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Abstract

Background Listening effort refers to the cognitive exertion required to understand
auditory information, particularly in challenging environments. Excessive effort can
negatively affect communication, well-being, and cognitive function, especially in
individuals with hearing loss or older adults. However, defining and measuring listening
effort remains complex, as subjective reports, behavioural performance, and
physiological indices often diverge, and substantial individual variability exists in how
listeners respond to auditory challenges. Existing theoretical frameworks like the
Framework for Understanding Effortful Listening (FUEL) and the Ease of Language
Understanding (ELU) model highlight the interplay of cognitive resources, task demands,
and listener factors, but a deeper understanding of the dynamic physiological

mechanisms and individual response patterns is still needed.

Aims This research aims to provide a better understanding individual differences in
physiological responses to effortful listening in normal and hearing impaired listeners
and during a range of task difficulty, and relating these to subjective perception and word
recognition scores.. The novelty and focus of this work lie in analysing the temporal
dynamics of physiological responses (i.e., response shape), rather than reducing
time-series data to isolated summary values to identify patterns of response. This
approach enables a richer and more dynamic understanding of listening effort and

listening experiments..

Methods A two-study approach was employed. Study 1 involved secondary analysis
of data from 30 older adults (aged 51-80) with varying hearing loss, who performed a
digit-in-noise recall task under adaptive signal-to-noise ratios (SNRs). Measures included
multi-channel EEG (alpha power), GSR, pupillometry, subjective workload (NASA-Task
Load Index), and accuracy. Analyses focused on characterising individual response
time-courses, assessing response shape consistency across sessions, clustering based on

waveform similarity, and examining links with hearing level (PTA) and outcomes.

Study 2 involved a new experiment with 30 normal-hearing adults (aged 18-40), who
completed a complex sentence-in-noise task using a word-matrix procedure at four fixed
SNR levels (16, -11, -6, and +12 dB). Data were collected across multiple measurements,
including single-channel EEG (Pz), galvanic skin response (GSR), pupillometry,
electrocardiography (ECG), respiration, subjective ratings, and word identification
accuracy. Analyses examined the effects of SNR on subjective effort and difficulty, as well
as response dynamics across physiological measures. Analysis especially focusing on
within-subject consistency, shape-based clustering across individuals within each SNR

condition, and inter-measurement correlations and clustering agreement.



Both studies emphasised time-course shape analysis within defined windows,
complementing traditional point-based metrics. Study 2 extended Study 1 by using a
range of SNRs, sentence stimuli, and additional physiological measures (ECG,
respiration) to broaden physiological insight.

Results Both studies confirmed substantial individual variability in physiological
responses, alongside within-subject consistency—particularly for respiration (across all
SNRs in Study 2), and for GSR, pupil, and EEG under specific conditions. These patterns
suggest stable individual response styles. Physiological activity was modulated by task
events and, in Study 2, systematically by SNR, with greater difficulty typically producing

stronger or altered responses.

Time-course-based clustering consistently revealed subgroups, but cluster membership
generally did not predict behavioural accuracy or subjective ratings, highlighting a gap
between physiology and perceived effort. In Study 2, shifting cluster membership across
SNR levels suggested task-difficulty-dependent, rather than fixed, response patterns.
Low agreement between clusters across physiological modalities further indicated that
each system—EEG, GSR, pupil, heart rate, and respiration—captures distinct yet
complementary aspects of listening effort. Notably, GSR change during listening was

consistently associated with higher accuracy and lower perceived difficulty.

Conclusions Listening effort emerges as a dynamic, multi-system physiological process
marked by significant individual variability. While individuals show consistent response
patterns, these are modulated by task difficulty and context, and do not directly align
with behavioural performance or perceived effort. Different physiological measures offer
complementary perspectives, highlighting the value of multi-modal, time-course analysis
focused on response shape. The dissociation between physiology and outcomes suggests
a key role for internal effort regulation and cognitive strategies—factors not fully
captured by standard behavioural or subjective metrics. These findings support dynamic
models of listening effort and point to the need for more individualised assessment.
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Chapter 1

Introduction

Introduction

Broad Context and Definition Navigating the complexities of the auditory world, from
engaging in conversations in bustling social settings to discerning critical warning
sounds, human’s ability to process auditory information is remarkable. However, this
process is not always effortless. In everyday situations-communicating across a noisy
restaurant, understanding a speaker with an unfamiliar accent, or deciphering speech

over a poor phone connection-we engage in "listening effort".

This term involves the deliberate cognitive exertion required to attend to, process, and
comprehend auditory signals, particularly when they are degraded, masked, or otherwise
challenging (McGarrigle et al., 2014). Far from being a passive reception of sound,
listening under such conditions demands active allocation of finite cognitive resources,

including attention, working memory, and executive control (Pichora-Fuller et al., 2016c).

Significance and Impact The requirement for sustained or excessive listening effort
affects far beyond communication struggles. Chronic exertion can leads to substantial
cognitive fatigue, a pervasive sense of exhaustion distinct from physical tiredness that
can impair daily functioning (Edwards et al., 2016; Hornsby, 2013). This listening-related
fatigue, alongside the inherent stress of difficult communication, can negatively impact
mental well-being and often leads individuals to avoid socially demanding situations,
fostering social withdrawal and isolation (Heffernan et al., 2016). This impact is felt most
strongly by vulnerable groups.

Older adults often experience age-related declines in auditory processing and cognitive
function that increase effort (Peelle, 2018), while the estimated 466 million individuals
globally with hearing impairment face a constant struggle against degraded auditory
input (World Health Organization, 2021). For both groups, heightened listening effort is
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not merely an inconvenience but a factor linked to reduced quality of life (Heffernan
et al., 2016) and potentially contributing to accelerated cognitive decline and increased
dementia risk (Lin et al., 2013). Beyond the individual, the societal costs are also
considerable, revealing as barriers to learning in acoustically challenging classrooms
(Zekveld et al., 2018) and impacting workplace productivity and safety in numerous
professions (Hornsby & Kipp, 2016; Mattys et al., 2018).

Research Problem and Gap Despite widespread recognition of its importance, listening
effort remains difficult to capture and comprehend. A central challenge lies in its
measurement. Traditional approaches relying on subjective self-reports, behavioural task
performance (like recognition accuracy), and objective physiological indices frequently
produce disconnected results - a high score on one measure does not reliably predict the
outcome on another (Alhanbali et al., 2018; Ohlenforst et al., 2017). Standard clinical
audiological assessments, such as pure-tone audiometry conducted in quiet
environments, often fail to reflect the real-world difficulties experienced by listeners in
noise (Ohlenforst et al., 2017; Tremblay & Backer, 2015), further complicating diagnosis
and intervention. Furthermore, listeners exhibit substantial individual variability in their
responses to auditory challenges, driven by factors like hearing status, cognitive capacity,
motivation, and potentially even personality traits (Koelewijn et al., 2012; Peelle, 2018;
Zekveld et al., 2011).

These individual differences are often masked by research focusing on group averages.
Existing theoretical frameworks, notably the Framework for Understanding Effortful
Listening (FUEL) (Pichora-Fuller et al., 2016c), which extends Kahneman'’s capacity
model (Kahneman, 1973), and the Ease of Language Understanding (ELU) model
(Ronnberg et al., 2013), which emphasises the role of working memory in compensating
for perceptual mismatch, provide crucial insights. However, a deeper investigation is
required to understand the dynamic, multi-system physiological mechanisms underlying
effortful listening and to characterise the consistency and differences of individual

physiological response patterns.

Research Aim The overarching aim of this research program is to achieve a more
comprehensive, multi-dimensional understanding of listening effort by focusing
explicitly on its physiological responses (see Chapter 5, Page 55 for detail). In addition to
examine static or peak measures, this research especially focus on investigating the
dynamic time-course of physiological signals - how responses in systems like the brain
(EEG), and autonomic nervous system (GSR, pupillometry, heart rate, and respiration)
interact during effortful listening tasks (Koelewijn et al., 2018; Winn et al., 2016). The
specific goals are as follows : (1) to characterise individual differences in these dynamic
physiological response patterns, (2) to assess the consistency of these patterns within
individuals over repeated exposures, and (3) to examine how these physiological



responses are modulated by systematically varied task difficulty (signal-to-noise ratio)
and listener characteristics (hearing status), (4) to examine the relationship of different

measurements of listening effort..

Methodology Overview To address these multifaceted aims, a two-study research
strategy was employed. Study 1 focuses on an existing dataset, performing a secondary
analysis of multi-channel EEG, GSR, and pupillometry data from older adults (aged
51-80) with varying degrees of hearing loss undertaking a digit-recall task with
individually adapted SNRs. This allowed an initial characterisation of individual
response consistency and physiological subgroups in a clinically relevant population.
Study 2 involved conducting experiment with younger (aged 18-40), normal-hearing
adults performing a more complex and more ecological sentence-in-noise recognition
task (the Oldenburg Sentence Test, OLSA, Oldenburger Satztest in German; (Hey et al.,
2014; Neumann et al., 2012)) at four fixed SNR levels spanning a wide difficulty range.

Study 2 also expanded the physiological assessment to include ECG (for heart rate), and
respiration(for respiration rate), alongside EEG, GSR and pupillometry, enabling a
systematic investigation of task difficulty effects and cross-modal relationships. In both
studies, the analysis focused on the dynamic shape of individual responses over time,
rather than averaged data points, were used in permutation testing for consistency and

correlation-based clustering for identifying response patterns.

By integrating findings from both studies, this research contributes to a deeper
understanding of listening effort through multi-dimensional measurements—combining
subjective reports, task performance, and physiological responses. It places particular
emphasis on individual differences (beyond group averages), dynamic time-course
patterns (beyond static data points), and the relationships between these different
measures. Together, these insights provide an empirical foundation for developing more

sensitive assessment tools and potentially more personalised interventions.

To understand the motivation behind this research programme, it’s important to first
explore the key foundational concepts. The following chapter will provide a detailed
background review, exploring the mechanisms of human hearing, the cognitive processes
involved in listening, the evolution of the listening effort concept, existing theoretical

models, factors influencing effort, and established measurement techniques.
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Thesis Structure

This thesis is organised as follows:

¢ Part I: Background - This section provides an overview of the theoretical
foundations, previous research, and key concepts relevant to this study.

¢ Part II: Study One - The first study investigates the relationship between listening
effort and various physiological responses, including EEG, GSR, and pupillometry.

¢ Part III: Study Two - The second study broadens the exploration of effortful
listening by incorporating a wider range of difficulty levels in listening tasks, using
sentences instead of simple digits as stimuli, and analyzing additional

physiological indices such as ECG and respiration.

¢ Part IV: Discussion and Conclusion - This final section discusses the key findings
of the research, their broader implications, limitations of the study, and potential
directions for future research.

This structure ensures a coherent progression from theoretical foundations to empirical
findings and practical applications.



Chapter 2
Sense of Hearing

In this chapter, we introduce the fundamental principles of human hearing and explore
how sound is perceived and processed by the auditory system. We begin with the
physical properties of sound and how the ear and brain process basic auditory stimuli.
We then describe the cognitive mechanisms that support listening, from attention to
executive function, and how these underlie higher-level processes such as auditory scene
analysis and speech perception. Finally, we discuss how these mechanisms are affected

by hearing impairment, linking to broader cognitive consequences.

2.1 The Auditory System

Peripheral Auditory Processing

Physical Characteristics of Sound Sound is a form of energy that propagates through a
medium, such as air, water, or solids (Moore, 2012; Rossing et al., 2002). It is characterised
by several physical properties, including frequency, amplitude, and timbre. Those
physical features influence how sound is perceived by the auditory system (Gazzaniga
etal., 2014).

Frequency refers to the number of cycles per second of a sound wave, measured in hertz
(Hz), which is closely related to pitch, a perceptual experience of frequency (Howard &

Angus, 2017). Human auditory system can typically detect frequencies ranging from 20 to
20,000 Hz, which tends to diminish with age, especially at high frequencies (Moore, 2012).

Another feature of sound, amplitude, represents the magnitude of air pressure variation
in the sound wave, which correlates with the perception of loudness. Amplitude of sound
is measured in decibels (dB), while loudness, the subjective experience is measured by

Phon. Perceived loudness is affected not by amplitude, but by pitch as well (see figure 2.1



8 Chapter 2. Sense of Hearing

)- Normal conversation typically falls the around 60dB, whilst prolonged exposure to
sounds exceeding 85 dB may cause hearing damage (World Health Organization, 2018).

T o npneEsnuidg

Figure. 2.1. Equal Loudness Contours (Veronesi
& Mauney, 2022).

Quter Ear Middle Ear Inner Ear

Semicircular

Vestibular
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Temporal nerve

Pinna bone

Cochlea

Figure. 2.2. Structure of the Ear (National Institute on Deafness and
Other Communication Disorders (NIDCD), 2024).
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2.2 Auditory Perception

221 Perception of Simple Sounds

Plack provides an in-depth explanation of sound and human hearing in the book The
Sense of Hearing (Plack, 2018). Human hearing is a complex process that involves
detecting sound across a wide range of frequencies and intensities. The mechanism of
hearing can be divided into three main stages: sound transmission in the ear (including
the outer, middle, and inner ear; see Figure 2.2), signal transduction in the cochlea, and

neural processing in the brain (Gazzaniga et al., 2014; Moore, 2012).

The hearing process begins with the outer ear. Sound waves travel past the pinna and
through the ear canal. Its resonant properties amplify frequencies in the 200 to 5000 Hz
range by approximately 10 to 15 dB (Pickles, 2012). This amplification is particularly
useful in human conversation, as typical speech sounds fall within this range (Howard &
Angus, 2017).

The tympanic membrane, also known as the eardrum, vibrates as sound waves reach the
end of the ear canal. It transmits these vibrations to the middle ear, which contains three
tiny bones: the malleus (hammer), incus (anvil), and stapes (stirrup). These bones further
amplify the vibrations and transfer them to the oval window of the cochlea (Pickles,
2012).

The cochlea, a spiral-shaped, fluid-filled structure in the inner ear, serves to convert
mechanical vibrations into neural signals. Inside the cochlea, the basilar membrane
vibrates in response to different frequencies: higher frequencies are processed at the base,
while lower frequencies stimulate the apex (Plack, 2018).

Within the cochlea, hair cells located inside the organ of Corti on the basilar membrane
contain tiny structures called stereocilia. These bend in response to fluid movement and
vibrations, releasing neurotransmitters that transmit signals through the auditory nerve
to the brain (Moore, 2012; Plack, 2018).

2.2.2 Auditory Pathway
2.2.3 Central Auditory Processing

Once the brain receives information from the cochlea, it is processed through a system
called the auditory pathway. The auditory pathway consists of both ascending
(bottom-up) and descending (top-down) pathways that interact with each other (Pickles,
2012). These pathways create a feedback loop that allows for more effective and selective
sound processing, enabling humans to adapt their responses to sound more efficiently
(Suga & Ma, 2008).
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Primary auditory
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hMedial geniculate nucleus
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Superior olivary
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= Intermediate
acoustic stria

Medulla

Trapezoid body

Figure. 2.3. Central Auditory Pathways(Graven & Browne, 2008).
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Ascending Pathway The ascending pathway refers to the process by which auditory
information travels from the ear to the brain. It begins in the cochlea, passes through the
auditory nerve to the brainstem and midbrain, and finally reaches the auditory cortex in
the temporal lobe (Moore, 2012), where conscious sound perception occurs (Kandel et al.,
2013).

Descending Pathway The brain does not simply receive information from the ears; it
also sends instructions through the descending pathways (Suga & Ma, 2008). This
provides a feedback loop based on attention, context, and learning, enhancing responses
to important sounds while suppressing irrelevant ones (Bajo et al., 2010). For example,
this interaction enables us to focus on a teachers voice in a noisy classroom, increasing

adaptability and enhancing learning outcomes (Guinan, 2006).

From Neural Processing to Cognitive Functions The knowledge of sound and neural
pathways described above provides the foundation for the human listening process.
Effective listening involves much more than transmission of auditory signals. Higher
order cognitive mechanisms actively shape how human perceive, interpret, and respond
to auditory information (Moore, 2012). The following section explains the cognitive

mechanisms which makes complex listening experience possible.

2.24 Auditory Scene Analysis

Our ears receive multiple sounds from different sources everyday. Humans can focus on
a specific sound source, such as a friend’s voice in a noisy restaurant, or distinguish the
violin playing in an orchestra. This ability does not only rely on our peripheral auditory
system, but on a more complex cognitive process known as Auditory Scene Analysis
(ASA) (Bregman & McAdams, 1994).

Principles of Auditory Scene Analysis Auditory Scene Analysis (ASA) is the
perceptual process by which the human brain processes seemingly chaotic sound
environments into meaningful inputs. Bregman’s work plays a critical role in explaining
and understanding ASA (Bregman & McAdams, 1994). It was proposed that, similar to
visual analysis, ASA also unfolds in two stages: segregation, and grouping or

organisation.

Segregation and Grouping Segregation refers to the brain’s ability to break down
complicated sound into simple acoustic elements, such as frequency (pitch), amplitude
(loudness), temporal patterns (timing), and location. The brain uses these features to

further determine which sound elements need to be separated, and which to be grouped
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into one meaningful input for better understanding. For example, sounds that occur
closer in timing or frequency tend to be grouped into a single source, whilst sounds from
different locations would be interpreted as different sounds.

Different Types of Grouping: Primitive and Schema-Based Processes There are two
types of grouping mechanism in ASA: Primitive and schema-based processes (Darwin,
2007). Primitive processes, widely understood as bottom-up processing, are mostly
automatic and stimulus-driven. Sound enters the ear and is processed by the cochlea,
passed by the auditory nerves to the brain, to analyse basic acoustic features of the sound,
such as timing and loudness. It focuses on building and understanding auditory
foundation from raw materials.

Schema-based processes, on the other hand, are understood largely as top-down analysis
of the brain. They rely more on prior knowledge and cognitive capacity of the brain. For
example, even facing the same situation like waiting for the bus on the street, one who

has learned what the local bus would sound like would be more likely to notice the bus

they are waiting for, compared to someone who is new to the area

In real life, the two cognitive processes cannot be completely separated, which makes
researching the process of listening more challenging. The brain takes information
provided from the primitive processes, and the schema-based process can influence the
primitive one through feedback loops. Taking the previous bus waiting example: when
one is expecting the sound from the bus, the brain would enhance the vigilance level for

the specific input.

Subconsciousness Feature of Auditory Scene Analysis

A significant portion of ASA is processed automatically, without extra effort or attention
of the brain. The basic acoustic feature extraction and grouping operate largely without a
conscious level. This arrangement of the brain function is important because humans are
constantly facing complex sound mixtures. Unlike visual analysis, we cannot simply
"shut our ears" to stop listening. This feature also allows humans to quickly respond to
potential threats, such as a sudden loud noise or an approaching car, without constant

conscious effort.

2.3 Speech Perception

ASA provides foundation for process complex sound environments, such as speech
perception. Speech perception is the process by which humans decode and understand

spoken language. It allows humans to transform acoustic features of speech into
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meaningful information. While ASA is largely processed subconsciously and
automatically, speech perception requires more active attention and cognitive effort to
engage in extracting meanings. This leads to the importance of understanding cognitive

effort in the process of speech perception and comprehension.

2.3.1 Features of Speech

Speech is highly structured with predictable patterns which make it different from
random environmental noise (Liberman et al., 1957). Sounds in speech include both
periodic sounds, such as vowels, and non-periodic sounds, such as consonants (Tallal
et al., 1993). Speech contains segments with distinct spectral and temporal characteristics
(Peterson & Barney, 1952).

Speech is highly hierarchical. At the bottom level, speech consists of the same acoustic
features as other sounds, such as frequencies and amplitude. These combine to form
phonemes, the smallest sound units which could differentiate meanings in language,
such as "b" and "p" in "bat" and "pat" (Liberman et al., 1957).

Phonemes then combine to form syllables, which typically consist of a vowel sound and
one or two consonant sounds before and/or after the vowel, such as "cat" in English, or
"la" in Italian. Syllables continue to form words, the basic units to transfer meaning
(Saffran et al., 1996), and further to form phrases and sentences.

The hierarchical nature of speech illustrated above represents the universal characteristic
of human language. For different languages, however, how these elements are structured
and combined varies. This variation improves further understanding of human language,
and brought challenges when brain tries to engage in a language different from their
native tongue.

Speech Across Different Languages The acoustic features of speech vary significantly
across different languages. Some sounds exist in certain languages but not others,
making speech perception particularly challenging in such situations. The clustered
consonants structure in English, such as "string," which consists of "s," "t," "r" at the same
time, is generally not permitted in Japanese language, where the syllables consist of only
one consonant and one vowel, such as "ka" (Ishida, 2007). The trilled or rolling "r" sound
in Italian and Spanish, for instance, does not exist in English (Harris, 1969; Miller, 2006).
Another example is tonal languages like Mandarin and Thai, where changing the pitch
would change the meaning of the word completely, even with the same consonant and
vowel, making learning and understanding such languages especially difficult for

English speakers (Yip, 2002).



14 Chapter 2. Sense of Hearing

2.3.2 Speech and Speech-in-noise perception

The hierarchical structure of speech and the differences of speech structure from different
languages, mean that speech perception would rely largely on the previous knowledge of
the certain speech structure. The hierarchical feature creates redundancies in speech
perception. Based on previous knowledge, the human brain can recognise and predict
speech based on the context, even when certain sounds are masked by noise. On the other
hand, how effectively one can sustain and extract such knowledge varies largely between
different individuals. The complexity of speech perception becomes more apparent when

comparing to other forms of auditory processing, such as music perception.

In realistic listening environments, background noise often interferes with speech
perception. Such conditions, known as speech-in-noise (SiN), challenge the auditory
systems capacity to isolate relevant signals from irrelevant acoustic input (Kalikow et al.,
1977). SiN tasks provide a controlled way to examine how listeners manage degraded or
masked speech.

Listeners must engage attentional and memory resources to compensate for missing or
distorted information. Two key types of masking are typically involved: energetic
masking, where the target signal is acoustically buried beneath the noise, and
informational masking, where competing speech or noise draws on similar linguistic
processing pathways (Brungart, 2001; Mattys et al., 2012). These effects are more
pronounced at lower signal-to-noise ratios (SNRs), which increase the perceptual and
cognitive load (Zekveld et al., 2010).

24 Cognitive Mechanisms in Listening

2.4.1 Attention and Selective Attention

Attention is a cognitive function that enables individuals to focus on specific stimuli
while filtering out irrelevant information. It is crucial for learning, perception, memory,
and decision making (Posner & Petersen, 1990). Attention can be understood as different

types, including selective attention, sustained attention, and divided attention.

Selective Attention Selective attention refers to the ability to choose and focus on one
source of information while filtering out irrelevant noise (Suga & Ma, 2008). The "cocktail
party effect", where one can concentrate on a single conversation with competing

background noise, demonstrates how selective attention works effectively (Cherry, 1953).
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Sustained Attention Sustained attention, or vigilance, is the ability to maintain a
certain level of focus on a task over time. It is particularly important with tasks that
require long-term vigilance, such as driving. Studies suggest that sustained attention
relies on neural circuits involving the prefrontal cortex and parietal lobes (Posner &
Petersen, 1990), and varies largely between different individuals (Esterman et al., 2014;
Petersen & Posner, 2012).

Divided Attention Divided attention, on the other hand, is commonly known as
multitasking. It involves processing multiple information sources simultaneously. While
the human brain is able to manage several tasks at once, this distribution of resources

often leads to a decline in performance and increased error rates (Pashler, 1994).

From Attention to Executive Processes While attention directs cognitive resources
toward specific stimuli, successful listening in complex environments - such as on a
crowded train - requires much more than attentional mechanisms. Executive functions
work alongside attention to support efficient listening and comprehension (Diamond,
2013).

2.4.2 Executive Function

Executive function is a set of cognitive processes that enable individuals to manage tasks
effectively. These functions are essential for goal-directed behaviour and self-regulation
(Miyake et al., 2000). Executive function primarily relies on prefrontal cortical networks,
though it engages distributed systems throughout the brain. Core components of
executive function include inhibitory control, working memory, and cognitive flexibility
(Diamond, 2013).

Inhibitory Control Inhibitory control is a fundamental component of executive
function that allows the human brain to suppress irrelevant or habitual responses in
order to engage in goal-directed behaviour (Diamond, 2013). It is primarily governed by
the prefrontal cortex, particularly the right inferior frontal gyrus (rIFG), which is
responsible for suppressing inappropriate responses (Aron et al., 2011).

It involves several distinct mechanisms:
¢ Perceptual Inhibition: Suppressing attention from distracting sources, allowing
humans to focus on task-relevant information (Miyake et al., 2000).

¢ Cognitive Inhibition: Suppressing irrelevant thoughts, outdated information, or
intrusive memories, preventing them from interfering with current cognitive tasks
(Hasher & Zacks, 1999).
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¢ Response Inhibition: The ability to suppress automatic behavioural responses.
This is crucial for impulse control and delayed gratification (Diamond, 2013).

In auditory perception, inhibitory control enables humans to filter out background noise,
resist processing meaning for irrelevant speech, and refrain from interrupting speakers
despite having immediate thoughts or reactions (Diamond, 2013). Although inhibitory
control shares conceptual and neural overlap with attention, the key difference is that
inhibitory control is primarily suppressive while attention is primarily attentive. In
human development, mature inhibitory control develops much later than certain aspects
of attention (Diamond, 2013).

Working Memory in Listening The effectiveness of inhibitory control is closed linked
to another executive function: working memory. Inhibitory control depends on working
memory to maintain task-related goals while suppressing distractions (McNab &
Klingberg, 2008). This relationship is important for effective auditory processing, where
in real life, listeners must hold multiple speech content in working memory while
simultaneously filtering out unwanted information (McNab & Klingberg, 2008).

Working memory is a cognitive system that temporarily holds and manipulates
information for further complex tasks, such as reasoning, learning, and comprehension
(Baddeley, 1992). It has a limited capacity, where most healthy adults can hold up to 4 to

7 components simultaneously.

Proposed by Braddeley and colleagues, the multicomponent model of working memory
provided a framework for understanding how brain process information. This model
identifies several components, each plays different roles in auditory processing, as

illustrated in Figure 2.4):

¢ Central Executive: The supervisory system that controls attention and coordinates

information.

¢ Phonological Loop: Processes verbal and auditory information. It holds, rehearses
and refreshes the information.

* Visuospatial Sketchpad: Stores and manipulates visual and spatial information.

¢ Episodic Buffer: Integrates information and connects working memory with

long-term memory.

In listening tasks, the phonological loop temporarily stores information such as numbers or
names, while the brain processes for meaning. The central executive focuses attention on
critical information, the visuospatial sketchpad may create mental images about the
conversation, and the episodic buffer may connect this new information with existing

knowledge to further process meaning.
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Figure. 2.4. Multicomponent Model of Working Memory
(Graven & Browne, 2008).

Cognitive Flexibility Working memory and cognitive flexibility are closely linked, as
working memory maintains and updates relevant information to enable the brain to
switch between different tasks (Miyake et al., 2000). Cognitive flexibility refers to the
mental ability to adapt to new situations, switch between tasks, and update thinking in
response to changing environments (Monsell, 2003). It is the ability to adjust our
perspective, approach, and thinking patterns when circumstances change (Diamond,
2013).

In listening tasks, cognitive flexibility plays important roles, particularly in dynamic or
complex auditory environments. In daily conversation, it allows the brain to follow
multiple speakers, switch attention between different voices and topics. When listening
conditions change, like walking from a quiet path into a noisy restaurant, cognitive
flexibility allows rapid adaptation of listening strategies and management of background

noise.

The cognitive mechanisms - attention, inhibitory control, working memory, and cognitive
flexibility - function as an integrated system that supports the brain’s ability to navigate
complex auditory environments. These mechanisms do not operate alone but work as an

integrated function to support effective listening.
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2.5 Hearing Impairment and Broader Consequences

2.5.1 Age-related and Sensorineural Hearing Loss

Hearing loss is a prevalent sensory impairment, particularly among older adults. One of
the most common forms is age-related hearing loss, also known as presbycusis, which
typically affects high-frequency sounds and gradually progresses over time (Gates &
Mills, 2005; Plack et al., 2014). This form of hearing loss is often sensorineural in nature,
resulting from the degeneration of hair cells in the cochlea, the auditory nerve, or both
(Moore, 2012).

Sensorineural hearing loss not only affects audibility but also impairs temporal and
spectral resolution. Even when sounds are made loud enough through amplification,
individuals with this type of hearing loss may still struggle with clarity, especially in
noisy environments (Peelle et al., 2011; Tremblay et al., 2003). This is partly due to
disrupted phase locking and decreased frequency selectivity in the auditory system,

leading to poor representation of fine-grained speech features (Hopkins & Moore, 2008).

Furthermore, hearing loss is associated with changes in central auditory processing.

Studies using neuroimaging have shown that individuals with hearing impairment may
exhibit reduced activation in auditory cortices and increased recruitment of frontal areas,
suggesting a shift towards compensatory cognitive strategies (Campbell & Sharma, 2016;
Peelle et al., 2011). These changes may also reflect increased listening effort and cognitive

load in everyday communication situations.

Although hearing aids and cochlear implants can provide access to auditory input, they
may not fully restore natural processing. Residual deficits in spatial hearing, sound
localisation, and speech-in-noise perception often remain (Choi et al., 2011). Therefore,
sensorineural hearing loss presents challenges not only to auditory perception but also to

broader cognitive functioning and quality of life.

2.5.2 Hearing Loss and Dementia Risk

Recent years have seen growing interest in the relationship between hearing loss and
cognitive decline. Epidemiological studies have consistently reported that individuals
with hearing loss are at significantly increased risk of developing dementia, including
Alzheimer’s disease (Lin et al., 2011; Livingston et al., 2020). Hearing loss has been
identified as a potentially modifiable risk factor, with estimates suggesting that
addressing hearing impairment could delay or prevent up to 9% of dementia cases
worldwide (Livingston et al., 2020).

Several mechanisms have been proposed to explain this association. One hypothesis is

the cognitive load theory, which suggests that hearing loss increases the mental effort
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required for auditory processing, thereby diverting resources from other cognitive
operations such as memory encoding or executive control (Peelle, 2014; Tun et al., 2009).

Over time, this increased effort may lead to accelerated cognitive fatigue and decline.

Another explanation is sensory deprivation, where reduced auditory input leads to
structural and functional changes in the brain. Longitudinal studies have shown that
individuals with hearing loss exhibit greater atrophy in auditory and frontal brain
regions compared to those with normal hearing (Lin et al., 2013; Peelle et al., 2011). The
reduced stimulation may compromise neuroplasticity and limit engagement in

cognitively enriching activities.

Social isolation may also play a contributing role. Hearing loss can reduce participation
in conversations and social activities, which are known protective factors against
cognitive decline (Mick et al., 2014). The combination of cognitive effort, sensory decline,
and reduced social interaction creates a multifactorial pathway linking hearing

impairment to dementia.

Understanding these interactions is crucial for developing interventions that extend
beyond hearing aid provision alone. Comprehensive strategies addressing both auditory
and cognitive health are increasingly viewed as essential in promoting healthy ageing
and mitigating dementia risk.

The previous sections have outlined the fundamental components of the human auditory
system, from the physical properties of sound to the neural and cognitive mechanisms
supporting complex listening behaviours. In the next chapter, we will examine how
listening effort is defined and measured, the conditions that increase it, and why it

matters for individuals with and without hearing loss.
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Chapter 3

Listening Effort

3.1 Definition of Listening Effort

3.1.1 Historical Definitions Focus

The early works on listening effort mainly focused on understanding it as cognitive
resource allocation for perceiving and understanding auditory information. In Downs’
work, listening effort was defined as "the allocation of additional attentional resources to
auditory tasks" (Downs, 1982). Similarly, Feuerstein defined listening effort as "the

attention and cognitive resources required to understand speech" (Feuerstein, 1992).

3.1.2 Current Definitions of Listening Effort

Compared to earlier research which understood listening effort as cognitive exertion due
to unsatisfactory auditory input, contemporary research has developed more
comprehensive frameworks for listening effort, viewing it as a complex interaction of

cognitive, physiological, and environmental factors.

The view of working memory shifted from seeing listening effort as competing for
resources (Downs, 1982; Rabbitt, 1968), into recognising working memory as a
supporting role in challenging listening situations (Peelle, 2018; Winn & Moore, 2018).
Modern definitions also integrate motivation into understanding listening effort (Hicks &
Tharpe, 2013; Pichora-Fuller et al., 2016a), recognising the importance of motivation in
performing a listening task. Further, recent definitions of listening effort attempt to
embed within established frameworks, such as capacity theory (Kahneman, 1973) and
FUEL (Pichora-Fuller et al., 2016c), rather than being mainly descriptive. Table 3.1
illustrates the progression of definitions of listening effort.
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Aspect

Early Definitions (1960s-1990s)

Modern Definitions (2000s-Present)

Primary Fo-
cus

Working
Memory

Motivation

Adaptability

Theoretical
Founda-

tion

Defined as increased cognitive load
due to degraded speech (Anderson-
Hsieh & Koehler, 1988; Rabbitt,
1968).

Characterized as "the allocation
of additional attentional resources”
(Downs, 1982) and "the attention
and cognitive resources required
to understand speech” (Feuerstein,

1992).

Listening effort competes with working
memory, reducing resources for in-
formation retention (Downs, 1982;
Rabbitt, 1968).

Not considered a key factor (Anderson-
Hsieh & Koehler, 1988).

Effort was viewed as static and task-
dependent, varying only with listen-
ing difficulty (Downs, 1982).

Often lacked

grounding in cognitive science; more

explicit  theoretical

descriptive than explanatory.

A multidimensional process involving
cognitive, motivational, and physiolog-
ical factors (McGarrigle et al., 2014;
Pichora-Fuller et al., 2016c¢).

Defined as "a multidimensional con-
struct encompassing the cognitive, mo-
tivational, and emotional resources de-
ployed during auditory tasks" (Ohlen-
forst et al., 2017).

Working memory actively compensates for
auditory challenges, improving speech
comprehension (Peelle, 2018; Winn &
Moore, 2018).

Integrated into frameworks like Ease
of Language Understanding (ELU)
(Ronnberg et al., 2013), where "ex-
plicit working memory resources are
brought into play" when bottom-up
and top-down information do not

match.

Motivation influences effort allocation; lis-
teners exert more effort when engaged
(Hicks & Tharpe, 2013; Pichora-Fuller
etal., 2016¢).

FUEL framework emphasises motiva-
tion and explains listening effort as:
"the deliberate allocation of mental re-
sources to overcome obstacles in goal
pursuit" (Pichora-Fuller et al., 2016b).

Effort is flexible; listeners adjust cogni-
tive resources based on goals and task
demands (Mattys & Wiget, 2009; Mc-
Garrigle et al., 2014).

"The application of cognitive resources
to overcome obstacles... reflecting both
task demands and the motivation of
the listener" (Lemke & Besser, 2016).

Embedded in broader cognitive frameworks
like capacity theory (Kahneman, 1973)
and explicitly developed frameworks
like FUEL (Pichora-Fuller et al., 2016b).

Table. 3.1. Comparison of Early and Modern Definitions of Listening Effort
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3.2 Theoretical Models of Listening Effort

The development of listening effort definitions has led to more comprehensive
frameworks in understanding this concept. The following section examines several key

theoretical models in understanding listening effort.

3.2.1 Kahneman’s Capacity Model of Attention and Listening

Developed in the early 1970s, Kahneman’s Capacity Model of attention has been highly
influential in understanding listening effort (Kahneman, 1973). This model is based on
the key principle of the limited capacity of attention and a single resource pool of mental
capability. According to Kahneman, cognitive resources constitute one general resource
pool, and can be distributed based on factors including task demands and arousal level
(see Figure 3.1).

MISCELLAMEQLUS
DETERMIMNANTS
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ARDILIZAL b MAMNIFESTATIONS
OF AROUSAL

LAVAILABLE]
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EMDURING
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INTENTIOMS

1’1
.--"'r’ -

0f_0

POSSIBLE ACTIVITIES

EVALUATION
OF DEMANDS
N
CAPACITY

RESPOMSES

Figure. 3.1. Kahneman’s Capacity Model Theory
(Kahneman, 1973).

In understanding listening effort, Kahneman’s model provides insight into why listening

effort varies across different situations:

* Resource allocation: When listening conditions become challenging, more
attentional resources must be allocated for basic perceptual processing, thus fewer
resources are left for higher processes such as extracting meaning and

comprehension.
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* Arousal and effort: Including arousal in this model establishes listening effort as a
dynamic rather than static process. It not only explains why listening effort may
vary based on motivation (increased arousal) and fatigue (lack of arousal), but has
laid the theoretical foundation for measuring listening effort through physiological
responses.

¢ Individual differences: This model can account for differences in listening effort
among individuals with similar levels of hearing ability, as the differences in
cognitive capacity and cognitive resource allocation strategy vary between

individuals.

While Kahneman’s model provides a valuable framework, researchers have identified
limitations when investigating listening effort. Especially, research suggests that rather
than a single pool of cognitive resources, there exist multiple resources for different tasks
(Pichora-Fuller et al., 2016c). Kahneman'’s framework has been extended through the
Framework for Understanding Effortful Listening (FUEL) (Pichora-Fuller et al., 2016b),
and the Ease of Language Understanding (ELU) model (Rénnberg et al., 2013), both of
which elaborate on how perceptual and cognitive factors interact during speech
processing.

3.2.2 Framework for Understanding Effortful Listening (FUEL)

The FUEL framework (Figure 3.2) represents an integration of Kahneman’s model (page
23) with modern understanding specifically for listening and hearing. While Kahneman's
Capacity Model was designed for understanding general cognitive processes, FUEL was
tailored specifically for auditory processing. It explains how various factors, such as
cognitive resources, motivation, and task demand, influence the effort required for
listening tasks (Pichora-Fuller et al., 2016b).

FUEL further emphasises the role of motivation and arousal in modulating available
cognitive resources. It places motivation at the centre of its model, emphasises how
factors like reward or importance of success directly influence effort allocation.
Individual differences in performing a listening task are addressed in FUEL. It accounts
for how individual factors, such as age, hearing status, and cognitive abilities influence
both available capacity and allocation strategies.

FUEL offers a further explanation of challenges faced by people with hearing
impairment, with possible rehabilitation approaches. it accounts not only the level of
hearing loss, but incorporated social-cognitive dimensions. It explains that in social
situations, motivation for connection may override discomfort one experiencing
comparing to other similar acoustic challenging environments, which leads to
significantly increased effort and frustration (Pichora-Fuller, 2017). The clinical
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Figure. 3.2. FUEL: Expanding Kahneman’s Capacity Model in Relation to Listening

Effort and Fatigue (Pichora-Fuller et al., 2016b).

FUEL further expanded Kahneman’s model in understanding cognitive effort which tailored for
listening effort specifically. It emphasises the role of motivation and arousal in auditory processing,
building a feedback loop based on importance and fulfillment of the task.
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Figure. 3.3. Relationship between Demands, Motivation, and Effort (Pichora-

Fuller et al., 2016Db).

This 3D plot shows how effort changes based on task demand and motivation. A path on the
figure shows how effort changes overtime when affected by these factors. no specific units were
provided for this plot.
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implications suggests that besides improving audibility, a broader approach which
considers cognitive costs of listening, such as training protocols which addresses

attentional control, would greatly supporting the effectiveness of listening.

3.2.3 Ease of Language Understanding (ELU) Model

The Ease of Language Understanding (ELU) model, proposed by Ronnberg and colleagues
(Ronnberg et al., 2013), took a different perspective. It puts an emphasis on speech
perception specifically rather than attention in FUEL and Kahneman’s model. Rooted in
theory of working memory, ELU explains how individuals with stronger working

memory capacity can better compensate for degraded auditory input.

One key element of the ELU model is its integration of bottom-up and top-down
processes in listening (see page 9), and the importance of working memory. The
bottom-up processing encodes the acoustic features of speech, matches these features
against stored phonological library in long-term memory. When it matches,
understanding occurs. However, when they don’t match, the top-down process is
engaged to compensate.

Domain general
semantic / phonological
processing in WM

Explicit
processing
loop

Semantic
LT™M

Multimodal
Multimod \/ NSl Gist.’understanding\ put  /
ultimodal - -
input RANER0 Match la-?-,:nlaiasl > Episodic LTM / (next loop)
‘ /

Figure. 3.4. The Ease of Language Understanding Model (Ronnberg et al., 2013).

ELU model explains the process of speech perception. In ideal listening situations, auditory input
aligns well with stored phonological patterns, allows quick and automatic recognition. However,
in challenging listening circumstances, when there is a mismatch, working memory (WM) would
step in to assist and fill in the gaps for missing information. Listening effort increases when needs
constant assistance from working memory.

Relationship Between Theoretical Models. These models, while developed with
different emphases, provide important perspectives that help us understand the nature of
listening effort. Kahneman’s Capacity Model proposes a limited pool for cognitive
resources, yet lacks the emphasis on motivation and didn’t address listening specifically.

FUEL expands this model by explicitly incorporating motivation and value for reward in
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understanding the listening process specifically. The ELU model, on the other hand,

provides additional understanding of the role of working memory in speech perception.

Together, these frameworks create a more complete picture of listening effort. It’s not
merely a response to demanding auditory signals, but an active cognitive process
influenced by multiple elements. More importantly, as suggested by FUEL, rather than
thinking of listening effort as an issue to overcome, optimal effort is necessary for task
performance. The difference, perhaps, lies in the optimal level of effort required to
complete the current listening task. What complicates matters is that this optimal level,

would be different for each individual.
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3.3 Elements Affecting Listening Effort

The journey from sound waves to meaningful auditory perception forms the foundation
for understanding listening effort. Based on previous explanations, this chapter examines
the key elements which affect listening effort, including environmental, signal, and
individual factors. It explores why understanding this concept is important and sets the
stage for measurement approaches that will be presented in the next chapter.

3.3.1 Hearing Impairment and Listening Effort

Types of Hearing Loss

Sensorineural Hearing Loss There are different types of hearing loss, each brings
different challenge for hearing impairment individuals. Sensorineural hearing loss,
which caused by damage to the cochlea or auditory nerve, often involves reduced
frequency selectivity and temporal resolution. It typically have permanent effects on both
audibility and distorted signal processing (Hornsby, 2013).

Conductive Hearing Loss Conductive hearing loss, which results from malfunctions in
the outer or middle ear which affects sound reaching the inner ear, often involves
physiological blockage or damage to the structures that conduct sound. Comparing to
Sensorineural hearing loss, it usually involves less listening effort once sounds are made
audible enough (Downs, 1982).

Mixed Hearing Loss The more complicated cases are mixed hearing loss, which
combines both sensorineural and conductive hearing loss, making addressing the issue
more challenging due to both attenuation and distortion of sound (Dillon, 2012).
Standard treatment such as hearing aids, can compensate for the aspect of conductive
loss, but cannot fully address the sensoroneural distortion effects, especially in noisy
environments (Moore, 2012).

Hidden Hearing Loss (HHL) Hidden Hearing Loss (HHL) adds another fascinating
layer of hearing loss which is difficult to address in clinical settings. It represents a
relatively recent advancement in understanding auditory processing deficits which
conventional audiometry cannot detect. Individuals appear to be "normal" in standard
pure-tone audiometry, nonetheless experience significant difficulties understanding

speech in noisy environment (Plack et al., 2014).
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HHL is typically related to synaptopathy, or damage of synapses between auditory
nerve fibres and inner hair cells of the cochlea. It first emerged from animal studies which
found that noise exposure could cause permanent loss of synaptic connections between
inner hair cells and auditory nerve fibres without affecting audiometric thresholds
(Kujawa & Liberman, 2009). It revealed that up to 50% of auditory nerve fibres could be
damaged while still appear to have normal hearing for pure tone threshold tests
(Liberman & Kujawa, 2016).

Despite the difficulty of detecting HHL in standard audiometry, HHL can be measured
through electrophysiological measures. The amplitude of Wave I (first peak) in the
Auditory Brainstem Response (ABR), which reflects activity from auditory nerve fibre, is
found reduced in individuals who were exposed to long-term noise (Stamper & Johnson,
2015). Current research aims to develop and validate clinical tests which could detect
HHL, which would improve early diagnosis and interventions (Guest et al., 2018; Plack
etal., 2014).

Other Types of Hearing Loss Other types of hearing loss include Central Auditory
Processing Disorder (CAPD), where individuals have deficient sound localisation
mechanisms (Iliadou et al., 2017), and Auditory Neuropathy Spectrum Disorder (ANSD),
where outer hair cells in the cochlea function normally in responding to frequencies but
fail to align timing when passing information to the brain. This disruption in ANSD
distorts the temporal resolution of sound and leads to increased listening effort (Rance,
2008).

Relationship between Hearing Loss and Listening Effort Hearing loss introduces
diverse challenges that typically increase the listening effort required for speech
comprehension. While some forms, like conductive hearing loss, primarily reduce the
sound level reaching the inner ear and may impose less effort once audibility is restored
(Downs, 1982), other types involve more complex processing deficits. Sensorineural
hearing loss, for instance, often impairs frequency and temporal resolution, leading to
signal distortion that necessitates greater cognitive resources for interpretation, even if
the sound is loud enough (Hornsby, 2013). Mixed hearing loss combines these issues of
attenuation and distortion, making compensation particularly demanding (Dillon, 2012).

Furthermore, conditions like Hidden Hearing Loss (HHL), potentially caused by cochlear
synaptopathy (Kujawa & Liberman, 2009), can lead to significant difficulties and effort in
noisy environments despite normal audiograms (Plack et al., 2014), highlighting
limitations in standard hearing tests. Other deficits, such as Central Auditory Processing
Disorder (CAPD) affecting sound localisation (Iliadou et al., 2017) or Auditory
Neuropathy Spectrum Disorder (ANSD) impacting temporal processing (Rance, 2008),

also distort auditory information in ways that demand increased listening effort.
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Therefore, the type and nature of the hearing impairment significantly shape the
cognitive burden associated with listening.

3.3.2 Other Listener-Related Factors

Research has traditionally focused on understanding how the average population reacts
to difficult listening situations, aiming to identify external factors that account for
increased listening effort. Even within studies designed to capture average responses,
however, results demonstrate large individual variability (Koelewijn et al., 2012; Zekveld
et al., 2011). These individual variation has prompted a growing interest in examining
listener-specific factors in listening effort (Peelle, 2018). Better understanding of these
individual differences would support developing personalised approaches to address
their unique needs (McGarrigle et al., 2014; Pichora-Fuller et al., 2016b).

Age Aging is typically linked to increase risk for hearing loss. However, it affects
listening effort independently from hearing status. Functional neuroimaging studies
reveal that older adults show greater activation in prefrontal cortical regions comparing
to younger listeners, even when controlling hearing sensitivity (Eckert et al., 2008; Peelle
et al., 2010). This increased prefrontal cortical engagement correlates with successful

speech comprehension, but at a cost for more cognitive resources (Wong et al., 2009).

Beyond changes in neural activation patterns, cognitive changes associated with aging
also contribute to increased listening effort. The executive functions typically decline as
one age, which adds to the increased effort in listening. Older adults generally experience
declining temporal processing abilities which affects speech perception, especially for fast
speed speeches (Anderson et al., 2012). Reduced inhibitory control, which typically
occurs as a symbol of cognitive aging, diminishes the ability to suppress irrelevant
information, making speech-in-noise particularly challenging and effortful (Sommers &
Hulff, 2015).

Cognitive Factors

As introduced in Section 2.4, page 14 exploring the role of cognitive mechanisms in
listening, individual differences in cognitive functions significantly influence the listening

process and the result of listening task performance.

Attention and Inhibitory Control The ability to focus on certain stimulus while
suppressing irrelevant information, varies among individuals which affects listening
effort. Listeners with stronger inhibitory control, shows different patterns of neural

resources allocation during challenging listening tasks, resulting in improved speech
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processing (Sommers & Huff, 2015; Zekveld et al., 2012). With noisy backgrounds,
specifically, studies show that people with better inhibitory control, tested through classic
Stroop tasks, tend to understand speech better in noisy settings (Dryden et al., 2017).

Processing Speed Individual differences in processing speed result from interactions of
neurological, developmental, genetic factors, and experiences. Processing speed refers to
how quickly listeners can process and understand auditory information. Research found
constant correlation between processing speed and speech comprehension under
challenging listening conditions, even after controlling other cognitive factors
(Gordon-Salant et al., 2014). This relationship becomes particularly obvious when

processing compressed or rapid speech (Schneider et al., 2005).

Neuroimaging studies provide insights of the neural basis of processing speed.
individuals with faster processing speed demonstrate more efficient neural resource
allocation, showed more activation in core language regions including superior temporal
gyrus ad left inferior frontal gyrus. As listening conditions become more challenging,
slower processors showed greater increases in frontal lobe, than individuals with faster
processing speed, suggesting an increased effort performing the task (Peelle et al., 2010).

Working Memory Capacity Individual differences in working memory significantly
affect how one performing a listening task and the result of speech perception. Listeners
with greater capacity often demonstrate improved results in speech comprehension,
especially in difficult listening conditions (Lunner, 2003; Rudner et al., 2012). The ELU
model specifically highlights the importance of working memory when processing
speech (see page 26).

The relationship between working memory and listening effort is more complex than a
simple linear relationship. When measuring listening effort with pupillometry, studies
have shown that individuals with higher working memory capacity may actually exert
more effort, potentially reflecting their greater ability to sustain attention rather than
disengaging when conditions become difficult (Wendt et al., 2018). It suggests that the
benefits brought by larger working memory capacity maybe modulated by resource
allocation strategy (Pichora-Fuller et al., 2016c).

Task Switching Task switching represents another critical executive function that
influences listening effort, particularly in dynamic listening environments. Task
switching refers to the ability to shift attention between different activities or mental
tasks. This executive function plays an important role in auditory processing, especially
when involving multiple speakers (Monsell, 2003). Evidence from research demonstrates
that, the ability to switch task efficiently can predict performance in complex listening

environments (Getzmann et al., 2015).
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Psychological Factors

Motivation Motivation refers to the internal process that initiate, guide, and sustain
goal directed behaviour (Atkinson, 1964). It varies among individuals based on the
perceived importance and achievement motivation (Picou & Ricketts, 2016). As described
in FUEL (see page 24) which emphasises the role of motivation, individual differences in
motivation when responding to listening challenges significantly affect how much effort
to be allocated to listening tasks (Pichora-Fuller et al., 2016c).

Studies support the importance of motivation, demonstrate that the level of willingness
to exert effort in communication, predicts real-world hearing aid use and satisfaction
beyond audiometric factors (Picou & Ricketts, 2016). Research manipulated task
importance through rewarding system show that higher motivation can temporarily
overcome the negative effects of acoustic challenges or fatigue, when listeners show
sustained effort and engagement under compromising conditions (McGarrigle et al.,
2014).

Personality Traits Personality traits create systematic patterns in how individuals
engage with listening challenges, influencing both subjective effort perception and
objective physiological responses. How individuals engage in listening tasks varies in
both subjective effort perception, and objective physiological responses which is affected
through the arousal level of individual. Traits like introversion-extroversion and anxiety

sensitivity, were particularly examined in relationship with listening effort.

The introversion-extraversion dimension affects listening effort through higher level or
arousal resulted from heightened sensitivity. Studies show that introverts typically show
greater sensitivity to sensory inputs (Geen, 1984), renders higher baseline arousal level,
and may lead to greater distress and effort in noisy environments (Hockey, 2013). They
show a high level of GSR during challenging listening tasks comparing to extraverts
(Mackersie et al., 2015).

Anxiety sensitivity impact listening experience through heightened vigilance level during
difficult listening situations. Measured through pupil diameter, anxious individuals tend
to demonstrate higher level of vigilance during uncertain listening conditions (Zekveld
etal., 2011), and sustain effort allocation and vigilance, even when speech becomes nearly
intelligible (Koelewijn et al., 2018).

Experiential Factors Lifetime experiences-particularly those involving specialised
listening activities-can significantly shape how individuals experience and manage
listening effort. Certain professionals, such as musicians and simultaneous interpreters,
developed higher skills in listening which may affect their experience in listening effort.

Research demonstrate that musicians developed higher level of speech-in-noise
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perception, and potentially more efficient when processing complex auditory signals
(Parbery-Clark et al., 2011). This advantage appears to be affected by the duration and
intensity of musical training, suggests neural plasticity and possible rehabilitation

direction for hearing impairment.

3.3.3 Contextual Factors

Environmental Acoustics Room acoustics would largely affect the intelligibility of
speech. Reverberation, in particular, would significantly increase listening effort by
degrading listening signals. It affects the quality of speech by creating temporal smearing
of speech sounds and blurring boundaries between phonemes and syllables, which

increases effort applied in listening tasks (Rennies et al., 2014).

Spatial configuration, where physical arrangements of sound sources, would affect
listening effort in a way that brain is better to distinguish sounds when decide that
sounds are coming from difference resources (Best et al., 2018). This benefit of reducing
listening effort by segregating space cues, however, appears to decrease with age and
hearing loss (Gallun et al., 2013).

Visual Cues Visual cues, especially facial movements and lip patterns during speech
production, provide another factor affecting listening effort. In noisy environment, visual
cues become particularly valuable. The McGurk effect, for example, demonstrates how
visual information (lip movements) influences what we hear. When the brain hear the
sound /ba/ but see a speaker mouthing /ga/, your brain combines the two and
perceives /da/ instead (McGurk & MacDonald, 1976). This effect persists, even when
participants are aware of the illusion (Tiippana, 2014).

Social Context of Listening. The social context of communication would significantly
influence listening effort. When one values the connection and acceptance by others in
the conversation, listening effort would typically increase (Munro & Derwing, 2006).
When the situation was perceived as high-stake, for example, an interview, or
presentation, listeners demonstrate greater willingness to make and sustain effort despite

increased effort and fatigue (Picou et al., 2011).

3.3.4 Signal-Related Factors

While contextual factors play an important role in the listening experience, the acoustic
signal itself presents challenges that directly affect speech perception.
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Signal-noise-ratio Level SNR is an important concept in understanding speech
perception and listening effort. It represents the relationship between the level of desired
signal and the level of background noise. A positive SNR means that speech is louder
than background noise, and a negative SNR indicated that the noise is stronger than
speech, making comprehension difficult. When SNR gets lower, listening effort would

increase dramatically, requiring more attention and cognitive resources.

SNR level is frequently used in research to manipulate different listening conditions. The
relationship between SNR level and listening effort, however, is not linear. When
equalising listening effort to reaction time, it was found that at very poor SNR levels,
listeners may actually reduce their effort as they feel increasingly furtile in performing
the task. It creates an inverted U-shaped function where effort /reaction time peaked at
moderate SNR levels rather than the most difficult ones(Wu et al., 2016).

Signal Degradation Signal degradation includes various types of acoustic distortion
other than increasing background noise which can influence listening effort. Spectral
degradation, for example, refers to the reduction of frequency resolution in speech
signals, which occurs in both cochlear hearing loss, and paradoxically occurs in cochlear
implants and hearing aids-devices intended to enhance auditory perception. As both
processes divide the speech spectrum into a limited number of frequency bands (Friesen
et al., 2001; Strelcyk & Dau, 2009). Research demonstrated listeners exhibit increased
pupil dilation, indicating greater cognitive effort, when processing speech with

compromised resolution (Winn et al., 2015).

Beyond spectral degradation, signal compression introduces additional challenges by
altering the natural amplitude envelope of speech (Jenstad & Souza, 2003). Research
found that even when intelligibility remained relatively high, aggressive compression
ratios increased listening effort measured through dual-task paradigm (Arehart et al.,
2013). This effect is particularly high in complex acoustic environments and for older
listeners (Souza & Arehart, 2015).
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3.4 Measurements of Listening Effort

In the previous chapters, we explored how the listening process occurs and the various
factors that influence humans’ ability to process sound and speech. We also introduced
the concept of listening effort, including different frameworks that attempt to explain it

and the importance of measuring listening effort.

In this chapter, we examine the different methodologies that research has adopted to
quantify listening effort. These measurements range from subjective and behavioural
assessments to more recent physiological approaches. Each method offers additional
insights into listening effort.

3.4.1 Self-Report Measures

Subjective reports remain the most direct approach to assessing listening effort. This
method is widely used in both experimental and clinical settings.

Different Questionnaires Several questionnaires are frequently used to assess listening
effort. The NASA Task Load Index (NASA-TLX) is one of the most commonly employed
tools for measuring subjective cognitive load (Hart & Staveland, 1988). However, it was
not specifically designed for measuring listening effort. Research in this area has
attempted to focus on specific elements or adapt the original questionnaire to better
capture listening effort.

The Speech, Spatial and Qualities of Hearing Scale (SSQ) was developed for
understanding listening experience (but not limited to listening effort) with items asks
questions in listening effort (Gatehouse & Noble, 2004). This questionnaire is more
sensitive and comprehensive which picks up on different aspects of listening (Jensen

et al., 2016). The Abbreviated Profile of Hearing Aid Benefit (APHAB), on the other hand,
addresses listening effort from a clinical perspective, focusing on communication
difficulties (Cox & Alexander, 1995).

For studies specifically focusing on listening effort, the Effort Assessment Scale (EAS)
was developed to target the cognitive dimensions of listening. It asks participants to rate
mental exertion on a 5-point scale (Luts et al., 2010). The Vanderbilt Fatigue Scale for
Hearing Aid Users (VFS-AH), by contrast, focuses on the cumulative effects of effort
rather than a single moment (Hornsby & Kipp, 2016).

Simplified Visual Analogue Scales (VAS) (Huskisson, 1974) and the Effort Assessment
Scale (EAS) (Krueger et al., 2017) contain only a single item for rating listening effort.
These have been proven to be valuable and efficient in listening effort experiments
(Rudner et al., 2012).
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A comparison of different questionnaires used to measure listening effort is shown in
Table 3.2.

Strengths and Limitations of Self Report Self-report measures have the advantage of
being convenient to use compared to other methods that may require specialised
equipment (McCormack et al., 2004). However, subjective measures have inherent
limitations precisely because they are subjective. Individual differences in self-reflection

and response bias can influence a person’s answers (McGarrigle et al., 2014).

When examining the relationship between subjective reports and objective measures, the
correlation is often only moderate (Ohlenforst et al., 2017). Combining subjective
measures with objective ones, such as behavioural and physiological assessments, would

provide a more comprehensive and balanced understanding of listening effort.

3.4.2 Behavioural Measures

Behavioural measures provide an objective perspective on listening effort by assessing
task performance in real-time rather than relying on retrospective recall which inevitably
invites bias. They primarily focus on methods such as dual-task paradigms to reflect
cognitive resource allocation. The main behavioural indices include reaction time and

accuracy across various paradigms.

Primary Indicators

Reaction Time Reaction Time (RT) is theoretically grounded in capacity theories of
attention, which suggest that cognitive resources are limited when completing a task
(Kahneman, 1973). As task difficulty increases, the brain requires greater resources,
leading to slower processing speeds. Reaction time is particularly valuable for assessing
listening effort under conditions of mild to moderate difficulty (McGarrigle et al., 2014).

Accuracy Accuracy reflects how successfully participants perform a listening task. It is
primarily measured by the percentage of spoken words, phonemes, or sentences correctly
identified or repeated (McGarrigle et al., 2014; Pichora-Fuller et al., 2016b). Similar to
reaction time, it can be used to assess either a primary (Zekveld & Kramer, 2014) or

secondary task during listening (Sarampalis et al., 2009).

Key Paradigms Several established paradigms are used in behavioural measurements
when assessing listening effort.
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Table. 3.2. Comparison of Subjective Measures of Listening Effort

Questionnaire What It Measures Number  Completion Strengths Limitations
of Items Time
* High ecological va- * Requires smart-
lidity phone/technology
¢ Captures real-world ¢ Participant compli-
Ecological Mo-  Real-time effort rat-  Varies <1 variation ance challenges
mentary Assess-  ings in natural envi-  (typi- minute o Minimizes recall bias « Analysis complexity
ment (EMA) of  ronments cally 1-5  per
Listening Effort items assess- ¢ Contextual informa- ¢ Potential sampling
(Wu et al., 2015) per ment, tion available biases
assess- multiple
ment) times
per day
* Extremely quick ad- * Single-item measure
ministration with limited reliabil-
e Can track moment- ity
Visual ~ Analog  Direct rating of per- 1 item <1 to-moment changes * Subject to anchoring
Scale (VAS) for  ceived effort (typi- minute * Minimal participant and scaling biases
Listening Effort cally) burden L
(Rudner et al,, 3 Lm’uted C(?ntext for
2012) ¢ Easy to implement interpretation
e Limited validation
* Focused specifically compared to other
on effort measures
Effort Assessment  Perceived mental ex-  5-7items  2-3 min- ¢ Brief administration e Fewer  normative
Scale (EAS) ertion during listen-  (varies utes . . data
(Luts et al., 2010) ing tasks by ver- ¢ S.ens1’51ve to dlffgrent .
sion) listening conditions * May lack sensitivity
to small changes
¢ Extensively vali-
dated across do-
mains ¢ Not specific to listen-
ing tasks
¢ Multidimensional as- )
NASA Task Load  Six dimensions of 6 core 2-5 min- sessment ‘ Eerqurl(r)eseiﬂjnatlon
Index (NASA-  workload: r.nental items utes e Good sensitivity to prop
TLX) demand, physical de-  + 15 task difficulty e Raw vs. weighted
(Hart & Stave- mand, temporal de-  pairwise scoring debate
land, 1988) mand, performance, compar- ® Available in many
effort, and frustra- isons languages
tion (in full
version)
e Focuses on conse-
e Links effort to fa- quences rather than
tigue outcomes immediate effort
Vanderbilt ~ Fa-  Listening-related fa-  10-16 5-8 min- * Ig;[fi ii:res prolonged ‘ Spdeciﬁc to hearing
tigue Scale for tigue and cumula- items utes ad users
Hearing Aid tive effects of effort (depend- e Relevant to real- o Retrospective rather
Users (VFS-AH) ing on world impacts than immediate as-
(Hor)nsby & Kipp, version) sessment
2016,
e Well-established clin- * Measures d1ff1culty
. rather than effort di-
ical tool
rectly
Abbreviated Hearing difficulties 24 items 10 min- * Good ft?rpre/ postin- e Limited to communi-
X . . . tervention . .
Profile of Hear- in different environ- utes cation scenarios
ing Aid Benefit ments, including e Normative data .
(APHAB) ease of communica- available * Less sensitive to sub-
. tle differences
(Cox & Alexander,  tion
1995)
* Hearing-specific ® Length can be pro-
hibitive
¢ Comprehensive
assessment * Some items may be
Speech, Spatial =~ Three domains: 49 items  15-20 e Sensitive to technol- difficult for partici-
o . . . pants to conceptual-
and Qualities of speech hearing, (14 items minutes ogy differences b
Hearing  Scale  spatial hearing, and  in SSQ-  (full 1z€
(SSQ) qualities of hearing 12 short  version) * Good ecological va- o Not exclusively fo-
(Gatehouse &  (including effort) form) 5-7 min- lidity cused on effort
Noble, 2004) utes
(short

form)
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Single-Task Paradigm Single-task paradigms measure listening effort through a single
auditory task, assuming that increased demands will lead to longer RT and/or decreased
performance (McGarrigle et al., 2014). The key advantage of this approach is its

simplicity compared to other designs, such as dual-task paradigms (Houben et al., 2013).

Dual-Task Paradigm Dual-task paradigms require participants to perform a listening
task while simultaneously completing a secondary task that competes for cognitive

resources (Gagné et al., 2017). A decline in performance or an increase in RT serves as an

indicator of increased listening effort for the primary task. Common secondary tasks

include visual tracking of another stimulus or memory tasks (e.g., digit recall).

Other Working Memory Paradigms These paradigms build on working memory and

the ELU model (Section 3.2.3, Page 26), which posits that more challenging listening

conditions place greater demands on working memory (Ronnberg et al., 2013; Rudner

et al., 2012). One example is the reading span or listening span task, where participants

are presented with a series of sentences and tested for comprehension. At the end of the

task, they are asked to recall a specific word from a designated position within the

material they have read or heard. The maximum number of items they can recall

represents their "span,” which is expected to decrease as task demands increase (Akeroyd,
2008; Daneman & Carpenter, 1980; Desjardins & Doherty, 2013; Souza & Arehart, 2015).

Table. 3.3. Summary of Typical Behavioural Measures in Listening Effort Research

Measure Description Typical Paradigm  Interpretation (Higher Listen-  Example  Met-
ing Effort typically leads to...)  ric(s)
Secondary Task  Speed of response to a simple, ~ Dual-Task Slower / Increased RT Milliseconds (ms)
Reaction Time  non-listening task performed  Paradigm
(RT) concurrently.
Accuracy Accuracy of identifying/un-  Primary Task Per- ~ Lower accuracy (as task diffi- ~ Percentag Correct,
derstanding spoken words, formance culty increases, effort usually Score
sentences, etc. increases up to task failure)
Secondary Task  Correctness of response on  Dual-Task Lower Accuracy / Increased % Correct, Error
Accuracy the concurrent secondary  Paradigm Errors Rate
task.
Recall / Com-  Ability to remember content  Primary Task  Poorer Recall / Lower Com-  Items  recalled,
prehension or answer questions after alis-  (Post-hoc) prehension Scores Percentage Cor-
Performance tening period. rect
Task Endurance /  How long performance is sus-  Task Engage-  Shorter Endurance / Faster =~ Time (min), Per-

Time-on-Task Ef-
fects

Choice Behaviour
/ Task Selection

tained or changes over a pro-
longed session.

Participant’s preference when
choosing listening conditions
or tasks.

ment/ Sustained

Decision Making
Task

Performance Decline

Avoidance of more demand-
ing conditions / Choice of less
effortful options

formance change
rate

Choice Frequency,
Selected SNR

Strengths and Limitations of Behavioural Measures
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Objectivity of Behavioural measures Compared to self-reports, behavioural measures
such as RT and accuracy offer greater objectivity in assessing listening effort. They are
based on clearly measurable external criteria, reducing the risk of reporting biases found
in subjective methods, such as the tendency to meet expectations. Nonetheless, the choice
of method should be carefully considered in research design.

Individual Differences Individuals vary in their baseline RT and accuracy, which can
complicate the interpretation of listening effort (Wendt et al., 2016). Factors such as
hearing status, cognitive capacity, and resource allocation strategies can significantly
influence RT and accuracy results (Rudner et al., 2012). Failure to account for these
differences may obscure meaningful patterns in group-level analyses of listening effort
research (Gosselin & Gagné, 2017).

Speed-Accuracy Tradeoffs One of the most notable limitations of using either RT or
accuracy in isolation is the phenomenon of speed-accuracy trade-offs. Some participants
may prioritise response speed, while others may focus on maintaining accuracy (Houben
et al., 2013). This effect can be attributed to inherent individual differences, experimental
instructions (e.g., directing participants to prioritise accuracy), or task difficulty (as more
challenging tasks tend to encourage accuracy over speed) (McMahon et al., 2016; Zekveld
& Kramer, 2019).

A more balanced approach would be to combine RT and accuracy when measuring
listening effort. Integrated methods such as Inverse Efficiency Scores (IES), which
calculate a final score by dividing RT by the proportion correct (accuracy), provide a way
to account for speed-accuracy trade-offs (Bruyer & Brysbaert, 2011).

As behavioural measures such as RT and accuracy aim to assess cognitive processes
related to listening, including cognitive capacity and working memory, subjective reports
focus more on individuals’ perceived listening effort. To gain a more comprehensive
understanding, a multimodal approach incorporating behavioural measures alongside
subjective reports and physiological indices could be beneficial (Gagné et al., 2017;
Pichora-Fuller et al., 2016b). This will be discussed in the next section.

3.4.3 Physiological Measures

Listening effort is essentially a cognitive process, but it is closely linked to physiological
and brain activities, which makes physiological measurements possible. This connection
arises from the body’s reaction when performing cognitive tasks, the resource
mobilisation system ensures brain receives necessary energy and oxygen to sustain
cognitive work. As listening demands increase, the body reacts in pushing physiological
adjustments to meet those needs (Kahneman, 1973; Kramer et al., 2016).
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Automatic Nervous System Measures

Electrocardiography (ECG) The body’s cardiovascular system provides valuable
insights into cognitive effort during listening tasks. Heart Rate (HR) and Heart Rate
Variability (HRV) are frequently used to assess listening effort.

Heart Rate is typically calculated by measuring the number of heartbeats per minute.
Research by Mackersie and Cones demonstrated that HR consistently increases as SNR
decreases, indicating more challenging listening conditions (Mackersie & Cones, 2011).
Hicks and Tharpe found that children with hearing loss exhibit significantly greater HR
elevations compared to their peers with normal hearing (Hicks & Tharpe, 2002), a finding
later echoed by Mackersie and colleagues in adult participants (Mackersie et al., 2015).

Heart Rate Variability, on the other hand, refers to fluctuations in the time interval
between individual heartbeats. It measures the regularity of heart rate over time. When
individuals are relaxed, their heartbeat naturally fluctuates, allowing for greater variation
and flexibility. However, under challenging conditions, when the sympathetic nervous
system (associated with stress and effort) becomes more dominant, HRV tends to
decrease. This reduction enables the body to maintain focus in a fight or flight mode,
requiring less physiological regulation (Berntson et al., 1997; Hjortskov et al., 2004;
Mackersie et al., 2015).

In listening effort research, studies have shown that HRV decreases as SNR increases in
speech-in-noise tasks (Mackersie et al., 2015). Similarly, Wendt and colleagues (2018) used
time-frequency analysis of HRV, revealing moment-by-moment fluctuations that
correspond to specific linguistic and acoustic challenges (Wendt et al., 2018). When
examining populations with hearing impairment, research suggests that listeners with
hearing loss not only demonstrate greater HRV suppression during difficult listening
tasks but also exhibit a delayed recovery once the task is completed (Hornsby & Kipp,
2016).

Respiration Respiration provides valuable insights into autonomic regulation during
difficult listening conditions, though it has been studied less extensively than
cardiovascular or pupillometry measures. Several key indices of respiration are used in

listening effort research:

Respiration Rate is the most commonly used index, quantified as breaths per minute.
Bernardi and colleagues demonstrated that during challenging speech-in-noise tasks,
Respiratory Rate (RR) increases compared to quiet listening conditions (Bernardi et al.,
2014). Similarly, Richter (2016) observed significant RR changes correlated with SNR

(Richter et al., 2016a). Auer and colleagues further revealed that a sustained increase in
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RR precedes performance decline in challenging listening tasks, suggesting RR as a
potential early marker of listening effort (Auer et al., 2021).

Respiratory Variability examines the consistency of breathing patterns during effortful
listening. Studies have found that in difficult listening conditions, there is a significant
change in breathing interval variability (Vlemincx et al., 2013). However, Grassmann and
colleagues (2016) revealed that as total variability in respiratory rate is not systematically
affected by cognitive load, though the correlated fraction - the proportion of respiratory
variability that shows regular, structured, or predictable patterns over time. decreases
(Grassmann et al., 2016).

Tidal Volume (TV), another index used in measuring listening effort, refers to the
volume of air moved into or out of the lungs with each breath. It is typically measured in
millilitres and serves as an indicator of breathing depth during listening tasks. Compared
to RR and respiratory variability, which require post-task analysis, TV provides a faster
measure of breathing changes, improving temporal accuracy.

Studies have shown that during more demanding listening tasks, TV decreases by
15-20% compared to baseline measures (Grassmann et al., 2016). Research monitoring
respiratory parameters while manipulating SNR during speech perception tasks has
demonstrated progressive decreases in TV as noise levels increase (Bernardi et al., 2014).
When examining individuals with hearing impairments, Alhanbali and colleagues (2019)
found that during challenging listening conditions, individuals with hearing loss show
more pronounced reductions in TV compared to those with normal hearing (Alhanbali
etal., 2019).

Pupillometry Pupil diameter reflects the interplay of the Autonomic Nervous System
(ANS) (Loewenfeld, 1999; McDougal & Gamlin, 2015). When the Sympathetic Nervous
System (SNS)-which is associated with the fight or flight response and effortful
processing-is more active, arousal levels increase, leading to pupil dilation (Loewenfeld,
1999; Szabadi, 2011). Conversely, when the Parasympathetic Nervous System
(PNS)-often referred to as the rest and digest system-is more dominant, pupil size tends to
constrict (Szabadi, 2011).

Pupillometry provides a sensitive and robust method for assessing listening effort.
Research has consistently demonstrated a correlation between increased pupil diameter
and listening difficulty. Kramer and colleagues (1997) provided early evidence of a link
between pupil size and noise levels during listening tasks (Kramer et al., 1997). More
recent research has continued to confirm the strong relationship between pupil dilation
and task difficulty (Kuchinsky et al., 2013; Zekveld et al., 2010).
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Galvanic Skin Response  GSR, or skin conductance, measures electrodermal activity,
which fluctuates due to microscopic sweat secretions triggered by the SNS (Mackersie
etal., 2015).

GSR has proven particularly useful for investigating stress responses in challenging
listening situations. Studies have demonstrated increased GSR when individuals process
degraded speech signals (Mackersie & Cones, 2011). Furthermore, individual differences
in GSR appear to predict susceptibility to listening fatigue, suggesting that some listeners
may experience greater physiological strain than others during demanding auditory
tasks (Francis & Love, 2016).

Electroencephalography (EEG) Electroencephalography is a non-invasive technique
that records electrical activity generated by the brain. It captures voltage fluctuations
resulting from ionic currents within neurons (Nunez & Srinivasan, 2006). EEG offers high
temporal resolution, allowing researchers to track rapid brain changes associated with
cognitive processes, including listening effort (Kraus & Slater, 2015)

Multi-channel EEG systems use multiple electrodes positioned across the scalp
according to the International 10-20 system (Oostenveld & Praamstra, 2001). This setup
gathers spatial information about brain activity, enabling researchers to localise cognitive
processes to specific brain regions and study connections between different areas. In
listening effort research, increased activity in frontal cortical regions has been observed
during difficult listening tasks (Dimitrijevic et al., 2019).

Single-channel EEG uses a single electrode to record brain activity from a specific
location. While it provides limited spatial resolution, single-channel EEG offers
advantages such as lower cost and easier setup. It is particularly suitable for real-world

applications and ecological testing environments.

EEG Signal Components Several indices are commonly used in EEG data when

investigating cognitive effort.

Alpha wave (8-13 Hz) are dominant when a person is awake but relaxed (Niedermeyer &
Lopes da Silva, 2005). They are typically suppressed during cognitively demanding tasks
(Klimesch et al., 2007; Obleser et al., 2012; Pfurtscheller & Lopes da Silva, 1999).

Beta wave (13 - 30 Hz) are associated with active mental states, including alertness,
concentration, and problem-solving. In listening effort research, beta power has been

observed to increase during speech-in-noise tasks (Weisz et al., 2011).

Theta wave (4 -8 Hz.) are more prominent during drowsiness and shallow sleep and in

certain meditative states (Niedermeyer & Lopes da Silva, 2005). In cognitive effort
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studies, theta wave activity has been found to increase during difficult listening tasks
(Bernarding et al., 2017) and challenging speech comprehension (Wisniewski et al., 2017).

Other commonly used EEG indices include delta waves, P300, and N400. A detailed

summary table is presented in Table 3.4.

Table. 3.4. EEG Indices in Cognitive and Listening Effort Research

EEG Index  General Functional As- Key Findings in Effort Research

(Frequen- sociations
cy/Timing)
Alpha (8-13 Relaxed wakeful- Power decreases (suppression) in
Hz) ness temporal/parietal regions dur-
Cortical inhibit ing difficult listening conditions
orticaliniibion (Obleser et al., 2012).
Attentional gati
entionat gating Suppression magnitude correlates
Internal  focus with subjective listening effort rat-
(Jensen & Maza- ings (McMahon et al., 2016).
heri, 2010 . .
er ) Increased power in task-irrelevant
regions may reflect active inhibition
during focused listening (Klimesch
et al., 2007).
Beta (14-30 Active  mental Increased frontal power observed
Hz) states during challenging speech-in-noise

Motor function

Cognitive stabil-
ity
Top-down control

(Engel & Fries,
2010)

tasks (Weisz et al., 2011).

Activity linked to executive control
mechanisms engaged by effortful lis-
tening (Engel & Fries, 2010).

May reflect maintenance of the cur-
rent cognitive or attentional state
during sustained listening (McMa-
hon et al., 2016).

Continued on next page
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Table 3.4 — continued from previous page

EEG Index
(Frequen-

cy/Timing)

General Functional As-
sociations

Key Findings in Effort Research

Theta (4-7
Hz)

Delta (0.5-4
Hz)

Cognitive control
Working memory
Error monitoring

Executive func-
tion (esp. Frontal
Midline  Theta)
(Cavanagh &
Frank, 2014)

Deep sleep
Signal detection

Motivational pro-
cesses

Decision-making
(Harmony, 2013)

Enhanced frontal midline theta
power occurs during difficult speech

comprehension (Wiéniewski et al.,
2017).

Power often positively correlates
with increasing cognitive demand
in listening tasks (Bernarding et al.,
2017).

Activity levels can relate to perfor-
mance limits or decrements in sus-
tained listening (Cavanagh & Frank,
2014).

Increased power observed during
effortful listening, particularly in
noisy conditions (Dimitrijevic et al.,
2019).

Thought to be associated with cog-
nitive resource allocation during de-
manding speech processing (Wost-
mann et al., 2015).

Potentially linked to semantic in-
tegration efforts under challenge
(Kosem & van Wassenhove, 2018).

Continued on next page
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Table 3.4 — continued from previous page

EEG Index  General Functional As- Key Findings in Effort Research

(Frequen- sociations
cy/Timing)
P300 (ERP) Context updating Amplitude is often reduced under
(Posi- Stimul i conditions demanding high listen-
tive peak i Hmiis - evattas ing effort (Ohlenforst et al., 2017).
tion
300ms ] ]
. Latency tends to increase in more
post- Attentional alloca- . . N
. challenging listening situations
stimulus) tion .
(Polich, 2007).
Working memory .
i . Reflects demands on attention allo-
updating (Polich, . .
007 cation and working memory dur-
) ing speech processing (Kramer et al.,
2016).
N400 (ERP) Semantic process- Amplitude typically increases (be-
(Nega- ing comes more negative) with greater
tive peak L speech comprehension difficulty or
400ms anguage o semantic incongruity (Kutas & Fed-
prehension .
post- ermeier, 2011).
stimulus) Expectancy viola-

tions

Meaning integra-

Reflects increased semantic process-
ing load or effort in challenging con-
ditions (Strauss et al., 2013).

tion (Kutas & Fe-

. * Sensitive to linguistic prediction er-
dermeier, 2011)

rors encountered during effortful lis-
tening (Bidelman & Dexter, 2017).

Advantages and Limitations of EEG in Listening Effort Research EEG offers
significant advantages due to its high temporal resolution and non-invasive nature. It
enables researchers to monitor rapid changes in neural activity during cognitive tasks

without the need for invasive procedures.

However, EEG also has limitations, as its spatial resolution is lower than that of
functional Magnetic Resonance Imaging (fMRI). It is particularly susceptible to artefacts
from muscle movements and eye blinks. Additionally, it imposes task-related constraints,
requiring participants to remain relatively still to minimise movement-induced noise,

which may reduce the ecological validity of listening experiments (Debener et al., 2012).
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The practical use of EEG on experiment settings presents several challenges. Current
EEG systems mainly use either wet or dry electrodes for measuring. Wet electrodes,
which rely on conductive gels or pastes, offer better quality but require considerable time
to prepare and clean up afterwards (Ferree et al., 2001). Bringing much longer experiment
periods when testing multiple participants (Chi et al., 2010).

Dry electrodes, on the other hand, have emerged as a more convenient alternative and
reducing preparation time significantly. however, to compensate for reduced conductivity,
these electrodes often feature claw-like or pin-based designs which rely on more pressure

on the scalp for better conductivity, which causes discomfort for longer experiments.

Future research could benefit from the integration of both types of conductive electrodes.
Furthermore, advancements in dry electrode EEG technology may enhance participant

comfort while simultaneously improving conductivity.

Functional Magnetic Resonance Imaging (fMRI) Functional magnetic resonance
imaging (fMRI) is a neuroimaging technique used to measure brain activity. Unlike EEG,
which relies on electrical currents generated by neuronal firing, fMRI measures changes
in blood flow and oxygen levels associated with neural activity (Huettel et al., 2014).
fMRI provides excellent spatial resolution, enabling researchers to pinpoint the specific
brain regions activated during a listening task. However, its temporal resolution is lower
than that of EEG (Logothetis et al., 2001).

Key findings of listening effort in fMRI are shown in Table 3.5

Table. 3.5. Summary of fMRI Findings on Brain Regions Activated During Increased
Listening Effort

Brain Re- General Function(s) Typical Findingin Listening  Key Refer-

gion(s) Relevant to Effort Effort Research ences

Dorsolateral Executive  functions, Increased activation with (Peelle et al.,

Prefrontal working memory, higher task difficulty or noise =~ 2010; Wild et
Cortex top-down attention, levels al., 2012)
(dIPFC) strategic control

Anterior Conflict/performance Increased activation reflecting ~ (Eckert et al,
Cingulate monitoring, error ~ monitoring demands and per- ~ 2009; Wild et
Cortex detection, effort scal- ceived difficulty al., 2012)
(ACO) ing/perception

Continued on next page
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Table 3.5 — continued from previous page
Brain Re- General Function(s) Typical Finding in Listening Key Refer-
gion(s) Relevant to Effort Effort Research ences
Inferior Cognitive control, lan-  Increased activation, poten-  (Peelle et al.,
Frontal guage processing (syn-  tially for compensatory lan-  2010)
Gyrus tax, semantics), inhibi-  guage processing/control
(IFG) tion
Parietal Attention  allocation, Increased activation linked to (Peelle et al.,
Cortex (e.g., working memory  attentional demands and pro-  2010; Wild et
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2009; Peelle et
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2011; Peelle et
al., 2010)

(Hickok et al.,
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Functional Near-Infrared Spectroscopy (fNIRS) Functional Near-Infrared

Spectroscopy (fNIRS) is a relatively new method for measuring brain activity. It is a

non-invasive neuroimaging technique that monitors changes in oxygenated and

deoxygenated haemoglobin (a type of protein) concentrations in cerebral blood vessels

(Ferrari & Quaresima, 2012). Compared to fMRI, it is lower in cost and offers better

spatial resolution, but its temporal resolution is lower than that of EEG.

One advantage of Functional Near-Infrared Spectroscopy (fNIRS) is its ability to tolerate
noise better than EEG. Additionally, it can be used simultaneously with hearing aids or
cochlear implants without the risk of electromagnetic interference, unlike EEG
(Lawrence et al., 2018). It is also more portable and easier to use, allowing for more
natural experimental settings. Furthermore, it has greater tolerance to noise introduced
by movement or other electrical interference (Peelle, 2017).
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In summary, listening effort is a complex, multidimensional construct involving
cognitive, motivational, and physiological components. Understanding how effort is
experienced and measured is especially important for those with hearing loss, where the
impact of effort may extend beyond the listening task itself. The next chapter considers
why listening effort matters - not only at the individual level, but also in clinical, social,

and educational contexts.
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Chapter 4
The Significance of Listening Effort

Listening effort, defined as the cognitive resources deployed during auditory tasks
(McGarrigle et al., 2014; Pichora-Fuller et al., 2016c), is a complex aspect of human
perception and communication. As established in the preceding chapters, understanding
speech and other relevant sounds, particularly in adverse conditions, is not merely a
passive reception of stimuli but an active cognitive process influenced by contextual,
signal-related, and listener-specific factors. This chapter presents the importance of
understanding listening effort, examine the impact of excessive listening effort on
individual well-being, particularly for those with hearing impairment, its role in shaping
clinical audiological practices and hearing technology development, its broader societal
relevance in educational and occupational settings, and its importance for specific
populations including neurodivergent individuals and older adults. Understanding why
listening effort matters underscores the critical need for the robust measurement

techniques that will be discussed subsequently

4.1 Impact on Individuals with Hearing Impairment

4.1.1 Quality of Life, Fatigue, and Mental Well-being

For individuals with hearing impairment, the consequences of heightened listening effort
extend far beyond simple communication difficulties. The constant exertion required to
process degraded auditory signals can lead to significant cognitive fatigue, a sense of
exhaustion distinct from physical tiredness (Edwards et al., 2016; Hornsby, 2013). This
listening-related fatigue has been strongly linked to reduced overall well-being
(Heffernan et al., 2016).

The sustained cognitive load can contribute to increased stress levels and negatively
impact mental health (Edwards et al., 2016). Faced with the persistent strain of
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communication, individuals may begin to avoid socially demanding situations, leading

to social withdrawal, isolation, and a compromised quality of life.

Understanding listening effort provides a crucial framework for recognising and
quantifying these often-hidden costs associated with hearing loss, moving beyond simple
audibility towards a more comprehensive view of the listener’s experience
(Pichora-Fuller et al., 2016¢). Studies have also shown that people who feel more affected
by their hearing loss often report higher levels of fatigue, showing the real-world impact
(Alhanbali et al., 2018).

4.1.2 Challenges in Clinical Assessment

The significance of listening effort also highlights limitations in traditional audiological
assessments. Standard tests like Pure Tone Audiometry (PTA), typically conducted in
quiet environments, often fail to capture the real-world difficulties experienced by
individuals, particularly in noisy settings (Ohlenforst et al., 2017). This leads to the
common clinical scenario where patients report significant communication problems ("I
can hear, but I can’t understand") despite having seemingly adequate hearing thresholds
on the audiogram (Tremblay & Backer, 2015).

Listening effort research underscores the need to incorporate assessments that evaluate
auditory processing under more realistic, challenging conditions and consider the
cognitive resources involved. This motivates the exploration of supplementary clinical
tools, potentially including more specific self-report questionnaires, behavioural
paradigms that tax cognitive resources (like dual-tasks), and further, physiological
measures, to gain a more accurate diagnosis and tailor interventions effectively
(Ohlenforst et al., 2017)

4.1.3 Driving Hearing Technology and Rehabilitation

Recognising the burden of listening effort has shifted goals in hearing aid and cochlear
implant development (Lunner et al., 2016). The focus extends beyond simply restoring
audibility towards designing technologies that actively reduce the cognitive load
associated with listening. Features such noise reduction algorithms, directional
microphones, and frequency compression techniques are increasingly evaluated not just
for their impact on speech intelligibility scores, but for their ability to lessen perceived
effort and fatigue (Ng et al., 2015).

Understanding the physiological correlates of effort, can inform the design and
evaluation of these features. Furthermore, acknowledging the role of cognitive factors
opens avenues for rehabilitation strategies beyond technology, such as cognitive training

or auditory training programs aimed at improving specific skills (like working memory
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or attention) that support listening in challenging conditions. The ultimate aim,
potentially informed by identifying individual physiological response patterns, is to
move towards more personalised hearing solutions tailored to individual needs and

processing styles

4.2 Societal and Functional Consequences

4.2.1 Educational Environments

In educational settings, increased listening effort puts a significant barrier to learning,
affecting not only students with diagnosed hearing loss but also typically developing
children in acoustically challenging classrooms (Zekveld et al., 2018). Poor room
acoustics (e.g., high reverberation) and background noise force students to allocate
excessive cognitive resources simply to perceive the teacher’s instruction, leaving fewer

resources available for comprehension, learning, and memory consolidation.

This increased cognitive load can result in reduced attention spans, increased fatigue
throughout the school day, and ultimately, poorer academic outcomes. Recognising
listening effort as a factor highlights the importance of optimising classroom acoustics
and implementing supportive teaching strategies, such as using visual aids or remote
microphone systems, to create more accessible learning environments for all students
(Mackersie et al., 2015).

4.2.2 Workplace Productivity and Safety

The consequences of high listening effort extend significantly into the workplace. In
professions requiring critical communication in noisy environments (e.g., emergency
services, aviation, construction, call centres), the constant effort needed to understand
speech can lead to substantial mental fatigue, reduced productivity, and an increased risk
of communication errors (Hornsby & Kipp, 2016).

For safety-critical occupations, where clear communication and situational awareness are
paramount, excessive listening effort can directly compromise performance and
potentially lead to accidents (Mattys et al., 2018). Understanding and mitigating listening
effort through environmental modifications, improved communication technologies, or
appropriate work-rest schedules is therefore crucial for maintaining both worker

well-being and operational safety.
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4.3 Significance for Specific Populations

4.3.1 Neurodivergent Populations

Listening effort presents unique challenges for neurodivergent individuals, such as those
with Autism Spectrum Disorder (ASD) or Attention-Deficit/Hyperactivity Disorder

(ADHD). These individuals often experience significant difficulties processing auditory
information, particularly in complex social or noisy settings, even when standard hearing

tests (audiograms) are normal (Rance et al., 2014; Robertson & Baron-Cohen, 2020).

Research suggests they may expend greater cognitive resources (i.e., higher listening
effort) than their neurotypical peers to achieve similar levels of performance in auditory
tasks (Gosselin & Gagné, 2017). Recognising the role of listening effort in these
populations is vital for accurate diagnosis, avoiding misattribution of difficulties solely to
attention or behaviour, and developing tailored educational and therapeutic support

strategies (Rance et al., 2014).

4.3.2 The Aging Population and Cognitive Health

Understanding listening effort is increasingly critical given global demographic shifts
towards aging populations. Older adults often report experiencing greater listening
effort, even with relatively normal hearing thresholds, potentially due to age-related
declines in central auditory processing and cognitive functions like working memory and
inhibitory control (Peelle, 2018).

This carries significant implications for cognitive health, as a potential detrimental cycle
often exist: age-related cognitive decline can increase listening effort, while the chronic
exertion of high listening effort may, in turn, deplete cognitive resources needed for other
functions, potentially accelerating cognitive decline or increasing the risk of dementia
(Lin et al., 2013). Addressing listening effort in older adults, through both hearing
interventions and cognitive support, may therefore be crucial for maintaining cognitive
function and overall quality of life.

4.4 Research Importance

4.4.1 Relevance to listening Effort Theory

Beyond its practical consequences, the study of listening effort holds considerable
theoretical importance. It serves as a valuable paradigm for investigating fundamental

cognitive processes such as attention, working memory, and executive control under
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demanding conditions. The challenges in measuring effort consistently across different
modalities and contexts push researchers to refine theoretical models like FUEL
(Pichora-Fuller et al., 2016c) or ELU (Ronnberg et al., 2013), leading to a more nuanced
understanding of how cognitive resources are allocated and managed during complex
perceptual tasks. Furthermore, the documented significance across so many domains
directly motivates the ongoing research into developing more sensitive, reliable, and

ecologically valid measurement techniques - the focus of the subsequent chapter.

4.4.2 Listening Effort as a Bridge Between Fields

Listening effort bridges multiple fields: auditory neuroscience, cognitive psychology,
audiology, and human factors research. It links bottom-up acoustic processing with
top-down cognitive control, including attention, memory, and executive function. From a
theoretical standpoint, listening effort has helped clarify why intelligibility does not
always predict listening ease. Someone may accurately repeat what was said, but only
with significant exertion. This dissociation challenges simplistic assumptions that better
performance always means better experience. By providing a framework for studying
this disconnect, listening effort helps refine models of speech perception and cognitive
load (Pichora-Fuller et al., 2016¢; Ronnberg et al., 2013).

In summary, listening effort represents a significant cognitive load with implications
across numerous aspects of life. From impacting the daily well-being, social participation,
and mental health of individuals with hearing loss, to influencing clinical practice and the
design of assistive technologies. Furthermore, listening effort plays a critical role in
educational attainment, workplace safety and productivity, and presents unique
challenges for neurodivergent individuals and the rapidly growing aging population,
potentially interacting with cognitive health trajectories. The significance highlights the
importance of understanding its underlying mechanisms and developing effective

methods for its measurement and management.
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Chapter 5

Overall Research Aim

In the previous chapters, we have presented the importance of listening effort research,
and measurements of listening effort from three fields: subjective reports, behavioural
measures, and physiological measures. Each method has its own merits and limitations.
The multifaceted nature of listening effort, which involves the biological foundations of
the auditory system and brain, the cognitive functions of the brain, and the complexity of

speech and language, makes measuring listening effort particularly challenging.

5.1 Addressing the Gaps

The process of listening, particularly in challenging acoustic environments, demands
significant cognitive resources, commonly referred to as listening effort. As established in
the preceding chapters, sustained or excessive listening effort carries substantial
consequences, impacting not only communication quality but also contributing to
cognitive fatigue, reduced quality of life, and social withdrawal, especially for
individuals with hearing impairment and older adults (Edwards et al., 2016; Heffernan
et al., 2016; Hornsby, 2013; Lin et al., 2013).

In addition, the cognitive load associated with listening effort has implications in crucial
societal contexts, including educational attainment and workplace productivity and
safety (Hornsby & Kipp, 2016; Mattys et al., 2018; Zekveld et al., 2018). Understanding
the nature and mechanisms of listening effort is therefore of considerable theoretical and
practical importance. Despite its significance, accurately defining and measuring
listening effort remains a considerable challenge (Chapter 3.1, 3.4). While subjective
self-reports offer direct insight into perceived exertion and behavioural measures like
dual-task performance can index resource allocation (Gagné et al., 2017; Hart &
Staveland, 1988; Luts et al., 2010), these methods have limitations.
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Subjective ratings can be influenced by bias and introspection, while behavioural
outcomes may not fully capture the internal cost incurred (McGarrigle et al., 2014;
Ohlenforst et al., 2017). Physiological measures (e.g., pupillometry, electrodermal activity,
cardiovascular responses, EEG) render more objective indices of the body’s response to
cognitive demands (Kramer et al., 2016; Mackersie et al., 2015; McMahon et al., 2016;
Zekveld et al.,, 2010). However, a key unresolved issue, highlighted throughout the
literature and foreshadowed in the initial analysis of Study 1, is the frequent dissociation
observed between these different measurement domains - physiological responses do not
always align predictably with behavioural performance or subjective reports (Alhanbali
et al., 2018; Ohlenforst et al., 2017).

Furthermore, much research has focussed on group-level averages, potentially obscuring
the substantial individual variability known to exist in how listeners experience and
respond to auditory challenges (Chapter 3.3.2; (Koelewijn et al., 2012; Peelle, 2018;
Zekveld et al., 2011)). Existing theoretical frameworks like FUEL and ELU provide
valuable models (Chapter 3.2), but a deeper understanding requires empirical
investigation into the dynamic, multi-system physiological patterns that characterise
individual responses, their consistency over time, and how they adapt to varying task
demands. Specifically, there is a need to move beyond static or peak measures to analyse
the full time-course of physiological signals, which may reveal more nuanced aspects of
effort regulation (Koelewijn et al., 2018; Winn et al., 2016).

Therefore, the current research programme is motivated by the need to address these
specific gaps. It employs a multi-dimensional approach, integrating behavioural,
subjective, and a diverse range of physiological measures (autonomic and central) to gain
a more comprehensive understanding of listening effort. Crucially, this research focuses
on analysing the dynamic temporal patterns of physiological responses and directly
investigates individual differences and within-subject consistency. By examining these
aspects across different listener groups (hearing-impaired and normal-hearing) and
systematically varying task difficulty (adaptive and fixed SNRs), this work aims to
provide a more nuanced characterisation of the physiological manifestations of listening

effort and bridge the gap between internal processing costs and observable outcomes.

5.2 Overall Research Aim and Strategy

Given the limitations and gaps identified in the current understanding of listening effort,
particularly the dissociation between measurements and the role of individual variability,
the overarching aim of this research programme is to achieve a deeper, multi-dimensional
understanding of listening effort. This work specifically seeks to investigate how
listening effort manifests through various physiological systems, how these response
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patterns differ between individuals and remain consistent within them, and how they are

modulated by task demands and listener characteristics.

To address the multifaceted nature of listening effort, a two-study research strategy was
adopted. Study 1 involves a secondary analysis of physiological data ( EEG, GSR,
Pupillometry) collected from older adults with hearing impairment performing a
digit-in-noise task. This allows for an initial exploration of individual physiological
consistency and response patterns within a population known to experience significant

listening challenges in daily life.

Study 2, building on Study 1, involves normal-hearing participants conducting
performing a more complex, sentence-based speech-in-noise test under systematically
varied, fixed signal-to-noise ratios ( SNRs). This controlled design enables a clearer
investigation of how task difficulty modulates physiological responses (including
additional measures of ECG and Respiration) and performance, and facilitates a more
direct examination of the relationships between different measurements. Together, these
studies allow for both the characterisation of effort responses in a clinically significant
group (Study 1) with a simple digit-in-noise task, and examination of underlying
mechanisms and task-difficulty effects (Study 2) with speech-in-noise test, offering a

richer, more integrated understanding of listening effort.

5.3 Research Questions and Hypothesis

Overarching Goal of this research is to investigate the physiological responses of
listening effort, explore individual differences in these responses, and examine how these
responses are modulated by task difficulty ( SNR) and listener characteristics (hearing

status).

Physiological Correlates and Task Difficulty

Research Question 1: How do distinct physiological systems (autonomic: pupillometry,
GSR, heart rate, respiration; central: EEG alpha power) respond dynamically during
effortful listening tasks, and how are these responses modulated by varying levels of task
difficulty (SNR)?

¢ Hypothesis 1.1 (Difficulty Effect): Increased task difficulty (lower SNR) will lead to
greater physiological activation across multiple systems, reflected by:
- Increased pupil dilation (Pupillometry).
- Increased skin conductance levels/responses (GSR).

— Increased heart rate and /or decreased heart rate variability (ECG).
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— Changes in respiration rate or variability (Respiration).

- Greater suppression of EEG alpha power.

¢ Hypotheses 1.2 (Dynamic Response): Physiological responses will show distinct
temporal patterns related to task phases (e.g., listening vs. retention), with greater
modulation (e.g., larger peaks/troughs, slower recovery) observed under higher
task difficulty.

Individual Differences and Consistency

Research Question 2: Do individuals exhibit consistent, characteristic physiological
response patterns (signatures) to listening effort across repeated experiments, and can

individuals be reliably grouped based on these patterns?

¢ Hypotheses 2.1 (Within-Subject Consistency): Individuals will demonstrate
significantly higher similarity in their physiological response time-courses across
repeated experimental sessions compared to similarity between different

individuals, indicating stable individual response styles.

¢ Hypotheses 2.2 (Between-Subject Differences and Clustering): Cluster analysis
applied to physiological time-courses will reveal distinct subgroups of participants
exhibiting qualitatively different response patterns (e.g., different magnitudes,

timings, or shapes of response) within specific conditions.

Research Question 3: How do these individual physiological response patterns (clusters)
relate to listener characteristics (hearing status - Study 1) and behavioural/subjective

outcomes (accuracy, perceived effort, perceived difficulty - Study 1 and 2)?

¢ Hypotheses 3.1 (Hearing Status - Study 1): Individuals with greater hearing loss
(higher PTA) will exhibit physiological patterns indicative of higher effort (e.g.,
belonging to clusters with greater activation) and report higher subjective effort,

even when performance is matched via adaptive SNR.

* Hypotheses 3.2 (Physiology-Behaviour Link - Study 1 and 2): Membership in
distinct physiological clusters will be associated with differences in behavioural
accuracy and/or subjective ratings of effort/difficulty, although the relationship
may not be clear (e.g., some high-activation clusters might correspond to better
performance due to effective compensation, while others might link to poorer

performance or higher reported effort).

¢ Hypotheses 3.3 (Physiology-Subjective Link - Study 1 and 2): Direct correlations
will exist between the magnitude of physiological change during demanding task
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periods (e.g., listening window) and subjective ratings, such as increased
physiological activation correlating with higher reported effort or difficulty. Initial
findings suggest GSR change correlates significantly with accuracy and difficulty.

Cross-Modal Relationships and Task Complexity

Research Question 4: To what extent do different physiological measures provide
convergent or divergent information about listening effort? Is there significant agreement

in how individuals are classified based on different physiological signals?

¢ Hypotheses 4.1 (Cross-Modal Divergence): Clustering agreement across different
physiological modalities (e.g., comparing GSR-based clusters to pupil-based
clusters) will be low to moderate, indicating that different systems capture distinct

aspects of the overall effort response.

Research Question 5 (Study 2 Focus): How does a more complex listening task (sentence
recognition vs. digit recall) and the inclusion of additional physiological measures ( ECG,
Respiration) refine the understanding of listening effort compared to previous findings
(Study 1)?

¢ Hypotheses 5.1 (Task Complexity Effect): The more complex sentence task will
elicit more pronounced and potentially more differentiated physiological responses
compared to simpler digit tasks, particularly in measures sensitive to higher
cognitive load (e.g., EEG, pupillometry).

¢ Hypotheses 5.2 (Added Value of ECG/Respiration): Heart rate and respiration
measures will provide complementary information about autonomic regulation
during listening effort, potentially revealing different temporal dynamics or

sensitivities compared to GSR and pupillometry.

5.4 Comparison of the Studies

To achieve the research aims outlined above, this thesis presents findings from two

distinct but complementary empirical studies.

Study 1, detailed in Part III, involved a secondary analysis of existing data collected from
a group of 30 older adults (aged 51-80 years) with varying degrees of hearing loss (mean
PTA 41.7 dB HL). Participants performed a listening and memory task based on the
Sternberg paradigm, requiring them to recall digits presented in unmodulated noise.
Crucially, the signal-to-noise ratio ( SNR) was adaptively adjusted for each individual to
target a consistent performance level (71% accuracy).
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The available data included multi-channel electroencephalography ( EEG - focusing on
alpha power, analysing data from Pz electrode, referencing the electrode on the right ear
lobe), galvanic skin response ( GSR), and pupillometry, alongside subjective workload
ratings (NASA-TLX) and behavioural accuracy. The primary focus of this analysis was to
characterise individual differences in physiological response patterns, assess their
consistency across repeated sessions (test-retest reliability), and explore potential
relationships between these physiological signatures and listener characteristics (hearing

level) or outcomes (subjective effort, performance).

Study 2, presented in Part IV, describes a new experiment conducted with approximately
30 younger adults (aged 18-40 years) with normal hearing. This study employed a more
complex and arguably more ecologically valid listening task: the Oldenburg Sentence
Test (OLSA), adapted for British English, requiring participants to identify five-word
sentences presented in multi-talker babble noise. In contrast to Study 1, task difficulty
was systematically manipulated using four fixed SNR levels ( -16, -11, -6, and 12 dB),

chosen to span a wide range of intelligibility.

The physiological measures were expanded to include electrocardiography ( ECG, for
heart rate analysis) and respiration, alongside single-channel EEG, GSR, and
pupillometry (using wearable eye-tracking glasses). In Study 2, EEG was recorded at Pz
using a single active electrode referenced to a forehead electrode positioned at Fpz, with a
separate ground electrode placed behind the right earlobe(the mastoid area); the
single-channel configuration provides only the differential signal between Pz and the Fpz
reference. Subjective ratings of perceived effort and difficulty were collected using simple
visual scales after blocks of trials at each SNR.

The key objectives of Study 2 were to examine how different levels of task difficulty
modulate behavioural, subjective, and multi-system physiological responses; to
investigate the specific contributions of heart rate and respiration dynamics; and to
further explore individual consistency and the relationships between different measures

under controlled conditions.

A brief summary of two studies in this research are shown in Table 5.1.

Outline of Subsequent Chapters The next sections will proceed as follows: Part III
(from page 65) will present Study 1, and Part IV (from page 105) will introduce Study 2.
Finally, Part V (from page 207) will provide a general discussion and outline potential

directions for future research.
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Table. 5.1. Summary of Study One and Study Two

Study 1
(Secondary Data Analysis)

Study 2
(Full Experiment)

Participants

Sample size
Stimulus

Signal-to-
Noise Ratio

Measurements

Patients with hearing impair-
ment

Around 30 (valid data varies be-
tween different measures)

Digit Test

One adaptive level:
Adjusted for each individual to
achieve 71% accuracy

Subjective Reports
Accuracy
Electroencephalogram
Galvanic Skin Response
Pupillometry

People with normal hearing

Around 30 (valid data varies be-
tween different measures)

Speech-in-noise Test

Four set levels:
-16,-11, -6, 12 dB

Subjective Reports
Accuracy
Electroencephalogram
Galvanic Skin Response
Pupillometry
Electrocardiogram
Respiration
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Chapter 6

Introduction and Research Aims

6.1 Introduction

This first study involves a secondary analysis of a rich dataset acquired previously at the
University of Manchester (data collection led by Dr Sara Alhanbali; Faculty Ethics
Committee reference ERGO ID: 72142). While the original analyses primarily focussed on
group-level trends and relationships between average responses across different
measures (e.g., Alhanbali et al. (2018, 2021) ). The current study adopts a different
perspective. Rather than group-level trends, it explicitly focuses on the the consistency
and differences of individual listeners.

The original research investigated listening effort in 30 older adults with varying degrees
of hearing loss, employing subjective reports (NASA-TLX), behavioural measures
(accuracy in a digit-in-noise task), and multiple physiological indices, including ( EEG),
galvanic skin response ( GSR), and pupillometry. This existing dataset presents a
valuable opportunity to explore the physiological dimensions of listening effort within a

clinically relevant population known to experience significant communication challenges.

6.2 Aim of Study

The primary aim of Study 1 is therefore to characterise the nature and consistency of
individual physiological response patterns ( EEG alpha, GSR, pupillometry) during an
effortful listening task within older adults with hearing impairment. By examining
individual time-course data and exploring clustering results based on physiological
signatures, this study seeks to understand whether stable, distinct response profiles exist
and how they might relate to listener characteristics or outcomes, moving beyond

group-average summaries.
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6.3 Research Questions and Hypotheses

This secondary data analysis is guided by the following specific research questions and

corresponding hypotheses:

Research Question 1.1 To what extent do individuals show distinct physiological
response patterns (in terms of time-course dynamics) in EEG alpha activity, GSR, and
pupillometry during the listening effort task?

¢ Hypotheses 1.1 (Individual Differences): Significant between-subject variability will
be observed in the time-course patterns of EEG alpha, GSR, and pupillometry

responses.

Research Question 1.2  Are these individual physiological response patterns ( EEG
alpha, GSR, pupillometry) consistent and reliable within the same person across two

experimental sessions conducted one week apart?

¢ Hypotheses 1.2 (Consistency): Individuals will exhibit statistically significant
within-subject consistency (test-retest reliability), measured by correlation, in their
physiological response patterns ( EEG, GSR, Pupillometry) across the two
experimental sessions, exceeding the consistency observed between randomly

paired individuals.

Research Question 1.3 Can participants be clustered meaningfully based on the
similarity of their physiological response time-courses for each measure ( EEG, GSR,

Pupillometry)?

¢ Hypotheses 1.3 (Clustering): Cluster analysis applied to the time-course of
physiological response patterns ( EEG alpha, GSR, pupillometry) will successfully
identify a small number (e.g., 2-3) of distinct subgroups of participants for each
measure, based on standard clustering validation metrics (e.g., elbow method).

Research Question 1.4 If distinct physiological clusters are identified, are they
significantly associated with participants” hearing level (PTA), overall subjective effort
ratings (NASA-TLX), or behavioural performance (accuracy)?

¢ Hypotheses 1.4 (Cluster Correlates): Membership in the identified physiological
clusters will be significantly associated with variations in participants” hearing level
(PTA), subjective effort ratings (NASA-TLX), and/or behavioural performance
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(accuracy). (Note: Based on the literature’s physiology-behaviour gap, this
hypothesis is tentative).

Research Question 1.5 How much agreement exists between the participant groupings
derived independently from EEG, GSR, and pupillometry? Do these different

physiological signals classify individuals in similar ways?

¢ Hypotheses 1.5 (Cross-Modal Agreement): Cluster assignments derived
independently from EEG, GSR, and pupillometry will show statistically significant,
albeit potentially moderate, agreement (e.g., measured by ARI), suggesting these
measures capture partially overlapping aspects of the effort response.

Addressing these questions and testing these hypotheses through the analysis of this
existing dataset will provide foundational insights into the nature of individual
physiological responses to listening effort in an older, hearing-impaired group, setting the
stage for the experimental investigations in Study 2. The subsequent chapters in this Part
will detail the specific analysis methods applied to the dataset and present the
corresponding results. The following chapter details the experiment design and data

acquisition procedures.
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Chapter 7
Experiment Design

Original data was collected by Alhanbali from the University of Manchester. The
description of experiment design is mainly referenced from study 3 in Alhanbali’s thesis
(Alhanbali, 2017).

7.1 Participants

Participants were native speakers recruited from database of three UK National Health
Service audiology departments, through flyers at the University of Manchester, or
through social groups. Thirty participants were recruited for the study. Due to differences
in data quality across different measures, the number of participants included in each
analysis varies slightly. Each measure was analysed using the participants with valid
data for that modality, and overlapping datasets were used when comparisons between
measures were required (e.g., valid EEG datasets: n = 29; datasets with both EEG and

behavioural data: n = 27).

Of the participants, 50% being male, participated in this study with repeated design.
They ranged in age from 51 to 80 years (M = 69.9, SD = 6.37), and hearing level (PTA)
ranged from 7.5 to 78.75 dB HL (M = 41.7, SD = 17.74). Participants with hearing
threshold < 30 dB HL were classified as having normal hearing (n = 8, age: 60-78 years).

7.2 Listening Task

The listening task was based on a modified version of the Sternberg paradigm (Sternberg,
1966). Participants with hearing impairment performed the task whilst wearing their
hearing aids with their everyday setting. In contrast to the 3-digit sequences used for
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SNR determination, the main study employed sequences of 6 digits to increase the
cognitive demands of the task.

The speech material consisted of digit from 1 to 9, recorded from a male speaker
(McShefferty et al., 2013). The bisyllabic number 7 was excluded to maintain consistent
syllable count across stimuli. Digits were presented with background noise that started
five seconds before the first digit, and continued until one second after the final digit
ended (Alhanbali et al., 2018).

The Signal-noise-ratio was adapted for each participant to achieve 71% correct
identification of the digits. This was done using sequences of three digits in an adaptive
2-down, 1—up procedure with a 2—dB step size. A response was only considered correct
if the participant identified all three digits and in the right order. The average SNR
determined was -4 dB (SD 5 dB). Noise applied here are unmodulated continuous noise,
presented at 65 dBA. (Alhanbali et al., 2018).

7.3 Measurements

Self-report The NASA Task Load Index was employed to measure self-reported
listening effort (Hart & Staveland, 1988). The questionnaire comprises six items: mental
demand, physical demand, temporal demand, perceived performance, effort, and
frustration. Participants completed the questionnaire using a 20-step scale (see Appendix
A, Page 220) at the end of the experiment. These ratings were subsequently averaged and
converted to percentages for analysis. Task performance (accuracy) was recorded

throughout the experiment.

EEG EEG was collected through Nexus - physiological recording system, sampled at
256Hz with BioTrace software. No online filtering was applied. Four electrodes were
positioned according to the international 10-20 system: Cz, Pz, P3, and P4 (channels 1, 2, 3
and 4, respectively; see Figure 7.1). Pz was referenced to a negative electrode placed on
the right ear lobe. The ground electrode was placed at the forehead. EEG data were
cleaned and filtered to the Alpha band (8 to 13 Hz) for subsequent analysis.

GSR Skin conductance (Galvanic skin response) was recorded from two electrodes on
the non dominant hand (index and middle finger). It was using the same system as EEG -
Nexus-10 system, sampling at 32 Hz. Participants were asked to keep their hand palm-up

to minimise movement artefacts.

Pupillometry Pupillometry was recorded through an Eyelink 1000 eye-tracker. Room

lighting and screen brightness were individually adjusted for each participant following
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Figure. 7.1. EEG Electrodes Applied in Experiment. The coloured positions indicate
electrode placements used in the experiment.

the procedures described by Zekveld et al. (2010). A standard 9-point eye point
calibration was performed before the experiment. Room lighting and screen brightness
were adjusted for each participant to place their baseline pupil size in a mid-rage,

avoiding floor - ceiling effect.

7.4 Experiment Procedure

Participant Setup and Preparation

Environment and Positioning Participants were seated comfortably in a sound-treated
booth facing a computer monitor. A chin rest was used to help maintain a stable head
position during the experiment. Participants who regularly used hearing aids wore their

own devices, using the settings they typically use in everyday life.

Physiological Monitoring Setup EEG electrodes were attached to the scalp according
to the 10-20 system, skin conductance sensors were placed on the non-dominant hand,
and an Eyelink 1000 eye-tracker was positioned and calibrated for each participant to
record pupillometry data. Room lighting and screen brightness were adjusted

individually before pupillometry recording commenced.



72 Chapter 7. Experiment Design

Baseline Acclimatisation. Prior to the main experimental tasks, participants watched a
documentary for 10 minutes. This served as an acclimatisation period and allowed for
the collection of baseline physiological data, particularly for skin conductance.

Trial Structure

¢ Listening Phase Each trial began when the participant indicated they were ready
(e.g., by pressing ENTER). The word "Listen" appeared on the screen. Unmodulated
background noise commenced via loudspeakers. After 5 seconds of noise, a
sequence of six spoken digits (1-9, excluding 7) was presented within the noise at
the participant’s predetermined SNR. Each digit won't repeat more than twice. The
noise stopped 1 second after the final digit.

* Retention Phase A fixation cross appeared on the screen for 3 seconds. During this
silent period, participants were instructed to mentally rehearse and memorise the
six digits they had just heard.

* Response Phase A single digit appeared on the screen next to a question mark.
Simultaneously, an audible alert tone (beep) sounded as a cue to respond.
Participants had to indicate as quickly as possible whether the probe digit was one
of the six digits presented in that trial by pressing a "Yes" or "No" button on a

response box.

* Recovery Phase A silent 4-second recovery period followed the participant’s
response before the next trial could be initiated.

Experiment Structure Participants performed 10 practice trials using the main task
format (six-digit sequences) at their determined SNR to ensure they understood the
procedure before the recorded session began. The main task involved 50 trials, with each
trial following the sequence below. The total task duration was approximately 15
minutes. This design allowed for the collection of time-locked behavioural and
physiological data across a consistent task structure, providing a foundation for assessing
individual response patterns and test-retest reliability.
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Data Analysis Method

Alhanbali and colleagues has done substantial works which can be found in Alhanbali
etal., 2018, 2019, 2021, where the group average response of physiological responses were
explored. This study is focusing on the individual differences, particularly focusing on
time-course response - the overall shape of the whole trial, in addition to a extracted data

point.

Two types of response measures were derived: the Average Trial Response (ATR), which
captures the average shape of a physiological signal across all trials, and the Time Course
Response (TCR), which reflects how these signals evolve over the full session, trial by

trial.

8.1 Data Structure

A total of 31 participants were included in the initial dataset, with each participant
providing two data files from repeated measures. The data were analysed using
MATLAB (R2021b). Raw data were first cleaned to remove artefacts, and some files were
excluded due to measurement faults or missing data. Ultimately, 29 participants had
valid EEG data, 26 participants had valid GSR data, and 26 participants had valid
pupillometry data. Participants with valid data varied across the three physiological
measures; for example, participant 7 was included in EEG but not in GSR. To maximise
the available data for analysis, valid participants” data files were selected for each
corresponding analysis rather than restricting the dataset to only those participants who
overlapped across all measurements (18 participants overlapped across all measures).
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8.2 Data Preparation and Derived Measures

8.2.1 Average Trial Response (ATR) and Time Course Response (TCR)

Raw data were initially examined and cleaned before calculating and analysing Average
Trial Response (ATR) and Time Course Response (TCR) (examples are shown in Figures
9.3 and 9.4). Average Trial Response (ATR) represents the average response across all
trials, reflecting task-related responses (50 trials in total; see EEG analysis, page 79).
Time Course Response (TCR) was computed by averaging all samples within each trial,
resulting in 50 data points per data file. These points were then connected to illustrate
response changes over time.

8.3 Analysis of Individual Consistency and Differences

8.3.1 Permutation Test of Correlation

To assess whether participants were more similar to themselves than to others,
permutation tests were used to determine correlation significance (Good, 2013).
Originally introduced by R.A. Fisher in the 1930s, permutation tests evaluate whether
observed differences are greater than those obtained by chance. The null hypothesis

assumes that all samples originate from the same distribution.

First, the observed difference between two groups (d1) is computed. The dataset is then
randomly shuffled to create new groups, and the difference between these randomised

groups (dR) is measured. This process is repeated 1,000 times to generate a distribution of
random differences. A one-sided or two-sided p-value (depending on test requirements)

is then calculated to determine whether d1 is significantly different from dR (Good, 2013).

In this case, correlation rather than difference was tested. Since each participant
contributed data from two experimental sessions, the null hypothesis posited no
difference between the correlation within the same participant and the correlation
between randomly paired participants. The correlation between the same participant’s
data were first computed and averaged. Next, datasets were randomly reassigned to
different participants, and the correlation was recalculated and averaged. This process
was repeated 1,000 times to generate a distribution of random correlations. The
significance of the observed correlation was assessed by its position within this

distribution (see Figure 9.5 for an example).
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8.3.2 Cluster Analysis

Cluster analysis was conducted to determine whether participants, despite their
individual differences, could be grouped based on similar response patterns. Cluster
analysis is a statistical technique that groups observations with similar characteristics and

encompasses various classification methods.

Clustering methods can be hierarchical or non-hierarchical. Hierarchical clustering,
which utilises a dendrogram approach, is more appropriate for smaller datasets, whereas
non-hierarchical methods, such as K-means clustering, are preferable for larger datasets
as they require the researcher to specify the number of clusters (Ziegel, 2000).

Clustering in Study 1 was carried out in Python using the scikit-learn implementation of
K-means. K-means clustering was selected for this study due to its advantages: (1) faster
computational time, (2) suitability for large datasets, and (3) flexibility in defining
clustering criteria (Wu, 2012). The method begins by selecting random centroids, then
assigns each observation to the closest cluster based on the chosen algorithm. The
centroids are iteratively adjusted until convergence is reached, meaning that cluster

assignments remain stable (Boccard & Rudaz, 2013).

For this analysis, correlation was used as the clustering criterion rather than Euclidean
distance. This ensured that participants clustered together exhibited similar response
patterns rather than mere spatial proximity. Given that K-means clustering is sensitive to
initial centroid selection, the procedure was repeated 1,000 times to ensure stability and

minimise error.

The elbow method was used to evaluate the optimal number of clusters by examining the
reduction in clustering error as the number of clusters (k) increased. As k increases, the
average distortion or clustering error decreases. When clustering is based on correlation,
error is calculated as the sum of (1 - correlation coefficient). However, as k continues to
increase, the improvement in clustering becomes marginal. The optimal number of
clusters is identified at the “elbow” point of the plot, where additional clusters no longer
yield substantial improvements in error reduction (Dangeti, 2017) (see Figure 9.7 for an
example). Further details are provided in the subsequent analysis.

8.3.3 Relationship between Physiological Responses and Other Measures

After clustering participants based on their physiological responses, we examined
whether these groupings were associated with subjective effort, hearing thresholds (PTA),
or age. More importantly, we also assessed the consistency of clustering across different
physiological measures - that is, whether individuals grouped together based on one
measure tended to be grouped together based on another.
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Chapter 9

Results and Discussion

9.1 Subjective and Behavioural Response

This section presents descriptive data of subjective effort, hearing level (PTA), and
performance. Participants (n = 32) include mainly senior adults, age range from 51 to 80
years( Mean = 68.74 years, Median = 70 years, SD = 6.39). Participants with various
degrees of hearing loss and using their own hearing aids when performing the task.

Subjective listening effort was assessed using the NASA Task Load Index (NASA-TLX), a
general measure of cognitive workload. (Hart & Staveland, 1988). Self-reported effort
scores showed considerable variation, ranging from 5 to 100 (Mean = 29.44, Median

= 24.17,SD = 20.57 , see Figure 9.1). This wide range likely reflects the significant

individual differences within the participant group.

Behavioural performance, measured as accuracy in identifying the probe digit, also
exhibited substantial variability, ranging from 68% to 98% (Mean = 88.19%, Median

= 90%, SD = 7.1). Interestingly, this variation occurs despite the adaptive method to set
SNR to achieve a consistent 71% accuracy level. This discrepancy suggests that factors

other than the SNR level strongly influenced task success.

Correlation between PTA, Subjective Effort, and Performance To explore the
relationships between hearing ability, perceived effort, and task performance, correlations
were examined. Following normality tests which indicated that only PTA data were
normally distributed, non-parametric Spearman correlations were computed between
PTA, subjective effort (NASA-TLX), and performance (accuracy).

As shown in Table 9.1, none of these correlations reached statistical significance at the
conventional @ = 0.05 level. However, the direction of the observed relationships aligns

with theoretical expectations: higher PTA values (poorer hearing) tended to be associated
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with higher subjective effort (0 = 0.29) and lower performance (0 = —0.33), and higher

subjective effort showed a weak association with lower performance (0 = —0.12).

The lack of statistical significance could be attributed to several factors, including the
modest sample size (N = 30 — 32 for these correlations), the high degree of individual
variability within this group of older adults with hearing loss, potential non-linear
relationships between these variables, the limitations inherent in using PTA and a general
workload measure like NASA-TLX, and possibly the adaptive SNR procedure itself

which might have compressed the range of task difficulty experienced by participants.

Table. 9.1. Correlation between Subjective Effort, PTA, and Performance

Relationship Spearman’s p  p-value  Significant n
PTA vs Subjective Effort 0.29 0.12 No 30
Subjective Effort vs Performance -0.13 0.48 No 32
PTA vs Performance -0.34 0.06 No 30

The relationship between subjective effort and performance accuracy for each participant
is shown in Figure 9.1. The plot further underscores the considerable individual
variability in response to the listening task, showing a wide scatter of participants across

the effort and performance dimensions.

Overall, the subjective and behavioural data reveal significant individual differences in
perceived effort and performance, even under individually adapted noise conditions.
While the correlations align directionally with expectations, they were not statistically

significant in this sample.

9.2 Electroencephalography (EEG)

9.2.1 Data Pre-processing

Electroencephalography (EEG) data were analysed to investigate the neural correlates of
listening effort during the task. Four EEG channels were used, positioned according to
the International 10-20 system: Pz, P3, P4, and Cz (channels 1, 2, 3, and 4, respectively), as
illustrated in Figure 9.2.

The analysis is focusing on Pz(channel 1), as other channels generate similar results, with
an emphasis on the alpha frequency band (8-13 Hz) as alpha wave, which is often
associated with increased cognitive load and listening effort. The raw EEG data were
filtered within this band and analysed using MATLAB.
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Figure. 9.1. Relationship between effort, performance, and hearing level (PTA)

Relationship between subjective effort, task performance, and hearing level (PTA). Each bubble
represents a participant, with position based on subjective effort rating (y-axis) and task accuracy
(x-axis), and bubble size corresponding to PTA (poorer hearing = larger bubble). The scatter

illustrates substantial individual variability across all three measures. Despite the adaptive design
targeting consistent accuracy, performance and effort levels varied widely, and no significant
correlations were found between these variables.

Average Trial Response (ATR) Calculation To characterise the EEG response across
trials, the Average Trial Response (ATR) was calculated for each participant by averaging
the EEG alpha amplitude across all 50 trials. Before the listening task begins, there is a
baseline period lasting approximately 10 minutes during which participants relax and
watch a documentary. Each trial lasted approximately 18 seconds, resulting in a total
experiment duration of 25 to 30 minutes. The same pre-analysis procedure was also

performed in GSR and pupillometry data.

Figure 9.3 shows ATR from all the participants with valid EEG data (N=29) from one
experiment (participant repeat the same experiment after one week interval). The vertical

lines indicate key task events: the cue to memorise digits and the cue to respond.

The figure also shows the event evoked response, as the dip of alpha wave before and

after each event. Details of event-related results were published in Alhanbali et al., 2021.
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Figure. 9.2. Position of EEG electrodes

Electrode positions used for EEG recording, based on the international 10-20 system. Coloured
points indicate the four channels recorded in this study (Pz, P3, P4, Cz). The Pz channel was
selected for analysis as it showed representative response patterns, and earlier exploratory tests
indicated similar outcomes across all channels.

This study is mainly focusing on exploring individual differences.

Time Course Response (TCR) To examine how the alpha response evolved over the
course of the experiment, the Time Course Response (TCR) was computed. This involved
averaging all EEG samples within each individual trial, yielding 50 data points per
experiment for each participant. The TCR can be viewed as a representation of the

change in average alpha activity from trial to trial (see Figure 9.4).

9.2.2 Individual Consistency and Difference

Individual Consistency: Permutation Test of Correlation To statistically evaluate the
observation of high within-subject consistency in EEG responses, permutation tests (see
Page 74 for detail about this method) were conducted on the correlation coefficients. This
non-parametric approach tests whether the similarity of responses within the same
individual (across the two experimental sessions) is significantly greater than the

similarity between responses from randomly paired individuals.

As shown in Figure 9.5 for ATR data (channel 1 example), the observed average
within-subject correlation (red circle) was significantly higher than expected by chance (p
< 0.001).

A similar significant result was found for the TCR data (Figure 9.6, p = 0.004). These
findings were consistent across other channels, confirming that individuals” EEG alpha
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Figure. 9.3. Example of average EEG average trial response (ATR) alpha band for all
participants (channel Pz)

The plot shows average alpha amplitude at channel Pz across 50 trials, with vertical lines marking
trial onsets (digit starts, memorising/retention start, and responding start)). Each line represents
one participant’s data: averaging 50 trials across 2 experiments. The black line thick line reflects the
mean across all valid trials. Despite variability between trials, a consistent dip in alpha activity can
be seen around the onset of different events, indicating a repeatable task-evoked neural response.

responses to the task were significantly more correlated within themselves than with

other participants” responses.

Finding Patterns: Cluster Analysis Given the confirmed individual differences, cluster
analysis (see page 75 for detail of the method) was employed to investigate whether
participants could be grouped based on the shape of their average neural response (ATR).
The ATR was selected for this shape-based clustering because, it provides a clearer
representation of the underlying task-evoked response pattern compared to the TCR; the
latter reflects considerable trial-to-trial variability (as seen in Figure 9.6), making it more
challenging to identify consistent waveform shapes suitable for grouping.

The analysis was performed on the average ATR across the two experiments for each
participant. Each ATR spanned 18 seconds of post-stimulus activity sampled at 256 Hz,
every participant was represented by a 4,608-point time-series vector (30 vectors in total,
each of dimension 1 x 4608). Prior to clustering, the ATRs were aligned in length,
imputed where occasional missing values occurred, baseline-corrected at stimulus onset,

and z-normalised.

To determine the optimal number of clusters (k), the elbow method was used, plotting
the clustering error (inertia) against k. As seen in Figure 9.7, the plot suggested an

optimal k of 2 or 3. Initial clustering with k=3 (Figure 9.8) revealed two clusters with very
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Figure. 9.4. EEG time course response (TCR) for one participant
(channel Pz)

The TCR was calculated by averaging alpha amplitude within each trial, resulting in 50 time
points per participant. Each line represents one participants average trial-wise alpha response
across the experiment. Two different lines represent two experiments(repeated measures). This
format captures how neural activity evolves over time, highlighting inter-individual variability
and potential trends in task adaptation or fatigue across repeated exposures..

similar average waveforms. Therefore, a 2-cluster solution was adopted, the results of

which are shown in Figure 9.9.

This cluster results (Figure 9.8 and 9.9) displays the centroid (average ATR waveform) for
each of the two clusters, representing the general trend for that group. The shaded
regions indicate the standard error of the mean (SEM) (Cacioppo et al., 2007; Luck, 2014)
at each time point, illustrating the variability of individual waveforms within each cluster
around the average; narrower bands indicate higher waveform similarity among

participants within that cluster.

The two clusters appear to exhibit distinct patterns of alpha modulation during the trial,
particularly around the listening phase. In summary, EEG ATR shapes revealed consistent
patterns across sessions for most participants, with clusters differing in the timing and
prominence of post-retention peaks. These differences suggest individual variability in

task-related cortical engagement and possible distinctions in listening or memory effort.

Relationship between EEG Clustering Result and subjective Effort, Hearing Level
(PTA), and Performance To determine if the identified EEG response patterns related to
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Figure. 9.5. Permutation test of within-subject correlations in EEG
average trial response

The red circle marks the average correlation between each participants EEG ATR data across
the two sessions. This is compared to a null distribution created by randomly re-pairing data
across participants. The observed within-subject correlation was significantly higher than would

be expected by chance (p < 0.001), confirming consistent individual EEG response patterns across
sessions
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Figure. 9.6. Permutation test of within-subject correlations in EEG
time course response

The red circle marks the average correlation between each participants EEG TCR data across the
two sessions. This is compared to a null distribution generated by randomly re-pairing participant
data. The observed within-subject correlation was significantly higher than expected by chance

(p = 0.004), indicating that trial-to-trial response trends were consistent within individuals over
time.
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Figure. 9.7. K-means elbow plot for EEG average trial response clustering

The elbow method was used to identify the optimal number of clusters (K) for grouping partic-
ipants based on their EEG ATR waveforms. The plot displays clustering error (inertia) across
different values of K. The turning point (elbow) suggests that 2 or 3 clusters provide the most
meaningful separation, with diminishing gains from further increasing K..
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Figure. 9.8. EEG clustering results of alpha-band average trial response (3 groups)

Participants were clustered based on their EEG alpha-band ATR waveforms at channel Pz. Each
line represents the average waveform (cluster centroid) for one of the three identified groups, with
shaded areas indicating within-cluster variability. Although three distinct clusters were extracted,
two showed highly similar shapes, motivating the use of a two-cluster solution for interpretation
in subsequent analyses.
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Figure. 9.9. EEG clustering results of alpha-band average trial response (2 groups)

Participants were grouped into two clusters based on the shape of their EEG alpha-band ATR
waveforms at channel Pz, averaged across both sessions. The centre lines represent the cluster
centroids, showing the typical response shape for each group. Shaded areas indicate the standard
error of the mean (SEM) across participants within each cluster. This result were used in subsequent
analyses examining relationships with subjective effort, hearing thresholds, and performance.

other measures, the two clusters were compared based on their PTA, subjective effort
(Self-report from NASA-TLX), and behavioural performance (Accuracy). Due to the
relatively small sample size within clusters (N=18 in Cluster 1, N=11 in Cluster 2 for
Self-report) and non-normal distribution of some variables, non-parametric

Mann-Whitney U tests were applied.

Figure 9.10 presents the distribution of PTA, Self-report, and Performance for each cluster
using boxplots. While some visual differences between the groups might be suggested by
the plots, the Mann-Whitney U tests revealed no statistically significant differences
between the two EEG clusters for PTA, subjective effort, or performance (all p > 0.1, see
Table 9.2.

It is noted that sample sizes is limited and varied slightly for comparisons due to missing
data for some participants on specific measures. The lack of a significant relationship
suggests that these distinct EEG alpha response patterns, while consistent within

individuals, may not directly map onto these specific behavioural or subjective outcomes



86 Chapter 9. Results and Discussion

PTA by Cluster (k=2) Subjective Effort by Cluster (k=2) Performance by Cluster (k=2)

®
=}

60

~
o

95

50

@
o

w

o
©
o

40

N
o

30

PTA (dB HL)
w
o
Accuracy (%)
&

20

N
o

80

Subjective Effort (rating from 0-100)

10

o
o

75
Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Figure. 9.10. Subjective effort, hearing level (PTA), and performance across EEG alpha
ATR cluster groups

Subjective effort, hearing level (PTA), and performance across EEG clustering groups. Boxplots
show the distributions of self-reported effort (NASA-TLX), pure-tone average (PTA), and task
accuracy for the two EEG alpha ATR clusters (k = 2). Colours match the cluster labels in Figure
9.9. Although visual differences appear between groups, Mann-Whitney U tests revealed no

statistically significant differences for any measure (all p > 0.1; see Table 9.2). These findings

suggest that differences in EEG alpha response patterns may not directly correspond to behavioural
or subjective outcomes.

Table. 9.2. Mann-Whitney U Test Results Comparing Cluster Groups (k=2) on PTA,
Subjective Effort and Performance

Variable N (Cluster 1 / Median (C1) Median (C2) U Statistic p-value
Cluster 2)

PTA 10 / 17 37.19 43.13 59.5 0.209

Self-report 10 / 17 21.67 30.83 66.0 0.352

Performance 10/ 17 90.0 86.0 105.0 0.324

Note: C1 = Cluster 1, C2 = Cluster 2, based on k=2 clustering. P-values rounded to three decimal places.
Medians and U statistic rounded to two decimal places. Sample size inside the groups were not consistent
due to missing data.

9.3 Galvanic Skin Response (GSR)

9.3.1 Data Pre-processing

Galvanic Skin Response (GSR), also known as skin conductance or electrodermal activity,
was measured as another physiological indicator of listening effort, reflecting
sympathetic nervous system arousal. Data were recorded at the same time with EEG
using electrodes placed on the participant’s non-dominant hand, sampled at 32 Hz. The
analysis procedure for GSR data followed the same process outlined for the EEG data.

Raw data were first inspected and cleaned to remove artefacts.
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Average Trial Response (ATR) and Time Course Response (TCR) Caculation The
Average Trial Response (ATR) for GSR was calculated by averaging the
baseline—corrected skin conductance level across all 50 trials for each participant. An
example of a participant’s GSR ATR is shown in Figure 9.11. This represents the average
phasic response related to the cognitive demands of the listening and memory task

within a trial.

The Time Course Response (TCR) was also computed by averaging all GSR samples
within each trial, yielding 50 data points per experiment. This aimed to illustrate how
average GSR levels changed over the duration of the experiment.

= Qverall Mean (N=27)
0.1004 —~ Avg Ret. Start (8.82s)
------ Avg Resp. Start (12.20s)

i

i

i

i

i

0.075 :
i

i

0.050 i
i

i

0.025 !
i
i

0.000

-0.025

GSR Amplitude (uS, baseline-corrected)

-0.075

|
i
i
i
i
~0.050 :
i
i
i
i

0.0 25 5.0 75 10.0 125 15.0
Time (s)

Figure. 9.11. Example of GSR average trial response(ATR) from all participants from one
experiment

Average trial response(ATR) was calculated for participants skin conductance response (across 50
trials). Vertical lines indicate trial onsets. The black line shows the average of all response The
plot reflects the typical phasic GSR pattern evoked by the listening and memory task, showing
event-related modulations in arousal level across trials.

9.3.2 Individual Consistency and Difference

Permutation Test of Correlation (Individual Difference) As with the EEG data,
permutation tests were performed to statistically assess within-subject consistency for
GSR responses. The tests confirmed that the correlation between a participant’s own two
ATR recordings was significantly higher than the correlation between randomly paired
participants (Figure 9.12, p < 0.001). A similar significant result was found for the TCR
data (Figure 9.13, p < 0.001). This indicates that individuals” GSR response patterns

during the task were highly consistent within themselves across the two sessions.
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Figure. 9.12. Permutation test of within-subject correlations in GSR
average trial response

The red circle indicates the average correlation between each participants GSR ATR data across
the two sessions. This is compared against a null distribution created by randomly re-pairing par-
ticipants. The observed within-subject correlation is significantly higher than would be expected

by chance (p < 0.001), demonstrating that individuals exhibited consistent skin conductance
response patterns across sessions.
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Figure. 9.13. Permutation test of within-subject correlations in GSR
time course response

Permutation Test of Pupillometry TCR in Correlation. The red circle is the average correlation
between the same participant’s data (experiment 1 and 2). The p—value is significant, which

means that the correlation within the same participant’s data is significantly higher than the
correlation between random participants” data.
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Finding Patterns: Clustering Analysis To explore potential subgroupings based on
GSR response patterns, K-means cluster analysis was applied to the GSR ATR data, again
using correlation as the distance metric. The ATR was chosen over the TCR for
shape-based clustering due to its clearer representation of the average task-evoked
response pattern, free from the higher trial-to-trial variability inherent in TCR which

complicates pattern identification.

The elbow method (Figure 9.14) suggested an optimal number of 2 or 3 clusters. After
examination, a 2-cluster solution was adopted. Figure 9.15 presents the results, showing
the centroid (average GSR ATR waveform) and SEM for each cluster. The two clusters
appear to represent different temporal dynamics in the average skin conductance

response during the trials.
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Figure. 9.14. K-Means Elbow Result of GSR

The elbow method was used to determine the optimal number of participant clusters based on
GSR ATR waveforms. The plot shows the within-cluster sum of squares (WCSS) across different
values of K. A sharp decrease followed by a plateau suggests that 2 or 3 clusters provide the most
meaningful separation of participants based on their skin conductance response patterns.

GSR ATR waveforms showed typical sympathetic arousal patterns, with group
differences in peak amplitude and recovery slope. These patterns may reflect varying

levels of physiological effort or arousal across participants.

Relationship between Clustering and Subjective Effort The relationship between
these GSR-based clusters and other participant measures (PTA, subjective effort,
performance) was investigated using Mann-Whitney U tests, appropriate for the sample
sizes and potential non-normality. The distributions of these variables for each cluster are

visualised in Figure 9.16

Similar to the findings for the EEG clusters, despite any visual suggestions in the plots,
no statistically significant differences were found between the two GSR clusters for PTA,
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Figure. 9.15. GSR clustering results of average trial response (2 groups)

Participants were grouped into two clusters based on the shape of their average skin conductance
response (GSR ATR). Each line represents the centroid of a cluster, reflecting the typical GSR
waveform for that group. Shaded regions represent within-cluster variability (1 SEM). The two
clusters display distinct temporal profiles, suggesting differences in autonomic engagement during
the task.
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Figure. 9.16. Subjective effort, hearing level (PTA), and performance across GSR alpha
ATR cluster groups

Subjective effort, hearing level (PTA), and performance across GSR ATR clusters. Boxplots show
the distributions of NASA-TLX scores (subjective effort), pure-tone average (PTA), and task
accuracy across the two GSR clustering groups (k = 2). Colours match cluster labels from Figure
9.15. Despite apparent visual trends, Mann-Whitney U tests found no statistically significant
differences between clusters (all p > 0.6; see Table 9.3), suggesting that physiological response
patterns did not align with behavioural or subjective outcomes.
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subjective effort (Self-report), or performance (all p > 0.6, see Table 9.3). Sample sizes for
these comparisons varied (e.g., N=23/4 for PTA, N=23/5 for Self-report and

Performance) due to missing data across different measures. These results suggest that

the distinct patterns identified in average GSR responses do not straightforwardly align

with individual differences in hearing thresholds, overall subjective workload ratings, or

task accuracy in this study.

Table. 9.3. Mann-Whitney U Test Results Comparing GSR Cluster Groups (k=2) on PTA,

Subjective Effort, and Performance.

Variable N Median (C1) Median (C2) U Statistic p-value
(Cluster 1 /
Cluster 2)
PTA 23 /4 38.13 0.785
Subjective Effort 23 / 4 23.33 0.785
Performance 23 /4 90.00 0.583

Note: C1 = Cluster 1, C2 = Cluster 2, based on k=2 clustering of SC data. Ns show sample sizes for each

cluster in the comparison for that variable (after dropping NaNs). P-values rounded to three decimal places.

Medians and U statistic rounded to two decimal places. Sample size inside the groups may differ between

variables due to missing data.

9.4 Pupillometry

9.4.1 Data Pre-processing

Pupillometry, the measurement of pupil diameter, was utilised as a further physiological
index of listening effort, reflecting cognitive load and autonomic nervous system activity.

Pupil size data were recorded using an Eyelink 1000 eye-tracker at a sampling frequency

of 1000 Hz. To ensure stable recordings, participants used a chin rest, and room lighting

and screen brightness were individually adjusted prior to data collection.

Preprocessing steps typically include artefact removal (e.g., correcting for blinks),

although the units in Figure 9.17 are noted as arbitrary and the caption questions whether

baseline correction was applied; we assume standard preprocessing suitable for

task-related analysis was performed.

Individual Consistency: Permutation Test of Correlation The consistency of pupillary

responses within individuals across the two experimental sessions was assessed using

permutation tests on correlation coefficients. The results demonstrated that the

correlation between a participant’s own two ATR recordings was significantly higher

than that between randomly paired participants (Figure 9.18, p < 0.001). A similar
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Figure. 9.17. Example of Pupillometry average trial response

Pupil diameter traces from one participant, averaged across 50 trials. Vertical lines indicate the
onset of each trial. The plot illustrates task-evoked pupillary responses during the listening and
memory task, reflecting event-related changes in cognitive load over time.

significant finding was obtained for the TCR data (Figure 9.19, p < 0.001). These
outcomes confirm that, like the EEG and GSR responses, individual pupillometry

patterns during the task were highly consistent within participants.

9.4.2 Finding Patterns: Cluster analysis

K-means cluster analysis was applied to the pupillometry ATR data to identify potential
subgroups based on the shape of the average task-evoked pupillary response, using
correlation as the distance metric. The ATR was selected for this shape-based clustering
because, by averaging across trials, it provides a clearer representation of the underlying
task-evoked response pattern compared to the TCR; the latter reflects considerable
trial-to-trial variability, making it more challenging to identify consistent waveform
shapes suitable for grouping.

The elbow method (Figure 9.20) suggested an optimal number of 2 or 3 clusters.
Consequently, a 2-cluster solution was examined, as presented in Figure 9.21. The figure
shows the centroid (average pupil ATR waveform) and SEM for each cluster. Visual
inspection suggests the two clusters primarily differ in the magnitude and potentially the
timing of the peak task-related pupil dilation.

Pupillometry ATR traces revealed groups with more sustained dilation during retention
versus those with earlier constriction, suggesting differences in cognitive load or

sustained effort during the memory phase.
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Figure. 9.18. Permutation test of within-subject correlations in pupil
diamter average trial response

The red circle indicates the average correlation between each participants ATR data across the
two experimental sessions. This is compared against a null distribution generated by randomly
re-pairing participants. The observed within-subject correlation is significantly higher than

expected by chance (p < 0.001), confirming consistent individual pupillary response patterns
across sessions.
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Figure. 9.19. Permutation test of within-subject correlations in pupil
diameter time course response

The red circle indicates the average correlation between each participants TCR data across the
two sessions. This is compared against a null distribution generated by randomly re-pairing
participants. The significantly higher within-subject correlation (p < 0.001) supports the presence
of stable trial-wise pupil response patterns across experimental sessions.
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Figure. 9.20. K-means elbow plot for pupil diameter average trial response
clustering

The elbow method was used to identify the optimal number of clusters for pupil ATR data. The
plot shows the within-cluster sum of squares (WCSS) across increasing values of K. The turning
point around K = 2 or 3 suggests that these values provide the most meaningful grouping of
participants based on their average pupillary response shape
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Figure. 9.21. Pupil diameter clustering results of average trial response (2 groups)

Participants were grouped into two clusters based on the shape of their average pupillometry
response. Each line represents the cluster centroid, showing the mean pupil waveform for that
group, and the shaded regions indicate the standard error of the mean (SEM). The y-axis reflects
pupil size in arbitrary units, corresponding to the eye-tracker’s native pupil-size measure rather
than physical diameter; values therefore represent relative differences in pupil dilation over time.
Vertical dashed lines mark the onset of the digit sequence (5.8 s), the memorisation period (8.9 s),
and the response phase (11.9 s). The two clusters differ primarily in the magnitude and timing
of task-evoked pupil dilation, suggesting distinct physiological response patterns during the
listening and memory task.
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Relationship between Pupillometry and Hearing Level (PTA), Subjective Effort, and
Performance Finally, the relationship between the two pupillometry-derived clusters
and the participants” PTA, subjective effort (Self-report), and performance was examined
using Mann-Whitney U tests. The distributions are illustrated in Figure 9.22. Consistent
with the findings for EEG and GSR clusters, no statistically significant differences were
found between the two pupillometry clusters for PTA, subjective effort, or performance
(all p > 0.3, see Table 9.4).

It is important to note the differing sample sizes within the clusters for these comparisons
(N=19 in Cluster 1, N=7 in Cluster 2) and that performance data were noted as
unavailable for this specific cluster comparison in the original analysis documentation.
Thus, the distinct average pupillary response patterns identified did not significantly
correspond to variations in hearing thresholds or subjective effort ratings among these

participants.
PTA Subjective Effort Performance
80 A
50
701 _ 95
o
o
by
60 © 40 20
§
= —~
2501 2 g
T £ 285
oQ © 30 @)
) = e
40 £ =1
£ 2 S 80
bl <
30 1 220
g 75
9
20 A e
]
10
70
10
Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Figure. 9.22. Subjective effort, hearing level (PTA), and performance across pupil diame-
ter ATR cluster groups

Subjective effort, hearing level (PTA), and performance across pupillometry ATR clusters. Boxplots
show the distribution of NASA-TLX scores (self-reported effort), pure-tone average (PTA), and
task accuracy across the two participant groups identified by pupillometry ATR clustering (K = 2).
Cluster colours match those in Figure 9.21. Despite visual trends, Mann-Whitney U tests revealed

no statistically significant group differences (all p > 0.3; see Table 9.4 ). This suggests that
the physiological pupil response patterns do not directly map onto behavioural or subjective
outcomes.

9.5 Clustering Agreement between Physiological Measures

Having derived 2-cluster solutions independently for each of the three physiological
measures (EEG alpha ATR, GSR ATR, and Pupillometry ATR), this section examines the
extent to which these different measures classified participants into similar groups.
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Table. 9.4. Mann-Whitney U Test Results Comparing Pupillometry Cluster Groups (k=2)
on PTA and Subjective Effort.

Variable N Median (C1) Median (C2) U Statistic p-value
(Cluster 1 /
Cluster 2)
PTA 7/ 19 36.25 43.13 60.00 0.729
Subjective Effort 7 /19 22.50 25.00 66.50 0.868
Performance 7/ 19 86.00 90.00 51.00 0.303

Note: C1 = Cluster 1, C2 = Cluster 2, based on k=2 clustering of Pupillometry data. Ns show sample sizes for
each cluster in the comparison for that variable (after dropping NaNs). Results for 'Performance’ were not

available. P-values rounded to three decimal places. Medians and U statistic rounded to two decimal places.

Sample size inside the groups may differ between variables due to missing data.

Understanding the agreement between these cluster assignments provides insight into
whether these distinct physiological signals capture related underlying response patterns
to the listening task.

Figure 9.23 presents a detailed visualisation of the clustering agreement across the three
measures for each participant included in the overlapping analysis. Participant identifiers
are shown along the x-axis, and the corresponding three-digit code below each indicates
the cluster assignment (1 or 2) for Pupillometry, GSR, and EEG, respectively. This allows
for inspection of individual agreement patterns (e.g., participant S29 assigned to 211",
meaning Cluster 2 for Pupillometry, Cluster 1 for GSR, and Cluster 1 for EEG).

To summarise the overall consistency, Figure 9.24 illustrates the percentage of participants
who were assigned to the same cluster (i.e., both assigned to Cluster 1 or both assigned to
Cluster 2) across pairs of physiological measures, and across all three measures. The
highest level of agreement was observed between the EEG and GSR clustering results,

with 64% of participants falling into the same cluster category for both measures.

Agreement involving pupillometry was considerably lower (Pupil-GSR: 40%; Pupil-EEG:

28%). Notably, only a small fraction of participants (16%, n=4) were classified into the
same cluster group across all three physiological measures simultaneously. This pattern
suggests a greater degree of similarity between the response types captured by EEG
alpha and GSR in this task, compared to pupillometry, and highlights substantial
divergence in participant classification depending on the physiological measure used.

Finally, an exploratory analysis examined whether participants who showed agreement
in their cluster assignments across different measure combinations also exhibited distinct
characteristics in terms of their hearing level (PTA), self-reported effort, or task
performance. Figure 9.25 displays the average PTA, Self-Reported Effort, and
Performance scores for groups of participants defined by their agreement status (e.g.,

those agreeing on Pupil-GSR clusters, those agreeing on GSR-EEG clusters, etc.). While
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Figure. 9.23. Clustering Group Agreement Across Different Physiological Measures

The x-axis shows participant numbers, and the y-axis represents different physiological measures.

Clustering group agreement across three physiological measures: GSR, EEG, and pupillometry.
A two-cluster solution was used. The digits at the bottom indicate the group assignment for
each measure-'1" for cluster 1, and "2’ for cluster 2. The three-digit strings represent the grouping
pattern for each participant across the three measures, in the order: pupillometry, GSR, and EEG.

It can be observed that the highest percentage of agreement in group membership occurs between
EEG and GSR.
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Figure. 9.24. Clustering Group Agreement Across Different Physiological Measures
(overlapping meausres)

Clustering group agreement across three physiological measures, focusing on the overlapping
measures, instead of detailed groups as Figure 9.23. It shows thatGSR and EEG clustering groups
has the most overlapping members in their grouping result, resulting 64% of the participants.

This result shows higher compatibility of participants” response of EEG and GSR, comparing
to Pupillometry and GSR, or Pupillometry and EEG. It’s notable that only 4 participants were
grouped in the same clustering group for all three measurements, indicating disagreement across
different measures of listening effort.
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some visual differences between these agreement groups are apparent in the plots,
subsequent statistical comparisons indicated no significant differences between these
groups for PTA, Self-Reported Effort, or Performance.
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Figure. 9.25. Subjective Effort, PTA, and Performance over Clustering Group Agreement

Result of hearing level(PTA), Self-reported effort, and Performance, over those groups which
agrees on K-Means clustering. There’s a visible difference between each group, though no statistic
significance was found between those groups.

In summary, the analysis of clustering agreement revealed limited concordance across the
three physiological measures, particularly when involving pupillometry. The highest
agreement found between EEG and GSR suggests these two measures might reflect more
closely related aspects of the physiological response in this context. The overall low
agreement implies that EEG alpha, GSR, and pupillometry likely capture different,
potentially complementary, facets of an individual’s complex response to listening effort.

9.6 Summary of Key Findings

The results presented in the previous chapter provide several key insights into the
subjective, behavioural, and physiological responses of older adults with hearing

impairment to a demanding listening task.

Significant Individual Variability in Subjective and Behavioural Responses The
study highlights the significant individual variability inherent in this population. Both
self-reported listening effort, measured using the NASA-TLX, and behavioural
performance accuracy demonstrated considerable variation across participants. This
occurred even when the signal-to-noise ratio was individually adapted to target a
consistent performance level (71% accuracy), indicating that factors beyond basic

audibility profoundly influence the listening experience and task outcome.
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Performance Variation Beyond Audibility The substantial range in performance
accuracy (68-98%) underscores the importance of cognitive factors, such as the working
memory load imposed by the 6-digit task, and potentially the effectiveness of individual
hearing aid processing in challenging conditions, extending beyond simple audibility
adjustments achieved via SNR adaptation.

Weak Association Between Standard Measures The investigation into the relationships
between standard clinical or global measures revealed weaker-than-expected associations
in this cohort. While the correlations between hearing loss (PTA), subjective effort, and
performance accuracy trended in the expected directions (e.g., poorer hearing associated
with greater effort and lower performance), none reached statistical significance.

This lack of significant findings might be attributed to the study’s sample size, the high
degree of inherent variability within the participant group, the limitations of the specific
measures used (PTA, NASA-TLX), or potentially the adaptive SNR procedure itself

masking some underlying relationships.

Consistent Individual Physiological Signatures The physiological data revealed that
individuals possess highly consistent and reliable physiological response patterns.
Within-subject consistency across repeated experimental sessions was statistically
confirmed for EEG alpha activity, galvanic skin response (GSR), and pupillometry using
permutation tests. This suggests that individuals have distinct, stable physiological

‘signatures” when engaging in this listening task.

Distinct Physiological Patterns: Clustering Results Despite this high within-subject
consistency, clear differences exist between individuals in these physiological patterns.
Cluster analysis based on the average trial response (ATR) shape identified distinct

subgroups (typically two clusters) for each physiological measure.

Physiological Patterns Do Not Directly Map to Global Measures However, a key
finding was that these physiologically-defined clusters did not significantly align with
variations in participants” hearing thresholds (PTA), overall subjective effort ratings
(NASA-TLX), or behavioural performance (Accuracy). This implies that the specific
temporal dynamics captured by these physiological measures reflect aspects of neural or

autonomic processing that are not directly mapped by these broader outcome variables.

Divergence Between Physiological Measures The study found limited agreement in
how participants were classified across the different physiological measures. Comparing
the cluster assignments derived independently from EEG, GSR, and pupillometry



100 Chapter 9. Results and Discussion

revealed low agreement overall, with only 16% of participants falling into the same

cluster category across all three modalities.

Agreement was highest between EEG and GSR (64%), suggesting these two measures
might capture more closely related physiological processes in this context than
pupillometry. This divergence strongly indicates that EEG alpha, GSR, and pupillometry
likely reflect distinct facets of the complex, multidimensional response to listening effort.
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9.7 Discussion

This study explored listening effort in a group of older adults with varying degrees of
hearing loss, using a digit-in-noise task where the signal-to-noise ratio ( SNR) was
adaptively adjusted to target approximately 71% accuracy. However, despite this
adaptive design, participants” actual performance varied notably, as did their reported
effort using the NASA-TLX (Hart & Staveland, 1988). This outcome underscores the
presence of substantial individual differences, even when performance is normalised by
design (Koelewijn et al., 2012; Zekveld et al., 2011).

No statistically significant correlations were found between hearing thresholds ( PTA),
subjective effort, and task accuracy. While trends followed expected directions-such as
poorer hearing being loosely linked to greater perceived effort and reduced
performance-the absence of significant effects may reflect limitations in sample size or
variability inherent to the older, hearing-impaired group.

Physiological measures ( EEG alpha, GSR, and pupillometry) provided further insight
into effort-related responses. A particularly clear outcome was the strong within-subject
consistency across the two sessions spaced one week apart. Permutation tests confirmed
that both average trial responses ( ATR) and trial-by-trial time courses ( TCR) were more
similar within individuals than between them, suggesting reliable individual

physiological profiles under these testing conditions.

However, clustering analyses revealed a disconnect between these physiological profiles
and other data. For each modality- EEG alpha, GSR, and pupil size-two distinct clusters
were identified, reflecting different characteristic response shapes across participants. Yet
these clusters were not significantly associated with hearing level, effort ratings, or task
performance. This echoes prior findings suggesting that physiological and subjective
measures of effort may not always align (Ohlenforst et al., 2017).

Additionally, there was minimal consistency in how participants were grouped across the
different physiological modalities. Pupillometry, in particular, showed low agreement
with EEG and GSR, although moderate alignment was observed between the latter two
(64%). Only a small proportion of participants (16%) were consistently assigned to the
same cluster across all three measures. This suggests that these modalities may capture
distinct physiological aspects of listening effort (Gagné et al., 2017; Pichora-Fuller et al.,
2016b), further highlighting the challenge of identifying a singular physiological marker.

Several limitations should be acknowledged. The modest sample size (around 30) may
have reduced the ability to detect subtle effects or between-group differences.
Additionally, heterogeneity within the participant group likely contributed to variability

in subjective and behavioural data.
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There were also methodological constraints. The NASA-TLX, while widely used, may not
be specific enough to isolate the perceptual and cognitive demands of listening. Similarly,
the adaptive SNR procedure-although designed to equalise difficulty-did not fully
achieve its goal, adding interpretive complexity. Finally, missing data on certain
physiological measures further reduced the number of participants included in some
analyses.

9.8 Conclusion

Study 1 examined listening effort in older adults with hearing loss using a digit-in-noise
task, adaptive SNR, subjective workload ratings (NASA-TLX), performance accuracy,
and physiological responses ( EEG alpha, GSR, and pupillometry). While subjective
effort and behavioural performance varied widely across individuals, physiological

responses showed strong within-subject consistency across sessions.

Clustering revealed distinct response patterns within each modality, but these were not
linked to hearing thresholds, subjective ratings, or task outcomes. Cross-modality
agreement was limited, implying that EEG, GSR, and pupillometry capture different
facets of the physiological processes underlying listening effort.

Taken together, these findings highlight the individual nature of physiological effort
responses and the complexity of linking them to more traditional behavioural and
subjective outcomes. They also point to the value of multimodal approaches when
investigating listening effort, especially in heterogeneous populations.
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Study 2: Listening Effort Experiment
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Chapter 10

Introduction and Research aims

10.1 Introduction and Connection to Study 1

Following the secondary analysis presented in Study 1, which characterised individual
physiological response patterns ( EEG, GSR, Pupillometry) and their consistency in older
adults with hearing impairment, Study 2 embarks on a primary experimental
investigation designed to extend these findings and address remaining questions for this
project. Study 1 confirmed significant individual variability and notable within-subject
consistency in physiological responses to listening effort (Faculty Ethics Commitee
reference: ERGO/FEPS/ 87716).

However, it also highlighted the limited association between these physiological patterns
and behavioural or subjective outcomes under adaptively controlled signal-to-noise
ratios ( SNRs), reinforcing the known physiology-behaviour gap. Furthermore, the
adaptive SNR design precluded a systematic examination of how varying levels of task
difficulty influence these responses, and the analysis was limited to the available EEG,

GSR, and pupillometry measures.

Study 2 aims to build directly upon these findings and address these limitations. By
conducting a new experiment with normal-hearing participants, a key change is the use
of four fixed SNR levels (-16, -11, -6, 12 dB), allowing for a systematic investigation of
how varying degrees of task difficulty modulate physiological and behavioural responses

across a wide performance range.

Furthermore, Study 2 employs a more complex and arguably more ecologically valid
sentence-in-noise task (OLSA) compared to the digit recall task in Study 1. The
physiological assessment is also broadened to include ECG and respiration
measurements alongside single-channel EEG (Pz), GSR, and pupillometry, providing a
more comprehensive multi-system perspective on autonomic regulation during effortful

listening.
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10.2 Aim of Study

The overall aim of Study 2 is therefore to systematically investigate how task difficulty
(manipulated via fixed SNRs) influences dynamic physiological responses across
multiple systems, behavioural performance, and subjective experience in normal-hearing
listeners. It further aims to explore the nature of individual differences, response
consistency, and the relationships between these various measures under controlled
conditions, using insights from the temporal dynamics of the trial ( ATR in study 1) of
physiological signals.

10.3 Research Questions and Hypotheses

Study 2 is guided by the following specific research questions and corresponding
hypotheses:

Research Question 2.1 How does using a more complex listening task (speech-in-noise
sentences) influence the individual variability and consistency relationships observed in
Study 1 within a normal-hearing population?

¢ Hypothesis 2.1 (Consistency): Individuals will exhibit statistically significant
within-subject consistency in physiological responses (Pupil diameter, GSR, HR,
RR) across repeated sessions.

Research Question 2.2 How do additional physiological measures (Respiration rate,
Heart Rate/ ECG) respond during effortful listening, particularly in relation to varying
task difficulty?

¢ Hypothesis 2.2 (New Measures Modulation): HR (derived from ECG) and RR will
show significant task-evoked modulation (i.e., distinct changes related to task
events like listening vs. retention). Furthermore, their dynamics (e.g., HR recovery
during retention, change in RR during retention) will be significantly sensitive to

SNR level, reflecting differential autonomic regulation based on task difficulty.

Research Question 2.3 What is the effect of different, fixed SNR levels on behavioural
(accuracy, subjective effort, subjective difficulty) and physiological (Pupillometry, GSR,
Heart Rate, Respiration Rate, EEG) measurements?
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Hypothesis 2.3 ( SNR Effect - Behavioural): Decreasing SNR (representing
increased difficulty) will lead to significantly lower behavioural accuracy, higher

subjective effort ratings, and higher subjective difficulty ratings.

Hypothesis 2.4 ( SNR Effect - Physiological): Decreasing SNR will lead to
significant changes across physiological measures indicative of increased effort.
This includes, but is not limited to, greater task-evoked pupil dilation, increased
GSR amplitude or change during listening /retention, altered HR dynamics (e.g.,
reduced recovery), altered RR dynamics, and greater EEG alpha suppression

during relevant task phases.

Research Question 2.4 What are the relationships between the behavioural measures

(accuracy, subjective effort, subjective difficulty) and the various physiological measures,

particularly considering the different SNR levels?

Hypothesis 2.5 (Clustering within SNR): Cluster analysis applied to the
time-course of physiological responses (Pupil, GSR, HR, RR) will identify distinct
subgroups of participants within each specific SNR level, reflecting different
physiological response styles to a given difficulty.

Hypothesis 2.6 (Cluster Correlates): Consistent with Study 1 findings and the
recognised physiology-behaviour gap, membership in these physiological clusters
within a given SNR level is not expected to be significantly associated with

concurrent behavioural accuracy or subjective ratings.

Hypothesis 2.7 (Cross-Modal Agreement): Agreement between cluster assignments
derived from different physiological measures (e.g., HR vs GSR vs Pupil vs RR)
will be low to moderate within each SNR level, indicating that these measures

capture distinct or complementary aspects of the physiological response.

Hypothesis 2.8 (Physiology-Behaviour Correlation): The magnitude of change in
specific physiological measures during the listening period (particularly GSR and
potentially pupillometry, based on literature and Study 1 trends) will significantly
correlate with behavioural accuracy and/or subjective ratings across participants,
potentially revealing links between physiological engagement and outcomes.

By addressing these questions and testing these hypotheses, Study 2 aims to provide a

detailed, multi-dimensional account of how listening effort is physiologically expressed

and modulated by task difficulty, and the relationship between physiological measures

and subjective effort, difficulty, and performance.
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Chapter 11
Experiment Design

This chapter explains the experimental design employed to investigate listening effort. It
describes the listening task, a speech-in-noise test, outlines the participant selection

process, specific inclusion criteria, and illustrates the experimental procedure involving
task blocks and randomised condition sequences. It further explains what measures have

been taken to minimise the influence of confounding factors.

11.1 Participants

Sample Size The experiment aimed to recruit thirty participants, a sample size chosen
on the basis of an a priori G*Power analysis for a repeated-measures within-participants
design and consistent with previous work using similar paradigms (Faul et al., 2007;
McGarrigle et al., 2014; Zekveld et al., 2011). The power analysis assumed a medium
effect size (f = 0.25), « = .05, and 90% power for a design with two listener groups and
four SNR levels, yielding a required total sample size of N = 30.

Inclusion Criteria Participants were recruited via posters displayed on campus and

direct email invitations.

To be eligible for the experiment, participants had to:

a. be native English speakers;
b. be aged between 18 and 40 years;
c. have normal hearing;

d. have no known neurological diseases, physical or cognitive impairments that might

affect responses;
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e. have no severe skin allergies or irritation in areas where physiological measurement

methods would be applied.

Screening questions were completed to decide if participant can take part in the
experiment. After they met the criteria after the screening questions, participants were
given a Participant Information Sheet to read through the details of the experiment
design before deciding whether to participate. When signing up, participants were asked
to book two experimental sessions one week apart. They were paid £40 for completing

the full experiment.

We recruited only native speakers because the task involved understanding English
language. Previous research suggests that native and non-native speakers differ in both
performance and subjective effort when understanding language (Peng & Wang, 2019).

The age range of 18 to 40 was chosen to ensure participants were mature enough to
understand the requirements of the experiment while not being at an age associated with
increased risk of hearing loss. Additionally, age is known to contribute to listening effort
when performing speech-in-noise tasks, regardless of hearing loss level. This effect has
been attributed to the decline in working memory that occurs with ageing (Zekveld et al.,
2011).

Thirty-three participants took part in the experiment. One participant dropped out after
the first session. For each physiological measurement ( EEG, ECG, GSR, pupillometry,
and respiration), different numbers of valid data sets were used in the analysis. For
pupillometry, for example, data from 26 participants were included in the final analysis,
others were excluded because the noise is too high for reliable analysis..

11.2 Listening Test: Speech-in-noise Test (OLSA)

The primary tasks were speech-in-noise tests. These tests were originally developed in
German, named Oldenburger Satztest, or Oldenburg Sentence Test (OLSA) (Wagener
et al., 1999). This test was adapted from German into British English.All sentences were
read by a female voice speaking British English.

The speech stimuli consisted of five-word sentences presented against a background of
multi-talker babble noise (see Figure 11.1). Babble noise was selected to increase
ecological validity by simulating real-world listening environments.

Different conditions were created by varying the SNR levels at -16 dB, -11 dB, -6 dB, and
12 dB. These levels were established through pilot experiments, aiming to achieve
approximate accuracy rates of 20%, 50%, 80%, and 100%, respectively. Babble noise was
used throughout the test.
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Allan bought two big beds
Barry gives three cheap chairs
Hannah got four dark desks
Kathy has five green mugs
Lucy kept six large rings
Nina likes eight old ships
Peter sees nine pink shoes
Rachel sold ten red spoons
Steven wants twelve small tins
Thomas wins some thin toys
play again o Start experiment

Figure. 11.1. Speech-in-noise Matrix Test ( Oldenburger Satztest, or
Oldenburg Sentence Test (OLSA))

This figure illustrates the speech-in-noise test adapted from German version (Wagener et al., 1999).
The sentence consisted of five words selected randomly from each matrix column (e.g., "Alan
bought two big beds").

After hearing the sentence, participants touched the screen to select the words they perceived.
Words in the matrix were arranged alphabetically and numerically. The ‘play again” button was
disabled to standardise exposure.

For each listening task, noise began 500 ms before the sentence. Sentences were read by a
female voice in British English, with each sentence comprising five words. Each word
was randomly selected from the corresponding column of the matrix (see Figure 11.1).
The nouns in the response matrix were arranged in alphabetical order, and the numbers

were arranged in numerical order.

To complete each task, participants touched the screen to select the words they had heard.
The screen was adjusted to eye level to ensure comfort and high-quality pupillometry
data. Participants were instructed to minimise their movements during the test. As
shown in Figure 11.1, the "play again" button was disabled. participants cannot replay
the stimulus during the listening task.

Although the OLSA Matrix test is designed to minimise semantic predictability, some
degree of procedural learning can still occur over repeated trials. Participants can become
more familiar with the response matrix, the talker’s voice, and the fixed five-word
sentence structure, which may lead to modest improvements in performance over time.
These effects are most likely to appear at intermediate SNR levels where the task is
neither too easy nor too difficult.
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To mitigate these potential effects, the order of the SNR conditions was fully randomised
across the experiment. Each SNR level was divided into two blocks, resulting in eight
blocks in total. The session was further split into two parts, each containing four blocks
with different randomised SNR levels. This design ensured that no participant
encountered the SNR levels in a predictable or increasing-difficulty order, thereby
reducing systematic learning effects across the test.

11.3 Repeated Experiment Design

Each participant completed two experimental sessions. The second session took place
one week after the first and was scheduled at the same time of day to control for diurnal
variation in physiological responses. The one-week interval was selected for several
methodological reasons. Firstly, it aligns with the protocol used by Alhanbali et al. (2018)
in study 1, allowing for direct comparison of findings. Secondly, it represents a
compromise between methodological rigour and participant retention: longer gaps risk
higher attrition, whereas shorter intervals may introduce carryover effects (Hausknecht
et al., 2007).

The one-week interval is well-established in psychophysiological research paradigms, as
it corresponds to natural circadian and behavioural cycles, thereby minimising
extraneous variables whilst maintaining experimental control (Fallon et al., 2013).
Additionally, scheduling sessions at the same time of day for each participant was
implemented to control for diurnal variations in physiological responses, which have
been shown to affect measures such as pupil dilation, cortisol levels, and EEG patterns
(Schmidt et al., 2007).

This repeated-measures design enhances data reliability by enabling the assessment of
both within-session fatigue effects and between-session variability in listening
effort—factors particularly relevant to studies involving hearing-impaired population
(McGarrigle et al., 2014).

11.4 Experiment Procedure

An overview of the experimental structure is shown in Figure 11.2. The full experiment
comprised eight blocks and one short training block. The training block consisted of five
listening trials presented at a high SNR level (+40 dB), allowing participants to
familiarise themselves with the task without difficulty. The main experiment included
160 trials in total, with each block containing 20 trials at a fixed SNR level.
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Figure. 11.2. Experiment Design

After setting up, the experiment began with otoscopy and a hearing test to confirm participants
had healthy ear canals and normal hearing. Afterwards, participants viewed a two-minute
documentary designed to help them settle, with part of this data serving as baseline
measurements.

The listening tests began with a training block (consisting of five trials with low-level noise,
Signal to Noise Ratio (SNR): 40dB). Following this, the first half of the experiment commenced,
comprising four blocks of listening tasks. Each block included 20 trials with the same SNR level.
The sequence of SNR levels was randomised.

This structure provided sufficient repeated trials per SNR condition (40 trials each) to
enable reliable averaging and reliable data analysis, while keeping the total experiment

duration under two hours to minimise participant fatigue.

Experiment Preparation Participants were tested in the Small Anechoic Chamber at the
University of Southampton. Following initial setup, they underwent an otoscopic

examination to assess the condition of their ear canals. The experimenter, trained by a
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professional audiologist, ensured the procedure was conducted safely and accurately.
Once participants were confirmed to have healthy ear canals, they were fitted with insert
headphones to complete a PTA screening.

Stimulus presentation Sound was presented through insert headphones (E-A-Rtone
3A). It was calibrated through soundcard to ensure a stable sound level - 65 dB SPL, and
also to control the channel so participant won't hear the click sound which was used for

the researcher to mark the start of events (see Figure 11.3).

Hearing Test: Pure Tone Average (PTA) To verify normal hearing, a simplified PTA
test was conducted. Pure tones were played through MATLAB. Each pure tone lasted
approximately 2 seconds, four frequencies (500, 1000, 2000, and 4000 Hz) were each
presented at three sound levels (10, 20, and 35 dB), producing a total of 12 unique stimuli.
Sounds were played in a random order. The sound level was calibrated to 65 dB SPL
based on the stimulus of the experiment (speech-in-noise test). Participants indicated
whether they could hear all of the pure tones played.

Ensuring Participant Comfort Water and cups were provided within reach.
Participants were requested to minimise movement as much as possible. They were
informed that they could take breaks between tasks (approximately 12 seconds for each
task) and could raise their hands if they had any questions. The researcher remained in
the same room with the participant throughout the experiment.

Task Introduction Participants were informed about the procedure of the experiment
verbally first and later through text on the screen. As the experiment proceeded,

instruction dialogues appeared on the screen when needed.

Baseline Stabilisation The experiment began with a 2-minute nature documentary
(Video 1), designed to help participants settle and to establish baseline measurements.
After watching the baseline video, participants completed a training session. Instructions
were presented on the screen, and participants completed 5 listening tasks (MatrixMat
listening test, see Figure 11.1).

Training Session After completing 5 training listening tasks, participants rated their
experience by answering two questions: "How difficult was it to understand what was
said in the previous tasks?" and "For the last questions, how much effort did you put into
understanding what was said?" (see figure 11.5) Participants used a slider to rate each
question from 0 (not difficult/no effort) to 100 (very difficult/extreme effort).
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Figure. 11.3. Structure of Each Listening Trial

Each trial began with 500 ms of background noise(babble), followed by a five-word sentence
embedded in noise. Each click / impulse was set to mark the start to each word, and the start
and end of retention period, but has been specially treated through sound card so participant
could not hear. After listening, a three-second retention period followed, where participant cannot

respond. Participants then responded by selecting the words they heard on the screen.

Full Experiment After the training session, participants received on-screen instructions
to begin the experiment. There were 8 blocks of tasks, with each block consisting of 20
questions. To minimise learning effects and sequence effects (participants performing
worse as the experiment progressed), difficulty levels were randomised between blocks 1
to 8.

11.5 Measurements

11.5.1 Rationale for Each Measurement

Self-report This method directly assesses the individual’s subjective experience of
effort or task demand. Rating scales are commonly used due to their ease of
administration and good face validity for capturing perceived exertion (McGarrigle et al.,
2014). While subjective, they provide important insight into the listener’s on experience
of task difficulty and exerted effort (Lemke & Besser, 2016).

Performance (accuracy) Accuracy (word recall) to provide an objective measure of
listening comprehension success under varying conditions. . It serves as a crucial
information about how successful people are in completing the task, regardless of how
effortful they might feel (subjective report) and how they react physiologically. Research
shows that the relationship between performance and subjective effort isn’t always linear,
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and significant effort may be expended even when accuracy is high (Francis &
MacPherson, 2021; Ohlenforst et al., 2018; Pichora-Fuller et al., 2016b).

Pupillometry Changes in pupil dilation are a well-established physiological correlate of
cognitive load and mental effort (McGarrigle et al., 2017; Zekveld et al., 2018). Pupil size
typically increases with greater task demand, reflecting high arousal during effortful
listening. Task-evoked pupillary responses provide a temporally reliable measure of
moment-to-moment fluctuations (Zekveld et al., 2018 ) and correlate reliably with

performance and subjective effort (Zekveld & Kramer, 2014).

GSR GSR reflects changes in skin conductance due to sympathetic nervous system
activation, providing an index of physiological arousal, stress, and cognitive effort.
Increases in skin conductance level can occur with increased auditory task demand
(Figner & Murphy, 2011), making it a candidate measure for listening effort (Mackersie &
Calderon-Moultrie, 2016).

ECG Cardiovascular measures, particularly heart rate (HR) and heart rate variability
(HRYV), reflect autonomic nervous system activity and are sensitive to stress and cognitive
load (Forte et al., 2020; Kim et al., 2018). Increased heart rate was linked to greater
cognitive demand or stress associated with challenging listening conditions (Mackersie
et al., 2015; Richter et al., 2016a).

Respiration Comparing to GSR, ECG, and Pupillometry, respiration was examined less
in previous listening effort research. However, studies show that respiration patterns
(rate, depth, variability) are linked to cognitive load and emotional state (Grassmann

et al., 2016). Monitoring respiration provides complementary physiological information
and helps control for potential confounds in other autonomic measures like ECG
(Laborde et al., 2017).

EEG EEG provides direct measures of brain activity related to cognitive processing and
attention. Specifically, alpha power (8-13 Hz) modulations in EEG recordings provide
insights into attentional allocation and inhibitory processes during challenging listening
conditions (Straufs et al., 2014). Baseline alpha power has been associated with greater
pre-task engagement and predictive of better subsequent task performance (Alhanbali
et al., 2021; Hanslmayr et al., 2005).

A summary of how the experiment was set up is presented in Figure 11.4. Two

computers were used concurrently: computer 1 collected data on self-reported effort,
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performance(accuracy), and pupillometry; computer 2 recorded EEG, ECG, GSR, and
respiration via the Biopac system.

11.5.2 Self-report

As shown in Figure 11.5, participants responded to two questions after each block of
listening tasks (comprising 20 speech-in-noise trials at the same signal-to-noise ratio,
SNR). The two-question format was designed to track subjective ratings of effort and
difficulty across SNR levels, while keeping the questionnaire brief enough to avoid
participant fatigue. The questions were intentionally simple and intuitive, requiring

participants to respond by adjusting a slider.

The two questions addressed: (1) subjective effort - how much effort participants felt they
exerted, and (2) subjective difficulty - how difficult they perceived the task to be. Both
were rated on a 0 to 100 scale. Importantly, the instructions clarified that effort and
difficulty were not necessarily the same. For example, a participant might perceive the
task as very difficult but report low effort if they had mentally disengaged or given up.

11.5.3 Accuracy

Accuracy were immediate recorded after each trial (160 in total) through Matlab where
the listening task was presented. It was calculated as the percentage of correct word
identified in the 5 word sentence (see Figure 11.1 Page 111). For example, if two words
were chosen correctly, the percentage would be 40 %. Collected accuracy was later
averaged based on the same SNR level.

11.5.4 Pupillometry

Pupillometry data were recorded using Pupil Core eye-tracking glasses in conjunction
with Pupil Labs software, with a nominal sampling rate of 100 Hz. Compared to the
EyeLink system used in Study 1, this setup was more user-friendly, as it did not require
participants to rest their chins on a fixed support. However, this convenience came at the
cost of increased noise and reduced data reliability. For instance, although the system
was set to sample at 100 Hz, the actual sampling rate - based on recorded timestamp -
fluctuated between approximately 80 and 120 Hz.

Prior to each experiment, a calibration procedure was performed to ensure accurate pupil
size measurements. Height of the screen was adjusted accordingly. Participants who
wore prescription glasses were able to complete the experiment while wearing their own

glasses, as the device is designed to accommodate them comfortably.
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Figure. 11.4. An Overview of Experiment Measurements and Data Collection

To conduct the experiment, computer 1 was set up to generate and play stimulus. The stimulus
was routed through a soundcard to reach a calibrated sound level of 65 dB SPL and then delivered
through insert headphones. Computer 1 also collected self-reported effort, performance in the
listening task, and pupillometry data. Physiological measures including EEG, ECG, GSR, and
respiration were collected through the Biopac system and recorded on computer 2.
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How difficult it was to understand what was said in the previous tasks?

Not Difficult Very Difficult

For the last questions, how much effort did you put to understand what was said?

Remember, this is different from how many words you think you got right.
You may got all the words correct but you feel you need to work very hard on it.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

No Effort Extreme Effort

Save

Figure. 11.5. Rating of Self-reported Effort

After each block of listening tasks (20 speech-in-noise tests at the same signal-noise-ratio),
participants rated their effort level using a slider from 0 to 100 to answer each question. Data were
recorded in Matlab.

11.5.5 GSR

In this study, GSR was recorded using the Biopac 100C system. Electrodes were placed
on the palmar surface of the non-dominant hand (the one not used in selecting words on
the screen). This placement minimised movement artifacts whilst ensuring sensitivity to
autonomic arousal. Participants were asked to move as less as possible when performing
the task.

11.5.6 ECG

ECG was recorded using the Biopac 100C system, same as GSR. Electrodes were placed
on the upper left and right chest, just below the clavicles, and on the lower right torso,
below the ribcage (see Figurel1l.4). This standard setup captures heart activity by
measuring the electrical potential differences between these points, allowing for reliable
detection of heart rate and rhythm during the task.
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11.5.7 Respiration

Respiratory patterns were recorded using a Biopac 100C respiration amplifier with a
strain gauge transducer placed below the participant’s chest. This setup allowed for
continuous, non-invasive monitoring of breathing throughout the experiment (see
Figurell.4).

11.5.8 EEG

For this study, single-channel EEG (Pz) data were collected through electrodes connected
to the Biopac system. Three electrodes were applied: one electrode at the Pz position for
EEG data collection, one electrode behind the right earlobe(the mastoid area) serving as

ground, and one electrode on the high forehead as reference.

Since no existing multi-channel EEG caps were compatible with the Biopac system while
also allowing simultaneous ECG, GSR, and respiration recordings, a custom EEG cap was
developed. The researcher independently learned 3D design and fabrication to build a
cap specifically for holding a single electrode at the Pz location. Prior to each session,
conductive gel was applied inside the electrode holder to reduce impedance and ensure
signal quality.

Prior to each recording session, the electrode surface was prepared with conductive gel,
applied into the electrode hold, to ensure good signal quality and low impedance.
Electrode impedance was checked during the initial system setup to ensure that all
channels met the manufacturer’s recommended standards. Impedances were confirmed
to be within acceptable limits (typically below 10-20 k(2 for the amplifier used), and the
system provided stable recordings throughout data collection. However, impedances

were not re-measured for each individual participant.

While the live signal appeared reasonable during data collection-for instance, alpha
waves were visibly enhanced when participants closed their eyes-the recorded data
remained relatively noisy and challenging to analyse.

Matlab Application Design The entire experiment was developed and implemented in
MATLAB, with a custom-designed app to automate transitions and streamline the
participant experience. Afterwards, the researcher further adapted the core script * and
designed a Matlab app to incorporate the single test into and interactive application. The

procedure, lasting approximately one hour, was programmed to progress naturally -

*Core script was designed by Professor Stefan Bleeck, Institute of Sound and Vibration Research (ISVR),
University of Southampton, and updated by Professor David Simpson ISVR, University of Southampton, for
this experiment.
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Figure. 11.6. Reusable single EEG electrode with lead
wire

This image shows the single reusable EEG electrode used with the custom EEG cap. The electrode
features a flat metal surface intended for skin contact, but maintaining stable contact on the scalp
is challenging due to hair. To address this, a dedicated holder was 3D-printed and integrated into
the cap to secure the electrode at the Pz site (see Figure 11.7).

moving through instructions, training sessions, experimental trials, breaks, and subjective
rating prompts-with minimal researcher intervention.

Details of adaption as follow:

* Matrix Interface Update
— Background colour was matched to the desktop environment (light beige) to
minimise distraction and effect of window change on pupil size.
- Button layout and font alignment were adjusted for improved readability and
usability.
¢ Integrated App Design:

Master script development: A central control script was developed to orchestrate
the full experimental procedure.

During the experiment, this script:

1. Selects a predefined script sequence from a file to structure the trial flow
(contains randomised SNR sequence for speech-in-noise test).

2. Automatically launches and coordinated multiple scripts in sequence.
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Figure. 11.7. Design and assembly of the self-constructed EEG cap

This figure illustrates the custom-built EEG cap used for recording scalp potentials in the study.
The design includes modular components such as 3D-designed and 3D-printed electrode holders,
joints, and fastening bolts, which allow flexible placement and secure attachment of electrodes.
Elastic fabric straps were threaded through loops in a white plastic frame, creating an adaptable

cap structure suitable for different head sizes. Each electrode module can be screwed into place
using a specially designed installation tool, ensuring consistent electrode positioning and contact
pressure. The cap was tested on a prior to use in participants, enabling a reliable, reconfigurable,

and cost-effective EEG setup.
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3. Manages the following components:

— Instruction screens to guide the participant through the experiment stages.

— Full-screen video playback (e.g., nature scenes) before and during the session
to encourage relaxation.

— Countdown screens to prepare participants for upcoming segments or to
manage break durations.

— Speech-in-noise Matrix screen for participants to complete the task.

— Subjective rating interfaces for reporting perceived effort and task difficulty
after each block.

¢ Participant-Paced Interaction: All scripts were designed to complete their tasks
and wait for participant input before continuing. Participants could regulate the
pace by pausing on any screen until they were ready to proceed.

11.6 Minimising Confounding Factors

Minimising Light Effects on Pupillometry To minimise the effect of screen luminance
changes on pupillary responses, a consistent neutral beige background was implemented
throughout the experiment. The laptop display background was first set to a subtle beige
tone, and then the experiment interface background was matched precisely to this colour
using a digital colour sampling tool. This consistent background luminance across all
experimental screens was maintained to control for pupil dilation responses that might
otherwise be triggered by changes in screen brightness rather than by cognitive load
associated with the listening tasks.

Stimulus Calibration The air-conducted sounds were calibrated to 65 dB SPL using the
Bruel and Kjaer occluded ear simulator (type 4157) connected to a sound level meter
(type 2250). It was chosen to ensure the sound level is comfortable from the insert
headphones for the appoximately one hour long experiment.
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Please relax, we will play a short video.

Please Press "OK" to close this window.

OK

Helle, welcome to the experiment.

This is a training session.
In this session, you will hear some speech in noise.

Your task is to choose the words you heard on the screen.

Click "Start Experiment" on the next window to start the experiment.

Please press "OK" when you are ready to continue.

OK

Starting in 7 seconds...

Please take a break... you can press OK to continue after 29 ...

Figure. 11.8. Automated experimental interface developed in MATLAB

Automated interface were developed for the full experiment through Matlab App function. These
are examples developed using MATLAB app design function streamline participant experience.
Top: simple message prompts used to provide instructions or confirmations. Middle: full-screen
nature video used to help participants relax prior to or during the session. Below: instructional
screens that introduced each experimental block, and countdown displays to prepare participants
for the next segment or manage breaks. All screens were designed for clarity, ease of use, and to

reduce cognitive load and experimenter intervention.
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Data Pre-Analysis

12.1 Time Alignment

The first challenge of data analysis is aligning timing of the events. During the full
experiment, clicks (sudden spikes) were added to mark the start of each word, and start
and end of retention period. Hence, each trial consists 7 clicks, and the full experiment
would contain 1155 clicks (see Figure 12.1 ). Figure 12.2 shows clicks during the full

experiment (example data from GSR).

Clicks (1155
I
Training Period Full Experiment
(35) (1120)
5 Trials 8 Blocks
7 clicks each trial 20 Trials each block
7 clicks each trial
Training Period: 5 x 7 = 35 clicks
Experiment: 8x20x7 =1,120 clicks
Total: 35+1120 =1,155clicks

Figure. 12.1. Clicks Number Content

Figure shows the structure of the click numbers. Each experiment has 1155 clicks as a mark of the
start of different event.
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Figure. 12.2. Example of clicks across Full Experiment (GSR)

Figure shows the structure of the click numbers (yellow spikes). Each experiment has 1155 clicks
as a mark of the start of different event. There are 7 clicks for each trial. The first 5 signals where
each word in the sentence starts, the 6th click represents when retention period starts, right after
the 5th word finish. The 7th click means where the retention end and responding start.

12.2 Subjective and Behavioural Measures

Accuracy was calculated through Matlab automatically, where it presents the listening
task. It stores the accuracy for each trial (140 trails for full experiment). Accuracy was
calculated based on how many words participant correctly recall. For example, if

participants chose one word correctly out of five, the accuracy would be 20%.

To minimise the effect that at the start of each block(after 1 minute force break),
participant were still adapting to the listening task at a new SNR level, the first trial was
excluded when calculating the average accuracy through the block (20 trials). The
accuracy was further averaged for the same SNR level (each has 2 blocks, therefore 40

trials).

Different from accuracy which was calculated for each trial, subjective ratings, including
subjective effort and subjective difficulty were presented after each block (20 trials).
Hence eight subjective ratings were collected for the full experiment, which were later

averaged in to four ratings for each SNR level.
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12.3 Pupillometry Data Cleaning

Synchronisation and Temporal Standardisation Pupillometry data processing started
by averaging data from both eyes and aligning it using system time recordings. The raw
data’s inconsistent sampling rate (around 90 to 120 Hz) was corrected to 100Hz according
to the timestamps recorded by the software to make sure the time alignment. This
ensured easier alignment with other physiological data from Biopac ( EEG, ECG, GSR
and Respiration), which were sampled at 1000 Hz.

In pupillometry, time of each sample was recorded as timestamps in exported data. It's a
relative time which can be translated into computer system time. Therefore, recording of
Biopac and Pupillometry can be aligned using the computer system time. Based on pilot
data, the difference of Matrixmat and Pupillometry time recording range from 20 to 200

ms, maximum.

Initial Filtering and Artefact Detection The standardised data underwent initial
filtering where physiologically implausible diameter values (below 0.1 mm) were marked
as NaN. Artefacts like eye blinks were then identified. This involved using dual median
filters (long and short windows) to capture signal trends, followed by flagging points
with high local variance (>5x median variance) or existing NaN values.

Artefact Detection and Interpolation Detected artefacts were handled based on their
duration. Brief artefacts, those lasting less than 0.5 seconds, were corrected using linear
interpolation between adjacent valid data points. This approach aimed to preserve signal

continuity for momentary disruptions without introducing artificial dynamics.

Final Signal Conditioning Longer artefactual segments (>0.5s) were explicitly retained
as NaN, acknowledging the unreliability of interpolating over extended gaps.
Additionally, physiologically brief (< 0.1s) patches of seemingly valid data between
artefacts were also marked as NaN to ensure signal plausibility. The final cleaned pupil
diameter was then estimated via a moving average of the remaining valid data, balancing

noise reduction and signal preservation.

12.4 Respiration Rate Extraction

To extract respiration rate from the raw respiratory signal, a multi-step process was
applied to ensure both robustness and temporal precision. First, the signal was filtered
and smoothed that preserves peak shapes while reducing high-frequency noise (see



128 Chapter 12. Data Pre-Analysis

&
4 ®  Pupil Diametre

Pupil Diametre / mm

1300 1350 1400 1450 1500 1550 1600
Time/s

Figure. 12.3. One Section of Pupillometry Data

The figure above shows pupil diametre data(in millimetres) in about 300 seconds. Human Pupil
diametre generally range from 2 to 8mm Fawcett et al., 2022. Therefore, data below 1mm are
considered as blinks(eyes closed leading to a big drop of pupil diamtre) and removed.

Figure 12.4). This step enhances signal clarity without significantly distorting the
respiratory waveform, making it well suited for detecting subtle breathing cycles.

After peaks were detected with an adaptive peak detection method, the time intervals
between consecutive peaks were calculated and converted into breathing rates (in breaths
per minute) the interpolated into the same sampling frequency (fs = 1000) as the original
data, so to ensure data is easily comparable with other physiological measures at the
same sampling frequency.

12.5 Heart Rate Extraction

The heart rate extraction process started by removing outliers from the raw ECG signal.
Data points exceeding +4 standard deviations from the mean were classified as outliers,
replaced with NaN, and then linearly interpolated to maintain signal continuity. The
cleaned ECG signal was then bandpass filtered between 5 Hz and 30 Hz using a
first-order Butterworth filter. This removed baseline drift and high-frequency noise while
preserving the QRS complex. Zero-phase filtering (fi1tfilt) was used to prevent phase
distortion.

Figure 12.5 shows an example of part of ECG original data and extracted heart rate.

R-peaks were detected from the integrated signal using an adaptive threshold based on
the signal’s mean. Instantaneous heart rate was calculated from the time intervals
between consecutive R-peaks (RR intervals). Each RR interval (in seconds) was converted
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Figure. 12.4. Example respiration signal and derived breathing rate for one participant
(Subject 8, Experiment 1)

The top panel shows the raw and smoothed respiration signal, with detected peaks marked
in red. The bottom panel displays the corresponding breathing rate (in breaths per minute,
bpm), estimated using peak-to-peak intervals and linearly interpolated across time. This method

provides a continuous and robust estimate of respiration dynamics across the listening task.
Filtering improves peak clarity while preserving underlying waveform structure, facilitating
accurate rate calculation even in moderately noisy recordings.

to beats per minute using the formula: Heart Rate = 60 / RR interval. To get a continuous
heart rate signal aligned with the original ECG timeline, the discrete, instantaneous heart
rate values (associated with the midpoints of RR intervals) were linearly interpolated

with the same sapling frequency (1000) of the ECG signal.

12.6 GSR Data Cleaning

Negative Signal Artefact Removal Large negative spikes in the GSR data were
addressed first. Following the removal of negative spikes, general outliers were detected
using a Z-score approach. Any data point with an absolute Z-score exceeding a threshold
of 5 was classified as an outlier. These identified outliers were also replaced with NaN

and subsequently managed using linear interpolation to restore signal continuity.

To reduce high-frequency noise and enhance signal quality, the cleaned GSR data was
smoothed using a fourth-order Butterworth low-pass filter with a 4th order and cut-off
frequency of 1 Hz. Zero-phase filtering(Matlab function filtfilt) was employed to prevent
phase distortion, ensuring essential signal characteristics were preserved (see Figure
12.6).
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Figure. 12.5. Example of Heart Rate Extraction
The top panel shows the raw ECG signal (blue) with detected R-peaks marked
by red triangles. Orange stems indicate click events used to structure the
experimental trial, with seven clicks per trial: five clicks marking word onset
times and two clicks marking the retention start and retention end, respectively.
The bottom panel displays the extracted heart rate (beats per minute, bpm)
over time, calculated from the R-R intervals..
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Figure. 12.6. GSR Data Cleaning Example

This figure present an example of the process of GSR data cleaning. Unnec-
essary spikes and outliers were removed. Then data were further smoothed
through filtering.
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12.7 Single-Channel EEG Pre-processing

Initial processing involved adjusting the EEG signal to remove any constant DC offset.
Standard filtering techniques were applied to remove slow drifts and high-frequency
noise (like muscle activity and mains interference). Following this, the cleaned signal was
further filtered to isolate activity within specific brainwave frequency bands of interest,
such as Theta (4-8 Hz), Alpha (8-13 Hz), and Beta (13-30 Hz).

However, due to the device limitation, EEG data remains noisy and results difficult to

interpret. Full results will be presented int the next chapter.
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Chapter 13

Results and Discussion

Experiment Design Overview Thirty-three participants with normal hearing were
initially recruited. Due to data quality requirements across different physiological
measures (Pupillometry, GSR, Respiration, ECG, EEG), the final analyses included
approximately 26 complete datasets for each measurements.

The study employed a within-subjects, repeated-measures design. Participants attended
two identical experimental sessions separated by a one-week interval. Both sessions were
scheduled at the same time of day for each participant. This repetition and timing
protocol was implemented to ensure consistency and allow for direct comparison with
findings from Study 1.

Participants completed a speech-in-noise recognition task involving five-word sentences
spoken by a female speaker with a standard British English accent. These sentences were
embedded in multi-talker babble noise and presented at four signal-to-noise ratio (SNR)
levels: -16, -11, -6, and 12 dB. These SNR values were determined through pilot testing to
elicit target performance levels of approximately 20%, 50%, 80%, and near 100%,

respectively.

Participants reported the sentence heard by selecting words from the screen, where it
presentsa 10x5 response matrix (see Section 11.2, Page 110 for details). Participants were
required to select one word within each column to reconstruct the sentence (5 words),
Each column contained the target word and nine semantically similar distractors.

Subjective ratings were collected after each block containing 20 trials at the same SNR
level. Participants rated two questions: 1) Perceived Difficulty ("How difficult it was to
understand what was said in the previous tasks?’) and 2) Invested Effort ("For the last
questions, how much effort did you put to understand what was said?’). Both scales
ranged from 0 ("Not Difficult’” / "No Effort’) to 100 ("Very Difficult’ / "Extreme Effort’).

Along with behavioural measures (subjective effort, subjective difficulty, and accuracy),
physiological measures including Pupillometry, Galvanic Skin Response (GSR),
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Respiration, Electrocardiography (ECG), and Electroencephalography (EEG) were also
collected during the experiment.

13.1 Behavioural results: Subjective Effort, Subjective Difficulty,

and Accuracy

The influence of the Signal-to-Noise Ratio (SNR) on task performance and subjective
experience was analysed. Figure 13.1 provides a visual summary of accuracy, subjective
effort, and subjective difficulty across the four SNR levels (-16 dB, -11 dB, -6 dB, and 12
dB), displaying group averages (bold lines), individual participant data (faint lines), and
response distributions (boxplots). Statistical analyses confirmed significant effects for all

three measures.

100 [~

90 -

80 -

70 -

60 -

50 -

Value

40 -
30 -

20 -

10l y =@ Accuracy (mean) . n -
N
-

Subjective Effort(mean)

0 =@ Subjective Difficulty(mean)
L | I I | .

-16 -11 -6 12
SNR Level

Figure. 13.1. Accuracy, subjective effort, and perceived difficulty across different SNR
levels

Individual participant are shown as faint dots and connected by lines, while bold lines
represent group averages. Boxplots display the distribution of responses at each SNR
level. Accuracy improves with SNR, while effort and difficulty ratings decline.

Performance across different SNR Levels Performance, measured as the percentage of
correctly identified words, was significantly affected by the SNR level. Friedman test
indicated a highly significant overall difference across conditions (p < 001). To pinpoint
where these differences occurred, post-hoc tests were conducted. These revealed
significant differences between all pairs of SNR levels (p < 0.05). As clearly depicted by
the upward trend of the bold green line in Figure 16.1, accuracy improved significantly
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with each successive increase in SNR, demonstrating the effectiveness of the SNR

manipulation on task performance

Subjective Effort across different SNR Levels Participants’ ratings of invested effort
also varied significantly across SNR levels, as shown by a repeated ANOVA test(

p < .001). Post-hoc analysis using Tukey HSD tests provided further detail. While effort
generally decreased significantly as SNR improved (most pairwise p < 0.001), there was
notably no significant difference in reported effort between the two most challenging
conditions, -16 dB and -11 dB (p < 0.26).

Significant reductions in effort were found between all other adjacent and non-adjacent
levels (e.g., -11 dB vs -6 dB, -6 dB vs 12 dB, -11 dB vs 12 dB, etc.). This pattern is visible in
Figure 13.1, where the mean effort ratings (bold yellow line) for -16 dB and -11 dB are
relatively close, before dropping more substantially at -6 dB and further still at 12 dB.

Subjective difficulty across different SNR Levels Perceived task difficulty was
likewise significantly affected by SNR. Friedman test confirmed a significant overall
effect ( p < .001). Post-hoc Dunn’s tests indicated that, similar to accuracy, perceived
difficulty differed significantly between all pairs of SNR levels (all p < 0.05). Figure 16.1
illustrates this clearly, with the mean difficulty rating (bold dark red line) decreasing
significantly at each step increase in SNR

Complementing the behavioural findings presented above, the subsequent sections
report on the analysis of the physiological data collected throughout the experiment.
Results from Pupillometry, Galvanic Skin Response (GSR), Respiration,
Electrocardiography (ECG), and Electroencephalography (EEG) will now be presented.

Correlation Between Subjective Effort, Difficulty, and Accuracy Figure 13.2 presents
the relationships between subjective effort ratings, subjective difficulty ratings, and
recognition accuracy across all SNR conditions in data averaged from experiment 1 and 2.
Subjective effort and difficulty were both measured using participant ratings from 0 to
100, while recognition accuracy reflects the percentage of words correctly recognised (also
scaled 0 to 100).

Figure 13.2 illustrates the relationships between subjective effort ratings, subjective
difficulty ratings, and recognition accuracy in Experiment 3. For each participant, ratings
were averaged across SNR conditions to obtain a single between-subject estimate for each
measure. Subjective effort and difficulty were obtained using participant ratings on a
0-100 scale, while recognition accuracy reflects the percentage of correctly recognised
words (0-100%).
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Figure. 13.2. Correlations among subjective effort, subjective difficulty, and recognition
accuracy

This figure illustrates the between-subject relationships among subjective effort ratings,
subjective difficulty ratings, and recognition accuracy in Experiment 3. Each point
represents an individual participant, averaged across SNR conditions, and is colour-
coded by subject index. Effort and difficulty ratings were collected on a 0-100 subjective
scale, while recognition accuracy reflects the percentage of correctly identified words
(0-100%).

Difficulty ratings were not normally distributed, associations were quantified using
Spearman rank correlations. A strong positive relationship was observed between
subjective effort and subjective difficulty (0 = 0.72, p < .001). Recognition accuracy
showed moderate negative associations with both effort (0 = —0.40, p < .05) and
difficulty (p = —0.41, p < .05), indicating that participants who reported greater
perceived effort or difficulty tended to achieve lower accuracy.

Linear trend lines are overlaid on each 2D projection to visualise the direction of these
associations. Overall, the results highlight a consistent coupling between subjective
experience and objective performance at the between-subject level.

All associations were quantified using Spearman rank correlations because subjective

difficulty ratings exhibited non-normality, The analysis revealed systematic relationships

between the three measures. Subjective effort and subjective difficulty were strongly

positively correlated (o = 0.72, p < .001), indicating that participants who reported

greater effort also tended to perceive the task as more difficult. Recognition accuracy

showed moderate negative associations with both effort (0 = —0.40, p < .05) and

difficulty (o = —0.41, p < .05), suggesting that participants who experienced the task as

more effortful or more difficult generally achieved lower objective performance.

These between-subject patterns highlight a reliable coupling between subjective

experience and objective task performance, even when SNR-specific fluctuations are

averaged out.
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13.2 Physiological Data Analysis Methods Overview

Extracting Average Trial Response Compared to Study 1, where both ATR and TCR
were extracted from physiological responses ( EEG, GSR, and pupillometry), this study
focused solely on average trial response ( ATR in study 1) analysis. In Study 1, only a

single SNR level was used, allowing analysis of response changes across trials within a

consistent condition.

In contrast, Study 2 involved multiple SNR conditions, each presented in two blocks of
20 trials, with block order randomised across participants to reduce sequence effects. As a
result, trial-by-trial (i.e., TCR) analysis was not pursued, since systematic trends over
time were not expected. Although intra-block dynamics could be explored in future
work, the current analysis focuses on condition-level comparisons across SNR levels (see
Figure 13.3).

Experiment Structure of Study 1 and 2

Study 1 Study 2
1 Signal-noise-ratio level 4 Signal-noise-ratio levels
Adapted to each individual -16 dB -11dB -6 dB 12dB

Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2

T1 T2.. T50 T1 T2 T20 T1 T2 T20 T1 T2 T20 T1 T2 T20 T1 T2 T20 T1 T2 T20 T1 T2 T20 T1 T2 T20

Block sequence randomised

Figure. 13.3. Comparison of experimental structure in Study 1 and Study 2

Study 1 involved a single signal-to-noise ratio (SNR) level adapted to each individual,
with 50 trials presented in one block. Study 2 included four fixed SNR levels, each
presented in two blocks of 20 trials. The order of blocks was randomised to minimise
sequence effects. In Study 1, trial-wise responses could be tracked over time (TCR),
whereas in Study 2, analysis was conducted at the block (SNR) level. Note: T means

Trial in the figure.

Data Extraction Strategy Physiological data were first extracted over a defined trial
window, starting 1.5 seconds before the onset of the first word (baseline period) and
extending to the end of the retention period. For some measures known to exhibit slower
response dynamics (e.g., GSR, respiration), data extraction was extended into close to the
beginning of the subsequent trial to ensure that late responses were fully captured.

Within each trial, values were further extracted at specific key events: baseline, word start

(first word onset), retention start (following the final word), and retention end
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(conclusion of the retention phase). These points were selected to reflect distinct stages of
cognitive and sensory processing during the listening and memory task.

In addition to extracting values at these discrete time points, changes between points
were also computed to quantify the level of physiological adjustment during task phases.
For example, the difference between the value at retention start and word start was
calculated to assess the magnitude of response modulation during the listening period.
Such change scores were used to compare dynamic physiological responses across
different SNR conditions.
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Figure. 13.4. Trial structure: Listening, Retention, and Response periods

Trial design for pupil data analysis. Each trial starts with a noise onset, followed by
the presentation of five words during the Listening period (approximately 2 seconds).
Participants then enter a 3-second Retention period where no new auditory information
is given but memory is engaged. Finally, participants respond and rest during an 8-
second interval before proceeding to the next trial.

Data were first extracted and averaged at this time window for each SNR level, from
baseline to retention end (or to start of next trial for some measures). Later, data were
further extracted at specific time points at those events (e.g., Word start, Retention start,
Retention end), to compare the effects of onset or events (e.g. word start comparing to
baseline), or the response change during listening and retention phase across different
SNRs (e.g. change between word start and retention start, across different SNRs).

Within Individual Consistency - Permutation Test To evaluate whether participants’
physiological responses were more consistent with themselves than with others,

permutation testing was used. Specifically, we tested whether the correlation between a
participant’s own response time-courses across sessions was significantly higher than the

correlations between randomly paired participants.

The procedure involved first computing the average correlation between each
participant’s two experimental sessions. Next, participant labels were randomly
reassigned, and correlations between mismatched pairs were calculated and averaged.
This random reassignment was repeated 1,000 times to generate a distribution of average
correlations expected by chance.

The observed within-participant correlation was then compared against this distribution

to assess its statistical significance. A high within-participant correlation relative to the
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random distribution would indicate that participants exhibited stable temporal dynamics
in their physiological responses across experiments. Permutation testing was chosen as it
does not assume normality and provides a robust non-parametric framework for

significance testing (Good, 2000).

Between Individual Differences - Clustering Analysis K-means clustering is a widely
used unsupervised machine learning algorithm that partitions a dataset into K
non-overlapping clusters by minimising the within-cluster variance (Jain et al., 1999;
MacQueen, 1967). Each cluster is represented by the centroid (mean) of the points
assigned to it. K-means is computationally efficient, scalable to large datasets, and

produces partitions that are easily interpretable.

In this study, rather than clustering based on absolute amplitudes and Euclidean distance,
we computed pairwise similarity between participant response curves using Pearson’s
correlation coefficient. This approach emphasises the shape or temporal dynamics of
physiological responses, allowing participants to be grouped based on the similarity in

the structure of their responses over time, rather than on overall signal amplitude.

To determine the optimal number of clusters K, we employed the elbow method. This
technique involves plotting the total within-cluster sum of squares (WCSS) against
increasing values of K (See figure 13.11, Page 146 in for an example). The WCSS measures
the compactness of clusters(how close together the points are inside each cluster), with
lower values indicating tighter, more coherent groupings. Initially, adding more clusters
substantially reduces WCSS, but after a certain point, the rate of decrease diminishes. The
"elbow" of the curve — where the reduction in WCSS begins to level off — suggests an
appropriate trade-off between model simplicity and data fit (Thorndike, 1953). The value

of K corresponding to this elbow point was selected for clustering.

Following the identification of the optimal number of clusters, the K-means algorithm
was applied using the correlation-based similarity measure to partition participants into

groups exhibiting similar temporal response profiles.

We subsequently compared subjective effort ratings, perceived difficulty, and
performance accuracy across the identified clusters to evaluate whether group

membership was associated with differences in behavioural outcomes.

Clustering Result Agreement across different SNR levels Following the clustering
analysis, we evaluated the consistency of cluster memberships across different SNR levels
using the Adjusted Rand Index (ARI). The ARI quantifies the similarity between two
clustering results by examining all possible pairs of participants and checking whether
each pair was grouped together or separately in both clustering solutions (Hubert &
Arabie, 1985).
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It then adjusts this similarity score by accounting for the amount of agreement that would
be expected purely by chance. An ARI of 1 indicates perfect agreement, meaning the
clustering structures are identical, while an ARI close to 0 suggests that any agreement is
likely random. Negative ARI values indicate less agreement than would be expected by
chance. This analysis allowed us to assess whether participants” physiological response
patterns remained stable across different listening conditions. An illustrative example of
ARI-based comparison is shown in Figure 13.18, Page 152.

13.3 Pupillometry

13.3.1 Data Overview

Pupillometry was recording thought Pupil Core glasses and Pupil Lab software.
Pupilometry data analysed here are pupil diameter, which was cleaned and averaged two

eyes.

Figure 13.6 illustrates the average pupil response in data averaged from experiment 1 and
2 across four signal-to-noise ratio (SNR) conditions: -16, -11, -6, and 12 dB. To highlight
task-evoked changes more clearly, the first time point of each individual trace was
subtracted, aligning all responses to a common zero baseline.
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Figure. 13.5. Pupil diameter grand average (original scale) - data averaged
from experiment 1 and 2, all SNR levels

Grand average pupil responses across all participants and trials, combining data from Experiment
1 and Experiment 2. Participants repeated the same paradigm in the second session after a one-
week gap. Unlike baseline-subtracted plots, this figure shows the pupil diameter in its original
scale, providing a view of absolute changes in pupil size across time and SNR levels.

Despite natural variability, a consistent pattern emerges: an initial constriction following word
onset, followed by dilation through the sentence and retention period, becoming more pronounced
as intelligibility increases.
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Across all SNR conditions, the pupil exhibits an initial dip shortly after sentence onset,
followed by a recovery and a prominent peak that generally coincides with the retention
phase. These fluctuations are consistent with the interpretation that pupil size reflects
cognitive processing demands: the early dip may be associated with auditory onset or
attentional orienting, while the subsequent peak reflects sustained effort during memory
retention.

Interestingly, both the magnitude and timing of these features vary with SNR. In the
more degraded conditions (e.g. -16 dB), the pupil dilates more rapidly and to a greater
extent, whereas in the clearest condition (12 dB), the response is more gradual and
comparatively subdued.

13.3.2 Task-Evoked Changes in Pupil Diameter

To better understand the pupil dynamics seen in the average traces (Figure 13.5), figure
13.6 shows the the same data as Figure 13.5, with the first value of the data subtracted, to
shift all data start from zero. There is a clear change in pupil size reacting to the event, for
instance, pupil size drop before the first word start, and then increase considerably when
retention start.
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Figure. 13.6. Pupil diameter grand average (First-Point Subtracted) - data
averaged from experiment 1 and 2, all SNR levels

Grand average pupil diameter is the average of Experiments 1 and 2 across SNR levels. different
from Figure 13.5, data plotted here subtracting the first time point from each data trial. This
subtraction centres the data to a zero baseline, highlighting relative change from the beginning
of sentence processing. Clear differences in the timing and magnitude of the initial dip and
subsequent peak emerge across SNR conditions.

We extracted pupil diameter at four events: before the sentence began (Baseline), at the
onset of the first word (Word Start), and at the sentence offset (Retention Start), and

Retention End (time points as shown in Figure 13.5 and 13.6). These four time points
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mark the transitions from rest to listening, and from listening to remembering. We then

compared the pupil size between these time points across all SNR levels (see Figure 13.7).

Paired t-tests was used for comparing the difference when data is normally distributed,
otherwise non-parametric Wilcoxon signed-rank tests were applied.
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Figure. 13.7. Pupil Diameter at four key events across SNR Levels - average experiment 1
and 2

Grouped boxplots showing pupil diameter for four cognitive events - Baseline, Word Start,
Retention Start, and Retention End - at each signal-to-noise ratio (SNR) level in Experiment 3.
Each coloured box represents one variable per SNR group.

This layout visualises how pupil responses evolve through the task timeline under different
listening conditions, highlighting individual variability, event-specific (e.g. onset of first word),
and SNR sensitive response.

As shown in Tables 13.1 and 13.2, pupil diameter significantly decreased from Baseline to
Word Start across all SNRs (p < 0.001), and significantly increased from Word Start to
Retention Start in all conditions except the highest SNR (12 dB), where the effect was not
significant (p = 0.0912). These consistent changes suggest that the pupil reflects different
phases of the listening task - an initial orienting response followed by increased mental
effort during memory retention.

Table. 13.1. Task Evoked Response Comparison Result: Baseline vs Word Start

SNR N Test Used p-value
-16 26 Paired t-test < 0.001
-11 26 Paired t-test < 0.001
-6 26 Paired t-test < 0.001

12 26 Paired t-test < 0.001
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Table. 13.2. Statistical Comparison: Word Start vs Retention Start (Data Averaged from
Two Experiments)

SNR N Test Used p-value
-16 26 Paired t-test < 0.001
-11 26 Wilcoxon < 0.001
-6 26 Wilcoxon < 0.001
12 26 Wilcoxon 0.0912

13.3.3 Pupil Diameter Changes at Different SNR Levels

To investigate whether pupil responses were affected by task difficulty, we compared
average pupil diameter across the four SNR conditions. As illustrated in Figures 13.5

and 13.7, there appeared to be observable differences across SNR levels.

We examined pupil diameter at several key points: Baseline, Word Start, Retention Start,
Retention End, the average across the Listening period, and the average across the
Retention period. Group-level comparisons using the Friedman test revealed no
significant overall differences in mean pupil size between SNR levels for any of these
variables (p > 0.05).

However, subsequent pairwise comparisons revealed specific differences between certain

SNR levels. A summary of these contrasts is presented in Figure 13.8.

The significance matrix (Figure 13.8) highlights specific contrasts where pupil diameter
differed significantly between SNR conditions. Notably, pupil size at Retention Start
showed significant increases between the lowest SNR level (—16 dB) and both mid-range
conditions (—11 dB and —6 dB), with the latter reaching a higher level of significance

(p < .01).

Similarly, the average pupil diameter during the Listening period was significantly
greater at —6 dB compared to —16 dB. The average Retention period also showed
significant differences between low and mid SNRs (—16 dB vs —11 dB and —6 dB),
though not between the higher SNRs.

Interestingly, the change in pupil size from Word Start to Retention End-a dynamic
marker of task-evoked dilation-showed significant differences between the mid (—11 dB,
—6 dB) and high (12 dB) SNR conditions, indicating stronger pupil diameter difference
during listening period phases as intelligibility improves.

In contrast, other comparisons such as Baseline, Word Start, and Retention End did not

reveal significant differences across SNRs, suggesting that pupil modulation was more
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Baseline
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Retention Start
Retention End
Listening (Mean)
Retention (Mean)

Ret — Word Start

p<.01 p<.05

Figure. 13.8. Significance of Pairwise Comparisons of Pupil Diameter - Averaged data
from Experiment 1 and 2

Pairwise statistical significance matrix showing pupil diameter differences across SNR conditions
in Pupil diameter averaged from Experiment 1 and 2. Each row represents a time point or period
of interest (e.g., Baseline, Word Onset, Retention phases), and each column a comparison between
two SNR levels.

Circle colour indicates significance level. The results highlight consistent modulation of pupil
responses across SNR conditions during Retention Start, Retention Mean, and Listening periods,
with significant contrasts especially between low and high intelligibility conditions.

sensitive to SNR during the early and sustained phases of cognitive load rather than at

static time points.

13.3.4 Within Individual Consistency - Permutation Test Result of Pupil
Diameter

To assess the consistency of pupil responses across experiments, a permutation test was
conducted for each SNR condition (Figure 13.10). The results revealed significant
within-subject correlation at SNR —6 and SNR -16, whereas SNR —11 showed no statistical

evidence of cross-experiment similarity.

13.3.5 Clustering Result of Pupil Diameter (presenting per SNR level

To explore individual differences in pupil responses under low intelligibility, we first
applied the elbow method to determine the optimal number of clusters for pupil diameter
time courses at SNR -16 dB. As shown in Figure 13.11, a clear drop in within-cluster

variance indicated that two clusters (k = 2) best captured the structure in the data.

The clustering analysis was based on data from the trial period, defined as 1.5 seconds

before word onset to 2 seconds after retention offset. This time window was selected to
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Figure. 13.9. Example of Individual Consistency across Two Experiments (Pupil
Diameter, SNR - 6 dB)

Example of two participants whose pupil traces showed high within-subject similarity at SNR -6 -
a condition with statistically significant correlation between Experiment 1 and 2 (p = 0.000).

The highlighted orange and red lines represent the same subject across experiments, while grey
traces represent other participants. Signals are mean-centred to emphasise shape rather than
absolute size. This figure illustrates the strong temporal consistency that underpins the group-level
result.
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Figure. 13.10. Permutation test of within-subject correlations in pupil
diameter average trial response

Average within-subject pupil correlation across SNR conditions, compared against a permutation-
based null distribution. Blue bars represent average Pearson correlations between Experiment 1
and 2 for each subject at each SNR.

Beige bars show the average similarity under random subject pairing. P-values from the permuta-
tion test are annotated above each bar group, indicating whether within-subject consistency was
significantly greater than expected by chance.
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capture the full event-related pupil response while avoiding overlap with subsequent
trials. Unlike other physiological signals such as GSR, respiration, or heart rate—which
often require longer segments due to their slower response dynamics—pupil diameter
changes occur more rapidly and with minimal latency.

Elbow Plot for K-Means Clustering
Experiment 3SNR: -16
T T T

Within-cluster Sum of Squares

o

25 3 35 4 4.5 5
Number of Clusters (K)

Figure. 13.11. K-Means elbow plot of cluster sum of squares (WCSS)
in within subject correlations for Pupil Diameter Clustering (-16 dB)

Elbow method applied to K-means clustering for pupil data at SNR -16 in data averaged from
experiment 1 and 2. The plot shows the within-cluster sum of squares (WCSS) as a function of the
number of clusters (K). A clear "elbow" is observed at K = 2, suggesting that two distinct clusters
best capture the underlying variation in pupil response patterns at this noise level.

Clustering result at SNR :-16 dB (Pupil Diameter) Moreover, because pupil
measurements fluctuate quickly and are sensitive to noise, using a longer time window
could introduce additional variability and obscure meaningful patterns. The chosen time

frame therefore balances temporal resolution with signal clarity for effective clustering.

Based on the elbow result, we performed k-means clustering and identified two distinct
pupil response profiles. Figure 13.12 shows the averaged time courses for each cluster,
with shaded standard error. Cluster 1 showed a stronger dip and later recovery, while

Cluster 2 displayed flatter, more sustained constriction.

To investigate whether these physiological clusters reflected meaningful behavioural or
subjective differences, we compared the groups on three measures: task accuracy,
perceived difficulty, and self-reported effort. These comparisons are shown in

Figure 13.13.

Although Group 1 tended to show higher accuracy and report lower effort and difficulty
than Group 2, no statistically significant differences were found. This suggests that the
physiological differences in pupil dynamics do not clearly map onto behavioural

outcomes in a categorical way.
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Figure. 13.12. Clustering result - average trial response of pupil
diameter with standard error shading (baseline corrected, k = 2, SNR
=-16 dB)

Mean pupil diameter time courses for each cluster (k = 2) at SNR - 16 dB (starting point corrected
to zero). To allow for easier comparison, the first value was subtracted, aligning all traces to a
common starting point of zero. Shaded regions indicate the standard error of the mean (SEM)
across participants. Cluster 1 (blue, n = 19) showed stronger pupil constriction and subsequent
dilation, while Cluster 2 (orange, n = 6) displayed more sustained constriction with flatter
recovery.

Still, the visible trends may reflect subtle variation in how participants regulate effort or
adapt to degraded speech. The consistent clustering pattern suggests that pupil dynamics
capture stable internal response styles, even if these are not always mirrored in task

performance.

Together, the elbow plot, time course clusters, and behavioural comparisons highlight
how pupil diameter can reveal individual differences in cognitive processing during
listening, offering insight beyond what behavioural metrics alone can provide.

Clustering result at SNR : -11 dB (Pupil Diameter) To explore individual differences
in pupil responses under SNR level at -11 dB, we applied the elbow method to determine
the optimal number of clusters for pupil diameter time courses at SNR —11 dB. Using the
Elbow method, the best group numbers were suggested at 2.

Based on this, we applied k-means clustering and identified two distinct pupil response
profiles. Figure 13.14 shows the average time course for each cluster, with shaded
standard error. Cluster 1 showed a stronger and more prolonged constriction with a
delayed recovery, while Cluster 2 exhibited a flatter initial dip followed by a faster and
more sustained recovery over time.



148 Chapter 13. Results and Discussion
Accuracy Subjective Difficulty Subjective Effort
o 105 100 o e
| o
25 o | 95 e,
o : 100 -
H ! ) 90
. ol [ H
° o1 85 !
S I ) :
= !
© ' -
> o 90 . 80 P
15 .0 & o
bl ! :
: | I 75
; | 851 1
o . M
10+ - | . o
70 s :
| 80 o b
| | 65 1
5 L a4 i —is
Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Cluster Groups

Figure. 13.13. Differences in Performance and Subjective Ratings Between Pupil
Diameter Clusters (SNR -16 dB)

Boxplots showing group differences in task performance and self-reported experience between the
two clusters identified from GSR time courses at SNR -16 dB. Group 1 and Group 2 correspond to
participants classified via clustering analysis.

Plotted measures include task accuracy (left), subjective difficulty ratings (middle), and perceived
effort (right). Each point represents an individual participant. Differences in scores between
groups highlight how physiological response patterns may relate to both behavioural outcomes
and subjective experience.

Although this clustering revealed stable differences in physiological response profiles,
there were no statistically significant differences in behavioural or subjective measures
between the two groups.

Together, these results demonstrate how pupil dynamics at SNR -11 dB continue to reveal
distinct internal response styles, consistent with findings at lower intelligibility levels.

Clustering result at SNR : -6 dB (Pupil Diameter) To examine individual variability in
pupil dynamics under relatively intelligible conditions, we applied the elbow method to
determine the optimal number of clusters for pupil diameter time series at SNR - 6 dB.
The Elbow test shows most substantial reduction in within-cluster variance occurred at
k = 2, suggesting After applying Elbow method, a two-cluster solution was most
appropriate.

Using this criterion, we performed k-means clustering and identified two distinct
patterns of pupil responses. As shown in Figure 13.15, Cluster 1 was characterised by a

more pronounced and prolonged constriction with relatively little recovery, whereas
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Figure. 13.14. Clustering result - average trial response of pupil
diameter with standard error shading (baseline corrected, k = 2, SNR
=-11dB)

Clustered pupil response time courses at SNR -11 dB. Two clusters were identified using k-means
clustering (k = 2), based on the elbow criterion. The plot displays mean pupil diameter across
time for each group, with shaded areas indicating the standard error of the mean (SEM). To allow
for easier comparison, the first value was subtracted, aligning all traces to a common starting
point of zero. Cluster 1 (blue, n = 7) exhibits a larger constriction followed by a more delayed and
attenuated recovery. Cluster 2 (red, n = 19) shows a shallower constriction and a faster, sustained
recovery during the retention interval.

Cluster 2 demonstrated a milder initial dip followed by a strong and sustained dilation

throughout the retention phase.

Despite these physiological distinctions, behavioural performance and subjective reports

did not significantly differ between clusters.

Clustering result at SNR : 12 dB (Pupil Diameter) To explore individual variability in
pupil dynamics at the clearest speech level, we applied the elbow method to determine
the optimal number of clusters at SNR 12 dB. After applying Elbow method, the presence
of two primary response patterns were decided.

The resulting average time courses for each cluster are plotted in Figure 13.16. Although
both clusters initially constricted following stimulus onset, Cluster 1 displayed a more
sustained and deeper constriction during the retention period, whereas Cluster 2
recovered more rapidly and stabilised around baseline levels. This pattern suggests some
divergence in cognitive or autonomic engagement even at favourable listening

conditions.

However, similar to previous SNR levels, no significant behavioural or subjective

differences were observed between the two pupil-based clusters.
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Figure. 13.15. Clustering result - average trial response of pupil
diameter with standard error shading (baseline corrected, k = 2, SNR
=-6 dB))

Pupil diameter responses for the two clusters identified at SNR —6 dB. Cluster 1 (blue, n = 13)
showed a larger early constriction followed by a flatter retention period. Cluster 2 (orange, n = 13)
exhibited a shallower initial constriction but a strong sustained dilation across the retention phase.
To allow for easier comparison, the first value was subtracted, aligning all traces to a common
starting point of zero.

Despite balanced cluster sizes, statistical comparisons between key retention-related timepoints
revealed no significant group differences, suggesting inter-subject variation without robust cluster
separation.
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Figure. 13.16. Clustering result - average trial response of pupil
diameter with standard error shading (baseline corrected, k = 2, SNR
=12 dB)

Cluster-averaged pupil diameter time courses with standard error for SNR 12 dB. To allow for
easier comparison, the first value was subtracted, aligning all traces to a common starting point of
zero. Two distinct response profiles were identified using k-means clustering. Cluster 1 exhibited
deeper and more sustained constriction, while Cluster 2 showed a faster recovery, despite no
differences in behavioural or subjective performance between groups.
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Having established that pupil responses can be meaningfully clustered at each SNR level,
we next examined whether these groupings remained consistent across listening
conditions. Specifically, we assessed the degree of agreement in cluster membership
across SNR levels to determine whether the same individuals tended to exhibit similar

pupil response patterns in different SNR levels.

13.3.6 Clustering Result Agreement Across Different SNR Levels (Pupil
Diameter)

To assess whether individual participants exhibited stable clustering behaviour across
SNR levels, we compared pupil-based cluster assignments at each noise condition.
Figure 13.17 visualises cluster membership by subject across all four SNRs. Each row
corresponds to one SNR level, while each column represents an individual subject.

This visualisation suggests a high degree of variability. Only a handful of participants
(e.g., Subject 18, 20, and 31) consistently fell into the same cluster across all conditions. In
contrast, many switched between clusters depending on the listening difficulty,
highlighting the state-dependent nature of the pupil-based response profiles.
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Figure. 13.17. Cluster membership across SNR levels - pupil diameter

Cluster assignments for each participant across all SNR levels. Each row represents an SNR
condition, and each column indicates a subjects cluster membership. Colour indicates whether
the participant was assigned to Cluster 1 or Cluster 2 at that SNR.

To quantify the agreement between cluster labels, we computed the Adjusted Rand Index
(ARI) for each SNR pair, shown in Figure 13.18. The ARI measures the similarity of
clustering solutions while adjusting for random chance, with values close to 1 indicating

high similarity and values near 0 suggesting random agreement.

The results confirm the visual pattern: agreement between clustering solutions was
generally low. The highest ARI value (0.537) was observed between SNR -6 dB and 12 dB,
suggesting moderate consistency in these conditions. All other comparisons yielded ARI
values below 0.36, with the lowest being 0.075 between SNR -16 dB and 12 dB.
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These findings imply that pupil response pattern - and the groupings they imply - are
highly sensitive to contextual demands. Rather than reflecting stable traits, cluster
membership appears to shift with task difficulty, suggesting dynamic regulation of
cognitive or listening strategies rather than fixed individual profiles.

Clustering Agreement (Adjusted Rand Index) across SNR Levels
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Figure. 13.18. Clustering membership agreement - adjusted rand
Index (ARI) between SNR Pairings (pupil diameter)

Pairwise Adjusted Rand Index (ARI) values are presented for clustering outcomes across SNR
levels. ARI assesses the similarity in cluster assignments between two conditions, correcting for
chance (ARI = 1 indicates perfect agreement, 0 indicates random alignment, and negative values
suggest disagreement).

Overall, ARI values remain low across comparisons, with the highest agreement observed between
-11 dB and 12 dB (ARI = 0.267). These results reinforce that pupil-based cluster memberships are
highly sensitive to contextual listening conditions and are not consistently preserved across noise
levels.

Across all SNR levels, pupil diameter time courses revealed reliable clustering structure,
with the elbow method consistently identifying two distinct clusters per condition. These
clusters captured differences in response dynamics-typically contrasting stronger, more

prolonged constriction with flatter or more transient patterns.

While the physiological differences between groups were consistent and visually distinct
across SNR -16 dB, —11 dB, -6 dB, and 12 dB (Figures 13.12-13.16), no statistically
significant differences were found in behavioural performance or subjective ratings

between clustered groups.

This suggests that pupil-based clustering reveals internal cognitive or physiological
response styles that do not neatly map onto accuracy, effort, or difficulty ratings.
Furthermore, agreement analysis (Figures 13.17 and 13.18) showed limited consistency in
cluster membership across SNR levels, with most participants switching clusters

depending on the noise condition.

These results indicate that pupil clustering reflects dynamic, rather than stable individual

traits. As such, pupil dynamics offer a valuable, nuanced window into
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moment-to-moment listening strategies that are not easily inferred from behavioural data

alone.

13.4 Galvanic Skin Response (GSR)

SNR: -16 SNR: -11 SNR: 12
& [——wean] E ‘ 5 B IE
8 ] 8 s 8 g
01 3 5 0.1 3 01F o 01rs ¢ 5
0.08} 33 0.08} 0.08f 0.08f giig
£ o & o
0.06f 0.06f {1 oo06f 0.06f
0.04f 0.04f | {1 o004t | /] 0.04f
0.02 0.02( /| f/IN=4 0.02f |

0.02+ |/ )]

ot i 0 / 0»‘ AN

GSR Amplitude (1S)
o

0.02f | 02t/ | 1 -002f | ! 0.02f |

0.04} | -0.04} | -0.04} | -0.04

0.06} -0.06} j | o0sl | 1 0.8

-0.08} -0.08} 1 008} -0.08}

1 5 0 5 0 %o 5 10 1 5 10

Time relative to reference (s)  Time relative to reference (s)  Time relative to reference (s)  Time relative to reference (s)

Figure. 13.19. GSR grand average - data averaged from experiment 1
and 2, all SNR levels

Average Galvanic Skin Response (GSR) across different Signal -to -Noise Ratio (SNR) levels,
averaged over Experiments 1 and 2. Each panel shows a different SNR condition ( -16, -11, -6, 12).
The X -axis represents time in seconds relative to a reference point, and the Y -axis represents the
GSR signal.

Faint lines show individual responses, and the thick red line indicates the mean response. Vertical
lines mark the timing of experimental events: Word Start (light blue), Word End (green), Retention
Start (orange solid), and Retention End (orange dot -dashed).

13.4.1 Data Overview

The original GSR data were first cleaned (see Section 12.6) and segmented into
individual trials. Figure 13.19 displays the average signal across all trials and participants,

combining data from Experiment 1 and Experiment 2.

GSR is known to exhibit a physiological latency in its response to stimuli (Benedek &
Kaernbach, 2010) To accommodate this delay, we included the full trial duration in our
analysis, thereby extending the analysis window and allowing sufficient time for the GSR
signal to evolve in response to the stimulus.

We chose not to shift the data along the time axis for two main reasons. First, there is no
consensus in the existing literature regarding the precise latency of the GSR response,
making it difficult to determine an appropriate and justifiable time shift ((Laine et al.,
2009; Sjouwerman & Lonsdorf, 2018)). Second, we believe it is more informative to
preserve the natural time course of the GSR response, allowing it to reflect the
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participants actual physiological dynamics without the imposition of an artificial

alignment.

13.4.2 Task-Evoked Changes in GSR

Difference of Peak GSR across SNR Levels We analysed the difference between the
word start and retention start (see Figure 13.19 for where the time events are during a
trial). To analyse if there’s a difference. We analysed that for each SNR level, Results
shows that there’s a clear difference between word start and retention start, as after the
sentence start, GSR rise significantly (Wilcoxon signed -rank p = 0.0000).
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Figure. 13.20. Effect of Start of The Stimulus and Retention (GSR )

Each subplot shows the distribution of individual GSR values (scatter) and group -level spread
(boxplots) at two key event timings: word onset (lowest GSR value within 500 ms) and retention
start (maximum GSR within 1000 ms). These are plotted separately for each SNR level: -16 dB, -11
dB, -6 dB, and 12 dB.

Across all SNR levels, GSR tends to be higher at retention start compared to word onset, suggesting
increased physiological arousal during early memory retention. This effect is most pronounced at
moderate SNRs (e.g., -11 dB), where task difficulty may have triggered greater listener engagement.
Scatter points represent within -subject variance, and boxplots show the distribution of responses
across all participants and sessions. Colours correspond to event type: blue for word onset, and
red for retention start. Jitter is applied to enhance visibility of overlapping data points.

13.4.3 GSR Changes at Different SNR Levels

Difference of GSR when Retention Start The highest GSR value around Retention
Start showed a significant difference across SNR levels (p = .0078), indicating that
listening difficulty influenced physiological responses even after the sentence had ended.
This peak marks the point at which the stimulus concludes and the memory retention
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Figure. 13.21. GSR Response at Word Start, Retention Start, and Retention End

GSR responses are shown around key task events, derived from trial -level data during a speech
-in -noise memory task. Word Start marks the lowest GSR value within 500 ms of the first word;
Retention Start refers to the maximum GSR within 1000 ms of sentence offset; and Retention End
captures the lowest GSR within 500 ms of the end of the retention phase.

A significant effect of SNR was observed only at Retention Start (p = .0078), suggesting increased
physiological arousal during early memory retention. No significant differences were found at
Word Start (p = .2783), Retention End (p = .2675), or for the difference between Retention Start and
Word Start (p = .7229).

phase begins. As such, it likely reflects the level of cognitive effort or arousal maintained
during the listening phase and carried forward into retention. A higher peak at more
difficult SNRs may suggest greater listening effort being sustained through to the end of

the sentence.

In contrast, there were no significant differences across SNR levels for GSR values
around Word Start (p = .2783) or Retention End (p = .2675). These points represent the
beginning of the auditory stimulus and the conclusion of the retention interval,
respectively. The lack of significant variation suggests that GSR responses at these
timepoints were less sensitive to changes in SNR, and may not capture the same degree

of sustained listening effort as the Retention Start peak.

Together, these results highlight the Retention Start as a sensitive physiological marker of
listening effort that accumulates during sentence processing, whereas earlier or later

moments in the task may not exhibit strong modulation by signal quality.
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13.4.4 Within Individual Consistency - Permutation Test Result of GSR

To assess whether participants exhibited consistent physiological responses across
experimental sessions, a permutation test was performed using galvanic skin response
(GSR) data. For the within -subject correlation (true pairing), each participants GSR time
series from Experiment 1 and Experiment 2 was compared at the same signal -to -noise
ratio (SNR) level. The data were aligned from the onset of the target word to the end of
the retention phase, and Pearson correlation was computed for each participants paired
traces.

Figure 13.22 shows individual examples of galvanic skin response (GSR) traces recorded
during this period, for two participants (Subject 8 and Subject 10), at the same signal -to
-noise ratio (SNR) level, across two experimental sessions. Each subplot depicts GSR

activity aligned in time from the onset of the first word to the end of the retention phase,

allowing comparison of physiological responses to a structured auditory task.

The coloured traces represent data from Experiment 1 and Experiment 2 for the same
individual, overlaid to visualise the consistency of physiological patterns across sessions.
These traces provide qualitative evidence of within -subject similarity. In contrast, the
background traces in light grey represent all other participants” GSR responses at the
same SNR level, included to provide a baseline of population -level variability. Overall,
these plots suggest that certain individuals exhibit reliable and recognisable patterns of

arousal or engagement in response to the same task, even when repeated a week later.
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Figure. 13.22. Example of Participants GSR data During Trail Period

Examples of GSR traces from two participants at the same SNR level, across two experimental
sessions. Each subplot shows one participants GSR response aligned from word onset to the end
of the retention phase. Data from the two sessions (Experiment 1 and Experiment 2) are overlaid
in colour for direct comparison.

Light grey traces in the background represent GSR data from all other participants at the same
SNR level, providing visual context. Traces are trimmed to a maximum duration of 7.8 seconds to
remove noisy or unstable tails. Time is shown in seconds, based on a sampling rate of 1000 Hz.

To formally test whether this apparent within -subject similarity exceeds what could be

expected by chance, a permutation test was performed. The results are displayed in
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Figure 13.23. In this analysis, Pearson correlation coefficients were calculated between
each participants GSR time series in Experiment 1 and their own corresponding series in
Experiment 2, at each SNR level.
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Figure. 13.23. Permutation test of within-subject correla-
tions in GSR average trial response

Average within -subject and between -subject (permutation -based) correlation of GSR responses
across two experimental sessions, shown separately by SNR level. Each bar represents the
mean Pearson correlation coefficient between time -aligned GSR traces for the same or different
participants. The data used for comparison was taken from the period starting at word onset and
ending at the close of the retention phase.

Within -subject correlations (dusty rose) reflect the similarity of each participants GSR response
across a one -week interval. Permutation -based values (beige) represent the average correlation
when participant identities are randomly mismatched across sessions. P -values above bars
indicate whether within -subject similarity significantly exceeds chance -level similarity. Error
bars are omitted for visual clarity.

This provided a measure of within -subject similarity based on the full trace, from word
onset to the end of the retention phase. These true within -subject values were then
averaged across all participants, and the resulting means are shown as the green bars in
the figure.

To determine whether this level of similarity was statistically meaningful, a permutation
-based comparison was conducted. In each permutation, participant identities in the
second session were randomly shuffled and paired with traces from different individuals
in the first session. The correlation between these mismatched pairs was calculated in the
same manner and repeated 1000 times, generating a null distribution that reflects the

level of similarity expected under random pairing.

The average value of these shuffled correlations is shown as the beige bar for each SNR
level. P -values were then calculated by counting how many permutations yielded a
correlation equal to or greater than the true within -subject average. These p -values are
shown above each pair of bars.
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The results show that at SNR -16 dB and -11 dB, within -subject GSR similarity was
significantly greater than the permutation baseline (p = .001 and p < .001, respectively),
indicating that physiological responses at these moderate -to -difficult levels of listening
demand were reliably reproduced across sessions.

Interestingly, at - 6 dB, the difference approached statistical significance (p = .059),
suggesting a possible trend towards consistency that may have been affected by greater
response variability. At the easiest condition (12 dB), a statistically significant result was
still observed (p = .029), although the effect size appeared smaller. This could imply that
while some level of consistent physiological response remains even when the task is less
demanding, engagement and effort -related arousal may vary more subtly or be less

uniformly sustained across individuals.

Together, Figure 13.22 and Figure 13.23 provide evidence that participants exhibit
individually stable GSR patterns in response to the same auditory task when repeated
over time. This suggests that GSR traces are not only sensitive to task difficulty but may
also capture trait -like physiological response profiles that are robust enough to be
detected across sessions, even after a delay of one week.

13.4.5 Clustering Result of GSR (presenting per SNR level

To examine individual patterns in physiological responses, a clustering analysis was
performed on the GSR data. The goal was to identify whether participants exhibited
distinct, consistent response types during the task, particularly in response to varying
signal -to -noise ratios (SNRs).

Data was extracted to include aligning each trial according to defined event markers (e.g.,
word onset and retention start), then computing the average GSR signal for each
participant across all relevant trials. These participant -wise average traces were then

cleaned to remove extreme artefacts and truncated at a consistent endpoint.

Clustering analysis was performed to examine whether individuals could be grouped
according to the similarity of their physiological responses, specifically GSR (galvanic
skin response) signals. The algorithm employed was k -means clustering, a widely used
unsupervised learning method. Unlike supervised approaches, which rely on pre
-labelled data, unsupervised clustering attempts to uncover inherent structure in the
dataset without prior knowledge of group membership.

In this analysis, clustering was applied to GSR time series recorded during a defined trial
period. Each participants data was represented as a single time series, and clustering was
based not on absolute differences in amplitude, but on the similarity in shape and

temporal pattern. To achieve this, the clustering used a correlation -based distance metric
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- specifically, one minus the Pearson correlation coefficient - rather than the default
Euclidean distance.

This choice of correlation captures whether two time series follow a similar temporal
pattern, regardless of their magnitude. For instance, two GSR traces with similar rises
and falls over time but different amplitudes would be grouped together under a
correlation -based metric, whereas they might not under Euclidean distance.

To identify the optimal number of clusters (K), the within -cluster sum of squares (WCSS)
was calculated for K ranging from 2 to 5 (see Figure 13.24). WCSS quantifies how similar
the members of each cluster are to their cluster centroid; lower values indicate tighter
clustering. The “elbow method” was used to determine the best number of clusters, with
the point at which additional clusters no longer substantially reduce WCSS indicating the
most appropriate K.

Elbow Plot for K-Means Clustering
Experiment 3SNR: -16
T T T

Within-cluster Sum of Squares

1 b

25 3 3.5
Number of Clusters (K)

]

4.5 5

Figure. 13.24. K-Means elbow plot of cluster sum of squares (WCSS)
in within subject correlations for GSR clustering (-16 dB)

The within -cluster sum of squares (WCSS) were used to indicated the best cluster group number.
The elbow method identifies the optimal K as the point where adding more clusters yields
diminishing returns in reducing WCSS. Here, the sharp drop from K = 1 to K = 2 followed by
a plateau suggests that K = 2 offers the most meaningful separation of physiological response
patterns.

Clustering result at SNR:-16 dB (GSR) To examine whether the GSR -derived clusters
reflected meaningful differences in behavioural or subjective outcomes, statistical
comparisons were conducted on task accuracy, subjective difficulty, and subjective effort
between the two groups. As the data did not follow a normal distribution, the non
-parametric Wilcoxon rank -sum test was used for group comparisons.
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Figure. 13.25. Clustering result - average trial response of GSR with
standard error shading (baseline corrected, k =2, SNR = -16 dB)

Two clusters of participants’ GSR responses are shown, averaged across individuals within each
cluster. To allow for easier comparison, the first value was subtracted, aligning all traces to a
common starting point of zero. The solid lines represent the mean GSR trace for each group,
and shaded regions indicate £1 standard error of the mean (SEM). Clustering was based on the
temporal similarity of GSR patterns using correlation distance.

Vertical lines mark key task events: word onset (black), retention start (solid green), and retention
end (dashed green). Cluster 1 (blue, n = 15) shows an early peak around retention onset followed
by a decline, whereas Cluster 2 (orange, n = 11) shows a slower rise and a broader, sustained
response across the retention phase, indicating differing patterns of physiological engagement.

The results revealed no statistically significant differences across any of the three
measures (p > 0.05), suggesting that the physiological clustering did not correspond

directly to differences in behavioural performance or self -reported experience.

The clustering analysis revealed distinct patterns in participants” physiological responses,
indicating that individuals reacted differently during the listening task. Despite this
divergence in GSR activity, statistical comparisons of task accuracy, perceived difficulty,
and reported effort between the clusters showed no significant differences.

This apparent disconnect suggests that while participants” physiological arousal varied, it
may not have translated into observable behavioural or subjective differences. Possible

explanations include inter -individual variability in autonomic regulation, differences in
physiological sensitivity, or cognitive strategies that are not fully captured by self -report

or performance metrics.

Clustering result at SNR :-11 dB (GSR) To determine the optimal number of GSR
response patterns, the elbow method was applied at SNR —11 dB. The WCSS dropped
steeply from K = 1 to K = 2, indicating that two clusters offered a reasonable trade-off

between complexity and explanatory power.
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Figure. 13.26. Differences in Performance and Subjective Ratings
Between GSR Clusters (SNR -16dB)

Boxplots show differences in accuracy, subjective difficulty, and subjective effort between the
two groups identified through correlation -based clustering of GSR responses (as shown in
Figure 13.25). Each dot represents one participant, and groupings are derived from the GSR trace
similarity during the trial period at -16 dB SNR.

Group 1 and Group 2 show partially overlapping distributions across metrics. Notably, Group 1
exhibited slightly lower accuracy but reported marginally higher subjective effort. These results
suggest that differences in GSR patterns may be associated with subtle variations in task perfor-
mance and perceived effort.

Despite the observed physiological differences, the two identified groups did not differ
significantly in task performance. Accuracy, subjective effort, and subjective difficulty
scores were comparable between clusters, as confirmed by non-parametric Wilcoxon
tests.

Nevertheless, the average GSR traces (Figure 13.27) revealed temporally distinct patterns
between clusters. One group showed a rapid GSR rise during retention, while the other
displayed a slower and more sustained increase, indicating diverging physiological
engagement profiles.

These findings suggest that, at an SNR of —11 dB, participants exhibit meaningful
physiological differences in their GSR responses, as captured by unsupervised clustering.

However, these physiological patterns do not appear to directly translate into measurable
differences in behavioural performance. This discrepancy may indicate that individuals
adopt different regulatory or coping strategies during the task, which manifest
physiologically but yield similar performance outcomes.

Clustering result at SNR : -6 dB (GSR) At the —6 dB SNR level, the elbow plot

indicated that K = 2 was the optimal number of clusters, supporting the presence of two
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Figure. 13.27. Clustering result - average trial response of GSR with
standard error shading (baseline corrected, k = 2, SNR = -11 dB)

Two clusters of participants’ GSR responses are shown, averaged across individuals within each
cluster. The solid lines represent the mean GSR trace for each group, and shaded regions indicate
=£1 standard error of the mean (SEM). To allow for easier comparison, the first value was subtracted,
aligning all traces to a common starting point of zero. Clustering was based on the temporal
similarity of GSR patterns using correlation distance.

Vertical lines mark key task events: word onset (black), retention start (solid green), and retention
end (dashed green). Cluster 1 (blue, n = 12) shows an early peak around retention onset followed
by a decline, whereas Cluster 2 (orange, n = 14) shows a slower rise and a broader, sustained
response across the retention phase, indicating differing patterns of physiological engagement.

distinct physiological response patterns.

These clusters were further visualised in the SEM plot, which revealed clear differences in
GSR dynamics across time-one group showed a sharp increase followed by decline, while

the other exhibited a slower, sustained rise.

However, when comparing behavioural accuracy, subjective difficulty, and perceived
effort between these groups, no significant differences were found. This pattern of
physiological divergence without behavioural separation echoes findings at —11 and
—16 dB, suggesting a stable dissociation between autonomic response profiles and overt

task performance across conditions.

Clustering result at SNR :12 dB (GSR) Clustering results at 12dB SNR showed that
using two clusters (K = 2) provided a good fit to the data. This was based on the elbow
method, where the drop in within-cluster variance became much smaller after K = 2,
suggesting no strong benefit from adding more clusters.

The corresponding cluster-averaged GSR signals are shown in Figure 13.29. Cluster 1
(n = 8) exhibited an earlier, sharper peak shortly after word onset, followed by a more

rapid decline. In contrast, Cluster 2 (n = 18) displayed a slower rise and more prolonged
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Figure. 13.28. Clustering result - average trial response of pupil diameter with
standard error shading (baseline corrected, k = 2, SNR = -6 dB)

Two clusters of participants’ GSR responses are shown, averaged across individuals within each
cluster. The solid lines represent the mean GSR trace for each group, and shaded regions indicate
+1 standard error of the mean (SEM). To allow for easier comparison, the first value was subtracted,
aligning all traces to a common starting point of zero. Clustering was based on the temporal
similarity of GSR patterns using correlation distance.

Vertical lines mark key task events: word onset (black), retention start (solid green), and retention
end (dashed green). Cluster 1 (blue, n = 12) shows an early peak around retention onset followed
by a decline, whereas Cluster 2 (orange, n = 14) shows a slower rise and a broader, sustained
response across the retention phase, indicating differing patterns of physiological engagement.

elevation across the retention period, indicating qualitatively distinct physiological
profiles.

Despite this divergence in GSR dynamics, no significant differences were observed in
behavioural accuracy, subjective difficulty, or self-reported effort between the two
clusters. These metrics remained statistically comparable across groups, based on
Wilcoxon rank-sum tests (p > .05).

This dissociation between physiological clustering and task outcomes aligns with
previous findings at lower SNR levels (—16, —11, and —6 dB). Together, these results
suggest that autonomic response patterns may reflect differences in internal processing or
engagement, without a clear behavioural correlate.

Such findings imply that GSR-based clustering may capture subtle cognitive or emotional
dynamics not easily accessed through performance scores or subjective ratings. This
highlights the potential of psychophysiological measures to reveal latent individual
differences in task-related responses beyond overt behaviour.
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Figure. 13.29. Clustering result - average trial response of GSR with
standard error shading (baseline corrected, k = 2, SNR = 12 dB)

Two clusters of participants’ GSR responses are shown, averaged across individuals within each
cluster. To allow for easier comparison, the first value was subtracted, aligning all traces to a
common starting point of zero. The solid lines represent the mean GSR trace for each group,
and shaded regions indicate £1 standard error of the mean (SEM). Clustering was based on the
temporal similarity of GSR patterns using correlation distance.

Vertical lines mark key task events: word onset (black), retention start (solid green), and retention
end (dashed green). Cluster 1 (blue, n = 12) shows an early peak around retention onset followed
by a decline, whereas Cluster 2 (orange, n = 14) shows a slower rise and a broader, sustained
response across the retention phase, indicating differing patterns of physiological engagement.

13.4.6 Clustering Result Agreement Across Different SNR Levels (GSR)

The clustering assignments across SNR levels are illustrated in Figure 13.30, which maps
each participant’s group membership at four different auditory conditions. Each row
represents a distinct SNR level, ordered from the most difficult -16 dB to the easiest (12

dB), and each column corresponds to an individual subject.

The coloured bands indicate whether a participant was assigned to Cluster 1 or Cluster 2
under each condition. While several participants remained in the same cluster across all
conditions-suggesting stable physiological response profiles-many others shifted clusters
depending on the listening difficulty.

This variability implies that some individuals exhibit flexible physiological patterns that
adapt with task demands, whereas others respond more consistently regardless of
difficulty level. Such observations provide support for subject -specific response profiles
that are either stable or modulated by task challenge.

To quantify the similarity of clustering solutions across noise conditions, the Adjusted
Rand Index (ARI) was computed between every pair of SNR levels (see Figure 13.31).

Results show that clustering solutions tend to be more consistent between neighbouring

SNR levels, while comparisons across more extreme noise contrasts exhibit weaker
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Figure. 13.30. Cluster membership across SNR levels - GSR

Cluster assignments are shown by participant across different SNR levels. Each column represents
an individual, and each row corresponds to one SNR condition (from -16 dB to 12 dB). Colours
indicate cluster identity (Cluster 1 or Cluster 2).

Some participants maintain consistent group membership across all conditions, while others
switch between clusters depending on the noise level. This pattern may reflect a distinction
between stable and more contextually adaptive physiological response styles.
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Figure. 13.31. Clustering membership agreement - adjusted rand
Index (ARI) between SNR Pairings (GSR)

Clustering agreement across SNR conditions was evaluated using the Adjusted Rand Index (ARI),
which measures similarity between cluster assignments while correcting for chance. Higher values
indicate greater consistency between clustering solutions at different SNRs.

Moderate agreement was observed between adjacent levels (e.g., -16 dB and -11 dB, ARI = 0.353),
whereas low agreement (e.g., ARI = 0.070 between -16dB and -6dB) suggests that physiological
response patterns shift substantially with changes in task difficulty.
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agreement. This pattern suggests that participants” physiological response profiles adapt
dynamically to task difficulty, leading to different groupings across conditions.

13.5 Respiration Rate

13.5.1 Data Overview

Respiration data was first cleaned and extracted respiration rate (RR) (see Page 127 for
cleaning details). RR was intepolated at frequency of 1000, to match other physiological
data. To examine whether respiration patterns were modulated by task demands or
auditory clarity, respiration traces were averaged across participants and repeated
experiments.

Time-locked data were extracted from the onset of the first spoken word and analysed
across four levels of signal-to-noise ratio (SNR). A consistent dip was observed following
retention onset, becoming more pronounced at higher intelligibility (e.g., SNR = 12),

suggesting possible respiratory adaptation linked to cognitive processing during

retention.
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Figure. 13.32. Respiration rate grand average (original) - data averaged from experiment
1 and 2, all SNR levels

Each panel shows respiration signals averaged across two experiments for four SNR conditions
(-16, -11, -6, and 12 dB). Grey lines represent individual participant averages, and the red trace
indicates the grand average.

Time is aligned to the onset of the first word (blue line). The solid and dashed orange lines mark
the start and end of the memory retention phase, respectively.

To assess task-related changes in respiration, signals were mean-subtracted and

time-aligned to the onset of the first spoken word. Averaged across two experiments, the
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respiration traces show a consistent dip following the onset of the retention period,
particularly at higher SNRs.
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Figure. 13.33. Respiration rate grand average (mean-subtracted) - data averaged from
experiment 1 and 2, all SNR levels

Grand average respiration signals (red line) and individual participant traces (grey lines) are
plotted across four SNR levels (-16, -11, -6, 12 dB), based on data averaged from two repeated
experiments.

Signals are time-aligned to word onset (blue line), with the start and end of the memory retention
phase marked by solid and dashed orange lines, respectively. The y-axis reflects respiration
amplitude following mean subtraction within each trace.

At SNR = 12, an obvious recovery and peak is observed after the retention period,
whereas this pattern is less evident at lower SNRs. These dynamics suggest that
respiration may be modulated by both task structure and stimulus intelligibility, with
clearer speech potentially evoking more distinct respiratory adjustments during memory
retention.

13.5.2 Task-Evoked Changes in Respiration Rate

Significant differences in respiration rate were observed between Word Start and
Retention Start across all SNR levels (—16, —11, —6, and 12 dB). Wilcoxon signed-rank
tests were applied when data is not normal (SNRs —16 and —11), while paired ¢-tests
were used where data were normally distributed (SNRs —6 and 12).

All comparisons yielded highly significant differences (p = .000), indicating that
respiration rate systematically increased over the retention period. These findings
suggest that task-evoked respiration dynamics are sensitive to both the acoustic clarity
and the cognitive phase of the task.
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Figure. 13.34. Respiration rate comparison between word and retention onset
across SNR levels

These paired boxplots compare respiration rates measured at word onset and retention onset
across four levels of signal-to-noise ratio (SNR). Each colour-coded pair reflects average participant
responses at a given SNR, combining data from repeated experiments. A consistent downward
shift is visible from word to retention onset within individuals.

Overlaid lines indicate the mean (solid red) and median (dashed grey) values per condition. These
patterns suggest a subtle decrease in respiration rate as participants transition into the memory
retention phase, potentially reflecting a shift in cognitive or attentional demand.

13.5.3 Respiration Rate Changes at Different SNR Levels

To explore how respiratory dynamics are modulated by listening difficulty and task
engagement, we analysed respiration rate across different time windows and across
signal-to-noise ratio (SNR) conditions.

Statistical testing showed no significant overall differences in RR at word onset, retention
start, or retention end (Friedman test all p > .16). However, post hoc comparisons
revealed that the most degraded condition (SNR -16) differed significantly from both -6
and 12 dB at several time points, including word onset and retention offset (Figure 13.36).

To further examine how RR changed over time, we computed within-subject differences
between key task periods (Figure 13.37). The difference between retention onset and
word onset showed a small but consistent negative shift across SNR levels, though not
statistically robust overall.

In contrast, the difference between retention offset and retention onset was more strongly
modulated by SNR, with a significant main effect detected (Friedman test p < 0.05).
Greater respiration rate increases were observed at higher SNRs, suggesting clearer

speech may induce stronger physiological changes during the memory retention phase.
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Figure. 13.35. Respiration rate comparison between retention onset and offset
across SNR levels

Paired boxplots illustrate the change in respiration rate from the beginning to the end of the
retention phase at each signal-to-noise ratio (SNR). Each point represents a participant’s averaged
rate per phase across experiments, allowing comparison within-subject.

Across all four SNR levels, respiration rate tended to increase from retention onset to offset,
suggesting a progressive shift in physiological engagement during the memory retention interval.
Trends were most pronounced at higher SNRs, where task difficulty was reduced.

These findings indicate that while respiration rate at isolated time points is highly
variable, relative changes across task segments reveal systematic modulation by listening
condition. This supports the idea that clearer auditory input elicits more distinct

physiological dynamics over the course of cognitive processing.

13.5.4 Within Individual Consistency - Permutation Test Result of
Respiration Rate

To examine whether participants’ respiration patterns were consistent across experiments,
we conducted a within-subject similarity analysis. Specifically, we tested whether each

participant’s respiration signal in one experiment was more similar to their own signal in
the other experiment than to those of other participants. Similarity was quantified using

Pearson’s correlation coefficient.

Figure 13.38 illustrates two representative cases at SNR —11 dB. In both examples, the
participants respiration traces from Experiment 1 and Experiment 2 closely resembled
each other, with notable divergence from other participants’” responses (shown in grey).
These cases visually highlight within-subject consistency amid group-level variability.
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Figure. 13.36. Respiration rate across conditions at different signal-to-noise
ratios (SNRs)

Boxplots illustrate respiration rate (in breaths per minute) extracted at three task-relevant moments:
word onset, retention onset, and retention offset. Each point represents an individual participant’s
average RR across two experiments. SNR levels range from the most degraded (-16 dB) to the
most intelligible (12 dB).

Overlaid lines indicate the mean (solid red) and median (dashed grey) values per SNR level.
Respiration at retention offset shows a visible increase at clearer SNRs, although trends are modest
across conditions.
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Figure. 13.37. Respiration rate differences across SNR levels.

Each panel shows the respiration rate change between two task stages: retention onset minus
word onset (left), and retention offset minus retention onset (right). These metrics reflect dynamic
changes in breathing patterns during memory retention.

Values are averaged across two experiments per participant. Points represent individuals, while
boxplots and overlaid lines display the distribution, mean (solid red), and median (dashed grey)
per SNR level. The largest relative increase from retention start to end appears at intermediate to
higher SNRs.
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Figure. 13.38. Example of within-subject respiration similarity across experiments at
SNR -11 dB

Two participants (Subjects 2 and 9) show consistent RR patterns across Experiment 1 (orange)
and Experiment 2 (red), overlaid on background traces (grey) representing all other participants at
the same SNR level.

Data have been mean-centred within each condition to improve vertical alignment. These exam-
ples illustrate the higher within-subject similarity compared to the variability observed across the

group.

0.5} B Within-Subject
Permutation Mean
c p=0.023
204t
[
‘S
w0
o]
o
G 0.3F
5 p=0.000
=}
©
(9]
2 p=0.135
5 0.2
(@]
(]
o
o
g
Z 0.1
p=0.439
0.0 I
-16 -11 -6 12
SNR Level

Figure. 13.39. Permutation test of within-subject correlations in respi-
ration rate average trial response

Bars represent average correlation coefficients between respiration signals from the same individu-
als across two experiments (within-subject; blue) compared to the mean correlation from random
pairings (permutation mean; beige).

Each SNR level is tested separately. Annotated p-values indicate whether within-subject similarity
was significantly greater than expected by chance, based on 1000 permutations.
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To statistically assess this effect across the sample, a permutation test was conducted for
each SNR level. The average within-subject correlation was compared to a null
distribution generated by randomly pairing subjects across experiments. As shown in
Figure 13.39, within-subject similarity was significantly higher than chance at SNR -11 dB
and 12 dB, but not at SNR —16 dB or —6 dB. These findings suggest that individual
consistency in respiration patterns emerges more reliably at moderate-to-clear SNRs.

A comparable analysis was previously applied to GSR data (Figure 13.23, Page 157). GSR
responses showed stronger within-subject consistency across all SNRs, particularly at
SNR -11 dB and -16 dB. In contrast, respiration exhibited weaker alignment under
degraded SNRs, potentially reflecting its slower timescale or greater sensitivity to general
arousal and attentional shifts.

13.5.5 Clustering Result of Respiration Rate

To explore whether participants exhibited distinct physiological patterns in response to
challenging listening conditions, a k-means clustering analysis was applied to the
respiration data from averaging Experiment 1 and 2 at Different SNR levels.

Clustering result at SNR :-16 dB (RR) At SNR -16 dB level, the elbow method
indicated that a two-cluster solution was optimal. These clusters reflected two broad
groups of individuals with differing respiration trajectories during the listening and
retention periods.

Despite the physiological separation, no significant group differences were found in
behavioural performance or subjective ratings (same as GSR results). indicates that
individual physiological reactivity may not correspond directly with explicit behavioural
or self-reported measures of listening effort.

Clustering result at SNR :-11 dB (RR) Participants were clustered into two groups
based on their respiration waveforms at SNR = —11 dB, using k-means clustering. The
number of clusters (k = 2) was determined via an elbow analysis of the within-cluster
sum of squares. This approach was applied to data averaged across Experiments 1 and 2,

providing greater statistical stability across repeated testing sessions.

The resulting clusters reflected distinct respiration response profiles during the listening
and retention period. However, when comparing behavioural metrics between the two

groups-accuracy, perceived difficulty, and perceived effort-no significant differences were
observed. This suggests that while participants differed in physiological expression, this

did not correspond to observable differences in behavioural outcomes.
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Figure. 13.40. Clustering result - average trial response of respiration rate with
standard error shading (baseline corrected, k = 2, SNR = -16 dB)

Average respiration traces are shown for two participant clusters identified at SNR —16 dB in
RR data averaged from experiment 1 and 2, with shading indicating the standard error of the
mean (SEM). To allow for easier comparison, the first value was subtracted, aligning all traces to a
common starting point of zero. Key task events-word onset, retention start, and retention end-are
marked with vertical lines.

Participants in Cluster 1 (blue) exhibited increased respiration amplitude during the retention
period, while Cluster 2 (orange) showed a sustained decrease. These diverging patterns may
reflect distinct engagement or regulation strategies under highly degraded acoustic conditions.

These findings mirror the clustering analysis conducted on GSR data, where similarly, no
reliable behavioural distinctions emerged between physiological groups. This
convergence reinforces the idea that physiological variation does not always map directly

onto performance or subjective experience.

Clustering result at SNR :-6 dB (RR) At SNR —6dB, clustering analysis again
suggested the presence of two distinct participant subgroups based on their respiration
patterns Participants in Cluster 1 exhibited stronger respiratory suppression during the
early retention phase, while those in Cluster 2 showed relatively shallower modulation
(Figure 13.42).

Importantly, no significant differences were observed between these two groups across
behavioural measures such as accuracy, perceived difficulty, or effort. This is consistent
with the clustering findings at other SNR levels.

Clustering result at SNR : 12 dB (Respiration Rate) K-means clustering applied to
respiration traces at SNR 12 dB also identified a clear two-cluster structure. This was
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Figure. 13.41. Clustering result - average trial response of respiration rate with
standard error shading (baseline corrected, k = 2, SNR = -11 dB)

Cluster-averaged respiration traces with SEM shading are shown for participants grouped via
k-means clustering (k = 2) at SNR —11 dB. Data were averaged across Experiments 1 and 2. To
allow for easier comparison, the first value was subtracted, aligning all traces to a common starting
point of zero. Timepoints corresponding to word onset, retention start, and retention end are
marked with vertical lines.

The two clusters exhibit distinct respiratory patterns, particularly during the retention phase. One
group (Cluster 2) shows a more rapid initial drop followed by a larger increase in amplitude
compared to the other. These differences may reflect individual variation in task-related respiratory
dynamics.

supported by the elbow plot, where the within-cluster sum of squares sharply declined at
k = 2 and plateaued thereafter

The corresponding cluster-averaged traces (Figure 13.43) showed substantial divergence
in respiratory patterns across the task period. However, as with the other SNR levels, no
statistically significant group differences were found in task accuracy, subjective effort, or
perceived difficulty. This suggests that although individuals differ in physiological
reactivity, these differences do not appear to predict behavioural outcomes.

Clustering results revealed the presence of distinct patterns in participants’ respiration
profiles, despite identical acoustic conditions and task demands. At each signal-to-noise
ratio (SNR) level, a two-cluster solution was consistently supported by the elbow method,
indicating the existence of two dominant physiological response types.

These results suggest that listeners differ in their physiological engagement during the
task. Such variation could reflect differences in cognitive strategies, attention, or
emotional regulation. Importantly, these response types emerged organically from the
data, without any prior behavioural grouping.
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Figure. 13.42. Clustering result - average trial response of respiration rate with
standard error shading (baseline corrected, k = 2, SNR = -6 dB)

At SNR -6dB, the clustering of respiration traces revealed two groups with distinct temporal
patterns. To allow for easier comparison, the first value was subtracted, aligning all traces to a
common starting point of zero. The lines show mean respiration per cluster, and the shaded areas
represent the standard error of the mean (SEM).

Cluster 1 (blue, n = 12) displayed a deeper suppression during the retention phase, followed
by gradual recovery, while Cluster 2 (orange, n = 14) followed a shallower and earlier-shifting
pattern. These profiles suggest variability in physiological modulation under moderately degraded
listening conditions.

However, comparisons of behavioural measures - including accuracy, subjective difficulty,
and reported effort - revealed no significant differences between the clusters. This pattern
mirrors the findings observed in galvanic skin response (GSR) data, where similar

groupings emerged in the absence of behavioural divergence.

Together, these findings imply that physiological responses can capture individual
differences in task engagement or processing style that remain invisible to traditional
behavioural measures. Clustering thus offers a valuable complementary perspective for

interpreting listener variability.

However, it is also possible that the absence of observable behavioural differences may
reflect limitations in statistical power, as the group sizes in each cluster were relatively

small. Thus, while clustering reveals individual variability in physiological dynamics,

further data may be needed to confirm whether such patterns are functionally

meaningful.



176 Chapter 13. Results and Discussion

0] i Cluster 1 (n=19)
:5 i Cluster 2 (n=7)
E- '
< -1.5 - i
o
2.5 = ;
© [77] m;
L 2 5 5i
-3 2 = =H
s o 3
35 = = | I I ! |
0 2 4 6 8 10 12 14
Time (s)

Figure. 13.43. Clustering result - average trial response of respiration rate with
standard error shading (baseline corrected, k = 2, SNR = 12 dB)

Clustered respiration traces at SNR 12dB reveal two distinct group-level patterns in temporal
dynamics. Solid lines represent the mean across individuals within each cluster, while shaded
regions indicate the standard error of the mean (SEM). To allow for easier comparison, the first
value was subtracted, aligning all traces to a common starting point of zero.

Group 1 (in blue, n = 19) showed a marked dip during the retention period followed by a rebound,
whereas Group 2 (in orange, n = 7) exhibited a shallower trajectory throughout. These differences
suggest variation in physiological engagement strategies under high intelligibility.

13.5.6 Clustering Result Agreement Across Different SNR Levels
(Respiration Rate)

To assess the consistency of clustering assignments across signal-to-noise ratio (SNR)
levels, individual participant groupings were visualised in Figure 13.44. Although the
two-cluster solution was optimal at each SNR level, the figure shows that most
participants changed cluster assignments across conditions, indicating variability in

group membership depending on acoustic clarity.

This observation is quantified in Figure 13.45, which presents the Adjusted Rand Index
(ARI) as a measure of similarity in clustering solutions between SNR levels. The ARI
accounts for agreement expected by chance, with values near 1 indicating strong
consistency and values near 0 or negative suggesting little to no agreement (ARI ranges
from -1 to 1). Most ARI values were close to zero or negative, implying that the

composition of clusters was highly variable across acoustic conditions.

The one exception was the comparison between —11 dB and —6 dB SNRs, which showed
moderate agreement (ARI = 0.575), suggesting some stability in participant groupings
between these two moderately degraded conditions. However, the overall lack of
consistency highlights that participants do not fall into fixed RR responses. Instead, their
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Figure. 13.44. Cluster membership across SNR levels - respiration rate

Heatmap displays each subject’s assigned cluster (Cluster 1 or Cluster 2) at each SNR level. Rows
represent SNR conditions (-16, -11, -6, and 12 dB), while columns denote individual participants.
Colour indicates cluster identity, highlighting how participant classification varies across acoustic
clarity.

While some individuals consistently fall into the same cluster, many shift across conditions,
suggesting context-dependent physiological profiles rather than stable group membership. This
variability may reflect fluctuations in internal state or task engagement rather than fixed individual
traits.
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Figure. 13.45. Clustering membership agreement - adjusted rand Index (ARI)
between SNR Pairings (respiration rate)

This matrix shows pairwise agreement between cluster solutions at each signal-to-noise ratio
(SNR) level, using the Adjusted Rand Index (ARI). Values close to 1 indicate high consistency,
while those near 0 suggest random or inconsistent assignments.

Relatively high agreement was observed between -11 and -6 dB (ARI = 0.575), but agreement was
otherwise low or negative. This suggests that clustering solutions were not consistent across SNR
conditions, reinforcing the idea that group structure may vary as a function of task acoustics.
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respiration patterns-and by extension, their engagement or regulation strategies-may
adapt dynamically in response to the task difficulty level.

13.6 Heart Rate

13.6.1 Data Overview

Heart rate was extracted from the original ECG recordings and interpolated to a
sampling frequency of 1000 Hz (see Section 12.5, Page 128, for details). Data were then
segmented within a time window spanning from 1.5 seconds before word onset to 5
seconds after the end of the retention period.

As shown in Figure 13.46, the resulting heart rate signals were mean-subtracted and
averaged across participants for each signal-to-noise ratio (SNR) condition. This allowed
visualisation of the general temporal profile of heart rate modulation in response to task

events across varying listening conditions.
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Figure. 13.46. Heart rate grand average (mean-subtracted) - data averaged
from experiment 1 and 2, all SNR levels

This figure shows the average heart rate response (mean-subtracted) across four signal-to-noise
ratio (SNR) conditions: -16, -11, -6, and 12 dB. The thick red line represents the grand average
across participants, while the grey lines show individual responses. Key task events are marked:
word onset (blue), retention start (solid orange), and retention end (dashed orange).

A clear increase in heart rate is visible around word onset across all SNRs, followed by dips
during retention. The general shape is preserved across SNRs, though the amplitude and timing
of features vary.

Despite inter-individual variability, a consistent phasic pattern was observed: a sharp
increase in heart rate following word onset, followed by a dip during the retention
interval. This pattern appeared across all SNR levels, although the amplitude and timing
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varied. These results suggest that heart rate dynamically tracks key cognitive stages in
the task.

13.6.2 Task-Evoked Changes in Heart Rate

To examine the effect of SNR on heart rate modulation, we extracted heart rate values at
four key time points within each trial: baseline (1.5 seconds before word onset), word
start, retention start, and retention end (see Figure 13.46). A Friedman test was conducted
for each time point across SNR levels, but no statistically significant differences were

found.

We calculated four difference scores to capture how heart rate changed from one phase to
the next: RR Baseline - 1.5 seconds before the word start, Word start, Retention Start,
Retention End.

Within each SNR level, heart rate changed clearly in response to the task: it rose after
word onset, dropped during the retention period, and rose again toward the end of the
trial. These shifts were statistically significant across nearly all comparisons (paired-wise

t-test, p < 0.01), showing a consistent pattern across different difficulty levels.
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Figure. 13.47. Heart rate at four key task timepoints across SNR levels

This figure presents heart rate values at four key timepoints within each trial: baseline (1.5 seconds
before word onset), word start, retention start, and retention end. Each subplot corresponds to a
signal-to-noise ratio (SNR) condition: -16, -11, -6, and 12 dB. Colours reflect timepoints: baseline
(blue), word start (red), retention start (green), and retention end (purple).

Heart rate increases sharply from baseline to word start across all SNRs, followed by a dip during
the retention period. The degree of heart rate rise after retention varies by condition, with a more
pronounced reactivation observed at lower SNRs. Pairwise statistical comparisons within each
SNR level all shows significant difference (t-test, p < 0.01)).
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13.6.3 Heart Rate Changes at Different SNR Levels

To examine the effect of SNR on heart rate modulation, we extracted heart rate values at
four key time points within each trial: baseline (1.5 seconds before word onset), word
start, retention start, and retention end (see Figure 13.46). A Friedman test was conducted
for each time point across SNR levels, but no statistically significant differences were
found.

We next investigated the dynamic change in heart rate over time by computing
differences between peak and dip points. Specifically, we quantified heart rate recovery
during the retention period as the difference between the peak at retention end and the
dip at retention start. This revealed a statistically significant difference across SNR levels
(p < 0.01), indicating that heart rate recovery varies systematically with signal clarity (see
Figure 13.48.
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Figure. 13.48. Heart rate difference between retention end and reten-
tion start across SNR levels

This boxplot shows the difference in heart rate between the peak at the end of the retention period
and the dip at the start of the retention period across four signal-to-noise ratio (SNR) conditions:
-16,-11, -6, and 12 dB. Each dot represents a participant. The red line indicates the mean, while the
grey dashed line shows the median.

A larger positive difference reflects greater heart rate recovery during the retention period. Dif-
ferences tend to be smaller at higher SNR levels (e.g., 12 dB), suggesting reduced physiological
recovery as clarity improves, although variability is high.

Results of Friedman test suggests that there is a significant difference of heart rate recovery across
different SNR levels (p < 0.01.)

The magnitude of change between retention start and retention end reflects differences in
task-related engagement. In more challenging conditions (e.g., lower SNRs), heart rate
tends to rise again before the response, possibly reflecting increased cognitive effort or
arousal. In contrast, under easier conditions (e.g., 12 dB SNR), heart rate remains low,

suggesting that participants stay relaxed even while preparing to respond.
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13.6.4 Within Individual Consistency - Permutation Test Result of Heart Rate

To evaluate the consistency of heart rate responses within individuals across repeated
experimental sessions, we conducted a permutation test comparing within-subject
correlations to a null distribution generated by random pairing. As shown in Figure 13.49,
within-subject correlations were significantly higher than would be expected by chance
across all SNR conditions (p < 0.001), indicating robust individual response patterns.
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Figure. 13.49. Permutation test of within-subject correlations in heart
rate average trial response

This figure presents the average within-subject heart rate correlation (blue bars) across four SNR
conditions: -16, -11, -6, and 12 dB. Each blue bar is contrasted with the corresponding permutation-
based null distribution mean (tan bars), representing the expected correlation under random
pairing.

All within-subject correlations were significantly higher than chance (permutation mean), with p-
values from the permutation tests shown above each bar. These results indicate robust individual
consistency in heart rate responses within each SNR condition.

Figure 13.50 provides an illustrative example using two participants at the -11 dB SNR
level. Despite notable inter-individual variability (grey traces), both participants
displayed highly similar heart rate trajectories across experiments, underscoring the
presence of consistent physiological dynamics at the individual level.

Given the strong within-subject consistency observed across experiments, we next
explored whether participants could be grouped based on similarities in their heart rate
response patterns. We applied cluster analysis to assess whether distinct physiological
response profiles emerge across individuals, and whether these clusters relate to
behavioural measures.
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Figure. 13.50. Example of within-subject heart rate consistency at -11 dB SNR

This figure shows heart rate responses (mean-centred) for two example participants (Subject 8 and
Subject 9) at -11 dB SNR, illustrating within-subject consistency across two experimental sessions.

Thick lines represent the average response in Experiment 1 (orange) and Experiment 2 (red). Grey
traces in the background show responses from other participants for reference.

13.6.5 Clustering Result of Heart Rate (presenting per SNR level

To further examine the structure underlying individual variability in heart rate responses,
we applied cluster analysis to group participants with similar physiological profiles.
Given the significant within-subject consistency observed across all SNR levels

(Figure 13.49), we reasoned that between-subject differences may reflect meaningful
subgroup patterns rather than noise.
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Figure. 13.51. K-Means elbow plot of cluster sum of squares (WCSS)
in within subject correlations for heart rate clustering (-16 dB)

This elbow plot shows the within-cluster sum of squares as a function of the number of clusters (K)
for k-means clustering applied to heart rate response features at -16 dB SNR. A clear inflection is
observed at K = 2, suggesting that two clusters provide an optimal balance between explanatory
power and parsimony.
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Figure. 13.52. Clustering result - average trial response of heart rate with
standard error shading (baseline corrected, k = 2, SNR = -16 dB)

This figure shows the average heart rate responses for the two clusters identified via k-means
clustering (k = 2) at -16 dB SNR. Each line represents the mean response across participants in a
cluster, with shaded regions indicating the standard error of the mean (SEM). Key task events are
marked: word onset (black), retention start (green), and retention end (dashed green).

To allow for easier comparison, the first value was subtracted, aligning all traces to a common
starting point of zero. The two clusters display distinct response profiles, particularly around the
retention period, suggesting meaningful differences in physiological engagement or regulation
strategies among participants.

Clustering result at SNR : -16 dB (Heart Rate) An elbow plot of within-cluster sum of
squares (Figure 13.51) indicated that two clusters provided the optimal solution for the
-16 dB SNR condition. The resulting cluster averages (Figure 13.52) revealed two distinct
patterns of heart rate modulation, especially during the retention period, suggesting

potential differences in cognitive or physiological engagement across individuals.

To assess whether the observed physiological clusters corresponded to meaningful
behavioural differences, we compared task accuracy, subjective difficulty, and subjective
effort between the two groups (Figure 13.53). Statistical comparisons revealed no

significant differences across any of the three measures.

Clustering result at SNR : -11 dB (Heart Rate) As with the -16 dB SNR condition, we
also examined whether the physiological clusters identified at -6 dB SNR corresponded to
differences in behavioural or subjective measures. Participants were grouped into two
distinct clusters based on heart rate response patterns (Figure 13.55), and their accuracy,
perceived task difficulty, and effort were compared.

However, consistent with the findings at -16 dB, no significant differences were observed

between the two groups across any of these measures, suggesting that physiological
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Figure. 13.53. Comparison of behavioural and subjective
measures between heart rate response clusters at -16 dB
SNR

This figure compares accuracy, subjective difficulty, and subjective effort between the two par-
ticipant groups identified through heart rate clustering at -16 dB SNR. Each dot represents an
individual, with boxplots overlaid to indicate group distributions. Despite similar levels of per-
ceived difficulty and effort, Group 1 showed more variability in accuracy, suggesting differing
behavioural outcomes associated with the physiological response profiles.
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Figure. 13.54. Clustering result - average trial response of heart rate with
standard error shading (baseline corrected, k =2, SNR =-11 dB

This figure shows the average heart rate responses for the two clusters identified via k-means
clustering (k = 2) at -6 dB SNR. Each line represents the mean response across participants in
a cluster, with shaded regions indicating the standard error of the mean (SEM). Task events are
marked at word onset (black), retention start (green), and retention end (dashed green).

To allow for easier comparison, the first value was subtracted, aligning all traces to a common
starting point of zero. The clusters display distinct amplitude and timing characteristics, partic-
ularly surrounding the retention period. These results suggest that differences in physiological
modulation may reflect underlying cognitive or emotional processing differences across partici-
pants.
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response profiles did not systematically map onto task performance or self-reported
experience at this SNR level.

Clustering result at SNR : -6 dB (Heart Rate) At —6 dB SNR, k-means clustering again
revealed two distinct heart rate response profiles (Figure 13.55). The clusters differed in
both amplitude and temporal dynamics, particularly during the retention period,
suggesting differential physiological engagement across participants under moderate
noise conditions.

To assess whether these physiological groupings reflected differences in task performance
or subjective experience, we compared behavioural accuracy, perceived task difficulty,
and self-reported effort between the two clusters. However, consistent with findings from
the —16 dB and 12 dB SNR conditions, no significant differences were found in any of
these measures, indicating that physiological divergence did not correspond to

measurable behavioural or experiential outcomes at this SNR level.

Cluster 1 (n=19)
Cluster 2 (n=7)

Amplitude

N W
T T
Retention Start )

Retention End

'
w
T
Word Start

|
A

o
\V)
H
(o]
[oe]

10 12 14
Time (s)

Figure. 13.55. Clustering result - average trial response of heart rate
with standard error shading (baseline corrected, k = 2, SNR = -6 dB)

This figure shows the average heart rate responses for the two clusters identified via k-means
clustering (k = 2) at -6 dB SNR. The solid lines represent the mean response of each cluster, and
the shaded areas denote the standard error of the mean (SEM). Task markers indicate word onset
(black), retention start (green), and retention end (dashed green).

To allow for easier comparison, the first value was subtracted, aligning all traces to a common
starting point of zero. The clusters exhibit clearly divergent temporal dynamics, with notable
differences during the retention phase. These patterns suggest that individual participants engaged
with the task in physiologically distinct ways despite being presented with the same acoustic
conditions.

Clustering result at SNR: 12 dB (Heart Rate) At 12 dB SNR, the k-means clustering
again produced two distinct heart rate response profiles (Figure 13.56), with Cluster 1
showing a stronger initial increase followed by a gradual decline, and Cluster 2
displaying a sustained dip throughout the retention phase.
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Despite the clear physiological divergence, we found no significant differences in
accuracy, subjective difficulty, or effort ratings between the two groups.This pattern is
consistent with the results observed at —16 dB, —11 dB, and —6 dB SNR, further
supporting the conclusion that while physiological responses can vary markedly across
individuals, these differences are not necessarily reflected in task performance or
self-reported experience, even under high SNR conditions.
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Figure. 13.56. Clustering result - average trial response of heart rate
with standard error shading (baseline corrected, k = 2, SNR = 12 dB)

This figure presents the mean heart rate responses of two participant clusters identified using
k-means clustering (k = 2) at 12 dB SNR. Solid lines indicate cluster averages, and shaded areas
represent the standard error of the mean (SEM). Key task events are marked: word onset (black),
retention start (green), and retention end (dashed green).

To allow for easier comparison, the first value was subtracted, aligning all traces to a common
starting point of zero. The two clusters exhibit distinct response patterns throughout the trial,
particularly during the retention phase. These differences may reflect individual variations in
physiological regulation under low cognitive demand conditions.

Together, the clustering analyses across all SNR levels revealed consistent evidence of
individual variation in heart rate responses, yet no clear behavioural or subjective
correlates. While the physiological profiles were distinguishable within each SNR
condition, it remained unclear whether these response patterns were stable within

individuals across different acoustic environments.

To address this, we next evaluated the consistency of cluster membership across SNR
levels, both visually and quantitatively.

13.6.6 Clustering Result Agreement Across Different SNR Levels (Heart Rate)

To explore whether participants tended to exhibit stable physiological profiles across
listening conditions, we examined the agreement of cluster assignments across SNR
levels.
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Figure 13.57 illustrates how cluster assignments varied across SNR conditions for each
participant. While some individuals remained in the same cluster across multiple
conditions, many others shifted cluster membership depending on the SNR level,

suggesting that physiological response patterns may not be entirely trait-like.
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Figure. 13.57. Cluster membership across SNR levels - heart rate

This heatmap shows the clustering assignments of each participant (columns) across the four SNR
conditions (rows). Each cell indicates the cluster label assigned at a specific SNR level, enabling
visual comparison of assignment consistency across conditions.

To quantify the consistency of clustering structures, we computed the Adjusted Rand
Index (ARI) between every pair of SNR-specific clustering solutions (Figure 13.58). The
ARI values were generally low to moderate, with the highest agreement observed
between —6 dB and 12 dB SNR (ARI = 0.537).

These results indicate only limited consistency in clustering outcomes across SNR levels,
implying that the observed groupings may be partially condition-specific rather than
reflecting stable individual differences.

Overall, the clustering analyses revealed meaningful variation in physiological response
patterns within each SNR condition, consistently forming two distinct groups. However,
these groupings did not correspond to significant differences in task accuracy or
subjective ratings, indicating a disconnect between physiological profiles and
behavioural or experiential measures.

Moreover, when comparing cluster assignments across SNR levels, moderate agreement
was observed, with most participants shifting group membership depending on the
acoustic condition. This suggests that while individual differences in heart rate dynamics
exist, they still vary by the specific demands of the listening environment rather than
reflecting stable, trait-like patterns. These findings underscore the context-sensitive
nature of physiological responses in challenging listening tasks.
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This matrix displays the Adjusted Rand Index (ARI) values quantifying the similarity between
clustering results across all SNR levels. ARI values range from 0 (no agreement) to 1 (perfect
agreement), with diagonal entries representing self-comparisons.

13.7 Electroencephalography (EEG)

13.7.1 Data Overview

This section presents EEG alpha power responses during three critical task phases:
listening, retention, and responding. Figures 13.59, 13.60, and 13.61 display alpha
envelopes baseline-corrected to the one-second window preceding each respective event.

Data Processing and Alignment EEG was recorded at the Pz channel and
bandpass-filtered for the alpha band (8-13 Hz). The envelope was extracted using the
Hilbert transform. Data were epoched relative to task events using timing markers
derived from auditory clicks: Word Start (Click 1), Retention Start (Click 6), and Respond
Start (Click 7). For each phase, the signal was baseline-corrected using a window from —1

to 0 seconds relative to the alignment point.

Listening Phase In the listening phase (Figure 13.59) , alpha amplitude rises from noise
onset and peaks just after Word Start (0 s), followed by a progressive decline towards
Retention Start. Notably, lower SNRs (e.g., —16 dB) show stronger alpha suppression
post-Word Start, potentially reflecting greater listening effort. The vertical line at —0.5 s

indicates Noise Start.

Retention Phase During the retention period (Figure 13.60), alpha amplitude remains

relatively low and stable for high-demand conditions (e.g., —16 dB), indicating sustained
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Figure. 13.59. EEG Alpha envelope around word start across SNR levels with
SEM shading

This figure displays the baseline-corrected EEG alpha band envelope during the listening period,
aligned to the onset of the target word (0 s), across four SNR conditions. Lines indicate the mean
response, and shaded regions represent standard error of the mean (SEM) across participants.
The vertical dashed line at —0.5 s indicates the onset of background noise. Word onset and

retention onset are marked with solid and dashed vertical lines, respectively. A clear alpha
suppression follows word onset, with stronger suppression under more favourable SNRs (e.g.,
+12 dB), reflecting higher engagement with clearer auditory input. In contrast, higher noise levels

(e.g., —16 dB) exhibit weaker suppression and elevated alpha power throughout, suggesting
reduced auditory encoding or increased disengagement. These findings align with cognitive load
theories of alpha dynamics, where lower alpha is associated with increased sensory processing
demands during speech perception.

cognitive load. In contrast, higher SNRs (e.g., +12 dB) show earlier recovery. A notable
rise begins just before the Respond Start marker, particularly in easier SNRs.

Responding Phase Alpha power increases sharply after the Respond Start (0 s) across
all SNRs, particularly at higher SNRs (see Figure 13.61). This rebound appears prolonged
and more sustained than in prior literature. The shaded regions represent standard error
of the mean across subjects.

Comparison to Study 1 Study 1 (Alhanbali, 2017), observed a brief alpha rebound
peaking around 1 s after response, using a binary Yes/No speech-in-noise task. In
contrast, the current task involves a more demanding 5-word identification process,
combining auditory, verbal, visual, and motor demands. This likely explains the more
sustained and pronounced alpha rebound observed here.

A comparison between the current study and the listening memory paradigm from Study
1 (Alhanbali, 2017) is summarised in Table 13.3. The task used in Study 1 involved binary
verbal responses to speech in noise, with a relatively short response window and
moderate cognitive demand. Their alpha rebound, observed in posterior channels, was
brief and peaked roughly 1 second after response onset.
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Figure. 13.60. EEG Alpha envelope during the retention period across SNR
levels with SEM shading

This figure illustrates the EEG alpha band envelope during the retention period, baseline-corrected
to the 1 s interval preceding retention onset (0 s). The mean alpha response is shown for each SNR
condition, with shaded areas representing the standard error of the mean (SEM) across participants.
All SNR conditions exhibit a suppression of alpha power following retention onset. However,

suppression is most pronounced under difficult listening conditions (e.g., —16 dB), consistent with
sustained cognitive load during memory maintenance. In contrast, clearer speech (e.g., +12 dB)
shows less suppression and a sharper increase prior to response. The vertical dashed line indicates

the onset of the response window. The rising alpha trend approaching this marker, particularly
under higher SNRs, may reflect anticipatory disengagement or motor preparation. These trends
contrast with Alhanbali et al. (2018), where a short rebound followed binary responses, likely due
to task simplicity.

In contrast, the current study (Study 2) employed a more cognitively demanding
paradigm. Participants listened to a noisy sentence and subsequently selected five words
from a 10-by-5 visual matrix. This involved auditory decoding, working memory
retention, lexical identification, visual scanning, and motor execution, sustained over

several seconds.

These differences are reflected in the alpha trajectories. During the retention phase

(Fig. 13.60), we observe a gradual decline in alpha power, consistent with sustained
cognitive engagement. Notably, after Respond Start, there is a clear and sustained alpha
rebound that lasts beyond 2 seconds (Fig. 13.61). This rebound is stronger and more
prolonged at higher SNRs, potentially reflecting reduced effort or earlier response

resolution under easier listening conditions.

The data suggest that alpha activity during retention reflects memory maintenance load,
while the post-response rebound reflects release from effort. The magnitude and duration
of the rebound scale with task complexity, consistent with increased cognitive
unburdening after response.
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Figure. 13.61. EEG Alpha envelope during the responding period across SNR
levels with SEM shading

This figure focuses on the EEG alpha response aligned to the start of the response window (0 s),
zooming in on the period surrounding participant interaction. Each curve shows the mean alpha
envelope by SNR condition, and shaded regions reflect the standard error of the mean (SEM).

A robust increase in alpha power is observed following the response onset, most prominently
under high-SNR conditions (e.g., +12 dB). This rebound is likely linked to cognitive disengagement
or reduced attentional demands after the task is completed.

Compared with Alhanbali et al. (2018), who reported a brief post-response alpha burst, the current
task elicits a broader and more sustained rebound, possibly due to the longer, more effortful
response procedure in the current paradigm.

Table. 13.3. Comparison of Task Design and Alpha Response between Study 1 and 2

Feature Study 1 Study 2

Response type Binary (Yes/No) Multi-step (5-word
selection)

Response duration Short (~1 s) Extended (several

Effort structure

Cognitive load

Alpha rebound

Listen — Hold — Decide

Moderate

Brief, peaking ~1's
post-response

seconds)

Listen — Identify —
Search matrix — Click 5
words

High (verbal + auditory +
visual + motor)

Sustained, stronger,
prolonged
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13.7.2 Task-Evoked Changes in EEG

As reported above, clear task-evoked alpha modulations were observed across listening,
retention, and responding phases, with notable SNR-dependent differences. Alpha
suppression was strongest during high-demand listening and retention phases, while
alpha rebound was prominent post-response, especially under high-SNR conditions.

13.7.3 EEG Changes at Different SNR Levels

SNR effects were evident in the magnitude and dynamics of alpha responses. Poor SNRs
(e.g., —16 dB) elicited sustained suppression during listening and retention, reflecting
heightened cognitive demands. In contrast, clearer SNRs led to earlier alpha recovery
and stronger post-response rebound, suggesting reduced processing load.

13.7.4 Within-Individual Consistency - Permutation Test Results

To assess consistency of response shape within individuals, permutation tests were
applied using the listening window (Word Start to Retention Start). However, these tests
failed to show robust intra-subject correlation across trials or SNR levels. One possible
explanation is the high variability in individual alpha responses under noisy conditions,

which may have masked any stable shape patterns.

Another key factor is the data preprocessing approach: we employed a trial-wise
adaptive method that extracted epochs based on task-aligned events (click markers), and
applied trial-specific baseline correction and smoothing. While this enhances task-locked
responses, it may attenuate or distort broader signal dynamics that clustering and
permutation-based shape analyses typically rely on.

13.7.5 Clustering Considerations

Clustering was not performed in this analysis due to the high degree of variability
observed in trial-level EEG responses. The envelopes showed substantial fluctuations
across subjects and trials, with no visually or statistically consistent shapes emerging.
Given the complex nature of the task and the trial-specific preprocessing (e.g., adaptive
segmentation and baseline correction), clustering would likely yield unstable or

uninterpretable groupings.

Further, exploratory clustering would require stronger within-subject consistency and
more uniform signal timing than is currently observed. At this stage, we prioritised

clarity of average task-evoked responses over unsupervised pattern discovery.
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Summary We observed clear task-related alpha power modulations, shaped by both
SNR level and task phase. Alpha suppression reflected effort during listening and
memory maintenance, while the post-response rebound suggested disengagement.
However, further intra-individual or pattern-based analyses were not pursued due to
high variability and lack of within-subject consistency. The adaptive, trial-wise
preprocessing method used-while effective for capturing event-locked trends-may have
diminished the comparability of trial shape features needed for permutation testing and

clustering analyses.

13.8 Relationship between Different measurements

Two analyses were conducted to examine the relationship between performance,
subjective effort, subjective difficulty, and physiological measurements. The first focused
on clustering results to assess the consistency of grouping based on physiological

responses. The second involved correlation analysis.

Specifically, we extracted changes in physiological indices during the listening period -
defined as the time window between sentence onset and the start of the retention phase
(i.e., sentence end). These changes were then correlated separately with performance,
perceived effort, and perceived difficulty. The results are presented in the following

section

13.8.1 Clustering Agreement Across Different Physiological Measures

To investigate how consistently participants are grouped based on their physiological
responses, we conducted a clustering agreement analysis across four physiological
measures: heart rate, galvanic skin response (GSR), pupil size, and respiration rate. Each
measure was analysed independently at four signal-to-noise ratio (SNR) levels: —16, —11,

—6, and 12 dB, with clustering performed separately for each condition.

Participants were grouped into two clusters per measure based on their physiological
signal patterns. To assess the similarity of clustering structures across modalities, we
compiled the subject-wise cluster labels into a matrix and calculated the pairwise
Adjusted Rand Index (ARI) between measures. This approach allowed us to evaluate
both global cross-modal consistency and subject-specific group membership under

varying SNR conditions.

The ARI values quantify the agreement between two clustering outcomes, where 1
indicates perfect alignment, 0 reflects random similarity, and negative values suggest

systematic disagreement. The resulting agreement patterns are visualised in the ARI
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Clustering agreement (left) and subject-wise cluster assignments (right) across physiological
measures (Heart Rate, GSR, Pupil, Respiration Rate) for SNR = —16 dB). The Adjusted Rand Index
heatmap shows low agreement between measures, while the block plot visualises individual
subject assignments to clusters 1 or 2.

heatmaps shown in Figure 13.62, Figure 13.64, Figure 13.66, and Figure 13.68 for SNR
levels of —16, —11, —6, and 12 dB, respectively.

To complement these heatmaps, the block plots in Figure 13.63, Figure 13.65, Figure 13.67,
and Figure 13.69 display the individual subject cluster assignments for each physiological
measure. These plots reveal whether participants are consistently grouped across
modalities or vary significantly in their cluster membership.

Across all SNR conditions, the clustering agreement between measures is generally low.
Most ARI values remain close to zero or slightly negative, with the highest observed
value (approximately 0.35) occurring between heart rate and respiration rate at 12 dB.
This suggests that different physiological signals tend to yield divergent clustering
structures, even under favourable acoustic conditions.

This pattern is confirmed by the block plots, where many subjects change cluster
assignment depending on the modality. For example, a participant in cluster 1 for heart
rate may appear in cluster 2 for GSR or pupil size. Such variability indicates limited
overlap in the way different physiological systems reflect participant responses.

Overall, these findings suggest that the physiological measures are not capturing a single
unified state but instead reflect complementary, modality-specific processes. The low
cross-modal clustering agreement highlights the multidimensionality of physiological
reactivity to speech-in-noise, with each measure likely sensitive to distinct autonomic,
perceptual, or cognitive components of the task.
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Clustering agreement (left) and subject-wise cluster assignments (right) across physiological
measures (Heart Rate, GSR, Pupil, Respiration Rate) for SNR = —11 dB. The Adjusted Rand Index
heatmap shows near-zero or negative agreement, indicating low consistency across modalities.
The right plot visualises which subjects were grouped together for each measure.
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Clustering agreement (left) and subject-wise cluster assignments (right) across physiological
measures (Heart Rate, GSR, Pupil, Respiration Rate) for SNR = —6 dB. While Heart Rate and
Respiration Rate show some consistency, most pairwise agreements remain close to zero, as shown
in the ARI heatmap. Subject-level groupings vary notably across modalities.
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Clustering agreement (left) and subject-wise cluster assignments (right) across physiological
measures (Heart Rate, GSR, Pupil, Respiration Rate) for SNR = 12 dB. The Adjusted Rand Index
heatmap shows moderate agreement between Heart Rate and Respiration Rate, and lower agree-
ment between other pairs. The block plot displays individual subject cluster memberships.

13.8.2 Correlation between Behaviour Measures and Physiological
Measurements

Following the clustering analysis, we conducted correlation analyses to further explore
the relationships between performance (accuracy), subjective effort, subjective difficulty,
and physiological responses. These analyses were based on data extracted from the
listening period, defined as the time window between sentence onset and the start of the
retention phase (i.e., sentence end).

For each trial, we computed the change in physiological signals-specifically GSR, heart
rate, pupil diameter, and respiration rate-over this interval. These change scores were

then correlated separately with performance and self-report measures across participants.

We selected Pearson or Spearman correlation based on both normality and linearity.
Pearson’s was used when variables were normally distributed and linearly related;
otherwise, Spearman’s rank correlation was applied to account for non-normal or
monotonic relationships. Although we examined all combinations of physiological and
behavioural measures, only statistically significant results are reported and discussed
below.

Pupil diameter showed marginal significance, but only under specific task conditions. As
presented in Figure 13.70, there was a trend-level positive association between

Performance / accuracy and task-evoked pupil dilation at SNR —11 (Spearman



13.9. Summary of Key Findings 197

Matrix Accuracy vs Task-Evoked Pupil Response (arbitrary units) by SNR Level

M 0.5+ SNR -16: Pearson r = 0.13 o SNR -11: Spearman r = 0.34
2 p=0528 2 11 p=0093
o o
a 044 a
. $ —~0.8
2 i
=€ 031 =c
g =] g 5 0.61
2 i 2
o 0.2 o
° g // ° g 0.4
£9 011 £
S 282 //
i} 0- 1w
4 E1
3 8 o
= -0.1 T T T T | = T 1 T T T T T |
5 10 15 20 25 30 25 30 35 40 45 50 55 60 65
Matrix Accuracy Matrix Accuracy
8 081 SNR -6: Pearson r = 0.25 8 081 SNR 12: Spearman r = 0.19
§ p=0.235 é 06 p=0.355
o 0.6 1 o
[2] [2]
x 2 % £ 04y
g_ S 0.4 'g. S
E g0
= 0.24 =
g 2 e 2 o
28 S
1N} 04 11}
x L 02
3 3
= 02 T T T T T | = -04 T T T T T T |
65 70 75 80 85 90 95 93 94 95 96 97 98 99 100
Matrix Accuracy Matrix Accuracy

Figure. 13.70. Correlation between accuracy vs task-evoked pupil response change across
SNR levels

This figure presents the correlation between accuracy and Task-Evoked Pupil Response, separately
for each SNR level. Scatter plots include linear trend lines for visual reference.

Although none of the correlations reached statistical significance, the SNR —11 condition showed a
marginal positive association (p = .34, p = .093), suggesting a potential link between task accuracy
and pupil dilation at intermediate noise levels. Other SNR conditions (e.g., —6, —16, and +12 dB)
showed weaker or negligible associations.

These findings may reflect subtle modulations of cognitive effort or arousal linked to intelligibility,
with pupil responses being more sensitive to moderate listening demands.

correlation, p = .34, p = .093), possibly reflecting increased cognitive effort in moderately
challenging listening environments. However, this relationship did not hold across other
SNR levels.

In comparison, heart rate, GSR and respiration rate did not show any significant
correlations with behavioural or subjective measures. One possible explanation for this
difference is that these signals may have relatively slower response dynamics and smaller
amplitude changes over short task epochs compared to pupil dilation. Their temporal
resolution may limit their sensitivity to the transient changes in cognitive or emotional

load that occur during brief listening periods.

13.9 Summary of Key Findings

This study employed the speech-in-noise test (OLSA; (Hey et al., 2014; Neumann et al.,
2012)) and systematically varied the SNR levels to manipulate task difficulty. Data were

collected across multiple methods, including subjective reports, task performance, and
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physiological responses. Below is a summary of the key findings for each type of

measurement:

Behavioural Results Participants” accuracy in identifying words significantly improved
as the signal-to-noise ratio (SNR) increased, meaning they performed better when the
speech was clearer. In comparison, their ratings of how much effort they invested and
how difficult they found the task significantly decreased as the SNR improved.
Interestingly, at the hardest level (-16 dB SNR), participants rated the task as more
difficult than effortful, perhaps suggesting they actually reduced their effort when

knowing the task was very challenging.

Pupillometry (Pupil Diameter) Pupil diameter changed reliably during the task,
typically constricting when words started and dilating during the listening phase, with
pupil diameter being larger in noisier conditions. While overall pupil size didn’t
significantly differ across SNRs at key moments, some specific comparisons showed
differences, especially during active listening and retention periods between low and
mid/high SNRs. Pupil responses showed some consistency within individuals between
sessions, mainly at -6 dB and 12 dB SNR.

To check if individuals had consistent pupil response patterns across the two
experimental sessions, a permutation test was used. This revealed significant
within-subject consistency at the -6 dB and 12 dB SNR levels, but not at -11 dB.

Clustering analysis grouped participants into two distinct pupil response types at each
SNR level. However, these physiological groupings didn’t align with differences in task
performance or subjective ratings. Furthermore, most participants didn’t consistently
stay in the same cluster across different noise levels, indicating these pupil response
patterns are likely influenced by the immediate task difficulty rather than being stable

individual traits.

Galvanic Skin Response (GSR) GSR, reflecting sympathetic nervous system activity,
typically rose significantly from the start of the words to the start of the memory
retention period. The peak GSR measured around the start of retention was significantly
affected by the noise level (SNR), suggesting this is a sensitive indicator of the listening
effort built up during the sentence. Participants showed significantly consistent GSR
patterns across the two experimental sessions, particularly in the more difficult noise
conditions (-16 dB and -11 dB).

Similar to pupillometry, clustering analysis identified two groups with distinct GSR
patterns at each SNR level. These physiological groupings, however, same as

Pupillometry, did not correspond to significant differences in accuracy or subjective
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ratings. Cluster membership agreement across different SNRs was generally low to

moderate.

Respiration Rate Respiration patterns changed during the task, with rate generally
increasing from the start of the words through the retention period. While the rate at
specific moments didn’t show an overall significant difference across noise levels, the
change in respiration rate during the retention phase was significantly modulated by
SNR, with clearer speech prompting larger increases. Individual consistency in
respiration patterns across sessions was only significant at moderate to clear noise levels
(-11 dB and 12 dB SNR).

Again, clustering revealed two distinct respiratory patterns at each SNR level. Consistent
with other measures, these physiological clusters did not align with significant differences
in behaviour or subjective reports. Agreement on cluster membership across SNRs was

very low, suggesting respiration patterns adapted dynamically to task difficulty.

Heart Rate Heart rate followed a distinct pattern during the task: increasing sharply

after word onset, dipping during the retention period, and then rising again towards the
end. While the absolute heart rate at key moments didn’t differ significantly across SNRs,
the amount of heart rate recovery during the retention phase (the rise from the dip to the
end peak) was significantly affected by the noise level. Participants showed very strong
consistency in their heart rate patterns across the two experimental sessions for all noise

levels.

Clustering analysis identified two distinct heart rate profiles at each SNR. Yet again, these
physiological groupings did not correspond to significant differences in accuracy or
subjective ratings. Cluster membership showed only limited to moderate consistency
across the different noise levels, suggesting heart rate patterns were influenced by the

listening condition rather than being purely stable traits.

EEG (Alpha Power) Brain activity measured by EEG, specifically alpha wave power,
showed clear changes related to the task phase and noise level. Alpha power was
generally suppressed (lower) during the demanding listening and retention phases,
especially in difficult noise conditions, reflecting cognitive effort. After participants
responded, alpha power showed a rebound (increase), which was stronger and more
sustained in easier conditions, likely indicating cognitive disengagement or release from
effort. Compared to a previous, simpler study (Study 1), the alpha rebound in this more
complex task was more prolonged. However, due to high variability in individual
responses, and the noise induced through specific data collection methods, tests for
within-subject consistency were not significant, and clustering analysis was not

performed.
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Relationship Between Measures When comparing the clustering results from different
physiological measures (e.g., heart rate clusters vs. GSR clusters), there was generally
very low agreement at all noise levels. This indicates that the different physiological
systems (heart, skin conductance, pupils, breathing) likely reflect different aspects of the
listening effort, rather than a single, unified state.

Correlation analyses examined the direct link between physiological changes during
listening and the behavioural/subjective outcomes. GSR emerged as the most consistent
indicator, showing a significant positive correlation with task accuracy and a significant
negative correlation with subjective difficulty across all noise levels. Pupil diameter
change showed a marginal link to accuracy at one noise level. Heart rate and respiration
rate changes did not significantly correlate with performance or subjective ratings in this

analysis.
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13.10 Discussion

The results of Study 2 provide valuable insights into the physiological and subjective
dimensions of listening effort under varying noise conditions. The following discussion
interprets the findings through central research questions by integrating perspectives
from the broader literature on listening effort and cognitive processing.

When examining consistency in individual responses across the two testing sessions
spaced a week apart, permutation tests revealed a varied outcome. While heart rate
patterns were highly consistent within individuals across all conditions (Mackersie et al.,
2015), the consistency of GSR, pupillometry, and respiration rate was often dependent on
the specific noise level, achieving statistical significance only under certain SNRs.

EEG alpha patterns, however, did not show significant consistency across sessions; the
use of a custom-built single-channel EEG setup, noted in the experiment design as
yielding more noisy data. Nonetheless, the overall variable consistency across measures
suggests a complex interplay between stable individual physiological tendencies and
adaptive responses to the task’s demands.

In exploring individual differences, Study 2 revealed substantial variability in how
participants responded physiologically, as shown by the spread of data and the distinct
groupings identified through clustering analyses. This finding is consistent with existing
literature that highlights the importance of listener-specific factors (Koelewijn et al., 2012;
Zekveld et al., 2011), reinforcing the argument that such individual variability should be
taken into account in the study of listening effort (McGarrigle et al., 2014; Peelle, 2018).

Further exploring these differences, clustering analyses consistently grouped participants
into two distinct physiological response patterns for pupillometry, GSR, respiration, and
heart rate within each noise condition. This indicates that identifiable subgroup response
styles exist (Peelle, 2018).

However, these cluster memberships across different noise conditions were not stable;
participants frequently shifted groups as the SNR changed, confirmed by low agreement
scores (ARI). This strongly suggests these particular physiological patterns reflect
dynamically regulated, task-difficulty-dependent responses influenced by immediate

task difficulty rather than representing fixed, trait-like individual characteristics.

In contrast to Study 1, Study 2 offered further insights into listening effort by examining
additional physiological signals, specifically focusing on respiration and cardiac activity.
Respiration rate increased during the demanding retention phase, and importantly, the
magnitude of change in respiration rate during retention was sensitive to the noise level.
This aligns with literature suggesting respiration reflects cognitive load and effort in
auditory tasks (Auer et al., 2021; Bernardi et al., 2014; Richter et al., 2016a).
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Heart Rate ( HR), derived from ECG, exhibited clear phasic changes linked to task events
(onset peak, retention dip). Study 2’s finding that HR recovery during the retention
phase was significantly modulated by SNR adds nuance to previous work showing
overall HR increases with difficulty (Hicks & Tharpe, 2002; Mackersie & Cones, 2011;
Mackersie et al., 2015), suggesting that the dynamics of recovery are also a sensitive
aspect of the cardiovascular response to effort.

Study 2 reinforced well-established findings regarding the influence of different SNR
levels: as SNR increased (i.e., noise decreased), participants demonstrated better accuracy
and reported lower levels of perceived difficulty and effort, in line with prior research
(Alhanbali et al., 2018; McGarrigle et al., 2017, 2021; Reinten et al., 2021; Wu et al., 2016).

The physiological measures also demonstrated sensitivity to different SNR levels,
although often in specific metrics or task phases. SNR levels showed effects on pupil
dilation dynamics (Kuchinsky et al., 2013; Zekveld et al., 2010), peak amplitude of the
GSR response (Mackersie & Cones, 2011), change in respiration rate during retention
(Richter et al., 2016a), and further, heart rate recovery (Mackersie et al., 2015), and the
suppression and rebound characteristics of EEG alpha activity (McMahon et al., 2016;
Obleser et al., 2012), indicating their different levels and aspects to distinctive listening
demand.

Looking at how behavioural outcomes related to physiological signals, Study 2 revealed a
complex and layered pattern of results. While distinct physiological response patterns
(clusters) were identified, membership in these clusters generally did not predict
significant differences in task accuracy or subjective ratings. This apparent disconnection
suggests that different physiological states might not always show as overt performance
differences, aligning with literature noting only moderate correlations between different
types of effort measures (Alhanbali et al., 2018; Ohlenforst et al., 2017).

The lack of strong correlations for changes in HR, GSR and RR with behaviour in this
specific analysis, despite their documented sensitivity (Bernardi et al., 2014; Hicks &
Tharpe, 2002; Mackersie & Cones, 2011; Mackersie et al., 2015; Richter et al., 2016a), might
stem from the analysis window, or specific task demands. Similarly, pupillometry also
showed a marginal association (Wendt et al., 2018). It is important to consider potential

limitations of Study 2 when interpreting these findings.

The final sample size for analysis was reduced due to data quality requirements across
multiple measures (approx. 26 datasets per measure), which could limit the power to
detect smaller effects or subgroup differences. Furthermore, the findings are based on
normal-hearing participants performing a specific speech-in-noise task involving
recognising sentence heard from a visual matrix; generalisability to individuals with
hearing impairment or different listening tasks requires more cautious understanding.
Finally, inherent limitations exist for each physiological measure, such as EEG’s

susceptibility to artefacts, which might influence results.
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13.11 Conclusion

In conclusion, Study 2 investigated listening effort using a multi-modal approach,
combining behavioural, subjective, and diverse physiological measures (pupillometry,
GSR, ECG, respiration, EEG) during a speech-in-noise task across different difficulty
levels. The results confirmed that behavioural accuracy and subjective ratings of effort
and difficulty reliably tracked signal-to-noise ratio. Physiological measures also showed
sensitivity to task demands and noise levels, revealing complex, dynamic response

patterns tied to specific task phases.

While significant individual variability was evident, attempts to group individuals based
on physiological response patterns (clustering) showed these patterns were often
task-difficulty-dependent rather than stable traits across conditions, and generally did
not predict behavioural outcomes. Overall, Study 2 highlights the intricate nature of
physiological responses to listening effort and underscores the value of different

measures in capturing its various dimensions.
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Part IV

General Discussion and Conclusion
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Chapter 14

General Discussion

14.1 Introduction

Listening effort remains a central challenge in auditory and cognitive research,
particularly in the context of increasingly noisy environments and an ageing population.
Although the concept has been widely explored, the mechanisms underlying listening
effort - and the ways in which it is physiologically expressed across individuals - are still
not fully understood (McGarrigle et al., 2014; Pichora-Fuller et al., 2016¢; Ronnberg et al.,
2013).

This research addresses that gap through two studies, combining behavioural, subjective,

and physiological data to explore effort across different populations and task demands.

A key strength of this work is its two-level analysis: traditional summary measures (e.g.,
peak or mean response) are used alongside full time-course analyses. This approach
captures how effort-related responses unfold dynamically - their shape, timing, and
evolution across task phases - which are often missed by single-point measures
(Koelewijn et al., 2018; Winn et al., 2016).

Study 1 focused on older adults with varying hearing levels. It asked whether
individuals show stable physiological response patterns across repeated sessions
(individual consistency) and whether participants could be clustered based on those
patterns (individual differences). It also explored whether these clusters relate to task
performance, perceived effort, and how different physiological signals ( EEG, GSR, pupil
size) relate to one another within individuals.

Study 2 extended this by using a more complex and ecologically valid sentence-in-noise
task with fixed SNRs. It introduced additional physiological signals (heart rate and
respiration) and tested whether individual response patterns remained consistent in this

more demanding context. It also examined how task difficulty (via SNR manipulation)
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modulates physiological responses, and whether these changes align with self-reported

effort and behavioural accuracy.

Together, this research aim to deepen our understanding of listening effort as a dynamic,
context-sensitive, and individually mediated process. The following sections examine
how the findings from each study contribute to this broader goal.

14.2 Summary of findings between Two studies

A primary outcome emerging from both Study 1 and Study 2 is the obvious individual
variability characterising responses to listening effort tasks. Despite different participant
demographics (older, hearing-impaired vs. younger, normal-hearing) and listening tasks
and experiment design (adaptive vs. fixed SNR, digit vs. sentence stimuli), both studies
observed considerable variation in subjective reports, behavioural accuracy, and
physiological response patterns. This finding across diverse conditions reinforces the
importance of considering listener-specific factors, as highlighted in the literature
(Koelewijn et al., 2012; Peelle, 2018; Zekveld et al., 2011), and suggests that group

averages may conceal crucial aspects of the listening effort experience.

Individual Consistency Across Studies Participants frequently demonstrated stable,
individual-specific physiological response patterns. In Study 1, EEG alpha power, GSR,
and pupil diameter exhibited high test-retest reliability, confirmed by permutation tests.
Study 2 showed similar within-subject consistency in GSR, heart rate, and respiration at
certain SNR levels, despite greater task complexity. However, some measures,
particularly EEG and pupillometry, showed condition-dependent reliability, potentially
influenced by data quality and task design.

These findings suggest that physiological response patterns to listening tasks can remain
consistent within individuals over time, yet are also modulated by factors such as task
complexity, SNR structure, and measurement itself. Importantly, this consistency does
not predict subjective effort or behavioural performance, indicating that physiological

engagement may reflect deeper or unconscious cognitive mechanisms.

Individual Differences and the Physiology-Behaviour Gap Both studies identified
distinct physiological response clusters through time-course analysis, typically revealing
two subgroups per modality. However, these clusters showed limited alignment with
behavioural accuracy or self-reported effort. This repeated dissociation between
physiology and outcome measures reinforces a well-documented gap in the literature
(Alhanbali et al., 2019; Mackersie et al., 2015; Ohlenforst et al., 2017), and supports that
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listening effort cannot be directly inferred from one single measurement (Wendt et al.,
2018).

Notably, Study 2 revealed that physiological clustering was sensitive to SNR, with
individuals shifting cluster membership across conditions. This highlights that
physiological strategies may not be fixed traits, but context-dependent states that adapt
to task demands. Moreover, even at the most challenging SNRs (e.g., -16 dB), distinct
response patterns persisted, suggesting both trait-like stability and state-driven

modulation.

The comparison of study designs underscores the role of task structure in shaping effort
responses. The sentence-in-noise task in Study 2 elicited a more prolonged EEG alpha
rebound than the digit task in Study 1, possibly reflecting disengagement following high

cognitive load.

Relationships Between Physiological Measures A recurring theme across both studies
is the lack of strong agreement between physiological modalities. Clusters derived from
EEG, GSR, pupil, heart rate, and respiration often differed, and cross-modal alignment
was generally low. This implies that each system may be attuned to different components
of listening effort - such as cognitive load, emotional arousal, attentional engagement, or
autonomic regulation - and that no single measure can act as a universal proxy for effort
(Gagné et al., 2017; Pichora-Fuller et al., 2016c).

Using full time-course data was particularly valuable in uncovering these patterns. Static
measures often failed to capture subtle but important differences in response dynamics -
such as earlier versus later peaks, sustained versus transient activity - which were
revealed through time-course clustering. These different patterns may reflect diverse
cognitive strategies, such as anticipatory preparation versus reactive coping, which
would remain invisible using peak-only analyses (Beatty & Lucero-Wagoner, 2000;
Richter et al., 2016b; Zekveld & Kramer, 2014).

Conclusion Taken together, these findings demonstrate that listening effort is not a
unidimensional construct, but a complex, dynamic phenomenon expressed through
multiple physiological systems. Individuals differ not only in the intensity of their
responses, but also in the temporal dynamics and system-specific patterns through which
those responses manifest. Integrating conventional metrics with full time-course analysis
was essential in revealing these insights and suggests a move toward more nuanced,

person-specific models of listening effort in future research.
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14.3 Theoretical Integration and Alignment with Previous

Research

This thesis contributes to the evolving theoretical landscape of listening effort by offering
empirical findings that both support and challenge current models. Two frameworks are
particularly relevant: the Framework for Understanding Effortful Listening (FUEL)
(Pichora-Fuller et al., 2016c) and the Ease of Language Understanding (ELU) model
(Ronnberg et al., 2013). Together with empirical studies on physiological and behavioural
effort responses, these frameworks provide a foundation for interpreting the complex

dynamics uncovered in both studies.

Support for Dynamic Resource Models The FUEL model conceptualises listening
effort as a dynamic allocation of cognitive resources in response to task demands. It
highlights the role of working memory, attention, and motivation, and posits that effort is
modulated both by environmental challenges (e.g., SNR) and listener-specific factors
(e.g., hearing loss, cognitive capacity) (Kahneman, 1973; Pichora-Fuller et al., 2016c).

This dynamic perspective is strongly supported by Study 2, which demonstrated that
physiological response profiles shifted across different SNR levels. Participants changed
cluster membership depending on noise level, and within-subject consistency in
measures like GSR and respiration was condition-dependent (Alhanbali et al., 2019).
These findings reinforce the FUEL models claim that effort is not a fixed trait, but a

context-sensitive state shaped by ongoing demands.

FUEL Model and Individual Strategies The FUEL model emphasises
mismatch-driven listening effort. Increased cognitive load arises when speech input does
not match stored phonological representations, prompting resource-intensive processing
(Ronnberg et al., 2013). The observed individual variability across both studies supports
this idea.

Despite adaptive (Study 1) or fixed (Study 2) SNR designs, participants showed distinct
physiological strategies. Cluster analyses revealed consistent subgroups with different
response dynamics, such as early peaks or prolonged activation (McGarrigle et al., 2014).
These may reflect alternative compensatory strategies that align with the FUEL
framework, particularly under challenging or ambiguous conditions.

The Physiology-Behaviour Gap Both studies consistently found that physiological
patterns did not align with behavioural accuracy or subjective ratings. Participants
grouped into physiological clusters showed no significant differences in performance or
self-reported effort (Alhanbali et al., 2019; Mackersie et al., 2015; Ohlenforst et al., 2017).
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This recurring dissociation mirrors earlier studies showing weak or inconsistent links
between subjective, behavioural, and physiological indices of effort. It suggests that
physiological activation does not map simplistically onto task outcomes, possibly due to
different cognitive strategies.

For instance, individuals with higher cognitive capacity may engage more resources,
reflected in heightened physiological activity, yet perform well due to effective
compensation (Wendt et al., 2018). Others may disengage under high difficulty, showing
low physiological activity and poorer performance (Wu et al., 2016). Still others may
prioritise speed over accuracy (Houben et al., 2013), masking underlying effort in their
behavioural data.

Varying reliance on top-down mechanisms, as described in the FUEL model, could also
lead to similar behavioural outcomes via different internal processing routes and costs.
Moreover, Study 2 showed that physiological patterns were task-difficulty-dependent,
shifting across SNRs (Kahneman, 1973; Pichora-Fuller et al., 2016¢). This indicates effort
expression is not fixed, but contextually adaptive.

These findings collectively underscore that physiological effort signals and behavioural
or subjective outcomes do not follow a one-to-one relationship. However, rather than
viewing this as a limitation, it points toward a more nuanced conceptualisation of
listening effort — one in which subjective experience and autonomic arousal reflect
distinct but complementary systems (Alhanbali et al., 2019; McGarrigle et al., 2014).

This has practical and theoretical implications. For example, an individual may show
elevated physiological reactivity without reporting much difficulty, suggesting
unconscious or automatic engagement (Critchley & Garfinkel, 2017). Conversely,
someone might feel overwhelmed or mentally fatigued but display a blunted
physiological profile — possibly due to disengagement, emotional coping, or individual
differences in interoceptive awareness (Richter et al., 2016a).

Recognising this dissociation helps avoid overly simplistic interpretations of either
measure alone. Instead, it encourages a multi-dimensional approach to effort that
acknowledges how cognitive, affective, and physiological systems may respond
differently to the same task (Pichora-Fuller et al., 2016c¢).

In applied contexts, such as clinical audiology or assistive technology design, this
reinforces the value of using physiological indicators not to replace self-report or
performance, but to capture otherwise invisible forms of cognitive strain — particularly
in populations where verbal reporting may be unreliable or underdeveloped (e.g.,
children, non-native speakers, or cognitively impaired individuals).

Taken together, the results support the view that effort is not a singular experience, but an
adaptive, context-sensitive process shaped by internal capacity, task demands, and

conscious awareness (Kahneman, 1973; Pichora-Fuller et al., 2016¢). Physiological
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profiling may therefore prove valuable not in predicting outcomes directly, but in
tailoring support strategies and adaptive systems to better align with an individual’s

internal state.

Limitations of Subjective and Behavioural Measures Another contributor to the
physiology-behaviour gap may be the limitations of global subjective scales. NASA-TLX
(Hart & Staveland, 1988) and single-item effort ratings may not be sensitive enough to
reflect subtle or dynamic effort processes (McGarrigle et al., 2014). Similarly, behavioural
accuracy provides only an endpoint, not the cognitive cost incurred during task
performance (Sarampalis et al., 2009). This calls into question the validity of relying on

any single outcome to infer effort.

Context-Dependency and Dynamic Adaptation Study 2 offered strong evidence for
the context-sensitive nature of effort responses. Cluster membership changed with SNR,
supporting flexible resource allocation models such as those proposed by Kahneman
(Kahneman, 1973) and FUEL (Pichora-Fuller et al., 2016c). Our findings suggest that
physiological responses are shaped by real-time demands rather than being fixed traits.
This supports the view that strategies are adapted based on perceived challenge,
motivation, or cognitive reserve (Mattys & Wiget, 2009; McGarrigle et al., 2014).

This adds complexity to interpretation, as the same physiological pattern may reflect
different effort states depending on task context. It also contrasts with trait-focused
models (e.g., personality-related baseline arousal (Geen, 1984; Mackersie et al., 2015)),

reinforcing the need for adaptive frameworks.

Divergence Between Physiological Modalities Study 1 found limited agreement
between EEG-, GSR-, and pupil-based clusters. Study 2 showed similar
modality-specific clustering for pupil, GSR, respiration, and heart rate, reinforcing their
independence. This aligns with prior work suggesting that these signals reflect different
physiological processes: pupil dilation with central arousal (Zekveld et al., 2010), GSR
with sympathetic activation (Mackersie et al., 2015), and cardiorespiratory patterns with
broader autonomic regulation (Grassmann et al., 2016). While interrelated via shared
control systems, these modalities are not redundant. Each provides complementary
information, reinforcing the value of multi-modal measurement strategies (Alhanbali

et al., 2019; Kramer et al., 2016).

Conclusion In summary, this research reveals the complexity of listening effort. It
provides empirical evidence that effort is dynamic, system-specific, and individually
mediated. The integration of full time-course analysis with traditional metrics helped

uncover nuanced physiological signatures that static measures may overlook. These
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findings argue for moving beyond one-size-fits-all models toward personalised,
context-aware approaches to listening effort.

14.4 Implications and Future Directions

The findings presented in this thesis offer several practical, methodological, and

conceptual implications for research on listening effort.

Practical and Clinical Implications The identification of consistent, individual-specific
physiological response patterns suggests that personalised strategies for managing
listening effort may be warranted. While the clustering analyses revealed consistent
individual physiological response patterns, these did not reliably predict subjective effort,
perceived difficulty, or task accuracy. This apparent disconnect reflects the broader
physiology-behaviour gap noted in prior literature, suggesting that autonomic and
cognitive markers of effort may operate somewhat independently of subjective

awareness.

Rather than predicting outcomes directly, these physiological profiles may instead reflect
individualised styles of task engagement — for example, varying degrees of autonomic
regulation, emotional reactivity, or sustained attention. One participant may show high
physiological arousal without reporting high effort, while another may report high effort

despite relatively flat physiological responses.

This variability suggests that individual profiles could still hold value in clinical and
applied contexts, not for universal prediction, but for tailoring interventions. For instance,
recognising a patient’s typical physiological "signature" could inform more personalised
auditory training regimes or adaptive hearing technologies that respond to the

individual’s real-time engagement style rather than assuming a one-size-fits-all model.

Methodological Implications A major methodological contribution of this work is the
demonstration that full time-course analysis provides critical insights that peak or mean
metrics often miss. Researchers relying solely on summary values may overlook

important aspects of how effort unfolds across a task.

The integration of dynamic, system-specific time-series data into listening effort research
provides a richer and more accurate representation of physiological engagement. This
supports a move toward more sophisticated modelling and analysis techniques,
including machine learning classifiers that can account for dynamic features and

inter-individual variability.
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Theoretical Development and Modelling These findings also inform theoretical
modelling of listening effort. The evidence for context-sensitivity, system-specific
responses, and the persistent physiology-behaviour dissociation suggests that effort is
not a unitary construct, but an emergent outcome of multiple interacting systems. Future
models should explicitly incorporate temporal dynamics, cross-system divergence, and
person-specific adaptation. This aligns with recent proposals advocating for
systems-level, multidimensional models of listening effort (Gagné et al., 2017; Herrmann
& Johnsrude, 2020).

Directions for Future Research Future research should explore how stable these
physiological profiles remain over longer timescales and across more varied tasks or
real-world environments. Larger samples with greater demographic diversity, as well as
the inclusion of additional cognitive and psychological measures, would help clarify the
sources of individual variability observed here. Finally, validating dynamic, multimodal
physiological profiles as predictive tools for listening-related fatigue, performance
decline, or benefit from intervention represents a promising translational direction.

In addition, future work could integrate all physiological modalities into a single
multivariate framework to capture how different systems jointly respond during
challenging listening. While the present clustering analyses examined each physiological
system separately, combining measures such as EEG, GSR, pupillometry, and respiration
would enable the identification of multimodal physiological profiles that may better

reflect the coordinated dynamics of listening effort.

Unsupervised techniques such as multivariate clustering or dimensionality reduction
could reveal latent subgroups of listeners who share characteristic cross-system response
patterns — for example, individuals showing synchronised increases across measures
versus those who engage predominantly through a single modality. Such an approach
would allow researchers to move beyond system-specific interpretations and consider
listening effort as a distributed, multi-system process. Importantly, establishing whether
these multimodal profiles predict real-world outcomes, such as susceptibility to
listening-related fatigue or benefit from hearing support technologies, represents a

valuable direction for future translational research.

Overall, this thesis highlights the importance of adopting a dynamic, individualised, and

multi-system view of listening effort, both in research and in practice.

14.5 Limitations

While the studies presented in this thesis offer novel insights into physiological correlates

of listening effort, several limitations should be considered when interpreting the
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findings.

Multi-modal Complexity and Signal Noise One potential limitation of the current
study arises from the simultaneous recording of multiple physiological signals
(pupillometry, GSR, ECG, respiration, and EEG) during each trial. While this
multi-system approach allows for a rich and comprehensive perspective on listening
effort, it also introduces a substantial technical challenge: the risk of increased noise or
artefacts due to overlapping hardware, signal interference, and participant movement
constraints.

For example, single-channel EEG recordings were found to be particularly susceptible to
noise, potentially due to compromises made in cap design to accommodate concurrent
ECG and respiration monitoring. In addition, electrode impedance was checked only
during the initial system setup for the entire experiment, rather than before each
participant session, which may have contributed to variability in the single-channel

recordings.

Similarly, while the Pupil Core glasses offer portability and participant comfort, their
data quality may have been affected by subtle shifts in head position or interaction with
ambient light and screen interface, especially during longer sessions.

This complexity highlights an important trade-off in multi-modal psychophysiological
research: the breadth of insight gained may come at the cost of reduced data quality or
interpretability in individual channels. Future studies might consider optimising for
fewer modalities per session or testing the stability of each measure in isolation first,
particularly if signal sensitivity is critical for hypothesis testing.

Measurement Constraints and Signal Quality One limitation of the EEG recordings in
this study relates to signal quality monitoring. Although electrode impedance was
checked before the full experiment, and appeared within an acceptable range at the
beginning of each experiment recording, continuous impedance monitoring during

recording was not available with the custom-built EEG system used.

As a result, variations in electrode contact quality across participants or gradual changes
over time could not be systematically tracked. It is therefore possible that some of the
noise observed in the EEG data may be partly attributed to electrode conductance during
recording, particularly in cases where the signal appeared noisier despite initial
impedance checks. Future studies would benefit from using EEG systems that allow for
real-time impedance monitoring to ensure more consistent data quality across

participants.
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Sample Size and Generalisability Both studies included relatively small and
demographically homogeneous samples, particularly in terms of age, hearing status, and
cultural background. This limits the generalisability of the findings to broader
populations. Future studies with more diverse participant group are needed to confirm
whether the observed individual response profiles and cross-modal dissociations hold

across different demographic and clinical groups.

Task Design Differences and Metric Compatibility The two studies used different
tasks (digits vs. sentences), SNR structures (adaptive vs. fixed), and subjective scales
(NASA-TLX vs. single-item ratings), which may complicate direct comparisons. While
these differences reflect ecologically valid variations in task complexity and listening
contexts, they also make it harder to isolate the effect of individual task characteristics on

effort responses.

Subjective Ratings and Interpretability Subjective effort measures, particularly the
NASA-TLX and single-item scales, may not fully capture the nuanced or dynamic
experience of effort during listening. Although Study 2 improved temporal resolution by
collecting ratings after each block, these measures still depend on post-task reflection and
may be influenced by memory, expectation, or individual interpretation. More
continuous or other behaviour measures such as reaction time, could further enhance

sensitivity and offer a more direct complement to the physiological data.

Analytical Scope and Clustering Assumptions While clustering was effective for
uncovering individual response patterns, it is inherently sensitive to parameter choices
(e.g., number of clusters, distance metrics). Additionally, clustering was performed
within each modality, limiting insight into potential cross-modal synergy. Future work
could apply multi-view clustering or dimensionality reduction techniques to jointly

model multimodal data streams.

Despite these limitations, the combined use of time-course analysis, multimodal
measures, and within-subject designs represents a substantial methodological advance.
The limitations noted here do not undermine the central claims of this thesis, but rather

provide a roadmap for refinement and future exploration.



217

Chapter 15

Conclusion

This thesis set out to investigate how listening effort is expressed physiologically, with a
focus on individual variability, dynamic response patterns, and multimodal
measurement. Across two studies involving distinct populations and task designs, the
research demonstrated that physiological responses to effortful listening are both
consistent within individuals and highly variable across them. These responses were
shaped not only by task difficulty but also by the unique physiological dynamics of each

listener.

Study 1 demonstrated stable and differentiable patterns of dynamic physiological
responses across EEG, GSR, and pupillometry in a hearing-impaired population. These
patterns were diversed within each trial, capturing how responses evolved across time
and task phases. The ability to cluster these time-course profiles into distinct
physiological reactions provided valuable insights into individualised effort strategies,
while Study 2 extended these findings to normal-hearing adults and included additional

measures such as heart rate and respiration.

Both studies showed that while these dynamic physiological clusters reflected consistent
and interpretable patterns of reactivity, they did not align neatly with behavioural
performance or subjective ratings. This recurring physiology-behaviour dissociation,
along with the divergence between physiological modalities, underscores the complexity
of the listening effort construct, which is widely noted in prior literature, suggesting that
autonomic and cognitive markers of effort may operate somewhat independently of

subjective awareness.

Importantly, this research showed that listening effort is not a fixed quantity but a
context-sensitive process that evolves over time. By using full time-course analyses rather
than relying solely on static metrics, the studies revealed nuanced patterns in the shape,
timing, and regulation of physiological responses. These dynamic features provided a
richer view of how effort is mobilised and managed by listeners in real time.
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The findings support and expand theoretical models such as the FUEL and ELU
frameworks, reinforcing the idea that listening effort involves flexible resource allocation
in response to task demands and perceptual mismatch. At the same time, the results
challenge simplistic assumptions about direct correlations between effort, performance,
and subjective experience, and call for more sophisticated, individualised models.

Beyond theoretical contributions, this thesis offers methodological and applied value. It
demonstrates the importance of integrating multiple physiological systems and dynamic
analysis techniques in effort research. It also suggests potential for person-specific profiles
to inform clinical practice, auditory training, and the design of adaptive technologies.

In sum, this research adds knowledge in understanding of listening effort as a
multi-dimensional, dynamic, and individualised phenomenon. It highlights the value of
looking beyond group means and singular indicators, and toward a richer, more
person-centred account of how effort is experienced and expressed. Seeing listening
effort as a dynamic and individual process creates opportunities for future research and
practical use - such as designing better listening support, tools, or environments that
work well for different types of listeners.
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Questionnaires
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NASA Task Load Index

Hart and Staveland's NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Name Task Date
Mental Demand How mentally demanding was the task?
I | N T
Very Low Very High
Physical Demand How physically demanding was the task?
I | I I O O
Very Low Very High

Temporal Demand How hurried or rushed was the pace of the task?

Lottt e

Very Low Very High

Performance How successful were you in accomplishing what
you were asked to do?

Lol ey

Perfect Failure

Effort How hard did you have to work to accomplish
your level of performance?

I||III||II||||III||II
Very Low Very High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Lol

Very Low Very High

Figure. A.1. NASA Task Load Index (TLX) rating form used for
assessing subjective workload

The NASA TLX assesses perceived workload across six dimensions: Mental Demand, Physical
Demand, Temporal Demand, Performance, Effort, and Frustration. Participants rate each item
on a 21-point scale, enabling fine-grained estimation of task difficulty. This form was used in
(Alhanbali et al., 2018)to measure perceived listening effort after a speech-in-noise task.



221

Study Title: Individual Differences in Listening Effort

Researcher: Yuki Wang

Participant Number:

Date: / /
1 Do you feel you hear better with a specific ear? No Yes
2 Do you have a known hearing impairment? No Yes

3 Have you had any pain, tenderness, infections, discharge, surgery or bleeding N v
o es
from either of your ears?

4 Do you have tinnitus (persistent ringing or buzzing in either of your ears)? No Yes
5 Do you regularly use any prescribed medication that affects your hearing? No Yes
6 Are you aware of any skin sensitivity/conditions (eczema, dermatitis)? No Yes
7 Are you aware of any allergies to electrode paste? No Yes

8 Do you have problem using alcohol pad to clean the skin (for applying N v
o es
electrodes)?

o Do you have any neurological, muscular or joint conditions that may affect N v
o es
your ability to understand speech or respond on a computer screen?

10 Do you have any neurological, cardiovascular or respiratory condition that may N v
o es
affect your physiclogical responses (heart beat, breathing, etc)?

11 Do you struggle to use computer monitors (even with glasses if needed)? No Yes

Thank you very much for your time!

Figure. A.2. Screening Questions before Participation (study 2)

The screening question were used in Study 2. Before participant join the experiment, they need to
meet all the criteria and has no conditions stated in the questions above
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