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Abstract 

Background  The interconnectedness of human society in this modern world can transform localised outbreaks 
into global pandemics, underscoring the pivotal roles of social, mobility and contact networks in shaping infectious 
disease dynamics. Although these networks share analogous contagion principles, they are often studied in isolation, 
hindering the incorporation of behavioural, informational, and epidemiological processes into disease models. This 
review synthesises current research on the interplay between social, mobility and contact networks in health behav-
iour contagion and infectious disease transmission.

Methods  We searched Web-of-Science and PubMed from January 2000 to June 2025 for research on health behav-
iour contagion and information dissemination in social networks, pathogen spread through mobility and contact net-
works, and their joint impacts on epidemic dynamics. This was first done by a preliminary literature screening based 
on predefined criteria. With potentially relevant publications retained, we performed keyword co-occurrence network 
analysis to identify the most common themes in studies. The results guide us to narrow down the reviewing scope 
to the social, mobility and contact network impacts on informational, behavioural, and epidemiological dynamics. We 
then further identified and reviewed the literature on these multidimensional network influences.

Results  Our review finds that each network type plays a distinct yet interconnected role in shaping behaviours 
and disease dynamics. Social networks, comprising both online and offline interpersonal relationships, facilitate 
the dissemination of health information and influence behavioural responses to public health interventions. Con-
currently, mobility and contact networks govern the spatiotemporal pathways of pathogen transmission, as dem-
onstrated in recent pandemics. While traditional population-level models often overlook individual discrepancies 
and social network effects, significant efforts have been made through developing individual-level simulation-based 
models that integrate behavioural dynamics. With emerging new data sources and advanced computational tech-
niques, two promising approaches—multiplex network analysis and generative agent-based modelling—offer frame-
works for integrating the complex interdependencies among social, mobility and contact networks into epidemic 
dynamics estimation.

Conclusions  This review highlights the theoretical and methodological advances in network-based infectious 
disease modelling and identifies critical knowledge and research gaps. Future research should prioritise integrating 
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multi-source behavioural and spatial data, unifying modelling strategies, and developing scalable approaches 
for incorporating multilayer network data. The integrated approach will strengthen public health strategies, enabling 
equitable and effective interventions against emerging infections.

Keywords  Social networks, Mobility and contact networks, Behavioural contagion, Multiplex networks, Generative 
agent-based models, Infectious disease modelling

Background
Epidemics are increasingly evolving into pandemics 
in our interconnected and mobile world. Such global 
interconnectedness manifests through diverse indi-
vidual interactions, from long-distance travel, direct 
contact, and face-to-face communication to virtual 
connections via emails, video calls, and social media. 
These interactions collectively form dynamic networks 
that evolve as interpersonal relationships develop and 
fade, not only facilitating information transfer and 
behaviour propagation but also driving pathogen trans-
mission. Importantly, human mobility and contact 
networks (mobility and contact networks hereafter), a 
particular form of geographical network summarising 
human movement and physical contact, fundamentally 
shape patterns of infectious disease transmission [1]. As 
human hosts travel and interact physically, pathogens 
can be carried and transmitted, bridging geographical 
distances [2, 3] and triggering local outbreaks across 
different communities [4]. Consequently, public health 
authorities implement various containment measures, 
including contact tracing, quarantines, and even travel 
restrictions and social distancing to mitigate or contain 
outbreaks of infectious diseases [5–9].

The success of such measures, however, depends 
heavily on individual acceptance and compliance, which 
varies widely and is affected by broader systems of 
social interactions and personal relationships (referred 
to as social networks) [10–12]. Within social networks, 
ties between people, whether through in-person or 
online interactions, enable knowledge, awareness, and 
cognition to spread across individual, local, and global 
scales, transcending geographic boundaries [10, 13]. 
This information diffusion drives behaviour contagion 
between individuals both nearby and distant [14], fos-
tering collective health behaviours [15–19] and the tra-
jectory of infectious disease transmission [20–22]. For 
example, individuals may adopt preventive measures 
due to more intensive social connections to outbreak-
affected areas, or conversely, develop vaccine hesitancy 
due to exposure to misinformation about vaccine effi-
cacy and safety [20, 23].

The COVID-19 pandemic has underscored the criti-
cal need to integrate insights and approaches from 
epidemiology, social sciences, geography, and network 

sciences to deepen our understanding of the interplay 
between social, mobility and contact networks [23–25]. 
While epidemiological models have proven invalu-
able in combating a pandemic [26–28], they often fall 
short in capturing the behavioural and social dynamics 
that fundamentally shape the transmission patterns of 
infectious diseases, particularly for human-to-human 
infections [29]. These dynamics manifest in various 
ways—from the resumption of outdoor activities and 
vaccination acceptance to compliance with public 
health policies—all of which are influenced by social 
connections, information flow, and travel frequency 
that vary across space and time [20, 23, 30].

Fortunately, increasing availability and variability of 
diverse human activity footprint data enable a compre-
hensive understanding of complex social interactions 
for infectious disease dynamics. On the one hand, tra-
ditional disease models solely based on mobility and 
contact networks already have a rich selection of data 
sources. Those include records from cellular signalling 
[31–33], GPS positioning [34], and public transporta-
tion [2, 3], enabling investigation of disease transmis-
sion risks attributed to multi-scale human mobility 
from intra-city, inter-city, to international [1]. Further, 
new data sources provide opportunities to measure 
multi-dimensional information simultaneously, espe-
cially those related to societal and social interactions in 
addition to mobility and contact. For instance, mobile 
phone data [35] and geotagged social media data [36] 
can be used to infer both human mobility patterns 
and friendship network structure. Mobile health code 
records, like data from the NHS COVID-19 app, can 
reflect both close physical contact and social relation-
ships [37].

Despite sharing similar theoretical foundations of 
complex networks and the potential of new data sources 
for integrated analysis, current research still lacks a 
comprehensive synthesis of how information dissemi-
nation, behavioural contagion, and pathogen trans-
mission interdependently influence disease dynamics. 
This knowledge gap hinders the precise formulation 
and effective implementation of public health interven-
tions for emerging infectious diseases. This review aims 
to bridge these gaps by synthesising current research 
on the roles of social, mobility and contact networks 
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in shaping health behaviours and mediating infectious 
disease transmission. We first define and contextualise 
these networks, introducing their formation, evolution, 
and structural characteristics. Then, we elucidate how 
social networks drive information dissemination and 
behaviour contagion, extending these insights to patho-
gen transmission dynamics. We further review existing 
infectious disease models, ranging from population-
level compartmental and metapopulation models, to 
individual-level agent-based models  and multiplex 
networks, and finally emerging generative agent-based 
models. We highlight their strengths and limitations 
for considering individual behavioural discrepancies 
and their ability to integrate social, mobility and con-
tact networks. Finally, we identify critical knowledge 
gaps and propose future research directions to foster 
more integrated and effective public health strategies, 
emphasising the crucial synergy between behaviours, 
information, and diseases.

Methods
Search strategy
The literature review involved a systematic search of 
bibliometric databases Web-of-Science and PubMed, 
retrieving records from January 2000 to June 2025. As 
shown in Fig.  1, we gathered papers containing terms 
relative to social, mobility and contact network in their 
titles or abstracts (List 1): social network, social interac-
tion, human mobility, mobility network, human contact, 
physical contact, and contact network. After deduplicat-
ing records across databases, a total of 111,746 publica-
tions have been found.

Inclusion and exclusion criteria
We selected papers potentially relevant to public health 
applications by searching their abstracts for any of the 
keywords in List 2. The list consisted of three catego-
ries of public health, respiratory infections, and human 
behaviours, including: epidemi*, pandemic*, disease*, 
infect*, COVID, coronavirus*, nCov, influenza, malaria, 
HIV, contact tracing, behavio*, interven*, contagio*, per-
ception, awareness, belief, misinformation, rumor, and 
citizen science. To restrict publications more precisely 
to our reviewing scope, we further excluded records by 
filtering out papers if their titles, abstracts, or journal 
names contain keywords largely irrelevant to our focus, 
such as ageing, chronic, or ecological (List 3, full list pre-
sented in Supplementary Materials).

Evidence extraction and analysis
To gain initial insights from existing studies, we investi-
gated the keyword co-occurrence network using biblio-
metric metadata from Web-of-Science publications. The 

network is constructed using the “Keywords.Plus” field, 
where any pair of keywords co-occurring in a paper con-
stitutes a link in the network. We performed the Louvain 
community detection algorithm and identified several 
themes that are highly concentrated in existing studies 
(Fig. 2 and subsection “Keyword co-occurrence network 
and major research themes”). Based on these findings, we 
determined the reviewing scope as the social, mobility 
and contact network impacts on informational, behav-
ioural, and epidemiological dynamics. We kept papers 
potentially relevant to infectious disease spreading or 
social network influences by searching their titles and 
abstracts with keywords (List 4): spread*, transmission, 
transmit*, peer influence, peer effect, network effect, 
and  network intervention. This step shrinks the can-
didate literature size to 1590 records, of which 73 were 
finally included in this review.

Results
Keyword co‑occurrence network and major research 
themes
The community detection of keyword co-occurrence net-
work reveals four primary themes, one of which brought 
together keywords related to basic network dynamics like 
models, impacts, and  transmission, and the other three 
could be categorised as individual behaviours, health 
risks, and information dissemination (Fig. 2). Specifically, 
the individual behaviours category includes keywords 
including perceptions, behaviours, and children, empha-
sising cognitive processes and behaviour adoptions, with 
some particular focus on children and adolescents. Infor-
mation dissemination includes keywords like communi-
cation, media, and Facebook, implying the importance 
of digital techniques and social media data sources in 
relevant studies. Finally, health risks are represented by 
health, interventions, prevalence, etc., showing disease 
transmission risks and public health interventions. The 
remainder of this review was organised based on these 
findings. We first review behavioural contagion and (mis)
information dissemination and its resulting heterogene-
ity in individual awareness and diverse disease infection 
risks, and then extend their influence to the infectious 
disease dynamics.

Health behaviour contagion and information 
dissemination
Behavioural contagion via social networks
Social networks profoundly shape behaviour conta-
gions through both strong or weak interpersonal ties 
connected, as people acquire what others think and 
behave via face-to-face or virtual communication. This 
social learning process generates perceived consen-
sus and collective behaviours, which in turn trigger 
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individual behavioural changes [10, 14]. The potency of 
such network effects is particularly evident in health-
related behaviours. Studies found that having a friend 
who quit smoking reduces one’s odds of smoking by 
57% [15], while having an obese friend increases one’s 
probability of obesity by 36%, escalating to 67% if the 
person is a spouse [16]. Similar contagion dynamics 
have been observed in alcohol consumption [38, 39] 
and drug intake [40]. Quantitative evidence from Mir 
Ali’s research demonstrates that a 10% increase in peer 
engagement amplifies an adolescent’s likelihood of 
drinking by 3% [41], smoking by 4% [42], and marijuana 
use by 5% [43].

However, the increasing prevalence of certain behav-
iours cannot be entirely attributed to the influence of 
social networks alone. Homophily, the tendency of indi-
viduals to imitate peers similar to themselves, also plays 
a critical role in behaviour patterns [44–46]. Unlike influ-
ence-driven contagion, which tends to be directional, 
self-reinforced, and rapid, homophily reflects the net-
work structure where nodes mutually affect each other. 

Distinguishing homophily-driven behavioural diffusion 
from influence-driven contagion is vital for understand-
ing the mechanisms of behavioural changes. For instance, 
Aral et al. show that homophily accounts for over 50% of 
the observed product adoption decisions [47]. In addi-
tion, behavioural contagion is more likely to be a complex 
process, where multiple-source exposures are required 
for adoption [48]. In this context, highly clustered strong 
ties among mutual friends within homogenised clus-
ters are particularly effective as repeated interactions 
reinforce perceptions and affirm group identity. On the 
downside, however, homophily may impede cross-group 
interactions [49], limiting information dissemination to 
peripheral minorities [50] and aggravating disparities in 
perceptions across different social network groups [51].

The influence of homophily becomes even more com-
plex when considering social network formation, where 
peer effect and peer selection occur symbiotically. These 
dual processes manifest as individuals both choose 
whom to befriend and whose behaviour to imitate [52]. 
The peer effect drives behavioural changes to align with 

Fig. 2  Keyword co-occurrence network of research on public health applications of social, mobility and contact networks. The network 
is constructed using the “Keywords.Plus” field in the metadata of publications indexed in Web-of-Science up to June 2025, comprising papers 
that probably apply social, mobility and contact networks to public health practice. Community detection is performed using the Louvain 
algorithm. The network visualisation displays the top 250 keywords that occur at least 20 times in the dataset
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peers, while peer selection leads to forming ties with 
those exhibiting similar behaviours. This dynamic can 
be understood through the concepts of “induced homo-
phily” (arising from structural proximity, such as shared 
schools or workplaces) and “choice homophily” (stem-
ming from selective preferences based on characteristics 
like age and gender) [45]. Both mechanisms contribute to 
social network tie formation and can confound estimates 
of behavioural influence if not properly accounted for 
[53–55].

The principles of behavioural contagion have been 
effectively harnessed for targeted health interventions 
[18, 56]. Studies have demonstrated that propagating 
norms through social media friends is more effective 
than direct information delivery in encouraging physical 
activity and fostering positive attitudes and self-efficacy 
[19]. Similar benefits have emerged in anti-obesity cam-
paigns [57]. While social media platforms are effective 
mediums for delivering health behaviour interventions 
[58], the outcomes vary substantially across health top-
ics and participant characteristics, necessitating tailored 
strategies for maximum impact [59].

Knowledge and misinformation dissemination in online 
social networks
In this digital age, behaviour and information dissemi-
nation transcend geographic boundaries of neighbour-
hoods, schools, and communities to reach global scales. 
Online social networks amplify truth and scientific 
knowledge, but also misinformation, with topics like 
climate change beliefs [60], bombshells [61], and infec-
tious diseases [62] frequently accompanied by rumours, 
fake news, or scepticism propagating through online 
social media. Analogous to the mechanism of behaviour 
contagion, online (mis-)information diffusion is often 
driven by selective exposure, which promotes the for-
mation of homogeneous network clusters [63]. These 
clusters exacerbate misinformation circulation within 
segregated groups, creating echo chambers that reinforce 
false narratives [64]. Automated agents, or bots, further 
complicate the landscape by deliberately setting about 
misinformation, amplifying threats to public health and 
safety [65].

Infectious diseases and vaccination represent two of the 
most widely discussed themes in health misinformation 
[66]. Early evidence from Ebola outbreaks suggests that 
misinformation is associated with reduced trust in for-
mal medical care, diminished perception of disease risks, 
and decreased self-protective actions [67]. The COVID-
19 pandemic has reaffirmed these findings, with scholars 
documenting a surge in fake news and rumours concur-
rent with pathogens spread, leading to the coinage of “inf-
odemic” to describe the proliferation of misinformation 

[24, 25]. Such prevalence of misinformation tends to 
perpetuate and intensify incorrect beliefs, particularly 
among populations with lower education attainment and 
stronger anti-science political orientations.

The other critical consequence of misinformation is 
vaccine hesitancy, defined as the delay or refusal of vac-
cination despite its availability [68, 69], which has been 
documented across a variety of infectious diseases [70, 
71]. This hesitancy stems from concerns about vaccine 
efficacy and safety, mistrust in governments and health-
care professionals, and varying perceptions of disease 
risks [72, 73]. Social networks play a pivotal role in this 
phenomenon, as individuals’ willingness to get vacci-
nated fluctuates with the attitude of their family mem-
bers and friends, reflecting the impact of homophily [11, 
74]. Information flows significantly influence vaccina-
tion behaviour: negative information about vaccine side 
effects significantly reduces vaccine acceptance and pro-
longs outbreaks, while information on infection preva-
lence boosts vaccination rates [75]. Consequently, the 
proliferation of anti-intellectualism [12, 23] and vaccine 
misinformation [76–78] through social media can under-
mine vaccination campaigns, eventually contributing to 
increased morbidity and mortality during health crises.

Impacts of social, mobility and contact networks 
on epidemics
While social networks primarily facilitate the spread of 
health behaviours and information, mobility and con-
tact networks may directly enable disease transmission 
through physical proximity, together with individual 
heterogeneity in immunity and behaviours as well as 
biological and environmental factors (Fig. 3). This sec-
tion examines the distinct roles of these networks in 
shaping infectious disease patterns and reviews exist-
ing efforts to integrate them into disease modelling 
frameworks (Table 1), ultimately advancing our under-
standing of how human interactions across multiple 
dimensions influence epidemic dynamics.

Social interaction and pathogen spread
Understanding information dissemination and behav-
ioural contagion provides crucial insights into prevent-
ing and controlling pathogens, from those transmitted 
through direct physical contact (e.g., HIV and syphi-
lis) to those spread via vectors or droplets (e.g., malaria 
and influenza). In sexually transmitted infections (STIs), 
social networks significantly influence transmission risk, 
as members of sexual networks or drug user communities 
often share similar norms, risk behaviours, and mutual 
social support [21]. For instance, people who inject drugs 
(PWID) commonly endorse sharing paraphernalia such 
as cookers or needles, which facilitates pathogen spread, 
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while individuals who share cookers are less likely to 
accept injection [79]. In terms of protective behaviours, 
more discussion about pre-exposure prophylaxis (PrEP) 
with friends would significantly increase network mem-
bers’ PrEP knowledge, attitudes, norm perceptions, and 
self-efficacy, uplifting the percentage of PrEP adoption 
from 3 to 11% [80]. Based on the theories of weak ties 
and super-influencers [81–83], as demonstrated in Fig. 3, 
social network interventions targeting “bridging” indi-
viduals who connect multiple communities have been 
recommended to effectively reduce risk behaviours like 
needle-sharing and unprotected sex [84], which helps 

access populations unreached by typical clinical and pub-
lic health efforts [85].

Social networks can similarly shape the dynamics of 
vector-borne diseases (VBDs) such as malaria. Exposure 
to disease-related information through social networks 
significantly alters individuals’ willingness to adopt pre-
ventive measures. For instance, broadcasting malaria 
information would increase the use of insecticide-treated 
bed nets and antimalarial drugs during pregnancy, where 
those who did not receive information were 36% and 23% 
less likely to adopt, respectively, as reported by a study 
conducted in sub-Saharan Africa [22]. In regions with 

Fig. 3  The potential impact of social, mobility and contact networks on infectious disease transmission
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limited public health surveillance infrastructure, partici-
patory approaches, including citizen science programs, 
have emerged to engage the public in VBDs monitoring 
and control [86–88]. These approaches foster broader 
social interactions, expanding networks and promoting 
health knowledge and behaviours among populations ini-
tially hesitant or resistant to interventions such as indoor 
residual spraying for malaria control [89].

Social networks play a pivotal role in shaping responses 
to not only endemic or epidemic diseases but also global 
pandemics, as demonstrated during SARS-CoV-2  trans-
mission in the early 2020s. Research indicates that indi-
viduals’ attitudes towards public health measures can 
be remarkably influenced by their peers’ opinions and 
behaviours. For example, lockdown or reopening poli-
cies implemented in one area can create ripple effects in 
neighbouring regions, influencing residents’ decisions to 
restrict or increase outdoor activities [90]. While poli-
cies are designed with expected behavioural changes in 
mind, coordinating public compliance remains chal-
lenging across different countries and cultural contexts 
[91]. Public non-compliance with governmental recom-
mendations often stems from underestimating disease 
severity, doubting measure effectiveness, and particularly 
from the experiences and attitudes of their relatives and 
friends. Studies found that individuals having more social 
media connections with early COVID-affected regions 
(e.g. China and Italy) demonstrated greater willingness 
to reduce outdoor activities, especially in areas with a 
higher education level and a lower fraction of climate 
change deniers [20]. Meanwhile, Intense social bonding 
with family and with more groups correlates with bet-
ter mental well-being and higher willingness to adopt 
health behaviours like distancing or wearing masks [92]. 
However, in later pandemic stages, exposure to anti-vac-
cination views or adverse events remarkably increased 
vaccine hesitancy [23], illustrating how network influ-
ences evolve throughout a pandemic.

Human mobility and contact affect respiratory pathogen 
spread
Human mobility and contact networks play an exclusive 
role in respiratory disease transmission. Unlike patho-
gens transmitted via blood, vectors, or contaminated 
water and food, the spread of respiratory infectious dis-
eases critically depends on droplets, aerosols, or close 
contact between individuals [1, 93]. Consistent with the 
theory of strong and weak ties in social networks [81], 
the type and intensity of human close contacts shape 
respiratory pathogen dynamics. For instance, within 
schools, student interactions in the same class induce 
higher influenza transmission probabilities compared 

to interactions between different classes or grades, with 
school-aged children often acting as intermediaries 
transmitting infections from schools to households [94].

At the urban scale, daily commuting and modern trans-
portation facilitate pathogen spread between communi-
ties. Research shows that commuting volume strongly 
correlates with the prevalence of influenza-like illness 
[95], with crowded public transportation systems fur-
ther amplifying transmission risks [96]. Beyond volume, 
pathogen transmission also correlates with the type of 
travel destinations. Visits to venues that bridge multiple 
communities, such as retail and recreation centres, work-
places, and transit hubs, promote more severe epidemics 
[97]. Since human movement usually faces constraints of 
spatial costs, exhibiting scale-free decay of visitation with 
increasing distance [98, 99], it is commonly observed that 
infections first spread within densely connected urban 
centres before extending to more distant regions [100].

Air travel serves as a key bridging tie in mobility net-
works, facilitating rapid spread of respiratory patho-
gens across countries [2, 3]. For instance, during the 
2009 influenza A H1N1 pandemic, even stringent travel 
restrictions that reduced air traffic from the disease hot-
spot by 40% only delayed the international spread by 
three days [101]. The recent COVID-19 pandemic fur-
ther emphasised air travel’s pronounced role, as it quickly 
reshaped SARS-CoV-2 transmission patterns by shifting 
the main contributors from the first-reporting country 
to the most interconnected ones, particularly for highly 
transmissible variants like Delta and Omicron [102]. This 
phenomenon underscores the interplay between virus 
infectivity and global connectivity. Consequently, non-
pharmaceutical interventions such as travel restrictions 
have been widely implemented to reduce the density of 
mobility and contact networks [6, 26, 103, 104]. These 
measures contain global circulation of not only SARS-
CoV-2 but also H1N1, H3N2, and B/Victoria influenza 
viruses [105]. Furthermore, travel restrictions become 
more effective when coupled with close contact tracing 
to identify and interrupt specific transmission pathways 
[106, 107]. This understanding has been validated across 
multiple outbreaks, including SARS [4, 5, 108, 109], influ-
enza, and COVID-19 [110, 111].

Targeted interventions focusing on super-spreaders 
[112, 113], individuals with disproportionately high 
infectivity, can significantly curtail outbreaks. Unlike 
super-influencers who occupy strategic positions in 
social networks [82, 83], super-spreaders may be either 
structurally prominent with numerous contacts or those 
who have higher viral loads and generate above-average 
numbers of secondary cases [114]. During the 2003 SARS 
outbreak, a small number of super-spreaders induced 
the majority of early cases in Singapore and Hong Kong, 
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China [5, 108], while COVID-19 documented more than 
twice the number of super-spreading events in the lit-
erature [115]. These findings highlight the importance 
of considering individual heterogeneity in transmission 
dynamics across mobility and contact networks when 
measuring epidemiological characteristics, predicting 
risks, and developing response strategies.

Epidemiological models integrating social, mobility 
and contact networks
Population‑level modelling with mobility and contact 
networks
Modelling strategies largely determine the extent to 
which and how well we can translate knowledge of 
social, mobility and contact networks into more accu-
rate estimation and prediction of infectious disease 
dynamics. Traditional population-level models, particu-
larly compartmental models, have long served as foun-
dational tools in epidemiology. These models—such as 
the Susceptible–Exposed–Infected–Recovered frame-
work—represent individuals as belonging to discrete epi-
demiological states, transitioning between them based 
on pre-defined rates or probabilities [26]. However, a key 
limitation of this approach is its assumption of homoge-
neous mixing, whereby all individuals are equally likely to 
interact with one another regardless of social or spatial 
constraints in the real world [116, 117]. Although its rela-
tively simple framework remains valuable in early rapid 
assessments of disease transmission, the mechanistic 
rules of human actions and virus spreading are insuffi-
ciently considered, especially in terms of the regularity in 
human mobility and contact patterns and the heteroge-
neity in individual preventive behavioural choices [98].

As a preliminary effort to avoid such deficiencies, 
meta-population models explicitly extend compartmen-
tal frameworks into geographical space by segmenting 
the population into interconnected subpopulations (e.g. 
communities, cities, or regions) [118, 119]. These sub-
populations are linked by migration rates or mobility 
flows, allowing for dynamically redistributing susceptible 
and infected groups across locations and updating the 
probability of risk contact at each time step. By explicitly 
modelling spatial heterogeneity, meta-population models 
more accurately capture the spatiotemporal dynamics of 
disease transmission and the effects of interventions such 
as travel restrictions or regional lockdowns.

Incorporating behavioural feedback and social influences
Beyond mobility, social and behavioural factors are also 
worth being incorporated into disease modelling [120]. A 
key insight from economic epidemiology is the concept 
of prevalence-elastic behaviour—the tendency of individ-
uals to adopt protective behaviours (e.g., mask-wearing, 

social distancing) more readily as disease prevalence 
increases, and to relax those behaviours when risk per-
ception declines [121–123]. For example, people are 
more willing to reduce risk behaviours like needle shar-
ing when HIV infection increases. Comparatively, when 
the infections are low, individuals are less motivated 
to adopt protective behaviours. This trade-off between 
infection risks and personal health/economic benefits 
has also been discussed in other interventions, including 
vaccination and social distancing [124].

Such a  behavioural feedback loop underscores the 
necessity of modelling the co-evolution of disease trans-
mission, information diffusion, and behaviour adoption. 
However, previous reviews have pointed out that existing 
models tend to rely heavily on rational-actor assumptions 
derived from behavioural economics, instead of insights 
from psychology or sociology that emphasise social 
learning, imitation, and peer influence [125]. Although 
cognitive contributions to behaviour adoption, like the 
aforementioned trade-off between perceived risk and 
costs of preventive behaviours, are well acknowledged, 
the social network structures through which individuals 
acquire, interpret, and act upon health information are 
rarely modelled explicitly, especially for infectious dis-
eases [29]. In other words, very few existing papers made 
an explicit explanation of the “social network impact” on 
human behaviours for disease dynamics, relying instead 
upon “social impact” only. This disconnection stems 
partly from disparities in data availability, scales, and 
timeliness. Macro-level or population-level mobility data 
often lack individual details, while micro-level or individ-
ual-level data on social and informational ties are difficult 
to obtain due to privacy concerns in the real world. As a 
result, the interplay between social, mobility and contact 
networks remains underrepresented in traditional popu-
lation-level models.

Individual‑level modelling: coupling social, mobility 
and contact networks
Theoretical advances and emerging computational tech-
niques demonstrate the potential of integrating intrinsi-
cally linked social factors into infectious disease models, 
where one key amendment is to shift the modelling strat-
egy from “top-down” (population-level) to “bottom-up” 
(individual-level). In the “top-down” approach such as 
compartmental or meta-population models, the disease 
dynamics are estimated by considering interventions 
that are imposed at the population level, primarily affect-
ing immunity and the probability of physical contacts. 
In contrast, “bottom-up” models simulate emergent 
dynamics from individual decisions and interactions, 
accounting for the effects of social, mobility and con-
tact networks simultaneously. Table  1 summarises the 
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strengths and limitations of different network types and 
modelling approaches for infectious diseases.

Agent-based models (ABMs) usually serve as a basic 
choice for “bottom-up” modelling [126]. Rather than 
simulating macro-level transitions among aggregated 
population states (e.g., shifts between susceptible and 
infected populations), ABMs model individual agents 
with heterogeneous attributes, perceptions, and behav-
ioural rules. Agents can exhibit diverse behaviours like 
mobility choices, adoption of self-protective actions, and 
vaccine uptake [127, 128]. It also simulates interactions 
among individuals and allows their behaviours to evolve 
over time, whereby the collective behaviours of a set of 
representative agents reflect heterogeneous population 
composition. Traditionally, ABMs operate using prede-
fined behavioural rules, but such approaches struggle 
to capture the stochastic nature and dynamic changes 
of real-world behaviours. Consequently, ABMs need to 
be extended to account for these complex, multilayered 
interactions.

Multilayer and multiplex networks in ABMs
One key extension of AMBs involves embedding agents 
within multilayer or multiplex networks to more realis-
tically simulate interactions across physical, social, and 
informational domains [129]. Multilayer networks can 
represent different types of interactions, such as local and 
long-range mobility, co-infection dynamics, or time-var-
ying contact patterns using separate but interconnected 
layers [130–133]. However, when the focus is on how 
information dissemination influences individual behav-
iours that in turn affect disease transmission, multiplex 
networks are especially useful [134, 135].

Multiplex networks differ from multilayer networks 
mainly in that they require a one-to-one correspond-
ence of nodes across different layers, so that the effect 
of network contagion in one layer can cascade to other 
layers at the individual level. A common application, 
for instance, is the two-layer network model represent-
ing awareness diffusion and disease transmission. Such 
models usually hypothesise that susceptible individuals 
who become aware of infection risks through social net-
works may adopt protective behaviours (e.g., isolation, 
hygiene), thereby lowering their likelihood of infection. 
Infected individuals may actively alter their own mobil-
ity or contact patterns, in turn, indirectly influencing the 
awareness of their social network peers. These dynam-
ics create feedback loops between awareness and epi-
demic spread, potentially reducing outbreak sizes when 
awareness diffusion and the prevalence of self-protective 
behaviours reach a critical threshold [136–139]. Further-
more, research has revealed the distinct effects of global 
and local awareness on disease dynamics. While local 

awareness typically propagates through peer networks 
within communities [140], global awareness disseminated 
via mass media or major social media platforms often 
proves more effective at suppressing disease spread by 
providing broader, society-wide perspectives [141–143].

Despite their utility, two-layer multiplex networks 
remain insufficient to fully resemble the real-world com-
plexities of human behaviour. Individuals may exhibit 
diverse responses to the same information, influenced by 
factors such as personal beliefs, socio-demographic dif-
ferences, and social context. To account for these varia-
tions, studies have proposed several model refinements 
by allowing variable vertex activities or expanding mul-
tiplex networks from two layers to three or more [144]. 
For instance, Rizzo et  al. considered reduced activities 
from both infected people (due to illness or quaran-
tine) and susceptible individuals (due to self-protection) 
[145]. Similarly to this concept, Song et al. introduced a 
weighted co-evolving multiplex network in which indi-
viduals can rewire connections to avoid physical contact 
with the infected [146]. Those behavioural changes can 
increase the epidemic threshold and decrease the frac-
tion of infection.

To further incorporate enhanced awareness and com-
peting information dynamics, Zhu et  al. considered a 
more realistic situation that individuals are unwilling to 
share the information even if they have established per-
ceptions about the disease [147]; while He et  al. intro-
duced the competition between rumour and knowledge 
diffusion on the information layer, reflecting the real-
world competition between misinformation and veri-
fied health communication [148]. These extensions and 
refinements advance our ability to better simulate the 
interplay between information diffusion, behaviour adap-
tation, mobility/contact changes, and disease transmis-
sion. By capturing such coupled dynamics, multiplex 
network-based ABMs offer deeper insight than simpler 
frameworks into the nuanced dynamics of infectious dis-
ease spread in heterogeneous populations [149].

Stochastic agent‑based models and generative agents
A further evolution of traditional rule-based ABMs 
involves the incorporation of stochastic processes, allow-
ing models to account for the randomness and variability 
of human behaviours, which is far beyond the explanation 
of pre-defined rules or probabilities. Stochastic ABMs 
introduce randomness into individuals’ choices and 
interaction patterns while ensuring coherence at the pop-
ulation level. For example, Hoertel et al. built a stochas-
tic ABM for modelling COVID-19 spreading in France 
[150]. They constructed a synthetic population where 
each agent has different demographic attributes (e.g., age, 
gender), household structure, and social contact patterns, 
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such as activity sequence over the day (work, school, 
family, etc.) and co-location probability. These attributes 
were sampled and matched coordinating with national 
statistics, enabling realistic simulations of contact net-
works and transmission pathways.

The recent advent of large language models (LLMs) 
has provided further opportunities for creating genera-
tive agents—autonomous, language-driven individuals 
capable of making context-aware decisions based on 
evolving information [151]. Rather than determining 
certain assumptions about what behavioural dimen-
sions to include and how each human would act, gen-
erative agent-based modelling (GABM) accepts diverse 
information directly and each agent makes their own 
decision-making on behavioural changes based on 
existing knowledge and the social environment, which 
can be defined using user prompts and system prompts, 
respectively [152, 153]. More importantly, research-
ers can pass new information (e.g., public health mes-
sages, news updates, or peer behaviours) to the agent at 
each time step, enabling dynamic responses that more 
closely resemble real-world behaviours over time. By 
combining stochastic behavioural diversity with natural 
language processing capabilities, GABM offers a pow-
erful tool for exploring the cognitive and social dimen-
sions of epidemics, especially in complex, dynamic 
environments where traditional rule-based approaches 
fall short.

From simulation to real‑world application
Although ABMs have long been a proven approach for 
disease transmission modelling, their variants explicitly 
introducing individual awareness and social network 
impacts, including multiplex networks and GABM, 
remain primarily simulation-based with limited valida-
tions of real-world scenarios. This is largely due to the 
demanding data requirements to calibrate, validate, 
and apply such models, particularly those incorporat-
ing detailed behavioural, social, and mobility dynamics. 
Nonetheless, researchers have begun to apply these the-
oretical modelling frameworks by integrating diverse 
empirical data sources, including socioeconomic indi-
cators, mobility traces, contact matrix, epidemiological 
surveillance, and digital behaviour signals [154].

For instance, Lima et  al. leveraged call detail record 
(CDR) data to simultaneously extract the mobility 
matrices and communication networks  among indi-
viduals [155]. Their multiplex network modelling dem-
onstrated that disease prevention information through 
social networks, including hygiene practices and vacci-
nation campaign notices, could effectively contain virus 

spread.  Data-driven analysis from Scatà et  al. further 
incorporated Google Trends data and socioeconomic 
conditions into a Zika virus transmission model. Their 
work revealed that individual heterogeneous aware-
ness of diseases, coupled with attention decay, would 
remarkably alter Zika virus transmission dynamics, 
emphasising the importance of timely and targeted 
communication strategies [156]. Similarly, studies of 
influenza-like illnesses have shown that effective infor-
mation dissemination can reduce outbreak magnitude 
by promoting early behavioural interventions [157]. All 
of these underscore the potential and necessity of link-
ing theory-driven models with empirical data, moving 
beyond simulation and toward evidence-based fore-
casting, scenario testing, and intervention planning.

Discussion
Social, mobility and contact networks mediate human 
behaviours and infectious disease dynamics. Although 
substantial progress has been made in understanding 
behaviour contagion and pathogen transmission inde-
pendently, research integrating these processes remains 
limited. This gap is particularly critical as online social 
media increasingly shapes behavioural patterns and 
information flow, while infectious diseases continue to 
spread primarily through human movement and physical 
contact. In this review, we have highlighted the separate 
roles of these networks on infectious disease dynamics, 
summarised existing modelling strategies, and identi-
fied key research directions to bridge existing knowledge 
gaps.

Integrating social influence into population‑level models
Population-level modelling, such as compartmental and 
meta-population models, remains  an essential tool in 
the rapid assessment of infectious disease spreading. 
However, despite growing studies that have underscored 
the mutual impacts of social and behavioural factors on 
disease transmission, most models overlook the inter-
dependence of individual behaviours, which are largely 
modulated by social networks. These interactions are 
crucial for understanding behavioural cascades such 
as vaccine acceptance or risk avoidance. Therefore, we 
recommend a two-step approach for future work: first 
identify collective behavioural shifts induced by social 
interactions, and then incorporate these dynamics into 
transmission models, potentially through a network-
based behavioural adjustment parameter influencing 
infection rate.
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Leveraging GABM and multiplex networks 
for individual‑level modelling
We highlight GABM and multiplex network analyses as 
promising modelling approaches for capturing behav-
ioural heterogeneity and co-evolving contagion dynam-
ics at the  individual  level. GABM, powered by large 
language models, allows agents to perceive and interpret 
the social environment dynamically and make autono-
mous decisions, such as whether to vaccinate or com-
ply with public health policies based on evolving social 
norms and personal beliefs. These models have shown 
promise across domains, including urban planning, 
transportation, and epidemic forecasting. Multiplex net-
works offer another promising structural framework for 
modelling cross-layer interactions, such as how aware-
ness spreads in a social network and alters behaviour in 
a mobility and contact network. This enables simulation 
of co-evolutionary dynamics between information dis-
semination and infectious disease spreading. Moreover, 
multiplex networks can explicitly accommodate hetero-
geneous individual awareness, peer influence, and con-
text-dependent behaviour through both within-network 
interactions and cross-network dynamics, enabling con-
tagion effects in the information communication layer to 
be cascaded to influence disease dynamics.

Recent advances in large language models also offer 
promising capabilities for developing multimodal, self-
aware, autonomous multiplex disease models, in which 
each layer (e.g., mobility, contact, communication) can be 
designed analogously to GABM. However, such models 
remain largely simulation-based, constrained by the lack 
of comprehensive, individual-level data records across 
all network layers. Although such granular and com-
plete datasets are rarely available in reality, emerging data 
sources may partially address this challenge.

Incorporating emerging data sources and robust inference 
for integrated models
Novel data streams offer unprecedented opportuni-
ties to understand the joint influences of human mobil-
ity and social interactions. For example, the massive 
volume of social media data, despite its demographic 
biases, enable simultaneous extraction of online social 
networks and mobility patterns from geotagged posts, 
facilitating the construction of unified online and offline 
human interaction networks. Future research should 
leverage multi-source data to integrate information dis-
semination, behavioural responses, and physical contact, 
thereby quantifying comprehensive infectious disease 
mechanisms across space and time. Although compre-
hensive data collection is essential for constructing social 
networks and modelling infectious diseases, this must be 
balanced against the need for timely outbreak responses, 

resource constraints, social costs, and privacy concerns. 
Researchers should adapt data collection and integra-
tion strategies, depending on intervention goals, data 
infrastructure, human resources, and epidemiological 
contexts [158], while safeguarding individual confidenti-
ality under ethical approvals and data protection policies 
across different jurisdictions.

In addition, a critical limitation of existing studies is 
the reliance on cross-sectional or correlational analyses, 
which constrains the ability to infer causal relationships, 
and therefore, the estimated effectiveness of public health 
policies informed by network studies. Future work should 
consider model validation using data obtained from more 
rigorous designs, such as longitudinal cohort studies, 
randomised controlled trials, and quasi-experimental 
approaches where appropriate, to better assess how 
social, mobility and contact networks influence behav-
ioural adoption and disease transmission. Such meth-
odologically robust approaches and causal evidence are 
essential for guiding targeted and precise public health 
interventions.

Addressing demographic disparities and post‑epidemic 
social reintegration
Demographic characteristics, such as age, gender, race, 
and socioeconomic status, substantially influence social 
mixing patterns, risk exposure, and access to inter-
ventions, which remain understudied for infectious 
diseases beyond STIs. For example, the COVID-19 pan-
demic exemplified age-related disparities, with younger 
peers showing higher risks of mutual infection during 
early transmission [159] and older adults experiencing 
increased social marginalization due to greater clinical 
severity [160]. Such inequalities are expected to sustain 
over a long period post COVID-19 [161]. Future model-
ling efforts should explicitly incorporate demographic 
structure and inequities, both in the formation of social, 
mobility and contact networks and in differential behav-
ioural responses. This is essential for informing equitable 
public health strategies and ensuring that marginalised 
populations receive timely, appropriate support.

In addition, while preventive behaviours and interven-
tions such as vaccination and PrEP have received sub-
stantial attention in existing studies, therapeutic norms 
and recovery behaviours remain underexplored [162]. 
Research should examine how social networks shape 
post-illness or post-epidemic behaviours, including 
medical treatment adherence and social reintegration 
[163]. Understanding these behaviours spread through 
social ties can inform strategies for socioeconomic 
resilience and long-term health system recovery follow-
ing epidemics or pandemics. By addressing both demo-
graphic disparities and post-epidemic reintegration in 
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network-informed modelling, we can better understand 
the full lifecycle of epidemic impact and design more 
holistic public health strategies.

Conclusions
As the world grows more socially, digitally, and physi-
cally interconnected, the task of modelling and interven-
ing in  infectious disease dynamics becomes increasingly 
complex. Understanding how diseases spread is no longer 
just a matter of tracking pathogens through mobility and 
contact patterns; it also requires attention to how human 
behaviour evolves, how people influence each other, and 
how information moves through networks. This review 
has shown that while we have made substantial progress 
in modelling mobility- and contact-driven transmis-
sion, the integration of social, behavioural, and informa-
tion diffusion processes into infectious disease models 
remains insufficient. Some approaches can explicitly inte-
grate social networks into mobility-driven disease mod-
els, including multiplex network analyses based on 
structural similarities of different networks, and also gen-
erative agent-based models taking advantage of large lan-
guage models. However, these approaches remain largely 
theoretical and confined to simulations, due to the scar-
city of high-resolution, multi-source data across social, 
spatial, and behavioural dimensions.

Therefore, as we look ahead, it is vital to prioritise 
efforts that bridge data and model complexity, and also 
develop scalable methods that practically introduce 
social network influences onto disease transmission 
across varied contexts and broader, vulnerable popula-
tions. This means integrating diverse datasets, such as 
geospatial movement, digital communication and con-
nections, and health behaviours, while also being mind-
ful of privacy, ethical concerns, and the need for rapid, 
real-time insights. It is encouraged that the governments 
coordinate public health policies, curb the spread of mis-
information, and reallocate resources to socially mar-
ginalised groups. A multidisciplinary, cross-sector, and 
inclusive approach would strengthen the research and 
inform more targeted intervention strategies for infec-
tious disease control.
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