
MNRAS 520, 2983–2994 (2023) https://doi.org/10.1093/mnras/stad341 
Advance Access publication 2023 February 6 

Gaussian processes for glitch-robust gra vitational-wa ve astronomy 

Gregory Ashton 

‹

Department of Physics, Royal Holloway, University of London, London TW20 0EX, UK 

Accepted 2023 January 27. Received 2023 January 20; in original form 2022 September 23 

A B S T R A C T 

Interferometric gra vitational-wa ve observatories ha ve opened a new era in astronomy. The rich data produced by an international 
network enable detailed analysis of the curved space-time around black holes. With nearly 100 signals observed so far and 

thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of 
our Uni verse. Ho we ver, the detectors are afflicted by transient noise artefacts known as ‘glitches’ which contaminate the signals 
and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new 

approach to transient gra vitational-wa ve data analysis using Gaussian processes, which model the underlying physics of the 
glitch-generating mechanism rather than the explicit realization of the glitch itself. We demonstrate that if the Gaussian process 
kernel function can adequately model the glitch morphology, we can reco v er the parameters of simulated signals. Moreo v er, we 
find that the Gaussian processes kernels used in this work are well suited to modelling long-duration glitches which are most 
challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a 
new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first 
observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to 

the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps 
needed to realize the full potential of the Gaussian process approach. 

Key words: black hole physics – gra vitational wa ves. 
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 I N T RO D U C T I O N  

he emerging field of gra vitational-wa ve astronomy is built on the
ack of a multidecade effort to design and construct kilometre- 
cale interferometers that can measure their relative arm lengths to 
etter than 1 part in 10 21 . An international network of such detectors
Advanced LIGO, Virgo, and KAGRA (Aasi et al. 2015 ; Acernese 
t al. 2015 ; Akutsu et al. 2021 )] are now in operation and have so far
bserved 90 compact binary coalescences (CBC) gra vitational-wa ve 
ignals, including binary black hole (BBH), neutron star-black hole, 
nd binary neutron star mergers (The LIGO Scientific Collaboration 
021a ). Ho we ver, of these detections, 18 are contaminated by
ransient non-Gaussian detector artefacts known as glitches . If left 
naddressed, these contaminating noise sources bias astrophysical 
nferences, undermining the scientific outputs from this exquisite date 
Powell 2018 ; Macas et al. 2022 ). In this work, we develop a no v el
olution to analyse signals contaminated by glitches, simultaneously 
odelling the glitch using a Gaussian process (GP; Rasmussen 

003 ). 
Glitches represent particular epochs in which a single detector 
isbehaves, often due to local environmental disturbances. There- 

ore, it is generally assumed that any glitch-generating process is 
ndependent between distinct detectors. This independence is essen- 
ial for providing a means to distinguish them from astrophysical 
ignals, which produce coherent power at multiple detector sites. 
 E-mail: gregory.ashton@ligo.org 
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The characterization of glitches forms an integral part of analysing 
ata from interferometric detectors for two reasons (for a re vie w, see
avis & Walker 2022 ). First, studies which can identify the source
f the glitch-generating process (e.g. by temporally correlating the 
ignal as seen in the detector strain h ( t ) with auxiliary channels
onitoring the instrument) provide a means to improve the quality 

f data directly resulting in a reduction in the number of glitches in
uture data. Such a reduction can naturally lead to an impro v ement
n the ability of search algorithms to identify signals. The reduced
ackground noise rate leads to more confidence in identifying true 
strophysical signals. Second, and of rele v ance to this work, if a
litch o v erlaps a signal, care must be taken to carefully unpick the
ignal from the non-Gaussian noise (the glitch). 

Coincidences between glitches and signals are a common problem, 
erhaps most distinctly demonstrated by the LIGO Livingston glitch 
hich o v erlapped the first-observ ed binary neutron star merger
W170817 (Abbott et al. 2017 ; Pankow et al. 2018 ). Two approaches
ere applied to the mitigation of this glitch. A simple window

unction was applied for search analyses to zero out data around
he glitch. Meanwhile, for source parameter estimation, the glitch 
as modelled by BAYESWAVE (Cornish & Littenberg 2015 ), a flexible

ime-frequenc y wav elet reconstruction, and then a realization of that
odel was subtracted from the data. This latter method, known 

olloquially as ‘deglitching’, has now become the de-facto standard 
pproach to perform parameter estimation for the 20 per cent of
ignals contaminated by glitches. While BAYESWAVE remains the 
rimary tool to model the glitch, a new tool GWSUBTRACT (Davis
t al. 2019 ) has also been used, which applies linear subtraction
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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uilding the glitch model from a witness channel (Allen, Hua &
ttewill 1999 ). 
Davis et al. ( 2022 ) describe the basic deglitching process used to

nalyse glitch-contaminated signals during the third and most recent
bserving run of the LIGO, Virgo, and KAGRA detectors. First, a
heck is performed for all candidate signals to see if they admit excess
litch power. Second, the glitch is modelled, and a realization of the
litch drawn from the model is subtracted from the data. Finally, the
eglitched data are analysed using a standard parameter estimation
ramework. 

Deglitching has been highly successful in dealing with contami-
ated signals; the most recent study (Hourihane et al. 2022 ) demon-
trates its general-purpose applicability. Ho we v er, some dra wbacks
oti v ate us to study alternative approaches. First, the underlying

lgorithm that models the glitch is designed to study short-duration
ransient bursts. This makes it ideally suited to deglitching short-
uration ( � 1 s) glitches. Ho we ver, Hourihane et al. ( 2022 ) find that
ong-duration glitches, such as the fast- and slow-scattering glitches
discussed further below), are challenging and need specialized
ettings. The need for specialized settings calls for manual analyses:
 slow process requiring an expert to repeatedly analyse an event
nd, often by eye, decide if the glitch has been adequately excised.
econd, the principle of deglitching is inherently flawed because it

gnores uncertainty in the glitch model. To deglitch the data, some
raw from this model is taken. Usually, this is either the median
r a random draw. Ho we ver, Hourihane et al. ( 2022 ) find that there
re differences in the deglitched data depending on which draw is
aken for slow-scattering glitches. Such differences indicate that the
litch model has a non-negligible uncertainty which is not correctly
ccounted for when estimating the parameters of the astrophysical
ignal from the resultant deglitched data. The solution to this problem
s to analyse the signal and glitch together. Already, Hourihane et al.
 2022 ) have demonstrated how the underlying deglitching algorithm
an be extended to this end. 

Proper glitch mitigation is vital for ensuring unbiased astrophysi-
al inferences of the signal. Two clear examples of the difficulties in-
erent in the current process came to light during the third observing
un. The first example is the event GW200129, a BBH system with
he largest network signal-to-noise (SNR) ratio of any observation
o date (The LIGO Scientific Collaboration 2021a ). Recently, it has
een reported that GW200129 is the first unambiguous measurement
f strong-field precession in a BBH system (Hannam et al. 2022 ).
o we ver, the e vidence is complicated by the presence of glitches

emo v ed using gwsubtract (Davis et al. 2022 ). In a recent study,
ayne et al. ( 2022 ) demonstrated that the evidence for spin precession
epends sensitively on the glitch model: taking a different fair draw
an altogether remo v e the evidence for spin precession. The second
xample is GW191109 010717, a heavy BBH with a correspondingly
hort-duration signal. Time-frequency spectrograms of the data from
oth LIGO Hanford and Livingston show the presence of glitch
rtefacts o v erlapping the signal track. Applying the BAYESWAVE
lgorithm, the glitches were modelled and subtracted from the data
ollowing the standard process. However, when the deglitched data
ere analysed using a parameter estimation algorithm searching

or evidence of beyond-General Relativity (GR) physics, the pos-
erior distribution included multimodal features indicating a posi-
iv e be yond-GR result (The LIGO Scientific Collaboration 2021b ).
ubsequent studies demonstrated that contamination could explain

his: residual noise from the glitch mimicking a beyond-GR signal.
hile it has been demonstrated that BAYESWAVE deglitching does not

ontaminate the resulting data (Kwok et al. 2022 ), this study was
imited to short-duration glitches in a single detector. 
NRAS 520, 2983–2994 (2023) 
The difficulties in parameter estimation and tests of GR for
W200129 and GW191109 010717 are indicative of flaws in the

urrent deglitching approach. In both cases, the presence of long-
uration glitches, which are challenging to model and require manual
ntervention, caused issues. Substantial effort is underway to improve
he detectors ready for the next observation (O4), where it is
nticipated that we will observe hundreds of BBH signals. While part
f that effort is also dedicated to mitigating the cause of glitches at
heir source, which we do not fully understand, their cause suggested
e will not see a significant reduction in the rate of glitches in O4.
aking a pessimistic view that the glitch rate remains similar to
revious observing runs, but the rate of signal detection increases,
e will therefore expect to see an increasing number of signals

ontaminated (while the fraction remains approximately constant). 
In this work, we introduce a new approach to gra vitational-wa ve

arameter estimation, which is fundamentally designed to impro v e
he analysis of glitch-contaminated signals. The core idea is to replace
he traditional gra vitational-wa ve likelihood, which assumes the data
re stationary and Gaussian with a known power spectral density
PSD), with a GP; see Rasmussen ( 2003 ) for an introduction to GPs.
n principle, the GP approach can model arbitrary coloured noise,
on-stationarity, and non-Gaussian artefacts. As we will see, this
an be done using a few hyper-parameters (rather than introducing a
eterministic model, which can have many thousands of parameters).
We begin in Section 2 with an introduction to the GP approach and

he limitations we apply for this feasibility study. Then, in Section 3 ,
e show the results applying the GP approach to three case studies.
he first two demonstrate robust measurement of the parameters of
 signal contaminated by a long-duration glitch. Meanwhile, in the
nal case study, we discuss a no v el application of the GP approach to
nable time-domain tests of GR. Finally, in Section 4 , we conclude
nd discuss future development needed to realize the full potential
f the GP method. 

 M E T H O D S  

n this section, we briefly introduce the parameter estimation problem
n gra vitational-wa ve astronomy (see also Thrane & Talbot 2019 and
hristensen & Meyer 2022 for recent re vie ws) before introducing

he new GP methodology. 

.1 Bayesian inference and gra vitational-wa ve astronomy 

n gra vitational-wa ve astronomy, the problem of detecting a signal
s separated from measuring its properties (parameter estimation).
n this work, we concern ourselves only with the latter problem,
.e. we assume we are given some chunk of data d (in general,
his will contain data from multiple detectors) which contains an
strophysical gra vitational-wa ve signal described by a model M
long with background detector noise. The standard approach taken
n the field is that of Bayesian inference, namely, for a set of
odel parameters θ associated with the signal model M , we seek

n approximation of the posterior distribution 

( θ | d , M) ∝ L ( d | θ, M) π ( θ | M) , (1) 

here L and π are the likelihood function and prior probability
istribution , respectively, and we neglect the normalizing evidence . 
The standard approach used throughout the field (see e.g. Veitch

t al. 2015 ) is to construct the log-likelihood function in the frequency
omain. For data from the � th detector in the network consisting of a
eal time-series with duration T and sampling frequency f s , we take
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he discrete Fourier transform (DFT): 

˜ 
 

( � ) 
j = 

1 

f s 

∑ 

k 

d 
( � ) 
k e −2 πijkf s T , (2) 

here j inde x es the frequenc y bin and a tilde denotes a frequenc y-
omain quantity. Then, assuming the background noise and the signal 
re additive and that the noise is stationary and zero-mean with a
nown PSD P ( f ), the single-detector log-likelihood is given by the
hittle likelihood : 

ln L ( d 

( � ) | θ, M) = −1 

2 

∑ 

j 

ln (2 πP j ) − 2 

T 

∑ 

j 

∣∣∣ ˜ d 
( � ) 
j − ˜ μj ( θ ) 

∣∣∣2 

P j 

, (3) 

here j runs o v er the positiv e frequenc y bins and ˜ μj ( θ ) is the
requency-domain representation of the signal model M for parame- 
ers θ . While common in the general field of time-series data analysis,
he term Whittle likelihood is rarely used in the gra vitational-wa ve
iterature (see e.g. Veitch et al. 2015 ). We learned of the name from
hrane & Talbot ( 2019 ) and chose to apply it here to distinguish it

rom the GP likelihood, which we derive later in this text. If data
rom multiple detectors are available, assuming that the noise is 
ncorrelated, the network log-likelihood is constructed from the sum 

f the log-likelihood for each detector (and this applies to both the
hittle likelihood and GP approaches). 
Equation ( 3 ) was first derived by Peter Whittle (Whittle 1953 ) as

n approximation to the Gaussian likelihood for a stationary time 
eries: 

ln L ( d | θ, M ) = − 1 
2 r ( θ ) T � 

−1 r ( θ ) − 1 
2 ln 

(
(2 π ) N | �| ) , (4) 

here r ( θ ) = d − μ( t , θ ) is the residual after subtracting the signal
rom the data, � is the covariance matrix of the background 
oise, and N = f s T is the number of data points. The Whittle
ikelihood approximation (equation 3 ) is advantageous compared 
o the full Gaussian likelihood (equation 4 ) because the DFT can be
eplaced by the fast Fourier transform (FFT) algorithm, reducing the 
omputational cost from O( N 

3 ) to O( N log N ). A recent pedagogical
e vie w (Rao & Yang 2021 ) demonstrated the differences between
he tw o lik elihoods by deriving a frequency-domain representation 
f the Gaussian likelihood and found the difference to be of the order
f O(1 /N ). For typical gra vitational-wa ve inference problems, a 
ampling frequency of at least a few kHz is needed to ensure the
yquist frequency captures the signal properties during the merger 

nd ringdown, and a duration of a few to tens of seconds is typical.
herefore, we expect only slight differences between the Whittle 
nd Gaussian likelihoods. Ho we ver, there are kno wn deficiencies in
he Whittle likelihood approach. For example, recently, Talbot & 

hrane ( 2020 ) and Talbot et al. ( 2021 ) have investigated the impact
f the fixed PSDs and windowing of the time series, respectively. 
ach of these could bias individual results at a le vel equi v alent to
ther systematic uncertainties, and the effect can be magnified in 
opulation studies. 
For the prior distribution of equation ( 1 ), as a general rule, the

tandard approach is to apply uninformative priors where possible 
e.g. isotropic priors on the sky position). Ho we ver, in some cases,
hese are informed by the output of the detection pipeline (e.g. 
e restrict the time of the signal to some rele v ant range) or by
ther astrophysical data (e.g. the observation of an electromagnetic 
ounterpart may imply certain restrictions on the orientation of 
he source). In this work, we apply standard prior definitions used 
hroughout the field (see e.g. Romero-Shaw et al. 2020 ). 

Having defined the likelihood and priors, to estimate equation ( 1 ),
ither a stochastic-sampling (Cornish & Littenberg 2015 ; Veitch 
t al. 2015 ; Ashton et al. 2019 ; Biwer et al. 2019 ) or grid-based
Lange, O’Shaughnessy & Rizzo 2018 ) algorithms is used. These 
ethods are computational-intensive, typically needing O(10 8 ) or 
ore e v aluations of the likelihood and prior, with each e v aluation

aking � 1e-3 s (typically, this time is dominated by the generation of
he waveform and the overheads of the Whittle likelihood). There- 
ore, the typical time needed to estimate the posterior distribution 
s about a day. Ho we ver, this cost can increase dramatically if, for
xample, more physically accurate waveforms are used or the signal 
uration requires a longer data span. The total wall time required for
nalysis can be reduced by parallelization and optimization of the 
ikelihood in addition to methods that reduce the cost of the likelihood
nd waveform e v aluation. Ne vertheless, Bayesian inference remains 
 xpensiv e but necessary to resolve the highly correlated structure
n the posterior distribution robustly (where by ‘robustly’ we mean 
hat repeated analyses reproduce the same result within statistical 
ncertainties). 
Equation ( 3 ) has been applied with great success to every CBC

ignal observed by advanced-era detections (The LIGO Scientific 
ollaboration 2021a ). Ho we ver, it cannot be applied directly be-
ause, as discussed in the introduction, up to 20 per cent of these
re contaminated by glitches, violating the fundamental assumption 
hat the background noise is stationary and Gaussian. To address 
his, the BAYESWAVE algorithm extends equation ( 1 ), including an
dditional glitch model (and associated set of model parameters). 
erforming inference on this glitch model (simultaneously with the 
ignal model), a model of the glitch is constructed and then subtracted
rom the data. The standard inference process then uses the glitch-
ubtracted data in equation ( 3 ). The difficulty arises if the glitch is
mperfectly remo v ed. Then, the residual power will remain in the
litch-subtracted data and bias the inference of the signal properties. 
n the next section, we describe our proposed modification to the
tandard methodology, replacing equation ( 3 ) with a GP likelihood. 

.2 Gaussian processes 

 GP models a time series as a multi v ariate Gaussian distribution
ith a mean function μ( t ; θ ) and a kernel function k ( t m , t n ; α), where
is a set of hyperparameters describing the noise process. Under 

his interpretation, the log-likelihood is given by 

ln L ( d | θ, α, M ) = − 1 
2 r ( θ ) T �( α) −1 r ( θ ) − 1 

2 ln 
(
(2 π ) N | �( α) | ) . (5) 

omparing the GP likelihood with equation ( 4 ), we see that we have
eplaced the (fix ed) co variance matrix � with the covariance matrix
enerated by the kernel function: 

 mn ( α) = k( t m 

, t n ; α) . (6) 

GPs are powerful because they enable us to model the noise
rocess instead of the noise realization. The art of GP modelling
s constructing a kernel that captures the noise process and inferring
he hyper-parameters. Simultaneously, we can infer the properties of 
he mean model μ( t ; θ ), which will be marginalized with respect to
he uncertainty in the GP noise model. 

Direct application of equation ( 5 ) is infeasible for gravitational-
ave signals since, as with the full Gaussian likelihood the computa-

ion cost is of the order of O( N 

3 ). Ho we ver, if the kernel function is
tationary and constructed from a mixture of exponential functions, 
 oreman-Macke y et al. ( 2017 ) demonstrated that the likelihood
an be calculated with linear scaling by exploiting structure in 
he covariance matrix. The authors implement this method in the 
ELERITE software, which we will use throughout this work. Such 
ernel functions are not abstract: they arise naturally from random 
MNRAS 520, 2983–2994 (2023) 



2986 G. Ashton 

M

p  

o  

a  

o  

s  

o  

y  

o  

(  

f  

2

2

I  

g  

o  

c  

i  

o  

S
(  

k  

g  

s  

H  

u  

f  

a
 

G  

t  

w  

w  

(  

p  

a  

w
 

m  

d

d

w  

w  

n
 

P  

α  

m
 

n  

t  

f  

s  

f  

i
 

h  

t  

a  

S  

u  

h  

v

3

W  

c  

T  

o  

O  

a  

h  

l  

f  

S  

t  

W  

o  

r  

a  

F  

t  

B  

T

3

W  

o  

g  

w  

m
 

(  

i  

o  

s  

t  

d  

t  

B  

s  

g  

r  

i
 

r  

t  

a  

g  

H  

a  

t  

d  

o  

N  

c
 

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/2/2983/7028786 by U
niversity of Southam

pton user on 16 January 2026
rocesses consisting of stochastically driven damped harmonic
scillators. In a meaningful sense, many of the noise processes
fflicting gra vitational-wa ve detectors can be considered a collection
f harmonic oscillators. Therefore, it is natural to hypothesize that
uch fast and scalable GPs may be brought to bear on the problem
f gra vitational-wa ve data analysis. To our knowledge, GPs ha ve
et been applied to this problem [though they have been applied in
ther settings in the field, for example, to estimate model uncertainty
Moore et al. 2016 ; Doctor et al. 2017 ; Williams et al. 2020 ) and
or interpolating posterior inferences (D’Emilio, Green & Raymond
021 )]. 

.3 The GP likelihood for gravitational-wave signals 

n this work, we will utilize the CELERITE software to develop a
ra vitational-wa ve GP likelihood capable of inferring the properties
f gra vitational-wa v e signals contaminated by glitches. We will e x-
lusively use the simple harmonic oscillator (SHO) kernel described
n F oreman-Macke y et al. ( 2017 ), which is characterized by an
scillator frequency ω 0 , a quality factor Q , and amplitude S 0 . The
HO kernel is stationary: it depends only on the difference t m − t n 
this is true of all kernels in CELERITE ). Therefore, the stationary SHO
 ernel w ould appear to be a poor fit to model non-stationary transient
litches. Indeed, in practice, the SHO kernel performs poorly for
hort-duration glitches that last for only a fraction of a second.
o we ver, as we demonstrate later, the SHO kernel can model the
nderlying noise process for glitches that last for an appreciable
raction of the signal duration. We discuss this further in Section 4
nd suggest new avenues for applying transient GP models. 

In principle, a GP model could be built that models the coloured
aussian background noise characteristic of gra vitational-wa ve de-

ectors. This could be done using a mixture of SHO terms using terms
ith small quality factors to model the coloured noise and SHO terms
ith large quality factors to model the narrow Lorentzian features

see Littenberg & Cornish 2015 for a discussion of how BAYESWAVE
erforms a similar task). Ho we ver, for this initial study, where we
re primarily focused on the ability of the GP to model glitches, we
ill instead utilize a technique known as pre-whitening . 
To pre-whiten the data, we first construct a PSD P j using the
edian Welch method (Welch 1967 ). We then FFT the time series

ata to obtain ˜ d and then apply the whitening transform: 

ˆ 
 i = IFFT 

(
2 

N 

˜ d √ 

P 

)
, (7) 

here IFFT is the inverse FFT and the factor of 2/ N normalizes the
hitened data. If the PSD properly represents the coloured Gaussian
oise, then the whitened data ˆ d are zero mean with unit variance. 
Our GP model is then applied to the whitened data ˆ d using a fixed

SD. To calculate the likelihood given a set of GP hyperparameters
and model parameters θ , we apply equation ( 5 ) but note that the
ean model μ( t ; θ ) must also be whitened by the same PSD. 
By def ault, our GP k ernel (equation 6 ) then consists of a white-

oise term with a single hyperparameter σ in addition to M SHO
erms. Each SHO term adds three parameters: frequency, quality
actor, and amplitude. This arrangement was developed by trialling
e veral of f-the-shelf kernels in the CELERITE library . Ultimately , we
ound the SHO w ork ed the best to capture the glitch features studied
n this work (as e v aluated by posterior predictive checks). 

When the kernel includes multiple SHO terms (i.e. M > 1), we
ave a label-switching degeneracy which we find severely restricts
he efficiency of stochastic sampling. To resolve this, we apply
n order-statistics prior such that the joint prior on the set of
NRAS 520, 2983–2994 (2023) 
HO log-frequencies, { ln ( ω 

( m ) 
0 ) } (inde x ed by m , the SHO term) is

niform, but the marginal prior is ordered. For the remaining SHO
yperparameters, we apply uniform priors on the logarithm of the
alues. 

 RESULTS  

e apply the GP method to three case studies to demonstrate its
apability and explore the limitations of the current implementation.
he first two studies investigate a BBH signal o v erlapping e xamples
f scattered-light glitches. These glitches were common during
3 and have been linked to periods of increased ground motion

round the detectors which in turn cause light scattering from the
igh-power laser beam (Davis et al. 2021 ). Two distinct scattered
ight glitches are kno wn: slo w-scattering (Soni et al. 2020 ) and
ast-scattering (Soni et al. 2021 ); we discuss each in turn in Case
tudies A and B. The final case study demonstrates the use of

he GP method as a tool to perform time-domain tests of GR.
e perform an inspiral-merger-ringdown (IMR) test on the first

bserved BBH system, GW150914, separating the signal in time
ather than frequency. Our results are consistent with previous
nalyses but demonstrate a resolution to spectral leakage issues.
or all three case studies, we perform Bayesian inference using

he BILBY Bayesian inference library (Ashton et al. 2019 ) and the
ILBY-MCMC sampler optimized for BBH data analyses (Ashton &
albot 2021 ). 

.1 Case study A: a slow-scattering glitch 

e begin with a single-detector study of one of the two types
f scattered-light glitches: a slo w-scattering glitch. Slo w-scattering
litches are characterized by long-duration O(1 − 4) s stacked arches
hen viewed in a spectrogram. Multiple arches are formed due to
ultiple reflections of the scattered light (Davis et al. 2021 ). 
We take a representativ e e xample identified by GRAVITYSPY

Zevin et al. 2017 ; Glanzer et al. 2022 ) in the LIGO Livingston
nterferometer during the O3 observing run. In the left-hand panel
f Fig. 1 , we plot a spectrogram of the data illustrating three distinct
cattering arches between 10 and 70 Hz. Overlaid on this figure is the
ime-frequency track of the simulated signal that we will add to the
ata (it is not included in the spectrogram to a v oid confusion with
he glitch itself). Before adding the simulated signal, we apply the
AYESWAVE deglitching routine using standard settings. The resulting
pectrogram (right-hand panel of Fig. 1 ) demonstrates some residual
litch po wer belo w 20 Hz which we were unable to remo v e, but this
esidual power does not fall along the frequency-time track of the
njected signal. 

In contrast to the analyses of o v erlapping signals and glitches in
eal data, the deglitching process in this case study is applied in
he absence of a signal. Therefore, it is not representative of a real
nalysis but does represent an ideal of the deglitching process: the
litch can be characterized and subtracted without signal confusion.
o we ver, in practice, this will not usually be possible unless an

uxiliary channel provides a means to model the glitch without using
he strain data. Instead, for typical cases, which use BAYESWAVE to
eglitch the data, the signal and glitch must be modelled simultane-
usly. This leaves open the possibility for erroneous signal removal.
evertheless, it is a good demonstration of how the GP method

ompares against the ideal deglitching scenario. 
Having both the original data and the deglitched data, we can

erform a direct comparison of three different approaches. The first,
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Figure 1. Spectrograms of the slow-scattering glitch analysed in case study A plotted alongside the frequency track of the simulated signal. In the left-hand 
panel, we show the original strain data, whereas the right-hand figure shows the strain data after BAYESWAVE glitch subtraction is applied. Note that the glitch 
subtraction is applied before the simulated signal is added. We also show dashed horizontal lines in the left-hand panel highlighting the median SHO frequency 
inferred in the GP analysis. 
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1 For gra vitational-wa ve radiation from sources at cosmological distances, 
the signals are red-shifted. As a result, it is not possible to measure the 
source-frame mass directly, but instead, we measure the detector-frame mass. 
The former can be inferred by supplying a cosmological model to estimate 
the redshift z from the measured luminosity distance and then scaling the 
detector-frame mass by 1/(1 + z) (Cutler & Flanagan 1994 ). 
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hich we label ‘BW + WL’ applies the standard Whittle likelihood 
o data which have been deglitched using BAYESWAVE . Therefore, 
W + WL denotes the method used by the LVK collaborations to date. 
he second, which we label ‘GP’, is to apply the GP method directly

o the original data, modelling the glitch and signal simultaneously. 
inally, we label analyses where the Whittle likelihood is applied 
irectly to the original data ‘WL’; these analyses illustrate the 
xtent to which the glitch biases inferences in the absence of a
itigation technique. In validating the method, we did also analyse 

he deglitched data using the GP approach. As expected, we found 
ear identical results to the BW + WL approach since the GP simply
ets the hyperparameters of the SHO such that its effect is negligible,
nd then one reco v ers the standard Whittle likelihood. 

In each analysis, taking either the original or deglitched data, we 
dd a simulated equal-mass non-spinning BBH signal generated us- 
ng the time-domain IMRPhenomT waveform approximant (Estell ́es 
t al. 2022 ). The process of generating this analysis (i.e. obtaining
he strain data and adding the simulated signal) is independent of
he analysis method, ensuring a straightforward comparison can be 
ade. The signal track of the simulated signal is shown as a dashed

urve in Fig. 1 . 
We then analyse the original data (including the simulated signal) 

sing the WL and GP approach and the deglitched data using the
W + WL approach. All analyses are performed on data from a

ingle detector, though they naturally scale to multiple detectors by 
dding together the log-likelihoods assuming independent noise. For 
he comparative case studies (A and B), we infer the signal properties
sing the IMRPhenomT waveform, which assumes the spin of both 
lack holes is aligned along their angular momentum and we a priori
x the sky position of the source to the simulated values. We apply

hese simplifications because they reduce the overall computational 
ost by nearly an order of magnitude with minimal impact on the
omparison; ultimately, we are interested in the ability of the GP 

odel to separate the signal from the noise. Ho we ver, we do note
hat in this feasibility study, we have therefore not examined the
nteraction of a signal with misaligned spins, which will exhibit 
recession effects, with the GP method. Finally, for all analyses, we
enerate a PSD by applying the median Welch method to off-source
ata. For the WL and BW + WL analysis, the PSD is used directly
n the likelihood, while for the GP method, the PSD is used to whiten
he data and the predicted model. 

In Fig. 2 , we compare kernel density estimates of four source
arameters inferred using the WL, GP, and BW + WL approaches.
e choose to compare the detector-frame 1 chirp mass (Finn & 

hernoff 1993 ): 

 

d = 

( m 

d 
1 m 

d 
2 ) 

3 / 5 

( m 

d 
1 + m 

d 
2 ) 1 / 5 

, (8) 

where m 

d 
1 and m 

d 
2 are the detector-frame mass of the two black

oles), the mass ratio: 

 = m 

d 
2 / m 

d 
1 , (9) 

he ef fecti ve spin (Ajith & Bose 2009 ; Santamaria et al. 2010 ): 

eff = 

χ1 + qχ2 

1 + q 
, (10) 

here χ1 and χ2 are the aligned spin components of the two black
oles, and the luminosity distance, d L . 
The kernel used in the GP analysis presented in Fig. 2 is formed

rom the addition of a white noise component (characterized by 
ts standard deviation) and M = 3 SHO terms (characterized by
MNRAS 520, 2983–2994 (2023) 
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M

Figure 2. The posterior distribution for the detector-frame chirp mass M 

d , mass ratio q , ef fecti ve spin χ eff , and luminosity distance d L for case study A. In each 
figure, we compare the WL applied to the original data (WL), the GP applied to the original data (GP), and the WL applied to the deglitched data (BW + WL). 
The simulated signal value is given as vertical dashed lines, while 90 per cent credible intervals are given as coloured vertical lines for each distribution. 
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he frequency , quality , and amplitude factors) resulting in a total
f 10 noise hyperparameters. The choice of three SHO terms and
he prior applied to their hyperparameters was reached by manual
uning: using a greater number of SHO terms, their effect was
egligible, while using fewer terms, the source-parameter inferences
ere biased. In this instance, the optimal number of three was also

uggested by the observation of the spectrogram (Fig. 1 ) where we
bserve three distinct features. It is then unsurprising that the median
HO frequency inferred from the GP analysis coincides nicely with

he three arches in Fig. 1 (see horizontal dashed lines). But, this also
llustrates a clear deficiency of the GP model: we assume the GP
ernel is stationary, but Fig. 1 suggests that the frequency is, in fact,
hanging with time. Moreo v er, models of light scattering (Longo
t al. 2020 ) have previously demonstrated the frequency is changing
ith time. Therefore, we predict that non-stationary kernels may
roduce better results for transient glitches with a short duration
elative to the length of data being studied. In future, we could
nvestigate the use of the Bayesian evidence to select the optimal
umber or a Reversible-Jump MCMC able to optimize over the
umber. Finally, we add that for all three SHO terms, the median
nferred quality factor was ∼30. 

Let us now consider each of the analyses in Fig. 2 in turn. 
First, for the WL analysis, which applies no glitch mitigation,

he inferred source parameters are severely biased: this is clearly
emonstrated by the measured chirp mass and mass ratio where the
eak of the distribution lies well away from the simulation value. This
act is well known (see e.g. Pankow et al. 2018 ). In recent work, we
emonstrated (Ashton et al. 2022 ) that analysing scattering glitches
NRAS 520, 2983–2994 (2023) 
lone with a BBH model resulted in inferred mass ratios of ∼0.2.
hat the posterior for the mass ratio under the WL analysis in Fig. 1
eaks around this value is therefore consistent with the interpretation
hat the WL analysis ef fecti vely misses the simulated signal and tries
o fit the BBH model to the glitch instead. 

Second, the BW + WL approach is successful: all four parameters
re reco v ered within the 90 per cent interv al. This observ ation is en-
irely unsurprising, of course: the success of the BW + WL approach
s already well known in the literature, and Fig. 1 demonstrates
isually that the BAYESWAVE algorithm successfully deglitches the
ata. 
Finally, like the BW + WL approach, the GP approach also

uccessfully reco v ers the simulated values within the 90 per cent
redible intervals. This indicates it has successfully modelled the
ignal as part of the mean model and the glitch as part of the noise.
o further check this, in Fig. 3 , we create a posterior predictive

est showing the modelled glitch and noise alongside the simulated
ignal. The posterior predictive plot demonstrates the difficult task
he GP analysis has completed: to pick out the signal from the highly
on-Gaussian noise. 
Comparing the GP and BW + WL approaches in Fig. 2 , we see

hat the GP credible interval is, in all cases, wider than that of the
W + WL method. Taken at face value, this suggests the BW + WL
ethod is preferable since it constrains the source parameter with

reater precision. Ho we ver, we remind the reader that the BW + WL
pproach is operating under perfect conditions, where the glitch is
odelled in the absence of the signal. In practice, this will not be the

ase. On the other hand, the GP approach results are marginalized
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Figure 3. A posterior predictive plot for the slow-scattering glitch (case 
study A). In a solid grey curve, we plot the whitened strain data from LIGO 

Livingston; this includes the simulated signal added to the data, which we 
also plot as a solid black line (after whitening). In purple, we plot the posterior 
model prediction: a solid curve is generated from a median estimate of the 
source parameters, while the purple-shaded region indicates the 90 per cent 
credible interval for the model prediction (generated by drawing repeated 
predictions from the model from the posterior distribution). Finally, in a solid 
grey band, we plot the 90 per cent credible interval for the inferred GP noise 
by repeatedly drawing predictions from the GP kernel with a zero mean. The 
upper panel provides a close look at the features of the signal near to the 
merger; the lower panel includes a wider span of data illustrating the features 
of the glitch (cf. Fig. 1 ). 
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Figure 4. Spectrogram of the fast-scattering glitch analysed in case study B 

plotted alongside the frequency track of the simulated signal. We also show 

dashed horizontal lines highlighting the median SHO frequency inferred in 
the GP analysis. 
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 v er the uncertainty induced by the glitch, which increases the
ncertainty. Therefore, the increase in uncertainty represents exactly 
he goal of the GP analysis: to jointly constrain both the astrophysical
ignal and glitch and circumvent the need for deglitching which 
ntrinsically neglects uncertainty. Ho we ver, we do also remark that 
he BW + WL and GP glitch models are fundamentally different, 
nd it could be the case that the BAYESWAVE model is in some way
etter than the SHO model. To test this, we will need to compare
 full joint analysis by BAYESWAVE of the glitch and BBH signal as
one in Hourihane et al. ( 2022 ). Hence, for the time being, we can
onclude that the GP process is able to model the glitch and signal
imultaneously, but further comparisons are needed to understand 
he relative performance of the two approaches. 

.2 Case study B: an O3 fast-scattering glitch 

n our second case study, again using single-detector data, we 
dd a simulated signal to data containing a fast-scattering glitch. 
he original data are shown in Fig. 4 and illustrate the typical
ehaviour of this glitch class: a series of short-duration artefacts 
entred around (in this instance) a frequency of ∼60 Hz. We did try
o excise the glitch from the original data. Ho we ver, we found it
ifficult to find adequate BAYESWAVE configuration which remo v ed 
he glitch (though Hourihane et al. 2022 do report successful 
odelling of other fast scattering glitches). For this reason, we 

annot perform the BW + WL analysis. Therefore, we instead 
erform a repeated WL-offset analysis but shift the simulated 
ignal time by + 20 s. During this time, the data do not contain
ny transient noise artefacts (though we note the estimated PSD 

ill). 
To the original data, we add a simulated signal (identical to that of

ase study A); the time-frequency evolution of this signal is shown in
ig. 4 and then perform three analyses: the WL, GP, and WL-offset
nalysis. For the GP model, we find that a kernel consisting of a single
HO term in addition to a white-Gaussian noise term was sufficient

o model the background noise and extract the signal properties. In
ig. 4 , we plot the median inferred frequency of the SHO term as a
orizontal bar demonstrating that it captures the average frequency 
f the repeating transient artefacts. The quality factor the SHO term
nferred from the data was ∼10. 

In Fig. 5 , we plot kernel density estimates of the posterior from
he three analyses. Once again, the WL analysis demonstrates the 
evere bias by an analysis which is unable to model the glitch.
eanwhile, the GP and WL-offset analyses both reco v er the signal
ithin their 90 per cent credible interv als. Ho we ver, the WL-of fset

nalysis is better constrained. This is to be expected for the same
easons discussed in the context of case study A. The difference
s even more severe in this case. We expect that this is due to the
articularity of the glitch under study. 
In Fig. 6 , we create a posterior-predictive plot which demonstrates

he o v erlap of the signal and glitch in the inspiral phase. From this
lot, we can understand why the WL analysis, which assumes only
aussian noise and a BBH signal, is so severely biased by the
scillatory features of the glitch. Furthermore, we can understand 
hy the WL-offset analysis is far better constrained than the GP

nalysis. For the GP analysis, the inspiral is severely contaminated 
y the glitch, ef fecti vely reducing the SNR and hence resulting in
MNRAS 520, 2983–2994 (2023) 
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Figure 5. The posterior distribution for the detector-frame chirp mass M 

d , mass ratio q , ef fecti ve spin χ eff , and luminosity distance d L for case study B. In each 
figure, we compare the WL applied to the original data (WL), the GP applied to the original data (GP), and the WL applied to an offset data segment without a 
glitch (WL-offset). The simulated signal value is given as vertical dashed lines, while 90 per cent credible intervals are given as coloured vertical lines for each 
distribution. 
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Figure 6. A posterior predictive plot for the fast-scattering glitch (case study 
B). In a solid grey curve, we plot the whitened strain data from LIGO 

Livingston; this includes the simulated signal added to the data, which we 
also plot as a solid black line (after whitening). In purple, we plot the posterior 
model prediction: a solid curve is generated from a median estimate of the 
source parameters, while the purple-shaded region indicates the 90 per cent 
credible interval for the model prediction (generated by drawing repeated 
predictions from the model from the posterior distribution). Finally, in a solid 
grey band, we plot the 90 per cent credible interval for the inferred GP noise 
by repeatedly drawing predictions from the GP kernel with a zero mean. 
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 wider posterior compared to the WL-offset analysis where the
nspiral is uncontaminated by the glitch. 

.3 Case study C: enabling time-domains tests of GR: 
nspiral-mer ger-ringdo wn 

n our final case study, we discuss how the GP approach can enable
ime-domain tests of GR which are robust to glitches. The violent
nal stages of a BBH collision offer a unique opportunity to probe

he limits of GR in the strong-field regime (see The LIGO Scientific
ollaboration 2021b for the latest results). There are a variety
f proposed tests, including theory-independent consistency tests
looking for generic fails of the predicted GR model) and tests which
earch for explicit predictions (see e.g. Yunes & Siemens 2013 and
agi & Stein 2016 for re vie ws). Ho we ver, most of these tests rely on

he frequency-domain data analysis approach developed for source
arameter estimation. While this is not inherently problematic, there
s a subset of cases where the frequency-domain approach forces
wkw ard w orkarounds to implement what are intrinsically time-
omain tests. 
An example of this is the so-called IMR consistency test which,

onceptually, breaks the data in the time domain into two segments:
he inspiral and merger-ringdown (Abbott et al. 2016b ; Ghosh et al.
016 , 2018 ). The IMR test then checks for consistency between
he mass and spin of the remnant Kerr black hole, as predicted by
he inspiral and the merger-ringdown data separately. The difficulty
rises in that the analysis is performed in the frequency domain, not
he time domain. The separation of inspiral and merger-ringdown
ata is practically performed by choosing a cut-off frequency. Data
NRAS 520, 2983–2994 (2023) 
elow the cut-off are assumed to arise from the inspiral, while
ata abo v e the cut-of f are taken to be of the merger-ringdo wn.
o we ver, this practical choice can result in spectral leakage if the

nspiral signal contains power at frequencies abo v e the cut-off or the
erger-ringdown signal contains power below the cut-off. Ghosh

t al. ( 2018 ) demonstrate that if the cut-off frequency is chosen to
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Figure 7. The 90 per cent credible interval of the posterior distribution for 
final mass and spin of the remnant black hole inferred from the GW150914 
signal (top panel) and the fractional deviation parameters (bottom panel) 
calculated from equation ( 3 ) of The LIGO Scientific Collaboration ( 2021b ). 
In the top panel, the ‘IMR’ curve refers to the analysis of the entire 4 s segment 
of data surrounding the event, ‘Inspiral’ to the 2 s of data before the trigger 
time, and ‘Post-Ins.’ to the 2 s of data after the trigger time. In the bottom 

panel, the black contour marks the 90 per cent credible interval, while the ‘ + ’ 
symbol marks the prediction of GR. 
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e that of the innermost stable circular orbit (ISCO) of the final
err back hole, then the amount of leakage is small. But, we point
ut that this validation was performed on a circular aligned-spin 
ystem. For precessing systems (and systems including the effects of 
ccentricity), the frequency evolution during the inspiral can be non- 
onotonic, and the signal can contain frequency content abo v e the

SCO, which would result in spectral leakage between the inspiral 
nd merger-remnant. Spectral leakage is of concern because, if it 
ccurs at a significant level, it violates the premise of the test and
nforces an automatic consistenc y. Moreo v er, ev en if the level of
pectral leakage is small, the practical implementation of the IMR 

onsistency test (splitting the signal in the frequency domain) is at 
dds with the conceptual idea of splitting the signal in the time
omain. 
A second example where a similar difficulty is faced is that of the

ingdown-only analysis (Abbott et al. 2016b ; Carullo, Del Pozzo & 

eitch 2019 ; Isi et al. 2019 ; Capano et al. 2021 ), where data arising
rom the ringdown alone are analysed for consistency with the 
heoretical predictions of GR. Such tests face a similar difficulty 
o the IMR tests: they need to take data only from the ringdown,
nsuring there is no contamination from the inspiral. In this case, a
imple frequency cut will not suffice. The two dominant approaches 
ev eloped to solv e the problem are ‘gating and in-painting’ (Capano
t al. 2021 ), where the inspiral is replaced such that the o v erwhitened
ata are 0 in the region of interest, and a time-domain likelihood
Carullo et al. 2019 ; Isi et al. 2019 ) which is able to analyse only the
erger-ringdown. 
Time-domain ringdown analyses demonstrate the general-purpose 

pplicability of time-domain approaches to testing GR. That our 
P approach is itself time-domain by construction moti v ates us to
emonstrate how it can be readily applied to resolving the spectral 
eakage problem for IMR tests. To this end, we perform a reanalysis
f the first observed BBH merger, GW150914 (Abbott et al. 2016a ).
aking open data from the Gra vitational-Wa ve Open Science Centre 
Abbott et al. 2021 ), we analyse the data from LIGO Hanford and
ivingston using the precessing IMRPhenomTP (Estell ́es et al. 
021 ). We use standard prior configurations (isotropic priors on the 
pin, uniform in the component masses, and uninformative on the 
osition and orientation), noting that unlike case studies A and B,
his analysis makes no assumptions about the spin or sky location. 

e first construct a PSD using the median Welch method from 124 s
f data prior to the signal. We then analyse the full signal (labelled
MR), comprising 4 s of data centred on the GPS trigger time t 0 =
126259462.418, the inspiral signal comprising 2 s of data before t 0 ,
nd the merger-ringdown (labelled Post-Ins.) comprising 2 s of data 
fter t 0 . The posterior distributions for the final mass and spin inferred
rom these three analyses are then presented in the upper panel of
ig. 7 . Next, we apply the procedure described in Ghosh et al. ( 2018 ),
ee Eqn 5, to calculate the fractional difference between the inspiral
nd post-inspiral analyses normalized to their average and plot the 
esulting distribution in the lower panel of Fig. 7 . 

Our results agree with the original analyses (Abbott et al. 2016b ):
e find strong consistency between the inspiral and merger-ringdown 
redictions. Moreo v er, the prediction of GR falls comfortably within 
he 90 per cent credible interv al. Ho we ver, we do note that our
0 per cent credible interval for the fractional deviation is smaller than 
hat of the original analysis and our post-inspiral inference is similarly
etter constrained. In the absence of the differing methodology, 
here are already several possible causes for this, including the use 
f a different waveform model and PSD. Ho we ver, we anticipate
hat the most significant differences arise due to the construction 
f the time-domain cut-off. Namely, we cut the data based on 
he trigger time t 0 calculated from a full IMR analysis. Ho we ver,
his value refers to the peak of the 2-2 mode as measured at the
arth’s centre. Meanwhile, the light-travel-time delay means that 

he transition between merger and ringdown (itself a fuzzy concept) 
ccurs at different times for the data from the two detectors. This
act can clearly be seen in Fig. 8 where we plot the data and the
osterior predictive whitened waveforms from the IMR, Inspiral, 
nd Post-Ins analyses. Here, one can see that the time-domain 
ut-off between Inspiral and Post-Ins occurs earlier in Hanford 
relative to the overall waveform morphology) than in Livingston. A 

traightforward impro v ement would therefore be to define a detector-
ependent cut-off time. However, like with the frequency-domain 
nalysis, the choice of cut-off is in some sense arbitrary and will
nvariably produce different results. But crucially, for our time- 
omain analyses, any choice of cut-off is still a valid test of GR since
e cleanly separate the data without the risk of spectral leakage.
herefore, for this presentation, we choose to keep our simplified 
nalysis fixing the cut-off time universally. In future work, we plan
o investigate detector-dependent cut-off times by choosing a fixed 
hase of the waveform and correcting for the light travel time delay.
nother interesting possibility opened up by the time-domain nature 
f our approach is to extend the number of data segments beyond
ust two and study consistency between them. Such a multiple- 
egment IMR test would, in spirit, begin to look very much like
MNRAS 520, 2983–2994 (2023) 
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Figure 8. Comparison of the whitened strain data from LIGO Hanford (top 
panel) and LIGO Livingston (bottom panel), with the posterior plot from 

the three analyses performed in the IMR test. In orange (green), we plot the 
waveform of the median posterior inferred from the inspiral (post-inspiral) 
data, while in purple, we plot the 90 per cent credible interval of waveforms 
inferred from the full IMR analysis. 
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he χ2 -veto (Allen 2005 ) used by search algorithms to identify
litches. 
Since GW150914 was not contaminated by glitches, we did not

nclude any SHO terms in the GP kernel. In testing, we found
hat adding SHO terms did not change the results: we found near-
dentical inferences about the signal parameters, while the posterior
istributions for the glitch SHO terms were uninformative except
or setting a limit on the maximum amplitude. In a sense, adding
dditional terms in the GP kernel when fitting to a signal that is
hought to be uncontaminated amounts to an automated residual test
f GR (an analysis where the best-fitting signal is subtracted from the
ata and the residual is searched for excess power). If the GP term
ere found to have non-zero power and one was certain the signal
as not contaminated by a glitch, this would suggest that the signal
odel was not able to fit some features of the data. Such a result

ould suggest the presence of an unmodelled part of the signal. 
It is worthwhile pointing out that, since we do not include any SHO

erm, this case study bears parallels with extensions of the time-
omain ringdown analyses to also model the inspiral and merger.
o we ver, our ne w method can be easily extended to also include
HO terms to model any contaminating glitches: this could be
rucial to future detections to verify that signal power is arising
rom an astrophysical source and not terrestrial contamination. In
uture work, we will explore how the additional advantages of the GP
pproach are lev eraged, for e xample, using the GP to explicitly model
he coloured Gaussian noise (so that pre-whitening is not needed)
nd performing time-domain GR tests on signals contaminated by
litches. 
NRAS 520, 2983–2994 (2023) 
 C O N C L U S I O N  A N D  DI SCUSSI ON  

e have presented a feasibility study for a no v el approach to
nalysing transient signals observed by ground-based gravitational-
ave detectors using GPs. This new method fundamentally differs

rom the traditional approach in that it operates in the time domain
nd is able to model the physical processes generating Gaussian
nd non-Gaussian noise alongside an astrophysical signal. Our first
wo case studies demonstrate that the true source parameters of a
ignal contaminated by scattered light glitches can be reco v ered.

ith 20 per cent of observed signals observed by current generation
round-based detectors contaminated by signals, this marks an
mportant step towards enabling joint analysis of glitches and signals
nd a ready alternative to explicit glitch modelling. Then, in our
nal case study, we demonstrate that the GP approach can be easily

everaged to perform tests of GR in the time domain, a v oiding the
pectral leakage problem inherent in the frequency-domain IMR
ests. 

That the GP approach models the underlying physical process
enerating the noise, rather than the noise itself, sets it in contrast to
lgorithms which model the glitches directly, like BAYESWAVE . For
xample, in analysing the fast scatting glitch shown in Fig. 4 , the GP
pproach uses just three parameters: the frequency, amplitude, and
uality factor of the SHO kernel (cf. F oreman-Macke y et al. 2017 ).
y contrast, BAYESWAVE would need to construct a sine-Gaussian
avelet for each time-separated burst of power. Thus, a GP model

an greatly reduce the parameter space size compared to approaches
hat try to model the glitches directly. 

Ho we ver, the case studies discussed herein amount to only a
emonstration of feasibility. There is significant work yet to be done
o realize the full potential of the GP approach. 

First, we need to extend the scope of the kernel construction.
s pointed out in Section 3 , we have limited our analysis to the

tationary SHO kernel. But, glitches are a non-stationary process.
herefore, we plan to investigate the use of non-stationary kernels
nd alternative kernel types, which may better model other glitch
lasses and enable the analyses of short-duration glitches (relative to
he signal duration). In addition, we have applied the pre-whitening
pproach to circumvent the need to model the stationary coloured
aussian noise. In future work, we plan to study how to construct a

ull kernel which can model the coloured noise in addition to transient
litches. 
Second, we need to impro v e the computational and sampling

fficiency of our new approach. We can demonstrate the problem
sing the analyses presented for the slow-scatting glitch in case
tudy A, which required the most complex GP kernel consisting
f three SHO terms. Averaging over the 10 MCMC chains used
n the analysis, the per-likelihood e v aluation time of the GP was
14 ± 2) ms, while it was (10 ± 1) ms for the Whittle likelihood
nalysis. This modest additional cost illustrates the remarkable
fficiency of the CELERITE software, without which the GP would
ake orders of magnitude more time per e v aluation. Ho we ver, the

hittle likelihood analyses are able to utilize explicitly marginalized
ikelihoods (see Thrane & Talbot 2019 ) and do not model the glitch
nd signal simultaneously. Thus, the Whittle likelihood analyses
re exploring a smaller parameter space and hence require fewer
ikelihood e v aluations. In total, the GP analyses required 33 million
 v aluations of the likelihood to produce 200 independent samples
er chain, while the Whittle likelihood analyses required just 0.6
illion for the same number of samples. As a result, the Whittle

ikelihood analyses took o v er an order of magnitude fewer resources
han the GP analysis. For an apples-to-apples comparison, we should
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lso include the computational cost of the BAYESWAVE deglitching 
nalysis, but we found this to be negligible compared to the parameter 
stimation itself. Therefore, we can conclude that the GP analysis 
ncurs significantly greater computational costs. Ho we ver, we remind 
he reader that this additional cost buys a more robust analysis, 
imultaneously analysing the signal and glitch. In cases where 
AYESWAVE finds difficulty in modelling the glitch (e.g. cases like 

he fast-scattering glitch where repeated artefacts are difficult to 
emo v e), it may be the only way to robustly determine the source
roperties. To this end, we need to optimize the GP approach, 
or example, by developing custom jump proposals for the GP 

ernel terms, which will impro v e the efficiency of the BILBY-
CMC sampler and investigate explicit marginalization. Moreover, 

he discussion abo v e centres on the stationary kernels is available
n CELERITE . When developing non-stationary kernels, it will be 
rucial to simultaneously find ways to ensure the per-likelihood 
 v aluation time does not dramatically increase (though some extra 
ost is inevitable). 

Third, we have not yet demonstrated that the GP inferences of
he astrophysical signal parameters are unbiased, only that we can 
eco v er the true value of a simulated signal. In future work, we will
eed to perform a parameter–parameter (PP) test (Cook, Gelman & 

ubin 2006 ; Talts et al. 2018 ), a standard in the field to illustrate
he posterior is unbiased (see e.g. Veitch et al. 2015 ). Such a test is
omplicated. First, we need to demonstrate the method is unbiased 
n stationary Gaussian noise, but more importantly, we then need to 
how it is unbiased for signals contaminated by a variety of glitches.
hoosing these glitches and how they contaminate the simulated 

ignals in the PP test will require e xtensiv e inv estigation. 
The three elements listed abo v e constitute a minimum requirement 

o demonstrate that the GP approaches are a safe, efficient, and robust
lternativ e to e xisting methods. Ho we v er, we e xpect there are man y
ore impro v ements that could be made. With the observational era of

ra vitational-wa ve astronomy firmly underway, now is an excellent 
ime to explore new ideas in analysing the hundreds of events that
re soon to be seen. The GP approach fundamentally differs from
xisting approaches and offers new opportunities to think about how 

e analyse gra vitational-wa v e ev ents and test GR. 
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