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Abstract The maximum entropy spectral analysis (MESA)
method, developed by Burg, offers a powerful tool for spec-
tral estimation of a time-series. It relies on Jaynes’ maximum
entropy principle, allowing the spectrum of a stochastic pro-
cess to be inferred using the coefficients of an autoregressive
process AR(p) of order p. A closed-form recursive solution
provides estimates for both the autoregressive coefficients
and the order p of the process. We provide a ready-to-use
implementation of this algorithm in a Python package called
memspectrum, characterized through power spectral den-
sity (PSD) analysis on synthetic data with known PSD and
comparisons of different criteria for stopping the recursion.
Additionally, we compare the performance of our implemen-
tation with the ubiquitous Welch algorithm, using synthetic
data generated from the GW 150914 strain spectrum released
by the LIGO-Virgo-Kagra collaboration. Our findings indi-
cate that Burg’s method provides PSD estimates with sys-
tematically lower variance and bias. This is particularly man-
ifest in the case of a small (O(5000)) number of data points,
making Burg’s method most suitable to work in this regime.
Since this is close to the typical length of analysed gravi-
tational waves data, improving the estimate of the PSD in
this regime leads to more reliable posterior profiles for the
system under study. We conclude our investigation by utilis-
ing MESA, and its particularly easy parametrisation where
the only free parameter is the order p of the AR process, to
marginalise over the interferometers noise PSD in conjunc-
tion with inferring the parameters of GW150914
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1 Introduction

The problem of inferring the morphology and the defining
parameters of deterministic signals superimposed to stochas-
tic processes is one of the most wide spread and interest-
ing problems in several areas of human activities. Whenever
some form of model for the signal we are looking for is
available, the problem is typically solved via the Wiener fil-
ter, defined as the whitening filter that maximises the signal-
to-noise ratio, i.e. the relative power of the (known) signal
over the power of the (known) underlying stochastic process.
Hence, signal detection and characterisation requires accu-
rate knowledge of (i) the shape of the signal we are looking
for and (ii) the statistical properties of the stochastic process.
The construction of signal models is typically driven either
by physical or by mathematical arguments hence, although
extremely difficult in general, it is doable. On the other hand,
stochastic process models can be extremely difficult to con-
struct, both for practical and theoretical reasons. A stochastic
process is fully described by the knowledge of the probabil-
ity distribution governing its realisations — the “paths” of
the random variable under scrutiny — over the entire time
axis, from ¢t = —oo to t = oo. Clearly this is not possible
in practice. Therefore modelling a stochastic process either
relies on modelling of the underlying physical processes, thus
falling back onto the deterministic case, or on modelling the
mathematical and statistical properties of the process, and
potentially infering them from the process realisations. The
study of the properties of stochastic processes is thus a crucial
task in many fields of physics, astronomy, quantitative biol-
ogy, as well as engineering and finance. Among the classes
of stochastic processes, a key role is played by wide-sense

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-13400-6&domain=pdf
mailto:alessandro.martini-1@unitn.it
mailto:s.schmidt@uu.nl
mailto:Gregory.Ashton@rhul.ac.uk
mailto:walter.delpozzo@unipi.it

1023 Page 2 of 18

Eur. Phys. J. C (2024) 84:1023

stationary processes. These are stochastic processes that dis-
play an invariance of their statistical properties, such as their
two-point autocovariance function, with respect to transla-
tion of the independent variable, usually the time z. If x(¢)
is a wide-sense stationary process, its statistical properties
are completely determined by the knowledge of the (many-
points) autocorrelation functions. In practice, one often has
easy access to the two-point correlation function

C(r) = Elx; - x14+] ey

or, equivalently, to the process power spectral density (PSD)
S(f). Thanks to the Wiener—Khinchin theorem, in wide-
sense stationary processes, the two are in fact related by a
Fourier transform:

oo
S(f) = / drC(x)e 2T, )
—00
In the context of gravitational waves physics, e.g. [1], the
PSD is introduced as

E[X(f) - ¥(f)1 = S(HS(f — 1) 3

without highlighting its connection with the time structure
of the process itself, thus masking some important properties
that will be explored further in what follows. The latter def-
inition in Eq. (3) gives, however, (i) a straightforward inter-
pretation of the PSD: it measures how much signal “power” is
located in each frequencys; (ii) an operative way of estimating
it for an unknown process.

An ubiquitous method for such a computation is due to
Welch [2] and it is based on Eqs. (2-3). The PSD is obtained
by slicing the observed realisation x(¢1), ..., x(#,) of the
process x(¢) into many window-corrected batches and aver-
aging the squared moduli of their Fourier transforms. This
approach is equivalent [3,4] to taking the Fourier Transform
of the windowed sample autocorrelation py, written as

s Wamp+m, 0,000}, “4)

where p is the empirical autocorrelation and M is the maxi-
mum time lag at which the autocorrelation is computed. The
sequence W is a window function that can be chosen in sev-
eral different ways, each choice presenting advantages and
disadvantages for the final estimate of the PSD.

The choice of a window function is arbitrary and typi-
cally is made by trial and error, until a satisfactory compro-
mise between variance and resolution of the estimate of PSD
is reached. A high frequency resolution implies high vari-
ance and vice-versa. Besides the window function, Welch’s
method requires a number of arbitrary choices to be made,
such as the number of time slices and the overlap between
consecutive slices. All these knobs must be tuned by hand
and their choice can dramatically affect the PSD estimation,
hence begging the question of what the “best” PSD estimate
is.

ow = {Wopo, Wx10+1, ..
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Another drawback of this approach is the requirement for
the window to be 0 outside the interval in which the auto-
correlation is computed. We are arbitrarily assuming p; = 0
for j > M and modifying the estimate (i.e. the data) if a
non-rectangular window is chosen. Making assumptions on
unobserved data and modifying the ones we have at our dis-
posal introduces “spurious” information about the process
that we, in general, do not really have.

A alternative approach providing a smooth PSD estima-
tion, is to adopt a parametric model for the PSD and to fit its
parameters to the data with a Reversible Jump Markov Chain
Monte Carlo [5,6]. Despite being effective, this method is
problem dependent, since it needs to make definite assump-
tions on the shape of the PSD. Moreover, it can be compu-
tationally expensive. For all the above reasons, we did not
consider such methods in our work.

An appealing alternative, based on the maximum entropy
principle [7-9], has been derived by Burg [10]. Being rooted
on solid theoretical foundations, we will see that Burg’s
method, unlike Welch’s, does not require any preprocessing
of the data and requires very little tuning of the algorithm
parameters, since it provides an iterative closed form expres-
sion for the spectrum of a stochastic stationary time series.
Furthermore, it embeds the PSD estimation problem into an
elegant theoretical framework and makes minimal assump-
tions on the nature of the data. Lastly and most importantly,
it provides a robust link between spectral density estimation
and the field of autoregressive processes. This provides a
natural and simple machinery to forecast a time series, thus
predicting future observations based on previous ones.

In this paper, we discuss the details of the maximum
entropy principle, its application to the problem of PSD esti-
mation with Burg’s algorithm and the link between Burg’s
algorithm and autoregressive process. Our goal is to bring
(again) to public attention maximum entropy spectral analy-
sis, in the hope that it will be widely employed as a way out
of the many undesired aspects of the Welch’s algorithm (or
other similar methods). To facilitate this goal, we based this
study onmemspectrum, a freely available, robust and easy-
to-use python implementation of the algorithm described
below.! We provide a thorough assessment of the perfor-
mance of our code and we validate our results performing a
number of tests on simulated and real data. We also compare
our results with those of spectral analysis carried out with
the standard Welch’s method. In order to apply our model
on a realistic setting, we analyse some time series of broad
interest in the scientific community.

Our paper is organized as follows: we begin by briefly
reviewing the theoretical foundations of the maximum
entropy principle in Sect. 2. Section 3 presents the vali-
dation of Burg’s method as well as of our implementation

' It is available at link: https://pypi.org/project/memspectrum/.
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on simulated data. In Sect. 4 we compare the results from
memspectrum with the Welch method; Sect. 5 presents a
few applications to real time series, including the analysis of
GW150914, and, finally, we conclude with a discussion in
Sect. 6.

2 Theoretical foundations

The maximum entropy principle (MAXENT) is among the
most important results in probability theory. It provides a way
to uniquely assign probabilities to a phenomenon in a way
that best represent our state of knowledge, while being non-
committal to unavailable information. Its domain of applica-
tion turned out to be wider than expected. In fact, thanks to
[10], this method has also been applied to perform high qual-
ity computation of power spectral densities of time series.
Afterashortintroduction to Jaynes’ MAXENT (Sect. 2.1),
we will review in detail Burg’s technique of maximum
entropy spectral analysis (MESA) and show that the esti-
mate can always be expressed in an analytical closed form
(Sect. 2.2). Next, we will discuss the interesting link between
Burg’s method and autoregressive processes (Sect. 2.3) and
in Sect. 2.4 we will use such link to forecast a time series.

2.1 Maximum entropy principle

Before introducing the MAXENT principle, we will define,
via some simple examples, the two core concepts of the prob-
lem and the roles they play in deductive inference: the ‘evi-
dence’ and the ‘information’. Let us start with the ‘informa-
tion’ (or information entropy): it is a measure of the degree of
uncertainty on the outcomes of some experiment and spec-
ifies the length of the message necessary to provide a full
description of the system under study. As an example, no
information is brought if we are studying a system whose
outcome is certain (the outcome is known with probability
p = 1), as in this case, a communication is not even needed.
Shannon [11] proposed the quantity

1
p(x)
to measure the quantity of information brought by an out-
come x with probability p(x). It is additive quantity as well
as a monotonically decreasing function of p € [0, 1]: the
more uncertain the outcome, the higher the information it
brings.

We can generalize the definition of information in the case
where two different outcomes Ep, E», with given probabil-
ities P; and P,, are possible. To gain some intuition on the
problem, we ask ourselves which are the probability assign-
ments that make the outcome more uncertain (i.e. maxi-
mize the information). If P; and P, are largely different,

I =log, (%)

for instance P; = 0.999 and P, = 0.001, we are allowed to
believe that event E will occur almost certainly, considering
E» to be a very implausible outcome. The information con-
tent will be very low. On the other hand, most unpredictable
situation happens when
P=P L.

1 =12 = E .
this describes a situation of ‘maximum ignorance’ and the
information content of such system must be high. Any gen-
eralization of Eq. (5), must then have its maximum when
P = P>. For N events, the system with the highest possible
information content is when:

Pl=...=Py=—:

Shannon [11] showed that the only functional form satis-
fying continuity with respect to its parameters, additivity and
that has a maximum for equal probability events is:

N
,pnl=—)_ pilogpi, 6)

i=1

Hlpy,...

which can be interpreted as the ‘expected information’
brought by an experiment with N possible outcomes each
with its own probability p;. In the continuous case:

Hip(x)] = —/p(X) In p(x)dx, )

We call the functional H information entropy.>

We now turn to the core of our problem: how can we
assign probabilities to a set of events keeping into account
our knowledge of the system and, at the same time, ensure it is
non-committal towards unavailable knowledge? The “knowl-
edge” at our disposal about the system under investigation is
what we define ‘evidence’ and any probability assignment is
given such evidence, in agreement with Cox [12] construc-
tion of probability. In the case above, our knowledge on the
system is only the total number N of different outcomes — this
is a minimal requirement. Of course, more complex evidence
constraints can be applied.

It is very common that the constraints provided by the
evidence are not enough for setting the probabilities for each
event: in this case, it is reasonable to assume that the probabil-
ity assignment should make the experiment as unpredictable
as possible.? In other words, the information entropy content
introduced by the probability assignment should be as large

2 In defining the information entropy as in Eq. (7), we are implicitly
assuming a uniform measure over the parameter space. In case of a
non-uniform measure m(x), the definition generalises to H[p(x)] =
— [ p(x)In PO 1

m(x)

3 In [9] this statement is made more precise and justified more thor-
oughly, with arguments based on combinatorial analysis.

@ Springer
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as possible, in accordance with the available evidence. MAX-
ENT formalises this reasoning by stating that probabilities
should be assigned by maximizing uncertainty (information
entropy) using evidence as a constraint. This defines a vari-
ational problem, where the information entropy functional
H[p1, ..., pn], defined in Eq. (6), has to be maximized.

The maximisation of the entropy, supplemented by evi-
dence in the form of constraints to which the sought-for
probability distribution must obey, gives rise to several of the
most common probability distributions commonly employed
in statistics. In the cases of interest, evidence is used to con-
straint, via Lagrange Multipliers, the momenta of the prob-
ability distribuiton we are seeking to evaluate. For instance,
whenever the only constraint available is the normalization of
the probability distribution (i.e. no evidence is available), the
entropy is maximised by the uniform distribution. If we have
evidence to constraint the expected value, the information
entropy is maximised by the exponential distribution.

Of particular relevance for our purposes is the case in
which, in addition to the mean, also the variance is known:
MAXENT leads to the Gaussian distribution. This deriva-
tion is particularly interesting from the foundational point
of view, since it provides a deeper insight into the ubiqui-
tous Gaussian distribution. Indeed, it is not only the limit
distribution provided by the central limit theorem for finite
variance processes but it is also the distribution that maxi-
mizes the entropy for a fixed mean and variance: from the
MAXENT principle, it is the correct probability distribution
to assign if the mean and covariance are the only quantities
that fully define our process. In some sense, we can interpret
the central limit theorem as the natural ‘statistical” evolution
toward a configuration that maximizes entropy in repeated
experiments.

For this work, we are especially interested in the multi-
dimensional case. Suppose we have a vector of measure-
ments (x(t1),...,x(,)) = (x1,...,x,) that we conve-
niently express as a single realization of an unknown stochas-
tic process x (¢) and we have information about the expecta-
tion value of the process w(¢) and on the matrix of autoco-
variances C;; = C(t;, t;), then the MAXENT distribution is
the n-dimensional multivariate Gaussian distribution [13]:

p(Cxrs oo xp)D)

= ————exp ! E (i —pi)(x;—p)C!
= /2 i) =)
(27 det C) 2 y

®)

For a wide-sense stationary process the mean function is
independent of time, hence it can be redefined to be equal to
zero without loss of generality, and the auto-covariance func-
tion is dependent only on the time lag T = #; — ¢;. One can
thus choose a sampling rate At so that C;; = C(( — j) At).

@ Springer

The autocovariance matrix thus becomes a Toeplitz matrix*.
Toeplitz matrices are asymptotically equivalent to circulant
matrices and thus diagonalized by the discrete Fourier trans-
form base [14]. Some simple algebra shows that the time-
domain multivariate Gaussian can be transformed into the
equivalent frequency domain probability distribution:

p (G ..o Zup2)I)

1 1 Y ol ~
R Ead R ®
ij

where the matrix §;; = §;8;; is an n x n diagonal matrix
whose elements are the PSD S(f) calculated at frequency
fi- Many readers will recognise the familiar form of the
Whittle likelihood that stands at the basis of the marched
filter method [15] and of gravitational waves data analysis,
[1,16, e.g.]. Thanks to MAXENT, the problem of defining
the probability distribution describing a wide-sense station-
ary process is thus entirely reduced to the estimation of the
PSD or, equivalently, the autocovariance function.

2.2 Maximum entropy spectral analysis

In principle, if the autocorrelation was known exactly (i.e.
at every time 7 € (—o00, +00)), the computation of the PSD
would reduce to a single Fourier transform (i.e. Eq. (2)). How-
ever, in any realistic setting, we are dealing with a finite num-
ber of samples N from the process. In such cases, the single
periodogram is not a consistent estimator for the power spec-
tral density, since its variance doesn’t decrease when the sam-
ple size increases. Moreover, the error oy in the estimate of the
autocorrelation after k steps increases as o ~ 1//N — k,>
so that only few values for the autocorrelation function can
actually be computed reliably. This bring us to the core of
the problem: how to give an estimate from partial (and noisy)
knowledge of the autocorrelation function? MAXENT can
guide us in this task without any a priori assumptions on the
unavailable data.®

4 We remind the reader that a Toeplitz matrix is a matrix in the form:

ay ay ay ... ... ... ap
a-; ap ay ... ... ce. Gp—
a, a-1 ap ... ... an—2

A_pg] oo oo onn a_1 ap ap
Ay vee e a-p a—1 ap

3> This is easily understood: when computing the autocorrelation at

order k, only N — k examples of the product x;x;, are available and
the variance of the average value goes as the inverse of the square root
of the points considered.

6 Indeed this is the largest difference with the most common Welch
method. The latter assumes that the unknown values of the autocorre-
lation are 0. Clearly, this assumption is unjustified and MAXENT is a
good way to relax this assumption.
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As in the previous examples, one needs to set up a vari-
ational problem where the entropy, Eq. (7), is maximized
subject to some problem-specific constraints. In our case,
they are (i) the PSD estimate has to be non-negative; (ii) its
Fourier transform has to match the sample autocorrelation
(wherever an estimate of this is available).

Before doing so, there is a technicality to solve: the def-
inition of entropy depends on a probability distribution, not
on the PSD. It can be shown [17,18, e.g.] that the variational
problem can be formulated in terms of the power spectral
density S( f) alone by considering our signal as the result of
the filtering a white noise process using a filter with trans-
fer function T'( f) equal to S(f).” The difference in entropy
between the input and the output time series (i.e. the entropy
gain) obtained by such filter applied on white noise is:

Ny
AH:/ log S(f)df. (10

Ny

where At is sampling rate and Ny = ﬁ is the Nyquist
frequency. Thus maximising Eq. (10) is equivalent to maxi-
mizing Eq. (7).

Before maximizing the entropy gain, we need to include
the evidence available as a form of mathematical constraints
for the assignment of S(f). This is equivalent in imposing
that the variational solution S( /) for the PSD matches the
empirical autocorrelation. Let us define a realization of a
stochastic process (x1, . . ., x) with sample autocorrelations
7k, k=0, ..., N/2,then the PSD must satisty the following
equation:

N
/ ’ S(fre kA g f =y (11)
—Ny

Thus, by maximizing Eq. (10) with constraints in Eq. (11),
we can give an estimate of the spectrum given a time series
sample. This approach on PSD computation provides a result
consistent with the empirical autocorrelation function when-
ever this is available and, at the same time, it does not make
any assumption for the unavailable estimates for the autocor-
relation at large time lags.

Remarkably, the variational problem admits a closed-
form analytical expression for S(f). The expression was first
found by [10]:

Py At

Choes) (Dhear)

S(f) = (12)

7 A filter with transfer function 7'( f) takes in input a time series x;
and outputs a times series y; such that:

_ W
E9)

where X ( f) denotes the Fourier transform of x; (and similarly for y;)

T

where At is the sampling interval of the time series, z =
exp (2wif At),ao=1.The vector obtained as (1, ay, ..., ay)
is also known as the prediction error filter. The coefficients
as(s > 0), together with an overall multiplicative scale fac-
tor Py, are to be determined by an iterative process (called
Burg’s algorithm) At least, two implementations of Burg’s
algorithm are available in the literature, labeled as ‘Standard’
and ‘Fast’ in the memspectrum package. The ‘Standard’
method is slower but more stable, while ‘Fast’ trades stability
for speed. On simulated stationary data, both versions typi-
cally yield similar results, while our tests with real gravita-
tional waves data seems to indicate that the ‘Fast’ implemen-
tation introduces noise into the PSD estimate.® A comparison
of the computational times for Standard MESA implemen-
tation and Fast implementation (together with Welch’s) is
provided in Appendix C.

The number N of such coefficients is a choice that shall
be made by the user and indeed it is the only hyperparameter
that needs to be tuned. The details of the derivation and the
actual form for the coefficients a; can be found in Appendix
A.

2.3 Autoregressive process analogy

The application of MESA is not limited to spectral estimates,
but it also provides a link between spectral analysis and the
study of autoregressive processes (AR) [19]. An autoregres-
sive stationary process of order p, AR(p), is a time series
whose values satisfy the following expression:

X —bixi—1 —bax; 2. bpxi—p =, (13)

where by, ..., b, are real coefficients and v, is white noise
with a given variance 2. Thus, an AR(p) process models
the dependence of the value of the process at time ¢ from
the last p observations, thus being potentially able to model
complex autocorrelation structures within observations.

Thanks to Wold’s theorem [20], every stationary time
series can be represented as an autoregressive process: this
ensures that maximum entropy estimation is faithful and gen-
eral; it turns out that the maximum entropy principle provides
a representation of the time series as an A R(p) process and
Burg’s algorithm computes the corresponding autoregressive
coefficients that are suitable to model the available data.

To show the analogy, we compute the PSD S4g(p) of an
AR(p) process and we show that it is formally equivalent
to the PSD obtained in Eq. (12). This will also provide a
direct expression for the autoregressive coefficients b; and

8 For this reason, it is advisable to use the ‘Standard’ implementation
whenever possible. In most case of numerical instability in the ‘Fast’
method, memspectrum will send a warning to user.

@ Springer
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for the noise variance 2. We start taking the z transform® of
Eq. (13):

Dowd =Y b Y el =) el (14)
t i t t

Calling x(z) and v(z), the transformed quantities, in the z

domain, the process takes the form:
V(z)

——w7

(1 - Zn:l bnzn)

Since we assumed a wide-sense stationary process, X(z) is

analytic both on and inside the unit circle. Taking its square

value and evaluating it on the unit circle z = e~ 127f Al from
the definition of spectral density one obtains:

1D(f)I?

|1 _ Z;f:l bnelZanAliz.

x(z) = 15)

Sar(p (f) = 131> = (16)

The numerator is the spectral density of white noise vy, i.e.
its (constant) variance o2

Equations (16) and (12) are equivalent, if we identify
b; = —a; and Py At = o>, This shows that the MAXENT
estimation of the PSD models the observed times series as
an AR process and provides a fif for the autoregressive coef-
ficients. Furthermore, as a consequence of Wold’s theorem,
there is the theoretical guarantee that every stationary time

series can be modelled faithfully by the MAXENT.
2.4 Forecasting

The link between MESA and AR processes is of particular
interest. Given the solution to Burg’s recursion to determine
the ax, we automatically obtain the coefficients of the equiv-
alent AR process, hence we are able to exploit Eq. 13 to
perform forecasting, thus providing plausible future observa-
tions, conditioned on the observed data. Indeed, for an AR(p)
process the conditional probability p(x;|x;—1, ..., x;—p) of
the observation at time # with respect to the past p observation
has the form:

pXelxi—1, .o X p)

2
1 1 — 37 bixi_i
exp —-<ﬁ—J§ELLii) .an

NG 2 o

The interpretation of Eq. (17) is straightforward: x; follows a
Gaussian distribution with a fixed variance and a mean value
my = Zle bix;_; computed from past observations. Equa-
tion (17) provides then a well defined probability framework

9 The z transform is the discrete-time equivalent of the Laplace trans-
form, thus taking a discrete time-series and returning a complex fre-
quency series.

@ Springer

for predicting future observations: this is a very useful fea-
ture of MESA, that does not have an equivalent in any other
spectral analysis computation methods.

2.5 Whitening

The theory of the AR processes can be also applied to the
problem of whitening a time series. Given a time series, x;,
the whitening operation produces another time series xtW

such that:

W:T—l[f(f)} 18
& 5D (15)

where 7! denotes the inverse Fourier transform of a fre-
quency series. If x; is a realization of gaussian noise (see
Eq. (9)) with PSD S(F), the whitened time series x,W is just
white noise (i.e. uncorrelated samples from a normal gaus-
sian).

From Eq. (13), remembering that b; = —a;, it’s straight-

forward to derive an expression for the whitened time series
w.
x

P
1
x,W = — Zaix,_i (19)
PN 4
i=0
This amounts to a convolution of the time series x; with the
kernel (1, ay, ..., ap), plus a variance rescaling. Perform-

ing a convolution is an appealing alternative to evaluating
Eq. (18) directly.

3 Validation of the model

MESA provides a recursive formula for computing the coef-
ficients a; in Eq. (12). The number M of such coefficients is
equivalent to the maximum order of the autocorrelation 7,
considered. In an ideal scenario, this would be equal to the
number of points the autocorrelation is computed at (equiva-
lent to the length of data considered). However, the computa-
tion of high order coefficients of the autocorrelation is unsta-
ble and for high enough m, as the estimation for r,, shows a
very high variance, broadly scaling as ~ (v'M — m)_l.

It is then clear that the choice of the number of samples of
the discrete autocorrelation to consider is important: on the
one hand it is advisable to include as much knowledge of the
autocorrelation as possible, leading to include all the known
7'm; on the other hand, including values of the autocorrelation
that are not reliably estimated, can be counterproductive. The
order M of the autocorrelation to be considered (or, equiva-
lently, the order M of the underlying autoregressive process)
is the only tuning parameter of MESA and a careful balance
between these two necessities must be made when applying
the algorithm.
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The remainder of this section is devoted to an extensive
study on how to make such choice. In Sect. 3.1, we are going
to define two different loss functions to measure how well the
algorithm is able to reproduce a known PSD. The basic idea is
to validate, as the autoregressive order considered increases,
the performance of the algorithm results by measuring the
loss function and pick, among the orders the one that yields
better results. The performance of the different losses will
be assessed by answering to two questions: (i) how well the
AR order is recovered and (ii) how well the measured PSD
is able to whiten the input time series. This will be discussed
Sects. 3.3 and 3.4.

3.1 Choice of the autoregressive order

Guided from numerical experiments, an indication on the
upper bound to the autoregressive order M, is [21]:
My =2N/In(2N), (20)
where N is the number of observed points in the time-series.
However, this is just a plausible upper limit on the order of
the AR process m and the optimal algorithm could employ

fewer points. We then need a more sophisticated method for
computing the right value for m. We summarise them below:

— Final prediction error The first criterion is due to [22].
It was proposed that m should be chosen as the length that
minimizes the error when the filter is used as a predictor,
the final prediction error (FPE):

FPE(m)=FE [(m _ )e,)Z)] @1)

with x; = Zﬁ] a; x;—;. Asymptotically minimizing FPE
is equivalent to minimizing the quantity:

N+m+1

Lrpe(m) = Pmm

(22)

with Py, being the estimated noise variance at order m,
see Eq. (33). Inthe N — oo limit, remembering m,qx ~
2N /log(2N), Akaike’s loss function is equivalent to the
minimization of the variance P,, of the white noise of the
underlying AR (p) model.

— Variance maximum (VM) This second criterion [23] is
based on a similar assumptions to FPE. It minimises the
actual value of the least squares (instead of relying to
asymptotical behaviour), using a normalising factor that
takes into account the m degrees of freedom necessary to
estimate the forward prediction error filter ay.

The quantity to be minimised is

2
1 N m
VM(m) = ~ Z (xt — Zaix,,-> (23)
i=1

t=m

The package implementation of VM loss function takes
advantage of a recursive re-writing of the above formula,
as in Egs. (27) and (28) of [24].

Several other criteria are available in the literature [25,26]
and some are implemented in the memspec trum pack-
age. We don’t report them in this paper since they didn’t
show any additional merit with respect to the aforemen-
tioned loss functions

Once a loss function is selected, the choice of the best
recursion order is straightforward: we solve the Levinson
recursion [27] until M,,,,, as given in Eq. (20), iterations
are reached. Then, the order m is selected to be the one that
minimizes the specified loss function.

In a real implementation of the algorithm, computing all
the recursion up to M,,,, can result in a significant waste of
computational power: the optimal value is often m,,, <<
M,4x and, in such cases, computing all the values of m until
M4 1s not useful. In practice, we can apply an early stop
procedure: every few iterations we look for the best order of
Mopy; if this value does not change for a while, we assume
that a good (local) minimum of the loss function is found and
the computation is stopped.

The following sections will be devoted to the study of the
statistical properties of the loss functions introduced above:
we need to understand which choice provides the best quality
in the reproduction of some known power spectral densities.
In the following paragraph, we will discuss three different
comparison (one qualitative and two quantitative) of the two
proposed loss functions.

3.2 How accurate are the reconstructed PSDs?

In our initial qualitative comparison, depicted in Fig. 1, we
juxtapose the reconstruction of a known a-priori power spec-
tral density with those obtained using the two distinct loss
functions. The black, dotted line in the plot represents our
chosen reference PSD, released together with the GWTC-
1 catalog [28,29], and computed for the LIGO Handford
with the BayesLine package [5,6,30,31]. The PSD is the
median over the reconstructed posterior distribution for the
GW150914 event.

To conduct this analysis, we generated 1000 noise time-
series whose power spectral densities matches the reference
PSD by construction [32]. The sampling rate and observation
time were fixed at df = 2048 Hz and T' = 5 s, respectively.
For each noise realization, we employed both the FPE and
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Fig. 1 Comparison of the ensemble average PSD estimate

the VM loss functions to estimate the PSD. Ultimately, we
compared the reference PSD against the ensemble average
of these two estimation methods.

The FPE-derived estimate, represented by the red line,
effectively identifies and reconstructs peaks across both high
and low frequency ranges with commendable accuracy. How-
ever, as illustrated in the inset plots, FPE struggles when con-
fronted with structured peaks-those containing subordinate
modes. In such cases, FPE accurately captures the primary
mode but overlooks the subsidiary peaks.

On the other hand, the VM estimate, depicted as the
continuous green line, excels in reconstructing both domi-
nant and subordinate modes with remarkable precision. VM
appears to prioritize comprehensive mode reconstruction,
while FPE emphasize an accurate reconstruction of major
modes while potentially neglecting more intricate sub-peaks.
Additional figures of merit are inserted in Appendix B

3.3 How well is the AR order recovered?

Moving to our second comparison, we now focus on another
crucial aspect: how accurately each loss function estimates
the autoregressive (AR) order, which represents the number
of employed ay coefficients.

Here, the memspectrum package proves quite useful.
It allows us to assign a specific order to the reconstructed
autoregressive filter and use the resulting coefficients to fore-
cast time series. With these tools in hand, we generated var-
ious time series, each with a different autoregressive order
ranging from m = 0 to m = 4000.

To ensure reliability, we created 30 distinct time series
for each autoregressive order. This approach lets us compute
both the mean and variance, giving us insights into the accu-
racy of each loss function’s order estimation. This analysis
provides valuable information about how well each method
performs in estimating the Autoregressive order across a
broad spectrum of scenarios.

The results are reported in Fig.2. The injected autore-
gressive order’s true value is depicted by the red line. The
estimations yielded by the two loss functions are illustrated
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Fig. 2 Reconstructed value for the autoregressive order plotted against
the true value of the autoregressive order. The reconstructed autoregres-
sive orders are computed from a time series randomly drawn with an
AR (p) model, with the two different loss functions under investigation

alongside, accompanied by error bars indicating one standard
deviation.

The plot reveals two distinct regions: one with “short”
autoregressive orders (m = 0 to around m = 1600) and another
with “long” autoregressive orders (starting from m = 1600).

In the first region, both loss functions provide comparable
results that generally match the actual autoregressive order.
FPE performs particularly well, offering estimates close to
the injected order and with minimal error bars. VM performs
slightly worse than FPE in this range, overestimating com-
plexity and showing larger error bars.

Moving into the second region (m > 1600), a shift in per-
formance becomes apparent. FPE’s estimates tend to stabi-
lize at a certain autoregressive value. However, as the injected
model becomes more complex beyond this point, FPE’s accu-
racy in recovering the true order diminishes, and its vari-
ance increases. In contrast, VM performs better in this range,
closely following the actual behavior and consistently recov-
ering the true order within one standard deviation. To con-
clude, VM appears to prioritize complexity in its approach.
In contrast, FPE seems to lean toward synthesis, emphasizing
accurate reconstruction of not too complex models.

3.4 How well can MESA whiten the data?

In Sect.2.5, we showed how autoregressive coefficients
and noise variance estimate P can jointly be used to create
a whitening filter, as in Eq. (18) and. To complete our inves-
tigation, we compare how well these whitening filters work
when obtained from the two different loss functions we’ve
been studying.

For this test, we employed the same set of time-series
data as described in Sect.3.2. Each time series underwent
the whitening process using the autoregressive filter derived
from its corresponding loss function. We then evaluated the
resulting whitened time series against a zero-mean, univariate
normal distribution using the Anderson—Darling test.
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test on the whitened time series, against a univariate, 0 mean normal
distirbuition

The results are reported as an histogram for the obtained
p-values in Fig.3 together with the chosen critical region
of p < 0.1, representing a 90% confidence level. In this
region, there is no statistical difference between the two.
Infact, the total number of counts ¢ in this bin are respectively
cyym = 100£ 10 and cppg = 89 £ 9, affirming the absence
of a pronounced discrepancy between the two. In essence,
this final examination underscores a shared proficiency in
whitening between the two loss functions, showing that very
long filters are not needed to obtain a comparlable result in
whitening. Both methods showcase comparable results for
whitening scopes.

From our previous discussions, it’s evident that both FPE
and VM have their own strengths, and the choice between
them greatly depends on the specific analysis requirements.
In our analysis, VM tends to provide more accurate PSD esti-
mates and often results in longer autoregressive filters. How-
ever, in cases where the underlying model is simple, there
is a risk of VM overestimating complexity and generating
patterns that don’t truly reflect the data.

On the other hand, FPE is a good option for reconstruct-
ing processes without introducing unnecessary complexity.
However, it might underestimate the complexity of the data,
particularly in scenarios involving secondary peaks or in the
low-frequency region.

Lastly, it’s worth noting that FPE holds the advantage of
lower numerical complexity due to its straightforward calcu-
lations involving simple arithmetic. In contrast, VM requires
more complex computations, dealing with arrays that might
be very long depending on the analysed data.

4 Comparison with Welch method

We perform a qualitative comparison between the perfor-
mance of the MESA and of the standard Welch algorithm.
In this, we cannot avoid to be only qualitative. Indeed, as the
results of the comparison are problem dependent, it is very
hard to quantify this in a single metric. Although similar
studies can be drawn from any other PSD, in this section we
focus on a single PSD and we try to generalize some obser-
vations that we make. We used the same reference PSD used
for the comparison of the two losses in the previous section
[5,6,30,31].

We simulate data'” from the PSD used for the analysis of
the event GW150914 and we employ both Welch’s method
and MESA to estimate the spectrum. We vary the length of
the data used for the estimation: this is also useful to assess
how the computation depends on the data available. We set
the total observation time 7 = 1, 5, 8, 10, 100, 1000 s. The
observation time of 8s is inserted since it is the observa-
tion time over which the reference PSD is computed. For
the MESA algorithm, we choose the VM loss function. For
the Welch algorithm, we employ a Tukey window with the
shape parameter « equal to 0.4 (see scipy documentation), an
overlap fraction of 1/2 for the segments and a length of seg-
ments L = 512, 1024, 2048, 8192, 32768 points, depending
on the observation time. In all cases, the sampling rate is
set to 4096 Hz. For the Welch algorithm, we use the stan-
dard implementation provided by the python library scipy
[33,34]. The results from both methods are summarized in
Figs. 4 and 5 respectively.

First of all, we note that using a longer time series results in
a better estimation of the PSD, especially at low frequencies.
This is somehow obvious: longer data streams probe lower
frequencies thanks to Nyquist’s theorem as well as providing
better estimates for the FFT, in the Welch case, and the sample
autocorrelation, for MESA.

We also note that MESA converges (Figs. 4 and 5) to
the underlying spectrum much faster than Welch’s method,
providing a better estimate even in the case of short time
series. Although observed at every frequency, this behaviour
is more evident in the low frequency region. An accurate
profile reconstruction can be obtained with MESA using a 5 s-
strain only, while Welch method requires at least 10's of data
to obtain a comparable profile”. Such a difference persists
when the 8s data strain is considered. Furthermore, MESA
is able to model all the details of the peak at around ~ 40 Hz
(even with T = 100 s), while the Welch’s algorithm fails to
do so even with an observation time of 7 = 1000 s.

Another important element is the noise of the spectral
estimation: we find that the PSD estimation provided by the

10 This is to ensure that we have a baseline PSD to compare the data
with.
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Fig. 4 Comparison between analytic (dashed line) and estimated (red
line) spectrum. The estimation is performed with Maximum Entropy
method on synthetic data, with an increasing observation time 7 =
1, 5,8, 10, 100, 1000 s

Welch’s method is noisier (i.e. has a large number of spurious
peaks) compared to the PSD measured with MESA and FPE
loss function. This is especially true at high frequencies and
for long observation times 7.

Finally, as already discussed Welch’s method is very
dependent on the choice of window function. A Tukey win-
dow with aforementioned parameters is what we found to
be the best compromise between noise and accuracy for the
reconstruction, but different choices can be made, possibly
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Fig. 5 Comparison between analytic (dashed line) and estimated
(green line) spectrum. The estimation is performed with Welch’s
method on synthetic data with an increasing observation time 7 =
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providing more accurate results than the ones reported here.
However, we want to stress that this fact does not invalidate
our discussion but reinforces it: one of the most appealing
advantages of MESA is the minimal amount of fine tuning
required.

It would also be interesting to perform a detailed com-
parison between our results and the ones from the FastSpec
algorithm [35], both in terms of operational speed and ability
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to whiten GW data. Such study will be carried on in future
work.

5 Marginalisation over the noise distribution:
application to GW parameter estimation

Define the data hypothesis D as the statement that the data
D = S+ N with § and N some deterministic signal and
some noise hypotheses. Typically, in this formulation one
is choosing both a functional form for the signal of inter-
est § = “h(z;0)" and some parametric form f(¢) for the
noise distribution N = “n(r) ~ f(r)”. Some well estab-
lished math then leads to the usual Bayesian framework for
parameter estimation, see [36] for an application to gravita-
tional wave physics. This procedure is very robust as long
as the choice of noise distribution is indeed representative
of the underlying process. Let us relax the N hypothesis by
defining a residuals hypothesis R as R = D — S. This might
seem a very trivial statement, but it has a non-trivial appli-
cation: given d(t) = h(t;0) + n(t) where h(t; 6) is our
signal model, defined by a set of parameters 6, the residuals
r(t) = d(t) — h(t; 0). Formally, no reference to the noise
process is present anymore. Under MAXENT, we can model
r(t) ~ AR(k) with k the unknown order of the process to be
inferred from the residuals, either via one of the aforemen-
tioned loss functions or even by marginalising over it while
exploring the signal space. Moreover, we can always write
p(r@)|N I) as in Eq. (9) once we know k, with the PSD
given in Eq. (16), whatever the noise process actually is. In
other words, we care only about maximising the information
entropy in the distribution of the residuals.

Hence, as an application of MESA, and its implementa-
tion in memspectrum, we analyse GW 150914 [37] using
a Bayesian framework that allows for the marginalisation of
the order k of the AR(k) process representing the residuals
data stream. Although the inference is essentially unchanged
compared to the standard case, see [36], there are some sub-
stantial modification to the likelihood construction. Since
MESA is applicable to time-domain data, all calculations
prior to the Fourier transform must be performed in time
domain, thus increasing the computational cost by a non-
negligible amount. We shall refer the time-of-arrival param-
eter f. of the GW to the geocenter. At each iteration of the
inference algorithm, we sample a vector § = fgw U k.!!
For each inteferometer j, therefore, we need to compute a
time-delay At; to compute the antenna response functions
Fj +(t + At}), Fj <« (t + At}) as well as the correct time-

1 We indicate the set of all GW parameters (component masses, spins,
luminosity distance, etc.) with Oy .
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Fig. 6 Posterior samples for M and mass ratio ¢ from the LVK (blue),
using memspectrum to estimate with a fixed PSD (green) and using
memspectrum to marginalise over the PSD (red). The samples are
largely consistent among the models, with the MESA model providing
a more conservative estimate

shift for the GW template

hj(t) = Y Fjp(t+ Atjh,(t + Atj; 0gw)
p=+.x

(24)

that we use to compute the time-domain residuals r;(t) =
dj(t) — hj(t). We apply memspectrum to r;(t) with the
fixed value of k and calculate the detector likelihood for 7;
using Eq. (9) and PSD as in Eq. (12). The coherent likeli-
hood is then given by the product of the individual likeli-
hoods. As our analysis template, we adopt the fast machine
learning based MLGW model [38], an aligned spin model
trained on TEOBResumS [39], that has been shown to per-
form well on LVK events detected during O1 and O2 [38].
Our sampler is a nested sampling algorithm [40] and the spe-
cific inference model is implemented as part of granite, a
dedicated inference model for ground-based interferometric
detectors. We compare our results with the combined poste-
rior samples]2 available from GWOSC [41] and available at
https://zenodo.org/records/6513631. As a
comparison, we also performed an analysis using a fixed
PSD estimated off-source with MESA, performing an aver-
aging procedure analogous to what if performed in the Welch
method.

In Figs. 6, 7 and 8 we show the posteriors for the set of
intrinsic parameters, extrinsic parameters and reconstructed
waveform from our analyses. The posterior samples in red
show the results coming from marginalising over the PSD,
the ones in green show the results from our fixed PSD anal-

12 In particular, we compare against the posterior samples given in the
file IGWN-GWTC2p1-v2-GW150914795045_PEDataRelease_
mixed_nocosmo.h5.
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over the waveforms space while the purple contours indicate the 90%
credible regions over the whitened data

ysis, while the ones in blue are the samples release by the
LVK. While the fixed PSD run show posteriors that are
largely consistent with the LVK results, the posteriors from
the marginalisation run are still in general consistent with
what has been released by the LVK, but showing wider cred-
ible regions. This is expected since our likelihood includes
additional uncertainty due to the explicit sampling over the
process order, hence the PSD. For the particular 4 s of data,
sampled at 4096 Hz, the recovered orders are k1 = 1107f2
and k;1 = 1146f§, Fig. 9. The corresponding PSDs and
uncertainties are shown in Fig. 10. The full joint posterior
distribution recovered when marginalising over the AR order
is shown in Appendix D.

We conclude this section with a comparison with Ref.
[42], where a similar attempt at characterising the effect
of marginalising over the PSD was made. The aforemen-
tioned work adopted a very different methodology compared
to ours, the author use independent draws from the poste-
rior over the PSD as inferred by BayesLine and repeat a
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standard frequency domain analysis for several signals. The
results reported in Ref. [42] show a similar trend to ours: they
observe a general widening of the sky position posteriors, and
little effect (few %) on the intrinsic parameters width, while
we observe a substantial increase in the width of the chirp
mass and mass ratio posteriors. We believe this difference to
be due both to the very different model we employed as well
as on the small (200) number of samples from the PSD they
used. The estimated uncertainty over the PSD is however
consistent, of the order of (5-10%).

6 Summary and discussion

We presented a case study of the application of Maximum
Entropy principle to the realm of spectral estimation. Albeit
the methodology hereby presented is grounded on solid the-
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oretical foundations and its merits are widely recognised,
Maximum Entropy methods have yet to be adopted routinely
in the study of problems related to time series. The superior
nature of maximum entropy methods, and in particular of
Burg’s method, is exemplified by the closed form estimate
of the power spectral density and by the theoretical bridge
between spectral analysis and AR processes. Moreover, the
method presents, in our view, two main advantages when
compared with more traditional ones; first there is no need to
choose an arbitrary window function to correct the data and,
second it provides as straightforward way to compute pre-
dictions given past observations. Accompanying this work,
we provide a publicly available Python implementation,
called memspectrum, that we used to perform the numer-
ical studies presented in this work.

Since the order of the AR process is not yet determined by
the theory, we opted for an in-depth investigation of several
proposals in the literature and found that different loss func-
tions are required for different situations, with the FPE loss
function being the most indicated to deal with gravitational
wave data. Along these lines, we directly compared the PSDs
computed with MESA with the canonical Welch’s algorithm.
As outlined in Sect. 4, MESA provides PSD estimates with
smaller variance and better accuracy than Welch algorithm.
The use of MESA is particularly useful for short time series
samples, where Welch’s method is outperformed in both pre-
cision and confidence. As an examples, Figs. 4 and 5 illus-
trate that MESA’s performance over a 8-second interval is
more closely aligned with Welch’s performance over a 100-
second interval than Welch’s performance over the 8-second
interval alone. This is due to the better variance-bias tradeoff
provided by MESA. Longer segments are in fact obtained by
a linear interpolation of the original PSD. For MESA, this
procedure allows the computation of the estimate on a larger
number of data points, thus reducing the variance of the esti-
mate in both cases. For the Welch method, having longer
intervals allows the use of longer sub-segments of the origi-
nal data, further contributing to lowering the bias, especially
in the low-frequency domain.

This observation suggests a promising avenue to pursue in
future developments of gravitational waves data analysis: for
short time series, comparable with the length of binary black
hole systems as observed by LIGO, Virgo and KAGRA, the
computational cost of MESA is moderate and the inferred
PSD is an accurate representation of the true underlying
PSD. By applying MESA to 4s of data in correspondence
to GW150914, we demonstrated that it is possible to simul-
taneously estimate the signal and noise parameters, hence
effectively marginalise over the noise PSD, without the need
to

— assume a specific functional form for the PSD;
— estimate the PSD in an off-source segment of data.

Both items are of particular interest for several reasons that
we shall discuss in what follows. Several proposals exist in
the literature attempt to marginalise over the PSD, mostly
using a parametric model for the PSD [36,43,44]. MAXENT
fixes the functional form for us exploiting the correspon-
dence with AR processes, providing a one-parameter family
of models that are particularly easy to sample, thus ground-
ing the noise properties marginalisation in solid theoretical
foundations and in an easy-to-use numerical implementation.
The latter point is also particularly relevant, especially in the
context of future GW detectors. Future detectors are in fact
expected to be operating in the signal dominated regime, with
several sources — potentially from different classes — con-
stantly present within the detectors’ data streams. In these
cases the common procedure of estimating the PSD from
off-sources segments is bound to fail and or provide biases
inferences. MAXENT and MESA model and are relevant
only for the segment of data under consideration, and make
no assumptions over what is not part of the analysis. We
believe, and we will show in a future study, that using MESA
can be a natural solution for computing single-source pos-
teriors whenever multiple sources are overlapping. This is
possible since, in our formulation, everything that we did not
label as signal will be part of the residuals, over which we
apply MESA.

Furthermore, MESA provides a simple, but robust and
quite accurate, albeit for short times, predictor for the time
series. This fact is remarkable and can be used in time
series analysis for several purposes. As an example, an
anomaly detection pipeline could be built using the forecasts
of MESA: the predictions can form a baseline to compare
the actual observations with. Whenever the observed data
are outside the expectations, an anomaly detection can be
claimed. Of course such predictions can be done with a more
accurate (perhaps nonlinear) model; however MESA has the
advantage of being simple and fast to construct, while pro-
viding decent predictions. At the same time, several instru-
ments present gaps in their data stream, for instance LISA is
expected to show such gaps (e.g. [45] and references therein),
MESA forecasting capabilities could be used to fill those gaps
with predicted data from past observations. In conclusion, we
reiterate that MESA is a theoretically sound, computation-
ally feasible and reliable way of studying the properties of
stochastic processes and we hope that the investigations pre-
sented in this work will further stimulate developments and
applications of this method.
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A Details of PSD computation
A.1 MESA solution

We derive the expression for the MAXENT spectral estima-
tor following the approach proposed by [10]. Unlike the stan-
dard approach, we do not enforce the constraints in Eq. (11)
with the standard Lagrange multipliers approach. We write
instead the PSD S( f) as the Fourier transform of the sample
autocorrelation function:
1 oo

S — = —12anAt , 25

f) _2 Ny 4 rne (25)

n=—oo

and, plugging it in the entropy gain expression Eq. (10), we
obtain:

&)
" g [ > Faem A . (26)
y

n=—oo

Note that this expression already takes into account the con-
straints in Eq. (11).

‘We now introduce a set of coefficients A, defined as the
derivative of A H with respect to the autocorrelation function

@ Springer

ry. Explicitly they are:

oH 1
)\45 Pp— p—

Ny
— — S —1 7l27TfSAtd 27
= ], S f e

—Ny
and we will show that S(f )~! can be written as a Fourier
expansion in terms of such coefficients. Then, the determi-
nation of the values for the A; uniquely solves the problem
of power-spectral density estimation.

Some properties for the coefficients can be worked out
easily. First, since S(f) is real, the A; show the property

Ay =A%,

The second property is obtained considering that the auto-
correlation function r,, can only be computed for a finite time
interval n € [—N, N] and that the PSD estimation must not
depend on the unavailable values r,: this is part of the con-
straint in Eq. (11) This requirement can be implemented as:

SH

— =0for |s] > N,
87y

that means

As = 0 for |s| > N.

From Eq. (27) and from the properties above, is easily
seen from the properties of the Fourier transform that S(f)
can be expressed via a Fourier series

N
S(f)—l — Z )\'Se—ZZJTfSAt' (28)

s=—N

Defining z = e "¥"f4" the previous Fourier expansion
becomes a Laurent polynomial in z:

N N
SO =ho+ Y A+ Y Ak (29)
s=1 s=1
It is easy to show that if z¢ is a root for the polynomial
(zg)_l is also a root: for every root laying outside the unit
circle there will be another root inside of it and vice-versa.

These properties allow us to rewrite the Fourier expansion
(29) as [46]:

Py At
(Coes) (Choere)

with ap = 1 and At the uniform sampling interval for the
time series. The vector obtained as (1, aq,...,ay) is the
prediction error filter. The power spectral density S(f) is
uniquely determined if both the prediction error filter and
Py coefficients are computed.

To compute the a is convenient to plug into Eq. (11) the
Laurent Polynomial exansion for S( ) Eq. (30) and then inte-
grating over z (taking values on S'). In this way the equation

S =

(30)
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becomes:

Py 751 _

N dz = r.
2 Jst YN g anst Yongaiz "

Substituting s — s —r, multiplying by a; and summing over
s, the previous equation becomes

N _
San =it f T
astg_y = — P ——dz
N )
s=0 2m Zs =0 aszé

For a wide-sense stationary processes, all the poles lay out-
side the unit circle so that the previous integral can be easily
computed obtaining the following, well known, equations:

3D

(32)

N
Zasfrfs =Py ifr=0 (33)
s=0
N
D ag =0 ifr 0. (34)
s=0

A.2 Levinson recursion

The solution of the Egs. (33-34) fully determines the func-
tional form of the power spectral density estimator (30). The
method for solving the equations is called the Levinson—
Durbin recursion [27] and it is described in the following.
For each order N of the iteration we define the quantities:

N
Ay = Z AN —n+1

(35)
n=0
Ay
ER— 36
cN Py (36)

The Levinson recursion computes the Nth order quantities
given the N — Ith order quantities:

Py = Pyt (1= len-i?) (37)
and
1 1 0
ai by by_,
= : +cn-1 (33)
an—1 by—-1 b}
an 0 1

where b holds the value of the a, coefficients at order N — 1.
The 0-th order element can be easily initialized reminding
that ap = 1 (always) and that Py can be determined from
(33). Its values turns out to be:

Py = R(0), (39)

Ao and ¢ are uniquely determined from their definitions and
they are:

R()
RO

These expressions allow us to compute a and Py to any
order by simply iterating (37) and (38). Substituting them in
Eq. (30) the problem of the estimation for the power spec-
tral density via maximum entropy principle is solved. Burg’s
method for spectral analysis is solved via Levinson is imple-
mented in the released memspectrum package. Another
faster recursion method is available in [47] and it is also
available in memspectrum.

Ao =R():; o= (40)

B Additional plots for validation

In this section we report additional plots for the Validation.
Figure 11 represents the difference between the estimated
PSD and the reference PSD, normalised by the latter. Fig-
ures 12 and 13 show the reference PSD (in red) against all
the 1000 reconstruction obtained with FPE and VM respec-
tively.
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Fig. 11 Normalised difference of reconstructed PSD with respect to
the reference PSD
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Fig. 12 The 1000 reconstruction of the reference PSD obtained with
the FPE loss

@ Springer



1023 Page 16 of 18

Eur. Phys. J. C (2024) 84:1023

Power Spectral Density [Hz71/2]

VM
—— Reference PSD

C Computational time for both MESA methods and
Welch

In this appendix we shortly introduce the computational times
required by the MES A method (considering both the standard
and fast implementation) and the Welch method. They are
just inserted to give an idea of what the time differences
between the methods are. These are obtained via the python

102
Frequency [Hz]

10° Ytimeit special function, run on a personal machine (Table

1).

Fig. 13 The 1000 reconstruction of the reference PSD obtained with

the VM loss

Table 1 Comparison of the
computational times for the
estimate of the power spectral
densities with our
implementation of MESA (both
standard and fast
implementations) and Welch’s
method

@ Springer

Computational times

Batch length

MESA std

MESA fast

Welch

1s
5s
10s
100 s
1000 s

22 ms £+ 1.22 ms
158 ms £ 21.7 ms
187 ms £ 11.6 ms
1.96 s + 338 ms
17.1 s & 605 ms

19.6 ms + 620 ps

42.4 ms £ 353 ps

51.5 ms £ 3.67 ms
205 ms £ 5.09 ms
1.33 s+ 17.4 ms

335 ws £9.24 ps
839 s £4.61 ps
1.74 ms + 64.3 ps
18.8 ms =+ 140 s
235 ms =+ 3.69 ms
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