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Efficient Query Repair for Aggregate Constraints

by Shatha Saad Algarni

In many real-world scenarios, query results must satisfy domain-specific constraints
such as fairness or financial stability. For example, selecting interview candidates based
on their qualifications may require that at least a given percentage be female, or a
report on purchase costs may need to ensure the average cost stays below a liability
threshold. These requirements can be expressed as constraints over an arithmetic
combination of aggregates evaluated on the result of the query.

This thesis studies how to repair a query to fulfill such constraints by modifying the
filter predicates of the query. These constraints are non monotone and more complex
than those considered in prior work, such as query based explanations for missing
answers or fairness enforcement in query results. The constraints considered in this
thesis invalidate many existing optimizations considered in prior work. The work in
this thesis introduces a novel query repair technique that computes the top-k
candidate repairs with respect to their distance to the user query. These techniques
leverage materialization and data clustering to avoid unnecessary computation. It also
exploits bounds on sets of candidate solutions and interval arithmetic to efficiently
prune the search space. Experimental evaluation on real-world and benchmark
datasets shows that the proposed pruning technique significantly outperforms baselines
that consider a single candidate at a time.
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Chapter 1

Introduction

Data is a commodity that allows organizations to build models, perform analyses, and
make strategic decisions. Across different fields such as healthcare, retail, finance, and
education, large volumes of structured data are stored and accessed via a variety of
data management systems. These include traditional relational databases (Minker and
Sable, 1970; Yang et al., 2009), online analytical processing (OLAP)
systems (Alkharouf et al., 2005; Joglekar et al., 2017; Patel and Sharma, 2020), cloud
data warehouses (Rehman et al., 2018; Li et al., 2024), and more recently, data
marketplaces where structured datasets are traded between entities (Abbas et al.,
2021; Azcoitia and Laoutaris, 2022).

Analysts, data engineers, and other practitioners interact with these systems on a daily
basis. Their workflows often involve querying data to extract insightful information
that informs dashboards, trains machine learning algorithms, or supports reporting.
Yet querying data is not just a technical task but it is also embedded within broader
organizational objectives, that includes maintaining fairness, achieving
representativeness, meeting compliance standards, and optimizing operational
performance. However, these professionals often face a disconnect between what a
query technically specifies and what an organization needs from the dataset as a whole.
For example, a machine learning engineer may need a dataset of training examples
that is both high quality and demographically balanced, or a retail analyst may require
sales data that represents different geographic regions proportionally. These real-world
needs translate into constraints over query outputs that are not easily expressible using
standard query predicates nor simple constraints. Consequently, ensuring that query
results align with such constraints remains a significant challenge in modern data
analysis.

In practice, analysts are typically well versed in writing queries that return data based
on obvious conditions, e.g., only return applicants with a master’s degree. However, a
query result in toto often has to fulfil additional constraints, e.g. fairness, that do not
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naturally translate into conditions. While for some applications it is possible to filter
the results of the query to fulfil such constraints this is not always viable, e.g., because
the same selection criterion has to be used for all applicants for a job. Thus, the query
has to be repaired such that the fixed query satisfies all constraints for the entire result
set.

Prior work in this area, including query-based explanations (Tran and Chan, 2010;
Chapman and Jagadish, 2009) and repairs (Bidoit et al., 2016) for missing answers,
work on answering why-not questions (Chapman and Jagadish, 2009; Benjelloun et al.,
2006) as well as query refinement / relaxation approaches (Vélez et al., 1997; Mishra
and Koudas, 2009; Li et al., 2023) determine why specific tuples are not in the query’s
result or how to fix the query to return such tuples. This thesis studies a more general
problem where the entire result set of the query has to fulfil some constraint. The
constraints studied in this work are expressive enough to guarantee query results
adhere to legal and ethical regulations, such as fairness. Typically, it is challenging to
express such constraints through the selection conditions of a query.

This chapter provides an overview of the thesis. Section 1.1 presents the motivations
underlying this work, while Section 1.2 summarizes the overall structure of the thesis.
Section 1.3 discusses the key challenges involved in repairing queries to satisfy
constraints defined by arithmetic combinations of aggregate functions. The scope and
boundaries of the research are detailed in Section 1.4.Section 1.5 outlines the core
research questions and summarizes the main contributions of the study.

1.1 Motivation

To illustrate the practical importance of the query repair problem under such
constraints, this section presents two motivating use cases: one focusing on fairness in
recruitment and the other on supply chain management. These examples demonstrate
real-world scenarios where non-monotone aggregate constraints arise naturally and
cannot be addressed by existing techniques.

1.1.1 Fairness Constraint

Fairness in algorithmic decision-making seeks to prevent systematic bias against
demographic groups defined by protected attributes such as race, gender, or
socioeconomic status. This example uses the group-fairness notion of statistical parity
difference (SPD). SPD is a commonly used group fairness metric that measures the
difference in the probability of receiving a positive outcome between a protected group
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and an unprotected group. Formally,

SPD = Pr
(︂
Ŷ = 1 | A = 0

)︂
− Pr

(︂
Ŷ = 1 | A = 1

)︂
.

Here Ŷ denotes the algorithm’s binary outcome and A ∈ {0, 1} the protected attribute
(e.g., gender, race). An SPD of 0 indicates perfect statistical parity (i.e., both groups
receive positive outcomes at the same rate). Values that deviate from 0 indicate the
extent of disparity: negative values imply the protected group is disadvantaged, while
positive values imply the opposite (Kleinberg et al., 2018; Verma and Rubin, 2018;
Mehrabi et al., 2021). There is no universally agreed-upon threshold for what
constitutes an acceptable SPD. Instead, organizations and policymakers determine
thresholds based on context, ethical considerations, and legal frameworks. For
instance, the U.S. Equal Employment Opportunity Commission (EEOC) applies the
four-fifths rule, where a disparity greater than 0.2 (20 percentage points) may indicate
potential discrimination1. A stricter threshold (e.g., 0.01) might be appropriate in
high-stakes domains such as healthcare or criminal justice, where even small disparities
can have serious consequences, while more lenient thresholds may be chosen in
exploratory or low-risk contexts. In practice, policymakers and organizations often
calibrate such thresholds through empirical analysis of domain-specific data or fairness
audits to ensure that the chosen level of disparity aligns with acceptable risk or
compliance standards.

Importantly, SPD is a difference of probabilities, so it cannot be directly interpreted as
a probability itself. Instead, it should be viewed as a measure of deviation from parity.
The SPD formulation originates from fairness literature on algorithmic bias detection
(Feldman et al., 2015; Calders et al., 2009; Mehrabi et al., 2021) and is widely adopted
due to its simplicity and intuitive interpretation.

Example 1.1 (Fairness Motivating Example). Consider a job applicant dataset D for
a tech-company that contains six attributes: ID, Gender, Major, GPA, TestScore,

and OfferInterview. The attribute OfferInterview was generated by an external
ML model suggesting which candidates should receive an interview. The employer uses
the query shown below to prescreen candidates: every candidate should be a CS
graduate and should have a high GPA and test score.
Q1: SELECT * FROM D WHERE Major = ’CS’

AND TestScore ≥ 32 AND GPA ≥ 3.80

Aggregate Constraint. The employer wants to ensure that their decision to interview
a candidate is not biased against a specific gender. One way to measure such a bias is
to measure the statistical parity difference (SPD) (Bellamy et al., 2019; Mehrabi
et al., 2022) between demographic groups. Given a set of data points that belong to one

1https://www.uniformguidelines.com/uniformguidelines.html#18

https://www.uniformguidelines.com/uniformguidelines.html#18
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of two groups (e.g., male and female) and a binary outcome attribute Y where Y = 1 is
assumed to be a positive outcome (OfferInterview=1 in this case), the SPD is the
difference between the probability for individuals from the two groups to receive a
positive outcome. In this example, the SPD can be computed as shown below (G is
Gender and Y is OfferInterview). count(θ) is used to denote the number of query
result tuples satisfying a given condition θ. For example, count(G = M ∧ Y = 1)
counts the number of tuples where the gender is male and the label is positive.

SPD =
count(G = M ∧ Y = 1)

count(G = M )
− count(G = F ∧ Y = 1)

count(G = F )

The employer would like to ensure that the SPD between male and female is below 0.2.
The model generating the OfferInterview attribute is trusted by the company, but is
provided by an external service and, thus, cannot be fine-tuned to improve fairness.
However, the employer is willing to change their prescreening criteria by expressing
their fairness requirement as an aggregate constraint SPD ≤ 0.2 as long as the same
criteria are applied to judge every applicant to ensure individual fairness. That is, the
employer desires a repair of the query whose selection conditions are used to filter
applicants. Prior work on ensuring fairness by repairing queries (Li et al., 2023) only
considers cardinality constraints which cannot express SPD.

The approach proposed in this thesis (as well as other query repair approaches such as
the work by Li et al. (2023)) is suited to scenarios where, due to fairness considerations
or regulatory requirements, the same selection criteria must be uniformly applied to all
candidate items or individuals. These criteria are typically expressed using SPJ
(Select-Project-Join) queries, a standard formalism in relational databases. However,
when additional constraints such as group fairness must be met, users the challenge of
identifying query selection conditions that simultaneously fulfill legal or ethical
requirements and remain aligned to their original selection intent. For instance,
in Example 1.1, an employer aims to select job candidates based on testScore and
GPA criteria that can be easily formulated as a query. Due to regulations, the same
criteria must apply to all applicants. If the employer wishes to ensure fairness with
respect to Gender, they must adjust the selection conditions to achieve fairness while
remaining close to their original goal of choosing candidates with high GPA and
testScore. The algorithms developed in this thesis enable such repairs, automatically
producing revised selection conditions that satisfy constraints while preserving the
user’s intent.

1.1.2 Company Product Management

Example 1.2 (Company Product Management). A retail company aims to support
inventory planning by retrieving data on parts of type “Large Brushed” with a size
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greater than 10 that are supplied by suppliers located in Europe. The company uses the
following query to retrieve this information:
Q2: SELECT *

FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND

s_suppkey = ps_suppkey AND p_size >= 10
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND p_type = ’LARGE BRUSHED’
AND r_name = ’EUROPE’

Aggregate Constraint. In order to minimize the impact of supply change disruption,
the company wants only a certain amount of expected revenue to be from countries with
import/export issues. The constraint requires that products from UK contribute less
than 10% of the total revenue of the result set in order to minimize supply chain
disruptions. Formally, the constraint is defined as follows:∑︁RevenueProductsSelectedFromUK∑︁RevenueSelected Products

≤ 0.1

Prior work on query repair (Albarrak and Sharaf, 2017) only supports constraints on a
single aggregation result while the constraint shown above is an arithmetic combination
of aggregation results as supported in this framework.

The example in Example 1.2 demonstrates that the approach proposed in this thesis is
not limited to traditional fairness applications. It highlights the relevance of this work
in supply chain and product management contexts. In this scenario, a retail company
formulates a query to retrieve details about parts and suppliers in order to support
inventory planning. The selection criteria such as part size, type, and supplier region
are uniformly applied through a structured query that reflects operational policy.
However, the company must also satisfy a business constraint aimed at mitigating
supply chain risk: ensuring that products sourced from the UK account for no more
than 10% of the total expected revenue. This constraint is expressed as a ratio
between two aggregate values and cannot be handled by existing techniques that
support only simple aggregate constraints.

1.2 Overview of This Thesis

In this work, constraints are modelled on the query result as arithmetic expressions
involving aggregate queries evaluated over the output of a user query. When the result
of the user query fails to adhere to such an aggregate constraint (AC), the system will
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fix the violation by repairing the query by adjusting the selection conditions of the
query, similar to (Kalashnikov et al., 2018; Mishra and Koudas, 2009).

For clarity, throughout this thesis the following terms are used. The term best repair
refers to a modified query that most closely preserves the intent of the user’s original
query according to a defined distance function between the two queries. The phrases
similarity to and closest to both refer to this same notion of distance which is the
quantitative measure of how small a modification is required to make the repaired
query satisfy the given constraint while preserving the user’s intent. Formally, the
distance may be defined over the values of constants used in the query predicates, and
the top-k repairs are those that minimize this distance metric.

The rational for repairing the query, instead of seeking other modifications such as
selecting a subset of the query result, lies in applications where a subset of results
should be selected and the criteria for selection have to be applied uniformly to all
candidate answers. Such uniformity is often required in domains where fairness or
regulatory compliance is critical, the same selection criteria must be applied to all job
candidates, or government agencies must select contractors based on a predetermined
set of requirements to prevent corruption. This thesis focuses on computing the top-k
repairs with respect to their distance to the user query. The rationale is that to
preserve the original semantics of the user’s query as much as possible.

Among prior work, the most closely related is Erica (Li et al., 2023), which proposes
an efficient refinement strategy for queries that violate group cardinality constraints.
These constraints require to fulfill a conjunction of cardinality constraints, e.g., the
query should return at least 5 answers where gender = female. Erica exploits the
monotonicity of such constraints to prune large portions of the repair space efficiently.
However, this thesis departs from Erica in a key way: the aggregate constraints
targeted here are not limited to monotonic patterns. Instead, they can be
non-monotonic and are often expressed as arithmetic combinations of multiple
aggregate queries such as the Statistical Parity Difference (SPD) in Example 1.1,
which compares rates across groups. These expressions do not exhibit monotonic
behavior with respect to predicate refinement which invalidates most of the
optimizations considered in prior work.

Consider a user query with a conjunctive selection condition ⋀︁m
i=1 ai op ci where ai is

an attribute, ci is a constant, and op is a comparison operator, e.g., <. A brute force
approach for finding a solution to the query repair problem is to enumerate all possible
candidate repairs. A candidate repair can be encoded as a combination of constants c′

1
to c′

m representing an updated condition ⋀︁m
i=1 ai op c′

i. The candidate repairs are then
sorted based on their distance to the user query and each candidate is evaluated by
running the modified query and checking whether the candidate fulfils the aggregate
constraint. The algorithm tests candidates until k repairs have been found that fulfil
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the aggregate constraint. This approach is referred as Brute Force (BF). The main
problem with this approach is that the number of repair candidates is exponential in
the number of predicates in the user query and for each repair candidate the approach
has to evaluate the modified user query and one or more aggregate queries on top of
the user query result. Given that the repair problem is NP-hard this work cannot hope
to avoid this cost in general.

Nonetheless, two opportunities are identified for optimizing this process: (i) when two
repair candidates are similar (in terms of the constants they use in selection
conditions), then typically there will be overlap between the aggregate constraint
computations for the two candidates and (ii) bounds on the aggregate constraint result
can be computed for a set of similar candidate repairs at once using interval
arithmetic (De Figueiredo and Stolfi, 2004), a technique for over-approximating the
outputs of a computation over a set of values efficiently. If none or all values within the
computed bounds fulfill the aggregate constraint, then the approach has shown for a
set of candidate repairs that none of them is a repair or all of them are repairs.

To exploit (i), a kd-tree (Bentley, 1975a) is used to partition the input dataset. For
each cluster (node in the kd-tree) the approach materializes the result of evaluating the
aggregation functions needed for a constraint on the set of tuples contained in the
cluster as well as store bounds for the values of attributes within the cluster (as is done
in zonemaps / small materialized aggregates (Moerkotte, 1998; Ziauddin et al., 2017)).
Then to calculate the result of an aggregation function for a repair candidate, the
bounds are used for each cluster to determine whether all tuples in the cluster fulfill
the selection conditions of the repair candidate (in this case the materialized
aggregates for the cluster will be added to the result), none of the tuples in the cluster
fulfill the condition (in this case the whole cluster will be skipped), or if some of the
tuples in the cluster fulfill the condition (in this case the same test is applied to the
children of the cluster in the kd-tree). This approach is referred as Full Cluster
Filtering (FF). The main advantage of this algorithm over the brute force approach is
that it can reuse the aggregate query results materialized for a cluster if all tuples in
the cluster fulfil the condition of the repair candidate and can skip any clusters that do
not contain any tuples fulfilling the conditions.

This idea is extended to bound the aggregation constraint result for sets of repair
candidates at once to exploit observation (ii). A set of candidates are represented
through intervals of values for each ci for which the user query contains a predicate
ai op ci, e.g., ci ∈ [33, 37]. the approach again reasons about whether all / none of the
tuples in a cluster will fulfill the condition for every repair candidate whose ci values
are within the bounds (e.g., [33, 37] in the example). The result will be valid bounds
on the aggregation constraint result for any candidate repair with constants within the
bounds for the candidate set. Then such bounds are exploited to determine all repair
candidates within such bounds are repairs or none of them are. If the result is
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Figure 1.1: Black-box view of the three-stage repair pipeline.

inconclusive, the approach can partition such a set of repair candidates into multiple
smaller sets and apply the same approach to these sets. This approach is referred as
Cluster Range Pruning (RP). The advantage of this approach is that it often enables
to prune sets of repair candidates or confirm all of them to be repairs without
individually evaluating them.

In summary, FF reuses materialized aggregation results for a set of tuples to avoid
unnecessary computations, and RP leverages interval arithmetic to evaluate sets of
repair candidates at once, further reducing computational cost. Both algorithms follow
the same three main stages pipeline (see Figure 1.1):

1. Partition the input data into clusters and pre-aggregate the needed aggregation
functions by the aggregate constraint and the bounds of the attribute values used
in the user’s predicates.

2. Evaluate the candidate repairs in order of their distance to the original query,
one-by-one in FF, or as intervals in RP, and test them against these clusters.

3. Evaluate the constraint on the valid candidate repairs and return the top-k.

1.3 Challenges

Repairing a query under an arithmetic combination of aggregate constraints presents
three major challenges:

• High evaluation cost. Each repair candidate requires re-evaluating the modified
query over the full dataset and then executing one or more aggregate computations
on its result. This cost quickly becomes prohibitive.

• Exponential repair space. The number of possible repairs grows exponentially
with the number of predicates in the original query. Exhaustively checking every
candidate is therefore infeasible for realistic workloads (Li et al., 2023).

• Non-monotonicity of constraints: Many aggregate constraints (e.g., fairness
measures like SPD (Bellamy et al., 2019; Mehrabi et al., 2022)) are non-monotone.
This renders traditional pruning strategies, which rely on monotonicity,
ineffective (Albarrak and Sharaf, 2017).
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1.4 Research Scope

This research focuses on the problem of repairing selection queries such that the query
output satisfies the aggregate constraints, which may include arithmetic combinations
of aggregate functions.

The specific scope of this work includes:

• Query Structure: This work considers SPJ (select-project-join) queries with
conjunctive selection predicates.

• Constraints: Constraints are expressed as a combination of arithmetic expression
over the results of one or more aggregation queries. These constraints may involve
aggregate functions such as COUNT, SUM, AVG, MIN, and MAX, and can include
arithmetic operators (+,−,×,÷).

• Query Repair: A candidate repair is a modified query whose selection predicates
use different constants.

• Repair Distance: In this thesis, the repair distance quantifies how much a
repaired query deviates from the user’s original query. The intuition is that the best
repairs are those that preserve the original intent of the user’s query as closely as
possible. Formally, the distance between two queries is computed based on the
differences in their selection conditions. For numeric attributes, it reflects the
relative change in predicate constants (e.g., how much a threshold value has
shifted), while for categorical attributes, it measures whether the predicate value
has changed. This distance metric is then used to rank all possible repairs and to
select the top-k repairs that are closest to the original query. A complete
mathematical definition and example are provided later in Section 4.4.

1.5 Research Questions and Contributions

This work studies the problem of repairing queries to satisfy aggregate constraints that
consist of arithmetic combinations of aggregate functions. Existing query repair
techniques focus primarily on monotone constraints and cannot handle these more
complex, non-monotone aggregate constraints. After reviewing existing approaches
that address query repair in the literature, this work pose the following research
questions:

• Main Research Question: How can query repair be effectively performed under
non-monotone aggregate constraints?
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• RQ1: How can the shape of an instance of a dataset be leveraged to develop a
more efficient approach for query repair under non-monotone aggregate constraints?

• RQ2: What pruning strategies can be designed to reduce the search space of
candidate repairs in query repair under non-monotone aggregate constraints?

To address these questions, this thesis makes the following contributions:

• Formalization of the query repair problem for non-monotonic aggregate
constraints. This work provides a formal definition of the query repair problem
under constraints expressed as arithmetic combinations of aggregate functions,
unlike prior research that focused only on monotonic aggregate functions
(Chapter 4). This formulation generalizes the scope of query repair and establishes
the theoretical foundation for subsequent algorithmic developments.

• Design of two novel algorithms for efficient query repair. Two new
algorithms are proposed for solving the aggregate constraint repair problem:

– FF (Fully Filtering): A tree-based approach that exploits precomputed
materialized aggregates and attribute bounds to efficiently evaluate repair
candidates while avoiding redundant computation (Chapter 5).

– RP (Range-based Pruning): A pruning algorithm that applies interval
arithmetic to bound aggregate constraint expressions over groups of repair
candidates (Chapter 6).

• Comprehensive experimental validation. A detailed experimental evaluation
across multiple datasets, queries, and constraint types demonstrates that the
proposed methods handles a border class of constraints (Chapter 7). The results
highlight the effectiveness of RP in handling complex, non-monotonic constraints
efficiently.

Publications

The research conducted in this dissertation has resulted in the following peer-reviewed
publications:

• Algarni, S., Glavic, B., Lee, S. & Chapman, A. (2024) ‘Solving why-not questions
for aggregate constraints through query repair’, Proceedings of the IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW 2024), pp. 592–596.
Published.

• Algarni, S., Glavic, B., Lee, S. & Chapman, A. (2026) ‘Efficient query repair for
aggregate constraints’, Proceedings of the VLDB Endowment. Accepted.
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These papers present the key concepts, algorithms, and experimental results that
underpin the contributions of this thesis.
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Chapter 2

Literature Review

Data is a central asset for organizations across domains such as healthcare, finance,
and education, where it supports decision-making, analysis, and compliance. These
needs are met through a range of data systems, including relational databases (Minker
and Sable, 1970; Yang et al., 2009), online analytical processing (OLAP)
systems (Alkharouf et al., 2005; Joglekar et al., 2017; Patel and Sharma, 2020), cloud
data warehouses (Rehman et al., 2018; Li et al., 2024), and more recently, data
marketplaces where structured datasets are traded between entities (Abbas et al.,
2021; Azcoitia and Laoutaris, 2022).

Databases play a vital role in a wide range of domains that require reliable and
large-scale storage and access to information, including enterprise applications (Jani,
2022; Oloruntoba, 2025), scientific research (Subash et al., 2023), healthcare (Park and
Lee, 2021), and e-commerce (Kedah, 2023; Petrenko and Kravtsov, 2023). With the
ongoing growth in both the volume and complexity of data, the role of databases has
expanded beyond basic data retrieval to include support for query formulation, data
exploration, and decision-making (Elmasri and Navathe, 2016). Databases are
commonly classified into two main categories: relational databases and non-relational
(NoSQL) databases. Relational databases are a type of database that organizes data
into formally defined tables consisting of rows and columns which makes them
well-suited for structured data to facilitate efficient storage, retrieval, and
manipulation of information. Fundamentally, a database system is intended to manage
large scale of data efficiently while ensuring critical properties like consistency,
integrity, and availability. Modern database management systems (DBMSs) provide
high-level query languages, most notably SQL, allowing users to express complex data
retrieval and transformation tasks declaratively (Abiteboul et al., 1995). In contrast,
non-relational databases can store data in various formats such as key-value pairs,
XML, or multidimensional structures, rather than using traditional tables (Jatana
et al., 2012). Beyond these two categories, other types also exist, such as



14 Chapter 2. Literature Review

column-oriented databases (Abadi et al., 2009) and network databases (Belfkih et al.,
2019) where each with its own model and specialized use cases.

The foundational theory of relational database systems (SQL-based databases) began
in the 1970s with Codd’s introduction of the relational model (Codd, 1970). Despite
their early origins, these technologies continue to play a central role in modern data
management. In fact, the rise of Big Data and the increasing adoption of data science
techniques for decision-making have only reinforced the relevance of relational
databases and SQL. While advanced methods such as machine learning and complex
statistical analysis are expanding the scope of data insights, a significant portion of
decision-support tasks still depend on SQL-based descriptive statistics and grouped
aggregations (Kaufmann and Meier, 2023).

Relational databases can be deployed in different configurations depending on the
purpose and workload. Two common setups are Online Transaction Processing
(OLTP) (El-Sayed et al., 2021; Plattner, 2009) and Online Analytical Processing
(OLAP) (Alkharouf et al., 2005; Joglekar et al., 2017; Patel and Sharma, 2020). OLTP
systems are optimized for handling a large number of short, concurrent transactions
and are widely used in applications such as banking, retail, and reservation systems. In
contrast, OLAP systems are designed for complex analytical queries over
multi-dimensional database, often used in decision-support and reporting
tasks (Kaufmann and Meier, 2023). These systems focus on aggregated summaries and
trends rather than individual records. To evaluate performance across these workloads,
the Transaction Processing Performance Council (TPC) has established a set of
benchmarks, including TPC-C and TPC-E for Online Transaction Processing (OLTP),
and TPC-H and TPC-DS capture key features of decision support systems, such as
complex queries and ongoing data maintenance. These benchmarks are widely used in
both research and industry to assess scalability, query performance, and overall system
efficiency (Nambiar et al., 2012). Because relational databases (SQL-based databases)
are the central focus of this thesis, this work expand on their operational
configurations and evaluation methods. In particular, this thesis uses TPC-H as a
benchmark for assessing the performance of the proposed techniques.

Practitioners such as analysts and data scientists query these relational databases to
extract meaningful insights through queries. However, these queries often serve goals
that extend beyond retrieving records that match specific conditions, they must also
satisfy broader organizational objectives that includes fairness, representativeness, or
business rules. For example, a public-sector analyst may require a dataset that
includes a balanced distribution across demographic groups, or a marketing team may
need results that proportionally represent customer segments. Although modern
Database Management Systems DBMSs are built, users still face difficulties when
queries do not produce the expected results. As a result, there has been growing
research interest in improving database usability and supporting users in
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understanding query behaviour (Herschel et al., 2017; Chapman and Jagadish, 2009).
This includes techniques such as query debugging, data and query refinement, and
provenance tracking. Among these, data provenance plays a foundational role by
helping to determine where data comes from, how query results were produced, and
why certain tuples are included or missing. Provenance has been instrumental in
supporting query debugging, explanations (why/why-not answers), data trust, and
auditing. A comprehensive survey by Cheney et al. (2009) outlines the major
motivations, models, and applications of provenance in databases. More recent work
integrates provenance with goals such as fairness and bias mitigation (Moskovitch
et al., 2022; Shetiya et al., 2022; Li et al., 2023; Campbell et al., 2024), demonstrating
its relevance to constrained query evaluation and responsible data analysis.

Data refinement (DR) and Query refinement (QR) are two closely related paradigms,
both of which aim to bridge the gap between user intent and the actual query output.
DR techniques modify the data instance to ensure that query results satisfy
user-defined constraints, whereas QR techniques focus on rewriting or relaxing the
query itself. Both have been studied in settings involving tuple inclusion/exclusion,
cardinality thresholds, or user feedback. This thesis uses the term query repair to refer
to changes made to query predicates through a combination of relaxation (weakening a
predicate) and refinement (strengthening a predicate). The more specific terms query
refinement and query relaxation are used in prior work to distinguish between these
operations when applied individually. However, for simplicity, this thesis will
collectively refer to both refinement and relaxation as refinement, unless otherwise
specified.

This chapter reviews prior work in two areas relevant to this study: data refinement
and query refinement (Section 2.1), with particular emphasis on the latter, which
forms the core of this thesis. Existing query refinement techniques are categorized
based on whether they address non-aggregate constraints (Section 2.1.2.1) or aggregate
constraints (Section 2.1.2.2). For each category, the analysis focuses on how different
approaches handle query similarity, constraint satisfaction, and support for arithmetic
expressions. Key limitations in existing work are also highlighted to position the
contribution of this thesis within this under explored area. Finally, Section 2.2
summarizes the key ideas discussed in this chapter.

2.1 What is Data Refinement versus Query Refinement?

Data Refinement (DR) and Query Refinement (QR) are two distinct techniques in
database management, both aimed at satisfying user-defined constraints on query
output. While DR focuses on modifying the underlying input data, QR involves
modifying queries to retrieve the intended results. The following sections briefly review
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existing techniques for DR, while providing a more detailed discussion of QR
approaches, as query refinement constitutes the primary focus of this research.

2.1.1 Data Refinement Techniques (DR)

The goal of Data Refinement (DR) techniques is to modify the input data to ensure
the desired output is achieved (Meliou and Suciu, 2012; Wang et al., 2017). Unlike
query refinement approaches, DR focuses on modifying the database instance rather
than the query structure or parameters.

A key example is how-to queries (Meliou and Suciu, 2012), which focus on modifying
the input data rather than modifying the query itself to obtain the intended result.
The authors present a novel approach that translates how-to queries into Mixed
Integer Programming (MIP) problems, enabling automated data modifications that
satisfy specific constraints. To achieve this, they introduce TiQL (Tiresias Query
Language), an extension of Datalog, which generates hypothetical tables representing
possible database modifications, such as modifying attribute values, deleting tuples, or
creating new tuples. These modifications are formulated as MIP variables, with
constraints expressed as linear inequalities. A MIP solver is then used to determine the
minimal or most efficient changes required to satisfy the constraints while minimizing
or maximizing a specified objective function by the user (e.g., minimizing changes to
the database). The system considers optimization techniques such as partitioning the
problem into smaller sub-problems, and eliminating redundant variables and
constraints to handle large datasets and complex queries efficiently. The final result is
a set of hypothetical database updates that meet the desired constraints.

Explaining missing answers is a related problem addressed in works such as (Herschel
and Hernández, 2010). This work proposes a system that facilitates the analysis of
SQL queries created by developers by allowing the investigation of why certain tuples
are missing from the query results. It specifically targets missing answer explanations
for queries involving selection, projection, join, union, aggregation, and grouping
(SPJUA) operations. The authors introduce a general framework for generating
instance-based explanations by identifying the data that would need to be added to
produce the missing answer. A key element of their approach is the use of a constraint
solver to ensure that all generated explanations are consistent with both the database
constraints and user-specified requirements. To achieve this, the problem is formulated
as a set of logical constraints, and a solution is considered valid only if the constraint
solver finds it satisfiable solution. This method is particularly useful for debugging
complex queries, where the absence of expected results may not be immediately clear.
The framework also considers potential side effects caused by introducing new data
and provides mechanisms to help users reduce or eliminate such effects. Additionally,
the system aims to return explanations that are both complete and minimal.



2.1. What is Data Refinement versus Query Refinement? 17

These data refinement approaches differ fundamentally from query refinement in terms
of their objective. Data refinement (DR) focuses on modifying the database content to
satisfy desired query outputs. However, this is not always a viable or appropriate
solution, particularly in contexts like fairness where altering data may be legally or
ethically problematic. In contrast, query refinement (QR) aims to adjust the query
structure or predicate constants to achieve specified constraints. In scenarios involving
aggregate functions or complex constraints, DR may require substantial modifications
to the data, whereas query refinement can often provide more targeted and efficient
solutions. Furthermore, existing DR approaches typically do not support query
refinement or handle aggregate constraints of the kind addressed in this work.
Nonetheless, DR techniques remain valuable in use cases where the query must remain
fixed due to application constraints or legacy systems, and adjustments to the data are
permissible to meet output requirements.

2.1.2 Query Refinement Techniques (QR)

Query Refinement is the process of modifying a query when the initial results of the
query does not align with the user’s expectations (Chaudhuri, 1990). Specifically, this
involves automatically modifying the query to ensure that the modified results better
reflect the user’s intended constraints (Albarrak and Sharaf, 2017). A constraint on a
query result reflects the user’s expectations regarding the desired output and can take
various forms. These constraints can be broadly categorized into two types. One
category is Query Refinement for Diverse Non-Aggregate Constraints (QRN), which
includes constraints such as requiring the query output to include or exclude specific
tuples, either explicitly provided by the user or inferred as expected or unexpected.
QRN also includes constraints on the size of the result set. Another category is Query
Refinement for Aggregate Constraints (QRA), which involves constraints based on
aggregation functions such as MIN, MAX, SUM, and COUNT. Each of these
constraint types requires refinement strategies to adjust query predicates so that the
resulting output better aligns with user intent.

An important consideration in refining queries under aggregate constraints is the
monotonicity of the aggregation function. An aggregate function is said to be
monotonic if adding tuples to the dataset does not violate the constraint, i.e., the
output of the function changes in a predictable direction. For instance, functions like
COUNT and SUM exhibit monotonic behaviour because adding more tuples to the input
cannot cause their values to decrease. This property allows for effective pruning in
query refinement, as any candidate query that already violates the constraint will
continue to do so even if more data is included.

More formally, consider a candidate query R defined by d range predicates, where each
predicate Pi filters the attribute ai using a value from its domain. Let each attribute ai
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have ni distinct values. The space of possible outcomes for such queries can be
represented as a d-dimensional grid G, where each dimension corresponds to a
predicate’s possible values. A query result, such as its cardinality (i.e., the number of
tuples returned), can be represented as a value associated with a point in this grid.
This representation enables reasoning over query behaviour across different predicate
settings.

Let G[t1, . . . , td] represent the number of tuples returned when each predicate is
assigned the smallest distinct value of its corresponding attribute ai. The query space
exhibits monotonicity if increasing the threshold for any predicate (i.e., ti ≤ yi for all
i) results in a query that returns at least as many tuples: G[t1, . . . , td] ≤ G[y1, . . . , yd].
This means that relaxing the predicates (i.e., expanding the filter ranges) will never
reduce the number of returned results (Bruno et al., 2006).

However, some constraints are defined over non-monotonic aggregates, where adding
or removing tuples can cause the aggregate value to increase or decrease unpredictably.
For instance, ratio-based constraints often exhibit non-monotonic behaviour. In such
cases, common optimization strategies like monotonic pruning break down. This thesis
addresses precisely this challenge by designing query refinement methods for
non-monotonic aggregate constraints.

Example 2.1. A computer science department within a university needs to assign at
least three faculty members to review a research proposal on "Deep Learning for
Medical Image Analysis." Initially, the database is queried for faculty members with
expertise in both deep learning and medical imaging. If fewer than three reviewers are
found, the query is relaxed to include faculty with expertise in machine learning and
medical imaging, as machine learning expertise encompasses deep learning. If the
required number of reviewers is still not met, the constraints may be further relaxed to
include faculty with expertise in artificial intelligence and Medical Image.

In Example 2.1, the absence of expected number of tuples from the query results
represents one form of constraint.

Refining a query involves modifying the query’s predicates in various ways. These
modifications can include adding or removing predicates, changing a constant within a
predicate to another constant, as well as relaxing the predicate (i.e., generating more
tuples in the output) or tightening the constants within predicates (i.e., generating
fewer tuples in the output) (Li et al., 2023), etc. For example, in Example 2.1 where a
query initially searches for reviewers with expertise in both deep learning and medical
imaging, relaxing the predicates constants to include those with expertise in machine
learning and medical imaging allows for a broader set of reviewers, thereby generating
more result tuples. On the other hand, tightening the predicate constant by only
considering reviewers with expertise in deep learning results in fewer returned tuples,
narrowing the scope of the query.
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The following sections review existing query refinement techniques developed to
address user-defined constraints. They examine how these techniques search for refined
queries, the way used to modify query, and the optimization strategies employed.
Additionally, user-defined constraints are categorized into two main types: diverse
non-aggregate constraints and aggregate constraints.

2.1.2.1 Query Refinement for Diverse Non-aggregate Constraints (QRN)

QRN is a query refinement technique designed to satisfy user-defined non-aggregate
constraints (Mottin et al., 2016b; Muslea, 2004; Muslea and Lee, 2005; Mottin et al.,
2014b). These constraints include ensuring that the query result is not too large, too
small, or empty (Mottin et al., 2016b), enforcing the inclusion or excluding of specific
tuples in the output (Muslea, 2004; Muslea and Lee, 2005), and filtering out outliers or
undesired tuples (Roy and Suciu, 2014; Wu and Madden, 2013; Tran et al., 2014; Shen
et al., 2014; Dimitriadou et al., 2016). Non-aggregate constraints refer to
conditions applied to the overall composition of the query output. The following
sections review existing approaches that address such constraints. While these
methods are relevant to the discussion in this thesis, this section briefly cover three
main categories: query refinement for user-specified tuples, expected and unexpected
tuples, and size constraints, as they address problems that are related to, but
fundamentally different from, the focus of this work. Table 2.1 builds upon the original
table by Albarrak (2018), which categorized query refinement (QR) techniques based
on constraint types such as expected tuples, unexpected tuples, and result size. The
original table summarized each constraint with an informal definition and cited
supporting literature. In this thesis, the table has been restructured to better highlight
the relevance of these techniques to the problem of this thesis. Specifically, the
following enhancements were made: (i) the Constraint types have been reorganized
into three main categories that reflect the key types of non-aggregate constraints
relevant to this section. Constraints involving aggregates are discussed separately
in Section 2.1.2.2. (ii) a new Limitations column has been added to analyse why
existing techniques for non-aggregate constraints fall short in addressing the more
complex aggregate constraints explored in this thesis. In these approaches, refining a
query requires navigating a large search space to identify an optimal refined query.
This task is challenging, as it often involves interactive user feedback to guide the
refinement process or requires the adoption of optimization strategies, such as ensuring
similarity to the original user query.

2.1.2.1.1 Query Refinement for User-specified Tuples This section reviews
related work that addresses the problem of refining queries to produce results that
include user-specified tuples (Zloof, 1975; Dimitriadou et al., 2016; Shen et al., 2014;



20 Chapter 2. Literature Review

Table 2.1: Adapted from Albarrak (2018), this table summarizes query refinement
techniques for diverse non-aggregate constraints with added limitations relevant to this

thesis.

Technique Constraint
Type

Informal
Definition

Related Works Limitations

Query Re-
finement
for User-
specified
Tuples

Query’s re-
sult contains
a set of tu-
ples T .

Formulate
a query Q
based on ex-
ample tuples
T provided
by the user.

(Zloof, 1975; Tran
et al., 2009; Shen
et al., 2014; Dimi-
triadou et al., 2014;
Tran et al., 2014;
Li et al., 2015;
Dimitriadou et al.,
2016; Mottin et al.,
2016a; Barceló and
Romero, 2016; ten
Cate et al., 2025)

Constraints are defined at
the level of individual tu-
ples, and users are re-
quired to provide specific
examples that should ap-
pear in the result. In con-
trast, the constraints in
this work are specified at
a higher level and users
are typically unfamiliar
with the specific tuples
that will satisfy them.

Query Re-
finement for
Expected
and Un-
expected
Tuples

Ensure
expected
tuples E are
included and
unexpected
tuples U
are excluded
from the
query result

Refine Q to
Q′ such that
Q′ includes E
and excludes
U .

(Chapman and Ja-
gadish, 2009; Tran
and Chan, 2010;
He and Lo, 2012;
Islam et al., 2012,
2013a,b, 2015;
Sharaf and Ehsan,
2021; Erbacher
et al., 2022; Lee
et al., 2023)

Constraints assume the
user can identify specific
tuples that should or
should not appear in the
result. While this work
considers higher-level
constraints based on
aggregate computations
over groups of tuples.
Users are not expected
to know which individual
tuples should satisfy the
constraint, making these
refinement techniques im-
practical for the setting
in this work.

Query Re-
finement
for Size
Constraints

Query’s
result size
≥ K, ≤ K,
or > 0

Given that
Q returns
too few, too
many or an
empty result,
minimally
refine Q to Q′

to satisfy the
constraint.

(Muslea, 2004;
Chaudhuri et al.,
2004; Muslea and
Lee, 2005; Ilyas
et al., 2008; Mot-
tin et al., 2014b,
2016b; Ikeda et al.,
2024)

Designed to improve
query results that are
too small, too large, or
completely empty.

Mottin et al., 2016a; Dimitriadou et al., 2014; Tran et al., 2009; Li et al., 2015; ten
Cate et al., 2025; Tran et al., 2014; Barceló and Romero, 2016).

Early foundational work by Zloof (1975) introduced Query-by-Example (QBE), which
enables users to specify query conditions via example tuples. QBE is particularly
useful for users without database expertise such as professionals from domains like life
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sciences, the arts, or business, who may be unfamiliar with traditional query languages
and possess limited programming knowledge (Bonifati et al., 2016, 2019). Such users
are typically able to supply data examples, but they frequently find it challenging to
express their information needs using correct SQL syntax (Shen et al., 2014; Martins,
2019).

Query by Example (QBE) aims to reconstruct queries to support a range of
applications, such as retrieving relevant information from datasets, improving users’
understanding of database sachems and selecting data that satisfies user
interests (Martins, 2019; Tran et al., 2009). This concept evolved into modern
frameworks like TALOS (Tran et al., 2009), a data-driven framework for Query
Reverse Engineering (QRE) that reconstructs the user query based on the result of an
unknown query and the underlying database. The core idea is to frame the task as a
data classification problem, where database tuples are labelled as positive if they
appear in the result set, and negative otherwise. TALOS constructs a decision tree by
recursively splitting tuples based on attributes, selecting splits that optimize a
criterion such as the Gini index or entropy, until each leaf node contains only positive
or negative tuples. Each path from the root to a positive leaf corresponds to a
candidate query, and these queries are then ranked using two variations of the popular
F-measure, capturing both precision and recall. TALOS leverages several optimization
techniques to enhance the performance, including precomputed join indices, hub tables,
and mapping tables to efficiently minimize the computational cost of tree construction.

Shen et al. (2014) addresses the challenge of efficiently discovering minimal project-join
SQL queries that include user-provided example tuples in their output. The large
search space and the high cost of evaluating each candidate query make this problem
computationally challenging. Two phases proposed by the authors. First, candidate
generation to produce all set of potential refined queries. Second, candidate
verification to filter out invalid queries. The paper introduces a filter-based pruning
technique to optimize this process, that exploits dependency relationships among
queries. So, if a candidate query is invalid, all of its sub-queries can be pruned, because
they are more restrictive and unlikely to produce any valid results. Similarly, Mottin
et al. (2014a) introduce the concept of exemplar queries, where the user provides a
representative query instance, and the goal is to retrieve structurally similar query
patterns from the database. This approach is particularly useful in scenarios where
users may not fully understand the structural characteristics of their intended queries.
Both the user input and the database are modeled as labeled graphs, and the task
becomes one of identifying isomorphic subgraphs in the data graph that resemble the
exemplar query. To address the high computational cost of subgraph matching, the
authors propose two optimized algorithms. FastXQ treats the exemplar query as a
connected subgraph and prunes unqualified nodes by compactly summarizing each
node’s neighborhood, thereby avoiding exhaustive traversal of the entire data graph.
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To further improve scalability, ApFastXQ offers an approximate solution by leveraging
an adaptive Personalized PageRank strategy to prioritize and restrict the search to the
most relevant regions of the data graph.

Another type of refinement framework focused on producing query results that include
user-specified tuples is interactive query refinement, which incorporates user feedback
into the refinement process (Li et al., 2015). Automatic Interactive Data Exploration
(AIDE) is designed for scenarios where users cannot formulate precise queries but can
instead label a small number of data samples as relevant or irrelevant. The system uses
this feedback to incrementally build a classification model that captures the user’s
interests, which is then translated into a query when the user decides to terminate the
process. AIDE’s goal is to reduce the number of samples the user needs to label while
accurately identifying all relevant data. It follows a three-phase iterative process to
achieve this. First, the data space is divided into equal-width grid cells. For each cell,
the system selects the tuple closest to the center of the cell for the user to label. Cells
that yield irrelevant tuples are recursively split into finer-grained sub-cells, as they may
partially overlap with relevant regions. Second, the system refines the classification
model by focusing on misclassified examples, specifically false positives (tuples labelled
irrelevant by the user but predicted as relevant) and false negatives (tuples labelled
relevant but predicted as irrelevant). This polishing phase helps adjust the decision
boundaries and better align the model with the user’s actual interests. In the third
phase, the system chooses a few examples that lie near the boundary between what it
predicts as relevant and irrelevant. The user labels these examples to help the system
refine the boundary and improve the final query. To reduce the overhead of repeated
sampling, AIDE applies two key optimizations: (1) using simple random sampling of
the dataset to create a manageable working dataset, and (2) adaptively reducing
sample tuples that will be labelled by the user by tracking and remembering boundary
changes, if a region’s boundary changes only minimally between iterations, AIDE
considers it well-learned and reduces further sampling there.

The refinement approaches addressed in the above works are fundamentally different
from those considered in this thesis, which involves refining queries to satisfy
constraints expressed as arithmetic combinations of aggregate functions. In particular,
these approaches focus on constraints defined at the level of individual tuples, whereas
the constraints considered in this thesis apply to groups of tuples in the query result.
Moreover, these methods generally assume that users are able to identify specific
tuples that should appear in the result. In contrast, the setting in this work assumes
that users do not know in advance which tuples will satisfy the constraints, which
makes these techniques unsuitable for the problem problem considered in this thesis.
As a result, the strategies proposed in these works cannot be directly applied to the
type of constraints address here.
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2.1.2.1.2 Query Refinement for Expected and Unexpected Tuples This
section reviews related work that addresses the problem of refining queries to produce
results that either include user-expected tuples or exclude unexpected ones (Chapman
and Jagadish, 2009; He and Lo, 2012; Islam et al., 2012, 2013a,b, 2015; Tran and
Chan, 2010; Lee et al., 2023; Sharaf and Ehsan, 2021; Erbacher et al., 2022).

This section examines the line of work addressing the refinement of queries to satisfy
user expectations by including expected tuples and excluding non-expected tuples,
which are often referred to as why and why-not (Chapman and Jagadish, 2009; Tran
and Chan, 2010; He and Lo, 2012). This type of techniques are beneficial in
environments where users have limited access to the underlying database, such as
web-based airline ticket search platforms (Chapman and Jagadish, 2009). The aim of
this type of query refinement is to reconcile the gap between the user’s desired output
and the actual query result, either by modifying the query to include missing
(expected) tuples or to filter out irrelevant (non-expected) results.

A foundational contribution to this area is the ConQueR (Constraint-based Query
Refinement) framework, which addresses user questions about why certain expected
tuples are missing from query results (Tran and Chan, 2010). ConQueR automatically
generates refined queries that return the original result plus the missing tuples, while
preserving the user’s original intent as much as possible. The framework supports both
SPJ and SPJA queries and evaluates refined queries using two metrics: dissimilarity
(how much the refined query deviates from the original query) and imprecision (how
many irrelevant tuples are introduced). ConQueR returns a set of skyline refined
queries that are optimal trade-offs between these two metrics. It proceeds in two
stages: ConQueRs, which generates minimally modified queries by relaxing selection
predicates to include the missing tuples while keeping the refined query as similar as
possible to the original (measured by edit distance), and ConQueRp, which enhances
precision of these queries by adding new predicate to filter out irrelevant results. When
the original query’s structure is not suitable for retrieving the expected tuples,
ConQueR explores alternative query schemas, modifying joins and relations if needed.
For queries with aggregates, it supports refinement strategies that consider aggregation
constraints. To ensure scalability especially when dealing with large databases and
complex queries, ConQueR employs greedy search and pruning technique to minimize
the number of candidate queries it needs to evaluate. The greedy search strategy
means that the system incrementally builds refined queries by choosing relaxing or
adding predicates that seem most promising at each step, rather than exhaustively
exploring all possible modifications. This helps the system reach good solutions quickly
without evaluating every possible option. At the same time, pruning techniques are
applied to discard parts of the search space early. If a partial refinement is already too
dissimilar or returns too many irrelevant tuples, that query path is no longer explored.



24 Chapter 2. Literature Review

Similarly, Islam et al. (2012) presents a framework that generates explanations for
both unexpected tuples returned by the query and expected tuples that are missing,
based on user-provided feedback. These explanations are derived by analysing which
clauses in the user’s original query are satisfied or violated by the feedback tuples. By
identifying the precise conjuncts (in Conjunctive Queries) or disjuncts (in Disjunctive
Queries) responsible for including or excluding the tuples, the system pinpoints which
parts of the query may need modification. This explanation-driven refinement provides
a structured and minimal-change approach to modifying the query. The model also
applies point domination theory to infer additional feedback by comparing unlabelled
tuples with user-labelled ones across multiple attributes. If an unlabelled tuple
dominates or is dominated by a labelled example, the system assumes the user would
likely consider it similarly expected or unexpected. Building on the work by Islam
et al. (2012), Islam et al. (2013a) operationalizes their model through a practical query
refinement system. The authors introduce a taxonomy of feedback (explicit and
implicit) and demonstrate how implicit feedback can be inferred using point
domination, which helps reduce the burden on users to manually label all tuples. The
refinement process is formalized as an optimization problem over query predicates,
aiming to either relax predicates to include missing expected tuples or tighten them to
exclude unexpected ones. Since selecting the optimal set of predicates is NP-hard, the
framework adopts a greedy approximation algorithm that maximizes information gain
while minimizing deviation from the original query. The system supports two
refinement strategies: soft exclusion, which aims to eliminate unexpected (irrelevant)
tuples without removing any expected ones, and hard exclusion, which prioritizes
removing all unexpected tuples, even if some expected ones are also excluded in the
process.

Beyond purely query-based refinement, recent work by Lee et al. (2023) addresses the
limitations of traditional query debugging approaches that treat query and data errors
in isolation. The authors introduce hybrid explanations and repairs, where both the
query and the data may be modified to resolve user complaints i.e., expected tuples
that are missing or unexpected tuples that are present. Unlike traditional methods
that return a single optimal repair, the authors introduce an interactive framework
that enables users to navigate multiple repair options while defining limits on how
much the query, data, and output can be changed. A hybrid repair is formalized as a
pair consisting of a modified query and an updated database that together satisfy the
user’s intent with bounded side effects. The system extends provenance-based
techniques to generate graph-based hybrid explanations, which visually highlight how
specific parts of the query and data contribute to the erroneous results. These
explanations guide the user by indicating which components might need to be changed.
Instead of relying on a single optimization criterion, the framework promotes a flexible,
user-guided approach that balances correctness with minimal changes to the original
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query and data. This empowers users to explore meaningful repair strategies that best
align with their domain knowledge and preferences.

Query refinement has also been explored beyond traditional structured query
processing, especially in the domains of visual data exploration and technical
information retrieval. In the context of visual data, Sharaf and Ehsan (2021) introduce
the QuRVe framework, which refines user queries to suggest more insightful
visualizations. The goal of query refinement here is to enhance exploratory analysis by
automatically proposing alternative visual views that are interesting, relevant to the
user’s intent, and statistically significant. The authors formulate this as a
multi-objective optimization problem, balancing three factors: the deviation from the
global data distribution (i.e., how interesting the result is), similarity to the original
user query (preserving intent), and the statistical strength of the visualized output. To
address the scalability challenge posed by the large space of possible refinements, they
introduce two optimized variants: uQuRVe, which uses tighter deviation bounds to
prune low-utility queries, and pQuRVe, which applies a round-robin prioritization
strategy to focus on the most promising refinements.

These studies show that in practice, users rarely formulate the perfect query on the
first try, which makes it important to support ways of refining the query so that the
results better reflect what the user is actually looking for. Incorporating user feedback,
whether provided directly or inferred automatically, has become a central element in
recent query refinement approaches. Recent work has further advanced this area by
introducing interactive, hybrid, and visualization-oriented techniques that
systematically address both the inclusion of relevant tuples and the exclusion of
irrelevant ones, while maintaining scalability and practical usability.

In summary, the query refinement problems addressed by the techniques discussed
above rely on constraint types that differ fundamentally from those considered in this
thesis. Extending those methods to support the kinds of constraints explored here is
not practical. In the setting of this work, users do not specify particular tuples that
should or should not appear in the query result. Instead, they define higher-level
constraints that the output must satisfy. These constraints are typically based on
aggregate computations over groups of tuples, where a single aggregate condition may
involve a large number of tuples. As such, expressing these constraints at the level of
individual tuples would be highly impractical. Moreover, while prior approaches focus
on the inclusion or exclusion of specific tuples in the query output, the approach in
this thesis ensures that arithmetic expressions over aggregate values satisfy
user-defined thresholds on the query result. These fundamental differences in both the
nature of the constraints and the underlying problem formulation make existing
techniques unsuitable for direct application to the setting addressed in this thesis.
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2.1.2.1.3 Query Refinement for Size Constraints Another line of work in
query refinement focuses on handling problems where the query output is either too
small, too large, or completely empty. These kinds of issues often lead to practical
challenges in data exploration systems. The proposed approaches aim to modify
queries, either automatically or with user interaction, to produce output results that
are practical and usable size.

The empty-answer problem arises when a user submits a query that is overly
restrictive, resulting in no returned results. It is considered a special case of the
broader too-few answers problem, where the query yields very limited or no relevant
results at all. To address this problem, a series of works have proposed interactive
query relaxation frameworks that aim to incrementally guide users toward modified
queries that produce meaningful answers. These methods are especially important in
exploratory search scenarios such as e-commerce or information portals, where users
may not have complete knowledge of the database content and thus reformulate
queries that fail to retrieve any relevant items.

An early system that addresses this issue is IQR (Interactive Query
Relaxation) (Mottin et al., 2014b), which introduces a step-by-step interactive
approach to relaxing queries that return empty results. The system incrementally
proposes one predicate relaxation at a time, aiming to eventually yield a non-empty
result or determine that no such result is possible. Each relaxation is evaluated using a
probabilistic cost model that considers both the likelihood of user acceptance and how
well the resulting tuples align with a user-defined optimization goal (e.g., maximizing
relevance or minimizing effort). This is achieved through two key components: a prior
function, which estimates the likelihood that a user believes a tuple satisfying the
relaxed query exists in the database, and a preference function, which models how
desirable the user finds the tuple. These are combined to score and rank candidate
relaxations. To address the computational challenge of the large relaxation space, IQR
includes both exact and approximate algorithms that explore only the most promising
parts of the relaxation tree. It uses pruning strategies based on upper and lower cost
bounds to eliminate subtrees that cannot yield optimal results, significantly improving
scalability.

Building on the foundations of IQR, a more comprehensive solution is proposed
in (Mottin et al., 2016b), which extends the model into a holistic and principled
optimization-based interactive framework. The authors present a probabilistic
approach to query relaxation, where the system incrementally suggests relaxed versions
of the original query and incorporates user feedback to guide the process. Query
relaxation is modelled as a tree, in which each node represents a query generated by
removing one or more atomic predicates, and the root corresponds to the original
query that yields no results. Each relaxation path is evaluated using a probability
score that reflects the likelihood of user acceptance of the proposed query. Two
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algorithms are introduced for navigating the relaxation tree: FullTree, which performs
a complete depth-first exploration of all possible relaxations to find the optimal one;
and FastOpt, which improves scalability by pruning unpromising branches using upper
and lower bounds on acceptance probabilities. This pruning significantly reduces
computational overhead by avoiding exploration of unpromising paths. A major
limitation of the proposed approach is that it was originally developed for Boolean
databases, which limits its direct applicability to environments involving categorical or
numerical attributes.

Machine learning-based approaches also play a central role in addressing the
empty-answer problem. LOQR by Muslea (2004) and its enhanced version TOQR
by Muslea and Lee (2005) use online learning techniques to generate relaxed queries
that avoid returning empty results. LOQR applies rule-based learning and
nearest-neighbor matching to identify minimal changes that can lead to a non-empty
result. TOQR improves on this by using Bayesian networks to model causal
relationships between query attributes. These networks are trained on a representative
dataset to learn how certain attributes influence one another. This allows TOQR to
determine a more effective order for applying relaxations, prioritizing those that are
more likely to produce valid results.

Recent work by Ikeda et al. (2024) addresses the empty answer problem with a focus
on producing diverse and relevant query results. Traditional query relaxation methods
often generate results that may similar to each other, which can limit their usefulness
to users seeking a broader view of the data. To tackle this, the authors introduce a
two-stage method that incorporates Maximal Marginal Relevance (MMR), a ranking
strategy that balances similarity to the original query and diversity in the output. In
the first stage, the system generates multiple relaxed versions of the original query and
ranks them using a query-level MMR score. In the second stage, it selects a diverse
and relevant top-k set of records using a record-level MMR score. To ensure efficiency,
the method employs a greedy relaxation strategy and a hybrid evaluation that
combines cardinality estimation with selective direct evaluation, reducing computation
while maintaining result quality.

On the other hand, when a query returns too many results often due to
under-specification or broad selection conditions, it becomes difficult for users to
identify relevant information. One solution is top-k query processing, which returns
only the most relevant k tuples based on a scoring function (Ilyas et al., 2008).
Another is the skyline query approach, which filters out dominated tuples and returns
only those that are optimal across multiple dimensions (Borzsony et al., 2001). A more
adaptive strategy involves probabilistic ranking functions, which consider consider not
only the attributes explicitly specified in the query but also those left
unspecified. Chaudhuri et al. (2004) propose ranking tuples using two components: a
global score, which reflects the overall importance of unspecified attribute values in the
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dataset, and a conditional score, which measures how strongly these unspecified values
are correlated with the attributes specified in the query. This allows the system to
prioritize tuples that are more likely to align with the user’s intent, even when that
intent is only partially expressed.

In summary, the query refinement techniques reviewed above focus on constraints that
are fundamentally different from those addressed in this thesis. These methods are
designed to improve query results that are too small, too large, or completely empty,
often through user interaction, adaptive learning, or relevance-based ranking. While
effective in their respective settings, they do not handle constraints involving arithmetic
expressions over aggregate functions, which are central to the problem of this thesis.
Some of the reviewed techniques, such as IQR and its extensions (Mottin et al., 2014b,
2016b), are limited to boolean attributes and cannot be directly applied to queries
involving categorical or numerical values. Others, like LOQR and TOQR (Muslea,
2004; Muslea and Lee, 2005), support refinement based on the size of the query result.

Moreover, a key distinction lies in the interaction model. Many of the existing
approaches depend on iterative user feedback or preference learning to guide the
refinement process. In contrast, the framework in this thesis assumes that the user
specifies a target numerical constraint in advance, such as a threshold defined over
arithmetic combinations of aggregate functions, and expects the system to refine the
query accordingly without requiring further interaction. Given these fundamental
differences in both of the constraints and the refinement objectives, existing techniques
are not applicable to the problem addressed in this thesis.

2.1.2.2 Query Refinement for Aggregate Constraints (QRA)

QRA is a query refinement technique designed to satisfy user-defined aggregate
constraints. These constraints require refinement strategies to ensure that the query
results align with user intentions. Aggregate constraints refer to conditions imposed
on the results of aggregation functions such as min, max, sum, and count, which
operate on various database attributes to derive summary information. For instance, a
constraint like sum(Salary) ≥ 15000 ensures that the total salary meets a specified
threshold (Ross et al., 1998).

Aggregate constraints can be applied either to the overall query results (Mishra et al.,
2008; Bruno et al., 2006; Albarrak et al., 2014; Mishra and Koudas, 2009; Koudas
et al., 2006; Tran and Chan, 2010) or, as explored in more recent studies, to specific
groups within the results (Li et al., 2023; Shetiya et al., 2022). In the following
sections, a review of existing works on aggregate constraints in these two categories is
presented, by examining their way of modifying the query, their search strategies and
the optimizations they employ.
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A summary comparison of these techniques is shown in Table 2.2. The table highlights
key differences across existing query refinement approaches that target aggregate
constraints, focusing on the types of aggregation functions supported, whether
refinement preserves similarity to the original query, the types of predicate
modifications applied, the scope at which constraints are enforced (e.g., result-level,
group-level, or top-k), and whether the technique can handle arithmetic expressions
over aggregates. The final column summarizes the limitations of each method and
explains why it is not applicable to the setting considered in this thesis.

2.1.2.2.1 Query Refinement for Aggregate Constraints over the Result
Size Research has increasingly focused on refining database queries to meet specific
criteria, particularly aggregate constraints on the result size. The literature reviewed
here presents a range of approaches, optimizations, and conceptual frameworks that
address these challenges.

Several studies have proposed automatic query refinement techniques that
incrementally adjust selection predicates to satisfy global aggregate constraints on the
query output. For instance, in database testing, it is often necessary to assess the
impact of integrating a new component by executing queries that meet predefined test
criteria (Bruno and Chaudhuri, 2005). These criteria typically involve constraints on
result sizes, and satisfying them requires automatically modifying query predicates
until the resulting output aligns with the intended test scenario.

As demonstrated by Bruno et al. (2006), generating a query based on a single
cardinality constraint on its output has been proven to be an NP-hard problem. In the
same work, the authors proposed a heuristic Hill-Climbing (HC) technique to address
the challenge of automatically generating queries that meet cardinality constraints,
allowing for approximate solutions that closely align with the specified constraints.
The HC method iteratively searches for predicate constants of a query that reduce the
average relative error in satisfying cardinality constraints. For a given cardinality
constraint, the relative error is defined as the maximum of two ratios: the target
cardinality divided by the observed cardinality, and the observed cardinality divided by
the target cardinality. The HC process begins by assigning initial predicate constants
that best approximate the desired constraints with a minimum relative error, assuming
independence among predicates. From this starting point, it iteratively modifies
individual predicate constants, selecting the change that most reduces the relative
error. If no reduction is found, the step size is halved, and this halving process
continues until the step size is small enough to distinguish between individual distinct
values in the predicate domain. A key limitation of this technique, is that during the
refinement process it does not account for similarity to the original query. This
approach focuses on satisfying cardinality constraints by adjusting predicate
parameters using heuristics hill climbing based on local error measures. Incorporating
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query similarity, ensuring that the refined query remains close to the user’s original
intent, introduces new challenges. For instance, HC selects refinement steps by
evaluating local relative error, so it can easily become trapped in local minima when
similarity constraints are also considered.

Table 2.2: Comparison of some Aggregate-based Query Refinement Techniques

Techniques Aggregates
Sup-
ported

Similarity
to Origi-
nal Query
Consid-
ered

Query
Modifica-
tion Type

Constraint
Appli-
cation
Level

Arithmetic
Expres-
sion Sup-
ported

Limitations

(Bruno
et al.,
2006)

COUNT ✗ Constants
of selection
predicates

Result size ✗ Lacks support for similarity
to the original query,
assumes monotonic
cardinality constraints
(invalid for non-monotonic
cases), and restricts to
COUNT aggregates over
result size.

(Mishra
et al.,
2008)

COUNT ✗ ✗

(Mishra
and
Koudas,
2009)

COUNT ✗ ✗

(Vartak
et al.,
2010)

COUNT ✓ Constants
of selection
and join
predicates

✗ Requires manual tuning,
relies on monotonicity, does
not consider pruning
unpromising candidates,
which increases
computational overhead.

(Vartak
et al.,
2016)

COUNT,
SUM,
MIN,
MAX,
AVG,
UDA

✓ ✗

(Albarrak
and
Sharaf,
2017)

COUNT,
SUM,
MIN,
MAX,
AVG

✓ Constants
of selection
predicates

✗ Relies on monotonic ag-
gregate constraints.

(Kadlag
et al.,
2004)

COUNT ✗ ✗ Only simple group
COUNT constraints, no
similarity maintained to
the original query.

(Shetiya
et al.,
2022)

COUNT ✓ Result
Groups

✗ Only simple group
COUNT constraints,
assumes monotonicity.

(Li et al.,
2023)

COUNT ✓ ✗ Only simple group
COUNT constraints,
relies on monotonic
pruning, not valid for
non-monotonic aggre-
gates.
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(Campbell
et al.,
2024)

COUNT ✓ Top-k Re-
sults

✗ Solves a different problem
(diversity in Top-k rank-
ing).

Kadlag et al. (2004) introduced the SAUNA framework to assist users in formulating
exploratory queries that satisfy cardinality constraints. Starting from an initial query
and a desired result size, SAUNA automatically adjusts predicate ranges while
preserving the relative proportions between them which referred to as the aspect ratio.
The system uses a distance function tailored to range queries, aiming to minimize the
L2-norm between the original and refined queries in the predicate space. This
approach helps maintain the interpretability of results by ensuring they remain close to
the user’s initial intent. SAUNA employs multi-dimensional histograms for cardinality
estimation and uses a binary search strategy to efficiently navigate predicate space.
However, the method focuses solely on satisfying only cardinality (COUNT)
constraints and does not consider semantic similarity beyond predicate alignment,
limiting its effectiveness for more nuanced refinement goals.

Mishra et al. (2008) expanded this line of work by generalizing the problem to more
complex scenarios. They formalized the Targeted Query Generation (TQG) problem,
aiming to simultaneously generate or refine queries that satisfy multiple cardinality
constraints. The authors proposed Targeted Query Generation (TQGen), a practical
algorithm that generates queries whose outputs approximately match target multiple
cardinality constraints. TQGen minimizes the sum of squared logarithmic relative
errors between the observed and desired cardinalities across multiple predicates. The
algorithm operates in two phases: a bounding phase, which uses a binary search over
the domain of each predicate to determine lower and upper bounds on the search
space, and an exploration phase, which navigates the bounded search space to identify
queries that minimize the sum of squared logarithmic relative errors across all
cardinality constraints. In the bounding phase, a relaxed version of each predicate is
evaluated to generate an upper-bound query that overshoots the specified cardinalities.
During exploration, the algorithm partitions the bounded space into a grid, scores each
cell based on potential improvement, and recursively explores the most promising cells
to find a query that best approximates the constraints. A key efficiency factor in
TQGen uses a monotonic error function, which allows for the early pruning of
suboptimal subspaces. Despite its scalability and optimization capabilities, TQGen
does not incorporate similarity to the original query and assumes monotonic
cardinality constraints, which limits its applicability in scenarios considered in this
work that involve non-monotonic constraints.

Mishra and Koudas (2009) introduced the Stretch ’n’ Shrink (SnS) framework, which
extends earlier approaches such as the Hill-Climbing (HC) method (Bruno et al., 2006)
and the Targeted Query Generation (TQGen) algorithm (Mishra et al., 2008) by
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incorporating explicit user interaction into the query refinement process. Unlike
previous methods that rely on fixed scoring functions to guide optimization, SnS
enables users to interactively refine selection predicates by either relaxing or tightening
them, offering a more adaptive refinement process aligned with user intent. SnS
operates through an iterative feedback loop where users guide the refinement of query
predicates over selected attributes. To ensure that this interaction remains efficient,
especially over large and complex datasets, SnS uses sampling-based techniques for
estimating cardinalities and leverages advanced indexing structures such as
multidimensional indexes and binary search strategies to identify appropriate predicate
ranges quickly. The system supports both numeric attributes and categorical attributes
organized in hierarchies. The framework’s optimization strategy is focused exclusively
on satisfying cardinality constraints. It does not incorporate mechanisms for preserving
the similarity between the refined and original queries. This limitation makes it less
suitable in scenarios where the user’s intent includes both cardinality and similarity
objectives. Furthermore, SnS assumes monotonic behaviour in predicate adjustments,
which restricts its ability to handle more complex constraints such as non-monotonic
aggregates. Addressing these challenges remains an open research direction.

Vartak et al. (2010) introduced a novel framework, QRelX, designed to address the
limitations of earlier query refinement approaches by automatically generating refined
queries that provide cardinality assurance while maintaining semantic similarity to the
original query. QRelX constructs a structured refinement search space and employs a
proximity based search strategy, prioritizing candidate queries that exhibit minimal
semantic deviation from the original. To reduce redundant computations, it uses an
incremental cardinality estimation method that reuses results from previously
evaluated, similar queries. Importantly, QRelX supports the refinement of both
selection and join predicates. Building on this foundation, Vartak et al. (2016)
proposed the ACQUIRE framework, which generalizes query refinement to support
Aggregation Constrained Queries (ACQs). ACQUIRE extends the refinement process
to handle a broader class of constraints involving common SQL aggregation functions
such as COUNT, SUM, and AVG. The framework explores a discretized refinement
space by evaluating candidate queries in order of their semantic similarity to the
original query. Each candidate is checked against a user-defined aggregate threshold
and is considered a valid solution if the constraint is met. Rather than evaluating each
candidate from scratch, ACQUIRE incrementally computes aggregate values by
leveraging the algebraic properties of common SQL aggregates such as COUNT, SUM,
MAX, and AVG. This reuse of previously computed results reduces redundant
computation.

Despite their effectiveness, both QRelX and ACQUIRE share important limitations.
They require users to manually set thresholds for acceptable deviations in cardinality
and similarity parameters that may be unintuitive for non-expert users. Moreover,
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both frameworks evaluate promising and unpromising candidate queries during the
refinement process, which can lead to increased computational overhead, particularly
on large datasets. Furthermore, while ACQUIRE introduces support for a broader set
of aggregate functions, it relies on the monotonicity and additive properties of these
functions. This reliance restricts its applicability in scenarios involving non-monotonic
aggregate constraints, such as those addressed in this work, and as such, extending
these frameworks to effectively handle non-monotonic aggregates while maintaining
query similarity remains a non-trivial challenge.

Albarrak and Sharaf (2017) introduced EAGER, which addresses the limitations of
earlier refinement techniques by incorporating similarity-awareness. EAGER aims to
balance user-specified aggregate constraints and query similarity to maximize overall
user satisfaction. Notably, this work extends previous approaches by generalizing the
aggregate constraints beyond cardinality to include other standard SQL aggregation
functions such as COUNT, SUM, AVG, MIN, and MAX. It implements
similarity-based and aggregate-based pruning techniques to efficiently navigate the
large space of potential refinements and significantly reduces computational costs.
EAGER also employs a hierarchical representation of the query space, enabling tighter
aggregate bound estimations and faster identification of optimal queries. Additionally,
it includes optimization and approximation strategies such as query materialization
and selective exploration of promising regions in the search space to enhance efficiency.
A key feature of EAGER is its reliance on the monotonicity property of aggregate
functions to establish bounds and prune the search space. However, while this is
effective for many common aggregate types, it limits the applicability of EAGER in
contexts where the aggregate constraints are non-monotonic, as is the case in the
problem addressed in this work.

To summarize, despite the efficient contributions of the reviewed techniques for
refining queries to satisfy aggregate constraints, several limitations render them
unsuitable for addressing the problem tackled in this work. First, many approaches
including HC (Bruno et al., 2006), TQGen (Mishra et al., 2008), SnS (Mishra and
Koudas, 2009), and SAUNA (Kadlag et al., 2004) are restricted to cardinality
(COUNT) constraints over the entire result set and do not support more expressive
aggregate functions or arithmetic combinations of aggregates. Second, several
techniques, such as HC, TQGen, SnS, and SAUNA, do not incorporate semantic
proximity to the original query. Instead, they rely on local error metrics or geometric
similarity, which may not fully capture user intent. Although more recent frameworks
like QRelX (Vartak et al., 2010), ACQUIRE (Vartak et al., 2016), and
EAGER (Albarrak and Sharaf, 2017) incorporate similarity-aware strategies, they rely
on the monotonicity of aggregate functions which is a property that fails in scenarios
involving non-monotonic constraints. Third, methods such as QRelX and ACQUIRE
suffer from computational inefficiencies, often due to exhaustive evaluation of
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candidate queries, reliance on fixed step sizes, or approximation via sampling, which
can result in suboptimal or inaccurate refinements. Finally, many of these techniques
require manual tuning of parameters (e.g., aggregate error thresholds, similarity
bounds), which can be impractical in exploratory scenarios where users lack detailed
knowledge of the data or constraints (Vartak et al., 2010, 2016). These limitations
collectively underscore why existing approaches cannot be directly extended to solve
the problem in this thesis, which demands efficient, similarity-aware refinement under
non-monotonic aggregate constraints.

2.1.2.2.2 Query Refinement for Aggregate Constraints over Groups of the
Result Recent research has increasingly recognized the importance of refining
database queries to meet not just global result size constraints but also group-level
aggregate constraints, such as constraints for fairness and diversity. However, only a
few recent studies have explicitly tackled this problem, each with distinct goals and
methodologies (Shetiya et al., 2022; Li et al., 2023; Campbell et al., 2024). The work
presented in this thesis is positioned within this emerging line of research, focusing on
refining queries to satisfy constraints within result groups.

One of the earliest efforts in this area is the framework introduced by Shetiya et al.
(2022), which marks a first step toward incorporating fairness constraints into
database query processing and data management systems. It focuses on refining
queries to satisfy cardinality constraints over protected groups (e.g., gender, ethnicity)
in the query result. Given a user’s input query, the system selectively relaxes
predicates to ensure that the refined query satisfies group-based constraints, expressed
as minimum or maximum thresholds on representing protected groups in the output.

The framework supports a broad class of selection queries involving both categorical
and numeric attributes. It enables fairness-aware refinements by adjusting predicate
values to improve group representation, while enforcing a similarity constraint based
on the Jaccard index to ensure that the refined result set remains close to the original.
The refinement process is formalized as a search problem, where the system uses a
best-first traversal of the space of candidate queries. Candidate queries are prioritized
using an upper-bound estimate on the fairness objective, allowing the system to guide
the search toward promising refinements. To improve computational efficiency, the
framework prioritizes candidate refinements using upper-bound fairness estimates and
leverages monotonicity to prune unpromising search paths. Also, it avoids redundant
evaluations by reusing partial computations and guiding the search using
fairness-based scoring functions that estimate how well a candidate query is likely to
satisfy the fairness constraints However, the framework is primarily designed for simple
group cardinality (COUNT) constraints over a single binary protected attribute (e.g.,
gender), and is limited to relaxing selection predicates involving straightforward
numeric ranges or Boolean attributes. In addition, it supports only single-relation
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queries and does not extend to queries over joined tables. The framework does not
accommodate more complex aggregate expressions (e.g., SUM, AVG) or arithmetic
combinations of multiple aggregates, and its pruning strategies rely heavily on
monotonicity, which does not generalize to non-monotonic constraints.

Li et al. (2023) presents a comprehensive approach to the problem of query refinement
that aims to satisfy cardinality constraints on specific demographic groups within
query results by modifying the constants in the selection predicates of the user query.
For numerical attributes, refinements involve adjusting the constant values used in
comparisons. For categorical attributes, refinements may take the form of set
membership predicates, such as A ∈ {c1, . . . , cn}, where each ci is a value drawn from
the domain of the attribute A. Their method specifically supports a conjunction of
so-called group cardinality constraints. A single group cardinality constraint compares
the result of a Count query with a conjunctive selection condition against a constant.
Their work addresses an important need in data selection processes where diversity
and group representation are required. It enables users to impose constraints on the
sizes of various subgroups in the result set. Compared to the work by Shetiya et al.
(2022), this proposed work by Li et al. (2023) supports multiple, non-binary sensitive
attributes, handles both relaxation and contraction constraints, and extends to SPJ
queries over multiple joined tables. It also adopts a different similarity objective by
measuring distance between queries rather than between result sets. The authors
address the problem of finding minimal refinements of Select-Project-Join (SPJ)
queries such that the resulting output satisfies constraints on the sizes of multiple
subgroups within the query result. A refinement is deemed minimal if it fulfills all
constraints while preserving the user’s original intent as closely as possible. This intent
preservation is quantified by measuring the similarity of constants used in the selection
predicates between the original and refined queries. The refinement problem is
formulated as skyline queries. Specifically, the objective is to identify all minimal
refinements such that no other refinement is closer to the user query in at least one
dimension (predicate) and at least as close in all dimensions.

The methodology consists of three primary components. First, the authors develop a
provenance-based approach that annotates tuples with relevant predicate information.
This model translates cardinality constraints into algebraic expressions for constraint
testing. They use the provenance model to eliminate the need to repeatedly execute
candidate query refinements against the database, which significantly improves
efficiency. Second, the authors introduce a data structure called Possible Value Lists
(PVL) that encompasses all possible predicate values organized by their distance from
the original values. For numerical predicates, values are sorted by their absolute
distance from the original constant, while categorical predicates are represented using
multiple lists indicating the presence or absence of specific values. Third, the authors
employ a recursive search process that begins with a partial query (a single predicate)
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and uses a top-down traversal of the PVL to find a minimal refinement. Once a
refinement is found, the result set is updated, and new refinement candidates are
generated by updating predicate values using entries from the PVL. The process then
recursively searches for additional minimal refinements. Several optimizations enhance
the efficiency of their proposed solution. For cases where all constraints are relaxation
constraints (e.g., requiring at least a certain number of individuals from a group) or all
are contraction constraints (e.g., requiring at most a specific number), the authors
leverage the monotonicity property of such constraints to avoid exhaustive traversal
when finding refinements. The algorithm also avoids exploring refinements that cannot
satisfy certain constraints based on partial queries. If a partial query fails to satisfy
specific relaxation constraints, any complete refinement containing those predicates
will also fail. Additionally, the algorithm exploits the pre-computed aggregations if
they have been examined in previous iterations, preventing redundant evaluation of the
same refinements. Although the approach of Li et al. (2023) effectively satisfies
cardinality constraints on specific demographic groups within query results, it cannot
be directly applied to the setting in this thesis, as it relies on monotonicity to prune
the search space. In contrast, the problem in this thesis involves non-monotonic
aggregate constraints, where such pruning strategies are invalid.

Campbell et al. (2024) tackles a related but distinct problem by focusing on query
refinement for diverse top-k selection. While the works of Shetiya et al. (2022) and Li
et al. (2023) aim to satisfy cardinality constraints over protected groups, Campbell
et al. (2024) addresses diversity from a ranking perspective, specifically within the
top-k results of an ORDER BY query. This is particularly relevant for decision-making
domains such as hiring or school admissions, where it is critical to ensure that the
highest ranked candidates reflect desired diversity criteria. Their approach formulates
the refinement task as a Mixed-Integer Linear Program (MILP), which seeks to adjust
query selection predicates so that the top-k output satisfies user defined diversity
constraints while remaining as close as possible to the original query’s intent. Like Li
et al. (2023), they adopt provenance-based annotations to represent candidate
refinements efficiently, but extend them to handle ranking semantics. To enhance
computational efficiency, the authors introduce several optimizations. First, a
relevancy-based optimization eliminates tuples that cannot appear in any valid top-k
result under any refinement. Second, a lineage-based optimization merges MILP
variables for tuples with identical provenance. Third, a score relaxation technique
simplifies the objective function for tuples that belong to groups constrained by only a
lower-bound or only an upper-bound (but not both) to reduce the complexity of the
MILP formulation. Although this work is effective for improving diversity in top-k
rankings, it is fundamentally different in scope from the work by Shetiya et al. (2022)
and Li et al. (2023). It is restricted to queries with ORDER BY clauses and top-k
semantics, and does not generalize to arbitrary aggregate constraints or arithmetic
expressions over group-level aggregates, which are central to the setting of this thesis.
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Despite their contributions, these recent works are not directly applicable to the
setting in this work. The framework by Shetiya et al. (2022); Li et al. (2023) supports
only simple group cardinality (COUNT) constraints and relies on monotonicity
assumptions for efficient search, which makes it unsuitable for non-monotonic
aggregate constraints. Finally, the method proposed by Campbell et al. (2024)
specifically targets diversity constraints within top-k results under ranking-based
queries and addresses a different problem than the one considered in this work.

2.2 Summary

This chapter presents a comprehensive survey of existing work in the areas of data
refinement (DR) and query refinement (QR), with particular emphasis on the latter
due to its central role in this thesis. While both DR and QR techniques aim to align
query outputs with user expected constraints, they differ fundamentally in scope: DR
methods modify the underlying data, whereas QR strategies refine the query itself.
This thesis focuses on scenarios in which the query must be modified in order to satisfy
user-specified output constraints, particularly those involving aggregate expressions,
making QR techniques the primary subject of interest.

Prior research in data refinement has addressed how-to queries (Meliou and Suciu,
2012), missing answer explanations (Herschel and Hernández, 2010), and error tracing
in update logs (Wang et al., 2017). These approaches formulate data-level changes
using optimization frameworks such as Mixed Integer Programming, but they do not
generalize to query-level refinements or aggregate constraints, particularly in settings
where modifying the data is infeasible or undesirable.

In the space of query refinement, existing work largely falls into two categories: (1)
refinement for non-aggregate constraints, such as including/excluding specific tuples or
controlling result size (Tran and Chan, 2010; Islam et al., 2013a; Mottin et al., 2014b;
Muslea, 2004; Mottin et al., 2016b), and (2) refinement for aggregate constraints,
typically involving functions like COUNT or SUM over the entire result set (Mishra et al.,
2008; Vartak et al., 2016; Albarrak and Sharaf, 2017). While several of these
approaches such as ACQUIRE (Vartak et al., 2016) and EAGER (Albarrak and
Sharaf, 2017) incorporate query similarity and pruning techniques based on
monotonicity, they are not suitable for non-monotonic arithmetic expressions over
aggregate constraints. Many rely on cardinality estimations, require iterative user
feedback, or support only limited forms of aggregation.

More recently, query refinement under group-level aggregate constraints has been
explored in fairness and diversity settings (Shetiya et al., 2022; Li et al., 2023;
Campbell et al., 2024). These frameworks demonstrate the feasibility of refining
queries to satisfy constraints over protected groups. However, they are typically
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limited to COUNT-based constraints, rely on monotonic behaviour for pruning the search
space, or are designed specifically for top-k ranking queries.

In summary, current QR techniques do not adequately support the kinds of
non-monotonic arithmetic expressions over aggregate constraints considered in this
thesis. This gap motivates the development of a new query refinement framework
capable of: (1) handling arithmetic expressions over standard aggregates; (2)
supporting non-monotonic constraints; and (3) preserving similarity to the user’s
original query. The remainder of this thesis builds on this foundation to introduce and
evaluate such a framework.
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Chapter 3

Methodology

This work is the first to propose a query repair approach for handling non-monotone
constraints, marking a novel direction in the field of query repair. Accordingly, the
primary objective is to develop effective approaches to tackle this problem.

The research questions guiding this thesis are:

• RQ1: How can the shape of an instance of a dataset be leveraged to develop a
more efficient approach for query repair under non-monotone aggregate constraints?

Objective: To reduce per-tuple predicate evaluations and eliminate redundant
aggregation computations.
Contribution: A concise description of the contribution to this question appears
in Sections 3.1, 3.2, and 3.3; a more detailed description is provided in Chapter 4
and Chapter 5.

• RQ2: What pruning strategies can be designed to reduce the search space of
candidate repairs in query repair under non-monotone aggregate constraints?

Objective: Minimize exhaustive evaluation of every repair candidate by early
elimination of repair candidate sets that cannot satisfy the aggregate constraint.
Contribution: A concise description of the contribution to this question appears
in Section 3.4; a more detailed description is provided in Chapter 6.

This dissertation adopts the classic system development methodology
of (Nunamaker Jr et al., 1990): defining the problem (Section 3.1), developing,
designing, and building repair algorithms (Sections 3.2–3.4), and empirically evaluating
them (Section 3.5). A review of existing query repair techniques reveals a common
pattern that aligns with this approach: first formalize the repair problem, then design
and build algorithms, and finally evaluate them. In this dissertation, that same
sequence is followed: problem definition, prototype implementation, and evaluation,
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treating the proposed algorithms as a prototype system rather than a production-grade
tool.

3.1 Formalizing the Problem

This thesis begins by formalizing the aggregate constraint repair problem, which aims
to modify the constants of the selection conditions of a user query similar
to (Kalashnikov et al., 2018; Mishra and Koudas, 2009), so that its result satisfies a
user-defined aggregate constraint. The focus is on a class of Select-Project-Join (SPJ)
queries where the selection predicate is a conjunction of attribute comparisons.
Aggregate constraints are defined as comparisons between a threshold and an
arithmetic expression over the results of aggregation queries. A distinction is made
between monotone and non-monotone constraints, noting that non-monotonicity poses
significant computational challenges. Many existing query refinement and relaxation
techniques rely on monotonicity to optimize the search process by pruning
unpromising candidates without exhaustively exploring the entire repair space of repair
candidates (Wu and Madden, 2013; Bruno et al., 2006; Li et al., 2023). However, these
optimizations are not applicable to the problem in this work, as general non-monotone
constraints are considered that cannot benefit from such assumptions. A definition of a
distance metric over query predicates is introduced to rank repair candidates in order
to preserve the original semantics of the user’s query as much as possible. The repair
problem is formulated as finding the top-k closest query repairs that satisfy the
constraint. It is shown that the search space of repair candidates grows exponentially
with the number of query predicates, and that the query repair problem considered in
this work is NP-hard in general (Bruno et al., 2006), highlighting the need for efficient
algorithms. Further details about the problem definition are provided in Chapter 4.

3.2 Creating and Implementing the Brute Force (BF) Ap-
proach

To establish a reliable baseline for evaluating the proposed query repair algorithms, a
comprehensive Brute Force (BF) approach is implemented. This exhaustive method
explores the entire search space of possible query repairs, sorted according to the
distance metric defined in Section 4.4, by enumerating all possible constant
modifications for selection predicates. Each candidate repair is then evaluated by
applying the modified predicates to every tuple in the complete dataset (per-tuple
evaluation) to determine the set of satisfying tuples. Then, computing the required
aggregate values over those tuples and substituting those values into the arithmetic
expression of the given constraint. After that, checking whether the resulting
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expression satisfies the constraint. Valid repairs are collected until k satisfying repair
candidates have been found, at which point the process terminates.

The implementation of this Brute Force (BF) algorithm serves a critical purpose in the
research methodology by providing a complete enumeration of all possible repairs
within the defined search space, thereby establishing ground truth for evaluating the
performance of more efficient approaches similar to (Albarrak, 2018; Li et al., 2023).
While the BF algorithm is valuable for validation, it is not practical for real-world
scenarios: the number of repair candidate queries grows exponentially with both the
number of selection predicates and the range of possible constant values, making
exhaustive evaluation computationally infeasible. In particular, evaluating each
refinement individually by applying its selection condition over all tuples incurs
significant runtime overhead. To overcome these challenges, the Full Cluster Filtering
(FF) strategy is proposed, substantially reducing the search space by leveraging data
partitioning and reusing precomputed aggregates.

3.3 Creating and Implementing the Approach that Parti-
tions the Input Data

A key insight behind the Full Cluster Filtering (FF) approach is the observation that
many candidate repairs are structurally similar, which differ only slightly in the
constants used in selection predicates, and therefore often operate over overlapping
subsets of the data. This redundancy suggests that aggregation constraints can be
evaluated more efficiently by reasoning over clusters of data rather than individual
tuples. To exploit this, FF organizes the input dataset into hierarchical partitions.
This grouping avoids the redundant tuple-by-tuple evaluations required by Brute Force
(BF) approach.

Full Cluster Filtering (FF) begins by partitioning the input dataset into disjoint
clusters based on the attributes appearing in the original selection predicates. For each
cluster, it materializes both the minimum and maximum values of each predicate
attribute and the results of all aggregate functions required by the user-defined
constraint. When a repair candidate is generated by modifying the constants in the
selection predicates, Full Cluster Filtering (FF) first performs a per-cluster predicate
evaluation by comparing the repaired predicate against each cluster’s attribute bounds
to determine which clusters may contain satisfying tuples. For those qualifying
clusters, the algorithm retrieves the precomputed aggregate values and combines them
across clusters to obtain the candidate’s overall aggregate results. These aggregated
values are then substituted into the arithmetic expression defined by the constraint. If
the expression is satisfied, the repair candidate is added to the set of valid repairs. The
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process repeats by generating and evaluating candidates until the top-k repairs (ranked
by distance) have been identified, at which point the algorithm terminates.

The main advantage of this algorithm over the brute force approach is that it can
reuse the aggregate query results materialized for a cluster if all tuples in the cluster
fulfil the condition of the repair candidate and can skip any clusters that do not
contain any tuples fulfilling the conditions. Further details about Full Cluster Filtering
(FF) approach are provided in Chapter 5.

3.4 Creating and Implementing the Approach that Re-
duces the Search Space of Possible Candidates

While algorithm Full Cluster Filtering (FF) reduces the effort needed to evaluate
aggregation constraints for repair candidates, it has the drawback that still have to
evaluate each repair candidate individually. A key insight behind the Cluster Range
Pruning (RP) approach is that many repair candidates differ only slightly and can be
grouped into ranges that behave similarly with respect to the constraint. This
observation enables reasoning over sets of candidates rather than individual ones. By
structuring the search space as intervals and computing bounds over those intervals,
RP can prune or accept entire candidate ranges without explicitly evaluating each one.

Cluster Range Pruning (RP) extends the Full Cluster Filtering (FF) approach by
reasoning about intervals of candidate repairs rather than evaluating them
individually. The algorithm begins by representing the search space as a collection of
intervals over the constants in the selection predicates, where each interval
encompasses multiple similar repair candidates. These intervals are sorted based on
their similarity to the original user query. For each candidate interval, the algorithm
leverages the attribute bounds stored in each cluster of the hierarchical partitions to
determine whether all, none, or some tuples in that cluster satisfy the predicate
conditions. These clusters are categorized accordingly: full-cover clusters include their
materialized aggregate results directly, no-cover clusters are skipped, and partial-cover
clusters require recursive exploration of their sub-clusters (if any) or are handled as is
if they are leaf nodes. Once the relevant clusters for an interval are identified, the
algorithm merges aggregate results from full and partial clusters to compute bounds on
each aggregate function. These are substituted into the arithmetic constraint
expression to derive an overall bound, allowing the algorithm to decide whether all,
some, or none of the repair candidates in the interval satisfy the constraint. If the
interval is guaranteed to satisfy the constraint, it is accepted in full; if it is guaranteed
to fail, it is pruned entirely; otherwise, it is recursively split into smaller intervals for
finer-grained evaluation. Candidate intervals are processed in order of distance from
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Table 3.1: Queries for Experimentation

SELECT * FROM Healthcare
Q1 WHERE income >= 200K AND num_children >= 3 AND county <= 3
Q2 WHERE income <= 100K AND complications >= 5 AND num_children >= 4
Q3 WHERE income >= 300K AND complications >= 5 AND county == 1

SELECT * FROM ACSIncome
Q4 WHERE working_hours >= 40 AND Educational_attainment >= 19 AND Class_of_worker >= 3
Q5 WHERE working_hours <= 40 AND Educational_attainment <= 19 AND Class_of_worker <= 4
Q6 WHERE Age >= 35 AND Class_of_worker >= 2 AND Educational_attainment <= 15

Q7

SELECT *
FROM part, supplier, partsupp, nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND p_size >= 10
AND p_type IN (’LARGE BRUSHED’)
AND r_name IN (’EUROPE’)

Table 3.2: Constraints for Experimentation

ID Constraint

ω1
count(race = 1∧ label = 1)

count(race = 1) − count(race = 2∧ label = 1)
count(race = 2) ∈ [Bl, Bu]

ω2
count(ageGroup = 1∧ label = 1)

count(ageGroup = 1) − count(ageGroup = 2∧ label = 1)
count(ageGroup = 2) ∈ [Bl, Bu]

ω3
count(sex = 1∧PINCP ≥ 20k)

count(sex = 1) − count(sex = 2∧PINCP ≥ 20k)

count(sex = 2) ∈ [Bl, Bu]

ω4
count(race = 1∧PINCP ≥ 15k)

count(race = 1) − count(race = 2∧PINCP ≥ 15k)

count(race = 2) ∈ [Bl, Bu]

ω5

∑︁
RevenueProductsSelectedFromUK∑︁

RevenueSelectedProducts
∈ [Bl, Bu]

Ω6 ω61 := count(race = race1) ≤ Bu1

ω62 := count(age = group1) ≤ Bu2

Ω7 ω71 := count(race = race1) ≤ Bu1

ω72 := count(age = group1) ≤ Bu2

ω73 := count(age = group3) ≤ Bu3

Ω8 ω81 := count(Sex = Female) ≤ Bu1

ω82 := count(Race = Black) ≤ Bu2

ω83 := count(Marital = Divorced) ≤ Bu3

the original query, and satisfying candidates are extracted until k valid repairs are
identified, at which point the algorithm terminates.

The advantage of this approach is that it often enables to prune sets of repair
candidates or confirm all of them to be repairs without individually evaluating them.
Further details about Cluster Range Pruning (RP) approach are provided in Chapter 6.
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3.5 Experimental Setup

This section presents the experimental setup and evaluation methodology for the
proposed query repair approaches. Performance is assessed across different datasets,
queries, and constraints. The selected datasets, queries and constraints are chosen to
be representative of the types of queries and constraints that arise in real-world
senarios of query repair. The description begins with details on datasets, queries,
constraints, metrics, and parameter settings, followed by an outline of the evaluation
methodology.

To ensure a comprehensive evaluation, two real-world datasets and the TPC-H
benchmark dataset are used. A set of queries and constraints are defined, and key
experimental parameters are carefully configured. This setup enables a study of
algorithms behaviour under varied data, queries, and constraints.

Datasets. Two real-world datasets, ACSIncome (Friedler et al., 2019) and
Healthcare (Grafberger et al., 2021), each of size 50 K, are chosen because they are
widely used in the fairness literature and provide realistic, heterogeneous data for
evaluating fairness-aware query repair.

The ACSIncome dataset (Adult Census Income) is a dataset that comprises data
about individuals from the 1994 United States Census (Friedler et al., 2019). It
contains 14 attributes describing demographic and employment characteristics such as
age, gender, race, education, working hours, occupation, and income level. This
dataset is commonly used to assess bias in socioeconomic decision-making and serves
as a representative example of fairness critical applications where selection conditions
can reflect real hiring or income-related disparities.

The Healthcare dataset simulates medical decision-making scenarios with features such
as income, number of children, county, and health complications, allowing the
evaluation of fairness and robustness in prescreening queries applied to healthcare
contexts. These two datasets collectively capture distinct fairness domains,
socioeconomic decision making and healthcare screening, making them suitable and
representative benchmarks for evaluating fairness query repair.

Additionally, the standard benchmark TPC-H 1 is used with dataset sizes varying from
25 K to 500 K. Unlike the fairness-focused datasets, TPC-H models business and
supply-chain data involving parts, suppliers, and nations, and is used to test aggregate
constraints (e.g., revenue bounds) rather than demographic fairness. This dataset is
included to demonstrate that the proposed query repair is not limited to fairness
scenarios but can be generalised to other domains, such as business analytics and

1https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
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supply-chain optimisation. All categorical columns are converted to numeric values, as
the algorithms are designed for numerical data.

Queries. Table 3.1 shows the queries used in the experiments. For Healthcare, queries
Q1 and Q2 from (Li et al., 2023) are included, along with a newly defined query Q3.
For ACSIncome, query Q4 from (Li et al., 2023) is included, along with newly defined
queries Q5 and Q6. Query Q7 is generated with three predicates inspired by TPC-H’s
Q2.

Each query represents a different real-world scenario to evaluate how fairness query
repair behaves under various selection conditions. For the Healthcare dataset, Q1–Q3

simulate a medical screening process that filters patients based on income, number of
children, complications, and county. The goal is to test whether fairness constraints
can correct potential biases that arise when selection criteria favour certain
demographic groups (e.g., race or age group). For the ACSIncome dataset, Q4–Q6

emulate employment-related filters using census data, selecting individuals based on
working hours, educational attainment, and class of worker. These queries allow us to
study how fairness constraints affect inclusion of under-represented socioeconomic
groups. Finally, the TPC-H-based query Q7 models a supply-chain selection scenario
that joins the part, supplier, partsupp, nation, and region tables to retrieve products
meeting certain conditions such as part size, type, and supplier region (e.g., ‘LARGE
BRUSHED‘ parts supplied from ‘EUROPE‘). This query reflects a typical industrial
use case where the objective is to control or limit the proportion of revenue sourced
from specific regions, thereby minimizing the impact of supply chain disruptions.

Constraints. For Healthcare and ACSIncome, the SPD between two demographic
groups is enforced to be within a certain bound. Table 3.2 shows the details of the
constraints used. In some experiments, the lower and upper bounds Bl and Bu of a
constraint are varied to control where in the search space the valid repairs appear,
ranging from those close to the original query to those farther away. To denote a
specific variant of a constraint ωi used in these experiments, the notation ωd=p

i is used,
where the superscript indicates that the bounds have been set such that the top-k
repairs appear within the first p% of all repair candidates ordered by their distance
from the original user query. In other words, an algorithm that explores the individual
repair candidates in this order would have to examine the first p% of the candidate
search space to find the top-k repairs. For ACSIncome, the groups for SPD are
determined based on gender and race. For Healthcare, demographic groups are
determined based on race and age group. For TPC-H, the constraint ω5 is enforced as
described in Example 1.2 to minimize the impact of supply change disruption, where
the company wants only a certain amount of expected revenue to be from countries
with import/export issues. Ω is used to denote a set of aggregate constraints. Ω6

through Ω8 are sets of cardinality constraints for comparison with Erica. While repair
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methods are presented for single aggregate constraint, the methods can be trivially
extended to find repairs for a set of constraints, i.e., the repair fulfils ⋀︁ω∈Ω ω.

Each constraint type corresponds to a specific fairness or balance requirement applied
to the query results. Constraints ω1–ω4 enforce SPD bounds that ensure differences in
positive outcomes (e.g., selected records) between demographic groups such as race,
gender, or age remain within the tolerance interval [Bl, Bu]. Constraint ω5 imposes a
business-oriented aggregate condition that limits the proportion of revenue attributed
to suppliers from certain regions, ensuring diversity in supply sources. Constraints
Ω6–Ω8 define sets of cardinality constraints that bound the number of tuples
associated with specific demographic attributes (e.g., sex, race, marital status),
providing a way to compare fairness repair results with systems like Erica.

Metrics. The following measures are used:

• Execution Time (s): Total time to produce the top-k repairs.

• Candidates Evaluated (NCE): This metric counts how many repair candidates
the algorithm checks before finding the top-k valid ones. A repair candidate is a
modified version of the original query where one or more of the selection conditions
have been modified. To evaluate a candidate, the algorithm runs the modified
query, calculates the relevant aggregate values, and checks whether the result
satisfies the user-defined constraint. If it does, the candidate is accepted as a valid
repair; if not, it is discarded.

• Clusters Accessed (NCA): This metric measures how many clusters of data the
algorithm needs to access in order to find the top-k repairs. This metric provides
insight into the level of data access required by each approach. In Brute Force (BF),
every candidate is evaluated by scanning each tuple in the dataset individually (the
NCA counts the number of tuples accesses). In contrast, Full Cluster Filtering (FF)
leverages precomputed aggregates over data clusters to evaluate candidate repairs
at the cluster level. Cluster Range Pruning (RP) further optimizes this by
evaluating entire intervals of candidate repairs to reuse the same clusters for
multiple candidates or prune them altogether.

Parameters. There are three key tuning parameters that could impact the
performance of the proposed methods. Recall that the kd-tree is used to perform the
clustering as described in Section 5.1. Two tuning parameters are used for the tree:

• Branching Factor: Each node has B children.

• Bucket Size: Parameter S determines the minimum number of tuples in a cluster.
Nodes with less than or equal to S tuples are not split. When one of the proposed
algorithms reaches such a leaf node, the computations on each tuple in the cluster
are just evaluated, e.g., to determine which tuples fulfill a condition.
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Also, k is controlled, which is the number of repairs returned by the proposed
methods. The default setting for these parameters is as follows: B = 5, k = 7, and
S = 15. The default dataset size is 50K tuples. The choice of B and S depend on the
data and query. Intuitively, setting S too small results in a deep tree with many leaf
clusters which will increasing overhead and setting it too large will reduces pruning
effectiveness due to overly large clusters. Similarly, a very large B scatters data across
many children, limiting subtree pruning, while a very small value leads to deep trees
with limited branching. The values chosen for the default settings represent moderate
configurations suitable for a wide range of datasets.

All algorithms are implemented in Python, and the experiments are conducted on a
machine with 2 x 3.3Ghz AMD Opteron CPUs (12 cores) and 128GB RAM. Each
experiment is repeated five times and report the median runtime as the variance is low
(∼ 3%).

3.6 Experiments

This section is presented to understand RQ1 and RQ2. It begins by comparing the
performance of the proposed methods, Full Cluster Filtering (FF) and Cluster Range
Pruning (RP), against the exhaustive Brute Force (BF) Section 3.7 as well as against
each other Section 3.8. It then examines the impact of key parameters such as data
size, clustering structure (branching factor and bucket size), exploration distance, and
the top-k value on the performance of the proposed repair methods Section 3.9.
Finally, it compares the proposed approaches with the most relevant prior technique,
Erica (Li et al., 2023).

3.7 Comparison with Brute Force (BF)

This evaluation provides a concrete evaluation of how much computational efficiency is
gained by moving from a Brute Force (BF) approach to more optimized repair
strategies. Since BF explores the entire search space exhaustively, it offers a reliable
ground truth for validating the proposed methods. Also, it helps to quantify the
benefits of data partitioning and range-based pruning in optimizing query repair under
non-monotonic constraints.

Section 7.1 first compares the proposed methods, Full Cluster Filtering (FF) and
Cluster Range Pruning (RP), with the exhaustive Brute Force (BF) method using the
Healthcare, queries Q1 and Q2, the constraint ω1 and default settings in Section 3.5.
The full results and detailed discussion appear in Section 7.1.
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3.8 Performance of Full Cluster Filtering (FF) and Cluster
Range Pruning (RP)

This section presents experiments measuring the performance of Full Cluster Filtering
(FF) and Cluster Range Pruning (RP) to assess how the optimized algorithm Cluster
Range Pruning (RP) effectively reduce computational overhead by reasoning over
repair candidate intervals. It uses the Healthcare and ACSIncome datasets with
queries in Table 3.1, constraints in Table 3.2, and default settings in Section 3.5. For
the Healthcare, the constraints ω1 and ω2 are used while ω3 and ω4 are considered for
the ACSIncome. In addition to runtime, number of candidates evaluated (NCE) is also
measured which is the total of number of repair candidates for which the aggregate
constraint is evaluated, and number of clusters accessed (NCA) which is the total
number of clusters accessed by an algorithm. The full results and detailed discussion
appear in Section 7.1.

3.9 Performance-Impacting Factors

To gain deeper insights into the behaviour observed in Section 7.1, Section 7.2
investigates the relationship between the exploration distance (ED) and performance.
In addition, performance for Full Cluster Filtering (FF) and Cluster Range Pruning
(RP) is evaluated with respect to the parameters defined in Section 3.5 (Bucket Size,
Branching Factor, and Top-k) using the Healthcare, ACSIncome, and TPC-H datasets.
Section 7.2 examines the impact of varying these key parameters to understand how
sensitive the proposed algorithms are to different configuration settings and to identify
performance trade-offs.

3.9.1 Exploration distance ED:

The intuition behind this experiment is to assess the effectiveness of the proposed
algorithms under varying exploration distances. Specifically, it evaluates how well the
methods perform when the top-k repairs are located near the beginning of the search
space (i.e., highly similar to the original query) versus when they are distributed
further away (i.e., less similar). This distinction is important because Cluster Range
Pruning (RP), which reasons about intervals of repair candidates, may incur additional
overhead when top-k repairs are concentrated near the start, requiring recursive
subdivision of broad candidate ranges. In contrast, it is expected to perform more
efficiently when the top-k are located deeper in the search space, as its candidate
interval reasoning can prune large ranges of irrelevant candidates. In contrast, Full
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Cluster Filtering (FF) evaluates candidates individually but can access promising
repairs directly when repairs are near the original query.

Exploration distance (ED) is the fraction of the search space that must be explored
before locating the top-k repairs. Queries Q1–Q3 and the constraint ω1 are used on
Healthcare, while queries Q4–Q6 and the constraint ω3 are used on ACSIncome, with
bounds varied to control the ED. The full results and detailed discussion appear
in Section 7.2.

3.9.2 Bucket Size S:

This experiment is varying the bucket size S. The reasoning behind this is to examine
how the granularity of data grouping affects the performance of the proposed methods.
A smaller S results in finer-grained clusters. In contrast, a larger S produces coarser
clusters.

S is defined in Section 3.5, the bucket size S is varied for Q1 with ω1 using (bounds
[0.44, 0.5]) on the Healthcare dataset and Q4 with ω3 using (bounds [0.34, 0.39]) on the
ACSIncome dataset. The bucket size ranges from 5 to 2,500. Using the default
branching factor B of 5, the structure of the kd-tree for this evaluation is as follows:

• Level 1: 5 clusters, each with 10,000 data points;

• Level 2: 25 clusters, each with 2,000 data points;

• Level 3: 125 clusters, each with 400 data points;

• Level 4: 625 clusters, each with 80 data points;

• Level 5: 3,125 clusters, each with 16 data points;

• Level 6: 15,625 clusters, each with 3 or 4 data points.

Note that the algorithms will generate kd-tree up to the level where the capacity of
each cluster at that level is less than or equal to S. For example, for S = 200, the tree
will have 4 levels. The full results and detailed discussion appear in Section 7.2.

3.9.3 Branching Factor B:

This experiment is varying the branching factor B. The intuition behind this is to
investigate how the structure of the clustering tree, controlled by the branching factor
B, influences the performance of the proposed methods. A smaller B results in a
deeper tree with fewer branches at each level. In contrast, a larger B produces a
shallower tree with many clusters at each level.
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B is defined in Section 3.5, the relationship between the branching factor B and the
runtime of Full Cluster Filtering (FF) and Cluster Range Pruning (RP) are examined.
The same queries, constraints, bounds, and datasets from the previous evaluation are
used. In this experiment, the branching factor is varied from 5 to 30. The
corresponding number of leaf nodes in the kd-tree is shown in Table 7.1. Using the
default bucket size S = 15, the branching factor affects the depth of the tree. The full
results and detailed discussion appear in Section 7.2.

Table 3.3: Branching Configuration and Data Distribution

# of Branches # of Leaves # of Branches # of Leaves
5 15625 20 8000
10 10000 25 15625
15 3375 30 27000

3.9.4 Top-k:

This experiment is varying the the number of repairs k returned by the methods. The
intuition behind this is to assess how the computational overhead of the proposed
algorithms scales with increasing user demand. As k increases, the algorithms are
required to explore a larger portion of the search space to retrieve additional valid
repairs.

The relationship between k and the runtime of Full Cluster Filtering (FF) and Cluster
Range Pruning (RP) is examined using the same queries, constraints, bounds, and
datasets from the previous evaluation. In this experiment, the parameter k is varied
from 1 to 15. The full results and detailed discussion appear in Section 7.2.

3.9.5 Dataset scale:

The experiment is conducted to assess how the performance of the proposed
algorithms scales with increasing data size.

The TPC-H dataset is used with sizes varying from 25 K to 500 K. For each size, the
runtime, number of candidates evaluated (NCE), and number of clusters accessed
(NCA) are measured using query Q7 from Table 3.1 and constraint ω5 from Table 3.2.
Default settings for all parameters are applied (Section 3.5). The full results and
detailed discussion appear in Section 7.2.
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3.10 Comparison with Related Work

The proposed approaches are compared with Erica (Li et al., 2023), which solves the
related problem of finding all minimal refinements of a given query that satisfy a set of
cardinality constraints for groups within the result set. Such constraints are special
cases on the aggregate constraints supported in this work. Erica returns all repairs
that are not dominated by any other repair where a repair dominates another repair if
it is at least as close to the user query for every condition θi and strictly closer in at
least one condition. That is, Erica returns the skyline (Borzsony et al., 2001). Thus,
different from the proposed approach, the number of returned repairs is not an input
parameter in Erica. For a fair comparison, the minimal repairs are determined, and
then k is set such that the proposed methods return a superset of the repairs returned
by Erica. To conduct the evaluation for Erica, the available Python implementation is
used (https://github.com/JinyangLi01/Query_refinement). 2 The queries,
constraints, and the dataset from (Li et al., 2023) are adopted. Generated refinements
and runtime of the proposed techniques are compared with Erica using Q1 and Q2

(Table 3.1) on the Healthcare dataset (size 50K) with constraints Ω6 and Ω7

(Table 3.2), respectively. The full results and detailed discussion appear in Section 7.3.

3.11 Summary

This thesis addresses the challenge of ensuring that SQL query results meet complex
real-world constraints, such as fairness, representativeness, and compliance, which are
increasingly important in decision making. These constraints often reflect broader
organizational objectives and are especially relevant in domains such as healthcare,
finance, education, and public policy, where data processes must adhere to ethical
standards and societal expectations. Although analysts and data professionals can
formulate queries to extract relevant data, standard SQL predicates are not designed
to express such constraints over the structure or distribution of the result set. For
example, a machine learning engineer may require a training dataset that is both
demographically balanced and representative, or a policymaker may need data
summaries that reflect equitable outcomes across regions or groups. These goals go
beyond simple filtering conditions and constraints and require careful adjustments to
query predicates to align output with more expressive constraints. This chapter
outlines the methodology for developing and evaluating techniques to modify SQL
queries so that their results satisfy complex constraints, while preserving the user’s
original intent as closely as possible.

2To achieve a fairer comparison of algorithms regarding the evaluation of constraints, the code is
modified because this component is implemented in pure Python, whereas Erica used Pandas DataFrame
operations implemented in C. A full implementation in a lower-level language such as C++ is left for
future work.

https://github.com/JinyangLi01/Query_refinement
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Chapter 4 defines the aggregate constraint repair problem considered in this thesis
formally, including user queries, aggregate constraints, and the concept of repair
distance. Chapter 5 presents the Full Cluster Filtering (FF) algorithm, which clusters
the data and evaluates repair candidates using aggregate bounds. Chapter 6 extends
Full Cluster Filtering (FF) by introducing interval-based representations of repair
candidates to allow more efficient pruning of the search space. Chapter 7 provides an
experimental evaluation that tests the proposed algorithms on multiple queries,
constraints and datasets. Finally, Chapter 8 summarizes the thesis contributions,
discusses the proposed techniques, and outlines directions for future work.
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Chapter 4

Problem Definition

This chapter defines the core components of the query repair problem studied in this
thesis. It begins by introducing the structure of the user query and the types of
aggregate constraints considered, since formalizing these elements is the first step
toward developing an efficient query repair approach. Next, it formalizes the notion of
query repair as modifying selection predicate constants to satisfy these constraints, and
defines a distance metric to rank candidate repairs. Finally, it describes the size and
complexity of the repair search space and establishes the problem’s computational
hardness.

In this work, a dataset D = R1, · · · , Rz consisting of one or more relations Ri is
considered.

4.1 User Query

The class of select-project-join (SPJ) is considered as a user query Q, i.e., relational
algebra expressions of the form:

πA(σθ(R1 ▷◁ . . . ▷◁ Rl))

This expression represents a database query operation. It means that a set of relations
(from R1 to Rl) are first joined together using the join operation (▷◁). Then, a filter is
applied using certain conditions (θ), represented by the selection operator (σθ).
Finally, only specific columns (A) are kept from the result, which is done using the
projection operator (πA).

The selection predicate θ of such a query is assumed as a conjunction of comparisons of
the form ai op ci. For numerical attributes ai, op ∈ {<, >,≤,≥,=, ̸=} are allowed and
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for categorical attributes ai, op ∈ {=, ̸=} are only allowed. Q(D) is used to denote the
result of evaluating Q over D.

4.2 Aggregate Constraints (AC)

The user specifies requirements on the result of their query as an aggregate constraint
AC. An AC is a comparison between a threshold and an arithmetic expression over the
result of filter-aggregation queries. Such queries are of the form:

γf (a)(σθ(Q(D))

In this expression, the outer operator γf (a) represents an aggregate function f applied
to an attribute a. The input to this aggregation is given by σθ(Q(D)), where σθ is a
selection operator that filters the results of the base query Q(D) (e.g., a condition like
"age ≥ 30").

Where f is an aggregate function – one of count, sum, min, max, avg – and θ is a
selection condition. Qω is used to denote such a filter-aggregation query. These queries
are evaluated over the user query’s result Q(D). An aggregate constraint ω is of the
form:

ω := τ op Φ(Qω
1 , . . . , Qω

n).

Here, Φ is an arithmetic expression using operators (+,−, ∗, /) over {Qω
i }, op is a

comparison operator, and τ is a threshold.

The aggregate constraints considered in this work are not monotone in general. An
aggregate function f is monotonically increasing (decreasing), if f(S1) ≤ f(S2) when
S1 ⊆ S2 (if f(S1) ≥ f(S2) when S1 ⊇ S2) for any two bags of values S1 and S2. Many
query refinement and relaxation techniques (Li et al., 2023) exploit monotonicity to
optimize search as relaxing (refining) a query Q’s selection conditions is bound to
increase (decrease) f(Q(D)) if f is monotone, e.g., by pruning unpromising candidates
to find a refined query without enumerating all candidates in the search space (Wu and
Madden, 2013; Bruno et al., 2006; Li et al., 2023). A constraint ω := τ op Φ may be
non-monotone if

• It contains a non-monotone arithmetic operator like division or subtraction.

• It uses a non-monotone aggregation function, e.g., sum over the integers Z.

• It uses both monotonically increasing and monotonically decreasing aggregation
functions, e.g., min + count or max + min.
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4.3 Query Repair

Given a user query Q, database D, and aggregate constraint ω that is violated on
Q(D), this work wants to generate a repaired version Qfix of Q such that Qfix(D)

fulfills ω. In this work, repairs are restricted to changes of the selection condition θ of
Q. Recall that Q is an SPJ query with a conjunctive selection condition. That is, the
user query condition is of the form:

θ = θ1 ∧ . . .∧ θm

The symbol ∧ represents a logical AND, meaning that all individual conditions
θ1, θ2, . . . , θm must be satisfied simultaneously for a tuple to be included in the query
result. Each θi is a comparison of the form ai op ci.

A repair candidate is a query Qfix that differs from Q only in the constants used in
selection conditions, i.e., Qfix uses a condition:

θ′ = θ1
′ ∧ . . .∧ θm

′

Where θi
′ is a condition ai op ci

′. A repair candidate is called a repair if

Qfix(D) |= ω.

In this expression, Qfix(D) denotes the result set returned by the repaired query Qfix

when evaluated over the database D. The symbol |= indicates logical satisfaction,
meaning that the result set of Qfix satisfies the aggregate constraint ω.

4.4 Repair Distance

Ideally, this work would want to achieve a repair that minimizes the changes to the
user’s original query. Many different optimization criteria are reasonable and which
criteria is the most important will depend on the application. This work focuses on
minimizing changes to the user’s query. It defines a distance metric between repair
candidates based on their selection conditions. Consider the user query Q with
selection condition θ1 ∧ . . .∧ θm and repair Qfix with selection condition θ1

′ ∧ . . .∧ θm
′.

Then the distance d(Q, Qfix) is defined as:

d(Q, Qfix) =
m∑︂

i=1
d(θi, θi

′)
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where the distance between two predicates θi = ai op ci and θi
′ = ai op ci

′ for numeric
attributes ai is:

|ci
′ − ci|
|ci|

For categorical attributes, the distance is 1 if ci ̸= ci
′ and 0 otherwise.

Example 4.1. For the use case in Example 1.1, the repair candidate with conditions
Major = EE, Testscore ≥ 33, and GPA ≥ 3.9 is more similar to the user query than
the candidate with conditions Major = EE, Testscore ≥ 37, and GPA ≥ 3.85 based on
the distance metric considered in this work. For the first candidate, the distance is
1 + 33−33

33 + 3.9−3.8
3.8 = 1.026 while for the second candidate it is 1.134.

The distance metric adopted here based on relative differences for numerical attributes
and discrete mismatches for categorical attributes which is commonly used because it
is simple, intuitive, and computationally efficient. Its main strength is that it captures
proportional changes in numeric conditions and provides a clear binary distinction for
categorical mismatches, which makes it easy to interpret and compare across repairs.
However, this formulation also has limitations. For example, it treats all categorical
mismatches as equally distant, regardless of semantic similarity, and it normalizes
numeric differences relative to the original constant, which may overemphasize small
denominators.

It is important to note that this metric was chosen primarily for convenience and
clarity in this work, rather than because it is optimal in all settings. The framework
developed here is general and could incorporate alternative distance metrics tailored to
different use cases, for example, semantic similarity measures for categorical attributes
or weighted distances to prioritize more important conditions. In practical
deployments, the choice of distance metric would depend on the domain and the
priorities of the application (e.g., minimizing semantic drift versus minimizing
numerical deviation).

The problem studied in this work is now ready to formulate, computing the k repairs
with the smallest distance to the user query.

Aggregate constraint repair problem:

• Input: user query Q, database D, constraint ω, threshold k

• Output: The set of topkQfix
repairs {Q1

fix, . . . , Qk
fix} satisfying

ω and having the k smallest distances d(Q, Qi
fix) .

This work focuses on general solutions that also work for non-monotone constraints as
they are more challenging. In a practical solution, the system may first detect if a
constraint is monotone and then apply existing optimizations (Li et al., 2023) if it is.



4.5. Search Space 57

4.5 Search Space

To generate a repair Qfix of Q, this work must explores the search space of possible
candidate repairs. Consider a query with a conjunction of conditions of the form
ai opi ci for i ∈ [1, m]. Let Ni denote the number of values in the active domain of ai.
Each candidate repair corresponds to choosing constants [c′

1, . . . , c′
m]. This work will

use c⃗ = [c′
1, . . . , c′

m] to denote a repair and use Qfix to denote the set of all candidate
repairs. The number of candidate repairs depends on which comparison operators are
used, e.g., for ≤ there are at most Ni + 1 possible values that lead to a different result
in terms of which of the input tuples will fulfill the condition. To see why this is the
case assume that the values in ai sorted based on ≤ are a1, . . . , ap. Then for any
constant c, the condition ai ≤ c includes tuples with values in {ai | ai ≤ c} and this
filtered set of ai values is always a prefix of a1, . . . , ap. Thus, there are Ni + 1 = p + 1
for choosing the length of this sequence (0 to p). The size of the search space is
O(
∏︁m

i=1 Ni), exponential in m, the number of conditions in the user query.
Unsurprisingly, the aggregate constraint repair problem is NP-hard in the schema size.

4.6 Mapping the Motivating Example to the Formal Model

This section instantiates the fairness-motivating example (Example 1.1) using the
notation and definitions introduced in this chapter.

Database and Schema.

Let D = {R }, where R is a single relation with schema

R(ID, Gender, Major, GPA, TestScore, OfferInterview),

corresponding to the six attributes:

• ID: unique identifier for each applicant;

• Gender G: values in {M,F};

• Major M : e.g., CS, EE, . . . ;

• GPA: numerical grade e.g., 3.5, 4.8, . . . ;

• TestScore TS: numerical e.g., 80, 78, . . . ;

• OfferInterview Y : (binary, 1 for “yes,” 0 for “no”).
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Each tuple t ∈ R has the form

t = (ID, Gender, Major, GPA, TestScore, Y ),

and D is the set of all such tuples.

User Query.

The prescreening query from Example 1.1 is an SPJ query Q over R:

Q(D) = πA

(︂
σθ(R)

)︂
,

where the selection predicate

θ = (Major = CS) ∧ (TestScore ≥ 32) ∧ (GPA ≥ 3.80).

In the formal notation:

θ1 : Major = CS, θ2 : TestScore ≥ 32, θ3 : GPA ≥ 3.80,

and
θ = θ1 ∧ θ2 ∧ θ3.

Here Major is categorical, and TestScore and GPA are numerical, with comparison
operators as allowed in Section 4.1.

Aggregate Constraint.

The fairness requirement is expressed as a statistical parity difference (SPD) constraint
on G (gender) and Y (interview outcome). Define four filter-aggregation queries over
Q(D):

Qω
1 = γcount(Y )

(︂
σG=M ∧ Y =1(Q(D))

)︂
, Qω

2 = γcount(G)

(︂
σG=M(Q(D))

)︂
,

Qω
3 = γcount(Y )

(︂
σG=F ∧ Y =1(Q(D))

)︂
, Qω

4 = γcount(G)

(︂
σG=F(Q(D))

)︂
.

Using these, the SPD expression is:

Φ(Qω
1 , Qω

2 , Qω
3 , Qω

4 ) =
Qω

1
Qω

2
− Qω

3
Qω

4
.

The employer’s requirement SPD ≤ 0.2 becomes the aggregate constraint

ω := 0.2 ≥ Qω
1

Qω
2
− Qω

3
Qω

4
.

Here, Φ is an arithmetic expression using operators (−, /) over {Qω
i }, ≥ is the

comparison operator op, and 0.2 is the threshold τ .
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Since division and subtraction appear, ω is non-monotone in general (see Section 4.2).

Repair Candidates.

A repair candidate Qfix differs from Q only in the constants of θ. Formally, let

θ′
1 : Major = c1, θ′

2 : TestScore ≥ c2, θ′
3 : GPA ≥ c3,

where each ci ranges over the active domain of the corresponding attribute. Then

Qfix(D) = πA

(︂
σθ′(R)

)︂
, θ′ = θ′

1 ∧ θ′
2 ∧ θ′

3.

Any triple (c1, c2, c3) defines a repair candidate. For the categorical attribute Major,
possible c1 include {CS, EE, . . . }. For numerical attributes TestScore and GPA, c2 and
c3 range over values present in R.TestScore and R.GPA, respectively.

Distance Metric.

The distance between the original predicate θi and modified predicate θ′
i is defined in

Section 4.4. Concretely:

d(θ1, θ′
1) =

⎧⎨⎩0, c1 = CS,

1, c1 ̸= CS,
d(θ2, θ′

2) =
|c2 − 32|

32 , d(θ3, θ′
3) =

|c3 − 3.80|
3.80 .

Thus, the overall distance is

d(Q, Qfix) = d(θ1, θ′
1) + d(θ2, θ′

2) + d(θ3, θ′
3).

Search Space and Complexity.

Let M be the number of distinct Major in attribute M , T S the number of distinct
TestScore values, and GP A the number of distinct GPA values. Then the total number
of repair candidates is

|Qfix| = F × T S × GP A,

which is exponential in the number of conjuncts (three in this example). As shown in
Section 4.5, exploring all candidates is computationally in the worst case, motivating
the efficient algorithms ( FF, RP) developed later.

Summary of Formal Mapping.

In summary, the motivating example is captured by:

• D = {R }, with R(ID, Gender, Major, GPA, TestScore, OfferInterview).

• Original query Q with θ = (Major = CS) ∧ (TestScore ≥ 32) ∧ (GPA ≥ 3.80).
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• Aggregate constraint

ω := 0.2 ≥ count(G = M ∧ Y = 1)
count(G = M)

− count(G = F ∧ Y = 1)
count(G = F)

.

• Repair candidates Qfix vary constants c1, c2, c3 in
{Major = c1, TestScore ≥ c2, GPA ≥ c3}.

• Distance metric d(Q, Qfix) =
∑︁3

i=1 d(θi, θ′
i).

With this formal mapping, the fairness motivating use case becomes an instance of
Aggregate constraint repair problem, and the algorithms in subsequent chapters seek
the top-k repairs of Q that satisfy ω with minimal distance.

4.7 Summary

This chapter formalizes the core components of query repair under non-monotone
aggregate constraints. A user query is modeled as an SPJ expression with a
conjunctive selection predicate (Section 4.1), and aggregate constraints compare a
threshold to an arithmetic expression over filter-aggregation results (Section 4.2).
Repairs are defined as modifications of selection-predicate constants that ensure the
repaired query satisfies the aggregate constraint (Section 4.3), and a distance metric
over predicate constants ranks candidate repairs by their closeness to the original
query (Section 4.4). The repair search space grows exponentially with the number of
predicates, which renders an exhaustive enumeration infeasible (Section 4.5). Finally,
the motivating fairness example is mapped to this formal model, illustrating how a
statistical parity difference constraint on a job-applicant query becomes an instance of
the aggregate constraint repair problem (Section 4.6).
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Chapter 5

The Full Cluster Filtering (FF)
Algorithm

This chapter is addressing (RQ1) How can the shape of an instance of a dataset be
leveraged to develop a more efficient approach for query repair under non-monotone
aggregate constraints? by presenting Full Cluster Filtering (FF), the first proposed
algorithm for the aggregate constraint repair problem that materializes results of each
aggregate-filter query Qω

i for subsets of the input database D and combines these
aggregation results to compute the result of Qω

i for a repair candidate Qfix and then
use it to evaluate the aggregate constraint (AC) ω, for Qfix.

The Full Cluster Filtering (FF) algorithm proceeds generally through three key steps
to efficiently identify query repairs that satisfy a user-defined aggregate constraint:

• Step 1: Partitioning the Space and Materializing Statistics The dataset is
partitioned into clusters organized in a tree structure based on the attributes
appearing in the query’s selection predicates. The rationale is that the selection
conditions of a repair candidate filter data along these attributes. Then, each cluster
is scanned once to record (i) the minimum and maximum values of the selection
attributes, and (ii) precomputed results of relevant aggregate functions. These
statistics allow the algorithm to avoid redundant computation during evaluation.

• Step 2: Searching for Candidate Repairs Repair candidates are generated by
varying the constants in the query’s selection predicates. They are evaluated in
order of increasing distance from the original query. Each candidate is matched
against cluster statistics to decide whether a cluster can be used entirely, skipped,
or further explored.

• Step 3: Evaluating the Constraints and Computing Top-k Repairs For
each valid repair candidate, the algorithm merges aggregate results from satisfying
clusters and substitutes them into the aggregate constraint. This determines
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whether the candidate qualifies as a valid repair. Candidates that satisfy the
constraint are returned in order of increasing distance to the original query. The
algorithm stops when k valid repairs are found.

The following sections describe each of these steps in detail. It begins in Section 5.1
which shows how the input data is partitioned into a kd-tree of clusters and how each
cluster’s filter-aggregate results and attribute bounds are precomputed.
Next, Section 5.2 explains how each repair candidate is mapped to a covering set of
clusters and how the aggregate constraint ω is evaluated. After that, Section 5.3
describes how Top-k candidates are generated and returned. Finally, Section 5.4
provides a concise summary of the chapter.

5.1 Clustering and Materializing Aggregations

For ease of presentation, the algorithm considers a database consisting of a single table
R from now on. However, it can be generalized to queries involving joins by
materializing the join output and treating it as a single table. As repairs only change
the selection conditions of the user query, there is no need to reevaluate joins when
checking repairs. The algorithm uses a K-dimensional tree (kd-tree) to partition R into
subsets (clusters) based on attributes that appear in the selection condition (θ) of the
user query. The rationale is that the selection conditions of a repair candidate filter
data along these attributes.

kd-tree represents a hierarchical space-partitioning data structure that organizes points
in k-dimensional space. Originally formulated by (Bentley, 1975a; Friedman et al.,
1977), kd-tree generalizes binary search tree to accommodate multidimensional data,
which enables efficient retrieval based on multiple attributes simultaneously. The
architecture of a kd-tree begins with a root node encompassing the complete point
space. As the structure develops, each internal node divides the space into number of
distinct branches B (represented as child nodes) along one of the k dimensions. The
splitting dimension typically alternates as one traverses down the tree, cycling through
all dimensions and choosing the mid point. Every node contains a k-dimensional point
along with two pointers that either reference child nodes or contain null values in the
case of leaf nodes. Points with a smaller value in the splitting dimension are directed
to the left subtree, while those with larger values proceed to the right subtree.

Example 5.1 (Running Example). Consider the toy relation R and the user’s query
and constraint from Example 1.1, simplified to a single predicate on TestScore:

Data R:

Query Q1:
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Table 5.1: Example dataset R with TestScore, Gender, and label Y .

Id TestScore (T ) Gender (G) Y

t1 30 F 1
t2 27 F 0
t3 37 M 1
t4 34 M 1
t5 31 M 1

SELECT *
FROM R WHERE T >= 32;

Constraint ω#:

SPD =
count(G = M ∧ Y = 1)

count(G = M )
− count(G = F ∧ Y = 1)

count(G = F )

The employer would like to ensure that the SPD between male and female is below 0.2.

A 1-dimensional kd-tree is constructed over the five TestScore values
{27, 30, 31, 34, 37} in Figure 5.1.

Figure 5.1: Hierarchical 1D k-d tree over TestScore. Each Ci node lists its point set,
the [min, max ] bounds (purple) and the pre-aggregated values (blue).

To evaluate the aggregate constraint (AC) ω for a candidate Qfix = [c′
1, . . . , c′

m], the
algorithm determines a set of clusters (nodes in the kd-tree) that cover exactly the
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subset of D that fulfils the selection condition of the candidate. It can then merges the
materialized aggregation results for these clusters to compute the results of the
aggregation queries Qω

i used in ω for Qfix(D). To do that, the algorithm records the
following information for each cluster C ⊆ D that can be computed by a single scan
over the tuples in the cluster, or by combining results from previously generated
clusters if it generates clusters bottom up.

• Selection attribute bounds: For each attribute ai used in the condition θ,
boundsai :=[min(πai(C)), max(πai(C))] is stored.

• Count: The total number of tuples count(C) := |C| in the cluster.

• Aggregation results: For each filter-aggregation query Qω in constraint ω, Qω(C)

is stored.

An example kd-tree is shown in Figure 5.1. The user query filters on attribute
TestScore (T ). The root of the kd-tree represents the full dataset. At each level, the
clusters from the previous level are split into a number of sub-clusters (this is a
configuration parameter B called the branching factor), two in the example, along one
of the attributes in θ. For instance, the root cluster C1 is split into two clusters C2 and
C3 by partitioning the rows in C1 based on their values in attribute T . For cluster C2

containing three tuples t2, t1, and t5, boundsT = [27, 31] as the lowest T value is 27
(from tuple t2) and the highest value is 31 (tuple t5). The value of
Qω

2 = count(Gender(G) = M ) for C2 is 1 as there is one male in the cluster. Consider
a repair candidate with the condition T ≥ 37. Based on the bounds
boundsT = [27, 31], it is clear that none of the tuples satisfy this condition. Thus, this
cluster and the whole subtree rooted at the cluster can be ignored for computing the
AC ω# for the candidate.

For ease of presentation, FF algorithm assumes that the leaf nodes of the kd-tree
contain a single tuple each. As this would lead to very large trees, the implementation
of the algorithm does not further divide clusters C if it contains less tuples than a
threshold S (|C| ≤ S). This parameter is called the bucket size.

5.2 Constraint Evaluation for Candidates

The FF algorithm (Algorithm 1) takes as input the condition θ′ of a repair candidate,
the root node of the kd-tree Croot, and returns a set of disjoint clusters C such that the
union of these clusters is precisely the subset of the relation R that fulfills θ′:

⋃︂
C∈C

= σθ′(R) (5.1)
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Algorithm 1 CoveringClusters
Input: kd-tree with root Croot, condition θ′ = θ′

1 ∧ . . .∧ θ′
m, relation R.

Output: Set of clusters C such that
⋃︁

C∈C C = σθ′(R).
1: stack ← [Croot]
2: C← ∅ ▷ Initialize result set
3: while stack ̸= ∅ do
4: Ccur ← pop(stack)1
5: in← true, notin← false
6: for all θ′

i = (ai opi c′
i) ∈ θ′ do

7: in← in∧ eval∀(θ′
i, boundsai(Ccur)) ▷ All tuples fulfill θ′

i?
8: notin← notin∨ eval∀(¬θ′

i, boundsai(Ccur))

9: if in then ▷ All tuple in C fulfill θ′

10: C← C∪ {Ccur}
11: else if ¬notin then ▷ Some tuples in C may fulfill θ′

12: for all C ∈ children(Ccur) do ▷ Process children
13: stack ← stack ∪ {C}
14: return C

The statistics materialized for this cluster set C are then used to evaluate the AC for
the repair candidate.

5.2.1 Determining a Covering Set of Clusters

The algorithm maintains a stack of clusters to be examined that is initialized with the
root cluster Croot (line 1). It then processes one cluster at a time until a set of clusters
C fulfilling Equation (5.1) has been determined (lines 3-14). For each cluster C, the
algorithm distinguishes 3 cases (lines 6-8): (i) it uses the bounds on the selection
attributes recorded for the cluster to show that all tuples in the cluster fulfil θ′, i.e.,
σθ′(C) = C (line 7). In this case, the cluster will be added to C (lines 9-10); (ii) based
on the bounds, it determines that none of the tuples in the cluster fulfil the condition
(line 8). Then this cluster can be ignored; (iii) either a non-empty subset of C fulfils θ′

or based on the bounds boundsai(C) it cannot demonstrate that σθ′(C) = ∅ or
σθ′(C) = C hold. In this case, the algorithm adds the children of C to the stack to be
evaluated in future iterations (lines 11-13). It uses the function eval∀ shown in
Table 6.1 to determine based on the bounds of the cluster C, the comparison condition
θ′

i is guaranteed to be true for all t ∈ C. Additionally, it checks whether case (ii) holds
by applying eval∀ to the negation θ′

i. Note that to negate a comparison, the algorithm
simply push the negation to the comparison operator, e.g., ¬(a < c) = (a ≥ c). As the
selection condition of any repair candidate is a conjunction of comparisons
θ′

1 ∧ . . .∧ θ′
m, the cluster is fully covered (case (i)) if eval∀ returns true for all θ′

i and
not covered at all (case (ii)) if eval∀ returns true for at least one comparison ¬θ′

i.
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Table 5.2: Given the bounds [a, a] for the attribute a of a condition a op c or a ∈
[c1, c2], function eval∀ does return true if the condition evaluates to true for all values

in [a, a].

Op. eval∀
>,≥ a > c, a ≥ c

<,≤ a < c, a ≤ c

= a = a = c

̸= c ̸∈ [a, a]
∈ [c1, c2] c1 ≤ a∧ a ≤ c2

5.2.2 Determining Coverage

In Table 6.1, the algorithm defines the function eval∀ which takes a condition a op c

and bounds boundsa(C) for attribute a in cluster C and returns true if it is
guaranteed that all tuples t ∈ C fulfill the condition. An inequality > (or ≥) is true for
all tuples if the lower bound a of a is larger (larger equal) than the threshold c. The
case for < and ≤ is symmetric: the upper bound a has to be smaller (smaller equals)
than c. For an equality, the algorithm can only guarantee that the condition is true if
a = a = c. For ̸=, all tuples fulfill the inequality if c does not belong to the interval
[a, a].

For the running example in Example 5.1 and the kd-tree in Figure 5.1, The sorted
candidates set for T is {31, 30, 34, 37, 27}. Consider a repair candidate with the
condition T ≥ 31, where c1 = 31. The algorithm maintains a stack of clusters
initialized to [C1], the root node of the kd-tree. In each iteration it takes on cluster
form the stack. The root cluster C1, has boundsT (C1) = [27, 37]. The algorithm
evaluates whether all or none of the tuples satisfy the condition. Since it neither is the
case, it proceeds to the children of C1: C2 and C3. The same situation occurs for C2

leading to further exploration of their child {C4 and C5}. In contrast, C3 has
boundsT (C3) = [34, 37], so all of its tuples satisfy T ≥ 31; the algorithm adds C3 to C
and do not explore further. Cluster C4 has boundsT (C4) = [27, 30], so none of its
tuples can satisfy T ≥ 31; C4 and its entire subtree are pruned without visiting any
leaves. In contrast, C5 is confirmed to meet the condition and is added to C. In this
example, the leaf clusters C6, C7, C8 and C9 are not visited, as the algorithm prunes
and confirms clusters covering multiple tuples. For instance, for T ≥ 37, C2 with
bounds [27, 34] with all of its descendents can be skipped as T ≥ 37 is false for any
T ∈ [27, 34].

5.2.3 Constraint Evaluation

After identifying the covering set of clusters C for a repair candidate Qfix, the
algorithm evaluates the AC ω over C. Recall that for each cluster C the algorithm
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materializes the result of each filter aggregate query Qω
i used in ω. For aggregate

function avg that is not decomposable, the algorithm applies the standard approach of
storing count and sum instead. It then computes Qω

i (Q(D)) over the materialized
aggregation results for the clusters. Concretely, for such an aggregate query
Qω := γf (a)(σθ′(Q(D)) it computes its result as follows using C:

γf ′(a)

(︄ ⋃︂
C∈C
{Qω(C)}

)︄

Here f ′ is the function used by the algorithm to merge aggregation results for multiple
subsets of the database. This function depends on f , e.g., for both count and sum
f ′ = sum, for min f ′ = min, and for max f ′ = max. Then, the algorithm substitutes
these aggregation results into ω and evaluate the resulting expression to determine
whether Qfix fulfils the constraints and is a repair or not.

For the running example in Example 5.1 the covering set of clusters for the repair
candidate with c1 = 31 is C = {C3, C5}. Evaluating
Qω

1 = count(Gender(G) = M ∧ Y = 1) over C, the algorithm sums the counts:

Qω
1 = Qω

1C3 + Qω
1C5 = 2 + 1 = 3.

Similarly:
Qω

2 = Qω
2C3 + Qω

2C5 = 2 + 1 = 3,

Qω
3 = Qω

3C3 + Qω
3C5 = 0 + 0 = 0,

Qω
4 = Qω

4C3 + Qω
4C5 = 0 + 0 = 0.

Substituting these values into ω#, yields 1 ≤ 0.2 = false. Since the candidate T ≥ 31
does not satisfy the constraint it is not a valid repair. The algorithm then proceeds to
evaluate subsequent candidates in the sorted list, such as T ≥ 30, T ≥ 34, and T ≥ 37,
in the same way. All of these candidates fail to yield an SPD value below 0.2, and
therefore do not satisfy the fairness constraint. However, when evaluating the
candidate T ≥ 27 in the same way as evaluating the candidate T ≥ 31, the resulting
SPD value falls below 0.2, indicating that the constraint is satisfied. Hence, T ≥ 27
constitutes a valid repaired query for this example. The evaluation results for all
candidate repairs are summarized in Table 5.3.

Table 5.3: Evaluation of candidate repairs for the running example.

Candidate Query SPD < 0.2? Repair Status
T ≥ 31 No Not a repair
T ≥ 30 No Not a repair
T ≥ 34 No Not a repair
T ≥ 37 No Not a repair
T ≥ 27 Yes Valid repaired query
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5.3 Computing Top-k Repairs

To compute the top-k repairs, the algorithm enumerates all repair candidates in
increasing order of their distance to the user query using the distance measure from
Chapter 4. For each candidate Qfix it applies the FF to determine a covering
clusterset, evaluate the constraint ω, and output Qfix if it fulfills the constraint. Once
it has found k results, the algorithm terminates.

Table 5.3 lists the candidate repairs evaluated for the running example. The valid
repaired query T ≥ 27 demonstrates how the repair process modifies the original
condition T ≥ 31 to satisfy the fairness constraint. In practice, several top-k repaired
queries may exist within a narrow region of the search space, for example, T ≥ 26,
T ≥ 27, and T ≥ 28. Presenting the top-k repairs allows users or analysts to inspect
their respective results and determine which best fits their application context.

Future work could explore methods for diversifying the set of generated repairs. For
instance, diversity-aware ranking or clustering techniques could be used to avoid
producing near-identical candidate repairs within the same local region of the search
space.

5.4 Summary

This chapter has presented the Full Cluster Filtering (FF) algorithm, the first proposed
solution to the aggregate constraint repair problem. Its idea is to partition the input
database D into a kd-tree of clusters and, in one scan, to materialize for each cluster
both (a) the results of the filter–aggregate queries Qω

i and (b) the [min, max ] bounds
on the predicate attributes ai. Then, these precomputed aggregates and bounds are
reused to evaluate any candidate Qfix and the aggregate constraint ω for each repair
Qfix. The Full Cluster Filtering (FF) approach consists of three main phases:

1. Building the kd-tree and materializing statistics Partition the input
relation R into a kd-tree of clusters and, in a single scan, compute and store each
cluster’s results for the filter–aggregate queries Qω

i together with the [ai, ai]

bounds on the predicate attributes ai.
2. Searching for candidate repairs Enumerate repair candidates

Qfix = [c′
1, . . . , c′

m] in order of increasing distance from the original query. For
each candidate, traverse the kd-tree with a stack, using cluster bounds to decide
whether to (i) include a cluster’s precomputed aggregates, (ii) prune the entire
cluster, or (iii) recurse into its children.



5.4. Summary 69

3. Evaluating the constraint and returning the Top–k. Evaluate the
aggregate constraint ω over the set of satisfying clusters C, and terminate as
soon as the first k valid repairs have been found.

The main advantage of this algorithm over the Brute Force ( BF) approach is that it
can reuse the aggregate query results materialized for a cluster if all tuples in the
cluster fulfil the condition of the repair candidate and can skip any clusters that do not
contain any tuples fulfilling the conditions.
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Chapter 6

Cluster Range Pruning (RP)

While algorithm Full Cluster Filtering (FF) reduces the effort needed to evaluate
aggregation constraints for individual repair candidates, it has the drawback that it
still has to evaluate each repair candidate separately. To address this, this chapter
presents an enhanced approach that reduces the search space by reasoning about sets
of repair candidates. For a user query condition θ1 ∧ . . .∧ θm where θi := ai opi ci, the
algorithm uses ranges of constant values instead of constants to represent such a set of
repairs Q: [[c1, c1], . . . , [cm, cm]]. Such a list of ranges Q represents a set of a repair
candidates:

{[c1, . . . , cm] | ∀i ∈ [1, m] : ci ∈ [ci, ci]}

Consider an aggregation constraint ω := τ op Φ(Qω
1 , . . . , Qω

n). The enhanced approach
Cluster Range Pruning (RP) uses a modified version of the kd-tree from Full Cluster
Filtering (FF), but instead of storing constants it maintains, for each cluster, the
precomputed lower and upper bounds of for each filter-aggregation query Qω in
constraint ω. This allows the approach to compute conservative bounds of the
arithmetic expression Φ and Φ on the possible values for Φ that hold for all repair
candidates in Q. Based on such bounds, if (i) τ op c holds for every c ∈ [Φ, Φ], then
every Qfix ∈ Q is a valid repair, if (ii) τ op c is violated for every c ∈ [Φ, Φ], then no
Qfix ∈ Q is a valid repair and can skip the whole set. Otherwise, (iii) there may or
may not exist some candidates in Q that are repairs. In this case, the algorithm
partitions Q into multiple subsets and applies the same test to each partition.

The Cluster Range Pruning (RP) algorithm proceeds mainly through three key steps
to efficiently identify query repairs that satisfy a user-defined aggregate constraint:

• Step 1: Searching for Candidate Repairs The search space of repair candidates
is represented as a set of intervals over the selection predicate values. Each interval
encapsulates multiple individual repair conditions to reason about entire ranges at
once rather than single constant modifications. These intervals are prioritized based
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on similarity to the original user query, typically using the minimum value in each
interval for sorting. For a given interval, the algorithm determines by using the
attribute bounds in the clusters whether: (i) all tuples in a cluster satisfy every
repair condition in the interval (full cover); (ii) no tuple satisfies any repair in the
interval (no cover); or (iii) some tuples may satisfy some repair conditions (partial
cover). Full-cover clusters contribute precomputed aggregates directly, no-cover
clusters are pruned, and partial clusters are recursively explored unless they are
leaves, in which case they are included as partially satisfying.

• Step 2: Evaluating Constraints for Repair Candidates Once full and partial
clusters are identified for an interval, the algorithm computes lower and upper
bounds for each aggregate function using the materialized statistics. These bounds
are then substituted into the arithmetic expression of the aggregate constraint to
infer whether the constraint is satisfied over the entire interval. Three outcomes are
possible: (i) if the interval bounds guarantee the constraint is satisfied for all repairs,
the entire interval is accepted; (ii) if the interval partially overlaps the constraint
threshold, the interval is subdivided and re-evaluated recursively; (iii) if the bounds
indicate no repair in the interval satisfies the constraint, the interval is discarded.

• Step 3: Computing Top-k Repairs Repair intervals are evaluated in increasing
order of distance from the original query. When an interval is found to fully satisfy
the constraint, its individual repair candidates are extracted and added to the result
set. This process continues until k valid repairs are found, at which point the
algorithm terminates.

The following sections describe each of these steps in detail. It introduces an algorithm
that utilizes such repair candidate sets and bounds on the aggregate constraint results
and then explain how to use the kd-tree to compute such bounds. It begins
in Section 6.1 which shows how the algorithm generates the set of top-k repairs Qtop−k

by using ranges of constant values instead of constants to represent such a set of
repairs Q. Next, Section 6.2 explains how each repair candidate is mapped to a
covering set of clusters and Section 6.3 shows how to compute bounds on constraints
ω. Finally, Section 6.4 provides a concise summary of the chapter.

6.1 Computing Top-k Repairs

Cluster Range Pruning (RP) (Algorithm 2) takes as input a kd-tree with root Croot, a
user query condition θ, a aggregate constraint (AC) ω, a candidate set
Q = [[c1, c1], . . . , [cm, cm]], and user query Q and returns the set of top-k repairs
Qtop−k.
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Algorithm 2 Top-k Repairs w. Range-based Pruning of Candidates
Input: kd-tree with root Croot, constraint AC ω, repair candidate set Q =

[[c1, c1], . . . , [cm, cm]], user query condition θ = θ1 ∧ . . .∧ θm, user query Q
Output: Top-k repairs Qtop−k

1: Qtop−k ← ∅ ▷ Queue of repairs Q′ sorted on d(Q, Q′)

2: rcand← ∅ ▷ Queue of repair sets Q′ sorted on d(Q, Q′)

3: queue← [Q] ▷ Queue of repair candidate sets Q′ sorted on d(Q, Q′)

4: while queue ̸= ∅ do
5: Qcur ← pop(queue)
6: Qnext ← peek(queue) ▷ Peek at next item in queue
7: (Cfull, Cpartial)← CoveringClusterSet(Qcur, Croot, θ)
8: if aceval∀(ω, Cfull, Cpartial) then ▷ All Q′ ∈ Qcur are repairs?
9: rcand← insert(rcand, Qcur)

10: else if aceval∃(ω, Cfull, Cpartial) then ▷ Some repairs?
11: for Qnew ∈ RangeDivide(Qcur) do ▷ divide ranges
12: if hasCandidates(Qnew) then
13: queue← insert(queue, Qnew)

14: Qtop−k ← topkConcreteCand(rcand, k) ▷ Top k repairs
15: if |Qtop−k| ≥ k then ▷ Have k repairs?
16: if d(Q, Qnext) > d(Q,Qtop−k[k]) then ▷ Rest inferior?
17: break
18: return Qtop−k

The algorithm maintains three priority queues: (i) Qtop−k is a queue of individual
repairs that eventually will store the top-k repairs. This queue is sorted on d(Q, Qfix)

where Qfix is a repair in the queue; (ii) rcand is a queue where each element is a
repair candidate set Q encoded as ranges as shown above. For each Q the algorithm
has established that for all Qfix ∈ Q, Qfix is a repair. This query is sorted on the
lower bound d(Q, Qfix ∈ Q) of the distance of any repair in Q to the user query.
Finally, (iii) queue is a queue where each element is a repair candidate set Q. This
queue is also sorted on d(Q, Qfix ∈ Q). In each iteration of the main loop of the
algorithm, one repair candidate set from queue is processed.

The algorithm initializes queue to the input parameter repair candidate set Q. The
algorithm is called with a repair candidate set that covers the whole search space (line
1-3). The algorithm’s main loop processes one repair candidate Qcur at a time (line 5)
while keeping track of the next candidate Qnext (line 6) until a set of top-k repairs
fulfilling aggregate constraint (AC) ω has been determined (lines 4–17). For the
current repair candidate set Qcur, function CoveringClusterSet (Algorithm 3) is
used to determine two sets of clusters Cfull and Cpartial (line 7). For every cluster
C ∈ Cfull, all tuples in C fulfill the condition of every repair candidate Qfix ∈ Qcur

and for every cluster C ∈ Cpartial, there may exist some tuples in C such that for some
repair candidates Qfix ∈ Qcur, the tuples fulfill the condition of Qfix. These two sets
of clusters are used to determine bounds on the arithmetic expression [Φ, Φ] of the
AC ω. The algorithm then distinguishes between three cases (line 8-13): (i) function
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aceval∀ uses Cfull and Cpartial to determine whether ω is guaranteed to hold for
every Qfix ∈ Qcur. For that, the bounds [Φ, Φ] are computed on Φ that hold for every
Qfix ∈ Qcur. If this is the case then all Qfix ∈ Qcur are repairs and Qcur is added to
rcand (lines 8–9); (ii) function aceval∃ determines Cfull and Cpartial to check
whether some repair candidates Qfix ∈ Qcur may fulfill the AC and needs to be
further examined (lines 10–13); (iii) if both aceval∀ and aceval∃ return false, then it
is guaranteed that no Qfix ∈ Qcur is a repair and Qcur can be discarded. These
functions will be discussed in depth in Section 6.3.

For example, if ω := 0.7 ≤ Φ and the bounds [Φ, Φ] = [0.5, 1] are computed that hold
for all Qfix ∈ Qcur, then aceval∀ returns false as some Qfix ∈ Qcur may not fulfill the
constraint. However, aceval∃ return true as some Qfix ∈ Qcur may fulfill the
constraint. In this case, the algorithm partitions Qcur into smaller sub-ranges Qnew

using the function RangeDivide(Qcur) (line 11). Assume that
Qcur = [[c1, c1], . . . , [cm, cm]]. RangeDivide splits each range [ci, ci] into a fixed
number of fragments {[ci1 , ci1 ], . . . , [cil

, cil
]} such that each [cij , cij ] is roughly of the

same size and returns the following set of repair candidate sets:

{[[c1j1
, cij1

], . . . , [cmjm
, cmjm

]] | [j1, . . . , jm] ∈ [1, l]m}

That is, each Qnew has one of the fragments for each [ci, ci] and the union of all repair
candidates in these repair candidate sets is Qcur. l = 2 is used in the implementation
of the algorithm. The function hasCandidates (line 12-13) checks whether each
range in Qnew contains at least one value that exists in the data. This restricts the
search space to only include candidates that actually appear in the data. Recall from
the discussion of the search space at the end of Chapter 4 that only values from the
active domain of an attribute are considered as constants for repair candidates. That
is, the algorithm can skip candidate repair sets Qnew that do not contain any such
values. For example, if the dataset contains only values 8 and 10 for a given attribute,
then applying a filter a ≤ 9 would yield the same result as a ≤ 8, since no data points
lie between 8 and 10. If this condition is satisfied, Qnew is inserted into the priority
queue queue to be processed in future iterations of the main loop. In each iteration the
algorithm uses function topkConcreteCand (line 14) to determine the k repairs Qi

across all Q ∈ rcand with the lowest distance to the user query Q. If the algorithm can
find k such candidates (line 15), then it tests whether no repair candidate from the
next repair candidate set Qnext may be closer to Q then the kth candidate Qtop−k[k]

from Qtop−k (line 16). This is the case if the lower bound on the distance of any
candidate in Qnext is larger than the distance of Qtop−k[k]. Furthermore, the same
holds for all the remaining repair candidate sets in rcand, because rcand is sorted on
the lower bound of the distance to the user query. That is, Qtop−k contains exactly the
top-k repairs and the algorithm returns Qtop−k.
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Algorithm 3 CoveringClusterSet
Input: kd-tree with root Croot, repair candidate set Q = [[c1, c1], . . . , [cm, cm]], condi-

tion θ
Output: Partially covering cluster set (Cfull, Cpartial)

1: stack ← [Croot]
2: Cfull ← ∅, Cpartial ← ∅ ▷ Initialize cluster sets
3: while stack ̸= ∅ do
4: Ccur ← pop(stack)
5: in← true, pin← true
6: for all θi = (ai opi ci) ∈ θ do ▷ Ccur fully / part. covered?
7: in← in∧ reval∀(θi, [ci, ci], boundsai(Ccur))
8: pin← pin∧ reval∃(θi, [ci, ci], boundsai(Ccur))

9: if in then ▷ Add fully covered cluster to the result
10: Cfull ← Cfull ∪ {Ccur}
11: else if pin then
12: if isleaf (Ccur) then ▷ Partially covered leaf cluster
13: Cpartial ← Cpartial ∪ {Ccur}
14: else ▷ Process children of partial cluster
15: for all C ∈ children(Ccur) do
16: stack ← stack ∪ {C}
17: return (Cfull, Cpartial)

6.2 Determining Covering Cluster Sets

Similar to FF, the kd-tree is used to determine a covering cluster set C. However, as
the RP algorithm now deals with a set of candidate repairs Q, a C must be found
such that for all Qfix ∈ Q, the following holds: Qfix(D) =

⋃︁
C∈C C. Such a covering

cluster set is unlikely to exist as for any two Qfix ̸= Q′
fix ∈ Q it is likely that

Qfix(D) ̸= Q′
fix(D). Instead the algorithm relaxes the condition and allows clusters C

that are partially covered, i.e., for which some tuples in C may be in the result of some
candidates in Q. Algorithm 1 is modified to take a repair candidate set as an input
and to return two sets of clusters: Cfull which contains clusters for which all tuples
fulfill the selection condition of all Qfix ∈ Q and Cpartial which contains clusters that
are only partially covered.

Analogous to Algorithm 1, the updated algorithm (Algorithm 3) maintains a stack of
clusters to be processed that is initialized with the root node of the kd-tree (line 1). In
each iteration of the main loop (line 3-16), the algorithm determines whether all tuples
of the current cluster Ccur fulfill the conditions θi for all repair candidates Qfix ∈ Q.
This is done using function reval∀ (line 7). Additionally, the algorithm checks whether
it is possible that at least one tuple fulfills the condition of at least one repair
candidate Qfix ∈ Q. This is done using a function reval∃ (line 8). If the cluster is
fully covered, the algorithm adds it to the result set Cfull (line 10). If it is partially
covered, then it distinguishes between two cases (line 11- 16). Either the cluster is a
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Table 6.1: For RP, the algorithm considers a range [c, c] (corresponding to a set of
candidates) or two ranges [c1, c1] and [c2, c2] for operator ∈. reval∀ determines whether
for every c ∈ [c, c], the condition is guaranteed to evaluate to true for every a ∈ [a, a]
while reval∃ determines whether for some c ∈ [c, c], the condition may evaluate to true

for a ∈ [a, a].

Op. reval∀ reval∃
>,≥ a > c, a ≥ c a > c, a ≥ c

<,≤ a < c, a ≤ c a < c, a ≤ c

= a = c = a = c [a, a] ∩ [c, c] ̸= ∅
̸= [a, a] ∩ [c, c] = ∅ ¬(a = c = c = a)

∈ [c1, c2] c1 ≤ a∧ a ≤ c2 [a, a] ∩ [c1, c2] ̸= ∅

leaf node (line 12-13) or it is an inner node (line 14-16). If the cluster is a leaf, then
the algorithm cannot further divide the cluster and add it to Cpartial. If the cluster is
an inner node, then it processes its children, as some children may be determined to be
either fully covered or not covered at all.

Table 6.1 shows how conditions are evaluated by reval∀ and reval∃. For a condition
a > c, if the lower bound of attribute a is larger than the upper bound c, then all
tuples in the cluster fulfil the condition for all Qfix ∈ Q. The cluster is partially
covered if a > c as then there exists at least one value in the range of a and constant c

in [c, c] for which the condition is true.

Figure 6.1: Hierarchical 1D k-d tree over TestScore. Each Ci node lists its point set,
the [min, max ] bounds (purple) and the pre-aggregated bounds (red).
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In the running example from Example 5.1 and the updated kd-tree in Figure 6.1. The
sorted candidates set for T is {[33, 37], [27, 32]}. Consider a repair candidate [[33, 37]].
Recall that the single condition in this example is T ≥ c. Croot has
boundsT = [27, 37]. The algorithm first applies reval∀ to check if all tuples in Croot

satisfy the condition. Since 27 ̸≥ 37, the algorithm proceeds to evaluate the condition
for partial coverage using reval∃. Since C1 is partially covered and not a leaf, the
algorithm continues by processing C1’s children, C2 and C3. For C3, a similar situation
occurs: the lower bound of the attribute, a = 34, is not greater than the upper bound
of the constant, c = 37 and additional clusters must be processed, C8 and C9. C2, fails
both reval∀ and reval∃, so no tuple in the range [[27, 31]] can satisfy any repair
candidate in the range [[33, 37]]. Consequently, its entire subtree is pruned without
visiting any leaves. Finally, the algorithm applies reval∀ and reval∃ if necessary to the
clusters C8 and C9, confirming that C8 ∈ Cpartial and C9 ∈ Cfull, as t4.T = 34 ≥ c is
only true for some c ∈ [33, 37] and t3.T = 37 ≥ c is true for all c ∈ [33, 37].

6.3 Computing Bounds on Constraints

Given the cluster sets (Cfull, Cpartial) computed by Algorithm 3, the approach next (i)
computes bounds on the results of the aggregation queries Qω

i used in the constraint,
then (ii) uses these bounds to compute bounds [Φ, Φ] on the result of the arithmetic
expression Φ of the AC ω over repair candidates in Q. These bounds are conservative
in the sense that all possible results are guaranteed to be included in these bounds.
Then, finally, (iii) function aceval∀ uses the computed bounds to determine whether
all candidates in Q fulfill the constraint by applying reval∀ from Table 6.1. For a
constraint ω := τ op Φ, aceval∀ calls reval∀ with [Φ, Φ] and τ . aceval∃ uses reval∃
instead to determine whether some candidates in Q may fulfill the constraint. This
requires techniques for computing bounds on the possible results of arithmetic
expressions and aggregation functions when the values of each input of the
computation are known to be bounded by some interval.

6.3.1 Bounding Aggregation Results

Bounds estimation is a fundamental computational methodology that determines
upper and lower limits for the possible values of mathematical expressions, aggregate
functions, or variable sets without necessitating exact value computation. Bounding
aggregation functions involves calculating accurate upper and lower limits for the
possible values of aggregate functions such as SUM, COUNT, MIN, and MAX
without computing all possible aggregates for all possible results (Zhang et al., 2007).
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Table 6.2: Bounds on applying an operator to the result of expressions E1 and E2
with interval bounds (Zhang et al., 2007).

op Bounds for the expression (E1 op E2)

+ E1 + E2 = E1 + E2 E1 + E2 = E1 + E2

− E1 −E2 = E1 −E2 E1 −E2 = E1 −E2

× E1 ×E2 = min(E1 ×E2, E1 ×E2, E1 ×E2, E1 ×E2)

E1 ×E2 = max(E1 ×E2, E1 ×E2, E1 ×E2, E1 ×E2)

/ E1/E2 = min(E1/E2, E1/E2, E1/E2, E1/E2)

E1/E2 = max(E1/E2, E1/E2, E1/E2, E1/E2)

This section discusses how to compute bounds for the results of the filter-aggregation
queries Qω

i of an aggregate constraint ω based on the cluster sets (Cfull, Cpartial)

returned by Algorithm 3. As every cluster C in Cfull is fully covered for all repair
candidates in Q, i.e., all tuples in the cluster fulfill the conditions of each Qfix ∈ Q,
the materialized aggregation results Qω

i (C) of C contribute to both the lower bound
Qω

i and upper bound Qω
i as for Full Cluster Filtering (FF). For partially covered

clusters (Cpartial), worst case assumptions must be made to derive valid lower and
upper bounds. For the lower bound, the approach has to consider the minimum across
two options: (i) no tuples from the cluster will fulfill the condition of at least one Qfix

in Q. In this case, the cluster is ignored for computing the lower bound e.g., in case for
max; (ii) based on the bounds of the input attribute for the aggregation within the
cluster, there are values in the cluster that if added to the current aggregation result
further lowers the result, e.g., a negative number for sum or a value smaller than the
current minimum for min. For example, for min(a) the approach has to reason about
two cases: (i) it can add a to the aggregation in case of negative numbers; (ii)
otherwise should ignore this cluster for computing lower bounds. For sum it has the
two cases: (i) the attribute for the aggregation has negative numbers. In this case the
approach sums the negative numbers for the lower bound. (ii) otherwise should ignore
this cluster for computing lower bounds. For the upper bound the approach has the
symmetric two cases: (i) if including no tuples from the cluster would result in a larger
aggregation result, e.g., for sum when all values in attribute a in the cluster are
negative then including any tuple from the cluster would lower the aggregation result
and (ii) if the upper bound of values for the aggregation input attribute within the
cluster increases the aggregation result, the aggregation bounds are included in the
computation for the upper bound.
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6.3.2 Bounding Results of Arithmetic Expressions

Given the bounds on aggregate-filter queries, interval arithmetic (Stolfi and
de Figueiredo, 2003; De Figueiredo and Stolfi, 2004) is used which computes sound
bounds for the result of arithmetic operations when the inputs are bound by intervals.
In the case considered by this work, the bounds on the results of aggregate queries Qω

i

are the input and bounds [Φ, Φ] on Φ are the result. The notation used in this
approach is similar to (Zhang et al., 2007). Table 6.2 shows the definitions for
arithmetic operators supported in aggregate constraints. Here, E and E denote the
lower and upper bound on the values of expression E, respectively. For example, for
addition the lower bound for the result of addition E1 + E2 of two expressions E1 and
E2 is E1 + E2.

6.3.3 Bounding Aggregate Constraint Results

Consider a constraint ω := τ op Φ. There are three possible outcomes for a repair
candidate set: (i) τ op Φ is true for all [Φ, Φ] which aceval∀ determines using reval∀
and bounds [τ , τ ]; (ii) some of the candidate in Q may fulfill the condition, which
aceval∃ determines using reval∃; (iii) none of the candidates in Q fulfill the condition
(both (i) and (ii) are false).

In the running example and the updated kd-tree in Figure 6.1, the covering set of
clusters for repair candidate set Q :=[[33, 37]] are Cpartial = {C8} and Cfull = {C9}.
To evaluate Qω

1 = count(G = M ∧ Y = 1) over these clusters, the algorithm include
the materialized aggregation results for C8 for both the lower bound Qω

i and upper
bound Qω

i . For the partially covered C8, the lower bound of Qω
1 C8

is 0 for this cluster
(the lowest count is achieved by excluding all tuples from the cluster), while the upper
bound is 1, as there exists a male in the cluster satisfying Y = 1. Thus, the following
bounds are obtained for Qω

1 C8
= [0, 1]. Similarly, the remaining aggregation bounds

are computed:
Qω

1 C9 = [1, 1],

Qω
2 C8 = [0, 1], Qω

2 C9 = [1, 1],

Qω
3 C8 = [0, 0], Qω

3 C9 = [0, 0],

Qω
4 C8 = [0, 0], Qω

4 C9 = [0, 0].

Next, the lower and upper bounds for each aggregation Qω
i are summed across all

clusters in C:
Qω

1 = Qω
1 C8 + Qω

1 C9 = [1, 2],

Qω
2 = Qω

2 C8 + Qω
2 C9 = [1, 2],



80 Chapter 6. Cluster Range Pruning (RP)

Qω
3 = Qω

3 C8 + Qω
3 C9 = [0, 0],

Qω
4 = Qω

4 C8 + Qω
4 C9 = [0, 0].

The computed values {Qω
1 , Qω

2 , Qω
3 , Qω

4 } are then substituted into ω# and evaluate the
resulting expression using interval arithmetic (Table 6.2). Given: ω# = Q!

1/Q!
2 −Q!

3/Q!
4

the lower and upper bounds for the first term Q!
1/Q!

2 are computed as:

[E1/E2, E1/E2] = [1/2, 2].

Similarly, for the second term: Q!
3/Q!

4 = [0, 0]. Applying interval arithmetic to compute
the subtraction yields:

[E1 −E2, E1 −E2].

Thus, bounds [Φ#, Φ#] = [1/2, 2] are obtained. Since Φ# = 1/2 > 0.2, none of the
candidates in Q = [[33, 37]] can be repairs, allowing Q to be pruned. The algorithm
then proceeds to the next candidate in the sorted candidates set, namely [[27, 32]].

6.4 Summary

This chapter presented Cluster Range Pruning (RP), an enhanced algorithm that
reasons about sets of repair candidates in one shot. Rather than testing each Qfix

individually, the algorithm uses ranges of constant values instead of constants to
represent such a set of repairs Q: [[c1, c1], . . . , [cm, cm]].

The RP pipeline consists of three main phases:

1. Building the kd-tree and materializing bounds statistics As in Full
Cluster Filtering ( FF), partition the input relation R into a kd-tree of clusters
and, in a single scan, compute and store each cluster’s [min, max ] bounds for the
filter–aggregate queries Qω

i together with the [ai, ai] bounds on the predicate
attributes ai.

2. Searching for candidate repairs Treat the entire repair space as a ranges Q:
[[c1, c1], . . . , [cm, cm]], ordered by its minimum distance to the original query.
Repeatedly pop the next repair candidate and evaluate each cluster by
comparing the bounds of the predicate attributes [a, a] to the candidate’s range:
(i) If every value in [a, a] falls within the candidate’s range, consider the cluster
as Cfull. (ii) If every value in [a, a] lies outside the candidate’s range, discard the
cluster and its subtree. (iii) Otherwise the cluster is partially covered: if it is a
leaf, add it to Cpartial while if it is an internal node, push its children onto the
stack for further processing.

3. Evaluating the constraint and returning the Top–k Compute bounds for
the results of the filter-aggregation queries Qω

i of an aggregate constraint ω based
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on the cluster sets (Cfull, Cpartial). Use these bounds to compute bounds [Φ, Φ]

on the result of the arithmetic expression Φ of the AC ω over repair candidates
in Q to determine if (i) τ op c holds for every c ∈ [Φ, Φ], then every Qfix ∈ Q is a
valid repair, if (ii) τ op c is violated for every c ∈ [Φ, Φ], then no Qfix ∈ Q is a
valid repair and can skip the whole set. Otherwise, (iii) there may or may not
exist some candidates in Q that are repairs. In this case, the algorithm partitions
Q into multiple subsets and applies the same test to each partition. The
algorithm terminates as soon as the first k valid repairs have been found.

The advantage of this approach over Full Cluster Filtering ( FF) is that it often
enables the algorithm to prune sets of repair candidates or confirm all of them to be
repairs without individually evaluating them.
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Chapter 7

Evaluation

The performance of the proposed algorithms, Full Cluster Filtering (FF) and Cluster
Range Pruning (RP), is evaluated using both real-world datasets and the TPC-H
benchmark. The evaluation involves a variety of queries and arithmetic constraints, as
described in Section 3.5. This chapter begins by comparing the performance of the
proposed methods, Full Cluster Filtering (FF) and Cluster Range Pruning (RP),
against the exhaustive Brute Force (BF) (Section 7.1) as well as against each
other (Section 7.1). It then examines the impact of key parameters such as data size,
clustering structure (branching factor and bucket size), exploration distance, and the
top-k value on the performance of the proposed repair methods (Section 7.2). Finally,
it compares the proposed approaches with the most relevant prior technique, Erica (Li
et al., 2023), as detailed in (Section 7.3).

7.1 Performance of FF and RP

Experiments are conducted to measure the performance of Full Cluster Filtering (FF)
and Cluster Range Pruning (RP) using the Healthcare and ACSIncome datasets with
queries in Table 3.1, constraints in Table 3.2, and default settings in Section 3.5. For
the Healthcare, the constraints ω1 and ω2 are used while ω3 and ω4 are considered for
the ACSIncome. In addition to runtime, this experiment also measures number of
candidates evaluated (NCE) which is the total of number of repair candidates evaluate
the AC and number of clusters accessed (NCA) which is the total number of clusters
accessed by an algorithm.

Comparison with Brute Force (BF). This section first compares the proposed
methods, Full Cluster Filtering (FF) and Cluster Range Pruning (RP), with the Brute
Force (BF) method using the Healthcare, queries Q1 and Q2, the constraint ω1and
default settings in Section 3.5. As expected, both Full Cluster Filtering (FF) and
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Figure 7.1: Runtime, NCE, and NCA for FF, RP, and BF over the Healthcare dataset.

Cluster Range Pruning (RP) outperform Brute Force (BF) by at least one order of
magnitude in terms of runtime as shown in Figure 7.1a. This performance gain is
primarily due to their ability to avoid evaluating every possible tuple and repair
individually, unlike Brute Force (BF), which performs exhaustive checking. Full
Cluster Filtering (FF) achieves this by computing aggregate statistics over a set of
clusters, allowing it to reuse pre-aggregated summaries instead of scanning tuples
repeatedly. Cluster Range Pruning (RP), on the other hand, reduces runtime by
evaluating constraints over sets of repair candidates simultaneously.

The Cluster Range Pruning (RP) algorithm significantly reduces both the total
number of candidates evaluated (NCE) and the number of clusters accessed (NCA).



7.1. Performance of FF and RP 85

d
=

38
1 d

=
40

1 d
=

52
1 d

=
78

1 d
=

21
2 d

=
22

2 d
=

24
2 d
=

10
0

2

Constraint

103
104
105

Ru
nt

im
e 

(s
ec

)
Query: Q1

d
=

37
1 d

=
38

1 d
=

43
1 d

=
45

1 d
=

51
1 d

=
96

2 d
=

97
2 d
=

10
0

2

Constraint

Query: Q2

d
=

51
1 d

=
54

1 d
=

57
1 d

=
62

1 d
=

60
2 d
=

10
0

2

Constraint

Query: Q3
FF RP

(a) Runtime (sec) - Healthcare dataset.

d
=

2
3 d

=
3

3 d
=

11
3 d

=
15

3 d
=

36
3 d

=
43

4 d
=

57
4 d

=
59

4 d
=

73
4 d

=
91

4

Constraint

103

104

Ru
nt

im
e 

(s
ec

)

Query: Q4
d

=
3

3
d

=
10

0
3

d
=

61
4 d

=
63

4 d
=

64
4 d

=
67

4 d
=

10
0

4
Constraint

Query: Q5

d
=

10
3 d

=
11

3 d
=

13
3 d

=
14

3 d
=

40
3

d
=

4
4 d
=

14
4 d

=
33

4 d
=

36
4 d

=
41

4

Constraint

Query: Q6
FF RP

(b) Runtime (sec) - ACSIncome dataset.

Figure 7.2: Runtime, NCE, and NCA for FF and RP over the Healthcare and AC-
SIncome datasets using the queries from Table 3.1.

This is achieved by using clustering and range-based pruning to skip large portions of
the search space where no valid repairs can exist. While the Full Cluster Filtering (FF)
method maintains the same number of candidates evaluated (NCE) as Brute Force
(BF) because it still checks the same number of candidate repairs. However, it
decreases the number of clusters accessed (NCA) compared to Brute Force (BF) (as
BF does not use clusters, the number of tuple accesses is counted) as in Figure 7.1c
and Figure 7.1b.

Runtime. Figures 7.2a and 7.2b show the runtime of the Full Cluster Filtering (FF)
and Cluster Range Pruning (RP) algorithms for Healthcare and ACSIncome,
respectively. For given constraint ωi, the bounds [Bl, Bu] are varied to control what
percentage of repair candidates have to be processed by Brute Force (BF) and Full
Cluster Filtering (FF) to determine the top-k repairs as explained in Section 3.5. For
example, ωd=38

1 in Figure 7.2a for Q1 is the constraint ω1 from Table 3.2 with the
bounds set such that 38% of the candidate solutions have to be explored by these
algorithms. The thesis uses exploration distance (ED) to refer to this. Cluster Range
Pruning (RP) (pink bars) generally outperforms Full Cluster Filtering (FF) (blue bars)
for most settings. In Figure 7.2b, two algorithms exhibit similar performance for Q4

with ω3, where solutions are found after exploring only 2% and 3% of the search space.
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(b) Total number of constraints evaluated (NCE) - ACSIncome dataset.
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(c) Total number of cluster accessed (NCA) - Healthcare dataset.

d
=

2
3 d

=
3

3 d
=

11
3 d

=
15

3 d
=

36
3 d

=
43

4 d
=

57
4 d

=
59

4 d
=

73
4 d

=
91

4

Constraint

107
108
109

NC
A

Query: Q4

d
=

3
3

d
=

10
0

3
d

=
61

4 d
=

63
4 d

=
64

4 d
=

67
4 d
=

10
0

4

Constraint

Query: Q5

d
=

10
3 d

=
11

3 d
=

13
3 d

=
14

3 d
=

40
3

d
=

4
4 d
=

14
4 d

=
33

4 d
=

36
4 d

=
41

4

Constraint

Query: Q6
FF RP

(d) Total number of cluster accessed (NCA) - ACSIncome dataset.

Figure 7.3: Runtime, NCE, and NCA for FF and RP over the Healthcare and AC-
SIncome datasets using the queries from Table 3.1.
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A similar pattern is observed for Q5 with ωd=3
3 and Q6 with ωd=4

4 . The relationship
between the exploration distance (ED) and the runtime of the proposed algorithms is
further investigated in Section 7.2. In general, Cluster Range Pruning (RP)
significantly outperforms Full Cluster Filtering (FF), demonstrating an improvement
of about an order of magnitude due to its capability of pruning and confirming sets of
candidate repairs at once.

Total number of candidates evaluated (NCE). How number of candidates
evaluated (NCE) affects the performance of the proposed methods is further analysed .
Figures 7.3a and 7.3b shows the result of the number of candidates evaluated (NCE)
(on the y axis) for Full Cluster Filtering (FF) and Cluster Range Pruning (RP) on
Healthcare and ACSIncome, respectively. Cluster Range Pruning (RP) consistently
checks fewer candidates compared to Full Cluster Filtering (FF), because it can reason
over sets of candidate repairs at a time, allowing it to accept or prune entire groups of
candidates collectively based on interval bounds, rather than evaluating each candidate
individually.

As observed in the runtime evaluation, the exploration distance (ED) impacts the
efficiency of the proposed algorithms, producing comparable results for Full Cluster
Filtering (FF) and Cluster Range Pruning (RP) when a small number of candidates
has to be explored, e.g., as shown in Figure 7.3b for Q4 with ωd=2

3 and Q5 with ωd=3
3 .

Total Number of Cluster Accessed (NCA). The results of the number of clusters
accessed are shown in Figures 7.3c and 7.3d for Healthcare and ACSIncome,
respectively. Similarly, Cluster Range Pruning (RP) accesses significantly fewer
clusters than Full Cluster Filtering (FF), highlighting its efficiency in limiting the
exploration of the search space. Furthermore, it follows the same trend of the previous
evaluation results such that the benefit of Cluster Range Pruning (RP) becomes
negligible and may even reverse when the proximity of solutions is low.

7.2 Performance-Impacting Factors

To gain deeper insights into the behaviour observed in Section 7.1, the relationship
between the exploration distance (ED) and performance is investigated. Additionally,
the performance of Full Cluster Filtering (FF) and Cluster Range Pruning (RP) is
evaluated in terms of the parameters from Section 3.5. The Healthcare, ACSIncome,
and TPC-H datasets are used.
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Figure 7.4: Runtime, NCE, and NCA for FF and RP over the Healthcare and AC-
SIncome datasets, varying ED.

7.2.1 Effect of Exploration distance

Queries Q1–Q3 and the constraint ω1 on Healthcare are used and Q4–Q6 and the
constraint ω3 on ACSIncome and vary the bounds to control for exploration distance
(ED). The result is shown in Figure 7.4a for Healthcare and in Figure 7.4b for
ACSIncome. For Q1 and Q2, when exploration distance (ED) 10% or less, Full Cluster
Filtering (FF) and Cluster Range Pruning (RP) exhibit comparable performance. A
similar pattern is seen for Q3, where Full Cluster Filtering (FF) performs better than
Cluster Range Pruning (RP) for lower exploration distance (ED), but Cluster Range
Pruning (RP) outperforms Full Cluster Filtering (FF) for exploration distance (ED)
> 50% as shown in Figure 7.4a. The same trend holds for Q4 and Q5, while for Q6,
Cluster Range Pruning (RP) consistently outperforms Full Cluster Filtering (FF) for
higher exploration distance (ED), as illustrated in Figure 7.4b. The number of
candidates evaluated (NCE) and number of clusters accessed (NCA) follow similar
patterns to runtime. For exploration distance (ED) > 50%, Cluster Range Pruning
(RP) significantly reduces both number of candidates evaluated (NCE) and number of
clusters accessed (NCA). However, when exploration distance (ED) < 10%, the
difference between the two algorithms diminishes, with both performing similarly.
These trends are shown in Figure 7.5c and Figure 7.5d for number of clusters accessed
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Figure 7.5: Runtime, NCE, and NCA for FF and RP over the Healthcare and
ACSIncome datasets, varying ED.
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(NCA), and in Figure 7.5a and Figure 7.5b for number of candidates evaluated (NCE).
The reason behind these trends is that when solutions are closed to the user query
(smaller exploration distance (ED)), then there is a lower chance that Cluster Range
Pruning (RP) can prune larger sets of candidates at once.
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Figure 7.6: Runtime, NCE, and NCA for FF and RP over the Healthcare and
ACSIncome datasets, varying bucket size S.

7.2.2 Effect of Bucket Size

The runtime of Full Cluster Filtering (FF) and Cluster Range Pruning (RP) is now
evaluated varying the bucket size S using Q1 with ω1 using bounds [0.44, 0.5] for the
Healthcare dataset and Q4 with ω3 using bounds [0.34, 0.39] for the ACSIncome
dataset. The S is varied from 5 to 2500. Using the default branching factor B of 5, the
structure of the kd-tree for this evaluation is as follows: (i) Level 1: 5 clusters, each
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with 10,000 data points; (ii) Level 2: 25 clusters, each with 2,000 data points; (iii)
Level 3: 125 clusters, each with 400 data points; (iv) Level 4: 525 clusters, each with
80 data points; (v) Level 5: 3,125 clusters, each with 16 data points; (vi) Level 6:
15,625 clusters, each with 3 or 4 data points. Note that the algorithms will generate
kd-tree up to the level where the capacity of each cluster at that level is less than or
equal to S. For example, for S = 200, the tree will have 4 levels. The results of the
runtime are shown in Figure 7.6a and Figure 7.6b. Similarly, the number of clusters
accessed (NCA) as shown in Figure 7.6e and Figure 7.6f exhibit the same trend as the
runtime. The advantage of smaller bucket sizes is that it is more likely that a cluster
that is fully covered / not covered at all can be found. However, this comes at the cost
of having to explore more clusters. For number of candidates evaluated (NCE), as
shown in Figure 7.6c and Figure 7.6d, the number of constraints evaluated remains
constant across different bucket sizes S. This is because the underlying data remains
the same, and varying S does not affect the set of constraints that need to be
evaluated. In preliminary experiments, S = 15 was identified to yield robust
performance for a wide variety of settings and use this as the default.

Table 7.1: Branching Configuration and Data Distribution

# of Branches # of Leaves # of Branches # of Leaves
5 15625 20 8000
10 10000 25 15625
15 3375 30 27000

7.2.3 Effect of the Branching Factor

The relationship between the branching factor B and the runtime of the Full Cluster
Filtering (FF) and Cluster Range Pruning (RP) is now examined. The same queries,
constraints, bounds, and datasets are used as in the previous evaluation. In this
experiment, The B from 5 to 30 is varied. The corresponding number of leaf nodes in
the kd-tree is shown in Table 7.1. As the default bucket size S = 15 is used, the
branching factor affects the depth of the tree. The result shown in Figure 7.7a
and Figure 7.7b confirms that the performance of Full Cluster Filtering (FF) and
Cluster Range Pruning (RP) correlates with the number of clusters at the leaf level.
For the Full Cluster Filtering (FF), the branching factors of 5 and 25 yield nearly
identical runtime because both have the same number of leaves (15,625). A similar
pattern can be observed for B = 10 and B = 20. At B = 15, Full Cluster Filtering (FF)
achieves the lowest runtime, as it involves the smallest number of leaves (3,375). For
B = 30, the number of leaf clusters significantly increases, leading to a substantial rise
in the runtime of Full Cluster Filtering (FF). This behavior is explained by the nature
of Full Cluster Filtering (FF), which evaluates each candidate repair by aggregating
over clusters. Fewer clusters reduce overhead, as each repair interacts with fewer
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Figure 7.7: Runtime, NCE, and NCA for FF and RP over the Healthcare and AC-
SIncome datasets, varying the number of branches B.

segments of data. However, if the number of clusters becomes too large (as B = 30),
the overhead increases substantially due to more evaluations across more leaf nodes.

These results also demonstrate that the tree depths only has negligible impact on the
runtime. Similarly, the number of clusters accessed (NCA) as shown in Figure 7.7e
and Figure 7.7f exhibit the same trend as the runtime. For number of candidates
evaluated (NCE), as shown in Figure 7.7c and Figure 7.7d, the number of constraints
evaluated remains constant across different branching factors B. This is because the
underlying data remains the same, and varying B does not affect the set of constraints
that need to be evaluated. For Cluster Range Pruning (RP), overall performance
trends align with those of Full Cluster Filtering (FF). However, Cluster Range Pruning
(RP) is less influenced by the branching factor. This is because Cluster Range Pruning
(RP) reasons over entire intervals of repair candidates, and can prune or accept whole
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Figure 7.8: Runtime, NCE, and NCA for FF and RP over top-k.

regions of the search space. As a result, even when the tree contains more clusters,
Cluster Range Pruning (RP) can eliminate many of them in bulk without individual
examination, thus reducing the impact of larger B.

7.2.4 Effect of k

In this experiment, the parameter k is varied from 1 to 15. For both Full Cluster
Filtering (FF) and Cluster Range Pruning (RP), as k increases, the runtime also
increases, as shown in Figure 7.8a. This behavior is expected since finding a single
repair (k=1) requires less computation than identifying multiple repairs. When k is
larger, the algorithm must explore a larger fraction of the search space to find
additional repairs. Similarly, both the number of candidates evaluated (NCE) as
shown in Figure 7.8b and number of clusters accessed (NCA) as shown in Figure 7.8c
exhibit the same increasing trend. This pattern is observed consistently across both
Full Cluster Filtering (FF) and Cluster Range Pruning (RP), reinforcing the intuition
that retrieving more solutions requires higher computational effort. Cluster Range
Pruning (RP) consistently outperforms Full Cluster Filtering (FF).

7.2.5 Effect of Dataset Size

Next, the dataset size is varied and the runtime, number of candidates evaluated
(NCE) and the number of clusters accessed (NCA) are measured for the tpch dataset,
Q7 from Table 3.1, ω5 from Table 3.2. Default settings for all parameters (Section 3.5)
are used. As shown in Figure 7.9a, as the data size increases, the runtime also
increases. Dataset size impacts both the size of the search space and the size of the
kd-tree. Nonetheless, the proposed algorithms scale roughly linearly in dataset size
demonstrating the effectiveness of using materialized aggregation results for clusters
and range-based pruning of candidate repair sets. This is further supported by the
number of clusters accessed (NCA) measurements shown in Figure 7.9b, which exhibit
the same trend as the runtime. For number of candidates evaluated (NCE), as shown
in Figure 7.9c, the number of constraints evaluated varies across different dataset sizes.
This variation occurs because the underlying data itself changes with the dataset size.
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This contrasts with the observations in Figure 7.6 and Figure 7.7, where the number of
candidates evaluated (NCE) remained constant due to the data being fixed across
configurations. These results confirm that the number of candidates evaluated (NCE)
is influenced by changes in the dataset content, rather than by variations in the
branching factor B or bucket size S alone.
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Figure 7.9: Runtime, NCE, and NCA for FF and RP over the TPC-H dataset, varying
data size.

7.3 Comparison with Related Work

The proposed approaches Full Cluster Filtering (FF) and Cluster Range Pruning (RP)
are compared with Erica (Li et al., 2023), which solves the related problem of finding
all minimal refinements of a given query that satisfy a set of cardinality constraints for
groups within the result set. Such constraints are special cases on the aggregate
constraint (AC)s supported in this work. Erica returns all repairs that are not
dominated by any other repair where a repair dominates another repair if it is at least
as close to the user query for every condition θi and strictly closer in at least one
condition. That is, Erica returns the skyline (Borzsony et al., 2001). Thus, different
from the proposed approaches, the number of returned repairs is not an input
parameter in Erica. For a fair comparison, the minimal repairs are determined and
then set k such that the proposed methods returns a superset of the repairs returned
by Erica. To conduct the evaluation for Erica, the available Python implementation is
used (https://github.com/JinyangLi01/Query_refinement).1 The queries,

1To enable a fair comparison between the proposed algorithm and Erica, the code was modified so
that both systems evaluate constraints using the same data processing framework. Specifically, the
original implementation of the proposed algorithm relied on pure Python for DataFrame operations,
whereas Erica leveraged Pandas, which is backed by highly optimized C code. Comparing the two
directly would conflate algorithmic effectiveness with differences in execution speed between Python and
C. For this reason, Erica was re-implemented to use similar data structures to those employed in the
proposed algorithm. While this inevitably reduces the performance of Erica relative to its original form,
the purpose of this modification is not to demonstrate superiority in runtime, but rather to allow a
fair assessment of the two approaches under equivalent conditions. The novel approach also addresses
different problem settings compared to Erica, and future work on optimizing its implementation (e.g.,
in C++ or other lower-level languages) may further improve performance. Thus, the comparison here
should be interpreted as showing broadly comparable behavior under consistent conditions, rather than
as evidence of one system being strictly faster than the other.

https://github.com/JinyangLi01/Query_refinement
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constraints, and the dataset from (Li et al., 2023) were adopted. The generated
refinements and runtime of the techniques in this work are compared with Erica using
Q1 and Q2 (Table 3.1) on the Healthcare dataset (size 50K) with constraints Ω6 and
Ω7 (Table 3.2), respectively.

Comparison on the Generated Repairs. A comparison is first conducted between
the repairs generated by the proposed approaches and Erica. For Q1 with Ω6, Erica
generates 7 minimal repairs whereas the the technique of this work generates 356,
including those produced by Erica. Similarly, for Q2 with Ω7, Erica generates 9
minimal repairs while Full Cluster Filtering (FF) and Cluster Range Pruning (RP)
approaches generates 1035, including those produced by Erica. In general, Full Cluster
Filtering (FF) and Cluster Range Pruning (RP) techniques successfully generate all
repairs produced by Erica. Note that the top-1 repair returned by Full Cluster
Filtering (FF) and Cluster Range Pruning (RP) is guaranteed to be minimal (not
dominated by any other repair). However, the remaining minimal repairs returned by
Erica may have a significantly higher distance to the user query than the remaining
top-k answers returned by Full Cluster Filtering (FF) and Cluster Range Pruning
(RP). For example, in Q1, given the condition income >= 200k of the user query, the
second solution of Full Cluster Filtering (FF) and Cluster Range Pruning (RP)
includes a refined condition income >= 300k whereas Erica provides a refinement
income >= 317k which is far from the user query. As mentioned above, to ensure that
the proposed approach returns a superset of the solutions returned by Erica’s
solutions, the parameter k was adjusted per query and constraint set to ensure that.

Table 7.2: Actual repaired queries generated by Erica for Q1 with Ω6.

Repairs Repaired Predicate Values
[income, num_children, county]

1 [298k, 5, 1]
2 [317k, 4, 1]
3 [424k, 5, 3]
4 [328k, 3, 1]
5 [414k, 3, 2]
6 [433k, 3, 3]
7 [328k, 5, 2]

Detailed Comparison for Q1 with Ω6. To provide a clearer illustration of the
comparison between Erica and the proposed approaches, Table 7.2 lists the 7 minimal
actual repaired queries produced by Erica, while Table 7.3 presents top-34 repairs
generated by Full Cluster Filtering (FF) and Cluster Range Pruning (RP) for the same
query and constraint.

The observed differences in the total number and ordering of repairs arise primarily
from the distinct optimization criteria employed by the two approaches. The
highlighted repairs in Tables 7.2 and 7.3 demonstrate that all of Erica’s repaired
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Table 7.3: Top repaired queries generated by the proposed approach for Q1 with Ω6
(highlighted repairs are also produced by Erica).

Rank Repaired Predicate Values
[income, num_children, county]

1 [298k, 5, 1]
2 [300k, 4, 1]
3 [301k, 5, 1]
4 [302k, 5, 1]
5 [303k, 5, 1]
6 [305k, 5, 1]
7 [308k, 5, 1]
8 [314k, 5, 1]
9 [317k, 4, 1]
10 [317k, 5, 1]
11 [319k, 4, 1]
12 [319k, 5, 1]
13 [320k, 4, 1]
14 [320k, 5, 1]
15 [321k, 4, 1]
16 [321k, 5, 1]
17 [322k, 4, 1]
18 [323k, 3, 1]
19 [322k, 5, 1]
20 [323k, 4, 1]
21 [323k, 5, 2]
22 [324k, 3, 1]
23 [323k, 5, 1]
24 [324k, 4, 1]
25 [324k, 5, 2]
26 [324k, 5, 1]
27 [326k, 3, 1]
28 [326k, 4, 1]
29 [326k, 5, 2]
30 [326k, 5, 1]
31 [328k, 3, 1]
32 [328k, 4, 1]
33 [328k, 5, 2]

queries appear among those generated by the proposed approaches. Specifically, the
first repair of Erica ([298k, 5, 1]) exactly matches the first repair returned by
the proposed approach. The second repair of Erica ([317k, 4, 1]) corresponds to
the ninth repair in the proposed results. Similarly, the fourth and seventh repairs
of Erica ([328k, 3, 1] and [328k, 5, 2]) appear as the 31st and 33rd repairs,
respectively, in the proposed approach’s ranked list. The remaining Erica repairs
([424k, 5, 3], [414k, 3, 2], and [433k, 3, 3]) are also included among the 356
total repairs generated by the proposed techniques, but occur later in the ranking (e.g.,
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Figure 7.10: Runtimes of FF, RP, and Erica.

the third repair of Erica appears as the 245th in the proposed results).

This detailed alignment confirms that the proposed approach successfully reproduces
all valid repairs generated by Erica. Moreover, the differing positions of the matching
repairs reflect the distinct optimization strategies used: Erica returns all repairs that
are not dominated by any other repair, whereas the proposed algorithms rank repairs
by proximity to the original user query.

Runtime Comparison. The experiment utilizes Q4 with Ω8 on the 50K ACSIncome
dataset, which is derived from Erica’s dataset, query, and constraint. The same bounds
in the constraints for both Erica and the proposed approach are used:
B1 :=(Bu1 = 30, Bu2 = 150, Bu3 = 10) and B2 :=(Bu1 = 30, Bu2 = 300, Bu3 = 25),
B3 :=(Bu1 = 10, Bu2 = 650, Bu3 = 50), and B4 :=(Bu1 = 15, Bu2 = 200, Bu3 = 15).
To ensure a fair comparison of execution time, the number of generated repairs (i.e.,
Top-k) is fixed in the proposed approach to equal to the number of repairs produced
by Erica. The parameter k was set to 17 for constraint sets ΩB1

8 and ΩB2
8 , 11 for ΩB3

8 ,
and 13 for ΩB4

8 .

Due to the different optimization criterions, variations in the generated repairs
between the proposed approach and Erica are expected. The results in Figure 7.10b
reveal an advantage of the Cluster Range Pruning (RP) algorithm, which outperforms
Erica in search time which is the time of exploring the search space to generate a
repair. However, as shown in Figure 7.10a, in pre-processing time which is the time of
materializing aggregates and constructing the kd-tree for the proposed methods and
generating provenance expressions for Erica, Erica outperforms both Cluster Range
Pruning (RP) and Full Cluster Filtering (FF), indicating that Erica summarizes
information needed for the search process more effectively. The reason for this is that
Erica only needs to compute the provenance expressions and, for each predicate,
generate a list of candidate constants sorted by their distance from the original
constant in the user’s query. In contrast, the proposed algorithms must perform
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additional steps such as clustering the data, indexing the clusters, and materializing
summaries for each cluster, operations that are significantly more computationally
intensive.

Overall, the total runtime of Cluster Range Pruning (RP) and Erica are comparable,
despite the fact that the proposed approach does not incorporate specialized
optimizations that leverage the monotonicity of the constraints handled by Erica.
Notably, the proposed framework supports a strictly more expressive class of
constraints: group cardinality constraints, as addressed by Erica, are a subset of the
filter-aggregate constraints expressible using the count function in the proposed
approach. Moreover, the proposed approach enables constraints defined as arithmetic
combinations of multiple filter-aggregate query results and supports aggregation
functions beyond count, which are necessary to represent fairness metrics such as
Statistical Parity Difference (SPD). These findings also underscore the importance of
the Cluster Range Pruning (RP) approach, as the Full Cluster Filtering (FF) approach
performs significantly slower than Erica.

7.4 Summary

This chapter evaluates the performance of the proposed query repair methods under
non-monotone aggregate constraints. It begins by comparing against the brute-force
Brute Force (BF), demonstrating that BF is unsuitable for practical use due to its
inefficiency. Then, it compares Full Cluster Filtering (FF) against Cluster Range
Pruning (RP) across real-world (Healthcare and ACSIncome) and TPC-H datasets,
showing that Cluster Range Pruning (RP) often achieves an order-of-magnitude
improvement in runtime, candidate evaluations (NCE), and cluster accesses (NCA) as
exploration distance grows, while both methods perform similarly when exploration
distances are very small. Key parameters: exploration distance, bucket size, branching
factor, top-k, and dataset size are varied. Smaller buckets help Cluster Range Pruning
(RP) prune more effectively (though very large buckets reduce pruning), branching
factor mainly affects Full Cluster Filtering (FF) and Cluster Range Pruning (RP) via
the number of clusters at the leaf level, and both methods scale roughly linearly with
top-k and data size. To set bucket size S and branch factor B in practice, it is
advisable to start with moderate values. If the resulting kd-tree contains too many leaf
clusters, one should consider increasing S or decreasing B. Conversely, if pruning is
found to be ineffective, decreasing S or increasing B may improve performance. This
tuning strategy helps balance runtime with pruning effectiveness based on the
structure of the resulting tree.

It also benchmarks against Erica (Li et al., 2023) under cardinality constraints (a
special case of the aggregate constraint (AC) supported in this work), showing that the
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proposed methods generate a superset of Erica’s minimal refinements. In search time,
Cluster Range Pruning (RP) outperforms Erica’s searching time for repairs, although
Erica’s preprocessing can be faster; overall runtimes are comparable, but Cluster
Range Pruning (RP) supports a far broader class of non-monotone aggregates. These
findings underscore that Cluster Range Pruning (RP) is critical for constraints beyond
simple cardinality. Practitioners are advised to prefer Cluster Range Pruning (RP)
when repairs lie farther from the original query.
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Chapter 8

Conclusions

This thesis provides foundational work to solve the problem of repairing user queries to
satisfy constraints expressed as arithmetic combinations of aggregates over query
results. The work begins by surveying the related work in Chapter 2. Then Chapter 3
introduces the overall methodological framework adopted to solve the problem. After
that, the formal definition of query repair under constraints involving arithmetic
combinations of aggregate functions is presented in Chapter 4. In addition to the brute
force method, this thesis presents two algorithms, Full Cluster Filtering (FF)
in Chapter 5 and Cluster Range Pruning (RP) in Chapter 6, that solve the aggregate
constraint repair problem. Finally, an extensive experimental evaluation over multiple
datasets, queries and constraints is presented in Chapter 7.

The contributions of this thesis are motivated by a growing gap between the technical
capabilities of SQL-based data systems and the complex, real-world constraints that
organizations increasingly seek to enforce over query results. For example, Balayn
et al. (2021) argue that fairness and bias constraints should be incorporated directly
into database management systems, rather than being addressed only in later stages of
data analysis. Similarly, research on fairness-aware range queries has begun exploring
database-level support for demographic balance and unbiased data selection (Shetiya
et al., 2022). While SQL is highly effective for extracting data based on precise
conditions, it lacks mechanisms to ensure that results satisfy complex and real-world
properties such as fairness, proportionality, or compliance with policy constraints. This
gap is particularly visible in domains like healthcare, finance, and recruitment, where
decision outcomes must reflect not only technical correctness but also ethical and
regulatory considerations.

Although prior work on query refinement under aggregate constraints such as the
works by Shetiya et al. (2022); Li et al. (2023) has made meaningful progress
particularly in the context of fairness and diversity enforcement, existing methods are
typically limited to simple count based constraints and assume monotonicity to enable
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efficient pruning of the search space. These assumptions make such techniques
unsuitable for more complex scenarios involving non-monotonic arithmetic expressions
over aggregate functions. As such, they cannot accommodate many real-world
constraints that require richer expressiveness. This thesis addresses these limitation by
introducing the first query repair techniques Full Cluster Filtering (FF) and Cluster
Range Pruning (RP) capable of handling non-monotone aggregate constraints that aim
to fill this gap by enabling SQL queries to be automatically repaired when they violate
aggregate constraints. These constraints are expressed as arithmetic combinations of
multiple aggregate-filter queries and can capture a wide range of application needs,
from demographic fairness to sourcing compliance. Unlike prior work which primarily
supports monotone constraints, this thesis supports non-monotonic expressions,
significantly broadening the scope of query repair.

A critical insight from this work is that, despite the complexity introduced by
supporting non-monotonic aggregate constraints, there are structural properties in the
space of repair candidates that can be exploited to make computation more tractable.
In particular, this thesis finds that many candidate repairs are similar in structure,
often differing only slightly in the constants used in their predicates which leads to
shared computation when evaluating aggregate constraints. Rather than treating each
candidate in isolation, the Full Cluster Filtering (FF) can benefit from shared
evaluation strategies. This motivates the use of a kd-tree to cluster the dataset and
materialize aggregate summaries for each region. This structure enables efficient reuse
of computations: clusters where all tuples either satisfy or violate a predicate can be
accepted or skipped wholesale, avoiding unnecessary re-computation across similar
candidates. Moreover, this similarity between candidates can be leveraged more
aggressively by reasoning over entire ranges of repairs at once. Cluster Range Pruning
(RP) approach uses interval arithmetic to enable conservative but effective
approximation of constraint outcomes for sets of candidate repairs. In practice, this
means that instead of evaluating each repair individually, the algorithm can often
prune or accept whole groups of candidates in a single step. These strategies led to
significant performance improvements in practice, especially when many repair
candidates were similar to each other.

The techniques proposed in this thesis should be preferred in scenarios where the
constraints are complex, non-monotone, or involve arithmetic combinations of multiple
aggregate functions. Such cases arise frequently in fairness-aware data analysis,
compliance-driven reporting, and domains where multiple aggregate conditions interact
in non-trivial ways. In particular, the Cluster Range Pruning (RP) approach
demonstrates strong advantages when the search space is large, since its ability to
reason over ranges of repair candidates allows substantial pruning. In practice, the
choice of repair strategy should depend on both the nature of the constraints and the
underlying data distribution. For example, when user constraints are relatively simple
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and monotone, prior techniques such as Li et al. (2023) may suffice and offer more
lightweight performance. By contrast, when non-monotonicity or fairness-related
measures such as Statistical Parity Difference (SPD) are involved, the methods in this
thesis become essential to obtain valid and meaningful repairs. This suggests the
potential for hybrid systems that analyse the constraints in advance of execution: such
systems could dynamically decide whether to apply a simpler refinement approach like
Li et al. (2023); Shetiya et al. (2022) or to leverage the more powerful, though
computationally heavier, methods introduced in this thesis.

However, for non-monotone constraints, the solution space can grow exponentially, and
even small changes in data statistics can have disproportionate effects on solution
validity. Despite these challenges, certain characteristics in real-world instances often
favor the performance of Full Cluster Filtering (FF) and Cluster Range Pruning (RP):
(i) Cluster homogeneity: clusters with tight bounds that lie entirely above or below
candidate thresholds allow for rapid accept/reject decisions without further
subdivision. (ii) Extreme search regions: large portions of the candidate space are
clearly inside or outside repaired predicate ranges, which allows entire ranges to be
accepted or rejected in a single step. (iii) Constraint’s attributes correlation:
strong correlation between predicate attributes and the attributes of the aggregations
used in the constraint lead to tighter bounds for the aggregate statistics of clusters
which in turn lead to tighter bounds on the results of the constraint. These patterns
suggest that, while worst-case performance is expensive, the algorithm performs well in
many practical scenarios.

The comparison with Erica by Li et al. (2023), the work most closely related to this
thesis, further highlights the contributions and trade-offs of this thesis. Erica is limited
to a specific class of constraints which are group cardinality constraints that evaluate
the count over the results of the query. While it is efficient for this restricted setting
and benefits from optimizations tied to monotonicity, it does not support broader
classes of constraints required by real-world properties such as fairness. In contrast,
the proposed approach supports a strictly more expressive class: any group cardinality
constraint expressible in Erica can also be modelled in the proposed approach as a
filter-aggregate query with a count aggregation. Beyond this, the methods presented
in this thesis can handle arithmetic combinations of multiple filter-aggregate results,
and support aggregation functions beyond count, such as those needed to express
fairness metrics like statistical parity difference (SPD). Although the algorithms were
formally presented for a single constraint, the extension to conjunctions of constraints
is straightforward: each constraint in the conjunction is evaluated independently, and
their results are combined using logical conjunction. This broader expressiveness allows
the proposed algorithms not only to subsume Erica’s constraint model but to address
more complex, real-world use cases where multiple aggregate-based criteria interact.
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In summary, this thesis demonstrates that query repair under non-monotone aggregate
constraints is both feasible and practically effective. By combining clustering with
interval-based pruning, it introduces the first framework capable of ensuring that SQL
queries meet complex real-world requirements such as fairness and compliance. These
methods are efficient enough for deployment in interactive systems, enabling analysts
to iteratively refine queries while adhering to organizational and regulatory
constraints. Ultimately, this work lays the foundation for future systems that support
the complex social, ethical, and business constraints of today’s data-driven world.

The following sections present the limitations of the proposed approaches and outline
promising directions for future research, concluding with a brief summary of the
overall study.

8.1 Limitations and Future Work

While this thesis lays a solid foundation for repairing queries under constraints
expressed as arithmetic combinations of aggregates functions over query results,
several limitations remain and suggest promising directions for further investigation.

First, the current repair framework is limited to modifying the constants within
selection predicates. In real-world scenarios, however, users may require more flexible
forms of query repair, such as introducing or removing joins, altering logical operators,
or modifying query structure altogether by introducing new predicates. Extending the
repair framework to support such structural repairs would significantly broaden its
applicability in practical settings.

Second, the query repair approach presented in this thesis relies on a basic distance
metric that measures changes to predicate constants. While effective, this metric may
not always reflect a user’s true intent. For example, users may prefer repairs that
preserve as many original result tuples as possible. Incorporating alternative
optimization criteria such as user feedback, or minimal output divergence could make
the repair process more aligned with practical analytical needs. This represents a
valuable direction for future research.

Third, the use of interval-based bounds is only a first step toward efficient pruning
strategy. Using more expressive domains than intervals for computing tighter bounds
e.g., zonotopes (De Figueiredo and Stolfi, 2004) could provide more significant tighter
bounds on aggregate values and constraints and thus improve pruning. Adapting the
proposed algorithms to work with these richer domain is a valuable direction for future
work.

Fourth, While the current implementation of repair framework assumes a static
dataset, fixed predicates, a fixed aggregate constraint, and a fixed distance metric. In
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reality, any of these may change. There is a body of work on adjusting
kd-tree (Bentley and Saxe, 1980; Bentley, 1975b); adapting those techniques to
maintain the kd-tree in the proposed approach is a promising avenue. Thus, this work
leaves comprehensive support maintenance under updates as an interesting and
challenging direction for future work.

These future extensions would enhance the flexibility, adaptability, and effectiveness of
the proposed query repair techniques. As data practitioners increasingly work under
fairness, compliance, and representativeness constraints, expanding the capabilities of
query repair systems will be critical for bridging the gap between technical queries and
high-level organizational goals.

8.2 Summary of Contributions

This thesis establishes foundational techniques by addressing the problem of repairing
a query to satisfy a constraint that evaluates a predicate over an arithmetic
combination of the results of aggregation-filter queries evaluated on top of a user query
result. Unlike prior work focused on repairing queries to meet cardinality constraints
or constraints involving monotone aggregation functions, the proposed methods
support non-monotone constraints, including fairness metrics such as statistical parity
difference SPD. The exponential search space of candidate repairs is handled through
two related optimizations: (i) materialization aggregation results for subsets of the
input database in a kd-tree. Then these materialized results can be combined to
determine the aggregation result for a repair candidate, effectively reusing
computations across repair candidates; (ii) representation sets of repair candidates
using bounds on the constants for each condition in the user query, and then derives
bounds on the aggregate constraint results for these candidate sets using interval
arithmetic (De Figueiredo and Stolfi, 2004). This enables the approach to confirm sets
of candidates to be repairs or prune them at once. The results of the experiments
demonstrate the efficiency of the proposed techniques across different datasets, queries,
and constraints.

The work first formalizes query repair under the constraints of arithmetic combination
of aggregation functions: given a user query whose selection predicates yield a result
that violates an arithmetic constraint over aggregates, it seeks the top-k closest repairs
to the user’s predicates so that the repaired query satisfies the constraint. As shown in
Chapter 4, the space of possible predicate changes grows exponentially, and the general
repair problem is NP-hard, which motivates the need for more efficient solution
strategies.

Building on this formulation,this work presents Full Cluster Filtering (FF)
in Chapter 5, the thesis’s first proposed algorithm for the aggregate constraint repair
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problem. Full Cluster Filtering (FF) uses kd-tree structure keyed on selection
predicate attributes to partition the input dataset into set of clusters. For each cluster,
it materializes two types of precomputed summaries: (i) the aggregate values required
by the user’s arithmetic constraint and (ii) lower and upper bounds on each attribute
involved in the predicates. These summaries enable Full Cluster Filtering (FF) to
determine (without revisiting every tuple in the dataset) whether all, none, or only
some tuples in a cluster satisfy any given candidate predicate. The algorithm then
reuses these summaries to avoid redundant aggregate evaluations across different
repair candidates. Finally, Full Cluster Filtering (FF) ranks candidate repairs using
the formally defined Repair Distance in Section 4.4 and returns the top-k modifications
that both minimize distance to the original query and guarantee satisfaction of the
specified aggregate constraint.

This approach’s primary advantage over brute-force enumeration is that, by inspecting
each cluster’s precomputed attribute bounds, the algorithm can immediately accept all
its tuples if they all satisfy a candidate’s predicate, or skip the entire cluster if none do
which eliminates the need to scan individual dataset tuples for every repair.

Then, this thesis introduces Cluster Range Pruning (RP), an enhanced algorithm that
reasons about ranges of repair candidates (see Chapter 6). Whereas Full Cluster
Filtering (FF) evaluates each candidate in isolation, Cluster Range Pruning (RP)
groups candidates into intervals over their constant parameters and then prunes or
accepts those intervals as a whole. As before, it uses a kd-tree to partition the dataset
into clusters, but each cluster now stores the precomputed lower and upper bounds of
every aggregate function required by the constraint (rather than individual constants).
Given the bounds on aggregate functions within the constraint, the algorithm uses
interval arithmetic which computes sound bounds for the result of arithmetic
operations when the inputs (aggregate functions in this case) are bound by intervals.
Specifically, the algorithm first computes the aggregate bounds for a cluster and then
applies interval arithmetic to derive conservative bounds on the overall constraint
expression for the entire interval of candidate repairs. Three outcomes are then
possible:

1. If the bounds on the constraint expression for the entire interval of candidate
repairs satisfies the given constraint threshold, then every candidate in the
interval is guaranteed to satisfy the constraint. All candidates in this interval are
accepted as repairs at once.

2. If the bounds on the constraint expression for the entire interval of candidate
repairs violates the given constraint threshold, then no candidate in the interval
can satisfy the constraint. The entire interval is discarded.

3. Otherwise, some candidates may satisfy the constraint and others may not, then
the set of candidates may contain both valid and invalid repairs. In this case, the
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algorithm subdivides the range into smaller intervals and repeats the same test
on each subrange.

By operating on intervals rather than individual candidates and by exploiting
precomputed cluster bounds, Cluster Range Pruning (RP) can confirms or eliminates
large groups of candidates in a single step without individually evaluating them. The
search terminates as soon as the first k valid repairs have been identified.

After proposing Full Cluster Filtering (FF) and Cluster Range Pruning (RP), an
extensive experimental study is conducted across three real-world and benchmark
datasets, a variety of queries, and diverse arithmetic aggregate constraints. The
evaluation produced the following key insights:

• Brute Force (BF) Is unsuitable for practical use as it scans every tuple and
evaluates each repair candidate individually.

• Full Cluster Filtering (FF) and Cluster Range Pruning Full Cluster
Filtering (FF) reduces tuple’s level evaluation by partitioning data by using clusters
and pre-aggregating, yielding at least one order of magnitude in terms of runtime
overBrute Force (BF). While Cluster Range Pruning further accelerates the search
by reasoning over intervals of candidate repairs and pruning entire intervals at once.
Full Cluster Filtering (FF) and Cluster Range Pruning (RP) exhibit comparable
performance when exploration distance (ED) is small as when solutions are closed
to the user query (smaller exploration distance (ED)), then there is a lower chance
that Cluster Range Pruning (RP) can prune larger sets of candidates at once. As
the exploration distance (ED) grows, Cluster Range Pruning (RP) consistently
outperforms Full Cluster Filtering (FF) across varied queries, constraints and
datasets.

• Performance Impacting Factors A detailed evaluation was conducted to assess
how key parameters influence performance of the proposed algorithms:
– Exploration Distance (ED): When the repairs are close to the original query

(small exploration distance (ED)), both Full Cluster Filtering (FF) and Cluster
Range Pruning (RP) perform similarly. As exploration distance (ED) increases,
Cluster Range Pruning (RP) significantly outperforms Full Cluster Filtering (FF)
by pruning large candidate intervals early.

– Bucket Size (S): Smaller bucket sizes (S) make it more likely to find clusters
that are fully covered or entirely excluded, which enhances the pruning
effectiveness for Cluster Range Pruning. However, this comes at the cost of
having to explore more clusters.

– Branching Factor (B): Performance correlates strongly with the number of
clusters at the leaf level. Full Cluster Filtering (FF) is particularly sensitive to
this, with runtime increasing as the number of leaf clusters grows. Cluster Range
Pruning is more robust to changes in branching.
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– Top-k Parameter: Larger values of k increase runtime, number of candidates
evaluated (NCE) and number of clusters accessed (NCA) evaluated for both
algorithms. However, Cluster Range Pruning (RP) continues to outperform Full
Cluster Filtering (FF) consistently.

– Dataset Size: Both runtime and number of clusters accessed (NCA) scale
roughly linearly with dataset size demonstrating the effectiveness of using
materialized aggregation results for clusters and range-based pruning of candidate
repair sets. For number of candidates evaluated (NCE) varies across different
dataset sizes because the underlying data itself changes with the dataset size.
Cluster Range Pruning (RP) continues to exhibit better scalability due to
range-based pruning.

• Comparison with state-of-the-art Erica: When evaluated on the Erica
benchmarks, Cluster Range Pruning (RP) achieves total runtimes comparable to
those of Erica. As Cluster Range Pruning (RP) supports a far broader class of
non–monotonic aggregate constraints, this underscores the critical role.

In general, Cluster Range Pruning (RP) is recommended over Full Cluster Filtering
(FF) whenever repairs are expected to lie farther from the original query in the search
space, due to substantial pruning benefits. For very small exploration distance (ED),
Full Cluster Filtering (FF) remains a lightweight alternative. Together, these results
demonstrate that the new algorithms (Full Cluster Filtering (FF) and Cluster Range
Pruning (RP)) provide both the generality and the efficiency required to make the
query repair for non-monotone aggregate constraint a practical tool in real database
systems.
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