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Abstract

Background The interconnectedness of human society in this modern world can transform localised outbreaks

into global pandemics, underscoring the pivotal roles of social, mobility and contact networks in shaping infectious
disease dynamics. Although these networks share analogous contagion principles, they are often studied in isolation,
hindering the incorporation of behavioural, informational, and epidemiological processes into disease models. This
review synthesises current research on the interplay between social, mobility and contact networks in health behav-
iour contagion and infectious disease transmission.

Methods We searched Web-of-Science and PubMed from January 2000 to June 2025 for research on health behav-
iour contagion and information dissemination in social networks, pathogen spread through mobility and contact net-
works, and their joint impacts on epidemic dynamics. This was first done by a preliminary literature screening based
on predefined criteria. With potentially relevant publications retained, we performed keyword co-occurrence network
analysis to identify the most common themes in studies. The results guide us to narrow down the reviewing scope

to the social, mobility and contact network impacts on informational, behavioural, and epidemiological dynamics. We
then further identified and reviewed the literature on these multidimensional network influences.

Results Our review finds that each network type plays a distinct yet interconnected role in shaping behaviours

and disease dynamics. Social networks, comprising both online and offline interpersonal relationships, facilitate

the dissemination of health information and influence behavioural responses to public health interventions. Con-
currently, mobility and contact networks govern the spatiotemporal pathways of pathogen transmission, as dem-
onstrated in recent pandemics. While traditional population-level models often overlook individual discrepancies

and social network effects, significant efforts have been made through developing individual-level simulation-based
models that integrate behavioural dynamics. With emerging new data sources and advanced computational tech-
niques, two promising approaches—multiplex network analysis and generative agent-based modelling—offer frame-
works for integrating the complex interdependencies among social, mobility and contact networks into epidemic
dynamics estimation.

Conclusions This review highlights the theoretical and methodological advances in network-based infectious
disease modelling and identifies critical knowledge and research gaps. Future research should prioritise integrating
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multi-source behavioural and spatial data, unifying modelling strategies, and developing scalable approaches
for incorporating multilayer network data. The integrated approach will strengthen public health strategies, enabling
equitable and effective interventions against emerging infections.

Keywords Social networks, Mobility and contact networks, Behavioural contagion, Multiplex networks, Generative

agent-based models, Infectious disease modelling

Background

Epidemics are increasingly evolving into pandemics
in our interconnected and mobile world. Such global
interconnectedness manifests through diverse indi-
vidual interactions, from long-distance travel, direct
contact, and face-to-face communication to virtual
connections via emails, video calls, and social media.
These interactions collectively form dynamic networks
that evolve as interpersonal relationships develop and
fade, not only facilitating information transfer and
behaviour propagation but also driving pathogen trans-
mission. Importantly, human mobility and contact
networks (mobility and contact networks hereafter), a
particular form of geographical network summarising
human movement and physical contact, fundamentally
shape patterns of infectious disease transmission [1]. As
human hosts travel and interact physically, pathogens
can be carried and transmitted, bridging geographical
distances [2, 3] and triggering local outbreaks across
different communities [4]. Consequently, public health
authorities implement various containment measures,
including contact tracing, quarantines, and even travel
restrictions and social distancing to mitigate or contain
outbreaks of infectious diseases [5-9].

The success of such measures, however, depends
heavily on individual acceptance and compliance, which
varies widely and is affected by broader systems of
social interactions and personal relationships (referred
to as social networks) [10—12]. Within social networks,
ties between people, whether through in-person or
online interactions, enable knowledge, awareness, and
cognition to spread across individual, local, and global
scales, transcending geographic boundaries [10, 13].
This information diffusion drives behaviour contagion
between individuals both nearby and distant [14], fos-
tering collective health behaviours [15-19] and the tra-
jectory of infectious disease transmission [20—22]. For
example, individuals may adopt preventive measures
due to more intensive social connections to outbreak-
affected areas, or conversely, develop vaccine hesitancy
due to exposure to misinformation about vaccine effi-
cacy and safety [20, 23].

The COVID-19 pandemic has underscored the criti-
cal need to integrate insights and approaches from
epidemiology, social sciences, geography, and network

sciences to deepen our understanding of the interplay
between social, mobility and contact networks [23-25].
While epidemiological models have proven invalu-
able in combating a pandemic [26-28], they often fall
short in capturing the behavioural and social dynamics
that fundamentally shape the transmission patterns of
infectious diseases, particularly for human-to-human
infections [29]. These dynamics manifest in various
ways—from the resumption of outdoor activities and
vaccination acceptance to compliance with public
health policies—all of which are influenced by social
connections, information flow, and travel frequency
that vary across space and time [20, 23, 30].

Fortunately, increasing availability and variability of
diverse human activity footprint data enable a compre-
hensive understanding of complex social interactions
for infectious disease dynamics. On the one hand, tra-
ditional disease models solely based on mobility and
contact networks already have a rich selection of data
sources. Those include records from cellular signalling
[31-33], GPS positioning [34], and public transporta-
tion [2, 3], enabling investigation of disease transmis-
sion risks attributed to multi-scale human mobility
from intra-city, inter-city, to international [1]. Further,
new data sources provide opportunities to measure
multi-dimensional information simultaneously, espe-
cially those related to societal and social interactions in
addition to mobility and contact. For instance, mobile
phone data [35] and geotagged social media data [36]
can be used to infer both human mobility patterns
and friendship network structure. Mobile health code
records, like data from the NHS COVID-19 app, can
reflect both close physical contact and social relation-
ships [37].

Despite sharing similar theoretical foundations of
complex networks and the potential of new data sources
for integrated analysis, current research still lacks a
comprehensive synthesis of how information dissemi-
nation, behavioural contagion, and pathogen trans-
mission interdependently influence disease dynamics.
This knowledge gap hinders the precise formulation
and effective implementation of public health interven-
tions for emerging infectious diseases. This review aims
to bridge these gaps by synthesising current research
on the roles of social, mobility and contact networks
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in shaping health behaviours and mediating infectious
disease transmission. We first define and contextualise
these networks, introducing their formation, evolution,
and structural characteristics. Then, we elucidate how
social networks drive information dissemination and
behaviour contagion, extending these insights to patho-
gen transmission dynamics. We further review existing
infectious disease models, ranging from population-
level compartmental and metapopulation models, to
individual-level agent-based models and multiplex
networks, and finally emerging generative agent-based
models. We highlight their strengths and limitations
for considering individual behavioural discrepancies
and their ability to integrate social, mobility and con-
tact networks. Finally, we identify critical knowledge
gaps and propose future research directions to foster
more integrated and effective public health strategies,
emphasising the crucial synergy between behaviours,
information, and diseases.

Methods

Search strategy

The literature review involved a systematic search of
bibliometric databases Web-of-Science and PubMed,
retrieving records from January 2000 to June 2025. As
shown in Fig. 1, we gathered papers containing terms
relative to social, mobility and contact network in their
titles or abstracts (List 1): social network, social interac-
tion, human mobility, mobility network, human contact,
physical contact, and contact network. After deduplicat-
ing records across databases, a total of 111,746 publica-
tions have been found.

Inclusion and exclusion criteria

We selected papers potentially relevant to public health
applications by searching their abstracts for any of the
keywords in List 2. The list consisted of three catego-
ries of public health, respiratory infections, and human
behaviours, including: epidemi*, pandemic*, disease*,
infect*, COVID, coronavirus*, nCov, influenza, malaria,
HIV, contact tracing, behavio*, interven*, contagio*, per-
ception, awareness, belief, misinformation, rumor, and
citizen science. To restrict publications more precisely
to our reviewing scope, we further excluded records by
filtering out papers if their titles, abstracts, or journal
names contain keywords largely irrelevant to our focus,
such as ageing, chronic, or ecological (List 3, full list pre-
sented in Supplementary Materials).

Evidence extraction and analysis

To gain initial insights from existing studies, we investi-
gated the keyword co-occurrence network using biblio-
metric metadata from Web-of-Science publications. The

Page 30f 18

network is constructed using the “Keywords.Plus” field,
where any pair of keywords co-occurring in a paper con-
stitutes a link in the network. We performed the Louvain
community detection algorithm and identified several
themes that are highly concentrated in existing studies
(Fig. 2 and subsection “Keyword co-occurrence network
and major research themes”). Based on these findings, we
determined the reviewing scope as the social, mobility
and contact network impacts on informational, behav-
ioural, and epidemiological dynamics. We kept papers
potentially relevant to infectious disease spreading or
social network influences by searching their titles and
abstracts with keywords (List 4): spread*, transmission,
transmit*, peer influence, peer effect, network effect,
and network intervention. This step shrinks the can-
didate literature size to 1590 records, of which 73 were
finally included in this review.

Results

Keyword co-occurrence network and major research
themes

The community detection of keyword co-occurrence net-
work reveals four primary themes, one of which brought
together keywords related to basic network dynamics like
models, impacts, and transmission, and the other three
could be categorised as individual behaviours, health
risks, and information dissemination (Fig. 2). Specifically,
the individual behaviours category includes keywords
including perceptions, behaviours, and children, empha-
sising cognitive processes and behaviour adoptions, with
some particular focus on children and adolescents. Infor-
mation dissemination includes keywords like communi-
cation, media, and Facebook, implying the importance
of digital techniques and social media data sources in
relevant studies. Finally, health risks are represented by
health, interventions, prevalence, etc., showing disease
transmission risks and public health interventions. The
remainder of this review was organised based on these
findings. We first review behavioural contagion and (mis)
information dissemination and its resulting heterogene-
ity in individual awareness and diverse disease infection
risks, and then extend their influence to the infectious
disease dynamics.

Health behaviour contagion and information
dissemination

Behavioural contagion via social networks

Social networks profoundly shape behaviour conta-
gions through both strong or weak interpersonal ties
connected, as people acquire what others think and
behave via face-to-face or virtual communication. This
social learning process generates perceived consen-
sus and collective behaviours, which in turn trigger
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Fig. 2 Keyword co-occurrence network of research on public health applications of social, mobility and contact networks. The network

is constructed using the “Keywords.Plus”field in the metadata of publications indexed in Web-of-Science up to June 2025, comprising papers
that probably apply social, mobility and contact networks to public health practice. Community detection is performed using the Louvain
algorithm. The network visualisation displays the top 250 keywords that occur at least 20 times in the dataset

individual behavioural changes [10, 14]. The potency of
such network effects is particularly evident in health-
related behaviours. Studies found that having a friend
who quit smoking reduces one’s odds of smoking by
57% [15], while having an obese friend increases one’s
probability of obesity by 36%, escalating to 67% if the
person is a spouse [16]. Similar contagion dynamics
have been observed in alcohol consumption [38, 39]
and drug intake [40]. Quantitative evidence from Mir
Ali’s research demonstrates that a 10% increase in peer
engagement amplifies an adolescent’s likelihood of
drinking by 3% [41], smoking by 4% [42], and marijuana
use by 5% [43].

However, the increasing prevalence of certain behav-
iours cannot be entirely attributed to the influence of
social networks alone. Homophily, the tendency of indi-
viduals to imitate peers similar to themselves, also plays
a critical role in behaviour patterns [44—46]. Unlike influ-
ence-driven contagion, which tends to be directional,
self-reinforced, and rapid, homophily reflects the net-
work structure where nodes mutually affect each other.

Distinguishing homophily-driven behavioural diffusion
from influence-driven contagion is vital for understand-
ing the mechanisms of behavioural changes. For instance,
Aral et al. show that homophily accounts for over 50% of
the observed product adoption decisions [47]. In addi-
tion, behavioural contagion is more likely to be a complex
process, where multiple-source exposures are required
for adoption [48]. In this context, highly clustered strong
ties among mutual friends within homogenised clus-
ters are particularly effective as repeated interactions
reinforce perceptions and affirm group identity. On the
downside, however, homophily may impede cross-group
interactions [49], limiting information dissemination to
peripheral minorities [50] and aggravating disparities in
perceptions across different social network groups [51].
The influence of homophily becomes even more com-
plex when considering social network formation, where
peer effect and peer selection occur symbiotically. These
dual processes manifest as individuals both choose
whom to befriend and whose behaviour to imitate [52].
The peer effect drives behavioural changes to align with
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peers, while peer selection leads to forming ties with
those exhibiting similar behaviours. This dynamic can
be understood through the concepts of “induced homo-
phily” (arising from structural proximity, such as shared
schools or workplaces) and “choice homophily” (stem-
ming from selective preferences based on characteristics
like age and gender) [45]. Both mechanisms contribute to
social network tie formation and can confound estimates
of behavioural influence if not properly accounted for
[53-55].

The principles of behavioural contagion have been
effectively harnessed for targeted health interventions
[18, 56]. Studies have demonstrated that propagating
norms through social media friends is more effective
than direct information delivery in encouraging physical
activity and fostering positive attitudes and self-efficacy
[19]. Similar benefits have emerged in anti-obesity cam-
paigns [57]. While social media platforms are effective
mediums for delivering health behaviour interventions
[58], the outcomes vary substantially across health top-
ics and participant characteristics, necessitating tailored
strategies for maximum impact [59].

Knowledge and misinformation dissemination in online
social networks

In this digital age, behaviour and information dissemi-
nation transcend geographic boundaries of neighbour-
hoods, schools, and communities to reach global scales.
Online social networks amplify truth and scientific
knowledge, but also misinformation, with topics like
climate change beliefs [60], bombshells [61], and infec-
tious diseases [62] frequently accompanied by rumours,
fake news, or scepticism propagating through online
social media. Analogous to the mechanism of behaviour
contagion, online (mis-)information diffusion is often
driven by selective exposure, which promotes the for-
mation of homogeneous network clusters [63]. These
clusters exacerbate misinformation circulation within
segregated groups, creating echo chambers that reinforce
false narratives [64]. Automated agents, or bots, further
complicate the landscape by deliberately setting about
misinformation, amplifying threats to public health and
safety [65].

Infectious diseases and vaccination represent two of the
most widely discussed themes in health misinformation
[66]. Early evidence from Ebola outbreaks suggests that
misinformation is associated with reduced trust in for-
mal medical care, diminished perception of disease risks,
and decreased self-protective actions [67]. The COVID-
19 pandemic has reaffirmed these findings, with scholars
documenting a surge in fake news and rumours concur-
rent with pathogens spread, leading to the coinage of “inf-
odemic” to describe the proliferation of misinformation
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[24, 25]. Such prevalence of misinformation tends to
perpetuate and intensify incorrect beliefs, particularly
among populations with lower education attainment and
stronger anti-science political orientations.

The other critical consequence of misinformation is
vaccine hesitancy, defined as the delay or refusal of vac-
cination despite its availability [68, 69], which has been
documented across a variety of infectious diseases [70,
71]. This hesitancy stems from concerns about vaccine
efficacy and safety, mistrust in governments and health-
care professionals, and varying perceptions of disease
risks [72, 73]. Social networks play a pivotal role in this
phenomenon, as individuals’ willingness to get vacci-
nated fluctuates with the attitude of their family mem-
bers and friends, reflecting the impact of homophily [11,
74]. Information flows significantly influence vaccina-
tion behaviour: negative information about vaccine side
effects significantly reduces vaccine acceptance and pro-
longs outbreaks, while information on infection preva-
lence boosts vaccination rates [75]. Consequently, the
proliferation of anti-intellectualism [12, 23] and vaccine
misinformation [76—78] through social media can under-
mine vaccination campaigns, eventually contributing to
increased morbidity and mortality during health crises.

Impacts of social, mobility and contact networks

on epidemics

While social networks primarily facilitate the spread of
health behaviours and information, mobility and con-
tact networks may directly enable disease transmission
through physical proximity, together with individual
heterogeneity in immunity and behaviours as well as
biological and environmental factors (Fig. 3). This sec-
tion examines the distinct roles of these networks in
shaping infectious disease patterns and reviews exist-
ing efforts to integrate them into disease modelling
frameworks (Table 1), ultimately advancing our under-
standing of how human interactions across multiple
dimensions influence epidemic dynamics.

Social interaction and pathogen spread

Understanding information dissemination and behav-
ioural contagion provides crucial insights into prevent-
ing and controlling pathogens, from those transmitted
through direct physical contact (e.g., HIV and syphi-
lis) to those spread via vectors or droplets (e.g., malaria
and influenza). In sexually transmitted infections (STIs),
social networks significantly influence transmission risk,
as members of sexual networks or drug user communities
often share similar norms, risk behaviours, and mutual
social support [21]. For instance, people who inject drugs
(PWID) commonly endorse sharing paraphernalia such
as cookers or needles, which facilitates pathogen spread,
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Fig. 3 The potential impact of social, mobility and contact networks on infectious disease transmission

while individuals who share cookers are less likely to
accept injection [79]. In terms of protective behaviours,
more discussion about pre-exposure prophylaxis (PrEP)
with friends would significantly increase network mem-
bers’ PrEP knowledge, attitudes, norm perceptions, and
self-efficacy, uplifting the percentage of PrEP adoption
from 3 to 11% [80]. Based on the theories of weak ties
and super-influencers [81-83], as demonstrated in Fig. 3,
social network interventions targeting “bridging” indi-
viduals who connect multiple communities have been
recommended to effectively reduce risk behaviours like
needle-sharing and unprotected sex [84], which helps

access populations unreached by typical clinical and pub-
lic health efforts [85].

Social networks can similarly shape the dynamics of
vector-borne diseases (VBDs) such as malaria. Exposure
to disease-related information through social networks
significantly alters individuals’ willingness to adopt pre-
ventive measures. For instance, broadcasting malaria
information would increase the use of insecticide-treated
bed nets and antimalarial drugs during pregnancy, where
those who did not receive information were 36% and 23%
less likely to adopt, respectively, as reported by a study
conducted in sub-Saharan Africa [22]. In regions with
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limited public health surveillance infrastructure, partici-
patory approaches, including citizen science programs,
have emerged to engage the public in VBDs monitoring
and control [86—88]. These approaches foster broader
social interactions, expanding networks and promoting
health knowledge and behaviours among populations ini-
tially hesitant or resistant to interventions such as indoor
residual spraying for malaria control [89].

Social networks play a pivotal role in shaping responses
to not only endemic or epidemic diseases but also global
pandemics, as demonstrated during SARS-CoV-2 trans-
mission in the early 2020s. Research indicates that indi-
viduals’ attitudes towards public health measures can
be remarkably influenced by their peers’ opinions and
behaviours. For example, lockdown or reopening poli-
cies implemented in one area can create ripple effects in
neighbouring regions, influencing residents’ decisions to
restrict or increase outdoor activities [90]. While poli-
cies are designed with expected behavioural changes in
mind, coordinating public compliance remains chal-
lenging across different countries and cultural contexts
[91]. Public non-compliance with governmental recom-
mendations often stems from underestimating disease
severity, doubting measure effectiveness, and particularly
from the experiences and attitudes of their relatives and
friends. Studies found that individuals having more social
media connections with early COVID-affected regions
(e.g. China and Italy) demonstrated greater willingness
to reduce outdoor activities, especially in areas with a
higher education level and a lower fraction of climate
change deniers [20]. Meanwhile, Intense social bonding
with family and with more groups correlates with bet-
ter mental well-being and higher willingness to adopt
health behaviours like distancing or wearing masks [92].
However, in later pandemic stages, exposure to anti-vac-
cination views or adverse events remarkably increased
vaccine hesitancy [23], illustrating how network influ-
ences evolve throughout a pandemic.

Human mobility and contact affect respiratory pathogen
spread

Human mobility and contact networks play an exclusive
role in respiratory disease transmission. Unlike patho-
gens transmitted via blood, vectors, or contaminated
water and food, the spread of respiratory infectious dis-
eases critically depends on droplets, aerosols, or close
contact between individuals [1, 93]. Consistent with the
theory of strong and weak ties in social networks [81],
the type and intensity of human close contacts shape
respiratory pathogen dynamics. For instance, within
schools, student interactions in the same class induce
higher influenza transmission probabilities compared
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to interactions between different classes or grades, with
school-aged children often acting as intermediaries
transmitting infections from schools to households [94].

At the urban scale, daily commuting and modern trans-
portation facilitate pathogen spread between communi-
ties. Research shows that commuting volume strongly
correlates with the prevalence of influenza-like illness
[95], with crowded public transportation systems fur-
ther amplifying transmission risks [96]. Beyond volume,
pathogen transmission also correlates with the type of
travel destinations. Visits to venues that bridge multiple
communities, such as retail and recreation centres, work-
places, and transit hubs, promote more severe epidemics
[97]. Since human movement usually faces constraints of
spatial costs, exhibiting scale-free decay of visitation with
increasing distance [98, 99], it is commonly observed that
infections first spread within densely connected urban
centres before extending to more distant regions [100].

Air travel serves as a key bridging tie in mobility net-
works, facilitating rapid spread of respiratory patho-
gens across countries [2, 3]. For instance, during the
2009 influenza A HIN1 pandemic, even stringent travel
restrictions that reduced air traffic from the disease hot-
spot by 40% only delayed the international spread by
three days [101]. The recent COVID-19 pandemic fur-
ther emphasised air travel’s pronounced role, as it quickly
reshaped SARS-CoV-2 transmission patterns by shifting
the main contributors from the first-reporting country
to the most interconnected ones, particularly for highly
transmissible variants like Delta and Omicron [102]. This
phenomenon underscores the interplay between virus
infectivity and global connectivity. Consequently, non-
pharmaceutical interventions such as travel restrictions
have been widely implemented to reduce the density of
mobility and contact networks [6, 26, 103, 104]. These
measures contain global circulation of not only SARS-
CoV-2 but also HIN1, H3N2, and B/Victoria influenza
viruses [105]. Furthermore, travel restrictions become
more effective when coupled with close contact tracing
to identify and interrupt specific transmission pathways
[106, 107]. This understanding has been validated across
multiple outbreaks, including SARS [4, 5, 108, 109], influ-
enza, and COVID-19 [110, 111].

Targeted interventions focusing on super-spreaders
[112, 113], individuals with disproportionately high
infectivity, can significantly curtail outbreaks. Unlike
super-influencers who occupy strategic positions in
social networks [82, 83], super-spreaders may be either
structurally prominent with numerous contacts or those
who have higher viral loads and generate above-average
numbers of secondary cases [114]. During the 2003 SARS
outbreak, a small number of super-spreaders induced
the majority of early cases in Singapore and Hong Kong,
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China [5, 108], while COVID-19 documented more than
twice the number of super-spreading events in the lit-
erature [115]. These findings highlight the importance
of considering individual heterogeneity in transmission
dynamics across mobility and contact networks when
measuring epidemiological characteristics, predicting
risks, and developing response strategies.

Epidemiological models integrating social, mobility
and contact networks
Population-level modelling with mobility and contact
networks
Modelling strategies largely determine the extent to
which and how well we can translate knowledge of
social, mobility and contact networks into more accu-
rate estimation and prediction of infectious disease
dynamics. Traditional population-level models, particu-
larly compartmental models, have long served as foun-
dational tools in epidemiology. These models—such as
the Susceptible—Exposed—Infected—Recovered frame-
work—represent individuals as belonging to discrete epi-
demiological states, transitioning between them based
on pre-defined rates or probabilities [26]. However, a key
limitation of this approach is its assumption of homoge-
neous mixing, whereby all individuals are equally likely to
interact with one another regardless of social or spatial
constraints in the real world [116, 117]. Although its rela-
tively simple framework remains valuable in early rapid
assessments of disease transmission, the mechanistic
rules of human actions and virus spreading are insuffi-
ciently considered, especially in terms of the regularity in
human mobility and contact patterns and the heteroge-
neity in individual preventive behavioural choices [98].
As a preliminary effort to avoid such deficiencies,
meta-population models explicitly extend compartmen-
tal frameworks into geographical space by segmenting
the population into interconnected subpopulations (e.g.
communities, cities, or regions) [118, 119]. These sub-
populations are linked by migration rates or mobility
flows, allowing for dynamically redistributing susceptible
and infected groups across locations and updating the
probability of risk contact at each time step. By explicitly
modelling spatial heterogeneity, meta-population models
more accurately capture the spatiotemporal dynamics of
disease transmission and the effects of interventions such
as travel restrictions or regional lockdowns.

Incorporating behavioural feedback and social influences

Beyond mobility, social and behavioural factors are also
worth being incorporated into disease modelling [120]. A
key insight from economic epidemiology is the concept
of prevalence-elastic behaviour—the tendency of individ-
uals to adopt protective behaviours (e.g., mask-wearing,

Page 10 of 18

social distancing) more readily as disease prevalence
increases, and to relax those behaviours when risk per-
ception declines [121-123]. For example, people are
more willing to reduce risk behaviours like needle shar-
ing when HIV infection increases. Comparatively, when
the infections are low, individuals are less motivated
to adopt protective behaviours. This trade-off between
infection risks and personal health/economic benefits
has also been discussed in other interventions, including
vaccination and social distancing [124].

Such a behavioural feedback loop underscores the
necessity of modelling the co-evolution of disease trans-
mission, information diffusion, and behaviour adoption.
However, previous reviews have pointed out that existing
models tend to rely heavily on rational-actor assumptions
derived from behavioural economics, instead of insights
from psychology or sociology that emphasise social
learning, imitation, and peer influence [125]. Although
cognitive contributions to behaviour adoption, like the
aforementioned trade-off between perceived risk and
costs of preventive behaviours, are well acknowledged,
the social network structures through which individuals
acquire, interpret, and act upon health information are
rarely modelled explicitly, especially for infectious dis-
eases [29]. In other words, very few existing papers made
an explicit explanation of the “social network impact” on
human behaviours for disease dynamics, relying instead
upon “social impact” only. This disconnection stems
partly from disparities in data availability, scales, and
timeliness. Macro-level or population-level mobility data
often lack individual details, while micro-level or individ-
ual-level data on social and informational ties are difficult
to obtain due to privacy concerns in the real world. As a
result, the interplay between social, mobility and contact
networks remains underrepresented in traditional popu-
lation-level models.

Individual-level modelling: coupling social, mobility

and contact networks

Theoretical advances and emerging computational tech-
niques demonstrate the potential of integrating intrinsi-
cally linked social factors into infectious disease models,
where one key amendment is to shift the modelling strat-
egy from “top-down” (population-level) to “bottom-up”
(individual-level). In the “top-down” approach such as
compartmental or meta-population models, the disease
dynamics are estimated by considering interventions
that are imposed at the population level, primarily affect-
ing immunity and the probability of physical contacts.
In contrast, “bottom-up” models simulate emergent
dynamics from individual decisions and interactions,
accounting for the effects of social, mobility and con-
tact networks simultaneously. Table 1 summarises the
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strengths and limitations of different network types and
modelling approaches for infectious diseases.

Agent-based models (ABMs) usually serve as a basic
choice for “bottom-up” modelling [126]. Rather than
simulating macro-level transitions among aggregated
population states (e.g., shifts between susceptible and
infected populations), ABMs model individual agents
with heterogeneous attributes, perceptions, and behav-
ioural rules. Agents can exhibit diverse behaviours like
mobility choices, adoption of self-protective actions, and
vaccine uptake [127, 128]. It also simulates interactions
among individuals and allows their behaviours to evolve
over time, whereby the collective behaviours of a set of
representative agents reflect heterogeneous population
composition. Traditionally, ABMs operate using prede-
fined behavioural rules, but such approaches struggle
to capture the stochastic nature and dynamic changes
of real-world behaviours. Consequently, ABMs need to
be extended to account for these complex, multilayered
interactions.

Multilayer and multiplex networks in ABMs

One key extension of AMBs involves embedding agents
within multilayer or multiplex networks to more realis-
tically simulate interactions across physical, social, and
informational domains [129]. Multilayer networks can
represent different types of interactions, such as local and
long-range mobility, co-infection dynamics, or time-var-
ying contact patterns using separate but interconnected
layers [130-133]. However, when the focus is on how
information dissemination influences individual behav-
iours that in turn affect disease transmission, multiplex
networks are especially useful [134, 135].

Multiplex networks differ from multilayer networks
mainly in that they require a one-to-one correspond-
ence of nodes across different layers, so that the effect
of network contagion in one layer can cascade to other
layers at the individual level. A common application,
for instance, is the two-layer network model represent-
ing awareness diffusion and disease transmission. Such
models usually hypothesise that susceptible individuals
who become aware of infection risks through social net-
works may adopt protective behaviours (e.g., isolation,
hygiene), thereby lowering their likelihood of infection.
Infected individuals may actively alter their own mobil-
ity or contact patterns, in turn, indirectly influencing the
awareness of their social network peers. These dynam-
ics create feedback loops between awareness and epi-
demic spread, potentially reducing outbreak sizes when
awareness diffusion and the prevalence of self-protective
behaviours reach a critical threshold [136—139]. Further-
more, research has revealed the distinct effects of global
and local awareness on disease dynamics. While local
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awareness typically propagates through peer networks
within communities [140], global awareness disseminated
via mass media or major social media platforms often
proves more effective at suppressing disease spread by
providing broader, society-wide perspectives [141-143].

Despite their utility, two-layer multiplex networks
remain insufficient to fully resemble the real-world com-
plexities of human behaviour. Individuals may exhibit
diverse responses to the same information, influenced by
factors such as personal beliefs, socio-demographic dif-
ferences, and social context. To account for these varia-
tions, studies have proposed several model refinements
by allowing variable vertex activities or expanding mul-
tiplex networks from two layers to three or more [144].
For instance, Rizzo et al. considered reduced activities
from both infected people (due to illness or quaran-
tine) and susceptible individuals (due to self-protection)
[145]. Similarly to this concept, Song et al. introduced a
weighted co-evolving multiplex network in which indi-
viduals can rewire connections to avoid physical contact
with the infected [146]. Those behavioural changes can
increase the epidemic threshold and decrease the frac-
tion of infection.

To further incorporate enhanced awareness and com-
peting information dynamics, Zhu et al. considered a
more realistic situation that individuals are unwilling to
share the information even if they have established per-
ceptions about the disease [147]; while He et al. intro-
duced the competition between rumour and knowledge
diffusion on the information layer, reflecting the real-
world competition between misinformation and veri-
fied health communication [148]. These extensions and
refinements advance our ability to better simulate the
interplay between information diffusion, behaviour adap-
tation, mobility/contact changes, and disease transmis-
sion. By capturing such coupled dynamics, multiplex
network-based ABMs offer deeper insight than simpler
frameworks into the nuanced dynamics of infectious dis-
ease spread in heterogeneous populations [149].

Stochastic agent-based models and generative agents

A further evolution of traditional rule-based ABMs
involves the incorporation of stochastic processes, allow-
ing models to account for the randomness and variability
of human behaviours, which is far beyond the explanation
of pre-defined rules or probabilities. Stochastic ABMs
introduce randomness into individuals’ choices and
interaction patterns while ensuring coherence at the pop-
ulation level. For example, Hoertel et al. built a stochas-
tic ABM for modelling COVID-19 spreading in France
[150]. They constructed a synthetic population where
each agent has different demographic attributes (e.g., age,
gender), household structure, and social contact patterns,
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such as activity sequence over the day (work, school,
family, etc.) and co-location probability. These attributes
were sampled and matched coordinating with national
statistics, enabling realistic simulations of contact net-
works and transmission pathways.

The recent advent of large language models (LLMs)
has provided further opportunities for creating genera-
tive agents—autonomous, language-driven individuals
capable of making context-aware decisions based on
evolving information [151]. Rather than determining
certain assumptions about what behavioural dimen-
sions to include and how each human would act, gen-
erative agent-based modelling (GABM) accepts diverse
information directly and each agent makes their own
decision-making on behavioural changes based on
existing knowledge and the social environment, which
can be defined using user prompts and system prompts,
respectively [152, 153]. More importantly, research-
ers can pass new information (e.g., public health mes-
sages, news updates, or peer behaviours) to the agent at
each time step, enabling dynamic responses that more
closely resemble real-world behaviours over time. By
combining stochastic behavioural diversity with natural
language processing capabilities, GABM offers a pow-
erful tool for exploring the cognitive and social dimen-
sions of epidemics, especially in complex, dynamic
environments where traditional rule-based approaches
fall short.

From simulation to real-world application

Although ABMs have long been a proven approach for
disease transmission modelling, their variants explicitly
introducing individual awareness and social network
impacts, including multiplex networks and GABM,
remain primarily simulation-based with limited valida-
tions of real-world scenarios. This is largely due to the
demanding data requirements to calibrate, validate,
and apply such models, particularly those incorporat-
ing detailed behavioural, social, and mobility dynamics.
Nonetheless, researchers have begun to apply these the-
oretical modelling frameworks by integrating diverse
empirical data sources, including socioeconomic indi-
cators, mobility traces, contact matrix, epidemiological
surveillance, and digital behaviour signals [154].

For instance, Lima et al. leveraged call detail record
(CDR) data to simultaneously extract the mobility
matrices and communication networks among indi-
viduals [155]. Their multiplex network modelling dem-
onstrated that disease prevention information through
social networks, including hygiene practices and vacci-
nation campaign notices, could effectively contain virus
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spread. Data-driven analysis from Scata et al. further
incorporated Google Trends data and socioeconomic
conditions into a Zika virus transmission model. Their
work revealed that individual heterogeneous aware-
ness of diseases, coupled with attention decay, would
remarkably alter Zika virus transmission dynamics,
emphasising the importance of timely and targeted
communication strategies [156]. Similarly, studies of
influenza-like illnesses have shown that effective infor-
mation dissemination can reduce outbreak magnitude
by promoting early behavioural interventions [157]. All
of these underscore the potential and necessity of link-
ing theory-driven models with empirical data, moving
beyond simulation and toward evidence-based fore-
casting, scenario testing, and intervention planning.

Discussion

Social, mobility and contact networks mediate human
behaviours and infectious disease dynamics. Although
substantial progress has been made in understanding
behaviour contagion and pathogen transmission inde-
pendently, research integrating these processes remains
limited. This gap is particularly critical as online social
media increasingly shapes behavioural patterns and
information flow, while infectious diseases continue to
spread primarily through human movement and physical
contact. In this review, we have highlighted the separate
roles of these networks on infectious disease dynamics,
summarised existing modelling strategies, and identi-
fied key research directions to bridge existing knowledge

gaps.

Integrating social influence into population-level models
Population-level modelling, such as compartmental and
meta-population models, remains an essential tool in
the rapid assessment of infectious disease spreading.
However, despite growing studies that have underscored
the mutual impacts of social and behavioural factors on
disease transmission, most models overlook the inter-
dependence of individual behaviours, which are largely
modulated by social networks. These interactions are
crucial for understanding behavioural cascades such
as vaccine acceptance or risk avoidance. Therefore, we
recommend a two-step approach for future work: first
identify collective behavioural shifts induced by social
interactions, and then incorporate these dynamics into
transmission models, potentially through a network-
based behavioural adjustment parameter influencing
infection rate.
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Leveraging GABM and multiplex networks

for individual-level modelling

We highlight GABM and multiplex network analyses as
promising modelling approaches for capturing behav-
ioural heterogeneity and co-evolving contagion dynam-
ics at the individual level. GABM, powered by large
language models, allows agents to perceive and interpret
the social environment dynamically and make autono-
mous decisions, such as whether to vaccinate or com-
ply with public health policies based on evolving social
norms and personal beliefs. These models have shown
promise across domains, including urban planning,
transportation, and epidemic forecasting. Multiplex net-
works offer another promising structural framework for
modelling cross-layer interactions, such as how aware-
ness spreads in a social network and alters behaviour in
a mobility and contact network. This enables simulation
of co-evolutionary dynamics between information dis-
semination and infectious disease spreading. Moreover,
multiplex networks can explicitly accommodate hetero-
geneous individual awareness, peer influence, and con-
text-dependent behaviour through both within-network
interactions and cross-network dynamics, enabling con-
tagion effects in the information communication layer to
be cascaded to influence disease dynamics.

Recent advances in large language models also offer
promising capabilities for developing multimodal, self-
aware, autonomous multiplex disease models, in which
each layer (e.g., mobility, contact, communication) can be
designed analogously to GABM. However, such models
remain largely simulation-based, constrained by the lack
of comprehensive, individual-level data records across
all network layers. Although such granular and com-
plete datasets are rarely available in reality, emerging data
sources may partially address this challenge.

Incorporating emerging data sources and robust inference
for integrated models

Novel data streams offer unprecedented opportuni-
ties to understand the joint influences of human mobil-
ity and social interactions. For example, the massive
volume of social media data, despite its demographic
biases, enable simultaneous extraction of online social
networks and mobility patterns from geotagged posts,
facilitating the construction of unified online and offline
human interaction networks. Future research should
leverage multi-source data to integrate information dis-
semination, behavioural responses, and physical contact,
thereby quantifying comprehensive infectious disease
mechanisms across space and time. Although compre-
hensive data collection is essential for constructing social
networks and modelling infectious diseases, this must be
balanced against the need for timely outbreak responses,
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resource constraints, social costs, and privacy concerns.
Researchers should adapt data collection and integra-
tion strategies, depending on intervention goals, data
infrastructure, human resources, and epidemiological
contexts [158], while safeguarding individual confidenti-
ality under ethical approvals and data protection policies
across different jurisdictions.

In addition, a critical limitation of existing studies is
the reliance on cross-sectional or correlational analyses,
which constrains the ability to infer causal relationships,
and therefore, the estimated effectiveness of public health
policies informed by network studies. Future work should
consider model validation using data obtained from more
rigorous designs, such as longitudinal cohort studies,
randomised controlled trials, and quasi-experimental
approaches where appropriate, to better assess how
social, mobility and contact networks influence behav-
ioural adoption and disease transmission. Such meth-
odologically robust approaches and causal evidence are
essential for guiding targeted and precise public health
interventions.

Addressing demographic disparities and post-epidemic
social reintegration

Demographic characteristics, such as age, gender, race,
and socioeconomic status, substantially influence social
mixing patterns, risk exposure, and access to inter-
ventions, which remain understudied for infectious
diseases beyond STIs. For example, the COVID-19 pan-
demic exemplified age-related disparities, with younger
peers showing higher risks of mutual infection during
early transmission [159] and older adults experiencing
increased social marginalization due to greater clinical
severity [160]. Such inequalities are expected to sustain
over a long period post COVID-19 [161]. Future model-
ling efforts should explicitly incorporate demographic
structure and inequities, both in the formation of social,
mobility and contact networks and in differential behav-
ioural responses. This is essential for informing equitable
public health strategies and ensuring that marginalised
populations receive timely, appropriate support.

In addition, while preventive behaviours and interven-
tions such as vaccination and PrEP have received sub-
stantial attention in existing studies, therapeutic norms
and recovery behaviours remain underexplored [162].
Research should examine how social networks shape
post-illness or post-epidemic behaviours, including
medical treatment adherence and social reintegration
[163]. Understanding these behaviours spread through
social ties can inform strategies for socioeconomic
resilience and long-term health system recovery follow-
ing epidemics or pandemics. By addressing both demo-
graphic disparities and post-epidemic reintegration in
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network-informed modelling, we can better understand
the full lifecycle of epidemic impact and design more
holistic public health strategies.

Conclusions

As the world grows more socially, digitally, and physi-
cally interconnected, the task of modelling and interven-
ing in infectious disease dynamics becomes increasingly
complex. Understanding how diseases spread is no longer
just a matter of tracking pathogens through mobility and
contact patterns; it also requires attention to how human
behaviour evolves, how people influence each other, and
how information moves through networks. This review
has shown that while we have made substantial progress
in modelling mobility- and contact-driven transmis-
sion, the integration of social, behavioural, and informa-
tion diffusion processes into infectious disease models
remains insufficient. Some approaches can explicitly inte-
grate social networks into mobility-driven disease mod-
els, including multiplex network analyses based on
structural similarities of different networks, and also gen-
erative agent-based models taking advantage of large lan-
guage models. However, these approaches remain largely
theoretical and confined to simulations, due to the scar-
city of high-resolution, multi-source data across social,
spatial, and behavioural dimensions.

Therefore, as we look ahead, it is vital to prioritise
efforts that bridge data and model complexity, and also
develop scalable methods that practically introduce
social network influences onto disease transmission
across varied contexts and broader, vulnerable popula-
tions. This means integrating diverse datasets, such as
geospatial movement, digital communication and con-
nections, and health behaviours, while also being mind-
ful of privacy, ethical concerns, and the need for rapid,
real-time insights. It is encouraged that the governments
coordinate public health policies, curb the spread of mis-
information, and reallocate resources to socially mar-
ginalised groups. A multidisciplinary, cross-sector, and
inclusive approach would strengthen the research and
inform more targeted intervention strategies for infec-
tious disease control.
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