
IOP Conference Series:
Earth and
Environmental Science

     

PAPER • OPEN ACCESS

Robust switching Kalman filter for diagnostics of
long-term condition monitoring data in the
presence of non-Gaussian noise
To cite this article: Hamid Shiri et al 2023 IOP Conf. Ser.: Earth Environ. Sci. 1189 012007

 

View the article online for updates and enhancements.

You may also like
Bearing remaining life prediction method
based on ARAD -ELN and multi-stage
wiener process
Yu Wang, Shujie Liu, Shuai Lv et al.

-

Real-time identification of performance
degradation stages of rolling element
bearings by RVCFI
Jiadong Meng, Changfeng Yan, Tao Wen
et al.

-

Advancements in bearing health
monitoring and remaining useful life
prediction: techniques, challenges, and
future directions
Xinwei Liu, Zongzhen Zhang, Zhuoli Li et
al.

-

This content was downloaded from IP address 152.78.0.24 on 19/01/2026 at 10:17

https://doi.org/10.1088/1755-1315/1189/1/012007
/article/10.1088/1361-6501/ad7eee
/article/10.1088/1361-6501/ad7eee
/article/10.1088/1361-6501/ad7eee
/article/10.1088/1361-6501/ac6660
/article/10.1088/1361-6501/ac6660
/article/10.1088/1361-6501/ac6660
/article/10.1088/1361-6501/adafc8
/article/10.1088/1361-6501/adafc8
/article/10.1088/1361-6501/adafc8
/article/10.1088/1361-6501/adafc8


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XXII Conference of PhD Students and Young Scientists
IOP Conf. Series: Earth and Environmental Science 1189 (2023) 012007

IOP Publishing
doi:10.1088/1755-1315/1189/1/012007

1

Robust switching Kalman filter for diagnostics of

long-term condition monitoring data in the presence

of non-Gaussian noise

Hamid Shiri, Jacek Wodecki, Rados law Zimroz∗

Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and
Technology, Na Grobli 15, 50-421 Wroclaw, Poland

E-mail: hamid.shiri@pwr.edu.pl

Abstract.
Machinery condition prognosis system uses long-term historical data to predict remaining

useful life (RUL). One of the critical steps to reach this purpose is to segment long-term data
into two or several degradation stages (Healthy, Unhealthy, and Critic stage). Finding changing
points between regimes may be a crucial preliminary task for further predicting the degradation
process. However, finding the accurate partition into two or more regimes is a challenging
task in the actual application when the noise inherent in the observed process is non-Gaussian.
Therefore, this paper introduced a robust methodology based on switching Kalman filters to
address the problems mentioned. This approach uses multiple dynamic system models to explain
different degradation stages, utilizing robust Bayesian estimation. Also, based on this fact, this
approach works based on dynamic behavior; a threshold for diagnostics is no longer needed.
Ultimately, the proposed approach is applied for the online diagnosis of simulated data sets in
the presence of Gaussian and non-Gaussian noise. The result of the applied methodology on
simulated data sets proves the method’s efficacy.

Diagnostics, condition monitoring, fault detection, robust methods, non-Gaussian noise,
threshold, switching Kalman filter

1. Introduction
Condition-based maintenance(CBM) has become increasingly popular in the industry with the
development of condition monitoring systems. CBM programs are developed to assess the
machine’s condition by collecting massive amounts of data during the operation of machines.
Using the long-term condition monitoring data is a crucial element in both diagnostics and
prognostics. Many methods published in recent years for CBM can be categorized into four
main groups [1]: stochastic-based [2, 3, 4, 5, 6, 7, 8], machine learning-based [9, 10, 11, 12],
physics or model-based[13, 14], and hybrid methods [15, 16]. Both machine learning and
stochastic approaches such as neural networks [12, 17, 18, 19, 20, 21, 22, 23] and hidden Markov
models (HMM) [24, 25, 26, 27, 28, 29] have strong potential to be used for diagnostics and
prognostics areas. Nevertheless, they need a large number of data for the model to be trained.
Furthermore, by changing the domain of working or changing the machine, they need to retrain
again, which is often not possible in actual application. On the other hand, model-based methods
use a mathematical representation of the degradation process, which needs less training data.
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However, it is necessary to have enough knowledge of the degradation process. Also, most of
the mentioned methods work based on a pre-established fault detection threshold that is often
provided by the manufacturer; a threshold corresponding to a change from ”Good Condition”
(healthy stage) to ”Warning” (degradation stage) and from ”Warning” to ”Alarm” stage (critic
stage). Unfortunately, we do not know about limit values or the desired lifetime in many cases,
especially when the machine is unique. In addition, this task will be more complicated when
the machine works in a harsh area, where the inherent noise is a heavy tail. This may occur for
several reasons. Wind inflows are one of the possible sources of heavy tail noise in wind turbine
[30, 31, 32], the ore falling on devices in the mining environment is another [33, 34].

However, most of the mentioned methods are developed based on the Gaussian noise
assumption, which may be less effective in actual application in the face of non-Gaussian
noise. Furthermore, our previous work[35] focused on identifying and analyzing the degradation
process using the real benchmark data set (available in the prognostics area), which confirms
the hypothesis of non-Gaussian assumption noise even in the laboratory data sets. Therefore, in
this paper, we tried to introduce a robust method that can address an online diagnostic without
using a threshold in the presence of a non-Gaussian noise problem. The robust version of the
switching Kalman filter (SKF) is derived to solve these issues by defining multiple dynamic
systems to describe a different degradation process using Bayesian estimation. So, a threshold
is no longer needed because the proposed methodology applies to dynamic behavior.

The paper is structured as follows: after the introduction, the summary of the process is
presented. After that, the critical aspects of the processing methods are described in theory.
Then, the proposed model is simulated, and the results will be presented. Finally, the conclusions
are formed.

2. Theory
2.0.1. Kalman filter(KF) The KF is a kind of Bayesian filter used for recursive state estimation
of a dynamic system by minimizing the mean squared error in the presence of process and
measurement noise. The discrete state-space representation of the model is as follows:

xt = At−1xt−1 + qt
yt = Htxt + rt

(1)

where xt is an actual state at time t, A is the state-transition model, qt is the process noise, yt is
observation of actual state xt, Ht is the observation process, which maps the actual state space
into the observed space, and rt is the observation noise. The noise terms qt and rt are normally
distributed: qt ∼ N (0, Qt), rt ∼ N (0, Rt). In the literature, several approaches can be employed
to extract KF formulation: for instance, Bayesian rule, maximum posterior approaches (MAP),
orthogonal principle, weighted least square method (WLS). The quadratic objective function in
WLS is defined as follows:

J = 1
2(yt −Hx̂t)

TR−1
t (yt −Hx̂t) +

1
2(x̂t −Ax̂t−1)

TP−1
t|t−1(x̂t −Ax̂t−1) (2)

where
Pt|t−1 = E[e−t e

−T ], e−t = xt − x̂t
Rt = E[rtr

T
t ], Qt = E[qtqt

T ]
(3)

Therefore, by solving the Equation:
∂J
∂x̂t

= 0 , (4)

KF can be derived and its formulation is described with the following equations:

x̂−t = Atxt−1 (5)
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Pt|t−1 = AtPt−1|t−1At
T +Qt (6)

νt = yt −Htx̂
−
t (7)

Kt = (HTR−1
t H + P−1

t|t−1)
−1HTR−1

t (8)

xt = x̂−t +Ktνt (9)

Pt|t = (I −KtHt)Pt|t−1(I −KtHt)
T +KtRtKt

T (10)

where νt, Kt and Pt are innovation (or measurement pre-fit residual), Kalman gain, and
covariance matrix estimation error, respectively. The KF gives the optimal solution when
the process and measurement noise have a Gaussian distribution, whereas if noise has a
different distribution, KF produces a sub-optimal solution. It is because only the second-order
measurement information is used.

To address the non-Gaussian problem, Izanloo et al.[36] presented the correntropy filter (C-
Filter) for state estimation and indicated that the C-Filter has better performance than KF in
the presence of non-Gaussian noise, thanks to using correntropy criterion, which utilizes higher-
order measurement signal information. In the following subsection, the maximum correntropy
criterion Kalman filter(MCKF) is derived to handle non-Gaussian noise based on the following
references: [37, 36, 38, 39]

2.0.2. Maximum correntropy Kalman filter(MCKF) In the following, another form of a cost
function based on the maximum correntropy criterion is introduced, see Eq.11, that is more
robust in the presence of non-Gaussian noise.

Jm = Gσ(∥yt −Hx̂t∥R−1
t
) +Gσ(∥x̂t −Ax̂t−1∥R−1

t|t−1
) (11)

where Gσ(xi− yi) = exp(−∥xi−yi∥2
2σ2 ) and σ is kernel size(bandwidth). The MCKF can be driven

by minimizing the cost function Eq. 12 .

∂Jm
∂x̂t

= 0 (12)

The MCKF equations are given as follows:

x̂−t = Atxt−1 (13)

Pt|t−1 = AtPt−1|t−1At
T +Qt (14)

Lt =
Gσ(∥yt −Hx̂t∥R−1

t
)

Gσ(∥x̂t −Ax̂t−1∥R−1
t|t−1

)
(15)

νt = yt −Htx̂
−
t (16)

Kt = (LtH
TR−1

t H + P−1
t|t−1)

−1LtH
TR−1

t (17)

xt = x̂−t +Ktνt (18)

Pt|t = (I −KtHt)Pt|t−1(I −KtHt)
T +KtRtKt

T . (19)

When a significant outlier appears, the innovation term νt diverges, but kt controls the divergence
of the estimator x̂t. Please see these references [37, 36, 38, 39] for more details about the
procedure of driving equations and stability.

The most significant limitation of KF and MCKF used for diagnostics and prognostics is
that the degradation process must be time-invariant. However, in practical application, the
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degradation process is composed of several components that change over time. Therefore, using
a single model to describe the whole process would make incorrect state estimations and cause
divergence or fluctuation. In lieu of this, the SKF, also known as the dynamic linear model, is
proposed to handle the mentioned issue when the dynamic behavior of a process changes during
the time and, if not possible, to use a unique model. However, general SKF has assumed the
noise was Gaussian. In the next subsection, we introduce a new version of SKF based on MCKF
to address these challenges.

2.0.3. Switching maximum correntropy Kalman filter (SMCKF) In this subsection, we
introduce the switching maximum correntropy criterion Kalman filter (SMCKF), which is a
robust version of SKF. The SMKF can be described as a dynamic Bayesian network. In each
time step, St as the switching model variable and Xt as the state variable are hidden, which
must be figured out from the observation Yt. This may cause numerical problems, especially
when the number of the regimes is increased, as argued in [40].

Kevin et al.in [41], developed an approximation approach, namely the generalized pseudo-
Bayesian (GPB) method, to solve this issue. In every time step, the covariance and state
estimation from all MCKFs in the last time step is mixed using weights based on the switch

variable S
i|j
t and the transition probabilities Zij , as expressed with the equations 20, 21,

respectively.

S
i|j
t =

ZijS
i
t−1

n∑
i=1

ZijSi
t−1

(20)

Weighted state and covariance estimates are derived as follows:

x̃jt−1 =
n∑

i=1
S̃i|jxit−1

P̃ j
t−i =

n∑
i=1

S̃
i|j
t {P̄ i

t−1 + [xit−1 − xjt−1][x
i
t−1 − xjt−1]

T
(21)

Also, by using measurement residuals, the likelihood of MCKF is calculated as Eq.22.

Li
t = N (vit; 0, C̄t) (22)

where C̄t = (LtH
TR−1

t H + P−1
t|t−1). In the end, the probability of i-th MCKF model is equal to

Eq.23.

Si
t =

Li
t(

n∑
i=1

ZijS
i
t−1)

n∑
i=1

(Li
t(

n∑
i=1

ZijSi
t−1))

(23)

The weighted state and covariance estimates are given by MCKF from Eq.13 to Eq.19 for
each filter, which was used before to estimate the predicted state x̃jt−1 and covariance P̃ j

t−i, see
Eq. 21. More details about the procedure of the switching structure and stability of the model
are available in [41]. The SMCKF, which is composed of multiple MCKF with different state-
space models, is applied to track changes in the degradation process. Then SMCKF is switched
between the selected models according to their likelihood calculated from health index(HI). It
should be noted that for applying this approach, the degradation model should be selected based
on the case’s physics.

Based on our primary assumption in this analysis, the degradation process comprises three
stages. Zero-, first-, and second-order MCKF are used to simulate healthy, degradation, and
critic stage, respectively. According to [42, 43], the actual state, error covariance, and observation
matrices representing the polynomial MCKFs are illustrated with the subscripts 1, 2, and 3
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below, showing the zero-, first-, and second-order MCKFs, respectively. Eq. 24 represent state
matrices.

x1(t) =

 x
0
0

 , x2(t) =

 x
ẋ
0

 , x3(t) =

 x
ẋ
ẍ

 (24)

A1(t) =

 1 0 0
0 0 0
0 0 0

 , A2(t) =

 1 ts 0
0 1 0
0 0 0

 , A3(t) =

 1 ts
ts2

2
0 1 ts
0 0 1

 (25)

where A1, A2, and A3 are state transition matrices and ts is discretisation step size. Also, the
covariance matrices of the process are defined by the following:

Q1(t) = q

 1 0 0
0 0 0
0 0 0

 , Q2(t) = q

 ts3

3
ts2

2 0
ts2

2 ts 0
0 0 0

 , Q3(t) = q

 ts5

20
ts4

8
ts3

6
ts4

8
ts3

3
ts2

2
ts3

6
ts2

2 ts

 (26)

where q is a scalar hyper-parameter (related to the noise) that can describe the uncertainty
of the filter in actual application, which can be used for tuning of the SMCKF for a different
machine.

Observation matrices H1, H2, and H3 corresponding to models 1, 2, 3 are defined as following:

H1 = H2 = H3 =

 1
0
0

 (27)

The transition matrix is defined by Eq. 28. Note that there is no possibility of transition to
the previous state.

Z =

 0.998 0.001 0.001
∼ 0 0.999 0.001
∼ 0 ∼ 0 1

 (28)

The initial model probabilities are set with Eq. 29

S̃0 =
[
0.9 0.05 0.05

]
(29)

State and covariance estimates have the following form, respectively:

x⃗0 =

 y0
0
0

 , (30)

P̄0 =

 1 0 0
0 1 0
0 0 1

 (31)

3. Simulation
In this section, At first, the long-term data is generated based on the lifetime curve shape
following the model known in the literature [35]. this degradation model is developed to explain
real degradation of real machine that work in harsh environment such as mining and wind
turbine which can be seen the noise with non-Gaussian caractristic. This degradation model
consists of 3 regimes: healthy condition, slow degradation, and rapid degradation. The data
could be modeled as a mixture of trend and random components. More details about simulated
model can find, for example, in [35] . Then the proposed methodology is used to segment data
into three regimes in the presence of Gaussian noise and non-Gaussian noise.
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3.1. Gaussian Noise
In this subsection, the introduced methodology is applied to simulated data set in the presence
of non-Gaussian noise with by considering Student’s t distribution with a degree of freedom
V = 3. For this case, it assumed Time=1000 and Time =1600 are changing points between the
healthy stage and degradation stage (CP1) and the degradation stage and healthy stage (CP2),
respectively.

Fig. 2 ilistrated the result of the applied SKF and MCSKF. The estimated probability of each
state using SKF and MCSKF during the degradation process is presented in panels (b) and (c),
respectively. On the panel (b), we can see the probability of the healthy stage (the green line)
is starting to reduce from Time=300; after a few fluctuations with the degradation stage (the
yellow line), somewhere around Time=880, the degradation state will be the most probable stage
which remains on this situation until Time=1446. Behind this time, the critic stage has more
probability than the rest stages, but as we can see on panel (b) in Fig.2, the SKF has diverged
after Time=1500. Panel (c) presented the result of SMCKF. Also, panels (d) and (e), the most
probable stage during the degradation process and changing points extracted by employing
SKF and SMCKF, are demonstrated. By comparing these two last panels, as expected, the
MCSKF result is closer to the actual changing points while SKF has been significantly affected
by non-Gaussian noise and, in the end, is diverged.

Figure 1: Detection of the stages in the presence of Gaussian noise, (a) health index (HI), (b)
probability of stages performed by SKF, (c) probability of stages performed by SMCKF, (d)
most probable stages based on the implementation of SKF, (e) most probable stages based on
the implementation of SMCKF.

3.2. Non-Gaussian Noise
In this part, the proposed methodology is applied to data generated by the offered model,
considering that the noise term has Student’s t distribution with a degree of freedom V = 3.
According to the simulation procedure, CP1 and CP2 is equal to Time=1000 and Time=1600,
respectively.

Fig. 2 shows the result of the proposed methods when noise is non-Gaussian. The estimated
probability of each state using SKF and SMCKF during the degradation process is presented
in panels (b) and (c), respectively. On the panel (b), we can see the probability of the healthy
stage (the green line) is starting to reduce from Time=300; after a few fluctuations with the
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degradation stage (the yellow line), somewhere around Time=880, the degradation state will be
the most probable stage which remains on this situation until Time=1446. Behind this time,
the critic stage has more probability than the rest stages, but as we can see on panel (b) in
Fig.2, the SKF has diverged after Time=1500. Panel (c) presented the result of SMCKF. Also,
panels (d) and (e), the most probable stage during the degradation process and changing points
extracted by employing SKF and SMCKF, are shown. By comparing these two last panels,
as expected, the SMCKF result is closer to the actual changing points while SKF has been
significantly affected by non-Gaussian noise and, in the end, is diverged.

Figure 2: Detection of the stages in the presence of non-Gaussian noise, (a) health index, (b)
probability of stages by SKF, (c) probability of stages by SMCKF, (d) most probable stages
based on the implementation of SKF, (e) most probable stages based on the implementation of
SMCKF.

4. Conclusions
This paper introduces a robust version of SKF to address the non-Gaussian noise issue. At
first, we extracted an MCKF as a robust version of SKF. We are assuming that the degradation
process is composed of three regimes corresponding to the machine life phases: good condition,
degradation, and critic stage. Each of these regimes is modeled by MCKF. The SMCKF is
introduced to infer from the current observations of the underlying process by calculating which
of the three filters has the most significant probability in each time step. This method can
provide more information to the decision-maker by providing probabilistic information about
each degradation stage over time. Also, the proposed methodology was applied to the simulated
degradation data set, and the result was presented for two cases in the presence of Gaussian and
non-Gaussian noise. The results confirmed the performance of SMCKF in detecting different
stages in both Gaussian and non-Gaussian noise in the comparison of SKF. Also, this method
works according to the dynamic trend of the degradation process, and the threshold is no longer
needed.
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