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1 Introduction

In the RAN1#122bis meeting held October 13" — 17" 2025, the following working assumption was
reached regarding the channel coding study item [1]:

*  Study 6G data channel coding for higher throughput than 5G with acceptable
performance-complexity tradeoff for both NW side and UE side,

*  Target peak data rate is assumed to be 2 times of the target peak data rate defined
in TR38.913

Note: The other target throughput is up to company to report.
Note: Applicability of the potential channel code will be further discussed.

In the feature lead's summary of the RAN1#122bis channel coding study item [2], the following
proposals are included:

Proposal 3.3.1-2-v1: For the evaluation of throughput in 6G data channel coding scheme(s),
the following formula can be considered

X
fxC

K
Throughput =

Where K is the number of information bits in one coded block, f is the operating
frequency, T is the number of decoding cycles per code block, € is the number of
decoder cores.

For LDPC code, T = I X Tjter, Where I is the maximum number of decoding iterations,
and T, is the decoding cycles per iteration.

Proposal 3.3.1-1-v2: For the evaluation of 6G data channel coding scheme(s), at least the
following metrics are considered
e BLER performance

e Decoding throughput/latency
e Complexity

*  Area efficiency

Proposal 3.1.2-1-v3: For the study of 6G data channel coding for higher throughput than 5G
with acceptable performance-complexity tradeoff, the following options can be considered
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*  Option 1: Study LDPC code as data channel coding for higher throughput than 5G

- Option 1-0: Implementation based solutions e.g. improving clock frequencies or
higher decoding parallelism.

- Option 1-1: Increase the lifting size

- Option 1-2: Reduce the maximum number of iterations, e.g., fast convergence
LDPC code

- Option 1-3: Increase the number of systematic columns
- Option 1-4: Reduce the number of edges in LDPC BG

- Option 1-5: Optimize parallelism, e.g., improve orthogonality between rows of
LDPC BG

- Other options are not precluded.

- The above options may be combined.

- The LDPC code is quasi-cyclic (QC-LDPC)

- FFS: whether to use 5G LDPC BG(s) or define new LDPC BG(s)

- FFS: applicable condition(s)

This contribution describes AccelerComm’s views on LDPC decoder throughput and chip area for
6GR based on the above.

2 Layered Belief Propagation LDPC decoder algorithm

Figure 1 illustrates a block diagram for a layered belief propagation LDPC decoder in the case of
BG1. The notation used throughout this Tdoc is listed in Table 1.

Notation/ Description

Terminology

base graph A sparse matrix having Ymax rows and X+Ymax columns, in which the non-null
(BG) elements provide rotation values, where BG1 and BG2 are defined in [3]

parity check A sparse matrix having ZY max rows and Z(X+Y max) columns, obtained by lifting
matrix the base graph

(PCM)

block A Z by Z block of elements in the PCM obtained by lifting a corresponding non-

null element of the base graph

block-column A set of Z columns in the PCM obtained by lifting a corresponding column of the
base graph

block-row A set of Z rows in the PCM obtained by lifting a corresponding row of the base
graph
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sub-row

Zmax
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Titer

f

C

A1, A2, A3

A set of (up to) P rows in a block-row, where there are ceil(Z/P) sub-rows in each
block-row

Maximum supported lifting size, where Zmax = 384 for 5G NR [3]

LDPC lifting size used for a particular LDPC decoding operation, depending on
information block length K

Number of systematic block-columns in the PCM, where X =22 for BG1 and X
=10 for BG2

Information block length, where K = ZX when there are no filler bits

Number of block-rows in the PCM, where Ymax = 46 for BG1 and Ymax = 42 for
BG2

Number of block-rows used in the PCM, depending on coding rate R

Number of blocks in the first X-+4 block-columns of the y block-row of the
PCM

LDPC coding rate, where R = X/(X+Y-2) when ZY parity bits are used
Maximum number of LDPC decoding iterations performed

LDPC decoder parallelism

Pipeline depth

Number of clock cycles required to process each LDPC decoding iteration
FPGA or ASIC clock frequency

Number of parallel LDPC decoder cores

Baseline chip areas for RAM, row-parallel logic and block-parallel logic

Table 1. Notation and terminology used throughout this contribution.
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Figure 1. Block diagram of a layered belief propagation LDPC decoder for the case of BG1.

The layered belief propagation LDPC decoding algorithm proceeds as follows.

1. Load 2Z punctured systematic LLRs (having values of 0), Z(X-2) received systematic LLRs
and ZY received parity LLRs into the variable and parity node RAMs

Set all check node RAM values equal to 0
For each of the I iterations
For each of the Y block-rows in the PCM

For each of the ceil(Z/P) sub-rows in the block-row

AR

Initialize a minimum and a second-minimum to infinity or to the value of a
corresponding received parity LLR loaded from the parity node RAM for
each of the (up to) P rows in the sub-row

7. For each of the My blocks in the first X+4 block-columns of the block-row

8. For each of the (up to) P rows in the sub-row
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10.

1.

12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.end

end

end

Load a corresponding LLR from the variable node RAM,
selected according to the rotation performed by the block

Subtract a corresponding LLR stored in the check node RAM
from the LLR loaded from the variable node RAM

Use the resulting difference to update the minimum and/or
second minimum if its value is lower

For each of the My blocks in the first X+4 block-columns of the block-row

end

For each of the (up to) P rows in the sub-row

end

Use the normalized min sum or offset min sum equation to adjust
the sign and value of the minimum or second minimum of this
parity check and to combine it with the corresponding LLR
loaded from the variable node RAM and the corresponding

LLR stored in the check node RAM, then use the resultant

value to overwrite the corresponding LLR in the variable node
RAM

Use the sign- and value-adjusted minimum or second minimum
of the parity check to overwrite the corresponding LLR in the
check node RAM

Determine whether early termination may be invoked

24. Output the ZX decoded systematic LLRs stored in the variable node RAM

3 Layered Belief Propagation LDPC decoder implementations

The implementation of a layered belief propagation LDPC decoder in an FPGA or ASIC may
operate on the basis of a row-parallel architecture or a block-parallel architecture.

Row-parallel architecture

In this architecture, the Check Node Processor (CNP) of Figure 1 can perform all processing
associated with all (up to) P rows of one sub-row of the PCM at the same time. More specifically,
each iteration through steps 6 to 19 of the above-listed layered belief propagation algorithm is
completed over a series of D clock cycles, where the pipeline depth D may have a value of 8, for

example.

However, the processing of successive sub-rows in the same block-row may be pipelined, since there
are no data dependencies between the processing of successive sub-rows in the same block-row. In
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this way, once the pipeline has been warmed up after D clock cycles, the processing of successive
sub-rows completes in successive clock cycles, as shown in
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)
%CYCLES_PER_ITERATION_ROW_PARALLEL

%  This MATLAB function returns the number of clock cycles per iteration
%  for an LDPC decoder having a row-parallel architecture.

%

%  Syntax

% Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

%

% Inputs Arguments

% BG-1o0r2

% Y - Number of block-rows used in the PCM, depending on coding rate R
% Z - LDPC lifting size

% P - LDPC decoder parallelism

% D - Pipeline depth

%
%  Output Arguments

% Titer - Number of clock cycles per iteration

% Beyond the first 20 block-rows in PCMs lifted from both BGs, each
% pair of block-rows is orthogonal and can be processed at the same
% time
if Y <=20

Y2=Y;
else

Y2 = ceil((Y-20)/2)+20;

end

% Assume D clock cycles to warm up the pipeline for each block-row and
% then one sub-row processed per clock cycle thereafter.
Titer = Y2*(ceil(Z/P)+D-1);

end

Figure 3.

By contrast, there are data dependencies between the processing of successive block-rows and so the
processing of the last sub-row in one block-row cannot be pipelined with the processing of the first
sub-row in the next block-row. This means that the pipeline must be warmed up again at the start of
processing each block-row, as shown in
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

%CYCLES_PER_ITERATION_ROW_PARALLEL

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

end

This MATLAB function returns the number of clock cycles per iteration

for an LDPC decoder having a row-parallel architecture.

Syntax
Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

Inputs Arguments
BG-1o0r2
Y - Number of block-rows used in the PCM, depending on coding rate R
Z - LDPC lifting size
P - LDPC decoder parallelism
D - Pipeline depth

Output Arguments

Titer - Number of clock cycles per iteration

% Beyond the first 20 block-rows in PCMs lifted from both BGs, each
% pair of block-rows is orthogonal and can be processed at the same
% time
if Y <=20

Y2=Y;
else

Y2 = ceil((Y-20)/2)+20;

end

% Assume D clock cycles to warm up the pipeline for each block-row and
% then one sub-row processed per clock cycle thereafter.

Titer = Y2*(ceil(Z/P)+D-1);

Figure 3.

Note that after the first 20 block-rows in PCMs lifted from BG1 and BG2, the two block-rows in
each successive pairing of block-rows are orthogonal to each other, as shown in Figure 1. More
specifically, two block-rows are orthogonal to each other if there are no columns where they both
have blocks. These pairings of orthogonal block-rows may be combined together and the row-
parallel architecture may process them as if they were a single block-row. This reduces the number
of loops around steps 4 to 21 of the above-listed algorithm required to complete each LDPC
decoding iteration.
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Figure 2. Timing diagram for row-parallel architecture, for the case where there are
ceil(Z/P)=4 sub-rows in each block-row.

Considering all of the above aspects, the number of clock cycles required to complete the processing
of each LDPC decoding iteration using a row-parallel architecture may be calculated using the

Matlab code of
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

%CYCLES_PER_ITERATION_ROW_PARALLEL

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

end

This MATLAB function returns the number of clock cycles per iteration

for an LDPC decoder having a row-parallel architecture.

Syntax
Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

Inputs Arguments

BG-1or2

Y - Number of block-rows used in the PCM, depending on coding rate R

Z - LDPC lifting size
P - LDPC decoder parallelism
D - Pipeline depth

Output Arguments

Titer - Number of clock cycles per iteration

% Beyond the first 20 block-rows in PCMs lifted from both BGs, each
% pair of block-rows is orthogonal and can be processed at the same
% time
if Y <= 20

Y2=Y,;
else

Y2 = ceil((Y-20)/2)+20;

end

% Assume D clock cycles to warm up the pipeline for each block-row and
% then one sub-row processed per clock cycle thereafter.

Titer = Y2*(ceil(Z/P)+D-1);

Figure 3.
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function Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)
%CYCLES_PER_ITERATION_ROW_PARALLEL

%  This MATLAB function returns the number of clock cycles per iteration
%  for an LDPC decoder having a row-parallel architecture.

%

%  Syntax

% Titer = cycles_per_iteration_row_parallel(BG, Y, Z, P, D)

%

% Inputs Arguments

% BG-1o0r2

% Y - Number of block-rows used in the PCM, depending on coding rate R
% Z - LDPC lifting size

% P - LDPC decoder parallelism

% D - Pipeline depth

%
%  Output Arguments

% Titer - Number of clock cycles per iteration

% Beyond the first 20 block-rows in PCMs lifted from both BGs, each
% pair of block-rows is orthogonal and can be processed at the same
% time
if Y <=20

Y2=Y;
else

Y2 = ceil((Y-20)/2)+20;

end

% Assume D clock cycles to warm up the pipeline for each block-row and
% then one sub-row processed per clock cycle thereafter.
Titer = Y2*(ceil(Z/P)+D-1);

end

Figure 3. Matlab code for calculating Titer for an LDPC decoder having a row-parallel
architecture.

Block-parallel architecture

In this architecture, the CNP of Figure 1 can perform all processing associated with one block across
all (up to) P rows of one sub-row of the PCM at the same time. More specifically, each iteration
through the CNP input processing of steps 8 to 12 of the above-listed layered belief propagation
algorithm is completed over a series of D1 clock cycles, where the pipeline depth D1 may have a
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value of 4, for example. Likewise, each iteration through the CNP output processing of steps 15 to 18
is completed over a series of D2 clock cycles, where the pipeline depth D2 may also have a value of
4, for example.

However, the CNP input processing of successive blocks in the same sub-row may be pipelined,
since there are no data dependencies between this processing for successive blocks in the same sub-
row. In this way, once the pipeline has been warmed up after D1 clock cycles, the processing of
successive sub-rows completes in successive clock cycles, as shown in Figure 5. Likewise, the CNP
output processing of successive blocks in the same sub-row may be pipelined, with the processing of
successive sub-rows completing in successive clock cycles after the pipeline has been warmed up
after D2 clock cycles. However, there are data dependencies between the CNP input and output
processing and so all CNP input processing for all blocks in the sub-row must be completed, before
the CNP output processing for any of the blocks in the sub-row can be started, as shown in Figure 5.

Furthermore, there are no data dependencies between the processing of different sub-rows in the
same block-row. Owing to this, the CNP input processing of one sub-row can be tightly pipelined
with the following CNP input processing of the next sub-row in the same block-row, as shown in
Figure 5. Likewise, the CNP output processing of one sub-row can be tightly pipelined with the
following CNP output processing of the next sub-row in the same block-row.

As described for the row-parallel architecture above, there are data dependencies between the
processing of one block-row and the next. However, in the block-parallel architecture, we have
freedom to choose to process the blocks in each block-row in any order. By carefully coordinating
between the order that blocks are processed in one block-row and the next, we may ensure that all
variable node RAMs are written to by the processing of one block-row before they are read by the
processing of the next block-row, provided that the pipeline depths D1 and D2 are not excessively
large. In this way, the CNP input processing of the last sub-row in one block-row may be tightly
pipelined with the following CNP input processing of the first sub-row in the next block-row, as
shown in Figure 5. Likewise, the CNP output processing of the last sub-row in one block-row may
be tightly pipelined with the following CNP output processing of the first sub-row in the next block-
row. For this reason, the throughput of the block-parallel decoder does not actually depend on the
pipeline depths D1 and D2. However, in cases where a block-row contains more blocks than the next
block-row, it is necessary to stall the processing of the first sub-row in the next block-row, in order to
avoid a clash between its CNP output processing and that of the last sub-row in the block-row having
more blocks, as shown in Figure 5.
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Figure 4. Timing diagram for block-parallel architecture, for the case where there are 4 blocks
in the yth block-row and 2 blocks in the (y+1)th block-row.

Considering all of the above aspects, the number of clock cycles required to complete the processing
of each LDPC decoding iteration using a block-parallel architecture may be calculated using the
Matlab code of Figure 5.
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function Titer = cycles_per_iteration_block_parallel(BG, Y, Z, P)

%CYCLES_PER_ITERATION_BLOCK_PARALLEL

%

%

%

%

%

%

%

%

%

%

%

%

%

%

This MATLAB function returns the number of clock cycles per iteration

for an LDPC decoder having a block-parallel architecture.

Syntax

Titer = cycles_per_iteration_block_parallel(BG, Y, Z, P)

Inputs Arguments
BG-1o0r2
Y - Number of block-rows used in the PCM, depending on coding rate R
Z - LDPC lifting size

P - LDPC decoder parallelism

Output Arguments

Titer - Number of clock cycles per iteration

% BG1 row weights
My{1} =[1919191927869867656655555544544 ...

3444444444344343443]

% BG2 row weights
My{2} =[810810355534443443443333233242...

32423333323333];

% Extract the weights for the first Y block-rows of the BG and then
% repeat each one for each of its ceil(Z/P) sub-rows
row_weights = My{BG}(1:Y);

subrow_weights = repelem(row_weights, ceil(Z/P));
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% Clock cycles are needed to read from VN RAM into the CNP and then
% clock cycles are needed to write from CNP into VN RAM. Assume that
% the writing of one sub-row can overlap with the reading of the next
% sub-row. Assume that careful scheduling of which columns to write
% first and which columns to read first can be achieved to satisfy all
% data dependencies.
Titer = sum(max(subrow_weights,[0,subrow_weights(1:end-1)]));
end

Figure 5. Matlab code for calculating Titer for an LDPC decoder having a block-parallel
architecture.

Chip area

The chip area of an ASIC implementation of an LDPC decoder (or equivalently the hardware
resource utilisation of an FPGA implementation of an LDPC decoder) comprises two parts, RAM
and logic, where the latter comprises flip-flops, gates, look-up tables, etc.

As shown in Figure 1, the RAM capacity of a layered belief propagation LDPC decoder is
proportional to Zmax. Hence, doubling the Zmax of an LDPC decoder will double the chip area
associated with RAM.

Observation 1: The chip area associated with the RAM of a layered belief LDPC decoder is
proportional to its maximum supported lifting size Zmax.

By contrast, the chip area associated with the logic of a layered belief propagation LDPC decoder is
proportional to P.

Observation 2: The chip area associated with the computational logic of a layered belief LDPC
decoder is proportional to its parallelism P.

It is typical for the chip area associated with RAM to exceed that associated with logic in an ASIC
implementation of a layered belief propagation LDPC decoder. Hence, ASIC implementations are
particularly sensitive to the selection of Zmax.

By contrast, the fraction of an FPGA's logic resources that are occupied by the implementation of a
layered belief propagation LDPC decoder typically exceeds the fraction of the FPGA's RAM
resources that are occupied. Hence, FPGA implementations are particularly sensitive to the selection
of P.

Architecture variations

The row-parallel and block-parallel architectures described above may be considered to be two ends
of a spectrum of approaches to parallelism in the implementation of a layered belief propagation
LDPC decoder. A hybrid of the two architectures in the middle of the spectrum may be implemented
as a multi-block-parallel architecture, which may operate in a similar manner to the block-parallel
architecture, but for two or more blocks at a time.
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Furthermore, multi-code-block variants of both architectures may be implemented. In the case of the
row-parallel architecture, a round-robin approach to processing more than one code block at a time
may be adopted. More specifically, this allows the processing of one block-row of one code block to
complete while the pipeline for a block-row of another code block is warming up, effectively
removing the D-1 term from the calculation of Tiwr. Here, it may be desirable to limit multi-code-
block operation to cases where the sum of the lifting sizes of the different code block remains below
Zmax, such that they can all be processed without a need for additional RAM. In the case of the block-
parallel architecture, multiple code blocks may be processed at the same time in cases where the sum
of their lifting sizes Z is does not exceed the parallelism P of the decoder.

While these architecture variations are not considered further in this contribution, it may be expected
that the observations listed below remain valid for them.

4 Impact of increasing Zmax

In this section, we explore the impact of increasing Zmax with the aim of supporting a peak LDPC
decoder throughput of 40 Gbps, which is double the 20 Gbps target of 5G NR.

Table 2 compares various different row-parallel (having a pipeline delay of D=8 clock cycles) and
block-parallel layered belief propagation LDPC decoder implementations. The peak throughput for
each of these implementations is obtained in the case of BG1, a code rate of R=0.92 and an
information block length of K=8448. Table 2 quantifies the peak throughput for the various different
implementations for the case of an ASIC clock frequency of f=1.5GHz and a maximum of [=8
iterations, according to

X f
I X Titer

where Titer is calculated using the corresponding Matlab code listing provided above.

X C

Throughput =

Architecture C P Zmax RAM Logic Peak
area area throughput

(Gbps) for

f=1.5GHz

and I=8
Row-parallel with D=8 1 32 384 Al Az 20.8
Row-parallel with D=8 1 64 384 Al 2A0 30.5
Row-parallel with D=8 1 64 768 2A1 2A2 41.7
Row-parallel with D=8 2 32 384 2A 2A0 41.7
Block-parallel 1 384 384 Al A3 20.8
Block-parallel 1 768 384 Al 2A3 20.8
Block-parallel 1 768 768 2A 2A3 41.7
Block-parallel 2 384 384 2A1 2A3 41.7

Table 2. Comparison of different layered belief propagation LDPC decoder implementations.
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Table 2 shows that the 20 Gbps throughput requirement of 5G NR is met by C=1 instance of a row-
parallel implementation having a parallelism of P=32 or by C=1 instance of a block-parallel
implementation having a parallelism of P=384, when using the maximum lifting size from 5G NR of
Zmax=384. These implementations use a baseline RAM area represented by A1 and baseline logic
areas represented by A> for the row-parallel implementation and As for the block-parallel
implementation. However, enhancement of these baseline implementations is required in order to
meet the 40 Gbps throughput requirement of 6GR.

Simply doubling the parallelism P of the two baseline implementations is not sufficient for meeting
the 40 Gbps throughput requirement of 6GR. More specifically, C=1 instance of a P=64 row-parallel
implementation achieves a peak throughput of only 30.5 Gbps, with a RAM area maintained at A
and a doubled logic area of 2A>. Furthermore, C=1 instance of a P=768 block-parallel
implementation achieves no increase in peak throughput at all, since its parallelism P exceeds the
Zmax=384 of the 5G NR LDPC code. Again, a maintained RAM area of A1 and a doubled logic area
of 2A3 is obtained when doubling the parallelism P of the block-parallel implementation.

In order to meet the 40 Gbps throughput requirement of 6GR by doubling the parallelism P of the
baseline implementations, it is necessary to also double the maximum lifting size to Zmax=768.
However, this doubles the RAM area of both implementations to 2A1, alongside the doubling of
logic areas to 2A2 and 2As3 associated with the doubling of the parallelism P.

Observation 3: Increasing the parallelism P of an LDPC decoder implementation only achieves
a proportionally increased peak throughput if the maximum lifting size Zmax is also increased
proportionately.

Observation 4: Increasing the parallelism P and maximum lifting size Zmax of an LDPC
decoder by the same proportion will also increase its chip area by that proportion.

Alternatively, the same peak throughputs exceeding 40 Gbps can be obtained by simply using C=2
instances of the baseline implementations. This approach also uses the same doubled RAM area of
2A., alongside the same doubled logic areas of 2A2 and 2As.

Observation 5: The same increase in peak throughput and chip area can be achieved by simply
using a proportionately increased number of instances C of the baseline LDPC decoder
implementation.

Figure 6 plots the throughput of the LDPC decoder implementations from Table 2 as functions of
coding rate R. These plots show that for both BG1 and BG2, as well as for both the row-parallel
implementation and the block-parallel implementation, C=2 instances of a baseline implementation
achieves the same throughput as C=1 instance having doubled parallelism P and doubled Zmax, across
all coding rates R. However, it should be noted that this comparison is made at the longest supported
information block lengths K, namely K=8448 for BG1 with Zmax=384, K=16896 for BG1 with
Zmax=768, K=3840 for BG2 with Zmax=384 and K=7680 for BG2 with Zmax=768.
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Figure 6. Throughput versus coding rate R for different layered belief propagation LDPC
decoder implementations.

Figure 7 plots the throughput of the LDPC decoder implementations from Table 2 as functions of
information block length K, at coding rates of 0.92 for BG1 and 0.83 for BG2. These plots illustrate
how doubling the maximum lifting size to Zmax=768 enables support for longer information block
lengths, which has the benefit of improving BLER performance. However, Figure 7 also shows that
within the range of information block lengths supported at the baseline maximum lifting size of
Zmax=384, C=2 instances of the baseline LDPC decoder implementations achieve higher throughputs
than C=1 instance of the implementations having doubled Zmax and parallelism P. This may be
attributed to the effect of pipeline warmup in the case of the row-parallel implementation and to the
inability for a high parallelism P to be exploited when the lifting size Z is lower, in the case of the
block-parallel implementation. The higher throughput of the C=2, Zmax=384 implementation is a
particular advantage in the case of a gNodeB processing a high number of short code blocks in a
direct-to-device NTN application, for example.

Observation 6: Increasing the maximum lifting size Zmax enables support for longer
information block lengths K, where improved BLER performance is achieved.

Observation 7: At information block lengths within the range supported by the baseline
maximum lifting size of Zmax=384, multiple instances of a baseline LDPC decoder
implementation achieves a significantly higher throughput than a single instance of an LDPC
decoder implementation having a proportionately increased Zmax and parallelism P.
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Proposal 1: Do not increase the maximum lifting size of the 5G NR LDPC code above
Zmax=384, unless this is deemed to be necessary for achieving BLER performance

improvement.
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Figure 7. Throughput versus information block length K for different layered belief
propagation LDPC decoder implementations.

5 Conclusion

In this contribution, AccelerComms’s views on LDPC decoder throughput and chip area were
shown, and the following observation and proposals were made:

Observation 1: The chip area associated with the RAM of a layered belief LDPC decoder is

proportional to its maximum supported lifting size Zmax.
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Observation 2: The chip area associated with the computational logic of a layered belief LDPC
decoder is proportional to its parallelism P.

Observation 3: Increasing the parallelism P of an LDPC decoder implementation only achieves
a proportionally increased peak throughput if the maximum lifting size Zmax is also increased
proportionately.

Observation 4: Increasing the parallelism P and maximum lifting size Zmax of an LDPC
decoder by the same proportion will also increase its chip area by that proportion.

Observation 5: The same increase in peak throughput and chip area can be achieved by simply
using a proportionately increased number of instances C of the baseline LDPC decoder
implementation.

Observation 6: Increasing the maximum lifting size Zmax enables support for longer
information block lengths K, where improved BLER performance is achieved.

Observation 7: At information block lengths within the range supported by the baseline
maximum lifting size of Zmax=384, multiple instances of a baseline LDPC decoder
implementation achieves a significantly higher throughput than a single instance of an LDPC
decoder implementation having a proportionately increased Zmax and parallelism P.

Proposal 1. Do not increase the maximum lifting size of the SG NR LDPC code above
Zmax=384, unless this is deemed to be necessary for achieving BLER performance
improvement.
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