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 A B S T R A C T

When collecting coastal monitoring data, it is common practice to survey down to spring low tide to capture 
the maximum extent of the exposed subaerial beach. However, collecting topographic beach data is possible 
for only a few days per month. By reducing the seaward extent of the survey, the incurred costs and risks to 
the survey schedule could be greatly reduced. However, this would result in information loss at the lowest 
extremes of the subaerial beach. This study assesses the feasibility of predicting this part of the beach using 
deep learning neural networks based on partial beach profile data. A range of network architectures were 
tested alongside linear extrapolation, which was used as a baseline model. Each model was tested on three 
beaches with varying morphology, ranging from steep (reflective) to mildly sloping (dissipative). The presence 
of morphological features was found to play a dominant role in the accuracy of the predicted profiles; profiles 
with more pronounced cross-shore morphological features, such as sandbars, produced the highest error. While 
local connectivity of each network architecture was found to be the key factor in producing realistic profiles, 
the 1D Convolutional Neural Network was found to be the most effective with an average RMSE of between 
0.026–0.119 m. This RMSE is not substantially larger than the vertical accuracy of current survey techniques 
(0.03 m), and the study found that errors of this magnitude have negligible effects when the survey data is 
used to calculate beach volumes and conduct numerical wave runup analysis to assess coastal flood risk.
1. Introduction

Coastal monitoring programmes are designed to obtain geomor-
phological and/or hydrodynamic information about our coastlines to 
help understand coastal change and provide the evidence needed to 
aid coastal management decision making. Traditionally, one of the 
key coastal monitoring datasets consists of subaerial beach topography 
(landward of the shoreline), and while complete digital elevation mod-
els captured using drone and plane mounted Lidar or photogrammetry 
are gaining popularity, some of the most useful datasets comprise dis-
crete beach profiles captured on timescales of months/years at repeated 
locations.

The National Network of Coastal Monitoring Programmes and the 
Wales Coastal Monitoring Centre are responsible for collecting and 
compiling the majority of beach profile data in England and Wales. This 
work is funded by DEFRA via the Environment Agency and the Welsh 
Government (NNRCMP, 2023). Their topographic survey specifications 
require profiles to extend to the level of mean low water spring tides 
(MLWS). While this approach allows collection of the full cross-shore 
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extent of the subaerial beach, it means that surveys can be carried 
out on only 2–3 days per month, making data collection logistically 
challenging, costly and vulnerable to interruption or cancellation due 
to adverse weather. Reducing the seaward extent of the survey specifi-
cation would reduce such risks by increasing the number of potential 
survey windows and possibly enabling more frequent surveys at a larger 
number of locations. For example, relaxing the survey specifications 
to MLW would increase the proportion of potential survey days from 
7% to 50%, greatly increasing the efficiency of data collection and 
potentially opening up the potential to increase the spatial or temporal 
resolution of data collection; however, this modification would result 
in the loss of data from the lower intertidal zone.

While the scientific community uses beach profile data for a wide 
range of purposes, the most common uses for the coastal managers 
who typically commission long-term monitoring programmes are: (1) 
to track beach volume over time to warn of concerning sediment loss 
and (2) to assess coastal flood risk due to wave runup and overtop-
ping (Harley et al., 2011). The consequences of reducing the cross-shore 
https://doi.org/10.1016/j.coastaleng.2025.104911
Received 1 August 2025; Received in revised form 25 October 2025; Accepted 12 N
vailable online 24 November 2025 
378-3839/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ovember 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/coastaleng
https://www.elsevier.com/locate/coastaleng
https://orcid.org/0009-0006-2071-4547
mailto:str24@bath.ac.uk
https://doi.org/10.1016/j.coastaleng.2025.104911
https://doi.org/10.1016/j.coastaleng.2025.104911
http://creativecommons.org/licenses/by/4.0/


S. Rose et al. Coastal Engineering 205 (2026) 104911 
extent of beach surveys on the utilisation of data have not previously 
been considered in detail. Saville, Jr. and Caldwell (1952) and Silveira 
et al. (2013) assessed the effects that alongshore profile spacing had 
on beach volume calculation; however, neither considered the effects 
of cross-shore profile extent during their study. In their study of the 
implications of changing morphology on wave runup, Phillips et al. 
(2017, 2020) found that wave runup predictions using XBeach were 
sensitive to upper beach morphology, but the impact of morphology in 
the lower intertidal zone was not explicitly addressed.

The concept of a beach equilibrium profile, around which the enve-
lope of natural beach profiles fluctuates over time, is widely used within 
coastal engineering and dates back to Fenneman (1902). While beaches 
are constantly evolving in response to changing wave and tidal condi-
tions, their overall form tends to be very consistent, typically following 
a monotonic concave-up mean profile as first quantified by Bruun 
(1954) who found that the average profile shape for beaches in Califor-
nia and Denmark followed a power-law. Morphological features such as 
sandbars represent perturbations from this overall form.

Given the relatively consistent mean shape of typical beach profiles, 
this study explores the potential to reduce the cross-shore extent of 
beach profile surveys to enhance the efficiency of coastal monitoring 
programmes. In order to mitigate the loss of data associated with 
reducing the profile extent, the potential to predict the lower intertidal 
portion of the beach profile using available ‘partial’ profile data, ap-
plying linear extrapolation and machine learning methods trained on 
historical beach profile data is explored.

Previous efforts to predict beach profiles using machine learning 
have largely focused on predicting seasonal beach morphology varia-
tion driven by changes in external forcing (waves, tides, wind, etc.) 
(e.g. Hashemi et al., 2010; Li et al., 2020; López et al., 2018a,b). All 
of these studies concluded that neural network models performed sig-
nificantly better than comparable mathematical, numerical, and prob-
abilistic methods. However, all investigated a single location with 
relatively limited profile variations.

This study evaluates the feasibility of predicting partial beach pro-
files using simple mathematical models and the use of more complex 
supervised deep learning models with a view to increasing the effi-
ciency of beach monitoring. Neural networks have been used in other 
fields to predict partial data sets, such as future stock prices (Moghar 
and Hamiche, 2020), however, there has been no research on the 
application of neural networks to extrapolate and extend partial beach 
profiles, reducing the survey requirement. Here, we explore, for the first 
time, the ability of a variety of neural network architectures to predict 
lower intertidal beach profile data based primarily on a ‘‘current’’ 
partial beach profile and historic beach topography on a range of 
beach types, and quantify the impact on volumetric and overtopping 
calculations.

Section 2 provides details on the study location, data used, and 
predictive models tested. The results of the study are presented in 
Section 3. Finally, the implications of using the proposed machine 
learning approach for coastal engineers and managers are discussed in 
Section 4, and conclusions are drawn in Section 5.

2. Methodology

2.1. Study locations

Pre-existing topographic survey data collected by the Southwest and 
Southeast regional coastal monitoring programmes (Channel Coastal 
Observatory, 2021), were used for this study. Three UK beach locations 
with a comprehensive record of beach survey data, each with different 
morphological features and geographic locations. These beaches were 
Gwithian, Wittering, and Brighton, representing high-energy dissipa-
tive, moderate-energy dissipative and reflective beach types respec-
tively.
2 
Fig. 1. An example beach profile. The blue line represents the surveyed 
partial profile, with measured points indicated by the crosses. The orange 
line represents the section of the beach profile that the study aims to predict. 
Negative chainages (𝑋1, 𝑋2, . . . , 𝑋𝑛) are used to describe the measured region 
of the profile. Positive chainages (𝑌1, 𝑌2, . . . , 𝑌𝑛) represent the predicted region. 
The cut point that separates the two occurs at mean low water (MLW) at 0 m 
elevation and 0 m chainage.

A survey unit was chosen at each beach location, with each unit 
consisting of many transects. Two types of surveys were used in the 
study: baseline surveys, which captured data along all transects within 
the unit, and interim surveys, which recorded a smaller, representative 
subset. To maximise the training dataset, all surveys conducted prior 
to April 2023 were collated to develop a profile database, with many 
transects surveyed multiple times over the study period. While only 
a portion of this data could be used due to the constraints discussed 
in Section 2.2, the final dataset used to train and assess the models 
comprised 481 surveyed profiles at Gwithian (7a7A2-6/7), 268 at 
Wittering (5aSU02), and 155 at Brighton (4dSU13).

These profiles were surveyed using an RTK GPS, terrestrial laser 
scanner or UAV LiDAR, with vertical accuracy within 30 mm (NNR-
CMP, 2023). Individual profiles were surveyed at varying intervals, 
determined by their significance and the type of survey commissioned, 
in accordance with a risk-based survey schedule.

2.2. Profile data

The goal of this study is to investigate the potential to predict 
the seaward part of a beach profile based on a partial survey down 
to a chosen tide level (hereafter termed ‘‘cut level’’) using a neural 
network or simple extrapolation. An example of a complete survey 
profile extending down to Mean Low Water Springs (MLWS) can be 
seen in Fig.  1. For this study, the cut elevation used to delineate the 
partial surveyed profile and the unsurveyed lower extremes of the 
subaerial beach was chosen as Mean Low Water (MLW) to balance 
additional survey time with the quantity of survey data lost. This choice 
allows surveys to be completed at low tide on approximately 50% 
of days, greatly increasing the available survey time compared to the 
current MLWS requirement (7% of days).

All survey elevations were referenced to Mean Low Water (MLW), 
defined as 0 m, with elevations representing vertical distance above 
or below this level. The chainage along each profile was transformed 
such that the origin (0 m) lies at the intersection between each profile 
and the cut elevation (MLW). Negative chainages (𝑋1, 𝑋2, . . . , 𝑋𝑛) 
represent the surveyed partial profile and positive chainages (𝑌1, 𝑌2, 
. . . , 𝑌𝑛) represent the prediction region. In addition, since the distance 
between collected survey points varies spatially across the beach, with 
point density decreasing seaward, all profiles were interpolated onto 
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Fig. 2. All profiles used in the study at all three locations. The data has been 
preprocessed and discretised, with all profiles transformed to cross the origin 
at MLW. (Red) Shows the 95th and 5th percentiles of the profiles at each 
location. (Blue) Shows the mean profile at each location. 𝑋1 and 𝑌𝑛 mark the 
start and the end of the profiles respectively.

a 1 m 1D grid. This preprocessing was completed to eliminate the 
potential for model bias, where a model’s success would be driven by 
the accuracy of predictions in areas of higher survey density at the 
possible expense of less densely surveyed regions of the profile. A 1 m 
grid was chosen as a balance between minimising profile smoothing 
during preprocessing and managing the computational load during 
network training, ensuring the scalability of the method.

Due to the fixed shape of most neural networks, some profiles had 
to be trimmed or removed to be included in the training data for 
each model. Measured profiles that did not extend to the maximum 
predicted chainage (𝑌𝑛 in Figs.  1 and 2) could not be used in training 
so were discarded in the prepossessing stage. Additionally, profiles that 
extended further than 𝑌𝑛 or began before the starting chainage (𝑋1
in Figs.  1 and 2) had to be shortened. The maximum chainage (𝑌𝑛) 
and starting chainage (𝑋1) were chosen at each location to find the 
optimal balance between the quantity/length of training data and the 
length of the profile predicted. Two additional characteristics of each 
profile were extracted from the survey data alongside the topographic 
information. A profile ID was assigned to each survey profile location. 
Profiles are surveyed in the same position periodically to allow tem-
poral patterns to be extracted from sequential surveys; inclusion of this 
parameter aids the models to learn about local trends within the chosen 
beaches. Each profile location was given a unique number, which was 
later normalised for heightened network performance. Secondly, each 
survey was given a normalised seasonal value (𝑆̂𝑛) depending on the 
date that the survey was undertaken. Beach profiles typically exhibit 
seasonal morphological behaviour, and so this value provides a means 
to capture this within the model. (𝑆̂𝑛) was calculated using Eq.  (1), 
where 𝐷  is the ordinal date. 𝑆̂  is a measure of how close the survey 
𝑂 𝑛

3 
date is to the winter equinox, thus values close to 0 represent surveys 
conducted near the summer equinox, and values close to 1 represent 
surveys conducted near the winter equinox. 

𝑆̂𝑛 =
|𝐷𝑂 − 183|

183
0 ≤ 𝑆̂𝑛 ≤ 1 (1)

Beach profiles exhibit a spatially sequential structure, with cross-
shore elevations displaying coherent morphological features such as 
berms, bars, and troughs. Morphological characteristics within a pro-
file are often interrelated, with features often co-varying (e.g. steeper 
foreshore slopes are frequently associated with narrower berms or 
deeper troughs). These spatially consistent patterns reflect the primary 
controls on beach morphology, with hydrodynamic forces such as 
waves and tides, together with sediment composition, driving sedi-
ment transport and shaping morphological change. Consequently, these 
morphological features are often consistent across many profiles at 
the same study location. These relationships have been extensively 
studied and documented in a large body of literature that have focused 
on the morphological drivers, relationships and, evolution of beach 
profiles (Dean, 1977; Wright and Short, 1984; Masselink and Short, 
1993; Scott et al., 2011; Castelle and Masselink, 2023). Building on this 
established understanding of profile morphology, this study examines 
both dissipative and reflective beaches allowing the exploration a wide 
spectrum of features and profile shapes.

All profiles have been plotted in Fig.  2 to highlight the morpho-
logical variability within and across study locations. Gwithian exhibits 
longshore bar systems with pronounced crests and troughs (1), produc-
ing highly variable profiles below MLW. Wittering has a more stable 
morphology with less pronounced bars and an intermittent low tide 
terrace. Brighton is characterised by an almost ubiquitous low tide 
terrace (2), yielding relatively uniform slopes and minimal variation 
along the profiles.

2.3. Profile prediction model architecture

To determine the ability of a model to predict the seaward extent of 
a beach profile based on partial beach profile information, five different 
modelling approaches were tested. Simple linear extrapolation was 
employed as a baseline alongside four largely different neural network 
architectures. In this study, LSTM, CNN, and MLP models were em-
ployed as representative architectures for sequential, spatial, and fully 
connected learning, respectively. These widely used neural networks 
were chosen to enable a comprehensive evaluation and comparison of 
their predictive performance.

2.3.1. Linear extrapolation (LE)
Linear extrapolation was selected as the baseline model against 

which to assess the performance of the neural networks. The empirical 
models proposed by Bruun (1954), Dean (1977, 1991), and Vellinga 
(1982) tend towards linear at the seaward extreme of the subaerial 
beach profile, thus, a linear extrapolation may be an appropriate model 
for the lower part of the intertidal profile.

The quantity of data used in the extrapolation (extrapolation range) 
was optimised to minimise the average RMSE across all profiles. Data 
was used between the cut level (𝑋 = 0) and a second chainage 
further landward along the partial profile. This optimisation led to 
the following extrapolation ranges to be determined for each beach 
individually as: Gwithian (−65 m < 𝑋 < 0 m), Wittering (−10 m <
𝑋 < 0 m), and Brighton (−2 m < 𝑋 < 0 m).

2.3.2. Multilayer Perceptron (MLP)
Multilayered Perceptron Models are inspired by the structure of 

the brain and represent one of the foundational neural network ar-
chitectures (Gardner and Dorling, 1998). MLP architecture comprises 
multiple layers of nodes (artificial neurons) connected by weighted 
edges. Inputs are passed through the model layers, sequentially ap-
plying functions at each stage before outputting a result (Rana et al., 
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Fig. 3. MLP Network architecture, with two hidden layers. The surveyed 
partial profile (blue) is input into the network, alongside two profile charac-
teristics, the profile’s unique ID and a seasonal value; the prediction (orange) 
is the output from the network. Key hyperparameters are labelled on the 
diagram.

2018). This architecture has been used frequently in coastal engineer-
ing, from predicting ocean wave parameters to the damage of coastal 
structures (Mandal et al., 2008).

For this study, the MLP takes regularly spaced elevation data to 
predict the topography of the lower intertidal zone. Fig.  3 shows the 
network’s architecture. Discretised elevations at 1 m horizontal spacing 
are fed into the network’s input layer (𝑋) shown in blue, with the 
addition of the profile characteristics discussed above (Section 2.2). The 
network outputs a series of elevations, again at 1 m horizontal spacing, 
(𝑌 ) shown in orange. The number of input and output parameters varies 
depending on the study location, with profiles of different lengths 
shown in Fig.  2.

The architecture shown includes two profile characteristics, profile 
ID and seasonality, which were only used in the input parameter 
selection tests (Section 3.1). The network’s ability to easily add and 
remove input parameters by only altering the input layer allowed the 
key components of the architecture to remain unchanged, enabling the 
model to be trained four times with all combinations of coordinates, 
profile ID, and seasonal value to see the response of altering the input 
parameters on the prediction accuracy.
4 
2.3.3. Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) are an extremely effective 

class of network, for which the inputs are presented in the form of 
matrices, where the spatial location of the data encodes additional 
information, such as image or video (Barnes et al., 2023). Originally 
inspired by the visual cortex of animals, the network performs a series 
of manipulations on the input matrices before passing them through 
fully connected layers, similar to those used in MLPs, to produce an 
output.

Specialising in image classification tasks, CNNs have revolutionised 
computer vision by enabling the extraction of meaningful information 
from image data. Works by Liu et al. (2021) and Ellenson et al. (2020) 
have both leveraged CNNs in a similar manner to investigate the 
temporal evolution of nearshore morphology and to classify distinct 
beach states and morphological features. Although typically used for 
classification, many CNNs have been used for regression problems, 
including Barnes et al. (2023) who used CNNs to improve the forecast-
ing of total monthly regional rainfall across Great Britain. The results 
from all studies showed high accuracy with significant improvements 
compared to the current leading statistical models.

2.3.4. 2D CNN
To convert the raw survey data to images, all profiles from each 

location were plotted on the same axis with MLW at the origin. These 
images were then cropped as shown by the black box in Fig.  4 repre-
senting all of the data used to make predictions up to the cut elevation 
at MLW. These images were reduced to one colour channel (greyscale) 
and then stored as a matrix with each value representing a pixel. This 
process normalises the value of each pixel between 0 and 1 for greater 
network performance. Due to its two-dimensional structure, the 2D 
CNN has several orders of magnitude more input features than any of 
the other networks at the same study location.

The 2D CNN then takes these matrices and performs a series of 
transformations, manipulating them to add nonlinearity to the network. 
This is done through multiple different network layers seen in Fig.  4. 
There is a large amount of literature concerning in-depth discussion of 
the inner workings of a CNN, for example, Bhatt et al. (2021) provides a 
detailed review of current literature. However, this is beyond the scope 
of this paper; as such, the discussion below focuses only on the key 
components of the 2D CNN used.

Convolution (yellow layers in Fig.  4) is the primary transformation 
applied in the network. This involves passing a kernel (filter) over 
the matrix, multiplying the filter by the matrix and summing the 
result. These kernels effectively look for smaller patterns or shapes in 
the larger inputs, the process outputs a lower-resolution image with 
key features made more prominent. These kernels are not predefined; 
they are dynamic and are continuously updated through the training 
process. A large number of kernels are used on a single convolutional 
layer, allowing many patterns to be extracted in a single step.

Another key transformation is pooling, similar to a reduction in 
nodes in each sequential layer shown in the MLP network, the pooling 
layer reduces the spatial dimension of the subsequent layer (feature 
map) without the loss of important information. Max pooling is used 
here; the function passes over the feature map, and for each localised 
region, the network selects the maximum value in this area. Not only 
does this improve performance for small spatial translations of features, 
but it also significantly reduces the computation time of the network.

Batch Normalisation is the final key network layer responsible for 
transformations. It takes the outputs of the previous layer and nor-
malises them over a batch of data during training. This increases the 
speed of the model’s convergence, reducing the training time. It also 
introduces additional learnable parameters for each individual channel, 
allowing increased individuality for each kernel, resulting in improved 
accuracy. These layers are not shown on the diagram as they have no 
spatial effect on the feature maps, however, they are denoted by the 
Red Arrows in Fig.  4.
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Fig. 4. 2D CNN network architecture, taking the plotted surveyed partial profile as input (black box) and outputting the predicted region (orange). The network 
comprises many convolution (yellow) and max pooling (pink) layers, with the red connecting arrows indicating that batch normalisation occurs at these steps. 
The flattening layer (red box) converts the 2D matrix into a 1D vector, which can be fed into the two fully connected dense layers that transform the predictions 
to the correct output size. Key hyperparameters are labelled on the diagram.
The final layers comprise fully connected dense layers as found in 
the MLP, which transform the output of the convolutional layers to the 
same cross-shore extent of the predicted region. To go from a 2D result 
into a 1D vector, a flattening transformation needs to occur, as seen in 
the red box of Fig.  4.

2.3.5. 1D CNN
The 1D CNN is a specialised case of the described 2D CNN network. 

While it follows the same fundamental processes, it operates on a one-
dimensional input (a row vector) instead of a two-dimensional matrix. 
As such, instead of passing an image into the CNN, the 1 m-spaced 
discretised elevations (𝑋) were passed into the network as a row vector. 
The length of the row vector and the output layer depended on the 
study location. Inputs were normalised to improve network conver-
gence. The transformation layers remain largely the same; however, 
kernels become one-dimensional, with max pooling affecting only the 
width of the vector. As such, a flattening layer is not required, but dense 
layers are still used to resize the output from the network.

2.3.6. Long Short Term Memory (LSTM)
Long Short Term Memory (LSTM) networks (Hochreiter and Schmid-

huber, 1997) are a type of recurrent neural network (RNN) which 
specialises in time series or sequential predictions. An LSTM replaces 
the nodes and neurons used in the MLP with memory cells and feedback 
loops that pass information back through the network (Joshi, 2023). 
With this architecture, it becomes possible to recall memories from 
thousands of time steps ago while selectively choosing to retain or 
discard information at each time step. While predominantly used in 
text prediction and recognition, LSTMs have been used to make time-
series predictions, with many applications focusing on stock market 
predictions (Chen et al., 2015; Moghar and Hamiche, 2020).

As with the MLP and 1D CNN, the LSTM takes discretised partial 
profiles (𝑋) shown in blue and outputs a series of predicted elevations 
at 1 m spacings (𝑌 ) shown in orange; the full network architecture 
is shown in Fig.  5. The network comprises multiple many-to-many 
LSTM layers connected to a dense layer that reshapes the output. The 
model was batch-trained and the training data shuffled due to the high 
number of training sequences.
5 
Fig. 5. Full network architecture of the LSTM, using two many-to-many model 
LSTM layers with an additional dense layer. Key hyperparameters are labelled 
on the diagram.
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2.4. Hyperparameter training and optimisation

The error metric chosen to assess the network’s performance was 
Root Mean Squared Error (RMSE). This was calculated as the differ-
ence between the discretised survey data and the predicted profile for 
all points below the cut elevation (MLW). Due to the limited data 
available, leave-one-out cross-validation (LOOCV) (a form of k-fold 
cross-validation) was completed to produce a more reliable perfor-
mance estimate (Berrar, 2019; Lumumba et al., 2024; Weese et al., 
2025). For each iteration, one profile was excluded as the test set while 
the model was trained and validated on the remaining profiles. This 
process was repeated until every profile had been used once as the test 
set. Statistics of RMSE were computed across all iterations to provide 
an unbiased estimate of predictive accuracy while maintaining the 
maximum available training data. A training–validation split was used 
to prevent overfitting, with the model trained on approximately 80% of 
the remaining profiles and internally validated on the remaining 20% 
of that subset. For the comparison of different network architectures 
and locations a distribution of the RMSE for each model was found in 
place of a single, potentially biased value of its performance, producing 
more effective comparisons between models.

Even with many years of training data, the number of individual 
profiles is still comparatively small when compared to most complex 
machine learning tasks. As such, maximising the available training 
data has a dramatic impact on the results. Batch normalisation and 
layer dropout were used to optimise convergence and enhance model 
generalisation. A dropout rate of d = 0.2 (20%) was applied to all net-
works to mitigate overfitting while preserving the network’s learning 
capacity. This value is consistent with the network size and limited 
training data. The model was trained in batches using simple stochastic 
gradient descent to support an adaptive learning rate, while monitoring 
the validation loss. The learning rate was decreased with no improve-
ment after 5 epochs. The training process ended when the validation 
loss converged and the best weights were restored. For all network 
architectures, the tanh activation function was selected due to its ability 
to preserve smooth gradients during training.

For network optimisation, hyper-band tuning was employed. Hyper-
band tuning is an optimisation algorithm that balances random search 
with a successive halving strategy. It uses effective allocation of re-
sources to promising architectures while discarding less promising 
ones. It iteratively explores and evaluates a large set of hyperparam-
eters, ultimately selecting the best-performing configuration based on 
the lowest value of RMSE (Li et al., 2018). All deep learning models 
were implemented in Python (v3.10) using the TensorFlow (v2.13) and 
Keras frameworks; were trained on a MacBook Pro equipped with an 
Intel Core i7 (2.2 GHz, 6-core) processor and 16 GB of RAM.

3. Results

3.1. Input parameter selection

To assess the impact of different input parameter selections on the 
network’s predictive performance, various combinations of key input 
parameters, including elevation data, seasonality, and profile ID, were 
tested using the MLP. The elevation data from the partial profile made 
up the majority of the input data and, as such, was included in all 
of the tests. The seasonality and profile ID were added and removed 
in varying combinations. While the same logic could be applied to all 
neural networks, due to the MLP’s structure, it has no notion of local 
connectivity. Local connectivity is a property of a network architecture 
where each neuron is connected only to a localised region, rather 
than to all inputs. This enables the model to focus on local patterns 
while simultaneously reducing the number of parameters. As such, with 
the MLP, additional inputs can be added easily without significant 
alteration to the network’s architecture; it was therefore deemed the 
most suitable network to explore these effects.
6 
Table 1
RMSE of each MLP with different combinations of input parameters at the 
three locations, presenting the mean value of the leave-one-out cross-validation 
across all profiles.
 Model Average RMSE (m)
 Gwithian Wittering Brighton 
 ALL Data 0.100 0.027 0.128  
 Elevation 0.095 0.026 0.125  
 Elevation + Profile 0.096 0.026 0.125  
 Elevation + Seasonality 0.098 0.026 0.123  

Following hyper-band tuning for network optimisation, leave-one-
out cross-validation was performed on all MLP networks to evaluate the 
accuracy of each input combination. Each model was trained separately 
for each beach, and RMSE values were calculated across all relative 
profiles. The results are visualised using a Kernel Density Estimator 
(KDE) and are presented in Fig.  6. The KDE provides a non-parametric 
approach to assess the underlying distribution of the results, enabling 
comparison of model performance. For this analysis, a Gaussian kernel 
was used, with Scott’s Rule applied to determine the kernel bandwidth. 
Table  1 contains the average RMSE for each model.

Fig.  6 illustrates that, although there are small differences in model 
accuracy, varying the input data used during training does not sig-
nificantly affect performance. To ensure that seasonality and profile 
ID were not being overwhelmed by the large quantity of elevation 
data, initial weightings were added to the overall network of different 
magnitudes to ensure that the initial weightings of the seasonality and 
profile parameters were of comparable magnitudes to the sum of the 
elevation data. Even with a range of initial weightings, there was a 
negligible difference in the results.

On further inspection of Table  1, it can be seen that by adding both 
seasonality and profile ID, all networks performed slightly worse than 
networks with only elevation data as their input. The elevation-only 
network performed the best at both Gwithian and Wittering, indicating 
that there was no apparent correlation between seasonality or profile 
ID and the partially predicted profile elevations at this site.

In contrast to this, while the elevation-only network performed well 
at Brighton, the MLP that included elevation + seasonality performed 
the best, indicating that there may be a relationship between season-
ality and predicted elevation at this site. Brighton has not only more 
defined beach morphology than the other study locations but also a 
more consistent profile shape with a low tide terrace appearing on 
almost every profile in the study (Fig.  2 (2)). While the elevation 
of a low tide terrace remains almost constant through the year, the 
results suggest that there is a correlation between the seasonality and 
the position and elevation of the low tide terrace, leading to a slight 
increase in network performance.

With the exception of one combination at Brighton, the analysis 
indicates that incorporating the supplemental data into model training 
at each study area does not have a significant benefit, as evidenced 
by increased RMSE values for all locations. Therefore, the subsequent 
analysis will rely solely on elevation data as input to the networks.

3.2. Model comparison

Four different neural networks, MLP (Section 2.3.2), 2D CNN (Sec-
tion 2.3.4), 1D CNN (Section 2.3.5), and LSTM (Section 2.3.6), were 
compared to a baseline Linear extrapolation (Section 2.3.1) model to 
determine the optimum network architecture for this application.

To assess the ability of different networks to predict partial beach 
profiles, hyper-band tuning for network optimisation, followed by 
leave-one-out cross-validation, was again performed on all networks. 
As with the input parameter combinations, the models for each study 
location were trained separately. The results of the cross-validation are 
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Fig. 6. Kernel density estimation of RMSE for the four MLPs with varying input parameters. Shown for all three study locations Gwithian, Wittering, and Brighton.

Fig. 7. Kernel Density Estimation for the leave-one-out cross-validation results is shown for all five predictive models at each location, Gwithian, Wittering, and 
Brighton.
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Table 2
Mean RMSE performance of each model across the three locations, based on 
leave-one-out cross-validation. The 2D CNN failed to converge during training 
and therefore did not produce meaningful results. 
 Model Average RMSE (m)
 Gwithian Wittering Brighton 
 LE 0.180 0.044 0.989  
 MLP 0.095 0.026 0.125  
 2D CNN NAN NAN NAN  
 1D CNN 0.096 0.025 0.119  
 LSTM 0.098 0.026 0.124  

presented using a Kernel Density Estimator (KDE) (Fig.  7). The mean 
values of the RMSE for each model are presented in Table  2.

All models were able to predict partial beach profiles, except the 
2D CNN, which was unable to converge during training, regardless of 
network architecture or parameter tuning. Even with a much more 
complex structure than the other networks, there was not enough 
complexity or training data to prevent under-fitting. As such, regardless 
of the input elevations, the network predicted the same profile (within 
a few millimetres) which minimised the total error. The network’s 
complexity also resulted in a much higher computational time. As such, 
it was excluded from all subsequent analyses.

The results show that the success of each predictive model varied 
substantially depending on the beach type. The remaining four models 
were most effective for Wittering, with an average RMSE of between 
0.025–0.044 m. The models were not only more accurate but also 
more consistent with much narrower frequency kernels. The models 
had interquartile ranges (IQRs) of: MLP 0.029 m, LSTM 0.027 m, 1D 
CNN 0.023 m, and LE 0.043 m. In contrast, Brighton produced the most 
inconsistent results with IQRs between 0.093 and 0.964 m; all models 
struggled to consistently predict beach profiles at this location.

As expected, the baseline model (Linear Extrapolation) was associ-
ated with the greatest error, with significantly higher RMSE than all 
neural networks for all three locations. This is especially evident at 
Brighton, with an average RMSE almost 8 times greater than the worst-
performing neural network. From Fig.  2 (2) it can be seen that the 
beach profile at Brighton is highly non-linear with a low tide terrace 
(LTT) on almost all profiles starting just above MLWS. As seen in Fig. 
8 (e,f) a LTT exhibits a sudden large change in gradient seaward of 
the cut point and so a linear fit is a poor approximation, resulting in 
a greatly diverging prediction and large error. In contrast to this, LE 
has much better accuracy at Wittering (Fig.  8(c)), where the profile is 
almost linear, leading to an RMSE larger, but of the same magnitude 
as the neural networks.

The MLP and LSTM performed largely similarly, with average RMSE 
values differing by between 0.00–0.003 m across all beaches. They 
both consistently predicted profiles to a high level of accuracy, with 
the second-best performance across all models. While there was only 
a small difference in RMSE between the networks, there was a large 
difference between the profiles that they predicted. The MLP profiles 
are very irregular with large jumps in elevation between consecutive 
points, as shown in Fig.  8 (a,b,e,f). The predicted profile often oscil-
lates above and below the real profile, highlighted in Fig.  8(e). The 
LSTM profiles are significantly smoother with gradual changes between 
points, replicating the real-world characteristics of beaches. As such, 
the LSTM is considered significantly better at predicting realistic beach 
profiles. While MLPs offer many advantages, their architecture does not 
account for spatial or sequential relationships between neighbouring in-
put parameters or output values. The network has no local connectivity, 
and as such, changing the order in which the input data is passed into 
the network has no impact, as long as this is kept consistent through 
the training process. An LSTM is a type of recurrent neural network, 
and as such, the order of input and output parameters is important, 
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as it has a high notion of local connectivity. The network assumes 
that for all points, the points before and after are important, with 
every adjacent elevation value being related. The network architecture 
adheres to series predictions, as seen by the pink profiles in Fig.  8, the 
network produces much smoother profiles and more realistic results.

Comparing the performance of the MLP and LSTM at Brighton, 
while the LSTM can predict the presence and shape of the LTT, due 
to its sequential nature, the network’s lack of spatial awareness along 
the profile often results in the predicted LTT being at the incorrect ele-
vation. The MLP performed similarly in this regard. The MLP predicted 
profiles that predominantly included the LTT in the correct position; 
however, due to the issues previously discussed, the predicted shape 
was often noisy (Fig.  8 e,f). Additionally, it is noted that in some 
measured profiles there is no LTT present or the LTT is at a very 
different elevation to the majority of the data (Fig.  8(f)). Although the 
MLP has spatial awareness within the profile, there is no information 
relating to the position of the profile in a 3D space. The MLP and 
LSTM were unable to predict the aberrant profiles, and this resulted 
in the second and third points of inflection in the KDE in Fig.  7 (MLP: 
inflections at RMSE = 0.19 m and 0.28 m; LSTM: inflections at RMSE 
= 0.18 m and 0.30 m).

Many of the profiles at Gwithian featured bar morphology, as 
observed in Fig.  8(b), resulting in the largest range of elevations 
seaward of MLW. Both networks struggled to accurately predict the 
occurrence or location of bar morphology, often resulting in profiles 
with high RMSE. Many of the Gwithian profiles exhibited only small 
bar formations with minimal elevation change. The LSTM was able to 
reproduce reasonably realistic-looking bar geometry, as seen in pink in 
Fig.  8(b), but the magnitude and location of the predicted bars typically 
did not match reality and sometimes led to large divergence from the 
measured profile. While the MLP did not predict any significant bar 
morphology, the resultant profile often bisected the bar (Fig.  8(b)), 
resulting in a lower RMSE than the LSTM.

The best performing network was the 1D CNN, with the lowest 
RMSE across two of the three study locations and the second lowest 
at Gwithian. Unlike the other networks that had clear secondary points 
of inflection at higher RMSE’s, at all three locations the CNN had a 
single peak at a lower RMSE and a steep decline at higher errors (Fig. 
7).

The profiles predicted by the 1D CNN are not as smooth as those 
produced by the LSTM, but are significantly less noisy than the MLP 
profiles. The 1D CNN uses kernels to extract information from the input 
data by assessing patterns between adjacent elevations. This introduces 
local connectivity within the network. In contrast to this, the last few 
layers of the network are dense layers to transform the output of 
the convolutional layers into the correct size to make predictions. As 
discussed for the MLP, the dense layers are fully connected and, as 
such, have no local connectivity. The LSTM has a single dense layer, 
while the 1D CNN has multiple, decreasing the local connectivity in 
the network.

3.3. Morphological features

The presence of morphological features was found to be the domi-
nant factor affecting accuracy when predicting beach profiles. Profiles 
with high morphological nonlinearity (i.e. large perturbations from 
a linear profile) exhibited significantly higher errors than those with 
fewer features.

Quantifying the scale of features on a topographic profile is chal-
lenging, with many varying definitions. The two properties used in 
this study are profile curvature and morphological nonlinearity. Profile 
curvature is the mean of the second derivative across the predicted 
portion of the profile (𝑓 (𝑥)). The second metric, morphological non-
linearity, is the standard deviation of elevation change in the linearly 
detrended profile. This is used to quantify large deviations between 
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Fig. 8. Examples of predicted profiles produced by all four models, shown alongside the corresponding measured profile in Red. The left column (a,c,e) shows 
profiles predicted well by the neural networks. The right column (b,d,f) shows instances where the neural networks were unable to predict the profile with any 
accuracy. (a) Profile at Gwithian displaying a gentle curve with minimal morphological features. (b) Profile displaying bar morphology in the predicted region of 
the profile, poorly predicted by all models. (c) Typical featureless profile at Wittering. (d) Poorly predicted profile at Wittering due to anomalous bar morphology 
on this profile. All plots demonstrate that profiles with aberrant morphological features result in predictions with the highest error. (e) Profile with low tide 
terrace at c. −0.4 m elevation, predicted well as the LTT often occurs at this elevation. (f) Low tide terrace, predicted poorly due to the significantly lower 
elevation than most of the profiles at Brighton.
adjacent points present in rapidly changing geometry. It is detrended 
to ensure that profile steepness has no impact on this measure. 

Curvature = 1
𝐿 ∫

𝐿

0
𝑓 ′′(𝑥) 𝑑𝑥 (2)

Morphological Nonlinearity = 𝜎(𝛥𝐸)
𝑚

(3)

Where 𝐿 is the profile length, 𝜎(𝛥𝐸) is the standard deviation of the 
elevation differences between adjacent points (𝛥𝐸), and 𝑚 is the linear 
gradient of the profile. Examples of both curvature and morphological 
nonlinearity are labelled in Fig.  8.

Seen in Fig.  9(a), profile curvature is plotted against prediction 
error for the MLP, 1D CNN and LSTM models for all three study 
locations. Profiles that have a negative curvature are associated with 
a local maximum, such as sand bar morphology. Positive curvatures 
are caused by morphological features which create local minima, such 
as an LTT (Brighton), long-shore bar troughs (Gwithian), or beach steps 
(Brighton).

For both Gwithian and Wittering, the RMSE is smallest for profiles 
with zero curvature (see Fig.  9). Negative curvature is observed at both 
Gwithian and Wittering, as a result of large bar systems at Gwithian and 
smaller bars at Wittering and causes a substantial increase in RMSE. 
Similarly, positive curvature at these locations results in a similar 
9 
increase in RMSE. Some profiles at Gwithian show evidence of a bar 
trough in the predicted region, and Wittering has an occasional LTT, 
resulting in positive curvature. The most prominent morphological 
features that produce high curvature magnitudes at both Gwithian and 
Wittering are not frequently represented in the training data and are 
therefore prone to overfitting on relatively featureless profiles.

At Brighton, the RMSE is largely independent of curvature, with 
only a small increase observed as the magnitude of curvature increases 
(see Fig.  9). A low tide terrace is present in nearly all Brighton profiles, 
as such the curvature in this case does not describe the presence of 
varying morphological features but the position or slope of the LTT. 
At Brighton, increased positive curvature indicates profiles where the 
LTT slopes gradually upwards (Fig.  8(e) 4 m < X < 12 m) rather 
than flattening completely. The network’s ability to make accurate 
predictions largely depends on the cross-shore position and elevation 
of the LTT it is trying to predict, and is independent of the LTT slope; 
therefore, RMSE remains constant with curvature.

Fig.  9(b) clearly shows increasing RMSE with morphological non-
linearity at all study locations. Sudden morphological changes, as in-
dicated by high values of morphological nonlinearity, are difficult 
to predict and are uncommon in the profile data. Consequently, the 
models either overfit relatively featureless profiles or fail to capture the 
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Fig. 9. Average RMSE value at all three study locations for the 1D CNN model, binned by (a) Profile Curvature and (b) Profile Nonlinearity.
Fig. 10. Spatial distribution of prediction error by the 1D CNN model for all three study locations. Confidence intervals of 15%/75% (dashed line) and 5%/95% 
(solid line) are marked for each location.
complex relationships. As a result, all networks at all locations struggle 
to accurately predict profiles with large morphological nonlinearity.

As the 1D CNN was the best performing network, the following 
analysis was conducted on the results of the 1D CNN. To assess the 
spatial variability of the error produced by the network, the error 
from each predicted profile is plotted as a function of its chainage. 
While maximum error can be easily observed, bootstrap confidence 
intervals have been added to relate elevation error to its probability 
of occurrence. Fig.  10 presents the elevation error as a function of 
chainage for each study location, including upper and lower confidence 
intervals.

At Wittering, the elevation error at both the upper and lower bound 
confidence intervals increases linearly with chainage, reflecting Witter-
ing’s linear beach gradient. At Brighton, the cross-shore variability of 
elevation error is primarily a result of incorrect predictions of the LTT 
elevation. The elevation error initially increases cross-shore (0 m < 𝑥
10 
< 7 m) as the partial predicted profile and the surveyed profiles diverge, 
up to the landward limit of the LTT (x = 7 m). As both the predicted and 
measured low tide terraces have almost the same gradient, the error 
remains relatively constant throughout the rest of the profile. As such, 
the confidence intervals take an exponential form. The elevation error 
at Gwithian increases with chainage in a near-linear fashion, exhibiting 
a slight quadratic curvature. This subtle non-linearity is attributed to 
the bar morphology characteristic of Gwithian.

Network interpretability is pivotal for building trust in these neural 
networks, transforming them from black-box models into reliable tools. 
While the inner workings of neural networks are complex, explain-
ability allows us to understand how and why a network arrived at its 
prediction. Without this, it is hard to validate results and any potential 
bias of predictive models. These techniques can also provide valuable 
insights and highlight hidden trends in the underlying data.
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Fig. 11. Results of a Monte Carlo simulation performed on the 1D CNN. The 
colour represents the impact of each coordinate on the average elevation of the 
predicted profile. Only coordinates within the surveyed beach extents (black 
lines) are used in the simulation.

A Monte Carlo simulation was performed on the 1D CNN to assess 
the impact of each coordinate (Chainage, Elevation) within the mea-
sured beach envelope on the predicted partial profile. This was done by 
predicting the profile using only a single coordinate within the beach 
envelope of the measured partial profiles (black line, Fig.  11), building 
on and adapting the methods of Barnes et al. (2023) and Sundararajan 
et al. (2017). Each coordinate was input into the network individually, 
with all other values set to 0. The predicted partial profile was then 
averaged to produce a single value representing its average elevation. 
This value was compared to the average elevation of the mean surveyed 
profile in the same region to determine whether that coordinate con-
tributed to an increase or decrease in profile elevation. The results are 
presented as a colourmap in Fig.  11. Using this method, we can begin to 
understand the relationship between the surveyed partial profile input 
to the network and the model’s predicted output.

Using Fig.  11, it can be seen that if a surveyed partial profile passes 
through a red region of the graph, the resulting predicted partial profile 
will have a lower average elevation. Conversely, if the profile passes 
through a blue region, this will increase the average elevation of the 
predicted partial profile. White areas indicate regions that either have 
no impact on the prediction and are deemed unimportant by the neural 
network or correspond to profiles with an average elevation similar to 
the mean.
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The way in which the colour varies with elevation at a single cross-
shore position can be used to understand the importance of this location 
on the prediction. For example, areas of the map that have the same 
colour, regardless of elevation, indicates a consistent influence on the 
prediction, regardless of the elevation at those points. As such, this 
region is unimportant to the overall predicted profile. In contrast, areas 
with large vertical colour gradients are locations where the elevation 
has the most impact on the predicted partial profile. Some interesting 
regions of Fig.  11 are discussed below and labelled within the figure.

(1) The largest influence at Gwithian originates from the landward 
end (between x = −300 m and x = −250 m) of the measured profile, 
with this region contributing up to a 0.5 m decrease in the average 
elevation of the predicted profile per point. The significant colour gra-
dient indicates that this location is important for making predictions, 
with higher elevations here causing a dramatic decrease in the average 
elevation of the predicted region. By contrast, at the lower parts of the 
beach (2) (between x = −100 m and x = 0 m), higher elevations result 
in an increase in the elevation of the predicted partial profile.

The results for Wittering are largely consistent, with all locations 
seaward of −100 m causing a nearly identical reduction in predicted 
profile elevation regardless of the input elevation in this region. As 
such, the predicted profiles are almost entirely predicted using profile 
data between x = −120 m and x = −100 m marked (3) on Fig.  11. 
This is partially attributed to the largest variation in surveyed profiles 
in this region (widely spaced black lines). This region contains two 
clear vertical colour gradients, one blue (between x = −122 m and x 
= −114 m) and one red (between x = −115 m and x = −104 m), both 
showing decreasing values at lower elevations. If the surveyed partial 
profiles passes through this region at a steeper angle intersect both 
a darker blue and a lighter red zone, resulting in a flatter or higher 
average elevation in the partial predicted profile. Flatter surveyed 
partial profiles through this region will pass through both a dark blue 
and dark red, cancelling each other out, resulting in a lower average 
elevation of the partial predicted profile.

Brighton displays the opposite behaviour to Wittering and Gwithian, 
with the landward part of the beach (𝑥 < −45) having little impact 
on the predicted partial profile. Region (4) exhibits no vertical colour 
gradient, indicating that the elevation of the surveyed profile in this 
area does not influence the predicted profile. Instead, all elevations at 
these chainages contribute equally to the prediction. Unlike the other 
two study locations, the surveyed beach envelope does not narrow 
greatly before reaching the MLW level (0 m). As such, there is enough 
variation in the beach toe to have a significant impact on the predicted 
region. Shown in region (5) (between x = −45 m and x = 0 m), the 
greater the elevation of the surveyed profile in this location, the greater 
the average elevation of the predicted profile.

4. Discussion

While the error of each model has been quantified, it is important 
to understand the implications of these errors for coastal engineering 
and coastal management. In the UK, the main uses of beach profiles 
by coastal engineers and managers, outside of scientific study, are 
beach volume calculations and wave overtopping or coastal flood risk 
assessments (Harley et al., 2011).

To measure the effects of using partially predicted profiles for 
volumetric calculations, Fig.  12(a-c) presents a rain plot of the per-
centage difference between the volumes calculated using predicted and 
measured profiles. For these calculations, the volume of each profile 
has been calculated for a single metre width of the beach. Upper 
and lower elevation constraints were implemented to calculate beach 
volume within a defined vertical range.

Beach profile volumes are used primarily to monitor the net sed-
iment transport over time to assess the health of a beach and any 
trend of erosion or accretion. Over shorter time scales, beach volumes 
can experience cyclic seasonal variations that are a response to a 
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Fig. 12. (a-c) A rain plot showing the percentage error in beach volume calculations when using predicted profiles, plotted for each model at each study location. 
Also shown is the seasonal variation in beach volume at each location, with the red line indicating the lowest recorded variation during the study period and the 
blue line marking the 5th percentile of seasonal variation. (d) Variation in runup resulting from applying a range of elevation errors to the same beach profile. 
These errors are defined by the confidence intervals calculated from the 1D CNN. 𝑅2% is shown for both an identical sequence of irregular waves (red line) and 
for four simulations per profile using irregular waves (JONSWAP spectrum) with a different seeding value (black error bars, with the average indicated in green).
varying wave climate throughout the year. To calculate the seasonal 
variation at each study location, the volume of all profiles surveyed 
more than once during a single year was calculated, and the variation 
between profiles was assessed. Where possible, both the 5th percentile 
of seasonal variation and the lowest recorded value are plotted on the 
graph, shown in blue and red respectively. Wittering (Fig.  12(c)) had a 
minimum seasonal variation of 3.89% and a 5th percentile of 13.28%.

The seasonal variation of beach volume at all study sites is signif-
icantly higher than the volumetric error produced by using partially 
predicted profiles. As such, it can be assumed that the error introduced 
will have a minimal effect on the assessment of seasonal variation in 
beach profile volumes and indeed any effect is comparable to the error 
introduced by other factors related to survey practice. For example, Sil-
veira et al. (2013) demonstrated that the longshore interval between 
profiles had a larger impact on volumetric calculations for their study 
site, where doubling the profile spacing from 100 to 200 m led to a 
2%–3% change in the calculated beach volume. This is larger than the 
error introduced by using partially predicted profiles for beach volume 
calculations.

To measure the impacts of using partially predicted profiles for 
wave overtopping prediction, XBeach was used to simulate wave run-
up (𝑅2%) for profiles with different magnitudes of elevation error. 
While Xbeach has demonstrated its ability to model the physics of 
overtopping (McCall et al., 2010), there are limitations on its ability 
to model coastal flooding on natural beaches (Stokes et al., 2021). The 
ability of XBeach to model wave runup is more robust, and as such, 
the elevation exceeded by 2% of wave runup events 𝑅2% was selected 
as the metric used to assess the effect of errors in the predicted partial 
profile (de Beer et al., 2021).

To assess changes in runup due to elevation errors, a baseline initial 
profile was used as a reference, and varying magnitudes of error were 
introduced into the predicted region. The baseline chosen was the 
mean profile at Gwithian (Blue line, Fig.  2 Gwithian). To introduce 
error that reflected the error introduced by the neural network, the 
confidence intervals from the 1D CNN were chosen (displayed in orange 
in Fig.  10). While only four are shown in Fig.  10, these confidence 
intervals were calculated for 5th percentile increments from 5%–95%, 
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with the 0th and 100th percentiles representing both the maximum and 
minimum error in predictions made by the network. These confidence 
intervals were then applied to the predicted region of the baseline 
profile to generate a set of new profiles with varying magnitudes of 
error, reflective of the network’s predictions.

A storm condition of 𝐻𝑠 = 3 m, 𝑇𝑝 = 8 s was simulated us-
ing a surfbeat model, at a water level of mean high water springs 
(MHWS) for a 1-hour period. Two sets of simulations were completed 
for each modified profile: (1) an identical sequence of irregular waves 
by choosing an identical seeding value, and (2) four repeats of irregular 
waves (JONSWAP spectrum) for each profile with a different seeding 
value. Fig.  12(d) indicates that there are no significant changes in 
the predicted values of 𝑅2% for varying profile error seaward of MLW 
(x = 0 m). In the case of identical irregular wave series, the value 
of 𝑅2% is almost independent of profile elevation error seaward of 
x = 0 m, varying by only 0.0215 m for percentage errors between 0 
and 100%. For simulations with the same wave spectrum but varying 
seeding values, the black bars represent the spread in runup across the 
four repeated tests for each profile. It can be seen that the variations 
in run-up predictions caused the wave sequence generated by a fixed 
spectrum are significantly higher than the change in runup predictions 
caused by the alterations in morphology.

As most simulations are completed with a spectral wave input, it 
can be said that the error in predicted R2% introduced by errors in 
the partially predicted profile would not have any significant effect on 
wave run-up or overtopping modelling.

5. Conclusion

In this study, five predictive models (LE, MLP, 2D CNN, 1D CNN, 
and LSTM) were used to predict the lower intertidal zone between MLW 
and MLWS using partial beach profiles on three beaches of different 
types. Linear extrapolation, used as the baseline model, performed the 
worst, with an average RMSE between 0.044–0.989 m. The LSTM and 
MLP models were significantly better with an average RMSE between 
0.026–0.125 m, while the 1D CNN model performed the best with 
an average RMSE of between 0.025–0.119 m across the three study 



S. Rose et al. Coastal Engineering 205 (2026) 104911 
locations. It was found that the network’s notion of local connectivity, 
the idea of each neuron only being connected to a localised region, 
played a pivotal role in producing realistic beach profiles. Networks 
with high local connectivity, like the LSTM, produced smooth profiles, 
while the MLP, with no local connectivity, produced profiles with 
rapidly varying elevations not present in the smooth surveyed profiles.

The observation that different neural network architectures achieve 
similar predictive accuracy suggests that the dataset itself sets an upper 
limit on performance. Despite having very different inductive biases, 
MLPs treat all inputs as equally related without considering spatial or 
temporal structure, CNNs exploit local spatial patterns and correlations 
among nearby points, and LSTMs capture sequential dependencies, no 
model was able to surpass this level of accuracy. This implies that 
the information contained in the dataset is inherently limited, and 
further improvements will likely require additional or higher-quality 
data rather than more complex architectures.

The key factor in the accuracy of predicted profiles was the cross-
shore morphological nonlinearity at each location, with beaches con-
taining fewer features having a lower RMSE. The models performed 
best at Wittering due to its featureless nature, but struggled most at 
Brighton, which had features (LTT) on almost every profile. This trend 
was further seen within the study locations, with individual profiles 
having a higher curvature and morphological nonlinearity displaying 
higher values of RMSE.

The 1D CNN model could be a useful tool for beach managers who 
use topographic beach data to make decisions about our coastlines. The 
elevation error introduced by using neural networks as a predictive tool 
has been shown to have a negligible effect when using this data for 
volumetric and overtopping analysis. All models were trained on a Mac-
Book Pro equipped with an Intel Core i7 (2.2 GHz, 6-core) processor 
and 16 GB of RAM. Full hyperparameter tuning was completed in under 
24 h per location, demonstrating that the approach is computationally 
efficient and feasible on mid-range hardware.

The method is, however, subject to certain practical constraints. 
To enable the network to learn the complex patterns necessary for 
predicting partial profiles, a large volume of training data is required, 
necessitating the prior collection of a substantial dataset. As such, this 
approach may not be suitable for locations without an established 
coastal monitoring programme. The method may not be suitable for 
highly dynamic coastlines undergoing significant long-term morpholog-
ical change. Substantial changes in beach morphology at a location may 
necessitate reinstating full survey extents in order to retrain the model 
and maintain predictive accuracy. Furthermore, as previously noted, 
while the method is well-suited for coastal monitoring applications, it 
does not offer the level of accuracy required for coastal process studies.

This method has demonstrated its value in mitigating information 
loss if the seaward extent of topographic surveys was changed from 
MLWS to MLW. As such, it may be possible to revise the existing extents 
of the survey specification, with baseline surveys (conducted at signif-
icantly reduced frequency) still extending down to the current level 
of MLWS. This would support ongoing model validation and provide 
additional training data to help mitigate errors associated with long-
term morphological change. This approach would not only reduce the 
pressure on the current survey schedule but also allow more frequent 
surveys/additional locations with the same resources.
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