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A B S T R A C T 

Precision pulsar timing is integral to the detection of the nanohertz stochastic gra vitational-wa ve background as well as 
understanding the physics of neutron stars. Conventional pulsar timing often uses fixed time and frequenc y-av eraged templates 
to determine the pulse times of arri v al, which can lead to reduced accuracy when the pulse profile evolves over time. We illustrate 
a dynamic timing method that fits each observing epoch using basis functions. By fitting each epoch separately, we allow for 
the evolution of the pulse shape epoch to epoch. We apply our method to PSR J1103 −5403 and find evidence that it undergoes 
mode changing, making it the fourth millisecond pulsar to exhibit such behaviour. Our method, which is able to identify and 

time a single mode, yields a timing solution with a root-mean-square error of 1 . 343 μs, a factor of 1.78 impro v ement o v er 
template fitting on both modes. In addition, the white-noise amplitude is reduced 4.3 times, suggesting that fitting the full data 
set causes the mode changing to be incorrectly classified as white noise. This reduction in white noise boosts the signal-to-noise 
ratio of a gra vitational-wa ve background signal for this particular pulsar by 32 per cent. We discuss the possible applications for 
this method of timing to study pulsar magnetospheres and further impro v e the sensitivity of searches for nanohertz gravitational 
waves. 

Key words: methods: data analysis – stars: neutron – pulsars: general – pulsars: individual: J1103 −5403. 
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 I N T RO D U C T I O N  

ue to their remarkable regularity, pulsars are exceptionally accurate 
locks. Pulsar timing is therefore useful across many areas of 
hysics. Timing many stable pulsars across the sky in a pulsar
iming array can detect low-frequency nanohertz gravitational waves 
Hellings & Downs 1983 ) from sources such as supermassive binary 
lack holes (Sesana et al. 2004 ; Kocsis & Sesana 2011 ; Taylor,
imon & Sampson 2017 ; Burke-Spolaor et al. 2019 ) and phase

ransitions in the early Universe (e.g. Starobinsky 1980 ; Grishchuk 
005 ; Lasky et al. 2016 ). The most recent data sets from three of
he world’s major pulsar timing arrays, the European Pulsar Timing 
rray (Kramer & Champion 2013 ), the North American Nanohertz 
bservatory for Gravitational Waves (McLaughlin 2013 ), and the 
arkes Pulsar Timing Array (Manchester et al. 2013 ), have shown 
vidence of a common, red noise process in the residuals of their
ulsar arri v al times (Arzoumanian et al. 2020 ; Chen et al. 2021 ;
oncharov et al. 2021 ). Common red noise was also found when

hese data were combined by the International Pulsar Timing Array 
IPTA; Antoniadis et al. 2022 ). Common red noise can arise due
o the stochastic gra vitational-wa ve background. Ho we ver, in order
o make an unambiguous detection, one must observe an angular 
orrelation function consistent with the Hellings and Downs curve 
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Hellings & Downs 1983 ), a quadrupolar correlation between timing 
elays across the sky. With new data releases imminent, the detection
f nanohertz gravitational waves may be around the corner. 
Current pulsar-timing methods employ a single matched-filter 

emplate to calculate pulse times of arri v al. 1 Often, the template
s created by averaging together many of the observed pulses. This
ingle, static template is then used to time all the pulses. Ho we ver,
ll pulsars exhibit at least some degree of pulse-to-pulse shape 
ariation (Parthasarathy et al. 2021 ), which conventional pulsar- 
iming methods are not able to account for. 

There are a number of phenomena that are known to cause obvious
hanges in pulse shape. For example, giant pulses are extraordinarily 
right and narrow outbursts of radio flux (Staelin & Reifenstein 1968 ;
eyer et al. 2021 ; Caleb et al. 2022 ). Pulses can be temporarily
roadened or lensed by the interstellar medium (Rickett 1970 ; 
hannon & Cordes 2017 ; Bilous, Ransom & Demorest 2019 ; Lin
t al. 2021 ; Askew, Reardon & Shannon 2023 ). Geodetic precession,
here the strong gravitational field of the pulsar results in spin–orbit

oupling, causes pulse shapes to evolve over time (Kramer 1998 ;
onseca, Stairs & Thorsett 2014 ; Desvignes et al. 2019 ; Venkatraman
Frequency-dependent templates are sometime used, either with multiple 
emplates across different sub-bands (e.g. van Straten 2006 ; Liu et al. 2014 ) 
r by fitting functional forms to the template across the frequency band (e.g. 
ennucci, Demorest & Ransom 2014 ; Pennucci 2019 ). 
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Figure 1. The smoothed total intensity profile of PSR J1103 −5403. This is 
the average of 52 observing epochs from across 3 yr, which is then smoothed 
to emphasize the main pulse features. 
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2 F ollowing conv entions in pulsar-timing literature, we measure phase in units 
of revolutions (from zero to one). 
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rishnan et al. 2019 ; Noutsos et al. 2020 ). A pulsar can undergo a
eriod of mode changing, in which it switches between two or more
haracteristic pulse shapes (Bartel et al. 1982 ; Wang, Manchester &
ohnston 2007 ; Miles et al. 2022 ). On occasion, pulses have been
een to cease completely, in a process known as nulling (Backer
970 ; Gajjar, Joshi & Kramer 2012 ). 
There are also more subtle pulse-shape changes, such as stochastic

hanges known as ‘jitter’ (Shannon et al. 2014 ; Parthasarathy et al.
021 ) and slo w e volution in pulse shape due to sub-pulse drifting
Drake & Craft 1968 ; Backer 1973 ; Chen et al. 2023 ). A single pulse
rofile template does not capture the pulse-shape variation from these
nd other effects. Since the average template may not be a good
atch for some pulses, the estimated pulse time of arri v al can be

ignificantly wrong, leading to increased errors in the timing solution.
ulse-shape variation therefore is a source of noise for pulsar timing
rrays, reducing our ability to detect nanohertz gravitational waves. 

While our primary goal is to reduce the timing solution residuals
or gra vitational-wa ve searches, modelling the ev olution of pulse
hape is interesting in its own right. By studying how pulse shape
aries o v er time, it may be possible to gain a better understanding
f the pulsar magnetosphere and/or pulsar emission (Rankin 1986 ;
airns, Johnston & Das 2004 ; Janagal et al. 2022 ). Moreo v er, pulsar

iming allows for tests of general relativity in the strong field limit
Kramer et al. 2006b , 2021a , b ; Freire et al. 2012 ; Archibald et al.
018 ; Voisin et al. 2020 ) and it provides us with an improved
nderstanding of the neutron star equation of state (Demorest et al.
010 ; Antoniadis et al. 2013 ; Fonseca et al. 2021 ; Miller et al. 2021 ;
iley et al. 2021 ) and thus the behaviour of matter at extreme densities

Oppenheimer & Volkoff 1939 ; Kurkela et al. 2014 ; Özel et al. 2016 ).
All pulsars exhibit pulse-shape v ariations. Ho we ver, large shape-

hange events are less common in millisecond pulsars; they are
ostly stable, which makes them good candidates for long-term

ulsar timing. There are currently three millisecond pulsars known
o mode-change: PSR B1957 + 20 (Mahajan et al. 2018 ), PSR
0621 + 1002 (Wang et al. 2021 ), and PSR J1909 −3744 (Miles et al.
022 ). PSR J1103 −5403 is a pulsar observed by the MeerKAT
elescope as part of the MeerKAT Pulsar Timing Array (MPTA; Miles
t al. 2023 ). We show that this pulsar exhibits the characteristics of
 mode-changing pulsar, as it has a group of early arriving outliers
n the timing solution residuals. This millisecond pulsar has a period
f only ∼3.4 ms and is a good candidate for a timing array pulsar.
o we ver, the mode changing severely restricts its timing accuracy.
his makes it an ideal test case for an alternate timing method that

s better able to constrain pulse-shape variability. 
Lentati, Alexander & Hobson ( 2015 ) developed a profile-domain

iming method where individual time-averaged epochs were fit,
llowing for simultaneous estimation of the timing model, dispersion
easure variations, and pulse profile evolution. When this was

mplemented with broad-band frequency evolution, an impro v ement
f up to 40 per cent was seen in pulsar-timing precision (Lentati et al.
017 ). Pulse-to-pulse timing has already been shown to measure the
litch rise time of the Vela pulsar (Ashton et al. 2019b ). Ho we ver,
ulse-to-pulse observations are only available for the brightest
illisecond pulsars. It is therefore common to use epochs for timing,
here an observing period is folded and summed o v er man y pulse
eriods to increase the brightness of the pulse. We implement here
n epoch-to-epoch fitting method, in order to determine whether
he flexibility of this method provides insights on time-averaged 
ata. 
In this paper, we present a pulsar-timing method that allows for

nd is sensitive to pulse-shape variation, using PSR J1103 −5403
s a case study. We are able to confidently determine outliers in
NRAS 523, 4405–4412 (2023) 
ulse shape, the removal of which from the total data results in
 reduction of the timing solution root-mean-square error (RMS;
his error arises from the difference between pulse times of arrival
redicted by the timing solution and observations). We reduce the
MS of this pulsar by a factor of 1.78 consequently improving the

ensitivity of PSR J1103 −5403 to the gra vitational-wa ve background
y 32 per cent. We describe how our method can be more broadly
pplied to other pulsars. The remainder of this paper is organized
s follows. In Section 2 , we describe our mathematical formalism
nd individual epoch fitting. In Section 3 , we present the results
f our analysis of PSR J1103 −5403 and compare them to the
atched-filter template method. We then use the parameter fits to

ach pulse to characterize the shapes present in the mode changing,
nd produce a single mode timing solution. Finally, in Section 4 we
iscuss the implications of our results and consider avenues for future
ork. 

 I N D I V I D UA L  E P O C H  FITTING  

n order to fit the flux profile of each epoch, we fit a sum of
asis functions (similar to Kramer et al. 1994 ; Lentati et al. 2015 ;
admanabh et al. 2021 ; Cameron et al. 2022 ). The parameters of these
asis functions are fit independently for each epoch. We employ a
ayesian approach, using nested sampling (Skilling 2004 , 2009 ) to
xplore the parameter space. 

In Fig. 1 , we show the averaged pulse profile for PSR J1103 −5403,
hich has been smoothed to reduce noise using psrsmooth

Demorest et al. 2013 ). By visually inspecting the pulse shape, we
dentify three main pulse features: the shoulder at ∼0.30 in phase,
he leading edge of the pulse at ∼0.42, and the brightest portion of
he pulse at ∼0.48. 2 Based on this morphology, we choose a sum of
hree Gaussians as the basis functions to model the pulse profile 

 ( φ) = 

2 ∑ 

i= 0 

C i e 
−( φ−φi ) 2 /β2 

i + 

2 ∑ 

j= 0 

B j ( φ − 0 . 5) j , (1) 

here F ( φ) is the flux at phase φ, φi is the phase centring of each
aussian, C i is the amplitude, and β i is the width. The second

ummation is included to model the baseline flux as a sum of
olynomials of order j . The scale of the baseline flux for each
olynomial is modelled by B j with a subtraction of 0.5 in phase
o ensure centring in the middle of the pulse. 
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Figure 2. An example of one of the 52 individual pulse fits (this is the 
observing epoch from 2020 March 12). The top panel shows the maximum- 
likelihood fit in black, with 90 and 99 per cent confidence intervals from the 
posterior distribution of the fit shown in pink. The bottom panel shows the 
three Gaussians (shown in orange, teal, and pink) summed for the maximum- 
likelihood fit (black). The pulse data are shown in grey. 

Figure 3. Posterior distributions for the centres of each Gaussian φi fit to 
the pulse in Fig. 2 . 
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We use Fig. 1 to inform our priors, summarized in Table A1 . A
riori we know that the width of the Gaussians should be small
ompared to the pulse period moti v ating priors that are uniform in
og 10 ( β i ). We place a minimum on each β i that is five times the
idth of the time bins to prevent the model from fitting small noise
uctuations. The maximum on β i prevents the Gaussian fitting the 
houlder of the pulse (Gaussian 1) from interfering with the main 
ulse (which we use to determine the time of arri v al as discussed
elow). The prior on both the Gaussian means φi and amplitudes C i 

s a bounded uniform prior, forcing C 0 < C 1 < C 2 and φ0 < φ1 <

2 . This prior on the { φi } ensures that the Gaussians do not have
ultimodal posteriors due to swapping order. The constraints on the 

mplitudes are moti v ated by the average pulse profile and ensure that
he model does not fit noise features to the right of the main pulse. 

We also explore other potential models. F or e xample, we fit a
odel with two Gaussians, but find that the Bayesian evidence prefers
 three-component model. We fit a four-Gaussian model and find that 
he additional Gaussian increases variation in the phase centring of 
he largest amplitude Gaussian, increasing uncertainty in the timing 
olution. We attempt to model the epoch profile with a single higher
rder shapelet, as Lentati et al. ( 2017 ) (see Refregier 2003 , for a
efinition of shapelets) or sums of multiple higher order shapelets, 
ut again find for these models that the data prefer the three-Gaussian
odel, or that the computing expense is too great. As the pulse profile

iffers greatly between pulsars, this style of investigation is likely 
equired for dynamic pulse fitting on all pulsars. 

The fitting is done with KOOKABURRA (Ashton & Nathan 2020 ), an
pen-source PYTHON library. This library allows for easy definition 
f the priors and basis functions, and uses BILBY (Ashton et al. 2019a )
or the fits themselves. KOOKABURRA fits pulses using shapelets 
Gaussians are zeroth-order shapelets), but users may define other 
asis functions as well. KOOKABURRA outputs the posterior of the 
arameters, as well as a Bayes factor comparing the signal hypothesis 
that the pulses consist of linear combination of basis functions) with 
he noise hypothesis that no pulse is present. 

We fit our model to the data using nested sampling. KOOKABURRA 

nd BILBY allow for the use of a number of sampling algorithms;
e use the nested sampling algorithm pymultinest (Feroz, Hob- 

on & Bridges 2009 ; Buchner et al. 2014 ). We individually fit
2 de-dispersed, frequency- and polarization-averaged, time-folded 
bserving epochs from PSR J1103 −5403. We use observations 
aken using the MeerKAT radio telescope L -band receiver, collecting 
etween 856 and 1712 MHz (Bailes et al. 2020 ). The observations
ave a nominal cadence of two weeks (Miles et al. 2023 ), from 2019
ugust 2 to 2021 September 25. 
We show a fit to an example epoch (observed on 2020 March 12) in

ig. 2 . In both panels, the black curve shows the maximum-likelihood 
odel fit and the grey curve shows the flux data. The top panel

hows the 90 and 99 per cent confidence intervals from the posterior
istribution of the sampling in pink and the bottom panel shows
he three Gaussians making up the maximum-likelihood fit. The 
ink Gaussian characterizes the shoulder, the orange characterizes 
he leading edge of the main pulse, and the teal Gaussian fits the
rightest portion of the pulse. Fig. 3 shows the posterior distribution
or the mean of each Gaussian. 3 

After fitting for the pulse profile in individual epochs, we construct 
 timing solution for PSR J1103 −5403. There are numerous ways 
ne could define the time of arri v al. We choose to identify the time of
 The corresponding corner plot showing the posteriors for all parameters is 
hown in Appendix B in Fig. B1 . 

p  

φ  

J
c  
rri v al as the maximum-likelihood estimate for φ2 , the mean of the
hird and most prominent Gaussian peak (denoted by the dashed teal
ine in Fig. 2 ). Our rationale is that this prominent feature of the pulse
rofile is likely the most stable o v er long periods of time. We convert
2 , which is measured in phase, into a time of arri v al in Modified
ulian Day (MJD) in order to fit a timing solution. We record the 1 σ
redible interval for φ2 ; this is an estimate for our uncertainty on the
MNRAS 523, 4405–4412 (2023) 

art/stad1660_f2.eps
art/stad1660_f3.eps


4408 R. S. Nathan et al. 

M

Figure 4. A comparison of the timing solutions produced by template 
fitting (grey) and dynamic basis-function fitting with KOOKABURRA (pink). 
Our method is flexible to changes in pulse shape while maintaining timing 
accuracy. Our timing solution improves on matched-filter template methods, 
with a smaller RMS of 2 . 141 μs. Both timing solutions sho w e vidence of 
mode changing, highlighted by the grey line dividing the two groups of 
residuals. 
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Figure 5. The average profile shapes of the two proposed modes, separated 
by the dashed line in Fig. 4 . The top panel contains a teal curve comprised 
of epochs with a timing solution residual greater than −2 . 5 μs (Mode A), 
whereas the orange curve comprises of epochs with timing solution residuals 
less than −2 . 5 μs (Mode B). The bottom panel shows the difference between 
these two modes in grey. There are noticeable differences in the shapes of 
these profiles at the leading edge ( ∼0.42 in phase) and the shoulder ( ∼0.30 
in phase). 

Figure 6. The ratio of Gaussian-peak-height one to Gaussian-peak-height 
two C 1 / C 2 . The top panel shows the bimodality arising from the different 
pulse shapes of Mode A and Mode B, which we use to design our cut. The 
bottom panel shows the timing solution residuals versus C 1 / C 2 , highlighting 
the effect of the cut to obtain a more pure sample of Mode A pulses. 
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ulse arri v al time. 4 The list of times of arri v al (and their associated
ncertainties) is passed to TEMPO2 (Edwards, Hobbs & Manchester
006 ; Hobbs, Edwards & Manchester 2006 ), which finds the best-
tting pulsar model. This is achieved by a chi-squared minimization
f the residuals (see Hobbs et al. 2006 ). 

 T IMIN G  S O L U T I O N S  

e show our timing solution in Fig. 4 . The pink points represent the
ost-fit residuals obtained with our three-Gaussian fit. We compare
ur dynamic method to matched-filter template times of arri v al
btained by PSRCHIVE (Hotan, van Straten & Manchester 2004 ). We
t the template using the default PSRCHIVE fitting method (Fourier
hase gradient; see Taylor 1992 ). This fit is represented by the
rey times of arri v al in Fig. 4 . The two methods yield qualitatively
imilar timing solutions. Ho we ver, our three-Gaussian fit yields a
ome what lo wer RMS: 2 . 141 μs do wn from 2 . 393 μs. We attribute
his reduction in RMS to the flexibility of our pulse profile fits, which
e posit yield a more accurate fit on average. 
The full power of our pipeline is yet to be demonstrated as

dditional impro v ement in the RMS is possible using analysis of
he pulse profile shape. In Fig. 4 , we see that there is evidence of

ode changing in PSR J1103 −5403, which is evident as a tendency
or the post-fit residuals to cluster around two distinct values: one at
ero and one at ≈−7 . 5 μs. The dashed line on Fig. 4 differentiates
etween the two modes. 

To investigate the shapes of the two modes, we plot the average
rofile of the two groups in Fig. 5 . The difference in shapes exhibited
n Fig. 5 suggests that the Gaussian fit to the leading edge of the pulse
Gaussian 1) may be able to differentiate between the modes. To
urther examine this, in the top panel of Fig. 6 we show a histogram
f C 1 / C 2 , the ratio of the height of the first Gaussian C 1 to the height
f the second Gaussian C 2 . The total flux varies between epochs,
hus this ratio allows comparison between epochs. This bimodal plot
uggests that there could be two distinct sub-populations of pulse
rofiles, delineated by the vertical grey dashed line. Plotting C 1 / C 2 

ersus residual in the bottom panel of Fig. 6 , we see that the different
NRAS 523, 4405–4412 (2023) 

 We use a single symmetric error estimate as TEMPO2 does not take a full 
osterior. 

a  

a  

μ  

t  
ub-populations hinted at in Figs 4 and 5 are strongly correlated
ith the different pulse profile modes (similar to Lyne et al. 2010 ).
mall values of C 1 / C 2 are associated with the mode clustered about
 residual of zero (Mode A, shown in teal), while larger values
re associated with the mode clustered around residuals of −7 . 5
s (Mode B, shown in orange). The correlation between C 1 / C 2 and

he residuals confirms that the two modes are related to changes in
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Figure 7. Timing solution produced with times of arri v al from a flexible 
Gaussian fit, where pulses with an amplitude ratio ( C 1 / C 2 ) greater than 0.21 
are remo v ed. This timing solution has an RMS of 1 . 343 μs, which is a factor 
of 1.78 impro v ement on the matched-filter template method. There is an 
outlier with a large ne gativ e residual at around 59020 MJD, due to imperfect 
separation between Mode A and Mode B when using the C 1 / C 2 metric. 
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 1 / C 2 . We design a cut using C 1 / C 2 that yields a subset of timing
easurements targeting just a single mode. 5 

We cut the data, keeping epochs only if C 1 / C 2 < 0.21 (the dashed
ertical line in Fig. 6 ). This cut results in the removal of the majority
f Mode B while preserving the bulk of the Mode A epochs. The
ut is not perfect: there is still some contamination from Mode B
pochs, and some of the data that are remo v ed contain Mode A
pochs. This implies that there are additional pulse-shape changes 
onnected to the assumed mode changing that this method is unable 
o capture. Ho we ver, the cut produces a more pure sample of Mode A. 
ig. 7 shows the result of timing after the application of the cut. Our

iming solution has an RMS of only 1 . 343 μs, which impro v es on
he matched-filter template timing solution when all data are used, 
y a factor of 1.78. 
Next, we determine how our analysis affects the usefulness of 

hese data for searches for gravitational waves. When modelling 
ulsar data, an uncorrelated white-noise term is included to account 
or pulse jitter, the random variation in pulse shape. 6 This white-noise 
erm in the full data set is 3 . 981 μs, whereas in the data set with the cut
t is 0 . 933 μs. This factor 4.3 reduction in white noise suggests that
he mode-changing behaviour was misspecified by the model, and 
as included instead as jitter noise. By accounting for mode changing 

n the timing and reducing the white noise, our noise modelling can
e more sensitive to time-correlated red noise processes, such as the 
tochastic gra vitational-wa ve background. 

The signal-to-noise ratio (SNR) of the gra vitational-wa ve back- 
round scales as (Siemens et al. 2013 ) 

 ρ〉 ∝ 

(
c σ−2 

)1 / (2 β) 
, (2) 

here 〈 ρ〉 is the (expectation value of the) SNR of the gravitational-
ave background, σ is the white-noise RMS, β is the spectral index of 
 The ratio C 0 / C 2 is also correlated with the post-fit residual, albeit less 
trongly than the ratio C 1 / C 2 . 
 In pulsar timing, white noise is typically described by the sum of the error 
actor (EFAC), error-correction factor (ECORR), and quadrature-added error 
EQUAD; see Verbiest et al. 2016 , for details). When white noise is mentioned 
n this paper, we refer only to ECORR, the pulse jitter term. 

o
t
c
t

7

t
g

he gra vitational-wa ve background, and c is the observing cadence. 7 

e use this scaling to assess the change in SNR from our analysis,
hich produces a smaller value for σ , but at the cost of throwing out

ome data: 

〈 ρfiltered 〉 
〈 ρfull 〉 = 

(
c filtered σ

−2 
filtered 

c full σ
−2 
full 

)3 / 26 

= 1 . 32 . (3) 

hus, for this particular pulsar, we can achieve a 32 per cent reduction
n the noise for a stochastic background analysis. 

 DI SCUSSI ON  

e show, using PSR J1103 −5403 as a case study, that employing
 fitting method that can identify and then time a single mode
using flexible, epoch-to-epoch fitting) can improve timing solution 
esiduals in mode-changing pulsars. This method may be able to 
dentify other pulsars exhibiting mode changing and impro v e their
iming. We hope to apply this method to other pulsars to see
hether we are able to reduce the inferred white noise similarly.
dditionally, we hope to fit basis functions to pulsars experiencing 
ther kinds of pulse-shape variability to see whether these can be
haracterized and impro v ed as well. Mode changing was recently
ound in J1909 −3744, which is the most precisely timed pulsar
Miles et al. 2022 ). Therefore, dynamic pulse fitting may offer
ew insights to some of our most important and precise pulsars for
iming. 

While this work primarily focuses on the impro v ement of timing
recision for gra vitational-wa ve detection, pulse profile variability 
as the potential to provide insights into pulsar physics. In particular,
he pulse emission mechanism is currently poorly understood, but 
he geometry of the pulsar magnetic field and emission heights are
hought to influence the intensity of the observed radio flux. By using
asis functions to characterize each observing epoch (or in the case
f bright pulsars, individual pulses), we can start to piece together
 picture of pulse-shape evolution. Large shape-change events such 
s mode changing, nulling, and sub-pulse drifting have been studied 
n order to constrain pulsar emission models (e.g. Kramer et al.
006a ; Lyne et al. 2010 ; Basu et al. 2016 ; Brook et al. 2016 ,
018 ; Chen et al. 2022 ; Shang et al. 2022 ; Shaw et al. 2022 ),
ut we believe that a broader data set of subtle, pulse-to-pulse, or
onger time span changes, may shed light on the emission mecha-
ism further. Applying our method to many pulsars may therefore 
rovide a large data set of pulse-shape evolution across multiple 
ulsars. 
Mode changing and nulling are related to interesting shape-change 

henomena. They are both thought to arise from a change in the struc- 
ure in the magnetosphere in the neutron star. Janagal et al. ( 2022 )
how a relationship between periods of nulling and mode changing in
SR J1822 −2256, where nulling is al w ays followed by a particular
ode. This correlation suggests that the mechanisms between nulling 

nd mode changing may be strongly related. Mode changing and 
ulling are not commonly observed features of millisecond pulsars, 
ut with PSR J1103 −5403 being the fourth millisecond pulsar now
bserved to exhibit mode changing, it is clear that these events happen 
o pulsars with millisecond periods. This demonstrates that mode 
hanging can occur on millisecond time-scales, and this can continue 
o constrain the physical processes causing these phenomena. The 
MNRAS 523, 4405–4412 (2023) 

 Time-correlated noise terms were not able to be modelled in this data set due 
o an insufficient time span, so instead of providing a direct upper limit for 
ra vitational wa v es we pro vide a projection based on Siemens et al. ( 2013 ). 
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bserving epochs for PSR J1103 −5403 are separated by days, but
iles et al. ( 2022 ) show that the millisecond pulsar PSR J1909 −3744

as an upper limit of 2.941 ms on the time-scale for magnetospheric
hanges causing the mode changes. 

There are a number of natural extensions to be made to the
ethod introduced in this work. The observing epoch fits here are

requenc y- and polarization-av eraged. Pulse profiles are known to
ave a large dependence on frequency in many pulsars, and averaging
 v er large bandwidths may induce larger timing solution residuals
Demorest et al. 2013 ; Shannon & Cordes 2017 ). Low-frequency
ulse profile changes specifically offer insight about pulsar emission
eometry, offering a rare study of the configuration of the pulse
mission mechanism (Olszanski et al. 2022 ). Applying this method
o frequency sub-banded data may yield a simple yet impactful
 xtension. Additionally, polarization profiles pro vide information
bout the electron density in the interstellar medium and magnetic
elds in globular clusters (Abbate et al. 2023 ). The science to be
leaned from frequency and polarization banded pulse profile fits
oti v ates the application of Bayesian basis-function fitting to them

see van Straten 2006 ; Lentati et al. 2017 ). Given that each profile
an be analysed in parallel, this extra computation may be practical
ith a computing cluster, while offering the potential for rich pulsar

cience. 
As discussed in Section 2 , the choice for a three-Gaussian model

as based on a visual inspection of the average pulse morphology.
his model w ork ed well for PSR J1103 −5403, but every pulsar will
ave a unique pulse shape and pulse-shape evolution. For this reason,
he extension of this method to other pulsars may require different
ombinations of basis functions for each pulsar. The options are
ndless, but there is still the question of how many basis functions
re needed to best model data. To assist this, we are developing
 transdimensional sampler that is able to fit the number of basis
unctions. This will allow us to remo v e the arbitrary choice of the
umber of basis functions. 
Another pulsar of interest is PSR J1713 + 0747. This pulsar is

bserved by all constituents of the IPTA due to its apparent stability
nd large SNR. Ho we ver, in 2021 April it underwent a dramatic
ulse-shape-change event (Lam 2021 ; Singha et al. 2021 ; Jennings
t al. 2022 ), which induced large residuals in the timing solution using
he matched-filter template approach. This shape-change event seems
o mainly effect the leading and trailing edges of the pulse, rather than
he tallest component of the pulse. An appropriately modelled basis-
unction-fitting method would be able to reduce the timing residuals
onnected to these shape changes. In addition, quantifying the pulse-
hape parameters of this event by recording how the parameters of
he basis function change from pulse to pulse may offer insight as to
ow portions of the emission region are changing o v er the reco v ery
eriod. 
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PPENDI X  A :  P R I O R S  O N  DY NA MIC  M O D E L  

A R A M E T E R S  

n Table A1 , we show the prior distributions of the parameter fits to
very observing epoch. 

able A1. The priors on the parameter fits to each epoch. There are three
aussians for each fit, thus i = { 0, 1, 2 } . U ( a, b) denotes a uniform prior
istribution between a and b . 

arameter Prior 

i (mean) U 

(
0 , C i + 1 ,i �= 2 

)

2 (mean) U (0 , 1) 
 i (amplitude) U 

(
0 , C i + 1 ,i �= 2 

)

 2 (amplitude) U (0 , 1) 

i (width) log 10 

[
U 

( 1 
1024 × 5 , 0 . 032 

)]

PPENDI X  B:  POSTERI ORS  O F  I N D I V I D UA L  

P O C H  FIT  

n Fig. B1 , we show the posterior distributions of the parameters of
he three-Gaussian fit to the epoch shown in Fig. 2 . The φi represent
he centring of the Gaussians in phase, the β i are the widths in phase,
nd the C i are the amplitudes of each Gaussian in normalized flux.
e use φ2 as the time of arri v al for producing a timing solution.
e place an arbitrary maximum on β i to prevent the Gaussian 

tting the shoulder of the pulse (Gaussian 1) from interfering with
he main pulse (which we use to determine the time of arri v al as
escribed abo v e). We note that our posterior has support at this
rbitrary maximum (see Fig. B1 ). Ho we ver, we do not use the full
osterior and, if we increase this maximum, the post-fit residuals 
re increased; therefore, we argue that the arbitrary maximum is 
ustified. 
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Figure B1. Posterior distribution of the parameter fits to the epoch shown in Fig. 2 . 
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