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ABSTRACT

Interferometric gravitational-wave observatories have opened a new era in astronomy. The rich data produced by an international
network enable detailed analysis of the curved space-time around black holes. With nearly 100 signals observed so far and
thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of
our Universe. However, the detectors are afflicted by transient noise artefacts known as ‘glitches’ which contaminate the signals
and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new
approach to transient gravitational-wave data analysis using Gaussian processes, which model the underlying physics of the
glitch-generating mechanism rather than the explicit realization of the glitch itself. We demonstrate that if the Gaussian process
kernel function can adequately model the glitch morphology, we can recover the parameters of simulated signals. Moreover, we
find that the Gaussian processes kernels used in this work are well suited to modelling long-duration glitches which are most
challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a
new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first
observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to
the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps

needed to realize the full potential of the Gaussian process approach.
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1 INTRODUCTION

The emerging field of gravitational-wave astronomy is built on the
back of a multidecade effort to design and construct kilometre-
scale interferometers that can measure their relative arm lengths to
better than 1 part in 10?!. An international network of such detectors
[Advanced LIGO, Virgo, and KAGRA (Aasi et al. 2015; Acernese
etal. 2015; Akutsu et al. 2021)] are now in operation and have so far
observed 90 compact binary coalescences (CBC) gravitational-wave
signals, including binary black hole (BBH), neutron star-black hole,
and binary neutron star mergers (The LIGO Scientific Collaboration
2021a). However, of these detections, 18 are contaminated by
transient non-Gaussian detector artefacts known as glitches. If left
unaddressed, these contaminating noise sources bias astrophysical
inferences, undermining the scientific outputs from this exquisite date
(Powell 2018; Macas et al. 2022). In this work, we develop a novel
solution to analyse signals contaminated by glitches, simultaneously
modelling the glitch using a Gaussian process (GP; Rasmussen
2003).

Glitches represent particular epochs in which a single detector
misbehaves, often due to local environmental disturbances. There-
fore, it is generally assumed that any glitch-generating process is
independent between distinct detectors. This independence is essen-
tial for providing a means to distinguish them from astrophysical
signals, which produce coherent power at multiple detector sites.
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© 2023 The Author(s).

The characterization of glitches forms an integral part of analysing
data from interferometric detectors for two reasons (for a review, see
Davis & Walker 2022). First, studies which can identify the source
of the glitch-generating process (e.g. by temporally correlating the
signal as seen in the detector strain h(f) with auxiliary channels
monitoring the instrument) provide a means to improve the quality
of data directly resulting in a reduction in the number of glitches in
future data. Such a reduction can naturally lead to an improvement
in the ability of search algorithms to identify signals. The reduced
background noise rate leads to more confidence in identifying true
astrophysical signals. Second, and of relevance to this work, if a
glitch overlaps a signal, care must be taken to carefully unpick the
signal from the non-Gaussian noise (the glitch).

Coincidences between glitches and signals are a common problem,
perhaps most distinctly demonstrated by the LIGO Livingston glitch
which overlapped the first-observed binary neutron star merger
GW170817 (Abbottet al. 2017; Pankow et al. 2018). Two approaches
were applied to the mitigation of this glitch. A simple window
function was applied for search analyses to zero out data around
the glitch. Meanwhile, for source parameter estimation, the glitch
was modelled by BavesWave (Cornish & Littenberg 2015), a flexible
time-frequency wavelet reconstruction, and then a realization of that
model was subtracted from the data. This latter method, known
colloquially as ‘deglitching’, has now become the de-facto standard
approach to perform parameter estimation for the 20 percent of
signals contaminated by glitches. While BayESWavVE remains the
primary tool to model the glitch, a new tool cwsusTracT (Davis
et al. 2019) has also been used, which applies linear subtraction
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building the glitch model from a witness channel (Allen, Hua &
Ottewill 1999).

Davis et al. (2022) describe the basic deglitching process used to
analyse glitch-contaminated signals during the third and most recent
observing run of the LIGO, Virgo, and KAGRA detectors. First, a
check is performed for all candidate signals to see if they admit excess
glitch power. Second, the glitch is modelled, and a realization of the
glitch drawn from the model is subtracted from the data. Finally, the
deglitched data are analysed using a standard parameter estimation
framework.

Deglitching has been highly successful in dealing with contami-
nated signals; the most recent study (Hourihane et al. 2022) demon-
strates its general-purpose applicability. However, some drawbacks
motivate us to study alternative approaches. First, the underlying
algorithm that models the glitch is designed to study short-duration
transient bursts. This makes it ideally suited to deglitching short-
duration (<1 s) glitches. However, Hourihane et al. (2022) find that
long-duration glitches, such as the fast- and slow-scattering glitches
(discussed further below), are challenging and need specialized
settings. The need for specialized settings calls for manual analyses:
a slow process requiring an expert to repeatedly analyse an event
and, often by eye, decide if the glitch has been adequately excised.
Second, the principle of deglitching is inherently flawed because it
ignores uncertainty in the glitch model. To deglitch the data, some
draw from this model is taken. Usually, this is either the median
or a random draw. However, Hourihane et al. (2022) find that there
are differences in the deglitched data depending on which draw is
taken for slow-scattering glitches. Such differences indicate that the
glitch model has a non-negligible uncertainty which is not correctly
accounted for when estimating the parameters of the astrophysical
signal from the resultant deglitched data. The solution to this problem
is to analyse the signal and glitch together. Already, Hourihane et al.
(2022) have demonstrated how the underlying deglitching algorithm
can be extended to this end.

Proper glitch mitigation is vital for ensuring unbiased astrophysi-
cal inferences of the signal. Two clear examples of the difficulties in-
herent in the current process came to light during the third observing
run. The first example is the event GW200129, a BBH system with
the largest network signal-to-noise (SNR) ratio of any observation
to date (The LIGO Scientific Collaboration 2021a). Recently, it has
been reported that GW200129 is the first unambiguous measurement
of strong-field precession in a BBH system (Hannam et al. 2022).
However, the evidence is complicated by the presence of glitches
removed using gwsubtract (Davis et al. 2022). In a recent study,
Payne et al. (2022) demonstrated that the evidence for spin precession
depends sensitively on the glitch model: taking a different fair draw
can altogether remove the evidence for spin precession. The second
exampleis GW191109_010717, aheavy BBH with a correspondingly
short-duration signal. Time-frequency spectrograms of the data from
both LIGO Hanford and Livingston show the presence of glitch
artefacts overlapping the signal track. Applying the BAYESWAVE
algorithm, the glitches were modelled and subtracted from the data
following the standard process. However, when the deglitched data
were analysed using a parameter estimation algorithm searching
for evidence of beyond-General Relativity (GR) physics, the pos-
terior distribution included multimodal features indicating a posi-
tive beyond-GR result (The LIGO Scientific Collaboration 2021b).
Subsequent studies demonstrated that contamination could explain
this: residual noise from the glitch mimicking a beyond-GR signal.
While it has been demonstrated that BavyEsWave deglitching does not
contaminate the resulting data (Kwok et al. 2022), this study was
limited to short-duration glitches in a single detector.
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The difficulties in parameter estimation and tests of GR for
GW200129 and GW191109_010717 are indicative of flaws in the
current deglitching approach. In both cases, the presence of long-
duration glitches, which are challenging to model and require manual
intervention, caused issues. Substantial effort is underway to improve
the detectors ready for the next observation (O4), where it is
anticipated that we will observe hundreds of BBH signals. While part
of that effort is also dedicated to mitigating the cause of glitches at
their source, which we do not fully understand, their cause suggested
we will not see a significant reduction in the rate of glitches in O4.
Taking a pessimistic view that the glitch rate remains similar to
previous observing runs, but the rate of signal detection increases,
we will therefore expect to see an increasing number of signals
contaminated (while the fraction remains approximately constant).

In this work, we introduce a new approach to gravitational-wave
parameter estimation, which is fundamentally designed to improve
the analysis of glitch-contaminated signals. The core idea s to replace
the traditional gravitational-wave likelihood, which assumes the data
are stationary and Gaussian with a known power spectral density
(PSD), with a GP; see Rasmussen (2003) for an introduction to GPs.
In principle, the GP approach can model arbitrary coloured noise,
non-stationarity, and non-Gaussian artefacts. As we will see, this
can be done using a few hyper-parameters (rather than introducing a
deterministic model, which can have many thousands of parameters).

We begin in Section 2 with an introduction to the GP approach and
the limitations we apply for this feasibility study. Then, in Section 3,
we show the results applying the GP approach to three case studies.
The first two demonstrate robust measurement of the parameters of
a signal contaminated by a long-duration glitch. Meanwhile, in the
final case study, we discuss a novel application of the GP approach to
enable time-domain tests of GR. Finally, in Section 4, we conclude
and discuss future development needed to realize the full potential
of the GP method.

2 METHODS

In this section, we briefly introduce the parameter estimation problem
in gravitational-wave astronomy (see also Thrane & Talbot 2019 and
Christensen & Meyer 2022 for recent reviews) before introducing
the new GP methodology.

2.1 Bayesian inference and gravitational-wave astronomy

In gravitational-wave astronomy, the problem of detecting a signal
is separated from measuring its properties (parameter estimation).
In this work, we concern ourselves only with the latter problem,
i.e. we assume we are given some chunk of data d (in general,
this will contain data from multiple detectors) which contains an
astrophysical gravitational-wave signal described by a model M
along with background detector noise. The standard approach taken
in the field is that of Bayesian inference, namely, for a set of
model parameters 6 associated with the signal model M, we seek
an approximation of the posterior distribution

p@ld, M) < L(d|6, M) (0|M), )

where £ and 7 are the likelihood function and prior probability
distribution, respectively, and we neglect the normalizing evidence.

The standard approach used throughout the field (see e.g. Veitch
etal. 2015) is to construct the log-likelihood function in the frequency
domain. For data from the £th detector in the network consisting of a
real time-series with duration 7 and sampling frequency f;, we take
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the discrete Fourier transform (DFT):

1 O —2mijkfyT

where j indexes the frequency bin and a tilde denotes a frequency-
domain quantity. Then, assuming the background noise and the signal
are additive and that the noise is stationary and zero-mean with a
known PSD P(f), the single-detector log-likelihood is given by the
Whittle likelihood:

50 _
d.i -

5 2
a0 — 1,0)|
A A N

P;

1 2
In£@®|6, M) = —52111(27113,-)— ?Z )
J J

where j runs over the positive frequency bins and /i;(6) is the
frequency-domain representation of the signal model M for parame-
ters 6. While common in the general field of time-series data analysis,
the term Whittle likelihood is rarely used in the gravitational-wave
literature (see e.g. Veitch et al. 2015). We learned of the name from
Thrane & Talbot (2019) and chose to apply it here to distinguish it
from the GP likelihood, which we derive later in this text. If data
from multiple detectors are available, assuming that the noise is
uncorrelated, the network log-likelihood is constructed from the sum
of the log-likelihood for each detector (and this applies to both the
Whittle likelihood and GP approaches).

Equation (3) was first derived by Peter Whittle (Whittle 1953) as
an approximation to the Gaussian likelihood for a stationary time
series:

In£d|6, M) = —1r@®)"="'r(0) — L In (Q0)V|Z]) , 4)

where r(6) = d — u(t, 0) is the residual after subtracting the signal
from the data, ¥ is the covariance matrix of the background
noise, and N = fT is the number of data points. The Whittle
likelihood approximation (equation 3) is advantageous compared
to the full Gaussian likelihood (equation 4) because the DFT can be
replaced by the fast Fourier transform (FFT) algorithm, reducing the
computational cost from O(N?)to O(N log N). A recent pedagogical
review (Rao & Yang 2021) demonstrated the differences between
the two likelihoods by deriving a frequency-domain representation
of the Gaussian likelihood and found the difference to be of the order
of O(1/N). For typical gravitational-wave inference problems, a
sampling frequency of at least a few kHz is needed to ensure the
Nyquist frequency captures the signal properties during the merger
and ringdown, and a duration of a few to tens of seconds is typical.
Therefore, we expect only slight differences between the Whittle
and Gaussian likelihoods. However, there are known deficiencies in
the Whittle likelihood approach. For example, recently, Talbot &
Thrane (2020) and Talbot et al. (2021) have investigated the impact
of the fixed PSDs and windowing of the time series, respectively.
Each of these could bias individual results at a level equivalent to
other systematic uncertainties, and the effect can be magnified in
population studies.

For the prior distribution of equation (1), as a general rule, the
standard approach is to apply uninformative priors where possible
(e.g. isotropic priors on the sky position). However, in some cases,
these are informed by the output of the detection pipeline (e.g.
we restrict the time of the signal to some relevant range) or by
other astrophysical data (e.g. the observation of an electromagnetic
counterpart may imply certain restrictions on the orientation of
the source). In this work, we apply standard prior definitions used
throughout the field (see e.g. Romero-Shaw et al. 2020).

Having defined the likelihood and priors, to estimate equation (1),
either a stochastic-sampling (Cornish & Littenberg 2015; Veitch
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et al. 2015; Ashton et al. 2019; Biwer et al. 2019) or grid-based
(Lange, O’Shaughnessy & Rizzo 2018) algorithms is used. These
methods are computational-intensive, typically needing O(10%) or
more evaluations of the likelihood and prior, with each evaluation
taking > 1e-3 s (typically, this time is dominated by the generation of
the waveform and the overheads of the Whittle likelihood). There-
fore, the typical time needed to estimate the posterior distribution
is about a day. However, this cost can increase dramatically if, for
example, more physically accurate waveforms are used or the signal
duration requires a longer data span. The total wall time required for
analysis can be reduced by parallelization and optimization of the
likelihood in addition to methods that reduce the cost of the likelihood
and waveform evaluation. Nevertheless, Bayesian inference remains
expensive but necessary to resolve the highly correlated structure
in the posterior distribution robustly (where by ‘robustly’ we mean
that repeated analyses reproduce the same result within statistical
uncertainties).

Equation (3) has been applied with great success to every CBC
signal observed by advanced-era detections (The LIGO Scientific
Collaboration 2021a). However, it cannot be applied directly be-
cause, as discussed in the introduction, up to 20 percent of these
are contaminated by glitches, violating the fundamental assumption
that the background noise is stationary and Gaussian. To address
this, the BavyEsWave algorithm extends equation (1), including an
additional glitch model (and associated set of model parameters).
Performing inference on this glitch model (simultaneously with the
signal model), amodel of the glitch is constructed and then subtracted
from the data. The standard inference process then uses the glitch-
subtracted data in equation (3). The difficulty arises if the glitch is
imperfectly removed. Then, the residual power will remain in the
glitch-subtracted data and bias the inference of the signal properties.
In the next section, we describe our proposed modification to the
standard methodology, replacing equation (3) with a GP likelihood.

2.2 Gaussian processes

A GP models a time series as a multivariate Gaussian distribution
with a mean function w(t; 8) and a kernel function k(z,,, t,,; &), where
a is a set of hyperparameters describing the noise process. Under
this interpretation, the log-likelihood is given by

In£d|6,a, M) = —1r@®)" (@) "'r(®) — 1 In ()N |Z(@)]) .(5)

Comparing the GP likelihood with equation (4), we see that we have
replaced the (fixed) covariance matrix X with the covariance matrix
generated by the kernel function:

Zn (@) = k(ty, th;0) . (6)

GPs are powerful because they enable us to model the noise
process instead of the noise realization. The art of GP modelling
is constructing a kernel that captures the noise process and inferring
the hyper-parameters. Simultaneously, we can infer the properties of
the mean model w(t; #), which will be marginalized with respect to
the uncertainty in the GP noise model.

Direct application of equation (5) is infeasible for gravitational-
wave signals since, as with the full Gaussian likelihood the computa-
tion cost is of the order of O(N?3). However, if the kernel function is
stationary and constructed from a mixture of exponential functions,
Foreman-Mackey et al. (2017) demonstrated that the likelihood
can be calculated with linear scaling by exploiting structure in
the covariance matrix. The authors implement this method in the
CELERITE software, which we will use throughout this work. Such
kernel functions are not abstract: they arise naturally from random

MNRAS 520, 2983-2994 (2023)

920z Arenuer g1 uo Jasn uojdweyinog Jo AlsiaAiun Aq 98/820//£862/2/0ZS/3|91e/seluw/woo dno-olwapeoae//:sdiy Woll papeojumoc]



2986  G. Ashton

processes consisting of stochastically driven damped harmonic
oscillators. In a meaningful sense, many of the noise processes
afflicting gravitational-wave detectors can be considered a collection
of harmonic oscillators. Therefore, it is natural to hypothesize that
such fast and scalable GPs may be brought to bear on the problem
of gravitational-wave data analysis. To our knowledge, GPs have
yet been applied to this problem [though they have been applied in
other settings in the field, for example, to estimate model uncertainty
(Moore et al. 2016; Doctor et al. 2017; Williams et al. 2020) and
for interpolating posterior inferences (D’Emilio, Green & Raymond
2021)].

2.3 The GP likelihood for gravitational-wave signals

In this work, we will utilize the cELERITE software to develop a
gravitational-wave GP likelihood capable of inferring the properties
of gravitational-wave signals contaminated by glitches. We will ex-
clusively use the simple harmonic oscillator (SHO) kernel described
in Foreman-Mackey et al. (2017), which is characterized by an
oscillator frequency wy, a quality factor Q, and amplitude Sy. The
SHO kernel is stationary: it depends only on the difference #,, — 1,
(this is true of all kernels in ceLErITE). Therefore, the stationary SHO
kernel would appear to be a poor fit to model non-stationary transient
glitches. Indeed, in practice, the SHO kernel performs poorly for
short-duration glitches that last for only a fraction of a second.
However, as we demonstrate later, the SHO kernel can model the
underlying noise process for glitches that last for an appreciable
fraction of the signal duration. We discuss this further in Section 4
and suggest new avenues for applying transient GP models.

In principle, a GP model could be built that models the coloured
Gaussian background noise characteristic of gravitational-wave de-
tectors. This could be done using a mixture of SHO terms using terms
with small quality factors to model the coloured noise and SHO terms
with large quality factors to model the narrow Lorentzian features
(see Littenberg & Cornish 2015 for a discussion of how BAYESWAVE
performs a similar task). However, for this initial study, where we
are primarily focused on the ability of the GP to model glitches, we
will instead utilize a technique known as pre-whitening.

To pre-whiten the data, we first construct a PSD P; using the
median Welch method (Welch 1967). We then FFT the time series
data to obtain d and then apply the whitening transform:

d; = IFFT ( 2 4 ) @)
1 N ﬁ ’

where IFFT is the inverse FFT and the factor of 2/N normalizes the

whitened data. If the PSD properly represents the coloured Gaussian

noise, then the whitened data d are zero mean with unit variance.

Our GP model is then applied to the whitened data d using a fixed
PSD. To calculate the likelihood given a set of GP hyperparameters
o and model parameters 6, we apply equation (5) but note that the
mean model p(t; 6) must also be whitened by the same PSD.

By default, our GP kernel (equation 6) then consists of a white-
noise term with a single hyperparameter ¢ in addition to M SHO
terms. Each SHO term adds three parameters: frequency, quality
factor, and amplitude. This arrangement was developed by trialling
several off-the-shelf kernels in the cELERITE library. Ultimately, we
found the SHO worked the best to capture the glitch features studied
in this work (as evaluated by posterior predictive checks).

When the kernel includes multiple SHO terms (i.e. M > 1), we
have a label-switching degeneracy which we find severely restricts
the efficiency of stochastic sampling. To resolve this, we apply
an order-statistics prior such that the joint prior on the set of
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SHO log-frequencies, {ln(a)g"))} (indexed by m, the SHO term) is
uniform, but the marginal prior is ordered. For the remaining SHO
hyperparameters, we apply uniform priors on the logarithm of the
values.

3 RESULTS

We apply the GP method to three case studies to demonstrate its
capability and explore the limitations of the current implementation.
The first two studies investigate a BBH signal overlapping examples
of scattered-light glitches. These glitches were common during
03 and have been linked to periods of increased ground motion
around the detectors which in turn cause light scattering from the
high-power laser beam (Davis et al. 2021). Two distinct scattered
light glitches are known: slow-scattering (Soni et al. 2020) and
fast-scattering (Soni et al. 2021); we discuss each in turn in Case
Studies A and B. The final case study demonstrates the use of
the GP method as a tool to perform time-domain tests of GR.
We perform an inspiral-merger-ringdown (IMR) test on the first
observed BBH system, GW150914, separating the signal in time
rather than frequency. Our results are consistent with previous
analyses but demonstrate a resolution to spectral leakage issues.
For all three case studies, we perform Bayesian inference using
the BrLBY Bayesian inference library (Ashton et al. 2019) and the
BILBY-MCMC sampler optimized for BBH data analyses (Ashton &
Talbot 2021).

3.1 Case study A: a slow-scattering glitch

We begin with a single-detector study of one of the two types
of scattered-light glitches: a slow-scattering glitch. Slow-scattering
glitches are characterized by long-duration O(1 — 4) s stacked arches
when viewed in a spectrogram. Multiple arches are formed due to
multiple reflections of the scattered light (Davis et al. 2021).

We take a representative example identified by GrRavITYSPY
(Zevin et al. 2017; Glanzer et al. 2022) in the LIGO Livingston
interferometer during the O3 observing run. In the left-hand panel
of Fig. 1, we plot a spectrogram of the data illustrating three distinct
scattering arches between 10 and 70 Hz. Overlaid on this figure is the
time-frequency track of the simulated signal that we will add to the
data (it is not included in the spectrogram to avoid confusion with
the glitch itself). Before adding the simulated signal, we apply the
BavesWavedeglitching routine using standard settings. The resulting
spectrogram (right-hand panel of Fig. 1) demonstrates some residual
glitch power below 20 Hz which we were unable to remove, but this
residual power does not fall along the frequency-time track of the
injected signal.

In contrast to the analyses of overlapping signals and glitches in
real data, the deglitching process in this case study is applied in
the absence of a signal. Therefore, it is not representative of a real
analysis but does represent an ideal of the deglitching process: the
glitch can be characterized and subtracted without signal confusion.
However, in practice, this will not usually be possible unless an
auxiliary channel provides a means to model the glitch without using
the strain data. Instead, for typical cases, which use BAYESWAVE to
deglitch the data, the signal and glitch must be modelled simultane-
ously. This leaves open the possibility for erroneous signal removal.
Nevertheless, it is a good demonstration of how the GP method
compares against the ideal deglitching scenario.

Having both the original data and the deglitched data, we can
perform a direct comparison of three different approaches. The first,
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Figure 1. Spectrograms of the slow-scattering glitch analysed in case study A plotted alongside the frequency track of the simulated signal. In the left-hand
panel, we show the original strain data, whereas the right-hand figure shows the strain data after BAYESWaAVE glitch subtraction is applied. Note that the glitch
subtraction is applied before the simulated signal is added. We also show dashed horizontal lines in the left-hand panel highlighting the median SHO frequency

inferred in the GP analysis.

which we label ‘BW + WL’ applies the standard Whittle likelihood
to data which have been deglitched using BavesWave. Therefore,
BW-+WL denotes the method used by the LVK collaborations to date.
The second, which we label ‘GP’, is to apply the GP method directly
to the original data, modelling the glitch and signal simultaneously.
Finally, we label analyses where the Whittle likelihood is applied
directly to the original data ‘WL’; these analyses illustrate the
extent to which the glitch biases inferences in the absence of a
mitigation technique. In validating the method, we did also analyse
the deglitched data using the GP approach. As expected, we found
near identical results to the BW + WL approach since the GP simply
sets the hyperparameters of the SHO such that its effect is negligible,
and then one recovers the standard Whittle likelihood.

In each analysis, taking either the original or deglitched data, we
add a simulated equal-mass non-spinning BBH signal generated us-
ing the time-domain IMRPhenomT waveform approximant (Estellés
et al. 2022). The process of generating this analysis (i.e. obtaining
the strain data and adding the simulated signal) is independent of
the analysis method, ensuring a straightforward comparison can be
made. The signal track of the simulated signal is shown as a dashed
curve in Fig. 1.

We then analyse the original data (including the simulated signal)
using the WL and GP approach and the deglitched data using the
BW + WL approach. All analyses are performed on data from a
single detector, though they naturally scale to multiple detectors by
adding together the log-likelihoods assuming independent noise. For
the comparative case studies (A and B), we infer the signal properties
using the IMRPhenomT waveform, which assumes the spin of both
black holes is aligned along their angular momentum and we a priori
fix the sky position of the source to the simulated values. We apply
these simplifications because they reduce the overall computational
cost by nearly an order of magnitude with minimal impact on the
comparison; ultimately, we are interested in the ability of the GP
model to separate the signal from the noise. However, we do note

that in this feasibility study, we have therefore not examined the
interaction of a signal with misaligned spins, which will exhibit
precession effects, with the GP method. Finally, for all analyses, we
generate a PSD by applying the median Welch method to oft-source
data. For the WL and BW + WL analysis, the PSD is used directly
in the likelihood, while for the GP method, the PSD is used to whiten
the data and the predicted model.

In Fig. 2, we compare kernel density estimates of four source
parameters inferred using the WL, GP, and BW + WL approaches.
We choose to compare the detector-frame! chirp mass (Finn &

Chernoft 1993):
a_ (mimg)y’s
T m+mHs”

(®)

(where m¢ and m$ are the detector-frame mass of the two black
holes), the mass ratio:

q =my/mi, ®
the effective spin (Ajith & Bose 2009; Santamaria et al. 2010):
Xx1tdxe
=== 10
Xeff T+q (10)

where x; and yx, are the aligned spin components of the two black
holes, and the luminosity distance, d .

The kernel used in the GP analysis presented in Fig. 2 is formed
from the addition of a white noise component (characterized by
its standard deviation) and M = 3 SHO terms (characterized by

!For gravitational-wave radiation from sources at cosmological distances,
the signals are red-shifted. As a result, it is not possible to measure the
source-frame mass directly, but instead, we measure the detector-frame mass.
The former can be inferred by supplying a cosmological model to estimate
the redshift z from the measured luminosity distance and then scaling the
detector-frame mass by 1/(1 + z) (Cutler & Flanagan 1994).
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Figure 2. The posterior distribution for the detector-frame chirp mass MY, mass ratio g, effective spin x ¢, and luminosity distance dy for case study A. In each
figure, we compare the WL applied to the original data (WL), the GP applied to the original data (GP), and the WL applied to the deglitched data (BW + WL).
The simulated signal value is given as vertical dashed lines, while 90 per cent credible intervals are given as coloured vertical lines for each distribution.

the frequency, quality, and amplitude factors) resulting in a total
of 10 noise hyperparameters. The choice of three SHO terms and
the prior applied to their hyperparameters was reached by manual
tuning: using a greater number of SHO terms, their effect was
negligible, while using fewer terms, the source-parameter inferences
were biased. In this instance, the optimal number of three was also
suggested by the observation of the spectrogram (Fig. 1) where we
observe three distinct features. It is then unsurprising that the median
SHO frequency inferred from the GP analysis coincides nicely with
the three arches in Fig. 1 (see horizontal dashed lines). But, this also
illustrates a clear deficiency of the GP model: we assume the GP
kernel is stationary, but Fig. 1 suggests that the frequency is, in fact,
changing with time. Moreover, models of light scattering (Longo
et al. 2020) have previously demonstrated the frequency is changing
with time. Therefore, we predict that non-stationary kernels may
produce better results for transient glitches with a short duration
relative to the length of data being studied. In future, we could
investigate the use of the Bayesian evidence to select the optimal
number or a Reversible-Jump MCMC able to optimize over the
number. Finally, we add that for all three SHO terms, the median
inferred quality factor was ~30.

Let us now consider each of the analyses in Fig. 2 in turn.

First, for the WL analysis, which applies no glitch mitigation,
the inferred source parameters are severely biased: this is clearly
demonstrated by the measured chirp mass and mass ratio where the
peak of the distribution lies well away from the simulation value. This
fact is well known (see e.g. Pankow et al. 2018). In recent work, we
demonstrated (Ashton et al. 2022) that analysing scattering glitches
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alone with a BBH model resulted in inferred mass ratios of ~0.2.
That the posterior for the mass ratio under the WL analysis in Fig. 1
peaks around this value is therefore consistent with the interpretation
that the WL analysis effectively misses the simulated signal and tries
to fit the BBH model to the glitch instead.

Second, the BW+WL approach is successful: all four parameters
are recovered within the 90 per cent interval. This observation is en-
tirely unsurprising, of course: the success of the BW + WL approach
is already well known in the literature, and Fig. 1 demonstrates
visually that the BayEsWave algorithm successfully deglitches the
data.

Finally, like the BW + WL approach, the GP approach also
successfully recovers the simulated values within the 90 per cent
credible intervals. This indicates it has successfully modelled the
signal as part of the mean model and the glitch as part of the noise.
To further check this, in Fig. 3, we create a posterior predictive
test showing the modelled glitch and noise alongside the simulated
signal. The posterior predictive plot demonstrates the difficult task
the GP analysis has completed: to pick out the signal from the highly
non-Gaussian noise.

Comparing the GP and BW + WL approaches in Fig. 2, we see
that the GP credible interval is, in all cases, wider than that of the
BW-+WL method. Taken at face value, this suggests the BW+WL
method is preferable since it constrains the source parameter with
greater precision. However, we remind the reader that the BW+WL
approach is operating under perfect conditions, where the glitch is
modelled in the absence of the signal. In practice, this will not be the
case. On the other hand, the GP approach results are marginalized
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Figure 3. A posterior predictive plot for the slow-scattering glitch (case
study A). In a solid grey curve, we plot the whitened strain data from LIGO
Livingston; this includes the simulated signal added to the data, which we
also plot as a solid black line (after whitening). In purple, we plot the posterior
model prediction: a solid curve is generated from a median estimate of the
source parameters, while the purple-shaded region indicates the 90 per cent
credible interval for the model prediction (generated by drawing repeated
predictions from the model from the posterior distribution). Finally, in a solid
grey band, we plot the 90 per cent credible interval for the inferred GP noise
by repeatedly drawing predictions from the GP kernel with a zero mean. The
upper panel provides a close look at the features of the signal near to the
merger; the lower panel includes a wider span of data illustrating the features
of the glitch (cf. Fig. 1).

over the uncertainty induced by the glitch, which increases the
uncertainty. Therefore, the increase in uncertainty represents exactly
the goal of the GP analysis: to jointly constrain both the astrophysical
signal and glitch and circumvent the need for deglitching which
intrinsically neglects uncertainty. However, we do also remark that
the BW + WL and GP glitch models are fundamentally different,
and it could be the case that the BAYESWAVE model is in some way
better than the SHO model. To test this, we will need to compare
a full joint analysis by BayesWave of the glitch and BBH signal as
done in Hourihane et al. (2022). Hence, for the time being, we can
conclude that the GP process is able to model the glitch and signal
simultaneously, but further comparisons are needed to understand
the relative performance of the two approaches.

3.2 Case study B: an O3 fast-scattering glitch

In our second case study, again using single-detector data, we
add a simulated signal to data containing a fast-scattering glitch.
The original data are shown in Fig. 4 and illustrate the typical
behaviour of this glitch class: a series of short-duration artefacts
centred around (in this instance) a frequency of ~60 Hz. We did try
to excise the glitch from the original data. However, we found it
difficult to find adequate BAYESWAVE configuration which removed
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Figure 4. Spectrogram of the fast-scattering glitch analysed in case study B
plotted alongside the frequency track of the simulated signal. We also show
dashed horizontal lines highlighting the median SHO frequency inferred in
the GP analysis.

the glitch (though Hourihane et al. 2022 do report successful
modelling of other fast scattering glitches). For this reason, we
cannot perform the BW + WL analysis. Therefore, we instead
perform a repeated WL-offset analysis but shift the simulated
signal time by +20s. During this time, the data do not contain
any transient noise artefacts (though we note the estimated PSD
will).

To the original data, we add a simulated signal (identical to that of
case study A); the time-frequency evolution of this signal is shown in
Fig. 4 and then perform three analyses: the WL, GP, and WL-offset
analysis. For the GP model, we find that a kernel consisting of a single
SHO term in addition to a white-Gaussian noise term was sufficient
to model the background noise and extract the signal properties. In
Fig. 4, we plot the median inferred frequency of the SHO term as a
horizontal bar demonstrating that it captures the average frequency
of the repeating transient artefacts. The quality factor the SHO term
inferred from the data was ~10.

In Fig. 5, we plot kernel density estimates of the posterior from
the three analyses. Once again, the WL analysis demonstrates the
severe bias by an analysis which is unable to model the glitch.
Meanwhile, the GP and WL-offset analyses both recover the signal
within their 90 per cent credible intervals. However, the WL-offset
analysis is better constrained. This is to be expected for the same
reasons discussed in the context of case study A. The difference
is even more severe in this case. We expect that this is due to the
particularity of the glitch under study.

In Fig. 6, we create a posterior-predictive plot which demonstrates
the overlap of the signal and glitch in the inspiral phase. From this
plot, we can understand why the WL analysis, which assumes only
Gaussian noise and a BBH signal, is so severely biased by the
oscillatory features of the glitch. Furthermore, we can understand
why the WL-offset analysis is far better constrained than the GP
analysis. For the GP analysis, the inspiral is severely contaminated
by the glitch, effectively reducing the SNR and hence resulting in
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Figure 5. The posterior distribution for the detector-frame chirp mass M9, mass ratio g, effective spin xefr, and luminosity distance dy for case study B. In each
figure, we compare the WL applied to the original data (WL), the GP applied to the original data (GP), and the WL applied to an offset data segment without a
glitch (WL-offset). The simulated signal value is given as vertical dashed lines, while 90 per cent credible intervals are given as coloured vertical lines for each

distribution.

a wider posterior compared to the WL-offset analysis where the
inspiral is uncontaminated by the glitch.

3.3 Case study C: enabling time-domains tests of GR:
inspiral-merger-ringdown

In our final case study, we discuss how the GP approach can enable
time-domain tests of GR which are robust to glitches. The violent
final stages of a BBH collision offer a unique opportunity to probe
the limits of GR in the strong-field regime (see The LIGO Scientific
Collaboration 2021b for the latest results). There are a variety
of proposed tests, including theory-independent consistency tests
(looking for generic fails of the predicted GR model) and tests which
search for explicit predictions (see e.g. Yunes & Siemens 2013 and
Yagi & Stein 2016 for reviews). However, most of these tests rely on
the frequency-domain data analysis approach developed for source
parameter estimation. While this is not inherently problematic, there
is a subset of cases where the frequency-domain approach forces
awkward workarounds to implement what are intrinsically time-
domain tests.

An example of this is the so-called IMR consistency test which,
conceptually, breaks the data in the time domain into two segments:
the inspiral and merger-ringdown (Abbott et al. 2016b; Ghosh et al.
2016, 2018). The IMR test then checks for consistency between
the mass and spin of the remnant Kerr black hole, as predicted by
the inspiral and the merger-ringdown data separately. The difficulty
arises in that the analysis is performed in the frequency domain, not
the time domain. The separation of inspiral and merger-ringdown
data is practically performed by choosing a cut-off frequency. Data
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Figure 6. A posterior predictive plot for the fast-scattering glitch (case study
B). In a solid grey curve, we plot the whitened strain data from LIGO
Livingston; this includes the simulated signal added to the data, which we
also plot as a solid black line (after whitening). In purple, we plot the posterior
model prediction: a solid curve is generated from a median estimate of the
source parameters, while the purple-shaded region indicates the 90 per cent
credible interval for the model prediction (generated by drawing repeated
predictions from the model from the posterior distribution). Finally, in a solid
grey band, we plot the 90 per cent credible interval for the inferred GP noise
by repeatedly drawing predictions from the GP kernel with a zero mean.

below the cut-off are assumed to arise from the inspiral, while
data above the cut-off are taken to be of the merger-ringdown.
However, this practical choice can result in spectral leakage if the
inspiral signal contains power at frequencies above the cut-off or the
merger-ringdown signal contains power below the cut-off. Ghosh
et al. (2018) demonstrate that if the cut-off frequency is chosen to
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be that of the innermost stable circular orbit (ISCO) of the final
Kerr back hole, then the amount of leakage is small. But, we point
out that this validation was performed on a circular aligned-spin
system. For precessing systems (and systems including the effects of
eccentricity), the frequency evolution during the inspiral can be non-
monotonic, and the signal can contain frequency content above the
ISCO, which would result in spectral leakage between the inspiral
and merger-remnant. Spectral leakage is of concern because, if it
occurs at a significant level, it violates the premise of the test and
enforces an automatic consistency. Moreover, even if the level of
spectral leakage is small, the practical implementation of the IMR
consistency test (splitting the signal in the frequency domain) is at
odds with the conceptual idea of splitting the signal in the time
domain.

A second example where a similar difficulty is faced is that of the
ringdown-only analysis (Abbott et al. 2016b; Carullo, Del Pozzo &
Veitch 2019; Isi et al. 2019; Capano et al. 2021), where data arising
from the ringdown alone are analysed for consistency with the
theoretical predictions of GR. Such tests face a similar difficulty
to the IMR tests: they need to take data only from the ringdown,
ensuring there is no contamination from the inspiral. In this case, a
simple frequency cut will not suffice. The two dominant approaches
developed to solve the problem are ‘gating and in-painting’ (Capano
etal. 2021), where the inspiral is replaced such that the overwhitened
data are O in the region of interest, and a time-domain likelihood
(Carullo et al. 2019; Isi et al. 2019) which is able to analyse only the
merger-ringdown.

Time-domain ringdown analyses demonstrate the general-purpose
applicability of time-domain approaches to testing GR. That our
GP approach is itself time-domain by construction motivates us to
demonstrate how it can be readily applied to resolving the spectral
leakage problem for IMR tests. To this end, we perform a reanalysis
of the first observed BBH merger, GW150914 (Abbott et al. 2016a).
Taking open data from the Gravitational-Wave Open Science Centre
(Abbott et al. 2021), we analyse the data from LIGO Hanford and
Livingston using the precessing IMRPhenomTP (Estellés et al.
2021). We use standard prior configurations (isotropic priors on the
spin, uniform in the component masses, and uninformative on the
position and orientation), noting that unlike case studies A and B,
this analysis makes no assumptions about the spin or sky location.
We first construct a PSD using the median Welch method from 124 s
of data prior to the signal. We then analyse the full signal (labelled
IMR), comprising 4 s of data centred on the GPS trigger time #, =
1126259462.418, the inspiral signal comprising 2 s of data before 7,
and the merger-ringdown (labelled Post-Ins.) comprising 2 s of data
after #p. The posterior distributions for the final mass and spin inferred
from these three analyses are then presented in the upper panel of
Fig. 7. Next, we apply the procedure described in Ghosh et al. (2018),
see Eqn 5, to calculate the fractional difference between the inspiral
and post-inspiral analyses normalized to their average and plot the
resulting distribution in the lower panel of Fig. 7.

Our results agree with the original analyses (Abbott et al. 2016b):
we find strong consistency between the inspiral and merger-ringdown
predictions. Moreover, the prediction of GR falls comfortably within
the 90 percent credible interval. However, we do note that our
90 per cent credible interval for the fractional deviation is smaller than
that of the original analysis and our post-inspiral inference is similarly
better constrained. In the absence of the differing methodology,
there are already several possible causes for this, including the use
of a different waveform model and PSD. However, we anticipate
that the most significant differences arise due to the construction
of the time-domain cut-off. Namely, we cut the data based on
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Figure 7. The 90 per cent credible interval of the posterior distribution for
final mass and spin of the remnant black hole inferred from the GW150914
signal (top panel) and the fractional deviation parameters (bottom panel)
calculated from equation (3) of The LIGO Scientific Collaboration (2021b).
In the top panel, the ‘IMR’ curve refers to the analysis of the entire 4 s segment
of data surrounding the event, ‘Inspiral’ to the 2 s of data before the trigger
time, and ‘Post-Ins.” to the 2s of data after the trigger time. In the bottom
panel, the black contour marks the 90 per cent credible interval, while the ‘4’
symbol marks the prediction of GR.

the trigger time f, calculated from a full IMR analysis. However,
this value refers to the peak of the 2-2 mode as measured at the
Earth’s centre. Meanwhile, the light-travel-time delay means that
the transition between merger and ringdown (itself a fuzzy concept)
occurs at different times for the data from the two detectors. This
fact can clearly be seen in Fig. 8 where we plot the data and the
posterior predictive whitened waveforms from the IMR, Inspiral,
and Post-Ins analyses. Here, one can see that the time-domain
cut-off between Inspiral and Post-Ins occurs earlier in Hanford
(relative to the overall waveform morphology) than in Livingston. A
straightforward improvement would therefore be to define a detector-
dependent cut-off time. However, like with the frequency-domain
analysis, the choice of cut-off is in some sense arbitrary and will
invariably produce different results. But crucially, for our time-
domain analyses, any choice of cut-off is still a valid test of GR since
we cleanly separate the data without the risk of spectral leakage.
Therefore, for this presentation, we choose to keep our simplified
analysis fixing the cut-off time universally. In future work, we plan
to investigate detector-dependent cut-off times by choosing a fixed
phase of the waveform and correcting for the light travel time delay.
Another interesting possibility opened up by the time-domain nature
of our approach is to extend the number of data segments beyond
just two and study consistency between them. Such a multiple-
segment IMR test would, in spirit, begin to look very much like
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Figure 8. Comparison of the whitened strain data from LIGO Hanford (top
panel) and LIGO Livingston (bottom panel), with the posterior plot from
the three analyses performed in the IMR test. In orange (green), we plot the
waveform of the median posterior inferred from the inspiral (post-inspiral)
data, while in purple, we plot the 90 per cent credible interval of waveforms
inferred from the full IMR analysis.

the yx2-veto (Allen 2005) used by search algorithms to identify
glitches.

Since GW150914 was not contaminated by glitches, we did not
include any SHO terms in the GP kernel. In testing, we found
that adding SHO terms did not change the results: we found near-
identical inferences about the signal parameters, while the posterior
distributions for the glitch SHO terms were uninformative except
for setting a limit on the maximum amplitude. In a sense, adding
additional terms in the GP kernel when fitting to a signal that is
thought to be uncontaminated amounts to an automated residual test
of GR (an analysis where the best-fitting signal is subtracted from the
data and the residual is searched for excess power). If the GP term
were found to have non-zero power and one was certain the signal
was not contaminated by a glitch, this would suggest that the signal
model was not able to fit some features of the data. Such a result
could suggest the presence of an unmodelled part of the signal.

Itis worthwhile pointing out that, since we do not include any SHO
term, this case study bears parallels with extensions of the time-
domain ringdown analyses to also model the inspiral and merger.
However, our new method can be easily extended to also include
SHO terms to model any contaminating glitches: this could be
crucial to future detections to verify that signal power is arising
from an astrophysical source and not terrestrial contamination. In
future work, we will explore how the additional advantages of the GP
approach are leveraged, for example, using the GP to explicitly model
the coloured Gaussian noise (so that pre-whitening is not needed)
and performing time-domain GR tests on signals contaminated by
glitches.
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4 CONCLUSION AND DISCUSSION

We have presented a feasibility study for a novel approach to
analysing transient signals observed by ground-based gravitational-
wave detectors using GPs. This new method fundamentally differs
from the traditional approach in that it operates in the time domain
and is able to model the physical processes generating Gaussian
and non-Gaussian noise alongside an astrophysical signal. Our first
two case studies demonstrate that the true source parameters of a
signal contaminated by scattered light glitches can be recovered.
With 20 per cent of observed signals observed by current generation
ground-based detectors contaminated by signals, this marks an
important step towards enabling joint analysis of glitches and signals
and a ready alternative to explicit glitch modelling. Then, in our
final case study, we demonstrate that the GP approach can be easily
leveraged to perform tests of GR in the time domain, avoiding the
spectral leakage problem inherent in the frequency-domain IMR
tests.

That the GP approach models the underlying physical process
generating the noise, rather than the noise itself, sets it in contrast to
algorithms which model the glitches directly, like BayEsWavE. For
example, in analysing the fast scatting glitch shown in Fig. 4, the GP
approach uses just three parameters: the frequency, amplitude, and
quality factor of the SHO kernel (cf. Foreman-Mackey et al. 2017).
By contrast, BayEsWave would need to construct a sine-Gaussian
wavelet for each time-separated burst of power. Thus, a GP model
can greatly reduce the parameter space size compared to approaches
that try to model the glitches directly.

However, the case studies discussed herein amount to only a
demonstration of feasibility. There is significant work yet to be done
to realize the full potential of the GP approach.

First, we need to extend the scope of the kernel construction.
As pointed out in Section 3, we have limited our analysis to the
stationary SHO kernel. But, glitches are a non-stationary process.
Therefore, we plan to investigate the use of non-stationary kernels
and alternative kernel types, which may better model other glitch
classes and enable the analyses of short-duration glitches (relative to
the signal duration). In addition, we have applied the pre-whitening
approach to circumvent the need to model the stationary coloured
Gaussian noise. In future work, we plan to study how to construct a
full kernel which can model the coloured noise in addition to transient
glitches.

Second, we need to improve the computational and sampling
efficiency of our new approach. We can demonstrate the problem
using the analyses presented for the slow-scatting glitch in case
study A, which required the most complex GP kernel consisting
of three SHO terms. Averaging over the 10 MCMC chains used
in the analysis, the per-likelihood evaluation time of the GP was
(14 £ 2) ms, while it was (10 £ 1) ms for the Whittle likelihood
analysis. This modest additional cost illustrates the remarkable
efficiency of the cELERITE software, without which the GP would
take orders of magnitude more time per evaluation. However, the
Whittle likelihood analyses are able to utilize explicitly marginalized
likelihoods (see Thrane & Talbot 2019) and do not model the glitch
and signal simultaneously. Thus, the Whittle likelihood analyses
are exploring a smaller parameter space and hence require fewer
likelihood evaluations. In total, the GP analyses required 33 million
evaluations of the likelihood to produce 200 independent samples
per chain, while the Whittle likelihood analyses required just 0.6
million for the same number of samples. As a result, the Whittle
likelihood analyses took over an order of magnitude fewer resources
than the GP analysis. For an apples-to-apples comparison, we should

920z Arenuer g1 uo Jasn uojdweyinog Jo AlsiaAiun Aq 98/820//£862/2/0ZS/3|91e/seluw/woo dno-olwapeoae//:sdiy Woll papeojumoc]



also include the computational cost of the BavyESWave deglitching
analysis, but we found this to be negligible compared to the parameter
estimation itself. Therefore, we can conclude that the GP analysis
incurs significantly greater computational costs. However, we remind
the reader that this additional cost buys a more robust analysis,
simultaneously analysing the signal and glitch. In cases where
BavesWave finds difficulty in modelling the glitch (e.g. cases like
the fast-scattering glitch where repeated artefacts are difficult to
remove), it may be the only way to robustly determine the source
properties. To this end, we need to optimize the GP approach,
for example, by developing custom jump proposals for the GP
kernel terms, which will improve the efficiency of the Brrsy-
MCMC sampler and investigate explicit marginalization. Moreover,
the discussion above centres on the stationary kernels is available
in ceLERITE. When developing non-stationary kernels, it will be
crucial to simultaneously find ways to ensure the per-likelihood
evaluation time does not dramatically increase (though some extra
cost is inevitable).

Third, we have not yet demonstrated that the GP inferences of
the astrophysical signal parameters are unbiased, only that we can
recover the true value of a simulated signal. In future work, we will
need to perform a parameter—parameter (PP) test (Cook, Gelman &
Rubin 2006; Talts et al. 2018), a standard in the field to illustrate
the posterior is unbiased (see e.g. Veitch et al. 2015). Such a test is
complicated. First, we need to demonstrate the method is unbiased
in stationary Gaussian noise, but more importantly, we then need to
show it is unbiased for signals contaminated by a variety of glitches.
Choosing these glitches and how they contaminate the simulated
signals in the PP test will require extensive investigation.

The three elements listed above constitute a minimum requirement
to demonstrate that the GP approaches are a safe, efficient, and robust
alternative to existing methods. However, we expect there are many
more improvements that could be made. With the observational era of
gravitational-wave astronomy firmly underway, now is an excellent
time to explore new ideas in analysing the hundreds of events that
are soon to be seen. The GP approach fundamentally differs from
existing approaches and offers new opportunities to think about how
we analyse gravitational-wave events and test GR.
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