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1 Introduction 

In the RAN1#122bis meeting held October 13th – 17th 2025, the following working assumption was 

reached regarding the channel coding study item [1]: 

Working Assumption 

 Study 6G data channel coding for higher throughput than 5G with acceptable 

performance-complexity tradeoff for both NW side and UE side,  

 Target peak data rate is assumed to be 2 times of the target peak data rate defined 

in TR38.913 

Note: The other target throughput is up to company to report. 

Note: Applicability of the potential channel code will be further discussed. 

 

In the feature lead's summary of the RAN1#122bis channel coding study item [2], the following 

proposals are included: 

Proposal 3.3.1-2-v1: For the evaluation of throughput in 6G data channel coding scheme(s), 

the following formula can be considered 

Throughput =
𝐾 × 𝑓

𝑇
× 𝐶 

Where 𝐾 is the number of information bits in one coded block, 𝑓 is the operating 

frequency, 𝑇 is the number of decoding cycles per code block, 𝐶 is the number of 

decoder cores. 

For LDPC code, 𝑇 = 𝐼 × 𝑇iter, where 𝐼 is the maximum number of decoding iterations, 

and 𝑇iter is the decoding cycles per iteration.  

 

Proposal 3.3.1-1-v2: For the evaluation of 6G data channel coding scheme(s), at least the 

following metrics are considered 

 BLER performance 

 Decoding throughput/latency 

 Complexity 

 Area efficiency 

 

Proposal 3.1.2-1-v3: For the study of 6G data channel coding for higher throughput than 5G 

with acceptable performance-complexity tradeoff, the following options can be considered 
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 Option 1: Study LDPC code as data channel coding for higher throughput than 5G 

- Option 1-0: Implementation based solutions e.g. improving clock frequencies or 

higher decoding parallelism. 

- Option 1-1: Increase the lifting size  

- Option 1-2: Reduce the maximum number of iterations, e.g., fast convergence 

LDPC code 

- Option 1-3: Increase the number of systematic columns  

- Option 1-4: Reduce the number of edges in LDPC BG 

- Option 1-5: Optimize parallelism, e.g., improve orthogonality between rows of 

LDPC BG 

- Other options are not precluded.  

- The above options may be combined. 

- The LDPC code is quasi-cyclic (QC-LDPC) 

- FFS: whether to use 5G LDPC BG(s) or define new LDPC BG(s)  

- FFS: applicable condition(s) 

 

This contribution describes AccelerComm’s views on LDPC decoder throughput and chip area for 

6GR based on the above. 

 

2 Layered Belief Propagation LDPC decoder algorithm 

Figure 1 illustrates a block diagram for a layered belief propagation LDPC decoder in the case of 

BG1. The notation used throughout this Tdoc is listed in Table 1. 

 

Notation/ 

Terminology 

Description 

base graph 

(BG) 

A sparse matrix having Ymax rows and X+Ymax columns, in which the non-null 

elements provide rotation values, where BG1 and BG2 are defined in [3] 

parity check 

matrix 

(PCM) 

A sparse matrix having ZYmax rows and Z(X+Ymax) columns, obtained by lifting 

the base graph 

block A Z by Z block of elements in the PCM obtained by lifting a corresponding non-

null element of the base graph 

block-column A set of Z columns in the PCM obtained by lifting a corresponding column of the 

base graph 

block-row A set of Z rows in the PCM obtained by lifting a corresponding row of the base 

graph 
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sub-row A set of (up to) P rows in a block-row, where there are ceil(Z/P) sub-rows in each 

block-row 

Zmax Maximum supported lifting size, where Zmax = 384 for 5G NR [3] 

Z LDPC lifting size used for a particular LDPC decoding operation, depending on 

information block length K 

X Number of systematic block-columns in the PCM, where X = 22 for BG1 and X 

= 10 for BG2 

K Information block length, where K = ZX when there are no filler bits 

Ymax Number of block-rows in the PCM, where Ymax = 46 for BG1 and Ymax = 42 for 

BG2 

Y Number of block-rows used in the PCM, depending on coding rate R 

My Number of blocks in the first X+4 block-columns of the yth block-row of the 

PCM 

R LDPC coding rate, where R = X/(X+Y-2) when ZY parity bits are used 

I Maximum number of LDPC decoding iterations performed 

P LDPC decoder parallelism 

D Pipeline depth 

Titer Number of clock cycles required to process each LDPC decoding iteration 

f FPGA or ASIC clock frequency 

C Number of parallel LDPC decoder cores 

A1, A2, A3 Baseline chip areas for RAM, row-parallel logic and block-parallel logic 

Table 1. Notation and terminology used throughout this contribution. 
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Figure 1. Block diagram of a layered belief propagation LDPC decoder for the case of BG1. 

 

The layered belief propagation LDPC decoding algorithm proceeds as follows.  

1. Load 2Z punctured systematic LLRs (having values of 0), Z(X-2) received systematic LLRs 

and ZY received parity LLRs into the variable and parity node RAMs 

2. Set all check node RAM values equal to 0  

3. For each of the I iterations 

4.  For each of the Y block-rows in the PCM 

5.   For each of the ceil(Z/P) sub-rows in the block-row 

6.    Initialize a minimum and a second-minimum to infinity or to the value of a  

   corresponding received parity LLR loaded from the parity node RAM for  

   each of the (up to) P rows in the sub-row 

7.    For each of the My blocks in the first X+4 block-columns of the block-row 

8.     For each of the (up to) P rows in the sub-row 
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9.      Load a corresponding LLR from the variable node RAM,  

     selected according to the rotation performed by the block  

10.      Subtract a corresponding LLR stored in the check node RAM  

     from the LLR loaded from the variable node RAM 

11.      Use the resulting difference to update the minimum and/or  

     second minimum if its value is lower 

12.     end 

13.    end 

14.    For each of the My blocks in the first X+4 block-columns of the block-row 

15.     For each of the (up to) P rows in the sub-row 

16.      Use the normalized min sum or offset min sum equation to adjust 

     the sign and value of the minimum or second minimum of this  

     parity check and to combine it with the corresponding LLR  

     loaded from the variable node RAM and the corresponding  

     LLR stored in the check node RAM, then use the resultant  

     value to overwrite the corresponding LLR in the variable node  

     RAM 

17.      Use the sign- and value-adjusted minimum or second minimum 

     of the parity check to overwrite the corresponding LLR in the  

     check node RAM 

18.     end 

19.    end 

20.   end 

21.  end 

22.  Determine whether early termination may be invoked 

23. end 

24. Output the ZX decoded systematic LLRs stored in the variable node RAM 

 

3 Layered Belief Propagation LDPC decoder implementations 

The implementation of a layered belief propagation LDPC decoder in an FPGA or ASIC may 

operate on the basis of a row-parallel architecture or a block-parallel architecture. 

Row-parallel architecture 

In this architecture, the Check Node Processor (CNP) of Figure 1 can perform all processing 

associated with all (up to) P rows of one sub-row of the PCM at the same time. More specifically, 

each iteration through steps 6 to 19 of the above-listed layered belief propagation algorithm is 

completed over a series of D clock cycles, where the pipeline depth D may have a value of 8, for 

example.  

However, the processing of successive sub-rows in the same block-row may be pipelined, since there 

are no data dependencies between the processing of successive sub-rows in the same block-row. In 
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this way, once the pipeline has been warmed up after D clock cycles, the processing of successive 

sub-rows completes in successive clock cycles, as shown in   
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

%CYCLES_PER_ITERATION_ROW_PARALLEL 

%   This MATLAB function returns the number of clock cycles per iteration 

%   for an LDPC decoder having a row-parallel architecture. 

% 

%   Syntax 

%       Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

% 

%   Inputs Arguments 

%       BG - 1 or 2 

%       Y - Number of block-rows used in the PCM, depending on coding rate R 

%       Z - LDPC lifting size 

%       P - LDPC decoder parallelism 

%       D - Pipeline depth 

% 

%   Output Arguments 

%       Titer - Number of clock cycles per iteration 

     

    % Beyond the first 20 block-rows in PCMs lifted from both BGs, each 

    % pair of block-rows is orthogonal and can be processed at the same 

    % time 

    if Y <= 20 

        Y2 = Y; 

    else 

        Y2 = ceil((Y-20)/2)+20; 

    end 

     

    % Assume D clock cycles to warm up the pipeline for each block-row and 

    % then one sub-row processed per clock cycle thereafter. 

    Titer = Y2*(ceil(Z/P)+D-1); 

end 

Figure 3.  

By contrast, there are data dependencies between the processing of successive block-rows and so the 

processing of the last sub-row in one block-row cannot be pipelined with the processing of the first 

sub-row in the next block-row. This means that the pipeline must be warmed up again at the start of 

processing each block-row, as shown in   
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

%CYCLES_PER_ITERATION_ROW_PARALLEL 

%   This MATLAB function returns the number of clock cycles per iteration 

%   for an LDPC decoder having a row-parallel architecture. 

% 

%   Syntax 

%       Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

% 

%   Inputs Arguments 

%       BG - 1 or 2 

%       Y - Number of block-rows used in the PCM, depending on coding rate R 

%       Z - LDPC lifting size 

%       P - LDPC decoder parallelism 

%       D - Pipeline depth 

% 

%   Output Arguments 

%       Titer - Number of clock cycles per iteration 

     

    % Beyond the first 20 block-rows in PCMs lifted from both BGs, each 

    % pair of block-rows is orthogonal and can be processed at the same 

    % time 

    if Y <= 20 

        Y2 = Y; 

    else 

        Y2 = ceil((Y-20)/2)+20; 

    end 

     

    % Assume D clock cycles to warm up the pipeline for each block-row and 

    % then one sub-row processed per clock cycle thereafter. 

    Titer = Y2*(ceil(Z/P)+D-1); 

end 

Figure 3.  

Note that after the first 20 block-rows in PCMs lifted from BG1 and BG2, the two block-rows in 

each successive pairing of block-rows are orthogonal to each other, as shown in Figure 1. More 

specifically, two block-rows are orthogonal to each other if there are no columns where they both 

have blocks. These pairings of orthogonal block-rows may be combined together and the row-

parallel architecture may process them as if they were a single block-row. This reduces the number 

of loops around steps 4 to 21 of the above-listed algorithm required to complete each LDPC 

decoding iteration. 
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Figure 2. Timing diagram for row-parallel architecture, for the case where there are 

ceil(Z/P)=4 sub-rows in each block-row. 

Considering all of the above aspects, the number of clock cycles required to complete the processing 

of each LDPC decoding iteration using a row-parallel architecture may be calculated using the 

Matlab code of   
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

%CYCLES_PER_ITERATION_ROW_PARALLEL 

%   This MATLAB function returns the number of clock cycles per iteration 

%   for an LDPC decoder having a row-parallel architecture. 

% 

%   Syntax 

%       Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

% 

%   Inputs Arguments 

%       BG - 1 or 2 

%       Y - Number of block-rows used in the PCM, depending on coding rate R 

%       Z - LDPC lifting size 

%       P - LDPC decoder parallelism 

%       D - Pipeline depth 

% 

%   Output Arguments 

%       Titer - Number of clock cycles per iteration 

     

    % Beyond the first 20 block-rows in PCMs lifted from both BGs, each 

    % pair of block-rows is orthogonal and can be processed at the same 

    % time 

    if Y <= 20 

        Y2 = Y; 

    else 

        Y2 = ceil((Y-20)/2)+20; 

    end 

     

    % Assume D clock cycles to warm up the pipeline for each block-row and 

    % then one sub-row processed per clock cycle thereafter. 

    Titer = Y2*(ceil(Z/P)+D-1); 

end 

Figure 3. 
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

%CYCLES_PER_ITERATION_ROW_PARALLEL 

%   This MATLAB function returns the number of clock cycles per iteration 

%   for an LDPC decoder having a row-parallel architecture. 

% 

%   Syntax 

%       Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D) 

% 

%   Inputs Arguments 

%       BG - 1 or 2 

%       Y - Number of block-rows used in the PCM, depending on coding rate R 

%       Z - LDPC lifting size 

%       P - LDPC decoder parallelism 

%       D - Pipeline depth 

% 

%   Output Arguments 

%       Titer - Number of clock cycles per iteration 

     

    % Beyond the first 20 block-rows in PCMs lifted from both BGs, each 

    % pair of block-rows is orthogonal and can be processed at the same 

    % time 

    if Y <= 20 

        Y2 = Y; 

    else 

        Y2 = ceil((Y-20)/2)+20; 

    end 

     

    % Assume D clock cycles to warm up the pipeline for each block-row and 

    % then one sub-row processed per clock cycle thereafter. 

    Titer = Y2*(ceil(Z/P)+D-1); 

end 

Figure 3. Matlab code for calculating Titer for an LDPC decoder having a row-parallel 

architecture. 

 

Block-parallel architecture  

In this architecture, the CNP of Figure 1 can perform all processing associated with one block across 

all (up to) P rows of one sub-row of the PCM at the same time. More specifically, each iteration 

through the CNP input processing of steps 8 to 12 of the above-listed layered belief propagation 

algorithm is completed over a series of D1 clock cycles, where the pipeline depth D1 may have a 
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value of 4, for example. Likewise, each iteration through the CNP output processing of steps 15 to 18 

is completed over a series of D2 clock cycles, where the pipeline depth D2 may also have a value of 

4, for example. 

However, the CNP input processing of successive blocks in the same sub-row may be pipelined, 

since there are no data dependencies between this processing for successive blocks in the same sub-

row. In this way, once the pipeline has been warmed up after D1 clock cycles, the processing of 

successive sub-rows completes in successive clock cycles, as shown in Figure 5. Likewise, the CNP 

output processing of successive blocks in the same sub-row may be pipelined, with the processing of 

successive sub-rows completing in successive clock cycles after the pipeline has been warmed up 

after D2 clock cycles. However, there are data dependencies between the CNP input and output 

processing and so all CNP input processing for all blocks in the sub-row must be completed, before 

the CNP output processing for any of the blocks in the sub-row can be started, as shown in Figure 5. 

Furthermore, there are no data dependencies between the processing of different sub-rows in the 

same block-row. Owing to this, the CNP input processing of one sub-row can be tightly pipelined 

with the following CNP input processing of the next sub-row in the same block-row, as shown in 

Figure 5. Likewise, the CNP output processing of one sub-row can be tightly pipelined with the 

following CNP output processing of the next sub-row in the same block-row. 

As described for the row-parallel architecture above, there are data dependencies between the 

processing of one block-row and the next. However, in the block-parallel architecture, we have 

freedom to choose to process the blocks in each block-row in any order. By carefully coordinating 

between the order that blocks are processed in one block-row and the next, we may ensure that all 

variable node RAMs are written to by the processing of one block-row before they are read by the 

processing of the next block-row, provided that the pipeline depths D1 and D2 are not excessively 

large. In this way, the CNP input processing of the last sub-row in one block-row may be tightly 

pipelined with the following CNP input processing of the first sub-row in the next block-row, as 

shown in Figure 5. Likewise, the CNP output processing of the last sub-row in one block-row may 

be tightly pipelined with the following CNP output processing of the first sub-row in the next block-

row. For this reason, the throughput of the block-parallel decoder does not actually depend on the 

pipeline depths D1 and D2. However, in cases where a block-row contains more blocks than the next 

block-row, it is necessary to stall the processing of the first sub-row in the next block-row, in order to 

avoid a clash between its CNP output processing and that of the last sub-row in the block-row having 

more blocks, as shown in Figure 5. 
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Figure 4. Timing diagram for block-parallel architecture, for the case where there are 4 blocks 

in the yth block-row and 2 blocks in the (y+1)th block-row. 

 

Considering all of the above aspects, the number of clock cycles required to complete the processing 

of each LDPC decoding iteration using a block-parallel architecture may be calculated using the 

Matlab code of Figure 5. 
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function Titer = cycles_per_iteration_block_parallel(BG, Y, Z, P) 

%CYCLES_PER_ITERATION_BLOCK_PARALLEL 

%   This MATLAB function returns the number of clock cycles per iteration 

%   for an LDPC decoder having a block-parallel architecture. 

% 

%   Syntax 

%       Titer = cycles_per_iteration_block_parallel(BG, Y, Z, P) 

% 

%   Inputs Arguments 

%       BG - 1 or 2 

%       Y - Number of block-rows used in the PCM, depending on coding rate R 

%       Z - LDPC lifting size 

%       P - LDPC decoder parallelism 

% 

%   Output Arguments 

%       Titer - Number of clock cycles per iteration 

     

    % BG1 row weights 

    My{1} = [19 19 19 19 2 7 8 6 9 8 6 7 6 5 6 6 5 5 5 5 5 5 4 4 5 4 4 ... 

             3 4 4 4 4 4 4 4 4 4 3 4 4 3 4 3 4 4 3]; 

     

    % BG2 row weights 

    My{2} = [8 10 8 10 3 5 5 5 3 4 4 4 3 4 4 3 4 4 3 3 3 3 2 3 3 2 4 2 ... 

             3 2 4 2 3 3 3 3 3 2 3 3 3 3]; 

 

    % Extract the weights for the first Y block-rows of the BG and then 

    % repeat each one for each of its ceil(Z/P) sub-rows 

    row_weights = My{BG}(1:Y); 

    subrow_weights = repelem(row_weights, ceil(Z/P)); 



 

- 15/20 - 

 

 

    % Clock cycles are needed to read from VN RAM into the CNP and then 

    % clock cycles are needed to write from CNP into VN RAM. Assume that 

    % the writing of one sub-row can overlap with the reading of the next 

    % sub-row. Assume that careful scheduling of which columns to write 

    % first and which columns to read first can be achieved to satisfy all 

    % data dependencies. 

    Titer = sum(max(subrow_weights,[0,subrow_weights(1:end-1)])); 

end 

Figure 5. Matlab code for calculating Titer for an LDPC decoder having a block-parallel 

architecture. 

 

Chip area 

The chip area of an ASIC implementation of an LDPC decoder (or equivalently the hardware 

resource utilisation of an FPGA implementation of an LDPC decoder) comprises two parts, RAM 

and logic, where the latter comprises flip-flops, gates, look-up tables, etc. 

As shown in Figure 1, the RAM capacity of a layered belief propagation LDPC decoder is 

proportional to Zmax. Hence, doubling the Zmax of an LDPC decoder will double the chip area 

associated with RAM. 

Observation 1: The chip area associated with the RAM of a layered belief LDPC decoder is 

proportional to its maximum supported lifting size Zmax. 

By contrast, the chip area associated with the logic of a layered belief propagation LDPC decoder is 

proportional to P. 

Observation 2: The chip area associated with the computational logic of a layered belief LDPC 

decoder is proportional to its parallelism P. 

It is typical for the chip area associated with RAM to exceed that associated with logic in an ASIC 

implementation of a layered belief propagation LDPC decoder. Hence, ASIC implementations are 

particularly sensitive to the selection of Zmax. 

By contrast, the fraction of an FPGA's logic resources that are occupied by the implementation of a 

layered belief propagation LDPC decoder typically exceeds the fraction of the FPGA's RAM 

resources that are occupied. Hence, FPGA implementations are particularly sensitive to the selection 

of P. 

Architecture variations 

The row-parallel and block-parallel architectures described above may be considered to be two ends 

of a spectrum of approaches to parallelism in the implementation of a layered belief propagation 

LDPC decoder. A hybrid of the two architectures in the middle of the spectrum may be implemented 

as a multi-block-parallel architecture, which may operate in a similar manner to the block-parallel 

architecture, but for two or more blocks at a time.  
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Furthermore, multi-code-block variants of both architectures may be implemented. In the case of the 

row-parallel architecture, a round-robin approach to processing more than one code block at a time 

may be adopted. More specifically, this allows the processing of one block-row of one code block to 

complete while the pipeline for a block-row of another code block is warming up, effectively 

removing the D-1 term from the calculation of Titer. Here, it may be desirable to limit multi-code-

block operation to cases where the sum of the lifting sizes of the different code block remains below 

Zmax, such that they can all be processed without a need for additional RAM. In the case of the block-

parallel architecture, multiple code blocks may be processed at the same time in cases where the sum 

of their lifting sizes Z is does not exceed the parallelism P of the decoder.  

While these architecture variations are not considered further in this contribution, it may be expected 

that the observations listed below remain valid for them. 

 

4 Impact of increasing Zmax 

In this section, we explore the impact of increasing Zmax with the aim of supporting a peak LDPC 

decoder throughput of 40 Gbps, which is double the 20 Gbps target of 5G NR. 

Table 2 compares various different row-parallel (having a pipeline delay of D=8 clock cycles) and 

block-parallel layered belief propagation LDPC decoder implementations. The peak throughput for 

each of these implementations is obtained in the case of BG1, a code rate of R=0.92 and an 

information block length of K=8448. Table 2 quantifies the peak throughput for the various different 

implementations for the case of an ASIC clock frequency of f=1.5GHz and a maximum of I=8 

iterations, according to 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐾 × 𝑓

𝐼 × 𝑇𝑖𝑡𝑒𝑟
× 𝐶 

where Titer is calculated using the corresponding Matlab code listing provided above. 

 

Architecture C P Zmax RAM 

area 

Logic 

area 

Peak 

throughput 

(Gbps) for 

f=1.5GHz 

and I=8 

Row-parallel with D=8 1 32 384 A1 A2 20.8 

Row-parallel with D=8 1 64 384 A1 2A2 30.5 

Row-parallel with D=8 1 64 768 2A1 2A2 41.7 

Row-parallel with D=8 2 32 384 2A1 2A2 41.7 

Block-parallel 1 384 384 A1 A3 20.8 

Block-parallel 1 768 384 A1 2A3 20.8 

Block-parallel 1 768 768 2A1 2A3 41.7 

Block-parallel 2 384 384 2A1 2A3 41.7 

Table 2. Comparison of different layered belief propagation LDPC decoder implementations. 
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Table 2 shows that the 20 Gbps throughput requirement of 5G NR is met by C=1 instance of a row-

parallel implementation having a parallelism of P=32 or by C=1 instance of a block-parallel 

implementation having a parallelism of P=384, when using the maximum lifting size from 5G NR of 

Zmax=384. These implementations use a baseline RAM area represented by A1 and baseline logic 

areas represented by A2 for the row-parallel implementation and A3 for the block-parallel 

implementation. However, enhancement of these baseline implementations is required in order to 

meet the 40 Gbps throughput requirement of 6GR. 

Simply doubling the parallelism P of the two baseline implementations is not sufficient for meeting 

the 40 Gbps throughput requirement of 6GR. More specifically, C=1 instance of a P=64 row-parallel 

implementation achieves a peak throughput of only 30.5 Gbps, with a RAM area maintained at A1 

and a doubled logic area of 2A2. Furthermore, C=1 instance of a P=768 block-parallel 

implementation achieves no increase in peak throughput at all, since its parallelism P exceeds the 

Zmax=384 of the 5G NR LDPC code. Again, a maintained RAM area of A1 and a doubled logic area 

of 2A3 is obtained when doubling the parallelism P of the block-parallel implementation. 

In order to meet the 40 Gbps throughput requirement of 6GR by doubling the parallelism P of the 

baseline implementations, it is necessary to also double the maximum lifting size to Zmax=768. 

However, this doubles the RAM area of both implementations to 2A1, alongside the doubling of 

logic areas to 2A2 and 2A3 associated with the doubling of the parallelism P. 

Observation 3: Increasing the parallelism P of an LDPC decoder implementation only achieves 

a proportionally increased peak throughput if the maximum lifting size Zmax is also increased 

proportionately.  

Observation 4: Increasing the parallelism P and maximum lifting size Zmax of an LDPC 

decoder by the same proportion will also increase its chip area by that proportion.  

Alternatively, the same peak throughputs exceeding 40 Gbps can be obtained by simply using C=2 

instances of the baseline implementations. This approach also uses the same doubled RAM area of 

2A1, alongside the same doubled logic areas of 2A2 and 2A3. 

Observation 5: The same increase in peak throughput and chip area can be achieved by simply 

using a proportionately increased number of instances C of the baseline LDPC decoder 

implementation. 

Figure 6 plots the throughput of the LDPC decoder implementations from Table 2 as functions of 

coding rate R. These plots show that for both BG1 and BG2, as well as for both the row-parallel 

implementation and the block-parallel implementation, C=2 instances of a baseline implementation 

achieves the same throughput as C=1 instance having doubled parallelism P and doubled Zmax, across 

all coding rates R. However, it should be noted that this comparison is made at the longest supported 

information block lengths K, namely K=8448 for BG1 with Zmax=384, K=16896 for BG1 with 

Zmax=768, K=3840 for BG2 with Zmax=384 and K=7680 for BG2 with Zmax=768. 
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Figure 6. Throughput versus coding rate R for different layered belief propagation LDPC 

decoder implementations. 

 

Figure 7 plots the throughput of the LDPC decoder implementations from Table 2 as functions of 

information block length K, at coding rates of 0.92 for BG1 and 0.83 for BG2. These plots illustrate 

how doubling the maximum lifting size to Zmax=768 enables support for longer information block 

lengths, which has the benefit of improving BLER performance. However, Figure 7 also shows that 

within the range of information block lengths supported at the baseline maximum lifting size of 

Zmax=384, C=2 instances of the baseline LDPC decoder implementations achieve higher throughputs 

than C=1 instance of the implementations having doubled Zmax and parallelism P. This may be 

attributed to the effect of pipeline warmup in the case of the row-parallel implementation and to the 

inability for a high parallelism P to be exploited when the lifting size Z is lower, in the case of the 

block-parallel implementation. The higher throughput of the C=2, Zmax=384 implementation is a 

particular advantage in the case of a gNodeB processing a high number of short code blocks in a 

direct-to-device NTN application, for example. 

Observation 6: Increasing the maximum lifting size Zmax enables support for longer 

information block lengths K, where improved BLER performance is achieved. 

Observation 7: At information block lengths within the range supported by the baseline 

maximum lifting size of Zmax=384, multiple instances of a baseline LDPC decoder 

implementation achieves a significantly higher throughput than a single instance of an LDPC 

decoder implementation having a proportionately increased Zmax and parallelism P. 
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Proposal 1: Do not increase the maximum lifting size of the 5G NR LDPC code above 

Zmax=384, unless this is deemed to be necessary for achieving BLER performance 

improvement.  

 

 

Figure 7. Throughput versus information block length K for different layered belief 

propagation LDPC decoder implementations. 

 

 

 

 

 

5 Conclusion 

In this contribution, AccelerComms’s views on LDPC decoder throughput and chip area were 

shown, and the following observation and proposals were made: 

Observation 1: The chip area associated with the RAM of a layered belief LDPC decoder is 

proportional to its maximum supported lifting size Zmax. 
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Observation 2: The chip area associated with the computational logic of a layered belief LDPC 

decoder is proportional to its parallelism P. 

Observation 3: Increasing the parallelism P of an LDPC decoder implementation only achieves 

a proportionally increased peak throughput if the maximum lifting size Zmax is also increased 

proportionately. 

Observation 4: Increasing the parallelism P and maximum lifting size Zmax of an LDPC 

decoder by the same proportion will also increase its chip area by that proportion. 

Observation 5: The same increase in peak throughput and chip area can be achieved by simply 

using a proportionately increased number of instances C of the baseline LDPC decoder 

implementation. 

Observation 6: Increasing the maximum lifting size Zmax enables support for longer 

information block lengths K, where improved BLER performance is achieved. 

Observation 7: At information block lengths within the range supported by the baseline 

maximum lifting size of Zmax=384, multiple instances of a baseline LDPC decoder 

implementation achieves a significantly higher throughput than a single instance of an LDPC 

decoder implementation having a proportionately increased Zmax and parallelism P. 

Proposal 1. Do not increase the maximum lifting size of the 5G NR LDPC code above 

Zmax=384, unless this is deemed to be necessary for achieving BLER performance 

improvement. 
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