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Iterative Learning Control of Functional Electrical Stimulation

Electrode Arrays

Lucy Hodgins, Chris T. Freeman and Zehor Belkhatir

Abstract—Stroke often causes weakness, paralysis, or loss
of coordination in the hand and wrist, making it difficult to
perform everyday tasks. Current rehabilitation approaches do
not adequately assist patients in regaining their lost function,
however it is possible to produce accurate hand and wrist gestures
by artificially stimulating muscles using functional electrical
stimulation (FES) applied to multi-element electrode arrays. This
has been possible using iterative learning control (ILC), however
it required lengthy model identification tests, and accuracy
degraded due to fatigue, spasticity and changes in array position.

This paper develops a new FES electrode array control
framework which maintains high accuracy despite uncertain and
potentially time-varying dynamics. First a model of stimulated
hand and wrist dynamics embedding FES array misalignment
is developed, and robust stability properties are derived using
the gap metric. A compensating controller is then proposed to
ameliorate array misalignment, and this is integrated within
a powerful framework termed estimation-based multiple-model
ILC (EMMILC), which automatically updates the underlying
model to maintain performance in the presence of uncertain and
changing dynamics. It is shown that EMMILC can remove the
need for model identification, whilst maintaining high perfor-
mance. This significantly improves the usability of FES arrays
and opens up the possibility of bringing effective therapy to
millions of patients in their own homes. Experimental results
reveal that the proposed controller reduces the average converged
error norm to 31.3% of that obtained using existing model-based
ILC.

Index Terms—Iterative Learning Control, Functional Elec-
trical Stimulation, Multiple Model Switched Adaptive Control,
Stroke Rehabilitation, Electrode Arrays

I. INTRODUCTION

S
TROKE is a leading cause of disability worldwide, with

over 12 million new cases each year [1]. Up to 80% of

stroke survivors suffer from upper limb impairment [2], and

only 11% of patients fully recover dexterity [3], impacting

their lives in numerous ways; over 50% cannot manage per-

sonal hygiene (bathing, toilet use, grooming) independently,

and 40% need help with dressing and feeding [4]. Move-

ment can be regained through continued repetitive practice

of functional tasks, which strengthens neural connections in

the brain (Hebbian learning [5]). Patients typically receive

half an hour of conventional therapy, three times per week

[6], which involves a physiotherapist manually assisting their

movement. This is far less that the three hours of daily therapy

recommended by clinical guidelines [7], and results in 62%
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of people with severe impairment failing to regain dexterous

hand motion within six months [3].

Assistive technologies can potentially solve this problem by

providing high doses of therapy at low cost. The most common

is functional electrical stimulation (FES) [8], which stimulates

nerves using surface electrodes to artificially contract the

underlying muscles. FES for upper limb rehabilitation after

stroke has been shown to be clinically-effective [9], [10], and

cost-efficient [11]. There are many commercial FES systems

such as MyndMove (MyndTec Inc, ON, Canada), but they

all require the user to position several large electrodes each

time they don the system, often taking 10 minutes. They are

typically open-loop and can only achieve crude movements.

Researchers have begun to address the limitations of com-

mercial devices by developing transcutaneous electrode arrays

comprising multiple electrode pads integrated in a single

structure [12]–[15] (an example is shown in Fig. 1a)). These

are able to selectively stimulate the numerous muscles needed

for hand movement [16]. Most controllers mimic the way a

physiotherapist manually positions electrodes by automatically

cycling through different pad locations until a satisfactory

response is achieved (measured using angle sensors). This

set-up procedure takes 10-15 minutes each time it is used,

and stimulation is then applied at the optimum location using

open-loop or triggered control [17]–[19].

More sophisticated FES array controllers have improved

tracking accuracy of functional movements. A recurrent fuzzy

neural network was able to accurately produce a range of hand

movements but required 45 minutes to set-up and train each

time it was used [20]. It also required impulsive inputs that

would be uncomfortable for patients. The highest accuracy was

achieved using iterative learning control (ILC), which updated

the FES array signals using data from repeated attempts at the

task [21], [22]. ILC’s ability to learn over successive ‘trials’ of

a tracking task matches the repetitive nature of rehabilitation,

and it has previously proved successful in five clinical trials

with stroke participants [23]. When ILC was applied to FES

arrays, it assisted simple hand movements (pointing, pinching,

opening) which were chosen based on clinical need since

patients typically cannot extend their wrist and fingers. The

ILC update required a model, and so identification tests were

performed between each trial. This involved stimulating all 24

electrode array elements individually and fitting a local linear

model to the resulting joint angular movements. After three

trials of ILC the mean joint angle error was reduced to below

5◦ for the 10 participants tested [15]. Unfortunately the process

took over 10 minutes for each gesture.

The problem facing all these controllers is that the muscle

dynamics change rapidly, and are very sensitive to array
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position that inevitably changes from day to day. The system

dynamics and the task are both complex: [24] reports there

are 17 grasp types used in daily activities, illustrating the gap

between current systems and a practical clinical solution.

This paper makes several contributions to solve the problem

of FES array control, including:

• The first comprehensive model of an FES array applied

to an artificially activated musculoskeletal system is de-

veloped.

• Robust performance bounds are derived for a general

class of ILC updates applied to the system. These extend

previous robustness results by allowing the ILC update

to vary between trials (thereby matching the ILC updates

used for FES arrays [15]).

• The effect of array misalignment is modelled and its detri-

mental effect on system robust performance is quantified.

• A control scheme is developed to correct for misalign-

ment, which maximises robust performance. This is the

first controller to tackle array misalignment aside from

[21], which dealt with only the simple case of translation

by an integer number of pads.

• The resulting ILC update is then embedded in a multiple

model switched adaptive framework. This new architec-

ture allows ILC to automatically switch between a set of

models that are designed in advance to capture all possi-

ble uncertainty. This enables it to maintain high accuracy

despite changing muscle dynamics and array positions.

This ‘estimation-based multiple model ILC’ (EMMILC)

framework extends the authors’ previous implementation

[25], [26] to include nonlinear dynamics, and provides

guaranteed performance over an uncertainty space that is

defined by the designer. The analysis uses the gap metric,

a well-known measure of difference between plants that

does not impose structural assumptions on dynamics. This

is the first multiple model ILC framework to provide

guaranteed performance bounds for an unstructured un-

certainty space specified by the designer.

• Numerical results applying EMMILC to a realistic FES

array model are presented for hand and wrist motion

control. These confirm higher accuracy than all existing

controllers, while requiring no model identification (after

a single initial set-up session). Experimental results sim-

ilarly confirm higher accuracy than existing controllers.

These contributions not only solve the FES array problem, but

can also be applied to a wide variety of systems including

EMG arrays and implantable intracortical microelectrodes.

They enable high tracking accuracy to be achieved whilst re-

moving the need for model identification and controller tuning

that prevents widespread transference to clinical practice or

home use. The EMMILC architecture therefore has utility to

improve any practical application of ILC.

This paper is structured as follows. Section II defines

the control problem and introduces a comprehensive model

of the hand and wrist stimulated by an FES array. Robust

performance bounds are derived in Section III. Section IV

shows the performance degradation caused by misalignment,

and develops an optimal compensation controller. Section V

presents the non-linear EMMILC framework, which delivers

guaranteed tracking performance for any system dynamics

belonging to a specified plant uncertainty set. A detailed

design framework is provided to realise practical efficacy and

is evaluated numerically and experimentally in Sections VI

and VII respectively, before Section VIII concludes the paper.

a)                          b)

Mj

Fig. 1. (a) Surface array overlaying muscles, (b) coordinates of pad i and
muscle j with neuromuscular junction Mj .

II. PROBLEM DESCRIPTION

The aim of rehabilitation is to assist the patient to complete

a functional movement over multiple attempts. The move-

ment is defined by selecting q clinically-relevant joint angles

y ∈ Lq
2[0, T ] and defining a corresponding reference trajectory

yd ∈ Lq
2[0, T ] that the patient must track over a finite test

duration T . One or more FES electrode arrays are positioned

over the muscles that must be assisted to help the patient

complete the movement.

FES electrode arrays are composed of n separate electrode

pads, that are arranged in fixed pattern. Pads are usually

arranged in a grid rather than being aligned with muscle loca-

tions, giving the clinician freedom to adjust which electrodes

are active based on the patient’s response. This also removes

the need to manufacture personalised array geometries for

each patient, and then place them exactly over the intended

muscles. Arrays are typically printed on polycarbonate and

have a hydrogel layer that is placed on the surface of the

skin, although fabric arrays are also emerging. Over the test

duration a sequence of electrical pulses, u ∈ Ln
2 [0, T ], is

applied to these electrodes in order to generate an electric field

to artificially enervate the underlying muscles. This causes

them to contract and actuate joints that are connected to the

muscles via tendons. A full model is derived next.

A. Hand and Wrist Model Structure

The dynamics of the electrically stimulated hand and wrist

consist of four key components: the electrode array, the

muscle dynamics, the non-linear tendon network, and the

biomechanical rigid body dynamics [27]. A model of an FES

array has been proposed in previous literature, but without

formal justification. This is provided next:



3

Definition 1: Consider an n pad FES array, where the ith
pad has a centre position xi = (xi

1, x
i
2) and receives the

stimulation sequence, ui(t) at time t. Let the array be placed

over l underlying muscles, each with a neuromuscular junction

with surface Mj defined in the same coordinate system, as

shown in Fig. 1b). Then the enervation, vj(t), j = 1, . . . , l,
delivered to these muscles is given by

v(t) = Au(t), (1)

where the fixed matrix A ∈ R
l×n ≥ 0 has elements

Aj,i =

‹

Mj

κ

‖x− xi‖2
︸ ︷︷ ︸

Ei(x)

dx1dx2, j = 1, . . . , l (2)

i = 1, . . . , n

in which Ei(x) denotes the electric field at point x = (x1, x2)
due to the ith electrode pad, and κ is a constant.

Proof. See Appendix A. �

The force generated by the jth muscle in response to

enervation vj(t) can be accurately captured by a Hammerstein

structure, comprising a static function hIRC,j(vj(t)) which

models the isometric recruitment curve (IRC), cascaded with

linear activation dynamics (LAD), denoted HLAD,j [28]. A

bounded multiplicative term F̂m,j(y(t), ẏ(t)) is also required

to model the effect of joint angle and joint angular velocity

on the active force fj(t) [29]. The resulting force f̂j(t) then

feeds into a tendon network which develops a moment about

each joint angle given by

τ(t) = R(y(t))f̂(t), (3)

where element (i, j) of moment arm matrix R(y(t)) is equal

to
dEj(yi)

dyj
, in which continuous function E is the associated

tendon excursion defined in [30]. Moment vector τ(t) then

actuates the passive rigid body dynamics of the system which

take the standard form

M(y(t))ÿ(t) + C(y(t), ẏ(t)) +K(y(t), ẏ(t)) = τ(t) (4)

where M(·) denotes the inertia matrix, C(·, ·) is the Coriolis

matrix, and K(·, ·) captures gravity, joint stiffness, damping

and friction effects.

The overall along-the trial system mapping is hence

G∗ : Ln
2 [0, T ] → Lq

2[0, T ]

: u 7→ y : y = HRBFmHLADhIRCAu (5)

with elements defined by the operators

A : Ln
2 [0, T ] → Ll

2[0, T ] : u 7→ v : v = Au

hIRC : Ll
2[0, T ] → Ll

2[0, T ] : v 7→ w : wj = hIRC,jvj

HLAD : Ll
2[0, T ] → Ll

2[0, T ] : w 7→ f : fj = HLAD,jwj

Fm : Ll
2[0, T ] → Lq

2[0, T ] : f 7→ τ : τi =
∑

j

Fm,i,jfj

where Fm,i,j = Ri,j(y)F̂m,j(y, ẏ), j = 1, . . . , l, and

HRB : Lq
2[0, T ] → Lq

2[0, T ] : τ 7→ y

: ÿ = M(y)−1(τ − C(y, ẏ)−K(y, ẏ)) (6)

This system is summarised in Fig. 2.

Fig. 2. Hand and wrist system G∗ showing underlying structure.
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Fig. 3. ILC feedforward configuration, applied to true plant G∗. The dashed
line denotes trial-to-trial memory.

B. Tracking Objective

The rehabilitation control objective is for the joint angles

y, generated by system (5), to track the reference signal

yd ∈ Lq
2[0, T ]. ILC does this by performing repeated attempts,

termed ‘trials’, in which the FES input u is updated using data

from the previous trial. The subscript k = 1, 2, . . . is therefore

introduced on each signal to denote the trial number, producing

the system shown in Fig. 3. Here u0,k(t), y0,k(t) are external

disturbances acting on the system input, uk, and output, yk.

The most common form of ILC update has form

vk+1 = vk + Lkek, (7)

in which ek = yd + y0,k − yk is the tracking error and Lk :
Lq
2[0, T ] → Ln

2 [0, T ] is a suitably chosen learning operator

(see, e.g. [31]). Since the true dynamics are unknown, design

of Lk is based on an assumed model G. A common choice is

to design Lk to satisfy the operator norm bound

‖I − LkGk‖ < 1, ∀k ∈ N+ (8)

where Gk is the linear approximation of the system dynamics

about operating point uk, i.e. G|uk
u := G(u+uk)−Guk. If (8)

holds, it is well-known that the system will then monotonically

converge to the minimum error, e.g.

lim
k→∞

ek(t) = 0, t ∈ [0, T ]. (9)

provided the true system is linear, n = q, and there is no

model error or disturbance. There are also robustness results

that specify the allowable model uncertainty for convergence

to minimum error, but only for special forms of Lk, i.e. P-

type, gradient and Newton ILC [32] or for a fixed Lk [33]. For

general Lk, and arbitrary true system G∗ dynamics, there is no

guarantee that applying ILC law (7) will result in convergence.

The next section addresses this by establishing conditions

for convergence using a general measure of plant mismatch.

This shows how Lk can be selected to maximise robust

performance.
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Fig. 4. ILC feedback configuration represented in lifted domain, with plant
input and output (i = 1), disturbances (i = 0) and observations (i = 2).

III. ROBUST PERFORMANCE

The nonlinear gap δ is an established measure of the

distance between two systems, which is extensively used in

the field of robust control [34]. It enables stability analysis to

be carried out without placing restrictive assumptions on the

structure of the uncertainty [35]. To apply gap based robust

stability results to ILC, it is first necessary to reformulate

the finite-duration, t ∈ [0, T ], along-the-trial feedforward

dynamics of Fig. 3 to take the conventional feedback form

shown in Fig. 4. This is done by introducing lifted signal

spaces

yi ∈ Y, ui ∈ U , wi = (ui, yi)
⊤ ∈ U × Y (10)

for the disturbances, plant and controller, i = 0, 1, 2 respec-

tively, and

ȳ0 ∈ Y, ū0 ∈ U , w̄0 = (ū0, ȳ0)
⊤ ∈ U × Y (11)

for the external biases. Using the lifted spaces U = Ln
2 [0, T ]×

N, Y = Lq
2[0, T ] × N, the signals appearing in Fig. 3 can be

packaged as

uk = u1(k), vk = u2(k), u0,k = u0(k), 0 = ū0,

yk = y1(k), ek = y2(k), y0,k = y0(k), yd = ȳ0, (12)

for k ∈ N+. The plant and ILC dynamics over t ∈ [0, T ] of

the kth trial are then expressed equivalently as a single time

instant of the ‘lifted’ systems

Ḡ∗ : U → Y : u1 7→ y1 : y1(k) = G∗u1(k) (13)

and

C̄ : Y → U : y2 7→ u2 : u2(k + 1) = u2(k) + Lky2(k). (14)

Having reformulated ILC in standard feedback form, gap-

based robustness analysis can now be applied [35]. The

dynamics of closed-loop system [Ḡ∗, C̄] are governed by the

parallel projection operator

ΠḠ∗//C̄ : U × Y → U × Y : (w0 + w̄0)
⊤ 7→ w1 (15)

mapping external disturbances to the internal plant sig-

nals. Closed-loop stability is defined using the biased norm

‖w1‖w̄1
= ‖w1 − w̄1‖ which measures the distance of

internal plant signals w1 from their nominal operating point

w̄1 := ΠḠ∗//C̄w̄0. This leads to the definition:

Definition 2: ILC system [Ḡ∗, C̄] is said to be gain stable

with respect to the external bias w̄0 = (0, yd)
⊤ if there exists

a scalar 0 < M < ∞ such that

‖ΠḠ∗//C̄‖w̄0
= sup

w∈U×Y

‖ΠḠ∗//C̄w −ΠḠ∗//C̄w̄0‖

‖w − w̄0‖
< M.

(16)

To examine ILC robust performance, let the system used to

design the ILC update be defined as

Ḡ : U → Y : u1 7→ y1 : y1(k) = Gku1(k), (17)

then the following theorem gives conditions under which the

ILC update designed using model (17) is able to stabilise the

true plant Ḡ∗ defined in (13).

Theorem 3: Let ILC update C̄ (14) be designed using model

Ḡ such that condition (8) holds. Then the true closed-loop

system [Ḡ∗, C̄] is BIBO stable if the gap1 satisfies

δ(Ḡ∗, Ḡ) < ‖ΠḠ//C̄‖
−1
w̄0

. (18)

where the parallel projection operator norm ‖ΠḠ//C̄‖w̄0

≤ sup
k∈N+

∥
∥
∥
∥

(

I
Gk

)∥
∥
∥
∥

(

1 +
supk∈N+

(‖Lk‖+ ‖LkGk‖)

1− supk∈N+
‖I − LkGk‖

)

. (19)

The converged signals are then bounded as

‖ΠḠ∗//C̄‖w̄0
≤‖ΠḠ//C̄‖w̄0

1 + δ(Ḡ∗, Ḡ)

1− ‖ΠḠ//C̄‖w̄0
δ(Ḡ∗, Ḡ)

. (20)

Proof See Appendix B. �

The gap δ(Ḡ∗, Ḡ) in (18) can be related to how well the

model Gk captures the true dynamics G∗ at each operating

point using the next theorem.

Theorem 4: The nonlinear gap δ(Ḡ∗, Ḡ) between the true

plant Ḡ∗ and the sequence of linear models Ḡ can be directly

related to individual linearisations using

δ(Ḡ∗, Ḡ) ≤ sup
k∈N+

δ(G∗, Gk) ≤ sup
‖u‖ 6= 0,
k ∈ N+

‖(G∗|uk
−Gk)u‖

‖u‖
.

(21)

Proof Given in [33]. �

Hence δ(Ḡ∗, Ḡ) can be replaced throughout Theorem 3

by either the along-the-trial form supk∈N+
δ(G∗, Gk) or the

operator bound sup ‖u‖ 6= 0, k ∈ N+

‖(G∗|uk
−Gk)u‖

‖u‖ . This limits

the maximum deviation that linearisation Gk can take from

the true dynamics about each ILC update uk.

Theorem 3 states that ILC stabilises a ‘ball’ of plants with

radius ‖ΠḠ//C̄‖
−1
w̄0

centred around Ḡ, as shown in Fig. 5a).

If the right-hand side of ILC convergence condition (8) is

small, the size of the ball increases but there is a trade-off with

the size of ‖Lk‖ and ‖LkGk‖. Overall robustness is dictated

by the ‘worst’ model used in the set {Gk}. Inequality (20)

then gives the resulting tracking accuracy; it bounds the plant

signals from their ideal, disturbance free, values since ‖w1 −
w̄1‖ ≤ ‖ΠḠ∗//C̄‖w̄0

‖w0‖.

IV. ELECTRODE ARRAY MISALIGNMENT

The largest source of error reported in clinical trials using

FES arrays is due to difficulty in placing them and the resulting

misalignment [36], [37]. If the wrong muscles are stimulated,

the intended movement may be impossible to achieve. Its

effect is so detrimental that a full re-identification of the model

is often performed each time the electrode array is placed on

a patient undergoing rehabilitation.

1The gap bias has been suppressed for notational simplicity.
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Fig. 5. a) Uncertainty space showing stability region using an ILC update
designed using model Ḡ (true plant Ḡ∗ must be in the circle for [Ḡ∗, C̄] to be
stable), b) Condition (3), Theorem 6: stability region for pure misalignment

(misaligned true plant Ĝ must be in the circle).

Fig. 6. (left) Array misalignment by translation z and rotation θ, with (right)
corresponding geometry.

This section develops the first solution to the array mis-

alignment control problem. To do this, the model array mis-

alignment is modelled and its effect on robust stability is

quantified. An augmented control strategy is then developed

that minimises the model mismatch and thereby recovers the

original nominal controller properties. The starting point is to

define the effect of misalignment on the system dynamics.

Definition 5: Suppose the electrode array structure of Defi-

nition 1 is misaligned by applying a translation z and rotation

θ, as shown in Fig. 6. Then the array model (1) is replaced by

v(t) = Â(z, θ)u(t) (22)

where Â(z, θ) has elements

Â(z, θ)j,i =

‹

Mj

κ

‖x− (Rθxi + z)‖2
dx1dx2 (23)

where Rθ =
[
cos θ − sin θ
sin θ cos θ

]

is the 2D rotation matrix.

The following theorem computes the performance of a

controller designed using model Ḡ, but instead of being

applied to the intended system G∗ of (5), (13), it is applied to

the misaligned system

Ĝ : U → Y : u1 7→ y1

: y1(k) = HRBFmHLADhIRCÂ(z, θ)u1(k). (24)

Theorem 6: Let ILC update C̄ (14) be designed using

model Ḡ (17) such that (8) holds. If it is then applied to

the misaligned array system Ĝ (24), the resulting closed-loop

0
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Fig. 7. Gap δ(Â(z, θ), A) for pure horizontal translation and pure rotation
alignment using the same array geometry used in clinical trials [23]. (4 × 6
array, 2cm × 1.5cm pads.

system [Ĝ, C̄] is BIBO stable if any of the following conditions

hold:

(a) The gap between model and misaligned systems satisfies

δ(Ĝ, Ḡ) < ‖ΠḠ//C̄‖
−1
w̄0

, (25)

(b) the gap between aligned and misaligned ‘true’ systems

satisfies

δ(Ĝ, Ḡ∗) < ‖ΠḠ//C̄‖
−1
w̄0

− δ(Ḡ∗, Ḡ), (26)

(c) or the misaligned array geometry satisfies

δ(Â(z, θ), A) <
‖ΠḠ//C̄‖

−1
w̄0

− δ(Ḡ∗, Ḡ)

‖HRBFmHLADhIRC‖
. (27)

Proof. See Appendix C. �

In all three conditions (a)-(c), the term ‖ΠḠ//C̄‖w̄0
can be

substituted by the RHS of (19) which is readily computable.

Condition (a) is the basic robustness margin of Theorem 3

but now applied to the misaligned system Ĝ instead of Ḡ∗.

Conditions (b) and (c) bound the misaligned and aligned

systems and so directly quantify the effect of misalignment

(i.e. the gaps do not involve the model). In conditions (b),

(c) the term ‖ΠḠ//C̄‖
−1
w̄0

− δ(Ḡ∗, Ḡ) represents the ‘surplus

robustness radius’ that is available after the ILC update is

applied to the aligned true plant G∗. This defines the maximum

misalignment that can be tolerated, and is illustrated in Fig.

5b). In practical terms, if the ILC controller is robust and/or

the model Ḡ is close to the aligned system Ḡ∗, then there

is more margin available to accommodate misalignment. The

tracking accuracy of the misaligned system can be computed

by (20) with G∗ replaced by Ĝ.

Theorem 6 shows that the stability and tracking performance

of controller C degrades as the misalignment increases. To

illustrate this, Fig. 7 shows plots of δ(Â, A) for ranges of

array rotation and translation that typically occur in FES exper-

iments with stroke patients [37] and unimpaired participants

[36]. It is obvious that the gap approaches its maximum of 1

with only small amounts of misalignment.
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A. Realignment Controller

If the array misalignment (θ, z) is known, it is possible to

adjust the FES control signal to correct for it. The next result

addresses this by expanding the control action to ameliorate

the effect of misalignment and recover robust stability bounds.

Theorem 7: Let ILC update C̄ (14) be designed for an

aligned true plant using model Ḡ such that convergence

condition (8) holds. Suppose the true plant is then misaligned,

but the ILC update is modified to the form

C̄ : Y → U :y2 7→ u2 : u2(k) = T (z, θ)v(k),

v(k + 1) = v(k) + Lky2(k) (28)

where

T (z, θ) := Â†(z, θ)A (29)

is a ‘realignment’ mapping. In this case the misaligned system

[Ĝ, C̄] is stable if any of the conditions (a)-(c) in Theorem

6 hold, but with δ(Ĝ, Ḡ) replaced by δ(ĜT (z, θ), Ḡ) and

δ(Â(z, θ), A) replaced by δ(Â(z, θ)T (z, θ), A). Moreover, the

form (29) minimises both these gaps, i.e. T is the optimiser

min
T∈Rl×n

δ(ĜT (z, θ), Ḡ) and min
T∈Rl×n

δ(Â(z, θ)T (z, θ), A)

(30)

and hence maximises the robust stability bounds. Finally, the

choice (29) also maximises the tracking accuracy.

Proof: See Appendix D. �

The update (28) comprises two parts: The first is exactly the

same standard ILC algorithm as previously employed in (14)

which uses the tracking error y2 to update the control action.

The second is the mapping T (z, θ), which is applied to the

ILC control action in order to correct for the misalignment,

e.g. if the array was physically misaligned by 1cm (z = 1cm),

then the mapping implements (as closely as possible) a shift

in the FES pattern of -1cm to correct for it.

Unfortunately the realignment operator T (z, θ) requires

knowledge of the misalignment which is typically unknown as

it is caused by inevitable day-to-day variation in placement by

patients or carers. This issue will be solved in the next section,

by using controller (28) within a multiple model structure.

By designing models with a variety of different misalignment

(values of z, θ), the framework will automatically choose the

most appropriate based on previous data. Therefore exact

knowledge of the misalignment will no longer be required.

V. EMMILC STRUCTURE

EMMILC was introduced in [25] and builds on the multiple

model switched adaptive control (MMSAC) framework of

[38]. This section applies it to the FES array system defined in

Section II-A. The EMMILC architecture first requires that a set

of m candidate plant models G = {Ḡ1, . . . , Ḡm} is designed

with associated candidate ILC controllers C = {C̄1, ..., C̄m}.

Each model has form (17) and is mapped to a controller of

form (28) by the control design operator K : Ḡi → C̄i.

Switching between controllers is determined using a bank of

estimators, X = {X1, ..., Xm}, which compute a residual for

each plant model in G. Each residual measures how closely

a particular model matches the measured signals (u2, y2),

Fig. 8. EMMILC block diagram showing true plant Ḡ∗, controller set
{C̄i}, estimator bank {Xi}, with closed-loop [Ḡ∗,K(Gq)], q(k) :=
argmini r

λ
i (k).

and the controller corresponding to the model with smallest

residual is switched into closed-loop. Fig. 8 shows the overall

structure.

Based on the underlying theory in [25], there are two

conditions that must be satisfied to guarantee stability of the

EMMILC system:

(i) Estimator granularity

∃ Ḡi ∈ G, s.t. δ(Ḡ∗, Ḡi) < ρ(G, C,U), (31)

(ii) Stabilisation of uncertainty space

∃ C̄i ∈ C, s.t. ‖ΠḠ//C̄i
‖w̄0

< ∞ ∀Ḡ ∈ U , (32)

where ρ(·) is defined explicitly in [25]. These ensure that the

models {Ḡ1, ..., Ḡm} are sufficiently close together, and that

there exists at least one controller within the set C able to

stabilise any plant within the uncertainty space, as illustrated

in Fig. 9.

Fig. 9. EMMILC conditions: a) Uncertainty set U covered by gap balls of
radius ρ. b) For every plant Ḡ ∈ U there exists a stabilising controller C̄i ∈ C.

Condition (ii) is readily verified by applying Theorem 3 to

each controller in C, and the gap measurement in condition (i)

can be computed using (21). If these hold, then the tracking

error is bounded as

‖w2‖w̄2
< η(G, C,U) (33)

where η(·) is defined in [25].
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A. Estimator design

EMMILC supports either infinite or finite horizon estima-

tors, both encompassed by the general form Xλ
i : (u2, y2)

⊤ →
rλi , which computes the size of the smallest disturbance esti-

mate (u0, y0) needed to explain the observed signals (u2, y2)
over trial horizon [k − λ, k] under the assumption that model

Ḡi is the true plant. Let N
[a,b]
i (u2, y2) be the set of all

possible disturbances compatible with Ḡi and observed signals

(u2(k), y2(k)) over trial a, a+1, . . . , b. Then the residual for

model Ḡi is computed as

rλi (k) := inf
w0

{r ≥ 0 | r = ‖w0‖, w0 ∈ N
[k−λ,k]
i (u2, y2)}

(34)

The next theorem shows how this can be computed for both fi-

nite and infinite horizon cases, and provides a computationally

tractable implementation.

Theorem 8: Residual computation (34) is solved recursively

for the infinite horizon case by

rki (k) = ‖rk−1
i (k − 1), r0i (k)‖, r0i (0) = 0, (35)

and for the finite horizon case by

rλi (k) =

√
√
√
√

λ∑

j=0

(r0i (k − j))2 (36)

where the residual calculation for only trial k is

r0i (k) = inf
w0

{r ≥ 0 | r = ‖w0‖, w0 ∈ N
[k,k]
i (u2, y2)}. (37)

If the lifted candidate model Ḡi has unlifted form realised on

trial k by the discrete state-space triple {Ai(t), Bi(t), Ci(t)},

running over t = 0, · · · , N , then residual (37) can be com-

puted as

r0i (k) =

[ N∑

t=0

‖yd(t)−ek(t)−Ci(t)x̂(t)‖
2
[Ci(t)Σ(t)Ci(t)⊤+I]−1

] 1
2

(38)

with x̂(t) generated by the extended Kalman filter system

x̂(t+ 1/2) = x̂(t) + Σ(t)Ci(t)
⊤[Ci(t)Σ(t)Ci(t)

⊤ + I]−1

· [yd(t)− ek(t)− Ci(t)x̂(t)] (39)

Σ(t+ 1/2) = Σ(t)− Σ(t)Ci(t)
⊤[Ci(t)Σ(t)Ci(t)

⊤ + I]−1

· Ci(t)Σ(t) (40)

x̂(t+ 1) = Ai(t)x̂(t+ 1/2) +Bi(t)vk(t) (41)

Σ(t+ 1) = Ai(t)Σ(t+ 1/2)Ai(t)
⊤ +Bi(t)Bi(t)

⊤, (42)

where x̂(0) = 0, Σ(0) = Bi(0)Bi(0)
⊤.

Proof This follows from [38] and the deterministic interpre-

tation of the Kalman Filter, see e.g. [39], [40]. �

B. EMMILC design procedure

To satisfy EMMILC condition (ii) using Theorem 3 means

selecting a set of candidate models {Ḡi} with corresponding

controllers {C̄i}, and then ensuring that the union of their gap

balls (center Ḡi, radius ‖ΠḠi//C̄i
‖−1
w̄0

) covers the uncertainty

space U . Condition (i) is similar, but imposes an upper limit

on the minimum distance between each candidate model. To

simplify the two conditions, they can be combined into a single

condition:

∃ Ḡi ∈ G s.t. δ(Ḡ∗, Ḡi) < α‖ΠḠi//C̄i
‖−1
w̄0

∀Ḡ∗ ∈ U (43)

where 0 < α ≤ 1 is a tunable gain chosen by the designer.

When α = 1, this satisfies condition (ii) as it states that

the gap balls must cover U and have a maximum radius

of ‖ΠḠi//C̄i
‖−1
w̄0

. Reducing α shrinks the radius of the gap

balls, requiring more, closely packs balls. As the plant models

become closer and closer, there will always come a point at

which condition (i) will be satisfied. This means there is no

need to calculate ρ, and instead the designer may treat α as a

tunable gain.

Based on this approach, practical implementation of the

EMMILC framework can be summarised as follows.

1) Model structure: Determine a suitable structure of com-

ponents HRB , Fm, HLAD, hIRC , A in (5) to represent

the true plant G∗.

2) Uncertainty space U : Identify a minimum range of

model parameters necessary to capture the possible vari-

ation in the true plant dynamics. For the case of array

misalignment this will be the union of all possible values

of shift z and rotation θ.

3) Controller design procedure: Select a suitable type of

ILC update law (7) for use in the candidate controllers

(28). This should balance robustness (measured by (18))

with convergence (measured by the RHS of (8)).

4) Model set G: Construct a model set G which satisfies (43)

for 0 ≤ α ≤ 1. Smaller values of α will improve robust

performance but will have a higher computational cost

due to an increased number of candidate plant models.

5) Estimator set: For each model, implement estimator Xλ
i

using (35) or (36). Select λ to balance sensitivity against

adaptability to changing dynamics.

6) Check performance: Apply EMMILC in practice and if

performance is unsatisfactory reduce the value of α in

Step 4).

VI. NUMERICAL RESULTS

The approach is now applied to a realistic simulation of

the human hand [41]. The model contains l = 6 muscles,

namely the extensor communis (EC), extensor carpi radialis

brevis (ECRB), extensor indicis (EI), extensor carpi ulnaris

(ECU), flexor digitorum profundus (FDP), and flexor digito-

rum superficialis (FDS). The q = 2 outputs comprise the wrist

and metacarpophalangeal (MCP) joints. Stimulation is applied

using a 8×6 element electrode array, giving a total of n = 48
elements. The pad dimensions of 2cm × 1.5cm match those

used clinically [15], and combine with neuromuscular junction

positions to give array operator A. The hIRC form was chosen

as

wj = a1
ea2vj − 1

ea2vj + a3
. (44)

which accurately captures muscle dynamics using parameters

a1, a2, a3 ∈ R [28]. Operators HLAD,j were modelled as

second order, critically damped systems with natural frequency

ωn. The forms of M(y), C(y, ẏ), and K(y) matched those

given in [29], [42].
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Fig. 10. Uncertainty space, candidate model set G distribution, and location
of true plants (indicated by red crosses).

Simulations took u0, y0 as white Gaussian noise with a

signal-to-noise ratio of 30 in order to replicate previous clinical

trials [37]. The reference was chosen as yd,1 = 66°, yd,2 = 53°

to correspond to a pinch posture [15].

A. EMMILC Design

After establishing the model structure, the next step is

to define the uncertainty space U . The investigation focuses

on whether EMMILC can address the array misalignment

problem, and therefore the uncertainty is restricted to only

array misalignment parameters. This enables clearer conclu-

sions to be drawn that do not involve other, less destabil-

ising, sources of uncertainty (fatigue, spasticity etc) which

will be investigated separately. Translational uncertainty was

considered, with a horizontal misalignment range between -

6cm and +6cm, and vertical misalignment range between -4cm

and +4cm. Hence the parameterised uncertainty space is U :=
{Ĝ given by (24) | z = (zx, zy), zx ∈ [−6, 6], zy ∈ [−4, 4]}.

From (28), the control design procedure, K, maps each

Ḡi ∈ G to

C̄i : Y → U :y2 7→ u2 : u2(k) = T (z, θ)v(k),

v(k + 1) = v(k) + Lk,iy2(k). (45)

Gradient ILC was selected due to its favourable robustness

properties, so that learning operator Lk,i = γ(Gk,i)
⊤ with

γ a scalar design parameter. Realignment matrix T (z, θ) is

defined by the form (29).

For the estimator design, the infinite horizon case was

selected and was computed using (35). Preliminary tests were

carried out in which EMMILC design parameter γ was tuned

heuristically to ensure robust convergence within 30 trials.

This was achieved using γ = 10, 000. Parameter α in (43) was

tuned to give a high density of distinct models. The resulting

model set distribution is shown in Fig. 10.

Six different misaligned plants were then generated, to

examine the effectiveness of the proposed controller. These

plants were spread evenly across the uncertainty spaces; their

distribution is also shown in Fig. 10.

B. Results

First results using standard ILC are shown. Standard ILC is

the only existing model based controller to have been applied

Fig. 11. Standard ILC applied with a) perfect alignment, and b) six different
misalignment.

to FES electrode arrays, and so is the obvious comparison

with EMMILC. Update (14) was applied to the true plant,

with Lk = γ(Gk)
⊤, where Gk is the local linearisation of the

true plant dynamics (i.e. G∗|uk
). Fig. 11a) shows that the ILC

error norm converges close to the desired reference. This result

assumed exact plant knowledge (i.e. perfect array alignment).

To investigate the effect of misalignment, the A matrix (2)

in the true plant model was exchanged for the misaligned

form Â(z, θ) (23). The model used by the ILC update was

unchanged. When the array was shifted the performance using

the inaccurate model rapidly degraded, as shown in Fig. 11b).

This shows the performance for the six misalignment cases

shown by red crosses in Fig. 10, and reveals that in many cases

the converged error norm is much larger than when the array is

perfectly aligned, and in one case can be seen to diverge. The

average error norm over the final five trials is 0.788, compared

to 0.078 when considering perfect alignment.

Fig. 12a) shows the convergence when EMMILC is used to

control the same six misaligned array cases. Using EMMILC,

each of the cases converges to a consistently smaller error

norm than when using standard ILC. The mean converged

error norm using EMMILC is 0.086, 89% less than that the

value obtained with standard ILC, and comparable to the
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Fig. 12. EMMILC a) performance and b) example of switching signal q for
EMMILC with array misalignment.

performance with perfect array alignment (i.e. Fig. 11a)). An

example of the model switching signal is shown in Fig. 12b),

confirming that EMMILC converges to the optimal model

within seven trials. The next section extends these results by

evaluating EMMILC experimentally.

VII. EXPERIMENTAL RESULTS

The hardware comprises a depth camera (Leap Motion

Controller 2, Ultraleap), user interface software running on a

laptop, a real-time controller running on a Raspberry Pi 4, and

a 64 channel FES electrode array and electronics embedded

in a sleeve. Data are transmitted via wi-fi and the real-time

controller runs at 40 Hz. The frequency and amplitude of each

pulse train are fixed, and the pulse width of each pulse train

is the controlled variable (0 - 300 µs). The components are

shown in Fig. 13 and described further in [43]. The choice

of joint angles (wrist, MCP) and task (pinch posture) match

those of Section VI.

EMMILC will again be compared with standard ILC, as

the only existing model based controller. It will also be

compared against the sequential open-loop control of each

pad, used in [17]–[19], which mimics manual application by

a physiotherapist and is the most prevalent control approach

for FES arrays. Each controller will be applied with varying

Fig. 13. Upper limb stroke rehabilitation hardware.

degrees of array misalignment. For ILC, the mean error norm

over the last five iterations will again be taken.

A. Control Design

Control design mirrors Section VI, but with the addition of

tests to identify muscle locations and a nominal model. The

procedure is as follows:

(i) Sequential open-loop control involves applying a 10 sec-

ond ramp input to each array element and then measuring

the resulting joint motion. To locate the dominant muscle

locations, the two array elements, i1, i2, that produce the

most movement of one angle, and least of the other, are

selected. The optimum stimulation level for each one is

then computed to best attain the specified pinch reference.

(ii) Standard ILC follows the same design as in Section

VI. Model structure HRBHLADhIRC is fitted to the

i1, i2 pad ramp responses, with component HLAD,j again

selected as a critically damped system, hIRC,j as a

constant gain, and HRB(s) = 1
Iss2+Bss+Ks

is chosen

to match [26].

(iii) EMMILC uses the above model structure for each candi-

date model, but adds the array misalignment term Â(z, θ)
specified in (24). The same misalignment uncertainty set

as in Section VI is applied which is sampled to produce

45 candidate models, each with an associated realignment

controller (45). Estimator design follows the approach of

Section VI.

B. Results

Ethics approval was granted by University of Southampton

Ethics and Research Governance Online (ERGO), ID 102462.

Three unimpaired subjects were recruited, as a prerequisite for

later clinical tests with stroke patients.

Results for the sequential open-loop and standard ILC

approaches are shown in Fig. 14 for one participant and those

for EMMILC are in Fig. 15. Seven different array alignments

were tested, with misalignments ranging between zx = ± 3cm

and zy = ± 2cm. The mean error norm over all alignment

conditions and all participants for sequential control is 0.668.

Likewise, the mean error norm over the last five trials of
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TABLE I
ERROR NORM RESULTS FOR THREE CONTROLLERS ((I) SEQUENTIAL

OPEN-LOOP, (II) STANDARD ILC, (III) EMMILC) AND SEVEN DIFFERENT

MISALIGNMENT CONDITIONS (zx, zy).

Array alignment, (zx, zy)
(3, 2) (1.5, 0) (3,−2) (−3,−2) (−1.5, 0) (−3, 2) (0, 0)

(i) P1 0.934 0.601 0.870 0.673 0.624 0.941 0.249
P2 0.840 0.541 0.681 0.776 0.564 0.773 0.311
P3 0.836 0.652 0.836 0.711 0.573 0.810 0.228

(ii)P1 0.802 0.386 0.851 0.667 0.533 0.760 0.149
P2 0.766 0.411 0.781 0.731 0.509 0.871 0.128
P3 0.921 0.456 0.790 0.821 0.672 0.788 0.179

(iii)P1 0.201 0.223 0.241 0.292 0.300 0.331 0.131
P2 0.156 0.121 0.197 0.179 0.167 0.196 0.118
P3 0.178 0.134 0.156 0.201 0.198 0.241 0.104

95% [0.597, [0.049, [0.547, [0.201, [0.049, [0.245, [-0.053,
CI 0.786] 0.467] 0.671] 0.829] 0.649] 0.856] 0.122]
p-value 0.001 0.009 0.009 0.016 0.003 0.000 0.026

standard ILC is 0.618. The mean error norm over the last five

trials of EMMILC is 0.194. This is 71.0% less than sequential

control, and 68.7% less than standard ILC.

A paired sample t-test was performed to test whether the

reduced error norm produced by EMMILC was significant

compared with standard ILC. The ‘95% CI’ row denotes the

95% confidence interval of the difference in error norms for

each alignment, and corresponding p-values are given. Signif-

icant results are highlighted in green. These confirm that the

improvement of EMMILC is significant in all misalignment

scenarios. The improvement compared with sequential open-

loop control are not shown, but are also all significant.

Compared with the numerical results of Section VI, the

accuracy is degraded due to the simple model structure used

and physiological variation. This could be addressed by adding

uncertainty sets for physiological parameters. Note that EM-

MILC only requires a single session for design and then

does not require any tuning or identification tests to maintain

high accuracy. This contrasts with the other controllers that

would require the identification procedure to be repeated on

subsequent sessions to maintain high accuracy. This process

takes over 10 minutes and requires a control engineer, making

it infeasible for clinical or home use. The results therefore

establish the potential of EMMILC to provide effective re-

habilitation in the home, and lay the foundation for clinical

trials.

VIII. CONCLUSIONS AND FUTURE WORK

A solution to the control of FES electrode arrays for hand

and wrist rehabilitation has been developed. This integrates

a comprehensive model, a novel realignment controller to

maximise robust performance, and an extension to multiple-

model switched ILC. The effectiveness of the overall EM-

MILC approach compared with the leading alternatives was

demonstrated using both realistic simulations and experiments.

The results have provided the necessary foundation on

which to conduct experimental tests with stroke patients.

Therefore future work will involve running a clinical feasibility

study with 5-10 neurologically impaired participants.

Fig. 14. Sequential and standard ILC error norm results for participant P1,
with a) perfect alignment, and b) six different misalignments.

APPENDIX A

PROOF OF DEFINITIONS 1 AND 5

The overall charge contribution of the ith electrode is

modelled as a point charge qi applied at its centre (xi, yi),
which generates an electric field whose strength at a point

(xj , yj) is dictated by Coulomb’s law

Ei(xj , yj) =
κ

r2i,(xj ,yj)

qi (46)

where κ ≈ 8.99× 109Nm2C−2 and ri,(xj ,yj) is the distance

between (xj , yj) and (xi, yi) [44]. Due to the principal of

charge superposition, the total electric field strength experi-

enced by muscle j is

v(t) =

n∑

i=1

‹

Mj

Ei(x, y)dxdy. (47)

Denote each element of A as (2) and set ui = qi to get (1).
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Fig. 15. EMMILC error norm results for participant P1, showing a) perfor-
mance for different misalignments and b) example of switching signal q.

APPENDIX B

PROOF OF THEOREM 3

From (14) and the Fig. 4 relations

u2(k + 1) = u2(k) + Lk(y0(k) + yd −Gk(u0(k) + u2(k))

= (I − LkGk)u2(k) + Lk(y0(k) + yd −Gku0(k))

Since u2(0) = 0, this gives rise to the recurrent relation

u2(k) =

k∑

i=1

Zk
k−iLk−i(y0(k − i) + yd −Gk−iu0(k − i))

where Zb
a =

∏b−1
n=a+1(I − LnGn). It follows that

u1(k) =u0(k) +

k∑

i=1

Zk
k−iLk−i(y0(k − i) + yd−

Gk−iu0(k − i)) (48)

and so the projection operators are

(
ΠḠ//C̄w̄0

)
(k) =

(
I
Gk

) k∑

i=1

Zk
k−iLk−iyd, (49)

(
ΠḠ//C̄(w0 + w̄0)

)
(k) =

(
I
Gk

)(

u0(k)+

k∑

i=1

Zk
k−iLk−i(y0(k − i) + yd −Gk−iu0(k − i))

)

(50)

and the biased norm equation is then
∥
∥ΠḠ//C̄

∥
∥
w̄0

= sup
‖w0‖6=0

sup
0≤k≤∞

∥
∥
∥

(
ΠḠ//C̄(w0 + w̄0)

)
(k)−
(
ΠḠ//C̄w̄0

)
(k)

∥
∥
∥

sup0≤k≤∞ ‖w0(k)‖

= sup
‖w0‖6=0

sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)

(
∑k

i=1 Z
k
k−iLk−i(y0(k − i)−

Gk−i)u0(k − i) + u0(k)
)

∥
∥
∥

sup0≤k≤∞ ‖w0(k)‖

(51)

To bound the operator, use the result that
∥
∥ΠḠ//C̄

∥
∥
w̄0

≤ ‖ΠḠ//C̄ |y0=0‖w̄0
+ ‖ΠḠ//C̄ |u0=0‖w̄0

. (52)

The first term on the right-hand side is bounded as
∥
∥
∥ΠḠ//C̄

(
0
y0

)∥
∥
∥
w̄0

= sup
0≤k≤∞

∥
∥
∥

(
I
Gk

) k∑

i=1

Zk
k−iLk−iy0(k − i)

∥
∥
∥

= sup
0≤k≤∞

k∑

i=1

∥
∥
∥

(
I
Gk

)

Zk
k−iLk−iy0(k − i)

∥
∥
∥

≤ sup
0≤k≤∞

k∑

i=1

(∥
∥
∥

(
I
Gk

)

Zk
k−iLk−i

∥
∥
∥ ‖y0(k − i)‖

)

≤

(

sup
0≤k≤∞

k∑

i=1

∥
∥
∥

(
I
Gk

)

Zk
k−iLk−i

∥
∥
∥

)

sup
0≤k≤∞

‖y0(k)‖

≤

(

lim
k→∞

k∑

i=1

∥
∥
∥

(
I
Gk

)

Zk
k−iLk−i

∥
∥
∥

)

sup
0≤k≤∞

‖y0(k)‖

≤ sup
0≤k≤∞

∥
∥
∥
∥

(
I
Gk

)
∥
∥
∥
∥
‖Lk−i‖

(

lim
k→∞

k∑

i=1

∥
∥Zk

k−i

∥
∥

)

×

sup
0≤k≤∞

∥
∥
∥y0(k)

∥
∥
∥.

Then since ‖I − LjGj‖ < 1

lim
k→∞

k∑

i=1

∥
∥Zk

k−i

∥
∥ ≤

1

1− sup0≤k≤∞ ‖I − LkGk‖
(53)

it follows that

‖ΠḠ//C̄ |y0=0‖w̄0

≤
sup0≤k≤∞

∥
∥
∥

(
I
Gk

)∥
∥
∥ sup0≤k≤∞ ‖Lk‖

1− sup0≤k≤∞ ‖I − LkGk‖
(54)
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Repeating for y0 = 0:
∥
∥
∥ΠḠ//C̄

(
u0
0

)∥
∥
∥
w̄0

= sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)(
u0(k)−

k∑

i=1

Zk
k−iLk−iGk−iu0(k − i)

)
∥
∥
∥

≤ sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)( k∑

i=1

Zk
k−iLk−iGk−iu0(k − i)

)∥
∥
∥+

sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)

u0(k)
∥
∥
∥.

Proceeding as before, this results in

‖ΠḠ//C̄ |u0=0‖w̄0

≤

sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)∥
∥
∥ sup

0≤k≤∞
‖LkGk‖

1− sup
0≤k≤∞

‖I − LkGk‖
+ sup

0≤k≤∞

∥
∥
∥

(
I
Gk

)∥
∥
∥.

Substituting this and (54) into (52) yields the final bound

∥
∥ΠḠ//C̄

∥
∥
w̄0

≤ sup
0≤k≤∞

∥
∥
∥

(
I
Gk

)∥
∥
∥

(

1+

sup0≤k≤∞ (‖Lk‖+ ‖LkGk‖)

1− sup0≤k≤∞ ‖I − LkGk‖

)

. (55)

APPENDIX C
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Replacing Ḡ∗ with Ĝ in (18) yields (25), and (26) follows

from the triangle inequality, i.e.

δ(Ĝ, Ḡ) ≤ δ(Ḡ∗, Ḡ) + δ(Ĝ, Ḡ∗). (56)

Then bound the ‘true system’ gap using its definition

δ(Ĝ, Ḡ∗) := inf
Ψ∈Q

sup
x 6= 0

x ∈ dom(Ĝ)

‖(Ψ− I)x‖

‖x‖
(57)

≤ inf
Υ∈Ω

sup
x 6= 0

x ∈ dom(Ĝ)

∥
∥
∥

(
I 0
0 HRBFmHLADhIRC

)

(Υ− I)x
∥
∥
∥

‖x‖

≤ inf
Υ∈Ω

∥
∥
∥

(
I 0
0 HRBFmHLADhIRC

)∥
∥
∥ sup

u 6= 0

u ∈ dom(Ĝ)

‖(Υ− I)u‖

‖u‖

≤ ‖HRBFmHLADhIRC‖δ(Â, A) (58)

in which the set of operators Q := {Ψ : Ĝ 7→ Ḡ∗}, and

Ω := {Υ : Â 7→ A} where Â is the graph of Â(z, θ) and

A is the graph of A. Similarly, the graphs Ḡ∗ :=
{(

u1y1

)

:

y1 = Ḡ∗u1, u1 ∈ U
}

, Ĝ :=
{(

u1y1

)

: y1 = Ĝu1, u1 ∈ U
}

.

Substituting (58) into (56) and rearranging yields (27).

APPENDIX D

PROOF OF THEOREM 7

Fig. 16a) shows the controller form (28) inserted into Fig. 4

with Ĝ as the true plant. The aim is to establish conditions for

stability of this system, given that C̄ is designed to stabilise Ḡ,

Fig. 16. ILC configurations: a) misaligned plant and controller (28), b) aligned
plant with controller (14) designed to stabilise it.

as shown in Fig. 16b). First rearrange the systems of Fig. 16

to the form of Fig. 17, where u0,2 is an addition disturbance.

Stability of Fig. 17a) guarantees stability of Fig. 16a) (since

it is the special case u0,2 = 0). Now apply gap-based stability

Fig. 17. Augmented ILC configurations corresponding to Fig. 16.

analysis to the Fig. 17 augmented systems. The nominal model

of Fig. 17b) has projection operator

ΠḠ′//C̄′ :=

(
u0,1
u0,2

y0 + ȳ0

)

7→

(
u1,1
u1,2
y1

)

(59)

whose norm can be shown to be bounded as

‖ΠḠ′//C̄′‖ =
∥
∥
∥

(
I
Ḡ

)

(1 + C̄Ḡ)−1(I, C̄)
∥
∥
∥ = ‖ΠḠ//C̄‖.

Next, the gap between Ḡ′ and Ĝ′ is defined by

δ(Ĝ′, Ḡ′) = inf
Φ∈Ω

sup
x 6= 0

x ∈ dom(Ĝ′)

‖(Υ− I)x‖

‖x‖

≤ inf
Φ ∈ Ω

u1,1 = 0

sup
x 6= 0

x ∈ dom(Ĝ′)

‖(Υ− I)x‖

‖x‖
= δ(ĜT (z, θ), Ḡ)

where Ḡ′ :=
{(

u1
y1

)

: y1 = Ḡ′u1, u1 ∈ U
}

, Ĝ′ :=
{(

u1
y1

)

: y1 = Ĝ′u1, u1 ∈ U
}

, and Ω := {Υ : Ĝ′ 7→ Ḡ′}.

This yields the stability condition

δ(ĜT (z, θ), Ḡ) ≤ ‖ΠḠ//C̄‖
−1 (60)
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which guarantees stability of Fig. 17a), and hence also Fig.

16a), since it implies δ(Ĝ′, Ḡ′) ≤ ‖ΠḠ′//C̄′‖−1. The property

that T minimises the tracking error bounds can be seen by

substituting δ(ĜT (z, θ), Ḡ) for δ(Ĝ, Ḡ) in (56), and then

inserting into (20) to obtain

‖ΠĜ//C̄‖w̄0
≤

‖ΠḠ//C̄‖w̄0

1 + δ(Ḡ∗, Ḡ) + δ(ĜT (z, θ), Ḡ∗)

1− ‖ΠḠ//C̄‖w̄0
(δ(Ḡ∗, Ḡ) + δ(ĜT (z, θ), Ḡ∗))

which is then minimised by (30). If range(A) ⊆
range(Â(z, θ)), then Â(z, θ)Â†(z, θ)A = A and so

δ(ĜT (z, θ), Ḡ∗) = 0, and the original condition (18) and

robustness bound (20) of Theorem 3 are retained.
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