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Gravitational-wave data from advanced-era interferometric detectors consists of background Gaussian
noise, frequent transient artifacts, and rare astrophysical signals. Multiple search algorithms exist to detect
the signals from compact binary coalescences, but their varying performance complicates interpretation.
We present a machine-learning-driven approach that combines results from individual pipelines and utilizes
conformal prediction to provide robust, calibrated uncertainty quantification. Using simulations, we
demonstrate improved detection efficiency and apply our model to GWTC-3, enhancing confidence in
multipipeline detections, such as the subthreshold binary neutron star candidate GW200311_103121.
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Gravitational-wave astronomy is progressing from initial
detection to routine observation. As of GWTC-4.0, the
fourth gravitational-wave transient catalog [1], the LIGO
Scientific, Virgo, and KAGRA (LVK) Collaborations have
detected over 200 signals arising from compact binary
coalescence (CBC) sources. These sources are discovered
using highly developed search algorithms (pipelines) that
measure significance by comparing a detection statistic for
the candidate against an empirical background distribution.
Candidates are initially ranked by a frequentist false alarm
rate (FAR), but the pipeline outputs are then convolved with
an astrophysical model of the CBC population to produce a
Bayesian pastro [2–5]. The LVK routinely uses five pipe-
lines to detect signals. Four of these (GstLAL [6–11], MBTA

[12,13], PyCBC [14–18], and SPIIR [19,20]) use parame-
trized models of CBC sources, while CWB [21] uses a
wavelet model with weaker assumptions about the source
type. Moreover, there are also external teams that run
independent searches (see, e.g., Refs. [22,23]).
To date, a straightforward approach has been taken to

combining the results from multiple pipelines: taking the
maximum pastro or inverse FAR (IFAR: i.e., 1/FAR) across
the set of contributing pipelines. For example, in the
GWTC, candidates with at least one pipeline with pastro >
0.5 are considered significant signals (with an estimated
contamination rate from nonastrophysical sources of 10%–
15%, see, e.g., Abbott et al. [24]). This powerful and

straightforward approach does not require processing and
enables the simple combination of independent catalogs.
However, multiple estimates of a candidate’s significance
and properties by different algorithms also present an
opportunity: correlations between pipelines could be
exploited to improve the overall detection efficiency
beyond the current maximum approach. This idea has
already been explored for combining the pipelines to
produce a unified pastro [25], but this relies on accurate
models of the signal and noise distributions. In this Letter,
we explore a new approach that combines pipelines using
simple machine learning (ML) models trained on labeled
data. However, the predictions from such models are
uncalibrated and lack a quantified uncertainty. Therefore,
we augment our ML-combination pipeline by applying
conformal prediction (CP) [26,27] to provide quantified
uncertainty measurements using labeled calibration data.
This approach is fast, computationally efficient, and
requires only the simulation of the expected signal and
noise distributions. Our approach offers the capacity to
learn the strengths and weaknesses of multiple pipelines
without strict requirements on the underlying data products.
Thus, it can also be used to assess the performance of new
pipelines or modifications to existing pipelines. We restrict
ourselves to the binary classification problem, signal or
noise, but the work can be generalized to multiclass
classification straightforwardly.
We use two standard ML classification models: logistic

regression (LR) and a multilayer perceptron (MLP); both
are discussed in detail in Supplemental Material [28]. Each
takes as input a feature vector X⃗ and returns a normalized
set of probabilities P for each label. To train the models, we
utilize the results from the recent mock data challenge
(MDC) study in advance of the LVK fourth observing run
[29], where the GstLAL, PyCBC, SPIIR, MBTA, and CWB search
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pipelines were applied to a real-time data replay with added
simulated signals. The 40 days of data are taken from the
LIGO Livingston and Hanford detectors [30] and the Virgo
detector [31] during the third observing run (the KAGRA
detector [32] was not in operation at this time). From this
MDC, we take all candidates, excluding early warning
candidates, that the search pipelines upload, cluster in time
(grouping all events within a 1 s window), and then filter all
but the maximum signal-to-noise ratio (SNR) candidate per
pipeline.
This produces our feature data fX⃗ng where each row

contains the per-pipeline features (including detection
quantities such as the IFAR, SNR alongside estimates of
the source properties such as the mass and spin; see
Supplemental Material [28] for details). However, we do
not include pastro as a feature because the enhanced signal
rate used in constructing the data mean the pipeline pastro
values are not well calibrated. For elements of the feature
data where any given pipeline does not find a candidate
with IFAR > 1 h, we enter zeros to fill in the missing data.
We then compare the candidate list with the times of

known simulated signals and astrophysical signals known
to be in the data and produce a ground-truth label set fYng.
We find 9946 rows of data, with 5908 corresponding to
simulated or real signals. The number of signals in this data
is significantly greater than the rate of detections expected
for advanced-era detectors, as simulated signals were added
to the data at a rate much higher than the anticipated
astrophysical rate to stress test the low-latency infrastruc-
ture. With the data in hand, we then split the data into three
subsets: 10% for CP calibration, 10% for testing, and the
remainder for training.
In Fig. 1, we compare the receiver operator curve (ROC)

for the two ML pipeline combination approaches to the
standard maximum-IFAR method. This demonstrates the
potential of ML to improve the detection efficiency, as
quantified by the area under curve (AUC) provided in the
legend. Specifically, both ML approaches deliver an
increase in the AUC above the level of uncertainties in
the AUC as measured over the test data. However, we note
that comparing the uncertainty in the ROC curve itself, the
distributions do overlap, but their uncertainty envelopes are
visually separated.
Comparing the two ML approaches, Fig. 1 demonstrates

that the MLP approach outperforms the simpler LR model
as measured by the AUC. This is expected since the MLP is
more expressive: it can capture more complicated patterns
due to the more involved underlying architecture. However,
while the LR model is simpler, the results are easily
interpreted. A simple inspection of the fitted coefficients
can provide insight into the importance of individual
features for each pipeline (see Supplemental Material
[28]). For the advantage of interpretability and a modest
reduction in performance, we present only the results for
the LR model hereafter.

So far, we have demonstrated that an ML-driven pipeline
combination approach can outperform a naive maximum-
IFAR combination as measured by the ROC. However, in
contrast to the results from combining individual search
pipeline results, an ML pipeline combination does not
provide a well-calibrated measure of the uncertainty. This is
important because a central aim for any method seeking to
identify signals is to assess the significance of individual
candidates. As argued in Gebhard et al. [33], discussed in
the context of using a convolutional neural network (CNN)
as a search algorithm, the output of any ML classifier is a
function of the test data set and therefore is not necessarily
calibrated to reality. They conclude that “CNNs alone
cannot be used to properly claim gravitational-wave
detections.”
This difficulty is not unique to gravitational-wave

astronomy; uncertainty quantification is a topic of interest
in many high-stakes applications of ML where predictions
must be robust. One approach to providing robust, well-
calibrated predictions is CP, a distribution-free approach
that requires only exchangeability of the data and can be
applied to any point predictor to produce statistically
rigorous prediction regions [26,27]. In Supplemental
Material [28], we provide a brief introduction to CP, but
we have previously applied CP to the problem of

FIG. 1. The ROC for the LR and MLP ML-driven pipeline
combination approaches applied to the test data; we also include
as a comparison the standard maximum-IFAR pipeline combi-
nation approach. For this test, we use all four pipelines contrib-
uting to the MDC and all features in our test data (see
Supplemental Material [28] for details). To investigate the
uncertainty inherent in the ROC curve, we run the study under
different permutations of the training and test data. The solid lines
indicate the ROC calculated for a single permutation of the test
data, while the shaded band marks the 90% interval over the
permutations. We quantify the difference between combination
approaches in the legend by providing the AUC along with
an estimate calculated under several training and test data
permutations.
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gravitational-wave astronomy [34], demonstrating how to
calibrate individual pipelines. We now extend that work to
quantify uncertainty for an ML combination pipeline.
Specifically, we apply standard label-conditional prediction
using the complement of the LR prediction probability as a
nonconformity score (in Malz et al. [35], we explore
alternative scores but do not find compelling advantages
to use these in this Letter).
To measure the significance of an individual event within

the CP framework, we can use the confidence [36]. In
Ashton et al. [34], we explored three possible definitions of
the confidence, each with its own merits. In this Letter, we
will apply the “conditional confidence: signal” which is
defined as the minimum value of α such that the signal label
is included in the prediction set Γα. We choose this
conditional confidence because (i) unlike the standard
definition of the confidence [36], it can be measured for
any label on any test data, (ii) it can be generalized to the
multiclass case trivially, and (iii) it enables the straightfor-
ward definition of a catalog with a calculable purity by
placing a threshold on the conditional confidence.
In Fig. 2, we plot the conditional confidence against the

maximum IFAR for all test data points using the LR model
and then highlight the true label, number of contributing
pipelines, and measured chirp mass [37] of the signal.
Comparing the confidence with the maximum IFAR, we
observe that events identified by multiple pipelines tend to
have higher confidence (events found by a single pipeline
are mostly located at the lower edge of the distribution for a
given IFAR). Examining specific events, we observe a
single false positive (using a standard threshold of 1 per
year), which is assigned an IFAR of approximately 1010 s
by the GstLAL pipeline. Under the maximum-IFAR

approach, such an event would be considered significant;
however, the confidence of the event is found to be small
(≈0.35) relative to other candidates found by multiple
pipelines at a similar IFAR. However, on the other hand,
nearby this candidate, there is a low-mass event found by
GstLAL and PyCBC, which is ranked with a similar con-
fidence despite being found by multiple pipelines. This
suggests more work is needed to understand how the
confidence is assigned and optimize it to better separate
signals and noise.
A core assumption of CP is that the calibration data and

the test data are exchangeable [36]: given a collection of N
data points, the N different orderings are equally likely. For
the problem of reasonably well-calibrated search pipelines
studying a stream of data (e.g., from a given observing run),
it seems reasonable that their results will be exchangeable.
I.e., we do not expect the meaning of the FAR and the
measured parameters, such as mass, to vary throughout an
observing run. However, this may not be true if there are
changes to the search pipeline or the instruments (say, we
utilize examples from a previous observing run). Therefore,
care should be taken whenever the calibration data and test
data are sourced differently (which will always be the case
when studying real data, as we do not know the ground
truth about the sources impacting our detectors). Moreover,
careful investigation is needed to understand the impor-
tance of the relative numbers of signals and noise candi-
dates in the calibration data. For the demonstrations above,
we have guaranteed exchangeability by randomly splitting
the MDC data set. We will now go beyond this test data set
to study results from real searches for signals.
We study the candidate lists from the O3a and O3b

observing runs published as part of the GWTC-3 catalog
[38,39]. Specifically, this includes a list of the search
pipeline output from the CWB, PyCBC, GstLAL, and MBTA

pipelines. However, for PyCBC, a second search was
performed targeting only binary black hole (BBH) candi-
dates; we excluded these results to improve the exchange-
ability of the training and test data. Furthermore, we utilize
only the measured IFAR, SNR, and chirp mass (except for
CWB); this is done to best ensure exchangeability, as the
FAR is calibrated and checked during pipeline develop-
ment. Nevertheless, we acknowledge that the pipelines
were developed between O3 analyses and the MDC, so
there are likely differences in their behavior. We take MDC
data using this restricted feature set for use in training the
LR model and for calibration.
In Fig. 3, we plot the conditional confidence obtained

from our LR combination model against the maximum
pastro across pipelines. We compare against pastro here as
this is the primary metric used in the GWTC to threshold
for further analysis. However, we note that pastro is not
included in the features used to train our LR model. This is
because, in addition to the issues with the pastro values
within the MDC [29], while it is possible to use pastro as a

FIG. 2. The conditional confidence in the signal label as
measured by the LR model and applied to the test data compared
to the maximum IFAR. We highlight the true label (ŷ) by the
color, the number of contributing pipelines (Np) by the size, and
the chirp mass (M) range inferred by the highest-SNR pipeline
by the symbol. A vertical dashed line marks a FAR threshold of
1 per year.
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feature, this is one of the features we know can be
nonexchangeable since the astrophysical population
improves as we see more events. Therefore, the population
model used to calculate pastro for the training data is
different from that used to calculate pastro for the test data.
As a result, the pastro presented in Fig. 3, contains
information about the astrophysical population not avail-
able in the measurement of the conditional confidence.
From Fig. 3, the four quadrants reveal an insight into the

comparative performance of the traditional pastro method
and the CP confidence. First, we note that they are
correlated: we have most of the data points in the top
right and bottom left. In the top-right quadrant, we see a
cluster of events with a pastro ∼ 1 and confidence ∼1 (see
Supplemental Material [28]). Just below this cluster. we
also find GW200115_042309, one of the first detected
neutron star black hole (NSBH) signals [40] with a
confidence of ∼0.9, which was not detected by CWB.
Finally, we also find GW200209_085452, a BBH candi-
date not found by CWB. In the bottom-left quadrant, we find
subthreshold candidates from both methods; we observe
some stratification in the confidence, which is not yet
understood.
In the bottom-right quadrant, we find candidates with

pastro > 0.5 but confidence below 0.5. Except in two cases
with a confidence level of ∼0.5, these candidates are
identified by only a single pipeline. For example,
GW200302_015811 was found by GstLAL in data from
Hanford and Virgo, but the Virgo data had an SNR less than
4. Meanwhile, GW200220_061928 is a high-mass candi-
date found only by PyCBC. The candidate with the lowest
confidence but highest pastro is GW190917_114630, found
only by GstLAL in GWTC-2.1 with a pastro of ∼0.7 [24,41].
Based on the source properties, this is most likely an NSBH
[41,42]. However, its properties are also found to be
inconsistent with the isolated binary evolution pathway
[43]. Nearby this event, we also find GW190425_081805,

the second observed binary neutron star (BNS) [44], which
is similarly only found by the GstLAL pipeline (again, we
report the updated pastro from GWTC-2.1 [41]).
Finally, we focus on the upper-left-hand quadrant:

candidates above a confidence threshold of 0.5 but below
a pastro of 0.5, where we find three candidates. First,
GW191126_115259 is a BBH candidate found by
GstLAL, PyCBC, and MBTA with a maximum pastro of 0.39
(in PyCBC), but a confidence of ∼0.6. Notably, this event is
detected by the PyCBC -BBH search with a pastro of 0.7
(these results are excluded from our test data set for
reasons stated above). Next, GW200311_103121 and
GW200201_203549 both appear in the marginal candidate
table of GWTC-3, and from a multicomponent pastro
analysis, they are indicated (if real) to be a BNS and
NSBH, respectively. These events are given greater con-
fidence relative to their maximum pastro, which arises from
the fact that three pipelines find them. While we do not
claim that our new metric is robustly tested enough to claim
these as up-ranked detections, they demonstrate the
increased significance possible from combining pipelines.
A reanalysis of this data, with better control over any
systematic differences in pipeline behavior, may yield the
ability to trust the increased significance. If confirmed,
GW200311_103121 would be only the third BNS signal
detected, underscoring the importance of using all available
information to assess significance.
In summary, we have introduced a new approach to

pipeline combination, offering improvements over the
current method that takes a simple maximum pastro or
IFAR. In this approach, we utilize ML to learn the optimal
combination from a set of training data in which the ground
truth is known. Utilizing a recent MDC [29], we demon-
strated that simple off-the-shelf LR or MLP models can
outperform the maximum-IFAR combination at the pop-
ulation level. However, such an approach is limited by
itself, as it lacks a robust measurement of prediction
uncertainty for individual events. Therefore, we introduce
CP, which can provide robust uncertainty measurements
through an additional calibration data set. We demonstrate
the application of the CP confidence to observed data
from O3 and find a handful of events (most notably
GW200311_103121, a possible BNS event), where the
combination approach yields increased confidence relative
to pastro, which stems from the multiple pipelines that
identified the candidate.
For experts within the field, utilizing the outputs from

multiple pipelines is a standard process when assessing the
significance of a candidate. The combination approach
proposed here does not replace that expertise but aims to
enhance it, providing a single rigorous quantified uncer-
tainty. The key beneficiary of this approach is astronomers
who use gravitational-wave alerts and the GWTC (e.g., to
trigger observations or perform further studies). A single
statement of confidence in a candidate, which combines the

FIG. 3. A comparison of the pastro and conditional confidence
using the LR model trained on a subset of the MDC data.
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parameter-space-dependent sensitivity of all pipelines, will
provide clarity and interpretability. We envision that the
field could utilize this approach to combine search pipe-
lines when producing a catalog of events or low-latency
alerts. A single, easy-to-understand assessment of the
multipipeline results will ease interpretation and potentially
improve sensitivity.
Implementation of ourMLmodelswas done using SCIKIT-

LEARN [45], while we utilize NumPy [46], Pandas [47], and
Matplotlib [48] for data handling and visualization.
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