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Threshold behavior in quantum-dot nanolasers: Effects of inhomogeneous broadening
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We investigate the threshold behavior of lasers under various modeling approaches, considering different num-
bers of nonlasing cavity modes and analyzing the effects of radiation-matter coupling strength, cavity lifetime,
and quantum-dot properties. Thermal and electron-electron decoherence are incorporated as phenomenological
relaxation processes, in line with established practices. Both spectrally uniform and polydisperse quantum dots
are examined. For the former, we observe strong agreement across modeling approaches: the qualitative behavior
remains consistent, with threshold pump values showing quantitative shifts depending on the specific model. In
the case of polydisperse quantum dots, leading to inhomogeneous broadening, this picture is reaffirmed—each
model type exhibits similar qualitative trends, while threshold variations arise due to the stochastic distribution
of emitter transition frequencies. Our results confirm that models that assume homogeneous quantum dots are
suitable for comparison with experimental data and that inhomogeneous effects can be directly captured using
our framework when required.
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I. INTRODUCTION

Quantum dots (QDs) have typical sizes of tens of nanome-
ters and function as artificial atoms with discrete, tunable
emission; for these reasons, they have emerged as highly
promising active media for laser emission, particularly at the
micro- and nanoscale. Their discrete energy levels, stem-
ming from strong carrier confinement [1], result in narrow
linewidths and reduced carrier-induced refractive index mod-
ulation. This yields a lower α factor in the small gain regime
[2], typically an order of magnitude smaller than that in
quantum wells, enhancing stability and reducing sensitivity to
optical feedback [3].

QDs exhibit broadband absorption under optical pumping
and are easily excited electrically via the wetting layer of the
underlying quantum well. The absorbed energy is efficiently
funneled into narrow transitions between discrete levels, en-
abling high conversion efficiency, ultralow lasing thresholds,
and reduced thermal load [4], crucial in the context of data
center energy demands [5,6]. Efficient electron-photon cou-
pling and minimized nonradiative recombination—especially
with surface passivation [7,8]—further boost efficiency.

Strong electron localization in QDs reduces carrier dif-
fusion and recombination losses, contributing to lower
excitation thresholds [9]. Their energy levels exhibit reduced
sensitivity to temperature variations compared to bulk or
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quantum-well structures [10,11], offering improved (albeit
modest) temperature stability [12,13]. The emission wave-
length is tunable via QD size [14–16], facilitating coupling
to resonant cavities [17]—a key requirement for efficient
nanoscale laser operation.

QDs tunable emission makes them ideal for lab-on-a-chip
applications and integrated photonics [18]. Their subwave-
length size and compatibility with solid-state platforms make
them excellent candidates for miniaturized devices. Addition-
ally, their ability to support precise gain and loss control is
advantageous for emerging non-Hermitian photonics applica-
tions, including parity-time symmetric lasers and enhanced
sensing [19–23].

Despite these benefits, QDs face limitations due to size
dispersion, which leads to inhomogeneous broadening and
spectral variability [14–16]. Even minor size variations cause
significant wavelength spread [24], affecting exciton and biex-
citon energy distributions [25] and inducing dephasing [26],
ultimately degrading phenomena like superradiance [27]. This
broadening reduces the number of QDs effectively participat-
ing in lasing [9,28].

Inhomogeneity stems from various factors: confinement
dependence on size and shape [29,30], composition and dop-
ing [31], surface states [24], and fabrication techniques [32],
including colloidal methods [33].

Early QD lasers were dominated by inhomogeneous
broadening [34], prompting modeling efforts [35,36] and
manufacturing improvements [37]. Advances include efforts
to improve array uniformity [38], and morphology and site
control [39–41], even for quantum information applications
[42]. Recent techniques such as substrate patterning [43], site
strain engineering [44], self-alignment [45], nucleation layer
[46], and machine learning [47] have significantly improved
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QD uniformity. Notably, the frequency distribution of QDs
has been quantitatively assessed [48], providing benchmarks
for current fabrication capabilities.

To mitigate inhomogeneities, strategies such as optical cav-
ity filtering [18] and thermal tuning [49] have been applied,
though these can broaden the emission spectrum [50], reduce
gain efficiency [9], and increase cavity losses and threshold
currents [51].

Theoretical advances have paralleled fabrication improve-
ments. First-principles models incorporating surface defects,
confinement, and environmental interactions [52,53] have
informed design. Quantum nanolaser models based on
Heisenberg-Langevin equations [54], density matrix theory
[55], nonequilibrium Green’s functions [56], and cluster ex-
pansion [57] often neglect fast, coherent dynamics to focus on
slower quantum correlations [58–61].

More recently, semiclassical models like the coherent-
incoherent model (CIM) [62,63] have reintroduced coherent
field and polarization dynamics while omitting rapidly
varying correlations. The CIM captures threshold behav-
ior, observable via first-order coherence functions g(1)(τ )
[64], where coherent emission emerges continuously beyond
threshold [65], echoing macroscopic laser theory.

However, fully quantum treatments like the two-particle
model (TPM) [66] reveal markedly different behavior: co-
herent and incoherent emissions become bistable, and the
coherent emission at threshold is finite rather than vanishing.

Interpreting these results requires addressing two unre-
solved issues in CIM and TPM. First, how the lasing threshold
depends on pump rate and cavity decay rate—two experimen-
tally tunable parameters—needs clarification. Second, the im-
pact of QD inhomogeneity remains critical. Despite technical
progress, variations in QD size and emission frequency persist
[59], influencing threshold behavior, coherence, and fre-
quency stability. These effects are particularly significant for
quantum models sensitive to coherence loss [17,27], and must
be reevaluated in the context of newer frameworks incorporat-
ing both coherent and incoherent quantum fields [62,65,67].

In the next section we first extend the CIM and TPM intro-
duced in Refs. [62,65,67] to include the effect of polydisperse
QDs. We then introduce a reduced model, the TPM1F, that
is ideally suited for the analysis of polydisperse QD models
when electron-electron correlations are negligible. In Sec. III
we analyze in detail the threshold behavior in the compu-
tationally easier case of monodisperse QDs. We relax this
condition in Sec. IV where we show that having different QDs
does not qualitatively change the threshold behavior. A sum-
mary of this work and an exposition of its experimental and
engineering consequences conclude the paper. The numerical
methodology followed to integrate and analyze the models is
summarized in Appendix A. All the equations are listed in
the Appendixes, which contain also additional graphs and a
justification of the parameter values used in the simulations.

II. COHERENT-INCOHERENT MODELS

We focus on nanolasers in which each QD possesses two
localized energy levels, with electrons and holes injected into
these levels from the wetting layer. We consider light-matter
interaction in the weak-coupling regime, and QDs operating

at cryogenic temperatures [60]. Coulomb [58,61] and phonon
[68] scattering processes are included, as is customary, via
dephasing terms, thus offering a glimpse into the predictions
for higher-temperature operation; the interaction Hamiltonian
is simplified by retaining only the terms oscillating at the
optical frequency scale, in accordance with the rotating wave
approximation [62,63]. Specifically, all models are based on
the Hamiltonian

H = h̄
∑

q

νq

(
b†

qbq + 1

2

)
+

∑
n

(
εc,nc†

ncn + εv,nv
†
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[gnq(bqc†
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†
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†
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νq is the frequency of a photon in the qth mode and gnq is
the light-matter coupling strength between a photon in the
qth mode and the nth quantum dot. This is proportional to
laser mode amplitude and the interband matrix elements and
inversely proportional to the square root of mode volume
and the dielectric function [68]. The bosonic operators bq, b†

q
annihilate and create a photon in the qth mode, respectively,
and the fermionic operators vn, v

†
n (cn, c†

n) annihilate and cre-
ate an electron in the lower (upper) energy level of the nth
quantum dot. The summation over q accounts for both lasing
and nonlasing modes. In this work, we focus on nanolasers
with a single lasing mode; hence, we omit the mode index.
Following Ref. [61], the contributions from nonlasing modes
are adiabatically eliminated and result in radiative decay. The
free-electron part of the Hamiltonian describes charge carriers
in the conduction- and valence-band states of the nth quantum
dot, with corresponding energies εc,n and εv,n, together with
the photons across all modes. Phonon scattering is modeled
by introducing a dephasing term μγ , where γ is the de-
phasing rate of the polarization and μ � 0, applied to the
electron-electron expectation values. This approach follows
the methodology of Ref. [68], where it was demonstrated
that such a dephasing term effectively captures the essen-
tial features of a microscopic theory of phonon scattering.
Physically, phonon scattering increases the decay rate of the
coherence between wave functions of carriers confined in
different quantum dots, compared to those within the same
quantum dot. The remaining control parameters are consistent
across all models and include the decay rate of the upper level
population due to nonradiative processes, γnr, which lead to
intracavity absorption, and the emission into nonlasing modes,
γNL; the pump rate per emitter, r; and the number of QDs
N within the laser cavity. All parameter values have been
selected based on experimental considerations (see Ref. [66]
and Appendix E), and are summarized in Table I. In the
simulations, all parameters are rescaled with respect to the
nonradiative decay rate, since this rate is determined solely
by the material properties and is independent of the laser
cavity. This normalization is theoretically convenient because
it allows for direct comparison of different cavities under
the assumption of identical material characteristics. Photon
creation and annihilation are represented by the bosonic op-
erators b†, b, respectively, while the fermionic operators c†, c
and v†, v correspond to electron creation and annihilation in
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TABLE I. Model parameters, their meaning, and typical values used in the simulations. In the cases of different quantum dots the detunings
�νk are sampled from a normal distribution with zero mean and standard deviation with typical value equal to γ . The parameter values used
in the simulations are those reported here unless otherwise stated in the corresponding figure caption.

Symbol Meaning Typical value

γ Polarization dephasing rate 1 × 1013 s−1

γc Laser mode decay rate 1 × 1010 s−1

γl Spontaneous emission rate in the cavity mode 9.7 × 108 s−1

γNL Decay rate in nonlasing modes γNL = γl (1 − β )/β
γnr Nonradiative decay 1 × 109 s−1

β Spontaneous emission factor 1
�ν Quantum-dot detuning (identical quantum dots) 0 s−1

�νk Detuning of the kth quantum dot
g Light-matter coupling strength 7 × 1010 s−1

μ Phonon scattering parameter 0
N Number of quantum dots 50
r Pump rate per emitter 2 × 1014 s−1

wQD Standard deviation of the detuning of a QD sample γ

the upper and lower energy levels, respectively. For a clear
physical interpretation of the theory, it is essential to associate
these operators with individual particles: b†, b are single-
particle bosonic operators, while the fermionic single-particle
quantities [69] are constructed from bilinear combinations of
operators, such as the electron number in the upper level, c†c,
and the standard polarization between levels, c†v.

The derivation of all models begins with the Hamiltonian
in Eq. (1), from which we obtain the Heisenberg equations for
all operators up to three particles. From these equations, we
determine the time evolution of the corresponding expectation
values. These are then decomposed into sums of three-particle
correlations and products of single- and two-particle expecta-
tion values. Different models arise by applying distinct levels
of approximation to this decomposition, as outlined below.
The TPM model [66] accounts for all two-particle quantum
correlations, including photon-photon, photon-electron, and
electron-electron interactions. A simplified variant, TPM1F,
assumes negligible electron-electron correlations and includes
only electron-photon and photon-photon expectation values,
truncating fermions and bosons at different levels on the basis
of different decay rates, as suggested in Ref. [70]. This ap-
proximation is valid for many systems characterized by strong
dephasing and high cavity quality factors [61,71]. For exam-
ple, Fig. 7 in Appendix C indicates that the laser threshold
predicted by the full TPM converges to that of TPM1F when
phonon scattering is incorporated phenomenologically via de-
phasing, following the approach in Ref. [68]. In contrast, the
CIM model retains only nonoscillating two-particle expecta-
tion values, consistent with typical semiclassical treatments.

We examine the impact of polydispersity in QDs on these
models, assuming the QDs exhibit varying detunings that
follow a Gaussian distribution centered at zero. The degree
of polydispersity is characterized by the standard deviation
wQD of this distribution. The generalized models accounting
for polydisperse QDs are denoted with a superscript (d). From
a computational standpoint, it is important to note that the
number of equations scales linearly with the number of QDs
in the CIM(d) and TPM(d)

1F , whereas it scales quadratically in
the TPM(d).

III. THRESHOLD ANALYSIS FOR IDENTICAL
QUANTUM DOTS

To enable analytical insights and extensive numerical anal-
ysis, we first consider a system of identical QDs. This
assumption allows us to derive threshold conditions as func-
tions of key parameters for CIM, TPM, and TPM1F equations.
In this section we consider the threshold for self-sustained
continuous stimulated emission, which is theoretically found
identifying the onset of steady-state solutions with coherent
variables different from zero. It is worth recalling that in
nanolasers this is not the only way to define a laser thresh-
old, with the nonuniqueness of the threshold associated to
the gradual transition from incoherent to coherent emission
typical of nanolsers. The threshold we consider identifies the
end of this transition and requires the use of coherent variables
such as the field amplitude 〈b〉, while the threshold defined
in Ref. [72] identifies the onset of this transition and can be
obtained with simpler models. The threshold expressions for
CIM and TPM have been previously reported in Ref. [66].

Numerical simulations show that the population of the
upper laser level, 〈c†c〉, is very similar in all these models.
Using this property, in the TPM we can leverage the CIM’s
analytical value of the population at threshold to obtain an
approximate expression for the threshold pump rate, as the
dominant effect in this model is provided by slowly varying
electron-electron expectation values. However, this strategy
does not extend to the TPM1F because this model does not
contain electron-electron expectation values and the dynamics
below threshold is the same as the CIM dynamics. For TPM1F,
we instead determine the threshold numerically by integrating
the dynamical equations (C2) and identifying the smallest
value of the pump parameter r for which the equilibrium
solution satisfies |〈b〉| �≡ 0.

Figures 1(a) and 1(b) present the threshold pump rate as
a function of the coupling coefficient g, along with the CIM
population inversion at threshold. The inversion curves for
TPM and TPM1F closely match the CIM values. As expected,
〈c†c〉 decreases monotonically with g, since stronger coupling
enables the electromagnetic field to extract energy more effi-
ciently from the excited state [Fig. 1(c)].
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FIG. 1. Pump r at threshold for γc = 10 (a) and γc = 100 (b) as
a function of the coupling coefficient g in models with identical
quantum dots, CIM, TPM1F, and TPM with μ = 0, 0.05 as indicated
in the legend in panel (b). Panel (c) shows the CIM population of the
upper level, 〈c†c〉th, at threshold for the corresponding values of γc.
All parameters are as in Table I except N = 70, β = 7 × 10−4.

The pump threshold curve exhibits a minimum as a func-
tion of g. For small g, the coupling is too weak to effectively
compensate for cavity losses. As g increases, the field be-
comes more effective at depleting the population inversion,
eventually quenching it to lower equilibrium levels, as shown
in the lower panel of Fig. 1. This necessitates stronger
pumping to reach the lasing threshold, hence increasing the
threshold at high g.

In Fig. 2 we explore how the threshold pump rate varies
with the cavity loss rate γc, across different cavity sizes
parametrized by the coefficient β, the spontaneous emission
factor. In all cases [see Fig. 2(c)], the threshold population
inversion 〈c†c〉 increases monotonically with γc, as higher
cavity losses demand a larger inversion to sustain lasing. No-
tably, the population inversion curves remain essentially the
same across all values of β, indicating that this dependency is
largely geometry independent.

In all cases, the threshold pump rate increases as γc de-
creases to zero, i.e., as the cavity losses become smaller and
smaller. This behavior results from stronger intracavity fields
accelerating the depopulation processes, thereby requiring in-
creased optical pumping to maintain sufficient inversion for
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FIG. 2. Threshold value of the pump as a function of the cavity
decay rate γc for β = 1 (a) and β = 3.4 × 10−6 (b). Panel (c) shows
the CIM population of the upper level, 〈c†c〉th, at threshold for the
corresponding values of β. All other parameters are as in Table I.

lasing. For nanolasers, β = 1 [Fig. 2(a)], this is the only
observable behavior in the γc range studied. Microlasers, e.g.,
β = 7 × 10−4, have nearly identical behavior (diagram not
shown). In the macroscopic case, β = 3.4 × 10−6 [Fig. 2(b)],
the threshold curve has a minimum. For losses larger than this
value we observe also a more “standard” behavior, namely
that the threshold increases with increasing losses.

It is important to note that the threshold analyzed here
applies specifically to continuous wave lasing. Control param-
eter regions below this threshold cannot support continuous
laser emission, though they may still exhibit time-dependent
or pulsed lasing behavior. A detailed exploration of this pos-
sibility is left for future work.

IV. EFFECT OF POLYDISPERSE QUANTUM DOTS

The TPM and TPM1F models show bistability between in-
coherent emission and coherent lasing as illustrated in Fig. 3.
As a result of two-particle quantum correlation, two lasing
solutions, one stable and the other unstable, appear through
a saddle-node bifurcation, in stark contrast with all other laser
models. As the effect of phonon scattering is increased, the
TPM threshold approaches the TPM1F threshold (see Fig. 7 in
Appendix C), confirming that this model is qualitatively the
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FIG. 3. Plot of the CIM and TPM1F coherent field amplitude in
the lasing solution with identical (no superscript) or different [super-
script (d)] QDs. The CIM(d) and TPM(d)

1F plots are those of sample
S3. The error bars represent the range of values measured over the
ten samples. Also included for reference is the TPM amplitude with
μ = 0. The inset is a magnification of the low pump region. The
approximate location of the lasing threshold is indicated by the large
diamond symbols. All other parameters are as in Table I.

high-temperature limit of the TPM. Despite these qualitative
similarities, the TPM model has a much larger number of
equations than the TPM1F when one considers polydisperse
QDs. As a result of the large number of equations and the
difference in the scales of the decay rates, the TPM model
shows extremely long transients and for this reason we con-
sider the effect on polidisperse QDs only on the CIM and
TPM1F thresholds and perform only limited TPM simulations.

To investigate the impact of inhomogeneity, we have
assumed that the QDs have identical gain g but different detun-
ings �νl . These are random and follow a normal distribution
with zero average and standard deviation wQD equal to γ . We
have generated ten samples, S j , j = 1, . . . , 10, of 50 QDs and
have run the same simulations for each sample, keeping all the
other parameters constant. In the presence of detuned QDs,
the bifurcation diagrams show a shift in the lasing threshold
and changes in the coherent field amplitude, but otherwise
maintain their structure (Fig. 3). The error bars in Fig. 3 reflect
the variability in |〈b〉| across the ten sampled configurations.

Figure 4 displays the normalized activity distribution—
i.e., the distribution of the time average of |〈v†

l cl〉|2 for the
different QDs, l = 1, 2, . . . , n, scaled in the range [0,1]—for
sample S3. This represents the effect of the detuning on the
QD activity. The polarization amplitudes computed from the
three models, rescaled to the range [0,1], overlap perfectly,
confirming consistent polarization dynamics. These data are
well fitted by the Lorentzian function,

f (�ν) = aL

1 + (�ν/wL )2
, (2)

where aL is the maximum of |〈v†c〉|2 and wL is the width of
the activation curve (solid line in Fig. 4).

An additional effect of QD detuning is the emergence of
single-frequency temporal oscillations in the coherent field

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Best fit
CIM(d)

TPM1F
(d)

TPM(d)

FIG. 4. Activation curve of the QDs. The markers represent the
time average of |〈v†c〉|2, scaled in the range [0,1], computed using
the CIM (plusses), TPM1F (crosses), and TPM (circle) equations at
pump r = 2 × 1014 s−1 for sample S3. This is the rightmost point in
the CIM(d) and TPM(d)

1F curves in Fig. 3 and all parameter values are
as in this figure. The solid line is the best fit with the Lorentzian
function (2). The fitted parameters are aL = 1.016 and wL = 1.864.

(see Fig. 11 in Appendix I), showing that synchronization
of QDs with diverse resonant frequencies is the mechanism
responsible for the emergence of a coherent field across the
QD ensemble. The oscillation frequency ω and the activation
curve width wL depend on the specific QD sample but are
invariant with respect to pump values above the threshold. All
three models predict similar oscillation frequencies and acti-
vation curve width (see Fig. 5). A more detailed investigation
of the activation curves is presented in Appendix H. As a gen-
eral trend, samples with narrower detuning distributions (i.e.,
smaller values of the detuning standard deviation w,) exhibit

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

0.5

1

1.5

2

2.5

3

CIM(d)

TPM1F
(d)

TPM(d)

n
r

FIG. 5. Quantum-dot activation curve width wL plotted against
the angular frequency of the coherent field amplitude 〈b〉 on the CIM
(plusses), TPM1F (crosses), and TPM (circles) lasing branch. The
samples and all other parameters are the same as in Fig. 3 except for
r = 2 × 1014 s−1.
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FIG. 6. Analysis of the effect of the width of the QD distributions
for TPM(d). We report the fitted amplitude of the activation curve,
aL , and the angular frequency shift of the lasing solution, |�ω|, with
respect to the cavity frequency for ten samples of N = 50 QDs. Each
sample is taken from a normal distribution with zero average and
standard deviation wQD equal to 0.2γ (plus signs), 0.5γ (crosses), γ

(downward triangles), and 2γ (upward triangles). The samples and
all other parameters are the same as in Fig. 5.

broader activation curves. Conversely, samples with broader
distributions display narrower activation curves. In the case of
narrow distributions, most quantum dots are active, leading to
higher overall system energy. This, in turn, affects the fixed
number of quantum dots we impose with higher detuning,
effectively raising their energy and broadening the activation
curve. By contrast, in broader distributions, fewer quantum
dots are maximally active, and those in the distribution tails
carry less energy, which results in narrower activation curves.

Figures 4 and 5 confirm that TPM1F accurately reproduces
the coherent polarization dynamics of TPM, differing only
in the amplitude of the coherent fields, as also shown in the
bifurcation diagrams (Fig. 3).

The influence of the width wQD of the QD detuning dis-
tribution is further analysed in Fig. 6 where we plot the
amplitude aL of the activation curve versus the frequency
shift |�ω| of the lasing solution with respect to the cavity
frequency for the TPM(d). The figure shows the outcome of
the simulation of ten batches of N = 50 QDs sampled from
distributions with widths wQD = [0.2, 0.5, 1.0, 2.0]γ . From
these we can see that the effect of wQD on the amplitude
is significant only for the largest value of wQD. In this case
the model is close to threshold and the fluctuations in the
detunings of the QDs have a significant effect in how much
the laser is above threshold. In fact, four of the wQD = 2γ

simulations are below threshold. On the other hand, wQD has
only limited effect on the lasing frequency: the spread of
frequency shift |�ω| increases roughly by a factor of 2 when
wQD increases from 0.2γ to 0.5γ , but quickly saturates for
higher values of wQD. In Appendix H we give the same curve
for CIM(d) and TPM(d)

1F . The points are more scattered for the
TPM(d) case with respect to the other two because of the larger
numerical noise in the estimation of the amplitude equilibrium

value for this model (see Appendix A). An analysis of the fit
of the activation curve as a function of wQD can be found in
Appendix E.

V. CONCLUSIONS

We have used different modeling choices to analyze the
laser’s threshold behavior at various scales and as a func-
tion of radiation-matter coupling, cavity lifetime, and the
inhomogeneous broadening inherent in the medium. At the
semiclassical level, we used the CIM. Two-particle corre-
lations were introduced with or without phonon relaxation
(phenomenologically modeling temperature effects) and with
a reduced set of equations, in which the fast relaxation
of electron-electron correlations was heuristically taken into
account.

For homogeneous broadening, we observe the anticipated
threshold reduction when radiation-matter coupling weakens
due to reduced conversion of population into photons. The
results are qualitatively consistent across all models, exhibit-
ing a threshold increase that accompanies the description of
correlations. However, the threshold increases again below an
optimum value due to the difficulty of transferring energy
to the field to establish coherence when the coupling be-
comes too small. This effect is expected when considering the
radiation-matter coupling constant g as the control parameter.
We remark that the threshold we used identifies the onset
of stable coherent emission with constant amplitude that, for
CIM, corresponds to the end of the gradual transition to co-
herent emission in nanolasers [65]. The threshold defined in
Ref. [72] instead identifies the beginning of that transition (see
Fig. 5, bottom panel, of Ref. [72]). These two thresholds have
a different behavior for large g that is the result of the extended
transition to coherence in nanolasers [65]. Similarly, the pump
threshold value monotonically increases with growing outcou-
pling losses, except in the macroscopic cavity regime where
a minimum is found, followed by threshold growth in the
extremely good cavity limit. Since loss values for this occur-
rence are outside the usual range of experimental devices, this
prediction cannot be compared to observations at this stage.

Inhomogeneous broadening plays an unavoidable role in
all devices. Despite considerable progress achieved in recent
years, even the best fabrication processes cannot yet provide
QDs with resonance frequencies well within their natural
linewidth [48]. Therefore, the influence of inhomogeneous
broadening on the physical properties of emission remains
paramount. This investigation reveals that, with broadening
amounts compatible with current devices, the differences are
small and remain solely quantitative, while the emission’s
physical characteristics remain qualitatively the same. In all
models for which we could analyze the bifurcation diagrams,
inhomogeneous broadening shifted the threshold to larger
values, but did not change the nature of the bifurcation,
pitch-fork, and saddle node for CIM and TPM1F respectively.
Depending on the realization of a random ensemble of QDs,
the results vary slightly but remain consistent throughout,
suggesting that they are robust with respect to the level of
approximation chosen for the description of the causes of the
inhomogeneous broadening.
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These simulations address longstanding questions that
have perplexed the experimental community in the face of
the inevitable amount of size dispersion in QDs, which leads
to a distribution of resonance frequencies [48]. In practice,
we can be confident that the consequences of inhomogeneous
broadening are limited to a reasonable, physically acceptable
reduction in gain, which the models can quantify without
additional physical consequences. While progress in QD po-
sitioning and physical size control is welcome, our results
confirm that manufacturing quality is already sufficient for
reliable devices.

One interesting open question is how field coherence is
established in the presence of inhomogeneous broadening. Its
quantification, through field autocorrelation [64], remains an
open question due to the slow variation introduced by the
distribution of resonance frequencies in the QDs (Fig. 11
in Appendix I). It remains to be seen how this oscillation
affects the coherence length (or time). On this topic, it is
worth noting that second-order correlation (photon-statistics)
measurements have also been employed to probe the nature
of the emission (see Ref. [60]). When the Siegert relation
holds, the relationship between first- and second-order corre-
lations becomes direct and well defined. Although we intend
to extend our analysis to include second-order autocorrelation
calculations, the full scope and computational demands of
such an evaluation lie beyond the limits of the present work.

Finally, in this study we restrict our analysis to steady-
state behavior and do not consider transients. Relaxation
oscillations—arising in the transient response following a step
change in a parameter—are determined by system parameters,
the initial steady state, and the chosen model. Consequently,
exploring the frequencies and damping timescales of these
oscillations represents a promising direction for future work,
offering both new insights into nanolaser physics and valuable
tests for theoretical models.
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APPENDIX A: NUMERICAL METHODOLOGY

The number of real equations, Neq, for the CIM(d), TPM(d)
1F ,

and TPM(d) grows with the number N of QDs as

CIM(d) : Neq = 3 + 5N,

TPM(d)
1F : Neq = 3 + 9N,

TPM(d) : Neq = 3 + 9N + 7N (N − 1).

(A1)

Because of the difference in magnitude between the differ-
ent loss terms in the models, the equations are stiff and are
integrated using the MATLAB stiff solver ODE15S. In order
to reduce the computation time we provide to the solver the
sparsity matrix of the Jacobian, i.e., the list of elements of
the Jacobian of the model equation that are not identically
zero. In the TPM(d)

1F we provide the analytical Jacobian, but
the increase of code speed (approximately 25%) is not large
enough to code the analytical Jacobian of the much more
involved TPM(d) equations.

To produce the bifurcation diagrams, the pump parameter
was set at its highest value and decreased gradually. At each
change of the pump parameter, the transient was deemed to
have ended when the derivatives of |〈b〉|, 〈b†b〉, 〈c†c〉, and, if
relevant, |〈bb〉| were smaller than a user specified parameter,
normally 10−5. Once equilibrium had been reached a shorter
run with very fine output was produced to estimate the equi-
librium values of the fields. The codes to perform the time
integration of all the models and to produce the bifurcation
diagrams are available on GitHub [73].

The activation curve plots for all models, except the
TPM(d), were obtained by integrating the transient for a time
long enough to reach equilibrium (1000 time units), followed
by a shorter integration (200 time units) with finely sampled
output. This allowed the accurate determination of the asymp-
totic amplitude of the coherent field 〈b〉 and of its frequency.

This approach was not feasible in the TPM(d) case, due
to the slowness of the integration code. We integrated each
QD sample for each detuning width wQD for at least 100 time
units, reaching nearly 500 for sample S3. We then fitted to 〈b〉
a decaying sinusoidal function

f (t ) = (
a∞ + be−ct

)
cos(ω∞t + φ), (A2)

and used a∞ and ω∞ as estimates of the asymptotic ampli-
tude and frequency of the lasing solution. We checked the
convergence of these two parameters by fitting the data over
increasing integration window sizes. ω∞ had converged to at
least three significant digits. The convergence of a∞ was more
tentative, as this parameter is more sensitive to the length of
the integration window and to the fact that the asymptotic
decay may have more than one timescale. Even in the best
case the estimate of this parameter was still changing on
its second digit with the increase of the integration window,
suggesting that the error is of the order of a few percents.

APPENDIX B: TPM EQUATIONS

Note that the codes to perform the time integration of
all the models and to produce the bifurcation diagrams are
available on GitHub [73].

The starting point of the derivation of the model is to obtain
from the Hamiltonian given in Eq. (1) of the main text the
Heisenberg equations of the three-particle operators. Their
expectation values are then decomposed in terms of the sum
of the three-particle correlations and products of single- and
two-particle expectation values:

〈OiOjOk〉 = 〈OiOjOk〉C + 〈OiOjOk〉D, (B1)

where the labels C,D stand for correlated three-particle pro-
cesses (or “connected” in terms of Feynman diagrams) and
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decorrelated products of one- and two-particle processes (or
“disconnected”), with

〈OiOjOk〉D = 〈Oi〉〈OjOk〉 + 〈Oj〉〈OiOk〉
+ 〈Ok〉〈OiOj〉 − 2〈Oi〉〈Oj〉〈Ok〉. (B2)

Similarly, for the expectation values of four-particle operators
we have

〈OiOjOkOl〉 = 〈OiOjOkOl〉C + 〈OiOjOkOl〉D, (B3)

where

〈OiOjOkOl〉D = 〈Oi〉〈OjOkOl〉 + 〈Oj〉〈OiOkOl〉 + 〈Ok〉〈OiOjOl〉 + 〈Ol〉〈OiOjOk〉 + 〈OiOj〉〈OkOl〉
+ 〈OiOk〉〈OjOl〉 + 〈OiOl〉〈OjOk〉 − 2

(〈Oi〉〈Oj〉〈OkOl〉 + 〈OiOj〉〈Ok〉〈Ol〉 + 〈Oi〉〈Ok〉〈OjOl〉
+ 〈OiOk〉〈Oj〉〈Ol〉 + 〈Oi〉〈Ol〉〈OjOk〉 + 〈OiOl〉〈Oj〉〈Ok〉

) + 6〈Oi〉〈Oj〉〈Ok〉〈Ol〉. (B4)

Including all two-particle expectation values [66] and truncating the infinite hierarchy of expectation values by neglecting
three-particle correlations, in the rotating frame we find the TPM(d) equations:

dt 〈b〉 = −γc〈b〉 +
∑

n

g∗
n〈v†

ncn〉, (B5a)

dt 〈v†
l cl〉 = −(γ − i�νl )〈v†

l cl〉 + gl (2〈bc†
l cl〉 − 〈b〉), (B5b)

dt 〈c†
l cl〉 = r(1 − 〈c†

l cl〉) − (γNL + γnr )〈c†
l cl〉 − 2Re(gl〈bc†

l vl〉), (B5c)

dt 〈b†b〉 = −2γc〈b†b〉 + 2
∑

n

Re(gn〈bc†
nvn〉), (B5d)

dt 〈bc†
l vl〉 = −(γ + γc + i�νl )〈bc†

l vl〉 + g∗
l [〈c†

l cl〉 − 〈b†b〉(1 − 2〈c†
l cl〉) − 4|〈b〉|2〈c†

l cl〉 + 4Re(〈b〉〈b†c†
l cl〉)]

+
∑
n �=l

g∗
n〈c†

l v
†
ncnvl〉, (B5e)

dt 〈bc†
l cl〉 = −(γc + γnr )〈bc†

l cl〉 − γNL〈b〉〈c†
l cl〉 − gl [2〈b〉(〈bc†

l vl〉 − 〈b〉〈c†
l vl〉) + 〈bb〉〈c†

l vl〉]
−g∗

l [〈b†〉(〈bv†
l cl〉 − 2〈b〉〈v†

l cl〉) + 〈b†b〉〈v†
l cl〉 + 〈b〉〈b†v

†
l cl〉] + r〈b〉(1 − 〈c†

l cl〉) +
∑
n �=l

g∗
n〈v†

nc†
l cl cn〉, (B5f)

dt 〈bv†
l cl〉 = −(γc + γ − i�νl )〈bv†

l cl〉 + gl [−〈bb〉(1 − 2〈c†
l cl〉) + 4〈b〉(〈bc†

l cl〉 − 〈b〉〈c†
l cl〉)]

= +
∑
n �=l

g∗
n〈v†

nv
†
l cl cn〉, (B5g)

dt 〈bb〉 = −2γc〈bb〉 + 2
∑

n

g∗
n〈bv†

ncn〉, (B5h)

dt 〈c†
nv

†
l clvn〉 = −[2γ (1 + μ) − i(�νl − �νn)]〈c†

nv
†
l clvn〉

− g∗
n[−2〈b†〉〈v†

l c†
ncncl〉 + 〈b†v

†
l cl〉(1 − 2〈c†

ncn〉) − 2〈v†
l cl〉〈b†c†

ncn〉 + 4〈b†〉〈c†
ncn〉〈v†

l cl〉]
−gl [−2〈b〉〈v†

nc†
l cl cn〉∗ + 〈bc†

nvn〉(1 − 2〈c†
l cl〉) − 2〈c†

nvn〉〈bc†
l cl〉 + 4〈b〉〈c†

l cl〉〈c†
nvn〉], (B5i)

dt 〈v†
nc†

l cl cn〉 = −[γ (1 + μ) + γnr − i�νn]〈v†
nc†

l cl cn〉 − gn[−2〈b〉〈c†
nc†

l cl cn〉 + 4〈b〉〈c†
ncn〉〈c†

l cl〉
− 2〈c†

ncn〉〈bc†
l cl〉 − 2〈c†

l cl〉〈bc†
ncn〉 + 〈bc†

l cl〉] + gl [−〈b〉〈c†
l v

†
ncnvl〉 + 2〈b〉〈v†

ncn〉〈c†
l vl〉

− 〈v†
ncn〉〈bc†

l vl〉 − 〈c†
l vl〉〈bv†

ncn〉] + g∗
l [−〈b†〉〈v†

nv
†
l cl cn〉 + 2〈b†〉〈v†

ncn〉〈v†
l cl〉

− 〈v†
ncn〉〈b†v

†
l cl〉 − 〈v†

l cl〉〈b†v†
ncn〉] + r〈v†

ncn〉(1 − 〈c†
l cl〉) − γNL〈v†

ncn〉〈c†
l cl〉, (B5j)

dt 〈v†
nv

†
l cl cn〉 = −[2γ (1 + μ) − i(�νn + �νl )]〈v†

nv
†
l cl cn〉

−gn[−2〈b〉〈v†
l c†

ncncl〉 + 4〈b〉〈c†
ncn〉〈v†

l cl〉 + 〈bv†
l cl〉(1 − 2〈c†

ncn〉) − 2〈v†
l cl〉〈bc†

ncn〉]
−gl [−2〈b〉〈v†

nc†
l cl cn〉 − 2〈v†

ncn〉〈bc†
l cl〉 + 〈bv†

ncn〉(1 − 2〈c†
l cl〉) + 4〈b〉〈c†

l cl〉〈v†
ncn〉], (B5k)

dt 〈c†
nc†

l cl cn〉 = −2γnr〈c†
l c†

ncncl〉 + 2Re[gn(−〈b〉〈v†
nc†

l cl cn〉∗ + 2〈b〉〈c†
nvn〉〈c†

l cl〉 − 〈c†
l cl〉〈bc†

nvn〉 − 〈c†
nvn〉〈bc†

l cl〉)

+gl (−〈b〉〈v†
l c†

ncncl〉∗ + 2〈b〉〈c†
ncn〉〈c†

l vl〉 − 〈c†
ncn〉〈bc†

l vl〉 − 〈c†
l vl〉〈bc†

ncn〉)]

+r[〈c†
l cl〉(1 − 〈c†

ncn〉) + 〈c†
ncn〉(1 − 〈c†

l cl〉)] − 2γNL〈c†
ncn〉〈c†

l cl〉. (B5l)

In these equations

�νl = ν − νεl , (B6)
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with ν and νεl the frequencies of the laser mode and the radiative transition of the lth QD. gn is the light-matter coupling
coefficient of the nth QD with the sth mode, γnr is the population decay rate due to nonradiative losses, γ is the decay rate of the
polarization, γc is the decay rate of the laser mode, and γμ, with μ � 0, is the dephasing rate due to phonon scattering.

The equivalent equations for identical QDs are in Ref. [66], Eq. (S.14), and are reproduced here for completeness:

dt 〈b〉 = −γc〈b〉 + Ng∗〈v†c〉, (B7a)

dt 〈v†c〉 = −(γ − i�ν)〈v†c〉 + g(2〈bc†c〉 − 〈b〉), (B7b)

dt 〈c†c〉 = −γnr〈c†c〉 − (g〈bc†v〉 + H.c.) + [−γNL〈c†c〉 + r(1 − 〈c†c〉)], (B7c)

dt 〈b†b〉 = −2γc〈b†b〉 + N (g〈bc†v〉 + H.c.), (B7d)

dt 〈bc†v〉 = −(γ + γc + i�ν)〈bc†v〉 + g∗[〈c†c〉 + 2〈b†bc†c〉D − 〈b†b〉] + (N − 1)g∗〈c†v†cv〉, (B7e)

dt 〈bc†c〉 = −(γc + γnr )〈bc†c〉 − g〈bbc†v〉D − g∗〈b†bv†c〉D + (N − 1)g∗〈c†v†cc〉 + 〈b〉[−γNL〈c†c〉 + r(1 − 〈c†c〉)],

(B7f)

dt 〈bb〉 = −2γc〈bb〉 + 2Ng∗〈bv†c〉, (B7g)

dt 〈bv†c〉 = −[γc + γ − i�ν]〈bv†c〉 + g[2〈bbc†c〉D − 〈bb〉] + (N − 1)g∗〈v†v†cc〉, (B7h)

dt 〈c†v†cv〉 = −2γ (1 + μ)〈c†v†cv〉 + g∗[2〈b†v†c†cc〉D − 〈b†v†c〉] + g[2〈bc†c†cv〉D − 〈bc†v〉], (B7i)

dt 〈v†c†cc〉 = −[γ (1 + μ) + γnr − i�ν]〈v†c†cc〉 + g[2〈bc†c†cc〉D − 〈bc†c〉]
− g〈bc†v†cv〉D − g∗〈b†v†v†cc〉D + 〈v†c〉[−γNL〈c†c〉 + r(1 − 〈c†c〉)], (B7j)

dt 〈v†v†cc〉 = −2[γ (1 + μ) − i�ν]〈v†v†cc〉 + 2g[2〈bv†c†cc〉D − 〈bv†c〉], (B7k)

dt 〈c†c†cc〉 = −2γnr〈c†c†cc〉 − [2g〈bc†c†cv〉D + H.c.] + 2〈c†c〉[−γNL〈c†c〉 + r(1 − 〈c†c〉)]. (B7l)

APPENDIX C: TPM1F EQUATIONS

The TPM1F extends the CIM by including all two-particle boson-fermion and boson-boson operators. It differs from the TPM
by excluding the two-particle fermion-fermion operators, Eqs. (B5i)–(B5l). The TPM(d)

1F equations—derived assuming different
quantum dots—are the same as Eqs. (B5a)–(B5h) except that the two-fermion expectation values have been replaced by their
truncated expansion; e.g., the term 〈c†

l v
†
ncnvl〉 in Eq. (B5e) is replaced by 〈c†

l vl〉〈v†
ncn〉, with n �= l , in Eq. (C1e):

dt 〈b〉 = −γc〈b〉 +
∑

n

g∗
n〈v†

ncn〉, (C1a)

dt 〈v†
l cl〉 = −(γ − i�νl )〈v†

l cl〉 + gl (2〈bc†
l cl〉 − 〈b〉), (C1b)

dt 〈c†
l cl〉 = r(1 − 〈c†

l cl〉) − (γNL + γnr )〈c†
l cl〉 − 2Re(gl〈bc†

l vl〉), (C1c)

dt 〈b†b〉 = −2γc〈b†b〉 + 2
∑

n

Re(gn〈bc†
nvn〉), (C1d)

dt 〈bc†
l vl〉 = −(γc + γ + i�νl )〈bc†

l vl〉 + g∗
l [〈c†

l cl〉 − 〈b†b〉(1 − 2〈c†
l cl〉) + 4Re(〈b〉〈b†c†

l cl〉) − 4|〈b〉|2〈c†
l cl〉]

+〈c†
l vl〉

∑
n �=l

g∗
n〈v†

ncn〉, (C1e)

dt 〈bc†
l cl〉 = −(γnr + γc)〈bc†

l cl〉 − γNL〈b〉〈c†
l cl〉 − gl (〈c†

l vl〉〈bb〉 + 2〈b〉〈bc†
l vl〉 − 2〈b〉2〈c†

l vl〉)

−g∗
l (〈v†

l cl〉〈b†b〉 + 〈b〉〈b†v
†
l cl〉 − 2|〈b〉|2〈v†

l cl〉 + 〈b†〉〈bv†
l cl〉) + r〈b〉(1 − 〈c†

l cl〉) + 〈c†
l cl〉

∑
n �=l

g∗
n〈v†

ncn〉, (C1f)

dt 〈bv†
l cl〉 = −(γ + γc − i�νl )〈bv†

l cl〉 + gl [−〈bb〉(1 − 2〈c†
l cl〉) + 4〈b〉(〈bc†

l cl〉 − 〈b〉〈c†
l cl〉)] + 〈v†

l cl〉
∑
n �=l

g∗
n〈v†

ncn〉, (C1g)

dt 〈bb〉 = −2γc〈bb〉 + 2
∑

n

g∗
n〈bv†

ncn〉. (C1h)

If the QDs are identical (TPM1F) the equations become

dt 〈b〉 = −γc〈b〉 + Ng∗〈v†c〉, (C2a)

dt 〈v†c〉 = −(γ − i�ν)〈v†c〉 + g(2〈bc†c〉 − 〈b〉), (C2b)

dt 〈c†c〉 = r(1 − 〈c†c〉) − (γNL + γnr )〈c†c〉 − 2Re(g〈bc†v〉), (C2c)

dt 〈b†b〉 = −2γc〈b†b〉 + 2NRe(g〈bc†v〉), (C2d)

dt 〈bc†v〉 = −(γc + γ + i�ν)〈bc†v〉 + g∗[〈c†c〉 + (2〈c†c〉 − 1)〈b†b〉 + 4Re(〈b〉〈b†c†c〉) − 4|〈b〉|2〈c†c〉]
+ g∗(N − 1)〈c†v〉〈v†c〉, (C2e)
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FIG. 7. Lasing solutions for the CIM (solid blue line), the TPM (dot-dashed lines, purple, yellow, and red for μ = [0.0, 0.05, 0.1]
respectively), and the TPM1F (dashed green line) with N = 25 (a) and N = 500 (b). All other parameters are as in Table I. These are the
same as in Fig. 3 of the main body of the paper, but are computed for different values of N .

dt 〈bc†c〉 = −(γnr + γc)〈bc†c〉 − γNL〈b〉〈c†c〉 − g(〈c†v〉〈bb〉 + 2〈b〉〈bc†v〉 − 2〈b〉2〈c†v〉) − g∗(〈v†c〉〈b†b〉 + 2〈b〉〈b†v†c〉
− 2|〈b〉|2〈v†c〉 + 〈b†〉〈bv†c〉) + r〈b〉(1 − 〈c†c〉) + (N − 1)g∗〈c†c〉〈v†c〉, (C2f)

dt 〈bv†c〉 = −(γ + γc − i�ν)〈bv†c〉 + g[〈bb〉(2〈c†c〉 − 1) + 4〈b〉(〈bc†c〉 − 〈b〉〈c†c〉)] + (N − 1)g∗〈v†c〉〈v†c〉, (C2g)

dt 〈bb〉 = −2γc〈bb〉 + 2Ng∗〈bv†c〉. (C2h)

Figure 7 indicates that the laser threshold predicted by the full TPM with identical QDs converges to that of TPM1F when
phonon scattering is incorporated phenomenologically via dephasing, following the approach in Ref. [68].
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the coherent field amplitude 〈b〉. The number next to each point is the sample index, e.g., the point with highest detuning is produced by sample
S9. In all panels only the CIM data are plotted for ease of visualization. All other parameters are as in Table I.

APPENDIX D: CIM EQUATIONS

The CIM(d ) equations are Eqs. (B5a)–(B5e) suitably
truncated:

dt 〈b〉 = −γc〈b〉 +
∑

n

g∗
n〈v†

ncn〉, (D1a)

dt 〈v†
l cl〉 = −(γ − i�νl )〈v†

l cl〉 + gl〈b〉(2〈c†
l cl〉 − 1),

(D1b)

dt 〈c†
l cl〉 = r(1 − 〈c†c〉) − (γNL + γnr )〈c†c〉

−2Re(gl〈bc†
l vl〉), (D1c)
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FIG. 10. Analysis of the effect of the width of the QD distributions for CIM(d) and TPM(d)
1F from left to right respectively. In all panels we

report the fitted amplitude of the activation curve, aL , and the angular frequency shift of the lasing solution, |�ω|, with respect to the cavity
frequency for ten samples of N = 50 QDs. Each sample is taken from a normal distribution with zero average and standard deviation wQD

equal to 0.2γ (plus signs), 0.5γ (crosses), γ (downward triangles), and 2γ (upward triangles). The samples and all other parameters are the
same as in Fig. 7.

dt 〈b†b〉 = −2γc〈b†b〉 + 2
∑

n

Re(gn〈bc†
nvn〉), (D1d)

dt 〈bc†
l vl〉 = −(γc + γ + i�νl )〈bc†

l vl〉 + g∗
l [〈c†

l cl〉 + (2〈c†
l cl〉

− 1)〈b†b〉] +
∑
n �=l

g∗
n〈c†

l vl〉〈v†
ncn〉. (D1e)

Equations (D1a)–(D1d) are the same as the TPMs
Eqs. (B5a)–(B5d). Equations (D1e) and (B5g) differ in the
coupling to the higher-order terms, which are missing in the
CIM.

The equivalent equations for identical QDs are in Ref. [66],
Eq. (S.15), and are reproduced here for completeness:

dt 〈b〉 = −γc〈b〉 + Ng∗〈v†c〉, (D2a)

dt 〈v†c〉 = −(γ − i�ν)〈v†c〉 + g〈b〉(2〈c†c〉 − 1). (D2b)

dt 〈c†c〉 = −(γnr + γNL)〈c†c〉 − (g〈bc†v〉 + H.c.)

+ r(1 − 〈c†c〉), (D2c)

dt 〈b†b〉 = −2γc〈b†b〉 + N (g〈bc†v〉 + H.c.), (D2d)

dt 〈bc†v〉 = −(γ + γc + i�ν)〈bc†v〉 + g∗[〈c†c〉
+ 〈b†b〉(2〈c†c〉 − 1)] + (N − 1)g∗〈c†v〉〈v†c〉.

(D2e)

APPENDIX E: EXPERIMENTAL VALUES OF QD
FREQUENCY DISPERSION

Technological developments have strongly improved the
size homogeneity of QDs, thus leading to closer resonance
frequencies and providing samples with a moderate degree of
inhomogeneous broadening. While in the early 2000s it was
possible to observe frequency spreads of the order of 10% of
the cavity fundamental mode (CFM), current realizations are
capable of obtaining � 60% of QDs in a frequency interval
which is within 0.4% of the CFM [48]. Furthermore, Fig.
1(d) of Ref. [48] shows that even the largest relative spread
observed in experimental samples is approximately 1.1%.

More quantitatively, the two QD populations analyzed in
Fig. 1(d) of Ref. [48] have wavelength standard deviation
�λ � {2.5, 3.6} nm respectively, with central wavelength
λ � 920 nm. The corresponding inhomogeneous frequency
spread �νin of the broader population is

�νin = ν
�λ

λ
� 1.3 × 1012 Hz = 1300γnr, (E1)

for the value of the nonradiative transition decay rate used in
all the simulations in this paper. This is equivalent to wQD �
0.13γ , which is on the low range of the value used in this
paper.

APPENDIX F: ACTIVATION CURVES FOR DIFFERENT
DETUNING WIDTHS

In order to visualize the activation curve we split the QDs
in core and tail. The latter are ten QDs with preassigned detun-
ing ±kγ , with k = 1, 2, . . . , 5. The former are the remaining
40 QDs; their detuning is randomly sampled from a normal
distribution with zero average and standard deviation equal
to γ . This choice of QDs detunings allows the visualization
of the activation curve, but affects its fitting. In the case
of wQD = 0.2γ (top left panel of Fig. 8), all the core QDs
are equally active and feed energy quite effectively to the
tail QDs, resulting in a rather wide activation curve which,
however, is more the result of the chosen QD distribution than
of the nanolaser physics. This is also hinted at by the relatively
poor fit of the Lorentzian function to the numerical data.

As wQD is increased, the difference between core and tail
QDs becomes less and less significant. At wQD = 2γ (bottom
right panel of Fig. 8) the distinction between core and tail QDs
has disappeared and the activation curve is fitted extremely
well by a Lorentzian the width of which we can now consider
as an experimentally measurable aspect of the physics of the
nanolaser.
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APPENDIX G: RELATION BETWEEN DETUNING,
ACTIVATION CURVE WIDTH, AND QUANTUM-DOT

DISPERSION

The dispersion of the quantum dots affects the frequency
detuning of the lasing solution with respect to the cavity
frequency �ω and the width wL of the activation curve,
Eq. (1). To characterize this we have computed for each sam-
ple the average detuning �ν and its standard deviation, w.
Their values for each sample are reported in panels 1–10 of
Fig. 9.

From this figure we can see that, as a general rule, the
higher the sample detuning the higher the lasing frequency
detuning. For example, samples 9, 8, and 10 have the three
highest sample detunings �ν, and their corresponding lasing
solutions have the three highest detunings, |�ω|, in the same
order. Conversely, the lasing solution of the sample with the
smallest detuning, S3, has the smallest detuning.

The width of the activation curve, wL, depends on how
compact the distribution of quantum dots is, in broadly the
same way as discussed in Appendix F. As a general rule, sam-
ples with narrow distributions, i.e., small values of w, have
wide activation curves, e.g., samples S4 and S8, while samples
with broad distributions have narrower activation curves, e.g.,
sample S9. In samples with narrow distributions most quantum
dots are active and there is more energy in the system. This
filters down to the fixed number of quantum dots that we have
set with higher detuning lifting their energy and broadening
the activation curve. In samples with broader distributions,
fewer quantum dots are maximally active and therefore the
quantum dots in the tail have less energy, thus producing
narrower activation curves.

APPENDIX H: ACTIVATION CURVES
FOR CIM(d) AND TPM(d)

1F

The influence of the width wQD of the QD detuning dis-
tribution is further analyzed in Fig. 10 where we plot the

0 20 40 60 80 100
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-200
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e
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FIG. 11. Real and imaginary parts and modulus of the coherent
field 〈b〉 computed using the TPM1F equations at pump r = 2 ×
1014 s−1 for sample S3. This is the rightmost point in the TPM(d)

1F

curve in Fig. 3 in the main text and all parameter values are as in this
figure.

amplitude aL of the activation curve versus the frequency
shift |�ω| of the lasing solution with respect to the cavity
frequency for the CIM(d) and TPM(d)

1F from left to right respec-
tively. Each panel contains the outcome of the simulation of
ten batches of N = 50 QDs sampled from distributions with
widths wQD = [0.2, 0.5, 1.0, 2.0]γ . The behavior is very sim-
ilar to that of the TPM(d), but the points are less scattered due
to a lower numerical noise in the estimation of the threshold.

APPENDIX I: SYNCHRONIZATION OF QDS AND
EMERGENCE OF THE OSCILLATING COHERENT FIELD

Another effect of QD detuning is the emergence of single-
frequency temporal oscillations in the coherent field (see
Fig. 11), which is due to the synchronization of QDs with
different resonant frequencies.
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