bioRxiv preprint doi: https://doi.org/10.1101/2025.11.07.687132; this version posted November 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1

Immune transcriptomic differences in paediatric patients with SARS-CoV-2 compared to
other lower respiratory tract infections

Negusse Tadesse Kitaba!, Lesley Workman?, Cheryl Cohen#, Diana Baralle!->%, Ellen Kong’,
Maresa Botha?, Marina Johnson®°, David Goldblatt®®, Mark P Nicol'?, John W Holloway'-%# and
Heather J Zar*#

#These authors contributed equally: Heather J Zar & John W. Holloway.
Corresponding author: Heather J Zar heather.zar@uct.ac.za

'Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
*Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and SA-MRC
Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa

3Center for Respiratory disease and Meningitis, National Institute for Communicable Diseases, a division
of the National Health Laboratory Service, 1 Modderfontein Road Sandringham, South Africa

“School of Public Health, University of the Witwatersrand, Johanneburg, South Africa

°National Health, Service (NHS) Foundation Trust Southampton, UK

SNIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton, UK
"National Heart and Lung Institute, Imperial College London, London, UK

$Great Ormond Street Institute of Child Health University College London, UK

National Heart and Lung Institute, Imperial College London, London, UK

'"The University of Western Australia: Perth, Australia

Graphical abstract

Respiratory infections Gene co-expression signatures
Healthy ME10 ME29 ME12 ME19
02 0t
0 02
Control n=127 01 01
B} o o2 .
Wt o i b o
a7 };: 01 00 o1
[ 01
""%{“ Mild/Asymptomatic n=71 -02 -02
p e Healthy Severe RSV PTB Healthy Severe RSV PTB Healthy Severe RSV PTB Healthy Severe RSV PTB
(ﬁ”f\ 0000
SARS-CoV2 H[LHJJ‘M Lymphocyte dysregulation
Severe n=41 Macrophage Teell

0000 S — I = A —
ooooege & 03 67605
RSV-LRTI n=47 L Lo
H I.I.I H |.I.| 0.0000 0.0
y

16
Healthy Asymptomatic ~~ Severe  RSV-LR PT8 Healthy Asymplomatic S

evere  RSV-LRTI PTB

Pulmonary Tuberculosis n=47



https://doi.org/10.1101/2025.11.07.687132
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.07.687132; this version posted November 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

2

Abstract

The clinical severity of SARS-CoV-2 infection in children varies, with asymptomatic or mild
illness predominating and a minority developing severe disease. Understanding the immunological
responses that underlie severity of disease may guide future development of preventive or
therapeutic interventions. This study compared whole blood transcriptomes of healthy children
(N=127), children with mild/asymptomatic SARS-CoV-2 infection (N=71) and -children
hospitalised with severe SARS-COV-2 (N=41), lower respiratory tract illness (LRTI) or LRTI due
to Respiratory Syncytial Virus (RSV-LRTI) (N=47) or Pulmonary Tuberculosis (PTB) (N=47).
We identified >5000 differentially expressed genes including: OLFM4, IF127, CBX7, IGF2BP3,
OTOF for severe SARS-CoV-2; IFI27, OTOF, SIGLECI, IFI44L and USPI8 for RSV-LRT]I, and
MMPS, LTF, IGF2BP3, GPR84, CD177, CIQC and DEFA4 for PTB, at false discovery rate
(FDR) <0.05. Pathway analysis identified enrichment for neutrophil degranulation, interferon
gamma signalling, overexpression of ribosomal proteins and depletion of immune response in
severe SARS-CoV-2 compared to healthy (SAR-COV-2 uninfected) children. Weighted Gene Co-
expression Network Analysis (WGCNA) identified 10 correlated gene modules shared between
LRTI showing similar underlying response mechanisms. Cellular decomposition analysis
identified the depletion of 22 cell types in severe SARS-CoV-2, 16 for RSV-LRTI and 21 for PTB
compared to healthy SARS-CoV-2 uninfected control children. We identified 82 genes important
for discriminating asymptomatic/mild from severe SARS-CoV-2 including CBX7, TRAF1I,
ZNF324 and CASS4; 93 healthy from severe SARS-CoV-2 including RORC, CBX7, NR3C2, MID?2
and ADAMTS2; 110 genes for RSV-LRTI and 95 for PTB children which can be used for future
therapeutic targets.

Keywords: Respiratory infection, Covid-19, PTB, RSV-LRTI, WGCNA, Child
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Introduction

Lower respiratory tract illness (LRTT) is a major cause of hospitalisation and mortality globally in
children, with the burden heavily skewed to low- and medium-income countries (LMICs). RSV
predominates as a cause of severe LRTI and hospitalisation. Pulmonary tuberculosis (PTB) has
also increasingly been recognised as an important cause of acute LRTI in children in countries in
which TB is endemic!. During the SARS-COV-2 pandemic, SARS-CoV-2 emerged as a cause of
LRTTI in children.

The clinical manifestation of COVID-19 in children varies widely from mild or asymptomatic
illness to severe LRTI?, although severe disease is rare. Immunologically, the hallmarks of
COVID-19 include dysregulation of type I IFN activity, hyperinflammation, lymphopenia,
heterogeneous adaptive immunity, dysregulated myeloid response and lymphocyte impairment®*.
COVID-19 severity is also associated with different levels of neutralizing antibodies>°. While the
blood transcriptomic response to SARS-CoV-2 infection has been described in adults’®?, few

10.11 and little is known

studies have investigated responses to SARS-CoV-2 in infants and children
about differences in host gene expression between children asymptomatic with SARS-CoV-2
infection and those hospitalized with severe COVID-19 or other LRTI such as Respiratory
Syncytial Virus (RSV-LRTI) or pulmonary tuberculosis (PTB)!213:14.15,

A multi-omics approach has previously shown utility in characterising the complexity and severity
of Covid-19'%, Weighted Gene Co-expression Networks Analysis (WGCNA) is a widely
implemented approach to identify co-regulated genes and potential hub-genes for druggable

targets!”. The aim of this study was to compare host RNA gene expression in healthy children

compared to those with asymptomatic or mild SARS-CoV-2 infection, as well as to those
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hospitalised with COVID-19, RSV-LRTI or PTB and to utilise WGCNA to identify underlying

immune responses associated with disease.
Methods

This was a prospective study conducted during the SARS-COV-2 pandemic that investigated
patterns of whole blood gene expression in HIV-negative children enrolled in a South African birth
cohort study, the Drakenstein Child Health study (DCHS), and those hospitalised with SARS-

COV-2 (severe COVID-19), RSV-LRTI or PTB.

Participants

Healthy controls or previous SARS-CoV-2 mild or asymptomatic infection: Participants were
from the Drakenstein Child Health Study, a prospective population-based birth cohort study of
children in a low- and middle-income, peri-urban community outside Cape Town, South Africa'®.
In the DCHS, during the SARS-CoV-2 pandemic, a convenience sample of a subset of children
(N=201) was included in intensive surveillance for SARS-CoV-2 infection with blood sampling
every 3 months from 15-May-2020 through 15-Sept-2022, with blood and nasopharyngeal swabs

collected, irrespective of symptoms.

In addition, continuous surveillance for illness or hospitalisation was undertaken, and blood and
nasal sampling repeated at any intercurrent illness. Serum samples were stored and batched for
measurement of IgG to Spike antigen (CoV-2-S-IgG) by ELISA as previously described!. In the
current study, samples from children during wave 1 were used; subjects seronegative for SARS-
CoV-2 were defined as healthy controls, and those seropositive for SARS-CoV-2 were considered

mild/asymptomatic infection as no child reported symptomatic illness or was hospitalised.
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Children with LRTI

COVID-19 or RSV-LRTI: Children with acute LRTI hospitalised at Red Cross Childrens
Hospital were identified through the National Syndromic Surveillance for pneumonia in South
Africa programme (PSP) at Red Cross War Memorial Children’s Hospital, in Cape Town, South
Africa. Sequential children hospitalised with LRTI were enrolled and a nasal swab for PCR
detection of SARS-CoV2, RSV and other pathogens was taken for testing at National Institute of
Communicable Disease as previously described?®. Children who were positive for SARS-CoV-2
and negative for other pathogens were considered to have severe COVID-19 (N=41); those

positive for RSV were included as RSV-LRTI (N=51).

PTB: Children enrolled in a TB diagnostic study (N=47) at Red Cross Children’s Hospital,
microbiologically confirmed (by mycobacterial liquid culture or Xpert MTB/RIF) and negative
for SARS-CoV-2 and RSV, were included in this study. Serum and PAXgene samples were

collected at the time of illness (Severe COVID-19, RSV-LRTI, PTB) were used for this study?°.

Whole blood PAXgene samples were stored at -80°C, randomized prior to shipment, with RNA
extraction and sequencing undertaken at the Genomics Shared Resource (GSR), Roswell Park

Comprehensive Cancer Centre, Buffalo NY, USA.

Sequencing and processing RNAseq data

Raw reads were processed with the bcbio-nextgen pipeline. Reads quality were assessed using
FastQC?! and MultiQC?2. Sequencing reads were aligned to the human transcriptome reference
using STAR?. Quantification of gene expression was carried out using Salmon?* with default
settings. Read counts were normalized using CPM (counts per million) from edgeR?* with the

TMM (Trimmed Mean of the M-values) method which accounts for both sequencing depth and
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90  gene length®®. Sample outliers were detected using Robust Principal Component Analysis (rPCA)
91  with PcaHubert and PcaGrid functions?’; samples detected by both methods were excluded from

92  downstream analysis.

93 Identification of differentially expressed genes (DEGs)

94  Amongst 198 children in DCHS, 64% were seronegative (N=127) and regarded as healthy
95  controls. Those were compared to hospitalised children with COVID-19 (N=41), RSV-LRT
96  (N=47) or PTB (N=47). SARS-CoV-2 seropositive during wave 1 (N=71), who did not report any
97  respiratory symptoms or hospitalization over this period, were regarded as having had mild or
98  asymptomatic infection.

99  The R-package limma?® was used to identify differentially-expressed genes adjusting for children’s
100  sex and age. Multiple testing correction was performed using the Benjamini-Hochberg (BH)
101  procedure for False Discovery Rate (FDR) < 0.05. The biological function of gene lists were

102 identified via gene set and pathway enrichment analyses using toppGene®”.

103  Weighted Gene Co-expression Network Analysis (WGCNA)

104  Signed weighted gene co-expression network analyses were conducted using WGCNA?*. The gene
105 module/clusters represent genes with highly correlated expression patterns, where the first
106  principal component of the gene expression profile (Eigengene) is used to summarise the overall
107  expression of each module. The module eigengenes identified by WGCNA were correlated with
108  Severe COVID-19, PTB and RSV-LRTI. The module associations were visualised as a correlation
109  barplot using the lares R package’!. Protein-Protein Interaction (PPI) network were identified with
110  GeneMANIA* and network properties for hub genes were analysed and visualized using

111 Cytoscape®. Significantly associated modules were further characterized for functional
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112 enrichment using toppGene®. Non-redundant biological process terms were generated and

113 visualized using rrvgo package’.

114 Cell type proportion estimation

115  Cell type proportion differences between groups were estimated and assessed using xCell 2.0%
116  using the Immune Compendium?®® and immunoprofiling” reference datasets. The t-test was used
117  to determine the difference between groups (asymptomatic vs hospitalized SARS-CoV-2 , control

118  vs RSV-LRTI and control vs PTB).

119  Severity predictors

120  Gene biomarkers to predict SARS-CoV-2 severity, RSV-LRTI or PTB were selected using the

121  Boruta® R package®® with default settings.

122 Gene and target drug look-up

123 In order to identify the druggability of differentially expressed genes, the look-up target score
124 generated by DrugnomeAI*® was utilised (accessed on 19 March 2025). All statistical analyses

125  were conducted in R version 4.5.1.

126


https://doi.org/10.1101/2025.11.07.687132
http://creativecommons.org/licenses/by/4.0/

127

128

129

130

131

132

133

134

135

136

137

138

139

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.07.687132; this version posted November 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results

Participant characteristics.

8

This analysis includes 333 children: 71 with previous mild/asymptomatic SARS-CoV-2, 127

seronegative, healthy, and 135 children hospitalised with LRTI (41 with SARS-COV-2, 47 with

RSV-LRTI and 47 with PTB or pulmonary TB). The characteristics of each group are shown in

Table 1. As there was a significant age difference between DCHS children and those with LRTI,

age was included as a covariate in regression analyses.

Table 1 Comparison of participants’ characteristics for healthy controls and children with

respiratory tract infections
Healthy Mild/asymptomatic
SARS-CoV-2 SARS-CoV-2 Severe COVID-19 RSV-LRTI PTB
Variable . . .
seronegative infection

N =127 N=71 p-value’ | N=41 | p-value’ | N=47 | p-value’ | N=47 | p-value’

Gender
65 28 24 28 27
Male (51%) (39%) 0.11 (59%) 0.4 60%) 0.3 (57%) 0.5
0 (] (V] 0 (V]
N (%)
Age
(months) 81 83 11 7 8
0.4 <0.001 <0.001 <0.001

Median (71, 87) (72, 90) (3,45) (2,22) (4, 40)
(Q1,Q3)
Healthy: DCHS children seronegative for SARS-CoV-2 in wave lof the Covid-19 pandemic; Mild/asymptomatic: DCHS
children seropositive for SARS-CoV-2 in wave 1; Severe COVID-19: Children admitted with COVID-19 lower respiratory
tract infection (LRTI) and not co-infected; RSV-LRTI: children admitted with Respiratory Syncytial Virus LRTI; PTB:
children with pulmonary tuberculosis infection.

Differential gene expression analysis

To identify differentially expressed genes and enriched GO terms in children with LRTI,

seronegative DCHS participants from wave 1 (healthy controls) were compared to each LRTI
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140  group separately (COVID-19, RSV-LRTI, PTB). The summary statistics and gene lists for TWAS
141  at FDR <0.05 are provided in Supplementary Table S1. The biological gene ontology enrichment

142 is also provided in Supplementary Table S2.

143 COVID-19 disease

144  The transcriptional response in healthy controls was compared to hospitalised children with
145 COVID-19. There were 118 up-regulated and 160 down-regulated differentially expressed genes
146  (DEGs) between healthy control and severe SARS-CoV-2 cases (FDR < 0.05 and log2 fold change
147  >1), as shown in Figure 1A. Top DEGs included: /FI27, MMPS, OLFM4, CEACAMS, LTF,
148  IGF2BP3, DEFA4, ADAMTS2 and CBX7. Pathways identified as enriched include regulation of

149  immune system and lymphocyte activation (Figure 2A).

150  RSV-LRTI

151  DGE analysis identified 210 upregulated and 195 downregulated genes at FDR < 0.05 and log2
152 fold change >1 and differentially expressed between healthy controls and children hospitalized
153  with RSV-LRTI; top DEGs included /FI27, OTOF, SIGLECI, IFI44L, USP18, TCN2, CD177,
154  HERC6, C1QC and EPHB?2. For all summary statistics see RSV-LRTI in Table S1 and the volcano
155  plot shown in Figure 1B. Pathways significantly enriched included regulation of immune system

156  translation, interferon mediated signalling, viral life cycle and viral processing (Figure 2B).

157  Pulmonary Tuberculosis

158  Children with PTB had identified 203 upregulated and 1843 downregulated genes differentially
159  expressed genes (FDR < 0.05 and log2 fold change >1) compared to healthy controls. Top genes

160  identified include MMPS, LTF, IGF2BP3, GPR84, CD177, CI1QC, DEFA4 and OLFM4 (see
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161  Figure 1 and Supplementary table S1). The pathways identified as enriched include defence
162  response to bacteria, and innate immune response (see PTB in Figure 2C).
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163
164  Figure 1 TWAS Volcano plot. A) Severe COVID-19, B) RSV-LRTI, C) PTB D) COVID-19

165  Severity. Red - upregulated, Blue - down regulated (P value <0.05, log2 Fold Change > 0).


https://doi.org/10.1101/2025.11.07.687132
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.07.687132; this version posted November 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

regulation of immune system process regulation of immune system process |
cellmigraon t@nsiaton ]
positive regulation of signal transduction positive regulation of immune system process |
cellactiaton defense response to other organism |
leukocyte activation imnate immune response |
cellular response to oxygen~containing compourd regulation of immune response |
protein phosphorylaion response tovius |

[72] [%2]

D positive regulation of protein metabolic process O vialprocess |

(9] (9]

@ ymphooyteactivaton @ defense response tovius |

8 rsomsewolpd 8 viecee

(8] [&]

O reguiation of phosphorus metabolicprocess ©  lransiation at synapse |

o o

- reguiation of phosphate metabolicprocess S iransiaton at postsynapse

8 immuneetectorprocess 8 lranstation atpresynaps

9 9 g

o) regulation of phosphorylation SO [

S roquaton of prtei prosproryiaton S viatgenome repicarion

hc—; regulation of el activation | i% FEGUETGRGHVilite oyce
regulation of leukocyte activation FEGHaTGRGHiialorome repication
leukocyte differentiation FESBERSEBEa 1 intertoron
endocyosts IeHeraeed e signaiing pathway
Ppositive regulation of protein modiication process BBIierteron - meciated signaling pathway
mononuclear cell differentiation FBEGTaI STl .ounit biogenesis
positive regulation of cell achesion FEGAIEITEGlton of viral process
_ -Iarion of viral genome replication

0 25 50 75 0 20 40 60

Gene overlap Gene overlap

C D
regulation of immune system process regulation of immune system process |
response tobiotiestimuus cellactiaton ]
response tootherorganism cellmigraton
response to external biotiostimulus leukocyte activation
cellactiaton cellular response to oxygen~containing compourd |
leukoeyte activation protein phosphorylation

@  Gefenseresponsetooteromganism @  Positve reguiation of immune system process |

Q  defenseresponse tosymbiont Q  positive regulation of protein metabolic process |

(2] (9]

@ inateimmureresponse @ respomsetolpd ]

& requaton ofimmuneresponse & hemopoess

[&] [&]

O opokneproducton 9 ymphooyeactivaion |

— —

S inflammatoryresponse 2 immuneflectorprocess |

B e B lekooytediferentiaton |

Q Qo

o positve reguiation of immune response o  Teelactvaion

O immuneeffectorprocess O lreqution of cellashesion |

2 repometobscerm 8 commresponseorpg

® lymphooyte activation @ regulation of cellactivation
Teellactvaton mononuclear el differentiation |
response to molece of bacterial origin regulation of leukocyte activation |
response 1o ipopolysaccharide lymphooyte diferentation |
myeloid leukocyte activation Ppositive regulation of cell adhesion
Gallilar fesponse tomolecu of bacterial origin Toelldifferentiation |
Gellular response to lpopolysaccharide GellEGivation aveedinim.ne response
0 25 50 75 100 0 25 50 75

Gene overlap Gene overlap

168 Figure 2 Gene ontology term for biological process for top 500 genes. A) Severe COVID-19 B) RSV-LRTI C) PTB
169 D) COVID-19 severity.

170


https://doi.org/10.1101/2025.11.07.687132
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.07.687132; this version posted November 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

12

171  Severity of SARS-CoV-2 infection

172 In order to determine transcriptional responses that distinguish mild/asymptomatic SARS-CoV-2
173 infection from severe COVID-19, children hospitalised with COVID-19 were compared with
174  seropositive DCHS children. We identified 163 upregulated and 183 down downregulated genes
175 at FDR < 0.05 and log2 fold change >1 see supplementary table S1. The pathways identified as
176  enriched include regulation of immune system, hemopoieses and lymphocyte activation (see
177  Figure 2D and supplementary table S2).

178  Weighted Gene Co-expression Networks Analysis of LRTI

179  The WGCNA analysis identified 46 significant modules including 22 with severe COVID-19 , 22
180  with RSV-LRTI and 20 with PTB when compared with healthy controls (p<0.05). Modules 10,
181  29,22,28 and 15 were downregulated and modules 32, 7, 19, 26 and 12 upregulated across LRTIs.
182  The distribution of Eigengenes vs LRTI is shown in Figure 3A and Supplementary Table S3. The
183  distribution of the relationship between the modules is represented as a dendrogram
184  (Supplementary Figure 1) and genes per module are shown in Supplementary Table S3. The
185  correlation of modules with COVID-19 , RSV-LRTI and PTB are shown in Figure 3B. Thirty
186  modules showing correlation across LRTIs (r >0.25) were identified, of which 10 modules were
187  correlated with all LRTI, 6 were in common between COVID-19 and RSV-LRTI, and 6 between
188  COVID-19 and PTB (see Table 2 and Supplementary Fig 3). There were 4 modules specific to
189  RSV-LRTI and 2 were specific to PTB.

190  The gene list in each module was used to generate a network using GeneMANIA with 10 additional
191 interactors for biological processes in Cytoscape. Network analyses were conducted to characterise
192 the network properties including identifying hub genes based on degree of connectivity. The top

193 five hub genes for modules are shown in Table 2. The network connectivity degree distribution for
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each module is provided in Supplementary Table S4. The Cytoscape session is also provided as
Supplementary file 1.
The GO terms enrichment for modules which showed Pearson correlation of r > 0.25 with specific
LRTI is in Supplementary Table S5. Further, redundant gene ontology was removed based on
similarity matrix of GO terms using rrvgo R package. For biological process visualisation for all

other modules see Supplementary Figure 4.
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202 Figure 3. WGCNA analysis for respiratory infections and module correlation. A) Distribution of significant modules
203 per respiratory infection (x-axis module eigengene vs y-axis respiratory infection), B) Correlation of Eigengene with

204 respiratory infection.
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Table 2 WGCNA modules correlated with respiratory infections at Pearson correlation r >0.25 and p< 0.05.

Name Total | Element| Top gene ontology Top five hub genes
ME7 Olfactory receptor activity and telomere maintenance OPHNI, PARDG6A, ACADS, PMM1 and VPS72
ME15 Adaptive immune response and granzyme-mediated programmed cell death | TBX21, CCL5, GZMA, IL2RB and SH2D24
ME29 | Negative regulation of apoptosis AOC3, AMPD2, SGKI1, DPEP2 and TIGD3
COVIDI9 ME22 Macrophage differentiation and cellular response to oxygen level CCR3, PIK3R6, CLC, PTGDR2 and P2RY2
PTB RSV 10 ME32 Eukarygtic translation initiation factor 4F complex and lyphocyte count STX18, PARP4, RASSF1, BLCAP and SAV1
LRTI MEI10 | Cytosolic transport and TNFR2 TRIM28, MAPK3, P4HTM, ACTRIB and CNNM3
ME19 Viral transcription, aerobic respiration POLR2G, POLR2J, PSMB3, COX8A4 and NEDDS8
ME12 Regulation of cell cycle CDKI, CCNB1, PLK1, MCM?2 and CDC6
MES8 B cell activation CD79A4, BLNK, VPREB3, FCRLA and MS4A1
ME28 | Adaptive immune response and T cell activation CD3E, LCK, CD3D, FYN and CD2
ME18 Regulation of viral process and response to type I interferon STAT2, IRFY, STATI, ISG15 and IFIT3
COVIDI9 ME16 RNA proces.ses : : : ABCEI, XPOI1, MYC, IARS1 and DHX15
RSV- 6 ME4 Rlbosomgl blogeneS}s and leukocyte mlgratlon : _ RGL2, TSEN34, MYC, SIRT7 and FAMS53C
LRTI ME21 Chromatin remodelling and hematopoietic stem cell differentiation MYC, PRPFS, TRIM28, TP53 and FUS
ME24 | Adaptive immune response and positive regulation of type I hypersensitivity | HSP90B1, HSPAS5, STT34, PPIB and RPN1
ME40 | Oxidative phosphorylation (mitochondrial respiratory chain complex) NDUFS4, NDUFS3, NDUFA9, COX6B1 and NDUFV2
ME35 Urea metabolic process ILIR2, PYGL, ITPKC, MTARCI and SDC4
ME3 Ribosomal biogenesis and viral gene expression RPL6, RPL37, RPS5, RPL35 and RPL9
COVID19 6 ME2 Active transmembrane transport STAC2, CDH3, PHLDBI, HAOI and SLC26A44
PTB ME34 | Antibacterial humoral response and regulation of cytokine production ELANE, CEACAMS, AZU1, CTSG and CEBPE
ME9 T cell differentiation and adaptive immune response ITK, LCK, CD3E, CD3D and CD3G
ME38 Positive regulation of carbohydrate metabolic process PIK3RI1, INSR, IRS2, GRB10 and ZBTB16
PTB RSV- ) ME26 | Defence response to another organism, interferon-gamma and cell killing TAPI, STATI, PSMBS, GBP1 and PSMB9
LRTI ME20 | Lipid catabolic process and Regulation of immune repones HEXB, CD14, FCERIG, GRN and LY96
ME25 Blood coagulation and haemostasis ITGBS, VCL, GP1IBA, ITGB3 and PF4
RSV- 4 ME13 Antigen presenting -positive regulation of leukocyte mediated cytotoxicity UBC, ARPCIB, ARPC3, ARPCIA and GNAI2
LRTI MEI11 rRNA processes and Mitochondrial gene expression PSMD14, CCT2, RFC4, CCT4 and PRIM1
ME33 Autophagosome and viral process UBC, ULKI, MAPKI14, RAB5B and TSG101
PTB ) MEI1 Immune response regulation and Neutrophil degranulation HDACI, PPP4RI1, IFNGR2, ATP6V1B2 and PRKCD
ME14 Regulation of defence response MYDS8S8, CASP1, IRF9, IRF2 and GBP2
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207 Cell population differences associated with LRTI

208  To determine cell type composition differences in peripheral blood between healthy controls and
209  hospitalised subjects with LRTI due to different pathogens, blood cell type proportions were
210  estimated with xCell2 2.0 generated with the ImmuneCompendium.xCell2Ref reference panel.
211  Significant cell type composition differences were identified between healthy controls and
212 hospitalised LRTI groups: 23 for severe COVID-19, 16 for RSV-LRTI and 21 for PTB (p <0.05)
213 (see Fig 4). To determine cell type composition difference between LRTIs we conducted t-tests
214  asshown in Figure 5B. There was no difference in cell composition between healthy controls and
215  those with mild/asymptomatic COVID-19. When the different hospitalised LRTI groups were
216  compared with each other, several differences in cell composition were observed (p< 0.05). These
217  included T cells (lower in severe COVID-19 vs PTB), non-classical monocytes (severe COVID-
218 19 vs RSV-LRTI and RSV-LRTI and PTB) and myeloid cells (RSV-LRTI vs PTB). PTB also
219  showed depletion of central memory CD8+ T Cells and overexpression of granulocytes compared
220  to RSV-LRTI (see Supplementary Fig 5).

221  Seven cell types showed differences with healthy controls across all LRTIs including:
222 Macrophages, transitional memory CD8+ T cells (CD8+ Ttm, T cells, Central memory CD8+
223 alpha-beta T cells, basophils, myeloid cells and naive thymus-derived CD8+ alpha-beta T cells.
224 Neutrophils and class switched memory B cells showed significant changes for RSV-LRTI and
225  PTB compared to the healthy controls but not for severe COVID-19. Disease specific unique cell
226  type proportion changes were identified for severe COVID-19 as shown in Figure 5. The details

227  are provided in Supplementary Table S6 and Supplementary Fig 6.
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229  Figure 4 Differences in the proportions of immune cells in respiratory infections comparing
230  healthy controls vs different LRTI groups. It shows the comparison of the five top cell types for
231  LRTI and cell types uniquely different for RSV-LRTI and PTB.

232
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233  Predictors of severe LRTI

234 To identify genes that represent biomarkers for each hospitalised LRTI, the normalized counts of
235  thetop 1000 significantly differentially expressed genes with respect to healthy controls were used
236  and machine learning algorithms applied to identify the most informative genes. Ninety-three
237  genes were identified as biomarkers for severe (hospitalised) COVID-19, 110 for RSV-LRTI and
238 95 for PTB as shown in Figure 5 and Supplementary Table S7.

239  Some genes were able to discriminate specific LRTIs from healthy controls including Severe
240 COVID-19 (23), RSV-LRTI (74), PTB (37) and asymptomatic COVID-19 from severe COVID-
241 19 (COVID-19 severity) (N=25) as shown in the Supplementary Figure 8. There were 10 genes
242  that discriminated healthy controls from any LRTI including /L16, LTK, IGIP, IGF2BP3, CBX7,
243  KCTD7, FCERIA, TRAFI, RORC and SLC4A10. See details of shared predictor genes amongst

244 the LRTI groups in Supplementary Table S7.

245  Drug target lookup for genes associated with LRTI

246  To determine potentially therapeutic targets from DEGs associated with each LRTI, a look-up was
247  undertaken for overlap with known druggability score generated by drugnomeAl. We identified
248 689, 159 and 849 genes for COVID-19, RSV-LRTI and PTB respectively with Tclin (approved
249  drug targets) drugnomeAl score >90, as shown in Supplementary Table S8. For availability of
250  drug and new therapeutic options we examined our predictors for availability of drugs as shown
251  in Supplementary Table S9.

252
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Severe Covid-19 RSV-LRTI PTB Covid-19 Severity
RORC IFI27 4 . ZFYVE94 CBX7 A
CBX7 CBX71 . GPR15 LINC00943 1
NR3C2{ PNRCH { . NR3C21 MYBL1 {
MID2 4 IGF2BP3 A . MID2 4 VRK3 1
ADAMTS2 4 RORC . IGF2BP3 ZNF324 4
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254 Figure 5 Top 20 gene severity predictors of LRTI for different etiologies based on mean importance. See shared
255  predictors in Supplementary Fig 7.

256
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257  Discussion
258  The transcriptional landscape of peripheral blood in response to viral and bacterial infections
259  exhibits age-dependent variation, with implications for disease severity and immune regulation. In
260  adults, SARS-CoV-2 infection has been studied extensively and elicits a robust transcriptional
261  response characterized by upregulation of neutrophil activation markers, inflammatory cytokines,
262  and interferon-stimulated genes (ISGs), alongside suppression of adaptive immune pathways and
263  lymphocyte-associated transcripts 412, Children infected with SARS-CoV-2 typically exhibit mild
264  or asymptomatic disease, with transcriptomic profiles showing restrained inflammatory responses
265  and lower expression of viral entry receptors such as ACE2 and TMPRSS2*. However studies of
266  the transcriptional responses to SARS-CoV-2 infection in children are extremely limited,
267  focussing mainly on adolescents**. In this study, for the first time, we report genome-wide
268  assessment of transcriptional responses of children hospitalized with one of three LRTIs (COVID-
269 19, RSV-LRTI, PTB), compared to healthy children in a birth cohort from a low- and middle-
270  income African setting. We identify 4500 genes related to hospitalized COVID-19 and known
271  signature genes for RSV-LRTI and for PTB. Unique and shared pathways and gene modules were
272 characterised between LRTIs, along with unique signatures for each of the LRTIs.
273
274  COVID-19 related genes were enriched for immune system, neutrophil degranulation and
275 interferon gamma signalling as previously reported in other studies in adults. Neutrophil
276  degranulation has been previously correlated with COVID severity* and excess neutrophil
277  degranulation is associated with tissue damage*®. The top upregulated genes included known genes
278  responsible for immune responses, such as Interferon alpha-inducible protein 27 (IF127) which is

279  known to be an early predictor for COVID-19 outcome*’. Many studies have shown reduced
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280  ribosomal protein expression and immune suppression associated with persistence of COVID-19
281  infection*®. Massoni et al’ have discussed immune dysregulation and exhaustion as a hallmark of
282  COVID-19 where adaptive immune responses are highly heterogeneous. Thus, at an early phase
283  of infection, type I IFN activity as an anti-viral response is important in the development of both
284  adaptive and innate immunity.
285  RSV-LRTI upregulated genes include OTOF¥, SIGLEC°%!, USP18** and ISG15 >3. These genes
286  were enriched for pathways including response to other organisms, regulation of viral life cycle,
287  translational and interferon gamma signalling.
288  For PTB, we identified genes including MMPS8 and MMP9 which are known to be associated with
289  TB disease, by degradation of extracellular matrices®*>>¢. DEFAI, DEFAIB, DEFA3 and DEFA4
290  are a known cluster of genes in the PTB defence response pathway. The expression of LTF is also
291  known to be an important biomarker for PTB disease’*8. PTB specific markers such as NCR3,
292  CR2 CD28, ILIORA and GPRI83 are functionally related to immune response, where NCR3
293  stimulates NK cytotoxicity and CR2 is involved in lymphocyte activation. These findings may
294  contribute to understanding host responses in children in PTB and to strengthening diagnostic
295  possibilities.
296  Using WGCNA co-expression analysis, we identified four RSV-LRTI specific modules: ME11
297  (translation and aerobic respiration), ME13 (antigen processing and T-cell mediated cytotoxicity),
298  ME25 (coagulation and positive regulation of leukocyte) and ME33 (autophagy, viral processing
299  and negative regulation of ferroptosis). A further two modules were specific to PTB: ME1
300 (immune response regulating signalling pathway and leukocyte differentiation) and MEI14

301  (regulation of immune and defence response and cytokine production) (see Supplementary Fig 4).
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302  While no modules were identified as specific to COVID-19, 22 modules were shared between
303  COVID-19 and one or more LRTI, reflecting the seriousness of SARS-CoV-2 infection.
304  Ten shared modules were identified across all LRTIs (Table 2) including module 10, which is
305  associated with endosomes® and contains the hub gene TNFR2, known to be linked with immune
306  dysregulation in severe COVID-19%, In addition, module 10 contains many key hub genes known
307  tobe associated with COVID-19 severity including TRIM28 (265 degree), P4HTM (245), ACTRIB
308  (244), CNNM3 (243), and VPS51 (238). TRIM28 is known to regulate SARS-CoV-2 entry by
309 targeting ACE2%!, suppressing antiviral immunity®? and is linked with COVID-19 severity®’.
310 P4HTM is known to play a role in adaptation to hypoxia and energy response and is linked with
311  hypoventilation®*.
312 Other shared modules include: Module 22 the hub gene CCR3 (C-C motif chemokine receptor 3)
313  regulates cell migration and inflammatory responses by acting as a receptor for various CC
314  chemokines such as eotaxin, and is a susceptibility gene for severe COVID-19 %. Module 28 was
315 related to adaptive immune response and T-cell activation; with hub genes including CD3E
316  involved in T-cell signalling to detect and clear pathogens. Module 7 was enriched for sensory
317  perception such as olfactory dysfunction, a known symptom in COVID-19 . Module 15 was
318  related to T-cell differentiation and adaptive immunity where hub gene 7BX2] is a transcription
319  factor that modulates innate immunity by regulating the expression of TLR2%7. GZMA and GZMB
320 play a role in immune response during respiratory infection®®. IFNG is involved in clearing viral
321  infection®.
322 A further six modules were shared between COVID-19 and PTB including module 34 which was
323 enriched for antimicrobial humoral responses (DEFA1, DEFA3, RNASE3, BPI, PGLYRPI1, CAMP,

324  AZUI, ELANE and LTF) and neutrophil degranulation” in the Reactome database (DEFAI,
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325  ORMI, ORM?2, RNASE3, ATPS8B4, STBD1, BPI, PGLYRPI, TCNI, MS4A3, ABCAI13, CLEC5A4,
326 CAMP, AZUIl, CPNE3, CEACAMS, ELANE, CEACAM®6, CRISP3, LTF, PLDI1, MMPS, CHITI,
327 LCN2, OLRI and SLC2A4). The hub gene ELANE encodes a serine protease secreted by neutrophils
328 that is known to regulate the function of natural killer cells, monocytes and granulocytes and is
329  essential for neutrophils in fighting infections’!72. Neutrophil activation is characteristic of severe
330  COVID-197 and shared with other inflammatory states’*. Module 26, identified as shared between
331 PTBand RSV-LRTI, includes the hub gene 74P which is known for its antiviral activity through
332  Type I interferon production”. Other hub genes include STAT, PSMBS, GBP1, PSMBY, HLA-E ,
333  GBP5, HLA-F , GBP2, IRF9, APOL3 and CASPI which are also known be associated with
334 COVID-198. The detailed enrichment for GO terms are provided in Supplementary Table S5 and
335  Supplementary Fig 4.

336  Cell proportion estimation showed that in children hospitalised with COVID-19 there was
337  depletion of macrophages and monocytes compared to healthy controls. In contrast, in children
338  hospitalised with RSV-LRTI, increased proportions of regulatory T-cells and macrophages, and a
339  depletion of T-cells and class switched memory B-cells were observed. Similarly, for PTB, there
340  was an increase in macrophages, monocytes and neutrophils, and a depletion of T-cells and CD8+
341  alpha-beta T-cells, and cytotoxic NK cells (Fig 4). The depletion of T and B cells is a key feature
342 of COVID-19 severity’’. T-cell immunity is essential to control PTB’®,

343  We identified 247 genes that predicted the severity of LRTI. Ten were common among LRTIs.
344 ILI6 is involved in pro-inflammatory responses to activate T-cells and the production of
345  cytokines™. Five genes could discriminate hospitalised children with LRTI including: PITPNCI,
346 TPX2, LARPI, HABP4 and SMIMI0L2A. PITPNCI is known for pulmonary function and

347  asthma®’. Five genes, including PAFAH2, LINC02915, CLSPN, EIF4Gl and IFI27, were
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348  predictors of both COVID-19 and RSV-LRTI hospitalization. PAFAH?2 is known to be associated
349  with pulmonary micro-thromboses linked with LRTI severity®!:82. The top COVID-19 predictor,
350  RORC, is a key regulator of cellular differentiation, immunity and glucose metabolism. CBX7 is
351  part of the Polycomb complex required for transcriptional repression of many genes and cancer
352  progression®? and is functionally linked with lymphocyte, monocyte and neutrophil counts. ZFVE9
353 is known to be predictive of active TB®. The ADAMTS?2 is metalloprotease that processes
354  extracellular matrix is implicated in tissue damage®’ and is a marker for COVID-19 severity across
355  disease conditions®®.
356  Assessing the potential druggability of differentially expressed genes can help in prioritizing drug
357  targets. Amongst the DEGs for LRTIs, known approved drug targets (TClin) were identified
358 including: KCND3, CACNAIE, GABRG2, CHRNAS5, KCNDI and ADRB? for severe COVID-19;
359 GABRG2, KCNDI, CAl12, CACNAIA, IMPDH?2 and PDEIB for RSV-LRTI; CACNAIE,
360 GABRG2, KCNK3, CHRNAS and CHRNB?2 for PTB as shown in Supplementary Table S8.
361 Interestingly, the top predictors of severity were not previously identified as drug targets, including
362 CBX7, MYBLI, VRK3, ZNF324, KRTAP5-1 and GPR153. In the top PTB predictors, NR3C2 and
363  GPRI5 have high scores for Tclin but the top predictors, MID2 and ZFYVEY, have not previously
364  been identified as drug targets showing opportunity for drug target prioritization for this
365 population. For RSV-LRTI, except for RORC, most top predictors (/F127, CBX7, PNRCI and
366  IGF2BP3) have not previously been targeted for drug development (Supplementary Table S9).
367  One of the strengths of our study is the assessment of hospitalised children with one of the three
368  major LRTIs in children in LMICs and comparison with healthy children using datasets generated
369  from a similar genetic background. Many known signature-genes identified for COVID-19 (IF127,

370  OLFM4), RSV-LRTI (SIGLECI, ISG15, IFI44) and PTB (MMPS, MMP9, DEFAI, DEFAIB,
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DEFA3 and DEFA4) are known to be associated with progressive severity®’, showing the
reproducibility of our findings. A limitation is that the DCHS children were older than children
with LRTI, but we used age as a covariate to overcome this confounding effect.
From our transcriptomic analysis of children with LRTIs due to three different aetiologies, we
have identified novel data providing key immune response related genes associated with severity
for children hospitalised with COVID-19, RSV-LRTI and PTB in African children. These genes
can be used for baseline characterization, as predictive markers for respiratory infection severity

and as potential therapeutic targets.

Data availability
Supplementary data and summary statistics for transcriptome wide association analyses are

available from: DOI https://doi.org/10.5258/SOTON/D3587.

An anonymised, de-identified version with data can be made available on request. All requests

should be directed to Prof Heather Zar, DCHS Study Principal Investigator.

Code availability

The custom code wused to generate graphics is available at GitHub repository:

https://github.com/negusse2025/respiratory_infections.git.
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