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Summary
Background Breast cancer is the most frequently diagnosed cancer in women. Survival is generally considered 
favourable, yet some patients remain at risk of early death. We aimed to assess whether comprehensive whole-genome 
sequencing (WGS) linked to mortality data could add prognostic value to existing clinical measures and identify 
patients who might respond to targeted therapeutics.

Methods In this integrative, retrospective analysis, we analysed 2445 breast cancer tumours (any stage and molecular 
subtype) collected from 2403 patients recruited through 13 National Health Service Genomic Medicine Centres or 
hospitals in England affiliated to the 100 000 Genomes Project (100kGP) between 2012 and 2018. We linked 
2208 (90%) cases with clinical data; mortality data were obtained for 1188 patients. Following high-depth WGS of 
tumour and matched normal DNA, we performed comprehensive WGS profiling seeking driver mutations, 
mutational signatures, and compound algorithmic scores for homologous recombination repair deficiency (HRD), 
mismatch repair deficiency, and tumour mutational burden. Data from 1803 additional patients with breast cancer 
from three independent cohorts were used to validate various findings. To evaluate the prognostic value of WGS 
features, we performed univariable and multivariable Cox regression on data from patients with stage I–III, 
ER-positive, HER2-negative breast cancer with a cancer-specific mortality endpoint (around 5-year follow-up).

Findings Among 2445 tumours in the 100kGP breast cancer cohort, we observed genomic characteristics with 
immediate personalised medicine potential in 656 (26·8%), including features reporting HRD (298 [12·2%] total 
cases and 76 [6·3%] ER-positive, HER2-negative cases), highly individualised driver events, mutations underpinning 
resistance to endocrine therapy, and mutational signatures indicating therapeutic vulnerabilities. 373 (15·2%) cases 
had WGS features with potential for translational research, including compromised base excision repair and non-
homologous end-joining dependency. Structural variation burden (hazard ratio 3·9 [95 CI% 2·4–6·2]; p<0·0001), 
high levels of APOBEC signatures (2·5 [1·6–4·1]; p<0·0001), and TP53 drivers (3·9 [2·4–6·2]; p<0·0001) were 
independently prognostic of customary clinical measures (age at diagnosis, stage, and grade) in patients with 
ER-positive, HER2-negative breast cancer. We developed a prognosticator for ER-positive, HER2-negative breast 
cancer capable of identifying patients who require either increased intervention or therapy de-escalation, validating 
the framework in the independent Swedish Cancerome Analysis Network-Breast (SCAN-B) dataset.

Interpretation We show that breast cancer genomes are rich in predictive and prognostic value. We propose a two-step 
model for effective clinical application. First, the identification of candidates for targeted therapies or clinical trials 
using highly individualised genomic markers. Second, for patients without such features, the implementation of 
enhanced prognostication using genomic features alongside existing clinical decision-making factors.
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Introduction
Globally, there were 2·3 million women diagnosed with 
breast cancer and 670 000 related deaths in 2022.1 
Accurately selecting therapeutic strategies for individual 
patients and identifying those with likely poor prognosis 

remain challenging. Most patients present with early-
stage breast cancer and treatment decisions are variably 
informed by clinical and histopathological characteristics, 
such as lymph node involvement; age at diagnosis; 
tumour grade, size, and stage; and ER and HER2 status.2

http://crossmark.crossref.org/dialog/?doi=10.1016/S1470-2045(25)00400-0&domain=pdf
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Genomics has begun to inform cancer management. 
However, critics contend that genomics has under-
delivered on the promise of personalised medicine,3,4 
which is arguably due to how genomic information is 
used. Treatment decisions are often informed by the 
presence or absence of single mutations in key driver 
genes; for example, whether or not a patient has 
a PIK3CA mutation or a constitutional pathogenic 
BRCA1 or BRCA2 variant or otherwise.5,6 Yet, a human 
cancer genome carries not just one or two causally 
implicated driver mutations; it carries thousands of 
mutations, informative of myriad mutational processes 
that were operative during tumorigenesis, termed 
mutational signatures.7–10 Therefore, at present, vast 
amounts of information present in cancer genomes are 
not fully utilised in the clinic. 

The whole-genome sequencing (WGS) scalpel-to-
report infrastructure offered by the National Health 
Service (NHS) Genomic Medicine Services evolved out of 
the national research endeavour (the 100 000 Genomes 
Project [100kGP]). WGS is already offered on the NHS 
for paediatric cancers, some haematological conditions, 
and metastatic diseases. Given these technological and 
structural advancements, we aimed to assess whether 
comprehensive WGS linked to mortality data could add 
prognostic value to existing clinical measures and 

identify patients with a response to targeted therapeutics 
to improve breast cancer care.

Methods
Study design and participants
In this integrative, retrospective analysis, we analysed 
2445 breast cancer tumours of any stage and molecular 
subtype collected from 2403 patients. Participants were 
recruited through 13 NHS Genomic Medicine Centres or 
hospitals affiliated to the 100kGP between 2012 and 2018 
(figure 1A; appendix 1 p 2). There were no specific 
participant selection criteria. A participant panel advisory 
group was directly involved in the study design. All 
participants provided written informed consent.

We linked 2208 (90·3%) tumours from 2204 patients to 
clinical data, including grade, stage, hormonal receptor 
status, and age at diagnosis (appendix 2 p 1;  table legends 
for appendix 2 are in appendix 1 pp 31–33). Because of 
nationally based infrastructure, we could link WGS data to 
cancer-specific mortality statistics from the UK Office of 
National Statistics. Data from 1188 patients with stage I–III, 
ER-positive, HER2-negative breast cancer were linked to 
mortality data. Records on treatment were too 
heterogeneous to use in analyses. Sex, race, and ethnicity 
were not reported in the 100kGP for breast cancer. To 
validate genomic findings from the 100kGP cohort, we 
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Research in context

Evidence before this study
Whole-genome sequencing (WGS) of breast cancers has helped 
to shed light on the totality of constitutional and somatic driver 
events and mutational processes that shape breast cancer. 
We searched PubMed for articles published from database 
inception to May 16, 2025, using the search terms: “breast 
cancer” AND “whole genome sequencing” AND “clinical trial”. 
This search yielded only 12 results,  suggesting that the scarcity 
of systematically linked data on clinical outcomes and mortality 
in most WGS studies and, crucially, the under-application of 
WGS in clinical trials, has limited the clinical utility offered by 
WGS to date. Thus, the prognostic or predictive value of WGS 
has remained low, which is particularly important in breast 
cancer research where clinical gaps remain. One such gap is 
understanding the reasons behind premature mortality among 
some patients with low-risk tumours by clinical metrics; 
another is predicting patient subgroups who are more likely to 
respond effectively to targeted therapeutics. 

Added value of this study 
To our knowledge, this integrative, retrospective analysis is the 
largest WGS study of a population-based cohort of patients 
with breast cancer (approximately 2500 patients). 
First, we present a simple WGS prognostic risk framework for 
patients with ER-positive, HER2-negative breast cancer, which 
adds value beyond the customary clinical markers currently 
used in the National Health Service (NHS) in the UK. Designed 

to be used alongside existing clinical metrics, this prognostic 
framework could have a considerable impact on several key 
patient groups: patients at low risk clinically and high risk 
genomically, who require additional intervention and 
monitoring; patients at low risk clinically and genomically, 
who can be given more certainty about their trajectory or 
might be potential candidates for treatment de-escalation; and 
patients at high risk clinically and genomically with no other 
targetable abnormality identified, warranting new therapeutic 
strategies. Second, we were able to comprehensively catalogue 
WGS markers with potential for precision medicine in 27% of 
tumours in this cohort. These highly individualised markers 
obtainable from a single readout could be used as a triage tool 
to predict response to targeted therapeutics, highlight patients 
at risk of treatment resistance, and inform recruitment to 
prospective clinical trials. 

Implications of all the available evidence 
WGS offers the ability to distinguish clinically important subsets 
of patients with breast cancer at a time when logistical 
challenges to the widespread implementation of WGS in the 
clinic have diminished. Because WGS offers an all-inclusive 
readout of genomic abnormalities in a single assay, our work 
requests a mindset shift in how to use genomic information for 
breast cancer in the clinic. We put forth a blueprint for using 
WGS as a triaging step in clinical care and for clinical trials in 
patients with breast cancer.  

See Online for appendix 1

See Online for appendix 2
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used data from 1803 additional patients recruited by the 
Hartwig Medical Foundation (661 patients with metastatic, 
mixed subtype breast cancer),11 International Cancer 
Genome Consortium (640 patients with mixed 
subtype breast cancer),12 and Swedish Cancerome 
Analysis Network-Breast (SCAN-B; 502 patients with 
ER-positive, HER2-negative breast cancer; appendix 1 

p 2).13 The SCAN-B cohort was used to independently 
replicate the survival analyses and validate the prognostic 
framework.

Procedures
Snap-frozen tumour DNA and matched normal DNA 
from blood samples underwent WGS (mean tumour 96X, 
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matched normal 36X; appendix 1 pp 2–3). The Genomics 
England 100kGP core bioinformatics pipelines were 
used to obtain high-quality data.14 Between 
September, 2022, and January, 2025, we performed 
comprehensive WGS analyses seeking somatic or 
constitutional driver mutations, mutational signatures, 
and compound algorithmic scores for homologous 
recombination repair deficiency (HRD), mismatch repair 
deficiency, and tumour mutational burden.10,15,16

To identify tumours with HRD, a biomarker for selective 
sensitivity to DNA damaging agents and PARP inhibitors, 
we assessed the genomes of tumours for characteristic 
mutational scars that have previously been linked to 
HRD.17 Tumours with BRCA1 or BRCA2 deficiency have 
distinct HRD mutational signatures: single-base 
substitution (SBS) patterns (SBS3 and SBS8), structural 
variation (SV) signatures defined by dispersed tandem 
duplications of less than 10 kb (R3, associated with BRCA1 
loss), deletions of less than 10 kb (R5, associated with 
BRCA2 loss), small deletions with microhomology, and 
extensive copy number losses.12 These genomic signatures 
have been condensed into a machine learning score called 
HRDetect, which we applied to all tumours.15

Similarly, to identify mismatch repair (MMR) 
deficiency, an indicator of response to immunotherapies 

in many cancer types,18 we used the PRRDetect R package 
to identify tumours with characteristic substitution and 
indel signatures of MMR deficiency or polymerase 
dysfunction.10 Tumour mutational burden, a proxy for 
mismatch repair deficiency, was also calculated for all 
samples.19

To assess whether genomic features are valuable 
indicators of outcome, we systematically surveyed WGS 
features seeking prognosticators that could complement 
existing clinical measures, highlighting mechanistic 
explanations where possible. We focused on mortality 
associations in patients with ER-positive, HER2-negative 
breast cancer in the 100kGP cohort, which was most 
adequately powered for this analysis (n=1188). Median 
patient follow-up was 4·6 years (95% CI 4·6–4·7). We 
used Cox regression multivariable analysis to identify 
genomic features that provided prognostic value 
independently of each other and combined these into 
a prognostic model intended to be used alongside 
existing clinical measures.

To validate the prognostic model, we applied it 
to 502 ER-positive, HER2-negative breast cancers in the 
SCAN-B cohort. WGS tumours from the SCAN-B 
cohort were sequenced to a lower depth of 36X (vs 96X 
in the primary cohort). To ensure generalisability of our 
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Figure 1: Overview of selected clinical and genomic characteristics and key prognostic features
(A) Workflow of national recruitment, sample acquisition, processing, and data generation for the 100kGP cohort. Map reproduced from NHS England, by permission 
of the Open Government Licence. (B) Clinical and genomic features of ER-negative and ER-positive breast cancer tumours from patients in the 100kGP breast cancer 
cohort. Processivity refers to the propensity to induce mutations on the same DNA strand over long stretches of DNA. Each tumour is represented on the horizontal 
axis by stacked vertical bars. Clinical and genomic features are on the left vertical axis. Tumours are ordered by exposure to substitution signatures: rare, associated 
with homologous recombination repair deficiency, and APOBEC. Where not indicated in the legend, coloured, white, and grey bars indicate presence, absence, or 
unavailability of data, respectively. (C) Prognostic value of selected genomic features in ER-positive, HER2-negative breast cancer. The number of events and number 
of patients (left: high or present group; right: low or absent group), HRs (95% CIs), and log-rank p values of univariable Cox regression analysis using the endpoint of 
cancer-specific mortality are listed. Squares indicate HRs; lines indicate 95% CIs. Detailed survival statistics are presented in appendix 2 p 15. 100kGP=100 000 
Genomes project. HMF=Hartwig Medical Foundation. HR=hazard ratio. ICGC=International Cancer Genome Consortium. InD=insertion and deletion. NHS=National 
Health Service. SBS=single-base substitution. SCAN-B=Sweden Cancerome Analysis Network-Breast. SV=structural variation. WGS=whole-genome sequencing. 
*Including no data.
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framework across various sequencing depths, 
we performed in-silico down sampling and complete 
WGS reanalysis on 46 tumours from the 100kGP 
breast cancer cohort. Relevant to the factor of SV 
burden, we produced an estimate of equivalent SV 
burden thresholds across the range of depths. 
Furthermore, using the SCAN-B cohort, we compared 
our prognosticator to multigene expression 
predictors favoured in high-income countries and 
institutions, including Oncotype DX (Exact Sciences; 
Madison, WI, USA) and MammaPrint (Agendia; Irvine, 
CA, USA).20 Detailed methods are provided in the 
appendix (pp 3–12).

Outcomes
The primary outcomes of this study were to identify 
strongly prognostic WGS features that are independently 
informative of existing clinical markers in patients with 
ER-positive breast cancer, as well as predictive WGS 
features that can be used to triage patients for targeted 
therapy or clinical trial recruitment. Secondary 
outcomes were the development of a WGS prognostic 
framework for clinical application, intended to 
complement existing prognostic measures, and the 
identification of novel breast cancer biology through 
mechanistic analysis of mutational patterns.

Statistical analysis
To evaluate the prognostic value of WGS features, we 
performed univariable and multivariable Cox regression 
with a cancer-specific mortality endpoint on data from 
patients with stage I–III, ER-positive, HER2-negative 
breast cancer in the 100kGP cohort (R survival 
[version 3.8.3]). Mortality not related to breast cancer 
was treated as a censored observation. Results were 
considered significant at a p value of less than 0·05 and 
the proportional hazard assumption was assessed 
visually. For omics analyses, driver–event enrichment 
were tested with Fisher’s exact tests, expression 
differences between subgroups with Wilcoxon t tests, 
and signature correlations with DNAse I hypersensitivity 
sites with Pearson’s correlation coefficients. Modelling 
of SV burden by sequencing depth was conducted with 
linear mixed-effects models (lme4, core R package 
[version 1.1.37]).

Role of the funding source
The funder of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
The 100kGP breast cancer cohort showed characteristics 
for cancer stage, tumour subtype, and age at diagnosis, 
representative of the UK population; however, we noted 
a depletion of low-grade tumours (8·7% observed vs 
17·0% expected; appendix 1 pp 13–14).21 The landscape of 

driver mutations, mutational signatures, and copy 
number profiles were consistent with previous reports 
(appendix 1 pp 13–19; appendix 2 pp 2–9).12,22 We saw 
typical copy number gains of 1q, 8q, and 17q, and loss of 
heterozygosity of 1p and 16q.23 Whole-genome duplication 
occurred in 1072 (43·8%) of 2445 tumours with early or 
mid-cancer evolution (median mutational time 0·44 
[IQR 0·22–0·65]; appendix 2 p 10). PIK3CA driver 
mutations were most frequent (995 [40·7%]), followed by 
TP53 driver mutations (731 [29·9%]; appendix 1 pp 13–14). 
Other frequent drivers included amplifications of 
MYC/8q24, CCND1/11q13.3, FGFR1/8p11, ERBB2/17q23, 
1q32, PAK1/11q13–14, 17q23, and GNAS/20q13, as well as 
CDH1, GATA3, and PTEN mutations (appendix 1 
pp 13–14; appendix 2 p 2). 253 (6·9%) of 3643 small 
variant drivers were sub-clonal, mainly in PIK3CA and 
TP53 (appendix 2 p 11). A single MYB–NFIB gene fusion 
in an adenoid cystic carcinoma and individual VIT1A–
TCF10 and ETV6–NTRK3 fusions were identified.24 SVs 
involving ESR1 were noted (appendix 2 p 3). We identified 
a small number of novel breast cancer genes, but no 
novel, recurrent, non-coding driver mutations. 
Hypermutable non-coding sites were noted as observed 
previously (appendix 1 p 12–13).12

298 (12·2%) of all 2445 tumours showed a high 
HRDetect score (>0·9), indicating HRD; 1959 (80·1%) 
had a low score (<0·1); and 188 (7·7%) had an 
intermediate score (0·1–0·9; figure 2A). Of the 
298 tumours with a high HRDetect score, 120 (40·2%) 
had a somatic or constitutional driver in a canonical HR 
gene, with concomitant loss of the wild-type parental 
allele (figure 2B, C). Methylation data were not available 
for investigating the underlying HRD inactivation 
mechanism in the remaining 178 (59·7%) tumours. 
Although HRD is usually associated with triple-negative 
breast cancer, 76 (25·5%) tumours with high HRDetect 
scores were ER-positive, HER2-negative. Eight (4·7%) 
of 171 HER2-positive cases also showed HRD. 
ER-positive, HER2-negative tumours with a high 
HRDetect score showed triple-negative breast cancer-like 
features (eg, enrichment of TP53, RB1, and MYC; 
figure 2D; appendix 1 p 20; appendix 2 p 14). 23 (30·3%) 
of the 76 ER-positive, HER2-negative tumours with 
a high HRDetect score had a BRCA1-like phenotype.

Despite the trend to improved time to relapse and 
improved survival in HRD cases among patients with 
triple-negative breast cancer,17 we observed the opposite 
trend in HRD cases among patients with ER-positive, 
HER2-negative breast cancer. However, this trend did not 
reach significance due to low numbers of HRD cases in 
the ER-positive, HER2-negative breast cancer group 
(hazard ratio [HR] 1·7 [95% CI 0·8–3·8]; p=0·17; 
figure 2E; appendix 2 pp 15–16). The trend towards poor 
survival in patients with HRD in the ER-positive, HER2-
negative breast cancer subtype was replicated in the 
independent SCAN-B cohort (1·8 [1·0–3·3]; p=0·060; 
figure 2E) and is in keeping with findings in ER-positive 



Articles

www.thelancet.com/oncology   Vol 26   November 20251422

BRCA1 or BRCA2 mutation carriers.25 This finding was 
reinforced by comparing the frequency of HRD in 
661 patients with metastatic breast cancer from the 
Hartwig Medical Foundation with cases of invasive 
breast cancers in the 100kGP cohort. Although triple-
negative breast cancers with a high HRDetect score were 

depleted in metastatic breast cancer (26 [32·1%] of 81) 
compared with invasive breast cancer (86 [50·3%] of 171), 
ER-positive, HER2-negative cases with a high HRDetect 
score were higher among individuals with metastatic 
breast cancer (46 [10·8%] of 424) than among those with 
invasive breast cancer (76 [6·4%] of 1191), suggesting an 

InD8
InD4c

InD6
InD4d

R3
R5
R2
R1
R11

ER-positive,
HER2-
negative
Other or
unknown

TNBC
HER2-
positive

R8
R4
R6b
R6a

HighLow

B

Int

D

C

HRDetect high HRDetect low, 
high InD8

HRDetect low, 
0 InD8

HRD in all subtypes of breast cancer

0

0·25

0·50

IHC subtype

Indel signatures

SV signatures

Pr
ob

ab
ili

ty

Ca
nc

er
-s

pe
cifi

c m
or

ta
lit

y 
(%

)

100kGP cohort

0 42 6 8

Low vs high HRDetect score: p=0·17

1046 (5)
46 (1)

72 (1)

846 (172)
35 (8)

60 (10)

70 (936)
1 (41)

4 (65)

0 (1006)
0 (42)

0 (69)

BRCA1 BRCA2 PALB2

RAD51C/D Monoallelic
No driver

Constitutional
Somatic

HRDetect low

Number at risk
(censored)

HRDetect low
HRDetect

intermediate
HRDetect high

A

0·5

1·0

0

HRDetect 
intermediateHRDetect high

HRDetect low
HRDetect high

Indel
signatures

BRCA1

BRCA2

PALB2

SV signatures

Burden of
SV signatures

IHC

1064 (0)
48 (0)

76 (0)

E

0

25

50

75

100

Time survived (years)

O
ve

ra
ll 

m
or

ta
lit

y 
(%

)

0 5 10

415 (0)
43 (0)

42 (0)

398 (1)
40 (0)

39 (0)

372 (4)
38 (0)

36 (0)

302 (56)
32 (2)

30 (3)

37 (309)
6 (26)

3 (27)

Low vs high HRDetect score: p=0·060

Number at risk
(censored)

HRDetect low
HRDetect

intermediate
HRDetect high

0

25

50

75

100

HRDetect high HRDetect low

In
D8

 ex
po

su
re

0 1 2 3 4 5 6 7 8 9 10+
Microhomology length at breakpoints

Pr
op

or
tio

n 
of

 b
re

ak
po

in
ts

F

H

0

0·2

0·4

0·6

0

250

500

750

1000

0·38

M
ea

n 
ex

po
su

re
 (S

E)

<0·0001
<0·0001

0·15

0·30
0·51

0·0010
0·030

0·038
<0·0001

<0·0001
0·96

<0·0001
<0·0001

0·77

<0·0001
<0·0001

<0·0001

R2/R4 R6a/b R8 R11 R1 R3 R5

<0·0001

<0·0001
0·022

G

0

50

100

150

200

HRD in ER-positive, HER2-negative breast cancer HRDetect low cases with NHEJ dependence

50

25

100

100

0

0

BR
CA

2
BR

CA
1

TP
53

PA
LB

2
M

YC
RB

1
10

p1
5

CC
N

D1
PI

K3
CA

Pr
op

or
tio

n 
of

 sa
m

pl
es

 w
ith

 d
riv

er
m

ut
at

io
n 

(%
)

Pr
op

or
tio

n 
of

 sa
m

pl
es

 w
ith

 d
riv

er
m

ut
at

io
n 

(%
)

En
ric

hm
en

t

BRCA1 BRCA2 PALB2

SCAN-B cohort



Articles

1423www.thelancet.com/oncology   Vol 26   November 2025

enrichment of potentially under-diagnosed, inadequately 
treated patients with HRD in the ER-positive, HER2-
negative breast cancer subtype progressing to metastatic 
disease.

Mutational signatures could further distinguish 
subtypes within HRD, differentiating BRCA1-like and 
BRCA2-like cancers by SV signatures (R3 vs R5) and 
indel signature; InD6 (deletions at microhomology); and 
InD8, characterised by indels with at least 5 bp with little 
to no microhomology, attributed to non-homologous end 
joining (figure 2C). Indel signatures could further 
distinguish a 2% subset of HRD cancers by an alternative 
signature, InD4c, linked to TOP1-related mutagenesis 
associated with transcription.26 Cancers with a high 
HRDetect score and indel signature InD4c did not have 
canonical HR drivers, showed longer tandem duplication 
SVs, and had rare occurrences of biallelic loss of the 
helicase SETX (appendix 1 p 20; appendix 2 p 17–18). 
Further work is required to understand the cause and 
therapeutic vulnerabilities of this patient subgroup who 
are distinguishable by these biomarkers.

Other biological abnormalities that increase single-
strand breaks have been postulated to be sensitive to 
PARP inhibition due to increased PARP dependency.27 
We identified 87 (3·6%) of 2445 tumours with glycosylase 
abnormalities that could be considered compromised in 
base excision repair. One patient in this group had 
SBS30 caused by biallelic NTHL1 loss and the remaining 
86 tumours had outlier SBS18 exposure (associated with 
compromised OGG1 activity). Additionally, cancers with 
an intermediate HRDetect score are a diverse group that 
might have a similar susceptibility to DNA damaging 

agents or PARP inhibition. Tumours with an intermediate 
score showed an enrichment for SV signature R1 (long 
tandem duplications >100 kb to 1 Mb) and 
CCNE1 amplification (appendix 2 p 19). Additionally, 
compared with tumours with a low HRDetect score, 
those with an intermediate score showed a trend 
towards worse outcomes in patients with ER-positive, 
HER2-negative breast cancer (HR 2·4 [95% CI 1·0–5·6]; 
p=0·035; figure 2E). Finally, we observed cases of breast 
cancer with an unexplained dependence on non-
homologous end joining (figure 2F–H), highlighting 
another distinguishable patient subpopulation for 
potential clinical studies.

Mismatch repair deficiency is an indicator of response 
to immunotherapies in many cancer types, but is not 
routinely tested for in breast cancer (appendix 2 p 20).18 
Tumour mutational burden is used as a proxy for 
mismatch repair deficiency, with mixed results in breast 
cancer.19 Among all 2445 breast cancers, 93 (3·8%) had 
high tumour mutational burden, with diverse causes 
including APOBEC activity (63 [67·7%]) and mismatch 
repair deficiency (13 [14·0%]; appendix 1 p 21). Therefore, 
tumour mutational burden was not a specific biomarker 
(80 [86·0%] false positives) nor was it prognostic (HR 1·1 
[95% CI 0·27–4·4]; p=0·91; appendix 2 p 15). Using the 
PRR Detect algorithm,10 we found mismatch repair 
deficiency in 16 (0·7%) of 2445 tumours (appendix 2 p 10). 
Nine (56·3%) of these tumours had biallelic loss of an 
MMR gene (ie, PMS2, MSH6, MSH2, or MLH1). Of 
15 breast cancers with mismatch repair deficiency and 
linked clinical annotation, nine (60·0%) were ER-positive 
and 14 (93·3%) were stage I or II. Therefore, these 
tumours would be missed under current eligibility for 
immunotherapy in patients with triple-negative breast 
cancer. Other genomic abnormalities not tested for 
routinely in breast cancer, which are actionable in other 
organs, include driver mutations in KRAS (12 [0·5%] of 
2445 tumours), EGFR (50 [2·0%]), CCNE1 (52 [2·1%]), 
and BRAF (four [0·2%]; appendix 2 p 20). These 
individualities highlight patient subsets warranting 
prospective clinical studies to gather evidence supporting 
genome-directed tumour-agnostic therapy.

Beyond targetable features, WGS can identify resistance 
markers. ESR1 driver mutations are implicated in 
resistance to endocrine therapy.28 33 (2·2%) of 1490 cases 
of ER-positive invasive breast cancer in the 100kGP cohort 
showed ESR1 drivers: five gene fusions, 12 small variants 
(two subclonal), and 16 amplifications. These drivers 
were associated with poor outcomes in patients with 
ER-positive, HER2-negative breast cancer (HR 3·8 
[95% CI 1·5–9·5]; p=0·0019; appendix 1 p 22). A further 
28 (1·9%) ER-positive invasive breast cancers had SVs 
involving ESR1 (appendix 2 p 3).29 It is unclear whether all 
such events conferred resistance; however, patients in 
this group also had worse outcomes than those with other 
breast cancers (HR 2·8 [95% CI 0·89–9·0]; p=0·066).29 If 
all ESR1 drivers and SVs are potentially informative, 

Figure 2: Recombination and repair defects in breast cancer
(A) HRDetect scores of 2445 breast cancer tumours from the 100kGP breast 
cancer cohort. The following HRDetect category boundaries are indicated below 
the graph: low (<0·1), intermediate (≥0·1 to <0·9), and high (≥0·9). 
(B) Identification of causative driver mutation underlying the HRD phenotype in 
298 cases of breast cancer with high HRDetect scores. (C) Mutational signature 
exposure, biallelic driver mutations (somatic [grey] and constitutional [black]), 
and immunohistochemical subtype of tumours with high HRDetect scores. 
Tumours are ordered by the proportion of indel mutations assigned to InD8. 
(D) Driver mutation enrichment in ER-positive, HER2-negative tumours with 
high versus low HRDetect scores were calculated with Fisher’s exact tests 
(log2[q]). The central panel shows the direction of enrichment. Only significantly 
enriched genes are shown. (E) Kaplan–Meier analysis of patients with 
ER-positive, HER2-negative breast cancer stratified by HRDetect group (low, 
intermediate, and high); high versus low HRDetect scores in the 100kGP breast 
cancer cohort (HR 1·7 [95% CI 0·8–3·8]; p=0·17) and the SCAN-B cohort 
(1·8 [1·0–3·3]; p=0·060). (F, G, H) 58 (3·0%) of 1959 tumours with low HRDetect 
scores had an unexplained dependence on NHEJ, as characterised by a high 
exposure to NHEJ-associated indel signature, InD8 (F), and the occurrence of 
translocations (R2/R4) in the subgroup with low HRDetect scores and high InD8 
exposure (p values from Wilcoxon tests; G) and limited to no microhomology at 
translocation breakpoint junctures (H; KS-test D=0·52; p=0·0004), indicating 
blunt end repair associated with NHEJ rather than a microhomology-mediated 
repair pathway. The plot shows microhomology length at characteristic SV 
breakpoints of tumours with high HRDetect scores (non-clustered tandem 
duplications and deletions) compared with tumours with low HRDetect scores 
and high levels of InD8 (translocations). HRD=homologous recombination 
repair deficiency. IHC=immunohistochemistry. NHEJ=non-homologous end 
joining. SV=structural variation. TNBC=triple-negative breast cancer.
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Figure 3: WGS-based stratification of breast cancer
(A) Predictive utility of WGS for response to targeted therapeutics in all breast cancer subtypes, excluding stage IV disease. WGS features with precision medicine 
potential (yellow group) or translational research potential (purple group) are indicated. Grey indicates a tumour in which neither a precision medicine potential nor a 
translational research potential feature was identified. Estimated impact of triaging and treating patient by features with precision medicine or translational research 
potential in the UK based on 36 800 new diagnoses per year.30 (B) Overview of prognostic framework for ER-positive, HER2-negative breast cancer. (C) Cancer-specific 
survival for each genomic risk group in the 100kGP development cohort of patients with ER-positive, HER2-negative breast cancer. Dotted lines link each curve to the 
genomic features (TP53 driver mutation, SV count >90, and SBS2 or SBS13 exposure >25%) and clinical features (grade and stage) for each risk group. Filled, open, and 
grey squares indicate whether the group is positive, negative, or mixed for the genomic feature indicated, respectively. Pie charts show tumour grade and stage 
distribution per risk group. (D) Application of the prognostic framework to SCAN-B validation cohort. Endpoints are distant recurrence-free interval and overall survival 
at 10 years. (E) Schematic representation of 100 patients with invasive breast cancer grouped by immunohistochemical subtype indicating the proportion with at least 
one predictive feature and, for ER-positive, HER2-negative breast cancer, prognostic WGS features. BC=breast cancer. HRD= homologous recombination repair deficiency. 
HRDNHEJ=non-homologous end joining. IBC=invasive breast cancer. MMRd=mismatch repair deficient. SV=structural variation. WGS=whole-genome sequencing. 
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62 (4·1%) of all 1508 women with ER-positive breast 
cancer (any stage) in the 100kGP cohort would be affected.

To summarise known and new precision medicine 
potential of WGS in breast cancer, 645 (26·7%) of 
2412 invasive breast cancers (excluding stage IV cancers) 
in the 100kGP cohort had a genomic feature with either 
immediate actionability (eg, ERBB2 238 [9·8%]), clinical 
trial potential (HRD 295 [12·2%]), mismatch repair 
deficiency (16 [0·7%]), a driver actionable in other organs 
(NTHL1, CCNE1, BRAF, KRAS, or EGFR; 110 [4·6%]), or 
a marker of resistance (ESR1 drivers, ER-positive 
only 33 [2·2%] of 1490; figure 3A; appendix 2 p 20). We 
estimate that 364 (15%) of 2412 invasive breast cancers 
harbour mutational signatures offering potential for 
translational research (figure 3A–E).

As well as offering predictive utility, a systematic survey 
of WGS features yielded several prognosticators that 
could add value to the existing clinical measures used to 
stratify patients with ER-positive, HER2-negative breast 
cancer by risk in the UK (appendix 1 pp 23–24). The most 
prevalent SBS signatures were benign mutational 
processes—namely, SBS1, the signature of spontaneous 
deamination of 5-methylcytosine (1985 [81·2%] of 2445), 

and the commonly co-assigned SBS5 (cause unknown; 
1840 [75·3%]; appendix 1 p 13). A high proportion of 
mutations assigned to SBS1 and SBS5 was associated 
with clinically and genomically favourable features 
(figure 4A, B; appendix 1 p 25). The indel signature, 
InD1, characterised by 1 bp T insertion at polynucleotide 
tracts (>5 nt) and postulated to be caused by replication-
related nascent strand slippage, was also ubiquitous 
(prevalence 2046 [83·7%] of 2445 tumours; figure 4C; 
appendix 1 p 25). Unexpectedly, the signature thought to 
represent the equivalent process on the template strand, 
InD2a, was present in fewer tumours (prevalence 
732 [29·9%]; figure 4C). Investigating further, the 
differential prevalence of InD2a and InD1 was also 
observed in other tumour types and is, therefore, not 
restricted to breast cancer. InD2a prevalence was higher 
in tumour types and breast cancer subtypes with higher 
proliferation (appendix 1 p 25). Additionally, among 
500 ER-positive, HER2-negative breast cancer tumours 
from the SCAN-B cohort and 280 from the International 
Cancer Genome Consortium with linked transcriptomic 
data, cases assigned to InD2a had elevated transcriptional 
proliferation markers (MKI67, MCM2, and PCNA; 
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appendix 1 p 25) and Ki-67 staining (odds ratio 5·8; 
p=0·0006; n=336 in the SCAN-B cohort). The clinical 
significance of discerning between these signatures is 
underscored by the finding that tumours with a high 
proportion of SBS1 and SBS5 (HR 0·22 [95% CI 
0·09–0·50; p<0·0001; figure 4D) and tumours assigned 
InD1 (0·52 [0·29–0·91]; p=0·021; figure 4E) were 
associated with improved outcomes, independent of 
customary clinical prognosticators. By contrast, InD2a 
was enriched in high-grade cancers and modestly 
associated with poor survival in patients with ER-positive, 
HER2-negative breast cancer, in keeping with lnD2a 
being an indicator of uncontrolled proliferation 
(1·80 [1·10–3·00]; p=0·013; figure 4F).

Substitution signatures related to APOBEC are 
characterised by C→T transitions (SBS2) and 

C→G transversions (SBS13) preceded by a 5’T (figure 4G, 
H). APOBECs are associated with a 1 bp C deletion 
signature (InD9), also preceded by a 5’T (figure 4I).10 
Most tumours had a small contribution of APOBEC-
related signatures (1873 [76·6%] of 2445). A minority 
defined by an outlier analysis (349 [14·3%]) showed 
extensive substitution mutagenesis and were termed 
quantitatively and qualitatively a hypermutator 
phenotype, in which SBS APOBEC (SBS2 and SBS13) 
and InD9 were strongly correlated (r=0·72; p<0·0001). 
The hypermutator SBS2 and SBS13 phenotype was 
associated with a processive quality: the propensity to 
induce mutations on the same DNA strand over long 
stretches of DNA (figure 4J). Processive events spanned 
impressive genomic lengths and occurred more 
frequently on chromosome arms with an increased 
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frequency of DNase I hypersensitive sites (figure 1B, 
appendix 2 p 21). Therefore, chromatin openness might 
influence the likelihood of high-level substitution 
mutagenesis caused by APOBECs. Processivity was not, 
however, observed for APOBEC indels. This finding, 
combined with differences in relative prevalence by 
subtype of breast cancer, differential correlations with 
SV types, and the presence of breast cancer cases with 
high levels of InD9 without SBS2 or SBS13 point to 
different mechanistic triggers (appendix 1 p 26). From 
a clinical perspective, APOBEC signatures were 
associated with poor outcomes independently of 
customary clinical features (HR 2·5 [95% CI 1·6–4·1]; 
p<0·0001 for high-level SBS2 or SBS13 and 2·0 [1·3–3·3]; 
p=0·0024 for InD9; figure 4K, L). The correlated 
observation of localised hypermutation, termed kataegis, 
was also associated with poor survival (HR 3·2 [95% CI 
1·8–5·7; p<0·0001; appendix 1 p 24).

Beyond substitution and indel patterns, total SV 
burden was a strong independent predictor of poor 
outcomes in patients with ER-positive, HER2-negative 
breast cancer (HR 3·9 [95% CI 2·4–6·2]; p<0·0001; 
figure 5A; appendix 1 p 27). SV burden was a stronger 
prognosticator than grade (figure 1C), reinforced by 
a progressive relationship between burden and outcomes 
(figure 5B). SV burden encompassed a broad spectrum 
of structural mutagenic processes, from focal oncogene 
amplifications (eg, ERBB2 or CCND1) to dispersed SVs 
in HRD (figure 5C, D). We investigated SV signatures 
(appendix 1 p 17; appendix 2 p 5) and other SV-associated 
features (eg, amplification of oncogenes and presence 
of extrachromosomal DNA31) individually as prog
nosticators. We found that, although each feature was 
negatively prognostic, none prognosticated as well as 
total SV burden (figure 5E). This finding is likely because 
SV features are collinear with each other; therefore, these 
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features were affected by reduced statistical power when 
tested individually (figure 5C). Given that double strand 
breaks are not well tolerated by normal cells, extensive 
SVs might serve as an insignia of markedly abnormal 
cells. Our findings are corroborated by a 2025 study, 
which noted high SV in transcriptome-defined groups 
with poor survival.32

Among driver events in ER-positive, HER2-negative 
breast cancer, TP53 mutations were an independent 
prognosticator superior to histological grade (HR 3·9 
[95% CI 2·4–6·2]; p<0·0001; appendix 1 p 22). Although 
RB1 mutations, typically associated with triple-negative 
breast cancer, were infrequent in patients with 
ER-positive, HER2-negative breast cancer (20 [1·7%] of 
1203 tumours), they were associated with poor prognosis 
(HR 5·0 [95% CI 2·0–13·0]; p=0·0001). Mutations in 
PIK3CA, AKT1, and PTEN were not prognostic 
(1·1 [0·7–1·8]; p=0·68), in line with previous reports.33

To summarise, the strongest prognosticators of adverse 
outcomes in ER-positive, HER2-negative invasive breast 
cancer were burden of SVs (HR 3·9 [95% CI 2·4–6·2]; 
p<0·0001), TP53 drivers (3·9 [2·4–6·2]; p<0·0001), and 
high levels of APOBEC-related mutagenesis (SBS2 and 
SBS13; 2·5 [1·6–4·1]; p<0·0001). Dominance of SBS1 

and SBS5 (0·22 [0·09–0·50]; p<0·0001) and indel 
signature InD1 (0·52 [0·29–0·91]; p=0·021) were 
associated with improved outcomes (figure 1C). All 
features remained prognostic after adjusting for grade, 
stage, and age at diagnosis and, thus, have independent 
prognostic value (appendix 2 p 15).

We thus developed an accessible WGS risk classification 
framework to enhance ER-positive, HER2-negative 
prognostication for clinical utility. WGS features that 
confer prognostic value independently of each other and 
independently of existing clinical metrics (figure 3B; 
appendix 1 p 28), specifically TP53 driver mutation status, 
SV burden, and SBS2 and SBS13 activity, were modelled 
with a stepwise approach. The dataset was first split by 
the largest effect factor (TP53 status). The resultant 
groups were then tested to see if splitting by the next 
factor (SV burden) could prognosticate followed by the 
last factor (SBS2 and SBS13 percentage; appendix 1 p 28). 
Our investigation yielded two groups at high risk of poor 
survival: a group with wild-type TP53, high SV, and high 
SBS2 and SBS13 and a group with TP53 mutation 
(without high SV or high SBS2 and SBS13). There were 
two groups with better outcomes: a group at low-to-
medium risk with wild-type TP53, high SV burden but 
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Figure 5: Associations between SV and cancer-specific mortality
(A) Kaplan–Meier analysis of cancer-specific mortality comparing high (≥235 SVs) versus low (<235 SVs) SV burden in 1188 patients with ER-positive HER2-negative breast cancer. (B) Kaplan–Meier 
analysis of cancer-specific mortality comparing low to high SV quartiles. (C) Correlations between SV-associated features. The scale represents Pearson’s R coefficient. (D) Whole-genome profiling of 
three tumours with high SV burden capturing different underlying biology: HRD, CCND1-amplified, and HER2-amplified tumours (left to right). Genomic features depicted in a circos plot from 
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low SBS2 and SBS13, and a group at low risk comprising 
tumours with wild-type TP53 and low SV burden 
(low-risk vs high-risk mutated TP53: HR 7·6 [95% CI 
4·0–14·0; p<0·0001; low-risk vs high-risk wildtype TP53: 
6·8 [3·1–15·0]; p<0·0001; and low-risk vs low-to-medium 
risk: 3·1 [1·5–6·4]; p=0·0018; appendix 2 p 15). Notably, 
although high-risk genomic groups were enriched for 
high-grade and late-stage cancers, we also observed 
a substantial proportion of grade 1 or 2 tumours 
(132 [44·3%] of 298) and stage I or II tumours 
(150 [50·3%]). These genomic risk groups remained 
significantly prognostic when grade 2 and grade 3 
cancers were analysed separately (figure 3C; appendix 1 
p 29). Given that both groups at high risk conferred 
similar survival associations, they were combined in 
further analyses.

In the validation of our framework, the SCAN-B 
cohort recapitulated our results between the groups at 
low risk versus high risk for distant recurrence-free 
interval (HR 2·4 [95% CI 1·3–4·5; p=0·0046) and overall 
survival (1·6 [1·1–2·5]; p=0·028; figure 3D; appendix 2 
pp 22–25). We further assessed our framework’s 
performance correcting for grade, age, and treatment 
group in the SCAN-B cohort. The prognosticator 
remained significant between the groups at low risk 
versus high risk for distant recurrence-free interval 
(2·1 [1·0–4·2]; p=0·048) and overall survival 
(1·7 [1·0–2·9]; p=0·035; appendix 2 p 25).

When comparing the prognosticator with multigene 
expression predictors favoured in high-income countries 
and institutions, the WGS-based framework was the 
only prognosticator that significantly predicted overall 
survival, after correcting for age, grade, and treatment 
group (appendix 1 p 30; appendix 2 p 25). This 
observation is likely because the prognosticator offers 
independent WGS-based information to augment 
current clinical prognosticators, compared with 
multigene classifiers that incorporate clinical factors 
(eg, ER, PR, Ki67, tumour size, nodal status, and 
proliferation) as part of their calculation.

Discussion
This retrospective analysis is the largest population-
based WGS study on breast cancer integrated with 
national data on cancer-specific mortality. First, we report 
highly personalised genomic information in 27% of 
breast cancers, whether for immediate actionability or 
for prospective clinical trials, equating to bringing 
potential clinical impact to more than 15 000 patients 
with breast cancer per year in the UK. Our findings 
suggest an enrichment of potentially under-diagnosed, 
inadequately treated tumours with HRD in the 
ER-positive, HER2-negative breast cancer subtype that 
progress to metastatic disease. These observations argue 
for a clinical trial to investigate the effects of compounds, 
such as PARP inhibitors in this subset of patients, 
beyond germline BRCA1 or BRCA2 carriers. For example, 

a phase 2 window trial of the PARP inhibitor rucaparib 
in patients with treatment-naive triple-negative breast 
cancer showed activity in patients with HRD, regardless 
of the cause of HRD (eg, germline, somatic, or promoter 
hypermethylation; EudraCT2014-003319-12;34 appendix 2 
p 20). If effective in ER-positive, HER2-negative breast 
cancer, a similar opportunity could translate to affecting 
approximately 2900 patients per year in the UK. Targeted 
sequencing approaches are estimated to miss 1200 of 
these patients annually, including cases that are BRCA1 
or BRCA2 wild-type, promoter hypermethylated, or 
affected by SVs (either germline or somatic).

Second, we present a prognosticator to facilitate future 
clinical studies. By use of the WGS risk framework, 
approximately 7500 new diagnoses of breast cancer with 
low-grade but genomically high-risk tumours would be 
identifiable per year in the UK. This prognostication 
allows for increased intervention; for example, CDK4/6 
inhibitors and extended hormonal therapy for patients 
without personalised features. Conversely, more than 
22 000 patients per year in the UK with clinically and 
genomically low-risk tumours could be eligible for 
treatment de-escalation with appropriate monitoring.

Although the 100kGP breast cancer cohort has the 
advantage of being representative of the UK population, 
it also has inbuilt limitations. First, we were unable to 
analyse the effect of treatment on outcome due to 
heterogeneity in clinical practice and irregular 
annotation. Second, because transcriptomic assays are 
not routinely used in low-resourced, non-tertiary sites in 
England, these data were unavailable; the most consistent 
clinical classification approach is immunohistochemistry 
and grade. To address these limitations, we used data 
from additional consortia, predominantly the SCAN-B 
cohort, which benefits from high-quality data on 
treatment, histology, and outcomes.

WGS offers holistic, comprehensive genomic reporting 
for each patient, showing all driver mutations, mutational 
signatures, and prognostic biomarkers in a single 
assessment. These discoveries come at a time when 
logistical challenges to the widespread implementation 
of WGS in the clinic have diminished; cold storage 
requirements have now been eliminated, and RNAlater-
preserved tissue produces WGS data indistinguishable 
from fresh–frozen data.17 Additionally, formalin fixation 
and paraffin-embedded material are usable alternatives 
when necessary.35 To truly revolutionise genomics in 
cancer care, we propose that WGS should be used as 
a triaging step, with data considered in two stages. First, 
use the data to seek highly personalised and biologically 
distinguishing features for clinical intervention or 
clinical trials. Then, in the absence of such features, use 
the data to inform prognosis or the most appropriate 
clinical strategy or trial going forward. Several aspects of 
this proposition are already routinely practised. For 
example, if a tumour were HER2-positive or ER-positive, 
the use of anti-HER2 strategies or endocrine therapy is 
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continued. However, if at triage, a tumour carried 
a personalised feature (eg, HRD, mismatch repair 
deficiency, or other rare features), then selective 
therapeutics could be considered as part of a prospective 
clinical trial. For tumours without individualised 
features, our WGS-based risk framework could 
distinguish between individuals at low risk, for whom 
potential therapy de-escalation would be a possibility, and 
those at high risk, for whom alternative strategies would 
need to be considered. In summary, this work calls for 
a shift in mindset regarding the use of WGS as a holistic 
readout to gather the necessary evidence base to support 
true genome-directed precision medicine.
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