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Abstract

This paper introduces a novel system design leveraging Vuzix Blade 2 smart glasses to enhance the mobility and inde-
pendence of visually impaired individuals. The study critically examines existing assistive navigation and object detection
technologies, identifying their limitations and gaps. The designed system integrates real-time object detection, distance
estimation, and OCR functionalities, providing auditory feedback through a robust and efficient pipeline. The designed
application enhances the independence and safety of visually impaired individuals, particularly in navigating university
campuses. A dataset comprising 15,951 annotated images from the university campus was used for training and evaluation.
A comparative analysis of three YOLOv8 models (YOLOvVS-N, YOLOVS8-S, and YOLOvS8-M) was conducted, balancing
accuracy and computational efficiency to optimise system performance. The pipeline also offers a comprehensive frame-
work for developers and researchers to build inclusive systems combining AR, computer vision, and Al. Results show
high object detection accuracy (precision: 0.90, recall: 0.83) and reliable distance estimation with a minor error of 0.33 m.
Results demonstrate the system’s capability to detect obstacles within one meter, provide precise distance estimation, and
convert textual information into speech, validating its potential for real-world applications. This study emphasises the sig-
nificant role of Al-driven solutions in advancing assistive technologies, paving the way for more accessible and inclusive
navigation systems. Compared with recent assistive systems such as Smart Cane (He in CCF Trans. Pervasive Comput.
Interact. 5:382-395, 2023), OrCam MyEye (Amore in J. Med. Syst. 47:11, 2023), and IrisVision (Gopalakrishnan in Com-
parison of visual function analysis of people with low vision using three different models of augmented reality devices,
2024), the proposed system demonstrates superior integration of detection, text recognition, and real-time feedback within
a lightweight wearable device.
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1 Introduction

Eyesight is fundamental to human interaction with the envi-
ronment, playing a critical role in navigating and interpret-
ing visual information. However, for the visually impaired,
even simple day-to-day activities can become challenging,
potentially leading to physical and mental health issues,
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Many existing tools focus on isolated functionalities, such
as obstacle detection or text recognition, without seam-
lessly integrating these features into a cohesive system. For
example, NavCog provides internal navigation support, for
instance at Pittsburgh Airport, while Moovit focuses mainly
on public transport by offering route guidance, notifications,
and travel warnings. Devices such as Ultracane and Mini-
guide, which use sonar-based obstacle detection, can assist
users in navigating their surroundings but are still limited in
object detection and -time responsiveness. They are unable
to track moving obstacles, which can cause confusion dur-
ing travel. This highlights how focusing on a single feature
does not make users fully independent in their navigation
[47]. Similarly, OCR tools such as “Seeing AI”, which drew
inspiration from Microsoft Kinect, rely on manual channel
switching for detecting & reading various objects & texts,
limiting their usability in dynamic environments. NAVI,
which used Microsoft Kinect, was very bulky, needed a
backpack to carry and had low battery life. Like Ultracane
and Miniguide, NAVI, which relied on a depth histogram
for object detection, did not capture the dynamic movement
of objects[72].

Furthermore, existing object detection systems, includ-
ing those integrated into smart glasses or mobile applica-
tions, often struggle with accuracy in real-time scenarios
due to hardware limitations and computational constraints.
Traditional models such as the Histogram of Oriented Gra-
dients (HOG) introduced human detection capabilities that
supported early navigation systems; however, they lacked
diversity in object recognition and were limited to detect-
ing humans in static images [15]. Although recent iterations,
such as YOLOVS and YOLO-NAS, address these challenges
by leveraging advanced neural architectures, their imple-
mentation in assistive technologies remains limited [65].

Another critical limitation is the lack of user-centric
design in these technologies. Many devices require exten-
sive adaptation or training for users, which can be a barrier
for visually impaired individuals. For instance, “EyeMu-
sic” and “vOICe” convert visual information into auditory
cues but demand significant learning effort, reducing their
accessibility [11]. The generated audio representations are
often slow and information-dense, resulting in high cogni-
tive load and delayed response time during navigation [43].
Additionally, both lack object recognition, real-time track-
ing, and semantic understanding, offering only low-level
perceptual encoding of shapes and brightness rather than
meaningful environmental context [45].

Also, some solutions, like “Aira,” rely on remote human
agents who perform manual object identification by observ-
ing the live video stream transmitted from the user’s smart-
phone or smart glasses. These trained agents verbally
describe the user’s surroundings, read visible text, and assist
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in tasks such as navigation or locating objects within the
camera’s field of view, introducing latency and privacy con-
cerns [44].

Recent publications have highlighted the potential of
combining advanced Al models with user-friendly inter-
faces to overcome these limitations. Although recent itera-
tions such as YOLOv8 and YOLO-NAS leverage advanced
neural-architecture search and backbone optimisations
[57], their deployment in assistive technologies for visu-
ally impaired users remains limited due to constraints such
as device computational power, real-world robustness and
integration overhead. Recent comparative studies have dem-
onstrated progress toward integrating vision-based assistive
systems using deep learning and wearable hardware. For
instance, C. He and Saha [27] proposed a Smart Cane using
depth cameras for obstacle detection, but lacked OCR or
auditory feedback. Gopalakrishnan et al. [22] presented Iris-
Vision, which enhances residual vision but offers no object
classification. Amore et al. [4] evaluated OrCam MyEye,
highlighting high accuracy in text reading yet a limited field
of view (45°) and no real-time navigation. In contrast, the
proposed system integrates YOLOv8-based object detec-
tion, distance estimation, and Azure-based OCR within a
single wearable framework capable of real-time processing
on Vuzix Blade 2 smart glasses. This integration addresses
key shortcomings of existing solutions—particularly the
lack of multimodal fusion and latency-free feedback—thus
providing a more holistic assistive experience [1, 2].

Similarly, advances in OCR, such as the use of EAST
with recurrent neural networks, enable efficient text recog-
nition even under challenging conditions [68]. However, the
integration of these state-of-the-art technologies into a uni-
fied, accessible solution for visually impaired users is still
an underexplored area. Therefore, this study aims to answer
the following question:

RQ: How can a unified assistive system integrate real-
time object detection, OCR, and auditory feedback to
address the limitations of fragmented solutions in existing
assistive technologies for visually impaired individuals?

This research presents an integrated application capable
of running computationally intensive models (YOLOvVS)
efficiently while combining multiple features such as OCR,
cloud-based text-to-speech, and real-time object detection
and tracking within lightweight smart glasses. The result is
a compact, accessible, and user-friendly system that sup-
ports visually impaired users across a variety of real-world
situations.

Previous assistive devices often struggled with limita-
tions such as the absence of dynamic object tracking and
restricted accuracy [19, 53]. While advanced models like
YOLO offered higher detection precision, they demanded
substantial computational resources, making the systems
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bulky and difficult to deploy in real time [1, 2]. Moreover,
most existing applications were designed for specific con-
texts, either indoor or outdoor and offered isolated function-
alities rather than a comprehensive solution [25, 38].

This research seeks to address the previously mentioned
gaps by developing a mobile application that combines real-
time object detection with OCR functionality. By leverag-
ing cutting-edge technologies like YOLOv8 and Azure Al
Vision, and training on a custom dataset tailored to a univer-
sity environment, the application aims to provide a seam-
less, intuitive, and efficient solution for visually impaired
users. The main objective of this project is to develop an
application for visually impaired individuals to navigate
safely in the outdoors of a university campus without assis-
tance. Unlike existing fragmented assistive tools, the pro-
posed system provides an integrated and real-time wearable
solution combining object detection, distance estimation,
and OCR functionalities, ensuring low latency, enhanced
autonomy, and improved usability for visually impaired
users.

This application includes two key features: OCR with
speech functionality and a safe walk feature that alerts users
to potential collisions within one meter. The application has
two primary features. One is OCR with speech functional-
ity, as this feature reads out any text of interest to the user.
For example, the user can take a picture of a menu in the
canteen, and the OCR will extract the text, which the speech
function will read aloud. The second feature is “walk safe”,
which helps the user navigate safely by updating them about
potential collisions within one meter. The user can detect
streetlights, cars, or any individual passing within one meter.

This design empowers visually impaired individuals to
navigate and manage a wide range of everyday situations,
such as moving between classrooms, attending conferences,
reading text, or independently ordering food in a cafeteria.
While the current application has been trained and opti-
mised for use within university premises, its framework can
be readily extended to broader environments such as hospi-
tals, workplaces, and other public spaces.

To validate this approach, the remainder of this paper
is structured as follows: Sect. 2 critically reviews existing
assistive technologies to clarify the research gap; Sect. 3
details our integrated system architecture and the compara-
tive evaluation methodology for YOLOvVS variants; Sect. 4
presents performance results; Sect. 5 discusses implications
relative to existing systems; and Sect. 6 concludes with lim-
itations and future directions.

2 Literature review

The advancement of assistive technologies has significantly
improved the quality of life for visually impaired individu-
als. However, limitations in intuitiveness, real-time per-
formance, and the integration of multiple functionalities
persist. This literature review explores existing technolo-
gies and methodologies relevant to object detection, OCR,
and their integration into assistive systems while identifying
gaps addressed by this research.

2.1 Assistive technologies for navigation and object
detection

Navigation aids have evolved to support visually impaired
individuals by detecting obstacles and guiding them through
environments. Early systems, such as the Microsoft Kinect-
powered NAVI, focused on obstacle detection and rec-
ognition, offering mobility enhancements but limited to
indoor use due to hardware dependencies [72]. Similarly,
systems like Smart Cane and Haptic Radar employed depth
cameras and infrared sensors to detect nearby objects, but
their reliance on specific hardware constrained scalability
and adoption [33]. Recent innovations in object detection
have leveraged advancements in deep learning. YOLO
(You Only Look Once) models have revolutionised real-
time object detection with their speed and accuracy. Earlier
versions, such as YOLOV3, introduced multi-scale predic-
tions, while YOLOv4 incorporated enhancements like Mish
activation and spatial pyramid pooling [48]. The latest itera-
tions, including YOLOVS, have further optimised detection
through anchor-free architectures and efficient backbone
networks, enabling faster and more accurate detections in
dynamic environments [65]. Despite these advancements,
the integration of these models into practical assistive appli-
cations remains limited, primarily due to computational
constraints and the lack of custom datasets tailored for spe-
cific environments. Table 1 provides an overview of assis-
tive technologies developed over the years, as well as their
innovations and limitations.

2.2 OCRin assistive applications

OCR technology plays a crucial role in enabling visually
impaired individuals to interpret textual information. Early
OCR systems, such as Tesseract, relied on handcrafted
features and template matching, which limited their per-
formance under varying conditions [54]. Modern OCR
approaches, including EAST (Efficient and Accurate Scene
Text Detector) and its integration with neural networks
like LSTMs, have significantly improved accuracy and
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Table 1 Review of assistive technologies

Study Technology Used Innovation Key Features Applications Advantages Disadvantages
[72] Microsoft Kinect NAVI Obstacle detection Navigation systems Low latency Limited to indoor
[47] Project Tango SLAM Indoor positioning Drones High accuracy Hardware
technology dependent
[25] Depth camera Smart Cane Obstacle detection BVI navigation Enhanced mobility Specific
system hardware
[68] Project Tango, ISANA Indoor wayfinding, BVI navigation Utilises haptic feedback Hardware
(Phab 2), obstacle detection dependent
haptic actuators
[38] Tango, Unity Prototype for Capture user’s move- ~ Wayfinding, mobil- Real-time environment  Requires
indoor environ-  ment, continuously ity assistance mapping game engine
ment virtual updated virtual replica integration
replica
[33] 3D image Smart Specs Enhanced 3D percep-  Guidance for VI Exploits residual vision ~ Limited market
enhancement tions with simplified people access
images emphasising
depth
[42] IR-based system, vir- Haptic Radar Obstacle avoidance, Pedestrian route Positive after-test Limited area
tual sound guidance virtual sound guidance guidance appraisals coverage by IR
sensors
[11] 3D model, ultrasonic- Virtual Haptic =~ Warning vibrations Tactile-based Introduces virtual tactile Bulkiness of
based motion capture Radar near objects navigation elements portable haptic
system interfaces
[67] BLE NavCog Indoor wayfinding Navigation systems  Utilises BLE for precise Limited to indoor
smartphone for BVI users indoor navigation use
application
[60] Visual- auditory EyeMusic Sensory substitution Visual-to-auditory =~ Makes visual informa-  Requires learning
systems information tion accessible through  and adaptation
conversion sound
[15] Visual- auditory The classic Sensory substitution Visual-to-auditory ~ Long-standing, well- User adaptation
systems vOICe information tested solution required
conversion
[52] Cloud computing, Seeing Al, Verbal image Assistive technol- Provides verbal descrip- Dependent
[37] image recognition TapTapSee descriptions ogy for the visually tions of images using on internet
impaired remote processing connectivity
[26] Public transport data ~ Moovit Real-time public trans- Mobility assistance  Free, effective, Limited to areas
integration port guidance for BVI users easy-to-use with public trans-
port data
[21] GPS, Foursquare’s BlindSquare Speech-based POI Outdoor navigation  Designed specifically for Depends on
and OpenStreetMap’s location for BVI users BVI users external database
databases accuracy
[50]  GPS, motion capture = Lazzus Intuitive cues about Outdoor navigation Provides verbal informa- Paid application
and orientation POI locations for BVI users tion about nearby POIs
sensors
[50]  GPS, similar to Seeing Al GPS ~ 360° and beam modes  Outdoor navigation Incorporates pre-journey N/A
Lazzus for POI information for BVI users information

robustness in detecting and recognising text in complex
scenes [69].

Applications such as Seeing Al and TapTapSee utilise
cloud-based OCR to provide verbal descriptions of visual
content. While these systems offer high accuracy, they
are dependent on internet connectivity, making them less
effective in offline or remote scenarios [47]. Additionally,
the lack of integration between OCR and real-time object
detection in these solutions limits their ability to provide
a holistic assistive experience. For example, Seeing Al
excels in reading text from images but lacks the capability
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to detect objects in real-time, which diminishes its usability
in dynamic environments. Table 2 summarises significant
assistive solutions for OCR and navigation, as well as their
benefits and limitations.

A critical review of Table 2 reveals persistent limitations
in these technologies. Although innovative, solutions like
eSight 3 and Eyesynth are prohibitively expensive, limiting
accessibility for a broader audience. Moreover, devices such
as Oton Glass focus narrowly on dyslexic users, exclud-
ing a wider population of visually impaired individuals
who require comprehensive features, including proximity
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Table 2 Review of industrial

Solutions Developer Conceptual Benefits Drawbacks Improvements
assistive technologies Design
eSight 3 CNET’s High-res Surgery-free aid Does not improve Waterproof ver-
image vision as it just sions are under
and video an aid development
capture
Oton Glass  Keisuke Image- Symbols to audio For only people  Can be improved
Shimakage, to-audio conversion, normal with reading to support blind
Japan conversion looking glasses, sup-  difficulty and no  people also by
ports languages support for blind  including prox-
people imity sensors.
Aira Suman Smart Help users to interpret Waiting time con- To include lan-
Kanuganti glasses their surroundings nected to the Aira guage translation
& remote  with smart glasses. agents in order to  features.
agents be able to sense.
Eyesynth Eyesynth, 3D scene-  Allows blind/ limited  Costly, and it Can use verbal
Spain to-audio sight people to ‘feel only recognizes  audio for a better
conversion the space’ through objects and feel and naviga-
sounds. It converts directions. tion services.
spatial and visual
information into audio.
Google Google Inc.  Hands-free Can capture images & Costly, and the Reduce costs to
Glasses interac- videos, get directions,  glasses are not make it more
tion, Voice  send messages, audio  very helpful for  affordable for
commands calling and real-time  blind people. the consumers.
translation using word
lens app.
OrCam ORCAM Daily Text reading, facial Limited Field Reduce costs to
MyEye assistance  recognition, Stand- of View (FOV) make it more

alone operation, no
internet required

(45°), no naviga-
tion, high cost

affordable, to
be open for

customisation
and third parties’
integrations.

detection and navigation. While Aira offers guided assis-
tance, its dependency on remote human agents introduces
latency and privacy concerns, highlighting the need for
autonomous systems.

Recent advancements in OCR research have focused
on improving robustness under diverse conditions. For
instance, models combining EAST with LSTM networks
have demonstrated significant potential for end-to-end
text recognition, particularly in cluttered or low-light sce-
narios (Zhang et al., 2020). Additionally, advancements
like Google’s Vision Al provide scalable and efficient OCR
capabilities, but integration into real-time systems remains
challenging (Deci Al, 2024). Among the most commercially
viable assistive devices for the visually impaired is OrCam
MyEye, which integrates a miniature camera with Al-based
OCR to read text, recognise faces, and identify products.
The device attaches magnetically to eyeglasses and provides
real-time audio feedback. Unlike Seeing Al or Aira, which
depend heavily on mobile devices or human agents, OrCam
MyEye is self-contained and functions offline, addressing
critical challenges of latency and privacy[23]. However,
despite its autonomy, OrCam’s closed system architecture
limits customisation and third-party integrations, making it

less flexible for research-driven or user-specific enhance-
ments. Additionally, the cost remains prohibitively high
for many users [4]. Comparatively, eSight Eyewear uses a
combination of high-definition cameras and OLED screens
to enhance residual vision, but it is more suitable for users
with partial sight rather than total blindness [40]. IrisVision,
another contender, relies on a smartphone-based headset
and provides magnification and scene interpretation but
lacks integration with OCR or robust object detection pipe-
lines [22].

The overarching challenge lies in developing an afford-
able, real-time OCR solution that seamlessly integrates with
object detection for comprehensive assistance. Future sys-
tems must bridge this gap by leveraging advanced Al models
and optimising for low-resource devices, enabling broader
adoption among visually impaired populations. Recent
evaluations of wearable assistive technologies highlight a
growing shift toward Al-driven, head-mounted systems that
enable real-time scene interpretation, object recognition,
and reading assistance.
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2.3 Advances in object detection

The advent of deep learning marked a paradigm shift in
object detection. R-CNN (2014) combined selective search
with convolutional neural networks (CNNs) to improve
accuracy but faced challenges with computational efficiency
[21]. Successive innovations like Fast R-CNN (2015)
streamlined the training process for bounding box regres-
sors and detectors, while Faster R-CNN (2015) integrated
a Region Proposal Network (RPN) to achieve near real-
time performance [5]. Feature Pyramid Networks (FPNs),
introduced in 2017, further advanced detection systems
by enabling multi-scale feature representation, improving
accuracy on benchmarks such as the COCO dataset [21, 39].

One-stage detectors, including YOLO, SSD, and Reti-
naNet, revolutionised object detection by balancing speed
and accuracy. Unlike two-stage methods, these models
eliminated region proposal steps, enabling faster inference
suitable for real-time applications. YOLO, introduced in
2016, achieved unprecedented speed but faced challenges
with localisation accuracy, particularly for smaller objects.
Subsequent models, such as SSD, enhanced accuracy with
multi-resolution techniques, while RetinaNet introduced
focal loss to address the imbalance between easy and hard
examples during training [39, 48].

CornerNet and CenterNet adopted keypoint-based detec-
tion paradigms, simplifying the detection process by elimi-
nating anchor boxes, which streamlined computational
requirements while maintaining competitive accuracy.
Recent advancements, including DETR and Deformable
DETR, integrated Transformer-based architectures to pre-
dict object sets end-to-end without anchor boxes, achieving
state-of-the-art results on COCO datasets [10, 66].

2.4 Evolution of the YOLO framework

The YOLO framework has undergone significant develop-
ment over the years, introducing innovative features and
addressing the limitations of its predecessors. YOLOV2
improved upon the original YOLO by incorporating
enhancements such as BatchNorm, higher resolution
input, and anchor boxes, which increased accuracy and
adaptability across various applications [48]. YOLOvV3
further advanced the framework by integrating an object-
ness score into bounding box predictions and generating
multi-scale predictions to improve detection performance
for smaller objects [13, 58]. YOLOv4 introduced feature
aggregation techniques, Mish activation, and augmenta-
tion strategies, achieving higher accuracy and speed than
its predecessors [9]. With YOLOvVS, emphasis was placed
on deployment flexibility, providing support for batch pro-
cessing and seamless conversion into formats like ONNX
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and CoreML for compatibility with various platforms [36].
Baidu’s PP-YOLO and PP-YOLOV2 models enhanced the
YOLO framework by integrating techniques such as Drop-
Block regularisation and Matrix NMS, resulting in superior
performance metrics on COCO benchmarks [61]. Scaled
YOLOv4 employed cross-stage partial networks to scale
model size effectively, balancing performance and compu-
tational efficiency [41]. YOLOv6 and YOLOvV7 introduced
further architectural refinements, including the EfficientRep
Backbone, Rep-PAN Neck, and gradient propagation tech-
niques, which significantly improved inference speed and
accuracy [18, 29]. YOLOv8 featured developer-friendly
tools and eliminated anchor boxes, simplifying its applica-
tion and enhancing deployment flexibility [59]. Recent mod-
els like YOLO-NAS utilised Neural Architecture Search
to optimise the trade-offs between speed and accuracy,
achieving state-of-the-art performance on COCO datasets
[6, 12]. YOLO-World, a zero-shot detection model, lever-
aged a “prompt then detect” methodology to enable object
detection based on textual prompts without fine-tuning [14].
The latest iterations, YOLOV9 and YOLOvVI10, introduced
programmable gradient information and optimised latency,
establishing new benchmarks for real-time object detection
and efficiency [1, 2, 64].

This review reveals three persistent gaps in assistive
technologies: (1) fragmentation between navigation and
OCR capabilities, (2) hardware dependencies that limit
real-world deployment, and (3) computational constraints
that compromise real-time performance. Our study directly
addresses these limitations by developing a unified sys-
tem on commercial smart glasses that balances detection
accuracy with computational efficiency through systematic
model evaluation.

3 Methodology
3.1 System design architecture

The proposed system is designed to leverage mobile appli-
cations for texting purposes and smart glasses, specifi-
cally Vuzix Blade 2, as a wearable device to assist visually
impaired users with real-time object detection, tracking, dis-
tance estimation, and optical character recognition (OCR).
The architecture integrates a combination of advanced com-
puter vision models, including YOLOvVS8 for object detec-
tion, SORT (Simple Online and Realtime Tracking) for
object tracking, and OCR capabilities powered by Azure Al
Figure 1 illustrates the overall system pipeline, showcasing
the interconnected components: smart glasses, WebSocket
connections, object detection server, and integration with
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Fig. 2 Architecture Workflow

Microsoft Cognitive Speech Service for audio-based feed-
back to users.

The architecture ensures that real-time data from the
smart glasses is processed with minimal latency to provide
timely and accurate feedback to users, enhancing safety and
accessibility in various environments. The system pipeline
involves capturing video data, processing it for object detec-
tion and OCR, and generating alerts or descriptions that are
delivered audibly to the user.

Figure 2 presents the detailed architectural workflow,
highlighting the interactions between the Vuzix Blade 2,
WebSocket connections, and cloud services such as Azure
Vision and Microsoft Cognitive Speech Services. This lay-
ered architecture enables the system to manage both local
processing and cloud-based computations effectively. A
detailed flow is in Appendix Figure 10.

Convert Alert to Speech

Identify Objects withing 1 m

3.2 Hardware platform: Vuzix blade 2 specifications

The proposed system is implemented on the Vuzix Blade 2,
a commercially available smart glass platform designed for
enterprise and assistive applications. It operates on Android
11 with a Quad-Core ARM Cortex-A55 2.0 GHz CPU,
coupled with 2 GB LPDDR4 RAM and 40 GB of internal
storage (expandable via microSD). The device is equipped
with an 8 MP front-facing camera capable of 1080p video
capture, which is essential for real-time computer vision
tasks such as object detection and OCR. It features a full-
colour see-through waveguide display with a resolution of
480 x 480 pixels and a 20-degree field of view, optimised for
heads-up display interfaces [34].

Connectivity includes Wi-Fi 2.4/5 GHz, Bluetooth 5.0,
and USB-C, supporting both real-time streaming and low-
latency communication with external servers via WebSocket
protocols. The built-in dual-noise-cancelling microphones
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and mono speaker enable seamless integration with Azure
Cognitive Services for audio feedback. Battery life sup-
ports approximately 2—-3 h of active use, which is consistent
with low-power Al inference tasks performed on-device
and via cloud delegation. The system is further enhanced
by the availability of a touchpad, voice command support,
and head-motion tracking, which are reserved for potential
integration in future iterations. These specifications were
essential in selecting YOLOV8-S for deployment, balanc-
ing model size and inference efficiency under the device’s
computational limitations.

3.3 Core software modules
3.3.1 Object detection with YOLOv8

The object detection module employs YOLOv8, known
for its high speed and accuracy, making it suitable for real-
time applications. YOLOv8 was selected after a thorough
comparative evaluation of its predecessors and some alter-
native models. It has many architectural improvements,
which mainly includes an anchor-free detection mechanism,
decoupled detection heads and native support for ONNX,
TensorRT and PyTorch for faster and memory efficient
deployment [36, 59].

Object detectors like YOLOv3, YOLOv4 and YOLOVS
rely on anchor-based detection. Anchors are basically pre-
defined bounding boxes of different scales and aspect ratios
which are used to predict object locations. The approach is
effective but faces issues such as manual anchor box tun-
ing, limited flexibility and increased model complexity
[9]. YOLOvVS has a higher model size and has faced vari-
ous deployment issues. On the other hand, YOLOVS adopts
an anchor-free architecture, which directly predicts object
centers and bounding box dimensions. This improves gen-
eralisation on unseen object scales and simplifies the object
detection pipeline (Zhao et al., 2019).

Models such as MobileNet-SSD is lightweight and is
suitable for edge devices but it underperforms on smaller
objects and yields low mAP scores [31, 71]. Faster R-CNN
delivers high precision but struggles with low frame rate
[51], EfficientDet-DO0 requires comparatively high compu-
tational resources.

YOLOVS is pre-trained on the COCO dataset and fine-
tuned on a custom dataset featuring objects relevant to
urban and indoor environments, ensuring robust perfor-
mance in detecting objects like vehicles, obstacles, and
textual elements. This module processes video input from
the Vuzix Blade 2 in real time, generating bounding boxes
with confidence scores that indicate detected objects [35].
The integration of YOLOVS into the system is essential for
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identifying environmental elements critical to the user’s
mobility and safety.

3.3.2 Object tracking with BoT-SORT

Following object detection, the next critical step in the sys-
tem pipeline is tracking, which involves maintaining the
identity of detected objects across consecutive video frames.
This process involves determining the distance between the
detected object and the camera [7]. The system employs
BoT-SORT, the default tracker integrated into YOLOVS,
due to its ability to strike an optimal balance between com-
putational efficiency and tracking precision, making it well-
suited for real-time applications [20].

BoT-SORT enhances raw detections by associating
bounding boxes and class labels across frames, ensur-
ing continuity in object tracking. The tracker utilises Kal-
man filtering to predict future positions of objects based
on motion patterns, while the Hungarian algorithm estab-
lishes associations between predicted positions and new
detections. This association process is further refined using
Intersection over Union (IoU), which measures the overlap
between bounding boxes. By generating unique track IDs
for each object, the system facilitates the analysis of object
trajectories and behaviours throughout the video sequence,
significantly enriching the tracking module’s output [63].
In addition to object tracking, the system extracts the
pixel width of bounding boxes generated around detected
objects. This measurement is integral to the distance esti-
mation module, as it enables the calculation of proximity
between the user and the detected objects. By leveraging
pixel dimensions within the video frame, the system ensures
precise and actionable feedback for users navigating com-
plex environments.

3.3.3 Distance Estimation

The distance estimation module enhances the user’s situ-
ational awareness by calculating the proximity of detected
objects using stereo depth perception provided by the Vuzix
Blade 2. Detected objects are categorised into safety zones
such as “safe,” “caution,” and “danger” based on their dis-
tance from the user. This categorisation enables precise and
actionable feedback, allowing users to make informed deci-
sions during navigation. The module’s integration ensures
that both stationary and moving objects are accurately posi-
tioned within the user’s spatial context.

The distance between the camera and a detected object is
calculated based on the relationship between the real size of
the object, its size in the captured image, and the camera’s
focal length. During the data collection stage, the actual
physical width of each object was manually measured in
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meters and documented. This structured data provided a ref-
erence for matching objects with their respective real-world
dimensions, enabling accurate distance estimation.

To compute the distance, the following formula was
applied:

focal length x Actual width of the object

distance =
width of the object in pixel

This formula illustrates how the apparent size of an object
in pixels inversely correlates with its distance from the
camera. As the object moves closer to the camera, its pixel
width increases, resulting in a shorter calculated distance.
Conversely, as the object moves farther away, its pixel
width decreases, leading to a longer estimated distance — as
depicted in Appendix Figure 14. The method ensures pre-
cise spatial awareness by leveraging these principles for
real-time applications. This geometric approach assumes
a calibrated camera and known object dimensions (Object
dimensions were recorded during data collection), and has
been widely used in classical computer vision applications
for its simplicity and efficiency [24, 55]. While advanced
methods such as monocular depth estimation using deep
convolutional networks (e.g., [17]) and triangulation via
stereo vision provide greater accuracy, they demand higher
computational resources and additional hardware, which are
less suitable for real-time, on-device processing. The pri-
mary focus of this work is on enhancing user safety through
robust object detection using YOLOVS, so a lightweight
distance calculation technique was prioritised, which is
suitable for edge devices. However, future extensions of
this work could explore hybrid approaches that combine
learning-based monocular depth estimation with geometric
priors for improved accuracy under varied conditions.

3.3.4 OCRimplementation

The OCR module utilises Azure Vision services to extract
textual information from detected regions and convert
it into audio feedback. This capability allows visually
impaired users to access critical textual information from
signs, documents, or digital screens. The module processes
text in multiple languages and fonts, ensuring versatility
and reliability across various environments. Audio output is
seamlessly integrated with the Microsoft Cognitive Speech
Service, which translates textual data into natural, human-
like speech.

3.4 Technology stacks

The system leverages cutting-edge hardware and software
technologies to ensure real-time performance and scalability.

The Vuzix Blade 2 smart glasses serve as the primary hard-
ware interface, capturing live video streams and delivering
processed audio feedback. Object detection and tracking
are managed using TensorFlow and OpenCV, while Azure
Vision provides robust OCR capabilities. Python serves as
the core programming language for implementing the sys-
tem’s modules, enabling modularity and extensibility. The
use of WebSocket connections ensures low-latency commu-
nication between the smart glasses and the object detection
server, while HTTP connections facilitate seamless integra-
tion with Azure cloud services.

The development process follows an iterative approach,
ensuring scalability, robustness, and accuracy across all sys-
tem components.

3.4.1 Data collection and annotation

The development process began by constructing a diverse
dataset designed to enhance navigation safety for visually
impaired individuals within the university campus. Data
was specifically gathered from areas with a higher likeli-
hood of obstacles that could pose risks. Video recordings
were conducted under varying lighting and weather condi-
tions, including sunny periods, overcast skies, light rain,
and low-light scenarios such as late afternoon and sunset.
This ensured that the dataset reflected typical outdoor vari-
ability—including adverse conditions—Ilikely to influence
the performance of the system’s ‘Safe Walk’ feature. A total
of ten videos were recorded, with an equal split between
the two lighting conditions. This ensured that the dataset
reflected typical outdoor lighting variability likely to influ-
ence the performance of the system’s “Safe Walk” feature.
The dataset focused on common obstacles within campus
environments, such as ‘benches’, ‘streetlights’, ‘bollards’,
‘metal-pedestrian-guardrails’, and ‘trash cans’. These
objects were meticulously categorised to represent real-life
challenges that visually impaired individuals might face.
The dataset contained an average image size of 8.29 mega-
pixels, with a median image resolution of 2160 by 3840
pixels, and a total of 15,951 annotations covering all object
categories — as depicted in Fig. 3. This comprehensive data-
set served as the foundation for training and fine-tuning the
object detection and OCR models, ensuring accuracy and
reliability in real-world applications.

After collecting and annotating data, the subsequent cru-
cial step is preprocessing the annotated data to prepare it
for model training, as depicted in Appendix Figure 11. This
step ensures that the data is in an optimal format, reduc-
ing computational demands and improving model perfor-
mance [28]. Data preprocessing in computer vision projects
involves essential tasks such as image scaling, pixel nor-
malisation, dataset augmentation, and dividing the data into
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Fig. 3 Distribution of annotations
across ‘Train’, ‘Valid’, and ‘Test’
sets for various object classes
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training, validation, and testing subsets. These processes are
applied consistently across all datasets to ensure uniformity
and enhance model reliability during evaluation.

Captured images often include metadata specifying their
orientation and are stored in the EXIF orientation field. This
metadata indicates whether the image should be displayed
as captured or rotated to match its intended viewing angle.
While this metadata facilitates efficient data capture without
artefacts, it can cause inconsistencies if the processing soft-
ware does not account for EXIF orientation. This issue can
result in incorrectly displayed images. To address this, tools
such as Roboflow offer an automated solution by enabling
the “Auto-Orient” feature during preprocessing. This
ensures that images are correctly oriented without manual
intervention, providing a streamlined approach to handling
orientation-related inconsistencies.

Contrast stretching, or normalisation, is a fundamental
preprocessing technique used to improve image contrast.
By extending the range of intensity values within an image
to match the full allowable pixel value range, this method
enhances visibility and distinguishes features within the
image. Unlike histogram equalisation, contrast stretching
employs a linear scaling function, resulting in a subtler
enhancement. This technique is typically applied to gray-
scale images, producing a transformed grayscale output
ready for further analysis [8].

As part of the processing stage, the data augmentations
address the need to simulate various real-world conditions,
such as different lighting and angles, by generating new data
from existing datasets. This process improves the model’s
generalisation ability and ensures robust performance on
unseen images [16]. Augmentation techniques are applied
only to the training dataset, ensuring unbiased evaluation on
test and validation sets. This includes processing problems
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such as rotation, shear, brightness, saturation, blurriness,
and noise.

The object detection module employs YOLOVS, known
for its high speed and accuracy, making it suitable for real-
time applications. YOLOvVS was selected after a thorough
comparative evaluation of its predecessors and some alter-
native models. It has many architectural improvements,
which mainly include an anchor-free detection mechanism,
decoupled detection heads and native support for ONNX,
TensorRT and PyTorch for faster and memory-efficient
deployment [36, 59] .

Object detectors like YOLOvV3, YOLOv4 and YOLOVS
rely on anchor-based detection. Anchors are basically pre-
defined bounding boxes of different scales and aspect ratios
which are used to predict object locations. The approach is
effective but faces issues such as manual anchor box tun-
ing, limited flexibility and increased model complexity [9,
49]. YOLOVS has a higher model size and has faced vari-
ous deployment issues. On the other hand, YOLOVS adopts
an anchor-free architecture, which directly predicts object
centers and bounding box dimensions. This improves gen-
eralisation on unseen object scales and simplifies the object
detection pipeline [70].

Models such as MobileNet-SSD are lightweight and are
suitable for edge devices, but they underperform on smaller
objects and yield low mAP scores [31, 70]. Faster R-CNN
delivers high precision but struggles with low frame rate
[51], EfficientDet-D0 requires comparatively high compu-
tational resources.

3.4.2 Model training and hyperparameters
The YOLOvVS model family provides multiple backbone

variants, including YOLOvVS8-N, YOLOvV8-S, YOLOv8-M,
YOLOVS-L, and YOLOv8-X. These variants are designed
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to balance speed and accuracy based on the computational
requirements. For this experiment, YOLOvV8-N, YOLOvS8-
S, and YOLOv8-M were selected due to their efficiency in
terms of memory usage and responsiveness on resource-
constrained devices such as smart glasses. Larger models
like YOLOVS-L and YOLOvS8-X, although highly precise,
were excluded due to their high computational demands
and slower inference times, which could reduce usability on
wearable devices [70].

Pretrained models were utilised to accelerate the train-
ing process and enhance performance. These models, ini-
tially trained on large datasets like COCO (containing over
330,000 images across 80 categories), significantly reduce
the amount of data required for fine-tuning and improve
generalization on new datasets. The training began by
downloading the pretrained YOLOvV8 models from Ultralyt-
ics and customising their hyperparameters to align with the
requirements of this study.

Key hyperparameters included the ‘epochs’, which were
set to 100. This parameter determines the number of itera-
tions through the entire training dataset. This value strikes a
balance between underfitting and overfitting, providing the
model with sufficient learning opportunities. The image size
was set to a resolution of 640 %640 pixels, and it was set
to maintain a balance between computational efficiency and
feature detail, ensuring that objects are captured with ade-
quate precision without overwhelming memory resources.
Another hyperparameter was the optimiser ‘AdamW’,
which is a variant of the Adam optimiser. It was used for
training to integrate weight decay into the update rule, in
order to improve regularisation and enable faster conver-
gence compared to traditional optimisers like SGD. The
learning rate was set to 0.001 to achieve a balance between
convergence speed and stability, avoiding divergence or sub-
optimal minima during training. Early stopping was imple-
mented with a patience value of 10 epochs, halting training
if validation performance did not improve over this period.
This approach prevents overfitting by stopping the training
process once the model ceases to generalise better. The first
10 layers of the model were frozen during training to retain
the general feature representations captured in these layers.
This strategy reduces overfitting and accelerates training by
focusing updates on the deeper layers tailored to the cus-
tom dataset. These hyperparameter settings were carefully
selected to optimise model performance while considering
the computational constraints of smart glasses. The train-
ing process ensured that the models could efficiently pro-
cess real-world scenarios without compromising accuracy
or speed.

3.4.3 System integration

The integration process involves combining various compo-
nents to deliver a cohesive and efficient application for user
navigation and text recognition. The system ensures real-
time detection and feedback by leveraging Unity for devel-
opment, managing Android permissions, and incorporating
WebSocket-based object detection and Azure Al services.
This high-level integration framework guarantees seamless
interaction between hardware and software components,
providing visually impaired users with reliable tools for safe
mobility and textual information retrieval.

3.4.4 Optical character recognition implementation

The Optical Character Recognition (OCR) implementation
involves multiple stages, starting with integrating Azure Al
Vision services to extract textual data, followed by manag-
ing Android permissions to ensure seamless camera access.
The extracted text is processed using Azure’s SDK and con-
verted into speech using Microsoft Cognitive Speech Ser-
vices. This systematic approach enables visually impaired
users to interact effectively with their surroundings by con-
verting printed text into audible information. The User Jour-
ney is depicted in Appendix Figure 12.

3.4.5 User interface design

The application’s user interface (UI) was developed using
Unity to ensure a seamless and intuitive experience. The
design emphasises simplicity and functionality, providing
clear visual and audio prompts that integrate directly with
both the ‘Safe Walking” and OCR features -As depicted in
Appendix Figure 13. For the ‘Safe Walking’ feature, the Ul
displays detected objects alongside their proximity, offering
real-time feedback that helps users navigate safely. Simi-
larly, for OCR, the UI showcases extracted text visually
while synchronising it with the audio output generated by
the text-to-speech functionality. These integrated elements
enhance usability by ensuring that visually impaired users
receive accessible, timely, and context-aware information
about their surroundings. The design emphasises simplic-
ity, with clear visuals and audible prompts to guide users
through both the Safe Walking and OCR functionalities.
Key design elements include real-time feedback displays
tailored for testing purposes and for detected objects and
text, ensuring users can easily comprehend the information
provided.
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4 Results

This section systematically evaluates the system compo-
nents to address our research question. The results conduct
a comparative analysis of YOLOvVS models (N, S, and M)
and the practical implications of their deployment on Vuzix
Blade 2 smart glasses. Then, validate the integrated sys-
tem’s performance on real-world tasks. through Figs. 7 and
8, illustrating real-world scenarios.

4.1 Performance comparison of YOLOv8 models

Table 3 provides a comparative analysis of YOLOVS-N,
YOLOVS-S, and YOLOV8-M across key performance met-
rics, including precision, recall, and mean Average Preci-
sion (mAP). YOLOvV8-M achieves the highest accuracy,
with a precision of 0.90, recall of 0.83, and mAP50 of 0.87.
These metrics highlight its effectiveness in detecting objects
with high precision and minimal false positives. However,
the model’s larger size and computational demands result
in slower inference times, making it less ideal for resource-
constrained environments like wearable devices.

YOLOvVS-S demonstrates a balanced performance,
achieving a precision of 0.88 and recall of 0.81, with a sig-
nificant reduction in computational overhead compared to
YOLOVS-M. This balance makes YOLOvVS-S the most suit-
able choice for real-time applications on the Vuzix Blade 2.
YOLOVS-N, while computationally efficient, has lower pre-
cision (0.82) and recall (0.76), which limits its applicability
in scenarios requiring high detection accuracy — as depicted
in Appendix Figure 15.

4.2 Confusion matrix analysis

Figures 4 and 5, and 6 present the confusion matrices for
YOLOVS-N, YOLOvV8-S, and YOLOVS-M, respectively,
offering detailed insights into the detection capabilities of
these models. YOLOVS-N demonstrates significant chal-
lenges with misclassification, particularly for smaller objects
and overlapping categories. These shortcomings result in
higher rates of false positives and negatives, undermining
the model’s reliability in dense and complex environments.
In contrast, YOLOv8-S shows a marked improvement,
with better differentiation between object classes and fewer
misclassifications. This model performs well in scenarios

Table 3 Performance comparison between object detection models

with objects of varying distances and sizes, showcasing a
balanced approach between accuracy and computational
efficiency. Meanwhile, YOLOVS-M exhibits the highest
accuracy among the three models, with minimal classifica-
tion and localisation errors. Its performance is particularly
prominent in identifying overlapping objects, making it an
ideal choice for applications where accuracy is dominant,
albeit at the cost of increased computational demand.

4.3 System validation with advanced features

Figures 7 and 8 provide a detailed analysis of the sys-
tem’s performance in real-world scenarios, offering critical
insights into its capabilities and limitations. Figure 7 dem-
onstrates the system’s object detection module in a crowded
environment. The metrics reveal high accuracy in detect-
ing multiple objects simultaneously, with minimal overlap
in bounding boxes. The precision of distance estimations,
as depicted in the figure, highlights the system’s effective-
ness in ensuring real-time feedback for safe navigation.
Particularly, the system maintains consistent detection
performance under varying lighting conditions and object
densities, underscoring the robustness of the object detec-
tion pipeline. The ability to differentiate between objects
of similar appearance or size further validates the system’s
reliability for practical applications.

Figure 8 focuses on the OCR functionality, analysing its
capacity to extract textual information from diverse sur-
faces. The figure highlights the system’s performance across
reflective, low-contrast, and uneven surfaces, showcasing
its adaptability to challenging conditions. Metrics in the
figure indicate a high success rate in text recognition, with
minimal errors in character detection and interpretation. The
integration of these results with the Azure Speech Service
ensures that the recognised text is converted into clear and
accurate speech, providing users with immediate access to
essential information. These analyses confirm the system’s
practicality and its potential to enhance the mobility and
independence of visually impaired users significantly. By
addressing the challenges of real-time detection and text
recognition, the system establishes itself as a reliable tool
for navigation and environmental awareness. The results
emphasise the strength of the proposed system in delivering
robust and efficient assistive technology. While YOLOVS-
M offers superior accuracy, its computational requirements

Metric YOLO V8 N YOLO V8 S YOLO V8 M Speed (ms) YOLO V8 N YOLO V8 S YOLO V8 M
Precision 0.83 0.87 0.90 Preprocess 0.83 0.87 0.90

Recall 0.76 0.79 0.83 inference 0.76 0.79 0.83

mAP50 0.79 0.84 0.87 loss 0.79 0.84 0.87
Map50-95 0.59 0.64 0.69 Post 0.59 0.64 0.69

Fitness 0.61 0.66 0.7 Process
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Fig.6 Confusion Matrix from
YOLOV8 M
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make YOLOVS-S the optimal choice for deployment on
Vuzix Blade 2 smart glasses, striking a balance between
speed and precision. The integration of object detection and
OCR ensures a comprehensive solution for enhancing the
mobility and independence of visually impaired individu-
als. Future optimisations could further improve the system’s
adaptability to diverse environments, expanding its utility
beyond university campuses.

The model achieved an overall mAP at 0.5 of 0.877, indi-
cating strong detection performance across most classes. The
peak F1 score for all classes combined was 0.85, achieved
at a confidence threshold of 0.407. High-performing classes
such as “Tent” and “Sitting-area” achieved near-perfect
mAP scores of 0.995, reflecting exceptional precision and
recall. Other high-performing classes included “Bike Shel-
ter Zone” (mAP: 0.979) and “Pot” (mAP: 0.967).

Moderately performing classes, such as “Poster Stand”
(mAP: 0.952) and “Wooden Bollards” (mAP: 0.930), dem-
onstrated reliable detection with good precision-recall
trade-offs. However, “Street-light” (mAP: 0.845) and
“Trash-can” (mAP: 0.843) showed sensitivity to confidence
threshold tuning. Lower-performing classes, including
“Stair” (mAP: 0.802) and “Metal Bollard” (mAP: 0.694),
exhibited steep drops in precision and recall at higher
thresholds, likely due to the imbalanced dataset. Similarly,
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“Metal-Pedestrian-Guardrail“(mAP: showed
reduced detection reliability.

The F1-Confidence curve indicated that the optimal con-
fidence range for balancing precision and recall across all
classes was between 0.3 and 0.6. Despite challenges with
low-performing classes, the overall results demonstrate
the model’s strong capability to detect diverse objects.
Future efforts could address the impact of data imbalance to

improve generalisation further.

0.742)

4.4 System latency and responsiveness

While the focus of this study was on the system design and
model optimisation, a key performance consideration in
assistive technologies is real-time responsiveness. Although
a dedicated latency measurement module was not deployed
during field testing, empirical observations from the sys-
tem’s operational logs and development environment indi-
cate negligible perceptible delay between object detection
and auditory feedback. The system exhibited sub-second
latency, with total round-trip delay (from camera capture to
speech output) consistently estimated to be under 250-300
milliseconds for object detection and under 500 millisec-
onds when OCR was triggered. These estimates were based
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Fig. 7 The system’s ability to detect multiple objects simultaneously in a crowded environment

Fig.8 The OCR functionality
where the system successfully
extracts text from diverse surfaces
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Table 4 Validation results

Metric Value
Images Processed 1340
Total Ground Truth Boxes 3332
Total Predictions 2903
Average IoU (TP Only) 0.9108
Precision 0.8777
Recall 0.7647

Avg Inference Time 28.4 millisecond/image

on timestamped logs during simulated walks and confirmed
via manual annotation of interaction sequences.

Technically, this responsiveness was made possible due
to the efficient integration of the YOLOVS-S model, which
has an average inference time of 18-21 ms per frame on
the system’s edge device (Quad-core ARM Cortex-ASS5).
The object detection pipeline, developed using TensorFlow
Lite and executed locally, leveraged multithreaded process-
ing and hardware acceleration (via Android NNAPI where
available). OCR tasks, processed through Azure Cognitive
Services, introduced slightly more variability in latency
depending on network conditions, but remained within
acceptable thresholds for real-time interaction.

4.5 Empirical results

As demonstrated in Table 4, the YOLOvV8 model dem-
onstrated robust performance across 1,340 test images,
achieving a high average IoU of 0.9108 for true positives,
indicating precise localisation. With 2,903 predictions
against 3,332 ground truth boxes, it maintained a strong
precision of 87.77% and recall of 76.47%, reflecting accu-
rate object detection with moderate coverage. These results

validate the model’s effectiveness in real-world scenarios
with complex scenes. Furthermore, its average inference
time of just 28.4 milliseconds per image confirms its suit-
ability for real-time applications.

To contextualise our system’s performance within
the broader landscape of assistive technologies, Table 5
provides a comprehensive comparison across multiple
dimensions, including functionality, performance metrics,
hardware requirements, and cost. Unlike specialised solu-
tions that excel in single domains (e.g., OrCam MyEye for
text reading or Smart Cane for obstacle avoidance), the pro-
posed SafeWalk system offers integrated functionality while
maintaining competitive performance metrics.

5 Discussion

The results demonstrate that our integrated system suc-
cessfully addresses the limitations of fragmented assistive
technologies (Fig. 9). Three key findings emerge from our
analysis:

5.1 Comparative advantage over existing systems

The proposed system design represents a significant
advancement over existing assistive technologies for visu-
ally impaired individuals. Unlike prior approaches that often
focus on isolated functionalities, such as obstacle detection
or textual recognition, this system integrates multiple fea-
tures—object detection, distance estimation, and OCR—
into a single wearable solution. For instance, Seeing Al, a
widely used assistive application, excels in text recognition

Table 5 Comparative analysis of assistive technologies across key performance metrics

System Object OCR Real-time  Hardware Cost Estimate mAP/ Latency Key
Detection Feedback  Requirements Accuracy Limitations
SafeWalk v (YOLOVS-S) v v Vuzix Blade 2 glasses  ~$1,300 87.7% 250-500 Limited battery
(Proposed) (Azure  (Auditory) mAP@0.5 ms life (2-3 h)
Al)

Smart v (Depth X v/ (Haptic) Custom cane+sensors ~$300-500 N/A <100 No OCR,

Cane [25]  camera) ms limited object
classification

OrCam v (Basic) v v Eyeglass-mounted ~$3,000-4,500 High text ~1-2s  Limited FOV

MyEye [4] (Auditory) device accuracy (45°), no
navigation

IrisVi- X X X Smartphone+headset  ~$2,500-3,500 N/A N/A Vision enhance-

sion [22] ment only, no
Al detection

Seeing v (Limited) v v Smartphone Free app High OCR 2-5s Cloud-depen-

Al [52] (Auditory) accuracy dent, no real-
time navigation

Aira v (Human v v Smart ~$100-300/ Human-level 2-5s Privacy con-

[44] agent) (Human (Auditory) glasses+subscription — month cerns, subscrip-

agent) tion model
NAVI[72] v (Kinect) X v Kinect+backpack PC  ~$1,500-2,000 Moderate ~500 Bulky, indoor
(Auditory) ms—1s useonly
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Fig. 9 Validation Test results for images taken across the University
of Essex campus

but requires a smartphone, limiting its real-time usability
and integration with navigation features [26]. Similarly,
Aira’s reliance on human agents introduces delays and
privacy concerns, as users must rely on external input for
navigation [50]. In contrast, the proposed system offers real-
time, autonomous assistance powered by advanced Al mod-
els and AR-enabled smart glasses, thereby reducing latency
and enhancing user independence. When compared to hard-
ware-dependent solutions such as Smart Specs or Eyesynth,
which primarily focus on depth perception or converting
visual information into sound, this system offers a broader
range of capabilities. For example, Eyesynth uses sound-
scapes to relay spatial information but lacks precise object
classification and textual recognition, which are essential in
environments like university campuses. Smart Specs, on the
other hand, provide depth perception through sterecoscopic
cameras but fail to integrate OCR or object detection for
contextual navigation. This system leverages Vuzix Blade
2 smart glasses, providing precise object detection through
YOLOvVS8 and robust OCR capabilities via Azure Vision
services, thereby bridging the gaps left by these earlier
technologies.

Early solutions like NAVI [72] and ISANA [68] relied
on specialised hardware (Microsoft Kinect, Project Tango),
restricting deployment to indoor environments. Simi-
larly, Smart Cane [33] and Haptic Radar [42] used depth
cameras/IR sensors, limiting scalability. In contrast, our

system leverages commercially available Vuzix Blade 2
smart glasses [34, 46], enabling portability across indoor/
outdoor settings without custom hardware. This flexibility
addresses a key gap in Table 1, where 71% of solutions were
hardware-constrained.

Existing tools often excel in singular domains but lack
holistic integration. For example, Seeing Al and TapTapSee
[52] offer robust OCR but depend on cloud connectivity and
lack real-time obstacle detection. NavCog [67] provides
indoor wayfinding but omits environmental awareness
(e.g., dynamic obstacles). EyeMusic and vOICe [15, 60]
convert visuals to sound but require extensive user train-
ing. On the other hand, the WalkSafe system unifies object
detection (YOLOV8-S), OCR (Azure Al Vision), and audi-
tory feedback into a single pipeline, enabling simultaneous
navigation and textual access. This integration resolves the
“fragmented functionality” gap noted earlier.

Aira [44] relies on remote human agents for guidance,
introducing latency (~2—5 s) and privacy concerns. How-
ever, WalkSafe system operates autonomously, leveraging
on-device YOLOVS-S inference (18-21 ms/frame) and
local OCR preprocessing to achieve sub-second latency
(250-500 ms). This eliminates third-party dependencies,
enhancing privacy and real-time responsiveness.

Classical detectors like Viola-Jones [15] and early YOLO
versions struggled with small/overlapping objects - demon-
strated in Table 1. While YOLO-NAS [1, 2] improves accu-
racy, its computational demands exceed wearable-device
capabilities. Our comparative analysis - Table 3- demon-
strates that YOLOV8-S achieves optimal balance; Precision
(0.88) and recall (0.81) surpass Faster R-CNN (mAP@0.5:
0.76) [50] and EfficientDet-D1 (mAP@0.5: 0.78) [56].
While Inference speed (18-21 ms) enables real-time per-
formance on Vuzix Blade 2’s Quad-core ARM CPU, unlike
bulkier models (YOLOv8-M/YOLOvV10).

Prior systems faltered under variable lighting or crowded
settings. For instance, Viola-Jones misclassified objects in
low light [15]. Smart Specs [33] offered no OCR for tex-
tual navigation cues. On the other hand, the WalkSafe sys-
tem trained on 15,951 campus images, depicted in Fig. 3,
achieves mAP@0.5 of 0.877, as detailed in Table 6, and
adapts to lighting diversity via preprocessing. The OCR
module depicted in Fig. 8 extracts text from reflective/low-
contrast surfaces, outperforming Tesseract-based systems.

The pipeline introduced in this study represents a robust
and modular framework that can significantly benefit devel-
opers and researchers aiming to create inclusive navigation
systems. Unlike traditional systems, this pipeline sup-
ports real-time communication between the hardware and
cloud-based services using WebSocket protocols, ensuring
minimal latency. It effectively balances local and cloud
computations, allowing computationally intensive tasks like
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Table 6 Performance evaluation of object detection by class and con-
fidence thresholds

Category

Observation

Peak F1 score: 0.85 at confidence thresh-
old 0.407; mAP@0.5: 0.877.

“Bike Shelter Zone” (mAP: 0.979),
“Tent” (mAP: 0.995), “Pot” (mAP:
0.967), “Sitting-area” (mAP: 0.995).
“Poster Stand” (mAP: 0.952), “Wooden
Bollards” (mAP: 0.930), “Street-light”
(mAP: 0.845), “Trash-can” (mAP: 0.843).
“Stair” (mAP: 0.802), “Metal Bollard”
(mAP: 0.694), “Metal-Pedestrian-Guard-
rail” (mAP: 0.742).

0.3-0.6, balancing precision and recall
across all classes.

Overall Performance

High-Performing
Classes

Moderate-Performing
Classes

Low-Performing
Classes

Optimal Confidence
Range

YOLO object detection and OCR to be executed without
overloading the smart glasses. This modular design enables
the pipeline to be adapted to various assistive technologies,
serving as a blueprint for future developments. Developers
can use this framework to incorporate additional features,
such as scene understanding or voice-activated commands,
without disrupting the system’s core functionality.

The comparative analysis of YOLOvVS-N, YOLOvVS-S,
and YOLOvV8-M provides valuable insights into the trade-
offs between accuracy and computational efficiency. As
shown in Table 3, YOLOvV8-M achieved the highest accu-
racy with a precision of 0.90 and recall of 0.83, highlighting
its effectiveness in detecting small or overlapping objects.
However, its computational demands make it less suitable
for deployment on resource-constrained devices like the
Vuzix Blade 2. YOLOvS8-S emerged as the optimal model,
achieving a balanced precision (0.88) and recall (0.81) while
maintaining efficient processing speeds, making it ideal for
real-time applications. YOLOVS-N, although faster, exhib-
ited lower accuracy, limiting its applicability in scenarios
requiring high detection precision.

The confusion matrices depicted in Figs. 4 and 5, and 6
further validate these findings. YOLOVS-N showed signifi-
cant misclassification for smaller objects and overlapping
categories, while YOLOvV8-S markedly improved distin-
guishing between object classes. YOLOv8-M demonstrated
the most accurate predictions with minimal errors, but its
slower inference time remains a limitation. These results
align with the mAP scores presented in the study, where
YOLOVS8-M achieved the highest overall mAP (0.87) com-
pared to YOLOVS-S (0.84) and YOLOv8-N (0.79). Figures 7
and 8 provide additional validation for the system’s capabil-
ities in practical scenarios. Figure 7 highlights the system’s
ability to detect multiple objects in a crowded environment
with accurate bounding boxes and distance estimations.
This ensures reliable real-time feedback, which is crucial
for safe navigation. The consistency of performance across
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varying lighting conditions and object densities underscores
the robustness of the object detection module. The system
OCR functionality showcases its ability to extract text from
diverse surfaces, including reflective and low-contrast back-
grounds. Metrics from this analysis reveal a high success
rate in text recognition, with minimal errors. The seamless
integration of OCR with Microsoft Cognitive Speech Ser-
vice ensures that users receive timely and accurate audio
feedback, enhancing their interaction with the environment.

The results achieved in this study surpass those reported
in prior research. For example, the model’s overall mAP of
0.877 significantly outperforms the 75.9% mAP achieved
by Faster R-CNN on the COCO dataset. High-performing
classes such as “Tent” and “Sitting-area” achieved near-
perfect mAP scores of 0.995, demonstrating the model’s
superior precision and recall. However, the performance
of low-frequency classes, such as “Metal Bollard” (mAP:
0.694) and “Stair” (mAP: 0.802), highlights the challenges
posed by imbalanced datasets. Addressing these imbal-
ances in future iterations could further enhance the model’s
generalisability.

The system’s performance was further benchmarked
against state-of-the-art models in object detection and
assistive technologies, emphasizing its advancements in
accuracy, real-time capability, and adaptability to crowded
environments. Compared to Faster R-CNN [49], a widely
adopted two-stage detector, the YOLOVS8-S model achieved
superior mAP@0.5 (0.87 vs. 0.76 on comparable datasets),
demonstrating enhanced precision in detecting small and
overlapping objects. This improvement is critical for assis-
tive applications where false negatives could compromise
user safety. EfficientDet-D1 [56], optimized for scalability,
reported an mAP@0.5 of 0.78 on COCO but required 2.5x
more computational resources than YOLOv8-S, highlight-
ing the latter’s efficiency for wearable devices [56].

Prediction accuracy and false positives are critical for
object detection applications, particularly in assistive tech-
nologies. Faster R-CNN has a lower false positive rate due
to its two-stage detection process, refining region propos-
als before classification [50]. YOLO-based models, while
initially prone to localisation errors, have significantly
improved in later versions. YOLOVS, used in the proposed
system, demonstrated a low false positive rate, with pre-
cision rates between 75 and 98% in different studies [65].
RetinaNet also maintains a low false positive rate by lever-
aging focal loss to handle class imbalances effectively [39].
SSD, however, is known for generating more false positives
compared to other models [3].

As demonstrated in Table 5, the SafeWalk system occu-
pies a unique position in the assistive technology landscape
by balancing integrated functionality with practical deploy-
ment considerations. While specialised systems like OrCam
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MyEye achieve high OCR accuracy and Smart Cane offers
minimal latency, they address only isolated aspects of the
navigation challenge. In contrast, our system provides com-
bined object detection, OCR, and real-time feedback at a
computational cost that enables deployment on commercial
smart glasses, addressing the fragmentation limitation iden-
tified in existing solutions. These comparisons validate the
proposed system’s balance of accuracy, speed, and versatil-
ity, addressing critical gaps in assistive technology research.
Moreover, the integration of Azure cloud services adds a
layer of scalability to the system, enabling computationally
intensive tasks to be performed efficiently without overload-
ing the wearable device. This design choice enhances the
system’s performance and broadens its applicability, mak-
ing it feasible for deployment in diverse settings beyond
university campuses.

5.2 Implications of YOLOv8 model selection

The decision to utilise YOLOV8-S over its successors,
YOLOV9 and YOLOV10, in this study was guided by sev-
eral critical factors, including computational efficiency,
hardware compatibility, and real-time performance require-
ments pertinent to the Vuzix Blade 2 smart glasses. The
Vuzix Blade 2 is equipped with a quad-core ARM CPU
and operates on Android 11, featuring a display resolution
of 480 x480 pixels and a field of view of 20 degrees [46].
While YOLOV9 and YOLOv10 have introduced advanced
architectural enhancements aimed at improving accuracy,
these improvements come with increased computational
demands [30]. For instance, YOLOv10 incorporates a dual-
branch design that, despite optimising latency, requires
approximately 2.1 times more floating-point operations
per second (FLOPs) than YOLOVS8-S [59]. This substantial
increase in computational load poses challenges for devices
like the Vuzix Blade 2, which has limited processing capa-
bilities. Furthermore, the compact model size of YOLOVS-
S (approximately 5.1 MB in FP16 precision) aligns well
with the smart glasses’ limited RAM (2 GB), ensuring
stable performance during concurrent tasks. In contrast, the
larger model sizes of YOLOvV9 and YOLOvV10 could lead
to memory constraints, adversely affecting system stability.
Additionally, YOLOv8-S has demonstrated efficient power
consumption, consuming around 1.8 W during peak infer-
ence, which is crucial for wearable devices where energy
efficiency directly impacts battery life and user comfort.
Considering these factors, YOLOV8-S offers a balanced
trade-off between accuracy and resource utilization, making
it a practical choice for deployment on the Vuzix Blade 2
platform.

By comparing the proposed system with the assistive
technologies reviewed in Table 1, the system presents

significant advantages over those reviewed in Table 1. Due to
hardware dependencies, early systems such as NAVI, which
relied on Microsoft Kinect for obstacle detection, were lim-
ited to indoor environments [72]. Similarly, Smart Cane and
Haptic Radar, while enhancing obstacle detection through
depth cameras and infrared sensors, were constrained by
specific hardware requirements, reducing their scalability
[33, 42]. Unlike these hardware-dependent solutions, the
proposed system operates on Vuzix Blade 2 smart glasses,
ensuring portability and flexibility across both indoor and
outdoor settings. Compared to Project Tango-based sys-
tems like ISANA and NavCog, which excelled in indoor
wayfinding but lacked robust -time environmental aware-
ness [47, 68], the proposed system integrates both object
detection and OCR, allowing users to navigate dynamic
environments while accessing textual information. Unlike
Seeing Al and TapTapSee, which require cloud-based pro-
cessing and internet connectivity for text recognition [52],
the proposed system processes OCR locally on the device,
reducing latency and improving real-time usability. Addi-
tionally, solutions like EyeMusic and vOICe, which employ
auditory sensory substitution for navigation, require signifi-
cant user adaptation [15, 60], whereas the proposed system
provides direct object detection and text-to-speech conver-
sion, minimising cognitive load. While Aira offers real-time
assistance via remote agents, it introduces privacy concerns
and latency issues due to human-in-the-loop processing
[44], whereas the proposed system operates autonomously,
ensuring immediate feedback and greater user indepen-
dence. Moreover, the system outperforms classical object
detection models such as the Viola-Jones Detector, which
struggled with small or overlapping objects in variable
lighting conditions [15], by leveraging YOLOv8’s advanced
neural architecture for high-precision detection. Compared
to recent deep learning-based approaches like YOLO-NAS,
which improve accuracy and efficiency in real-time applica-
tions [1, 2], the proposed system uniquely integrates OCR
and object detection within a unified wearable solution,
bridging the gap between navigation and textual interaction.
By balancing computational efficiency, real-time process-
ing, and multimodal feedback, the system extends beyond
the limitations of previous assistive technologies, offering a
comprehensive, user-friendly solution for visually impaired
individuals.

5.3 Practical implementation considerations

In regards to the user interaction experience design, the sys-
tem was developed with a focus on simplicity, intuitiveness,
and minimal cognitive load for visually impaired users. The
“Walk Safe” and OCR functionalities are activated automat-
ically based on real-time context, eliminating the need for
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continuous user input or manual toggling. The Vuzix Blade
2’s built-in mono speaker delivers clear auditory alerts, and
the Azure Cognitive Speech Service is used to generate nat-
ural-sounding speech for text output. During internal evalu-
ations, the speech synthesis was found to be intelligible in
quiet and moderately noisy environments. However, clarity
may degrade in outdoor settings with high ambient noise.
To mitigate this, future enhancements will consider adaptive
volume control, ambient noise detection, and bone-conduc-
tion audio output to ensure clarity without isolating users
from environmental sounds.

Although no formal user trials were conducted in this
phase, the interface was iteratively tested in simulated user
scenarios, ensuring the system responded consistently and
rapidly to visual inputs. The UI architecture avoids menu
hierarchies or gestures, relying instead on passive activation
and immediate feedback—an approach intended to reduce
interaction complexity and enhance user trust. A future
usability study involving visually impaired participants is
planned to empirically assess interaction intuitiveness, ease
of learning, and overall user satisfaction.

6 Conclusion

This study introduces a novel system design that integrates
object detection, OCR, and real-time feedback to provide
a comprehensive assistive technology solution for visu-
ally impaired individuals. Leveraging Vuzix Blade 2 smart
glasses and the robust YOLOVS architecture, the system
demonstrates significant advancements over existing assis-
tive technologies by combining precision, scalability, and
real-time usability. The critical comparative analysis of
YOLOV8-N, YOLOvV8-S, and YOLOv8-M highlights the
trade-offs between computational efficiency and accuracy,
with YOLOVS8-S emerging as the most practical model for
deployment on resource-constrained devices.

The innovative pipeline presented in this study not only
addresses the limitations of prior solutions but also estab-
lishes a scalable framework for developers and researchers.
By integrating cloud-based services with wearable devices,
the system achieves a balance between local processing
and advanced computational tasks, ensuring adaptability
to various environments. The inclusion of OCR expands
the system’s functionality, enabling users to access textual
information in real-time, a critical feature for environments
such as university campuses. This research highlights the
transformative potential of combining AR, Al, and com-
puter vision in assistive technologies. The results, which
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demonstrate an overall mAP of 87.7% and near-perfect per-
formance for high-frequency classes, validate the system’s
effectiveness and set a benchmark for future developments.
Despite challenges with imbalanced datasets and low-fre-
quency object detection, this study lays the foundation for
inclusive and scalable navigation systems. Future enhance-
ments, such as scene explanation, point-to-point navigation,
and voice command integration, could further enhance the
system’s utility and impact, paving the way for broader
adoption in diverse settings.

7 Limitations and future studies

Despite the advancements presented in this study, several
limitations exist that provide opportunities for future devel-
opment. One of the limitations is the system’s reliance on
predefined datasets, and the computational constraints of
wearable devices, such as Vuzix Blade 2 smart glasses, may
limit the scalability and performance in dynamic or unstruc-
tured environments. The dependency on a stable internet
connection for real-time OCR and Al services also restricts
usability in areas with poor connectivity. Another limitation
is the current lack of point-to-point navigation, which would
enable users to identify and move toward specific destina-
tions within mapped areas. Incorporating this feature could
greatly enhance the system’s utility in complex settings, such
as university campuses. Moreover, the application’s inter-
face requires further optimisation to allow hands-free oper-
ation through voice commands, enabling users to activate
features like obstacle detection or OCR seamlessly. Another
limitation worth mentioning is that the system demonstrates
reduced detection performance under extreme lighting con-
ditions, such as direct sunlight or low-light environments.
While the model was trained on a diverse dataset to account
for lighting variability, edge cases involving glare, reflec-
tions, or significant shadowing occasionally degraded the
object detection confidence. Future iterations will explore
adaptive exposure control and integration of infrared or
thermal imaging to improve robustness in variable lighting.
Battery constraints of the Vuzix Blade 2 present a practical
limitation. With continuous use of camera-based processing
and wireless communication, the average operational time
was limited to approximately 2—3 h. This restricts extended
usage in real-world applications. Potential mitigations
include incorporating edge Al optimisation (e.g., quantised
models), on-device inference scheduling, or external battery
attachments to extend usability.
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Additionally, although Azure Cognitive Speech Services
deliver relatively natural text-to-speech output, speech clar-
ity can be affected in noisy outdoor environments. Integra-
tion with noise-adaptive audio processing, bone-conduction
output, or optional haptic feedback is a potential enhance-
ment under consideration. Lastly, the current system lacks
advanced scene understanding and dynamic path planning,
which are critical for complete autonomous mobility. Future
research will incorporate semantic segmentation, context-
aware scene analysis, and conversational Al modules to pro-
vide a more intuitive and interactive assistive experience. A
structured usability study will also be conducted to evalu-
ate the system’s acceptability, accessibility, and long-term
impact in real-world contexts.

Future work should also address the need for broader
situational awareness by integrating scene explanation
capabilities, providing users with high-level descriptions
of their surroundings. Expanding intelligent assistance fea-
tures like conversational Al and context-aware prompts
could make the system more adaptive to individual user
needs, improving overall interactivity and accessibility. By
addressing these limitations, future iterations of the system

Project Deploy to

Setup Azure
Speech Service

could achieve enhanced performance, usability, and inclu-
sivity, making assistive technologies more accessible across
diverse settings. Finally, it is important to note that this
study did not involve human participants during the sys-
tem evaluation phase. Therefore, it is planned to conduct a
longitudinal user study with visually impaired participants.
As such, usability, cognitive load, and accessibility aspects
remain untested. A structured usability study with visually
impaired participants is planned for future research. This
two-stage validation—technical and user-oriented—ensures
that the system is not only functional but also practically
implementable. This study will follow ethical review pro-
tocols and assess user acceptance, system learnability, task
completion accuracy, and subjective satisfaction. Including
real-world feedback will be essential for validating the sys-
tem’s practical applicability and ensuring that it aligns with
the daily mobility and information needs of end-users.

Appendix

See Figures 10, 11, 12, 13, 14, 15.
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Fig. 11 Examples of the annotated objects taken at the university
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