Sex-specific Longitudinal Associations between Repeatedly Measured Movement Behaviours and Adiposity measures in School-aged Children: A Compositional Data Analysis Approach
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Abstract
Background: Movement behaviours, including moderate-to-vigorous-intensity physical activity (MVPA), light-intensity physical activity (LPA), sedentary behaviour (SB), and sleep, influence childhood adiposity. However, their collective impact on adiposity from a sex-specific perspective remains underexplored. Our research examined the sex-specific longitudinal associations of 24-hour movement behaviours with body mass index (BMI) and abdominal adiposity among children.
Methods: In the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study, we repeatedly measured 24-hour movement behaviours using wrist-worn accelerometers (ActiGraph GT3x) and assessed adiposity (BMI, abdominal circumference, and MRI-based abdominal fat volumes) at three time points (ages 5.5–6, 7.5–8, and 10–10.5 years) within the same children in a longitudinal design.  Compositional multivariable linear mixed-effect modelling and isotemporal substitution were used to estimate the associations.  
Results: 531 children (49.5% girls) were included in the analysis. Significant interactions between movement behaviours and sex were observed across all outcomes. In girls, higher MVPA relative to other behaviours was linked to lower BMI [-0.8 (-1.5, ‑0.1) kg/m²] and total abdominal adiposity [-225.5 (-451.6, -2.5) mL], while in boys, longer sleep duration was associated with lower BMI [-1.6 (-3.2, -0.1) kg/m²] and total abdominal adiposity [-624.2 (-1225.6, -31.3) mL]. The isotemporal substitution model showed that replacing 30 minutes of LPA/SB with MVPA reduced BMI and abdominal circumference by 1%–2% and MRI-measured abdominal adiposity by 6%–9% in both sexes. However, replacing LPA/SB with sleep reduced BMI and abdominal circumference by 1% and MRI-measured adiposity by 3%–6% only in boys, with no changes in girls. These associations were pronounced on visceral adiposity. 
Conclusion: This study highlights sex-specific associations of movement behaviours with adiposity in school-aged children, with stronger associations observed in MRI-derived measures compared to conventional adiposity indices. Replacing LPA/SB with MVPA reduced BMI and abdominal adiposity in both sexes, with particularly pronounced effects on visceral adiposity. However, sleep replacement benefits were observed only in boys, suggesting the need for gender-sensitive approaches in lifestyle interventions. 
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Introduction
The global prevalence of childhood obesity has risen dramatically in recent decades, posing major public health concerns (1). This rise in childhood obesity is associated with cardiometabolic diseases and musculoskeletal disorders, impacting individuals throughout their lifespan (1-3). Abdominal fat accumulation shows stronger links to obesity-related adverse health outcomes than overall body fat accumulation, with visceral fat showing particularly strong associations with metabolic and inflammatory pathways (4-6). Therefore, understanding the factors contributing to childhood adiposity, especially abdominal adiposity, is essential for developing impactful intervention strategies.
[bookmark: _Hlk175437073]The risk factors for childhood obesity are multifaceted. Physical activity (PA), sedentary behaviour (SB), and sleep are recognised as key modifiable factors, collectively referred to as movement behaviours. (7, 8). While regular PA and adequate sleep reduce adiposity, increased sedentary time, especially screen time, is linked to higher adiposity (7-9). Most studies rely on conventional adiposity indices, including body mass index (BMI) and abdominal/waist circumference (10-12), which cannot differentiate abdominal adipose tissue compartments effectively (13). Dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) are both considered reliable methods for assessing abdominal fat (14). Compared to DXA, MRI provides higher accuracy in differentiating abdominal adipose tissue compartments, including visceral, deep subcutaneous, and superficial subcutaneous fat volumes without exposing subjects to radiation  (15, 16). Although moderate-to-vigorous PA (MVPA) shows associations with reduced abdominal adiposity, especially visceral adiposity volumes, the associations of other movement behaviours, such as light-intensity PA (LPA), SB, and sleep duration, remain understudied in the literature (17-21).
Daily time spent in each movement behaviour adds up to 24 hours. Therefore, changes in one behaviour inevitably result in shifts in the others (22). Compositional data analysis (CoDA) examines these relative contributions rather than absolute durations, offering better insight into their collective health impacts (23). Reallocating time from SB to MVPA may help reduce adiposity and cardiometabolic risk in children and adolescents, but evidence gaps remain due to limited longitudinal studies and insufficient consideration of sleep (24, 25). Therefore, more research is needed to understand how the trade-offs between time spent in different movement behaviours are associated with adiposity in children. 
[bookmark: OLE_LINK2]Our previous studies show distinct movement behaviour and adiposity patterns between boys and girls(26, 27). However, the existing literature on sex-specific associations between movement behaviours and adiposity in children is limited and presents inconsistent findings (28-30). For instance, some studies reported that PA favourably associated with reducing BMI in girls (29), and others only in boys (30). The limitations and inconsistencies in current evidence can be attributed to several methodological factors. First, many studies have relied on self/proxy-reported measures of PA and SB, which are prone to recall and social desirability bias, particularly in children (17-21). Second, traditional analytical approaches have often examined movement behaviours in isolation, failing to account for the compositional nature of 24-hour movement data (23). Furthermore, boys and girls often engage differently in movement behaviours, making sex-stratified analyses particularly important (27). Third, studies have used various methods to measure adiposity outcomes, with some focusing solely on BMI while others examining different adiposity indicators, making direct comparisons challenging (17-21). Fourth, the age ranges studied have varied widely, potentially masking developmental differences in movement behaviour-adiposity relationships (11, 31). This study aims to address the aforementioned gaps by examining the sex-specific associations of accelerometer-measured 24-hour movement behaviours with BMI, abdominal circumference, and MRI-measured abdominal adiposity volumes in school-aged children, using a compositional data analysis approach. 
Methods
Study design 
This research was conducted as part of the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study, a comprehensive parent-offspring cohort study. The GUSTO study recruited pregnant women from three main ethnic groups in Singapore: Chinese, Malay, and Indian. Eligible participants were in early pregnancy, specifically before 14 weeks of gestation, and were attending antenatal care at one of two major public maternity units in Singapore: National University Hospital or KK Women's and Children's Hospital. The recruitment phase for the GUSTO study occurred between June 2009 and October 2010. All women who agreed to participate provided written informed consent. The study protocol received ethical approval from two institutional review boards: The National Healthcare Group Domain Specific Review Board and the SingHealth Centralized Institutional Review Board. (ClinicalTrials.gov: NCT01174875) (32, 33).
Measurement of movement behaviours 
Movement behaviour data for children at the ages of 5.5-6, 7.5-8, and 10-10.5 years were collected using ActiGraph GT3X+ accelerometer. The devices were attached to the child’s non-dominant wrist with a non-removable strap, and instructed to remove the device on the ninth day post-visit, allowing for continuous 24-hour data collection over a 7-day period. The data were processed using the GGIR  R package (version 2.6) (34, 35). For data to be considered valid, days needed to have at least 16 hours of recorded data from midnight to midnight. Children were included in the analysis if they had at least two valid weekdays and one valid weekend day. The "2015 van Hees algorithm" was employed to the night sleep window (27, 36, 37). Through visual inspection of the data, sustained inactivity bouts lasting at least 15 minutes were classified as naps, and total sleep time was calculated by summing night sleep and naps. Waking time was categorised into SB (inactivity), LPA, and MVPA, based on the Euclidean Norm Minus One (ENMO) values (<35, 35-200, and ≥200 mg, respectively, where 1 mg = 0.00981 m·s−²) using prediction equations by Hildebrand et al. (38, 39). The analysis used weighted averages of time spent in each activity across all valid days, with weekend days weighted at 2/5 of weekdays (27). 
Assessment of BMI and abdominal circumference
Children's weight (to the nearest g) and height (to the nearest 0.1 cm) were measured up to three times during each clinic visits, including visits at ages 5.5-6, 7.5-8, and 10-10.5 years, by trained research staff using a SECA model 803 weighing scale and a SECA model 213 stadiometer (Hamburg, Germany), respectively. The repeated measurements from each visit were averaged. Body mass index (BMI, kg/m²) was calculated by dividing the weight (in kg) by the square of the average height (in m²) for each visit.
Assessment of abdominal adipose tissue volumes
MRI scans of the abdominal region were conducted at the ages of 5.5-6, 7.5-8, and/or 10-10.5 years for a subset of GUSTO participants who provided consent for this specific measurement. In our cohort, 69% of participants consented to MRI assessments at one or more time points. Axial abdominal images were obtained using water-suppressed half-Fourier acquisition single-shot axial turbo spin-echo sequence (at ages 6 and 7.5 years) and 2-point Dixon sequence (at age 10-10.5 years) and body matrix coil after anatomical localization. Deep learning-based automated segmentation was used to identify and quantify superficial and deep subcutaneous and visceral adipose tissue depots (40, 41). The resulting images were then manually reviewed and edited to correct any misclassified structures.  The volume (in mL) of each fat depot was calculated by summing the voxels and multiplying by the image resolution (26).
Covariates
At recruitment, interviewer-administered questionnaires were used to collect information about ethnicity, maternal age and educational attainment, and maternal pre-pregnancy weight. Maternal height was measured between 26 and 28 weeks of gestation, while paternal height and weight were recorded at the 2- or 3-year clinic visits by trained research staff using a SECA model 803 weighing scale and 213 SECA stadiometer (Hamburg, Germany). Paternal BMI (kg/m²) was calculated from these measurements, while maternal BMI was derived from self-reported pre-pregnancy weight. Total daily energy intake at age 5 years was assessed using a food frequency questionnaire (42). Among included children, 20% had missing data for total calorie intake, maternal and paternal BMI. The random forest method was used to impute these covariates (43). 
Statistical methods 
We calculated the mean (standard deviation) for continuous variables and frequency (percentage) for categorical variables to summarise the characteristics of the included children, and then employed chi-squared tests and two-sample t-tests to compare the characteristics between girls and boys. The 24-hour movement behaviour compositions, including MVPA, LPA, SB, and sleep, were analysed using the compositional data analysis approach (23, 44, 45). The compositional data analysis models were executed using the ‘Compositions’ (2.0-4) R package (46). We constructed four sets of ilr-coordinates for each timepoint. For example, the ilr coordinates for the sequence of MVPA, LPA, inactivity, and sleep were defined as:   ; ; . In the CoDA regression models, each set of ilr coordinates (ilr1, ilr2, ilr3) was included as an exposure. The first ilr-coordinate (ilr1) in each set represented the proportion of time spent in one of the movement behaviours relative to the remaining three behaviours. 
We investigated the longitudinal associations between movement behaviours and adiposity, both repeatedly measured at ages 5.5-6 (timepoint 1), 7.5-8 (timepoint 2), and 10-10.5 (timepoint 3) years, using compositional multivariable linear mixed-effect models. Although exposure and outcome assessments were generally aligned at similar timepoints, instances where adiposity measures preceded movement behaviour assessments were addressed by linking the closest (within 6 months) available pairs. The dataset was specified in long format, incorporating repeated measures of movement behaviours and adiposity outcomes. We chose compositional mixed-effect models to capture the longitudinal nature of repeatedly measured data across three timepoints for exposure and outcome variables, allowing us to account for within-participant variance over time. A random intercept was specified at the participant level, implying that each child has a unique baseline adiposity measure. Given the high correlations among outcome measures across timepoints, an exchangeable covariance matrix was employed. All adjusted models included child ethnicity, maternal age at delivery, and maternal education level as potential confounders.
Given our objective-driven approach to investigate sex-specific associations between movement behaviours and adiposity development, all analyses were designed to be stratified by sex from the start. We first tested for interactions between overall 24‑hour movement behaviours and sex to confirm that the data supported this analytical approach. Significant interactions between overall 24‑hour movement behaviours and sex were observed across all adiposity outcomes: BMI (p = 0.005), abdominal circumference (p = 0.001), total abdominal adipose tissue (p = 0.002), superficial subcutaneous adipose tissue (p = 0.017), deep subcutaneous adipose tissue (p = 0.038), and visceral adipose tissue volumes (p < 0.001). These findings confirmed the appropriateness of our sex-stratified analytical approach, and all analyses were conducted separately for girls and boys. We applied the compositional isotemporal substitution method based on the adjusted model to estimate changes in adiposity measures corresponding to pairwise reallocations of time between any two behaviours at their compositional mean, separately for girls and boys. Primary isotemporal substitution models estimated the associations of reallocating 30 minutes per day, consistent with previous compositional and isotemporal studies (47, 48). To facilitate interpretation and comparability, these changes were subsequently converted into percentage changes. Additionally, post‐hoc comparisons using estimated marginal means were conducted to examine longitudinal changes in associations, with pairwise estimates at timepoints 2 and 3 compared against timepoint 1.
[bookmark: OLE_LINK1]In sensitivity analyses, we further adjusted the models to include children’s total calorie intake at age 5, maternal pre-conception BMI, and paternal BMI at age 2–3 years, as these factors may act as potential confounders or mediators. These variables were not included in the main model to maintain parsimony and avoid potential over-adjustment. Instead, they were incorporated in the sensitivity analysis to assess the robustness of our findings and determine whether their inclusion altered the observed associations. Furthermore, we replicated the isotemporal substitution models to evaluate the practical relevance of smaller reallocations by performing graded reallocations of 5, 10, 15, 20, and 25 minutes per day. All analyses were performed in R version 4.1.1 (R Development Core Team, Vienna, Austria), and statistical significance was set at p < 0.05. 
Results
Participant characteristics
In the GUSTO cohort study, 808 children provided valid accelerometer-measured movement behaviours at ages 5.5-6, 7.5-8, and/or 10-10.5 years. Of these, 531 children had valid MRI-measured abdominal adiposity, abdominal circumference, and BMI data for at least one of these time points (Figure 1) and were included in the main analysis. The study participants consisted of nearly equal number of girls (49.5%, n=263) and boys (50.5%, n=268). Table 1 presents the characteristics of the included children. The majority of the participants were of Chinese ethnicity (55%).  Boys consistently engaged in higher MVPA, while girls had higher MRI-measured abdominal adiposity at ages 5.5-6 and 7.5-8 years but lower at age 10-10.5 years (Table 1). 
Associations of 24h-movement behaviours with BMI and abdominal adiposity in girls
[bookmark: _Hlk174636563]In girls, relative to remaining behaviours, higher MVPA was associated with lower BMI [-0.8 (-1.5, ‑0.1) kg/m²] and lower abdominal adiposity, including abdominal circumference [-2.5 (-4.6, ‑0.5) cm], total abdominal adiposity [-225.5 (-451.6, -2.5) mL], and visceral adiposity [‑53.0 (-97.9, ‑8.9) mL]. MVPA was not significantly associated with superficial or deep subcutaneous adiposity. LPA, SB, and sleep showed no associations with adiposity. Consequently, the overall 24-hour movement composition was not associated with adiposity (Table 2). 
Reallocating 30 minutes from LPA to MVPA and from SB to MVPA resulted in smaller reductions in BMI (2.3% and 1.9%, respectively) and abdominal circumference (2.1% and 1.7%), while MRI-measured adiposity volumes showed larger reductions. total abdominal adiposity decreased by up to 7.8%, superficial subcutaneous adiposity by up to 7.0%, deep subcutaneous adiposity by up to 9.1%, and visceral adiposity by up to 8.8% when reallocating 30 minutes from LPA or SB to MVPA (Table 3).
Associations of 24h-movement behaviours with BMI and abdominal adiposity in boys
In boys, relative to remaining behaviours, longer sleep duration was associated with lower BMI [-1.6 (-3.2, -0.1) kg/m²], abdominal circumference [-6.1 (-10.7, -1.5) cm], total abdominal adiposity [-624.2 (-1225.6, -31.3) mL], and visceral adiposity[-198.7 (-347.1, -52.1) mL], but not with superficial or deep subcutaneous adiposity. In contrast, higher SB was associated with greater abdominal adiposity, including abdominal circumference [4.0 (0.4, 7.6) cm], total abdominal adiposity [578.6 (114.7, 1041.9) mL], superficial subcutaneous [233.9 (32.8, 434.9) mL], deep subcutaneous [196.2 (36.4, 355.6) mL], and visceral adiposity [150.0 (39.4, 261.1) mL], but not BMI [1.1 (-0.1, 2.3) kg/m²]. The associations of MVPA with adiposity became less pronounced after adjusting for confounders. LPA was not associated with any adiposity measures. Unlike in girls, the overall composition of 24-hour movement behaviours was significantly associated with abdominal adiposity but not BMI (Table 2).
Reallocating 30 minutes from LPA to MVPA and SB to MVPA, as well as increasing sleep by reducing LPA or SB, was associated with relatively smaller reductions in BMI (1.1% and 1.0% for MVPA increases; 0.9% and 0.8% for sleep increases) and abdominal circumference (1.4% and 1.2% for MVPA increases; 1.0% and 0.8% for sleep increases), while MRI-measured abdominal adiposity volumes showed larger reductions. Total, superficial subcutaneous, deep subcutaneous, and visceral adipose tissues decreased by up to 8.0%, 6.8%, 9.3%, and 8.3%, respectively, when MVPA was increased at the expense of LPA or SB, and by up to 4.8%, 3.8%, 5.7%, and 5.9%, respectively, when sleep was increased at the expense of LPA or SB (Table 3).
Post-hoc Analysis
Overall, estimated marginal means at timepoint 2 did not differ from timepoint 1 in any model. In girls, MVPA showed a stronger association with lower visceral adiposity at timepoint 3. In boys, SB and sleep had stronger associations with higher and lower visceral adiposity, respectively, at timepoint 3 (Supplementary Table 1).
Sensitivity analysis
The findings from the sensitivity analyses, which additionally adjusted for children’s total calorie intake and maternal and paternal BMI, remained largely consistent, although there were slight changes in the estimates (Supplementary Table 2). 
Sensitivity analyses using graded time reallocations (5–25 minutes) produced associations that were directionally consistent with the primary 30-minute models, and the magnitude decreased progressively with shorter reallocations. These findings are presented in Supplementary Figures 1–6, which display dose–response curves for each adiposity outcome.


Discussion
This study investigated the associations between 24-hour movement behaviours and adiposity measures in school-aged children. In girls, relative to remaining behaviours, MVPA emerged as a key factor, demonstrating inverse associations with BMI, abdominal circumference, and MRI-measured abdominal adiposity volumes. Boys showed more complex patterns, with sleep duration inversely associated with all adiposity measures, while SB linked only to higher abdominal adiposity. Replacing LPA or SB with MVPA may reduce BMI and abdominal adiposity in both sexes, while sleep substitution may decrease adiposity only in boys. These sex-specific associations provide novel insights into the role of movement behaviours in adiposity, yet previous research has reported inconsistent findings. Systematic reviews and meta-analyses have reported little or no evidence of associations between accelerometer-measured MVPA, LPA, and SB and adiposity measures, specifically BMI and/or waist circumference (11, 31), while sleep has consistently shown inverse associations (10). Many of these studies were cross-sectional and did not account for the interdependence of movement behaviours, where changes in one affect the others. 
The present study is unique in its use of multiple adiposity measures, in particular MRI-measured subcutaneous and visceral adiposity volumes, assessed at multiple time points between ages 5 and 11 years. In addition, we comprehensively assessed the associations of each movement behaviour after accounting for the remaining behaviours and age-related variability in the sex-specific models. In girls, MVPA was consistently associated with lower adiposity measures. In boys, sleep was associated with lower abdominal adiposity, while SB was associated with higher abdominal adiposity, particularly visceral adiposity volumes. Our findings partially align with a cross-sectional study that used compositional data analysis, which suggested that, relative to remaining behaviours, greater MVPA and sleep may be associated with lower BMI, while SB was linked to higher BMI, though these associations were not consistent across age groups (49). The few studies that currently exist indicate that higher MVPA is associated with lower visceral adiposity, while SB is linked to higher visceral adipose tissue volumes (20, 50). These findings align with our observations for girls and boys, respectively. Given the scarcity of longitudinal studies that use objective measures of 24-hour movement behaviours and MRI-measured abdominal adiposity, the present study contributes new evidence and fills important gaps in the literature. Notably, movement behaviour and adiposity associations remained stable across the timepoints, except for stronger visceral adiposity associations at 10-10.5 years, possibly due to pubertal fat distribution changes (51).
[bookmark: _Hlk189677626][bookmark: _Hlk189660572]The present study found no associations between LPA and adiposity measures.  Previous studies have reported mixed findings, showing either inverse associations or no associations of LPA with adiposity measures (20, 28, 49, 50). Overall, LPA, SB, and sleep were not significantly associated with adiposity in girls, while only MVPA and LPA showed no associations in boys. As a result, the overall composition of 24-hour movement behaviours was not associated with adiposity in girls but was associated with abdominal adiposity in boys. The non-significant overall composition in girls can be attributed to the diluting effect of multiple null associations (LPA, SB, and sleep) on the overall composition, despite MVPA demonstrating significant beneficial associations with adiposity measures. Few studies have examined the associations between the overall composition of 24-hour movement behaviours and BMI in children, and the findings remain inconclusive (52, 53). These inconsistent findings between studies may be attributed to age- and sex-specific differences in the proportion of time spent in each movement behaviour (27), warranting larger-scale research. 
The sex-specific associations observed can be attributed to biological and behavioural factors differing between boys and girls. In girls, MVPA was associated with lower adiposity, likely due to low MVPA levels and higher adiposity, making them more sensitive to energy expenditure from MVPA than boys  (54, 55). This pattern aligns with evidence that girls may be more responsive to PA interventions targeting fat loss, particularly when starting from a higher adiposity level (56). A meta-analysis shows that females oxidise more fat than males in response to MPA (57, 58), while prepubescent children have higher fat oxidation relative to their total caloric expenditure compared to adults (58). Hormonal factors, particularly the role of oestrogen in enhancing lipid metabolism, may contribute to sex differences in fat oxidation, although these effects typically become more relevant during or after puberty (57, 59). Such mechanisms are less likely to fully explain our findings in the 5-8-year age group. Therefore, while plausible, the precise pathways underlying the sex-specific associations observed remain unclear and warrant further investigation. 
In boys, sleep duration was inversely associated with adiposity. This might be explained by the role of sleep in regulating metabolic hormones such as leptin, ghrelin, and cortisol, which influence appetite and fat accumulation (60). The absence of similar associations in girls is unclear. Boys generally have a higher basal metabolic rate than girls, meaning they expend more energy at rest (61, 62). Consequently, boys might gain increased metabolic benefits from longer sleep duration, due to their higher basal metabolic rate and potentially greater sensitivity to sleep-related hormonal changes that reduce appetite and regulate fat storage (61-63). Evidence suggests that girls have higher body fat than boys from age 5, with this difference increasing until age 18 (64). Given these developmental trends, the association of lower-intensity movement behaviours, such as LPA, SB or sleep, on fat volume may be less apparent in girls during childhood due to their naturally higher fat accumulation. Dietary behaviours during sedentary activities, particularly screen time, may also contribute to sex-specific associations. While individual variation is considerable, population-based studies suggest that girls tend to prefer fruits and vegetables, while boys are more inclined towards fatty and sugary foods, as well as meat and processed meat products (65, 66). Cultural norms within ethnic groups, such as leisure activities and eating habits, may contribute to sex-specific associations (67). Although we adjusted for ethnicity in our models, the largely homogeneous sample precluded an assessment of whether sex-specific associations differ meaningfully by ethnicity. Further research is needed to clarify how biological, behavioural, and ethnic factors explain observed sex-specific associations. 

Our study provides novel insights into how reallocating time between movement behaviours influences different measures of adiposity in boys and girls. Replacing LPA or SB with MVPA reduced all adiposity measures in both sexes. However, replacing LPA or SB with sleep decreased adiposity only in boys. The magnitude of these reductions varied by adiposity measure, with reductions of 1-3% in BMI and abdominal circumference, and 7-9% in MRI-measured subcutaneous and visceral adiposity volumes for a 30-minute reallocation of movement behaviours. Sensitivity analyses with <30-minute reallocations demonstrated similar direction of associations, supporting the potential impact of even modest daily shifts in movement behaviours on adiposity. These results underscore the public health value of small, achievable changes in activity patterns. Despite the non-significant overall composition in girls, isotemporal substitution analysis remained valid and clinically meaningful because it specifically leverages the significant MVPA associations by modelling realistic reallocations from behaviours with null effects (LPA, SB) toward the behaviour with established beneficial associations (MVPA). This approach isolates the beneficial pathway and provides actionable insights for targeted interventions, explaining why substantial adiposity reductions could be achieved through modest increases in MVPA despite the non-significant overall compositional pattern. 
Our findings align with previous research highlighting the beneficial effects of reallocating time to higher intensity PA or sleep to reduce adiposity in children (50, 68, 69). For instance, Gaba et al. reported that substituting one hour per week of SB bout (10–29 min) with MVPA was associated with a 6% decrease in visceral fat tissue volumes (50). The smaller magnitude of changes observed in BMI and abdominal circumference in our study supports the weak or non-significant associations reported in a systematic review and meta-analysis regarding the reallocation of movement behaviours (69). Our findings suggest that weaker associations in previous studies may not be negligible and could be more pronounced with precise measures. Variations in reductions across adiposity measures likely reflect their sensitivity (70). MRI-measured subcutaneous and visceral adiposity are more precise and directly assess fat tissue, making them more responsive to changes in movement behaviours (15, 16). BMI and abdominal circumference may take longer to show significant changes as they capture both fat and lean mass (70). The observed reductions in adiposity when replacing SB with MVPA may be attributed to increased energy expenditure, while the reduction when replacing SB with sleep may be linked to sleep's role in metabolic regulation (54, 55, 60). Overall, the present study suggests that increasing MVPA in both girls and boys, as well as increasing sleep in boys, at the expense of LPA and SB, may reduce adiposity, particularly visceral adiposity, and potentially prevent obesity-related chronic diseases later in life.
A key strength of this study is the use of device-based and repeatedly measured exposures and outcomes, eliminating reporting bias and ensuring robust findings. However, there are limitations to consider. First, the findings may not be fully generalisable, as only about 50% of the cohort completed MRI-measured adiposity assessments. Second, while wrist-worn accelerometers ensured high compliance, they did not capture posture-based SB, and misclassification of SB time and LPA/napping remains possible (34, 35, 39). We used Hildebrand cut-points to classify accelerometer data, which were developed in children aged 7–11 years and may have reduced accuracy for our youngest participants (5.5 to 6 years) (39). While age-specific alternatives have since been developed (71), we prioritised consistency across time points to avoid confounding true developmental changes with methodological differences. Nevertheless, the use of absolute intensity cut-points likely resulted in misclassification of PA and SB time, as highlighted in prior critiques (72, 73). Therefore, findings should be interpreted in light of these methodological limitations. Third, the study did not account for PA and SB context, preventing differentiation between structured and unstructured PA or screen-based and non-screen-based SB, which may influence adiposity differently. Fourth, although our repeated-measures design reduces concerns about temporality, the possibility of reverse causality cannot be entirely excluded; higher adiposity may itself contribute to reduced MVPA and increased SB. Future studies employing causal modelling approaches, such as cross-lagged panel models, would help clarify the directionality of these associations. Despite these limitations, our findings could inform future guidelines and public health strategies that target specific movement patterns to more effectively prevent and manage obesity in children.
Conclusions
This study provides valuable insights into the sex-specific associations between 24-hour movement behaviours and adiposity in school-aged children. In girls, MVPA was consistently related to lower BMI, abdominal circumference, and MRI-measured abdominal adiposity volumes. In boys, sleep duration was associated with lower adiposity, while SB was linked to higher abdominal adiposity. The associations were stronger for visceral adiposity. These findings emphasise the benefits of MVPA for both sexes, the additional benefits of increased sleep among boys, and the importance of reducing SB. These findings provide novel evidence highlighting the importance of sex-specific approaches to promote healthy movement behaviours and prevent childhood obesity, ultimately reducing the risk of developing cardiometabolic diseases. Further research is needed to explore the underlying mechanisms of these associations and to examine the effects of movement behaviour interventions across diverse populations.
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Figure and table legends 
Figure 1: Study flowchart
Footenote: MB, movement behaviour
Table 1: Children’s characteristics, and movement behaviours and adiposity measures according to sex among children in the GUSTO study
Table 2: Longitudinal associations of movement behaviours with BMI and abdominal adiposity among school-aged children in the GUSTO study (n=531)
Table 3: Estimated changes in adiposity measures for reallocations of 30 min from one time-use behaviour to another movement behaviours among school-aged children in the GUSTO study
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