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Understanding the behavior and evolution of a dynamical many-body system by analyzing pat-
terns in their experimentally captured images is a promising method relevant for a variety of living
and non-living self-assembled systems. The arrays of moving liquid crystal skyrmions studied here
are a representative example of hierarchically organized materials that exhibit complex spatiotem-
poral dynamics driven by multiscale processes. Joint geometric and topological data analysis (TDA)
offers a powerful framework for investigating such systems by capturing the underlying structure of
the data at multiple scales. In the TDA approach, we introduce the Ψ function, a robust numerical
topological descriptor related to both the spatiotemporal changes in the size and shape of individual
topological solitons and the emergence of regions with their different spatial organization. The geo-
metric method based on the analysis of vector fields generated from images of skyrmion ensembles
offers insights into the nonlinear physical mechanisms of the system’s response to external stimuli
and provides a basis for comparison with theoretical predictions. The methodology presented here
is very general and can provide a characterization of system behavior both at the level of individual
pattern-forming agents and as a whole, allowing one to relate the results of image data analysis to
processes occurring in a physical, chemical, or biological system in the real world.

I. INTRODUCTION

The formation of patterns is a well-known phenomenon
observed in physical, chemical and biological systems as
a consequence of non-linear dynamics leading to self-
organisation of the system and its non-trivial spatio-
temporal behavior [1–8]. In fact, patterns can arise at dif-
ferent hierarchical levels as a result of the movement and
interaction of a large number of multi-scale subsystems
that constitute a complex system. Constituents range
from molecular to macroscopic scale and include photons,
atoms and molecules, organelles and living cells, particle
clusters, bacteria, biological organisms flocking together,
and stars forming a cosmic network. An analysis of the
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spatial structure and the temporal behavior of patterns
can reveal the dynamics of processes that occur both at
the macroscopic and microscopic levels of the underlying
system.

Often complex system measurements are encoded in
data point clouds, spanning from numerical data on
structured grids, e.g. images, to networks and graphs,
e.g. a gene-regulatory network. Topological data analy-
sis (TDA) is a recent and rapidly growing field that pro-
vides new topological and geometric analytical tools to
uncover the underlying features of complex systems from
their measured data point clouds [9]. TDA is particularly
powerful in extracting relevant topological and geometric
features from complex data and provide valuable, multi-
scale insight. A widely used TDA method to compute
topological features is persistence homology which has
been successfully applied in biology, medicine, chemistry,
physics, and material science [10–15]. A new develop-
ment in this research field involves introducing TDA into
machine learning (ML) methods to exploit topological
properties in ML pipelines or to use topological informa-
tion to improve ML pipelines [16–18].
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Even though linking characteristics obtained from the
persistent homology of complex systems to their chem-
ical, physical and biological parameters is challenging,
this has been attempted successfully using a wide range
of experimental and simulated data. Early studies
have used persistent homology to analyse the equilib-
ria and the periodic dynamics of the Rayleigh–Bénard
convection and Kolmogorov flow, two model systems of
spatio-temporal pattern formation away from equilib-
rium [1, 19–21]. The global behavior of biological ag-
gregations such as bird flocks, fish schools, and insect
swarms have been quantified using Betti numbers, topo-
logical barcodes and different types of distance matri-
ces [22]. The same tools have been used to characterise
the dynamics of islands in a confluent cellular monolayer
spreading on an empty space surface, and to track and
classify the evolving shapes of interfaces between two
monolayers of different cells in an antagonistic migration
assay [23]. A similar persistence homology-based tech-
nique has been used to study the pattern-forming transi-
tion in cooling granular gases obtained by numerical sim-
ulations [24] and in experimental studies of phase tran-
sition in nematic liquid crystals doped with plasmonic
nanoparticles [25]. Using a model example of various
imperfect lattices, an attempt has been made to per-
form topological measurements for pattern-forming sys-
tems providing both roll and dot patterns, transitions
between which can occur when a control parameter is
changed [26]. Furthermore, TDA combined with ML
techniques has been applied for automatic detection of
critical transitions in microstructured materials during
two distinct pattern-forming processes, such as the spin-
odal decomposition of a two-phase mixture and the for-
mation of binary-alloy microstructures during physical
vapor deposition of thin films [27]. As another example,
the unsupervised classification of persistence images has
made it possible to automate the categorisation of multi-
cellular spatial patterns, whose organisation is controlled
by the efficiency of mutual cell adhesion [28].

Recently, several attempts have been made to apply
TDA to patterning in real systems at several hierarchical
levels. Here, perhaps the best example comes from the
biological world, namely a study of simulated zebrafish
skin patterns from an agent-based model that quantified
pigment cell dynamics and global pattern attributes on
a large scale using TDA, computational geometry and
interpretable machine learning method [29, 30]. Another
very interesting inverse analysis of topological data has
also been shown, when a particular region of a persistent
diagram was directly linked to an inhomogeneous area
of simulated transmission electron microscopy images of
amorphous and liquid states of matter [31].

In the present study, we demonstrate the ability of
TDA to reveal the periodic behavior of complex, organ-
ised patterning agents and identify global attractor-like
dynamics. This follows earlier results on persistent ho-
mology successfully revealing the cause of the magnetiza-
tion reversal process on the original microscopic magnetic

domain structure [32] and the mechanisms of formation
dynamics of magnetic domain patterns. In particular,
we apply TDA to experimental data from a soft matter
system, consisting of electrically powered dynamic en-
sembles of three-dimensional twisted structures in chiral
nematic liquid crystals [33, 34]. Such 3D structures are
characterised by skyrmion-like configurations of the liq-
uid crystal (LC) director field. Skyrmions were originally
identified in the magnetization textures of chiral magnets
[35], introduced in particle physics [36] and then in chiral
liquid crystals [37–39], magnetic colloids [40], evanescent
electromagnetic fields [41] and light [42, 43]. The choice
of liquid crystals as a test-bed for our method is dictated
by the ease of their manipulation, their long-term stabil-
ity of supporting topological structures at room temper-
ature, the easy visualisation of skyrmions, and their high
responsiveness to applied external fields, ensuring transi-
tions between topologically protected metastable states.

Previously, only a few attempts have been made to
propose various topological indicators based on the per-
sistence of structural features, that could describe a hi-
erarchically complex macroscopic state of a partially or-
dered system. This results from the fact that expressing
differences in physical properties through differences in
structure has proven to be effective for regularly arranged
structures and completely disordered systems, but not
for spatially non-uniform or partially ordered systems.
Persistent homology applied to material science data is
uniquely suitable for the latter due to its ability to cap-
ture the structural diversity of real and simulated mate-
rial systems or algebraically constructed spaces [44, 45].
The recently proposed separation index allows one to
analyse the topology of both the global many-particle
system and the local particle environment [46], while the
structural heterogeneity measures the deviation of a liq-
uid crystal from a homogeneous or uniform state at the
mesoscopic level [25]. Another indicator, the persistent
generator count with relative stability, demonstrated in
the context of 2D magnetic skyrmion lattice systems, ef-
fectively measures lattice configurational properties and
correlates with the conventional orientational order pa-
rameter. It also traces phase transitions across solid,
hexatic, and liquid states [47]. The Euler characteristic,
although not related to persistence homology-associated
tools, can also serve as a topological descriptor to quan-
tify the shape of data objects that are represented as
fields or manifolds [48]. Finally, TDA can be successfully
applied to molecular dynamics data as well [44, 46, 49].
However, TDA based on persistent homology is rather
different from physics-based approaches to determine mi-
croscopic variables that correspond to macroscopic char-
acteristics of a given system, like for example, the phe-
nomenological coefficients in the Frank free energy of ne-
matic liquid crystals [50–52]. The latter are based on
molecular dynamics or other molecular modeling meth-
ods, while the former deals with geometric structure of
materials science data.

We introduce a new topological characteristic, the
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Ψ function, that allows us to reliably detect periodic
changes in the size of pattern-forming agents, as opposed
to the algebraic norm or structural heterogeneity that
was previously proposed to track temporal evolution of
soft matter systems [25]. At the same time, we show
that the evolution of a dynamic and complex hierarchi-
cal system can be examined in general terms by comput-
ing distance matrices between different ensemble states.
The behaviour of the system as a whole can be analysed
in more detail by modeling the time-dependent imaging
data as discrete vector fields, and then applying multidi-
mensional scaling to it, an unsupervised learning method
similar to principal component analysis but suitable for
the analysis of large images.

The paper is structured as follows. In the next section
Section II we present our experimental and theoretical
tools, including the Ψ function. This section covers in
some detail the core mathematical definitions and deriva-
tions. However, the following experimental sections are
self-contained so can be followed, in the first instance,
without the mathematical details.

Section III is the core of the paper. Section IIIA il-
lustrates the general principles of the two analysis ap-
proaches taken in this paper, evolutionary and topologi-
cal. The first is the subject of Section III B: here we use
distance matrices to create low dimensional embedding
spaces that allow the visualisation of the global skyrmion
structure dynamics. The second is used in Section III C
to extract the fine scale harmonic and anharmonic be-
haviour which is a signature of the nonlinearity of the
skyrmion dynamics. The conlusions summarise this pa-
per and discuss possible applications to other soft-matter
fields. Additionally, the paper contains a Supplemental
Material (SM).

II. METHODS

A. Liquid crystal samples for the formation of
topological solitonic structures

Localized topological field configurations such as
skyrmions, hopfions, torons, twistions and some others
have recently been found in magnetic systems, liquid
crystals and light beams [53–55]. They represent field
configurations with a non-trivial global topological struc-
ture, i.e. they cannot be transformed into a homogeneous
field by continuous changes. These structures also cor-
respond to a local minimum of the field energy and are
thus metastable structures, the transformation or erasure
of which requires an external influence with energy input.
In liquid crystals, the most well-known topological soli-
tonic structure is the toron, also known as the cholesteric
spherulite or cholesteric bubble [56]. Its basic element is
a double-twist cylinder looped on itself, accompanied by
hyperbolic point defects above and below the equatorial
torus plane to match the locally twisted LC director field
with the surrounding uniform unwound state [57]. In gen-

eral, a wide variety of localized topological structures can
be obtained in thin layers of chiral nematic liquid crystals
(CLCs) under conditions where the geometry of the LC
sample, combined with strong perpendicular anchoring
conditions on confining substrates, suppresses the wind-
ing of the cholesteric helix [58].
When preparing samples for our experiments, a com-

mercially available nematic mixture ZLI2806 (EM Chem-
icals) was doped with the right-handed chiral additive
CB-15 (EM Chemicals). The weight fraction used for
the chiral dopant was chosen as Cdopant = 1/(ξp), as
needed to define the helicoidal pitch p of the subse-
quent chiral LC mixture to be of desired value, where
ξ = +5.9 µm−1 is the helical twisting power of the
chiral dopant in the particular nematic host we use.
The CLC mixture was additionally mixed with 0.1 wt%
of cationic surfactant hexadecyltrimethylammonium bro-
mide (CTAB, purchased from Sigma-Aldrich) to allow
spontaneous generation of torons by means of relaxation
from electrohydrodynamic instability, as described be-
low. The samples were prepared by sandwiching the
mixtures between indium tin oxide (ITO)-coated glass
substrates. Strong perpendicular boundary conditions
were set for the CLC director by treating the glass sub-
strates with polyimide SE1211 coatings (Nissan Chem-
ical). The treatment was implemented by spin coating
the ITO sides of glass substrates at 2700 rpm for 30 s,
followed by a 5 min pre-bake at 90◦C and a 1 h bake at
180◦C.

B. Manipulation of an ensemble of localised
twisted structures

Although the topological solitons can appear sponta-
neously, in our experiments they were robustly generated
by first inducing and then relaxing the electrohydrody-
namic instability obtained at the applied AC voltage of
U = 20 V at the frequency f = 2 Hz, forming sponta-
neously as energetically favorable structures after turn-
ing U off (Fig. 1a). This emergent robustness of the
torons stems from the chiral CLC’s tendency to twist,
which results in the formation of various twisted con-
figurations. The particular twisted structures of torons
that we study allow for relaxing the CLC’s frustrated un-
wound state via formation of energetically favorable twist
regions (Fig. 1b). Furthermore, by manually switching on
and off the electric voltage U that induces the hydrody-
namic instability 3-5 times in the course of a few seconds,
one can control the number density as desired, up to tight
packing of torons. The initial relative spatial positions of
the torons are random, but crystallites slowly form due to
the repulsive interactions at the high packing densities.
The electric field needed to generate and control torons
was applied across the samples using a custom made
MATLAB-based voltage-driving program coupled with
a data-acquisition board (NIDAQ-6363, National Instru-
ments). Various electric driving schemes were used in



4

order to morph the solitonic and power induced motions
(Fig. 1c). The macroscopically-supplied electrical energy
was converted locally into solitonic motions that then
exhibited various collective effects described in our study
(Fig. 1 d-f). Optical videomicroscopy then allowed us
to track the positions and collective organisations of the
torons [59, 60] from the recorded Supplementary videos
1, 2 and 3.

FIG. 1. Evolutionary and topological approaches to the anal-
ysis of complex soft dynamic systems. a, Schematic of a chi-
ral nematic LC sample under applied electrical voltage. b,
Optical image of a single localized structure, representing its
well-known topology with the spatial torus-like director field
organization [57]. c, An example set of optical images demon-
strating a time-evolving toron pseudo-crystallite with changes
in the shape and position of localized structures. d-f, Ex-
amples of three dynamic systems, the ensembles of localized
twisted structures, studied in this work. Experimental polar-
izing micrographs are taken after 1.5 min (d), 3 min (e) and
36.9 s (f) under an applied electric field.

C. Distance matrices of image spaces

We use the spaces of vector fields over discrete measure
spaces framework [61] to analyse the video data. We
provide here a brief description of the method to help
with the discussion of the results.

We can think of an image as a vector field, X (Λwh),
defined over a grid of pixels Λwh of width w and height
h. Let each pixel s ∈ Λwh have equal weight or measure
µ(s) = 1. A grayscale image assigns a single real number
(intensity) to each pixel, while an RGB image assigns
a 3-dimensional vector (red, green, blue) to each pixel.
Formally, this defines a function X : Λwh → Rd, where
d = 1 for grayscale and d = 3 for RGB.
To measure the difference between two images, we use

what the Lp,q-norm of an image X , given by:

∥X∥Lp,q :=

 ∑
s∈S(Λwh)

∥X (s)∥pq

1/p

, if p < ∞, (1)

and

∥X∥L∞,q := max{∥X (s)∥q}, (2)

where ∥X (s)∥q :=

(
n∑

i=1

|xi|q
)1/q

is the q-norm of the

pixel intensity vector X (s) = (x1, · · · , xn).
Given two images X ,Y : Λwh → Rd, their Lp,q-

distance is defined as:

Lp,q(X ,Y) =

 ∑
s∈S(Λwh)

∥X (s)− Y(s)∥pq

1/p

. (3)

This gives a flexible way to compare images, whether
they are grayscale or RGB, by combining pixel differ-
ences across the entire image (Fig. 2a). This method can
also be used to measure the difference between the image
gradients.
The RGB video frames obtained from Supplementary

videos 1, 2 and 3 were transformed to grayscale. For
each set of video frames, we computed the correspond-
ing L2,2-distance matrices. For these computations, we
systematically selected every fifth video frame within the
complete datasets for Supplementary videos 1 and 2, and
every second video frame for Supplementary videos 3.
The data processing and distance matrix computations
were performed in Python.

D. L2,2-norms and L2,2-distance matrices of video
frames and gradients of video frames

The corresponding L2,2-norms and distances matrices
of the video frames were computed following the method-
ology described in the previous section.
The gradient of an image measures the rate and direc-

tion of change in the intensity of the pixels, highlight-
ing edges and regions of high contrast. In this work,
gradients of grayscale images were computed using the
numpy.gradient function in Python, which applies cen-
tral differences for interior pixels and one-sided differ-
ences at the boundaries. For a 2D grayscale image I, the
horizontal gradient ∂X

∂x at pixel (i, j) is approximated as:

∂X
∂x

≈ X [i, j + 1]−X [i, j − 1]

2
. (4)

Similarly, the vertical gradient ∂X
∂y is computed using

values from adjacent rows. The L2,2-gradient norm |∇X |
is then calculated as:

|∇X | =

√(
∂X
∂x

)2

+

(
∂X
∂y

)2

. (5)

This norm emphasizes regions of significant local inten-
sity change. The corresponding L2,2-norms and distances
matrices of gradients of video frames were also calculated
in Python using the methodology described in the previ-
ous section.
For this analysis, we worked with grayscale images, en-

suring that the images used to compute persistent homol-
ogy, as will be discussed in section II F, were exactly the
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FIG. 2. Geometric and topological methods for image anal-
ysis. a, Computation of the L1,1 distance between two
grayscale images. b, A grayscale image and c, the filtration
by pixel intensity associated with it. As the pixel intensity
increases, topological features such as clusters of pixels and
loops of pixels appear and disappear. d, The Persistence dia-
gram of the filtration is collection of points on the plane that
records the information about the pixel intensity at which
the 0-dimensional (blue) and one-dimensional (red) topologi-
cal features appear (birth), and the intensity value at which it
disappears (death); e, Three separated regions PDr, PDℓ and
PDu at a fixed pixel intensity threshold s. The topological
cycles (b1, d1) and (b2, b2) are the most stable at pixel inten-
sity s.

same as those used in the gradient–based analysis. This
avoids discrepancies that could arise from differences in
colour channels or image representations. However, the
methodology extends naturally to RGB images: the gra-
dient can be defined using a vector-valued formulation
and the L2,2-gradient norm as the Frobenius norm of the
Jacobian.

E. Multidimensional scaling of distance matrices

Classical multidimensional scaling (MDS) takes an
n × n matrix of pairwise Euclidean distances between n
points and reconstructs coordinates that preserve those
distances. The algorithm works by converting the dis-
tance matrix into a positive semidefinite inner product
matrix A, from which the coordinates of the point are
derived. In this case, MDS is equivalent to principal com-
ponent analysis.

The eigenvalues of the matrix A represent the vari-
ance of the data along each principal coordinate. A
large eigenvalue indicates a principal axis that captures
a significant amount of the variation in the pairwise dis-
tances. A detailed exposition of the algorithm to obtain
Euclidean coordinates using MDS can be found in [62].

We performed multidimensional scaling on the L2,2-
distance matrices to obtain Euclidean coordinates from
the distance matrices associated with the Supplementary
videos 1, 2 and 3, which were obtained following the
method described in section IIC. We performed multidi-
mensional scaling using the MATLAB built-in function
cmdscale.

F. k-structural heterogeneity

In [25], structural heterogeneity was defined as a topo-
logical characteristic for soft matter systems, using imag-
ing data. It is based on persistent homology, a data ana-
lytic tool used to get insight from the shape of the data.
Here we generalise the notion of structural heterogene-
ity to consider two different types of topological features
that might appear in imaging data. We recall some ba-
sic notion of persistent homology for grayscale images
and the definition of structural heterogeneity and we in-
troduce the generalised k-structural heterogeneity. For a
more detailed exposition of persistent homology, we refer
the reader to Refs. [63, 64].

A grayscale image can be analysed using persistent ho-
mology by examining how its structure changes across
different light intensity levels (Fig. 2b-2d). For each in-
tensity threshold i (ranging from 0 to 255), we create a
filtration, i.e., a collection of simplified versions of the im-
age that include only the pixels with intensity less than or
equal to a fixed pixel intensity value i. As the threshold
increases, new features appear and existing ones disap-
pear. These features include isolated regions (connected
components) and loops of pixels.

Each feature is recorded by the threshold value at
which it appears (birth) and the value at which it dis-
appears (death). These pairs of values are plotted to
form a persistence diagram, which provides a summary
of the image’s topological structure across all intensity
levels.

The difference between the death and birth values of a
feature is called its persistence, and it reflects how long
that feature remains present as the intensity threshold
changes. By summing the persistence values of all loops
(1-cycles) in the diagram, we obtain a measure of the
image’s structural complexity, referred to as its structural
heterogeneity.

For a grayscale image X with corresponding persis-
tence diagram PD(X ), its k-structural heterogeneity, de-
noted SHk(X ), is the sum of the persistence values over
all topological features or cycles αk of dimension k in
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PD(X ), with birth and death coordinates (bαk
, dαk

):

SHk(X ) =
∑

(bαk
,dαk

)∈PD(X )

dαk
− bαk

. (6)

Isolated regions define cycles of dimension zero or 0-
cycles whereas loops of pixels define the cycles of dimen-
sion one or 1-cycles. The open source TDA platform
GUDHI was used to compute the normalised persistence
diagrams that include 0- and 1-cycles from grayscale
video frames. The normalisation of persistence diagrams
followed the procedure reported in Ref. [25].

G. The Ψ function

Extracting insightful topological information from
noisy digital images can be challenging. Noise in images
shifts the birth and death times of features in persistence
diagrams, introducing many short-lived features. While
longer-lived features in a persistence diagram are more
likely to represent real structures, short-lived ones are of-
ten artifacts of noise. To define a more robust numerical
topological descriptor than (6), we used the methodology
described in Ref. [65, Section 3] to minimise the contribu-
tion of short-lived features, which are attributed to noise,
while retaining the topological features that have a long
lifespan. We define this optimised structural heterogene-
ity (OSH), denoted Ψ, next.
Let PDk(s) be the set of k-dimensional topological fea-

tures that are “alive” at scale parameter s in the persis-
tence diagram PD(X ), that is, features whose birth and
death coordinates (b, d) satisfy b ≤ s < d. Then |PDk(s)|
is the number of such features. Pictorially, PDk(s) cor-
responds to the set of points in the persistence diagram
that lie to the left of the vertical line b = s and above
the horizontal line d = s. Let PD(s) :=

⋃
k PDk(s) be

the union over all dimensions. Let ΨN be defined as a
normalised sum over all features alive at scale s, where
each contribution is given by the product (d− s)(s− b),
with b and d denoting the birth and death of a feature,
respectively:

ΨN (s) =
1

|PD(s)|+ 1

∑
(b,d)∈PD(s)

(d− s)(s− b). (7)

The product (d − s)(s − b) in (9) becomes large only
when s lies near the middle of a feature’s lifespan that is,
between its birth time b and death time d. If s is close
to b or d, one of the terms s− b or d− s becomes small,
causing the product to shrink.

Two correction factors need to be introduced to ac-
count for those topological features that were discarded
from PD(X ) in ΨN (s). At threshold s, the persistence di-
agram splits into three regions (Fig. 2e): the rectangular
region PDr; the lower triangular region PDℓ consisting
in all cycles whose death coordinates satisfy d ≤ s; and
the upper triangular region PDu consisting in all cycles

whose birth coordinates satisfy b > s. Consider the func-
tions:

Ψℓ(s) =
∑

(b,d)∈PDℓ(s)

s− d

d− b
(8)

and

Ψu(s) =
∑

(b,d)∈PDu(s)

b− s

d− b
. (9)

Give a grayscale image X , the OSH of X , denoted Ψ
is defined by

Ψ(X ) = argmax
s∈[0,I]

Ψℓ(s)ΨN (s)Ψu(s) (10)

where [0, I] is the range of pixel intensity values.
For each set of time-dependent images {Xt}t≥0, we can

compute the corresponding time-dependent value Ψ(Xt)
to keep track of the time-evolution of the associated dy-
namical system.

III. RESULTS AND DISCUSSION

A. Time-evolving complex soft matter system

In this section, we present three experimental systems
used as model examples to demonstrate transformational
topological approaches to the analysis of dynamic multi-
scale soft-matter-based systems. As already mentioned,
the pattern-forming agents are 3D localised twisted struc-
tures in liquid crystals, characterised by a complex spa-
tial distribution of the LC director field. A variety of such
particle-like structures spontaneously appear as elastic
excitation in frustrated films of chiral nematics after the
relaxation of electrohydrodynamic instabilities, provided
that the helical pitch p only slightly exceeds the thickness
of the homeotropically oriented LC layer d (p ≳ d) (see
Methods IIA) [66, 67]. These structures can also be cre-
ated by optically induced reorientation of liquid crystal
molecules when illuminating a frustrated chiral nematic
film with a tightly focused laser beam of sufficient power
[57, 68, 69]. In this case, the spot size and the power of
the light beam determine the type of elastic excitation
formed.
When an alternating electric field is applied to a dense-

packed ensemble of particle-like soft structures (Fig. 1a)
(see Methods II B), shearing-like deformations of quasi-
hexagonal lattices occur in a pseudo-crystallite, accom-
panied by the evolution of crystallite grain boundaries
(Fig. 1d) (Supplementary video 1). In addition, un-
der certain parameters of the applied field, the trans-
formation of pseudo-crystallites can be accompanied by
the individual transformations of localised structures into
cholesteric fingers (Fig. 1e) (Supplementary video 2). If,
however, an electric field is applied to a less dense ensem-
ble of soft quasi-particles, each of the structures trans-
forms the macroscopically supplied electrical energy in
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such a way that the entire ensemble exhibits collective
motion in a direction that does not correlate with the
direction of the electric field applied orthogonally to con-
fining substrates (Fig. 1f) (Supplementary video 3). This
motion leads to the formation of dynamic chains and
clusters of localized structures, so that in general the
process resembles movement in complex self-assembling
living systems, such as flocking of birds or fish [33].

The analysis of dynamic ensembles of localised elastic
excitations in a viscoelastic liquid-crystal medium is a
complex problem. Even for a single skyrmion structure,
studying the non-equilibrium behaviour is a challenge
[70, 71], while for dynamic toron pseudo-crystallites, so
far only Voronoi reconstruction has been applied to re-
veal the complex movements of particles and defects
within their lattices [34]. On the other hand, light pass-
ing through a three-dimensional LC structure placed be-
tween polarizers forms a distinct optical microscopic im-
age, which is determined by the spatially inhomogeneous
orientational distribution of molecules within the struc-
ture. Although it should be remembered that the optical
image is a two-dimensional projection of the transmitted
light and the reconstruction of the 3D director distribu-
tion is impossible without additional experimental data
or numerical simulations, nevertheless, different localised
excitations form optical images that are distinguishable
from each other [72], and an ensemble of localized excita-
tions creates a patterned optical picture. Based on this,
we introduce two methods for studying dynamic ensem-
bles of localised structures: the first is an evolutionary
approach that can be used to explore the general behav-
ior of a nonequilibrium many-body system, even if in-
dividual structures undergo shape transformations. The
second is a topological approach that can be applied to
detect changes in the localised structures themselves that
constitute a dynamic ensemble.

The first method implies that the time sequence of ex-
perimentally taken video frames visualizes changes in the
state of the three-dimensional system (Fig. 1c), and the
numerically computed distance between frames (in other
words, the degree of discrepancy between the intensity
distributions of optical images) reflects the rate of these
changes (Fig. 2a). Then the reconstructed distance ma-
trix between all video frames reveals the evolutionary
path of the system.

The second method is based on the fact that the inten-
sity distribution is related to the topology of a localized
structure (Fig. 1b), and TDA reveals the structural fea-
tures of the two-dimensional light pattern (Fig. 2b-e). In
each case of the dynamic ensembles presented in Fig. 1d-
f, consideration of the time dependencies of topological
quantities allows us to detect changes in the 3D spatial
organisation of the localized structures themselves, simi-
larly to how we tracked structural changes in liquid crys-
tal nanocomposites [25].

B. Spatio-temporal evolution of soft quasi-particle
ensembles

As discussed earlier, for the evolutionary analysis, we
consider the difference between frames of the same video
to understand the difference between the physical states
of a complex dynamical system at different points in
time. To quantify this difference, we computed the L2,2-
distance between all pairs of frames (see Methods II C).
Inspection of the computed distance matrix (DM) allows
us to reveal systems that preserve their overall spatial
organisation over time evolution. Note that to effec-
tively compare the evolution of different systems, frame
numbers were converted to seconds of real experimen-
tal videos. In the case of shear-like deformation of the
pseudo-crystallite (Fig. 3a), the distance between any
video frame and sequentially all the others first smoothly
increases and then decreases again, demonstrating that
the system tends to return to its initial configuration
(Fig. 3b). Simple visual observation of video frames
shows that the grain boundary also drifts with time,
but the DM turns out to be insensitive to this change.
If the movement of a pseudo-crystallite is accompanied
by a shape transformation of individual pattern-forming
agents (Fig. 3c), the system is only able to approach the
initial state after moving away from it, and ultimately
moves far from the initial configuration (Fig. 3d). In ad-
dition, the much narrower blue diagonal in Fig. 3d com-
pared to Fig. 3b indicates that in the second case the rate
of change of the system is much higher, which is consis-
tent with faster movement of the pseudo-crystallite (Sup-
plementary video 1 and 2). In the case of self-assembly of
moving clusters (Fig. 3e), the distance between the states
of the system first increases remarkably quickly, which
corresponds to the transition from pseudo-crystalline to
cluster spatial organization, and then remains large and
almost unchanged (Supplementary video 3), which is ex-
plained by displacement of clusters of different sizes and
shapes over time (Fig. 3f). The widening of the DM
diagonal indicates that the cluster states of the system
are closer to each other than the pseudo-crystalline and
cluster states.

In general, DMs provide a qualitative understanding of
the evolution of soft reconfigurable quasiparticle systems,
but a more detailed analysis of the direction and end
point of evolution is desirable. Since dynamic ensembles
of skyrmions are multidimensional complex systems, it is
reasonable to reduce the dimension of the video frame in-
tensity data for further consideration, for example, using
the principal component analysis method (PCA). Obvi-
ously, liquid-crystalline systems are essentially nonlinear,
so one would expect that dimensionality reduction will
also be nonlinear, but here we aim to consider how linear
dimensionality reduction can be applied to such systems
and what results can be obtained. Therefore, we applied
multidimensional scaling for three videos, selected frames
of which are presented in Fig. 3a,c,e.

Multidimensional scaling is an unsupervised method
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FIG. 3. Spatio-temporal evolution of different types of soft
quasi-particle ensembles. a,c,e, Time evolution of three en-
sembles of localized structures under an applied electric field,
shown using selected frames from the corresponding videos.
b,d,f, The computed image distance matrices for correspond-
ing videos, where frame numbers were converted to seconds
of real-time experimental videos

.

that allows one to obtain Euclidean coordinates of the
L2,2-distance matrices (see Methods II E). In the simplest
case of densely packed and moving skyrmions (Fig. 4a),
the eigenvalue intensities show that the first two compo-
nents are an order of magnitude stronger than the third
one. In their two-dimensional space, an almost closed
loop is formed. This corresponds to the situation when a
densely packed hexagonal lattice of localized structures
is preserved during its movement, and at a certain time,
when the positions of the localized structures coincide
with the initial ones, the system returns to its original
state. When taking the third principal component into
account, the 3D curve lies almost in a plane parallel to
the plane of the first two components, which reflects the
minor contribution of the third component to the system
dynamics.

In the case of the second video (Fig. 4b), a spiral-like
converging trajectory is obtained in the space of the first
and second components, leading to a seemingly attrac-
tive fixed point at the end of evolution when all localized
structures are transformed into cholesteric fingers dur-
ing their movement. However, from the eigenvalues it
is clear that several more principal components are also
significant. In 3D space of the first three components,
a rather flat curve at the beginning of evolution indi-
cates a minor contribution of the third component, but
closer to the end of the video its contribution becomes
remarkable. Thus, the vertical part of the 3D curve is
formed representing the growth of cholesteric fingers, al-
though in the projection onto the plane of the first two
components, a converging curve resembling a fixed point
attractor indeed appears.

It is difficult to isolate significant components in the

case of the third video with skyrmion clustering (Fig. 4c),
but if we limit the analysis to the first three, then the
contribution of the third component is strong at the be-
ginning of the video, when clusters are formed and the
translationally invariant configuration (TIC) between the
skyrmions appears [73, 74]. Then the contribution of the
third component weakens, and the 3D curve becomes flat-
ter, which corresponds to the movement of the clusters in
the real-time video. The 2D projection shows a diverg-
ing spiral which we expect not to diverge much further
since the clusters have already formed. Unfortunately,
we are unable to verify this because the recorded video is
too short. The temporal evolution of individual princi-
pal components (Fig. S1 of the SM) also confirms the fact
that the first and second components are of key impor-
tance when considering the movement of shape-persistent
pattern-forming agents, while the third and even fourth
components dominate in the case of their simultaneous
shape transformation.
Note that clustering can also be considered as a process

of shape transformation of the pattern-forming agents.
In the case of system shown in Fig. 3e, this occurs by
“gluing” skyrmions into their long chains surrounded by
the TIC phase and forming a dynamic stripe-like pat-
tern (Supplementary video 3), unlike the example shown
in Fig. 3c, where individual skyrmions themselves trans-
form into stripe-like cholesteric fingers (Supplementary
video 2).
To sum up, DMs are capable of capturing the simi-

larity of states of time-evolving systems on a large size
scale, without taking into account finer details and struc-
tural defects of lower dimensions (e.g., linear disclinations
such as grain boundaries). Its coupling with PCA makes
it possible to detect whether the movement of ensemble-
forming structures is accompanied by their shape trans-
formation or other, more complex processes, and when
this occurs in time.

C. Periodic structural changes of soft
quasi-particles

Careful visual inspection of the video data prompted
us to analyze in detail the size variation of localized struc-
tures, as we noticed their regular and consistent pulsa-
tion. In the case of a dynamic pseudocrystallite, the av-
erage size of localized structures changes in a small range
of values, but clearly periodically (Fig. 5a). In the case of
moving self-organized clusters, the average size of quasi-
particles decreases noticeably and then remains almost
constant, however, from the two observed dips one can
assume that in this system the variation period can be
much longer (Fig. 5b). Fast Fourier transform (FFT)
analysis applied to the first data set reveals a number of
distinct frequencies (Fig. 5c), while in the second case no
periodicity in time can be clearly identified (Fig. 5d).
The observed variations in the size of localized struc-

tures are ensured by a change in the size of the LC re-
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FIG. 4. Principal coordinate analysis applied to three different dynamic ensembles of localized twisted structures. a,b,c,
Eigenvalues of the principal components and trajectories in the spaces of the first two and first three principal components
for the moving ensembles of a, shape-persistent soft quasi-particles, b, quasi-particles experiencing shape transformation, c,
clustering quasi-particles.

gions when the LC director deviates from the orienta-
tion perpendicular to the sample substrates. The larger
region and more molecules deviate from this direction,
the higher the intensity of transmitted light through 90◦-
crossed polarizers, and the larger the observable structure
size. The absence of noticeable distortions in the shape
of the structures during their variations in size indicates
that the director field orientational configuration inside
changes symmetrically relative to the centers of the struc-
tures, while the topology most likely remains unchanged.
Therefore, the algebraic L2,2-norm of the intensity of
video frames or even the gradients of video frames may be
more suitable for analyzing the periodic behavior of this
system (see Methods IID). However, only in the case of
a dynamic pseudo-crystallite, FFT analysis of the norm
of the video frame gradient gives a pronounced set of fre-
quencies (Fig. S2 a,b, of the SM), while the FFT power
spectra for both the radii and norm of video frames are
less distinct (Fig. 5c and Fig. S2a of the SM). In the case
of shape-changing localized structures, the distinctness of

frequencies is noticeably reduced (Fig. S3 a,b, of the SM).
In the case of clustering, as before, it is very difficult to
distinguish any frequencies from the FFT data (Fig. 5d
and Fig. S4 a,b, of the SM). In an effort to reveal infor-
mation about the periodic behavior of localized elastic
structures and following the methodology for analyzing
the time evolution of soft matter systems presented ear-
lier in [25], we computed the time dynamics of structural
heterogeneity of dimensions 0 and 1 (see Methods II F).
Although for a dynamic pseudo-crystallite and a densely
packed ensemble of shape-transforming structures, FFT
analysis of the computed dependencies does not provide
any additional information (Fig. S2 c,d, and Fig. S3 c,d,
of the SM), in the case of clustering, some distinct fre-
quencies can be detected (Fig. S4 c,d, of the SM). There-
fore, using TDA, it is possible to generate data that, at
the next step of FFT analysis, reveals periodic changes
of soft pattern-forming quasi-particles.

Aiming to obtain a distinct frequency spectrum re-
vealing periodic changes in localized structures for dif-
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FIG. 5. Temporal changes in the average size of local-
ized quasi-particles. a,b, Time evolution of averaged quasi-
particle diameter, the pixel intensity threshold is set to 125
for a and 186 for b. c,d, Corresponding power spectra de-
rived from FFT analysis. Only the first 10% of the frequency
domain is shown. The zero frequency is not shown due to its
high power.

ferent dynamic ensembles, we have constructed a new
topological descriptor, the optimised structural hetero-
geneity (OSH) or Ψ function. This numerical descriptor
takes into account an optimised version of the 0 and 1-
structural heterogeneity of the system (see Methods II F).
In other words, the Ψ function quantifies different levels
of organisation of molecules in a liquid crystal system,
which give rise to the formation or disappearance of topo-
logical features, such as connected components or loops
(see Methods IIG). For the moving pseudo-crystallite,
the Ψ function changes periodically in time, but it can
be noted that its initial dip in the first period differs from
all others (Fig. 6a). This may be due to the effect of elec-
tric field switching on the sizes of localized structures. A
similar, but less pronounced effect can be observed in the
case of a dynamic ensemble of shape-transforming struc-
tures (Fig. 6b). In addition, one can see that in this case
the amplitude of all other dips gradually decreases. We
associate this with a decrease in the number of axisym-
metric localized structures and the growth of cholesteric
fingers, the behavior of which gives a different contribu-
tion to the variation of the transmitted light intensity
during video recording and, ultimately, to the change in
the Ψ function.

In the third case of dynamic self-assembled clusters,
the effect of switching on the electric field is insignifi-
cant. The limited number of dips makes it difficult to
explain the behavior of localized structures from visual
inspection of the Ψ function dependence (Fig. 6c). There-
fore, to achieve a more precise analysis, we again ap-
plied FFT and revealed that for the case of a dynamic
pseudo-crystallite consisting of shape-persistent torons,
the Fourier spectrum shows a set of frequencies that look

like a fundamental frequency accompanied with harmon-
ics (Fig. 6d). However, in fact, the spectrum consists
of the fundamental frequency and its second harmonic,
while all other frequencies are slightly larger comparing
to the exact harmonic values. These spectral compo-
nents are interharmonics, i.e. at frequencies that are not
integer multiple of the fundamental frequency. Note that
the power of spectral components decreases sharply with
increasing frequency, but not in agreement with an ex-
ponential law. In the case of dynamic and dense packed
ensemble of shape-transforming localized structures, the
first harmonic is observed at almost the same frequency
as in Fig. 6d, its additional harmonics are absent, but a
spectrum of inter-harmonics is observed instead (Fig. 6e).
The contribution of the first several interharmonics to the
spectrum is quite remarkable, since they have almost the
same power as the first harmonic or even exceed it. How-
ever, we consider the first frequency to be fundamental,
since it coincides well with the fundamental harmonic in
the case of Fig. 6d, and the physics of the processes oc-
curring in these systems should be similar. With this
definition, the spectrum shown in (Fig. 6e) consists of a
set of inter- and subharmonics. Finally, in the case of
the formation of dynamic clusters from torons, a com-
plex spectrum with two spectral components of approxi-
mately equal power is obtained (Fig. 6f). By comparing
this spectrum with the power spectra in Fig. 6 d,e (see
also Fig. S5 of the SM), we could conclude that the first
spectral component is a slightly shifted interharmonic
previously observed; however, the second spectral com-
ponent and the twice weaker third component represent
new contributions. It can also be assumed that the fre-
quency shift of the first spectral component is due to the
interaction of the various processes occurring in the sys-
tem. In any case, the spectrum shown in Fig. 6f confirms
that these processes are quite aperiodic.

The formation of sets of different harmonics may be
related to the nature of the liquid crystal systems under
study. As is known from signal analysis, the power val-
ues are proportional to the energy of each corresponding
frequency. Harmonics arise from a pure sine wave pro-
cessed by a nonlinear device, which in this case is the
liquid crystal medium. Subharmonics show how much
a signal deviates from a periodic shape, since only the
harmonic family has the property that each member is
also periodic with the fundamental period. Various sub-
harmonics could appear when the driving frequency is
over the fundamental frequency of the system due to
the system nonlinear stiffness. Interharmonics indicate
an increasing number of loads and nonlinearities in the
system. Therefore, we come to the conclusion that the
degree of nonlinear response increases from a dynamic
quasi-crystallite consisting of torons to a moving ensem-
ble of shape-transforming localized structures and espe-
cially to clustering torons. In the first case, the non-
linear response of a complex LC system leads to the
emergence of a set of interharmonics that are close in
frequency to the harmonics and provide a much smaller
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FIG. 6. Periodic behavior of a new topological descriptor, Ψ function. a,b,c, Time evolution of topological Ψ function
computed for the case of a, moving pseudo-crystallite with shape-persistent localized structures, b, close-packed dynamic
localized structures with shape transformation, c, dynamic clusters of localized structures. d,e,f, Corresponding power spectra
derived from FFT analysis of the Ψ functions. Only the first 10% of the frequency domain is show in each case. The zero
frequency is not shown due to its high power.

contribution compared to the fundamental frequency. In
the second case, the nonlinear response becomes more
complex, which could be associated with the formation of
cholesteric fingers, and apparently leads to the fact that
the contribution of interharmonics is even higher than
the fundamental frequency. In the third case, the power
spectrum could be explained by the dual response of the
dynamic toron clusters and the observed large regions of
the liquid crystalline TIC phase, the behavior of which,
obviously, should be very different from the behavior of
localized twisted structures.

IV. CONCLUSIONS

Dynamic complex patterns are observed in a wide va-
riety of living and nonliving systems, arising from the

physical, chemical or biological processes occurring in
them. The evolution of such systems is determined by
the behavior of both individual pattern-forming agents
and the entire system as a whole. Thus, the in-depth
investigation of their behavior requires the analysis at
different hierarchical levels. In our study, we applied a
number of geometric and topological methods to study
the dynamics of patterns and their individual elements.

As a particular case of a pattern-forming and multi-
level system, we have analyzed the behavior of dynamic
ensembles of localized twisted structures in chiral LCs,
where the structures themselves could change their indi-
vidual shape or vary the size while maintaining it. Exter-
nal electric field imparts a dynamic behavior, inducing a
translational motion of localized structures, and chang-
ing their spatial organization, topology and size.

We found that geometric and topological data analysis
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are well suited to characterise the dynamics of such sys-
tems. The computed distance matrices between frames
of recorded videos allow us to understand the evolution of
the many-body system at a qualitative level, while con-
sideration of principal component analysis data reveals
not only the trajectories of the system in different phase
spaces reflecting real changes, but also allows us to sepa-
rate the evolution associated with the translational mo-
tion of pattern-forming structures from the movement ac-
companied by a change in their shape or their clustering.
Furthermore, we introduced a new topological character-
istic, the Ψ function, which detects periodic processes
in ensembles of pattern-forming agents with a constant
topology and separates this scenario from other cases
when, simultaneously with movement, the shape of in-
dividual structures changes or regions with significantly
different spatial organization of the material appear.

The presented approach could be useful in solving the
problem of identifying and mapping domains in various
living and abiotic systems. A prominent example of such
a challenge is linking high-dimensional gene expression
with three-dimensional cell morphology [75], including
the response of cell state to genetic and chemical per-
turbations [76], or to the form and function of living or-
ganisms [77]. Understanding this relashionship remains

a major problem in biomedicine [78], bioinformatics [79],
and general biology [80, 81]. Other outstanding prob-
lems include the exploration of hierarchical bioinspired
nanocomposites with embedded functionalities for dy-
namic and synergetic responses [82], nanoparticle super-
clusters for light-harvesting nanomaterials in solar energy
utilization [83], and thin-film soft materials for green en-
ergy systems [84]. Overall, our findings highlight that
Topological Data Analysis is universal and should prove
valuable for the study of a wide variety of dynamic self-
assembled multi-level systems: from microtubules inside
a cell, bacterial colonies and schools of fish to floating gel
particles, reaction-diffusion waves, moving charged metal
beads and convection cells, among many others.
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