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ARTICLE INFO ABSTRACT

Keywords: When collecting coastal monitoring data, it is common practice to survey down to spring low tide to capture
Neural networks the maximum extent of the exposed subaerial beach. However, collecting topographic beach data is possible
LSTM for only a few days per month. By reducing the seaward extent of the survey, the incurred costs and risks to
MLP the survey schedule could be greatly reduced. However, this would result in information loss at the lowest
gle\]:ih profiles extremes of the subaerial beach. This study assesses the feasibility of predicting this part of the beach using
Beach surveys deep learning neural networks based on partial beach profile data. A range of network architectures were
Xbeach tested alongside linear extrapolation, which was used as a baseline model. Each model was tested on three
beaches with varying morphology, ranging from steep (reflective) to mildly sloping (dissipative). The presence
of morphological features was found to play a dominant role in the accuracy of the predicted profiles; profiles
with more pronounced cross-shore morphological features, such as sandbars, produced the highest error. While
local connectivity of each network architecture was found to be the key factor in producing realistic profiles,
the 1D Convolutional Neural Network was found to be the most effective with an average RMSE of between
0.026-0.119 m. This RMSE is not substantially larger than the vertical accuracy of current survey techniques
(0.03 m), and the study found that errors of this magnitude have negligible effects when the survey data is
used to calculate beach volumes and conduct numerical wave runup analysis to assess coastal flood risk.

1. Introduction extent of the subaerial beach, it means that surveys can be carried
out on only 2-3 days per month, making data collection logistically

Coastal monitoring programmes are designed to obtain geomor- challenging, costly and vulnerable to interruption or cancellation due
phological and/or hydrodynamic information about our coastlines to to adverse weather. Reducing the seaward extent of the survey specifi-
help understand coastal change and provide the evidence needed to cation would reduce such risks by increasing the number of potential
aid coastal management decision making. Traditionally, one of the survey windows and possibly enabling more frequent surveys at a larger
key coastal monitoring datasets consists of subaerial beach topography number of locations. For example, relaxing the survey specifications

(landward of the shoreline), and while complete digital elevation mod-
els captured using drone and plane mounted Lidar or photogrammetry
are gaining popularity, some of the most useful datasets comprise dis-
crete beach profiles captured on timescales of months/years at repeated
locations.

The National Network of Coastal Monitoring Programmes and the
Wales Coastal Monitoring Centre are responsible for collecting and
compiling the majority of beach profile data in England and Wales. This . e o
work is funded by DEFRA via the Environment Agency and the Welsh who typically commission long-term monitoring programmes are: (1)
Government (NNRCMP, 2023). Their topographic survey specifications to track beach volume over time to warn of concerning sediment loss
require profiles to extend to the level of mean low water spring tides and (2) to assess coastal flood risk due to wave runup and overtop-
(MLWS). While this approach allows collection of the full cross-shore ping (Harley et al., 2011). The consequences of reducing the cross-shore

to MLW would increase the proportion of potential survey days from
7% to 50%, greatly increasing the efficiency of data collection and
potentially opening up the potential to increase the spatial or temporal
resolution of data collection; however, this modification would result
in the loss of data from the lower intertidal zone.

While the scientific community uses beach profile data for a wide
range of purposes, the most common uses for the coastal managers
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extent of beach surveys on the utilisation of data have not previously
been considered in detail. Saville, Jr. and Caldwell (1952) and Silveira
et al. (2013) assessed the effects that alongshore profile spacing had
on beach volume calculation; however, neither considered the effects
of cross-shore profile extent during their study. In their study of the
implications of changing morphology on wave runup, Phillips et al.
(2017, 2020) found that wave runup predictions using XBeach were
sensitive to upper beach morphology, but the impact of morphology in
the lower intertidal zone was not explicitly addressed.

The concept of a beach equilibrium profile, around which the enve-
lope of natural beach profiles fluctuates over time, is widely used within
coastal engineering and dates back to Fenneman (1902). While beaches
are constantly evolving in response to changing wave and tidal condi-
tions, their overall form tends to be very consistent, typically following
a monotonic concave-up mean profile as first quantified by Bruun
(1954) who found that the average profile shape for beaches in Califor-
nia and Denmark followed a power-law. Morphological features such as
sandbars represent perturbations from this overall form.

Given the relatively consistent mean shape of typical beach profiles,
this study explores the potential to reduce the cross-shore extent of
beach profile surveys to enhance the efficiency of coastal monitoring
programmes. In order to mitigate the loss of data associated with
reducing the profile extent, the potential to predict the lower intertidal
portion of the beach profile using available ‘partial’ profile data, ap-
plying linear extrapolation and machine learning methods trained on
historical beach profile data is explored.

Previous efforts to predict beach profiles using machine learning
have largely focused on predicting seasonal beach morphology varia-
tion driven by changes in external forcing (waves, tides, wind, etc.)
(e.g. Hashemi et al., 2010; Li et al., 2020; Lépez et al., 2018a,b). All
of these studies concluded that neural network models performed sig-
nificantly better than comparable mathematical, numerical, and prob-
abilistic methods. However, all investigated a single location with
relatively limited profile variations.

This study evaluates the feasibility of predicting partial beach pro-
files using simple mathematical models and the use of more complex
supervised deep learning models with a view to increasing the effi-
ciency of beach monitoring. Neural networks have been used in other
fields to predict partial data sets, such as future stock prices (Moghar
and Hamiche, 2020), however, there has been no research on the
application of neural networks to extrapolate and extend partial beach
profiles, reducing the survey requirement. Here, we explore, for the first
time, the ability of a variety of neural network architectures to predict
lower intertidal beach profile data based primarily on a “current”
partial beach profile and historic beach topography on a range of
beach types, and quantify the impact on volumetric and overtopping
calculations.

Section 2 provides details on the study location, data used, and
predictive models tested. The results of the study are presented in
Section 3. Finally, the implications of using the proposed machine
learning approach for coastal engineers and managers are discussed in
Section 4, and conclusions are drawn in Section 5.

2. Methodology
2.1. Study locations

Pre-existing topographic survey data collected by the Southwest and
Southeast regional coastal monitoring programmes (Channel Coastal
Observatory, 2021), were used for this study. Three UK beach locations
with a comprehensive record of beach survey data, each with different
morphological features and geographic locations. These beaches were
Gwithian, Wittering, and Brighton, representing high-energy dissipa-
tive, moderate-energy dissipative and reflective beach types respec-
tively.
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Fig. 1. An example beach profile. The blue line represents the surveyed
partial profile, with measured points indicated by the crosses. The orange
line represents the section of the beach profile that the study aims to predict.
Negative chainages (X,, X,, ..., X,) are used to describe the measured region
of the profile. Positive chainages (Y}, Y,, ..., Y,) represent the predicted region.
The cut point that separates the two occurs at mean low water (MLW) at 0 m
elevation and 0 m chainage.

A survey unit was chosen at each beach location, with each unit
consisting of many transects. Two types of surveys were used in the
study: baseline surveys, which captured data along all transects within
the unit, and interim surveys, which recorded a smaller, representative
subset. To maximise the training dataset, all surveys conducted prior
to April 2023 were collated to develop a profile database, with many
transects surveyed multiple times over the study period. While only
a portion of this data could be used due to the constraints discussed
in Section 2.2, the final dataset used to train and assess the models
comprised 481 surveyed profiles at Gwithian (7a7A2-6/7), 268 at
Wittering (5aSU02), and 155 at Brighton (4dSU13).

These profiles were surveyed using an RTK GPS, terrestrial laser
scanner or UAV LiDAR, with vertical accuracy within 30 mm (NNR-
CMP, 2023). Individual profiles were surveyed at varying intervals,
determined by their significance and the type of survey commissioned,
in accordance with a risk-based survey schedule.

2.2. Profile data

The goal of this study is to investigate the potential to predict
the seaward part of a beach profile based on a partial survey down
to a chosen tide level (hereafter termed “cut level”) using a neural
network or simple extrapolation. An example of a complete survey
profile extending down to Mean Low Water Springs (MLWS) can be
seen in Fig. 1. For this study, the cut elevation used to delineate the
partial surveyed profile and the unsurveyed lower extremes of the
subaerial beach was chosen as Mean Low Water (MLW) to balance
additional survey time with the quantity of survey data lost. This choice
allows surveys to be completed at low tide on approximately 50%
of days, greatly increasing the available survey time compared to the
current MLWS requirement (7% of days).

All survey elevations were referenced to Mean Low Water (MLW),
defined as 0 m, with elevations representing vertical distance above
or below this level. The chainage along each profile was transformed
such that the origin (0 m) lies at the intersection between each profile
and the cut elevation (MLW). Negative chainages (X, X5, ..., X,)
represent the surveyed partial profile and positive chainages (Y, Y,,

, Y,) represent the prediction region. In addition, since the distance
between collected survey points varies spatially across the beach, with
point density decreasing seaward, all profiles were interpolated onto
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Fig. 2. All profiles used in the study at all three locations. The data has been
preprocessed and discretised, with all profiles transformed to cross the origin
at MLW. (Red) Shows the 95th and 5th percentiles of the profiles at each
location. (Blue) Shows the mean profile at each location. X, and Y, mark the
start and the end of the profiles respectively.

a 1 m 1D grid. This preprocessing was completed to eliminate the
potential for model bias, where a model’s success would be driven by
the accuracy of predictions in areas of higher survey density at the
possible expense of less densely surveyed regions of the profile. A 1 m
grid was chosen as a balance between minimising profile smoothing
during preprocessing and managing the computational load during
network training, ensuring the scalability of the method.

Due to the fixed shape of most neural networks, some profiles had
to be trimmed or removed to be included in the training data for
each model. Measured profiles that did not extend to the maximum
predicted chainage (Y, in Figs. 1 and 2) could not be used in training
so were discarded in the prepossessing stage. Additionally, profiles that
extended further than Y, or began before the starting chainage (X,
in Figs. 1 and 2) had to be shortened. The maximum chainage (Y,)
and starting chainage (X,) were chosen at each location to find the
optimal balance between the quantity/length of training data and the
length of the profile predicted. Two additional characteristics of each
profile were extracted from the survey data alongside the topographic
information. A profile ID was assigned to each survey profile location.
Profiles are surveyed in the same position periodically to allow tem-
poral patterns to be extracted from sequential surveys; inclusion of this
parameter aids the models to learn about local trends within the chosen
beaches. Each profile location was given a unique number, which was
later normalised for heightened network performance. Secondly, each
survey was given a normalised seasonal value (S,) depending on the
date that the survey was undertaken. Beach profiles typically exhibit
seasonal morphological behaviour, and so this value provides a means
to capture this within the model. (S,) was calculated using Eq. (1),
where Dy, is the ordinal date. S, is a measure of how close the survey
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date is to the winter equinox, thus values close to O represent surveys
conducted near the summer equinox, and values close to 1 represent
surveys conducted near the winter equinox.

. |Dy—183]
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Beach profiles exhibit a spatially sequential structure, with cross-
shore elevations displaying coherent morphological features such as
berms, bars, and troughs. Morphological characteristics within a pro-
file are often interrelated, with features often co-varying (e.g. steeper
foreshore slopes are frequently associated with narrower berms or
deeper troughs). These spatially consistent patterns reflect the primary
controls on beach morphology, with hydrodynamic forces such as
waves and tides, together with sediment composition, driving sedi-
ment transport and shaping morphological change. Consequently, these
morphological features are often consistent across many profiles at
the same study location. These relationships have been extensively
studied and documented in a large body of literature that have focused
on the morphological drivers, relationships and, evolution of beach
profiles (Dean, 1977; Wright and Short, 1984; Masselink and Short,
1993; Scott et al., 2011; Castelle and Masselink, 2023). Building on this
established understanding of profile morphology, this study examines
both dissipative and reflective beaches allowing the exploration a wide
spectrum of features and profile shapes.

All profiles have been plotted in Fig. 2 to highlight the morpho-
logical variability within and across study locations. Gwithian exhibits
longshore bar systems with pronounced crests and troughs (1), produc-
ing highly variable profiles below MLW. Wittering has a more stable
morphology with less pronounced bars and an intermittent low tide
terrace. Brighton is characterised by an almost ubiquitous low tide
terrace (2), yielding relatively uniform slopes and minimal variation
along the profiles.

0<8,<1 (@)

2.3. Profile prediction model architecture

To determine the ability of a model to predict the seaward extent of
a beach profile based on partial beach profile information, five different
modelling approaches were tested. Simple linear extrapolation was
employed as a baseline alongside four largely different neural network
architectures. In this study, LSTM, CNN, and MLP models were em-
ployed as representative architectures for sequential, spatial, and fully
connected learning, respectively. These widely used neural networks
were chosen to enable a comprehensive evaluation and comparison of
their predictive performance.

2.3.1. Linear extrapolation (LE)

Linear extrapolation was selected as the baseline model against
which to assess the performance of the neural networks. The empirical
models proposed by Bruun (1954), Dean (1977, 1991), and Vellinga
(1982) tend towards linear at the seaward extreme of the subaerial
beach profile, thus, a linear extrapolation may be an appropriate model
for the lower part of the intertidal profile.

The quantity of data used in the extrapolation (extrapolation range)
was optimised to minimise the average RMSE across all profiles. Data
was used between the cut level (X = 0) and a second chainage
further landward along the partial profile. This optimisation led to
the following extrapolation ranges to be determined for each beach
individually as: Gwithian (-65 m < X < 0 m), Wittering (—10 m <
X <0 m), and Brighton (-2 m < X <0 m).

2.3.2. Multilayer Perceptron (MLP)

Multilayered Perceptron Models are inspired by the structure of
the brain and represent one of the foundational neural network ar-
chitectures (Gardner and Dorling, 1998). MLP architecture comprises
multiple layers of nodes (artificial neurons) connected by weighted
edges. Inputs are passed through the model layers, sequentially ap-
plying functions at each stage before outputting a result (Rana et al.,
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Fig. 3. MLP Network architecture, with two hidden layers. The surveyed
partial profile (blue) is input into the network, alongside two profile charac-
teristics, the profile’s unique ID and a seasonal value; the prediction (orange)
is the output from the network. Key hyperparameters are labelled on the
diagram.

2018). This architecture has been used frequently in coastal engineer-
ing, from predicting ocean wave parameters to the damage of coastal
structures (Mandal et al., 2008).

For this study, the MLP takes regularly spaced elevation data to
predict the topography of the lower intertidal zone. Fig. 3 shows the
network’s architecture. Discretised elevations at 1 m horizontal spacing
are fed into the network’s input layer (X) shown in blue, with the
addition of the profile characteristics discussed above (Section 2.2). The
network outputs a series of elevations, again at 1 m horizontal spacing,
(Y) shown in orange. The number of input and output parameters varies
depending on the study location, with profiles of different lengths
shown in Fig. 2.

The architecture shown includes two profile characteristics, profile
ID and seasonality, which were only used in the input parameter
selection tests (Section 3.1). The network’s ability to easily add and
remove input parameters by only altering the input layer allowed the
key components of the architecture to remain unchanged, enabling the
model to be trained four times with all combinations of coordinates,
profile ID, and seasonal value to see the response of altering the input
parameters on the prediction accuracy.
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2.3.3. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are an extremely effective
class of network, for which the inputs are presented in the form of
matrices, where the spatial location of the data encodes additional
information, such as image or video (Barnes et al., 2023). Originally
inspired by the visual cortex of animals, the network performs a series
of manipulations on the input matrices before passing them through
fully connected layers, similar to those used in MLPs, to produce an
output.

Specialising in image classification tasks, CNNs have revolutionised
computer vision by enabling the extraction of meaningful information
from image data. Works by Liu et al. (2021) and Ellenson et al. (2020)
have both leveraged CNNs in a similar manner to investigate the
temporal evolution of nearshore morphology and to classify distinct
beach states and morphological features. Although typically used for
classification, many CNNs have been used for regression problems,
including Barnes et al. (2023) who used CNNs to improve the forecast-
ing of total monthly regional rainfall across Great Britain. The results
from all studies showed high accuracy with significant improvements
compared to the current leading statistical models.

2.3.4. 2D CNN

To convert the raw survey data to images, all profiles from each
location were plotted on the same axis with MLW at the origin. These
images were then cropped as shown by the black box in Fig. 4 repre-
senting all of the data used to make predictions up to the cut elevation
at MLW. These images were reduced to one colour channel (greyscale)
and then stored as a matrix with each value representing a pixel. This
process normalises the value of each pixel between 0 and 1 for greater
network performance. Due to its two-dimensional structure, the 2D
CNN has several orders of magnitude more input features than any of
the other networks at the same study location.

The 2D CNN then takes these matrices and performs a series of
transformations, manipulating them to add nonlinearity to the network.
This is done through multiple different network layers seen in Fig. 4.
There is a large amount of literature concerning in-depth discussion of
the inner workings of a CNN, for example, Bhatt et al. (2021) provides a
detailed review of current literature. However, this is beyond the scope
of this paper; as such, the discussion below focuses only on the key
components of the 2D CNN used.

Convolution (yellow layers in Fig. 4) is the primary transformation
applied in the network. This involves passing a kernel (filter) over
the matrix, multiplying the filter by the matrix and summing the
result. These kernels effectively look for smaller patterns or shapes in
the larger inputs, the process outputs a lower-resolution image with
key features made more prominent. These kernels are not predefined;
they are dynamic and are continuously updated through the training
process. A large number of kernels are used on a single convolutional
layer, allowing many patterns to be extracted in a single step.

Another key transformation is pooling, similar to a reduction in
nodes in each sequential layer shown in the MLP network, the pooling
layer reduces the spatial dimension of the subsequent layer (feature
map) without the loss of important information. Max pooling is used
here; the function passes over the feature map, and for each localised
region, the network selects the maximum value in this area. Not only
does this improve performance for small spatial translations of features,
but it also significantly reduces the computation time of the network.

Batch Normalisation is the final key network layer responsible for
transformations. It takes the outputs of the previous layer and nor-
malises them over a batch of data during training. This increases the
speed of the model’s convergence, reducing the training time. It also
introduces additional learnable parameters for each individual channel,
allowing increased individuality for each kernel, resulting in improved
accuracy. These layers are not shown on the diagram as they have no
spatial effect on the feature maps, however, they are denoted by the
Red Arrows in Fig. 4.
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Fig. 4. 2D CNN network architecture, taking the plotted surveyed partial profile as input (black box) and outputting the predicted region (orange). The network
comprises many convolution (yellow) and max pooling (pink) layers, with the red connecting arrows indicating that batch normalisation occurs at these steps.
The flattening layer (red box) converts the 2D matrix into a 1D vector, which can be fed into the two fully connected dense layers that transform the predictions

to the correct output size. Key hyperparameters are labelled on the diagram.

The final layers comprise fully connected dense layers as found in
the MLP, which transform the output of the convolutional layers to the
same cross-shore extent of the predicted region. To go from a 2D result
into a 1D vector, a flattening transformation needs to occur, as seen in
the red box of Fig. 4.

2.3.5. 1D CNN

The 1D CNN is a specialised case of the described 2D CNN network.
While it follows the same fundamental processes, it operates on a one-
dimensional input (a row vector) instead of a two-dimensional matrix.
As such, instead of passing an image into the CNN, the 1 m-spaced
discretised elevations (X) were passed into the network as a row vector.
The length of the row vector and the output layer depended on the
study location. Inputs were normalised to improve network conver-
gence. The transformation layers remain largely the same; however,
kernels become one-dimensional, with max pooling affecting only the
width of the vector. As such, a flattening layer is not required, but dense
layers are still used to resize the output from the network.

2.3.6. Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) are a type of recurrent neural network (RNN) which
specialises in time series or sequential predictions. An LSTM replaces
the nodes and neurons used in the MLP with memory cells and feedback
loops that pass information back through the network (Joshi, 2023).
With this architecture, it becomes possible to recall memories from
thousands of time steps ago while selectively choosing to retain or
discard information at each time step. While predominantly used in
text prediction and recognition, LSTMs have been used to make time-
series predictions, with many applications focusing on stock market
predictions (Chen et al., 2015; Moghar and Hamiche, 2020).

As with the MLP and 1D CNN, the LSTM takes discretised partial
profiles (X) shown in blue and outputs a series of predicted elevations
at 1 m spacings (Y) shown in orange; the full network architecture
is shown in Fig. 5. The network comprises multiple many-to-many
LSTM layers connected to a dense layer that reshapes the output. The
model was batch-trained and the training data shuffled due to the high
number of training sequences.

Predicted Profile
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Fig. 5. Full network architecture of the LSTM, using two many-to-many model
LSTM layers with an additional dense layer. Key hyperparameters are labelled
on the diagram.
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2.4. Hyperparameter training and optimisation

The error metric chosen to assess the network’s performance was
Root Mean Squared Error (RMSE). This was calculated as the differ-
ence between the discretised survey data and the predicted profile for
all points below the cut elevation (MLW). Due to the limited data
available, leave-one-out cross-validation (LOOCV) (a form of k-fold
cross-validation) was completed to produce a more reliable perfor-
mance estimate (Berrar, 2019; Lumumba et al., 2024; Weese et al.,
2025). For each iteration, one profile was excluded as the test set while
the model was trained and validated on the remaining profiles. This
process was repeated until every profile had been used once as the test
set. Statistics of RMSE were computed across all iterations to provide
an unbiased estimate of predictive accuracy while maintaining the
maximum available training data. A training-validation split was used
to prevent overfitting, with the model trained on approximately 80% of
the remaining profiles and internally validated on the remaining 20%
of that subset. For the comparison of different network architectures
and locations a distribution of the RMSE for each model was found in
place of a single, potentially biased value of its performance, producing
more effective comparisons between models.

Even with many years of training data, the number of individual
profiles is still comparatively small when compared to most complex
machine learning tasks. As such, maximising the available training
data has a dramatic impact on the results. Batch normalisation and
layer dropout were used to optimise convergence and enhance model
generalisation. A dropout rate of d = 0.2 (20%) was applied to all net-
works to mitigate overfitting while preserving the network’s learning
capacity. This value is consistent with the network size and limited
training data. The model was trained in batches using simple stochastic
gradient descent to support an adaptive learning rate, while monitoring
the validation loss. The learning rate was decreased with no improve-
ment after 5 epochs. The training process ended when the validation
loss converged and the best weights were restored. For all network
architectures, the tanh activation function was selected due to its ability
to preserve smooth gradients during training.

For network optimisation, hyper-band tuning was employed. Hyper-
band tuning is an optimisation algorithm that balances random search
with a successive halving strategy. It uses effective allocation of re-
sources to promising architectures while discarding less promising
ones. It iteratively explores and evaluates a large set of hyperparam-
eters, ultimately selecting the best-performing configuration based on
the lowest value of RMSE (Li et al., 2018). All deep learning models
were implemented in Python (v3.10) using the TensorFlow (v2.13) and
Keras frameworks; were trained on a MacBook Pro equipped with an
Intel Core i7 (2.2 GHz, 6-core) processor and 16 GB of RAM.

3. Results
3.1. Input parameter selection

To assess the impact of different input parameter selections on the
network’s predictive performance, various combinations of key input
parameters, including elevation data, seasonality, and profile ID, were
tested using the MLP. The elevation data from the partial profile made
up the majority of the input data and, as such, was included in all
of the tests. The seasonality and profile ID were added and removed
in varying combinations. While the same logic could be applied to all
neural networks, due to the MLP’s structure, it has no notion of local
connectivity. Local connectivity is a property of a network architecture
where each neuron is connected only to a localised region, rather
than to all inputs. This enables the model to focus on local patterns
while simultaneously reducing the number of parameters. As such, with
the MLP, additional inputs can be added easily without significant
alteration to the network’s architecture; it was therefore deemed the
most suitable network to explore these effects.
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Table 1

RMSE of each MLP with different combinations of input parameters at the
three locations, presenting the mean value of the leave-one-out cross-validation
across all profiles.

Model Average RMSE (m)

Gwithian Wittering Brighton
ALL Data 0.100 0.027 0.128
Elevation 0.095 0.026 0.125
Elevation + Profile 0.096 0.026 0.125
Elevation + Seasonality 0.098 0.026 0.123

Following hyper-band tuning for network optimisation, leave-one-
out cross-validation was performed on all MLP networks to evaluate the
accuracy of each input combination. Each model was trained separately
for each beach, and RMSE values were calculated across all relative
profiles. The results are visualised using a Kernel Density Estimator
(KDE) and are presented in Fig. 6. The KDE provides a non-parametric
approach to assess the underlying distribution of the results, enabling
comparison of model performance. For this analysis, a Gaussian kernel
was used, with Scott’s Rule applied to determine the kernel bandwidth.
Table 1 contains the average RMSE for each model.

Fig. 6 illustrates that, although there are small differences in model
accuracy, varying the input data used during training does not sig-
nificantly affect performance. To ensure that seasonality and profile
ID were not being overwhelmed by the large quantity of elevation
data, initial weightings were added to the overall network of different
magnitudes to ensure that the initial weightings of the seasonality and
profile parameters were of comparable magnitudes to the sum of the
elevation data. Even with a range of initial weightings, there was a
negligible difference in the results.

On further inspection of Table 1, it can be seen that by adding both
seasonality and profile ID, all networks performed slightly worse than
networks with only elevation data as their input. The elevation-only
network performed the best at both Gwithian and Wittering, indicating
that there was no apparent correlation between seasonality or profile
ID and the partially predicted profile elevations at this site.

In contrast to this, while the elevation-only network performed well
at Brighton, the MLP that included elevation + seasonality performed
the best, indicating that there may be a relationship between season-
ality and predicted elevation at this site. Brighton has not only more
defined beach morphology than the other study locations but also a
more consistent profile shape with a low tide terrace appearing on
almost every profile in the study (Fig. 2 (2)). While the elevation
of a low tide terrace remains almost constant through the year, the
results suggest that there is a correlation between the seasonality and
the position and elevation of the low tide terrace, leading to a slight
increase in network performance.

With the exception of one combination at Brighton, the analysis
indicates that incorporating the supplemental data into model training
at each study area does not have a significant benefit, as evidenced
by increased RMSE values for all locations. Therefore, the subsequent
analysis will rely solely on elevation data as input to the networks.

3.2. Model comparison

Four different neural networks, MLP (Section 2.3.2), 2D CNN (Sec-
tion 2.3.4), 1D CNN (Section 2.3.5), and LSTM (Section 2.3.6), were
compared to a baseline Linear extrapolation (Section 2.3.1) model to
determine the optimum network architecture for this application.

To assess the ability of different networks to predict partial beach
profiles, hyper-band tuning for network optimisation, followed by
leave-one-out cross-validation, was again performed on all networks.
As with the input parameter combinations, the models for each study
location were trained separately. The results of the cross-validation are
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Table 2

Mean RMSE performance of each model across the three locations, based on
leave-one-out cross-validation. The 2D CNN failed to converge during training
and therefore did not produce meaningful results.

Model Average RMSE (m)

Gwithian Wittering Brighton
LE 0.180 0.044 0.989
MLP 0.095 0.026 0.125
2D CNN NAN NAN NAN
1D CNN 0.096 0.025 0.119
LSTM 0.098 0.026 0.124

presented using a Kernel Density Estimator (KDE) (Fig. 7). The mean
values of the RMSE for each model are presented in Table 2.

All models were able to predict partial beach profiles, except the
2D CNN, which was unable to converge during training, regardless of
network architecture or parameter tuning. Even with a much more
complex structure than the other networks, there was not enough
complexity or training data to prevent under-fitting. As such, regardless
of the input elevations, the network predicted the same profile (within
a few millimetres) which minimised the total error. The network’s
complexity also resulted in a much higher computational time. As such,
it was excluded from all subsequent analyses.

The results show that the success of each predictive model varied
substantially depending on the beach type. The remaining four models
were most effective for Wittering, with an average RMSE of between
0.025-0.044 m. The models were not only more accurate but also
more consistent with much narrower frequency kernels. The models
had interquartile ranges (IQRs) of: MLP 0.029 m, LSTM 0.027 m, 1D
CNN 0.023 m, and LE 0.043 m. In contrast, Brighton produced the most
inconsistent results with IQRs between 0.093 and 0.964 m; all models
struggled to consistently predict beach profiles at this location.

As expected, the baseline model (Linear Extrapolation) was associ-
ated with the greatest error, with significantly higher RMSE than all
neural networks for all three locations. This is especially evident at
Brighton, with an average RMSE almost 8 times greater than the worst-
performing neural network. From Fig. 2 (2) it can be seen that the
beach profile at Brighton is highly non-linear with a low tide terrace
(LTT) on almost all profiles starting just above MLWS. As seen in Fig.
8 (e,f) a LTT exhibits a sudden large change in gradient seaward of
the cut point and so a linear fit is a poor approximation, resulting in
a greatly diverging prediction and large error. In contrast to this, LE
has much better accuracy at Wittering (Fig. 8(c)), where the profile is
almost linear, leading to an RMSE larger, but of the same magnitude
as the neural networks.

The MLP and LSTM performed largely similarly, with average RMSE
values differing by between 0.00-0.003 m across all beaches. They
both consistently predicted profiles to a high level of accuracy, with
the second-best performance across all models. While there was only
a small difference in RMSE between the networks, there was a large
difference between the profiles that they predicted. The MLP profiles
are very irregular with large jumps in elevation between consecutive
points, as shown in Fig. 8 (a,b,e,f). The predicted profile often oscil-
lates above and below the real profile, highlighted in Fig. 8(e). The
LSTM profiles are significantly smoother with gradual changes between
points, replicating the real-world characteristics of beaches. As such,
the LSTM is considered significantly better at predicting realistic beach
profiles. While MLPs offer many advantages, their architecture does not
account for spatial or sequential relationships between neighbouring in-
put parameters or output values. The network has no local connectivity,
and as such, changing the order in which the input data is passed into
the network has no impact, as long as this is kept consistent through
the training process. An LSTM is a type of recurrent neural network,
and as such, the order of input and output parameters is important,
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as it has a high notion of local connectivity. The network assumes
that for all points, the points before and after are important, with
every adjacent elevation value being related. The network architecture
adheres to series predictions, as seen by the pink profiles in Fig. 8, the
network produces much smoother profiles and more realistic results.

Comparing the performance of the MLP and LSTM at Brighton,
while the LSTM can predict the presence and shape of the LTT, due
to its sequential nature, the network’s lack of spatial awareness along
the profile often results in the predicted LTT being at the incorrect ele-
vation. The MLP performed similarly in this regard. The MLP predicted
profiles that predominantly included the LTT in the correct position;
however, due to the issues previously discussed, the predicted shape
was often noisy (Fig. 8 e,f). Additionally, it is noted that in some
measured profiles there is no LTT present or the LTT is at a very
different elevation to the majority of the data (Fig. 8(f)). Although the
MLP has spatial awareness within the profile, there is no information
relating to the position of the profile in a 3D space. The MLP and
LSTM were unable to predict the aberrant profiles, and this resulted
in the second and third points of inflection in the KDE in Fig. 7 (MLP:
inflections at RMSE = 0.19 m and 0.28 m; LSTM: inflections at RMSE
= 0.18 m and 0.30 m).

Many of the profiles at Gwithian featured bar morphology, as
observed in Fig. 8(b), resulting in the largest range of elevations
seaward of MLW. Both networks struggled to accurately predict the
occurrence or location of bar morphology, often resulting in profiles
with high RMSE. Many of the Gwithian profiles exhibited only small
bar formations with minimal elevation change. The LSTM was able to
reproduce reasonably realistic-looking bar geometry, as seen in pink in
Fig. 8(b), but the magnitude and location of the predicted bars typically
did not match reality and sometimes led to large divergence from the
measured profile. While the MLP did not predict any significant bar
morphology, the resultant profile often bisected the bar (Fig. 8(b)),
resulting in a lower RMSE than the LSTM.

The best performing network was the 1D CNN, with the lowest
RMSE across two of the three study locations and the second lowest
at Gwithian. Unlike the other networks that had clear secondary points
of inflection at higher RMSE’s, at all three locations the CNN had a
single peak at a lower RMSE and a steep decline at higher errors (Fig.
7).

The profiles predicted by the 1D CNN are not as smooth as those
produced by the LSTM, but are significantly less noisy than the MLP
profiles. The 1D CNN uses kernels to extract information from the input
data by assessing patterns between adjacent elevations. This introduces
local connectivity within the network. In contrast to this, the last few
layers of the network are dense layers to transform the output of
the convolutional layers into the correct size to make predictions. As
discussed for the MLP, the dense layers are fully connected and, as
such, have no local connectivity. The LSTM has a single dense layer,
while the 1D CNN has multiple, decreasing the local connectivity in
the network.

3.3. Morphological features

The presence of morphological features was found to be the domi-
nant factor affecting accuracy when predicting beach profiles. Profiles
with high morphological nonlinearity (i.e. large perturbations from
a linear profile) exhibited significantly higher errors than those with
fewer features.

Quantifying the scale of features on a topographic profile is chal-
lenging, with many varying definitions. The two properties used in
this study are profile curvature and morphological nonlinearity. Profile
curvature is the mean of the second derivative across the predicted
portion of the profile (f(x)). The second metric, morphological non-
linearity, is the standard deviation of elevation change in the linearly
detrended profile. This is used to quantify large deviations between



S. Rose et al.

Coastal Engineering 205 (2026) 104911

01
—— Measured
~ 0.09 ---- LE
£ \ e
a = \:\ - MLP
+ -0.3 N
‘; High 7
o~ 1 Morphological "
%) orphologica
-0 1 Nonlinearity
)
~0.7 E "
0 10 20 30 40 50
0.05
0.00 Negative
= : : Curvature
= Wittering /
Z 0.05
o]
S 0.10
=
g 0.15 Morphological
E — Nonlinearity
ot () @
030 0 5 10 15 0 5 10 15 20
u.Z
0.01
—~
& o
g
8 -0.4
< Positive
> —0.6
(] Curvature
—
M _os ( f)
=0 0 5 10 15 0 5 10 15 20
Chainage (m)

Fig. 8. Examples of predicted profiles produced by all four models, shown alongside the corresponding measured profile in Red. The left column (a,c,e) shows
profiles predicted well by the neural networks. The right column (b,d,f) shows instances where the neural networks were unable to predict the profile with any
accuracy. (a) Profile at Gwithian displaying a gentle curve with minimal morphological features. (b) Profile displaying bar morphology in the predicted region of
the profile, poorly predicted by all models. (c) Typical featureless profile at Wittering. (d) Poorly predicted profile at Wittering due to anomalous bar morphology
on this profile. All plots demonstrate that profiles with aberrant morphological features result in predictions with the highest error. (e) Profile with low tide
terrace at c. —0.4 m elevation, predicted well as the LTT often occurs at this elevation. (f) Low tide terrace, predicted poorly due to the significantly lower

elevation than most of the profiles at Brighton.

adjacent points present in rapidly changing geometry. It is detrended
to ensure that profile steepness has no impact on this measure.

L
Curvature = 1 / f(x)dx (2)
L Jy

3

Where L is the profile length, ¢(AE) is the standard deviation of the
elevation differences between adjacent points (4E), and m is the linear
gradient of the profile. Examples of both curvature and morphological
nonlinearity are labelled in Fig. 8.

Seen in Fig. 9(a), profile curvature is plotted against prediction
error for the MLP, 1D CNN and LSTM models for all three study
locations. Profiles that have a negative curvature are associated with
a local maximum, such as sand bar morphology. Positive curvatures
are caused by morphological features which create local minima, such
as an LTT (Brighton), long-shore bar troughs (Gwithian), or beach steps
(Brighton).

For both Gwithian and Wittering, the RMSE is smallest for profiles
with zero curvature (see Fig. 9). Negative curvature is observed at both
Gwithian and Wittering, as a result of large bar systems at Gwithian and
smaller bars at Wittering and causes a substantial increase in RMSE.
Similarly, positive curvature at these locations results in a similar

Morphological Nonlinearity = o(AE)
m

increase in RMSE. Some profiles at Gwithian show evidence of a bar
trough in the predicted region, and Wittering has an occasional LTT,
resulting in positive curvature. The most prominent morphological
features that produce high curvature magnitudes at both Gwithian and
Wittering are not frequently represented in the training data and are
therefore prone to overfitting on relatively featureless profiles.

At Brighton, the RMSE is largely independent of curvature, with
only a small increase observed as the magnitude of curvature increases
(see Fig. 9). A low tide terrace is present in nearly all Brighton profiles,
as such the curvature in this case does not describe the presence of
varying morphological features but the position or slope of the LTT.
At Brighton, increased positive curvature indicates profiles where the
LTT slopes gradually upwards (Fig. 8(e) 4 m < X < 12 m) rather
than flattening completely. The network’s ability to make accurate
predictions largely depends on the cross-shore position and elevation
of the LTT it is trying to predict, and is independent of the LTT slope;
therefore, RMSE remains constant with curvature.

Fig. 9(b) clearly shows increasing RMSE with morphological non-
linearity at all study locations. Sudden morphological changes, as in-
dicated by high values of morphological nonlinearity, are difficult
to predict and are uncommon in the profile data. Consequently, the
models either overfit relatively featureless profiles or fail to capture the
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Fig. 10. Spatial distribution of prediction error by the 1D CNN model for all three study locations. Confidence intervals of 15%,/75% (dashed line) and 5%/95%

(solid line) are marked for each location.

complex relationships. As a result, all networks at all locations struggle
to accurately predict profiles with large morphological nonlinearity.

As the 1D CNN was the best performing network, the following
analysis was conducted on the results of the 1D CNN. To assess the
spatial variability of the error produced by the network, the error
from each predicted profile is plotted as a function of its chainage.
While maximum error can be easily observed, bootstrap confidence
intervals have been added to relate elevation error to its probability
of occurrence. Fig. 10 presents the elevation error as a function of
chainage for each study location, including upper and lower confidence
intervals.

At Wittering, the elevation error at both the upper and lower bound
confidence intervals increases linearly with chainage, reflecting Witter-
ing’s linear beach gradient. At Brighton, the cross-shore variability of
elevation error is primarily a result of incorrect predictions of the LTT
elevation. The elevation error initially increases cross-shore (0 m < x

10

< 7 m) as the partial predicted profile and the surveyed profiles diverge,
up to the landward limit of the LTT (x = 7 m). As both the predicted and
measured low tide terraces have almost the same gradient, the error
remains relatively constant throughout the rest of the profile. As such,
the confidence intervals take an exponential form. The elevation error
at Gwithian increases with chainage in a near-linear fashion, exhibiting
a slight quadratic curvature. This subtle non-linearity is attributed to
the bar morphology characteristic of Gwithian.

Network interpretability is pivotal for building trust in these neural
networks, transforming them from black-box models into reliable tools.
While the inner workings of neural networks are complex, explain-
ability allows us to understand how and why a network arrived at its
prediction. Without this, it is hard to validate results and any potential
bias of predictive models. These techniques can also provide valuable
insights and highlight hidden trends in the underlying data.
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Fig. 11. Results of a Monte Carlo simulation performed on the 1D CNN. The
colour represents the impact of each coordinate on the average elevation of the
predicted profile. Only coordinates within the surveyed beach extents (black
lines) are used in the simulation.

A Monte Carlo simulation was performed on the 1D CNN to assess
the impact of each coordinate (Chainage, Elevation) within the mea-
sured beach envelope on the predicted partial profile. This was done by
predicting the profile using only a single coordinate within the beach
envelope of the measured partial profiles (black line, Fig. 11), building
on and adapting the methods of Barnes et al. (2023) and Sundararajan
et al. (2017). Each coordinate was input into the network individually,
with all other values set to 0. The predicted partial profile was then
averaged to produce a single value representing its average elevation.
This value was compared to the average elevation of the mean surveyed
profile in the same region to determine whether that coordinate con-
tributed to an increase or decrease in profile elevation. The results are
presented as a colourmap in Fig. 11. Using this method, we can begin to
understand the relationship between the surveyed partial profile input
to the network and the model’s predicted output.

Using Fig. 11, it can be seen that if a surveyed partial profile passes
through a red region of the graph, the resulting predicted partial profile
will have a lower average elevation. Conversely, if the profile passes
through a blue region, this will increase the average elevation of the
predicted partial profile. White areas indicate regions that either have
no impact on the prediction and are deemed unimportant by the neural
network or correspond to profiles with an average elevation similar to
the mean.

11
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The way in which the colour varies with elevation at a single cross-
shore position can be used to understand the importance of this location
on the prediction. For example, areas of the map that have the same
colour, regardless of elevation, indicates a consistent influence on the
prediction, regardless of the elevation at those points. As such, this
region is unimportant to the overall predicted profile. In contrast, areas
with large vertical colour gradients are locations where the elevation
has the most impact on the predicted partial profile. Some interesting
regions of Fig. 11 are discussed below and labelled within the figure.

(1) The largest influence at Gwithian originates from the landward
end (between x = —300 m and x = —250 m) of the measured profile,
with this region contributing up to a 0.5 m decrease in the average
elevation of the predicted profile per point. The significant colour gra-
dient indicates that this location is important for making predictions,
with higher elevations here causing a dramatic decrease in the average
elevation of the predicted region. By contrast, at the lower parts of the
beach (2) (between x = =100 m and x = 0 m), higher elevations result
in an increase in the elevation of the predicted partial profile.

The results for Wittering are largely consistent, with all locations
seaward of —100 m causing a nearly identical reduction in predicted
profile elevation regardless of the input elevation in this region. As
such, the predicted profiles are almost entirely predicted using profile
data between x = —120 m and x = —100 m marked (3) on Fig. 11.
This is partially attributed to the largest variation in surveyed profiles
in this region (widely spaced black lines). This region contains two
clear vertical colour gradients, one blue (between x = —122 m and x
= —-114 m) and one red (between x = —115 m and x = —104 m), both
showing decreasing values at lower elevations. If the surveyed partial
profiles passes through this region at a steeper angle intersect both
a darker blue and a lighter red zone, resulting in a flatter or higher
average elevation in the partial predicted profile. Flatter surveyed
partial profiles through this region will pass through both a dark blue
and dark red, cancelling each other out, resulting in a lower average
elevation of the partial predicted profile.

Brighton displays the opposite behaviour to Wittering and Gwithian,
with the landward part of the beach (x < —45) having little impact
on the predicted partial profile. Region (4) exhibits no vertical colour
gradient, indicating that the elevation of the surveyed profile in this
area does not influence the predicted profile. Instead, all elevations at
these chainages contribute equally to the prediction. Unlike the other
two study locations, the surveyed beach envelope does not narrow
greatly before reaching the MLW level (0 m). As such, there is enough
variation in the beach toe to have a significant impact on the predicted
region. Shown in region (5) (between x = —45 m and x = 0 m), the
greater the elevation of the surveyed profile in this location, the greater
the average elevation of the predicted profile.

4. Discussion

While the error of each model has been quantified, it is important
to understand the implications of these errors for coastal engineering
and coastal management. In the UK, the main uses of beach profiles
by coastal engineers and managers, outside of scientific study, are
beach volume calculations and wave overtopping or coastal flood risk
assessments (Harley et al., 2011).

To measure the effects of using partially predicted profiles for
volumetric calculations, Fig. 12(a-c) presents a rain plot of the per-
centage difference between the volumes calculated using predicted and
measured profiles. For these calculations, the volume of each profile
has been calculated for a single metre width of the beach. Upper
and lower elevation constraints were implemented to calculate beach
volume within a defined vertical range.

Beach profile volumes are used primarily to monitor the net sed-
iment transport over time to assess the health of a beach and any
trend of erosion or accretion. Over shorter time scales, beach volumes
can experience cyclic seasonal variations that are a response to a
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Fig. 12. (a-c) A rain plot showing the percentage error in beach volume calculations when using predicted profiles, plotted for each model at each study location.
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These errors are defined by the confidence intervals calculated from the 1D CNN. R,, is shown for both an identical sequence of irregular waves (red line) and
for four simulations per profile using irregular waves (JONSWAP spectrum) with a different seeding value (black error bars, with the average indicated in green).

varying wave climate throughout the year. To calculate the seasonal
variation at each study location, the volume of all profiles surveyed
more than once during a single year was calculated, and the variation
between profiles was assessed. Where possible, both the 5th percentile
of seasonal variation and the lowest recorded value are plotted on the
graph, shown in blue and red respectively. Wittering (Fig. 12(c)) had a
minimum seasonal variation of 3.89% and a 5th percentile of 13.28%.

The seasonal variation of beach volume at all study sites is signif-
icantly higher than the volumetric error produced by using partially
predicted profiles. As such, it can be assumed that the error introduced
will have a minimal effect on the assessment of seasonal variation in
beach profile volumes and indeed any effect is comparable to the error
introduced by other factors related to survey practice. For example, Sil-
veira et al. (2013) demonstrated that the longshore interval between
profiles had a larger impact on volumetric calculations for their study
site, where doubling the profile spacing from 100 to 200 m led to a
2%-3% change in the calculated beach volume. This is larger than the
error introduced by using partially predicted profiles for beach volume
calculations.

To measure the impacts of using partially predicted profiles for
wave overtopping prediction, XBeach was used to simulate wave run-
up (R,q) for profiles with different magnitudes of elevation error.
While Xbeach has demonstrated its ability to model the physics of
overtopping (McCall et al., 2010), there are limitations on its ability
to model coastal flooding on natural beaches (Stokes et al., 2021). The
ability of XBeach to model wave runup is more robust, and as such,
the elevation exceeded by 2% of wave runup events R,;, was selected
as the metric used to assess the effect of errors in the predicted partial
profile (de Beer et al., 2021).

To assess changes in runup due to elevation errors, a baseline initial
profile was used as a reference, and varying magnitudes of error were
introduced into the predicted region. The baseline chosen was the
mean profile at Gwithian (Blue line, Fig. 2 Gwithian). To introduce
error that reflected the error introduced by the neural network, the
confidence intervals from the 1D CNN were chosen (displayed in orange
in Fig. 10). While only four are shown in Fig. 10, these confidence
intervals were calculated for 5th percentile increments from 5%-95%,
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with the Oth and 100th percentiles representing both the maximum and
minimum error in predictions made by the network. These confidence
intervals were then applied to the predicted region of the baseline
profile to generate a set of new profiles with varying magnitudes of
error, reflective of the network’s predictions.

A storm condition of H; = 3 m, T, = 8 s was simulated us-
ing a surfbeat model, at a water level of mean high water springs
(MHWS) for a 1-hour period. Two sets of simulations were completed
for each modified profile: (1) an identical sequence of irregular waves
by choosing an identical seeding value, and (2) four repeats of irregular
waves (JONSWAP spectrum) for each profile with a different seeding
value. Fig. 12(d) indicates that there are no significant changes in
the predicted values of R,y for varying profile error seaward of MLW
(x = 0 m). In the case of identical irregular wave series, the value
of R,y is almost independent of profile elevation error seaward of
x = 0 m, varying by only 0.0215 m for percentage errors between 0
and 100%. For simulations with the same wave spectrum but varying
seeding values, the black bars represent the spread in runup across the
four repeated tests for each profile. It can be seen that the variations
in run-up predictions caused the wave sequence generated by a fixed
spectrum are significantly higher than the change in runup predictions
caused by the alterations in morphology.

As most simulations are completed with a spectral wave input, it
can be said that the error in predicted R2% introduced by errors in
the partially predicted profile would not have any significant effect on
wave run-up or overtopping modelling.

5. Conclusion

In this study, five predictive models (LE, MLP, 2D CNN, 1D CNN,
and LSTM) were used to predict the lower intertidal zone between MLW
and MLWS using partial beach profiles on three beaches of different
types. Linear extrapolation, used as the baseline model, performed the
worst, with an average RMSE between 0.044-0.989 m. The LSTM and
MLP models were significantly better with an average RMSE between
0.026-0.125 m, while the 1D CNN model performed the best with
an average RMSE of between 0.025-0.119 m across the three study
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locations. It was found that the network’s notion of local connectivity,
the idea of each neuron only being connected to a localised region,
played a pivotal role in producing realistic beach profiles. Networks
with high local connectivity, like the LSTM, produced smooth profiles,
while the MLP, with no local connectivity, produced profiles with
rapidly varying elevations not present in the smooth surveyed profiles.

The observation that different neural network architectures achieve
similar predictive accuracy suggests that the dataset itself sets an upper
limit on performance. Despite having very different inductive biases,
MLPs treat all inputs as equally related without considering spatial or
temporal structure, CNNs exploit local spatial patterns and correlations
among nearby points, and LSTMs capture sequential dependencies, no
model was able to surpass this level of accuracy. This implies that
the information contained in the dataset is inherently limited, and
further improvements will likely require additional or higher-quality
data rather than more complex architectures.

The key factor in the accuracy of predicted profiles was the cross-
shore morphological nonlinearity at each location, with beaches con-
taining fewer features having a lower RMSE. The models performed
best at Wittering due to its featureless nature, but struggled most at
Brighton, which had features (LTT) on almost every profile. This trend
was further seen within the study locations, with individual profiles
having a higher curvature and morphological nonlinearity displaying
higher values of RMSE.

The 1D CNN model could be a useful tool for beach managers who
use topographic beach data to make decisions about our coastlines. The
elevation error introduced by using neural networks as a predictive tool
has been shown to have a negligible effect when using this data for
volumetric and overtopping analysis. All models were trained on a Mac-
Book Pro equipped with an Intel Core i7 (2.2 GHz, 6-core) processor
and 16 GB of RAM. Full hyperparameter tuning was completed in under
24 h per location, demonstrating that the approach is computationally
efficient and feasible on mid-range hardware.

The method is, however, subject to certain practical constraints.
To enable the network to learn the complex patterns necessary for
predicting partial profiles, a large volume of training data is required,
necessitating the prior collection of a substantial dataset. As such, this
approach may not be suitable for locations without an established
coastal monitoring programme. The method may not be suitable for
highly dynamic coastlines undergoing significant long-term morpholog-
ical change. Substantial changes in beach morphology at a location may
necessitate reinstating full survey extents in order to retrain the model
and maintain predictive accuracy. Furthermore, as previously noted,
while the method is well-suited for coastal monitoring applications, it
does not offer the level of accuracy required for coastal process studies.

This method has demonstrated its value in mitigating information
loss if the seaward extent of topographic surveys was changed from
MLWS to MLW. As such, it may be possible to revise the existing extents
of the survey specification, with baseline surveys (conducted at signif-
icantly reduced frequency) still extending down to the current level
of MLWS. This would support ongoing model validation and provide
additional training data to help mitigate errors associated with long-
term morphological change. This approach would not only reduce the
pressure on the current survey schedule but also allow more frequent
surveys/additional locations with the same resources.
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