The University of Southampton
University of Southampton Institutional Repository

Nested sampling for physical scientists

Nested sampling for physical scientists
Nested sampling for physical scientists
We review Skilling's nested sampling (NS) algorithm for Bayesian inference and more broadly multi-dimensional integration. After recapitulating the principles of NS, we survey developments in implementing efficient NS algorithms in practice in high-dimensions, including methods for sampling from the so-called constrained prior. We outline the ways in which NS may be applied and describe the application of NS in three scientific fields in which the algorithm has proved to be useful: cosmology, gravitational-wave astronomy, and materials science. We close by making recommendations for best practice when using NS and by summarizing potential limitations and optimizations of NS.
stat.CO, astro-ph.CO, astro-ph.IM, cond-mat.mtrl-sci, hep-ph
2662-8449
Ashton, Greg
a8cec4b1-3c98-4b28-af2a-1e37cb3b9f2a
Bernstein, Noam
bb2cfc02-2b65-4613-9bae-da25ec547eaf
Buchner, Johannes
e40a3ffc-11c5-44e0-9486-9241cea03f0d
Chen, Xi
8612d381-8f2e-4120-ada2-413f649a4b81
Csányi, Gábor
ef34cf59-4f1d-417e-96d1-0dcbbf67104e
Fowlie, Andrew
1cbeaf95-3559-435d-b45f-2ab668e8dd3e
Feroz, Farhan
12abc3a3-7e0d-48e5-b091-ef09c06ead37
Griffiths, Matthew
6f87f999-7d79-442b-a11e-e1fe6151f8e8
Handley, Will
564b4d95-c7e5-436e-b51a-16d06952da98
Habeck, Michael
50b42d5e-4900-4b33-ae0d-dc2d0e74e69c
Higson, Edward
ed50f634-d658-4407-9269-92af2c3f6d0e
Hobson, Michael
817d92c4-d49d-44a7-b79c-e3ac023ea6c4
Lasenby, Anthony
ebbe096c-9415-4802-a588-2912d5f44675
Parkinson, David
cb8d2a50-b8ac-42e2-9ed6-a743a8597b71
Pártay, Livia B.
1ef7cb98-80c1-4eae-9460-b831329efcc9
Pitkin, Matthew
55ea022f-9145-4967-bc58-3eea4e004251
Schneider, Doris
6c825856-a2e0-4798-a786-848e4b760a39
Speagle, Joshua S.
54687ea3-e354-4bc1-8175-a30adf964fd0
South, Leah
9b42f0f9-27d6-4270-80da-b63167fbc463
Veitch, John
c04f32bb-0567-4442-8f4f-4313080f12fa
Wacker, Philipp
b55420f4-d1de-4240-b6be-c8c9a8a4547a
Wales, David J.
f8c952cf-3ca3-4fea-84f8-81cb5433da6c
Yallup, David
ddb8512d-b900-46f0-9165-13fd75af7429
Ashton, Greg
a8cec4b1-3c98-4b28-af2a-1e37cb3b9f2a
Bernstein, Noam
bb2cfc02-2b65-4613-9bae-da25ec547eaf
Buchner, Johannes
e40a3ffc-11c5-44e0-9486-9241cea03f0d
Chen, Xi
8612d381-8f2e-4120-ada2-413f649a4b81
Csányi, Gábor
ef34cf59-4f1d-417e-96d1-0dcbbf67104e
Fowlie, Andrew
1cbeaf95-3559-435d-b45f-2ab668e8dd3e
Feroz, Farhan
12abc3a3-7e0d-48e5-b091-ef09c06ead37
Griffiths, Matthew
6f87f999-7d79-442b-a11e-e1fe6151f8e8
Handley, Will
564b4d95-c7e5-436e-b51a-16d06952da98
Habeck, Michael
50b42d5e-4900-4b33-ae0d-dc2d0e74e69c
Higson, Edward
ed50f634-d658-4407-9269-92af2c3f6d0e
Hobson, Michael
817d92c4-d49d-44a7-b79c-e3ac023ea6c4
Lasenby, Anthony
ebbe096c-9415-4802-a588-2912d5f44675
Parkinson, David
cb8d2a50-b8ac-42e2-9ed6-a743a8597b71
Pártay, Livia B.
1ef7cb98-80c1-4eae-9460-b831329efcc9
Pitkin, Matthew
55ea022f-9145-4967-bc58-3eea4e004251
Schneider, Doris
6c825856-a2e0-4798-a786-848e4b760a39
Speagle, Joshua S.
54687ea3-e354-4bc1-8175-a30adf964fd0
South, Leah
9b42f0f9-27d6-4270-80da-b63167fbc463
Veitch, John
c04f32bb-0567-4442-8f4f-4313080f12fa
Wacker, Philipp
b55420f4-d1de-4240-b6be-c8c9a8a4547a
Wales, David J.
f8c952cf-3ca3-4fea-84f8-81cb5433da6c
Yallup, David
ddb8512d-b900-46f0-9165-13fd75af7429

Ashton, Greg, Bernstein, Noam, Buchner, Johannes, Chen, Xi, Csányi, Gábor, Fowlie, Andrew, Feroz, Farhan, Griffiths, Matthew, Handley, Will, Habeck, Michael, Higson, Edward, Hobson, Michael, Lasenby, Anthony, Parkinson, David, Pártay, Livia B., Pitkin, Matthew, Schneider, Doris, Speagle, Joshua S., South, Leah, Veitch, John, Wacker, Philipp, Wales, David J. and Yallup, David (2022) Nested sampling for physical scientists. Nature Reviews Methods Primers, 2, [39]. (doi:10.48550/arXiv.2205.15570).

Record type: Article

Abstract

We review Skilling's nested sampling (NS) algorithm for Bayesian inference and more broadly multi-dimensional integration. After recapitulating the principles of NS, we survey developments in implementing efficient NS algorithms in practice in high-dimensions, including methods for sampling from the so-called constrained prior. We outline the ways in which NS may be applied and describe the application of NS in three scientific fields in which the algorithm has proved to be useful: cosmology, gravitational-wave astronomy, and materials science. We close by making recommendations for best practice when using NS and by summarizing potential limitations and optimizations of NS.

This record has no associated files available for download.

More information

Accepted/In Press date: 4 April 2022
e-pub ahead of print date: 26 May 2022
Published date: 26 May 2022
Keywords: stat.CO, astro-ph.CO, astro-ph.IM, cond-mat.mtrl-sci, hep-ph

Identifiers

Local EPrints ID: 508305
URI: http://eprints.soton.ac.uk/id/eprint/508305
ISSN: 2662-8449
PURE UUID: 7a5d9ae2-92fe-4d4c-ac2a-97170595a39d
ORCID for Greg Ashton: ORCID iD orcid.org/0000-0001-7288-2231

Catalogue record

Date deposited: 16 Jan 2026 17:39
Last modified: 20 Jan 2026 03:14

Export record

Altmetrics

Contributors

Author: Greg Ashton ORCID iD
Author: Noam Bernstein
Author: Johannes Buchner
Author: Xi Chen
Author: Gábor Csányi
Author: Andrew Fowlie
Author: Farhan Feroz
Author: Matthew Griffiths
Author: Will Handley
Author: Michael Habeck
Author: Edward Higson
Author: Michael Hobson
Author: Anthony Lasenby
Author: David Parkinson
Author: Livia B. Pártay
Author: Matthew Pitkin
Author: Doris Schneider
Author: Joshua S. Speagle
Author: Leah South
Author: John Veitch
Author: Philipp Wacker
Author: David J. Wales
Author: David Yallup

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×