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With the increasing use of machine learning (ML) algorithms in scientific research comes the need for
reliable uncertainty quantification. When taking a measurement it is not enough to provide the result, we also
have to declare how confident we are in the measurement. This is also true when the results are obtained from
aML algorithm, and arguably more so since the internal workings of ML algorithms are often less transparent
compared to traditional statistical methods. Additionally, many ML algorithms do not provide uncertainty
estimates, and auxiliary algorithms must be applied. Conformal prediction (CP) is a framework to provide
such uncertainty quantifications forMLpoint predictors. In this paper, we explore the use and properties ofCP
applied in the context of glitch classification in gravitational wave astronomy. Specifically, we demonstrate the
application of CP to the Gravity Spy glitch classification algorithm. CP makes use of a score function, a
nonconformity measure, to convert an algorithm’s heuristic notion of uncertainty to a rigorous uncertainty.We
use the application on Gravity Spy to explore the performance of different nonconformity measures and
optimize them for our application. Our results show that the optimal nonconformity measure depends on the
specific application, as well as the metric used to quantify the performance.
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I. INTRODUCTION

With the first detection of gravitational waves in 2015 [1],
sourced by a pair of stellar-mass black holes colliding
in another galaxy, a new way to explore the universe and a
new field of astrophysics research has opened. Gravitational
waves are observed using laser interferometers, such as LIGO
(Laser Interferometer Gravitational-Wave Observatory) [2],
Virgo [3], and KAGRA (Kamioka Gravitational Wave
Detector) [4], sensitive to relative differences in the arms
of the interferometers of less than 1 part in 10−21 caused by a
passing gravitational wave. We have now observed around
100 such signals [5], but they are rare events, lasting a few
seconds in year-long observing runs.
The sensitivity of the detectors is determined by back-

ground noise, which on short timescales can be approxi-
mated as quasistationary colored Gaussian noise in addition
to non-Gaussian transient noise artifacts, known as
“glitches” [6]. Glitches are troublesome, as they often have
unknown physical origins (environmental or instrumental)

or are difficult to mitigate in the detectors [6,7]. They can be
mistaken for gravitational wave signals, reduce the signifi-
cance of signal candidates, or bias the astrophysical param-
eter estimation results when occurring in temporal proximity
to a signal [7,8]. Additionally, glitches occur at a rate of
approximately 1 per minute [9], while we detect approx-
imately 1 signal per week [10], depending on the thresholds
used. Thus, to improve the detection of gravitational waves
and the scientific research of astrophysical events, the causes
of these nonastrophysical noise artifacts must be identified
and minimized in the detectors, or, alternatively, the glitches
must be mitigated in the data [9,11].
We generally expect to observe astrophysical signals in

all detectors observing with the required sensitivity, while
glitches are caused locally only. However, the high glitch
rate [7] implies that accidental coincidence between detec-
tors is possible. Furthermore, the detectors also independ-
ently record signal-free auxiliary data, which measure
different aspects of the detector components and environ-
ment [12–14]. The auxiliary channels can thus witness
disturbances and can be used to help distinguish astro-
physical signals from noise, as well as correlate a glitch in
the strain data with noise from auxiliary sensors [12,15].
Glitches come in a variety of different morphologies,

with each class of glitches sharing similar features [12,16].
Accurate classification helps correlate glitch classes with
auxiliary channels and subsequent identification of the
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underlying cause [7]. Furthermore, identifying glitches
with similar morphologies allows for prioritization by
characteristics and quantity. Thus, classifying glitches
correctly is an important first step for their mitigation,
and hence is directly related to improved scientific results.
Even when the cause of a particular glitch class cannot be

identified in the detectors, correct classifications can help
model the glitches and hence subtract them from the data
(see, for example, [17–19]). The classification of glitches
depending on their features is a typical machine learning
(ML) problem and is addressed by the Gravity Spy project
for LIGO [20] and GWitchHunters for Virgo [21].
Gravity Spy [20] is a citizen-science and ML project

to classify glitches in gravitational wave data. The ML
algorithm consists of a convolutional neural network (CNN)
[22] that is trained on human-classified time-frequency-
energy plots (so-called omega scans or Q-transforms [23])
of glitches. Both citizen volunteers and the trained ML
algorithm then provide classifications for new glitches.
The plots in Fig. 1 show examples of the omega scan

of three different glitch classes named after their morpho-
logical features. This showcases the difficulty in correctly
classifying each glitch, and the need to quantify the
uncertainty of the classification, as the classes appear very
similar. The similarity between some glitch classes could
also suggest that they are, in fact, the same kind of glitch.
When applying the trained Gravity Spy ML algorithm to

a particular glitch, the final layer in the CNN returns the
classification score, the estimated probability, for each
possible label. The predicted label is the one that received
the highest score. Due to the importance of correctly
classifying the glitches, it is also useful to consider the
uncertainty of this classification. For example, it would be a
major advantage to have a dataset of glitches and be sure
that, say, 95% are classified correctly. The classification
probabilities from the CNN can be imperfectly calibrated, as
shown by the off-diagonal points in the reliability plot in
Fig. 8 in the recent Gravity Spy paper [22]. Thus, no
inherent well-calibrated uncertainty is associated with the

predictions, creating an opportunity for an external algo-
rithm to calibrate the uncertainty. Conformal prediction
(CP) [24] is a framework, developed in the context of ML,
to provide such uncertainty quantification for any point-
prediction algorithm.
CP converts any heuristic notion of uncertainty from an

algorithm to a rigorous uncertainty estimate [25]. The first
step to achieving this is the definition of a score function,
a so-called nonconformity measure. The nonconformity
measure is built on the heuristic notion of uncertainty of the
underlying pretrained ML model, and describes how well a
sample conforms to other data. Smaller scores imply a
better prediction by the underlying algorithm. This func-
tion can be defined arbitrarily as long as it returns a real-
valued number that is representative of the nonconformity
of a sample [26]. Consequently, different nonconformity
measures could be used for the same application, and the
question is which one to choose for optimal results.
Furthermore, each nonconformity measure can be para-
metrized, and the performance can change significantly
with different values of the parameters. Choosing which
nonconformity measure to use thus becomes an optimiza-
tion problem. The second step is to define a calibration
dataset, containing correctly labeled data. This is used to
calibrate the uncertainty for the underlying algorithm, and
CP can thus be seen as learning the uncertainty of the
algorithm from previous outputs.
In this paper, we applyCP to Gravity Spy, demonstrating

the concept and its properties, and showing why such an
uncertainty framework is beneficial. We then use this
application to explore how nonconformity measures can
be optimized, and we discuss how their performances on
glitch classifications compare under different metrics.
We have chosen Gravity Spy as our example algorithm,

as it is a well-established ML application in the gravita-
tional wave community. It performs the task of image
classification using a CNN, which, in the computer science
literature, is a well-explored problem but lacks inherent
well-calibrated uncertainty quantification. Thus, Gravity

FIG. 1. Example plots of three different glitches, represented as time-frequency q-scans, as observed by the LIGO Hanford detector.
The plots are the “golden images” from the Gravity Spy project, which are used to demonstrate what each glitch class looks like [20].
(a) Blip. (b) Tomte. (c) Koi Fish.
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Spy provides a straightforward application for proof of
concept of CP and a good case study for future
development.
Applying CP to gravitational wave research is a new

approach that has (to the best of our knowledge) only been
explored in Ref. [27], where a comprehensive introduction
is provided, and the application of CP to binary classi-
fication in gravitational wave search pipelines (is the event
a signal or noise?) is considered. In comparison, our work
discusses multiclass classification, we apply it to a ML
algorithm, and we extensively discuss the optimization
problem of choosing a nonconformity measure. Optimizing
nonconformity measures is relatively uncommon in the CP
literature, but is considered, for example, in Ref. [28].
Reference [29] is one of few publications where different
nonconformity measures have been compared under differ-
ent metrics. Thus, our application of CP to Gravity Spy, as
well as the comprehensive discussion of optimization and
comparison of different nonconformity measures for this
application, is novel.
The remainder of this paper is structured as follows.

Section II defines CP and its properties and demonstrates
the application of CP to the Gravity Spy ML algorithm.
Section III introduces a few different nonconformity mea-
sures from the literature, which we modify and optimize,
before comparing their performance when applied to
Gravity Spy using different metrics. In Sec. IV, we discuss
our results in the context of the literature. The code
accompanying this paper is available from the Zenodo
repository [30].

II. CONFORMAL PREDICTION

CP was first developed by Gammerman et al. [24,31] as
a framework to quantify uncertainties in the context of ML.
CP does not affect the underlying algorithm itself but uses
past predictions from the algorithm to learn the uncertainty.
Thus, there are no assumptions of the underlying model
or data distributions, and no priors are needed. The only
assumption required is that the data must be exchangeable.
This makes CP universally applicable to any algorithm
(ML or not) that returns a point prediction. In this paper,
we will discuss the application to classification algorithms
only, but the methods described are also applicable to
regression algorithms.
CP can be applied to any classification algorithm that

for each data point x produces a label y. Given a labeled
dataset,CP generalizes the point prediction from the under-
lying algorithm to a prediction set Γα of possible labels,
with a user-defined error rate α∈ ½0; 1�, with guaranteed
validity. Validity means that for a given α, the true label,
ŷ, is included in Γα with a probability of approximately
1 − α [26]. Specifically, this is known as marginal coverage
and, more formally, it can be shown [25] that, for N
calibration data points,

1 − α ≤ Prðŷ∈ΓαÞ ≤ 1 − αþ 1

N þ 1
: ð1Þ

As the number of calibration data points N increases, the
approximate result 1 − α is recovered.
To apply CP, first, a nonconformity measure Aðx; yÞ is

defined. This measures the heuristic uncertainty of the
underlying algorithm so that smaller scores imply a better
prediction, and can be tailored to the specific applica-
tion [26]. A common example for classification is
Aðx; yÞ ¼ 1 − fyðxÞ, where fyðxÞ is the classification score
of the algorithm for label y (later, we refer to this as the
baseline nonconformity measure).
CP is applied in two steps, calibration and testing. This

requires separate calibration and test datasets, each con-
sisting of some data points x and corresponding labels y. In
the calibration step, the nonconformity measure Aðx; yÞ is
used to calculate a nonconformity score si ¼ Aðx; yÞ for
each data point x in the calibration dataset. Sorting the
nonconformity scores si in ascending order, the 1 − α
quantile q̂ is calculated as

q̂ ¼ s⌈ðNþ1Þð1−αÞ⌉; ð2Þ

where N is the total number of data points in the calibra-
tion set and the ceiling function ⌈x⌉ denotes the smallest
integer ≥ x. Thus, the quantile q̂ is simply the jth element
in the list of ordered scores, with j ¼ ⌈ðN þ 1Þð1 − αÞ⌉.
The nonconformity measure Aðx; yÞ can, as discussed,

be any function. However, as it is used to calculate scores
which are then ranked, only relative values, and their
ranking, matter. Two nonconformity measures that are
monotonic transforms of each other will thus result in
exactly the same outcome under CP [26].
In the testing step, the aim is to form a prediction set Γα

for a test data point x0. Nonconformity scores are calculated
for all possible labels, and the labels y with scores less than
q̂ are included in the prediction set. The set of predicted
labels is thus defined as

Γα ¼ fy∶Aðx0; yÞ < q̂g: ð3Þ

For example, an image that could be either a cat or a
dog is classified by an algorithm as a cat with classifica-
tion scores cat ¼ 0.8 and dog ¼ 0.2: Using noncon-
formity measure Aðx0; yÞ ¼ 1 − fyðx0Þ, the nonconformity
scores for this example image x0 are sðcatÞ ¼ 0.2 and
sðdogÞ ¼ 0.8. Assuming the quantile was previously cal-
culated as q̂ ¼ 0.35 from some calibration data, the
prediction set becomes Γα ¼ fcatg, since 0.2 < 0.35,
but 0.8≮ 0.35.
Varying the error rate α will change the number of labels

included in the prediction set, since a lower α, and thus a
higher coverage, implies that more labels will be included
in Γα to fulfil the validity condition in Eq. (1). As α goes to
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zero, the prediction set must include the true label with
100% probability and will hence include all the labels.
As α approaches one, the true label is included with 0%
probability, which implies an empty prediction set. Hence,
the average number of labels included in the prediction set
increases as α decreases. The shape of this curve depends
on the problem explored as well as the chosen noncon-
formity measure. The value of 1 − α when the prediction
set size changes from a single label to include more than
one label is known as the CP confidence [26]. A discussion
of alternative confidence definitions can be found in [27].

A. Mondrian conformal prediction

We are also interested in conditional coverage for each
class. For example, we might want a set of data points with
a specific label that is certain to be at least 95% accurate,
as would be critical, e.g., when using ML for medical
diagnoses. To guarantee validity for each class individually,
Mondrian (label conditional) CP can be applied [32,33]. In
Mondrian CP, the data are split by class, and CP is applied
for each class separately. Thus, the conditional, and by
extension the marginal, labels are guaranteed to obey
Eq. (1). The number of calibration data N in Eq. (1)
now becomes the number of data points per label Ny, thus
increasing the error and hence requiring a bigger dataset to
allow for small error rates α.
For Mondrian CP, the 1 − α quantile in Eq. (2) becomes

label conditional—the calibration step is performed sepa-
rately for each class, and a different quantile q̂y ¼
s⌈ðNyþ1Þð1−αÞ⌉ is obtained for each label y. In the testing
step, the calculated nonconformity score for each possible
label y for a test data point x0 is compared to the
corresponding quantile q̂y and Eq. (3) becomes
Γα ¼ fy∶Aðx0; yÞ < q̂yg.
As we are interested in conditional coverage for

each glitch class, we will use Mondrian CP throughout
this paper.

B. Application to Gravity Spy

We now apply CP to the Gravity Spy glitch classifica-
tion algorithm. Applying the trained Gravity Spy ML
algorithm to a particular glitch outputs the most likely
class label (ml_label) and its classification score
(ml_confidence), as well as an array of the classifica-
tion scores corresponding to each glitch class. These
classification scores are the output of the final layer in
the CNN and are used as the probability distribution of the
classifier [20]. Hence, they provide the heuristic uncertainty
for the algorithm, which we can use as input to our
nonconformity measures.

1. The dataset

To apply CP, we need a dataset of glitches that contains
both the true label and the predicted label for each glitch.

There are multiple Gravity Spy datasets available. For the
work in this paper, the “retired” dataset, available from
Ref. [34], has been used, as it already contains all the
information we need. This dataset contains the citizen
scientist and ML classifications of glitches from the first
three observing runs of the LIGO detectors. All glitches in
the dataset have been classified by the ML algorithm,
as well as received at least one citizen volunteer classi-
fication [35]. For each glitch, the dataset contains the ML
classification scores for all classes, the ML predicted label
(ml_label), as well as the final_label, which is the
combined volunteer and ML classification. Thus, all the
information we need is included in the dataset and there is
no need for us to rerun the ML algorithm.
The “true label” of a glitch is required to calibrate the

algorithm. Since there is no ground truth, human-only
classifications would be the next obvious choice. However,
there were no human-classified glitch datasets available
to us that contained enough glitches of each class to cali-
brate CP. Thus, we have chosen to use the final_label
in the “retired” dataset [34] as the “true label,” which
combines the human andML classification scores [20]. Our
“true label” thus might not always be accurate and, hence,
the apparent performance of the algorithm according to the
results in this dataset does not match the (significantly
better) performance reported in Ref. [35]. Furthermore,
the Gravity Spy ML algorithm [36] our dataset [34] is
based upon has since been improved, see Ref. [22].
Nevertheless, our goal is to provide a proof of concept
of how to apply CP.
The distribution of glitches within this dataset is far from

uniform, for example, there are 327262 Scattered
Light and 1167 Wandering Line glitches. We want
to identify a set where there are enough glitches in each
class to apply CP. Hence, we randomly choose 1500
glitches of each class (or all glitches of classes where
fewer are available) to make up our dataset.

2. Application

First, we use the output array of classification scores to
determine a simple nonconformity measure

Aðx; yÞ ¼ 1 − fyðxÞ; ð4Þ

where fy is the classification score for label y, as given by
Gravity Spy. The nonconformity measure defined in Eq. (4)
is the most common for classification problems and is
sometimes referred to as the hinge loss, see, e.g., Ref. [29].
In the remainder of this paper, we will refer to it as the
baseline measure. However, this choice is not neces-
sarily optimal. In Sec. III, we will discuss and compare
alternative measures and introduce approaches to para-
metrize and optimize them.
Next, we use the curated Gravity Spy dataset, split

equally into a calibration and test set, and follow the
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calibration steps, as described above, to obtain a quantile q̂y
for each glitch class. We can then apply CP to the Gravity
Spy output for a random test glitch (our test data point x0),
calculating the nonconformity scores for each possible
label and including all labels y with a nonconformity score
smaller than q̂y in the prediction set Γα.
To demonstrate the application, we consider the follow-

ing examples, where we calculate the quantiles q̂y using
two different choices of error rate: α ¼ 0.32 (68% prob-
ability that the true label is included in the prediction set)
and α ¼ 0.1 (90%). We then create prediction sets for a test
glitch for each of the α values. Using a Blip glitch
(randomly chosen from the test dataset) that was classified
correctly by Gravity Spy with a classification score of
0.998 gives the following results:

68%∶ Blip -> fBlipð0.998Þg;
90%∶ Blip -> fBlipð0.998Þ;Tomteð0.0001Þg;

where the glitch class on the left is the true label and {.}
represents the prediction set. The numbers in parentheses
represent the classification score from Gravity Spy for that
glitch class.
As another example, we pick a case where Gravity Spy

classifies the glitch incorrectly. Here, a Tomte glitch is
classified as a Koi Fish with a classification score of
0.49. Applying CP gives prediction sets as follows:

68%∶ Tomte -> fKoi Fishð0.49Þ;Tomteð0.35Þg;
90%∶ Tomte -> fBlipð0.0003Þ;Koi Fishð0.49Þ;

Tomteð0.35Þg:

In this example, Gravity Spy makes an incorrect classi-
fication but CP still includes the correct label in the
prediction set, and is guaranteed to do so approximately
9=10 times for α ¼ 0.1.
Extending the example to multiple test glitches, we now

consider one test data point from each glitch class (ran-
domly chosen from our test dataset) and show the results of
applying CP (with α ¼ 0.1) in Fig. 2. The figure shows one
example for each glitch class to demonstrate CP and is not
indicative of the general behavior of the respective glitch
classes. For each test glitch on the x-axis, the predicted
label by Gravity Spy, as well as all labels included in the
prediction set, are shown on the y-axis. Correct predictions
by Gravity Spy are shown on the diagonal, where the
predicted label matches the true label. We observe that the
CP set varies in size, and the true label is included in the set
for all but two of the test glitches shown in the plot. This
illustrates the validity property, as the true label is only
guaranteed to be in the prediction set 90% of the time. The
plot in Fig. 2 shows the varying prediction set size and
thus the varying uncertainty of each prediction. Further-
more, some glitch classes, such as Violin Mode and

Koi Fish, are often incorrectly included in the prediction
set, implying that they are more likely to be confused with
other glitch classes in this specific example. To demonstrate
the concept of validity from Eq. (1) on a larger test set, we
calculate the marginal and label-conditional coverage for
varying α (choosing a few representative example glitches
for the conditional cases). The result is shown in Fig. 3,
where the diagonal line confirms the statement of validity.
This is similar in nature to the probability-probability

FIG. 2. Scatter plot for Gravity Spy (GS) predictions on a few
chosen test glitches (dark blue points). Points on the diagonal
represent correct predictions, as the true label on the x-axis and
the predicted label on the y-axis agree. The plot also contains the
CP set (using α ¼ 0.1) for each example glitch, represented as
bigger light blue points. For each true label, there are one or
several labels included in the prediction set.

FIG. 3. CP conditional and marginal coverage, Prðŷ∈ΓαÞ, for
varying error rate α. The colored lines represent the conditional
cases for a few different glitch classes, and the black dashed line
represents the marginal case. This plot illustrates the CP validity
property from Eq. (1).
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plots [37], which test the agreement of datasets or if a
model fits the data, and are commonly used to verify the
performance of various parameter estimation algorithms. It
is also similar to reliability plots [38], which can be used to
evaluate probabilistic predictions.
We note that the marginal coverage is on the diagonal

within the expected Poisson error due to the finite sample
size, while the label-conditional lines deviate. This is
explained by the smaller datasets giving a larger Poisson
counting error and is included by the last term in the
validity guarantee in Eq. (1), where the smaller label-
conditional datasets (fewer data points N) give a larger
interval and thus are allowed to deviate further from the
diagonal in Fig. 3. Finally, we investigate how the average
prediction set size varies with the chosen error rate. One
might be tempted to choose a low error rate α to get a high
probability of the true label being included in the prediction
set, but the cost of a lower error rate is a larger uncertainty
in the form of a larger prediction set, as shown in Fig. 4.

The average number of labels can also be computed for
each class separately, thus showing how some glitch classes
are easier to classify and have higher average CP con-
fidence than others. The confidence can be read from the
plot by investigating at what 1 − α value each line reaches
an average set size of two. For example, from Fig. 4 we can
see that a Tomte glitch (the brown, upper-most line) has
significantly lower confidence (50%) than a Scattered
Light glitch (the pink, bottom-most line) with confidence
of 90%. This illustrates how the similarity of, for example,
Tomte and Blip glitches (see Fig. 1) often results in large
prediction sets compared to the more easily uniquely
classified Scattered Light glitch. The plot in Fig. 4
is cut off at 1 − α ¼ 0.9 for clarity, as the set size is equal
to the total number of glitches (22) when α ¼ 0. Having
demonstrated how to apply CP, we can now discuss the
benefits. For example, if a certain glitch has a prediction set
of size one, we can guarantee that this label is the true label
with probability 1 − α. Another objective might be to create
a set of glitches of a certain class, with known uncertainty.
For example, we can collect a set of glitches that have all
been classified as Tomte, apply CP, and determine the CP
confidence. We could then choose to include only those
glitches that are above a certain confidence threshold, say
1 − α ¼ 0.9, thus creating a set where each glitch is
guaranteed to be a Tomte with 90% certainty.

III. OPTIMIZING NONCONFORMITY MEASURES

There are many different nonconformity measures in the
literature that could be applied instead of the baseline
measure in Eq. (4). In this section, we review common
examples and explore their performances on our Gravity
Spy dataset. Furthermore, to find the optimal versions of
each nonconformity measure for our application, we para-
metrize each function to then be optimized. An overview
of the parametrized nonconformity measures is given in
Table I, where β, γ, and ν are the tunable parameters. Note
that we have generalized several of the nonconformity
measures compared to the papers referenced by adding
additional tunable parameters.

FIG. 4. Average number of labels in the CP set Γα, for varying
error rate α. The colored lines represent the conditional cases for
each glitch class (defined by the true labels) and the black dashed
line represents the marginal case.

TABLE I. Nonconformity measures.

Name Definition Aðx; yÞ Reference

Baseline 1 − fyðxÞ [39]
Softmax

1 − fβy; fβy ¼ ½softmaxðβfÞ�y ¼ eβfyP
y0 e

βfy0
[40]

Entropy ð1 − fyðxÞÞj1þ γhðfÞjν; hðfÞ ¼ −
P

y0 fy0 logðfy0 Þ [40]
Entropy softmax ð1 − fyðxÞÞj1þ γhðfβÞjν [40]
Margin2 maxy0≠yðfy0 Þjfy þ γjjνj, γ ≥ 0 [41]
Maxscore2 1−fyðxÞ

j1þγ1fmaxþγ2f2ndmaxj
This work

CNN 1 − γfy þ ð1 − γÞmaxy0≠yðfy0 Þ, γ∈ ½0; 1� [28]
Brier 1

jYj
P

y0 j1ðy0 ¼ yÞ − fy0 jν [29]
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A. Nonconformity measures

All of the nonconformity measures are based solely on
the classification scores fy output from Gravity Spy for
each label y, as this encodes the heuristic uncertainty,
which CP transforms into a rigorous one [25]. However, if
additional information was available, this could also be
used to inform the nonconformity measure. The first four
nonconformity measures in Table I are adaptions on the
baseline, making use of the softmax function, adding
weighting in the form of a cross-entropy term and a
combination of both. Meanwhile, the maxscore2 mea-
sure uses the largest and second-largest classification scores
as a weight to the baseline measure.
The margin2 measure makes use of the largest

classification score, excluding the score of the label y
currently considered. The parameter γ ≥ 0 makes the
measure sensitive to small changes in fy, since decreasing
γ increases the importance of fy compared to the scores of
the other labels [41].
The CNN measure was developed specifically for use on

a convolutional neural network and is, like the margin2
measure, constructed from the classification score of the
considered label, fy, and the largest score when excluding
fy. The parameter γ provides a trade-off between the two
terms [28].
The Brier measure includes the classification scores

of all possible labels so that the final nonconformity score
is affected even if there is minor confusion about the true
label [29]. The normalization factor Y represents the total
number of labels.
It is worth noting that most of the nonconformity

measures reduce to the baseline, Eq. (4), for specific
choices of values for the tunable parameters β, γ, and ν.

B. Metrics

To optimize the nonconformity measures and compare
them, we first need to define what we mean by “optimal”
performance. This is not necessarily straightforward, as
different applications of CP have different purposes and
thus varying definitions of what is optimal. In this section,
we describe three different metrics that can be used for such
optimizations and comparisons: the average prediction set
size [29], the number of correct predictions of set size one,
so-called singletons [29], and the F1 score [22,42]. We have
chosen these metrics because they are commonly used in the
context of machine learning and CP in the literature, but
other metrics could also be defined and considered. Each
metric has different advantages, and the choice of metric
depends on what the user considers an optimal outcome.
We define the average prediction set size as

set size ¼ 1

N

XN

n

jΓα
nj; ð5Þ

where j:j defines the set size and N is the number of test
data points. The size of the prediction set Γα is an inherent
feature of CP that is linked to the certainty of predictions.
Minimizing the average set size implies more certain
predictions and can hence be seen as minimizing the
uncertainty.
The average number of singletons is defined as

singleton ¼ 1

N

XN

n

1ðjΓα
nj ¼ 1Þ; ð6Þ

where we make use of the same notation as in Eq. (5) and 1
is an indicator function. Singletons are often useful when
wewant to classify something uniquely. For example, when
classifying a set of gravitational wave events as signals or
noise, one might want to maximize the number of events
that are uniquely classified as signals. In general, singletons
are the metric to choose if the purity of a dataset is valued,
such as in population studies.
The F1 score is the harmonic mean of precision and

recall, defined as

F1 ¼
precision · recall
precisionþ recall

¼ 2TP
2TPþ FPþ FN

; ð7Þ

where true positive (TP) is the number of data points
correctly predicted as “positive,” false positive (FP) is the
number incorrectly predicted as “positive,” and false
negative (FN) is the number incorrectly predicted as
“negative.” The number of data points correctly predicted
as “negative” is the true negative (TN). The F1 ∈ ½0; 1�
score is thus defined such that a higher score implies a
better prediction, as given by the trade-off between the TP
rate and the FP and FN rates.
The F1 score is generally defined for binary classifica-

tion and does not directly map to CP, since CP returns a
prediction set rather than a single prediction. Therefore, we
extend the F1 score so that all classes are considered as
“positive” in turn, and the F1 score is calculated for each
label separately. Let us demonstrate this with an example,
as follows:

(i) Blip → fBlipg∶TPðBlipÞ þ¼ 1.
(ii) Blip → fBlip;Tomteg∶ TPðBlipÞ þ¼ 1,

FPðTomteÞ þ¼ 1.
(iii) Blip → fTomte;Koi Fishg∶ FNðBlipÞ þ¼ 1;

FPðTomteÞ þ¼ 1; FPðKoi FishÞ þ¼ 1.
(iv) Blip → fg∶ FNðBlipÞ þ¼ 1.

Here, the first test data point, consisting of a true label,
Blip, and a prediction set, fBlipg, gives TPðBlipÞ ¼ 1,
and all other counts are zero.
Taking all four test data points above and considering

Blip glitches only, this set of examples has TPðBlipÞ ¼ 2,
FP(Blip) ¼ 0, and FNðBlipÞ ¼ 2, thus giving
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F1ðBlipÞ ¼
2 · 2

2 · 2þ 0þ 2
¼ 0.67; ð8Þ

when applying Eq. (7).
After calculating the F1 scores per label, they can be

combined by taking the average, also known as macro
F1 [43], over all classes. There are several alternative ways
to combine the individual scores, for example, using the
geometric mean, but these are not considered here.

1. ROC curve

The measured TP, FP, FN, and TN values can also
be used to determine the true positive rate, defined as
TP=ðTPþ FNÞ, and the false positive rate, defined as
FP=ðFPþ TNÞ. By varying the error rate α, the trade-off
between the true positive rate and the false positive rate can
be shown with a receiver operating characteristic (ROC)
curve [44] (see the red-yellow curve in Fig. 5). Here, we
have used the standard definition of a ROC curve, as
defined for binary classification, with the caveat that the
TPs, FPs, FNs, and TNs are the values summed over all
glitch classes. This demonstrates how a small error rate,
which is generally desirable, achieves a high true positive
rate, but at the cost of also increasing the false positive rate.
The ideal case is in the top-left corner of the plot, where the
true positive rate is maximized and the false positive rate is
minimized.
The blue-green line in Fig. 5 is the ROC curve for our

Gravity Spy dataset, where the true positive and false
positive rates are calculated for multiclass classification
(an illustrative multiclass confusion matrix demonstrating
this can be found, for example, in Fig. 3 in Ref. [45]).
We observe that for higher false positive rates, theCP curve
has higher true positive rates than the Gravity Spy curve.
However, interestingly, the two curves intersect, and the
Gravity Spy curve has a higher true positive rate at low false

positive rates. Furthermore, we can compare the area under
the ROC curve, which has a value of 0.929 for CP and
0.861 for Gravity Spy. With these two results, we show that
using CP to calibrate the Gravity Spy predictions can
improve the overall classification performance.

C. Optimizing nonconformity measures

To optimize the nonconformity measures in Table I,
we use both a grid search and SciPy optimize [46] with the
L-BFGS-B method [47,48]. From the grid search, we can
obtain an understanding of the topology of the chosen
parameter space, while using the L-BFGS-B method in
SciPy is more efficient to solve the optimization problem.
We perform the optimization separately for each metric,
and find the best parameters by maximizing the F1 score,
maximizing the number of singletons, and minimizing
the average set size, respectively. Note that the prediction
sets will not be affected if the nonconformity measure is
changed monotonically [26].
Due to the discrete nature of the underlying function,

optimization algorithms that use autodifferentiation can
struggle to find the global maxima. On large scales, our
metrics appear to vary smoothly with the parameters in the
nonconformity measures. However, if the scale over which
the parameters are varied becomes comparable to 1=N,
where N is the size of the calibration dataset, it is no longer
approximately smooth but becomes visibly discreet. The
optimization can be improved by increasing the step size of
the algorithm, to ensure it continues on from local maxima.
Alternatively, applying a differentiable approximation
of the F1 score could be considered if the objective is
improved optimization. For our purpose of demonstrating
that nonconformity measures can be optimized, using grid
search and SciPy is sufficiently accurate.
For the entropy and entropy softmax noncon-

formity measures, there is degeneracy for all metrics along
both axes; where one of the parameters is zero, the measure
reduces to the baseline and we obtain unchanged
scores. The degeneracy makes the optimization difficult,
as no one optimum exists, and unchanged scores along an
axis implies that any parameter value gives an equally good
nonconformity measure so no improvements are obtained.
To avoid this, we add a regularization, R, in the optimi-
zation, such that we instead maximize F1 −R and
singleton −R, and minimize set sizeþR. We
use R ¼ ρðγ2 þ ν2Þ and R ¼ ρðν2 þ β2Þ, respectively, for
the two nonconformity measures, where ρ ¼ 0.00001.
Large parameter values are thus penalized and the degen-
eracy is removed. The small factor ρ ensures that although
we break the degeneracy along the axes, the regularization
does not affect the overall results.
To perform the optimization, we first split our dataset

(as described in Sec. II B 1) equally into an optimization
and an evaluation set. The optimization set is used to find
the optimal parameters and the evaluation set is used to

FIG. 5. ROC curves for CP for varying error rate α and GS for
varying the threshold.
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calculate the scores of each metric for the obtained best
parameters. Each of the optimization and evaluation data-
sets are then split equally into calibration and test sets to
apply CP. We repeat the optimization five times, using
different calibration/test data splits of the optimization
dataset, and can thus obtain standard deviations on the
optimized parameters.
In the following three subsections, we will discuss and

show the optimization results for each of the three metrics
for some of our nonconformity measures. All the optimi-
zations in these sections use an error rate of α ¼ 0.1.

1. Results: F1 score

To demonstrate the optimization process, Fig. 6 shows
the parameter space grid plots of the F1 scores, as
calculated for the two varying parameters in the respective
nonconformity measures, overlaid with the results from
several SciPy optimization runs. The plots visualize the
complicated topology of the parameter space for the
different nonconformity measures and show that some
regions of the parameter space are greatly preferred over
others.
Studying the individual nonconformity measure equa-

tions in Table I, it is clear that, for all the measures but
softmax, margin2, and Brier, certain parameter
choices reduce the measure to the baseline. For exam-
ple, γ ¼ 0 or ν ¼ 0 in the entropy measure recover the
baseline. When applying the F1 score optimization to

these nonconformity measures, they all optimize to the
baseline. As discussed, setting either of the parameters
to zero for the entropy and entropy softmax
measures reduces them to the baseline measure and
results in the highest F1 scores. Applying the regulariza-
tion, this behavior is still visible, as shown in Figs. 6(a) and
6(b), but the degeneracy is removed and the optimization
improved. The maxscore2 nonconformity measure also
optimizes to the baseline measure, for γ1 ¼ γ2 ¼ 0, as
shown in Fig. 6(d). The margin2 measure in Fig. 6(c)
does not reduce to the baseline for any parameters. It is
optimized with γ ¼ 0 and ν ¼ −8.8� 1.5, which gives F1

scores comparable to the baseline, see the discussion in
Sec. III D. Despite the appearance in the plot, there is no
degeneracy along γ ¼ 0 when inspecting the values.

2. Results: Singletons

When maximizing the number of singletons, we observe
that the nonconformity measures no longer optimize to
values that reduce them to the baseline, as can be seen
in Fig. 7. In fact, all nonconformity measures shown in
Fig. 7 can be optimized to give better results than the
baseline measure when using singletons as the com-
parison metric.
We also note that there is partial degeneracy for the

singleton plots, however, this is mainly due to the scores
being very close together and thus not distinguishable on
the color scheme of the plots.

FIG. 6. Grid plots with SciPy optimizations (black cross) using the F1 score for four example nonconformity measures. The definition
of each nonconformity measure is given in Table I. (a) Entropy. (b) Entropy softmax. (c) Margin2. (d) Maxscore2.

FIG. 7. Example grid plots for four different nonconformity measures with SciPy optimizations (black cross), maximizing the number
of singletons. The definition of each nonconformity measure is given in Table I. (a) Entropy. (b) Entropy softmax. (c) Margin2.
(d) Maxscore2.
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3. Results: Average set size

Repeating the optimization procedure for minimizing the
average set size, the results are shown in Fig. 8. Similar to
the F1 score, we again find that the entropy, entropy
softmax, and maxscore2 nonconformity measures
optimize to the baseline measure, and that the
entropy and entropy softmax measures are degen-
erate along the zero-axes when no regularization is used.
The margin2 measure optimizes to γ ¼ 0, ν ¼
−11.9� 3.5, for which the average set size is slightly
larger but comparable to the baseline measure.
Although not equivalent, the results from using the F1

score and the average set size metrics are very similar,
suggesting that the metrics are strongly correlated.

D. Comparison of nonconformity measures

Having optimized each nonconformity measure, we can
now compare their performance on the evaluation dataset.
The results from optimizing all of our nonconformity
measures for the three chosen metrics are summarized
in Table II. The optimal parameters obtained are the mean

values over five optimization runs with different calibration/
test data splits of the optimization dataset. The uncertainties
are the standard deviations over these runs. The plots shown
and discussed in Sec. III C each represent the first of these
five optimization runs. The evaluation scores are calculated
using the optimized parameters and the evaluation dataset.
The uncertainties in the evaluation scores stem from the
uncertainty of the parameter optimization.
For the F1 score, as noted in the previous section, most

of the nonconformity measures optimize to parameters
that reduce them to the baseline. The exceptions are the
softmax, margin2, and Brier nonconformity mea-
sures, which do not reduce to the baseline measure but
achieve F1 scores comparable to the baseline.
Using singletons, we find that the baseline is no longer

the best and that all other nonconformity measures perform
slightly better, with maxscore2 giving the highest
number. However, the evaluation scores are all very similar,
and the nonzero standard deviations on the parameters
indicate that there is still some statistical uncertainty.
Using the average set size, the behavior of the non-

conformity measures is similar to using F1 scores.

FIG. 8. Example grid plots for four different nonconformity measures with SciPy optimizations (black cross), minimizing the average
set size. The definition of each nonconformity measure is given in Table I. (a) Entropy. (b) Entropy softmax. (c) Margin2.
(d) Maxscore2.

TABLE II. Optimization results at α ¼ 0.1. To estimate uncertainties, we calculate the standard deviations in the fitted parameters over
multiple runs on different data splits. However, in some cases, all runs produce identical results for the fitted parameters; in these cases,
we instead take a conservative estimate of the uncertainty by giving the bin size from gridding.

Optimized parameters Evaluation scores

Nonconformity measure F1 score Singletons Set size F1 score Singletons Set size

Baseline � � � � � � � � � 0.456 0.179 4.263
Softmax β ¼ 0.001� 0.001 β ¼ 0.51� 0.39 β ¼ 0.001� 0.001 0.455� 10−4 0.261� 0.006 4.324� 0.026
Entropy γ ¼ 0� 0.01 γ ¼ 0.14� 0.05 γ ¼ 0� 0.01 0.456� 0.003 0.267� 0.003 4.263� 0.04

ν ¼ 0� 0.01 ν ¼ −0.2� 0.01 ν ¼ 0� 0.01
Entropy softmax ν ¼ 0� 0.01 ν ¼ 1.8� 0.2 ν ¼ 0� 0.01 0.456� 10−6 0.237� 0.007 4.263� 10−4

β ¼ 0� 0.01 β ¼ −6.5� 0.4 β ¼ 0� 0.01
Maxscore2 γ1 ¼ 0� 0.01 γ1 ¼ −0.4� 0.2 γ1 ¼ 0� 0.01 0.456� 0.006 0.271� 0.002 4.263� 0.074

γ2 ¼ 0� 0.01 γ2 ¼ −0.4� 0.2 γ2 ¼ 0� 0.01
Margin2 γ ¼ 0� 0.01 γ ¼ 0.2� 0.01 γ ¼ 0� 0.01 0.455� 10−6 0.264� 0.002 4.276� 0.002

ν ¼ −8.8� 1.5 ν ¼ −7.4� 3.8 ν ¼ −11.9� 3.5
CNN γ ¼ 1.0� 0.001 γ ¼ 0.96� 0.04 γ ¼ 1.0� 0.001 0.456� 0.006 0.266� 0.006 4.263� 0.075
Brier ν ¼ 1.001� 0.002 ν ¼ 1.012� 0.015 ν ¼ 1.002� 0.001 0.448� 0.005 0.263� 0.006 4.671� 0.011
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All nonconformity measures either reduce to the baseline for
optimal parameters or return comparable average set sizes.
To explore if the optimization depends on the error rate

α, we run repeated tests for varying α. The plots in Fig. 9
show the optimized nonconformity measures together with
the baseline over varying error rates α. We note that, as
expected, the results from all metrics vary with varying α.
Furthermore, the relative performance of the different
nonconformity measures depends on the value of α for
the singleton metric only.
For the F1 score and average set size metrics, all

optimized nonconformity measures either reduce to or are
comparable to the baseline measure. This is true regardless
of the value of α, as shown in Figs. 9(a) and 9(c). The
optimal parameters for each nonconformity measure were
found for α ¼ 0.1, and these optimized parameters were then
applied for other values of α. However, a brief investigation
shows that optimizing at other values of α does not change
the results significantly and that the baseline measure is still
preferred.
As shown in both Fig. 9 and Table II, all optimized

nonconformity measures considered return a higher aver-
age number of singletons than the baseline measures for
all α. For this metric, the relative performance of noncon-
formity measures varies slightly with varying α, and most
notably the entropy softmax measure performs sig-
nificantly worse at lower α.
Our results thus show that the same nonconformity

measures optimize and perform differently when consid-
ering different metrics. Hence, when applying CP to a new
problem, it is worth considering not only which noncon-
formity measure will perform best but also which metric we
are most interested in. For example, for our application of
CP to Gravity Spy, if we value overall smaller uncertainties
we should minimize the average set size to find our optimal
nonconformity measure, but if we value uniquely classify-
ing the glitches we should maximize the number of
singletons. The F1 score is a metric considering various
aspects of the performance of CP. For our application, we
find that the F1 score results are similar to the average set

size and thus the size of the prediction sets appears to have
a greater impact than how often glitches are uniquely
classified correctly. From the definition of the F1 score in
Eq. (7), it is evident that the number of incorrect classi-
fications (FP and FN) increases with larger prediction sets.
Therefore, we see that the F1 score and average set size
metric will be strongly correlated, explaining the similarity
of results when used as a loss function.

E. Individual glitch classes

It is important to note that the results in the previous
section are calculated for Gravity Spy and the ensemble of
all glitches in our dataset and that other algorithms or other
datasets for the same algorithm may perform differently.
As an example, we can treat each glitch class as an

individual dataset and perform the same optimization. We
find that for most of the glitch classes, the results agree with
the results in Sec. III C, as expected. However, for some of
the classes, other nonconformity measures return higher F1

scores than the baseline. In Fig. 10, a few example plots
where the F1 score does not optimize to the baseline
are shown.
We further note that the same nonconformity measure

can behave very differently for different glitch datasets,
as seen, for example, in comparing the plots in Figs. 10(c)
and 10(d).
This demonstrates how the choice of nonconformity

measure is problem-specific. Applying the analysis from
this section to another dataset or problem setup may give
different results.
The different glitch classes have varying Gravity Spy

classification accuracies, with some classes being classified
correctly more often than others. To investigate how the
performance changes when applying CP to the individual
glitch datasets, we optimize our nonconformity measures
for each of these glitch-specific datasets individually. We
can then calculate evaluation scores for each optimized
nonconformity measure and glitch-specific dataset and plot
them against the error rate for the respective glitch class
(see Fig. 11). We find that a higher classification accuracy

FIG. 9. Comparison of all the discussed nonconformity measures, making use of different metrics. (a) F1 score. (b) Singletons.
(c) Average set size.
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(lower Gravity Spy error rate) for a glitch class implies that
the dataset will generally achieve higher overall F1 scores,
see Fig. 11(a), and smaller average prediction set sizes, see
Fig. 11(c). The correlation for the singleton metric is less
clear, as shown in Fig. 11(b).
Furthermore, the plots in Fig. 11 confirm the previous

discussion stating that different metrics are preferred for
different glitch datasets. However, there does not seem to
be any correlation between the classification accuracy of a
glitch class and which nonconformity measure is preferred
for that dataset.

IV. DISCUSSION AND CONCLUSION

In this work, we have demonstrated the application of
CP to the Gravity Spy glitch classification ML algorithm.
We have discussed properties of CP, such as its guaranteed
validity, and particularly focused on the nonconformity
measure.
The nonconformity measure is a key element of CP that

transforms the heuristic output of the underlying algorithm

into a rigorous uncertainty. Since the optimal choice of
nonconformity measure is not theoretically predicted,
we parametrized families of possible measures and then
investigated the choice of three metrics, the F1 score,
average prediction set size, and number of singletons, in
optimizing the nonconformity parameters. We have applied
this to our Gravity Spy test case, but the methodology could
be applied in general to identify optimal nonconformity
measures.
For the F1 score and average set size metrics, the results

showed that the simple, and most common, baseline
nonconformity measure returned the best scores and that,
even after optimizing, none of the other nonconformity
measures were better. In fact, all nonconformity measures
that reduced to the baseline measure for certain para-
meter values were optimized for these parameters.
Meanwhile, all optimized nonconformity measures we
have considered returned a higher number of singletons
than the baseline measure. Hence, our results showed
that the choice of nonconformity measure should depend
on the metric of interest. For example, if the overall

FIG. 10. Example grid plots of individual glitch classes using the F1 score. The plots show that in these cases, the nonconformity
measures do not optimize to the baseline. (a) Entropy, Koi Fish. (b) Entropy softmax, Low Frequency Burst. (c)
Maxscore2, Low Frequency Burst. (d) Maxscore2, Wandering Line.

FIG. 11. The plots show the GS error rate of individual glitch class datasets versus label-specific scores for all metrics for a few of the
discussed nonconformity measures. Each error rate point on the x-axis corresponds to one glitch class, and a few of the classes are named
in the top axis (we do not show all for clarity). The nonconformity measures have been optimized for each glitch class individually. The
error bars represent the standard deviation obtained from repeating the evaluation calculation for different splits of each dataset. (a) F1

score. (b) Singletons. (c) Average set size.
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certainty of predictions (small prediction set sizes) is
important, we should choose the baseline measure.
However, if creating a set of correctly classified glitches
of a certain class is the aim (maximized singletons), the
maxscore2 measure will return the best result for our
Gravity Spy test application.
Furthermore, considering the F1 scores for individual

glitch class datasets, the baseline measure is not always
the best, and some of the nonconformity measures optimize
to parameters that do not reduce them to the baseline.
We can thus conclude that choosing the optimal noncon-
formity measure is complicated and depends both on the
algorithm CP is applied to as well as the dataset used and
the metric of interest.
Knowing that different nonconformity measures are

preferred for the different glitch class datasets, one option
to further improve performance for the full dataset would
be to mix different measures for different classes, such
that each class uses the preferred nonconformity measure.
Alternatively, adopting the measure that works best
overall is a solution. As we have shown in this work,
the baseline measure gave the best results for the F1

score for the overall dataset and was also most often
preferred for the class-specific datasets for this metric. This
confirmed the intuition that if a nonconformity score is
good for the majority of smaller datasets, it will also be
good for the full dataset.
Comparing our results for the baseline, CNN, and

Brier nonconformity measures to similar work in the
literature, we confirmed that the optimal nonconformity
measure is dependent on the application. In Ref. [28],
the authors found that the CNN nonconformity measure
returned the highest number of singletons for γ ¼ 0 while
the smallest average set size was found for γ ¼ 1 for their
application of a CNN to face and object recognition data-
bases. For our Gravity Spy application, we also found that
the CNN nonconformity measure was optimized for γ ¼ 1
for the average set size metric, however, for the singleton
metric, we found γ ¼ 0.95, which differs from the result
in [28]. Similar to our results, the authors of Ref. [29] found
that the baseline nonconformity measure produced a
smaller average set size than the briermeasure, while the
brier measures returned a higher number of singletons
than the baseline for their application, confirming again
that the optimal choice of nonconformity measure depends
on the preferred metric.
To address the significance of our results, we first

observed that the optimization we applied improved the
individual performance of all our nonconformity measures
for all metrics, as seen from the plots in Sec. III C.
Secondly, the differences between the evaluation scores
for the optimized nonconformity measures were small for
all metrics, and one could thus argue that choosing one
above another would only minimally affect the outcome.

Hence, our results on the full Gravity Spy dataset could
be taken to justify the use of the baseline measure for
all metrics. However, investigating the example plots for
individual glitch class datasets in Fig. 10 showed that
the difference in F1 scores between where the mea-
sures were optimized and where they reduced to the
baseline were no longer as small [for example, the
difference in F1 ∈ ½0; 1� score was ≈0.2 in Fig. 10(b)].
In these cases, other nonconformity measures returned
notably better results, and using the baseline would be
less justified.
While the optimized values found in this paper are

only applicable to the Gravity Spy glitch classification
algorithm and the dataset we have used, the methods we
have described in this paper are applicable to any point-
prediction algorithm. CP can be used to add uncertainty to
classification algorithms in the manner described in this
paper, but can also be used to add confidence intervals
to ML regression algorithms [26], where it is otherwise
difficult to obtain uncertainty quantifications. The method
for the regression case is almost identical to the classi-
fication case, with the main difference being a different
choice of nonconformity measure.
While uncertainties are important in themselves, CP can

also be used to compare algorithm performances quanti-
tatively, or to optimally combine the output from multiple
algorithms. For example, CP together with the quantifi-
cation metrics discussed in this paper could be used to
investigate which algorithm performs a given task better,
or if a combination of algorithms gives the optimal result.
By defining a metric based on the prediction sets (such as
those discussed in this paper), CP can be applied to each
algorithm, and the most optimal one for the given task and
chosen metric can be determined (similarly to how we have
found optimal nonconformity measures in this work). It is
also possible to use CP to improve the underlying
algorithm itself [49].
To continue this work, CP could be built into or around

the Gravity Spy algorithm for future analysis, providing
point predictions with uncertainties. This idea also extends
to other gravitational wave applications, for example,
searches for compact binary coalescence signals [27], or
could be applied to newly evolving ML methods [50,51].
CP can be used to combine search pipelines to improve
performance or provide uncertainties for a ML-based
parameter estimation algorithm. In summary, there are a
multitude of applications, for gravitational wave science
and otherwise, where CP can be useful.
The code for Sec. II is openly available from the Zenodo

repository [30].
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