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Abstract—Stroke often causes weakness, paralysis, or loss
of coordination in the hand and wrist, making it difficult to
perform everyday tasks. Current rehabilitation approaches do
not adequately assist patients in regaining their lost function,
however it is possible to produce accurate hand and wrist gestures
by artificially stimulating muscles using functional electrical
stimulation (FES) applied to multi-element electrode arrays. This
has been possible using iterative learning control (ILC), however
it required lengthy model identification tests, and accuracy
degraded due to fatigue, spasticity and changes in array position.

This paper develops a new FES electrode array control
framework which maintains high accuracy despite uncertain and
potentially time-varying dynamics. First a model of stimulated
hand and wrist dynamics embedding FES array misalignment
is developed, and robust stability properties are derived using
the gap metric. A compensating controller is then proposed to
ameliorate array misalignment, and this is integrated within
a powerful framework termed estimation-based multiple-model
ILC (EMMILC), which automatically updates the underlying
model to maintain performance in the presence of uncertain and
changing dynamics. It is shown that EMMILC can remove the
need for model identification, whilst maintaining high perfor-
mance. This significantly improves the usability of FES arrays
and opens up the possibility of bringing effective therapy to
millions of patients in their own homes. Experimental results
reveal that the proposed controller reduces the average converged
error norm to 31.3% of that obtained using existing model-based
ILC.

Index Terms—Iterative Learning Control, Functional Elec-
trical Stimulation, Multiple Model Switched Adaptive Control,
Stroke Rehabilitation, Electrode Arrays

I. INTRODUCTION

TROKE is a leading cause of disability worldwide, with

over 12 million new cases each year [1]. Up to 80% of
stroke survivors suffer from upper limb impairment [2], and
only 11% of patients fully recover dexterity [3], impacting
their lives in numerous ways; over 50% cannot manage per-
sonal hygiene (bathing, toilet use, grooming) independently,
and 40% need help with dressing and feeding [4]. Move-
ment can be regained through continued repetitive practice
of functional tasks, which strengthens neural connections in
the brain (Hebbian learning [5]). Patients typically receive
half an hour of conventional therapy, three times per week
[6], which involves a physiotherapist manually assisting their
movement. This is far less that the three hours of daily therapy
recommended by clinical guidelines [7], and results in 62%
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of people with severe impairment failing to regain dexterous
hand motion within six months [3].

Assistive technologies can potentially solve this problem by
providing high doses of therapy at low cost. The most common
is functional electrical stimulation (FES) [8], which stimulates
nerves using surface electrodes to artificially contract the
underlying muscles. FES for upper limb rehabilitation after
stroke has been shown to be clinically-effective [9], [10], and
cost-efficient [11]. There are many commercial FES systems
such as MyndMove (MyndTec Inc, ON, Canada), but they
all require the user to position several large electrodes each
time they don the system, often taking 10 minutes. They are
typically open-loop and can only achieve crude movements.

Researchers have begun to address the limitations of com-
mercial devices by developing transcutaneous electrode arrays
comprising multiple electrode pads integrated in a single
structure [12]-[15] (an example is shown in Fig. 1a)). These
are able to selectively stimulate the numerous muscles needed
for hand movement [16]. Most controllers mimic the way a
physiotherapist manually positions electrodes by automatically
cycling through different pad locations until a satisfactory
response is achieved (measured using angle sensors). This
set-up procedure takes 10-15 minutes each time it is used,
and stimulation is then applied at the optimum location using
open-loop or triggered control [17]-[19].

More sophisticated FES array controllers have improved
tracking accuracy of functional movements. A recurrent fuzzy
neural network was able to accurately produce a range of hand
movements but required 45 minutes to set-up and train each
time it was used [20]. It also required impulsive inputs that
would be uncomfortable for patients. The highest accuracy was
achieved using iterative learning control (ILC), which updated
the FES array signals using data from repeated attempts at the
task [21], [22]. ILC’s ability to learn over successive ‘trials’ of
a tracking task matches the repetitive nature of rehabilitation,
and it has previously proved successful in five clinical trials
with stroke participants [23]. When ILC was applied to FES
arrays, it assisted simple hand movements (pointing, pinching,
opening) which were chosen based on clinical need since
patients typically cannot extend their wrist and fingers. The
ILC update required a model, and so identification tests were
performed between each trial. This involved stimulating all 24
electrode array elements individually and fitting a local linear
model to the resulting joint angular movements. After three
trials of ILC the mean joint angle error was reduced to below
5° for the 10 participants tested [15]. Unfortunately the process
took over 10 minutes for each gesture.

The problem facing all these controllers is that the muscle
dynamics change rapidly, and are very sensitive to array



position that inevitably changes from day to day. The system
dynamics and the task are both complex: [24] reports there
are 17 grasp types used in daily activities, illustrating the gap
between current systems and a practical clinical solution.

This paper makes several contributions to solve the problem
of FES array control, including:

o The first comprehensive model of an FES array applied
to an artificially activated musculoskeletal system is de-
veloped.

« Robust performance bounds are derived for a general
class of ILC updates applied to the system. These extend
previous robustness results by allowing the ILC update
to vary between trials (thereby matching the ILC updates
used for FES arrays [15]).

o The effect of array misalignment is modelled and its detri-
mental effect on system robust performance is quantified.

¢ A control scheme is developed to correct for misalign-
ment, which maximises robust performance. This is the
first controller to tackle array misalignment aside from
[21], which dealt with only the simple case of translation
by an integer number of pads.

o The resulting ILC update is then embedded in a multiple
model switched adaptive framework. This new architec-
ture allows ILC to automatically switch between a set of
models that are designed in advance to capture all possi-
ble uncertainty. This enables it to maintain high accuracy
despite changing muscle dynamics and array positions.
This ‘estimation-based multiple model ILC’ (EMMILC)
framework extends the authors’ previous implementation
[25], [26] to include nonlinear dynamics, and provides
guaranteed performance over an uncertainty space that is
defined by the designer. The analysis uses the gap metric,
a well-known measure of difference between plants that
does not impose structural assumptions on dynamics. This
is the first multiple model ILC framework to provide
guaranteed performance bounds for an unstructured un-
certainty space specified by the designer.

« Numerical results applying EMMILC to a realistic FES
array model are presented for hand and wrist motion
control. These confirm higher accuracy than all existing
controllers, while requiring no model identification (after
a single initial set-up session). Experimental results sim-
ilarly confirm higher accuracy than existing controllers.

These contributions not only solve the FES array problem, but
can also be applied to a wide variety of systems including
EMG arrays and implantable intracortical microelectrodes.
They enable high tracking accuracy to be achieved whilst re-
moving the need for model identification and controller tuning
that prevents widespread transference to clinical practice or
home use. The EMMILC architecture therefore has utility to
improve any practical application of ILC.

This paper is structured as follows. Section II defines
the control problem and introduces a comprehensive model
of the hand and wrist stimulated by an FES array. Robust
performance bounds are derived in Section III. Section IV
shows the performance degradation caused by misalignment,
and develops an optimal compensation controller. Section V

presents the non-linear EMMILC framework, which delivers
guaranteed tracking performance for any system dynamics
belonging to a specified plant uncertainty set. A detailed
design framework is provided to realise practical efficacy and
is evaluated numerically and experimentally in Sections VI
and VII respectively, before Section VIII concludes the paper.
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Fig. 1. (a) Surface array overlaying muscles, (b) coordinates of pad ¢ and
muscle j with neuromuscular junction Mj.

II. PROBLEM DESCRIPTION

The aim of rehabilitation is to assist the patient to complete
a functional movement over multiple attempts. The move-
ment is defined by selecting ¢ clinically-relevant joint angles
y € L£3]0, T] and defining a corresponding reference trajectory
ya € L3[0,T] that the patient must track over a finite test
duration 7T'. One or more FES electrode arrays are positioned
over the muscles that must be assisted to help the patient
complete the movement.

FES electrode arrays are composed of n separate electrode
pads, that are arranged in fixed pattern. Pads are usually
arranged in a grid rather than being aligned with muscle loca-
tions, giving the clinician freedom to adjust which electrodes
are active based on the patient’s response. This also removes
the need to manufacture personalised array geometries for
each patient, and then place them exactly over the intended
muscles. Arrays are typically printed on polycarbonate and
have a hydrogel layer that is placed on the surface of the
skin, although fabric arrays are also emerging. Over the test
duration a sequence of electrical pulses, uv € L5[0,T], is
applied to these electrodes in order to generate an electric field
to artificially enervate the underlying muscles. This causes
them to contract and actuate joints that are connected to the
muscles via tendons. A full model is derived next.

A. Hand and Wrist Model Structure

The dynamics of the electrically stimulated hand and wrist
consist of four key components: the electrode array, the
muscle dynamics, the non-linear tendon network, and the
biomechanical rigid body dynamics [27]. A model of an FES
array has been proposed in previous literature, but without
formal justification. This is provided next:



Definition 1: Consider an n pad FES array, where the ith
pad has a centre position z° = (z¢,2%) and receives the
stimulation sequence, u;(t) at time ¢. Let the array be placed
over [ underlying muscles, each with a neuromuscular junction
with surface M defined in the same coordinate system, as
shown in Fig. 1b). Then the enervation, v;(t), j = 1,...,1,
delivered to these muscles is given by

v(t) = Au(t), (1)

where the fixed matrix A € R**™ > ( has elements

K
j,i = #mdmldl‘%
M ——

in which E;(z) denotes the electric field at point z = (w1, x2)
due to the ith electrode pad, and « is a constant.
Proof. See Appendix A. [J

The force generated by the jth muscle in response to
enervation v;(t) can be accurately captured by a Hammerstein
structure, comprising a static function h;pc j(v,(t)) which
models the isometric recruitment curve (IRC), cascaded with
linear activation dynamics (LAD), denoted Hrap ; [28]. A
bounded multiplicative term F,, ;(y(t),9(t)) is also required
to model the effect of joint angle and joint angular velocity
on the active force f;(t) [29]. The resulting force fj(t) then
feeds into a tendon network which develops a moment about
each joint angle given by

7(t) = R(y(t) f(t), 3)

where element (7, j) of moment arm matrix R(y(¢)) is equal
to %y(f”), in which continuous function E is the associated
tendon excursion defined in [30]. Moment vector 7(¢) then
actuates the passive rigid body dynamics of the system which
take the standard form

M(y()ii(t) + Cy(8), 9(t) + K(y(t),g(t)) = 7(t) (4

where M (-) denotes the inertia matrix, C(-, -) is the Coriolis
matrix, and K (-,-) captures gravity, joint stiffness, damping
and friction effects.

The overall along-the trial system mapping is hence

j=1,...,1 2)
i=1,...,n

G+ £2]0,7] — £]0,T]
cu—y:y=HppFnHraphircAu )

with elements defined by the operators

D LN[0,T] — L£L[0,T) :us v:v=Au
hIRC L50,T] — £5[0,T] : v+ w : wj = hrre jvj

Hpap : £500,T] — £5[0,T) :w s f: f; = Hpap jw;
Fp : L5[0.T) = LY0.T) - fr 77 = > Frijf

j

where F,;; = Riyj(y)ﬁ’m,j(y,y), j=1,...,1, and
Hgp: £30,T] — L0, T): 7 —y
i =My)Hr - Cly.9) — K(y,9) (6

This system is summarised in Fig. 2.
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Fig. 2. Hand and wrist system G* showing underlying structure.
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Fig. 3. ILC feedforward configuration, applied to true plant G*. The dashed
line denotes trial-to-trial memory.

B. Tracking Objective

The rehabilitation control objective is for the joint angles
y, generated by system (5), to track the reference signal
ya € L£3[0,T]. ILC does this by performing repeated attempts,
termed ‘trials’, in which the FES input w is updated using data
from the previous trial. The subscript £ = 1,2, ... is therefore
introduced on each signal to denote the trial number, producing
the system shown in Fig. 3. Here ug 1 (¢), yo,x(t) are external
disturbances acting on the system input, ug, and output, yy.

The most common form of ILC update has form

Vg1 = Vg + Lyeg, @)

in which ey = yq + yo,x — Y& is the tracking error and Ly, :
£310,T] — £%[0,T7] is a suitably chosen learning operator
(see, e.g. [31]). Since the true dynamics are unknown, design
of Ly is based on an assumed model (G. A common choice is
to design Ly to satisfy the operator norm bound

I - LuGil <1, Yk eN, @®)

where G, is the linear approximation of the system dynamics
about operating point ug, i.e. G|y, v := G(u+uy)—Guy. If (8)
holds, it is well-known that the system will then monotonically
converge to the minimum error, e.g.
lim eg(t) =0, te

k—o0

[0, 7. (€))

provided the true system is linear, n = ¢, and there is no
model error or disturbance. There are also robustness results
that specify the allowable model uncertainty for convergence
to minimum error, but only for special forms of Ly, i.e. P-
type, gradient and Newton ILC [32] or for a fixed Ly [33]. For
general Ly, and arbitrary true system G* dynamics, there is no
guarantee that applying ILC law (7) will result in convergence.

The next section addresses this by establishing conditions
for convergence using a general measure of plant mismatch.
This shows how Lj; can be selected to maximise robust
performance.
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Fig. 4. ILC feedback configuration represented in lifted domain, with plant
input and output (¢ = 1), disturbances (¢ = 0) and observations (i = 2).

III. ROBUST PERFORMANCE

The nonlinear gap § is an established measure of the
distance between two systems, which is extensively used in
the field of robust control [34]. It enables stability analysis to
be carried out without placing restrictive assumptions on the
structure of the uncertainty [35]. To apply gap based robust
stability results to ILC, it is first necessary to reformulate
the finite-duration, ¢ € [0,7], along-the-trial feedforward
dynamics of Fig. 3 to take the conventional feedback form
shown in Fig. 4. This is done by introducing lifted signal

spaces
yiey, ui€u, ’wi:(ui,yi)TGZ/[XJ)

for the disturbances, plant and controller, ¢ = 0, 1,2 respec-
tively, and

Jo €V, (11)
for the external biases. Using the lifted spaces U = L£5[0,T] x
N, Y = £3]0,T] x N, the signals appearing in Fig. 3 can be
packaged as

(10)

Uy €U, woz(ao,ﬂo)Teuxy

ug = ui(k), vp = ua(k), uoxr = uo(k), 0= o,
yr = y1(k), ex = v2(k), yor = vo(k), ya =750, (12)

for k € N,. The plant and ILC dynamics over ¢ € [0,7T] of
the k*" trial are then expressed equivalently as a single time
instant of the ‘lifted’ systems

G U—=Y:u =y (k) =G u(k) (13)

and
C:Y—=U:ys > us:ug(k+1) =ua(k) + Lpya (k). (14)

Having reformulated ILC in standard feedback form, gap-
based robustness analysis can now be applied [35]. The
dynamics of closed-loop system [G*, C] are governed by the
parallel projection operator

g yjo  UxY = UX Y (wo+wo) —wr (15

mapping external disturbances to the internal plant sig-
nals. Closed-loop stability is defined using the biased norm
|lwille, = |Jlw1 — wi|| which measures the distance of
internal plant signals w; from their nominal operating point
wy := Ilg+ ) )cwo. This leads to the definition:

Definition 2: ILC system [G*,C] is said to be gain stable
with respect to the external bias wy = (0,y4) " if there exists
a scalar 0 < M < oo such that
HHG*//Cw I:IG*//CWOH < M.
[[w — wo|

(16)

sup

Mg /¢ llae =
M /scllos = sup

To examine ILC robust performance, let the system used to
design the ILC update be defined as

G:U—Y: u -y yi(k) = Gruy(k), (I7)

then the following theorem gives conditions under which the
ILC update designed using model (17) is able to stabilise the
true plant G* defined in (13).

Theorem 3: Let ILC update C' (14) be designed using model
G such that condition (8) holds. Then the true closed-loop

system [G*, C] is BIBO stable if the gap' satisfies
§(G*,G) < Tg, /6l (18)

where the parallel projection operator norm ||Ilg /¢ ||,

su Li|| + || Lk G

(GII@>H | SUPken, (1Ll + NExGll) ) (19
1 —suppen, [ — LrGell

The converged signals are then bounded as

145G, )
18 lwe <Ilg/ ellw =
Mg/ /cllwo —”HG//CH 07— ||H(;//c||mu5(G*7G)

< sup
keN,

. (20)

Proof See Appendix B. [

The gap 6(G*,G) in (18) can be related to how well the
model G}, captures the true dynamics G* at each operating
point using the next theorem.

Theorem 4: The nonlinear gap §(G*,G) between the true
plant G* and the sequence of linear models G can be directly

related to individual linearisations using

5(G*,G) < sup 3(G", Gy) <
keNL

(G — Gr)ull

Y ]

L5
(2D

Proof Given in [33]. (I
Hence 6(G*, () can be replaced throughout Theorem 3
by either the along-the-trial form sup,cy, 6(G*, G) or the

operator bound SUp . %0, & e, I& lu‘mGk)uH. This limits
the maximum deviation that linearisation GGj, can take from
the true dynamics about each ILC update uy.

Theorem 3 states that ILC stabilises a ‘ball’ of plants with
radius ||H@//@||5; centred around G, as shown in Fig. 5a).
If the right-hand side of ILC convergence condition (8) is
small, the size of the ball increases but there is a trade-off with
the size of ||Ly|| and ||LyGj||. Overall robustness is dictated
by the ‘worst’” model used in the set {G}}. Inequality (20)
then gives the resulting tracking accuracy; it bounds the plant
signals from their ideal, disturbance free, values since ||w; —

w1 < Mgy & llag lwoll-

IV. ELECTRODE ARRAY MISALIGNMENT

The largest source of error reported in clinical trials using
FES arrays is due to difficulty in placing them and the resulting
misalignment [36], [37]. If the wrong muscles are stimulated,
the intended movement may be impossible to achieve. Its
effect is so detrimental that a full re-identification of the model
is often performed each time the electrode array is placed on
a patient undergoing rehabilitation.

IThe gap bias has been suppressed for notational simplicity.
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Fig. 5. a) Uncertainty space showing stability region using an ILC update
designed using model G (true plant G* must be in the circle for [G*, C] to be
stable), b) Condition (3), Theorem 6: stability region for pure misalignment

(misaligned true plant G must be in the circle).
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Fig. 6. (left) Array misalignment by translation z and rotation 6, with (right)
corresponding geometry.

This section develops the first solution to the array mis-
alignment control problem. To do this, the model array mis-
alignment is modelled and its effect on robust stability is
quantified. An augmented control strategy is then developed
that minimises the model mismatch and thereby recovers the
original nominal controller properties. The starting point is to
define the effect of misalignment on the system dynamics.

Definition 5: Suppose the electrode array structure of Defi-
nition 1 is misaligned by applying a translation z and rotation
6, as shown in Fig. 6. Then the array model (1) is replaced by

v(t) = A(z, 0)u(t) (22)
where A(z,6) has elements
~ K
A(2,0);: = # _ dridzs  (23)
’ lz = (Rgat + 2)||”
M;
[ cos@ —sinf 7 . . .
where Ry = sin®  cosf is the 2D rotation matrix.

The following theorem computes the performance of a
controller designed using model G, but instead of being
applied to the intended system G* of (5), (13), it is applied to
the misaligned system

G:U—=Y: iu—y
ty1(k) = HrpFr Hyaphire Az, 0)u (k).
Theorem 6: Let ILC update C' (14) be designed using

model G (17) such that (8) Aholds. If it is then applied to
the misaligned array system G (24), the resulting closed-loop

(24)
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Fig. 7. Gap 6(A(z,0), A) for pure horizontal translation and pure rotation
alignment using the same array geometry used in clinical trials [23]. (4 X 6
array, 2cm X 1.5cm pads.

system [, C| is BIBO stable if any of the following conditions
hold:

(a) The gap between model and misaligned systems satisfies
8(G,G) < Meyellm, (25)

(b) the gap between aligned and misaligned ‘true’ systems

satisfies
8(G.G*) < Ugyseliay —8(G*.G),  (6)
(c) or the misaligned array geometry satisfies
) g, ollee — 6(G*,G
5(A(2.0), 4) < Me//ella, =G, G) o7

\HrpFmHraphire!|l

Proof. See Appendix C.

In all three conditions (a)-(c), the term [Tl /¢ lw, can be
substituted by the RHS of (19) which is readily computable.
Condition (a) is the basic robustness margin of Theorem 3
but now applied to the misaligned system G instead of G*.
Conditions (b) and (c) bound the misaligned and aligned
systems and so directly quantify the effect of misalignment
(i.e. the gaps do not involve the model). In conditions (b),
(c) the term ||H@//@|\;j — §(G*, Q) represents the ‘surplus
robustness radius’ that is available after the ILC update is
applied to the aligned true plant G*. This defines the maximum
misalignment that can be tolerated, and is illustrated in Fig.
5b). In practical terms, if the ILC controller is robust and/or
the model G is close to the aligned system G*, then there
is more margin available to accommodate misalignment. The
tracking accuracy of the misaligned system can be computed
by (20) with G* replaced by G.

Theorem 6 shows that the stability and tracking performance
of controller C' degrades as the misalignment increases. To
illustrate this, Fig. 7 shows plots of 8(A, A) for ranges of
array rotation and translation that typically occur in FES exper-
iments with stroke patients [37] and unimpaired participants
[36]. It is obvious that the gap approaches its maximum of 1
with only small amounts of misalignment.



A. Realignment Controller

If the array misalignment (6, z) is known, it is possible to
adjust the FES control signal to correct for it. The next result
addresses this by expanding the control action to ameliorate
the effect of misalignment and recover robust stability bounds.

Theorem 7: Let ILC update C' (14) be designed for an
aligned true plant using model G such that convergence
condition (8) holds. Suppose the true plant is then misaligned,
but the ILC update is modified to the form

C:Y —Uys— us:ua(k) =T(z,0)v(k),

v(k+1) = v(k) + Lry2(k) (28)

where

T(z,0) = Af(z,0)A (29)

is a ‘realignment’ mapping. In this case the misaligned system
[G, C] is stable if any of the conditions (a)-(c) in Theorem
6 hold, but with 6(G,G) replaced by 6(GT(z,0),G) and
5(A(z,0), A) replaced by 0(A(z,0)T(z,6), A). Moreover, the
form (29) minimises both these gaps, i.e. T is the optimiser

min §(GT(z,0),G)

TE]RZ Xn

and min 0(A(z,0)T(z,0),A)
TeRlxn
(30)

and hence maximises the robust stability bounds. Finally, the
choice (29) also maximises the tracking accuracy.
Proof: See Appendix D. [J

The update (28) comprises two parts: The first is exactly the
same standard ILC algorithm as previously employed in (14)
which uses the tracking error y» to update the control action.
The second is the mapping 7T'(z, ), which is applied to the
ILC control action in order to correct for the misalignment,
e.g. if the array was physically misaligned by lcm (z = lcm),
then the mapping implements (as closely as possible) a shift
in the FES pattern of -1cm to correct for it.

Unfortunately the realignment operator 7'(z,6) requires
knowledge of the misalignment which is typically unknown as
it is caused by inevitable day-to-day variation in placement by
patients or carers. This issue will be solved in the next section,
by using controller (28) within a multiple model structure.
By designing models with a variety of different misalignment
(values of z,0), the framework will automatically choose the
most appropriate based on previous data. Therefore exact
knowledge of the misalignment will no longer be required.

V. EMMILC STRUCTURE

EMMILC was introduced in [25] and builds on the multiple
model switched adaptive control (MMSAC) framework of
[38]. This section applies it to the FES array system defined in
Section II-A. The EMMILC architecture first requires that a set
of m candidate plant models G = {G1,...,G,,} is designed
with associated candidate ILC controllers C = {C1, ..., Cp, }.
Each model has form (17) and is mapped to a controller of
form (28) by the control design operator K : G; — C;.
Switching between controllers is determined using a bank of
estimators, X = {X1, ..., X, }, which compute a residual for
each plant model in G. Each residual measures how closely
a particular model matches the measured signals (ug,y2),

uy Yo+Ya
u, /i\ U — % Vi /L V2
O G )

argmin X 5

Fig. 8. EMMILC block diagram showing true plant G*, controller set
{C;}, estimator bank {X;}, with closed-loop [G*,K(Gg)], q(k) =
arg min; r (k).

and the controller corresponding to the model with smallest
residual is switched into closed-loop. Fig. 8 shows the overall
structure.

Based on the underlying theory in [25], there are two
conditions that must be satisfied to guarantee stability of the
EMMILC system:

(i) Estimator granularity

3G, €G, st §G*G;) <pG.cu), (3
(ii) Stabilisation of uncertainty space
HCZ GC, s.t. HHC‘;//CVZHQDO < 0 VC_Y'GU, (32)

where p(-) is defined explicitly in [25]. These ensure that the
models {G1,...,G,,} are sufficiently close together, and that
there exists at least one controller within the set C able to
stabilise any plant within the uncertainty space, as illustrated
in Fig. 9.

CeC
Gelf
Fig. 9. EMMILC conditions: a) Uncertainty set ¢ covered by gap balls of
radius p. b) For every plant G’ € U there exists a stabilising controller C; € C.

Condition (ii) is readily verified by applying Theorem 3 to
each controller in C, and the gap measurement in condition (i)
can be computed using (21). If these hold, then the tracking
error is bounded as

||w2||ﬂ)2 < 7](g7 Cvu)

where 7)(+) is defined in [25].

(33)



A. Estimator design

EMMILC supports either infinite or finite horizon estima-
tors, both encompassed by the general form X2 : (ug,y2) " —
rf‘, which computes the size of the smallest disturbance esti-
mate (ug,yop) needed to explain the observed signals (uz,ys2)
over trial horizon [k — A, k] under the assumption that model
G; is the true plant. Let /\/'i[a’b] (uz,y2) be the set of all
possible disturbances compatible with G; and observed signals
(ua(k),y2(k)) over trial a,a+1,...,b. Then the residual for
model G; is computed as

rA(k) = inf{r = 0| r = fuoll, wo € N (us,32)}
wo
(34
The next theorem shows how this can be computed for both fi-
nite and infinite horizon cases, and provides a computationally
tractable implementation.

Theorem 8: Residual computation (34) is solved recursively
for the infinite horizon case by

ri(k) = i~ (k= 1), (k)] 17(0) =0, (35)
and for the finite horizon case by
(k) = (36)

where the residual calculation for only trial k is
rd(k) = inf{r > 0 | r = [|wo]l, wo € V" (uz,52)}. (37)
0o

If the lifted candidate model G; has unlifted form realised on
trial & by the discrete state-space triple {A4;(¢), B;(t), Ci(t)},
running over ¢t = 0,--- , N, then residual (37) can be com-
puted as

N 2
7200 =| Y- Iatt) =)= GO0l oo o
= (38)
with &(t) generated by the extended Kalman filter system
Bt +1/2) = &(t) + () C; (1) T [Ci() B () Cs(8) T 4+ 1)1
[ya(t) — ex(t) — Ci(t)2(1)] (39)
N(t+1/2) =21) —Z@)Cit) T [C; 2@ Ci(t) T + 171
- Ci(t)X(t) (40)
Ft+1) = A2t + 1/2) + B;(t)vk(t) (41)
S(t41) = A0St +1/2)A;(0) T + Bi()Bi(t) ", (42)
where 2(0) = 0, ¥(0) = B;(0)B;(0)T.

Proof This follows from [38] and the deterministic interpre-
tation of the Kalman Filter, see e.g. [39], [40]. O

B. EMMILC design procedure

To satisfy EMMILC condition (ii) using Theorem 3 means
selecting a set of candidate models {G;} with corresponding
controllers {C;}, and then ensuring that the union of their gap
balls (center G;, radius ||Ig, e @) covers the uncertainty
space U. Condition (i) is similar, but imposes an upper limit
on the minimum distance between each candidate model. To

simplify the two conditions, they can be combined into a single
condition:

we VG eU (43)

where 0 < a < 1 is a tunable gain chosen by the designer.
When o = 1, this satisfies condition (ii) as it states that
the gap balls must cover &/ and have a maximum radius
of |[llg, /e, 7. Reducing « shrinks the radius of the gap
balls, requiring more, closely packs balls. As the plant models
become closer and closer, there will always come a point at
which condition (i) will be satisfied. This means there is no
need to calculate p, and instead the designer may treat « as a
tunable gain.

Based on this approach, practical implementation of the

EMMILC framework can be summarised as follows.

1) Model structure: Determine a suitable structure of com-
ponents Hgp, F,., Hpap, hire, A in (5) to represent
the true plant G*.

2) Uncertainty space U: Identify a minimum range of
model parameters necessary to capture the possible vari-
ation in the true plant dynamics. For the case of array
misalignment this will be the union of all possible values
of shift z and rotation 6.

3) Controller design procedure: Select a suitable type of
ILC update law (7) for use in the candidate controllers
(28). This should balance robustness (measured by (18))
with convergence (measured by the RHS of (8)).

4) Model set G: Construct a model set G which satisfies (43)
for 0 < a < 1. Smaller values of o will improve robust
performance but will have a higher computational cost
due to an increased number of candidate plant models.

5) Estimator set: For each model, implement estimator X ;\
using (35) or (36). Select A to balance sensitivity against
adaptability to changing dynamics.

6) Check performance: Apply EMMILC in practice and if
performance is unsatisfactory reduce the value of « in
Step 4).

VI. NUMERICAL RESULTS

The approach is now applied to a realistic simulation of
the human hand [41]. The model contains [ = 6 muscles,
namely the extensor communis (EC), extensor carpi radialis
brevis (ECRB), extensor indicis (EI), extensor carpi ulnaris
(ECU), flexor digitorum profundus (FDP), and flexor digito-
rum superficialis (FDS). The ¢ = 2 outputs comprise the wrist
and metacarpophalangeal (MCP) joints. Stimulation is applied
using a 8 X 6 element electrode array, giving a total of n = 48
elements. The pad dimensions of 2cm x 1.5cm match those
used clinically [15], and combine with neuromuscular junction
positions to give array operator A. The h;pc form was chosen
as a2 _ 1
1 ea2v;j 4 as .
which accurately captures muscle dynamics using parameters
ay,az,a3 € R [28]. Operators Hyap ; were modelled as
second order, critically damped systems with natural frequency
wy,. The forms of M(y), C(y,9), and K(y) matched those
given in [29], [42].

(44)

wj:a



G
4 GGZW o4 o . . . ) . °
x  Test plants
3 ® Model set
x
2te . . . . . o . .
>
N
= 1
= G X
2 0ofe 0 . . ! o . . .
]
o
£ 'e o
2le® o126 o e “ e . . . .
-3
X
Gay
4te . . . . . . . .
-6 -4 -2 0 2 4 6

Horizontal shift, z

Fig. 10. Uncertainty space, candidate model set G distribution, and location
of true plants (indicated by red crosses).

Simulations took wug,yo as white Gaussian noise with a
signal-to-noise ratio of 30 in order to replicate previous clinical
trials [37]. The reference was chosen as y4,1 = 66°, yq,2 = 53°
to correspond to a pinch posture [15].

A. EMMILC Design

After establishing the model structure, the next step is
to define the uncertainty space Y. The investigation focuses
on whether EMMILC can address the array misalignment
problem, and therefore the uncertainty is restricted to only
array misalignment parameters. This enables clearer conclu-
sions to be drawn that do not involve other, less destabil-
ising, sources of uncertainty (fatigue, spasticity etc) which
will be investigated separately. Translational uncertainty was
considered, with a horizontal misalignment range between -
6cm and +6cm, and vertical misalignment range between -4cm
and +4cm. Hence the parameterised uncertainty space is U :=
{G given by (24) | z = (24, 2y), 25 € [—6,6], 2, € [—4,4]}.

From (28), the control design procedure, K, maps each
G'i €gto

Ci: Y= Uy ug:uz(k) =T(2,0)v(k),
v(k+1) = v(k) + Li,y2(k).

Gradient ILC was selected due to its favourable robustness
properties, so that learning operator Ljy; = (Gy;)" with
~ a scalar design parameter. Realignment matrix 7'(z,0) is
defined by the form (29).

For the estimator design, the infinite horizon case was
selected and was computed using (35). Preliminary tests were
carried out in which EMMILC design parameter v was tuned
heuristically to ensure robust convergence within 30 trials.
This was achieved using v = 10, 000. Parameter « in (43) was
tuned to give a high density of distinct models. The resulting
model set distribution is shown in Fig. 10.

Six different misaligned plants were then generated, to
examine the effectiveness of the proposed controller. These
plants were spread evenly across the uncertainty spaces; their
distribution is also shown in Fig. 10.

(45)

B. Results

First results using standard ILC are shown. Standard ILC is
the only existing model based controller to have been applied
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Fig. 11. Standard ILC applied with a) perfect alignment, and b) six different
misalignment.

to FES electrode arrays, and so is the obvious comparison
with EMMILC. Update (14) was applied to the true plant,
with Ly = v(Gy) ", where Gy, is the local linearisation of the
true plant dynamics (i.e. G*|,,.). Fig. 11a) shows that the ILC
error norm converges close to the desired reference. This result
assumed exact plant knowledge (i.e. perfect array alignment).
To investigate the effect of misalignment, the A matrix (2)
in the true plant model was exchanged for the misaligned
form A(z7 0) (23). The model used by the ILC update was
unchanged. When the array was shifted the performance using
the inaccurate model rapidly degraded, as shown in Fig. 11b).
This shows the performance for the six misalignment cases
shown by red crosses in Fig. 10, and reveals that in many cases
the converged error norm is much larger than when the array is
perfectly aligned, and in one case can be seen to diverge. The
average error norm over the final five trials is 0.788, compared
to 0.078 when considering perfect alignment.

Fig. 12a) shows the convergence when EMMILC is used to
control the same six misaligned array cases. Using EMMILC,
each of the cases converges to a consistently smaller error
norm than when using standard ILC. The mean converged
error norm using EMMILC is 0.086, 89% less than that the
value obtained with standard ILC, and comparable to the
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performance with perfect array alignment (i.e. Fig. 11a)). An
example of the model switching signal is shown in Fig. 12b),
confirming that EMMILC converges to the optimal model
within seven trials. The next section extends these results by
evaluating EMMILC experimentally.

VII. EXPERIMENTAL RESULTS

The hardware comprises a depth camera (Leap Motion
Controller 2, Ultraleap), user interface software running on a
laptop, a real-time controller running on a Raspberry Pi 4, and
a 64 channel FES electrode array and electronics embedded
in a sleeve. Data are transmitted via wi-fi and the real-time
controller runs at 40 Hz. The frequency and amplitude of each
pulse train are fixed, and the pulse width of each pulse train
is the controlled variable (0 - 300 ws). The components are
shown in Fig. 13 and described further in [43]. The choice
of joint angles (wrist, MCP) and task (pinch posture) match
those of Section VI.

EMMILC will again be compared with standard ILC, as
the only existing model based controller. It will also be
compared against the sequential open-loop control of each
pad, used in [17]-[19], which mimics manual application by
a physiotherapist and is the most prevalent control approach
for FES arrays. Each controller will be applied with varying

Leap motion Controller 2

\e Hand raw data
|
; e -electrode sleeve
o —
. L
= Raspberry pi et /
3
))) ———————————————— » &

Control signal

Fig. 13. Upper limb stroke rehabilitation hardware.

degrees of array misalignment. For ILC, the mean error norm
over the last five iterations will again be taken.

A. Control Design

Control design mirrors Section VI, but with the addition of
tests to identify muscle locations and a nominal model. The
procedure is as follows:

(i) Sequential open-loop control involves applying a 10 sec-
ond ramp input to each array element and then measuring
the resulting joint motion. To locate the dominant muscle
locations, the two array elements, i1, %2, that produce the
most movement of one angle, and least of the other, are
selected. The optimum stimulation level for each one is
then computed to best attain the specified pinch reference.

(i) Standard ILC follows the same design as in Section
VI. Model structure HrpHraphrre 1is fitted to the
11, i pad ramp responses, with component Hy, 4 p ; again
selected as a critically damped system, hrrc; as a
constant gain, and Hrp(s) = is chosen
to match [26].

(iii) EMMILC uses the above model structure for each candi-
date model, but adds the array misalignment term fl(z, 0)
specified in (24). The same misalignment uncertainty set
as in Section VI is applied which is sampled to produce
45 candidate models, each with an associated realignment
controller (45). Estimator design follows the approach of
Section VI.

1
I.s2+B.s+K

B. Results

Ethics approval was granted by University of Southampton
Ethics and Research Governance Online (ERGO), ID 102462.
Three unimpaired subjects were recruited, as a prerequisite for
later clinical tests with stroke patients.

Results for the sequential open-loop and standard ILC
approaches are shown in Fig. 14 for one participant and those
for EMMILC are in Fig. 15. Seven different array alignments
were tested, with misalignments ranging between z, = + 3cm
and z, = & 2cm.  The mean error norm over all alignment
conditions and all participants for sequential control is 0.668.
Likewise, the mean error norm over the last five trials of



TABLE I
ERROR NORM RESULTS FOR THREE CONTROLLERS ((I) SEQUENTIAL
OPEN-LOOP, (1I) STANDARD ILC, (111) EMMILC) AND SEVEN DIFFERENT
MISALIGNMENT CONDITIONS (zz, 2y ).

Array alignment, (zz, zy)
(37 2) (1570) (37 72) (737 72) (71570) (7372) (07 0)
(i) P1 0934 0.601 0.870 0.673 0.624 0941  0.249
P2 0.840 0.541 0.681 0.776 0.564 0.773 0311
P3 0.836 0.652 0.836 0.711 0.573 0.810 0.228
(i1)P1 0.802 0386 0.851 0.667 0.533 0.760  0.149
P2 0.766  0.411 0.781 0.731 0.509 0.871 0.128
P3 0921  0.456 0.790 0.821 0.672 0.788  0.179
(iiiP1 0201 0223 0.241 0.292 0.300 0.331  0.131
P2 0.156 0.121  0.197 0.179 0.167 0.196  0.118
P3 0.178 0.134  0.156 0.201 0.198 0241  0.104
95% [0.597, [0.049, [0.547, [0.201, [0.049, [0.245, [-0.053,
CI 0.786] 0.467] 0.671] 0.829] 0.649]  0.856] 0.122]
p-value| 0.001 0.009 0.009 0.016 0.003 0.000 0.026

standard ILC is 0.618. The mean error norm over the last five
trials of EMMILC is 0.194. This is 71.0% less than sequential
control, and 68.7% less than standard ILC.

A paired sample t-test was performed to test whether the
reduced error norm produced by EMMILC was significant
compared with standard ILC. The ‘95% CI’ row denotes the
95% confidence interval of the difference in error norms for
each alignment, and corresponding p-values are given. Signif-
icant results are highlighted in green. These confirm that the
improvement of EMMILC is significant in all misalignment
scenarios. The improvement compared with sequential open-
loop control are not shown, but are also all significant.

Compared with the numerical results of Section VI, the
accuracy is degraded due to the simple model structure used
and physiological variation. This could be addressed by adding
uncertainty sets for physiological parameters. Note that EM-
MILC only requires a single session for design and then
does not require any tuning or identification tests to maintain
high accuracy. This contrasts with the other controllers that
would require the identification procedure to be repeated on
subsequent sessions to maintain high accuracy. This process
takes over 10 minutes and requires a control engineer, making
it infeasible for clinical or home use. The results therefore
establish the potential of EMMILC to provide effective re-
habilitation in the home, and lay the foundation for clinical
trials.

VIII. CONCLUSIONS AND FUTURE WORK

A solution to the control of FES electrode arrays for hand
and wrist rehabilitation has been developed. This integrates
a comprehensive model, a novel realignment controller to
maximise robust performance, and an extension to multiple-
model switched ILC. The effectiveness of the overall EM-
MILC approach compared with the leading alternatives was
demonstrated using both realistic simulations and experiments.

The results have provided the necessary foundation on
which to conduct experimental tests with stroke patients.
Therefore future work will involve running a clinical feasibility
study with 5-10 neurologically impaired participants.
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Fig. 14. Sequential and standard ILC error norm results for participant P1,
with a) perfect alignment, and b) six different misalignments.

APPENDIX A
PROOF OF DEFINITIONS 1 AND 5

The overall charge contribution of the i*" electrode is

modelled as a point charge ¢; applied at its centre (z;,y;),
which generates an electric field whose strength at a point
(xj,y;) is dictated by Coulomb’s law

K
Ei(zj,y;) = ﬁ%‘
1,(Z5,Y5

(46)

where k ~ 8.99 x 10°Nm2?C~?2 and Ti(x;.y;) 1S the distance
between (z;,y;) and (z;,y;) [44]. Due to the principal of
charge superposition, the total electric field strength experi-
enced by muscle j is

47

v(t) = ; #Mj Ei(z,y)dzdy.

Denote each element of A as (2) and set u; = ¢; to get (1).
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APPENDIX B 0<k<oo Z:: k=
PROOF OF THEOREM 3 7
< su H( )Zkﬂ-L i su k
<O<kgoo Z Gy) il | swp [lo(B)]
From (14) and the Fig. 4 relations B
: (klzr;oz\\(ak)zk s ) ol
ug(k +1) = ua(k) + Lr(yo(k) + ya — Gr(uo(k) + uz(k)) =00
= (I — LyGg)uz(k)+ L k) +ya — Gruo(k
( kG )uz (k) k(Yo (k) + ya kuo(k)) < sup ” H”Lk il (hm ZHZk ZH)
0<k<
Since u3(0) = 0, this gives rise to the recurrent relation sup Hyo (k) H
0<k<oo
k Then since ||I — L;G;|| <1
us(k) = > ZF_Li—i(yo(k — i) +ya — Gr—suo(k — 1)) X
i=1
hrn zk il < (53)
Z 12l < T e = T
where Zb = [[°_ t (I = L,Gy). It follows that it follows that
& HH(_;//C_’lZIo:OHU_)o
u1(k’) :Uo(k) + Z Z]I:;_iLk_i(y(](k - Z) + Yd— Supogkgoo H (ék> H Supogkgoo HLk”
i=1 < (54)

Gk_iuo(k - Z)) 48) - 1-— SUPo<k<oo ||I - Lka”
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Oﬁkgoo H (Gk ( O(
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Proceeding as before, this results in

k
k) — Z Zp_iLi—iGr—iuo(k — 1)) H
i=1

HHG//C‘UO_OH'@O

v ()], o s
0<k<oo 0<k<oo + sup H( I )H
= 1— sup |[I— LGkl 0<k<oo 1\GR
0<k<oo

Substituting this and (54) into (52) yields the final bound
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APPENDIX C
PROOF OF THEOREM 6
Replacing G* with G in (18) yields (25), and (26) follows
from the triangle inequality, i.e.

§(G,G) <0(G*,G) +6(G,G*). (56)
Then bound the ‘true system’ gap using its definition
5 A . [(¥ = Dz|
0(G,G*):= inf su —_—r 57
&) =0, = T o7
x € dom(G)
0 hyahine ) =D
H( 0 HrpFmHrpaphire (T =Dz
< inf sup
TEQ s 4o [l
z € dom(G)
: I 0 (T — D)l
<
< ‘( 0 HrpFmHraphire ) T Tl
u € dom(G)
< |HrpFnHyaphirell5(A, A) (58)

in which the set of operators @ = {V : G — G*}, and
Q:={Y: A~ A} where A is the graph of A(z,6) and
A is the graph of A. Similarly, the graphs G* := {( ?ﬁ ) :
= G*uy,u; GU},Q::{( Z% = Gui,u GL{}.
Substituting (58) into (56) and rearranging yields (27).

APPENDIX D
PROOF OF THEOREM 7

Fig.A 16a) shows the controller form (28) inserted into Fig. 4
with G as the true plant. The aim is to establish conditions for
stability of this system, given that C'is designed to stabilise G,

Fig. 16. ILC configurations: a) misaligned plant and controller (28), b) aligned
plant with controller (14) designed to stabilise it.

as shown in Fig. 16b). First rearrange the systems of Fig. 16
to the form of Fig. 17, where ug 2 is an addition disturbance.
Stability of Fig. 17a) guarantees stability of Fig. 16a) (since
it is the special case ug 2 = 0). Now apply gap-based stability

Fig. 17. Augmented ILC configurations corresponding to Fig. 16.

analysis to the Fig. 17 augmented systems. The nominal model
of Fig. 17b) has projection operator
Uo,1
) (59

U1,1
HG///C’/ = u0,27 — ul,?
Yo + Yo Y1
whose norm can be shown to be bounded as
)(1+6G)7 (1,0 = Mgy cll

I
I el =||( &

Next, the gap between G’ and G’ is defined by

5(EG) = inf sup N =Dl
PR .20 ||zl
z € dom(G")
T-1 _
< inf sup I = Dall _ =6(GT(z,0),G)
“?16&0 e Edmla’) ” ”

G'ul, uy

s U1 . — S
where G' = {( " ) Sy = L[}, g =
{(Zi ) = G'ui,u EU}, and Q) := {T:QA’HG’}.
This yields the stability condition

§(GT(2,0),G) < g/ el (60)



which guarantees stability of Fig. 17a), and hence also Fig.
16a), since it implies §(G', &) < T, 60|l ~". The property
that 7' minimises the tracking error bounds can be seen by
substituting §(GT(z,60),G) for 6(G,G) in (56), and then
inserting into (20) to obtain

Mgy ella <

1+ 6(G*, @)+ 6(GT(2,0),G*)
1~ Mgy /ella (8(G*, G) +8(GT(2,6), G¥))
which is then minimised by (30). If range(4) C
range(A(z,0)), then A(z,0)AT(z2,0)A = A and so
(GT(#,0),G*) = 0, and the original condition (18) and
robustness bound (20) of Theorem 3 are retained.

(Rvepel it
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