, D5, and D;. This analysis reveals

that the solution can be written as

o0

y~ > (e +atyl) as e—o,

§=—00

(20)

where ¢f =1land ¢ =0ifxeDy, ¢ =1land ¢, =1ifx€D,, and ¢ =0 and ¢; =1 if x € Ds.
These coefficients change across the Stokes curves, which separate the regions D;, D, and Ds.

3.2.1. Steepest descent curves

In this section, we demonstrate how the steepest descent contour varies between regions D;, D, and
Ds, to explain the switching behavior observed in figure 3. Taken together, the detailed analysis of this
section explains how the asymptotic solution around the SCPs satisfies the monodromy property.

Stokes switching across Ss'f;’_: Figure 5 shows how the steepest descent contour changes as the Stokes
curves Ss’"’s’_ are crossed. Following the labeled path from @ to @ to @, we observe that as the Stokes
curves are crossed, each saddle zs+ in the upper row switches on a saddle z; in the lower row. Hence,

7
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Re(z) Re(z) Re(z)

(e) Steepest descent contour at @  (f) Steepest descent contour at ® (g) Steepest descent contour at ©®

Figure 5. Schematics of Stokes switching for the Stokes curves S{f}’_ with o = 1. (a) Stokes structure schematic. The legend

matches that of figure 3, except that we highlight the Stokes curves S:';’_ (yellow) and include inactive Stokes curves (dotted
yellow and black) to illustrate the Stokes switching behavior. Points @ — ® correspond to the steepest descent schematics shown
in (b)—(g). (b)—(g) Steepest descent schematics. The legends match those of figure 4.

additional contributions from the z~ saddles emerge in the asymptotic solution as x moves from D, to
D3.

Following the path from @ to ® to ®, we see that the Stokes curves SSTS’* are inactive in D,.
Although the contributions for the saddles z;" and z;” have equal phase at ®, the steepest descent con-
tour does not change, so no Stokes switching occurs.

Stokes switching across Ssjsfl: Figure 6 shows how the steepest descent contour changes as the Stokes
curves 857_5’_:'1 are crossed. Following the labeled path from @ to @ to ®, we observe that as the Stokes
curves are crossed, each saddle z; in the lower row switches on a saddle z;", in the upper row. Hence,
additional contributions from the z} saddles emerge in the asymptotic solution as x moves from D, to
Ds.

Following the path from @ to ® to ®, we see that the Stokes curves S;Sfl are inactive in D;.
Although the contributions for the saddles z;~ and z; have equal phase at ®, the steepest descent con-

tour does not change, so no Stokes switching occurs.

Stokes switching across Ss,tfl and S, ,: Figure 7 shows how the steepest descent contour changes

as the Stokes curves Sst:l and S;;;l are crossed. Following the labeled path from @ to @ to ®, we
observe that as the Stokes curves are crossed, each saddle z; in the upper row switches off and each

A ] Moston-Duggan et al
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Figure 6. Schematics of Stokes switching for the Stokes curves SS_Sj:I with o = 1. (a) Stokes structure schematic. The legend

matches that of figure 3, except that we highlight the Stokes curves S_ ) (yellow) and include inactive Stokes curves (dotted

yellow and black) to show the Stokes switching behavior. Points © — ® correspond to the steepest descent schematics shown in
(b)—(g). (b)—(g) Steepest descent schematics. The legends match those of figure 4.

saddle z; in the lower row switches on simultaneously. Hence, contributions from the z;~ saddles appear
and contributions from the z saddles disappear from the asymptotic solution as x moves from D; to
D,. This unusual switching behavior, in which all saddle contributions switch on or off simultaneously,
is caused by the integral endpoint at z = —oo.

Following the path from @ to ® to ®, we see that the Stokes curves SS o1 and S /1y are inactive in
Ds. Although the contributions from the pairs z; and z_, |, and z;" and z[", | have equal phase at ®, the
steepest descent contour does not change, so no Stokes sw1tch1ng occurs.

Higher-order Stokes phenomenon across H s’++1’ 1 and ’HS o +1 : In each of the figures 5-7, the effect

of crossing an inactive Stokes curve was shown in (e)—(g). In each case, the condition (4) was satisfied
but no switching occurred. This is because the saddles satisfying the condition were adjacent on one side
of the SCP, but not adjacent on the other. Such a change in adjacency can only occur across a HOSC;
crossing this curve causes the Stokes curves to become inactive so that no switching can occur.

In figures 5-7 the saddle point adjacency changes upon crossing the HOSCs 7‘[5 or1sp1 and 7-[5 5 +1
Stokes switching only occurs between adjacent saddles. Inside the region bounded by these HOSCs, zj is
adjacent to z; and z_,, while z;~ is adjacent to z" and z" |, allowing Stokes switching across Sha
53 rn- Out51de this region, z; is adjacent to z, | and z;" is adjacent to z,_ ;, enabling Stokes sw1tch1ng
across S, o and S .
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Figure 7. Schematics of Stokes switching for the Stokes curves S, :’; and S, *| with o = 1. (a) Stokes structure schematic. The

legend matches that of figure 3, except that we highlight the Stokes curves

5,8

5,541

STt and S

5,5

;;1 (yellow) and include inactive Stokes

curves (dotted yellow and black) to show the Stokes switching behavior. Points @ — ® correspond to the steepest descent schem-
atics shown in (b)—(g). (b)—(g) Steepest descent schematics. The legends match those of figure 4.

Branch cuts: The branch cuts do not affect which saddles contribute to the asymptotic solution. The

logarithmic branch cut along the real axis for x < —4, maps z; — z, 15 since it is within D,, all saddles
in the lower row contribute. The branch cut along the real axis for —4 < x < 0, maps z;” <> Zj; since it
is within Dj, all saddles contribute. The branch cuts therefore relabel the contributions but do not alter

the asymptotic solution.

3.3. Accumulation of Stokes and anti-Stokes curves
In this section, we comment on an unusual feature, not typically seen in solutions to linear differential

equations. The discrete solution contains an infinite number of anti-Stokes curves accumulating towards
the real axis and an infinite number of (inactive) Stokes curves accumulating towards Re(x) = —2. These
accumulations are illustrated in figure 8.

For Re(x) < 4, the anti-Stokes curves A

Re(x) > 0, the curves A;’ij

+,-
5,s+j

with j > 1 accumulate onto the real axis, and for

with j > 1 accumulate similarly. As the real axis is approached, infinitely
many anti-Stokes curves cause the associated saddle point contributions to switch from exponentially
large to small. Although these curves do not change the form of the solution (20), they induce a rapid
shift in the dominant balance of contributions near the real axis.

10
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Im(z)
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Re(x)

Figure 8. Schematic of inactive Stokes and anti-Stokes curve accumulations for the advance-delay Airy equation (3) for o = 1.
The legend matches that of figure 3, except that we include the inactive Stokes curves (yellow) to illustrate the accumula-
tions. Anti-Stokes curves accumulate on the real axis for x > 0 and x < —4, while inactive Stokes curves accumulate toward

Re(x) = —2.
The inactive Stokes curves S;fj and S:rsg] with j > 1 accumulate toward the line Re(x) = —2.
Between the SCPs, the Stokes curves S;S::; with j > 1 accumulate towards Re(x) < —2 from the left,

while the Stokes curves S;J:]
outside of the SCPs.

Each inactive Stokes curve corresponds to a pair of saddles with equal phase, but no Stokes switch-
ing occurs. As shown in figure 8, approaching the line Re(x) = —2 reveals a sequence of inactive Stokes
curves connecting z; to z,,, zJ; 5, and so on. Although these curves do not influence the solution of the
discrete Airy equation, the accumulation of infinitely many (even inactive) Stokes curves is an unusual
feature in linear problems.

These unusual accumulations occur because the asymptotic solution (20) contains infinitely many
saddle point contributions, leading to infinitely many possible Stokes switching interactions and the res-
ulting curve accumulations. In continuous differential equations, such behavior is typically linked to
nonlinearity, where the transseries has infinitely many terms [47]. Here, however, it arises in a linear
discrete system from the 27-periodicity of the saddle locations, a generic feature of discrete problems
(see, e.g. [16, 24, 50]). In these previous studies, only the Stokes curves associated with the dominant
contributions are considered and therefore the accumulations are not identified. Thus, unlike continuous
systems, the observed accumulation of Stokes and anti-Stokes curves is not due to nonlinearity, but is
instead due to the discretization.

with j > 1 accumulate towards Re(x) < —2 on the right; the reverse is true

3.4. Varying o

In section 3.2, we presented the Stokes structure and asymptotic solutions of the advance-delay Airy
equation (3) for o =1. Allowing o to vary allows the spatial step h to change independently of the small
parameter €, including the use of spatial steps in a complex direction when o is complex. This is a useful
generalization as many special functions satisfy difference equations from which their asymptotic proper-
ties in complex directions can be determined [16, 18-20, 52]. This generalization significantly alters the
Stokes structure.

Figure 9 illustrates how |o| affects the Stokes structure. The turning point at x =0 remains fixed,
while the other turning and virtual turning points lie at x = —4/0? and x = —2 /02, respectively. Since
active Stokes curves emerge from these points, the Stokes structure scales with 1/|c|?, and the regions
D1, Ds, and Dj; scale accordingly. As |o| — 0 the Stokes structure near x =0 approaches that of the con-
tinuous Airy equation (1).

While changing |o| results in a straightforward scaling of the Stokes structure, altering Arg(c) has a
more significant impact. Figure 10 illustrates how Arg(o) affects the Stokes structure. The turning points
lie along the ray Arg(x) =7 — 2Arg(c), while the SCPs lie along the rays Arg(x+2/0?) = +(7/2 +
Arg(o)). As Arg(o) varies, key features of the Stokes structure deform and rotate, and the geometry of
the regions D;, D,, and D; changes accordingly. For Arg(c) = (2 +4n)7/2, with n € {0,1,2,3,4,5},
each SCP coalesces with a turning point. The active Stokes curves Sj‘s’_ and S;fI then coincide, elim-
inating region Ds. In these cases, only D; and D, remain, and there is no region in which all contribu-
tions are simultaneously present.

11
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Re(x)
(¢) o =1.25

Figure 9. Schematic showing how |o| affects the Stokes structure. The legend is identical to figure 3. Panels (a)-(c) show the

Stokes structure for varying || with Arg(o) = 0. The turning point x = 0 remains fixed, while the Stokes structure scales with
1/]o|?.

Inil )
» hn:r)
Imc(r)
Im(z)

% 1 2 0 2 4 ¢ 5 1 2 0 2 1 ¢
Re(z) Re(z)

(b) Arg{c} =0 (c) Arg{c} =m/12 (d) Arg{o} =m/6

Im(z)
Im(z)
Im(z)

R
Re(z)

(e) Arg{o} =m/4 (f) Arg{o} =m/3 (g) Arg{o} = 5m/12 (h) Arg{c} =m/2

Figure 10. Schematic showing how Arg(c) affects the Stokes structure. The legend is identical to figure 3. Panels (a)-(h) show
the Stokes structure for varying Arg(c’) with |o| = 1. The turning point x = 0 remains fixed. As Arg(o) varies, key features of the
Stokes structure deform and rotate. The regions D, D, and D5 change accordingly.

4. Comparison of results

4.1. Numerical comparison

To validate our asymptotic solutions (20) of the advance-delay Airy equation (3), we compare them
with numerical solutions of the discrete Airy equation (2). Solutions of (2) can be written as the mat-
rix system My = 0, where the only nonzero entries are given by My, = 1/0%, My = —2/0% — X,
Myi1,m =1/0?, and y,, = . As such, these solutions lie along straight lines x,, in the complex plane,
with successive point separated by the complex step h = oe. Since € is real and positive, the complex
parameter o determines the direction of these lines.

We seek decaying solutions such that y,, — 0 as |x,,| — co. To approximate the infinite-dimensional
system, we truncate the domain to a finite interval x,, € [xp,,%p, ], With xpy, and xay, chosen so that the
boundary values are negligibly small. We therefore impose yy, = yum, = 0, setting a value for y,, gives
a solvable system. To ensure accuracy of the numerical solutions, we solve the system on progressively
larger domains until the solution converges.

Figure 1 shows numerical solutions to the discrete Airy equation (2) for ¢ =1 and various values of
€. The scheme is implemented with yy =1 at xy = —2, and the solutions are normalized to have a max-
imum value of 1 for visual clarity. These solutions lie along the real axis of x,, because both ¢ and x
are real valued. The solution is oscillatory between x ~ —4 and x ~ 0, and decays exponentially outside
this region. Near x = —4 and x =0, the envelope follows an Airy profile. These features are consistent
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Figure 11. Asymptotic solutions (20) of the advance-delay Airy equation (3) and numerical solutions of the discrete Airy
equation (1) along the real axis, for several values of (x,, +2/0%)/(c€) € Z. The continuous asymptotic solution is sampled

at discrete points x;,. Numerical results (circles) and asymptotic results (crosses) are in agreement, with the accuracy improving
as € — 0. In figures (b), (¢), and (d), the solutions are visually indistinguishable except near the turning points.

with the asymptotic prediction that the solution locally resembles Airy function behavior near each turn-
ing point.

For certain values of o, €, h, and x,,, the asymptotic solution simplifies, enabling direct comparison
with numerical results. If (x,, +2/0%)/(c€) € Z for all m, then the terms y;” and y, are identical up to
a scalar multiple for all s and p, and similarly for y;" and y + In this case, the asymptotic solution (20)
reduces to

oy forx € D,
Yy~ <y, forxe D, . (21)
oy +of  forxe Ds

Figure 11 shows the numerical solutions of the discrete Airy equation (2) compared to the asymp-
totic solution (21). The numerical scheme uses the initial condition y, = y(xp) at xo = —2, where
y0 = y(x0) is computed from (21) with ¢=1. Again, these solutions lie along the real axis of x,, because
both ¢ and x, are real valued. As ¢ — 0, the agreement between the numerical and asymptotic solutions
improves.

Figure 12 shows numerical solutions y,, of the discrete Airy equation (2), compared with the Stokes
structure predicted by our asymptotic solutions (20) to the advance-delay Airy equation (3). The discrete
Airy equation (2) describes solutions y,, along a single line x,, in the complex plane, whose orientation
is determined by the spatial step h = oe. To illustrate the behavior of the solution throughout the com-
plex plane, rather than along a single line, we compute y,, along multiple such lines x,,. Each line has
the same orientation, but they are shifted relative to one another in a direction perpendicular to their
common orientation.

For each line x,,, the numerical scheme is implemented with the condition y, =1 at a corresponding
location xy, and y,, = 0 at the endpoints. For one of the lines, we take xg = —2/ o2, which corresponding
to the virtual turning point. For all other lines, the value of x; is shifted from this point in a direction
perpendicular to the lines x,,. Comparisons are made for several values of Arg(c) with € =0.125 and
|o| =1, so that in each plot the solutions y,, have a different orientation.

This numerical setup does not correspond to the specific solution of section 3.2, which uses a dif-
ferent boundary condition as |x,,| — oo in the complex plane; however, both solutions must exhibit the
same Stokes structure. These simulations therefore provide a numerical validation of the Stokes structure
predicted by the steepest descent analysis.

The Stokes structure predicted through asymptotic analysis matches the numerical results, showing
oscillatory behavior with a slowly varying envelope between the turning points in the enclosed region
Ds, and exponential decay in the outer regions D; and D,.
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(c) Arg(o) = 27/12 (d) Arg(o) = 3w/12

Figure 12. Comparison of the Stokes structure (red) of our asymptotic solutions (20) to the advance-delay Airy equation (3) with
numerical solutions of the discrete Airy equation (1) along several lines x;, throughout the complex plane, for several values of
Arg(co) with e=10.125 and |o| = 1. Numerical solutions (black), are normalized along each line x,, to have a maximum value of
1. The asymptotic and numerical results are in close agreement, showing oscillations with a slowly varying envelope in D3 and
exponential decay in D; and D,.

5. Discussion and conclusions

5.1. Explanation in terms of the Borel Plane

This study demonstrated that the HOSP appears in the asymptotic limit when a homogeneous lin-

ear second-order differential equation is discretized. By understanding the mechanism that causes this
behavior to appear, we can argue that such behavior is, in fact, generic in linear discretized equations.
Additionally, we will explain the impact of this effect on systems in which HOSP and Stokes curve accu-
mulations already appear: nonlinear discrete equations.

The change in behavior that we see occurs because the continuous Airy equation possesses two expo-
nential contributions (with exponents ¢(x) = +2x>/2/3, from (8)), while the discrete Airy equation pos-
sesses an infinite number of such exponential contributions (¢ (x) = gzbsi from (15)). As a consequence, it
is possible to have three or more exponentials interacting in a fashion that produces more complicated
Stokes structures. While it is not apparent from the steepest descent analysis, the factorial-over-power
analysis from appendix shows that in general we can expect an infinite number of exponential contribu-
tions to be present in discrete equations obtained by discretizing continuous systems.

In our problem, the singulant equation contained in (36) simplifies (for o =1) to give

cosh (jﬁ) =1+ g, (22)

which must be satisfied by every choice of ¢. Solving this equation generates an infinite number of val-
ues for d¢/dx that differ by 27i due to the Riemann sheet structure of the hyperbolic cosine function.
This results in the asymptotic expansion containing an infinite number of exponential terms. These
exponential terms group into two families, with the exponents

¢Si =i {(x+2) (:i:icosh_1 (1 + ;ﬁ) —27TS> ¢i\/W} . (23)

The two families are indexed by the sign choice. In this problem, the HOSP occurs due to interactions
between exponents from the different families (see (18)—(19)). We will later explain why this must neces-
sarily be the case.

The reason for the more complicated singulant expression in (22) is that the equation (3) contains
terms that balance asymptotically with the discretized second derivative. However, the appearance of the
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Figure 13. Singularities in the Borel plane at particular values of x for (a) the continuous Airy equation (1) and (b) the advance-
delay Airy equation (3). Figure (b) depicts two infinite lines of singularities emanating from gzﬁg[ respectively.

infinite number of exponentials is a consequence of how the discretized second derivative is treated by
the late-order term analysis; hence, we expect this behavior to be generic in discretized second-order dif-
ferential equations. Similar arguments can be made for infinite families of such terms to be generic for
the discretization of higher-order derivatives.

A useful way to visualize exponential interactions is to study the asymptotic representation of the
solution in the so-called Borel plane. The Borel-plane representation provides a useful framework for
understanding how our results may be expected to generalize to discretizations of other linear and non-
linear equations. By taking the Borel transform in the fashion described in [3], effectively an inverse
Laplace transform mapping x to a new variable w, we can identify key features of the asymptotic solu-
tion by examining the location of singular points in the transformed domain. The resultant transformed
expression is singular at all points w = ¢(x), and that these singularities move as x is varied.

An example schematic of singularity locations in the Borel plane for the solutions to the continuous
and discrete Airy equations respectively is shown in figures 13(a) and (b). In figure 13(a) there are two
singular points at w = ¢ »(x), corresponding to the two exponential contributions to the Airy function
asymptotics. In figure 13(b) there are an infinite number of singular points, located at w = ¢ (x), which
divide into the expected two families (denoted by red and blue circles respectively).

Stokes switching can occur when the condition (4) is satisfied, which corresponds to the two singu-
larities being on the same horizontal line in the Borel plane. This condition for Stokes switching occurs
because the subdominant exponential (corresponding to the the leftmost singularity) is captured by the
contour integral required to invert the Borel transform only when it crosses this horizontal line extend-
ing from the singularity associated with the dominant exponential. An example inversion contour with
Stokes switching is shown in figure 14(a).

Furthermore, considering the Borel plane motivates the definition (6), which corresponds to three
singularities being colinear in this plane. Stokes switching can only occur if the two singularities involved
are on the same Riemann sheet (this is what it means for two contributions to be ‘adjacent’ when inter-
preted in terms of the Borel transform). Singularities can change between Riemann sheets across lines of
co-linearity between three saddles, which produces the HOSC condition in (6). This brief explanation is
sufficient to understand how the HOSP and Stokes curve accumulations arise; however, a more complete
mathematical explanation may be found in [3]. An schematic of the HOSP in the Borel plane is shown
to illustrate this idea in figure 14(b).

In the Borel plane, the singularities associated with exponentials introduced by equations such
as (22) appear along rays in the Borel plane emanating from the singularity at w = ¢ (x). This is shown
in figure 13(b). There are two singularity rays, associated with the two sign choices. As x varies, the dis-
tribution of singularities can rotate and scale in w, but they remain regularly spaced along the same ray.

The behavior of these rays explains the appearance of HOSC in figure 3. The values of x which cor-
respond to the HOSC are when the rays in the Borel plane are aligned, allowing for the co-linearity con-
dition (6) to be satisfied by a set of singularities that do not all lie on the same ray. This is shown in
figure 15. Note that this condition can only be satisfied by all singularities on a ray at once, so we only
see a single HOSC, despite the presence of an infinite number of singularities. A HOSP occurs between
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Figure 14. Schematics illustrating (a) the Stokes phenomenon described by (4), and (b) the higher-order Stokes phenomenon
described by (6). In each case, the singularity that is switching is shown in red, and the dotted arrow shows its path as x is varied.
In (a) the singularity contribution from ¢; is only picked up by the inversion integral contour when it crosses the horizontal line
extending from ¢;, which is the Stokes curve represented in the Borel plane. In (b) the singularity contribution from ¢; lies on a
different Riemann sheet to ¢x. When it crosses the branch cut associated with ¢, it returns to the same Riemann sheet as ¢y and
Stokes switching between the two is now possible; this means ¢; and ¢ are now adjacent.
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Figure 15. Singularities in the Borel plane where x is chosen to lie on the HOSC (x ~ —1 + 2.82i). All singularities are co-linear,
and a HOSP occurs between each group of three consecutive singularities. In each group of three, two from one exponent family
are separated by one from the other.

each group of three consecutive singularities, which consists of two singularities from one family sep-
arated by one singularity from the other. This explains why the two relevant HOSC conditions in (6)
contain either two contributions from ¢ and one contribution from ¢ or vice versa.

The interaction of rays of singularities in the Borel plane also explains the accumulation of Stokes
curves. In the discrete Airy equation, the Stokes curve condition (4) is satisfied by an infinite number
of distinct exponent pairs (i.e. choices of ¢; and ¢;) on each Stokes curve in the accumulation. In each
case, the exponent selected as ¢; and ¢; come from distinct exponential families, and the corresponding
singularities in the Borel plane lie on different rays. This behavior is generic in any system that contains
two (or more) rays of singularities in the Borel plane, corresponding to two (or more) families of expo-
nential contributions. Consequently, this behavior can be expected to extend to any problem in which
discretization produces two or more infinite families of exponentials.
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Figure 16. Schematic of singularities in the Borel plane for continuous nonlinear problems with (a) one base exponential with
¢ = g(x), and (b) two base exponentials with ¢ = g(x) and ¢ = h(x). In (b) the resultant asymptotic expansion contains all
exponentials of the form ¢ = sg(x) + ¢h(x) fors,¢ € Z.

5.1.1. Generalization to linear and nonlinear equations

It is straightforward to show that the discretization of derivatives will generally result in similar hyper-
bolic cosine and sine terms; these will have an infinite number of solutions when inverted, leading to
an infinite family of exponential contributions. Results in previous studies suggest that such behavior is
generic to discrete equations. For instance, any discretized second-order equation of the form

y(x+e)=2y(x)+y(x—e) +flx) =0, (24)

such as those of [50, 53]. By expanding the shifted terms around ¢ =0 and then applying late-order ana-
lysis in the manner introduced by [50], we see that equations of this form must generate exponentials
with cosh(d¢/dx) = 1, and hence produce d¢/dx = 2mis for s € Z. The reason for the more complicated
expression in (22) is that the equation contains terms that balance asymptotically with the differential
term, but the appearance of the infinite number of exponentials remains a consequence of how the dis-
cretized second derivative is treated by the late-order term analysis. Hence, we expect this behavior to be
generic in discretized second-order differential equations.

As with the HOSP, we expect that this Stokes curve accumulations appear in general for systems that
contain two (or more) families of exponential contributions, and hence two (or more) rays of singular-
ities in the Borel plane, when discretized. This explains why such behavior is not present in the asymp-
totic solutions to equations of the form (24); in this case, discretization only introduces one infinite fam-
ily of exponential contributions, rather than two.

While our analysis suggests that the appearance of the HOSP is generic in discretized linear differen-
tial equations with two or more exponentially families, we expect that more complicated behavior can
arise in the study of discretized nonlinear differential equations, such as the discrete Painlevé equations
[16].

In nonlinear equations, the general form of the transseries changes; if the singulant equation gener-
ates an exponential associated with some ¢ = g(x), then the effect of nonlinearity is to introduce expo-
nentials of the form ¢ = sg(x) for all s € Z. This behavior is depicted in figure 16(a). Consequently, we
expect that discretizing nonlinear equations will produce rays of singularities associated with nonlinear
effects in addition to rays of singularities caused by the discretization.

This alone might suggest that the range of possible Stokes curve behaviors is similar to the lin-
ear problem, with two families of Borel plane singularities lying along rays, as in figure 13; however,
there is a further additional effect seen in nonlinear equations which implies the presence of additional
structure in the asymptotic solution. If a nonlinear equation contains multiple exponential contribu-
tions, say g(x) and h(x), then the asymptotic expression generally contains exponentials of the form
¢(x) = sg(x) + Lh(x) where s,£ € Z. As a consequence, instead of having two distinct rays of singularit-
ies, the generic structure in the Borel plane can be expected to contain a lattice of singularities, such as
that depicted in figure 16(b), rather than two just two distinct rays of singularities as in 13(b).

If we discretize a nonlinear differential equation, our results indicate that this will generally intro-
duce new families of exponential contributions, and hence new rays of singularities in the Borel plane.
Therefore, we conjecture that the presence of news ray due to discretization means that the expected
structure of singularities in the Borel plane will not just be two interacting rays of singularities, but
rather a lattice similar to figure 16(b). The only difference between thee two cases is that the family of
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Figure 17. Singularity locations in the Borel plane for a discretized nonlinear equation with a family of exponentials with expo-
nents ¢ = ¢ (x) and ¢ = ¢, (x) caused by discretization. This induces a Borel plane singularity lattice similar to figure 16(b),
with an extra row due to the fact that ¢ (x) does not lie on the origin.

singularities associated with discretization may not necessarily have a singularity at w =0, but might
instead be offset, as seen in figure 13(b).

Consequently, if the asymptotic behavior of a nonlinear discretized problem contains, for example,
two families of exponentials due to discretization: one with ¢(x) = ¢/ (x) and one with ¢(x) = ¢, (x),
then we expect that the resultant asymptotic expression to also contain all exponentials with form
d(x) = ¢ (x) + ¢, (x), where s,¢ € Z. An example of the Borel plane singularities associated with this
structure is depicted in figure 17. This is very similar to the schematic in figure 16(b), with the only dif-
ference being that the two rays are no longer required to intersect at the origin. Note that even more
complicated structures could emerge if a solution contains additional exponential families due to discret-
ization or additional exponentials caused by nonlinear effects in the equation (as in figure 16(b)).

This Borel plane lattice structure permits a much richer variety of Stokes interactions caused by the
many different Stokes, anti-Stokes and HOSCs that can occur due to the presence of a lattice of singular-
ities. Hence any analysis of the Stokes phenomenon of discrete nonlinear equations must be approached
carefully in order to keep track of all possible interactions. These observations may also have important
consequences for rigorous analysis, and bounding of, the behavior of solutions of linear and nonlinear
discrete equations, as they indicate that any rigorous analysis must take into account substantially more
potential sources of exponential growth than the corresponding analysis for continuous linear differential
equations.

5.2. Comparison with existing literature

In our study of the discrete Airy equation (2), we determined the transseries solution (20), whose coef-
ficients vary across the regions D;, D,, and Ds. These regions are bounded by active Stokes curves. The
coefficient changes arise from the Stokes phenomenon as these Stokes curves are crossed. The Stokes
curves originate at two turning points and a virtual turning point, and truncate at two SCPs. At the
SCPs, HOSC emerge, across which the HOSP occurs, truncating the active Stokes curves.

A key novelty of our work is the identification of a virtual turning point at x = —2/0? and the asso-
ciated HOSP. These features were not observed in previous studies [17, 19, 23, 25-28, 35, 54], which
focus on solutions along lines through the origin. Detecting the virtual turning point requires analytic
continuation away from such lines, and hence the Stokes structure in the complex plane was not con-
sidered. Although [25] presents a related Stokes structure for a different discrete equation, the Stokes
curves in that case do not intersect, and thus no virtual turning point or HOSP is observed.

The turning points at x = —4/0? and x =0, agree with those identified using direct series methods
[17, 19, 26-28] and WKB] methods [23, 25, 35, 54]. Near the turning points, the solution (20) follows
an Airy function envelope, away from these points, the solution deviates from Airy function behavior, in
agreement with these prior findings.

Near the turning points, the geometry of the active Stokes curves resembles that of the Airy func-
tion, consistent with studies [23, 25, 35, 55, 56]. Away from these points, the Stokes structure devi-
ates due to differences in the singulants of the advance-delay Airy equation (3) and the continuous
Airy equation (1). As previous studies consider different discrete equations, a direct comparison of the
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Stokes structure is not possible, however, deviation from Airy function behavior is consistently observed
[25, 35, 55, 56].

In section 3.4, we examine how the Stokes structure depends on both Argo and |o| for complex step
directions h. Previous studies [17, 19, 26-28] developed different asymptotic constructions based on rel-
ative positioning of the turning points, consistent with our observations of the Stokes structure as o is
varied.

5.3. Conclusions

In this work, we applied exponential asymptotic techniques to calculate asymptotic solutions to the
discrete Airy equation (2). The resultant asymptotic expressions contain both the HOSP and Stokes
curve accumulations; neither of these features occur for homogeneous linear second-order differen-

tial equations. In general, the HOSP requires at least three interacting exponential contributions, while
Stokes curve accumulations require a transseries with an infinite number of exponential contributions.
The process of discretization, even if it is linear, generates such a transseries solution and allows for the
generation of effects that are restricted to higher-order or nonlinear homogeneous differential equations.

We showed that solutions to the discrete Airy equation (2) are described by the transseries (20).

By comparing our solutions to the discrete Airy equation (2) with those of the continuous Airy
equation (1), we found that discretization significantly alters both the asymptotic form and the associ-
ated Stokes structure. Specifically, solutions to the discrete Airy equation (2) have an additional turning
point at x = —4/0? and an additional virtual turning point at x = —2 /0?2, which generates new Stokes
curves that intersect at two distinct SCPs. These features are absent in the continuous case.

We also identified the HOSP associated with the SCPs. Although the HOSP has been observed in
the Gamma function I'(z), e.g. [38-40], to the authors’ knowledge, the current analysis is the first
observation and study of the HOSP in a discretization of a second order linear equation. In continu-
ous equations, the HOSP emerges from the intersection of Stokes curves [2, 3]. Prior studies of other
discrete equations [25] did not observe the HOSP, because they study different difference equations in
which their corresponding Stokes curves did not intersect.

Because the asymptotic solution (20) is an infinite-parameter transseries with two distinct solution
families, we observed accumulations of both an infinite number of Stokes and anti-Stokes curves. The
accumulation of curves in the Stokes structure is often associated with nonlinear differential equations
and is an expected consequence of nonlinearity as seen in [47]. Our results show that similar behavior
can arise even in linear discrete systems with a finite number of turning points. This is a direct con-
sequence of discretization, which necessarily introduces an infinite number of exponential contributions.
We therefore conjecture that the accumulation of Stokes and anti-Stokes curves may be a generic feature
of discrete equations, independent of nonlinearity.

Finally, we have also given indications of how the HOSP is likely to be generally widespread in dis-
cretizations of linear and nonlinear continuous systems, which has significant consequences for the com-
plexity of carrying out a complete analysis of their asymptotic behaviors.
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Appendix. Factorial-over-power analysis

In this section, we show that the asymptotic solution (20) to the discrete Airy equation (2), previously
derived by steepest descent, can also be obtained using exponential asymptotics based on factorial-over-
power methods [15, 51]. Unlike steepest descent, this approach does not require an integral representa-
tion and applies directly to the advance-delay equation (3). Demonstrating this method is valuable, as it
extends naturally to nonlinear problems and provides a useful tool for studying the HOSP in nonlinear
difference equations.

To apply the factorial-over-power methods, we expand the solution to (3) as a Taylor series about
€ =0 and obtain

2 = o dFy

= L xy=0 25
o2 ]2—; Q) dd T (25)
where y(x) is now a local expression. We study equation (25) using exponential asymptotic methods
developed in [15] and first applied to discrete systems in [50].

A.1. Methodology
The steepest descent method is effective for deriving asymptotic solutions from integrals, however, many
problems lack a convenient integral form. In such cases, exponential asymptotic methods [15, 51] can
be applied directly to the differential equation to determine the same asymptotic results as the steepest
descent analysis.

We first expand the solution as an asymptotic power series of the form

o
y o~ <Z Ay (x)> e P()/e as €e—0. (26)
k=0

We substitute the asymptotic series (26) into the governing equation and match the terms for all orders
of e. Solving these equations for each order of € gives the values of ¢ and Ay.

Determining A requires repeated differentiation of earlier terms. When these terms are singular, this
causes ‘factorial-over-power’ divergence [14], enabling an asymptotic description of the late-order terms
Ay as k — 0o. Based on [14], the authors of [15] proposed an ansatz for late-order terms, the leading-
order term is a sum of terms of the form

B(x)T (k+

where I is the gamma function,  is a constant and B and x are functions of x. Each term in the sum
is associated with a particular singularity of Ay. The contribution for each singularity can be determined
independently, taking the sum of these contributions provides the complete behavior of the late-order
terms [14].

We call the functions B the prefactor and x the singulant. The singulants satisfy y =0 at the sin-
gularities of A, ensuring that Ay is also singular at the same location. Substituting the ansatz (27) into
the recurrence relation and matching terms as k — co determines B and . The value of v is chosen to
ensure consistency of late-order terms (27) with the leading-order solution Ay near the singularities.

The singulant x determines the location of Stokes curves. As shown by [14], a Stokes curve associ-
ated with a change in exponentially small behavior that is switched by a power series expansion, satisfies
the conditions

as k— o0, (27)

Im(x)=0 and Re(y)>0. (28)
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The first condition ensures the dominant and subdominant exponential contributions have equal phase,
while the second restricts Stokes switching to exponentially small contributions. We note that in this for-
mulation the singulant x = ¢; — ¢, is the difference between the exponents of two distinct exponential
contributions, and therefore condition (28) is equivalent to condition (4).

Knowing the late-order form (27) allows optimal truncation of the divergent series (26) at the smal-
lest term, typically producing an exponentially small error as e — 0 [57-59]. The optimally truncated
series is given as

K—1
y= (ZekAH—RK) e ¢ as e— 0, (29)

k=0

where the remainder Rg is exponentially small as ¢ — 0. The optimal truncation point K occurs at the
term of least magnitude [59]. Applying this heuristic to (27) gives K ~ |x|/e.

We determine the exponentially small remainder Rx by substituting (29) into the original equation.
Away from the Stokes curves, we approximate R using the WKBJ ansatz [13]. The WKBJ approxima-
tion breaks down near the Stokes curve. Near the Stokes curve, we determine Rk using the variation of
parameters ansatz

RKN./\/l(x)B(x)e_X(x)/E as €—0, (30)

where M, is called the Stokes multiplier, which varies rapidly in a width of O(e!/2) around the Stokes
curve and encodes the Stokes switching. We compute M using the matched asymptotic expansion pro-
cedure from [51].

A.2. Series expansion
Substituting the ansatz (26) into (25) to obtain

2]62]+k dZJ

2 oo oo oo
o D g (k) — D=0, (31)
’ k=0

i=1 k=0

Q
[ IS}

—_

We apply the general Leibniz rule and Fad di Bruno’s formula to write

¢

2j
d¥ (2j)! d¥lA "B
—¢/e (2))! k I,m ,¢/E
dx¥ (Ake ) le (2j—1)! dx¥-! Z (32)

where be ., are the partial Bell polynomials [60] where the superscript notation indicates the argument,
such that

d¢ d2¢ dlfm+1¢
¢ _
B, = Bim (dx’dxz’m’dxlm“ . (33)

The partial Bell polynomials allow our expressions to be written compactly. We will make use of the

identities
do\’ N [(do\'"? ¢
5= () = si=() (%) & G4

We apply (32) to (31) to obtain

m oYeltk— mB¢ d¥- Ak
I2j—In dx?i—!

S
UZZZZZ
j=1 k=0 1=0 m=0

o0
xz AL =0. (35)
k=0

A.2.1. Exponent equation
We balance the terms in (35) at O(1) as € — 0. After using the identities from (34), we obtain

crii < )J—x:(fz(cosh(aji)—l) —X. (36)
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Solving this equation gives two families of solutions for ¢

o = —é [(x—i— 022) (:I:icosh_1 <1 + aix) - 27rs> Fi x(02x+4)] . (37)

We label the families by a superscript for the sign choice and a subscript for the index s. The exponents
(bsi (37) correspond to the saddle heights (15) from the steepest descents analysis. The solution then
takes the form

(o) o0 o0
. o
Y~ Z lc;" ZekAjke¢f /et ZekAs ke¢-' /61 as €—0, (38)
s=—00 k=0 k=0
where cfE are constants to be specified in one of the regions D;, D,, or D; to obtain a particular solu-

tion to (3).

A.2.2. Leading-order solution
We continue to balance terms in equation (35) of size O(¢) as € — 0 in order to determine the form of
the leading-order terms in (38), Afo. Simplifying the resultant expression using (34) and (36) gives

oo 2j :t 2j—1 dAi 2.4+ 0 2j +\ %2
(2j—1)! dx dx? = 21(2j=2)! \ dx ’

]:1
£\ dAE £\ 2.4+
=sinh <o dc(lisc ) d;o %cosh (Ud:f; ) ddfzs Ai[o. (40)

We solve equation (40) to obtain

1
V2mex!/4 (o2x + 4)1/4 ’

(41)

+ _
As,O -

where the multiplicative constants are included for later algebraic convenience.
The leading-order behavior of each exponential contribution as € — 0 is therefore given by

yio _ 1 e(i[(;ﬂrﬁ)(ﬂ:icosh"<1+"TZ")+27rs)Ii\/x(azx+4)]) - (42)
U V2mex!/4 (02x+4)1/4
Each contribution has two singularities, giving the turning points x = —4 /0 and x =0, in agreement

with those identified from the steepest descent analysis.

A.3. Late-order terms
To calculate all series terms A™ «» we match the terms in (35) at each power of € and solve each equation
recurswely Since the analysis applles identically to all ¢F, we simplify the notation by writing ¢+ = ¢
and As_k = Ag.

Balancing terms in (35) at order O(e) with g > 2 as € — 0 gives

> - )m o¥B], di-1A

2 m
o2 Z Z Z ! dx2]+q ?

j=L I =g l=m

L5 2 2 _ m 2]B¢ d2-!

+; > ZZ il dx;’*[’*zf —xA, =0, (43)

j=1 m=0Il=m

where | -] denotes the floor function. Each contribution yfo (42) is singular at x = —4/0? and x=0, so
the asymptotic series (26) exhibit factorial-over-power divergence. Hence, the terms Ay are described by

22



10P Publishing

J. Phys. A: Math. Theor. 59 (2026) 045202 A ] Moston-Duggan et al

the late-order ansatz (27). We apply (27) to the recurrence relation (43) to obtain

2 N T TR
o2 At Tl (2 —I—n)l  dxdTn

j=15t L p1m=2j—ql=m n=0 p=0

=1 . i
L I m+q+p+fy 2j) (=1) +p02]Bz¢,)mBZ(,p d-1-np
+§ Z ZZZZ ymHatr Y= In!(2j—1—n)!  dx¥—I-n

j=1 m=0l=m n=0 p=0

ity

=0 (44)

As q — o0, the first term will not contribute in any subsequent analysis and is henceforth neglected.

A.3.1. Singulant equation
We balance the largest terms in equation (44), which are of order O(4A,) as ¢ — oo to obtain

sz 2j 2j 2j—m
Z Z o do

o’ om' 2j—m (dx) <dx) 0 4
j=1 m=

We are considering the behavior of late-order terms (27), and therefore the large-g limit of (45).
Extending the sums to infinity yields the leading-order behavior of (45) as g — oo, which gives

e 2j d¢ m dX 2j—m
Uzzzm' (2j—m (dx) <dx> — (46)

j=1m=0

(Tzz(cosh(a(di)Jrj;())l)x. (47)

Solving (46) for dy/dx we find two singulants for each exponent ¢, and ¢;". We denote these singu-
lants as

dxsj’[p’i 27i(s—p) dxsjip’:F 2 o’x
e o ) o —0<7r1( —p) £ cosh™ (1+2>>, (48)

where upper and lower sign choices correspond. The singulants X, xsp p )X » »and X;Z;Jr correspond

to the Stokes switching behavior across the Stokes curves S; ;™ SS7P+, S:,; , and S;F’Jr respectively. The
first superscript and subscript indicates the dominant exponential contribution, while the second indic-
ates the exponential term that is switched on. For example, the singulant x;;;_ is associated with the y;
contribution switching on the y,” contribution.

Although the series analysis can identify active Stokes curves, care is needed due to the many possible
interacting contributions. To streamline the analysis, we instead use the steepest descent results to focus
only on those Stokes curves known to be active in the asymptotic solution.

The Stokes curves S; '+ originate at the turning point x = 0. Solving (48) with the condition x =0
at x =0 shows that the corresponding singulants are

2i 2 _ x\ .
xi‘—(j{(x—i—(ﬂ)icosh 1(1—1—(72)—1 x(02x+4)} . (49)
The Stokes curves SS o originate at the turning point x = —4 /0. Solving (48) with the condition x =0
at x = —4 /0% shows that the corresponding singulants are

X;sil = _251 [<x+ ;) (icosh_1 ( —|—) +27T> —i x(02x+4)} . (50)

The Stokes curves S,/ and Ss,t#l originate at the virtual turning point x = —2/0. Solving (48) with
X =0 at x= —2/0? shows that the corresponding singulants are
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2mi 2
= _ ot
Xs,erl - Xs,erl - 7 (X+ 0_2) . (51)
Each singulant can be directly related to the corresponding steepest descent expression by noting
that X:,r;f = ¢ — ¢, , with the other singulants obtained by adjusting signs and indices accordingly.
Applying condition (28) to each singulant yields the same Stokes curves as those found using the steep-
est descent method in section 3.

A.3.2. Prefactor equation
We balance the next to largest terms in equation (44), which are of order O(A,;_,) as ¢ — oo to obtain

L5 12— 1mt1 21 2%iRe RX o
24 4 U]Bl,mB 2j—m—1 d¥ ! "B

=DID DD - (52

1nl(2i—1—n)! 2j—1—
prriier S In!(2j —1—n)! dx¥—I-n

We take the limit g — oo in equation (52) and apply the identities from (34), to obtain

2 2
sinh<a(3f+ii<>>ﬁ+§(iﬁ+i§>cesh(a<‘£+j®)3:o. (53)

We solve the prefactor equation (53) for each of the singulants, giving

C:t
+ _ s (54)
s /4"
V2mex!/4 (o2x+ 4)

where Csi are constants that remain to be determined. The multiplicative constants in (54) are chosen
for algebraic convenience, such that C =1 in the final asymptotic expression.

Calculating Cj’, C.; and ~: To determine CF, we match the late-order ansatz (27) with a local expansion
of the solution near the singularity x = 0. This is necessary because the outer expansion (26) of the late-
order terms (27) breaks down in the region where ekAre™%/¢ ~ k+14; e~ #/¢; that is, where y = O(e)
as k — oo.

The singulant and the leading-order contribution satisty

4x3/2 CH  am( 2y 20/
Xd T~ 3 and Aoe’stWez” (H32)=2" as x>0, (55)

The envelope for the leading-order contribution and the singulant match those of the singularly-
perturbed Airy equation (1). Furthermore, applying the inner scaling x = €2/3n and () = ¢~ /®y(x),
shows that the local equation for the discrete Airy equation (25) is the same as that of the continuous
Airy equation (1).

The analysis therefore proceeds identically to that of the well-known Airy equation (1). For brevity,
we omit repeating this analysis, and use the result that C" = 1. A similar analysis shows C; = 1.

The strength of the singularity in the late-order terms (27) must be consistent with the leading-order
solutions (42) near the singularities x =0 and x = —4/0?. The leading-order solution (42) has singular-
ities of order 1/4 at these points. Since B is also singular with order 1/4, the late-order terms (27) are
consistent with the leading-order solutions (42) if and only if v=0.

A 4. Stokes switching

We apply the exponential asymptotic method developed in [51], optimally truncating the divergent
series (26) after K terms, yields the expression (29), where Rk denotes the remainder. Following the
heuristic of [14, 59], the optimal truncation point is the value of K for which consecutive terms in the
series have the same magnitude in the limit € — 0. This typically occurs after an asymptotically large
number of terms, so we use the late-order ansatz (27) to estimate K. The optimal truncation point sat-
isfies K ~ |x|/€ as € — 0, which justifies the use of the late-order ansatz. We therefore set K= |x|/e + w,
where w € [0,1) is chosen to ensure that K is an integer.

This follows directly from the method in [51]; however, it is not obvious that the governing
equation (3) reduces to the standard form seen in exponential asymptotics. We therefore outline the
details here. The analysis is presented for general y and B, so it applies uniformly to each switching con-
tribution in the solution.
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We substitute the optimally truncated series (29) into (3) to obtain
2 §oynys G P 6
—xR =
1(27 — 2j—1
j=1 =0 m=0 l (Zj—D! ™

2 oo
022
j=1

Simplifying (56) using (36), (40), and the recurrence relation (43), as ¢ — 0 we obtain the leading-order
terms

K—1 1 m02]€2]+k mB¢ d2] lAk

2j K—1
ZZ e o —x» A (56)
1=0 k=0

m=0

k=0

mgzjezjme;bm d¥-R 2K+l @ 2j 2’6121 | d¥- AK

oo 2f 1
2 (-1) ,
02;;; G e R N X geas )

j=11=2j—1

where the terms omitted in (57) are at most O(eX*2) as € — 0 and are therefore negligible.
Since K — oo as € — 0, we insert the late-order ansatz (27) into (57) and retaining only the largest
terms as € — 0, we obtain in this limit

izz )" o= mB¢ d¥-'r R 26K+1S " d(;b dy BI'(K+1) (58)
(27— do?i—! o “dx ) dx Xkt

j=1 1=0 m=0

where terms omitted from (58) have a size of at most O(I'(K)/xX) as K — oo and are negligible in this
analysis.

The right-hand side of (58) is small compared to the terms on the left-hand side, except within a
region of width O(y/e€) around the curve Im() = 0, which is the Stokes curve. Away from the Stokes
curve, we use a WKBJ ansatz to solve the homogeneous version of (58), given by

m 2]62] mB¢ d2] IRK

7222 ll 2] dx21 ] xRK: 0. (59)

j=1 1=0 m=0

The WKB]J analysis of (59) motivates a variation of parameters approach using the ansatz (30) to
describe the behavior of Rx near the Stokes curve. The Stokes multiplier M varies locally around the
Stokes curve, where the right-hand side of (58) is not negligible, capturing the switching behavior.
Substituting the ansatz (30) into (58), and simplifying using (36), (46), and (54), gives the Stokes multi-
plier equation

inh o) dx
dMm &) & ST

o K+1
sinh(a(jf—!—fé)) X

The right-hand side of (60) simplifies since the first term is either 1 or —1, depending on ¥, hence, we
write

eX/¢ as €—0. (60)

dM dy T (K+1) .
de:Fdiix(K“ )eX/ as €—0. (61)

It is useful to make y the independent variable. Applying this change of variables to (60) gives

dM ET(K+1) .
7dx N:FX(KH >eX/‘ as €—0. (62)

From this point, the analysis follows the standard matched asymptotic expansion method from [51],

which gives
Mwiiwerf(“mArg(X)) +C as e—0, (63)
€

where ‘Arg’ denotes the principal argument. This is the standard form of Stokes switching encountered
in steepest descents analysis, confirming agreement with the results of section 3. Hence, the asymptotic
behavior of the solution to the discrete Airy equation (2) can be determined using only asymptotic series
methods.
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