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1  Introduction

Eyesight is fundamental to human interaction with the envi-
ronment, playing a critical role in navigating and interpret-
ing visual information. However, for the visually impaired, 
even simple day-to-day activities can become challenging, 
potentially leading to physical and mental health issues, 
such as increased risk of accidents, loss of confidence, and 
social isolation [62]. As of 2020, over 1.1 billion individuals 
worldwide have experienced some form of vision loss, with 
projections indicating a significant increase by 2050 [32]. 
These figures underscore the urgent need for accessible and 
effective assistive technologies.

Despite advancements in assistive technologies, sig-
nificant gaps remain in providing visually impaired indi-
viduals with intuitive, -time, and comprehensive solutions. 
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Abstract
This paper introduces a novel system design leveraging Vuzix Blade 2 smart glasses to enhance the mobility and inde-
pendence of visually impaired individuals. The study critically examines existing assistive navigation and object detection 
technologies, identifying their limitations and gaps. The designed system integrates real-time object detection, distance 
estimation, and OCR functionalities, providing auditory feedback through a robust and efficient pipeline. The designed 
application enhances the independence and safety of visually impaired individuals, particularly in navigating university 
campuses. A dataset comprising 15,951 annotated images from the university campus was used for training and evaluation. 
A comparative analysis of three YOLOv8 models (YOLOv8-N, YOLOv8-S, and YOLOv8-M) was conducted, balancing 
accuracy and computational efficiency to optimise system performance. The pipeline also offers a comprehensive frame-
work for developers and researchers to build inclusive systems combining AR, computer vision, and AI. Results show 
high object detection accuracy (precision: 0.90, recall: 0.83) and reliable distance estimation with a minor error of 0.33 m. 
Results demonstrate the system’s capability to detect obstacles within one meter, provide precise distance estimation, and 
convert textual information into speech, validating its potential for real-world applications. This study emphasises the sig-
nificant role of AI-driven solutions in advancing assistive technologies, paving the way for more accessible and inclusive 
navigation systems. Compared with recent assistive systems such as Smart Cane (He in CCF Trans. Pervasive Comput. 
Interact. 5:382–395, 2023), OrCam MyEye (Amore in J. Med. Syst. 47:11, 2023), and IrisVision (Gopalakrishnan in Com-
parison of visual function analysis of people with low vision using three different models of augmented reality devices, 
2024), the proposed system demonstrates superior integration of detection, text recognition, and real-time feedback within 
a lightweight wearable device.
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Many existing tools focus on isolated functionalities, such 
as obstacle detection or text recognition, without seam-
lessly integrating these features into a cohesive system. For 
example, NavCog provides internal navigation support, for 
instance at Pittsburgh Airport, while Moovit focuses mainly 
on public transport by offering route guidance, notifications, 
and travel warnings. Devices such as Ultracane and Mini-
guide, which use sonar-based obstacle detection, can assist 
users in navigating their surroundings but are still limited in 
object detection and -time responsiveness. They are unable 
to track moving obstacles, which can cause confusion dur-
ing travel. This highlights how focusing on a single feature 
does not make users fully independent in their navigation 
[47]. Similarly, OCR tools such as “Seeing AI”, which drew 
inspiration from Microsoft Kinect, rely on manual channel 
switching for detecting & reading various objects & texts, 
limiting their usability in dynamic environments. NAVI, 
which used Microsoft Kinect, was very bulky, needed a 
backpack to carry and had low battery life. Like Ultracane 
and Miniguide, NAVI, which relied on a depth histogram 
for object detection, did not capture the dynamic movement 
of objects[72].

Furthermore, existing object detection systems, includ-
ing those integrated into smart glasses or mobile applica-
tions, often struggle with accuracy in real-time scenarios 
due to hardware limitations and computational constraints. 
Traditional models such as the Histogram of Oriented Gra-
dients (HOG) introduced human detection capabilities that 
supported early navigation systems; however, they lacked 
diversity in object recognition and were limited to detect-
ing humans in static images [15]. Although recent iterations, 
such as YOLOv8 and YOLO-NAS, address these challenges 
by leveraging advanced neural architectures, their imple-
mentation in assistive technologies remains limited [65].

Another critical limitation is the lack of user-centric 
design in these technologies. Many devices require exten-
sive adaptation or training for users, which can be a barrier 
for visually impaired individuals. For instance, “EyeMu-
sic” and “vOICe” convert visual information into auditory 
cues but demand significant learning effort, reducing their 
accessibility [11]. The generated audio representations are 
often slow and information-dense, resulting in high cogni-
tive load and delayed response time during navigation [43]. 
Additionally, both lack object recognition, real-time track-
ing, and semantic understanding, offering only low-level 
perceptual encoding of shapes and brightness rather than 
meaningful environmental context [45].

Also, some solutions, like “Aira,” rely on remote human 
agents who perform manual object identification by observ-
ing the live video stream transmitted from the user’s smart-
phone or smart glasses. These trained agents verbally 
describe the user’s surroundings, read visible text, and assist 

in tasks such as navigation or locating objects within the 
camera’s field of view, introducing latency and privacy con-
cerns [44].

Recent publications have highlighted the potential of 
combining advanced AI models with user-friendly inter-
faces to overcome these limitations. Although recent itera-
tions such as YOLOv8 and YOLO‑NAS leverage advanced 
neural-architecture search and backbone optimisations 
[57], their deployment in assistive technologies for visu-
ally impaired users remains limited due to constraints such 
as device computational power, real-world robustness and 
integration overhead. Recent comparative studies have dem-
onstrated progress toward integrating vision-based assistive 
systems using deep learning and wearable hardware. For 
instance, C. He and Saha [27] proposed a Smart Cane using 
depth cameras for obstacle detection, but lacked OCR or 
auditory feedback. Gopalakrishnan et al. [22] presented Iris-
Vision, which enhances residual vision but offers no object 
classification. Amore et al. [4] evaluated OrCam MyEye, 
highlighting high accuracy in text reading yet a limited field 
of view (45°) and no real-time navigation. In contrast, the 
proposed system integrates YOLOv8-based object detec-
tion, distance estimation, and Azure-based OCR within a 
single wearable framework capable of real-time processing 
on Vuzix Blade 2 smart glasses. This integration addresses 
key shortcomings of existing solutions—particularly the 
lack of multimodal fusion and latency-free feedback—thus 
providing a more holistic assistive experience [1, 2].

Similarly, advances in OCR, such as the use of EAST 
with recurrent neural networks, enable efficient text recog-
nition even under challenging conditions [68]. However, the 
integration of these state-of-the-art technologies into a uni-
fied, accessible solution for visually impaired users is still 
an underexplored area. Therefore, this study aims to answer 
the following question:

RQ: How can a unified assistive system integrate real-
time object detection, OCR, and auditory feedback to 
address the limitations of fragmented solutions in existing 
assistive technologies for visually impaired individuals?

This research presents an integrated application capable 
of running computationally intensive models (YOLOv8) 
efficiently while combining multiple features such as OCR, 
cloud-based text-to-speech, and real-time object detection 
and tracking within lightweight smart glasses. The result is 
a compact, accessible, and user-friendly system that sup-
ports visually impaired users across a variety of real-world 
situations.

Previous assistive devices often struggled with limita-
tions such as the absence of dynamic object tracking and 
restricted accuracy [19, 53]. While advanced models like 
YOLO offered higher detection precision, they demanded 
substantial computational resources, making the systems 
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bulky and difficult to deploy in real time [1, 2]. Moreover, 
most existing applications were designed for specific con-
texts, either indoor or outdoor and offered isolated function-
alities rather than a comprehensive solution [25, 38].

This research seeks to address the previously mentioned 
gaps by developing a mobile application that combines real-
time object detection with OCR functionality. By leverag-
ing cutting-edge technologies like YOLOv8 and Azure AI 
Vision, and training on a custom dataset tailored to a univer-
sity environment, the application aims to provide a seam-
less, intuitive, and efficient solution for visually impaired 
users. The main objective of this project is to develop an 
application for visually impaired individuals to navigate 
safely in the outdoors of a university campus without assis-
tance. Unlike existing fragmented assistive tools, the pro-
posed system provides an integrated and real-time wearable 
solution combining object detection, distance estimation, 
and OCR functionalities, ensuring low latency, enhanced 
autonomy, and improved usability for visually impaired 
users.

This application includes two key features: OCR with 
speech functionality and a safe walk feature that alerts users 
to potential collisions within one meter. The application has 
two primary features. One is OCR with speech functional-
ity, as this feature reads out any text of interest to the user. 
For example, the user can take a picture of a menu in the 
canteen, and the OCR will extract the text, which the speech 
function will read aloud. The second feature is “walk safe”, 
which helps the user navigate safely by updating them about 
potential collisions within one meter. The user can detect 
streetlights, cars, or any individual passing within one meter.

This design empowers visually impaired individuals to 
navigate and manage a wide range of everyday situations, 
such as moving between classrooms, attending conferences, 
reading text, or independently ordering food in a cafeteria. 
While the current application has been trained and opti-
mised for use within university premises, its framework can 
be readily extended to broader environments such as hospi-
tals, workplaces, and other public spaces.

To validate this approach, the remainder of this paper 
is structured as follows: Sect. 2 critically reviews existing 
assistive technologies to clarify the research gap; Sect.  3 
details our integrated system architecture and the compara-
tive evaluation methodology for YOLOv8 variants; Sect. 4 
presents performance results; Sect. 5 discusses implications 
relative to existing systems; and Sect. 6 concludes with lim-
itations and future directions.

2  Literature review

The advancement of assistive technologies has significantly 
improved the quality of life for visually impaired individu-
als. However, limitations in intuitiveness, real-time per-
formance, and the integration of multiple functionalities 
persist. This literature review explores existing technolo-
gies and methodologies relevant to object detection, OCR, 
and their integration into assistive systems while identifying 
gaps addressed by this research.

2.1  Assistive technologies for navigation and object 
detection

Navigation aids have evolved to support visually impaired 
individuals by detecting obstacles and guiding them through 
environments. Early systems, such as the Microsoft Kinect-
powered NAVI, focused on obstacle detection and rec-
ognition, offering mobility enhancements but limited to 
indoor use due to hardware dependencies [72]. Similarly, 
systems like Smart Cane and Haptic Radar employed depth 
cameras and infrared sensors to detect nearby objects, but 
their reliance on specific hardware constrained scalability 
and adoption [33]. Recent innovations in object detection 
have leveraged advancements in deep learning. YOLO 
(You Only Look Once) models have revolutionised real-
time object detection with their speed and accuracy. Earlier 
versions, such as YOLOv3, introduced multi-scale predic-
tions, while YOLOv4 incorporated enhancements like Mish 
activation and spatial pyramid pooling [48]. The latest itera-
tions, including YOLOv8, have further optimised detection 
through anchor-free architectures and efficient backbone 
networks, enabling faster and more accurate detections in 
dynamic environments [65]. Despite these advancements, 
the integration of these models into practical assistive appli-
cations remains limited, primarily due to computational 
constraints and the lack of custom datasets tailored for spe-
cific environments. Table 1 provides an overview of assis-
tive technologies developed over the years, as well as their 
innovations and limitations.

2.2  OCR in assistive applications

OCR technology plays a crucial role in enabling visually 
impaired individuals to interpret textual information. Early 
OCR systems, such as Tesseract, relied on handcrafted 
features and template matching, which limited their per-
formance under varying conditions [54]. Modern OCR 
approaches, including EAST (Efficient and Accurate Scene 
Text Detector) and its integration with neural networks 
like LSTMs, have significantly improved accuracy and 
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to detect objects in real-time, which diminishes its usability 
in dynamic environments. Table  2 summarises significant 
assistive solutions for OCR and navigation, as well as their 
benefits and limitations.

A critical review of Table 2 reveals persistent limitations 
in these technologies. Although innovative, solutions like 
eSight 3 and Eyesynth are prohibitively expensive, limiting 
accessibility for a broader audience. Moreover, devices such 
as Oton Glass focus narrowly on dyslexic users, exclud-
ing a wider population of visually impaired individuals 
who require comprehensive features, including proximity 

robustness in detecting and recognising text in complex 
scenes [69].

Applications such as Seeing AI and TapTapSee utilise 
cloud-based OCR to provide verbal descriptions of visual 
content. While these systems offer high accuracy, they 
are dependent on internet connectivity, making them less 
effective in offline or remote scenarios [47]. Additionally, 
the lack of integration between OCR and real-time object 
detection in these solutions limits their ability to provide 
a holistic assistive experience. For example, Seeing AI 
excels in reading text from images but lacks the capability 

Table 1  Review of assistive technologies
Study Technology Used Innovation Key Features Applications Advantages Disadvantages
[72] Microsoft Kinect NAVI Obstacle detection Navigation systems Low latency Limited to indoor
[47] Project Tango SLAM 

technology
Indoor positioning Drones High accuracy Hardware 

dependent
[25] Depth camera Smart Cane 

system
Obstacle detection BVI navigation Enhanced mobility Specific 

hardware
[68] Project Tango, 

(Phab 2),
haptic actuators

ISANA Indoor wayfinding, 
obstacle detection

BVI navigation Utilises haptic feedback Hardware 
dependent

[38] Tango, Unity Prototype for 
indoor environ-
ment virtual 
replica

Capture user’s move-
ment, continuously 
updated virtual replica

Wayfinding, mobil-
ity assistance

Real-time environment 
mapping

Requires 
game engine 
integration

[33] 3D image 
enhancement

Smart Specs Enhanced 3D percep-
tions with simplified 
images emphasising 
depth

Guidance for VI 
people

Exploits residual vision Limited market 
access

[42] IR-based system, vir-
tual sound guidance

Haptic Radar Obstacle avoidance, 
virtual sound guidance

Pedestrian route 
guidance

Positive after-test 
appraisals

Limited area 
coverage by IR 
sensors

[11] 3D model, ultrasonic-
based motion capture 
system

Virtual Haptic 
Radar

Warning vibrations 
near objects

Tactile-based 
navigation

Introduces virtual tactile 
elements

Bulkiness of 
portable haptic 
interfaces

[67] BLE NavCog 
smartphone 
application

Indoor wayfinding Navigation systems 
for BVI users

Utilises BLE for precise 
indoor navigation

Limited to indoor 
use

[60] Visual‒ auditory 
systems

EyeMusic Sensory substitution Visual-to-auditory 
information 
conversion

Makes visual informa-
tion accessible through 
sound

Requires learning 
and adaptation

[15] Visual‒ auditory 
systems

The classic 
vOICe

Sensory substitution Visual-to-auditory 
information 
conversion

Long-standing, well-
tested solution

User adaptation 
required

[52] 
[37]

Cloud computing, 
image recognition

Seeing AI, 
TapTapSee

Verbal image 
descriptions

Assistive technol-
ogy for the visually 
impaired

Provides verbal descrip-
tions of images using 
remote processing

Dependent 
on internet 
connectivity

[26] Public transport data 
integration

Moovit Real-time public trans-
port guidance

Mobility assistance 
for BVI users

Free, effective, 
easy-to-use

Limited to areas 
with public trans-
port data

[21] GPS, Foursquare’s 
and OpenStreetMap’s 
databases

BlindSquare Speech-based POI 
location

Outdoor navigation 
for BVI users

Designed specifically for 
BVI users

Depends on 
external database 
accuracy

[50] GPS, motion capture 
and orientation 
sensors

Lazzus Intuitive cues about 
POI locations

Outdoor navigation 
for BVI users

Provides verbal informa-
tion about nearby POIs

Paid application

[50] GPS, similar to 
Lazzus

Seeing AI GPS 360° and beam modes 
for POI information

Outdoor navigation 
for BVI users

Incorporates pre-journey 
information

N/A
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less flexible for research-driven or user-specific enhance-
ments. Additionally, the cost remains prohibitively high 
for many users [4]. Comparatively, eSight Eyewear uses a 
combination of high-definition cameras and OLED screens 
to enhance residual vision, but it is more suitable for users 
with partial sight rather than total blindness [40]. IrisVision, 
another contender, relies on a smartphone-based headset 
and provides magnification and scene interpretation but 
lacks integration with OCR or robust object detection pipe-
lines [22].

The overarching challenge lies in developing an afford-
able, real-time OCR solution that seamlessly integrates with 
object detection for comprehensive assistance. Future sys-
tems must bridge this gap by leveraging advanced AI models 
and optimising for low-resource devices, enabling broader 
adoption among visually impaired populations. Recent 
evaluations of wearable assistive technologies highlight a 
growing shift toward AI-driven, head-mounted systems that 
enable real-time scene interpretation, object recognition, 
and reading assistance.

detection and navigation. While Aira offers guided assis-
tance, its dependency on remote human agents introduces 
latency and privacy concerns, highlighting the need for 
autonomous systems.

Recent advancements in OCR research have focused 
on improving robustness under diverse conditions. For 
instance, models combining EAST with LSTM networks 
have demonstrated significant potential for end-to-end 
text recognition, particularly in cluttered or low-light sce-
narios (Zhang et al., 2020). Additionally, advancements 
like Google’s Vision AI provide scalable and efficient OCR 
capabilities, but integration into real-time systems remains 
challenging (Deci AI, 2024). Among the most commercially 
viable assistive devices for the visually impaired is OrCam 
MyEye, which integrates a miniature camera with AI-based 
OCR to read text, recognise faces, and identify products. 
The device attaches magnetically to eyeglasses and provides 
real-time audio feedback. Unlike Seeing AI or Aira, which 
depend heavily on mobile devices or human agents, OrCam 
MyEye is self-contained and functions offline, addressing 
critical challenges of latency and privacy[23]. However, 
despite its autonomy, OrCam’s closed system architecture 
limits customisation and third-party integrations, making it 

Solutions Developer Conceptual 
Design

Benefits Drawbacks Improvements

eSight 3 CNET’s High-res 
image 
and video 
capture

Surgery-free aid Does not improve 
vision as it just 
an aid

Waterproof ver-
sions are under 
development

Oton Glass Keisuke 
Shimakage, 
Japan

Image-
to-audio 
conversion

Symbols to audio 
conversion, normal 
looking glasses, sup-
ports languages

For only people 
with reading 
difficulty and no 
support for blind 
people

Can be improved 
to support blind 
people also by 
including prox-
imity sensors.

Aira Suman 
Kanuganti

Smart 
glasses 
& remote 
agents

Help users to interpret 
their surroundings 
with smart glasses.

Waiting time con-
nected to the Aira 
agents in order to 
be able to sense.

To include lan-
guage translation 
features.

Eyesynth Eyesynth, 
Spain

3D scene-
to-audio 
conversion

Allows blind/ limited 
sight people to ‘feel 
the space’ through 
sounds. It converts 
spatial and visual 
information into audio.

Costly, and it 
only recognizes 
objects and 
directions.

Can use verbal 
audio for a better 
feel and naviga-
tion services.

Google 
Glasses

Google Inc. Hands-free 
interac-
tion, Voice 
commands

Can capture images & 
videos, get directions, 
send messages, audio 
calling and real-time 
translation using word 
lens app.

Costly, and the 
glasses are not 
very helpful for 
blind people.

Reduce costs to 
make it more 
affordable for 
the consumers.

OrCam 
MyEye

ORCAM Daily 
assistance

Text reading, facial 
recognition, Stand-
alone operation, no 
internet required

Limited Field 
of View (FOV) 
(45°), no naviga-
tion, high cost

Reduce costs to 
make it more 
affordable, to 
be open for 
customisation 
and third parties’ 
integrations.

Table 2  Review of industrial 
assistive technologies
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and CoreML for compatibility with various platforms [36]. 
Baidu’s PP-YOLO and PP-YOLOv2 models enhanced the 
YOLO framework by integrating techniques such as Drop-
Block regularisation and Matrix NMS, resulting in superior 
performance metrics on COCO benchmarks [61]. Scaled 
YOLOv4 employed cross-stage partial networks to scale 
model size effectively, balancing performance and compu-
tational efficiency [41]. YOLOv6 and YOLOv7 introduced 
further architectural refinements, including the EfficientRep 
Backbone, Rep-PAN Neck, and gradient propagation tech-
niques, which significantly improved inference speed and 
accuracy [18, 29]. YOLOv8 featured developer-friendly 
tools and eliminated anchor boxes, simplifying its applica-
tion and enhancing deployment flexibility [59]. Recent mod-
els like YOLO-NAS utilised Neural Architecture Search 
to optimise the trade-offs between speed and accuracy, 
achieving state-of-the-art performance on COCO datasets 
[6, 12]. YOLO-World, a zero-shot detection model, lever-
aged a “prompt then detect” methodology to enable object 
detection based on textual prompts without fine-tuning [14]. 
The latest iterations, YOLOv9 and YOLOv10, introduced 
programmable gradient information and optimised latency, 
establishing new benchmarks for real-time object detection 
and efficiency [1, 2, 64].

This review reveals three persistent gaps in assistive 
technologies: (1) fragmentation between navigation and 
OCR capabilities, (2) hardware dependencies that limit 
real-world deployment, and (3) computational constraints 
that compromise real-time performance. Our study directly 
addresses these limitations by developing a unified sys-
tem on commercial smart glasses that balances detection 
accuracy with computational efficiency through systematic 
model evaluation.

3  Methodology

3.1  System design architecture

The proposed system is designed to leverage mobile appli-
cations for texting purposes and smart glasses, specifi-
cally Vuzix Blade 2, as a wearable device to assist visually 
impaired users with real-time object detection, tracking, dis-
tance estimation, and optical character recognition (OCR). 
The architecture integrates a combination of advanced com-
puter vision models, including YOLOv8 for object detec-
tion, SORT (Simple Online and Realtime Tracking) for 
object tracking, and OCR capabilities powered by Azure AI. 
Figure 1 illustrates the overall system pipeline, showcasing 
the interconnected components: smart glasses, WebSocket 
connections, object detection server, and integration with 

2.3  Advances in object detection

The advent of deep learning marked a paradigm shift in 
object detection. R-CNN (2014) combined selective search 
with convolutional neural networks (CNNs) to improve 
accuracy but faced challenges with computational efficiency 
[21]. Successive innovations like Fast R-CNN (2015) 
streamlined the training process for bounding box regres-
sors and detectors, while Faster R-CNN (2015) integrated 
a Region Proposal Network (RPN) to achieve near real-
time performance [5]. Feature Pyramid Networks (FPNs), 
introduced in 2017, further advanced detection systems 
by enabling multi-scale feature representation, improving 
accuracy on benchmarks such as the COCO dataset [21, 39].

One-stage detectors, including YOLO, SSD, and Reti-
naNet, revolutionised object detection by balancing speed 
and accuracy. Unlike two-stage methods, these models 
eliminated region proposal steps, enabling faster inference 
suitable for real-time applications. YOLO, introduced in 
2016, achieved unprecedented speed but faced challenges 
with localisation accuracy, particularly for smaller objects. 
Subsequent models, such as SSD, enhanced accuracy with 
multi-resolution techniques, while RetinaNet introduced 
focal loss to address the imbalance between easy and hard 
examples during training [39, 48].

CornerNet and CenterNet adopted keypoint-based detec-
tion paradigms, simplifying the detection process by elimi-
nating anchor boxes, which streamlined computational 
requirements while maintaining competitive accuracy. 
Recent advancements, including DETR and Deformable 
DETR, integrated Transformer-based architectures to pre-
dict object sets end-to-end without anchor boxes, achieving 
state-of-the-art results on COCO datasets [10, 66].

2.4  Evolution of the YOLO framework

The YOLO framework has undergone significant develop-
ment over the years, introducing innovative features and 
addressing the limitations of its predecessors. YOLOv2 
improved upon the original YOLO by incorporating 
enhancements such as BatchNorm, higher resolution 
input, and anchor boxes, which increased accuracy and 
adaptability across various applications [48]. YOLOv3 
further advanced the framework by integrating an object-
ness score into bounding box predictions and generating 
multi-scale predictions to improve detection performance 
for smaller objects [13, 58]. YOLOv4 introduced feature 
aggregation techniques, Mish activation, and augmenta-
tion strategies, achieving higher accuracy and speed than 
its predecessors [9]. With YOLOv5, emphasis was placed 
on deployment flexibility, providing support for batch pro-
cessing and seamless conversion into formats like ONNX 
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3.2  Hardware platform: Vuzix blade 2 specifications

The proposed system is implemented on the Vuzix Blade 2, 
a commercially available smart glass platform designed for 
enterprise and assistive applications. It operates on Android 
11 with a Quad-Core ARM Cortex-A55 2.0  GHz CPU, 
coupled with 2 GB LPDDR4 RAM and 40 GB of internal 
storage (expandable via microSD). The device is equipped 
with an 8 MP front-facing camera capable of 1080p video 
capture, which is essential for real-time computer vision 
tasks such as object detection and OCR. It features a full-
colour see-through waveguide display with a resolution of 
480 × 480 pixels and a 20-degree field of view, optimised for 
heads-up display interfaces [34].

Connectivity includes Wi-Fi 2.4/5 GHz, Bluetooth 5.0, 
and USB-C, supporting both real-time streaming and low-
latency communication with external servers via WebSocket 
protocols. The built-in dual-noise-cancelling microphones 

Microsoft Cognitive Speech Service for audio-based feed-
back to users.

The architecture ensures that real-time data from the 
smart glasses is processed with minimal latency to provide 
timely and accurate feedback to users, enhancing safety and 
accessibility in various environments. The system pipeline 
involves capturing video data, processing it for object detec-
tion and OCR, and generating alerts or descriptions that are 
delivered audibly to the user.

Figure 2 presents the detailed architectural workflow, 
highlighting the interactions between the Vuzix Blade 2, 
WebSocket connections, and cloud services such as Azure 
Vision and Microsoft Cognitive Speech Services. This lay-
ered architecture enables the system to manage both local 
processing and cloud-based computations effectively. A 
detailed flow is in Appendix Figure 10.

Fig. 2  Architecture Workflow

 

Fig. 1  System Architecture
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identifying environmental elements critical to the user’s 
mobility and safety.

3.3.2  Object tracking with BoT-SORT

Following object detection, the next critical step in the sys-
tem pipeline is tracking, which involves maintaining the 
identity of detected objects across consecutive video frames. 
This process involves determining the distance between the 
detected object and the camera [7]. The system employs 
BoT-SORT, the default tracker integrated into YOLOv8, 
due to its ability to strike an optimal balance between com-
putational efficiency and tracking precision, making it well-
suited for real-time applications [20].

BoT-SORT enhances raw detections by associating 
bounding boxes and class labels across frames, ensur-
ing continuity in object tracking. The tracker utilises Kal-
man filtering to predict future positions of objects based 
on motion patterns, while the Hungarian algorithm estab-
lishes associations between predicted positions and new 
detections. This association process is further refined using 
Intersection over Union (IoU), which measures the overlap 
between bounding boxes. By generating unique track IDs 
for each object, the system facilitates the analysis of object 
trajectories and behaviours throughout the video sequence, 
significantly enriching the tracking module’s output [63]. 
In addition to object tracking, the system extracts the 
pixel width of bounding boxes generated around detected 
objects. This measurement is integral to the distance esti-
mation module, as it enables the calculation of proximity 
between the user and the detected objects. By leveraging 
pixel dimensions within the video frame, the system ensures 
precise and actionable feedback for users navigating com-
plex environments.

3.3.3  Distance Estimation

The distance estimation module enhances the user’s situ-
ational awareness by calculating the proximity of detected 
objects using stereo depth perception provided by the Vuzix 
Blade 2. Detected objects are categorised into safety zones 
such as “safe,” “caution,” and “danger” based on their dis-
tance from the user. This categorisation enables precise and 
actionable feedback, allowing users to make informed deci-
sions during navigation. The module’s integration ensures 
that both stationary and moving objects are accurately posi-
tioned within the user’s spatial context.

The distance between the camera and a detected object is 
calculated based on the relationship between the real size of 
the object, its size in the captured image, and the camera’s 
focal length. During the data collection stage, the actual 
physical width of each object was manually measured in 

and mono speaker enable seamless integration with Azure 
Cognitive Services for audio feedback. Battery life sup-
ports approximately 2–3 h of active use, which is consistent 
with low-power AI inference tasks performed on-device 
and via cloud delegation. The system is further enhanced 
by the availability of a touchpad, voice command support, 
and head-motion tracking, which are reserved for potential 
integration in future iterations. These specifications were 
essential in selecting YOLOv8-S for deployment, balanc-
ing model size and inference efficiency under the device’s 
computational limitations.

3.3  Core software modules

3.3.1  Object detection with YOLOv8

The object detection module employs YOLOv8, known 
for its high speed and accuracy, making it suitable for real-
time applications. YOLOv8 was selected after a thorough 
comparative evaluation of its predecessors and some alter-
native models. It has many architectural improvements, 
which mainly includes an anchor-free detection mechanism, 
decoupled detection heads and native support for ONNX, 
TensorRT and PyTorch for faster and memory efficient 
deployment [36, 59].

Object detectors like YOLOv3, YOLOv4 and YOLOv5 
rely on anchor-based detection. Anchors are basically pre-
defined bounding boxes of different scales and aspect ratios 
which are used to predict object locations. The approach is 
effective but faces issues such as manual anchor box tun-
ing, limited flexibility and increased model complexity 
[9]. YOLOv8 has a higher model size and has faced vari-
ous deployment issues. On the other hand, YOLOv8 adopts 
an anchor-free architecture, which directly predicts object 
centers and bounding box dimensions. This improves gen-
eralisation on unseen object scales and simplifies the object 
detection pipeline (Zhao et al., 2019).

Models such as MobileNet-SSD is lightweight and is 
suitable for edge devices but it underperforms on smaller 
objects and yields low mAP scores [31, 71]. Faster R-CNN 
delivers high precision but struggles with low frame rate 
[51], EfficientDet-D0 requires comparatively high compu-
tational resources.

YOLOv8 is pre-trained on the COCO dataset and fine-
tuned on a custom dataset featuring objects relevant to 
urban and indoor environments, ensuring robust perfor-
mance in detecting objects like vehicles, obstacles, and 
textual elements. This module processes video input from 
the Vuzix Blade 2 in real time, generating bounding boxes 
with confidence scores that indicate detected objects [35]. 
The integration of YOLOv8 into the system is essential for 
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The Vuzix Blade 2 smart glasses serve as the primary hard-
ware interface, capturing live video streams and delivering 
processed audio feedback. Object detection and tracking 
are managed using TensorFlow and OpenCV, while Azure 
Vision provides robust OCR capabilities. Python serves as 
the core programming language for implementing the sys-
tem’s modules, enabling modularity and extensibility. The 
use of WebSocket connections ensures low-latency commu-
nication between the smart glasses and the object detection 
server, while HTTP connections facilitate seamless integra-
tion with Azure cloud services.

The development process follows an iterative approach, 
ensuring scalability, robustness, and accuracy across all sys-
tem components.

3.4.1  Data collection and annotation

The development process began by constructing a diverse 
dataset designed to enhance navigation safety for visually 
impaired individuals within the university campus. Data 
was specifically gathered from areas with a higher likeli-
hood of obstacles that could pose risks. Video recordings 
were conducted under varying lighting and weather condi-
tions, including sunny periods, overcast skies, light rain, 
and low-light scenarios such as late afternoon and sunset. 
This ensured that the dataset reflected typical outdoor vari-
ability—including adverse conditions—likely to influence 
the performance of the system’s ‘Safe Walk’ feature. A total 
of ten videos were recorded, with an equal split between 
the two lighting conditions. This ensured that the dataset 
reflected typical outdoor lighting variability likely to influ-
ence the performance of the system’s “Safe Walk” feature. 
The dataset focused on common obstacles within campus 
environments, such as ‘benches’, ‘streetlights’, ‘bollards’, 
‘metal-pedestrian-guardrails’, and ‘trash cans’. These 
objects were meticulously categorised to represent real-life 
challenges that visually impaired individuals might face. 
The dataset contained an average image size of 8.29 mega-
pixels, with a median image resolution of 2160 by 3840 
pixels, and a total of 15,951 annotations covering all object 
categories – as depicted in Fig. 3. This comprehensive data-
set served as the foundation for training and fine-tuning the 
object detection and OCR models, ensuring accuracy and 
reliability in real-world applications.

After collecting and annotating data, the subsequent cru-
cial step is preprocessing the annotated data to prepare it 
for model training, as depicted in Appendix Figure 11. This 
step ensures that the data is in an optimal format, reduc-
ing computational demands and improving model perfor-
mance [28]. Data preprocessing in computer vision projects 
involves essential tasks such as image scaling, pixel nor-
malisation, dataset augmentation, and dividing the data into 

meters and documented. This structured data provided a ref-
erence for matching objects with their respective real-world 
dimensions, enabling accurate distance estimation.

To compute the distance, the following formula was 
applied:

distance = focal length ∗ Actual width of the object

width of the object in pixel

This formula illustrates how the apparent size of an object 
in pixels inversely correlates with its distance from the 
camera. As the object moves closer to the camera, its pixel 
width increases, resulting in a shorter calculated distance. 
Conversely, as the object moves farther away, its pixel 
width decreases, leading to a longer estimated distance – as 
depicted in Appendix Figure 14. The method ensures pre-
cise spatial awareness by leveraging these principles for 
real-time applications. This geometric approach assumes 
a calibrated camera and known object dimensions (Object 
dimensions were recorded during data collection), and has 
been widely used in classical computer vision applications 
for its simplicity and efficiency [24, 55]. While advanced 
methods such as monocular depth estimation using deep 
convolutional networks (e.g., [17]) and triangulation via 
stereo vision provide greater accuracy, they demand higher 
computational resources and additional hardware, which are 
less suitable for real-time, on-device processing. The pri-
mary focus of this work is on enhancing user safety through 
robust object detection using YOLOv8, so a lightweight 
distance calculation technique was prioritised, which is 
suitable for edge devices. However, future extensions of 
this work could explore hybrid approaches that combine 
learning-based monocular depth estimation with geometric 
priors for improved accuracy under varied conditions.

3.3.4  OCR implementation

The OCR module utilises Azure Vision services to extract 
textual information from detected regions and convert 
it into audio feedback. This capability allows visually 
impaired users to access critical textual information from 
signs, documents, or digital screens. The module processes 
text in multiple languages and fonts, ensuring versatility 
and reliability across various environments. Audio output is 
seamlessly integrated with the Microsoft Cognitive Speech 
Service, which translates textual data into natural, human-
like speech.

3.4  Technology stacks

The system leverages cutting-edge hardware and software 
technologies to ensure real-time performance and scalability. 
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such as rotation, shear, brightness, saturation, blurriness, 
and noise.

The object detection module employs YOLOv8, known 
for its high speed and accuracy, making it suitable for real-
time applications. YOLOv8 was selected after a thorough 
comparative evaluation of its predecessors and some alter-
native models. It has many architectural improvements, 
which mainly include an anchor-free detection mechanism, 
decoupled detection heads and native support for ONNX, 
TensorRT and PyTorch for faster and memory-efficient 
deployment [36, 59] .

Object detectors like YOLOv3, YOLOv4 and YOLOv5 
rely on anchor-based detection. Anchors are basically pre-
defined bounding boxes of different scales and aspect ratios 
which are used to predict object locations. The approach is 
effective but faces issues such as manual anchor box tun-
ing, limited flexibility and increased model complexity [9, 
49]. YOLOv8 has a higher model size and has faced vari-
ous deployment issues. On the other hand, YOLOv8 adopts 
an anchor-free architecture, which directly predicts object 
centers and bounding box dimensions. This improves gen-
eralisation on unseen object scales and simplifies the object 
detection pipeline [70].

Models such as MobileNet-SSD are lightweight and are 
suitable for edge devices, but they underperform on smaller 
objects and yield low mAP scores [31, 70]. Faster R-CNN 
delivers high precision but struggles with low frame rate 
[51], EfficientDet-D0 requires comparatively high compu-
tational resources.

3.4.2  Model training and hyperparameters

The YOLOv8 model family provides multiple backbone 
variants, including YOLOv8-N, YOLOv8-S, YOLOv8-M, 
YOLOv8-L, and YOLOv8-X. These variants are designed 

training, validation, and testing subsets. These processes are 
applied consistently across all datasets to ensure uniformity 
and enhance model reliability during evaluation.

Captured images often include metadata specifying their 
orientation and are stored in the EXIF orientation field. This 
metadata indicates whether the image should be displayed 
as captured or rotated to match its intended viewing angle. 
While this metadata facilitates efficient data capture without 
artefacts, it can cause inconsistencies if the processing soft-
ware does not account for EXIF orientation. This issue can 
result in incorrectly displayed images. To address this, tools 
such as Roboflow offer an automated solution by enabling 
the “Auto-Orient” feature during preprocessing. This 
ensures that images are correctly oriented without manual 
intervention, providing a streamlined approach to handling 
orientation-related inconsistencies.

Contrast stretching, or normalisation, is a fundamental 
preprocessing technique used to improve image contrast. 
By extending the range of intensity values within an image 
to match the full allowable pixel value range, this method 
enhances visibility and distinguishes features within the 
image. Unlike histogram equalisation, contrast stretching 
employs a linear scaling function, resulting in a subtler 
enhancement. This technique is typically applied to gray-
scale images, producing a transformed grayscale output 
ready for further analysis [8].

As part of the processing stage, the data augmentations 
address the need to simulate various real-world conditions, 
such as different lighting and angles, by generating new data 
from existing datasets. This process improves the model’s 
generalisation ability and ensures robust performance on 
unseen images [16]. Augmentation techniques are applied 
only to the training dataset, ensuring unbiased evaluation on 
test and validation sets. This includes processing problems 

Fig. 3  Distribution of annotations 
across ‘Train’, ‘Valid’, and ‘Test’ 
sets for various object classes
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3.4.3  System integration

The integration process involves combining various compo-
nents to deliver a cohesive and efficient application for user 
navigation and text recognition. The system ensures real-
time detection and feedback by leveraging Unity for devel-
opment, managing Android permissions, and incorporating 
WebSocket-based object detection and Azure AI services. 
This high-level integration framework guarantees seamless 
interaction between hardware and software components, 
providing visually impaired users with reliable tools for safe 
mobility and textual information retrieval.

3.4.4  Optical character recognition implementation

The Optical Character Recognition (OCR) implementation 
involves multiple stages, starting with integrating Azure AI 
Vision services to extract textual data, followed by manag-
ing Android permissions to ensure seamless camera access. 
The extracted text is processed using Azure’s SDK and con-
verted into speech using Microsoft Cognitive Speech Ser-
vices. This systematic approach enables visually impaired 
users to interact effectively with their surroundings by con-
verting printed text into audible information. The User Jour-
ney is depicted in Appendix Figure 12.

3.4.5  User interface design

The application’s user interface (UI) was developed using 
Unity to ensure a seamless and intuitive experience. The 
design emphasises simplicity and functionality, providing 
clear visual and audio prompts that integrate directly with 
both the ‘Safe Walking’ and OCR features -As depicted in 
Appendix Figure 13. For the ‘Safe Walking’ feature, the UI 
displays detected objects alongside their proximity, offering 
real-time feedback that helps users navigate safely. Simi-
larly, for OCR, the UI showcases extracted text visually 
while synchronising it with the audio output generated by 
the text-to-speech functionality. These integrated elements 
enhance usability by ensuring that visually impaired users 
receive accessible, timely, and context-aware information 
about their surroundings. The design emphasises simplic-
ity, with clear visuals and audible prompts to guide users 
through both the Safe Walking and OCR functionalities. 
Key design elements include real-time feedback displays 
tailored for testing purposes and for detected objects and 
text, ensuring users can easily comprehend the information 
provided.

to balance speed and accuracy based on the computational 
requirements. For this experiment, YOLOv8-N, YOLOv8-
S, and YOLOv8-M were selected due to their efficiency in 
terms of memory usage and responsiveness on resource-
constrained devices such as smart glasses. Larger models 
like YOLOv8-L and YOLOv8-X, although highly precise, 
were excluded due to their high computational demands 
and slower inference times, which could reduce usability on 
wearable devices [70].

Pretrained models were utilised to accelerate the train-
ing process and enhance performance. These models, ini-
tially trained on large datasets like COCO (containing over 
330,000 images across 80 categories), significantly reduce 
the amount of data required for fine-tuning and improve 
generalization on new datasets. The training began by 
downloading the pretrained YOLOv8 models from Ultralyt-
ics and customising their hyperparameters to align with the 
requirements of this study.

Key hyperparameters included the ‘epochs’, which were 
set to 100. This parameter determines the number of itera-
tions through the entire training dataset. This value strikes a 
balance between underfitting and overfitting, providing the 
model with sufficient learning opportunities. The image size 
was set to a resolution of 640 × 640 pixels, and it was set 
to maintain a balance between computational efficiency and 
feature detail, ensuring that objects are captured with ade-
quate precision without overwhelming memory resources. 
Another hyperparameter was the optimiser ‘AdamW’, 
which is a variant of the Adam optimiser. It was used for 
training to integrate weight decay into the update rule, in 
order to improve regularisation and enable faster conver-
gence compared to traditional optimisers like SGD. The 
learning rate was set to 0.001 to achieve a balance between 
convergence speed and stability, avoiding divergence or sub-
optimal minima during training. Early stopping was imple-
mented with a patience value of 10 epochs, halting training 
if validation performance did not improve over this period. 
This approach prevents overfitting by stopping the training 
process once the model ceases to generalise better. The first 
10 layers of the model were frozen during training to retain 
the general feature representations captured in these layers. 
This strategy reduces overfitting and accelerates training by 
focusing updates on the deeper layers tailored to the cus-
tom dataset. These hyperparameter settings were carefully 
selected to optimise model performance while considering 
the computational constraints of smart glasses. The train-
ing process ensured that the models could efficiently pro-
cess real-world scenarios without compromising accuracy 
or speed.
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with objects of varying distances and sizes, showcasing a 
balanced approach between accuracy and computational 
efficiency. Meanwhile, YOLOv8-M exhibits the highest 
accuracy among the three models, with minimal classifica-
tion and localisation errors. Its performance is particularly 
prominent in identifying overlapping objects, making it an 
ideal choice for applications where accuracy is dominant, 
albeit at the cost of increased computational demand.

4.3  System validation with advanced features

Figures  7 and 8 provide a detailed analysis of the sys-
tem’s performance in real-world scenarios, offering critical 
insights into its capabilities and limitations. Figure 7 dem-
onstrates the system’s object detection module in a crowded 
environment. The metrics reveal high accuracy in detect-
ing multiple objects simultaneously, with minimal overlap 
in bounding boxes. The precision of distance estimations, 
as depicted in the figure, highlights the system’s effective-
ness in ensuring real-time feedback for safe navigation. 
Particularly, the system maintains consistent detection 
performance under varying lighting conditions and object 
densities, underscoring the robustness of the object detec-
tion pipeline. The ability to differentiate between objects 
of similar appearance or size further validates the system’s 
reliability for practical applications.

Figure 8 focuses on the OCR functionality, analysing its 
capacity to extract textual information from diverse sur-
faces. The figure highlights the system’s performance across 
reflective, low-contrast, and uneven surfaces, showcasing 
its adaptability to challenging conditions. Metrics in the 
figure indicate a high success rate in text recognition, with 
minimal errors in character detection and interpretation. The 
integration of these results with the Azure Speech Service 
ensures that the recognised text is converted into clear and 
accurate speech, providing users with immediate access to 
essential information. These analyses confirm the system’s 
practicality and its potential to enhance the mobility and 
independence of visually impaired users significantly. By 
addressing the challenges of real-time detection and text 
recognition, the system establishes itself as a reliable tool 
for navigation and environmental awareness. The results 
emphasise the strength of the proposed system in delivering 
robust and efficient assistive technology. While YOLOv8-
M offers superior accuracy, its computational requirements 

4  Results

This section systematically evaluates the system compo-
nents to address our research question. The results conduct 
a comparative analysis of YOLOv8 models (N, S, and M) 
and the practical implications of their deployment on Vuzix 
Blade 2 smart glasses. Then, validate the integrated sys-
tem’s performance on real-world tasks. through Figs. 7 and 
8, illustrating real-world scenarios.

4.1  Performance comparison of YOLOv8 models

Table  3 provides a comparative analysis of YOLOv8-N, 
YOLOv8-S, and YOLOv8-M across key performance met-
rics, including precision, recall, and mean Average Preci-
sion (mAP). YOLOv8-M achieves the highest accuracy, 
with a precision of 0.90, recall of 0.83, and mAP50 of 0.87. 
These metrics highlight its effectiveness in detecting objects 
with high precision and minimal false positives. However, 
the model’s larger size and computational demands result 
in slower inference times, making it less ideal for resource-
constrained environments like wearable devices.

YOLOv8-S demonstrates a balanced performance, 
achieving a precision of 0.88 and recall of 0.81, with a sig-
nificant reduction in computational overhead compared to 
YOLOv8-M. This balance makes YOLOv8-S the most suit-
able choice for real-time applications on the Vuzix Blade 2. 
YOLOv8-N, while computationally efficient, has lower pre-
cision (0.82) and recall (0.76), which limits its applicability 
in scenarios requiring high detection accuracy – as depicted 
in Appendix Figure 15.

4.2  Confusion matrix analysis

Figures 4 and 5, and 6 present the confusion matrices for 
YOLOv8-N, YOLOv8-S, and YOLOv8-M, respectively, 
offering detailed insights into the detection capabilities of 
these models. YOLOv8-N demonstrates significant chal-
lenges with misclassification, particularly for smaller objects 
and overlapping categories. These shortcomings result in 
higher rates of false positives and negatives, undermining 
the model’s reliability in dense and complex environments. 
In contrast, YOLOv8-S shows a marked improvement, 
with better differentiation between object classes and fewer 
misclassifications. This model performs well in scenarios 

Table 3  Performance comparison between object detection models
Metric YOLO V8 N YOLO V8 S YOLO V8 M Speed (ms) YOLO V8 N YOLO V8 S YOLO V8 M
Precision 0.83 0.87 0.90 Preprocess 0.83 0.87 0.90
Recall 0.76 0.79 0.83 inference 0.76 0.79 0.83
mAP50 0.79 0.84 0.87 loss 0.79 0.84 0.87
Map50-95 0.59 0.64 0.69 Post

Process
0.59 0.64 0.69

Fitness 0.61 0.66 0.7
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Fig. 5  Confusion Matrix from 
YOLOV8 S
 

Fig. 4  Confusion Matrix from 
YOLOV8 N
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“Metal-Pedestrian-Guardrail“(mAP: 0.742) showed 
reduced detection reliability.

The F1-Confidence curve indicated that the optimal con-
fidence range for balancing precision and recall across all 
classes was between 0.3 and 0.6. Despite challenges with 
low-performing classes, the overall results demonstrate 
the model’s strong capability to detect diverse objects. 
Future efforts could address the impact of data imbalance to 
improve generalisation further.

4.4  System latency and responsiveness

While the focus of this study was on the system design and 
model optimisation, a key performance consideration in 
assistive technologies is real-time responsiveness. Although 
a dedicated latency measurement module was not deployed 
during field testing, empirical observations from the sys-
tem’s operational logs and development environment indi-
cate negligible perceptible delay between object detection 
and auditory feedback. The system exhibited sub-second 
latency, with total round-trip delay (from camera capture to 
speech output) consistently estimated to be under 250–300 
milliseconds for object detection and under 500 millisec-
onds when OCR was triggered. These estimates were based 

make YOLOv8-S the optimal choice for deployment on 
Vuzix Blade 2 smart glasses, striking a balance between 
speed and precision. The integration of object detection and 
OCR ensures a comprehensive solution for enhancing the 
mobility and independence of visually impaired individu-
als. Future optimisations could further improve the system’s 
adaptability to diverse environments, expanding its utility 
beyond university campuses.

The model achieved an overall mAP at 0.5 of 0.877, indi-
cating strong detection performance across most classes. The 
peak F1 score for all classes combined was 0.85, achieved 
at a confidence threshold of 0.407. High-performing classes 
such as “Tent” and “Sitting-area” achieved near-perfect 
mAP scores of 0.995, reflecting exceptional precision and 
recall. Other high-performing classes included “Bike Shel-
ter Zone” (mAP: 0.979) and “Pot” (mAP: 0.967).

Moderately performing classes, such as “Poster Stand” 
(mAP: 0.952) and “Wooden Bollards” (mAP: 0.930), dem-
onstrated reliable detection with good precision-recall 
trade-offs. However, “Street-light” (mAP: 0.845) and 
“Trash-can” (mAP: 0.843) showed sensitivity to confidence 
threshold tuning. Lower-performing classes, including 
“Stair” (mAP: 0.802) and “Metal Bollard” (mAP: 0.694), 
exhibited steep drops in precision and recall at higher 
thresholds, likely due to the imbalanced dataset. Similarly, 

Fig. 6  Confusion Matrix from 
YOLOV8 M
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Fig. 8  The OCR functionality 
where the system successfully 
extracts text from diverse surfaces

 

Fig. 7  The system’s ability to detect multiple objects simultaneously in a crowded environment
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validate the model’s effectiveness in real-world scenarios 
with complex scenes. Furthermore, its average inference 
time of just 28.4 milliseconds per image confirms its suit-
ability for real-time applications.

To contextualise our system’s performance within 
the broader landscape of assistive technologies, Table  5 
provides a comprehensive comparison across multiple 
dimensions, including functionality, performance metrics, 
hardware requirements, and cost. Unlike specialised solu-
tions that excel in single domains (e.g., OrCam MyEye for 
text reading or Smart Cane for obstacle avoidance), the pro-
posed SafeWalk system offers integrated functionality while 
maintaining competitive performance metrics.

5  Discussion

The results demonstrate that our integrated system suc-
cessfully addresses the limitations of fragmented assistive 
technologies (Fig. 9). Three key findings emerge from our 
analysis:

5.1  Comparative advantage over existing systems

The proposed system design represents a significant 
advancement over existing assistive technologies for visu-
ally impaired individuals. Unlike prior approaches that often 
focus on isolated functionalities, such as obstacle detection 
or textual recognition, this system integrates multiple fea-
tures—object detection, distance estimation, and OCR—
into a single wearable solution. For instance, Seeing AI, a 
widely used assistive application, excels in text recognition 

on timestamped logs during simulated walks and confirmed 
via manual annotation of interaction sequences.

Technically, this responsiveness was made possible due 
to the efficient integration of the YOLOv8-S model, which 
has an average inference time of 18–21 ms per frame on 
the system’s edge device (Quad-core ARM Cortex-A55). 
The object detection pipeline, developed using TensorFlow 
Lite and executed locally, leveraged multithreaded process-
ing and hardware acceleration (via Android NNAPI where 
available). OCR tasks, processed through Azure Cognitive 
Services, introduced slightly more variability in latency 
depending on network conditions, but remained within 
acceptable thresholds for real-time interaction.

4.5  Empirical results

As demonstrated in Table  4, the YOLOv8 model dem-
onstrated robust performance across 1,340 test images, 
achieving a high average IoU of 0.9108 for true positives, 
indicating precise localisation. With 2,903 predictions 
against 3,332 ground truth boxes, it maintained a strong 
precision of 87.77% and recall of 76.47%, reflecting accu-
rate object detection with moderate coverage. These results 

Table 4  Validation results
Metric Value
Images Processed 1340
Total Ground Truth Boxes 3332
Total Predictions 2903
Average IoU (TP Only) 0.9108
Precision 0.8777
Recall 0.7647
Avg Inference Time 28.4 millisecond/image

Table 5  Comparative analysis of assistive technologies across key performance metrics
System Object 

Detection
OCR Real-time 

Feedback
Hardware 
Requirements

Cost Estimate mAP/
Accuracy

Latency Key 
Limitations

SafeWalk 
(Proposed)

✓ (YOLOv8-S) ✓ 
(Azure 
AI)

✓ 
(Auditory)

Vuzix Blade 2 glasses ~$1,300 87.7% 
mAP@0.5

250–500 
ms

Limited battery 
life (2–3 h)

Smart 
Cane [25]

✓ (Depth 
camera)

✗ ✓ (Haptic) Custom cane + sensors ~$300–500 N/A < 100 
ms

No OCR, 
limited object 
classification

OrCam 
MyEye [4]

✓ (Basic) ✓ ✓ 
(Auditory)

Eyeglass-mounted 
device

~$3,000–4,500 High text 
accuracy

~ 1–2 s Limited FOV 
(45°), no 
navigation

IrisVi-
sion [22]

✗ ✗ ✗ Smartphone + headset ~$2,500-3,500 N/A N/A Vision enhance-
ment only, no 
AI detection

Seeing 
AI [52]

✓ (Limited) ✓ ✓ 
(Auditory)

Smartphone Free app High OCR 
accuracy

2–5 s Cloud-depen-
dent, no real-
time navigation

Aira
[44]

✓ (Human 
agent)

✓ 
(Human 
agent)

✓ 
(Auditory)

Smart 
glasses + subscription

~$100–300/
month

Human-level 2–5 s Privacy con-
cerns, subscrip-
tion model

NAVI [72] ✓ (Kinect) ✗ ✓ 
(Auditory)

Kinect + backpack PC ~$1,500-2,000 Moderate ~ 500 
ms–1 s

Bulky, indoor 
use only
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system leverages commercially available Vuzix Blade 2 
smart glasses [34, 46], enabling portability across indoor/
outdoor settings without custom hardware. This flexibility 
addresses a key gap in Table 1, where 71% of solutions were 
hardware-constrained.

Existing tools often excel in singular domains but lack 
holistic integration. For example, Seeing AI and TapTapSee 
[52] offer robust OCR but depend on cloud connectivity and 
lack real-time obstacle detection. NavCog [67] provides 
indoor wayfinding but omits environmental awareness 
(e.g., dynamic obstacles). EyeMusic and vOICe [15, 60] 
convert visuals to sound but require extensive user train-
ing. On the other hand, the WalkSafe system unifies object 
detection (YOLOv8-S), OCR (Azure AI Vision), and audi-
tory feedback into a single pipeline, enabling simultaneous 
navigation and textual access. This integration resolves the 
“fragmented functionality” gap noted earlier.

Aira [44] relies on remote human agents for guidance, 
introducing latency (∼2–5 s) and privacy concerns. How-
ever, WalkSafe system operates autonomously, leveraging 
on-device YOLOv8-S inference (18–21 ms/frame) and 
local OCR preprocessing to achieve sub-second latency 
(250–500 ms). This eliminates third-party dependencies, 
enhancing privacy and real-time responsiveness.

Classical detectors like Viola-Jones [15] and early YOLO 
versions struggled with small/overlapping objects - demon-
strated in Table 1. While YOLO-NAS [1, 2] improves accu-
racy, its computational demands exceed wearable-device 
capabilities. Our comparative analysis - Table  3- demon-
strates that YOLOv8-S achieves optimal balance; Precision 
(0.88) and recall (0.81) surpass Faster R-CNN (mAP@0.5: 
0.76) [50] and EfficientDet-D1 (mAP@0.5: 0.78) [56]. 
While Inference speed (18–21 ms) enables real-time per-
formance on Vuzix Blade 2’s Quad-core ARM CPU, unlike 
bulkier models (YOLOv8-M/YOLOv10).

Prior systems faltered under variable lighting or crowded 
settings. For instance, Viola-Jones misclassified objects in 
low light [15]. Smart Specs [33] offered no OCR for tex-
tual navigation cues. On the other hand, the WalkSafe sys-
tem trained on 15,951 campus images, depicted in Fig. 3, 
achieves mAP@0.5 of 0.877, as detailed in Table  6, and 
adapts to lighting diversity via preprocessing. The OCR 
module depicted in Fig. 8 extracts text from reflective/low-
contrast surfaces, outperforming Tesseract-based systems.

The pipeline introduced in this study represents a robust 
and modular framework that can significantly benefit devel-
opers and researchers aiming to create inclusive navigation 
systems. Unlike traditional systems, this pipeline sup-
ports real-time communication between the hardware and 
cloud-based services using WebSocket protocols, ensuring 
minimal latency. It effectively balances local and cloud 
computations, allowing computationally intensive tasks like 

but requires a smartphone, limiting its real-time usability 
and integration with navigation features [26]. Similarly, 
Aira’s reliance on human agents introduces delays and 
privacy concerns, as users must rely on external input for 
navigation [50]. In contrast, the proposed system offers real-
time, autonomous assistance powered by advanced AI mod-
els and AR-enabled smart glasses, thereby reducing latency 
and enhancing user independence. When compared to hard-
ware-dependent solutions such as Smart Specs or Eyesynth, 
which primarily focus on depth perception or converting 
visual information into sound, this system offers a broader 
range of capabilities. For example, Eyesynth uses sound-
scapes to relay spatial information but lacks precise object 
classification and textual recognition, which are essential in 
environments like university campuses. Smart Specs, on the 
other hand, provide depth perception through stereoscopic 
cameras but fail to integrate OCR or object detection for 
contextual navigation. This system leverages Vuzix Blade 
2 smart glasses, providing precise object detection through 
YOLOv8 and robust OCR capabilities via Azure Vision 
services, thereby bridging the gaps left by these earlier 
technologies.

Early solutions like NAVI [72] and ISANA [68] relied 
on specialised hardware (Microsoft Kinect, Project Tango), 
restricting deployment to indoor environments. Simi-
larly, Smart Cane [33] and Haptic Radar [42] used depth 
cameras/IR sensors, limiting scalability. In contrast, our 

Fig. 9  Validation Test results for images taken across the University 
of Essex campus
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varying lighting conditions and object densities underscores 
the robustness of the object detection module. The system 
OCR functionality showcases its ability to extract text from 
diverse surfaces, including reflective and low-contrast back-
grounds. Metrics from this analysis reveal a high success 
rate in text recognition, with minimal errors. The seamless 
integration of OCR with Microsoft Cognitive Speech Ser-
vice ensures that users receive timely and accurate audio 
feedback, enhancing their interaction with the environment.

The results achieved in this study surpass those reported 
in prior research. For example, the model’s overall mAP of 
0.877 significantly outperforms the 75.9% mAP achieved 
by Faster R-CNN on the COCO dataset. High-performing 
classes such as “Tent” and “Sitting-area” achieved near-
perfect mAP scores of 0.995, demonstrating the model’s 
superior precision and recall. However, the performance 
of low-frequency classes, such as “Metal Bollard” (mAP: 
0.694) and “Stair” (mAP: 0.802), highlights the challenges 
posed by imbalanced datasets. Addressing these imbal-
ances in future iterations could further enhance the model’s 
generalisability.

The system’s performance was further benchmarked 
against state-of-the-art models in object detection and 
assistive technologies, emphasizing its advancements in 
accuracy, real-time capability, and adaptability to crowded 
environments. Compared to Faster R-CNN [49], a widely 
adopted two-stage detector, the YOLOv8-S model achieved 
superior mAP@0.5 (0.87 vs. 0.76 on comparable datasets), 
demonstrating enhanced precision in detecting small and 
overlapping objects. This improvement is critical for assis-
tive applications where false negatives could compromise 
user safety. EfficientDet-D1 [56], optimized for scalability, 
reported an mAP@0.5 of 0.78 on COCO but required 2.5× 
more computational resources than YOLOv8-S, highlight-
ing the latter’s efficiency for wearable devices [56].

Prediction accuracy and false positives are critical for 
object detection applications, particularly in assistive tech-
nologies. Faster R-CNN has a lower false positive rate due 
to its two-stage detection process, refining region propos-
als before classification [50]. YOLO-based models, while 
initially prone to localisation errors, have significantly 
improved in later versions. YOLOv8, used in the proposed 
system, demonstrated a low false positive rate, with pre-
cision rates between 75 and 98% in different studies [65]. 
RetinaNet also maintains a low false positive rate by lever-
aging focal loss to handle class imbalances effectively [39]. 
SSD, however, is known for generating more false positives 
compared to other models [3].

As demonstrated in Table 5, the SafeWalk system occu-
pies a unique position in the assistive technology landscape 
by balancing integrated functionality with practical deploy-
ment considerations. While specialised systems like OrCam 

YOLO object detection and OCR to be executed without 
overloading the smart glasses. This modular design enables 
the pipeline to be adapted to various assistive technologies, 
serving as a blueprint for future developments. Developers 
can use this framework to incorporate additional features, 
such as scene understanding or voice-activated commands, 
without disrupting the system’s core functionality.

The comparative analysis of YOLOv8-N, YOLOv8-S, 
and YOLOv8-M provides valuable insights into the trade-
offs between accuracy and computational efficiency. As 
shown in Table 3, YOLOv8-M achieved the highest accu-
racy with a precision of 0.90 and recall of 0.83, highlighting 
its effectiveness in detecting small or overlapping objects. 
However, its computational demands make it less suitable 
for deployment on resource-constrained devices like the 
Vuzix Blade 2. YOLOv8-S emerged as the optimal model, 
achieving a balanced precision (0.88) and recall (0.81) while 
maintaining efficient processing speeds, making it ideal for 
real-time applications. YOLOv8-N, although faster, exhib-
ited lower accuracy, limiting its applicability in scenarios 
requiring high detection precision.

The confusion matrices depicted in Figs. 4 and 5, and 6 
further validate these findings. YOLOv8-N showed signifi-
cant misclassification for smaller objects and overlapping 
categories, while YOLOv8-S markedly improved distin-
guishing between object classes. YOLOv8-M demonstrated 
the most accurate predictions with minimal errors, but its 
slower inference time remains a limitation. These results 
align with the mAP scores presented in the study, where 
YOLOv8-M achieved the highest overall mAP (0.87) com-
pared to YOLOv8-S (0.84) and YOLOv8-N (0.79). Figures 7 
and 8 provide additional validation for the system’s capabil-
ities in practical scenarios. Figure 7 highlights the system’s 
ability to detect multiple objects in a crowded environment 
with accurate bounding boxes and distance estimations. 
This ensures reliable real-time feedback, which is crucial 
for safe navigation. The consistency of performance across 

Table 6  Performance evaluation of object detection by class and con-
fidence thresholds
Category Observation
Overall Performance Peak F1 score: 0.85 at confidence thresh-

old 0.407; mAP@0.5: 0.877.
High-Performing 
Classes

“Bike Shelter Zone” (mAP: 0.979), 
“Tent” (mAP: 0.995), “Pot” (mAP: 
0.967), “Sitting-area” (mAP: 0.995).

Moderate-Performing 
Classes

“Poster Stand” (mAP: 0.952), “Wooden 
Bollards” (mAP: 0.930), “Street-light” 
(mAP: 0.845), “Trash-can” (mAP: 0.843).

Low-Performing 
Classes

“Stair” (mAP: 0.802), “Metal Bollard” 
(mAP: 0.694), “Metal-Pedestrian-Guard-
rail” (mAP: 0.742).

Optimal Confidence 
Range

0.3–0.6, balancing precision and recall 
across all classes.
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significant advantages over those reviewed in Table 1. Due to 
hardware dependencies, early systems such as NAVI, which 
relied on Microsoft Kinect for obstacle detection, were lim-
ited to indoor environments [72]. Similarly, Smart Cane and 
Haptic Radar, while enhancing obstacle detection through 
depth cameras and infrared sensors, were constrained by 
specific hardware requirements, reducing their scalability 
[33, 42]. Unlike these hardware-dependent solutions, the 
proposed system operates on Vuzix Blade 2 smart glasses, 
ensuring portability and flexibility across both indoor and 
outdoor settings. Compared to Project Tango-based sys-
tems like ISANA and NavCog, which excelled in indoor 
wayfinding but lacked robust -time environmental aware-
ness [47, 68], the proposed system integrates both object 
detection and OCR, allowing users to navigate dynamic 
environments while accessing textual information. Unlike 
Seeing AI and TapTapSee, which require cloud-based pro-
cessing and internet connectivity for text recognition [52], 
the proposed system processes OCR locally on the device, 
reducing latency and improving real-time usability. Addi-
tionally, solutions like EyeMusic and vOICe, which employ 
auditory sensory substitution for navigation, require signifi-
cant user adaptation [15, 60], whereas the proposed system 
provides direct object detection and text-to-speech conver-
sion, minimising cognitive load. While Aira offers real-time 
assistance via remote agents, it introduces privacy concerns 
and latency issues due to human-in-the-loop processing 
[44], whereas the proposed system operates autonomously, 
ensuring immediate feedback and greater user indepen-
dence. Moreover, the system outperforms classical object 
detection models such as the Viola-Jones Detector, which 
struggled with small or overlapping objects in variable 
lighting conditions [15], by leveraging YOLOv8’s advanced 
neural architecture for high-precision detection. Compared 
to recent deep learning-based approaches like YOLO-NAS, 
which improve accuracy and efficiency in real-time applica-
tions [1, 2], the proposed system uniquely integrates OCR 
and object detection within a unified wearable solution, 
bridging the gap between navigation and textual interaction. 
By balancing computational efficiency, real-time process-
ing, and multimodal feedback, the system extends beyond 
the limitations of previous assistive technologies, offering a 
comprehensive, user-friendly solution for visually impaired 
individuals.

5.3  Practical implementation considerations

In regards to the user interaction experience design, the sys-
tem was developed with a focus on simplicity, intuitiveness, 
and minimal cognitive load for visually impaired users. The 
“Walk Safe” and OCR functionalities are activated automat-
ically based on real-time context, eliminating the need for 

MyEye achieve high OCR accuracy and Smart Cane offers 
minimal latency, they address only isolated aspects of the 
navigation challenge. In contrast, our system provides com-
bined object detection, OCR, and real-time feedback at a 
computational cost that enables deployment on commercial 
smart glasses, addressing the fragmentation limitation iden-
tified in existing solutions. These comparisons validate the 
proposed system’s balance of accuracy, speed, and versatil-
ity, addressing critical gaps in assistive technology research. 
Moreover, the integration of Azure cloud services adds a 
layer of scalability to the system, enabling computationally 
intensive tasks to be performed efficiently without overload-
ing the wearable device. This design choice enhances the 
system’s performance and broadens its applicability, mak-
ing it feasible for deployment in diverse settings beyond 
university campuses.

5.2  Implications of YOLOv8 model selection

The decision to utilise YOLOv8-S over its successors, 
YOLOv9 and YOLOv10, in this study was guided by sev-
eral critical factors, including computational efficiency, 
hardware compatibility, and real-time performance require-
ments pertinent to the Vuzix Blade 2 smart glasses. The 
Vuzix Blade 2 is equipped with a quad-core ARM CPU 
and operates on Android 11, featuring a display resolution 
of 480 × 480 pixels and a field of view of 20 degrees [46]. 
While YOLOv9 and YOLOv10 have introduced advanced 
architectural enhancements aimed at improving accuracy, 
these improvements come with increased computational 
demands [30]. For instance, YOLOv10 incorporates a dual-
branch design that, despite optimising latency, requires 
approximately 2.1 times more floating-point operations 
per second (FLOPs) than YOLOv8-S [59]. This substantial 
increase in computational load poses challenges for devices 
like the Vuzix Blade 2, which has limited processing capa-
bilities. Furthermore, the compact model size of YOLOv8-
S (approximately 5.1  MB in FP16 precision) aligns well 
with the smart glasses’ limited RAM (2 GB), ensuring 
stable performance during concurrent tasks. In contrast, the 
larger model sizes of YOLOv9 and YOLOv10 could lead 
to memory constraints, adversely affecting system stability. 
Additionally, YOLOv8-S has demonstrated efficient power 
consumption, consuming around 1.8 W during peak infer-
ence, which is crucial for wearable devices where energy 
efficiency directly impacts battery life and user comfort. 
Considering these factors, YOLOv8-S offers a balanced 
trade-off between accuracy and resource utilization, making 
it a practical choice for deployment on the Vuzix Blade 2 
platform.

By comparing the proposed system with the assistive 
technologies reviewed in Table  1, the system presents 

1 3

Page 19 of 26     73 



P. Kumari, R. Hammady

demonstrate an overall mAP of 87.7% and near-perfect per-
formance for high-frequency classes, validate the system’s 
effectiveness and set a benchmark for future developments. 
Despite challenges with imbalanced datasets and low-fre-
quency object detection, this study lays the foundation for 
inclusive and scalable navigation systems. Future enhance-
ments, such as scene explanation, point-to-point navigation, 
and voice command integration, could further enhance the 
system’s utility and impact, paving the way for broader 
adoption in diverse settings.

7  Limitations and future studies

Despite the advancements presented in this study, several 
limitations exist that provide opportunities for future devel-
opment. One of the limitations is the system’s reliance on 
predefined datasets, and the computational constraints of 
wearable devices, such as Vuzix Blade 2 smart glasses, may 
limit the scalability and performance in dynamic or unstruc-
tured environments. The dependency on a stable internet 
connection for real-time OCR and AI services also restricts 
usability in areas with poor connectivity. Another limitation 
is the current lack of point-to-point navigation, which would 
enable users to identify and move toward specific destina-
tions within mapped areas. Incorporating this feature could 
greatly enhance the system’s utility in complex settings, such 
as university campuses. Moreover, the application’s inter-
face requires further optimisation to allow hands-free oper-
ation through voice commands, enabling users to activate 
features like obstacle detection or OCR seamlessly. Another 
limitation worth mentioning is that the system demonstrates 
reduced detection performance under extreme lighting con-
ditions, such as direct sunlight or low-light environments. 
While the model was trained on a diverse dataset to account 
for lighting variability, edge cases involving glare, reflec-
tions, or significant shadowing occasionally degraded the 
object detection confidence. Future iterations will explore 
adaptive exposure control and integration of infrared or 
thermal imaging to improve robustness in variable lighting. 
Battery constraints of the Vuzix Blade 2 present a practical 
limitation. With continuous use of camera-based processing 
and wireless communication, the average operational time 
was limited to approximately 2–3 h. This restricts extended 
usage in real-world applications. Potential mitigations 
include incorporating edge AI optimisation (e.g., quantised 
models), on-device inference scheduling, or external battery 
attachments to extend usability.

continuous user input or manual toggling. The Vuzix Blade 
2’s built-in mono speaker delivers clear auditory alerts, and 
the Azure Cognitive Speech Service is used to generate nat-
ural-sounding speech for text output. During internal evalu-
ations, the speech synthesis was found to be intelligible in 
quiet and moderately noisy environments. However, clarity 
may degrade in outdoor settings with high ambient noise. 
To mitigate this, future enhancements will consider adaptive 
volume control, ambient noise detection, and bone-conduc-
tion audio output to ensure clarity without isolating users 
from environmental sounds.

Although no formal user trials were conducted in this 
phase, the interface was iteratively tested in simulated user 
scenarios, ensuring the system responded consistently and 
rapidly to visual inputs. The UI architecture avoids menu 
hierarchies or gestures, relying instead on passive activation 
and immediate feedback—an approach intended to reduce 
interaction complexity and enhance user trust. A future 
usability study involving visually impaired participants is 
planned to empirically assess interaction intuitiveness, ease 
of learning, and overall user satisfaction.

6  Conclusion

This study introduces a novel system design that integrates 
object detection, OCR, and real-time feedback to provide 
a comprehensive assistive technology solution for visu-
ally impaired individuals. Leveraging Vuzix Blade 2 smart 
glasses and the robust YOLOv8 architecture, the system 
demonstrates significant advancements over existing assis-
tive technologies by combining precision, scalability, and 
real-time usability. The critical comparative analysis of 
YOLOv8-N, YOLOv8-S, and YOLOv8-M highlights the 
trade-offs between computational efficiency and accuracy, 
with YOLOv8-S emerging as the most practical model for 
deployment on resource-constrained devices.

The innovative pipeline presented in this study not only 
addresses the limitations of prior solutions but also estab-
lishes a scalable framework for developers and researchers. 
By integrating cloud-based services with wearable devices, 
the system achieves a balance between local processing 
and advanced computational tasks, ensuring adaptability 
to various environments. The inclusion of OCR expands 
the system’s functionality, enabling users to access textual 
information in real-time, a critical feature for environments 
such as university campuses. This research highlights the 
transformative potential of combining AR, AI, and com-
puter vision in assistive technologies. The results, which 
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could achieve enhanced performance, usability, and inclu-
sivity, making assistive technologies more accessible across 
diverse settings. Finally, it is important to note that this 
study did not involve human participants during the sys-
tem evaluation phase. Therefore, it is planned to conduct a 
longitudinal user study with visually impaired participants. 
As such, usability, cognitive load, and accessibility aspects 
remain untested. A structured usability study with visually 
impaired participants is planned for future research. This 
two-stage validation—technical and user-oriented—ensures 
that the system is not only functional but also practically 
implementable. This study will follow ethical review pro-
tocols and assess user acceptance, system learnability, task 
completion accuracy, and subjective satisfaction. Including 
real-world feedback will be essential for validating the sys-
tem’s practical applicability and ensuring that it aligns with 
the daily mobility and information needs of end-users.

Appendix

See Figures 10, 11, 12, 13, 14, 15.

Additionally, although Azure Cognitive Speech Services 
deliver relatively natural text-to-speech output, speech clar-
ity can be affected in noisy outdoor environments. Integra-
tion with noise-adaptive audio processing, bone-conduction 
output, or optional haptic feedback is a potential enhance-
ment under consideration. Lastly, the current system lacks 
advanced scene understanding and dynamic path planning, 
which are critical for complete autonomous mobility. Future 
research will incorporate semantic segmentation, context-
aware scene analysis, and conversational AI modules to pro-
vide a more intuitive and interactive assistive experience. A 
structured usability study will also be conducted to evalu-
ate the system’s acceptability, accessibility, and long-term 
impact in real-world contexts.

Future work should also address the need for broader 
situational awareness by integrating scene explanation 
capabilities, providing users with high-level descriptions 
of their surroundings. Expanding intelligent assistance fea-
tures like conversational AI and context-aware prompts 
could make the system more adaptive to individual user 
needs, improving overall interactivity and accessibility. By 
addressing these limitations, future iterations of the system 

Fig. 10  System Design flow
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Fig. 11  Examples of the annotated objects taken at the university
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Fig. 14  Distance Calculation

 

Fig. 13  System Gesture UI with Vuzix Blade 2

 

Fig. 12  User Journey
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