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Abstract
The two interferometric LIGO gravitational-wave observatories provide the
most sensitive data to date to study the gravitational-wave universe. As part
of a global network, they have completed their third observing run in which
they observed many tens of signals from merging compact binary systems. It
has long been known that a limiting factor in identifying transient gravitational-
wave signals is the presence of transient non-Gaussian noise, which reduce the
ability of astrophysical searches to detect signals confidently. Significant efforts
are taken to identify and mitigate this noise at the source, but its presence per-
sists, leading to the need for software solutions. Taking a set of transient noise
artefacts categorised by the GravitySpy software during the O3a observing era,
we produce parameterised population models of the noise projected into the
space of astrophysical model parameters of merging binary systems. We com-
pare the inferred population properties of transient noise artefacts with observed
astrophysical systems from the GWTC2.1 catalogue. We find that while the
population of astrophysical systems tend to have near equal masses and moder-
ate spins, transient noise artefacts are typically characterised by extreme mass
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ratios and large spins. This work provides a new method to calculate the con-
sistency of an observed candidate with a given class of noise artefacts. This
approach could be used in assessing the consistency of candidates found by
astrophysical searches (i.e. determining if they are consistent with a known
glitch class). Furthermore, the approach could be incorporated into astrophys-
ical searches directly, potentially improving the reach of the detectors, though
only a detailed study would verify this.

Keywords: gravitational-waves, black holes, data analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

The LIGO, Virgo, and KAGRA gravitational-wave detectors [1–3] have opened the door to
the gravitational-wave universe and provided our first insights into the mergers of black holes
and neutron stars. These kilometre-scale interferometers, sensitive to signals in the tens of
Hz to kHz band, survey the sky nearly isotropically during observing runs [4]. Between each
observing run, the detectors are improved, reducing the noise level and yielding improvements
in the sensitivity. Therefore, each new observing run probes deeper than before, yielding an
increase in the rate of detections.

The LIGO detectors contain noise which is often assumed to be stationary and Gaussian for
analysis, but often exhibits non-stationarity and frequent non-Gaussian transient noise artefacts
termed glitches [5–9]. All glitches are believed to be instrumental or environmental in origin.
In some cases, the cause of a glitch class can be identified and improvements made to the
detector to reduce or eradicate the class. In other cases, so-called witness channels can identify
when such glitches occurred and veto coincident candidate events (see, e.g. Davis et al [9]).
Finally, glitches in classes without a known origin or witness channel remain a feature of the
science-mode data from interferometric gravitational-wave observatories.

Glitches are detrimental to achieving the scientific goals of gravitational-wave observato-
ries. Suppose glitches occur in coincidence with an actual astrophysical signal. In that case, this
may result in the signal being missed by searches, reducing the number of detectable signals,
or biasing our astrophysical inferences about the signal itself. However, glitches that do not
occur in coincidence with real signals also reduce the sensitivity of the astrophysical searches.
To identify signals, search pipelines use information about waveform morphology and coinci-
dences between detectors (see, e.g. [10–14]) to calculate a detection statistic. The presence of
glitches in the detector data produces values of the detection statistic larger than the expecta-
tion from Gaussian noise alone. To estimate the non-astrophysical background of the detection
statistic due to glitches, most search pipelines use a bootstrap approach, for example, by time-
shifting the data from independent detectors. These approaches enable a significance to be
attached to a candidate (for example, by the false alarm rate or FAR). Therefore, a candidate’s
significance is affected both by how alike it is to predictions for astrophysical signals and the
level of background noise created by glitches. Vetoing glitches or utilising detection statistics
that better identify transient noise outliers (see, e.g. [15]) reduce the level of background noise
from glitches and hence improve the number of sources that can be identified at a given con-
fidence level. But, in either case, glitches make it more challenging to identify astrophysical
signals.
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Significant effort has been made to classify glitches into separate classes based on their
morphology [7, 16–22]. Glitch classification can potentially identify the cause of glitches,
enabling detector improvements to reduce their impact. Classification can also help mitigate
the impact of glitches on a search, for example, by building a glitch-robust detection statistic
[23] or help qualitatively interpret putative astrophysical signals by placing them in the context
of known glitch classes.

Davis et al [24] investigated the impact of four glitch classes, blips, koi fish, scattered
light, and scratchy glitches on the PyCBC search pipeline [12]. Calculating a rate at which
the glitches pass a given detection threshold over the physical parameter space of sources,
they demonstrate a method to calculate the significance of a possible signal that coincides
with a glitch. An alternative approach explored in Ashton et al [25] builds information about
the distribution of glitches into a Bayesian odds, eschewing a bootstrapped estimation of the
background. However it is done, detection approaches which reduce the impact of glitches
are critical to improving the search sensitivity and hence identifying more astrophysical
candidates.

In this work, we take a modelled approach to glitch classification. We aim to deliver sim-
ple probabilistic models for the glitch classes most harmful to astrophysical analyses. To do
this, we analyse single-detector glitch triggers pre-classified by the GravitySpy citizen science
project [16] from the LIGO Hanford and Livingston detectors [1] during the O3a observing run.
We note that the data from the O3b observing run is also publicly available, but we choose only
to analyse O3a data. We expect that the population properties will be broadly consistent. How-
ever, an avenue for future research is to study whether any differences exist between observing
runs and what these can tell us about the underlying mechanisms that generate glitches. We
analyse each glitch using a model of a precessing binary black hole (BBH) merger (see Merritt
et al [26] for an alternative approach developing parametric glitch models). Using an astrophys-
ical black hole merger model enables us to project the properties of the glitch into the physical
parameter space of astrophysical signals. Taking these projections, we then build simple param-
eterised population models for each glitch class and study this population with respect to known
astrophysical signals.

The rest of this paper is structured as follows. In section 2, we introduce the methodology
based on the principles of population inference. In section 3, we describe our results fitting
population models to four different glitch classes. In section 4, we compare the glitch popu-
lation with the population of binary black-hole mergers described in the GWTC2.1 transient
gravitational-wave catalogue. Finally, we conclude in section 5 with a discussion about using
these results to validate triggers and improve astrophysical searches.

2. Methodology

The methodology used herein follows the principles of hierarchical population inference for
compact binary coalescence (CBC) signals (see references [27–29] and Thrane and Talbot [30]
for a review). We aim to identify the population properties of four glitch classes blip, tomte,
fast scattering, and scattered light which are known to most adversely impact search sensitivity
[9, 24]. In figure 1, we provides time–frequency spectrograms demonstrating typical examples
of each glitch class. These classes were the most numerous during the O1 to O3 observing
runs and will likely persist for future observing runs. We perform the population inference
separately on glitches in the LIGO Hanford (H1) and LIGO Livingston (L1) detectors. This
produces two sets of population properties that we can use to understand the consistency
of glitch classes between the detectors. In practice, when analysing triggers for which we
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Figure 1. Time–frequency spectrograms of the four glitch classes which we analyse in
this work.

do not know if they are a glitch in a single detector or an astrophysical signal, the prop-
erties will be inferred, including data from other detectors with coincident observations. In
the case where the other detectors contain only Gaussian noise, inferences about the source’s
intrinsic parameters (e.g. the mass and spins) will remain unchanged (compared to analysing
only the glitch-containing detector). This is because the intrinsic parameters determine the
waveform morphology [31]. In this work, we analyse only three of the intrinsic parameters
(described later) and therefore expect our single-detector results to hold for multi-detector anal-
yses where the other detectors contain only Gaussian noise. However, we do not expect this to
hold for the analysis of extrinsic parameters (where the lack of a signal in the other detectors
will produce informative posteriors). Finally, the behaviour when multiple detectors are anal-
ysed, each with an independent glitch, is not yet understood. Hence, our results may not hold
(except when the glitch in one detector is significantly louder and dominates). Nevertheless,
the results herein will still help characterise whether the data in any one detector is consistent
with a glitch, e.g., by performing single-detector analyses and looking at consistency between
detectors.

To infer the properties of glitches in a given class, we first identify a list of glitch times pre-
categorised by GravitySpy with a confidence threshold of 95%. We check that these glitches
would typically contribute to the noise backgrounds estimated by search pipelines, i.e. they
would not be vetoed by the single-detector signal-to-noise ratio (SNR) cuts. Each glitch is
individually vetted by eye using a time–frequency visualisation to ensure it is consistent with
the corresponding glitch class. In our analyses, we then analyse each single glitch from a
single detector: from these analyses, we build our population models per-detector. Specifi-
cally, we analyse the data di surrounding the ith glitch in our list using a stochastic sampling
algorithm (specifically, the nested sampling dynesty [32] algorithm through the Bilby [33]
package) and a model M. In this work, we use the IMRPhenomPv2 [34, 35] model, which
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includes the inspiral, merger and ringdown of merging BBHs and has been a standard bench-
mark waveform for several observing runs [36, 37]. IMRPhenomPv2, however, only models
the dominant (�, m) = (2, 2) modes in the gravitational-wave radiation. Recent advances in
waveform modelling have produced improved models, including the effect of higher-order
modes [38–43]. Nevertheless, we use IMRPhenomPv2 as it is well standardised and fast to
evaluate, enabling us to analyse hundreds of glitches without a high computational cost. How-
ever, this implies that we infer the properties of glitches given the IMRPhenomPv2waveform
model. It is well known that systematic uncertainty exists between waveform models and that
models including higher-order modes produce quite different posterior distributions, especially
when the system has asymmetric masses [44–46]. We, therefore, caution when comparing the
glitch population obtained herein with candidate triggers that are analysed using waveforms
other than IMRPhenomPv2, especially if those waveforms include the effect of higher-order
modes.

The IMRPhenomPv2 model has an associated set of model parameters θ, which describe
the mass, spins, location, and orientation of the source. For each glitch from each class, we
produce an estimate of the posterior distribution p(θ|di, M) (in the form of a set of posterior
samples) and the Bayesian evidence Z(di|M). During the analysis of individual glitches, we
use a Bayesian prior π(θ) appropriate for analysing astrophysical BBHs. Specifically, the prior
is uniform in the detector-frame5 chirp mass [47]

Mdet =
(m1m2)3/5

(m1 + m2)1/5
, (1)

between 8 and 200M� (where m1 and m2 are the detector-frame masses of the primary and
secondary black holes) and uniform in mass ratio q = m2/m1 between 1/20 and 1 and assumes
an isotropic distribution on the black holes spins. For all other parameters, we use the standard
non-informative astrophysical prior distributions defined in Veitch et al [31].

To infer the population properties of glitches in a given class, we take the set of pos-
terior samples and Bayesian evidence from each individual analysis and perform a hier-
archical population inference. Specifically, for a parameter θi ∈ θ, we define a population
hyper-models are designed to capture the broad features in a simple parameterised form. The
three hypermodels are:

M1 1 A power law distribution, it has a single hyperparameter Λ = {α} and density

π(θi|α,H1) ∝ θαi , (2)

with bounds given by the physical bounds on θi. This distribution is useful for modelling
populations which tend to rail against the physical bounds (for example, the primary
spin). Forα, we use a normally distributed prior with zero mean and a standard deviation
of 5. This removes the requirement for an arbitrary upper bound on the magnitude while
exponentially suppressing very large values.

M1 2 A truncated skew-normal distribution [48, 49], it has three hyperparameters
Λ = {μ, σ,κ} and density

π(θi|μ, σ,κ,H2) =
2
σ
φ

(
θi − μ

σ

)
Φ

(
κ
θi − μ

σ

)
(3)

5 We infer the glitch population properties of the chirp mass as measured in the detector frame, Mdet, rather than the
source-frame M = Mdet/(1 + z) where z is the inferred redshift.
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where φ(x) is the standard normal probability density function and Φ(x) is the error
function. We truncate the distribution again to the physical bounds on θi. This distribution
is useful for modelling unimodal populations with a distinct peak. We use a uniform prior
for μ over the prior support on θi, a normal prior for κ with zero mean and a standard
deviation of 10 and a truncated normal prior for σ with standard deviation given by the
maximum support on θi.

M1 3 A mixture-model of two normal distributions with five hyperparameters
Λ = {ξ, μ0, σ0, μ1, σ1} and density

π(θi|Λ,H3) =
ξ

σ0
φ

(
θi − μ0

σ0

)
+

1 − ξ

σ1
φ

(
θi − μ1

σ1

)
. (4)

This is effective in modelling multi-modal distributions; we do not include a skew as this
was found to be poorly constrained in the cases where the M3 model was required. As for
the M2 model, we use a uniform prior for μ0 and μ1 and a truncated normal distribution
for σ0 and σ1. For ξ, we apply a uniform prior on [0, 0.5].

For each model, the likelihood is constructed from equation (32) of Thrane and Talbot [30]
using ‘recycling’. This enables a two-step approach (first analysing individual events, then the
population properties), which is critical to reducing the wall-time of the analysis. For each
hypermodel, we report the median values of p(Λ|{di},H). These, together with the model
descriptions above, constitute the core product of this work: simple parameterised models of
glitches in the LIGO detectors.

To verify that the hypermodel captures the broad-scale features of the population, we use
predictive posterior checking. First, we take the ‘measured’ population (i.e. the posteriors
for each glitch) and bin each individual glitch-posterior in a histogram. Then, for each bin,
calculate the mean and the 90% credible interval (between 5% and 95%) and plot this as
a solid line and shaded band. This provides a summary of the population properties, which
includes the variation in the individual posteriors6. An example of this population visuali-
sation can be seen in the right-hand column of table 2: the ‘measured’ curve shows the mean
(solid grey line) and 90% credible interval (filled grey region) for the population of blip glitches
across separate parameters. Second, to plot the ‘predicted’ population, we repeat the process
above but simulate the individual posteriors from the population model. Specifically, we draw
θi from p(θi|Λ′) (where Λ′ is the median)7 then simulate a posterior and repeat the steps above.
The simulated posterior is derived by randomly sampling a posterior from the ‘measured’
population and aligning its mean with a random draw from the posterior population distri-
bution. This is a non-optimal method, but the alternative (simulating the signal predicted by
the posterior population distribution in real detector noise unaffected by other transient noise
and performing Bayesian inference) is too computationally demanding to be feasible. Exam-
ples of the resulting posterior predictive checks can be found in the right-hand column of
table 2: the ‘predicted’ curve shows the mean (solid orange line) and 90% credible (filled
orange region) predicted by the hyper model across separate parameters. Here we see that the
models capture the broad features (e.g. the number and location of modes and their width)

6 Some alternatives, e.g. a histogram of the means, exclude information about the posterior uncertainty captured by
our method.
7 An improvement to the predictive check would be to draw Λ′ from the inferred posterior. However, we wish to
understand the ability of our simple models, parameterised by the median of the hyperparameter distribution, to explain
the data.
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but do not always capture the details (e.g. the measured and predicted curves do not overlap
perfectly).

3. Results

We now describe the results for each glitch class in the sections below. For each glitch class,
we provide a table with a summary (the glitch model and median inferred population param-
eters) and the results of the posterior predictive checks. We also provide this information in
a machine-readable table [50]. For each model, we report the results of a single hypermodel.
However, we fitted various models during developmentand used the posterior predictive checks
as a qualitative guide to select the best fitting model.

3.1. Tomte glitches

In table 1, we report the hypermodel, median, and posterior predictive checks for the population
properties in Mdet, q, and a1 for tomte glitches in the H1 and L1 detectors. For each detector,
we analyse a set of 1000 tomte glitches identified with GravitySpy8. The SNR of these glitches
ranges from 7.7 to 74; the distribution is peaked with a median SNR of 21, but 90% of the tomte
glitches have an SNR less than 369. We also verify that we find similar conclusions about the
properties when we downsample to 100 glitches; we use this later to justify analysing smaller
sets of the fast scattering and scattered light glitches.

For the chirp mass, the measured glitch population is unimodal with a peak at ∼75M� and
some positive skew. We fit the population using the M2 skew-normal distribution and find a
qualitatively acceptable fit for both detector populations. However, the model under-predicts
the rate of glitches with Mdet ∼ [125, 175] in the H1 detector. While the broad features are
consistent between H1 and L1, the amount of skew is noticeably different, and tomte glitches
in the H1 detectors have chirp mass values up to ∼150, while tomte glitches in the L1 detector,
Mdet � 125.

For the mass ratio, the population is unimodal with some skew and the bulk of support
on q � 1/2. We fit the mass ratio distribution using the M2 skew normal model and find a
good qualitative fit in H1 and L1. As with the chirp mass, we note some qualitative differences
between the H1 and L1 detectors, with greater support in the H1 detectors for mass ratios up
to 0.5, which is not seen in the L1 glitch population.

The primary spin, a1 piles up at the extreme spin case a1 = 1; we fit this using the M1 power-
law model and find a reasonable agreement. However, we note a lack of events at the a1 = 1
bound. Our fitted model does not capture this feature; however, it is sufficiently narrow that the
model remains a reasonable fit. The power-law index α ∼ 5–6 provides a rough guide to the
extent to which the spin ‘piles up’; this value is less extreme than in the blip glitch population
discussed in the next section. We do not observe significant differences between the H1 and
L1 detector populations for the spin.

3.2. Blip glitches

In table 2, we report the hypermodel, median, and posterior predictive checks for the population
properties in Mdet, q, and a1 for blip glitches in the H1 and L1 detectors. We analyse a set of

8 Of these 1000, computational issues resulted in the failure to analyse 1 tomte glitch from the L1 set; as such, our
results pertain to 1000 H1 tomte glitches and 999 L1 tomte glitches.
9 Throughout, we refer to the glitch SNR as the value measured by the Omicron [51] software. The lower bound of
7.5 is the result of a threshold applied when selecting the glitches for analysis.
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Table 1. Table of parameterised models for tomte glitches in the H1 and L1 interferome-
ters during the O3a era. Uncertainties on the median denote the symmetric 90% credible
interval. See section 2 for a description of the posterior predictive plots.

Detector Type Parameter Model Median Posterior predictive

H1 Tomte Mdet M2: skew-normal μ = 56+1
−1

σ = 29+2
−2

κ = 3.6+0.7
−0.6

L1 Tomte Mdet M2: skew-normal μ = 83.5+0.6
−0.6

σ = 8.8+0.7
−0.6

κ = −10+6
−10

H1 Tomte q M2: skew-normal μ = 0.289+0.003
−0.003

σ = 0.057+0.004
−0.003

κ = −14+6
−10

L1 Tomte q M2: skew-normal μ = 0.283+0.003
−0.003

σ = 0.043+0.003
−0.003

κ = −16+7
−10

H1 Tomte a1 M1: powerlaw α = 5.3+0.4
−0.4

(continued on next page)
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Table 1. Continued.

Detector Type Parameter Model Median Posterior predictive

L1 Tomte a1 M1: powerlaw α = 6.9+0.6
−0.6

1000 blip glitches in both H1 and L1 identified with GravitySpy. 10. The SNR of these glitches
ranges from 7.5 to 47. The distribution peaks at the minimum bound, and 90% of the glitches
have an SNR less than 20. We also verify that our results are robust when using only a subset
of 100 randomly selected glitches.

The measured glitch population is unimodal for the chirp mass, with a peak at ∼25M�
and some positive skew. We find that the M2 skew-normal model provides a good qualitative
fit. Comparing the measured and predicted posterior checks, the distribution means are well
aligned, though the skew-normal under-predicts the density in the 40–60M� region.

For the mass ratio, the population is bimodal, with identical features found in both detec-
tors. The bimodality originates from bimodal features observed in the posterior distributions of
individual events. Though we see significant scatter in the shape of individual posteriors, aver-
aging over multiple glitches, we observe similar distributions in both the H1 and L1 detectors,
indicating a common origin. The bulk of the support for both modes is found in the region
q � 1/2, with some support up to the equal-mass bound. We apply the M3 normal mixture
model, which provides a reasonable fit to the data, though it tends to underpredict the number
of nearly equal-mass glitches in the L1 detector.

Finally, for a1, the magnitude of the primary spin, we find that the measured glitch values
pile up onto the extreme spin case a1 ∼ 1. We also found this feature in the tomte population,
but here it is more extreme. We find the simplistic M1 power-law model provides a suitable fit
to this data; the extreme power-law index α ∼ 37 demonstrates the strength of the pile-up.

Across all three parameters, we find remarkably consistent glitch behaviour between the H1
and L1 detectors. This, of course, may be simply due to the robust classification of events by
GravitySpy. However, we note that the tomte glitches did not show such consistency.

3.3. Fast scattering glitches

In table 3, we report the hypermodel, median, and posterior predictive checks for the popula-
tion properties in Mdet, q, and a1 for fast scattering glitches in the H1 and L1 detectors. We use
a set of 100 fast scattering glitches identified with GravitySpy [22]. We limit ourselves to 100
glitches based on our analysis of the blip and tomte glitches, which indicated 100 glitches is
sufficient to represent the population properties. This ten-fold reduction in events correspond-
ingly reduces the computational burden of the analysis. The SNR distribution of these glitches

10 Of these 1000, computational issues resulted in the failure to analyse 61 blip glitches from the L1 set; as such, our
results pertain to 1000 H1 blip glitches and 939 L1 blip glitches.
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Table 2. Table of parameterised models for blip glitches in the H1 and L1 interferome-
ters during the O3a era. Uncertainties on the median denote the symmetric 90% credible
interval. See section 2 for a description of the posterior predictive plots. See section 2
for a description of the posterior predictive plots.

Detector Type Parameter Model Median Posterior predictive

H1 Blip Mdet M2: skew- μ = 17.2+0.5
−0.4

normal σ = 11.8+0.6
−0.6

κ = 4.1+0.7
−0.6

L1 Blip Mdet M2: skew- μ = 16.1+0.6
−0.6

normal σ = 14.7+0.9
−0.8

κ = 4.3+0.8
−0.7

H1 Blip q M3: normal + μ0 = 0.104+0.005
−0.005

normal σ0 = 0.030+0.005
−0.003

μ1 = 0.299+0.002
−0.002

σ1 = 0.018+0.002
−0.001

ξ = 0.20+0.03
−0.02

L1 Blip q M3: normal + μ0 = 0.101+0.006
−0.01

normal σ0 = 0.038+0.008
−0.005

μ1 = 0.317+0.003
−0.002

σ1 = 0.025+0.002
−0.002

ξ = 0.21+0.03
−0.03

H1 Blip a1 M1: powerlaw α = 58+4
−5

(continued on next page)
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Table 2. Continued.

Detector Type Parameter Model Median Posterior predictive

L1 Blip a1 M1: powerlaw α = 60+5
−4

is strongly peaked at the minimum bound of 7.5, with 90% of the glitches have an SNR less
than 13. However, the distribution has a long tail with a maximum value of 121.

For the chirp mass, we find that the population has support from 75M� up to the artificial
prior bound of 200M�. This indicates that the actual population likely have support at larger
masses still. Such extreme heavy systems are beyond the space of likely astrophysical signals
that ground-based detectors will observe in the advanced era. As such, extending our prior
beyond this artificial bound is unlikely to help distinguish glitches from signals in the near term,
so we choose not to do so. The observed distribution is ‘lumpy’ with multiple components. We
choose to fit the distribution with a skew normal distribution. This does not capture the ‘lumpy’
behaviour but does broadly capture the typical support.

For the mass ratio, the fast scattering population have extreme mass ratios with a median
of ∼1/10 with some support up to q ∼ 0.8. We fit this distribution using the M2 skew normal
model and find a reasonable agreement between the predicted and measured distribution.

The primary spin, as with previously studied glitches, peaks at the extremal a1 = 1 bound.
However, the measured population has significant support for systems with a1 right down to
zero. We fit this distribution using the M1 power-law model and find a good fit.

3.4. Scattered light glitches

In table 4, we report the hypermodel, median, and posterior predictive checks for the population
properties inMdet, q, and a1 for scattered light glitches in the H1 and L1 detectors. We use a set
of 100 scattered light glitches identified with GravitySpy. The choice to use just 100 glitches
mirrors the motivation in section 3.2. The SNR of these glitches ranges from 7.5 to 370; as
with the fast scattering glitch type, the distribution peaks at the lower bound with a long tail.
90% of the glitches have an SNR less than 47.

For the chirp mass, we find that the population has support from 75M� up to the artificial
prior bound of 200M� with significant ‘lumpiness’. The behaviour in the chirp mass distri-
bution is similar in form between the fast scattering and scattered light glitches. For the L1
detector, there is a significant overabundance at the equal-mass bound. We choose to fit the
distribution with a skew normal distribution. This does not capture the ‘lumpy’ behaviour but
does broadly capture the typical support.

For the mass ratio, the scatter light population have extreme mass ratios with a median
of ∼1/10. But, unlike the scattered light glitches, q � 0.2. We fit this distribution using the
M2 skew normal model and find a reasonable agreement between the predicted and measured
distribution.
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Table 3. Table of parameterised models for fast scattering glitches in the H1 and L1
interferometers during the O3a era. Uncertainties on the median denote the symmetric
90% credible interval. See section 2 for a description of the posterior predictive plots.

Detector Type Parameter Model Median Posterior predictive

H1 Fast Mdet M2: skew- μ = 164+7
−8

scattering normal σ = 39+8
−6

κ = −7+5
−10

L1 Fast Mdet M2: skew- μ = 102+30
−8

scattering normal σ = 43+10
−20

κ = 4+6
−4

H1 Fast q M2: skew- μ = 0.120+0.005
−0.009

scattering normal σ = 0.027+0.006
−0.006

κ = −7+6
−10

L1 Fast q M2: skew- μ = 0.072+0.006
−0.006

scattering normal σ = 0.077+0.02
−0.02

κ = 11+10
−5

H1 Fast scattering a1 M1: powerlaw α = 11+3
−2

(continued on next page)
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Table 3. Continued.

Detector Type Parameter Model Median Posterior predictive

L1 Fast scattering a1 M1: powerlaw α = 21+6
−4

As with previously studied glitches, the primary spin peaks at the extremal a1 = 1 bound
but with little support for smaller spins. We fit this distribution using the M1 power-law model
and find a good fit. The power-law index α ∼ 28 is nearly as large as that of the blip glitches.

4. Comparison with the GWTC2.1 catalogue

So far, 90 gravitational-wave signals have been reported and analysed by the LIGO, Virgo and
KAGRA collaborations [36, 37, 52, 53]. Predominantly, these have been BBH systems except
for two binary neutron star and two neutron star black hole binaries. Here we compare our
glitch population with the 47 events with pastro > 0.5 reported in either the GWTC2 [37] or
GWTC2.1 [52] catalogues during the O3a observing run11.

We provide two-dimensional plots comparing our glitch population with the observed sig-
nal in Mdet-q (figure 2), Mdet-a1 (figure 3), and q-a1 (figure 4). In each plot, we give the
90% credible interval of the four glitch classes (for both H1 and L1) along with the com-
bined equal-weighted glitch population in black. Projections of the overall glitch population
are given for each one-dimensional plane. Overlaid on this, we then plot the symmetric 90%
credible interval for all events with pastro > 0.5 reported in either the GWTC2 or GWTC2.1
catalogues.

Comparing the glitch population with the astrophysical BBH distribution, three features
stand out: (i) glitches have large spin magnitudes while astrophysical signals have median spin
magnitudes � 0.9; (ii) glitches have extreme mass ratios while astrophysical signals tend to
have more equal-mass; and finally, (iii) the combined glitch population spans the entire chirp
mass range considered in this work, though individual glitch classes tend to cluster.

Glitches have extreme mass ratios and spin because the CBC signals models are a poor fit
to the glitch morphology (see, e.g. Merritt et al [26]). In the equal-mass zero-spin limit, the
CBC waveform is sinusoidal with a characteristic monotonically increasing frequency evolu-
tion. Non-equal mass ratios and spins modify this behaviour introducing ‘twisting-up’ effects
which produce irregular waveform morphology’s. Glitches are caused by terrestrial distur-
bances, which are not expected to characteristically chirp up in frequency. So, when fitting the
CBC signal model, it is unsurprising that the best fits happen in the non-equal mass and large
spin limits.

11 The GWTC2.1 catalogue reported on 44 events with pastro > 0.5 observed during O3a, we then added the three
events reported in GWTC2, but which had a re-calculated pastro < 0.5. This superset, therefore, includes all events
during O3a reported by the collaboration with pastro > 0.5.
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Table 4. Table of parameterised models for scattered light glitches in the H1 and L1 interferometers during the O3a era. Uncertainties on the median
denote the symmetric 90% credible interval.

Detector Type Parameter Model Median Posterior predictive

H1 Scattered light Mdet M2: skew-normal μ = 151+10
−30

σ = 26+9
−7

κ = −1+2
−2

L1 Scattered light Mdet M2: skew-normal μ = 199+1
−10

σ = 67+9
−9

κ = −11+8
−10

H1 Scattered light q M2: skew-normal μ = 0.113+0.005
−0.006

σ = 0.029+0.005
−0.005

κ = −8+5
−10

(continued on next page)
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Table 4. Continued.

Detector Type Parameter Model Median Posterior predictive

L1 Scattered light q M2: skew-normal μ = 0.116+0.007
−0.05

σ = 0.035+0.008
−0.01

κ = −4+6
−10

H1 Scattered light a1 M1: powerlaw α = 29+5
−5

H1 Scattered light a1 M1: powerlaw α = 27+6
−5
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Figure 2. Visualisations of the parameterised glitch models developed in this work with
the set of all events observed in the GWTC2 and GWTC2.1 catalogues [37, 52] for
the chirp mass and mass ratio. A solid (dashed) line marks the 90% credible interval
for the predicted distribution in the H1 (L1) detector, coloured by the glitch classifica-
tion. A black density plot (and 1D marginal histograms) indicate the distribution of all
glitches. Blue markers indicate all confident detections from the GWTC2 and GWTC2.1
catalogues. We remind the reader that the chirp mass reported here is measured in the
red-shifted detector frame, not the source frame.

Of the BBH systems reported so far in O3a, just one, GW190403_051519,falls firmly inside
the 90% credible interval for the tomte population in chirp mass, mass ratio, and primary spin
magnitude. Additionally, GW190929_012149 sits at the edge of the tomte distribution, but no
signals are consistent with the other three glitch classes. Several other signals fall within the
interval for the chirp mass and primary spin magnitude but are clearly distinguished when
looking at the mass ratio and primary spin magnitude12. However, it should be noted that
both GW190403_051519 and GW190929_012149 have lower SNRs than any of the glitches
included in our population analysis since we select only high-confidence glitches. However,
Merritt et al [26] argue that both quiet and loud glitches (of the same class) exhibit similar
morphology.

12 We note that the GWTC2.1 analysis of these events used the higher-order mode waveforms IMRPhenomXPHM
[42] and SEOBNRv4PHM [39]. As previously discussed, adding higher-order mode content not modelled by the
IMRPhenomPv2 waveform used in this work can result in significant shifts in the posterior distribution. However,
we re-analysed GW190403_051519 using the IMRPhenomPv2 waveform and found the event remained consistent
with the tomte population. Between the GWTC2.1 analysis and our re-analysis, the median detector-frame chirp mass
shifted from 86 to 56M�, the mass ratio from 0.31 to 0.19, and the primary spin magnitude from 0.93 to 0.85.
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Figure 3. Visualisations of the parameterised glitch models developed in this work for
the chirp mass and primary spin magnitude. See figure 2 for a complete description.

In figure 5, we plot the time–frequency spectrogram of GW190403_051519 and a charac-
teristic signal track. This illustrates that the event is primarily identified in the L1 detector, with
no clear signal found in the H1 detector.

GW190403_051519 was first identified in the GWTC2.1 catalogue by the GWTC2.1
PyCBC-BBH search alone [52] with a probability of astrophysical origin (pastro) of 0.61. No
other pipelines identified GW190403_051519as a candidate. Meanwhile, GW190929_012149
was identified in the GWTC2 catalogue by the GstLAL search alone [37] with pastro = 1. How-
ever, in the GWTC2.1 catalogue, GW190929_012149 was subsequently identified by all four
pipelines used with pastro values ranging from 0.14 to 0.87. GW190403_051519 is notable
because the mass of the primary (heavier) object has more than 50% support for a mass greater
than 100M� and is either inside or above the ‘mass gap’ predicted by pair-instability supernova
theory [55].

That GW190403_051519and GW190929_012149 are consistent with the tomte glitch pop-
ulation does not, of course, mean that the events are tomte glitches. However, they have
pastro values, which allow for a terrestrial cause (i.e. 1 − pastro � 0.1). Tomte glitches were
numerous during O3a and are known to impact search sensitivity adversely. Therefore, it
seems reasonable to conclude that if GW190403_051519 or GW190929_012149 are not
of astrophysical origin, of the four glitch classes considered here, they are most consistent
with tomte glitches. However, we add that this assumes the signal morphology of the
glitch classes studied herein extends to the low SNR regime of GW190403_051519 and
GW190929_012149.

This work does not change the estimated pastro values for GW190403_051519 or
GW190929_012149. The search pipelines that identify signals are robust to all relevant glitch
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Figure 4. Visualisations of the parameterised glitch models developed in this work for
the mass ratio and primary spin magnitude. See figure 2 for a complete description.

classes, use information about the consistency between separate detectors, and apply glitch
discriminators [15]. Using bootstrap approaches (e.g. time-shifting the data from indepen-
dent detectors), the search pipelines estimate the background noise from all glitch classes,
and this is intrinsically part of the pastro calculation. Nevertheless, figure 4 demonstrates that
to identify signals with large spins and unequal mass ratios, astrophysical searches must con-
tend with an elevated background of glitches compared to other areas of the parameter space.
Search pipelines account for the distribution of noise triggers (including glitches) over the
searched parameter space in their detection statistics and the resulting significance estimates
(both the FAR, and pastro), though this is done in a variety of ways [13, 14, 56, 57]. Therefore,
the variation in glitch rate across the parameter space indicates that search pipelines are likely
not uniformly sensitive across the parameter space [24, 58].

5. Discussion and conclusion

We present population models for non-Gaussian transient noise (glitches) behaviour in the
Hanford and Livingston LIGO detectors during the O3a observing run. We first identify lists
of blip, tomte, fast scattering, and scattered light glitches pre-categorised by the GravitySpy
citizen-science project and then vetted for class consistency using time–frequency visuali-
sations. These glitch classes are known to most adversely affect search sensitivity. We then
analyse each glitch class using a precessing BBH model using Bayesian inference. In effect,
this allows us to project the properties of the glitch onto the parameter space of astrophysical
signals. Finally, we use hierarchical population inference methods to fit simple parameterised
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Figure 5. Time–frequency spectrograms of the GW190403_051519 event. We overlay
the predicted signal using the SEOBNRv4_ROM waveform approximant [54] and the
median-estimated signal properties from our IMRPhenomPv2 re-analysis of the event.
(We note a mismatch between the waveform used for analysis and the waveform used
to plot the signal track. However, the signal track here is intended only to guide the eye
and not a quantitative test.)

models to the glitch populations. We do this separately for the chirp mass, mass ratio, and pri-
mary spin magnitude parameters; all other parameters we find to be only weakly informative
at the population level. We verify the performance of the models using posterior predictive
checks and confirm that they reproduce the bulk features of the population.

Finally, we compare the population of glitches with events observed with pastro > 0.5 dur-
ing the O3a observing run. We find two events, GW190403_051519 and GW190929_012149,
which have a chirp mass, mass ratio, and primary spin magnitude consistent with the tomte
glitch class. GW190403_051519 is a fascinating case as it has a mass that may be inconsistent
with the predictions of pair-instability supernova theory.

The parameterised models developed in this work can be used to validate astrophysical sig-
nals and potentially improve search algorithms. Already, in section 4, we have demonstrated
how the consistency of a trigger with the glitch populations can provide insights into the likely
cause if the trigger is not astrophysical. For example, GW190929_051519 has a 39% proba-
bility of being terrestrial; we argue that if it is terrestrial, it is most consistent with the tomte
glitch class. This type of approach could be used to better-inform retractions in open public
alerts (where the final astrophysical probability is not yet available) by identifying when a trig-
ger bears a significant consistency with a known glitch class. In addition, the glitch populations
developed here could be used by search pipelines to distinguish astrophysical signals from ter-
restrial glitches better. Specifically, the Bayesian astrophysical odds approach [25] requires
a parameterised glitch model (see Ashton and Thrane [59] for the use of a simplistic glitch
model in relation to events during O1). The improved models presented here could be directly
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incorporated, better separating glitches from signals and resulting in an enhanced capacity
of the approach to identity signals. Meanwhile, traditional match-filter pipelines could, for
example, add the log of the inverse glitch probability (calculated from the probability of
the template parameters under the inferred population models in this work, for example) to
their detection statistic. Triggers which are highly consistent with the glitch population would
therefore be down-weighted, resulting in a reduced non-astrophysical background and corre-
sponding improvement in the capacity to identify signals. (We note that for current pipelines,
this would require a mapping between the precessing spin parameters used in this work to the
aligned spin components used by the search pipelines). Already, many search pipelines already
apply a version of the proposal above in which the detection statistics and background distri-
butions are calculated over the template banks. This enables a lowering of the background rate
in regions of parameter space less contaminated by glitches. Including the probabilistic models
here into the detection statistic itself could refine this approach, providing more fine-grained
modelled information. Ultimately, this may lead to a greater number of astrophysical signals
being detected. However, the impact of this will depend on how much additional information is
provided by these glitch models relative to the approaches already taken. To determine if such
an approach can improve the detection efficiency, a large-scale simulation study is needed,
which is beyond the scope of the current work.

We also identify multimodality in the mass ratio of blip glitches which may be used to iden-
tify this glitch class. We do not yet understand why this multimodality is exhibited, but it seems
likely the waveform fits two separate parts of the glitch morphology in different regions of
parameter space. This information may help formulate an improved glitch model (e.g., break-
ing the astrophysical waveform in a non-physical way that fits the glitch). Such a model could
then be used to identify glitches and improve astrophysical searches.

At the same time, in the future, we hope to improve these models by including correlations
between parameters, using higher-order mode waveform models and extending the study to
sub-dominant parameters. These improvements will provide a more refined glitch consistency
test and may reveal new glitch population features.
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