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Artificial General Intelligence (AGI) is often described as the "holy grail" of artificial intelligence. 

Unlike systems that specialize in the performance of specific tasks—like language translation, image 

recognition, or strategic gameplay—AGI aims at a more general and flexible form of intelligence. 

While there is no consensus on what it means for an AI system to qualify as generally intelligent, the 

term "AGI" is typically understood in relation to human intelligence. In particular, a system exhibiting 

general intelligence should have the capacity to perform a wide variety of cognitive tasks at a level 

that matches (or perhaps even surpasses) that of a typical human being. 

The appeal to human intelligence is significant, for it directs attention to the mechanisms that 

underpin our species-specific form of cognitive success. These mechanisms are clearly relevant to 

the project of explaining human intelligence, but they may also serve as a template for the 

construction of AGI systems. In this respect, the project of building AGI and the project of explaining 

human intelligence are not independent endeavours. Progress in one domain can inform the other, 

particularly when the aim is to emulate—functionally or architecturally—the features that allow 

human beings to excel at a wide variety of cognitive tasks. 

It might be thought that the search for the material bases of human cognitive success has a rather 

obvious target. If our aim is to identify the mechanisms responsible for human cognitive 

performances, then surely we need look no further than the borders of the biological brain. This is, 

of course, true if the relevant mechanisms turn out to be nothing more than neural mechanisms—

mechanisms whose borders never exceed the spatial extent of the nervous system. But some 

theorists insist that human cognitive mechanisms are more than just neural mechanisms. According 

to the proponents of what has come to be known as active externalism or the extended mind, the 

mechanisms responsible for human cognitive performances can, on occasion, extend beyond the 

biological borders of skin and skull, incorporating resources from the wider environment. On this 

view, notebooks, diagrams, linguistic inscriptions, digital devices, and other artefacts are the 

potential realizers of human cognitive states and processes. They are, quite literally, part of the 

machinery of the human mind. 

We thus have two visions of human intelligence. The first is what we might call the neurocentric (or 

non-extended) view. According to this view, human intelligence is tied to the operation of neural 

mechanisms, i.e., mechanisms that are wholly situated within the brain (or, at any rate, the nervous 

system). The second view is what might be called the extended view. According to this view, human 

intelligence is tied to the operation of what are called extended mechanisms—mechanisms that 

extend beyond the ancient metabolic boundaries of skin and skull.  

Transposing the neurocentric and extended views to AI yields contrasting images of what an AGI 

system might look like. From the perspective of the neurocentric view, an AGI system is a self-

contained cognitive system that is able to perform a variety of cognitive tasks due to the whirrings 

and grindings of its inner cognitive architecture (e.g., the operations implemented by a deep neural 

network). On the extended view, however, an AGI system is a system that is able to perform a 

variety of cognitive tasks courtesy of the instantiation of extended mechanisms. What makes this 

latter type of system a fitting candidate for AGI is not so much its capacity to perform cognitive tasks 

in the 'head'; rather, it is its capacity to extend its own cognitive reach by factoring external 

resources into its cognitive and computational routines. Such a system is not so much a 'natural-

born' master of many cognitive tasks; it is more a specialist at a single cognitive task: the task of 
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building extended mechanisms. It is this particular cognitive specialism (a capacity to build extended 

mechanisms) that enables the system to achieve the sort of flexibility and generality required for 

AGI. AGI, on this view, is a form of extended intelligence—a form of intelligence that is rooted in a 

basic capacity to build (and benefit from) extended mechanisms. 

Much of the contemporary research into AGI is focused on the development of increasingly capable 

large language models (LLMs). This focus is perhaps unsurprising given the centrality of language to 

human cognition and the impressive performances of systems like ChatGPT, Gemini, and Grok. 

Attempts to improve the capabilities of LLMs typically involve building models with more internal 

parameters. The GPT-3 model, for example, was reported to have a total of 175 billion parameters, 

while GPT-4 is estimated to have approximately 1.75 trillion: a tenfold increase. At first sight, this 

approach might seem more compatible with a non-extended approach to AGI. After all, the project 

of building ever-larger LLMs is akin to the project of building ever-bigger 'brains'. But we should not 

be so quick to dismiss the extended view. While it is true that larger models may be capable of 

performing a greater number of tasks courtesy of their inner neural nets, scaling may also produce 

LLMs that are better able to exploit their surrounding environment. In other words, larger models 

may not simply be more powerful self-contained cognitive engines; they may also be more adept at 

constructing and leveraging extended mechanisms. 

To appreciate this point, it is worth noting that many of the features that make LLMs a compelling 

target for AGI research are plausibly tied to the operation of extended mechanisms. That is to say, 

the main reason why LLMs appear to provide us with our best chance of achieving AGI is precisely 

because they already trade in various forms of extended intelligence. Consider, for example, the way 

in which an LLM uses its own linguaform outputs to guide and constrain subsequent processing. 

When prompted to “think step-by-step,” LLMs generate intermediate token sequences—chain-of-

thought (CoT) traces—that decompose complex tasks into manageable sub-problems. In effect, the 

model uses its own outputs as a form of linguistic scaffolding, one that enriches the context for 

subsequent generations and progressively steers the model in the direction of a correct solution. 

Empirically, this approach outperforms the more direct, "one shot" approach to response 

generation. When the model is prevented from 'talking' itself through a problem, it is forced to make 

a dramatic leap in inferential space, using only the resources of its inner neural network. No surprise, 

then, that as the complexity of the problem increases, the greater the chances of the model falling 

short. The progressive generation of intermediate tokens helps to resolve this issue, with each token 

serving as a sort of stepping stone through inferential space. Linguistic scaffolding thus pays 

substantive cognitive dividends, allowing the model to tackle problems that might otherwise prove 

infeasible. Such benefits mirror those attributed to human writing practices. When we write, sketch, 

or otherwise externalise our thoughts, we create stable, manipulable structures that feed back into 

our reasoning processes. Such feedback loops—which run outside the head—can often help us 

perform tasks that might be difficult (if not impossible) were we to rely solely on the resources of 

the biological brain. 

Another example of extended intelligence stems from recent work into augmented or tool-using 

LLMs. The core idea, here, is that an LLM is able to interact with external resources by generating the 

textual (and, more specifically, programmatic) commands required to invoke those resources. 

Suppose, for the sake of example, that an LLM is presented with a question that lies beyond the 

scope of its internal knowledge (i.e., the knowledge contained in its training data). If the LLM were to 

rely solely on its internal architecture, then it would either produce the incorrect answer, or respond 

by saying that it doesn't know. But the LLM can also rely on the wider environment to address this 

epistemic shortcoming. In particular, it can issue a call to a search engine, generating search terms to 



guide the search, and factoring the search results into its response. The same applies to situations 

where an LLM is required to perform tasks that it would otherwise be unable to perform. Consider 

an LLM that lacks the capacity to interpret images. Such a model is, in effect, visually blind; yet it can 

circumvent this limitation by calling on an external vision system. By generating a sequence of API 

calls, the model can progressively analyse the image contents, with the results of one call informing 

the structure of subsequent steps. Perceptual success, in this case, stems not from the LLM's 

capacity to understand or interpret an image courtesy of its inner neural architecture; rather, the 

LLM possesses a capacity to create an extended mechanism that leverages the functionality of a 

remotely-situated (or, at any rate, external) resource. Once again, it is the LLM's facility with 

language that provides the basis for this particular form of cognitive success. Rather than being an 

all-powerful, self-contained cognitive engine, the use of language enables the LLM to function more 

like an intelligent conductor, orchestrating calls to the wider environment in a manner that befits 

the demands of different tasks. 

A third, and in some ways even more striking, example of extended intelligence occurs when LLMs 

generate executable code. Consider a case where an LLM is tasked with counting the number of 

occurrences of the letter "r" in the word "strawberry". Such tasks are notoriously difficult for LLMs, 

in part because they rely on tokenization schemes, such as Byte Pair Encoding (BPE), that operate 

above the level of single characters. But the model can effectively bypass these constraints by using 

its facility with language (and other linguaform structures) to generate a sequence of programmatic 

statements that solves the problem via a different computational route. Presented with the 

aforementioned problem, for example, an LLM might generate the following code: 

word = "strawberry" 

count_r = word.count('r') 

print(count_r) 

This code can then be executed by a code interpreter and the result returned to the model. The 

upshot is that the LLM is now able to solve a class of problems that might be difficult or impossible 

to solve using a neural network architecture. The model may not be particularly good at solving 

mathematical or logical problems in the 'head', but it can nevertheless tackle these problems by 

drawing on its core competence—a facility with language—to create an ad-hoc computational tool 

that delivers the requisite functionality. In such cases, it hardly seems correct to say that the LLM is 

incapable of performing tasks such as those of the letter-counting variety. The same applies to any 

other computational task. Given sufficient knowledge of a programming language, an LLM can, in 

principle, perform any task that can be performed by a conventional symbol-crunching digital 

computer. And this is despite the fact that an LLM—as a subsymbolic entity—is congenitally ill-

equipped to perform these tasks. 

Across all these cases, a facility with language plays a central role in enabling LLMs to build and 

benefit from extended mechanisms. Much the same has been said about the role of language in 

human intelligence. As with LLMs, a facility with language opens the door to potent forms of 

cognitive and computational extension that radically reshape the space of human thought and 

reason, enabling us to tackle problems that would easily defeat the linguistically- and 

technologically-unaugmented brain. In the end, the story of AGI may turn out to be a continuation of 

our own cognitive story: a story of how language paved the way for a new, barely natural, form of 

intelligence, one whose cognitive limits have yet to be fully determined. 


