

Immune transcriptomic differences in paediatric patients with SARS-CoV-2 compared to other lower respiratory tract infections

Negusse Tadesse Kitaba¹, Lesley Workman², Cheryl Cohen^{3,4}, Diana Baralle^{1,5,6}, Ellen Kong⁷, Maresa Botha², Marina Johnson^{8,9}, David Goldblatt^{8,9}, Mark P Nicol¹⁰, John W Holloway^{1,6#} and Heather J Zar^{2#}

#These authors contributed equally: Heather J Zar & John W. Holloway.

Corresponding author: Heather J Zar heather.zar@uct.ac.za

¹Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK

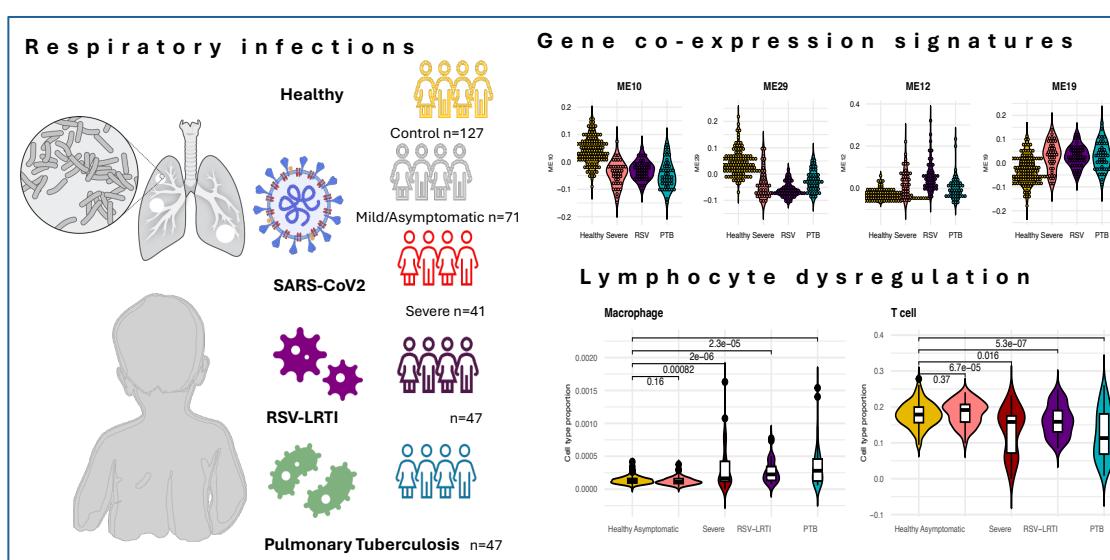
²Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa

³Center for Respiratory disease and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, 1 Modderfontein Road Sandringham, South Africa

⁴School of Public Health, University of the Witwatersrand, Johannesburg, South Africa

⁵National Health, Service (NHS) Foundation Trust Southampton, UK

⁶NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton, UK


⁷National Heart and Lung Institute, Imperial College London, London, UK

⁸Great Ormond Street Institute of Child Health University College London, UK

⁹National Heart and Lung Institute, Imperial College London, London, UK

¹⁰The University of Western Australia: Perth, Australia

Graphical abstract

1 **Abstract**

2 The clinical severity of SARS-CoV-2 infection in children varies, with asymptomatic or mild
3 illness predominating and a minority developing severe disease. Understanding the immunological
4 responses that underlie severity of disease may guide future development of preventive or
5 therapeutic interventions. This study compared whole blood transcriptomes of healthy children
6 (N=127), children with mild/asymptomatic SARS-CoV-2 infection (N=71) and children
7 hospitalised with severe SARS-CoV-2 (N=41), lower respiratory tract illness (LRTI) or LRTI due
8 to Respiratory Syncytial Virus (RSV-LRTI) (N=47) or Pulmonary Tuberculosis (PTB) (N=47).
9 We identified >5000 differentially expressed genes including: *OLFM4*, *IFI27*, *CBX7*, *IGF2BP3*,
10 *OTOF* for severe SARS-CoV-2; *IFI27*, *OTOF*, *SIGLEC1*, *IFI44L* and *USP18* for RSV-LRTI, and
11 *MMP8*, *LTF*, *IGF2BP3*, *GPR84*, *CD177*, *C1QC* and *DEFA4* for PTB, at false discovery rate
12 (FDR) <0.05. Pathway analysis identified enrichment for neutrophil degranulation, interferon
13 gamma signalling, overexpression of ribosomal proteins and depletion of immune response in
14 severe SARS-CoV-2 compared to healthy (SAR-CoV-2 uninfected) children. Weighted Gene Co-
15 expression Network Analysis (*WGCNA*) identified 10 correlated gene modules shared between
16 LRTI showing similar underlying response mechanisms. Cellular decomposition analysis
17 identified the depletion of 22 cell types in severe SARS-CoV-2, 16 for RSV-LRTI and 21 for PTB
18 compared to healthy SARS-CoV-2 uninfected control children. We identified 82 genes important
19 for discriminating asymptomatic/mild from severe SARS-CoV-2 including *CBX7*, *TRAF1*,
20 *ZNF324* and *CASS4*; 93 healthy from severe SARS-CoV-2 including *RORC*, *CBX7*, *NR3C2*, *MID2*
21 and *ADAMTS2*; 110 genes for RSV-LRTI and 95 for PTB children which can be used for future
22 therapeutic targets.

23 Keywords: Respiratory infection, Covid-19, PTB, RSV-LRTI, WGCNA, Child

24 Introduction

25 Lower respiratory tract illness (LRTI) is a major cause of hospitalisation and mortality globally in
26 children, with the burden heavily skewed to low- and medium-income countries (LMICs). RSV
27 predominates as a cause of severe LRTI and hospitalisation. Pulmonary tuberculosis (PTB) has
28 also increasingly been recognised as an important cause of acute LRTI in children in countries in
29 which TB is endemic¹. During the SARS-CoV-2 pandemic, SARS-CoV-2 emerged as a cause of
30 LRTI in children.

31 The clinical manifestation of COVID-19 in children varies widely from mild or asymptomatic
32 illness to severe LRTI², although severe disease is rare. Immunologically, the hallmarks of
33 COVID-19 include dysregulation of type I IFN activity, hyperinflammation, lymphopenia,
34 heterogeneous adaptive immunity, dysregulated myeloid response and lymphocyte impairment^{3,4}.
35 COVID-19 severity is also associated with different levels of neutralizing antibodies^{5,6}. While the
36 blood transcriptomic response to SARS-CoV-2 infection has been described in adults^{7,8,9}, few
37 studies have investigated responses to SARS-CoV-2 in infants and children^{10,11} and little is known
38 about differences in host gene expression between children asymptomatic with SARS-CoV-2
39 infection and those hospitalized with severe COVID-19 or other LRTI such as Respiratory
40 Syncytial Virus (RSV-LRTI) or pulmonary tuberculosis (PTB)^{12,13,14,15}.

41 A multi-omics approach has previously shown utility in characterising the complexity and severity
42 of Covid-19¹⁶. Weighted Gene Co-expression Networks Analysis (WGCNA) is a widely
43 implemented approach to identify co-regulated genes and potential hub-genes for druggable
44 targets¹⁷. The aim of this study was to compare host RNA gene expression in healthy children
45 compared to those with asymptomatic or mild SARS-CoV-2 infection, as well as to those

46 hospitalised with COVID-19, RSV-LRTI or PTB and to utilise WGCNA to identify underlying
47 immune responses associated with disease.

48 **Methods**

49 This was a prospective study conducted during the SARS-CoV-2 pandemic that investigated
50 patterns of whole blood gene expression in HIV-negative children enrolled in a South African birth
51 cohort study, the Drakenstein Child Health study (DCHS), and those hospitalised with SARS-
52 COV-2 (severe COVID-19), RSV-LRTI or PTB.

53 **Participants**

54 **Healthy controls or previous SARS-CoV-2 mild or asymptomatic infection:** Participants were
55 from the Drakenstein Child Health Study, a prospective population-based birth cohort study of
56 children in a low- and middle-income, peri-urban community outside Cape Town, South Africa¹⁸.
57 In the DCHS, during the SARS-CoV-2 pandemic, a convenience sample of a subset of children
58 (N=201) was included in intensive surveillance for SARS-CoV-2 infection with blood sampling
59 every 3 months from 15-May-2020 through 15-Sept-2022, with blood and nasopharyngeal swabs
60 collected, irrespective of symptoms.

61 In addition, continuous surveillance for illness or hospitalisation was undertaken, and blood and
62 nasal sampling repeated at any intercurrent illness. Serum samples were stored and batched for
63 measurement of IgG to Spike antigen (CoV-2-S-IgG) by ELISA as previously described¹⁹. In the
64 current study, samples from children during wave 1 were used; subjects seronegative for SARS-
65 CoV-2 were defined as healthy controls, and those seropositive for SARS-CoV-2 were considered
66 mild/asymptomatic infection as no child reported symptomatic illness or was hospitalised.

67

68 **Children with LRTI**

69 **COVID-19 or RSV-LRTI:** Children with acute LRTI hospitalised at Red Cross Childrens
70 Hospital were identified through the National Syndromic Surveillance for pneumonia in South
71 Africa programme (PSP) at Red Cross War Memorial Children's Hospital, in Cape Town, South
72 Africa. Sequential children hospitalised with LRTI were enrolled and a nasal swab for PCR
73 detection of SARS-CoV2, RSV and other pathogens was taken for testing at National Institute of
74 Communicable Disease as previously described²⁰. Children who were positive for SARS-CoV-2
75 and negative for other pathogens were considered to have severe COVID-19 (N=41); those
76 positive for RSV were included as RSV-LRTI (N=51).

77 **PTB:** Children enrolled in a TB diagnostic study (N=47) at Red Cross Children's Hospital,
78 microbiologically confirmed (by mycobacterial liquid culture or Xpert MTB/RIF) and negative
79 for SARS-CoV-2 and RSV, were included in this study. Serum and PAXgene samples were
80 collected at the time of illness (Severe COVID-19, RSV-LRTI, PTB) were used for this study²⁰.

81 Whole blood PAXgene samples were stored at -80°C, randomized prior to shipment, with RNA
82 extraction and sequencing undertaken at the Genomics Shared Resource (GSR), Roswell Park
83 Comprehensive Cancer Centre, Buffalo NY, USA.

84 **Sequencing and processing RNAseq data**

85 Raw reads were processed with the bcbio-nextgen pipeline. Reads quality were assessed using
86 FastQC²¹ and MultiQC²². Sequencing reads were aligned to the human transcriptome reference
87 using STAR²³. Quantification of gene expression was carried out using Salmon²⁴ with default
88 settings. Read counts were normalized using CPM (counts per million) from edgeR²⁵ with the
89 TMM (Trimmed Mean of the M-values) method which accounts for both sequencing depth and

90 gene length²⁶. Sample outliers were detected using Robust Principal Component Analysis (rPCA)
91 with PcaHubert and PcaGrid functions²⁷; samples detected by both methods were excluded from
92 downstream analysis.

93 Identification of differentially expressed genes (DEGs)

94 Amongst 198 children in DCHS, 64% were seronegative (N=127) and regarded as healthy
95 controls. Those were compared to hospitalised children with COVID-19 (N=41), RSV-LRT
96 (N=47) or PTB (N=47). SARS-CoV-2 seropositive during wave 1 (N=71), who did not report any
97 respiratory symptoms or hospitalization over this period, were regarded as having had mild or
98 asymptomatic infection.

99 The R-package limma²⁸ was used to identify differentially-expressed genes adjusting for children's
100 sex and age. Multiple testing correction was performed using the Benjamini-Hochberg (BH)
101 procedure for False Discovery Rate (FDR) < 0.05. The biological function of gene lists were
102 identified via gene set and pathway enrichment analyses using toppGene²⁹.

103 Weighted Gene Co-expression Network Analysis (WGCNA)

104 Signed weighted gene co-expression network analyses were conducted using WGCNA³⁰. The gene
105 module/clusters represent genes with highly correlated expression patterns, where the first
106 principal component of the gene expression profile (Eigengene) is used to summarise the overall
107 expression of each module. The module eigengenes identified by WGCNA were correlated with
108 Severe COVID-19, PTB and RSV-LRTI. The module associations were visualised as a correlation
109 barplot using the lares R package³¹. Protein-Protein Interaction (PPI) network were identified with
110 GeneMANIA³² and network properties for hub genes were analysed and visualized using
111 Cytoscape³³. Significantly associated modules were further characterized for functional

112 enrichment using toppGene²⁹. Non-redundant biological process terms were generated and
113 visualized using rrvgo package³⁴.

114 **Cell type proportion estimation**

115 Cell type proportion differences between groups were estimated and assessed using xCell 2.0³⁵
116 using the Immune Compendium³⁶ and immunoprofiling³⁷ reference datasets. The t-test was used
117 to determine the difference between groups (asymptomatic vs hospitalized SARS-CoV-2 , control
118 vs RSV-LRTI and control vs PTB).

119 **Severity predictors**

120 Gene biomarkers to predict SARS-CoV-2 severity, RSV-LRTI or PTB were selected using the
121 Boruta³⁸ R package³⁹ with default settings.

122 **Gene and target drug look-up**

123 In order to identify the druggability of differentially expressed genes, the look-up target score
124 generated by DrugnomeAI⁴⁰ was utilised (accessed on 19 March 2025). All statistical analyses
125 were conducted in R version 4.5.1.

126

127 **Results**

128 **Participant characteristics.**

129 This analysis includes 333 children: 71 with previous mild/asymptomatic SARS-CoV-2, 127
130 seronegative, healthy, and 135 children hospitalised with LRTI (41 with SARS-CoV-2, 47 with
131 RSV-LRTI and 47 with PTB or pulmonary TB). The characteristics of each group are shown in
132 Table 1. As there was a significant age difference between DCHS children and those with LRTI,
133 age was included as a covariate in regression analyses.

134 Table 1 Comparison of participants' characteristics for healthy controls and children with
135 respiratory tract infections

Variable	Healthy SARS-CoV-2 seronegative	Mild/asymptomatic SARS-CoV-2 infection	Severe COVID-19		RSV-LRTI		PTB		
	N = 127	N = 71	p-value ²	N = 41	p-value ²	N = 47	p-value ²	N = 47	p-value ²
Gender									
Male N (%)	65 (51%)	28 (39%)	0.11	24 (59%)	0.4	28 (60%)	0.3	27 (57%)	0.5
Age (months)	81 (71, 87)	83 (72, 90)	0.4	11 (3, 45)	<0.001	7 (2, 22)	<0.001	8 (4, 40)	<0.001
Healthy: DCHS children seronegative for SARS-CoV-2 in wave 1 of the Covid-19 pandemic; Mild/asymptomatic: DCHS children seropositive for SARS-CoV-2 in wave 1; Severe COVID-19: Children admitted with COVID-19 lower respiratory tract infection (LRTI) and not co-infected; RSV-LRTI: children admitted with Respiratory Syncytial Virus LRTI; PTB: children with pulmonary tuberculosis infection.									

136

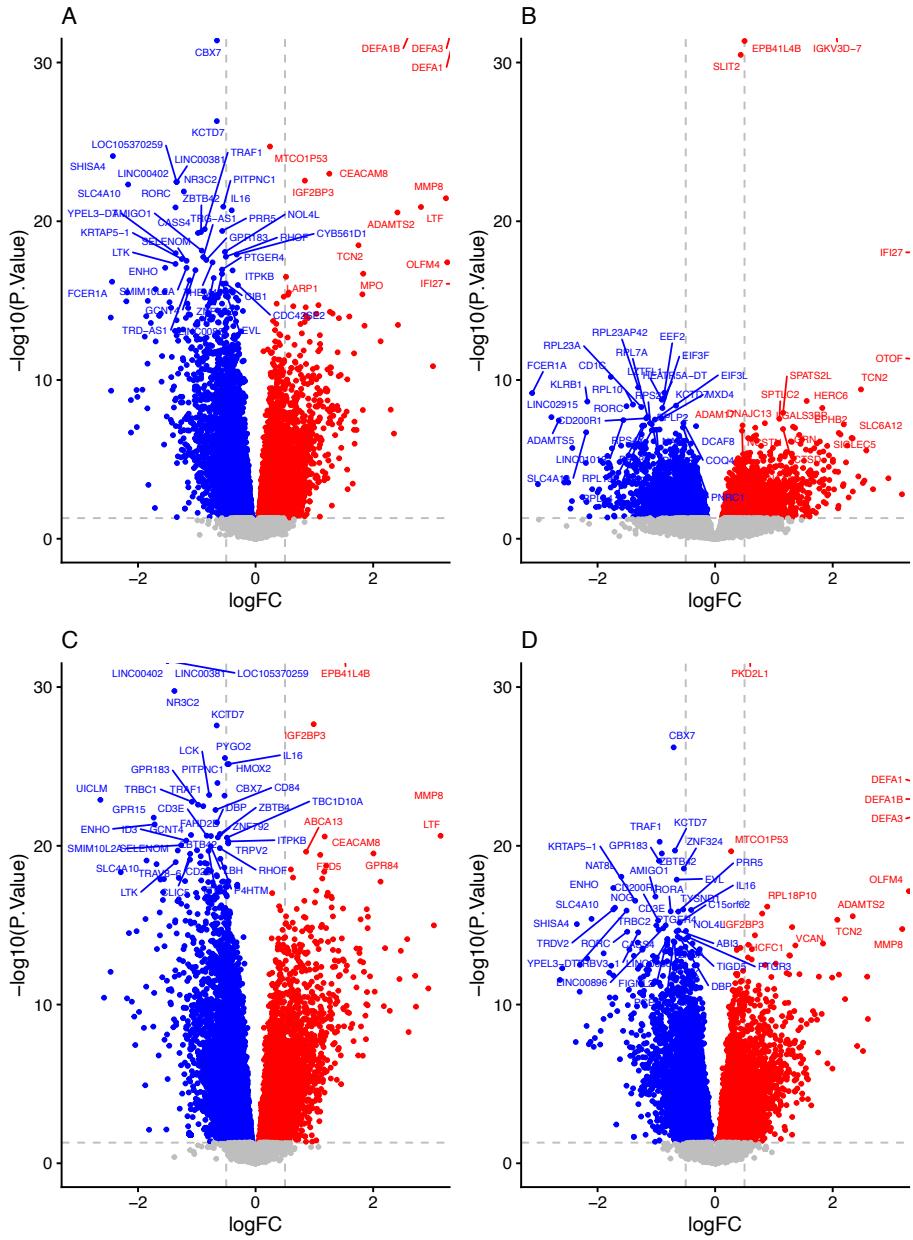
137 **Differential gene expression analysis**

138 To identify differentially expressed genes and enriched GO terms in children with LRTI,
139 seronegative DCHS participants from wave 1 (healthy controls) were compared to each LRTI

140 group separately (COVID-19, RSV-LRTI, PTB). The summary statistics and gene lists for TWAS
141 at FDR <0.05 are provided in Supplementary Table S1. The biological gene ontology enrichment
142 is also provided in Supplementary Table S2.

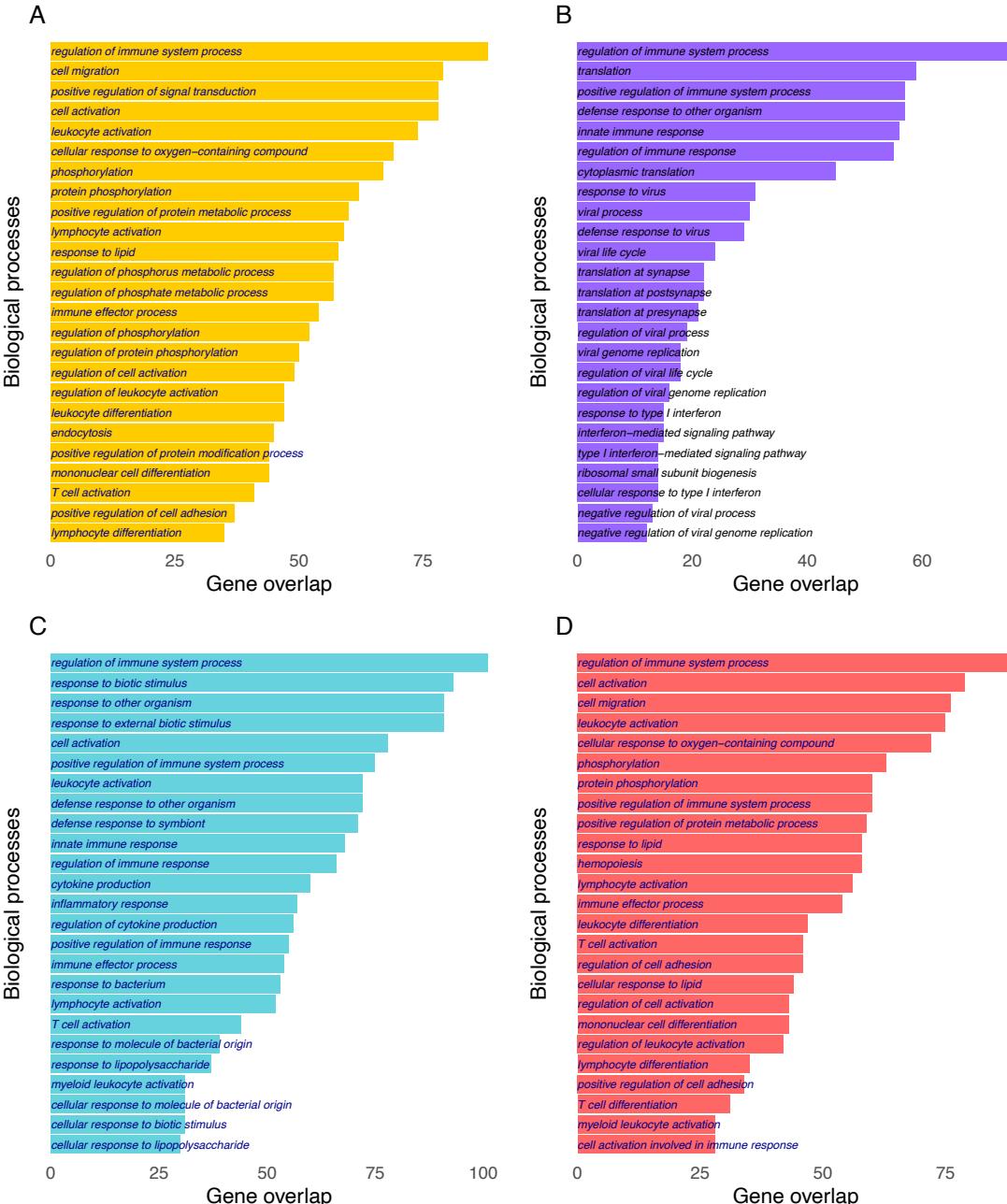
143 **COVID-19 disease**

144 The transcriptional response in healthy controls was compared to hospitalised children with
145 COVID-19. There were 118 up-regulated and 160 down-regulated differentially expressed genes
146 (DEGs) between healthy control and severe SARS-CoV-2 cases (FDR < 0.05 and log2 fold change
147 >1), as shown in Figure 1A. Top DEGs included: *IFI27*, *MMP8*, *OLFM4*, *CEACAM8*, *LTF*,
148 *IGF2BP3*, *DEFA4*, *ADAMTS2* and *CBX7*. Pathways identified as enriched include regulation of
149 immune system and lymphocyte activation (Figure 2A).


150 **RSV-LRTI**

151 DGE analysis identified 210 upregulated and 195 downregulated genes at FDR < 0.05 and log2
152 fold change >1 and differentially expressed between healthy controls and children hospitalized
153 with RSV-LRTI; top DEGs included *IFI27*, *OTOF*, *SIGLEC1*, *IFI44L*, *USP18*, *TCN2*, *CD177*,
154 *HERC6*, *C1QC* and *EPHB2*. For all summary statistics see RSV-LRTI in Table S1 and the volcano
155 plot shown in Figure 1B. Pathways significantly enriched included regulation of immune system
156 translation, interferon mediated signalling, viral life cycle and viral processing (Figure 2B).

157 **Pulmonary Tuberculosis**


158 Children with PTB had identified 203 upregulated and 1843 downregulated genes differentially
159 expressed genes (FDR < 0.05 and log2 fold change >1) compared to healthy controls. Top genes
160 identified include *MMP8*, *LTF*, *IGF2BP3*, *GPR84*, *CD177*, *C1QC*, *DEFA4* and *OLFM4* (see

161 Figure 1 and Supplementary table S1). The pathways identified as enriched include defence
162 response to bacteria, and innate immune response (see PTB in Figure 2C).

163
164 **Figure 1** TWAS Volcano plot. A) Severe COVID-19, B) RSV-LRTI, C) PTB D) COVID-19
165 Severity. Red - upregulated, Blue - down regulated (P value <0.05, log2 Fold Change > 0).

166

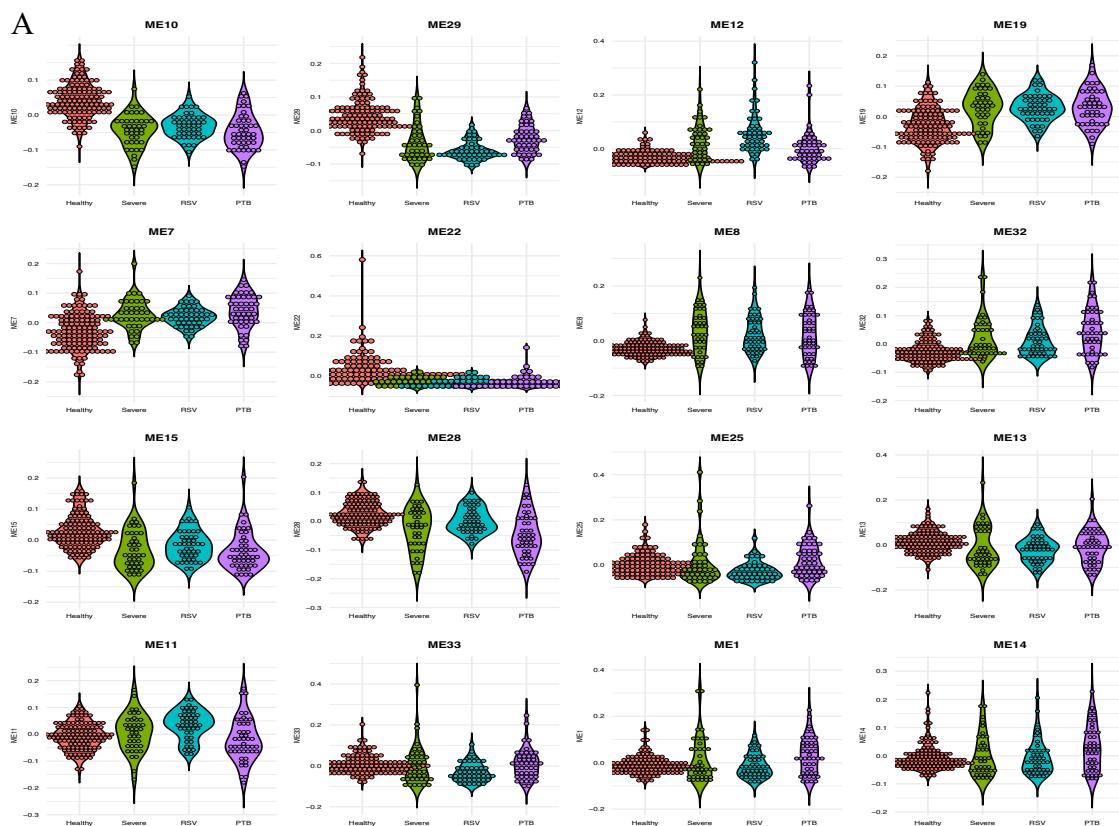
167

168 **Figure 2** Gene ontology term for biological process for top 500 genes. A) Severe COVID-19 B) RSV-LRTI C) PTB
169 D) COVID-19 severity.

170

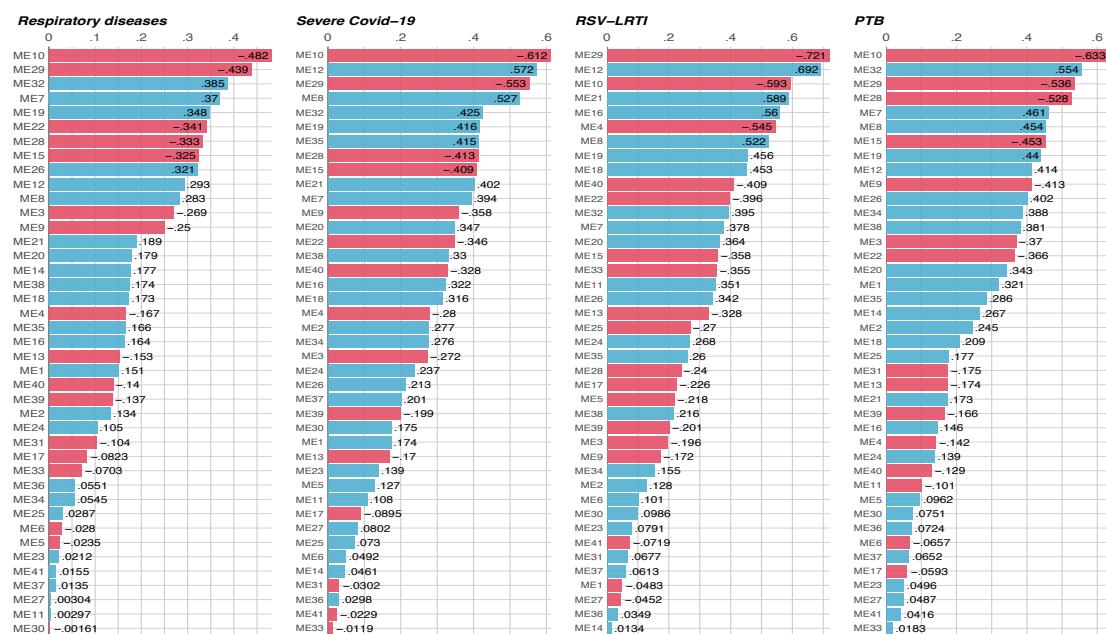
171 **Severity of SARS-CoV-2 infection**

172 In order to determine transcriptional responses that distinguish mild/asymptomatic SARS-CoV-2
173 infection from severe COVID-19, children hospitalised with COVID-19 were compared with
174 seropositive DCHS children. We identified 163 upregulated and 183 down downregulated genes
175 at FDR < 0.05 and log2 fold change >1 see supplementary table S1. The pathways identified as
176 enriched include regulation of immune system, hemopoieses and lymphocyte activation (see
177 Figure 2D and supplementary table S2).


178 **Weighted Gene Co-expression Networks Analysis of LRTI**

179 The WGCNA analysis identified 46 significant modules including 22 with severe COVID-19 , 22
180 with RSV-LRTI and 20 with PTB when compared with healthy controls (p<0.05). Modules 10,
181 29, 22, 28 and 15 were downregulated and modules 32, 7, 19, 26 and 12 upregulated across LRTIs.
182 The distribution of Eigengenes vs LRTI is shown in Figure 3A and Supplementary Table S3. The
183 distribution of the relationship between the modules is represented as a dendrogram
184 (Supplementary Figure 1) and genes per module are shown in Supplementary Table S3. The
185 correlation of modules with COVID-19 , RSV-LRTI and PTB are shown in Figure 3B. Thirty
186 modules showing correlation across LRTIs ($r > 0.25$) were identified, of which 10 modules were
187 correlated with all LRTI, 6 were in common between COVID-19 and RSV-LRTI, and 6 between
188 COVID-19 and PTB (see Table 2 and Supplementary Fig 3). There were 4 modules specific to
189 RSV-LRTI and 2 were specific to PTB.

190 The gene list in each module was used to generate a network using GeneMANIA with 10 additional
191 interactors for biological processes in Cytoscape. Network analyses were conducted to characterise
192 the network properties including identifying hub genes based on degree of connectivity. The top
193 five hub genes for modules are shown in Table 2. The network connectivity degree distribution for


194 each module is provided in Supplementary Table S4. The Cytoscape session is also provided as
195 Supplementary file 1.

196 The GO terms enrichment for modules which showed Pearson correlation of $r > 0.25$ with specific
197 LRTI is in Supplementary Table S5. Further, redundant gene ontology was removed based on
198 similarity matrix of GO terms using rrvgo R package. For biological process visualisation for all
199 other modules see Supplementary Figure 4.

200

B

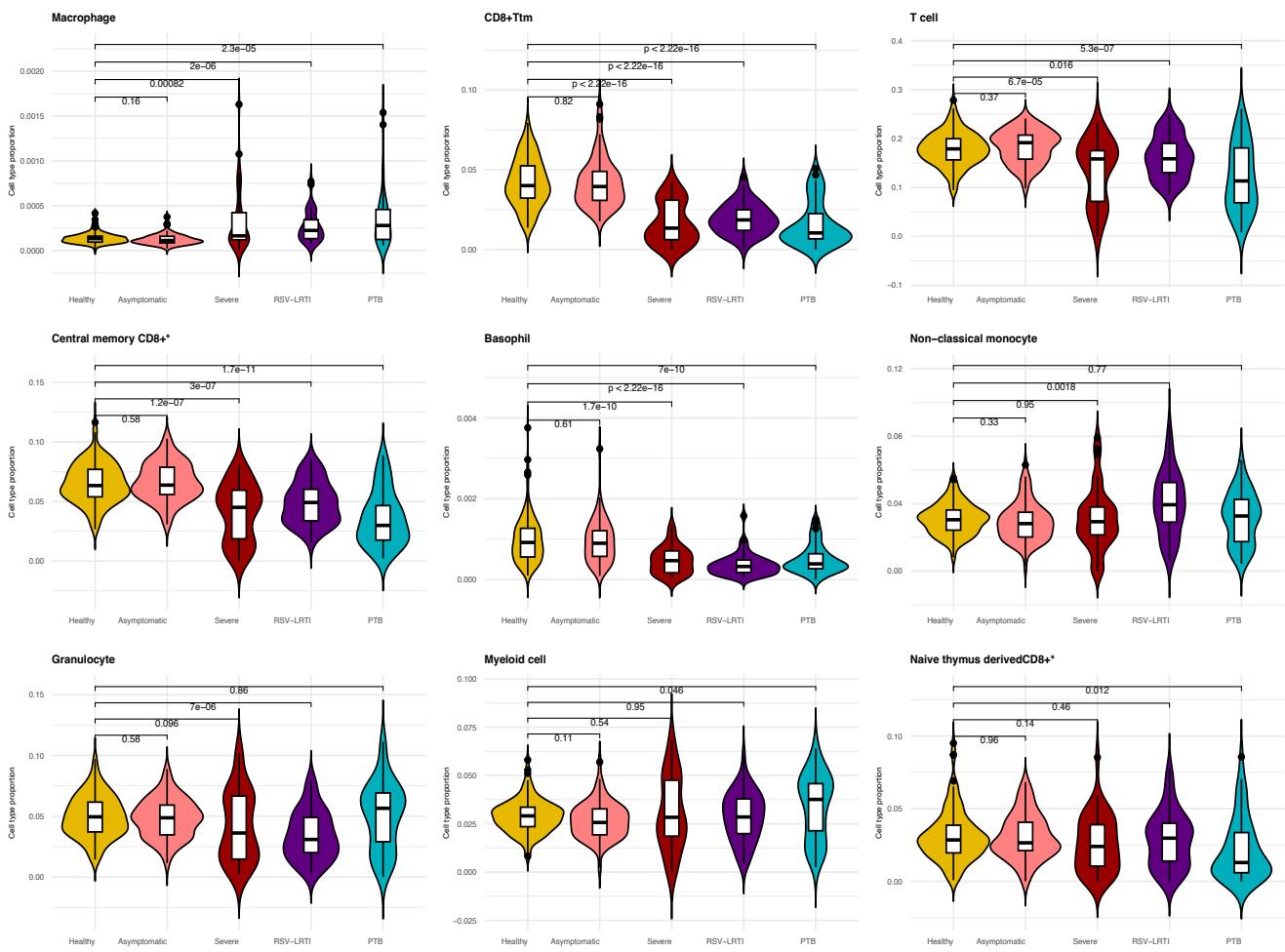
201

202

Figure 3. WGCNA analysis for respiratory infections and module correlation. A) Distribution of significant modules per respiratory infection (x-axis module eigengene vs y-axis respiratory infection), B) Correlation of Eigengene with respiratory infection.

203

204


205 Table 2 WGCNA modules correlated with respiratory infections at Pearson correlation $r > 0.25$ and $p < 0.05$.

Name	Total	Element	Top gene ontology	Top five hub genes
COVID19 PTB RSV- LRTI	10	ME7	Olfactory receptor activity and telomere maintenance	<i>OPHNI, PARD6A, ACADS, PMM1 and VPS72</i>
		ME15	Adaptive immune response and granzyme-mediated programmed cell death	<i>TBX21, CCL5, GZMA, IL2RB and SH2D2A</i>
		ME29	Negative regulation of apoptosis	<i>AOC3, AMPD2, SGK1, DPEP2 and TIGD3</i>
		ME22	Macrophage differentiation and cellular response to oxygen level	<i>CCR3, PIK3R6, CLC, PTGDR2 and P2RY2</i>
		ME32	Eukaryotic translation initiation factor 4F complex and lymphocyte count	<i>STX18, PARP4, RASSF1, BLCAP and SAV1</i>
		ME10	Cytosolic transport and TNFR2	<i>TRIM28, MAPK3, P4HTM, ACTR1B and CNNM3</i>
		ME19	Viral transcription, aerobic respiration	<i>POLR2G, POLR2J, PSMB3, COX8A and NEDD8</i>
		ME12	Regulation of cell cycle	<i>CDK1, CCNB1, PLK1, MCM2 and CDC6</i>
		ME8	B cell activation	<i>CD79A, BLNK, VPREB3, FCRLA and MS4A1</i>
		ME28	Adaptive immune response and T cell activation	<i>CD3E, LCK, CD3D, FYN and CD2</i>
COVID19 RSV- LRTI	6	ME18	Regulation of viral process and response to type I interferon	<i>STAT2, IRF9, STAT1, ISG15 and IFIT3</i>
		ME16	RNA processes	<i>ABCE1, XPO1, MYC, IARS1 and DHX15</i>
		ME4	Ribosomal biogenesis and leukocyte migration	<i>RGL2, TSEN34, MYC, SIRT7 and FAM53C</i>
		ME21	Chromatin remodelling and hematopoietic stem cell differentiation	<i>MYC, PRPF8, TRIM28, TP53 and FUS</i>
		ME24	Adaptive immune response and positive regulation of type I hypersensitivity	<i>HSP90B1, HSPA5, STT3A, PPIB and RPN1</i>
		ME40	Oxidative phosphorylation (mitochondrial respiratory chain complex)	<i>NDUFS4, NDUFS3, NDUFA9, COX6B1 and NDUFV2</i>
COVID19 PTB	6	ME35	Urea metabolic process	<i>IL1R2, PYGL, ITPKC, MTARC1 and SDC4</i>
		ME3	Ribosomal biogenesis and viral gene expression	<i>RPL6, RPL37, RPS5, RPL35 and RPL9</i>
		ME2	Active transmembrane transport	<i>STAC2, CDH3, PHLDB1, HAO1 and SLC26A4</i>
		ME34	Antibacterial humoral response and regulation of cytokine production	<i>ELANE, CEACAM8, AZU1, CTSG and CEBPE</i>
		ME9	T cell differentiation and adaptive immune response	<i>ITK, LCK, CD3E, CD3D and CD3G</i>
		ME38	Positive regulation of carbohydrate metabolic process	<i>PIK3RI, INSR, IRS2, GRB10 and ZBTB16</i>
PTB RSV- LRTI	2	ME26	Defence response to another organism, interferon-gamma and cell killing	<i>TAPI, STAT1, PSMB8, GBP1 and PSMB9</i>
		ME20	Lipid catabolic process and Regulation of immune responses	<i>HEXB, CD14, FCER1G, GRN and LY96</i>
RSV- LRTI	4	ME25	Blood coagulation and haemostasis	<i>ITGB5, VCL, GP1BA, ITGB3 and PF4</i>
		ME13	Antigen presenting -positive regulation of leukocyte mediated cytotoxicity	<i>UBC, ARPC1B, ARPC3, ARPC1A and GNAI2</i>
		ME11	rRNA processes and Mitochondrial gene expression	<i>PSMD14, CCT2, RFC4, CCT4 and PRIM1</i>
		ME33	Autophagosome and viral process	<i>UBC, ULK1, MAPK14, RAB5B and TSG101</i>
PTB	2	ME1	Immune response regulation and Neutrophil degranulation	<i>HDAC1, PPP4R1, IFNGR2, ATP6V1B2 and PRKCD</i>
		ME14	Regulation of defence response	<i>MYD88, CASP1, IRF9, IRF2 and GBP2</i>

207 **Cell population differences associated with LRTI**

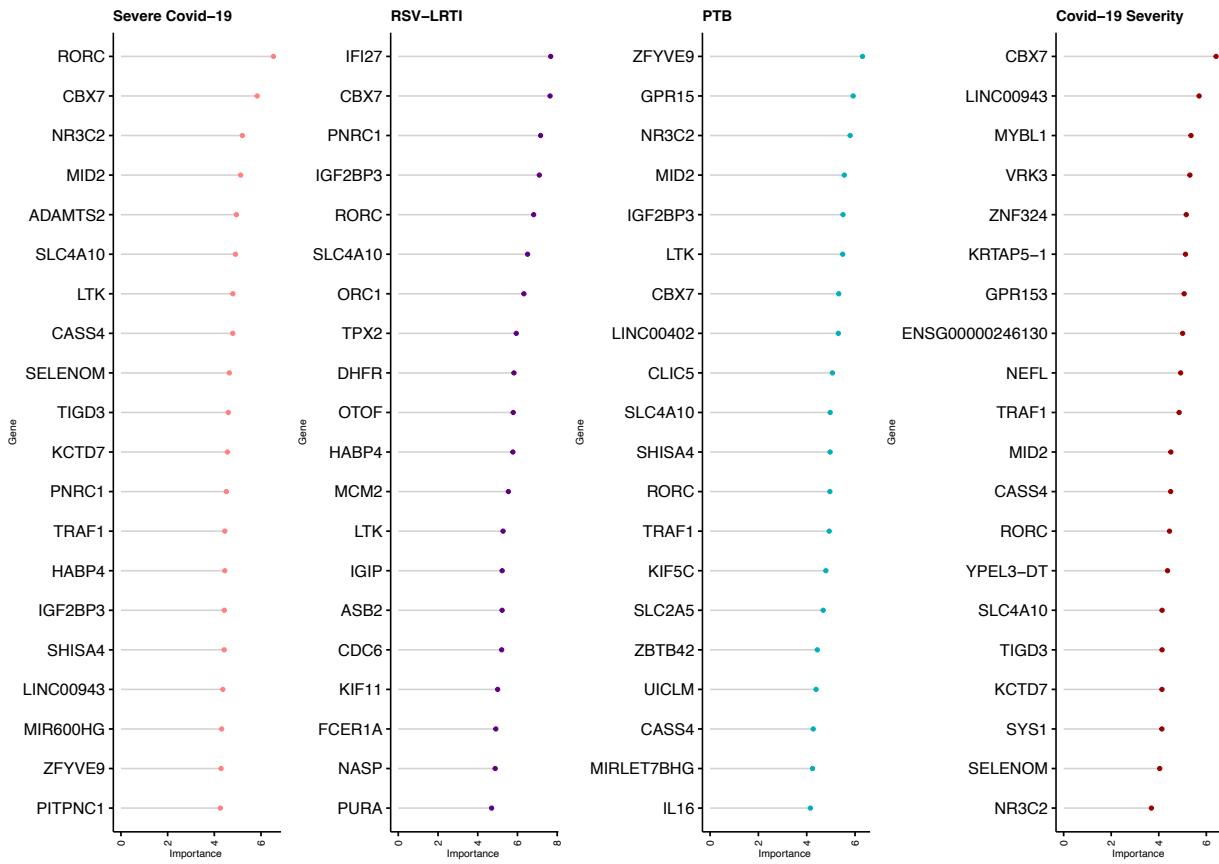
208 To determine cell type composition differences in peripheral blood between healthy controls and
209 hospitalised subjects with LRTI due to different pathogens, blood cell type proportions were
210 estimated with xCell2 2.0 generated with the ImmuneCompendium.xCell2Ref reference panel.
211 Significant cell type composition differences were identified between healthy controls and
212 hospitalised LRTI groups: 23 for severe COVID-19, 16 for RSV-LRTI and 21 for PTB ($p < 0.05$)
213 (see Fig 4). To determine cell type composition difference between LRTIs we conducted t-tests
214 as shown in Figure 5B. There was no difference in cell composition between healthy controls and
215 those with mild/asymptomatic COVID-19. When the different hospitalised LRTI groups were
216 compared with each other, several differences in cell composition were observed ($p < 0.05$). These
217 included T cells (lower in severe COVID-19 vs PTB), non-classical monocytes (severe COVID-
218 19 vs RSV-LRTI and RSV-LRTI and PTB) and myeloid cells (RSV-LRTI vs PTB). PTB also
219 showed depletion of central memory CD8+ T Cells and overexpression of granulocytes compared
220 to RSV-LRTI (see Supplementary Fig 5).

221 Seven cell types showed differences with healthy controls across all LRTIs including:
222 Macrophages, transitional memory CD8+ T cells (CD8+ Ttm, T cells, Central memory CD8+
223 alpha-beta T cells, basophils, myeloid cells and naive thymus-derived CD8+ alpha-beta T cells.
224 Neutrophils and class switched memory B cells showed significant changes for RSV-LRTI and
225 PTB compared to the healthy controls but not for severe COVID-19. Disease specific unique cell
226 type proportion changes were identified for severe COVID-19 as shown in Figure 5. The details
227 are provided in Supplementary Table S6 and Supplementary Fig 6.

228

229 **Figure 4** Differences in the proportions of immune cells in respiratory infections comparing
230 healthy controls vs different LRTI groups. It shows the comparison of the five top cell types for
231 LRTI and cell types uniquely different for RSV-LRTI and PTB.

232


233 **Predictors of severe LRTI**

234 To identify genes that represent biomarkers for each hospitalised LRTI, the normalized counts of
235 the top 1000 significantly differentially expressed genes with respect to healthy controls were used
236 and machine learning algorithms applied to identify the most informative genes. Ninety-three
237 genes were identified as biomarkers for severe (hospitalised) COVID-19, 110 for RSV-LRTI and
238 95 for PTB as shown in Figure 5 and Supplementary Table S7.
239 Some genes were able to discriminate specific LRTIs from healthy controls including Severe
240 COVID-19 (23), RSV-LRTI (74), PTB (37) and asymptomatic COVID-19 from severe COVID-
241 19 (COVID-19 severity) (N=25) as shown in the Supplementary Figure 8. There were 10 genes
242 that discriminated healthy controls from any LRTI including *IL16*, *LTK*, *IGIP*, *IGF2BP3*, *CBX7*,
243 *KCTD7*, *FCER1A*, *TRAF1*, *RORC* and *SLC4A10*. See details of shared predictor genes amongst
244 the LRTI groups in Supplementary Table S7.

245 **Drug target lookup for genes associated with LRTI**

246 To determine potentially therapeutic targets from DEGs associated with each LRTI, a look-up was
247 undertaken for overlap with known druggability score generated by drugnomeAI. We identified
248 689, 159 and 849 genes for COVID-19, RSV-LRTI and PTB respectively with Tclin (approved
249 drug targets) drugnomeAI score >90, as shown in Supplementary Table S8. For availability of
250 drug and new therapeutic options we examined our predictors for availability of drugs as shown
251 in Supplementary Table S9.

252

253

254 Figure 5 Top 20 gene severity predictors of LRTI for different etiologies based on mean importance. See shared
255 predictors in Supplementary Fig 7.

256

257 **Discussion**

258 The transcriptional landscape of peripheral blood in response to viral and bacterial infections
259 exhibits age-dependent variation, with implications for disease severity and immune regulation. In
260 adults, SARS-CoV-2 infection has been studied extensively and elicits a robust transcriptional
261 response characterized by upregulation of neutrophil activation markers, inflammatory cytokines,
262 and interferon-stimulated genes (ISGs), alongside suppression of adaptive immune pathways and
263 lymphocyte-associated transcripts^{41,42}. Children infected with SARS-CoV-2 typically exhibit mild
264 or asymptomatic disease, with transcriptomic profiles showing restrained inflammatory responses
265 and lower expression of viral entry receptors such as *ACE2* and *TMRSS2*⁴³. However studies of
266 the transcriptional responses to SARS-CoV-2 infection in children are extremely limited,
267 focussing mainly on adolescents⁴⁴. In this study, for the first time, we report genome-wide
268 assessment of transcriptional responses of children hospitalized with one of three LRTIs (COVID-
269 19, RSV-LRTI, PTB), compared to healthy children in a birth cohort from a low- and middle-
270 income African setting. We identify 4500 genes related to hospitalized COVID-19 and known
271 signature genes for RSV-LRTI and for PTB. Unique and shared pathways and gene modules were
272 characterised between LRTIs, along with unique signatures for each of the LRTIs.

273

274 COVID-19 related genes were enriched for immune system, neutrophil degranulation and
275 interferon gamma signalling as previously reported in other studies in adults. Neutrophil
276 degranulation has been previously correlated with COVID severity⁴⁵ and excess neutrophil
277 degranulation is associated with tissue damage⁴⁶. The top upregulated genes included known genes
278 responsible for immune responses, such as Interferon alpha-inducible protein 27 (*IFI27*) which is
279 known to be an early predictor for COVID-19 outcome⁴⁷. Many studies have shown reduced

280 ribosomal protein expression and immune suppression associated with persistence of COVID-19
281 infection⁴⁸. Massoni *et al*³ have discussed immune dysregulation and exhaustion as a hallmark of
282 COVID-19 where adaptive immune responses are highly heterogeneous. Thus, at an early phase
283 of infection, type I IFN activity as an anti-viral response is important in the development of both
284 adaptive and innate immunity.

285 RSV-LRTI upregulated genes include *OTOF*⁴⁹, *SIGLECI*^{50,51}, *USP18*⁵² and *ISG15*⁵³. These genes
286 were enriched for pathways including response to other organisms, regulation of viral life cycle,
287 translational and interferon gamma signalling.

288 For PTB, we identified genes including *MMP8* and *MMP9* which are known to be associated with
289 TB disease, by degradation of extracellular matrices^{54,55,56}. *DEFA1*, *DEFA1B*, *DEFA3* and *DEFA4*
290 are a known cluster of genes in the PTB defence response pathway. The expression of *LTF* is also
291 known to be an important biomarker for PTB disease^{57,58}. PTB specific markers such as *NCR3*,
292 *CR2* *CD28*, *IL10RA* and *GPR183* are functionally related to immune response, where *NCR3*
293 stimulates NK cytotoxicity and *CR2* is involved in lymphocyte activation. These findings may
294 contribute to understanding host responses in children in PTB and to strengthening diagnostic
295 possibilities.

296 Using *WGCNA* co-expression analysis, we identified four RSV-LRTI specific modules: ME11
297 (translation and aerobic respiration), ME13 (antigen processing and T-cell mediated cytotoxicity),
298 ME25 (coagulation and positive regulation of leukocyte) and ME33 (autophagy, viral processing
299 and negative regulation of ferroptosis). A further two modules were specific to PTB: ME1
300 (immune response regulating signalling pathway and leukocyte differentiation) and ME14
301 (regulation of immune and defence response and cytokine production) (see Supplementary Fig 4).

302 While no modules were identified as specific to COVID-19, 22 modules were shared between
303 COVID-19 and one or more LRTI, reflecting the seriousness of SARS-CoV-2 infection.
304 Ten shared modules were identified across all LRTIs (Table 2) including module 10, which is
305 associated with endosomes⁵⁹ and contains the hub gene *TNFR2*, known to be linked with immune
306 dysregulation in severe COVID-19⁶⁰. In addition, module 10 contains many key hub genes known
307 to be associated with COVID-19 severity including *TRIM28* (265 degree), *P4HTM* (245), *ACTR1B*
308 (244), *CNNM3* (243), and *VPS51* (238). *TRIM28* is known to regulate SARS-CoV-2 entry by
309 targeting *ACE2*⁶¹, suppressing antiviral immunity⁶² and is linked with COVID-19 severity⁶³.
310 *P4HTM* is known to play a role in adaptation to hypoxia and energy response and is linked with
311 hypoventilation⁶⁴.
312 Other shared modules include: Module 22 the hub gene *CCR3* (C-C motif chemokine receptor 3)
313 regulates cell migration and inflammatory responses by acting as a receptor for various CC
314 chemokines such as eotaxin, and is a susceptibility gene for severe COVID-19⁶⁵. Module 28 was
315 related to adaptive immune response and T-cell activation; with hub genes including *CD3E*
316 involved in T-cell signalling to detect and clear pathogens. Module 7 was enriched for sensory
317 perception such as olfactory dysfunction, a known symptom in COVID-19⁶⁶. Module 15 was
318 related to T-cell differentiation and adaptive immunity where hub gene *TBX21* is a transcription
319 factor that modulates innate immunity by regulating the expression of *TLR2*⁶⁷. *GZMA* and *GZMB*
320 play a role in immune response during respiratory infection⁶⁸. *IFNG* is involved in clearing viral
321 infection⁶⁹.
322 A further six modules were shared between COVID-19 and PTB including module 34 which was
323 enriched for antimicrobial humoral responses (*DEFA1*, *DEFA3*, *RNASE3*, *BPI*, *PGLYRP1*, *CAMP*,
324 *AZU1*, *ELANE* and *LTF*) and neutrophil degranulation⁷⁰ in the Reactome database (*DEFA1*,

325 *ORM1, ORM2, RNASE3, ATP8B4, STBD1, BPI, PGLYRP1, TCN1, MS4A3, ABCA13, CLEC5A,*
326 *CAMP, AZU1, CPNE3, CEACAM8, ELANE, CEACAM6, CRISP3, LTF, PLD1, MMP8, CHIT1,*
327 *LCN2, OLR1 and SLC2A*). The hub gene *ELANE* encodes a serine protease secreted by neutrophils
328 that is known to regulate the function of natural killer cells, monocytes and granulocytes and is
329 essential for neutrophils in fighting infections^{71,72}. Neutrophil activation is characteristic of severe
330 COVID-19⁷³ and shared with other inflammatory states⁷⁴. Module 26, identified as shared between
331 PTB and RSV-LRTI , includes the hub gene *TAP1* which is known for its antiviral activity through
332 Type I interferon production⁷⁵. Other hub genes include *STAT, PSMB8, GBP1, PSMB9, HLA-E ,*
333 *GBP5 , HLA-F , GBP2, IRF9, APOL3* and *CASPI* which are also known be associated with
334 COVID-19⁷⁶. The detailed enrichment for GO terms are provided in Supplementary Table S5 and
335 Supplementary Fig 4.

336 Cell proportion estimation showed that in children hospitalised with COVID-19 there was
337 depletion of macrophages and monocytes compared to healthy controls. In contrast, in children
338 hospitalised with RSV-LRTI, increased proportions of regulatory T-cells and macrophages, and a
339 depletion of T-cells and class switched memory B-cells were observed. Similarly, for PTB, there
340 was an increase in macrophages, monocytes and neutrophils, and a depletion of T-cells and CD8+
341 alpha-beta T-cells, and cytotoxic NK cells (Fig 4). The depletion of T and B cells is a key feature
342 of COVID-19 severity⁷⁷. T-cell immunity is essential to control PTB⁷⁸.
343 We identified 247 genes that predicted the severity of LRTI. Ten were common among LRTIs.
344 *IL16* is involved in pro-inflammatory responses to activate T-cells and the production of
345 cytokines⁷⁹. Five genes could discriminate hospitalised children with LRTI including: *PITPN1*,
346 *TPX2, LARPI, HABP4* and *SMIM10L2A*. *PITPN1* is known for pulmonary function and
347 asthma⁸⁰. Five genes, including *PAFAH2, LINC02915, CLSPN, EIF4G1* and *IFI27*, were

348 predictors of both COVID-19 and RSV-LRTI hospitalization. *PAFAH2* is known to be associated
349 with pulmonary micro-thromboses linked with LRTI severity^{81,82}. The top COVID-19 predictor,
350 *RORC*, is a key regulator of cellular differentiation, immunity and glucose metabolism. *CBX7* is
351 part of the Polycomb complex required for transcriptional repression of many genes and cancer
352 progression⁸³ and is functionally linked with lymphocyte, monocyte and neutrophil counts. *ZFVE9*
353 is known to be predictive of active TB⁸⁴. The *ADAMTS2* is metalloprotease that processes
354 extracellular matrix is implicated in tissue damage⁸⁵ and is a marker for COVID-19 severity across
355 disease conditions⁸⁶.

356 Assessing the potential druggability of differentially expressed genes can help in prioritizing drug
357 targets. Amongst the DEGs for LRTIs, known approved drug targets (TClin) were identified
358 including: *KCND3*, *CACNA1E*, *GABRG2*, *CHRNA5*, *KCND1* and *ADRB2* for severe COVID-19;
359 *GABRG2*, *KCND1*, *CA12*, *CACNA1A*, *IMPDH2* and *PDE1B* for RSV-LRTI; *CACNA1E*,
360 *GABRG2*, *KCNK3*, *CHRNA5* and *CHRNB2* for PTB as shown in Supplementary Table S8.

361 Interestingly, the top predictors of severity were not previously identified as drug targets, including
362 *CBX7*, *MYBL1*, *VRK3*, *ZNF324*, *KRTAP5-1* and *GPR153*. In the top PTB predictors, *NR3C2* and
363 *GPR15* have high scores for Tclin but the top predictors, *MID2* and *ZFYVE9*, have not previously
364 been identified as drug targets showing opportunity for drug target prioritization for this
365 population. For RSV-LRTI, except for *RORC*, most top predictors (*IFI27*, *CBX7*, *PNRC1* and
366 *IGF2BP3*) have not previously been targeted for drug development (Supplementary Table S9).

367 One of the strengths of our study is the assessment of hospitalised children with one of the three
368 major LRTIs in children in LMICs and comparison with healthy children using datasets generated
369 from a similar genetic background. Many known signature-genes identified for COVID-19 (*IFI27*,
370 *OLFM4*), RSV-LRTI (*SIGLEC1*, *ISG15*, *IFI44*) and PTB (*MMP8*, *MMP9*, *DEFA1*, *DEFA1B*,

371 *DEFA3* and *DEFA4*) are known to be associated with progressive severity⁸⁷, showing the
372 reproducibility of our findings. A limitation is that the DCHS children were older than children
373 with LRTI, but we used age as a covariate to overcome this confounding effect.

374 From our transcriptomic analysis of children with LRTIs due to three different aetiologies, we
375 have identified novel data providing key immune response related genes associated with severity
376 for children hospitalised with COVID-19, RSV-LRTI and PTB in African children. These genes
377 can be used for baseline characterization, as predictive markers for respiratory infection severity
378 and as potential therapeutic targets.

379

380 **Data availability**

381 Supplementary data and summary statistics for transcriptome wide association analyses are
382 available from: DOI <https://doi.org/10.5258/SOTON/D3587>.

383 An anonymised, de-identified version with data can be made available on request. All requests
384 should be directed to Prof Heather Zar, DCHS Study Principal Investigator.

385

386 **Code availability**

387 The custom code used to generate graphics is available at GitHub repository:
388 https://github.com/negusse2025/respiratory_infections.git.

389

390 **Acknowledgements**

391 Funding, participants/ families and staff. The some of the graphic illustrations for graphic abstract
392 were accessed from NIH BIOART, including TB (<https://bioart.niaid.nih.gov/bioart/527>), child
393 (<https://bioart.niaid.nih.gov/bioart/75>) and SARS-CoV-2 (<https://bioart.niaid.nih.gov/bioart/464>).

394

395 **Funding**

396 HJZ reports grants from UK NIHR (GEC111), Wellcome Biomedical resources grant
397 (221372/Z/20/Z), Wellcome Trust Centre for Infectious Disease Research in Africa (CIDRI), Bill
398 & Melinda Gates Foundation USA, (OPP1017641, OPP1017579) and NIH H3 Africa
399 (U54HG009824, U01AI110466]). HZ is supported by the SA-MRC. NTK is supported by the
400 National Institute for Health and Care Research through the NIHR Southampton Biomedical
401 Research Centre. Additionally, both NTK and JHW received supported from University of
402 Southampton's Global Partnership Award University of Southampton.

403

404 **Author information**

405 H.J.Z., M.P.K., M.B., N.T.K., D.B. and J.W.H. contributed to conceptualisation.

406 N.T.K., L.W., H.J.Z. and J.W.H. performed data curation.

407 N.T.K., E.K. and J.W.H. carried out formal analysis.

408 N.T.K., M.J., E.K., M.B., D.G., M.P.K. and J.W.H. provided methodology.

409 H.J.Z performed project administration. N.T.K., H.J.Z. and J.W.H. performed writing—original
410 draft. N.T.K., C.C., D.B., E.K., L.W., M.B., M.J., M.P.K., H.J.Z. and J.W.H. contributed to
411 writing—review, editing and final approval.

412

413 **References**

414 1. Mazur, N. I., Caballero, M. T. & Nunes, M. C. Severe respiratory syncytial virus infection in
415 children: burden, management, and emerging therapies. *The Lancet* **404**, 1143–1156 (2024).

416 2. De Souza, T. H., Nadal, J. A., Nogueira, R. J. N., Pereira, R. M. & Brandão, M. B. Clinical
417 manifestations of children with COVID-19: A systematic review. *Pediatr. Pulmonol.* **55**, 1892–
418 1899 (2020).

419 3. Mazzoni, A., Salvati, L., Maggi, L., Annunziato, F. & Cosmi, L. Hallmarks of immune response
420 in COVID-19: Exploring dysregulation and exhaustion. *Semin. Immunol.* **55**, 101508 (2021).

421 4. Sun, Y.-K. *et al.* Severe pediatric COVID-19: a review from the clinical and
422 immunopathophysiological perspectives. *World J. Pediatr.* **20**, 307–324 (2024).

423 5. Soares-Schanoski, A. *et al.* Asymptomatic SARS-CoV-2 Infection Is Associated With Higher
424 Levels of Serum IL-17C, Matrix Metalloproteinase 10 and Fibroblast Growth Factors Than
425 Mild Symptomatic COVID-19. *Front. Immunol.* **13**, 821730 (2022).

426 6. Khoury, D. S. *et al.* Neutralizing antibody levels are highly predictive of immune protection
427 from symptomatic SARS-CoV-2 infection. *Nat. Med.* **27**, 1205–1211 (2021).

428 7. Legebeke, J. *et al.* Evaluating the Immune Response in Treatment-Naive Hospitalised Patients
429 With Influenza and COVID-19. *Front. Immunol.* **13**, 853265 (2022).

430 8. Bibert, S. *et al.* Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza
431 Virus Infected Patients. *Front. Immunol.* **12**, 666163 (2021).

432 9. Penrice-Randal, R. *et al.* Blood gene expression predicts intensive care unit admission in
433 hospitalised patients with COVID-19. *Front. Immunol.* **13**, 988685 (2022).

434 10. Loy, C. J. *et al.* Nucleic acid biomarkers of immune response and cell and tissue damage
435 in children with COVID-19 and MIS-C. *Cell Rep. Med.* **4**, 101034 (2023).

436 11. Patnaik, S. *et al.* RNAseq-based transcriptomics of treatment-naïve multi-inflammatory
437 syndrome in children (MIS-C) demonstrates predominant activation of matrisome, innate and
438 humoral immune pathways. *Rheumatol. Int.* **44**, 1445–1454 (2023).

439 12. Yang, Z. *et al.* Recent progress in tuberculosis diagnosis: insights into blood-based
440 biomarkers and emerging technologies. *Front. Cell. Infect. Microbiol.* **15**, 1567592 (2025).

441 13. Theuretzbacher, U., Jumde, R. P., Hennessy, A., Cohn, J. & Piddock, L. J. V. Global health
442 perspectives on antibacterial drug discovery and the preclinical pipeline. *Nat. Rev. Microbiol.*
443 <https://doi.org/10.1038/s41579-025-01167-w> (2025) doi:10.1038/s41579-025-01167-w.

444 14. Farhat, M. *et al.* Drug-resistant tuberculosis: a persistent global health concern. *Nat. Rev.
445 Microbiol.* **22**, 617–635 (2024).

446 15. Fossati, A. *et al.* Plasma proteomics for novel biomarker discovery in childhood
447 tuberculosis. Preprint at <https://doi.org/10.1101/2024.12.05.24318340> (2024).

448 16. Gygi, J. P. *et al.* Integrated longitudinal multiomics study identifies immune programs
449 associated with acute COVID-19 severity and mortality. *J. Clin. Invest.* **134**, e176640 (2024).

450 17. Zhang, B. & Horvath, S. A General Framework for Weighted Gene Co-Expression
451 Network Analysis. *Stat. Appl. Genet. Mol. Biol.* **4**, (2005).

452 18. Investigating the early-life determinants of illness in Africa: the Drakenstein Child Health
453 Study.

454 19. Benede, N. *et al.* Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative
455 children associated with endemic human coronavirus cross-reactivity. *iScience* **27**, 108728
456 (2024).

457 20. Zar, H. J. *et al.* Natural immunity and protection against variants in South African children
458 through five COVID-19 waves: A prospective study. *Int. J. Infect. Dis.* **150**, 107300 (2025).

459 21. Simon, Andrew. FastQC: A Quality Control Tool for High Throughput Sequence Data
460 [Online]. 2010 Available online at:
461 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>,.

462 22. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results
463 for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047–3048 (2016).

464 23. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
465 (2013).

466 24. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon: fast and bias-
467 aware quantification of transcript expression using dual-phase inference. *Nat. Methods* **14**, 417–
468 419 (2017).

469 25. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for
470 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140
471 (2009).

472 26. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression
473 analysis of RNA-seq data. *Genome Biol.* **11**, R25 (2010).

474 27. Chen, X., Zhang, B., Wang, T., Bonni, A. & Zhao, G. Robust principal component analysis
475 for accurate outlier sample detection in RNA-Seq data. *BMC Bioinformatics* **21**, 269 (2020).

476 28. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
477 and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

478 29. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list
479 enrichment analysis and candidate gene prioritization. *Nucleic Acids Res.* **37**, W305–W311
480 (2009).

481 30. Horvath, P. L. and S. WGCNA: an R package for weighted correlation network analysis.

482 *Oncol. Rep.* **11**, 515–522 (2004).

483 31. Lares, B. lares: Lean Analytics and Robust Exploration Sidekick. *2025* 2025.

484 32. Warde-Farley, D. *et al.* The GeneMANIA prediction server: biological network integration

485 for gene prioritization and predicting gene function. *Nucleic Acids Res.* **38**, W214–W220

486 (2010).

487 33. Christmas, C., Rowan; Avila-Campillo, Iliana; Bolouri, Hamid; Schwikowski, Benno;

488 Anderson, Mark; Kelley, Ryan; Landys, Nerius; Workman, Chris; Ideker, Trey; Cerami, Ethan;

489 Sheridan, Rob; Bader, Gary D. ;. Sander. Cytoscape: a software environment for integrated

490 models of biomolecular interaction networks. *Am. Assoc. Cancer Res. Educ. Book* 12–16 (2005)

491 doi:10.1101/gr.1239303.metabolite.

492 34. Sayols, S. rrvgo: a Bioconductor package for interpreting lists of Gene Ontology terms.

493 *Open Access.*

494 35. Angel, A., Naom, L., Nabet-Levy, S. & Aran, D. xCell 2.0: Robust Algorithm for cell type

495 Proportion Estimation Predicts Response to Immune Checkpoint Blockade. Preprint at

496 <https://doi.org/10.1101/2024.09.06.611424> (2024).

497 36. Godec, J. *et al.* Compendium of Immune Signatures Identifies Conserved and Species-

498 Specific Biology in Response to Inflammation. *Immunity* **44**, 194–206 (2016).

499 37. Tarke, A. *et al.* Comprehensive analysis of T cell immunodominance and

500 immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. *Cell Rep. Med.* **2**, 100204

501 (2021).

502 38. Kursa, M. B., Jankowski, A. & Rudnicki, W. R. Boruta – A System for Feature Selection.

503 *Fundam. Informaticae* **101**, 271–285 (2010).

504 39. Andy Liaw and Matthew Wiener. Classification and Regression by randomForest. *R News*
505 **2**, 18–22 (2002).

506 40. Raies, A. *et al.* DrugnomeAI is an ensemble machine-learning framework for predicting
507 druggability of candidate drug targets. *Commun. Biol.* **5**, 1291 (2022).

508 41. Schulte-Schrepping, J. *et al.* Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell
509 Compartment. *Cell* **182**, 1419-1440.e23 (2020).

510 42. Legebeke, J. *et al.* Evaluating the Immune Response in Treatment-Naive Hospitalised
511 Patients With Influenza and COVID-19. *Front. Immunol.* **13**, 853265 (2022).

512 43. Pierce, C. A. *et al.* Immune responses to SARS-CoV-2 infection in hospitalized pediatric
513 and adult patients. *Sci. Transl. Med.* **12**, eabd5487 (2020).

514 44. Bando, S. Y. *et al.* Blood leukocyte transcriptional modules and differentially expressed
515 genes associated with disease severity and age in COVID-19 patients. *Sci. Rep.* **13**, 898 (2023).

516 45. Muralidharan, A., Wyatt, T. A. & Reid, S. P. SARS-CoV-2 Dysregulates Neutrophil
517 Degranulation and Reduces Lymphocyte Counts. *Biomedicines* **10**, 382 (2022).

518 46. Herro, R. & Grimes, H. L. The diverse roles of neutrophils from protection to pathogenesis.
519 *Nat. Immunol.* **25**, 2209–2219 (2024).

520 47. Shojaei, M. *et al.* IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-
521 cohort observational study. *Front. Immunol.* **13**, 1060438 (2023).

522 48. Yang, B. *et al.* Clinical and molecular characteristics of COVID-19 patients with persistent
523 SARS-CoV-2 infection. *Nat. Commun.* **12**, 3501 (2021).

524 49. Ding, H. *et al.* Membrane Protein OTOF Is a Type I Interferon-Induced Entry Inhibitor of
525 HIV-1 in Macrophages. *mBio* **13**, e01738-22 (2022).

526 50. Jans, J. *et al.* Siglec-1 inhibits RSV-induced interferon gamma production by adult T cells
527 in contrast to newborn T cells. *Eur. J. Immunol.* **48**, 621–631 (2018).

528 51. Herzog, S., Fragkou, P. C., Arneth, B. M., Mkhlof, S. & Skevaki, C. Myeloid
529 CD169/Siglec1: An immunoregulatory biomarker in viral disease. *Front. Med.* **9**, 979373
530 (2022).

531 52. Hou, J. *et al.* USP18 positively regulates innate antiviral immunity by promoting K63-
532 linked polyubiquitination of MAVS. *Nat. Commun.* **12**, 2970 (2021).

533 53. González-Sanz, R. *et al.* ISG15 Is Upregulated in Respiratory Syncytial Virus Infection
534 and Reduces Virus Growth through Protein ISGylation. *J. Virol.* **90**, 3428–3438 (2016).

535 54. Ong, C. W. M. *et al.* Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix
536 Destruction in Human Pulmonary Tuberculosis. *PLOS Pathog.* **11**, e1004917 (2015).

537 55. Ugarte-Gil, C. A. *et al.* Induced Sputum MMP-1, -3 & -8 Concentrations during Treatment
538 of Tuberculosis. *PLoS ONE* **8**, e61333 (2013).

539 56. Sathyamoorthy, T. *et al.* Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte
540 Migration and Collagen Destruction in Tuberculosis. *J. Immunol.* **195**, 882–891 (2015).

541 57. Shao, M. *et al.* Screening of potential biomarkers for distinguishing between latent and
542 active tuberculosis in children using bioinformatics analysis. *Medicine (Baltimore)* **100**, e23207
543 (2021).

544 58. Datta, A., Gupta, D., Waryani, D. & C, G. P. D. Decoding differentially expressed genes
545 to identify potential immunity associated biomarkers in Tuberculosis: An integrative
546 bioinformatics approach. *Biochem. Biophys. Rep.* **40**, 101870 (2024).

547 59. Vale-Costa, S. & Amorim, M. Recycling Endosomes and Viral Infection. *Viruses* **8**, 64
548 (2016).

549 60. Ahmad, S. *et al.* The role of TNFR2+ Tregs in COVID-19: An overview and a potential
550 therapeutic strategy. *Life Sci.* **286**, 120063 (2021).

551 61. Wang, Y. *et al.* TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. *Cell. Signal.*
552 **85**, 110064 (2021).

553 62. Ren, J. *et al.* TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-
554 2 virulence. *Nat. Commun.* **15**, 244 (2024).

555 63. Tavakoli, R. *et al.* Comparing the expression levels of tripartite motif containing 28 in mild
556 and severe COVID-19 infection. *Virol. J.* **19**, 156 (2022).

557 64. Hay, E. *et al.* Biallelic P4HTM variants associated with HIDEA syndrome and
558 mitochondrial respiratory chain complex I deficiency. *Eur. J. Hum. Genet.* **29**, 1536–1541
559 (2021).

560 65. Sun, Z., Pan, L., Tian, A. & Chen, P. Critically-ill COVID-19 susceptibility gene CCR3
561 shows natural selection in sub-Saharan Africans. *Infect. Genet. Evol.* **121**, 105594 (2024).

562 66. Othman, B. A. *et al.* Olfactory dysfunction as a post-infectious symptom of SARS-CoV-2
563 infection. *Ann. Med. Surg.* **75**, (2022).

564 67. Woo, C. H., Shin, S. G., Koh, S. H. & Lim, J. H. TBX 21 participates in innate immune
565 response by regulating Toll-like receptor 2 expression in *S. treptococcus pneumoniae*
566 infections. *Mol. Oral Microbiol.* **29**, 233–243 (2014).

567 68. Loebbermann, J. *et al.* Regulatory T cells expressing granzyme B play a critical role in
568 controlling lung inflammation during acute viral infection. *Mucosal Immunol.* **5**, 161–172
569 (2012).

570 69. Eichinger, K. M. *et al.* Alveolar macrophages support interferon gamma-mediated viral
571 clearance in RSV-infected neonatal mice. *Respir. Res.* **16**, 122 (2015).

572 70. Zhang, F. *et al.* Neutrophil diversity and function in health and disease. *Signal Transduct. Target. Ther.* **9**, 343 (2024).

574 71. Jia, W., Mao, Y., Luo, Q., Wu, J. & Guan, Q. Targeting neutrophil elastase is a promising
575 direction for future cancer treatment. *Discov. Oncol.* **15**, 167 (2024).

576 72. Tralau, T., Meyer-Hoffert, U., Schröder, J. & Wiedow, O. Human leukocyte elastase and
577 cathepsin G are specific inhibitors of C5a-dependent neutrophil enzyme release and chemotaxis.
578 *Exp. Dermatol.* **13**, 316–325 (2004).

579 73. Wang, X., Sanborn, M. A., Dai, Y. & Rehman, J. Temporal transcriptomic analysis using
580 TrendCatcher identifies early and persistent neutrophil activation in severe COVID-19. *JCI Insight* **7**, e157255 (2022).

582 74. Schimke, L. F. *et al.* Severe COVID-19 Shares a Common Neutrophil Activation Signature
583 with Other Acute Inflammatory States. *Cells* **11**, 847 (2022).

584 75. Zhao, J. *et al.* Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-
585 Mediated Type I Interferon Production. *Int. J. Mol. Sci.* **22**, 4668 (2021).

586 76. Schmidt, N. *et al.* The SARS-CoV-2 RNA–protein interactome in infected human cells.
587 *Nat. Microbiol.* **6**, 339–353 (2020).

588 77. Ahern, D. J. *et al.* A blood atlas of COVID-19 defines hallmarks of disease severity and
589 specificity. *Cell* **185**, 916-938.e58 (2022).

590 78. Ogongo, P. *et al.* Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium
591 tuberculosis in the human lung. *J. Clin. Invest.* **131**, e142014 (2021).

592 79. Mathy, N. L. *et al.* Interleukin-16 stimulates the expression and production of pro-
593 inflammatory cytokines by human monocytes. (2000).

594 80. Yucesoy, B. *et al.* Genome-Wide Association Study Identifies Novel Loci Associated With
595 Diisocyanate-Induced Occupational Asthma. *Toxicol. Sci.* **146**, 192–201 (2015).

596 81. Theoharides, T. C., Antonopoulou, S. & Demopoulos, C. A. Coronavirus 2019,
597 Microthromboses, and Platelet Activating Factor. *Clin. Ther.* **42**, 1850–1852 (2020).

598 82. Demopoulos, C., Antonopoulou, S. & Theoharides, T. C. COVID -19, microthromboses,
599 inflammation, and platelet activating factor. *BioFactors* **46**, 927–933 (2020).

600 83. Pallante, P., Forzati, F., Federico, A., Arra, C. & Fusco, A. Polycomb protein family
601 member CBX7 plays a critical role in cancer progression.

602 84. Duffy, F. J. *et al.* Use of a Contained *Mycobacterium tuberculosis* Mouse Infection Model
603 to Predict Active Disease and Containment in Humans. *J. Infect. Dis.* **225**, 1832–1840 (2022).

604 85. Loy, C. J. *et al.* Nucleic acid biomarkers of immune response and cell and tissue damage
605 in children with COVID-19 and MIS-C. *Cell Rep. Med.* **4**, 101034 (2023).

606 86. Singh, M. S., Arun, P. P. S. & Ansari, M. A. Unveiling common markers in COVID-19:
607 ADAMTS2, PCSK9, and OLAH emerged as key differential gene expression profiles in
608 PBMCs across diverse disease conditions. *AIMS Mol. Sci.* **11**, 189–205 (2024).

609 87. Armignacco, R. *et al.* Whole blood transcriptome signature predicts severe forms of
610 COVID-19: Results from the COVIDeF cohort study. *Funct. Integr. Genomics* **24**, 107 (2024).

611

612

613

614 **Supplementary data**

615 Supplementary Fig 1 Module dendrogram

616 Supplementary Fig 2 Distribution of genes per module

617 Supplementary Fig 3 Venn diagram shared modules between respiratory infections

618 Supplementary Fig 4 REVIGO biological process for correlated modules with LRTI

619 Supplementary Fig 5 Blood composition comparisons between LRTI

620 Supplementary Fig 6 Shared cell types

621 Supplementary Fig 7 Shared severity predictors for LRTI

622 Supplementary table S1 Respiratory infection TWAS FDR< 0.05

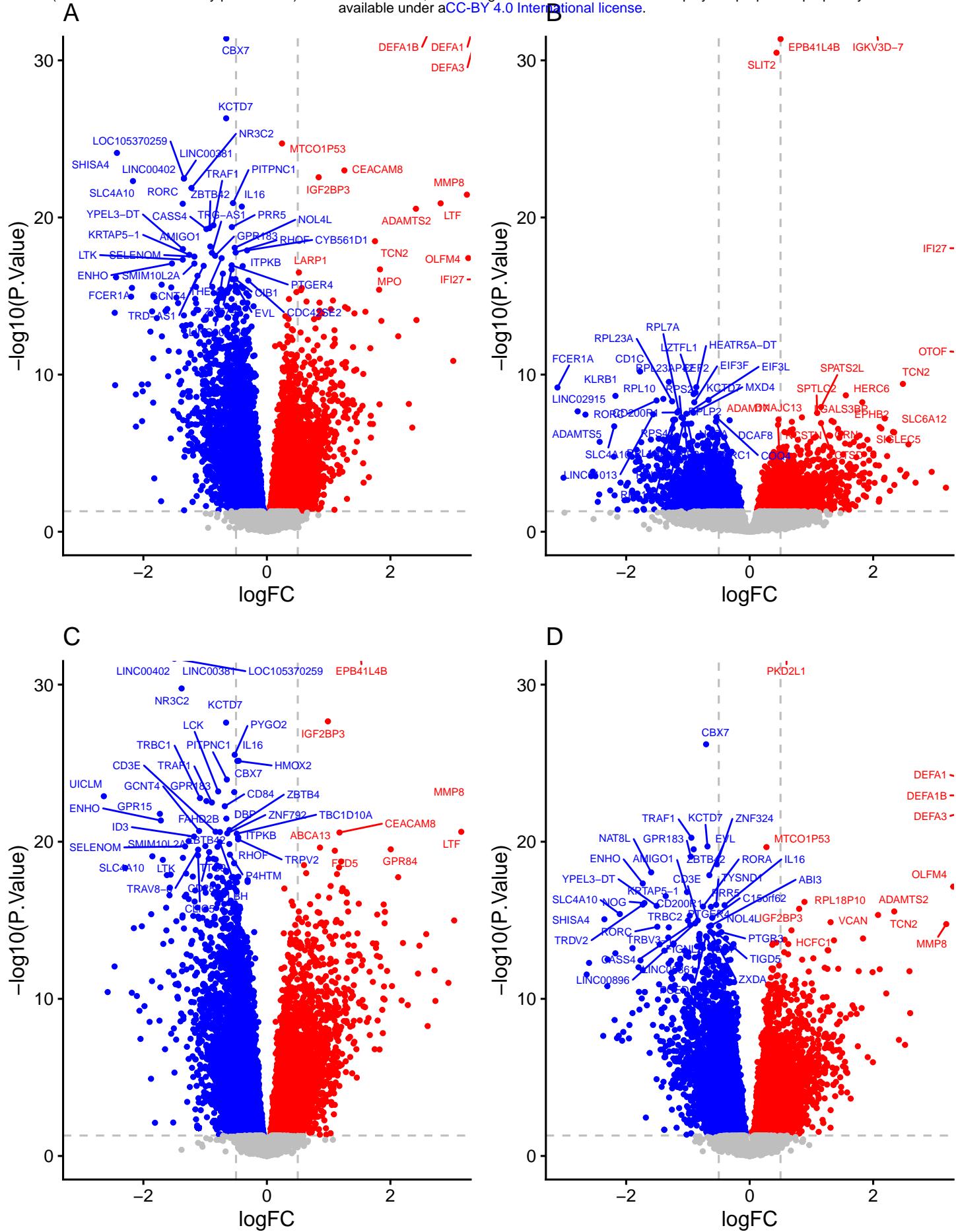
623 Supplementary table S2 Respiratory infection TWAS enrichment

624 Supplementary table S3 WGCNA module genes and eigengene

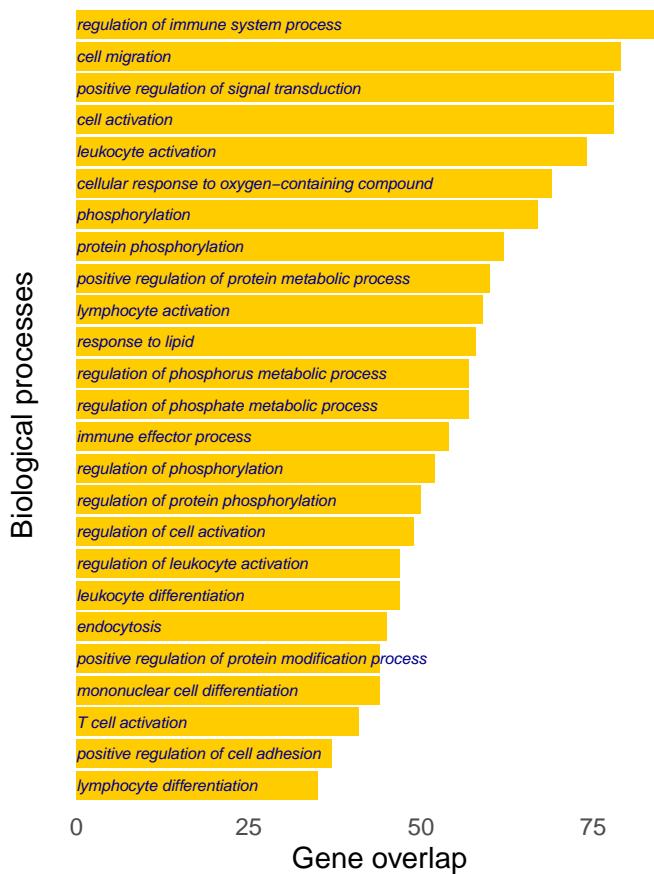
625 Supplementary table S4 Network degree distribution for module correlated to LRTI

626 Supplementary table S5 Enrichment for module correlated to LRTI

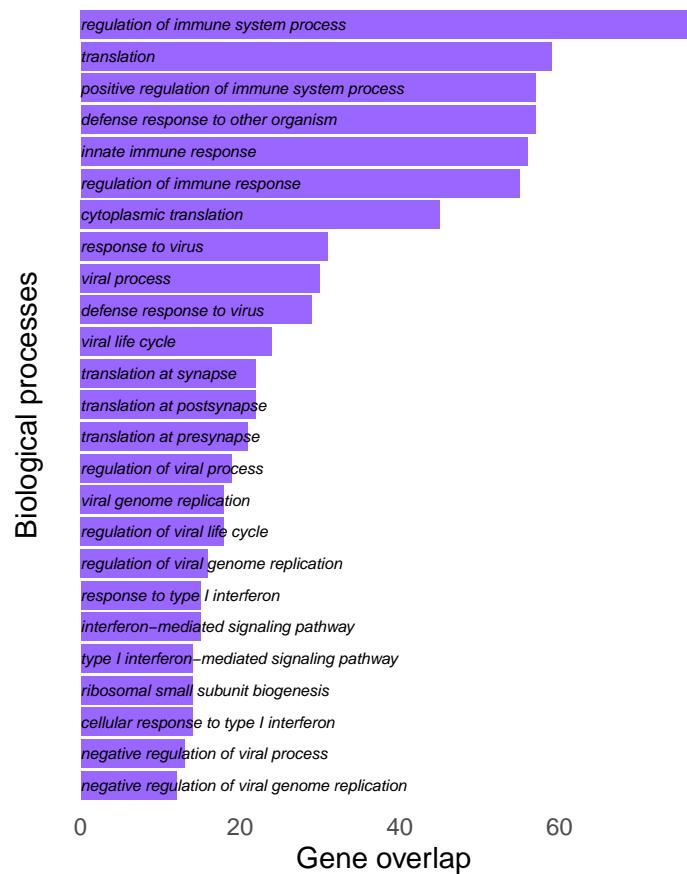
627 Supplementary Table S6 Cell type proportions

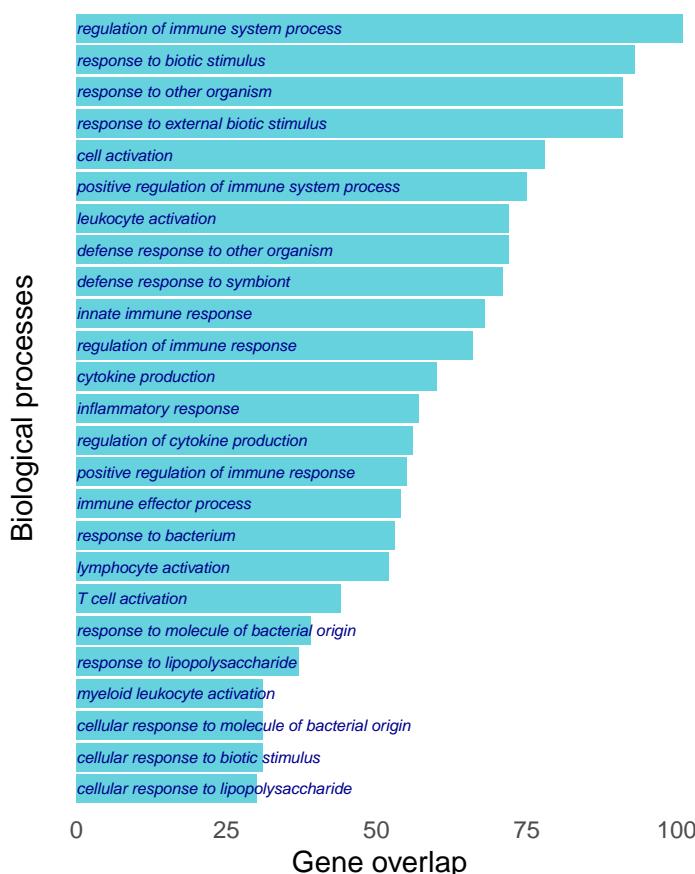

628 Supplementary table S7 severity predictors

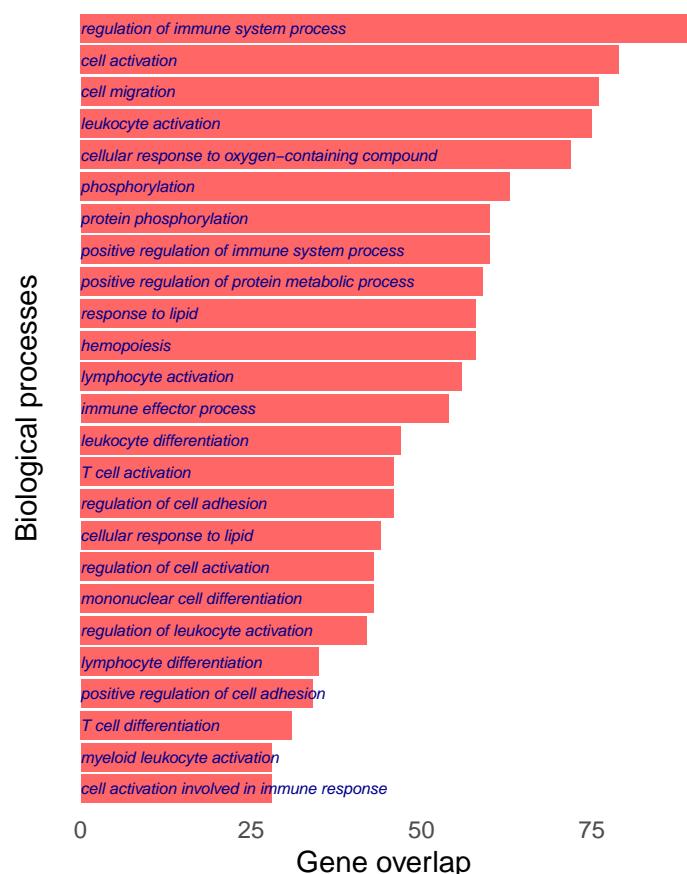
629 Supplementary table S8 Drug target look-up

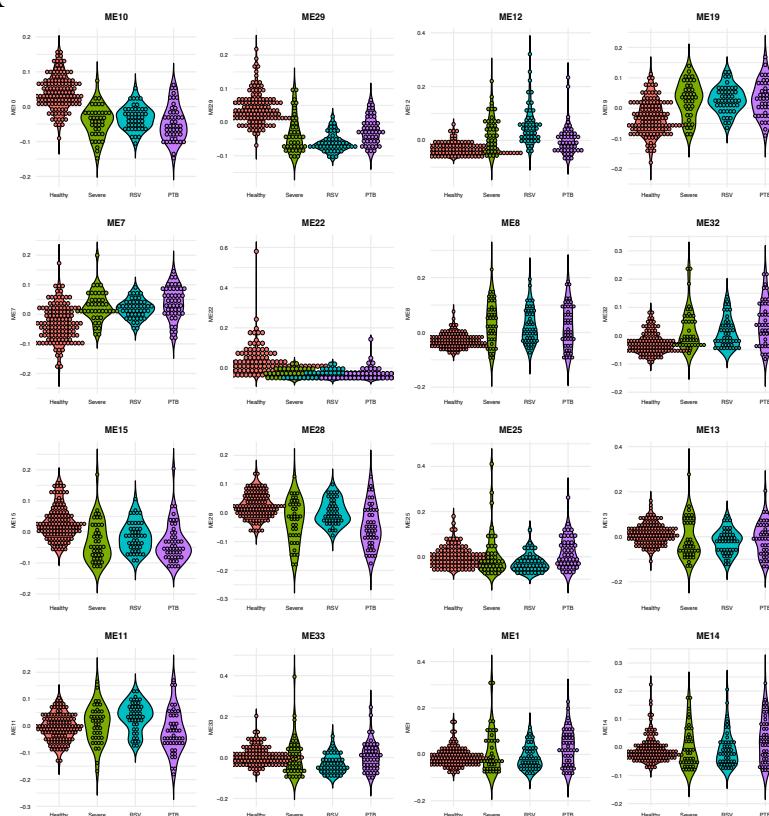
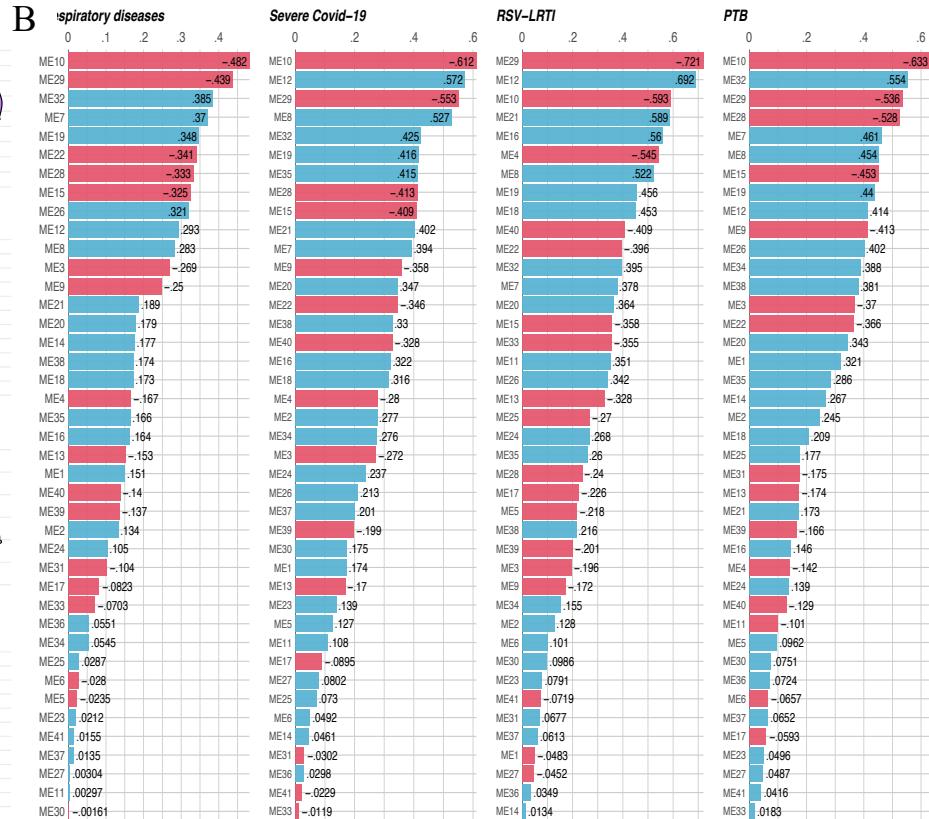

630 Supplementary table S9 Severity predictors and target prioritization

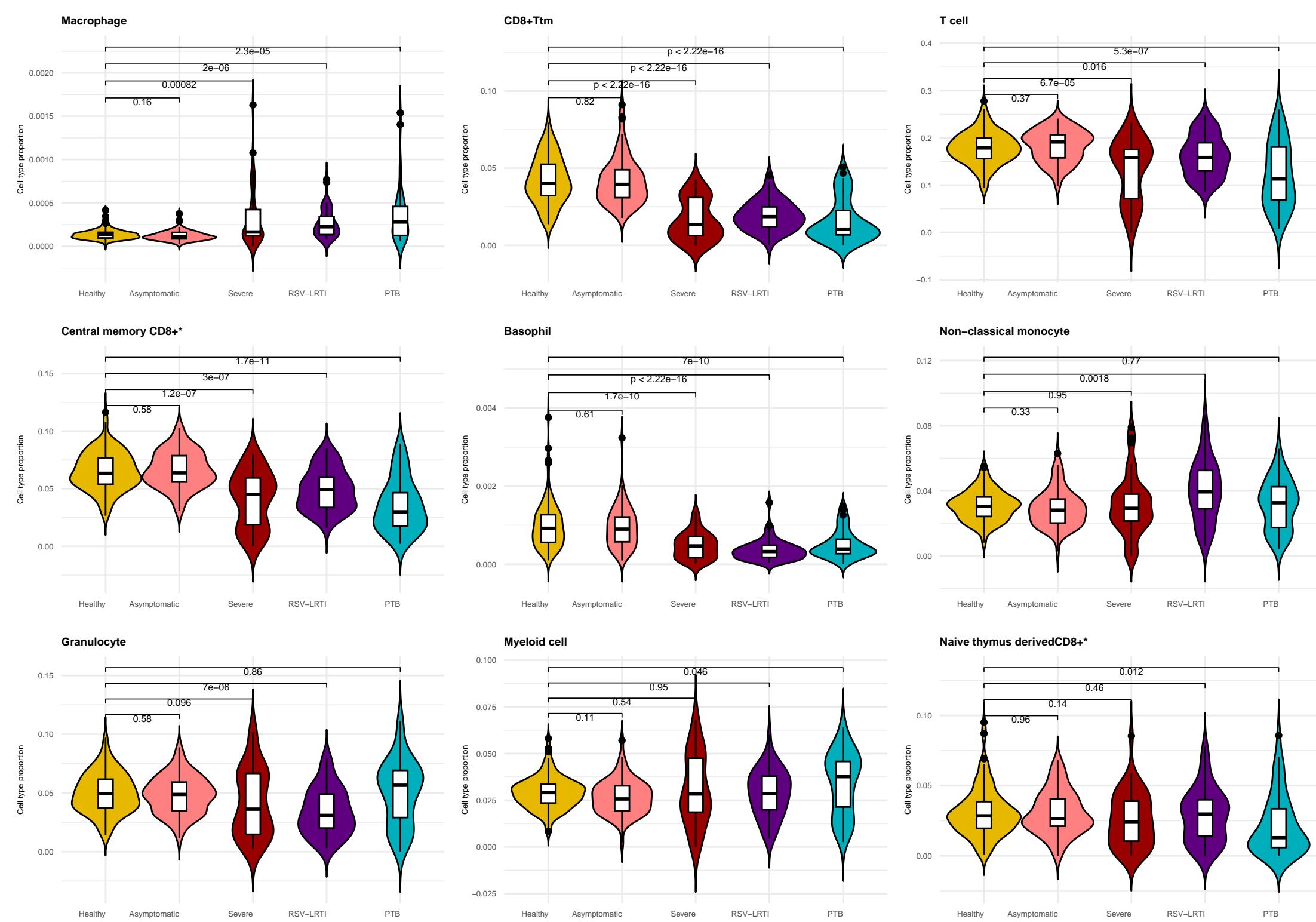
631 Supplementary file Modules_Network_analysis.cys.

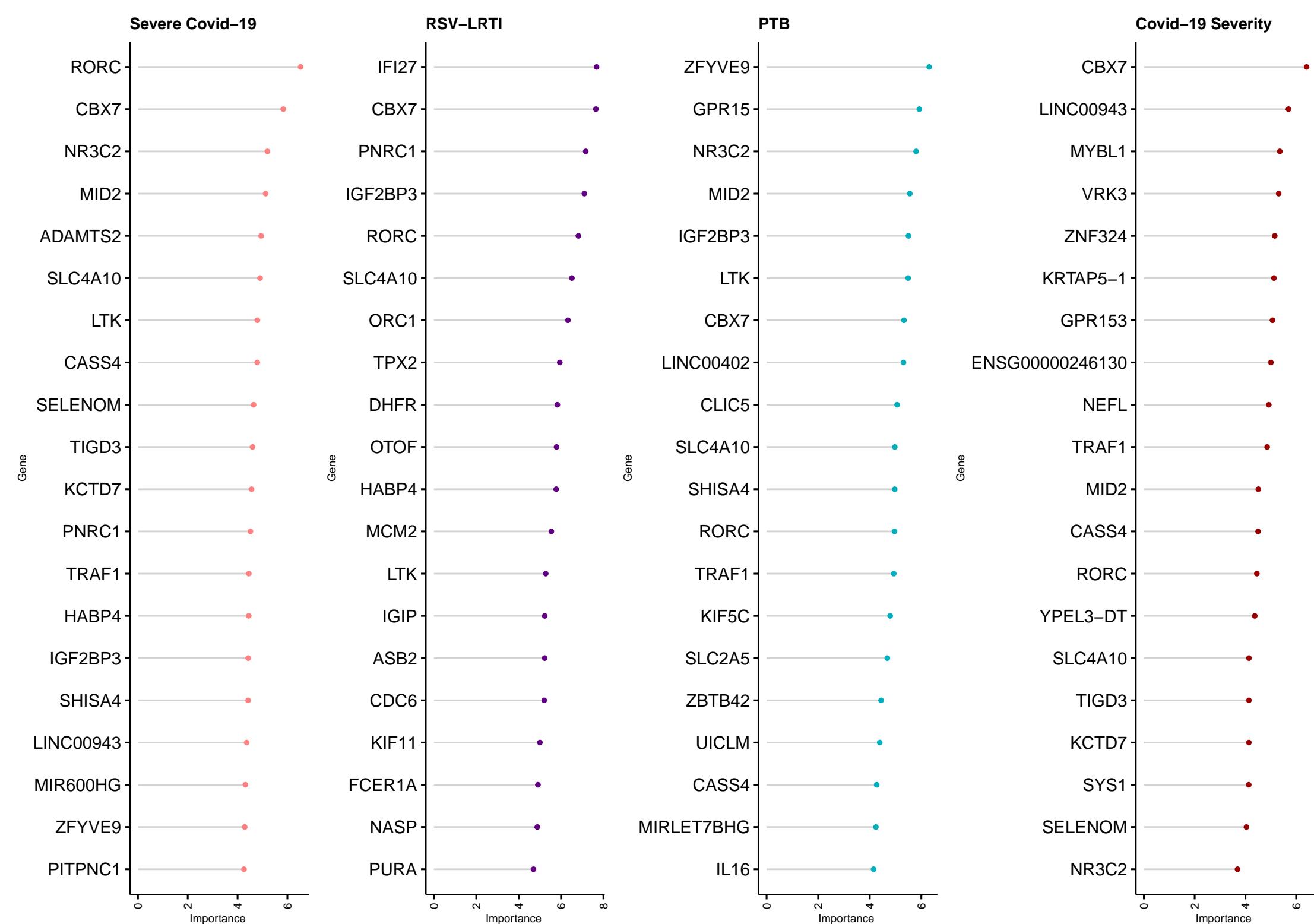

632


A

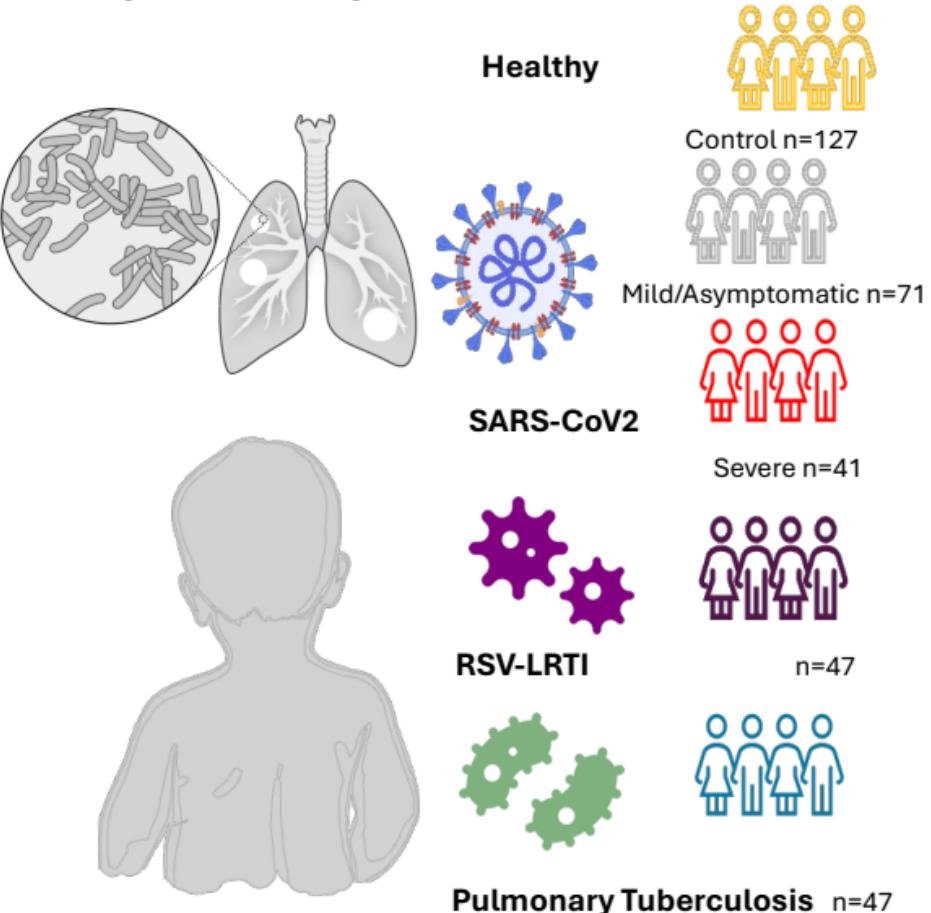

B

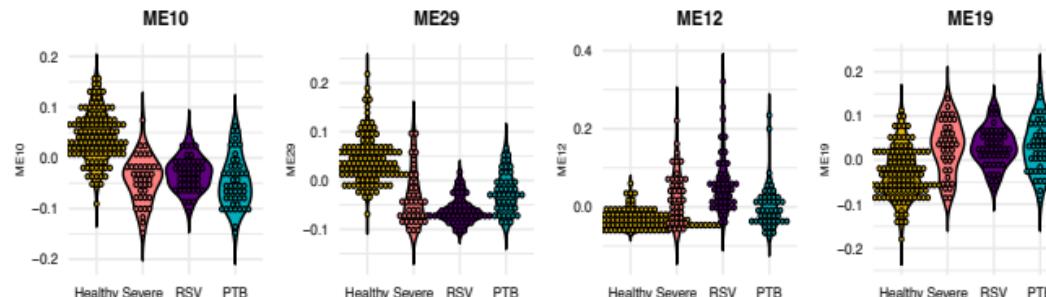

C

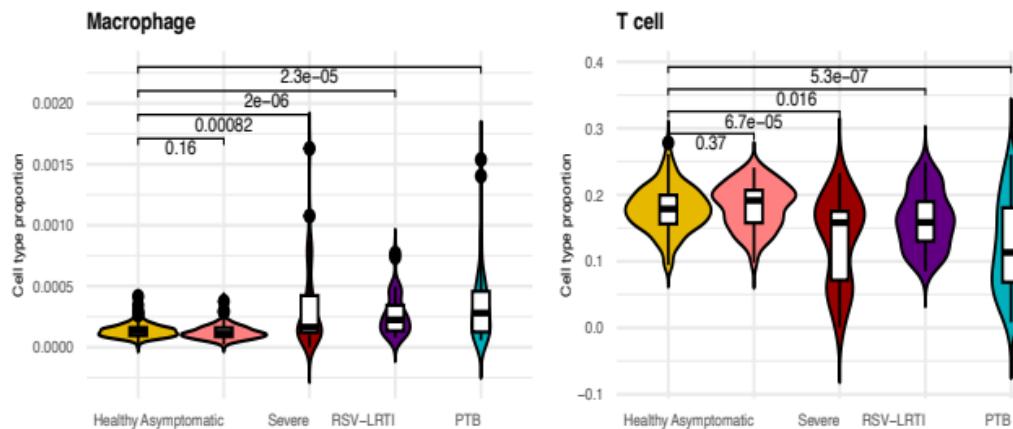


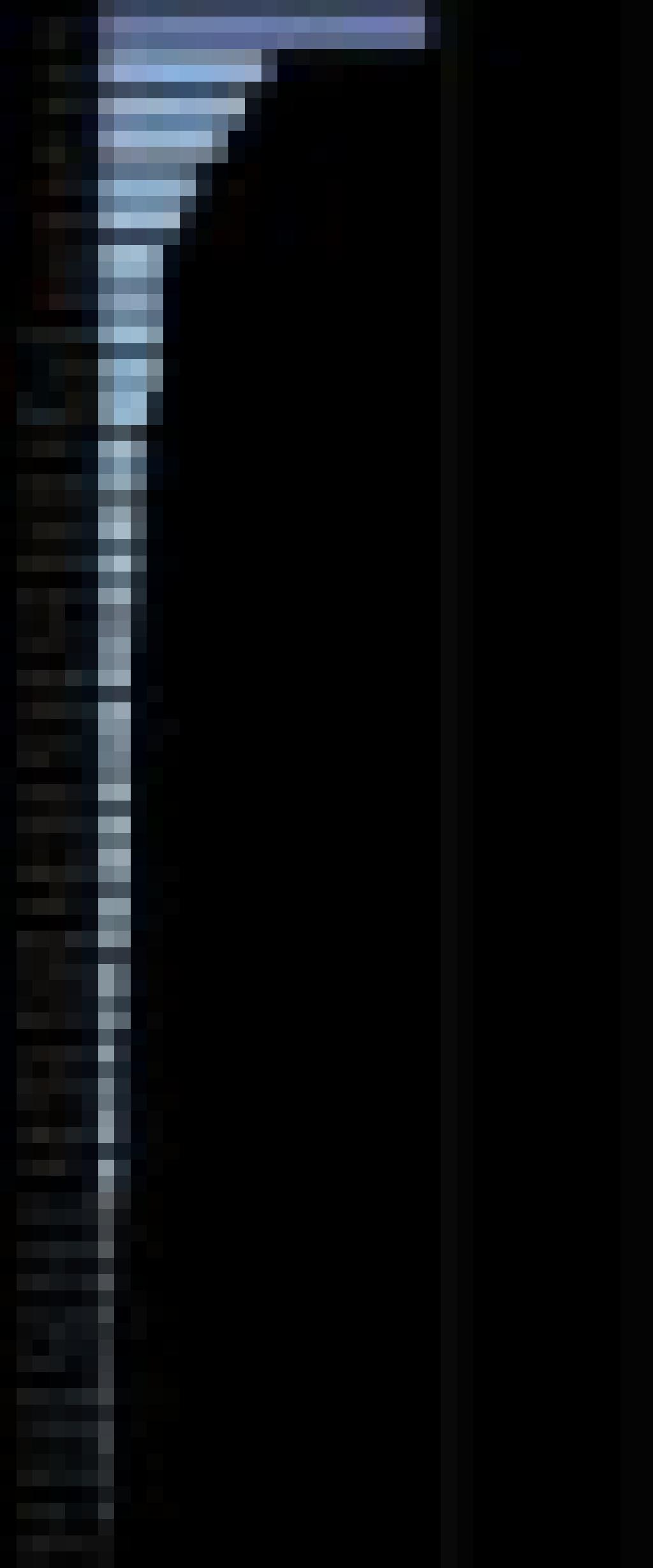
D

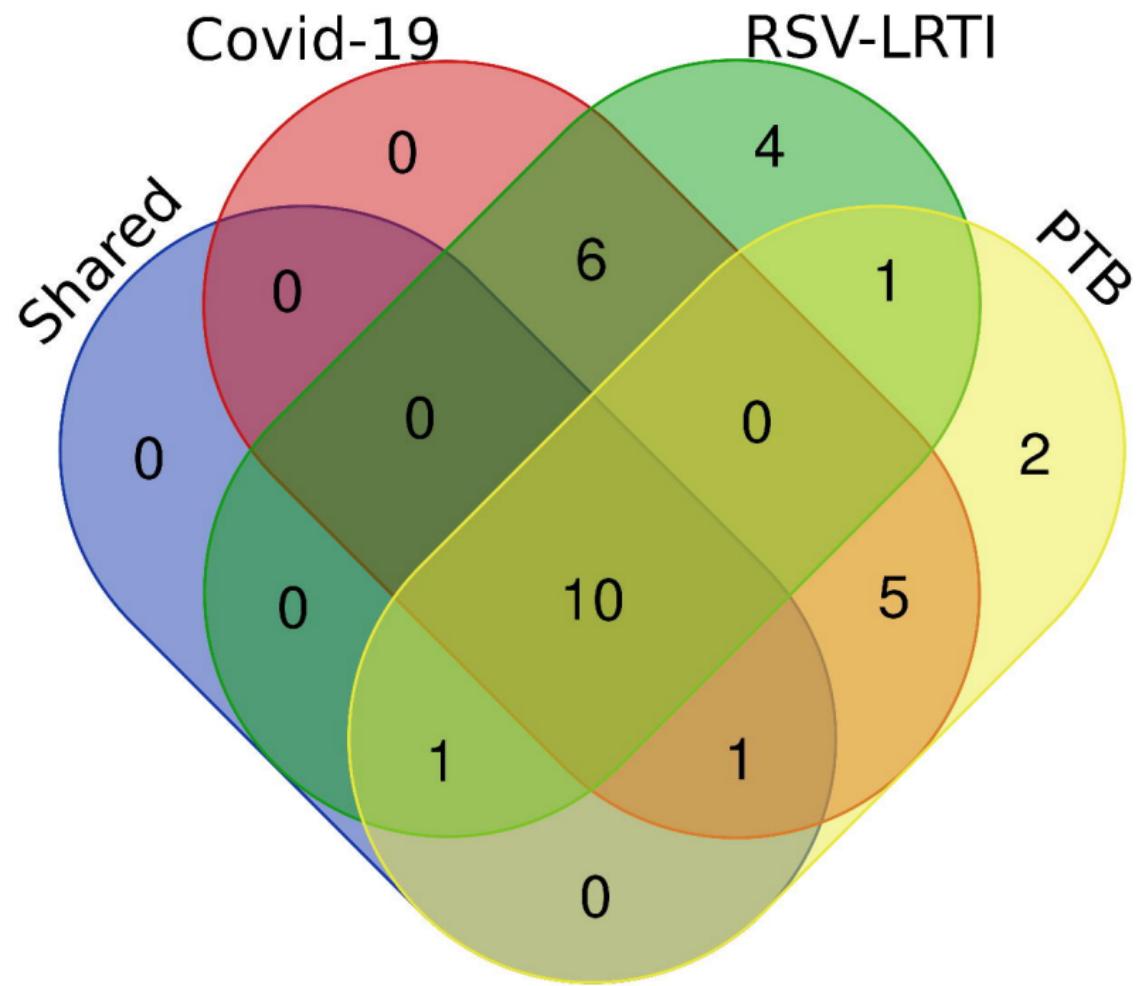


A**B**

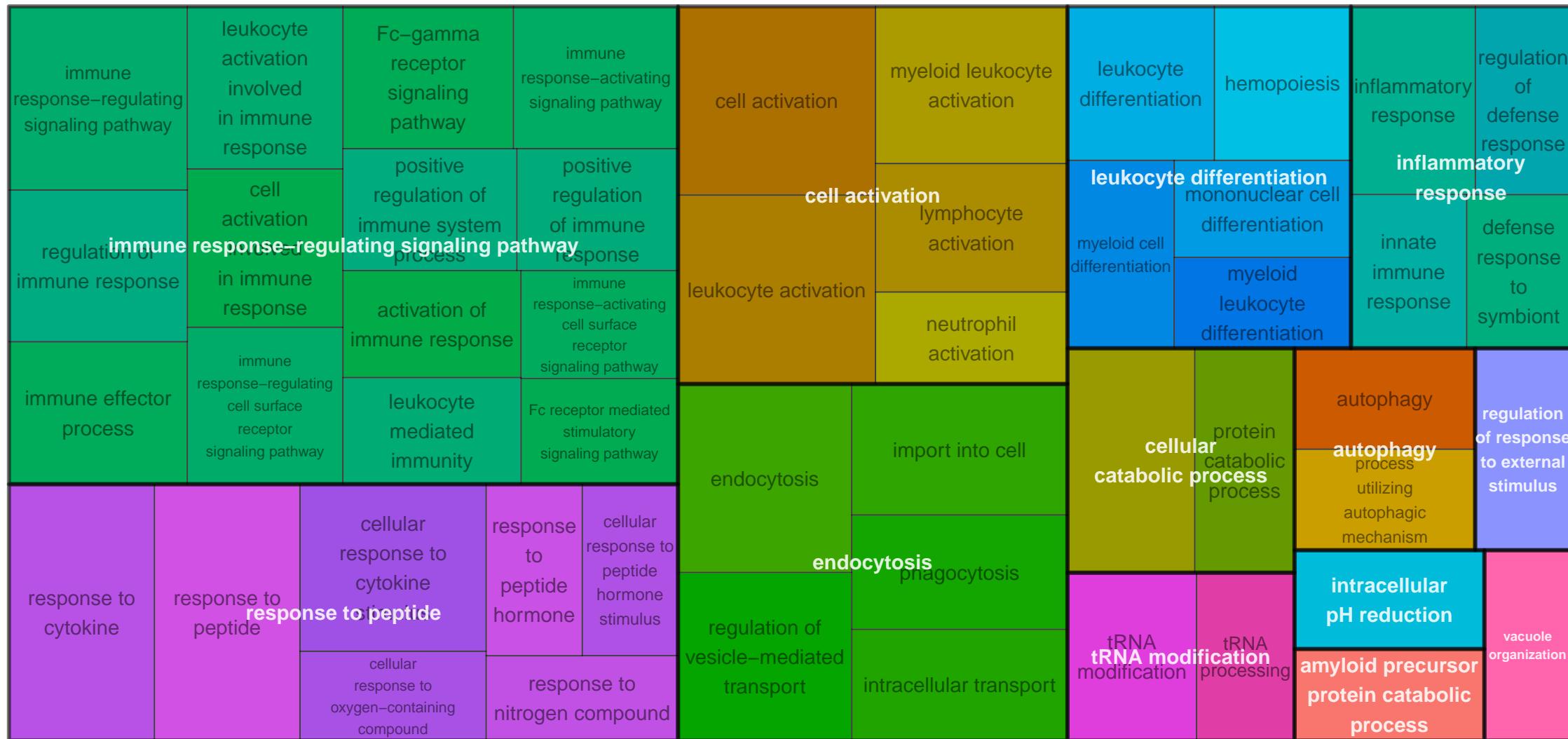



Respiratory infections


Gene co-expression signatures



Lymphocyte dysregulation



ME1

ME10

cytosolic transport

cytosolic transport, endosome to Golgi

endosomal transport

ME11

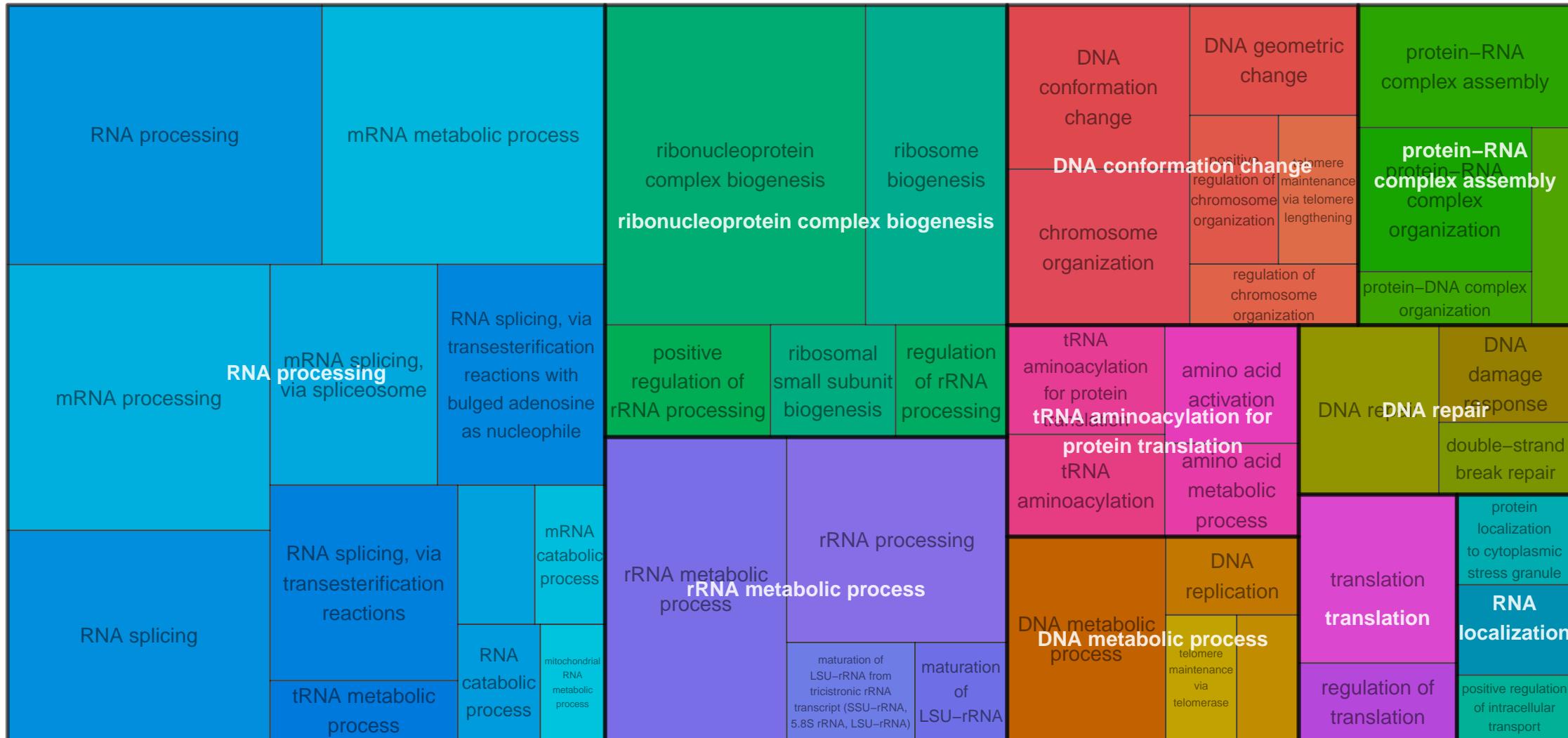
positive regulation of protein localization to chromosome, telomeric region	regulation of protein localization to chromosome, telomeric region	positive regulation of establishment of protein localization to telomere	rRNA processing	DNA metabolic process		positive regulation of DNA metabolic process	chromosome organization	telomere maintenance	mitochondrial gene expression	
positive regulation of protein localization to Cajal body	regulation of establishment of protein localization to telomere	regulation of protein localization to Cajal body		rRNA processing regulation of DNA metabolic process	DNA repair	nucleotide metabolic process	positive regulation of telomere maintenance	mitochondrion organization		
positive regulation of protein localization to chromosome, telomeric region		regulation of establishment of protein localization to chromosome				telomere organization	regulation of telomere maintenance	positive regulation of chromosome organization		
protein localization to nucleoplasm	regulation of telomerase RNA localization to Cajal body	protein localization to chromosome, telomeric region	ribonucleoprotein complex biogenesis	ribosome biogenesis		ribosomal small subunit biogenesis	translation	chaperone-mediated protein folding	ribosomal subunit export from nucleus	
positive regulation of telomerase RNA localization to Cajal body	RNA localization to Cajal body	telomerase RNA localization to Cajal body		ribonucleoprotein complex biogenesis		ribosome assembly		protein folding		
establishment of protein localization to telomere	RNA localization to nucleus	telomerase RNA localization		ribosomal large subunit biogenesis			cytoplasmic translational initiation	aerobic respiration		

ME12

cell cycle process	regulation of cell cycle process	cell cycle phase transition	mitotic cell cycle phase transition		regulation of cell cycle phase transition	regulation of mitotic cell cycle phase transition	chromosome organization	mitotic nuclear division	protein-DNA complex assembly	nucleosome assembly
	nuclear chromosome segregation		negative regulation of cell cycle process		cell cycle checkpoint signaling		regulation of chromosome segregation		negative regulation of cell cycle phase transition	
mitotic cell cycle process	mitotic sister chromatid segregation	regulation of mitotic cell cycle	positive regulation of cell cycle process		negative regulation of cell cycle		negative regulation of mitotic cell cycle phase transition		protein-DNA complex assembly	nucleosome organization
			cell cycle process	mitotic cell cycle	mitotic sister chromatid separation	regulation of sister chromatid segregation	metaphase/anaphase transition of mitotic cell cycle	chromosome organization		
mitotic cell cycle	sister chromatid segregation	chromosome separation	mitotic cell cycle checkpoint signaling	mitotic sister chromatid separation	regulation of sister chromatid segregation	metaphase/anaphase transition of mitotic cell cycle	regulation of nuclear division		chromatin remodeling	chromatin organization
	regulation of cell cycle	regulation of chromosome separation	regulation of mitotic sister chromatid separation	positive regulation of cell cycle	meiotic cell cycle	metaphase/anaphase transition of cell cycle	DNA replication	DNA replication process	DNA repair	cell division
chromosome segregation							DNA templated DNA replication		DNA repair	
									DNA damage response	

ME13

antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-dependent		antigen processing and presentation of endogenous peptide antigen via MHC class Ib	antigen processing and presentation of endogenous peptide antigen via MHC class I	antigen processing and presentation of exogenous peptide antigen via MHC class I	antigen processing and presentation of peptide antigen via MHC class Ib	positive regulation of retrograde protein transport, ER to cytosol	retrograde protein transport, ER to cytosol	positive regulation of T cell mediated cytotoxicity	protection from natural killer cell mediated cytotoxicity	ERAD pathway	protein catabolic process
		antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-dependent	antigen processing and presentation of endogenous peptide antigen via MHC class Ib	antigen processing and presentation of endogenous peptide antigen via MHC class I	regulation of adaptive immune response	positive regulation of retrograde protein transport, ER to cytosol		positive regulation of retrograde protein transport, ER to cytosol	positive regulation of retrograde protein transport, ER to cytosol		
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independent		antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-dependent	antigen processing and presentation of endogenous peptide antigen via MHC class Ib	antigen processing and presentation of endogenous peptide antigen via MHC class I	regulation of adaptive immune response	endoplasmic reticulum to cytosol transport	exit from endoplasmic reticulum	retrograde protein transport, ER to cytosol	positive regulation of leukocyte mediated cytotoxicity	regulation of T cell mediated cytotoxicity	positive regulation of cell killing
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway		antigen processing and presentation of endogenous peptide antigen	regulation of immune effector process	positive regulation of immune effector process	positive regulation of leukocyte mediated immunity	positive regulation of protein exit from endoplasmic reticulum		positive regulation of protein exit from endoplasmic reticulum		cellular catabolic process	proteolysis involved in protein catabolic process
detection of chemical stimulus	detection of chemical stimulus	sensory	sensory	bitter taste	sensory	organelle fusion	vacuole organization	vesicle fusion	positive regulation of interleukin-6 production	positive regulation of interleukin-6 production	positive regulation of proteolysis
detection of chemical stimulus involved in sensory perception of taste		perception of bitter taste		perception of taste		organelle fusion	vacuole organization	vesicle fusion	autophagy	process utilizing autophagic mechanism	autophagy
perception of bitter taste		perception of taste		perception of taste		negative regulation of cellular component organization	organelle membrane fusion	vesicle organization	regulation of TORC1 signaling	regulation of TORC1 signaling	regulation of proteolysis
perception of taste		perception of taste		perception of taste		endoplasmic reticulum calcium ion homeostasis	Golgi vesicle transport	regulation of response to biotic stimulus	regulation of response to biotic stimulus	regulation of response to biotic stimulus	regulation of response to biotic stimulus


ME14

defense response to symbiont	regulation of innate immune response	regulation of response to biotic stimulus	positive regulation of immune system process	activation of immune response	immune response-activating signaling pathway	regulation of defense response
innate immune response	regulation of response to external stimulus	positive regulation of response to external stimulus		immune response-regulating signalling pathway	positive regulation of production of molecular mediator of immune response	positive regulation of cytokine production involved in immune response
defense response to symbiont	activation of innate immune response	positive regulation of innate immune response	positive regulation of immune response	regulation of immune effector process	production of molecular mediator of immune response	positive regulation of immune effector process
defense response to other organism	activation of innate immune response	positive regulation of innate immune response	positive regulation of immune response	immune effector process	cytokine production involved in immune response	inflammatory response
pattern recognition receptor signaling pathway				cytoplasmic pattern recognition receptor signaling pathway		
innate immune response-activating signaling pathway	defense response to virus	positive regulation of pattern recognition receptor signaling pathway	cytoplasmic pattern recognition receptor signaling pathway	positive regulation of intracellular signal transduction	regulation of canonical NF-kappaB signal transduction	cytokine production
			canonical NF-kappaB signal transduction	positive regulation of canonical NF-kappaB signal transduction	intracellular receptor signaling pathway	regulation of cytokine production
				response to cytokine	response to peptide	positive regulation of cytokine production
				response to cytokine	response to type II interferon	leukocyte activation
				cellular response to cytokine stimulus	cytokine-mediated signaling pathway	cell activation

ME15

leukocyte activation	cell activation	lymphocyte activation	alpha–beta T cell activation	adaptive immune response	lymphocyte mediated immunity	regulation of immune response	positive regulation of natural killer cell mediated cytotoxicity	negative regulation of immune system process	defense response to other organism
T cell activation	regulation of lymphocyte activation	alpha–beta T cell differentiation involved in immune response	lymphocyte activation involved in immune response	alpha–beta T cell activation involved in immune response	immune effector process	natural killer cell mediated cytotoxicity	positive regulation of natural killer cell mediated immunity	positive regulation of lymphocyte mediated immunity	positive regulation of immune system process
regulation of leukocyte activation	leukocyte activation involved in immune response	leukocyte activation alpha–beta T cell differentiation	CD4–positive, alpha–beta T cell differentiation	T cell differentiation	leukocyte mediated immunity	regulation of leukocyte mediated immunity	T cell mediated immunity	regulation of immune effector process	positive regulation of leukocyte mediated immunity
regulation of cell activation	CD4–positive, alpha–beta T cell activation	T cell differentiation involved in immune response	CD4–positive, alpha–beta T cell differentiation involved in immune response	regulation of natural killer cell activation	positive regulation of cell killing	positive regulation of cell killing	leukocyte cytotoxicity	regulation of cell killing	positive regulation of leukocyte mediated cytotoxicity
	cell activation involved in immune response	T cell activation involved in immune response	natural killer cell activation		positive regulation of cell killing	positive regulation of cell killing	leukocyte cytotoxicity	regulation of cell killing	positive regulation of leukocyte mediated cytotoxicity

ME16

ME18

regulation of viral process	regulation of viral life cycle	response to virus	regulation of response to biotic stimulus	regulation of innate immune response	positive regulation of innate immune response	defense response to symbiont	innate immune response	
negative regulation of viral process	negative regulation of viral genome replication	defense response to virus	positive regulation of response to biotic stimulus	activation of innate immune response	negative regulation of innate immune response	defense response to symbiont	positive regulation of defense response	
regulation of viral process			negative regulation of response to biotic stimulus	pattern recognition receptor signaling pathway	defense response to other organism			
regulation of viral genome replication	viral life cycle		antiviral innate immune response	cytoplasmic pattern recognition receptor signaling pathway	innate immune response-activating signaling pathway	regulation of response to external stimulus	activation of immune response	
viral process	viral genome replication	response to type I interferon	response to interferon-alpha	response to interferon-beta	regulation of type I interferon-mediated signaling pathway	positive regulation of response to external stimulus	positive regulation of immune response	
		cellular response to type I interferon	type I interferon-mediated signaling pathway	response to cytokine	negative regulation of type I interferon-mediated signaling pathway	immune response-activating signaling pathway	immune response-activating signaling pathway	
		response to type I interferon		regulation of type I interferon production		regulation of type I interferon production		

homophilic cell adhesion via plasma membrane adhesion molecules: plasma-membrane adhesion molecules

cell-cell adhesion

import across plasma membrane

import across plasma membrane

inorganic ion import across plasma membrane

monoatomic ion transmembrane transport

cell junction organization

detection of stimulus

ME20

membrane lipid catabolic process		glycolipid catabolic process	ceramide catabolic process	lipid catabolic process	carbohydrate catabolic process		oligosaccharide metabolic process	cellular catabolic process	positive regulation of response to external stimulus	positive regulation of defense response to external stimulus
					carbohydrate catabolic process					
sphingolipid catabolic process		glycosphingolipid catabolic process	membrane lipid metabolic process	sphingolipid metabolic process	carbohydrate metabolic process	hexose catabolic process			toll-like receptor signaling pathway	
positive regulation of immune system process	positive regulation of immune response	myeloid leukocyte activation	activation of immune response	cell activation involved in immune response	innate immune response	defense response to symbiont	innate immune response	endocytosis	neuromuscular process controlling balance	
		regulation of alpha-beta T cell differentiation	alpha-beta cell differentiation	positive regulation of immune effector process	defense response to other organism	response to bacterium		endocytosis		
regulation of immune response	immune effector process	positive regulation of alpha-beta T cell differentiation	regulation of immune effector process	positive regulation of alpha-beta T cell activation	carbohydrate derivative catabolic process	glycoside catabolic process	glycolipid metabolic process	inflammatory response	aldehyde metabolic process	response to metal ion
					carbohydrate derivative catabolic process					
					glycosphingolipid metabolic process	liposaccharide metabolic process		positive regulation of cytokine production	astrocyte development	plasminogen activation

ME21

mRNA metabolic process	RNA processing	rRNA metabolic process	regulation of cell cycle	mitotic cell cycle process	mitotic cell cycle	chromatin remodeling	chromosome organization	ribonucleoprotein complex biogenesis	
				regulation of cell cycle process	sister chromatid segregation			ribonucleoprotein complex	
mRNA processing	mRNA splicing, via spliceosome	RNA splicing, via transesterification reactions with bulged adenosine as nucleophile	regulation of chromosome segregation	regulation of cell cycle	regulation of G0 to G1 transition	chromatin remodeling chromatin organization	regulation of organelle organization	ribonucleoprotein complex biogenesis ribosome biogenesis	
				chromosome segregation	regulation of G1/S transition of mitotic cell cycle			maturation of 5.8S rRNA	
	rRNA processing	rRNA transcription		nuclear chromosome segregation	G1/S transition of mitotic cell cycle	protein-DNA complex organization	translation	hematopoietic stem cell differentiation	
				DNA damage response	positive regulation of double-strand break repair			hematopoietic stem cell differentiation	
RNA splicing	DNA templated transcription elongation	regulation of DNA templated transcription elongation	DNA repair	positive regulation of DNA repair	regulation of DNA repair	protein-DNA complex organization	translation	hematopoietic stem cell differentiation	
				DNA damage response	regulation of double-strand break repair	nucleosome disassembly	regulation of translation	negative regulation of catabolic process	
RNA splicing, via transesterification reactions	DNA templated transcription elongation	regulation of DNA templated transcription elongation	DNA repair	positive regulation of DNA repair	regulation of DNA repair	protein-DNA complex disassembly			

regulation of T cell tolerance induction

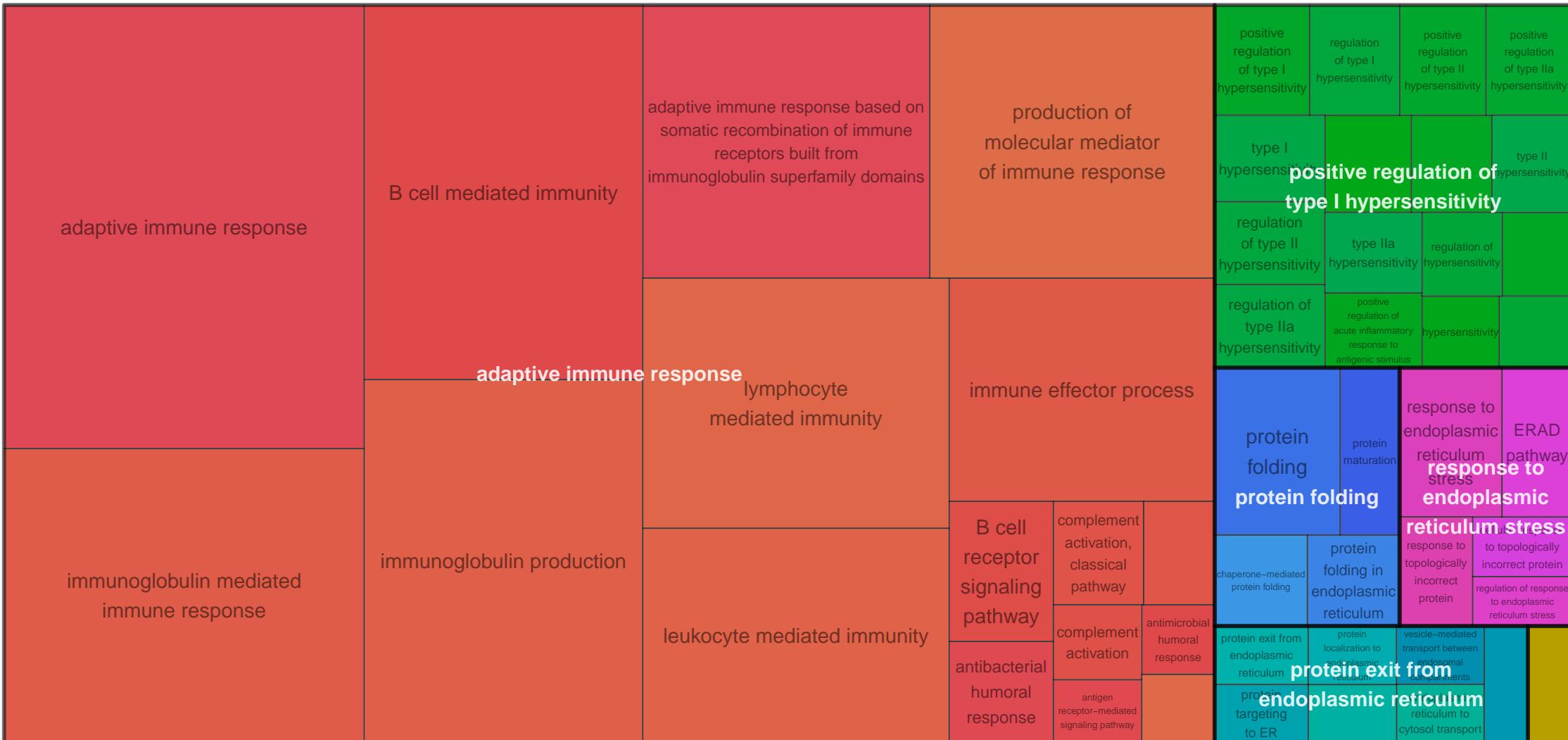
T cell tolerance induction

T cell tolerance induction

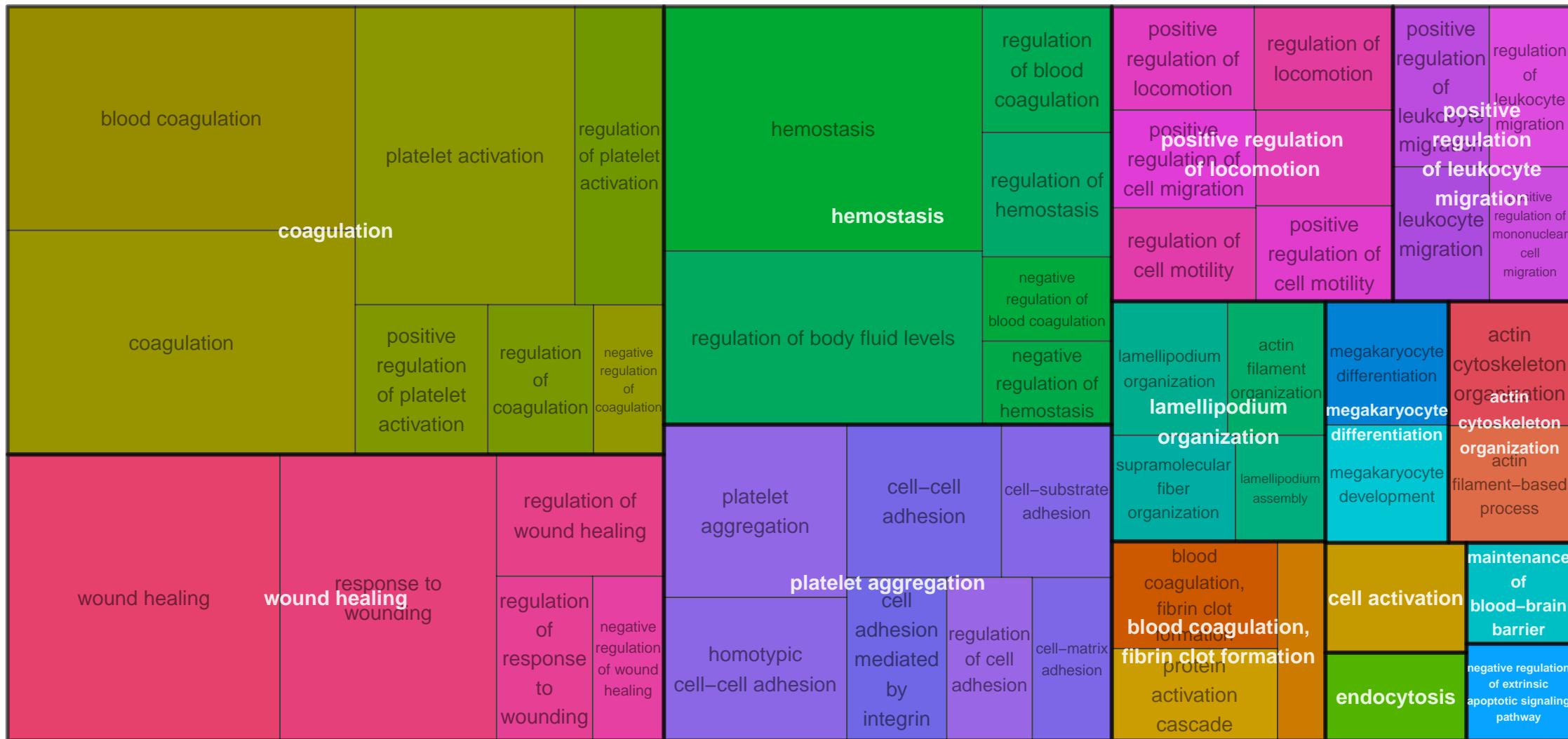
regulation
of
tolerance
induction

cellular response to
decreased oxygen levels

benzene-containing compound metabolic process


cellular response
to oxygen levels

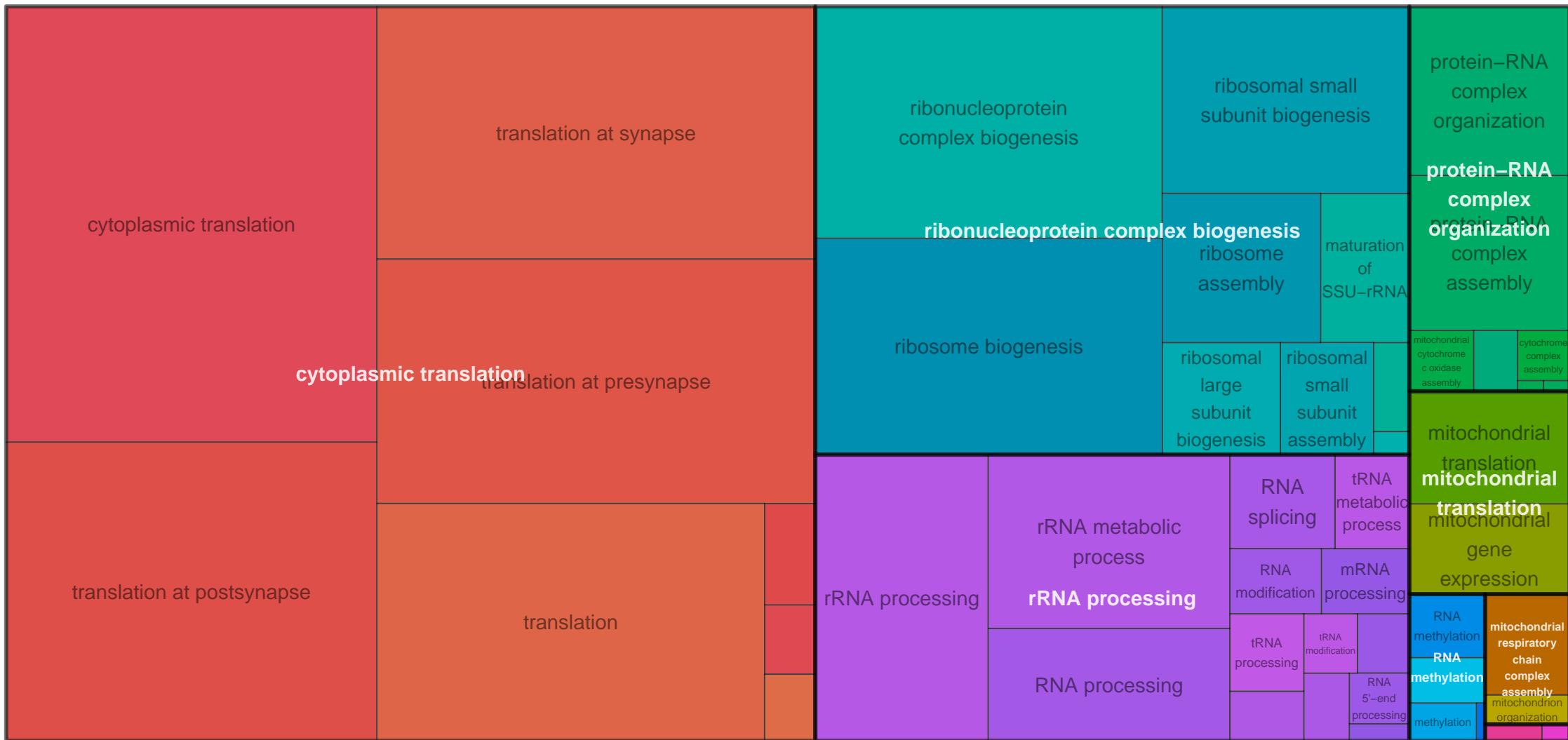
macrophage differentiation


regulation of reproductive process

inflammatory
response

L-tryptophan
catabolic
process to
kynurenone

ME25



ME28

adaptive immune response		antigen receptor-mediated signaling pathway	immune response-regulating cell surface receptor signaling pathway	T cell activation	cell activation		positive regulation of myeloid dendritic cell activation	alpha-beta T cell activation	positive regulation of leukocyte cell-cell adhesion	leukocyte cell-cell adhesion		
					regulation of T cell activation	positive regulation of leukocyte activation	regulation of myeloid dendritic cell activation	regulation of lymphocyte activation	positive regulation of leukocyte cell-cell adhesion			
immune response-activating cell surface receptor signaling pathway	immune response-regulating signaling pathway	positive regulation of immune response	adaptive immune response	lymphocyte activation	T cell activation	T cell costimulation	positive regulation of cell activation	positive regulation of lymphocyte activation				
					T cell costimulation	positive regulation of cell activation	positive regulation of lymphocyte activation	regulation of leukocyte activation				
	activation of immune response	positive regulation of immune system process	leukocyte activation	lymphocyte costimulation	positive regulation of alpha-beta T cell proliferation	regulation of cell activation	regulation of alpha-beta T cell proliferation	regulation of cell adhesion				
					lymphocyte costimulation	positive regulation of alpha-beta T cell proliferation	regulation of cell activation	regulation of alpha-beta T cell proliferation	defense response to symbiont	defense response to other organism		
immune response-activating signaling pathway	T cell receptor signaling pathway	regulation of immune response	lymphocyte mediated immunity	T cell selection	positive T cell selection	thymic T cell selection	positive thymic T cell selection		defense response to symbiont	defense response to other organism		
							T cell selection					
							T cell differentiation					

ME3

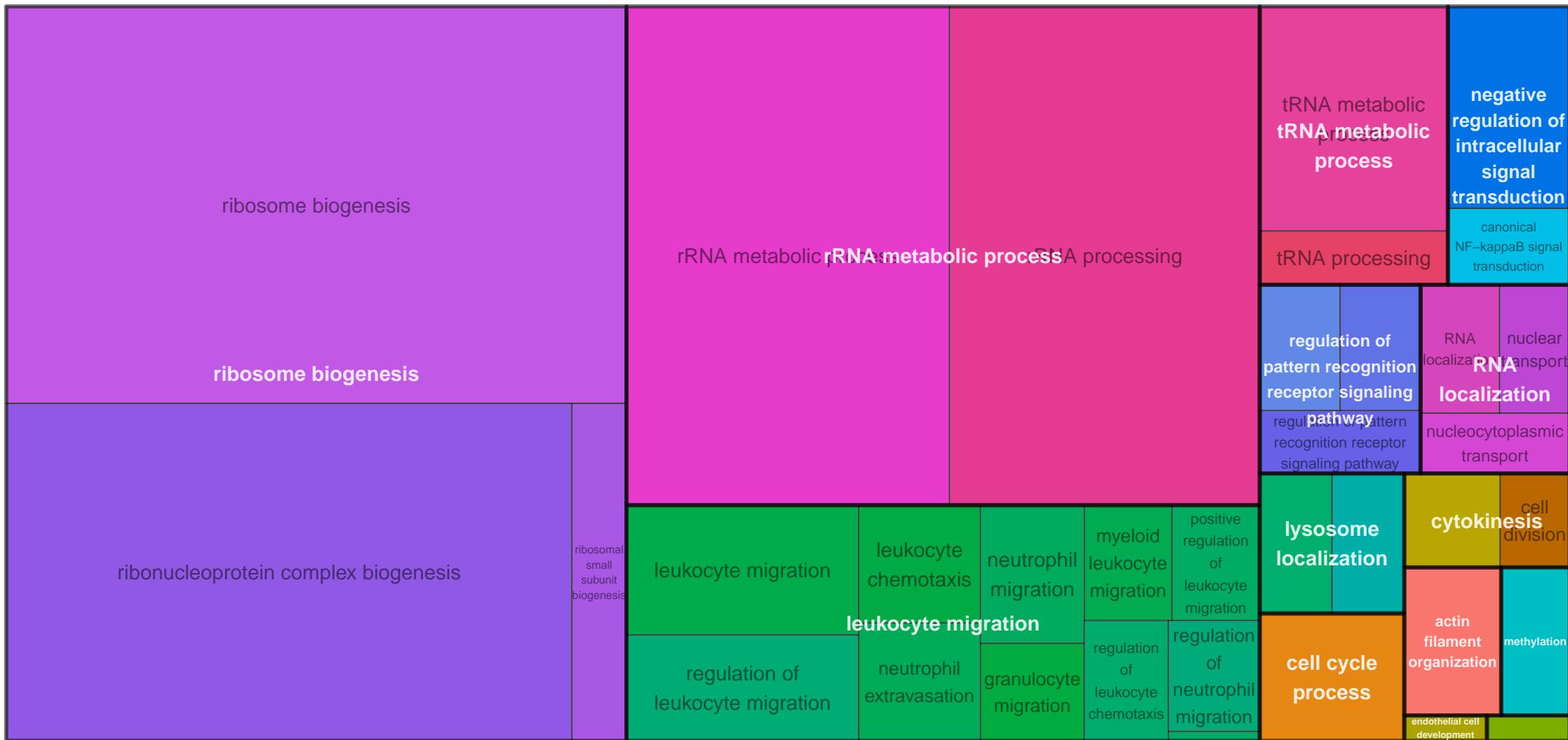
nuclear transport

nucleocytoplastic transport

nucleocytoplastic transport

ME33

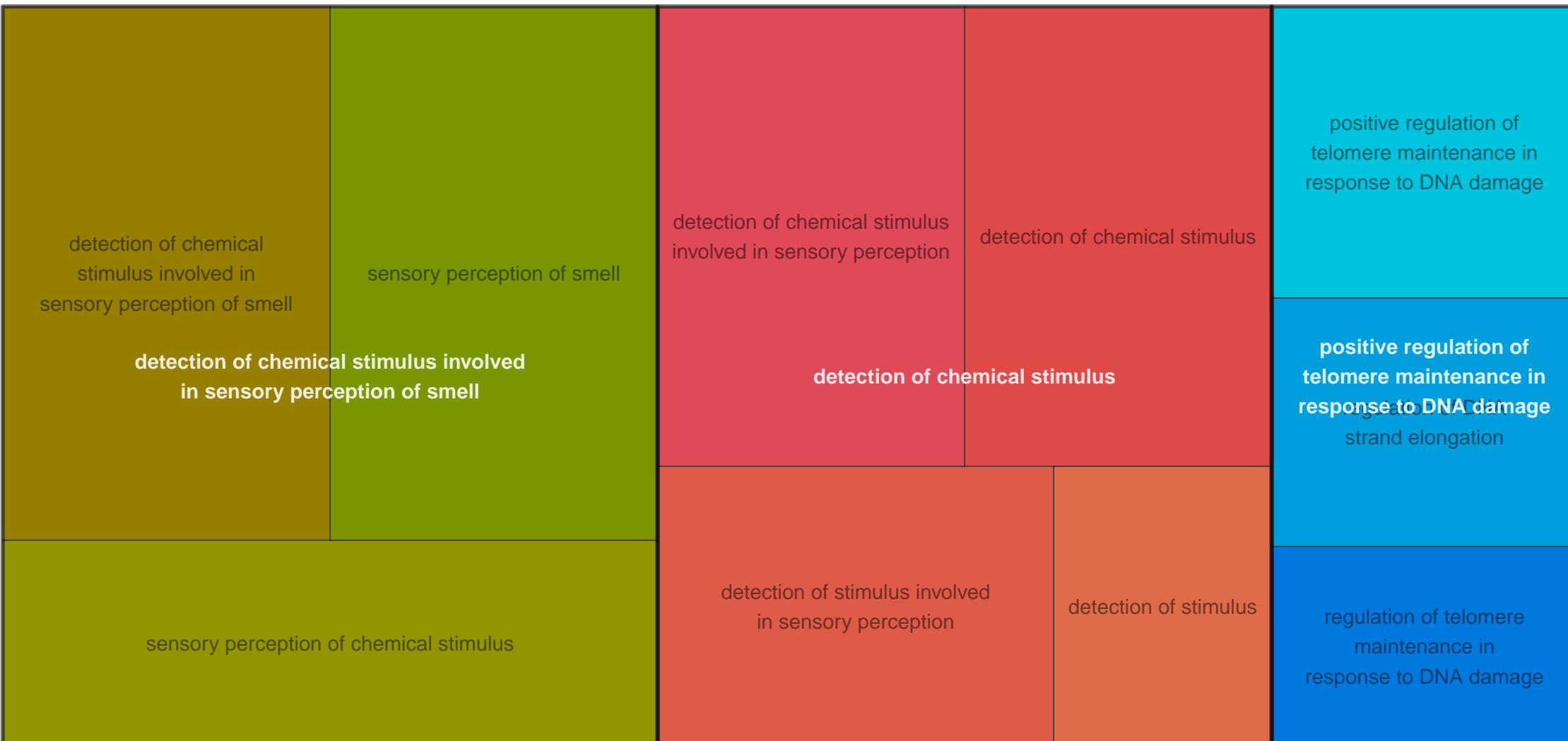
autophagy of mitochondrion		process utilizing autophagic mechanism	macroautophagy	membrane organization	endosome organization	autophagosome assembly	cellular response to nitrogen levels		cellular response to nitrogen starvation		cellular component disassembly			
							cellular response to nitrogen levels		cellular response to nitrogen starvation		cellular component disassembly			
autophagy	autophagy of mitochondrion		mitophagy	positive regulation of autophagy	autophagosome organization	vesicle organization	cellular response to nitrogen levels		cellular response to nitrogen starvation		cellular component disassembly			
	mitophagy						vacuole organization	cellular response to nutrient levels		cellular response to starvation	organelle disassembly			
protein localization to organelle	establishment of protein localization to organelle	regulation of protein localization to membrane	intracellular protein transport		regulation of protein modification process	protein modification by small protein conjugation or removal	cellular catabolic process		Ras protein signal transduction		Ras protein signal transduction	response to mitochondrial depolarisation		
	establishment of protein localization to organelle	regulation of cellular localization	regulation of protein localization				post-translational protein modification	cellular catabolic process		small GTPase-mediated signal transduction	synaptic signaling			
positive regulation of protein localization	positive regulation of protein localization to vacuole	protein localization to vacuole	late endosome to vacuole transport		positive regulation of protein modification process	ubiquitin-dependent protein catabolic process	proteolysis involved in protein catabolic process		viral process		negative regulation of ferroptosis			
	positive regulation of ER to Golgi vesicle-mediated transport	protein localization to vacuole	late endosome to vacuole transport				ubiquitin-dependent protein catabolic process		viral process		negative regulation of ferroptosis			

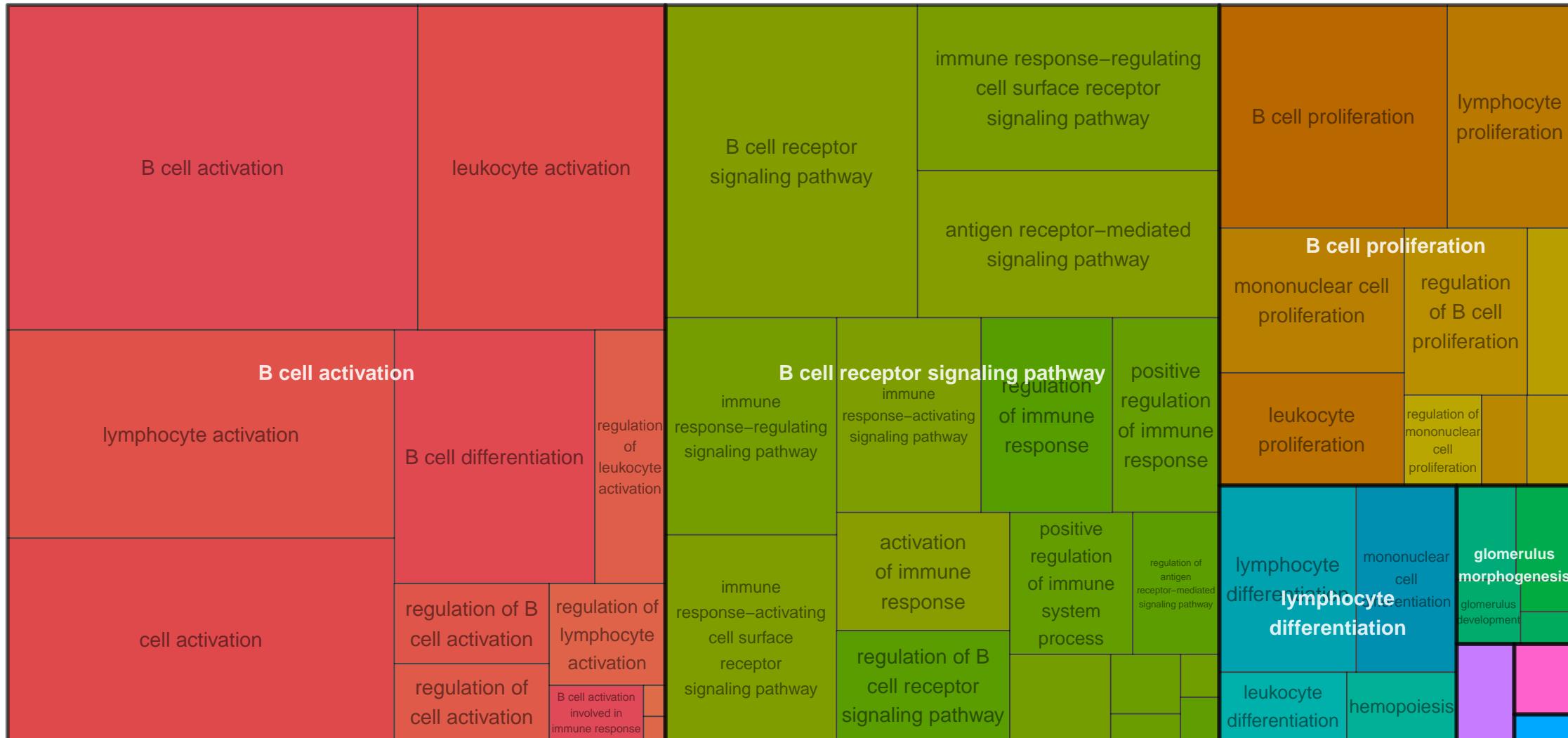

ME34

defense response to bacterium		defense response to Gram-positive bacterium		regulation of cytokine production	regulation of tumor necrosis factor production	tumor necrosis factor production		tumor necrosis factor superfamily cytokine production		defense response to other organism		innate immune response
						positive regulation of cytokine production	positive regulation of tumor necrosis factor superfamily cytokine production	negative regulation of cytokine production	defense response to other organism		defense response to symbiont	
defense response to Gram-negative bacterium		response to bacterium		cytokine production	regulation of tumor necrosis factor superfamily cytokine production	positive regulation of tumor necrosis factor production	negative regulation of tumor necrosis factor superfamily cytokine production	regulation of interleukin-8 production	killing by host of symbiont cells		killing of cells of another organism	
defense response to bacterium				antimicrobial humoral response	antimicrobial humoral response mediated by antimicrobial peptide		humoral immune response	mucosal immune response	killing by host of symbiont cells		killing of cells of another organism	
defense response to fungus		response to molecule of bacterial origin		response to lipopolysaccharide	antimicrobial humoral response		humoral immune response	mucosal immune response	biological process involved in symbiotic interaction	disruption of plasma membrane integrity in another organism	cell killing	
response to fungus		response to yeast	chemotaxis	taxis	antibacterial humoral response	innate immune response in mucosa		organ or tissue specific immune response		cellular response to oxygen-containing compound		regulation of hepatocyte proliferation
										response to lipid		regulation of microvillus assembly

ME38

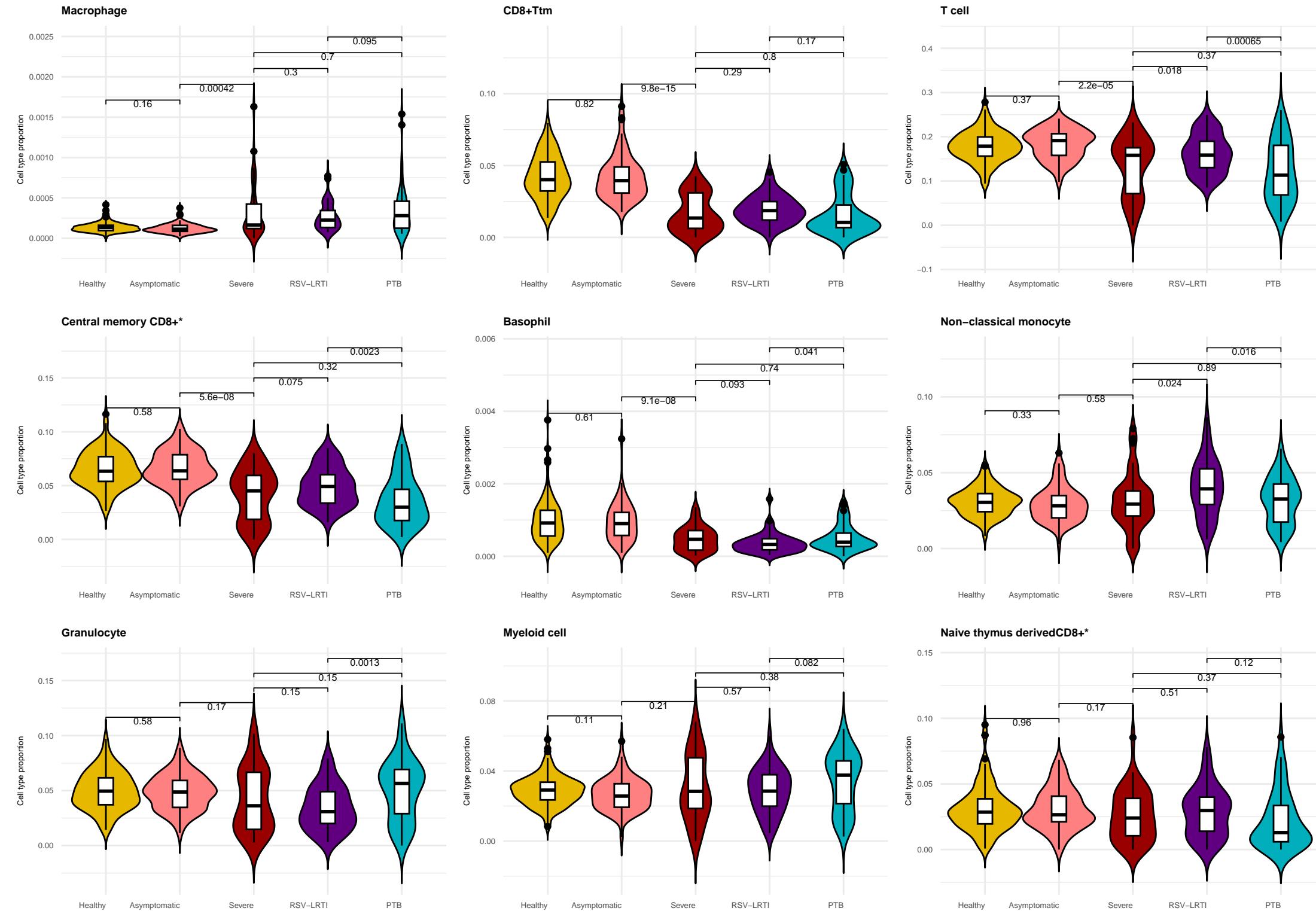
positive regulation of carbohydrate metabolic process	regulation of carbohydrate metabolic process	regulation of carbohydrate biosynthetic process	glucan biosynthetic process	glycogen biosynthetic process	organic acid metabolic process	oxoacid metabolic process	cellular response to nitrogen compound	response to nitrogen compound	regulation of cell migration	regulation of cell migration
positive regulation of glycogen biosynthetic process	positive regulation of glycogen metabolic process	regulation of glucan biosynthetic process	regulation of glycogen metabolic process	regulation of glycogen biosynthetic process	organic acid metabolic process	positive regulation of small molecule metabolic process	cellular response to oxygen-containing compound	cellular response to oxygen-containing compound	regulation of locomotion	regulation of locomotion
cellular response to corticosteroid stimulus	cellular response to hormone stimulus	response to hormone	response to growth factor	intrinsic apoptotic signaling pathway in response to DNA damage	positive regulation of MAPK cascade	positive regulation of phosphate metabolic process	positive regulation of protein phosphorylation	regulation of phosphorus metabolic process	mononuclear cell proliferation	mononuclear cell proliferation
cellular response to glucocorticoid stimulus	cellular response to steroid hormone stimulus	response to hormone	response to glucocorticoid	response to steroid hormone	intrinsic apoptotic signaling pathway in response to DNA damage	epithelial cell migration	epithelial cell migration	tissue migration	positive regulation of D-glucose import	regulation of generation of precursor metabolites and energy
				regulation of MAPK cascade	MAPK cascade	tissue migration	epithelium migration		response to abiotic stimulus	response to abiotic stimulus

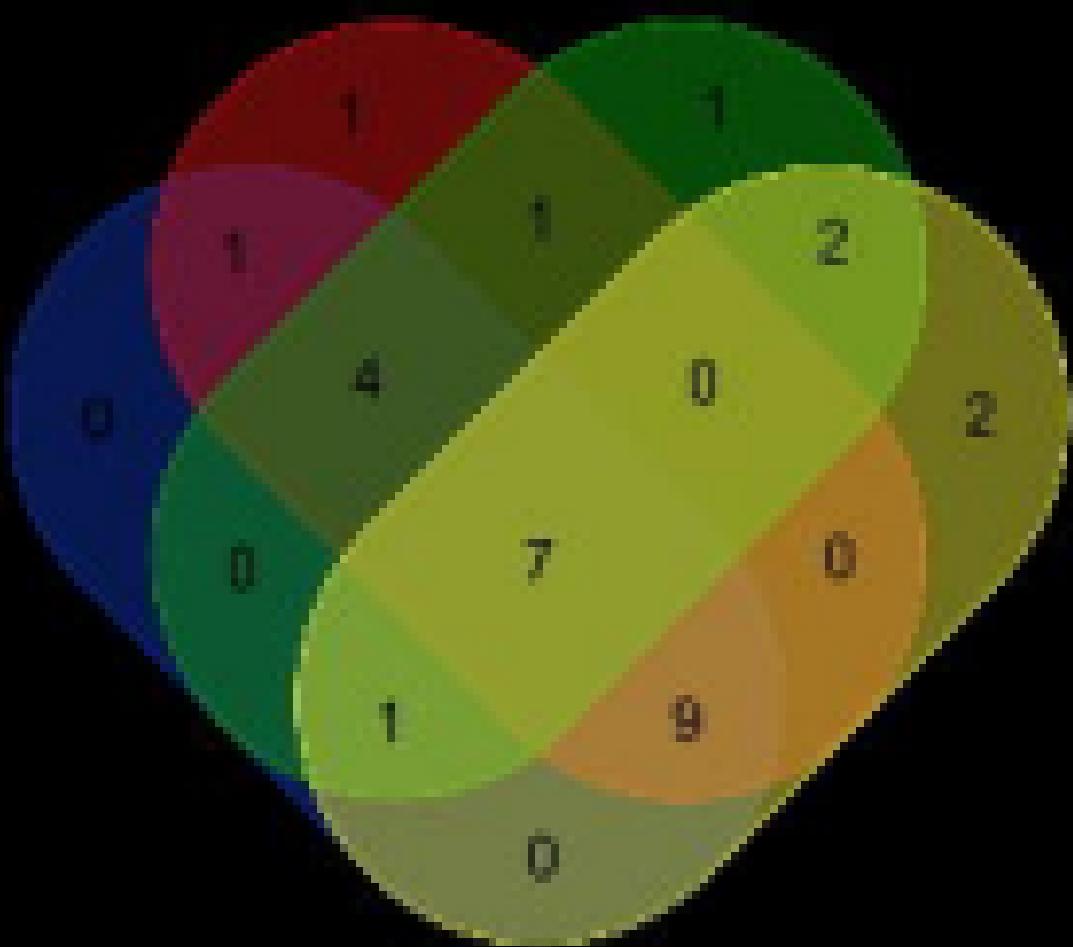

ME4

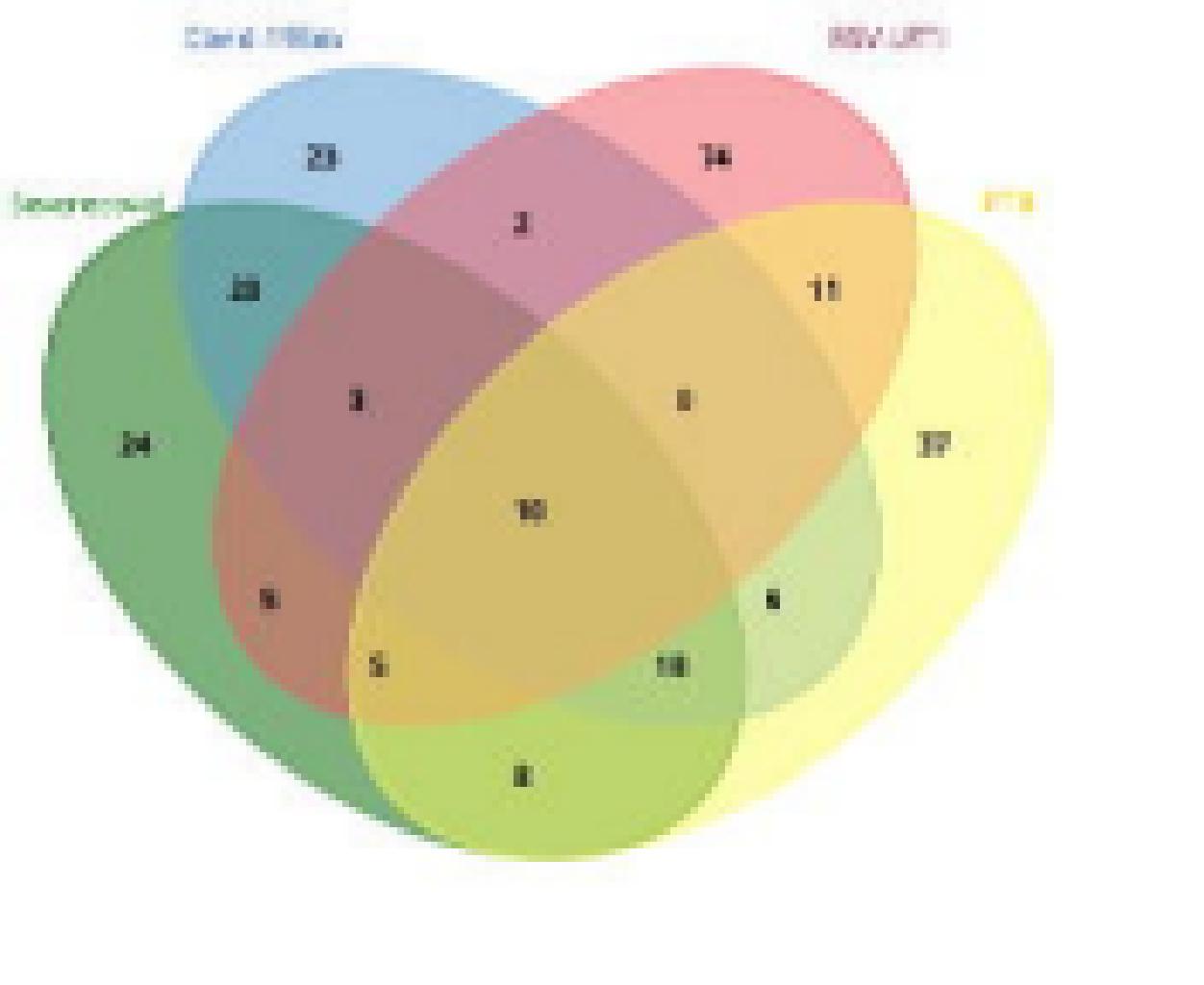

ME40

proton motive force–driven mitochondrial ATP synthesis		proton motive force–driven ATP synthesis		ATP biosynthetic process		oxidative phosphorylation	aerobic electron transport chain	ATP synthesis coupled electron transport	mitochondrial ATP synthesis coupled electron transport	purine ribonucleotide biosynthetic process	purine-containing compound biosynthetic process
purine nucleoside triphosphate biosynthetic process	nucleoside triphosphate biosynthetic process	ATP metabolic process	purine ribonucleoside triphosphate metabolic process								
proton motive force–driven mitochondrial ATP synthesis	purine nucleoside triphosphate metabolic process	nucleoside phosphate biosynthetic process	nucleotide biosynthetic process	aerobic respiration	oxidative phosphorylation respiratory electron transport chain	electron transport chain	generation of precursor metabolites and energy	mitochondrial electron transport, NADH to ubiquinone	mitochondrial respiratory chain complex I assembly NADH dehydrogenase complex assembly	organophosphate biosynthetic process	purine nucleoside triphosphate biosynthetic process
ribonucleoside triphosphate biosynthetic process	ribonucleoside triphosphate metabolic process	purine nucleotide metabolic process	nucleoside phosphate metabolic process								
ribonucleoside triphosphate biosynthetic process	nucleoside triphosphate metabolic process	nucleotide metabolic process	nucleobase-containing small molecule metabolic process	ribonucleotide biosynthetic process	ribose phosphate biosynthetic process	purine ribonucleotide metabolic process	ribose phosphate metabolic process	carbohydrate derivative metabolic process	carbohydrate derivative biosynthetic process	organophosphate metabolic process	response to oxygen levels

ME7




ME8



ME9

T cell activation		alpha–beta T cell activation	lymphocyte activation	T cell differentiation		lymphocyte differentiation		adaptive immune response			positive regulation of T cell activation		
cell activation	alpha–beta T cell differentiation		T cell costimulation		mononuclear cell differentiation		leukocyte differentiation	regulation of T cell differentiation	adaptive immune response			positive regulation of leukocyte cell–cell adhesion	
regulation of T cell activation	T cell activation		regulation of lymphocyte activation	positive regulation of cell activation	regulation of lymphocyte differentiation		T cell differentiation		adaptive immune response			positive regulation of T cell activation	
leukocyte activation	positive regulation of lymphocyte activation		regulation of leukocyte activation	regulation of cell activation	somatic diversification of T cell receptor genes	T cell receptor V(D)J recombination	positive regulation of lymphocyte differentiation		T cell receptor signaling pathway			leukocyte cell–cell adhesion	regulation of cell–cell adhesion
	positive regulation of leukocyte activation		CD4-positive, alpha–beta T cell activation	gamma–delta T cell activation	somatic recombination of T cell receptor gene segments	regulation of leukocyte differentiation		T cell differentiation in thymus	T cell selection	type II interferon production	regulation of type II interferon production	regulation of interleukin–4 production	cytokine production

