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ABSTRACT

Precision pulsar timing is integral to the detection of the nanohertz stochastic gravitational-wave background as well as
understanding the physics of neutron stars. Conventional pulsar timing often uses fixed time and frequency-averaged templates
to determine the pulse times of arrival, which can lead to reduced accuracy when the pulse profile evolves over time. We illustrate
a dynamic timing method that fits each observing epoch using basis functions. By fitting each epoch separately, we allow for
the evolution of the pulse shape epoch to epoch. We apply our method to PSR J1103—5403 and find evidence that it undergoes
mode changing, making it the fourth millisecond pulsar to exhibit such behaviour. Our method, which is able to identify and
time a single mode, yields a timing solution with a root-mean-square error of 1.343 s, a factor of 1.78 improvement over
template fitting on both modes. In addition, the white-noise amplitude is reduced 4.3 times, suggesting that fitting the full data
set causes the mode changing to be incorrectly classified as white noise. This reduction in white noise boosts the signal-to-noise
ratio of a gravitational-wave background signal for this particular pulsar by 32 per cent. We discuss the possible applications for
this method of timing to study pulsar magnetospheres and further improve the sensitivity of searches for nanohertz gravitational

waves.
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1 INTRODUCTION

Due to their remarkable regularity, pulsars are exceptionally accurate
clocks. Pulsar timing is therefore useful across many areas of
physics. Timing many stable pulsars across the sky in a pulsar
timing array can detect low-frequency nanohertz gravitational waves
(Hellings & Downs 1983) from sources such as supermassive binary
black holes (Sesana et al. 2004; Kocsis & Sesana 2011; Taylor,
Simon & Sampson 2017; Burke-Spolaor et al. 2019) and phase
transitions in the early Universe (e.g. Starobinsky 1980; Grishchuk
2005; Lasky et al. 2016). The most recent data sets from three of
the world’s major pulsar timing arrays, the European Pulsar Timing
Array (Kramer & Champion 2013), the North American Nanohertz
Observatory for Gravitational Waves (McLaughlin 2013), and the
Parkes Pulsar Timing Array (Manchester et al. 2013), have shown
evidence of a common, red noise process in the residuals of their
pulsar arrival times (Arzoumanian et al. 2020; Chen et al. 2021;
Goncharov et al. 2021). Common red noise was also found when
these data were combined by the International Pulsar Timing Array
(IPTA; Antoniadis et al. 2022). Common red noise can arise due
to the stochastic gravitational-wave background. However, in order
to make an unambiguous detection, one must observe an angular
correlation function consistent with the Hellings and Downs curve

* E-mail: rowina.nathan @ gmail.com

© 2023 The Author(s)

(Hellings & Downs 1983), a quadrupolar correlation between timing
delays across the sky. With new data releases imminent, the detection
of nanohertz gravitational waves may be around the corner.

Current pulsar-timing methods employ a single matched-filter
template to calculate pulse times of arrival.'! Often, the template
is created by averaging together many of the observed pulses. This
single, static template is then used to time all the pulses. However,
all pulsars exhibit at least some degree of pulse-to-pulse shape
variation (Parthasarathy et al. 2021), which conventional pulsar-
timing methods are not able to account for.

There are a number of phenomena that are known to cause obvious
changes in pulse shape. For example, giant pulses are extraordinarily
bright and narrow outbursts of radio flux (Staelin & Reifenstein 1968;
Geyer et al. 2021; Caleb et al. 2022). Pulses can be temporarily
broadened or lensed by the interstellar medium (Rickett 1970;
Shannon & Cordes 2017; Bilous, Ransom & Demorest 2019; Lin
etal. 2021; Askew, Reardon & Shannon 2023). Geodetic precession,
where the strong gravitational field of the pulsar results in spin—orbit
coupling, causes pulse shapes to evolve over time (Kramer 1998;
Fonseca, Stairs & Thorsett 2014; Desvignes et al. 2019; Venkatraman

!Frequency-dependent templates are sometime used, either with multiple
templates across different sub-bands (e.g. van Straten 2006; Liu et al. 2014)
or by fitting functional forms to the template across the frequency band (e.g.
Pennucci, Demorest & Ransom 2014; Pennucci 2019).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

920z Asenuer g1 uo Jasn Alsiaaiun uodweyinos Aq 022161 2/SOvy/S/EZS/a0ne/seiuw/woo dno olwapese//:sdiy Woll papeojumod]


http://orcid.org/0000-0002-3922-2773
http://orcid.org/0000-0002-5455-3474
http://orcid.org/0000-0001-7288-2231
http://orcid.org/0000-0002-4418-3895
http://orcid.org/0000-0002-2035-4688
http://orcid.org/0000-0002-7285-6348
http://orcid.org/0000-0002-2037-4216
mailto:rowina.nathan@gmail.com
https://creativecommons.org/licenses/by/4.0/

4406 R. S. Nathan et al.

Krishnan et al. 2019; Noutsos et al. 2020). A pulsar can undergo a
period of mode changing, in which it switches between two or more
characteristic pulse shapes (Bartel et al. 1982; Wang, Manchester &
Johnston 2007; Miles et al. 2022). On occasion, pulses have been
seen to cease completely, in a process known as nulling (Backer
1970; Gajjar, Joshi & Kramer 2012).

There are also more subtle pulse-shape changes, such as stochastic
changes known as jitter’ (Shannon et al. 2014; Parthasarathy et al.
2021) and slow evolution in pulse shape due to sub-pulse drifting
(Drake & Craft 1968; Backer 1973; Chen et al. 2023). A single pulse
profile template does not capture the pulse-shape variation from these
and other effects. Since the average template may not be a good
match for some pulses, the estimated pulse time of arrival can be
significantly wrong, leading to increased errors in the timing solution.
Pulse-shape variation therefore is a source of noise for pulsar timing
arrays, reducing our ability to detect nanohertz gravitational waves.

While our primary goal is to reduce the timing solution residuals
for gravitational-wave searches, modelling the evolution of pulse
shape is interesting in its own right. By studying how pulse shape
varies over time, it may be possible to gain a better understanding
of the pulsar magnetosphere and/or pulsar emission (Rankin 1986;
Cairns, Johnston & Das 2004; Janagal et al. 2022). Moreover, pulsar
timing allows for tests of general relativity in the strong field limit
(Kramer et al. 2006b, 2021a, b; Freire et al. 2012; Archibald et al.
2018; Voisin et al. 2020) and it provides us with an improved
understanding of the neutron star equation of state (Demorest et al.
2010; Antoniadis et al. 2013; Fonseca et al. 2021; Miller et al. 2021;
Riley et al. 2021) and thus the behaviour of matter at extreme densities
(Oppenheimer & Volkoff 1939; Kurkela et al. 2014; Ozel et al. 2016).

All pulsars exhibit pulse-shape variations. However, large shape-
change events are less common in millisecond pulsars; they are
mostly stable, which makes them good candidates for long-term
pulsar timing. There are currently three millisecond pulsars known
to mode-change: PSR B1957+420 (Mahajan et al. 2018), PSR
J06214-1002 (Wang et al. 2021), and PSR J1909—3744 (Miles et al.
2022). PSR J1103—5403 is a pulsar observed by the MeerKAT
telescope as part of the MeerKAT Pulsar Timing Array (MPTA; Miles
et al. 2023). We show that this pulsar exhibits the characteristics of
a mode-changing pulsar, as it has a group of early arriving outliers
in the timing solution residuals. This millisecond pulsar has a period
of only ~3.4ms and is a good candidate for a timing array pulsar.
However, the mode changing severely restricts its timing accuracy.
This makes it an ideal test case for an alternate timing method that
is better able to constrain pulse-shape variability.

Lentati, Alexander & Hobson (2015) developed a profile-domain
timing method where individual time-averaged epochs were fit,
allowing for simultaneous estimation of the timing model, dispersion
measure variations, and pulse profile evolution. When this was
implemented with broad-band frequency evolution, an improvement
of up to 40 per cent was seen in pulsar-timing precision (Lentati et al.
2017). Pulse-to-pulse timing has already been shown to measure the
glitch rise time of the Vela pulsar (Ashton et al. 2019b). However,
pulse-to-pulse observations are only available for the brightest
millisecond pulsars. It is therefore common to use epochs for timing,
where an observing period is folded and summed over many pulse
periods to increase the brightness of the pulse. We implement here
an epoch-to-epoch fitting method, in order to determine whether
the flexibility of this method provides insights on time-averaged
data.

In this paper, we present a pulsar-timing method that allows for
and is sensitive to pulse-shape variation, using PSR J1103—5403
as a case study. We are able to confidently determine outliers in
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Figure 1. The smoothed total intensity profile of PSR J1103—5403. This is
the average of 52 observing epochs from across 3 yr, which is then smoothed
to emphasize the main pulse features.

pulse shape, the removal of which from the total data results in
a reduction of the timing solution root-mean-square error (RMS;
this error arises from the difference between pulse times of arrival
predicted by the timing solution and observations). We reduce the
RMS of this pulsar by a factor of 1.78 consequently improving the
sensitivity of PSR J1103—5403 to the gravitational-wave background
by 32 per cent. We describe how our method can be more broadly
applied to other pulsars. The remainder of this paper is organized
as follows. In Section 2, we describe our mathematical formalism
and individual epoch fitting. In Section 3, we present the results
of our analysis of PSR J1103—5403 and compare them to the
matched-filter template method. We then use the parameter fits to
each pulse to characterize the shapes present in the mode changing,
and produce a single mode timing solution. Finally, in Section 4 we
discuss the implications of our results and consider avenues for future
work.

2 INDIVIDUAL EPOCH FITTING

In order to fit the flux profile of each epoch, we fit a sum of
basis functions (similar to Kramer et al. 1994; Lentati et al. 2015;
Padmanabh et al. 2021; Cameron et al. 2022). The parameters of these
basis functions are fit independently for each epoch. We employ a
Bayesian approach, using nested sampling (Skilling 2004, 2009) to
explore the parameter space.

InFig. 1, we show the averaged pulse profile for PSR J1103—5403,
which has been smoothed to reduce noise using psrsmooth
(Demorest et al. 2013). By visually inspecting the pulse shape, we
identify three main pulse features: the shoulder at ~0.30 in phase,
the leading edge of the pulse at ~0.42, and the brightest portion of
the pulse at ~0.48.2 Based on this morphology, we choose a sum of
three Gaussians as the basis functions to model the pulse profile

2 2
F@) = Ce™ @ + 3" B¢ — 0.5, 1)
i=0 Jj=0

where F(¢) is the flux at phase ¢, ¢; is the phase centring of each
Gaussian, C; is the amplitude, and B; is the width. The second
summation is included to model the baseline flux as a sum of
polynomials of order j. The scale of the baseline flux for each
polynomial is modelled by B; with a subtraction of 0.5 in phase
to ensure centring in the middle of the pulse.

2Following conventions in pulsar-timing literature, we measure phase in units
of revolutions (from zero to one).
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We use Fig. 1 to inform our priors, summarized in Table Al. A
priori we know that the width of the Gaussians should be small
compared to the pulse period motivating priors that are uniform in
logio(B;). We place a minimum on each B; that is five times the
width of the time bins to prevent the model from fitting small noise
fluctuations. The maximum on S; prevents the Gaussian fitting the
shoulder of the pulse (Gaussian 1) from interfering with the main
pulse (which we use to determine the time of arrival as discussed
below). The prior on both the Gaussian means ¢; and amplitudes C;
is a bounded uniform prior, forcing Cy < C; < C; and ¢y < ¢ <
¢>. This prior on the {¢;} ensures that the Gaussians do not have
multimodal posteriors due to swapping order. The constraints on the
amplitudes are motivated by the average pulse profile and ensure that
the model does not fit noise features to the right of the main pulse.

We also explore other potential models. For example, we fit a
model with two Gaussians, but find that the Bayesian evidence prefers
a three-component model. We fit a four-Gaussian model and find that
the additional Gaussian increases variation in the phase centring of
the largest amplitude Gaussian, increasing uncertainty in the timing
solution. We attempt to model the epoch profile with a single higher
order shapelet, as Lentati et al. (2017) (see Refregier 2003, for a
definition of shapelets) or sums of multiple higher order shapelets,
but again find for these models that the data prefer the three-Gaussian
model, or that the computing expense is too great. As the pulse profile
differs greatly between pulsars, this style of investigation is likely
required for dynamic pulse fitting on all pulsars.

The fitting is done with KOOKABURRA (Ashton & Nathan 2020), an
open-source PYTHON library. This library allows for easy definition
of the priors and basis functions, and uses BILBY (Ashton et al. 2019a)
for the fits themselves. KOOKABURRA fits pulses using shapelets
(Gaussians are zeroth-order shapelets), but users may define other
basis functions as well. KOOKABURRA outputs the posterior of the
parameters, as well as a Bayes factor comparing the signal hypothesis
(that the pulses consist of linear combination of basis functions) with
the noise hypothesis that no pulse is present.

We fit our model to the data using nested sampling. KOOKABURRA
and BILBY allow for the use of a number of sampling algorithms;
we use the nested sampling algorithm pymultinest (Feroz, Hob-
son & Bridges 2009; Buchner et al. 2014). We individually fit
52 de-dispersed, frequency- and polarization-averaged, time-folded
observing epochs from PSR J1103—5403. We use observations
taken using the MeerKAT radio telescope L-band receiver, collecting
between 856 and 1712 MHz (Bailes et al. 2020). The observations
have a nominal cadence of two weeks (Miles et al. 2023), from 2019
August 2 to 2021 September 25.

We show a fit to an example epoch (observed on 2020 March 12) in
Fig. 2. In both panels, the black curve shows the maximum-likelihood
model fit and the grey curve shows the flux data. The top panel
shows the 90 and 99 per cent confidence intervals from the posterior
distribution of the sampling in pink and the bottom panel shows
the three Gaussians making up the maximum-likelihood fit. The
pink Gaussian characterizes the shoulder, the orange characterizes
the leading edge of the main pulse, and the teal Gaussian fits the
brightest portion of the pulse. Fig. 3 shows the posterior distribution
for the mean of each Gaussian.’

After fitting for the pulse profile in individual epochs, we construct
a timing solution for PSR J1103—5403. There are numerous ways
one could define the time of arrival. We choose to identify the time of

3The corresponding corner plot showing the posteriors for all parameters is
shown in Appendix B in Fig. BI.
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Figure 2. An example of one of the 52 individual pulse fits (this is the
observing epoch from 2020 March 12). The top panel shows the maximum-
likelihood fit in black, with 90 and 99 per cent confidence intervals from the
posterior distribution of the fit shown in pink. The bottom panel shows the
three Gaussians (shown in orange, teal, and pink) summed for the maximum-
likelihood fit (black). The pulse data are shown in grey.
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Figure 3. Posterior distributions for the centres of each Gaussian ¢; fit to
the pulse in Fig. 2.

arrival as the maximum-likelihood estimate for ¢, the mean of the
third and most prominent Gaussian peak (denoted by the dashed teal
line in Fig. 2). Our rationale is that this prominent feature of the pulse
profile is likely the most stable over long periods of time. We convert
¢», which is measured in phase, into a time of arrival in Modified
Julian Day (MJD) in order to fit a timing solution. We record the 1o
credible interval for ¢,; this is an estimate for our uncertainty on the

MNRAS 523, 4405-4412 (2023)

920z Asenuer g1 uo Jasn Alsiaaiun uodweyinos Aq 022161 2/SOvy/S/EZS/a0ne/seiuw/woo dno olwapese//:sdiy Woll papeojumod]


art/stad1660_f2.eps
art/stad1660_f3.eps

4408 R. S. Nathan et al.

< o
-
—o
——
e
—a
—— -
—ee
———
-
L —m—
——e—

Post-fit Residuals (pus)

¢ Dynamic, RMS: 2.141ps
¢

—-10
Template, RMS: 2.393us

38700 38800 58900 59000 59100 59200 39300 359400 59500
NMJID

Figure 4. A comparison of the timing solutions produced by template
fitting (grey) and dynamic basis-function fitting with KOOKABURRA (pink).
Our method is flexible to changes in pulse shape while maintaining timing
accuracy. Our timing solution improves on matched-filter template methods,
with a smaller RMS of 2.141 ps. Both timing solutions show evidence of
mode changing, highlighted by the grey line dividing the two groups of
residuals.

pulse arrival time.*The list of times of arrival (and their associated
uncertainties) is passed to TEMPO2 (Edwards, Hobbs & Manchester
2006; Hobbs, Edwards & Manchester 2006), which finds the best-
fitting pulsar model. This is achieved by a chi-squared minimization
of the residuals (see Hobbs et al. 2006).

3 TIMING SOLUTIONS

‘We show our timing solution in Fig. 4. The pink points represent the
post-fit residuals obtained with our three-Gaussian fit. We compare
our dynamic method to matched-filter template times of arrival
obtained by PSRCHIVE (Hotan, van Straten & Manchester 2004). We
fit the template using the default PSRCHIVE fitting method (Fourier
phase gradient; see Taylor 1992). This fit is represented by the
grey times of arrival in Fig. 4. The two methods yield qualitatively
similar timing solutions. However, our three-Gaussian fit yields a
somewhat lower RMS: 2.141 ps down from 2.393 us. We attribute
this reduction in RMS to the flexibility of our pulse profile fits, which
we posit yield a more accurate fit on average.

The full power of our pipeline is yet to be demonstrated as
additional improvement in the RMS is possible using analysis of
the pulse profile shape. In Fig. 4, we see that there is evidence of
mode changing in PSR J1103—5403, which is evident as a tendency
for the post-fit residuals to cluster around two distinct values: one at
zero and one at ~—7.5 ps. The dashed line on Fig. 4 differentiates
between the two modes.

To investigate the shapes of the two modes, we plot the average
profile of the two groups in Fig. 5. The difference in shapes exhibited
in Fig. 5 suggests that the Gaussian fit to the leading edge of the pulse
(Gaussian 1) may be able to differentiate between the modes. To
further examine this, in the top panel of Fig. 6 we show a histogram
of C,/C, the ratio of the height of the first Gaussian C; to the height
of the second Gaussian C,. The total flux varies between epochs,
thus this ratio allows comparison between epochs. This bimodal plot
suggests that there could be two distinct sub-populations of pulse
profiles, delineated by the vertical grey dashed line. Plotting C,/C,
versus residual in the bottom panel of Fig. 6, we see that the different

4We use a single symmetric error estimate as TEMPO2 does not take a full
posterior.

MNRAS 523, 4405-4412 (2023)

0
L timing solution residual:
i less than —2.5us
0.8
A greater than —2.5pus
=06
z
S 0.4
2 0.2
0.0 Y
o 0.1
e
S i Rl
& ' )
D - -
0.0 0.2 0.4 0.6 0.8 1.0

Phase (revolutions)

Figure 5. The average profile shapes of the two proposed modes, separated
by the dashed line in Fig. 4. The top panel contains a teal curve comprised
of epochs with a timing solution residual greater than —2.5 ps (Mode A),
whereas the orange curve comprises of epochs with timing solution residuals
less than —2.5 ps (Mode B). The bottom panel shows the difference between
these two modes in grey. There are noticeable differences in the shapes of
these profiles at the leading edge (~0.42 in phase) and the shoulder (~0.30
in phase).
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Figure 6. The ratio of Gaussian-peak-height one to Gaussian-peak-height
two C1/C;. The top panel shows the bimodality arising from the different
pulse shapes of Mode A and Mode B, which we use to design our cut. The
bottom panel shows the timing solution residuals versus C1/C>, highlighting
the effect of the cut to obtain a more pure sample of Mode A pulses.

sub-populations hinted at in Figs 4 and 5 are strongly correlated
with the different pulse profile modes (similar to Lyne et al. 2010).
Small values of C,/C, are associated with the mode clustered about
a residual of zero (Mode A, shown in teal), while larger values
are associated with the mode clustered around residuals of —7.5
us (Mode B, shown in orange). The correlation between C,/C, and
the residuals confirms that the two modes are related to changes in
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Figure 7. Timing solution produced with times of arrival from a flexible
Gaussian fit, where pulses with an amplitude ratio (C/C;) greater than 0.21
are removed. This timing solution has an RMS of 1.343 us, which is a factor
of 1.78 improvement on the matched-filter template method. There is an
outlier with a large negative residual at around 59020 MJD, due to imperfect
separation between Mode A and Mode B when using the C;/C, metric.

C,/C,. We design a cut using C;/C, that yields a subset of timing
measurements targeting just a single mode.’

We cut the data, keeping epochs only if C,/C, < 0.21 (the dashed
vertical line in Fig. 6). This cut results in the removal of the majority
of Mode B while preserving the bulk of the Mode A epochs. The
cut is not perfect: there is still some contamination from Mode B
epochs, and some of the data that are removed contain Mode A
epochs. This implies that there are additional pulse-shape changes
connected to the assumed mode changing that this method is unable
to capture. However, the cut produces a more pure sample of Mode A.
Fig. 7 shows the result of timing after the application of the cut. Our
timing solution has an RMS of only 1.343 us, which improves on
the matched-filter template timing solution when all data are used,
by a factor of 1.78.

Next, we determine how our analysis affects the usefulness of
these data for searches for gravitational waves. When modelling
pulsar data, an uncorrelated white-noise term is included to account
for pulse jitter, the random variation in pulse shape.® This white-noise
term in the full data setis 3.981 us, whereas in the data set with the cut
it is 0.933 ps. This factor 4.3 reduction in white noise suggests that
the mode-changing behaviour was misspecified by the model, and
was included instead as jitter noise. By accounting for mode changing
in the timing and reducing the white noise, our noise modelling can
be more sensitive to time-correlated red noise processes, such as the
stochastic gravitational-wave background.

The signal-to-noise ratio (SNR) of the gravitational-wave back-
ground scales as (Siemens et al. 2013)

(p) o (ca™?)""*, @)

where (p) is the (expectation value of the) SNR of the gravitational-
wave background, o is the white-noise RMS, § is the spectral index of

5The ratio Co/C, is also correlated with the post-fit residual, albeit less
strongly than the ratio C1/C3.

SIn pulsar timing, white noise is typically described by the sum of the error
factor (EFAC), error-correction factor (ECORR), and quadrature-added error
(EQUAD; see Verbiest et al. 2016, for details). When white noise is mentioned
in this paper, we refer only to ECORR, the pulse jitter term.
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the gravitational-wave background, and c is the observing cadence.”
We use this scaling to assess the change in SNR from our analysis,
which produces a smaller value for o, but at the cost of throwing out
some data:

) 2 \3/26

(phllered) — (Cﬁl(ered(r‘ﬂ‘;?md) / — 13 (3)
(ogan) Chall Ol

Thus, for this particular pulsar, we can achieve a 32 per cent reduction

in the noise for a stochastic background analysis.

4 DISCUSSION

We show, using PSR J1103—5403 as a case study, that employing
a fitting method that can identify and then time a single mode
(using flexible, epoch-to-epoch fitting) can improve timing solution
residuals in mode-changing pulsars. This method may be able to
identify other pulsars exhibiting mode changing and improve their
timing. We hope to apply this method to other pulsars to see
whether we are able to reduce the inferred white noise similarly.
Additionally, we hope to fit basis functions to pulsars experiencing
other kinds of pulse-shape variability to see whether these can be
characterized and improved as well. Mode changing was recently
found in J1909—3744, which is the most precisely timed pulsar
(Miles et al. 2022). Therefore, dynamic pulse fitting may offer
new insights to some of our most important and precise pulsars for
timing.

While this work primarily focuses on the improvement of timing
precision for gravitational-wave detection, pulse profile variability
has the potential to provide insights into pulsar physics. In particular,
the pulse emission mechanism is currently poorly understood, but
the geometry of the pulsar magnetic field and emission heights are
thought to influence the intensity of the observed radio flux. By using
basis functions to characterize each observing epoch (or in the case
of bright pulsars, individual pulses), we can start to piece together
a picture of pulse-shape evolution. Large shape-change events such
as mode changing, nulling, and sub-pulse drifting have been studied
in order to constrain pulsar emission models (e.g. Kramer et al.
2006a; Lyne et al. 2010; Basu et al. 2016; Brook et al. 2016,
2018; Chen et al. 2022; Shang et al. 2022; Shaw et al. 2022),
but we believe that a broader data set of subtle, pulse-to-pulse, or
longer time span changes, may shed light on the emission mecha-
nism further. Applying our method to many pulsars may therefore
provide a large data set of pulse-shape evolution across multiple
pulsars.

Mode changing and nulling are related to interesting shape-change
phenomena. They are both thought to arise from a change in the struc-
ture in the magnetosphere in the neutron star. Janagal et al. (2022)
show a relationship between periods of nulling and mode changing in
PSR J1822—-2256, where nulling is always followed by a particular
mode. This correlation suggests that the mechanisms between nulling
and mode changing may be strongly related. Mode changing and
nulling are not commonly observed features of millisecond pulsars,
but with PSR J1103—5403 being the fourth millisecond pulsar now
observed to exhibit mode changing, it is clear that these events happen
to pulsars with millisecond periods. This demonstrates that mode
changing can occur on millisecond time-scales, and this can continue
to constrain the physical processes causing these phenomena. The

"Time-correlated noise terms were not able to be modelled in this data set due
to an insufficient time span, so instead of providing a direct upper limit for
gravitational waves we provide a projection based on Siemens et al. (2013).
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observing epochs for PSR J1103—5403 are separated by days, but
Miles et al. (2022) show that the millisecond pulsar PSR J1909—3744
has an upper limit of 2.941 ms on the time-scale for magnetospheric
changes causing the mode changes.

There are a number of natural extensions to be made to the
method introduced in this work. The observing epoch fits here are
frequency- and polarization-averaged. Pulse profiles are known to
have a large dependence on frequency in many pulsars, and averaging
over large bandwidths may induce larger timing solution residuals
(Demorest et al. 2013; Shannon & Cordes 2017). Low-frequency
pulse profile changes specifically offer insight about pulsar emission
geometry, offering a rare study of the configuration of the pulse
emission mechanism (Olszanski et al. 2022). Applying this method
to frequency sub-banded data may yield a simple yet impactful
extension. Additionally, polarization profiles provide information
about the electron density in the interstellar medium and magnetic
fields in globular clusters (Abbate et al. 2023). The science to be
gleaned from frequency and polarization banded pulse profile fits
motivates the application of Bayesian basis-function fitting to them
(see van Straten 2006; Lentati et al. 2017). Given that each profile
can be analysed in parallel, this extra computation may be practical
with a computing cluster, while offering the potential for rich pulsar
science.

As discussed in Section 2, the choice for a three-Gaussian model
was based on a visual inspection of the average pulse morphology.
This model worked well for PSR J1103—5403, but every pulsar will
have a unique pulse shape and pulse-shape evolution. For this reason,
the extension of this method to other pulsars may require different
combinations of basis functions for each pulsar. The options are
endless, but there is still the question of how many basis functions
are needed to best model data. To assist this, we are developing
a transdimensional sampler that is able to fit the number of basis
functions. This will allow us to remove the arbitrary choice of the
number of basis functions.

Another pulsar of interest is PSR J17134-0747. This pulsar is
observed by all constituents of the IPTA due to its apparent stability
and large SNR. However, in 2021 April it underwent a dramatic
pulse-shape-change event (Lam 2021; Singha et al. 2021; Jennings
etal.2022), which induced large residuals in the timing solution using
the matched-filter template approach. This shape-change event seems
to mainly effect the leading and trailing edges of the pulse, rather than
the tallest component of the pulse. An appropriately modelled basis-
function-fitting method would be able to reduce the timing residuals
connected to these shape changes. In addition, quantifying the pulse-
shape parameters of this event by recording how the parameters of
the basis function change from pulse to pulse may offer insight as to
how portions of the emission region are changing over the recovery
period.
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APPENDIX A: PRIORS ON DYNAMIC MODEL
PARAMETERS

In Table A1, we show the prior distributions of the parameter fits to
every observing epoch.

Table Al. The priors on the parameter fits to each epoch. There are three
Gaussians for each fit, thus i = {0, 1, 2}. U(a, b) denotes a uniform prior
distribution between a and b.

Parameter Prior
¢; (mean) U (0, Cigr,iz2)
¢> (mean) UuQo, 1)
C; (amplitude) U (0, Cigr,iz2)
C, (amplitude) UuQo, 1)

Bi (width) logo [U (75 x 5.0.032)]

APPENDIX B: POSTERIORS OF INDIVIDUAL
EPOCH FIT

In Fig. B1, we show the posterior distributions of the parameters of
the three-Gaussian fit to the epoch shown in Fig. 2. The ¢; represent
the centring of the Gaussians in phase, the §; are the widths in phase,
and the C; are the amplitudes of each Gaussian in normalized flux.
We use ¢, as the time of arrival for producing a timing solution.
We place an arbitrary maximum on B; to prevent the Gaussian
fitting the shoulder of the pulse (Gaussian 1) from interfering with
the main pulse (which we use to determine the time of arrival as
described above). We note that our posterior has support at this
arbitrary maximum (see Fig. B1). However, we do not use the full
posterior and, if we increase this maximum, the post-fit residuals
are increased; therefore, we argue that the arbitrary maximum is
justified.
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Figure B1. Posterior distribution of the parameter fits to the epoch shown in Fig. 2.
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