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Abstract

BACKGROUND
Mathematical kinship demography is an expanding area of research. Recent papers have
explored the expected number of kin a typical individual should experience. Despite the

uncertainty of the future number and distributions of kin, just one paper investigates it.

OBJECTIVE
To develop a new method for obtaining the probability that a typical population member

experiences one or more of some kin at any age through the life course.

METHODS
Combinatorics, matrix algebra and convolution theory are combined to find discrete

probability distributions of kin-number. We propose closed form expressions, illustrating
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the recursive nature of kin replenishment, using composition of matrix operations. Our

model requires as inputs, age-specific mortality and fertility.

CONCLUSIONS
We derive probabilities of kin-number for fixed age of kin and over all possible ages of kin.
From these the expectation, variance, and other moments, of kin-number can be found.

We demonstrate how kinship structures are conditional on familial events.

CONTRIBUTION
The paper presents the first analytic approach allowing the projection of a full probability
distribution of the number of kin of arbitrary type that a population member has over the

life course.



1. Introduction

Family relationships are a fundamental part of the social structures of human societies
(Alburez-Gutierrez et al. 2022). Kinship ties have impacts on physical and mental well-
being (Vlachantoni et al. 2024), social and economic inequalities between and within
generations (Verdery and Margolis 2017; Margolis et al. 2024), and social and fiscal policy
(Pittavino, Arpino, and Pirani 2025). However, direct data on kinship relationships are
rarely collected, and generally only available for limited samples or in countries with high
quality demographic registers (Kolk 2017). Studies that quantify the temporal changes in
kinship networks are therefore extremely valuable.

In particular, understanding inequalities resulting from kinship relationships requires
quantification of the diversity of kinship structures within the population. In addition,
the future numbers and structures of kin remain uncertain. Micro-simulation facilitates
the study of these kinds of structures, offering rich and detailed output about family
composition both inside and outside the household (e.g. Wachter, Hammel, and Laslett
1978; Hammel 2005; Margolis and Verdery 2019). However, micro-simulation is com-
putationally expensive and technically challenging to set up. This can be a barrier to its
deployment (notwithstanding creditable recent work in opening up access to these tools,
such as Thiele et al. 2023). As such, analytical models of kinship relationships are highly
desirable for their much greater computational efficiency.

Recent years have witnessed a resurgence in mathematical modelling of kinship
(Caswell 2019, 2020, 2022, 2024; Caswell and Song 2021; Alburez-Gutierrez et al. 2021;
Coste et al. 2021), providing, for example, richer insight into the future structures of

kinship (Alburez-Gutierrez, Williams, and Caswell 2023). Models of kinship have been



applied to produce expected numbers of kin distributed by age or stage (or state) and sex
for a representative population member, both within static and time-varying demographies.
By stage, one refers to any population characteristic for which individuals can transition in
and out of — a dimension out of scope for the present study. Despite the expanding interest
in the estimation of kinship, only one model developed since 2019 has explored estimating
quantities beyond the mean number of kin (see Caswell 2024).

Population dynamics in the demographic context are driven by stochastic birth and
death processes. That is, each (female) population member gives birth to a non-negative
number of offspring (possibly zero), with variation between individuals’ reproductive
profiles. Each population member either survives to the next age-class or dies, giving rise
to variation in age-specific mortalities. Demographers usually refer to these probabilistic
events as “demographic stochasticity” (Keyfitz and Caswell 1997). Because population
dynamics are governed by stochastic processes, and kinship dynamics are an emergent
property of the population, an individual’s network of kin unfolds probabilistically.

This research complements and extends mathematical kinship demography by pre-
senting a method to account for demographic stochasticity within the kinship network.
Our paper is structured as follows: Section 1.1 provides a brief review of the relevant
literature and existing mathematical frameworks for analysing kinship, while clarifying
what sets this work apart. Section 1.2 outlines notation used. In Section 2 we introduce our
assumptions and pre-requisites for formally constructing the model: Section 2.1 outlines
the general demographic assumptions and Sections 2.2-2.6 lay the mathematical founda-
tions. Section 3 provides our novel derivations, organised into analytically distinct regimes.
In Section 4 we apply the framework using UK age-specific mortality and fertility data,

sourced from the Human Mortality Database (2024) and Human Fertility Collection (2024).



We illustrate the analysis by showing selected model output and explore its implications.
We conclude in Section 5 by considering the contribution, prospects and limitations of this

theoretical development with respect to the leading frameworks on kinship.

1.1 Relevant mathematical frameworks

There is a rich history of mathematical modelling of kinship which have considered
demographic stochasticity. Already in the 1980s, research by Waugh (1981) and Joffe and
Waugh (1982) applied branching processes with non-overlapping generations, namely the
so-called Galton-Watson process, primarily focusing on biology and population ecology.
Advancing on such methods Jagers (1982) and Jagers and Nerman (1984) included age
structures (thereby accounting for overlapping generations) by utilising so-called “Crump-
Mode-Jagers” (CMJ) branching process (Crump and Mode 1968). Although very relevant
to the field of kinship research, due to their complexity, these papers proved for the most
part too technically complicated to allow their wider adoption.

In a recent remarkable paper, Caswell (2024) treats an individual’s kin as a population
of their own, and subject to the same variability in births and deaths as any other population.
The author’s proposed model accounts for demographic stochasticity through projecting the
mean and variance of an unknown kin-number distribution. The matrix projection model
proposed by Pollard (1966), emulating a multi-type Galton-Watson process, is applied to
do so. Using the mean and variance in kin-number, Caswell (2024) subsequently assumes
appropriate statistical distributions to represent kin, fits prediction intervals, and thereby
estimates uncertainty associated with kin-number distributions.

While the proposed framework is more accessible to demographers, ecologists,

mathematicians, and perhaps the occasional physicist, the technical modelling approach



can be challenged on theoretical grounds. For instance, although the distribution of kin will
always be discrete with a non-zero support on the non-negative integers, an appropriate
choice might require specific knowledge. Caswell (2024) states that Poisson distributions
should apply when the mean is close to the variance and cites previous work which adheres
to this assumption (Caswell, Margolis, and Verdery 2023).

An alternative approach would be to calculate the exact probability distribution of
kin-number. To do so, one could apply similar methods to Tuljapurkar et al. (2020)
who directly calculate the so-called lifetime reproductive success (i.e., a distribution for
the number of offspring an individual has over their life course). The benefit of this
method, emphasised by Tuljapurkar et al. (2020), is that by constructing a probability
distribution for the number of offspring, one can account for variability in reproduction
between individuals. Another obvious benefit is that higher-order moments become readily
available.

In this research, we develop a methodology for projecting the kin-number of a typical
female population member in a one-sex time-invariant age-structured demography (see
the illustration in Figure 1 for kin-types). Following the convention of the leading kinship
models (Caswell 2019, 2020; Caswell and Song 2021; Caswell 2022) we refer to this
individual as ‘Focal’. We want to know Focal’s kin-network at each age of Focal’s life. In
the same vein as Caswell (2024), we seek to account for demographic stochasticity in the
kinship network. Yet, instead of projecting the mean and variance in kin-number, we take
inspiration from the methods of Tuljapurkar et al. (2020) and seek a discrete probability
distribution to reflect kin-number. In more detail, we would like to derive the probabilities
that Focal experiences a certain integer number of kin, by age of kin and age of Focal. For

example in relation to Figure 1, consider Focal’s older sisters (i.e., m). Suppose that Focal



is aged y. With a set of probabilities, Focal will experience exactly zero, one, two, or more
older sisters who are of exact age s (where obviously s > ).

For any generic of kin pictured in Figure 1, we write the probability mass function

(pmf),

kS (0)
k(1)
ki(y) = | £”(2) @

E(Q)

to represent the number distribution of Focal’s kin of type k who are of age s when Focal is
of age y. The entries of Eq (1) give the probabilities that Focal experiences some number
of that kin: the first, k¥ (0), provides the probability that Focal does not have any of the
particular kin, the second, k¥ (1), provides the probability that Focal has exactly one of
such kin, and the third, k¥(2), provides the probability that Focal has exactly two of this
kin. We impose a biologically reasonable upper bound (), which acts to limit the maximum
lifetime number of the particular kin-type. To be explicit: () is chosen such that Focal
will experience considerably less than this value of any particular kin-type during her
life-course. As illustrated through Eq (1), the last, or (@) + 1)-th entry kgy) (@), gives the

probability that Focal has @ kin of type k, who are of age s when Focal is aged y.
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Figure 1: The diagram and notation of kin used in the formal models of Caswell (see e.g.
Caswell 2019: passim).



1.2 Algebraic notation

The framework presented in this article includes mathematical derivations, some of which
may be non-obvious. Here we define the main algebraic objects of interest and summarise
the notation used throughout this paper. Thus, stochastic matrices are denoted using
blackboard bold — A, other matrices are denoted boldface upper-case A, vectors lower-case
boldface a. Discrete probability distribution functions are denoted by boldface Greek
symbols, e.g., 1. When possible matrix entries will be given by lower-case letters, e.g.,
a;,; the 7, j entry of A, but when notation is a pain — for instance when the matrix is a
function of parameters, A(x) — we may use [A(x)]; ;. The transpose of a matrix is denoted
by t. The 1 norm (on R™) is represented by ||x||; = > |z;|; the l; norm (on R") is
represented by ||x||2 = /3.1 |x;]. We denote the unit vector (a vector e with |[e|| = 1)
with ¢-th entry one by e;.

A discrete convolution of two functions f and g defined on the integers is given by
(f*g)n] =X ;2 flilgln — ]. For two distributions 1 € Z™ and 15 € Z™ we write
the discrete convolution as 1 x ¥, with m-th entry defined through (v; x 3)[m] =

> ¥1(i)a(m — i). Over a set of independent distributions {4);,, ..., ;, } we write

GO, = i, 5 iy % i, * i, 2
s=1

and to represent the n-th convolution power of a distribution, we write

—_—
P =tpxex 1. 3



We provide a refresher (with an application to kinship) on the operation of discrete
convolution in Appendix C. Lastly, we denote function composition by (f o g)(z) =

f(g(x)), and moreover, fI"!(2) = (f o--- o f)(x) as the n-times composition of f. The

ordered composition of functions {f;,4 = 1,...,n} is denoted by
O fi@) = (fao--o fi)(x) )
i=1

2. Model ingredients and assumptions

Here, we outline our assumptions and formally construct a model. Recall that we write
ks (y) to represent a (Q + 1)-dimensional kin-number pmf with (j 4+ 1)-th entry giving
the probability that Focal has exactly j = 0,1,...,Q kin of age s when she is age y. For

consistency henceforth, we refer to the random variable j as “kin-number-class”.

2.1 Demographic dynamics

Our methods are applicable to large age-structured populations comprising one sex, and
which are at demographic steady state. That is, those described by a time-invariant
projection matrix. Consider a female population structured by age-classes ¢ = 1,2,...,n.
Within each age-class 7, let the number of births to an individual be described by a
random variable F; € {0, 1, ...} with probabilities {t;(0),;(1), ... }. Define the vector
¥; = (1;(0),4;(1),...)T. Within each age-class 4, individuals’ survival to age i + 1 are
defined through Bernoulli random variables, U; € {1,0} (where 1 represents survival and

0 death) with respective probabilities {u;, 1 — u; } where u; = E[U;].



Using f; = E[F;] = 3, j¢i(j) and u;, we obtain the standard Leslie matrix (Allen

2010):
i fo fs oo n
uy 0 0 0
A= (%)
0 Up—1 0
A population vector X = (1, o, ..., x,) with x; representing the number of individuals

in age-class 7 is projected from one time to the next through x, 1 = Ax;. Given some initial
population structure and large population, X, we see X; = A’x with large-time behaviour
(t >> 0) resulting in demographic stability: the relative sizes of each age-class become
constant and proportional to the stable age distribution, w = (wy,ws, . .., w,)", where
Aw = Aw (with ||w]||; = 1). Here, ), the spectral radius of A, is within the demographic
literature called the asymptotic population growth rate. The stable reproductive values in

the population are given by v where A'v = Av (we appropriately normalise ||viw]||; = 1).

2.2 Defining kin of Focal: her ¢-th ancestor and their g-th descendant

We adopt the characterisation that Focal and kin are defined through a common ancestor
(Pullum 1982; Coste et al. 2021). Let ¢ be the number of generations that separate Focal
from her ancestor. Let g be the number of generations that separate Focal’s kin from the
ancestor. Define b; as the age at which Focal’s (direct) i-th generation ancestor gives birth
to Focal’s (i — 1)-th generation ancestor (e.g., by is the age at which Focal’s grandmother

gave birth to Focal’s mother), and 8, = y + 23:1 b; to represent the age of Focal’s g-th



ancestor when Focal is aged y. Note that 5, may be biologically unrealistic but this is not
of importance within our framework. As we see below, we use an ancestor’s present-time
age as a means to establish their age when reproducing a collateral kin of Focal.

We define s; as the current age of Focal’s kin, related to Focal as the ¢-th generation
descendant of Focal’s ¢-th ancestor. For instance if ¢ = 2, then s is age of Focal’s cousin
when Focal is age y. Note that s; may be biologically unrealistic. These quantities are
used to derive the ages at which descendants of Focal’s g-th ancestor reproduce. For
instance, s;_1 — s; gives the age at which the (i — 1)-th generation descendant produces
the ¢-th generation descendant. As mentioned above, we also use s;_; to derive the ages of
ancestral reproduction. For instance, 3, — s; gives the age at which Focal’s g-th ancestor
produced a first-generation descendant that is not a direct ancestor of Focal.

We denote the probability mass function for Focal’s [g, ¢] kin which are of age s,
when Focal is age y by kJ'?(y), and term this an “age-specific” pmf. We denote the
kin-number probability mass function for kin who can be of age in some range > when

Focal is y, by k&9 (y).

2.3 The maternal age distribution

Here we probabilistically predict the age of Focal’s g-th ancestor when she gives birth
to Focal’s (¢ — 1)-th ancestor. Let p, be the probability that if we randomly sample
a newborn from the population, her mother is of age x. In a stable demography, the
stable population age-structure is proportional to A~%u; ... wu;_; (Goldman 1978). Hence,
Pr = U1 ... Uzp_1 [z A7 /N where N is a normalisation constant, which from the Euler-
Lotka equation: N = Z?zl (H;;g uj)fi)\’i = 1. As such, we see wiuy ... Uz =

A*~tw, and thus p, = frw,/(Aw;). Note that p, recovers the (1, z)—th entry of the



transition matrix of the so-called genealogical Markov chain associated with the population
(Demetrius 1975; Tuljapurkar 1993). In a stable demography, we observe independence in

the ages of ancestors’ reproduction b;, fori =1,...,q.

2.4 How mortality effects the probabilities of experiencing j kin: The matrix U

Consider a distribution of numbers for offspring born to an arbitrary age mother; ).
Within the context of kinship, these newborns constitute a kin-type of Focal: v could
represent the probable offspring number of Focal’s mother at some age after she had Focal,
i.e., a pmf for Focal’s newborn younger sisters. Suppose that Focal is now 10 years old.
Suppose that her mother produced j younger sisters (with probability 1(j)) 5 years ago.
To understand how many younger sisters aged 4 Focal has at present (when she is 10), we
need to calculate the probabilities that out of the possible numbers of newborn younger
sisters, so many survive from age 0 to 4. In general, suppose that, with probabilities & (j),
Focal has exactly j = 0,1, ..., Q of some kin-type k who are aged s’. Then with another
set of probabilities, k(j), Focal will have j of the kin-type when they are older (of age
s> s).

Here we show how these probabilities of survival from one age to another change the
probability mass functions describing kin-number. Our method is to construct a matrix
U(s,5) € R@TD*(Q+D) which, independent of Focal’s age, acts on the probabilities
ks (j) that Focal has j = 0,1,...,Q kin of age s’ to procure the probabilities that
Focal has k4(j) kin of age s. Pre-multiplying this matrix through a pmf representing
the number of kin of Focal aged s’ produces a pmf representing the number of kin,
conditional on survival, aged s. We construct U(s’, s) as follows. First, note that each kin

independently experiences the same probability 1 — u . . . us of death between age s’ and



age s. Introducing the probability (5,1, s’, s) that out of j kin, some [ survive from age

s’ to age s:

u(j7l75/73) - ] (us/"'us_l)l(l—us/-..us_l)j*l (6)
l

the (4, j) entries of U are defined through

[U(s',9)], . =U(G—1,i=1,5,5), )

5]

and represent the probabilities that out of j — 1 kin, ¢ — 1 survive from age s’ to age s.
The (1,1) entry of U(s', s) is 1, and acts on the j = 0 kin-number-class: the probability
that there are no kin aged s’ will contribute to the probability that there are no kin aged s.
As such, the probability that there are zero kin aged s’ is simply added to the probability
that there are zero kin aged s. The diagonal of U(s’, s) represents the probabilities that all
kin survive, while the top-row (excluding the (1, 1) entry) define the probabilities that all
ofthe j = 1,2,..., @ kin die (resulting in Focal having zero of such kin of age s).

To summarise: the matrix U projects kin-number pmfs of age s’ to age s. The matrix
is both upper-triangular (since survival cannot act to increase kin number) and column-
stochastic (see Appendix B). The latter property distributes probabilities that from 5 kin,

1=0,1,...,  survive. We adopt the convention that U(s1,s2) =1, Vso < s7.



2.5 The probabilities that out of j kin,  offspring are produced: The matrix F

Here we seek to find pmfs which describe the number of newborns created through the
age-specific reproduction of one of Focal’s kin. Let n be the minimum fertile age and n
the maximum. While we are dealing with the reproduction of a direct ancestor of Focal,
either j = 0 or j = 1 (Focal can only have one of these kin who is dead or alive). Assume
that this ancestor is of age b;. Then we know that its reproduction pmf is simply given
through );,. Notice that if b; ¢ [n, 1] then 1), is the unit vector e;: all mass is in the
probability that no offspring are born.

Regarding the reproduction of any other kin-type of Focal (i.e., non-ancestors) for
which there may be j = 0,1..., ) many, we have to consider that each of the j reproduc-
ing kin has a probable number of offspring. For instance, Focal might have 7 = 2 sisters of
age s and each sister’s reproduction is defined by their own offspring-number distribution.
To account for this we create a matrix function F(s) (a function of the kin’s age s) which
projects the pmf of producer kin onto a pmf of their offspring. Because reproduction is
independent between individuals, the probability that 7 kin produce [ offspring is the [-th

entry of the j-th power convolution of ¥, (see Appendix C):

Prob{j kin of age s produce [ offspring } = Z V¥s(lh) Z VYs(lp) X -+ x
I Iz

Z%(m%(z =l ==l = 1)
L

=470
®)

Using this information, one can create a column-stochastic matrix which projects the kin-



number distribution of producer kin of age s onto a kin-number distribution of offspring

kin:

1oy(0)  92%[0] ... 9i@[0]

0 s(Q) v?[Q ... ¥i°[Q)]

Through F(s)ks we produce a pmf of offspring number encapsulating the reproduction of
an arbitrary kin-type k, of age s. The first entry of F(s)k; reads k4(0) + 95(0)ks(1) +
Px2[0]ks(2) + - - - +=?[0]ks(Q), which one interprets as the probability that there are no
producer kin (who do not reproduce), plus the probability that there is one kin who does
not have offspring, plus the probability that there are two kin and neither have offspring,
..., plus the probability that there are () kin and none of them have offspring. The second
entry is s (1)ks(1) + =2 [1]ks(2) + - - - + 929[1]ks(Q) which reads the probability that
there is one kin who has one offspring, plus the probability that there are two kin and
between them produce one offspring (irrespective of ordering), ..., plus the probability
that there are () kin and between them all one offspring is produced. The last entry is
Vs (Q)ks (1) + 22 [Qks(2) + - - - + ¥2[Q]ks(Q) and reads the probability that there is
one kin who has @ offspring, plus the probability that there are two kin and between them
@ offspring are produced, ..., plus the probability that there are () kin and between them
all @ offspring are produced. For all s ¢ [n, 71] the matrix has a top-row of ones and zeros

everywhere else since there are no offspring born to infertile individuals.



2.6 Total kin versus age-distributed kin

Recall from Section 2.2, that k(y) represents an age-specific kin-number pmf for Focal’s
kin of age s when Focal is of age y, whereas kx (y) yields a pmf for total kin (over all
their possible ages) when she is y years old. The (Q + 1)-th entry of the latter distribution
gives the full probability that Focal has Q < @ kin.

If the age-specific pmfs of Focal’s kin are independent, i.e., kin comprise direct
descendants of Focal, then the following theorem (a proof of which is given in Appendix
C) provides the pmf for ks (y):

Theorem 1. The probability that Focal of age 3y has exactly j kin whose ages can range
in ¥ = [21,2n), is given by the (j + 1)-th entry of k., (y) x - -- x k,, (y). Moreover,
ks(y) =kz (y) x> k2, (y).

In the case of collateral kin which all descend from Focal’s ¢-th ancestor, the age-
specific pmfs of kin are conditionally dependent (on ages of ancestral reproduction) and
we cannot apply Theorem (1). We explicitly consider the probabilities that Focal has some
number of such kin between a given age range in Section 3.1 and Section 3.2 respectively.

In the case of ancestors, i.e., if Focal can have at most one kin at any point in her life,
we have the following lemma which describes the pmf for kx(y):

Lemma 1. The probability that when Focal is aged v, she has an ancestor alive and of
some age within the interval ¥, is given by p = 3 < [ks(y)]2 (where |.]; represents the
j-th entry), resulting inks(y) = (1 — p,p,0,...,0)".

Lemma (1) is intuitive since Focal has, with probability kgy) (1) (the second entry of
k. (y)), one living ancestor of age s. The probability that the ancestor is alive and within
the age interval is then given by the sum over all ages s in the interval, that the ancestor

may be.



3. Towards the kin-formulae

Using the above ingredients and observations, we now provide the explicit formulae for
kin. We break down the formula into four theoretically distinct regimes. These regimes
correspond to the branches of the tree in Figure 1. First, branches which extend right (older
lineages) reflect kin which descend through older sisters of Focal’s (¢ — 1)-th ancestor.
Second, branches which extend left (younger lineages) reflect kin which descend through
younger sisters of Focal’s (¢ — 1)-th ancestor. Third, branches extending down reflect
Focal’s descendants. Lastly, branches extending up reflect direct ancestors of Focal. In
the next sections we respectively deal with these cases in turn, while the particular case
whereby kin descend through same-age-class sisters of Focal’s (¢ — 1)-th ancestor is dealt
with in Appendix D. A more detailed break down of the formulae and how they relate to
the established kinship model of Caswell (2024) is given in Appendix E. We provide an
illustrative application of our framework in Section 4.

In order to simplify the exposition moving forwards, we introduce the operator,

b
Tfa,b] = @ F(Si,1 - Si)U(O,Si,1 - Si). (10)

Si—1=a

which acts on the probability mass function of a kin-number distribution of newborn kin
for an arbitrary (i — 1)-th generation descendant of Focal’s ¢-th ancestor. The operator,
conditional on survival, takes the convolution over the reproduction of these kin between

the age a — s, and b — s;.



3.1 Kin which descend through older sisters of Focal’s (¢ — 1)-th ancestor

Here, we condition on each possible independent sequence of ancestral ages of reproduc-
tion: by, ba, ..., by, to derive a conditional pmf for the offspring number of Focal’s g-th

ancestor at age 34 — S1:

IO = Pyipyttby—ss = Vg, s, (11)

where the subtraction of s; arises since S, = y + b1 + - - - 4 by is the current age of Focal’s
g-th ancestor and s; that of their offspring. We update the operator defined in 10 so that
the first generation of Focal’s g-th ancestor can only reproduce at age strictly older than
Focal’s (¢ — 1)-th ancestor, while all subsequent descendants reproduce over the fertile

bound:

Ioy1, fori =1

Fo= T[Zﬁqiﬁlﬁﬂi], fori =2 12)

Z' .
[n-tsintsi] fori > 2.

Then the probability mass function describing the probabilities that Focal has a given
number of these kin aged in X (if ¥ = [s,] we recover the age-specific pmf) can be written

as a composition of operators:

kL) =Y - Zpbl. -po, (%) U(0, 59) Q]—'O (13)

by 54€X



In Eq (13) we conditionally sum over possible sequences (b;)7_,, each with probability-
measure [[?_, pp,. Conditional on each ancestral sequence, the kin-number random
variables for distinct ages s, are independent. The distribution for the sum of independent
random variables is the convolution of the measures. Hence the the pmf for the number
of kin in age range s, € X, conditional on ancestral sequence, is the convolution of
the age-specific pmfs. By the law of total probability, the weighted summation over all
ancestral sequence results in the unconditional pmf. Simple examples of Eq (13) and how
we ensure independence between the age-specific kin-number random variables in this
method are shown in Appendix E.1 and Appendix E.2.

Consider in Eq (13) that g = 1. For each conditional sequence of ancestral reproduc-
tion, I(? recovers a conditional pmf for the number of newborn kin, born to Focal’s g-th
ancestor before the birth of Focal’s (¢ — 1)-th ancestor. Focal’s ¢-th ancestor produced
Focal’s (¢ — 1)-th ancestor at age b, and at age 5, — s she had j = 0,1,...,Q many
newborns with probabilities g, _s,. Pre-multiplication the pmf of newborns through
U(0, s1) procures a pmf of these kin at age s; (when Focal is age y). Otherwise, if g > 1
then the limits of s; (i.e. when 7 = 2) over which the convolution of reproductive ages are
taken, defined through Eq (12), ensure that kin descend through older sisters of Focal’s

(¢ — 1)-th ancestor. For ¢ > 2 convolutions over reproductive ages have no constraints.

3.2 Kin which descend through younger sisters of Focal’s (¢ — 1)-th ancestor

We introduce the conditional pmf for the offspring number of Focal’s g-th ancestor at

age 3, — s1, when they give birth to a first descendent younger than Focal’s (¢ — 1)-th



ancestor:

Ig’ =F(y+b1+ -+ by — s1)U(by, By — s1)ea = F(By — s1)U(by, By — s1)e2. (14)

We apply the operator defined in 10 so that the first generation of Focal’s g-th ancestor
is strictly younger than Focal’s (¢ — 1)-th ancestor, while all subsequent descendants

reproduce over the fertile bound:

Io+1, fori =1
.7:3; = T[iﬂ+si,[3q_1,1]7 forz =2 (15)
f[iﬂ+si,ﬁ+si]7 fori > 2.

The overall pmf for these kin who can be of any age within X (again ¥ = [s,] recovers an

age-specific pmf) is given by the composition:

YRE(y Z Zpbl. v, (%) (0, 54) QP (). (16)

5g€ED

In Eq (16), each summand term is conditioned on a specific sequence of ancestral repro-
ductions, i.e., (b;){_,. The conditional age-specific pmfs are therefore independent. As
such, the sum of the random variables for age-specific kin-number (with age in ) is given
by the convolution of their distributions.

Given each conditioning sequence, the summand term is interpreted as follows: we



first note that we know with certainty that Focal’s ¢-th ancestor produces Focal’s (¢ — 1)-th
ancestor at age b,. Here the ancestor has a pmf defined through a unit vector with mass
in the 1 kin-number-class, e;. Consider the case of ¢ = 1. The composition reduces
to (8, — s1)U(bg, Bg — s1)e2: pre-multiplication of ey by U(by, 8, — s1) procures a
conditional distribution representing the probabilities that Focal’s g-th ancestor was alive
at the age when she produced Focal’s kin (at age 3, — s1). Pre-multiplication then through
F(B4 — s1) procures a probability distribution representing their offspring, born after the
birth of Focal’s (¢ — 1)-th ancestor. Pre-multiplication through U(0, s1) then calculates
the probabilities than between birth and age s; (when Focal is aged y) the kin survive.
While g > 1, the case of ¢ = 2 is diametrically opposed to Section 3.1; the limits of
s1 over which the convolution of newborn-number probability distributions are taken, are
constrained such that s; — s < 8,1 — 1 — s2. This ensures that kin descend through
younger sisters of Focal’s (¢ — 1)-th ancestor. For i > 2 convolutions over reproductive
ages have no constraints. Applications of Eq (16) used to derive Focal’s younger sisters
and cousins through aunts younger than Focal’s mother are respectively given in Appendix

E.3 and Appendix E.4.

3.2.1 Combining the older & younger lineages

When combining the kin of Focal, born to younger and older sisters of Focal’s (¢ —
1)-th ancestor, over some possible age range X, we must ensure the distributions are
conditionally independent of the ages of ancestral reproduction. In other words, we
can not simply convolve the terms in Eq (13) and Eq (16), but rather we must make

specific calculations for total kin. This ensures that the convolution of the measures of the



kin-number random variables gives the combined numbers of kin:

ouyk%q(y) —
> pneen | (D U0s,) OF6ED)| + [ (D V0.5,) OFH(T)]
bi,..., bq s§4€EX i=1 §4€EX i=1

3.3 Descendants of Focal

Descendants of Focal can be calculated through Eq (13) with ¢ := 0. Recall s; is the age

of Focal’s ¢—th direct descendant. By appealing to the operator in 10 we define

: I+, fori =1
Fp = (18)

[lﬂ+si,min{y,ﬁ+si}]a fori >1

and find the pmf of Focal’s g—th descendant of age s, when Focal is ¥, as

g
PkI(y) =U(0,59) () Fp(thiy—s,))- (19)
=1

Eq (19) tells us that Focal (who is assumed immortal) will have g-generation descendants
of age s, if she gives birth to offspring at age ¥y — s; who in turn survive to s; — sg
and reproduce at this age, continuing in this manner up to Focal’s (¢ — 1)-th generation
descendant, who survives from birth to age s,_1 — s, at which point producing Focal’s

g-th descendant (who survives to age s ). Because at each generation % of descent, Focal



can have multiple descendants, the (¢ + 1)-th generation descendants are given by the

convolution of pmfs of the ¢-th generation over the fertile age range (recall Theorem (1)).

3.4 Ancestors of Focal

Ancestors of Focal correspond to the case whereby g := 0. Recall b; is the age of Focal’s
i-th direct ancestor when producing the (i — 1)-th. We obtain the closed form equation for

the pmf of Focal’s ¢-th ancestor of age sy when Focal is y, through

q
AN y) = (L—per+p Y Ulbg,so)es, p= Y [ oo (20)

Ba=50 Bq=s0 i=1

The sum is taken over all possible arrangements of the ages b; at which Focal’s i-th
ancestor produced Focal’s (i — 1)-th, such that the age of Focal’s ¢-th ancestor when
Focal is y, B, = b1 + ... by + y is equal to sg. The vector pe, in Eq (20) assign binomial
probabilities that Focal’s g-th ancestor is indeed defined through the genealogical sequence
of b;. We project the g-th ancestor to survive from age b, — when last we knew it was in
existence (producing (g — 1)-th ancestor) to survival to her age so = by +ba+-- -+ by +y
when Focal is y. The vector (1 — p)e; re-normalises by adding to the pmf the probability
that Focal’s ¢-th ancestor was not defined by the sequence of b; (i.e., is not of exact age

50).



4. Application

Here, the model is applied. We source single year of age, period based (from 1974), UK
fertility and mortality data from the Human Fertility and Mortality Databases (Human
Fertility Collection 2024; Human Mortality Database 2024). We make the simplifying
assumption that births follow a Poisson distribution. Thus, with an age-specific fertility
rate f;, the distribution ); has entries giving the probabilities of having %k offspring:
{fke=1i) k!}gzo. Our assumption here in no way restricts the model, but is simply used
for progress. We could equally use, for example, empirical distributions of multiple births
for single year of age data. Deaths follow a Bernoulli distribution: we write {u;, 1 — u;}
for the probabilities of survival from age 4 to ¢ 4+ 1 (or not).

We set (Q = 6 as an upper bound for the maximum lifetime kin-number. Of course we
could use a larger upper limit, however, it would be unlikely for an individual to experience
more than 6 sisters, aunts or cousins, during their life®.

In Appendix A we also explore the validity of the below results by comparing them
to a micro-simulation. All code and data used, as well as a comparison of the mean
field results of this model to Caswell (2019), can be found at https://github.com/

ButterickJoe/PMF_Kin.

4.1 Unconditional distributions of kin
4.1.1 Sisters and cousins

Using Eq (13) and Eq (16) we are able to produce age-specific and total (over all kin

ages) kin-number pmfs for Focal’s younger and older sisters, for each age y of Focal’s life.

6 Based on the data we use here. In other demographies individuals may well experience such numbers of kin.
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Respectively, for each age s;, or possible range of ages s; € X, that Focal’s sisters can
be, the pmfs provide probabilities that Focal has exactly j = 0,1,...,Q of them. The
complete pmf for the kin-number distribution of sisters Focal has is found by applying Eq
(17). In the same manner, we use g = ¢ = 2 to decompose Focal’s cousins as descending
from younger sisters of Focal’s mother ¥ k%’Q (y), and older sisters of Focal’s mother
Oké’z (y), with the combined kin-number pmfs for cousins found through Eq (17).
Figure 2 illustrates the age-specific pmfs describing the numbers of sisters and cousins
of Focal, for two ages in Focal’s life-course; when she is aged 20 and aged 50. Plotted
are expected kin-numbers, the standard deviation in kin-number, and the skewness in
kin-number. Because we consider probabilities that Focal experiences some number of
kin of a specific age, nearly all the mass appears in the first (i.e., kgy) (0)) entries of the

pmfs: the distributions display a heavy (positive) skew.
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Figure 2: Theoretically predicted age-specific pmfs for Focal’s sisters (right) and cousins
(left) when Focal is aged 20 (turquoise) and 50 (orange). Points show expecta-
tions, dashed lines show standard deviation, and solid lines show skew (separate
y-axis). For ease of visualisation, we omit values > 60 when plotting the skew.

Figure 3 illustrates our theoretically predicted pmfs for the total number sisters and

cousins of Focal when she is aged 20 and 50. We predict that when Focal is aged 20 she

has no sisters with a probability 0.45 and no cousins with a probability 0.46. When Focal

is aged 50, we predict that she has no sisters with a probability 0.46 and no cousins with

a probability 0.47. Also presented are statistics derived from the first, second, and third

moments of the kin-number distributions.
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Figure 3: Accumulated-kin pmfs for Focal’s cousins (left) and sisters (right) when Focal
is aged 20 (top row) and 50 (bottom row). Bars show the probability that Focal
has a given number of kin.

In Appendix A, we compare the above predictions for the accumulated number-

probability distributions of kin of Focal to a direct stochastic simulation (see Figure A-1

and Figure A-2).

4.1.2 Ancestors and descendants

Applying Eq (20) we obtain Akgt’)l (y), the age-specific pmf for Focal’s mother of age s

; . D 1,0 : )
when Focal is 3. Through Eq (19) we obtain “k'"(y), the age-specific pmf for Focal’s



daughters of age s; when Focal is age y. These distributions are visualised in Figure 4

where we plot the expected kin-numbers, as well as the standard deviation and skewness

in kin-number. We focus on two different ages in Focal’s life course; when she is aged

20 and 50. Notice that at age 20, the probability that Focal has a non-zero number of

daughters only occurs for daughters up to age 6 (Focal begins reproduction at age 14),

whereas, when Focal is 50 there is a non-zero probability that she has daughters aged up

to 36. We again observe that the distributions are heavily skewed.
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Figure 4: Theoretically predicted age-specific pmfs for Focal’s daughters and mother when
Focal is aged 20 (turquoise) and 50 (orange). Left; daughters, right; mother.
Points show expectations, dashed lines show standard deviation, and solid lines
show skew (separate y-axis). For ease of visualisation, we omit values > 50

when plotting the skew.

The pmf describing the probability that Focal’s mother is alive is found using Lemma



(1), and the total probable number of daughters of Focal using Theorem (1):

y—n
ARG ) = [ D2 Ak )] and P () = () Pk () @1

S1=0

Figure 5 illustrates these pmfs. In each panel, the bars show the probabilities that Focal
experiences a number of kin. The left column shows Focal’s daughters, while the right
Focal’s mother. Rows show age of Focal. By comparing Focal at ages 20 and 50, we see
how the probable numbers of kin change by age of Focal. Regarding daughters, when
Focal is aged 20 and early her reproductive cycle, we predict that she will experience one or
more daughters with probability 0.098. Contrastingly, at age 50 when Focal has completed
fertility, we predict that she will experience one or more daughters with probability 0.606.

Also illustrated are the expected numbers of kin: daughters; 0.10 at age 20 and
0.93 at age 50, and mother; 0.97 at age 20 and 0.56 at age 50, the standard deviation in
kin-number: daughters; 0.32 at age 20 and 0.97 at age 50, and mother; 0.17 at age 20 and
0.50 at age 50, and the skewness in kin-number: daughters; 3.11 when Focal is aged 20
and 1.02 when Focal is aged 50, and mother; -5.46 when Focal is 20 and -0.25 when Focal

is 50.
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Figure 5: Accumulated-kin pmfs for Focal’s daughters and mother when Focal is aged

20 and 50. Rows show age of Focal. Left; daughters, right; mother. Bars give
the probability that Focal has a given number of kin; vertical lines show the
expected numbers of kin; horizontal error-bars show expected kin-number +
standard deviation in kin-number.

In Appendix A, we compare our above predictions of how the number of kin Focal

changes over her life course to a direct stochastic simulation (see Figure A-3 and Figure

A-4)



4.2 Conditional distributions of kin

Our method allows one to condition the probability that Focal experiences some number
of one kin-type on life-history events pertaining to other kin-types. For example, consider
Focal’s sisters. To find the probability distributions for Focal’s sisters, we apply a weighted
average of the age-specific reproduction of Focal’s mother, over possible ages when she
had Focal. Focal’s mother, however, is one age when having Focal. It is thus of interest to
remove the weighting and view the conditional pmfs of Focal’s sisters, assuming certain

(error-free) knowledge of Focal’s mother’s age when she had Focal.

Hlustration: Focal’s sib-ship conditioned on age of mother

Assuming that Focal’s mother was aged b; when she had Focal, the respective conditional
distributions representing the probability that Focal has j = 0,1, ..., Q older or younger

sisters of age s when she is aged y, are

7K, (Y5 01) =U(0, 5180, 1y,

Yk (y;01) =U(0, s1)F(by +y — s1)U(br, by +y — s1)ea.

The conditional pmfs of total older and younger sisters (over all possible ages) are

n

kgl (yib) = (0) kG (yib), Yky'(y @yk (yib)  (22)

s1=y+1 $1=0

and the convolution of the distributions in Eq (22) gives the overall probabilities that Focal

has a sister (younger or older than herself), conditional on her mother being aged b; when



she was born. For each b; = n, ..., n, the different probable number of sisters of Focal,
as per Eq (22), is shown in Figure 6. The left hand panel shows probabilities that Focal
has some number of younger sisters. Here, the younger Focal is, the less time her mother
has to produce her younger sisters, and the less likely Focal has such kin. At older ages of
Focal, the presence of younger sisters is more likely but depends on whether Focal was
born earlier or later in the reproductive ages of the mother. Contrastingly, the middle panel
— reflecting probabilities that Focal experiences some number of older sisters — remains
invariant with respect to Focal’s age. Here, the probabilities only change with the age at
which Focal’s mother had Focal. This is because Focal has accumulated all of her older
sisters before birth. The right hand panel gives the probability that Focal has some given

number of combined (i.e., younger or older) sisters of any age.
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Figure 6: The probable number of sisters of Focal as a function of the age of Focal’s

mother, at different times in Focal’s life. Rows give the age of Focal. Left:
younger sisters; middle: older sisters; right: combined sisters.

We might also consider the probability that Focal has no sisters. These probabilities



once again depend on the age of Focal’s mother when Focal was born; see Figure 7. In the
plot, the left panel, illustrating the probability that Focal has no younger sisters, demon-
strates that the older Focal’s mother is at birth of Focal, the less likely she experiences
such kin. In this case, Focal simply doesn’t accumulate younger sisters since mother
is nearing the end of her reproductive interval. The more probable instances of Focal
experiencing a younger sister occur when her mother is relatively young when having
Focal, and when Focal is currently at an age whereby her mother will have completed
reproduction. Interestingly, for Focal up to age 10, if her mother gave birth to her at
a very young age (e.g., by = 15) we find that it more probable for Focal to have no
younger sisters compared to if Focal’s mother gave birth to her at a mid-fertile age (e.g.,
b1 = 25). Because age-specific fertility is unimodal in our example (1974; UK), if Focal’s
mother is young when mothering Focal she retains a low probability of reproduction in the
immediate years after; thus Focal has to wait before accumulating younger sisters.

Note that in the present example we do not account for birth interval in the fertility
modelling, or else we might expect to see more complex patterns in these heat maps, for
example indicating that transition to gaining a first younger sister is less likely as Focal

ages, separately from the fertility decline as mother ages.
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Figure 7: The probability that Focal has no sisters as a function of age, and conditional
age of mother at Focal. Left: no younger sisters; middle: no older sisters; right:
no younger or older sisters.

Focal’s sib-ship size S (excluding Focal) is a random variable, conditioned on the
age of mother at birth of Focal, b;. Let the variable X; ; indicate the probability that Focal
has 7 older sisters and j younger sisters (i.e., i + j = S). Thus, for each possible sib-ship

size, j = S — i, and as such

S+1

klz’l(y; bl)]i[yklz’l(y; by)] 5_; Where Z Z Xis—i=1
>0 i=1

Xis—i= [O

with the right-hand side guaranteed by the conditioning on mother’s age at birth of
Focal. The variable X; s_1 allows us to calculate the probability of Focal’s birth rank,

as illustrated in Figure 8. Here we plot birth rank probabilities for Focal of age 20: (i)



conditional on mother’s age b; (by row) and (ii) as a weighted mix over probable ages
of mother (bottom row). Note that each of the rows sum to one because conditional on
mother’s age, they provide probabilities of Focal having S = 0,1, ..., 6 sisters, and given
that, Focal’s birth order. We might also condition on sib-ship size, in which case we would

simply re-normalise each panel.
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5. Discussion

The research presented in this paper extends and enriches recent advances in modelling
demographic stochasticity within kinship networks (Caswell 2024). Presently, the only
published model to acknowledge the above-mentioned stochasticity accounts only for
the mean and variance in kin-number. Our proposed frameworks projects a complete
probability distribution of the number of kin, from which, higher-order moments or
other quantities of interest (such as quantiles) can be readily obtained. Our framework
thus provides a more comprehensive analysis of variability in kinship structures. The
probabilistic nature of our framework allows conditioning kinship networks on particular
life-history events (see Section 4.2). The approach presented here thus allows analytical
results regarding demographic uncertainty that approach the richness of those obtained
via micro-simulation, providing population distributions of numbers of kin by age of both
Focal and kin, for arbitrary kin types.

Our proposed framework treats probability distributions for age-specific mortality and
fertility as model inputs. From these, the probability distributions of kin naturally emerge.
This innovation allows one flexibility to choose from empirical distributions (e.g., single-
year-of-age offspring probabilities) as well as parametric distributions. Contrastingly,
fitting empirical distributions using the mean and variance in kin numbers — outputs of
the state-of-the-art stochastic kinship model — would be challenging. Another innovation
made here is that we reduce the dimensionality of the matrix projections. The size of the
state-space here is defined by life-time maximum kin-number, ). Although, as argued
below, this does not necessarily offer a computational advance, this feature of our model

alleviates the need for big state-space matrices.



In principle, our model utilises the theory of branching processes with incorporated
age-structure. We demonstrate the recursive nature of kin-structures, quite similar to the
seminal work of Goodman, Keyfitz, and Pullum (1974), however with convolutions of
distributions implementing the next generation of kin rather than integrals over scalar
expectations. Waugh (1981) provides a way to construct a joint probability generating
function (pgf) for generation size over multiple generations in a Galton-Watson process,
and then samples a typical “Ego” (rather than Focal) from a fixed generation (see e.g.,
Section 7 in that paper). In this way, the author elegantly calculates what they refer to as
Ego’s “sorority” (sib-ship) size. The addition of age-structure in our framework builds
on such work and allows one to calculate probabilities of birth order as well as overall
sib-ship size. Moreover, in order to apply the methods proposed by Waugh (1981), one
requires an analytic pgf (they use a fractional linear functional form). For progress here,
we avoid such restrictions and maintain a discrete probability distribution which is easier
to extract from empirical data.

From a computational perspective, we cannot compete with the leading matrix-
projection model Caswell (2024). The manner in which distributions of collateral relatives
are calculated requires summations over ancestral reproductions and convolutions over
their descendants. However, our equations are substantially faster to implement than an
individual-based micro-simulation model, and in the present context, are able to yield
results of comparable complexity. Note that in higher-dimensional settings, for instance
whereby additional stages reflect characteristics of kin, incorporating additional complexity
into a micro-simulation is likely to be easier than extending our analytical expressions.

When comparing the results presented in Section 4 to a direct stochastic simula-

tion (available to explore at https://github.com/ButterickJoe/PMF_Kin)
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we find very good agreement in results. Comparisons for kin which form ancestors and de-
scendants in Focal’s family tree can be found in Figure A-3 and Figure A-4. Comparisons
for sisters can be found in Figure A-1 and Figure A-2. Regarding sisters, we find what we
consider to be very minor difference in the overall pmfs (see Figure A-2). One possible
explanation for this discrepancy is Monte-Carlo error. Nonetheless, we cannot rule out
the effects of demographic stochasticity. In finite populations, fluctuations in births and
deaths will result in the realised proportions of individuals in each age class deviating
from the stable distribution. Consider a population of size N (t) at time ¢ structured by age
classes i so that N(t) = >, n;(t). Recall from Section 2.1 that F; is a random variable
representing offspring number for an individual in age-class i. Using F; = (Z;‘Zl F)/n;
to represent the average age-class reproductive value, the deviation in individual reproduc-
tion from the Leslie model is f; — F; = ¢; and moreover, E[¢?] = var[F};| f;] = var[F}]/n;.
Such demographic deviations mean that the proportions of mothers in each age-class will
fluctuate around some stationary distribution. That is, denoting R;(t) = Z?;l F; as the
total reproduction from age-class ¢ and R(t) as the total reproduction over all age-classes,
the observed proportion of mothers of age ¢ in the simulation, R;(¢)/R(t), will not exactly
correspond to p; in the theoretical model. A comprehensive investigation of the effects of
population size in simulated processes will provide a further avenue for further research,
but is beyond the scope of the present article.

The present work is restricted by assuming a time-invariant, one-sex, age-structured
population. Extending to time-dependent vital rates would reflect more realistic population
dynamics. The main theoretical challenge here would be to probabilistically sample
mothers from a non-stable population (i.e., defining p, ;). Methods in Butterick et al.

(2025) pertaining to time-inhomogeneous genealogical Markov chains can readily achieve



as much. The remainder of moving to time-varying demographics should be merely a
case of careful indexing. Incorporating two sexes should also be relatively straightforward.
Model ingredients requiring change would include projecting (i) survival independently
by sex and (ii) the numbers of newborns distributed by sex. Constructing block-structured
matrices similar to those used in Caswell (2022), with U™, F'™ in [ieu of the projection
matrices therein, would allow such progress. In this case, projecting older and younger
lineages (Eq (13) and Eq (16)) would require little change; except for imposing a female
dominance in direct ancestor reproduction, and the output being a block-structured vector
of female and male kin-number pmfs. Similarly, Focal’s descendants would simply
be represented by a block-structured vector of pmfs. One notable change would be
that the probable ages at which ancestors reproduce would be sex-specific (i.e., pgl s Py
respectively represent the probable ages of Focal’s mother and father at her birth). As such,
in order to project direct ancestors, Eq (20) would involve a double summation over both
variables (both sexes). We are currently working on extending the present framework to
accommodate both sexes, and within a time-variant demography. Good progress has been
made here; we hope this development will be the focus of a forthcoming paper.

An interesting but challenging prospect is to extend the present research to a multi-
state model. Such progress would require more in-depth consideration. For instance,
construction of the matrices in Section 2.4 and Section 2.5 that form the core of this
method would become complicated. As well as a function of age, the probability that
7 = 1,2,... kin die at some given time will also depend on their stages. Elements of
the projection matrix U(s’, s, g, f) under a multi-state model would have to provide the
probabilities that so many Kin survive from age s’ to s, starting from stage g and ending

in stage f. Progress in this direction would allow for a very rich investigation of kinship



structures, perhaps paralleling the complexity of simulation. Including stage would allow
for example, one to condition fertility profiles (1)) as dependent on elapsed time since
last birth (as well as age). Not only would such an innovation provide a more accurate
description for human kinship where it is known that time-proximity between births can
create a “sibling constellation” (Morosow and Kolk 2017), but would also be highly
relevant in other species which experience postpartum infertility, such as toothed whales
(suborder Odontoceti) (Ellis et al. 2024). Implementing stochastic age x stage structured
kinship remains an open research problem.

In summary, the methodology proposed in this paper has, for the first time, enabled
projecting a probability distribution of the (i) total number of kin and (ii) age-specific
distribution of kin, of a typical population member. Having a complete distribution of
kin allows for detailed analysis of probabilities of given numbers of relatives present at
different parts of the life course, which is important from the point of view of studying the

presence of support networks, availability of care, and more.
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Appendices

A. Supplementary figures

In Figure A-1 we compare the overall kin-number pmfs of total younger and older sisters
of Focal predicted by our model (orange) to a stochastic simulation (black), when Focal is

aged 40. In Figure A-2 we extend the comparison over all ages of Focal, and compare the

probabilities that Focal experiences j = 0, 1, 2, 3, 4 sisters.

method |:| Microsimulation PMF model
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Figure A-1: Accumulated-kin pmfs for Focal’s sisters when Focal is aged 40. Legend (and
colour) compares the theoretical model to an agent based simulation. Left:
older sisters; right: younger sisters. Bars show the probability that Focal has

a given number of sisters.
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Figure A-2: Probable number of sisters over Focal’s lifetime. Legend (and colour) com-
pares the theoretical model to an agent based simulation. Left: older sisters
of Focal; right: younger sisters. Line-type shows the probabilities that Focal

has a given number of kin.

In Figure A-3 we compare our model’s predicted kin-number pmf for Focal’s mother

and Focal’s daughters (orange) to results obtained through a stochastic simulation (black).

Shown are pmfs for two ages of Focal. In Figure A-4 we compare, for all ages of Focal, the

probability that Focal has j = 0,1, 2, 3, 4 daughters, and the probability that her mother is

alive.




method |:| Microsimulation PMF model

Daughters Mother
1.001 mean = 0.1 mean = 0.97
] sd =0.32 sd =0.18
0.754 skew = 3.12 skew = -5.35
=
S
0.501 =
[
Q
@
0.254
>
S 0.00{ I:l — s |
[
8 1.001
o mean = 0.93 mean = 0.56
o sd =0.97 sd=05
0.754 skew = 1.06 skew = -0.26
P
3
0.50+ =
[0}
Q
@
0.251
0.001 |:| L
o 1 2 3 4 5 6 0 1

Number of kin

Figure A-3: Accumulated-kin pmfs for Focal’s daughters and mother when Focal is aged
20 and 50. Legend (and colour) compares the theoretical model to an agent
based simulation. Rows show age of Focal. Left: daughters; right: mother.
Bars give the probability that Focal has a given number of kin.
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Figure A-4: Probable parity of Focal (number of daughters) and the probability her mother
is alive, by age of Focal. Legend (and colour) compares the theoretical model

to an agent based simulation. Left: Focal’s daughters; right: Focal’s mother.

Line-type compares the probabilities that Focal experiences a certain number

of kin.




B. The matrix U

The matrix is column-stochastic as can be checked by observing that entries of the 7 > 1

columns obey the binomial expansion:

:(1—us/...us)j+<]>(1—us/...us)j1us/...us—|—---—|—ug,...ug
—_—— 1 ———

[U(s's)] L [U(s's)]

3,3

[U(s’s)] 2

C. Proof of Theorem 1 (and gentle reminder of convolutions)

Before providing the theorem proof we gently remind the reader how a discrete convolution
operates on two distributions. The convolution measures how one distribution is augmented
by another distribution. As the domain of one distribution is translated over the other, the
overlap in the two distributions’ domains is calculated. At each position in the translation,
the sum of the element-wise products of the distribution ranges’ is calculated, producing
the positional entry in a new distribution. In probability theory, if two independent random
variables have given probability distributions, the distribution for the sum of the variables
is the convolution of their distributions.

In the context of kinship, assume that there are two reproductive ages, 15 and 16.
Suppose that the probability of having offspring at one age is independent of the probability

of having offspring at the other age. Assume that at each age no more than 2 offspring can

be born. Let ¢h15 = (1h15(0), ¥15(1), ¢15(2))" and 16 = (1h16(0), Y16(1), ¢16(2))T. As



116 1s translated over 115, we calculate the convolution schematically:

{1015(0),¢15(1), ¥15(2) }
{116(2),¥16(1), ¥16(0)}
{116(2),916(1),¥16(0)}
{1h16(2),v16(1), ¥16(0) }
{1h16(2),¢16(1),¥16(0) }
{1016(2), ¥16(1), ¥16(0)}-

(C-2)

Note that C-2 has )15 as the top row, and each subsequent row consists of 116 shifted
rightwards by one element. The first entry of the resulting distribution consists of the
blue entry in the second row of C-2 multiplied by the element of /15 that it is vertically
aligned with. Similarly, the second entry consists of sum of the product of the two blue
elements in the third row of C-2 with the corresponding aligned elements of 115, and
so on. The resulting distribution has first entry 15(0)116(0): the probability that no
offspring are born. The second entry is ¢15(0)116(1) + ¥15(1)1)16(0): the probability
exactly one offspring is born at 15 or 16. The third, fourth and fifth entries respectively
yield probabilities that there are exactly 2, 3 and 4 offspring born over the ages 15 and 16.
Hence the convolution of the age-specific offspring-number distributions yields the overall

offspring-number distribution over “all possible” reproductive ages.



C.1 Proof of Theorem 1

Proof. Recall that the j-th entry of ky(y) gives the probability that Focal has j — 1 of
these kin of age s when she is aged y, i.e., kff’) (j —1). Let Pg’b be the probability that
Focal has exactly @ kin at age y whereby kin can range between ages a and b. Suppose

that the ages of kin can range only from a = z; and b = z5 for example. Then

Z ED (@)@ —a1) = (M2 % k) [Q) = (s, (1) %Koy () g1 (C3)

q1=0

Thus, (k., xk.,) is a discrete probability distribution with j-th entry the probability that

Focal has exactly 7 — 1 kin when aged y. If kin can be of ages 21, 22, 23 then

Q Q
="k (q) Z kY (q —q— @)=Y k(@) (kY *k¥)[Q - 1]

q1=0 q2=0 q1=0
= (K k) < K D)[Q)
=(k,, vk, * kz3)Q+1.
(C-4)
For any age y of Focal, the above reasoning leads us to believe that we can extend the
convolutions of age-specific pmfs k, (y) over all kin potential ages z;,i = 1,...,n to
obtain the number distribution. We use induction to show that if above holds for kin up to

age z,,—1 then it holds for z,, (for notational ease we omit the superscript y). Suppose



that the equality holds for z; to z,,_1, we see that by the induction hypothesis:

Q Q m—2
1m ! Z kzl (h Z 22 q2 Z kzm 2 Qm 2 zm 1 Q qz
q1=0 q2=0 qm—2=0 =1
= (ksy *hoy % x ko) [Q)
(C-5)
By shifting indices ¢« — ¢ + 1, by the induction hypothesis
Q Q m—1

Z kzz q2 Z 23 613 : Z kzm 1 Qm 1)kzm (Q - Z qi)

q2=0 q3=0 Gm—1=0 =2 (C-6)

= (koy % ko >+ k2, ) Q)

i.e., the Q + 1-th entry of the distribution (k., x - - - k., ) gives the probability that there
are () kin over ages 2, to z,,. The probability that there are () kin over ages 2 to zy,, is

therefore given by:

Q Q Q m—1
Z kz1 Q) Z E2 (q2) Z k'z;z, q) - Z L (@qm-1)k Zm (Q Z —q1)
q1=0 q2=0 q3=0 Gm—1=0 i=2
Q —_ —
= Z k., (Q1)(kZ2 K hipy Xk kzm) Q—aq] = (kzl LS kzm)[Q] = (k21 L *kzm,)Q+1
q1=0



D. Kin which descend through same-age sisters of Focal’s (¢ — 1)-th

ancestor

Let the random variable S represent the total number of offspring of Focal’s ¢-th ancestor’s,
at the age when she had Focal’s (¢ — 1)-th ancestor. Let S have distribution v. Let the
random variable representing the additional “same-age” sisters of Focal’s (¢ — 1)-th

ancestor be A. Then A = S — 1. Suppose that A has distribution ¢,.

By defining
Ir}s = ¢bq D-7)
and using the operator
Io+1, fori =1
Fs = Fly 5 fori=2 D5)
Ffﬂ+5i,ﬁ+si]7 for i > 2’

the age-number probability distribution for kin which descend through same-age class
sisters of Focal’s (¢ — 1)-th ancestor and are of age s, € ¥ (we recover the age-specific

pmf for ¥ = [s,]) can be written:

)
SkGly) =) - Zpbl oo, () U0, 59) () FE(TF). (D-9)

by 54€T i=1



Notice that since s; = 84_1, for i = 2, the convolution over s; reduces to one term:
(.7-'3 07:3) Z Zpbl oo po F(By—1 — 52)U(0, By—1 — s2) by, (D-10)

only accounting for reproduction of Focal’s ¢-th ancestor who belong to a group of children
born at the same time as Focal’s (¢ — 1)-th ancestor. All subsequent convolutions over
reproductive ages extend to the limits n and n.

Within an age-structured demography all offspring are born into the first age-class.
Recall that Focal’s ¢-th ancestor produces Focal’s (¢ — 1)-th ancestor at age b,. This
observed event means that the reproduction of Focal’s g-th ancestor at this age, producing
the additional same-age sisters of Focal’s (¢ — 1)-th ancestor, is not independent. We must
condition on the given knowledge that one offspring is born: vy, (S = j) = ¥, (S =
gli > 0) = (1 —6(4))bw,(4)/ 2 ;20 #s(4)- Then using the fact that § = A + 1, we
have ¢y, (A = j) = ¢, (S —1 = j) = ¥y, (S = j+ 1|j > 0). Under the Poisson
assumption in Section 4 we recover the so-called zero-truncated Poisson: ¢4(j) —
I (exp(—f2) = D + 1))

Note that using Eq (D-9) we can combine the younger, older, and same-age class

lineages of Focal similar to Eq (17) in text:

O = T
[@UOSQ Q}" } [@11J059 QP } [@U()sg O.’I—”
sg€L 54€T 54€ET

(D 11)



E. Illustration of the formulae in relation to Caswell’s approach.

In this section we illustrate our theoretical approach with annotation for ease of interpreta-
tion. We also relate our model to the established one of Caswell (2024) by referring to the

notation used therein.

E.1 Older sisters (m) or (g = 1,¢ = 1)-kin

Using notation of the established kinship model (see Figure 1), through Eq (13) our model
produces the following pmf for Focal’s older sisters of age s; € 3, when Focal is aged y.
Not that if 3 = [s1] we obtain the age-specific pmf, while if ¥ = [y + 1, n] we obtain the

pmf of total older sisters:

kél(y) = Mg, (y) = Z Pby @ U(07 51)¢b1+y751~ (E'l)
b1

S1EX

Eq (E-1) is a function of Focal’s age y and Focal’s older sister’s age s;. We interpret the
above by conditioning on the age of Focal’s mother at each possible age at which she
could have had Focal, b;.

For each possible age we condition that mother had Focal, b, for Focal to experience
an older sister of age s; when she is age y, mother must produce this kin at age b; + y —
s1. We calculate the pmf of newborns, ¥, 1,—s,. Pre-multiplication through U(0, s1)
calculates the pmf of the newborns who survive to be Focal’s older sisters. We do this for
each s; € Y, and convolve the resulting pmfs to obtain a pmf of older sisters, conditioned

on b;. Summing over b; with weights p, yields the unconditional pmf for older sisters.



E.1.1 Tllustration of independence

Consider the conditioning on the age of Focal’s mother at birth of Focal, b;. By fixing b1,
the random variables representing the numbers of newborn older sisters, e.g., those who
become ages s} s| € X, are independent with measures uniquely defined by conditional
pmfs ¥, 1,1, . As such, the sum of the age-specific kin-number random variables
has distribution given by the convolution of the conditional pmfs. Applying this method
for each b; with probability p, yields the unconditional pmf for older sisters.

For example, consider n = 1, 2, 3, 4 age-classes, that Focal is aged y = 1, and Focal’s
older sisters can be aged s; = 2, 3,4. Suppose all age-classes survive to the next with

probability one. Eq (13) becomes:

4 4
Z Pby @ Yoy ty—si = p1(tPo* 1) + p2(th1*2bo) + ps (Y2 * 1) + pa (s *1h2).
bi=1  s1=2 E2)
Here, the random variables for offspring number of mother aged 1, 2, 3 are all independent
and their measures convolve to yield distribution for the sum. E.g., the term 15 x 91 gives

the distribution for the number of sisters, as the sum of those born when mother was 2 and

those born when she was 1.



E.2 Cousins from aunts older than mother (t) or (¢ = 2, ¢ = 2)-kin

Appealing to Eq (13) we obtain the pmf for cousins of age so € X, who descend through

aunts who are older than Focal’s mother:

k22 (y) =ts, ()

n—+sg
= Z Z Pby Pby @ U(()? 82) @ ]F(sl - SQ)U(Ov 51— 82)¢b1+b2+y*51
b1 b2 $2€X s1=y+b1+1

(E-3)
Eq (E-3) reads that cousins of Focal at age so when Focal is y were produced by Focal’s
older aunts when Focal was y — s and when aunt was age s; — so (atleast y + b1 +1 — so
or older).

In more detail, each term within the double summation is defined by a conditional
sequence of ancestral reproductions, (b, bs). For each condition, we calculate the pmf for
Focal’s grandmother’s reproduction “before” producing Focal’s mother, ¥, 14, 4y—s, . We
pre-multiply through F(s; — s2)U(0, s1 — s2) to obtain the total reproduction of Focal’s
aunt’s at age s; — So. Here Focal’s aunt’s possible age is constrained such she is older
than Focal’s mother (i.e., s — s > y — s2 + b1). Reproduction of aunt results in the
newborn cousins of Focal. Through U(0, s3) the pmf of newborn cousins is projected
to age so. Doing this procedure for all ages sy € X and convolving the measures of
these independent random variables gives a total pmf for cousins, conditioned on by, bs.

Summing over all b1, by with probability ps, pp, gives the unconditional pmf.



E.2.1 Tllustration of independence

Following on from the example of Section E.1.1, we find:

4 4 4 4
Z Z Pby Py @ @ F(sl - 32)1/’b1+b2+y751

bi=1bsy=1 sa=1s

= p1,1 @ (2 = s2)%p1 % F(3 — s2)2ho * F(4 — s2)3p_1)

821

+ p1p2 G)l (2 — 52)%2 x F(3 — s9)2hy * F(4 — s2)1h0) Ea

+ p1p3 @ (2 — 52)ah3 % F(3 — 52)po x F(4 — 52)1b1)

Szl

+ p1pa @ 2—82 1,[)4*]]:?( —82)’1/)3 *]F(4—82)’l,[12)

s9=1

4+

Importantly, for each conditioning of ancestral sequence, e.g., by = 1,bp = 2, then
for each age of cousin sy € [1,4] the random variables for age-specific kin number are
independent; in this case with distribution F(2 — s2)1p4 and F(3 — s2)1p3 and F(4 — s2)1)a.

Convolving over ages of cousin thus results in

p102{F ()2 « F(2)th1 » F(3)tbo » F(0)ebo
F(1)31 * F(2)30  F(—L)tga = F(O)th: (E-5)
F(1)3ho * F(~2)pz % F(—1)ep1 + F(0)o |



where we recall that F(s) is a matrix with top-row ones and zeros elsewhere and ) is the

unit vector with mass in the first entry Vs ¢ [1, 2, 3].

E.3 Younger sisters (n) or (¢ = 1,9 = 1)-kin

In relation to the established model Caswell (2019), we have from appealing to Eq (16),

the pmf of younger sisters of age s; of Focal age y:
k' (y) =ng, (y) = Z P6, U(0,51)F(b1 +y — s1)U(b1,b1 +y — s1)e2. (E-6)
by

We condition on by, the age when Focal’s mother has Focal in Eq (E-6). For each b,
Focal’s mother’s number pmf is a unit vector with mass in the 1-kin-number-class (mother
is certainly alive when having Focal). Mother survives y — s; years (through the U-matrix),
up to age b; + y — s1, when she produces a younger sister of Focal (through the F-matrix).
The younger sister survives from birth up to age s;. We compute these age-specific pmfs
for sisters of age s; € X, and convolve them. This gives a conditional pmf for sisters
of age in 3. Summing over all probable ages of mother with probability pp, gives the

unconditional pmf for such kin.



E.4 Cousins from aunts younger than Focal’s mother (v) or (¢ = 2, g = 1)-kin

We have from Eq (16):

K2 0) = v () = 30 X e (2 000,52) x {

b1 b2 $2€X
y+b1—1
@ ]F(Sl — SQ)U(O, S1 — SQ)]F(y + by +by — Sl)U(bg, Y+ by + by — 81)62}.
s1=n+s2

(E-7)
In Eq (E-7), each term within the double summation is defined by a conditional sequence
of ancestral reproductions, (b1, b2). For each condition, we calculate the pmf for Focal’s
grandmother’s reproduction “after” producing Focal’s mother, F(y+ b1 + by —s1)U(be, y+
b1 + b2 — s1)eq. We pre-multiply through F(s; — s2)U(0, s1 — s2) to obtain the total re-
production of Focal’s aunt’s at age s; — so. Here, Focal’s aunt’s possible age is constrained
such she is younger than Focal’s mother (i.e., s; — s2 < y — s2 + b1). Reproduction of aunt
results in the newborn cousins of Focal. Through U(0, s2) the pmf of newborn cousins is
projected to age s5. Doing this procedure for all ages so € ¥ and convolving the measures
of these independent random variables gives a total pmf for cousins, conditioned on b1, bs.

Summing over all b, by with probability p,, pp, gives the unconditional pmf.

E.5 Daughters (a) or (g = 1, ¢ = 0)-kin

At each age ¢ of Focal’s reproductive life she gives birth to a non-negative integer j =

0,1,...,Q of offspring with respective probabilities 1);(j). The pmfs for daughters aged



s1 when Focal is aged y are calculated using Eq (19):

k(s)’ll (y) = a,, (y) = U(O, 51)"/%/*81 (E-8)

Notice that for Focal’s daughter to be aged s; when Focal is aged y, Focal’s reproductive

probability mass function must have been defined when Focal was at age y — s1, hence

,(/)y_sl

E.6 Granddaughters (b) or (g = 2, ¢ = 0)-kin

We apply Eq (19) with g = 2 to obtain the age-specific pmf for granddaughters of age
so when Focal is y. The equation below demonstrates that the granddaughters of Focal
currently aged so are produced through Focal’s daughter over all possible ages of s’ when

Focal was age y — s2 (in the past):

Yy—s2

k2 (y) = by, (y) = U(0,52) (%) F(s1— s2)U(0, 81 — 52)1by s, (E-9)

s1=n+s2

where s; — so represents Focal’s daughter’s age at reproduction of Focal’s granddaughter

(at which time Focal was age y — s3).



E.7 Mother (d) or (g = 0,¢ = 1)-kin

From Eq (20) we see that when Focal is age y, the age-specific probability distribution for

a mother of age s( reduces to

1—pp, 0
0 1

K ) =d()=| 0 | +peUbiso) |0 (E-10)
0 0

where the summation term in Eq (20) is over one element (i.e., by = sg — y by definition)
because the age at which mother gives birth to Focal is uniquely defined by mother’s age

so when Focal is y.



E.8 Grandmother (g) or (g = 0,¢ = 2)-kin

From Eq (20) we see that when Focal is age y, the age-specific probability distribution for

a mother of age s is given by:

1—n
0
0,2 _ _
KPP =g, = 0 |+n >
b1+ba=s0—y
0

U(bg, So)

=

Z Pby Pby -

b1+ba=s0—y

(E-11)

Note that now we are summing over possible ages at which grandmother produced mother

(b2) and mother produced Focal (b;) which result in grandmother being age sg when Focal

is y.
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