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Objectives: Chemical disinfectants are critical for infection control in healthcare environments and beyond, as
exemplified by their vital role during the COVID-19 pandemic. Despite research repeatedly demonstrating that
bacteria can develop adaptations that mitigate the efficacy of chemical disinfectants, the underlying molecular
mechanisms remain poorly characterized. This study investigates the mechanisms that underpin resistance de-
monstrated by disinfectant-adapted Klebsiella pneumoniae NCTC 13443 samples.

Methods: Resistant samples have previously undergone long-term in vitro adaptation via serial passage in in-
creasing concentrations of common disinfectants benzalkonium chloride (BAC), didecydimethylammonium
chloride (DDAC), polyhexamethylene biguanide (PHMB), chlorocresol or bronopol. A multi-omics approach was
used to conduct in-depth molecular analyses of the adaptations that contribute to resistance.

Results: K. pneumoniae adaptation to BAC, DDAC and PHMB was associated with the modification of lipid A caus-
ing the reduction of the net-negative charge of the outer surface, lowering the affinity of cationic disinfectants.
This mechanism is also used for polymyxin and colistin resistance, highlighting a potential cross-resistance risk.
Chlorocresol-adapted K. pneumoniae samples demonstrated increased expression of efflux pumps and expres-
sion changes linked to biofilm formation. Bronopol resistance was associated with promoting biofilm formation
and increased thioredoxin expression to alleviate oxidative stress. Results indicate the potential role of N-ethyl-
maleimide reductase NemA in bronopol resistance via enzymatic degradation.

Conclusions: These findings provide novel insights into how causative pathogens of healthcare-associated in-
fections can adapt to and mitigate the effectiveness of common chemical disinfectants that are relied on glo-
bally every day as a critical infection control measure.
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Introduction

Healthcare-associated infections (HAIs) cause hundreds of mil-
lions of infections worldwide every year. Klebsiella pneumoniae
is a common causative pathogen of HAIs, with Klebsiella spp. ac-
counting for ~10% of cases in US hospitals.!

The COVID-19 pandemic highlighted our reliance on chemical
disinfectants for infection control; a dependence likely to grow
with the ever-increasing prevalence of antimicrobial resistance
(AMR). While AMR is typically associated with antibiotic resist-
ance, evidence shows bacteria can also develop tolerance and re-
sistance towards disinfectants.” This has resulted in calls for
antiseptic stewardship® and contributed to the banning of triclo-
san and other antimicrobials in the USA. Benzalkonium chloride
(BAC) and five other antiseptics are currently under review, partly

due to concerns surrounding antiseptic resistance and
cross-tolerance.”

For clarity, tolerance is defined as the ability of an organism to
survive transient exposure to otherwise lethal concentrations of
disinfectant, while resistance is as an inherited ability of an or-
ganism to survive and grow at otherwise lethal concentrations ir-
respective of exposure time.”

Clinical K. pneumoniae samples have shown varying suscepti-
bilities to chlorhexidine,® iodophor® and BAC,” while in vitro ex-
periments have demonstrated K. pneumoniae tolerance to
chlorhexidine,® BAC” and polyhexamethylene biguanide (PHMB)
in combination with betaine.” We recently demonstrated the
ability for K. pneumoniae samples to adapt to otherwise lethal
concentrations of quaternary ammonium compounds (QACs)
BAC and didecyldimethylammonium chloride (DDAC), the
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Table 1. Summary of characteristics of the disinfectants used in this study

Compound Cellular target

Antimicrobial mechanism

Applications

BAC Membrane

Positively charged quaternary nitrogen groups interact with Surface disinfection sprays and wipes, eye/
anionic lipids, promoting their own cellular uptake. This

ear drops, burn treatments.

interaction facilitates the insertion of hydrophobic tails
into the lipid bilayer, disrupting lipid organization and
compromising membrane integrity. As a result, low
molecular weight substances leak out, the proton motive
force is lost, and oxidative phosphorylation becomes

uncoupled.*?

DDAC Membrane

Positively charged quaternary nitrogen groups interact with Surface disinfection sprays and wipes,
anionic lipids, promoting their own cellular uptake. This

sterilization of surgical equipment.

interaction facilitates the insertion of hydrophobic tails
into the lipid bilayer, disrupting lipid organization and
compromising membrane integrity. As a result, low
molecular weight substances leak out, the proton motive
force is lost, and oxidative phosphorylation becomes

uncoupled.!?

PHMB Membrane

The biguanide group sequesters anionic lipids, forming
homogenous lipid domains that disturb the structural
organization of the membrane. This disruption increases

Surface disinfection sprays and wipes,
wound dressings, contact lens cleaning
solution, swimming pool cleaners.

membrane permeability and causes leakage of
intracellular content.*! Evidence suggests PHMB can
translocate across the bacterial membrane, condense

DNA and inhibit replication.?
Chlorocresol Membrane

Compromises the permeability barrier through membrane  Antiseptic, preservative.

disruption, inducing leakage of low molecular weight
components. Causes downstream collapse of proton

motive force and uncoupling
phosphorylation.!®
Proteins.
ROS generated target
macromolecular
structures

Bronopol

intracellular components.**

Catalyses oxidation of thiols to disulphides, cross-linking
proteins and impeding functionality. This reaction also
generates ROS that cause downstream damage to

of oxidative

Disinfectant, preservative.

cationic polymer PHMB, the phenol-derivative chlorocresol and
the reactive-oxygen species (ROS)-producing bronopol through
evolutionary adaptation.'® Their characteristics are presented in
Table 1, and the respective pre- and post-adaptation MICs in
Table 2. These samples were provisionally characterized as disin-
fectant tolerant, as genotypic adaptations have not been con-
firmed. Collateral susceptibility was more common that
cross-tolerance among these samples, even among disinfectants
with similar mechanisms of action (MOA). This is presumably due
to the fitness cost of adaptation.

BAC tolerance in K. pneumoniae has been attributed to in-
creased efflux pump activity.” However, chemical inhibition of ef-
flux pump activity had no impact on BAC and PHMB susceptibility
of K. pneumoniae isolates,*® suggesting other contributing me-
chanisms. In other species, porin down-regulation and mem-
brane charge alteration via lipid A modification has been
associated with BAC tolerance.® Tolerance to PHMB and bronopol
has not been investigated in detail, so any mechanisms of toler-
ance remain unknown. Chlorocresol tolerance has not been re-
ported or investigated, although studies have shown a link

between phenolic disinfectant susceptibility and efflux pump
activity."’

This study aims to characterize the molecular mechanisms
enabling these disinfectant-adapted K. pneumoniae samples to
survive otherwise lethal disinfectant concentrations via whole-
genome sequencing and label-free quantitative proteomics.
Addressing these aims will provide valuable insights into how
bacteria can adapt to commonly used disinfectants in health-
care, commercial and household environments, while also guid-
ing future decisions on healthcare cleaning routines and
antiseptic stewardship policies.

Materials and methods
Bacterial strains and growth media

Whole-genome sequencing and proteomic analysis was performed on
three biological replicates of disinfectant-adapted K. pneumoniae sam-
ples generated previously.’® Owing to minor colour variations between
colonies of BAC-adapted replicates plated on CHROMagar™ Orientation
chromogenic agar, five samples were analysed to check for technical
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Table 2. Disinfectant MIC values against K. pneumoniae NCTC 13443
before and after adaptation

K. pneumoniae NCTC 13443 MIC (mg/L)

Disinfectant Pre-adaptation Post-adaptation

BAC 20 56
DDAC 6 14
PHMB 6 9
Chlorocresol 200 260
Bronopol 8 41

consistency. For a comprehensive description of the adaptation method-
ology and initial characterization of the samples, see Noel et al.*® In brief,
samples were passaged daily in Mueller-Hinton broth containing increas-
ing concentrations of disinfectant until no further tolerance developed
over 15 consecutive passages.'® Pre- and post-adaptation MICs are dis-
played in Table 2. Total adaptation times varied from 69 to 103
passages.’?

Adapted samples were cultured overnight at 37°C in Mueller-Hinton
broth containing a sub-MIC (post-adaptation) of respective disinfectant
(55 mg/L BAC, 13 mg/L DDAC, 8 mg/L PHMB, 240 mg/L chlorocresol,
40 mg/L bronopol)® before protein and DNA extraction. For comparison,
three pre-adaptation samples were prepared in the absence of
disinfectant.

Stock solutions of antimicrobial compounds

Here, 10000 mg/L BAC, DDAC, PHMB and bronopol (Thor Specialities)
stocks were prepared in ddH,O immediately before use. Chlorocresol
(Lanxess) was prepared similarly in undiluted DMSO. Working concentra-
tions of DMSO had no detectable impact on K. pneumoniae colony form-
ing unit counts.

Whole-genome sequencing

One millilitre aliquots were washed in PBS three times before DNA extrac-
tion via DNeasy PowerSoil Pro Kit (Qiagen) following the manufacturer’s
instructions. Lysates were frozen at —20°C until required. Samples were
sequenced by Novogene via Illumina® NovaSeq"™ 6000.

Raw reads were cleaned to remove adapter contamination, reads
with >10% uncertain bases or >50% low quality nucleotides, before map-
ping to the reference genome with BWA. Variants were called using GATK,
compared using bcftools and annotated using the ANNOVAR software
tool.

Global quantitative proteomics

Samples were washed three times in PBS, pelleted and resuspended in ly-
sis buffer [50 mM tris, 150 mM NaCl, 0.1% w/v SDS, cOmplete™ protease
inhibitor cocktail (Roche)]. After sonication (120 s total, 12% amplitude,
10-s pulses) and centrifugation (12 000g, 20 min, 4°C), protein concentra-
tions were quantified via BCA assay. Lysates were frozen at —20°C until
required.

Volumes containing 100 pg of protein were mixed with 600 pL of
methanol, 150 pL of chloroform, 450 pL of dH,0 and subsequently centri-
fuged (14000g, 10 min). After the upper aqueous layer was removed,
450 uL of methanol was added before mixing and centrifugation.
Protein pellets were air dried before resuspension in 100 pL of 6 M ureaq,
50 mM tris-HCl, 5 mM dithiothreitol (pH 8.0), incubated for 30 min at
37°C, before incubation with 15 mM iodoacetamide for 30 min at room
temperature. Four micrograms trypsin/Lys-C mix (Promega) were added

for 4 hours at 37°C, before dilution in 750 pL of 50 mM tris-HCl (pH 8.0)
and overnight incubation. Digestion was terminated by the addition of tri-
fluoroacetic acid before centrifugation (14000g, 10 min). Peptides were
purified using Oasis PRIME HLB 96-well uElution plates (Waters) by elution
in 70% acetonitrile and spin-dried under vacuum.

Samples were resuspended in 50 pL of 0.1% v/v formic acid before
mass spectrometry (UltiMate 3000 RSLC nano system with Orbitrap
Fusion™ Tribrid™ Mass Spectrometer, Thermo Fisher Scientific).

Peptide/protein identification and area under the curve quantification
were performed using PEAKS Studio Xpro (Bioinformatics Solutions).
Proteome coverage was 25.6%-28.3%. Proteins were filtered to include
proteins identified across all parent and adapted replicates. A 1% false
discovery rate and minimum +2 log, fold change threshold were used
to define significant, differentially expressed proteins.

Data analysis

Phylogenetic trees were generated using CSI Phylogeny v.1.4'® using de-
fault parameters and K. pneumoniae NCTC 13443 as the reference gen-
ome. FigTree v.1.4.4° was used for visualization.

Genetic variants were filtered to exclude synonymous single nucleo-
tide polymorphisms (SNPs), non-coding mutations and mutations not
conserved across all replicates. Gene Ontology (GO) biological function
networks were generated using ClueGO v.2.5.9%° in Cytoscape v.3.9.1%!
with K. pneumoniae strain 342 as the reference genome. Small variant
sets are instead presented in Table 3.

GO enrichment of differentially expressed proteins was performed
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID)?%23 with K. pneumoniae MGH 78578 as the background
list. Enriched biological process and cellular component GO terms with a P
value of <0.05 were considered significant and visualized as heatmaps
via GraphPad Prism v.9.4.1. Network maps of differentially expressed pro-
teins were generated using ClueGO?°/Cytoscape?®! and arranged by Kyoto
Encyclopedia of Genes and Genomes (KEGG) biological pathways annota-
tions, with K. pneumoniae strain 342 used as reference.

Results and discussion

Characterization of disinfectant-adapted K. pneumoniae
samples

Unrooted phylogenetic trees (Figure 1) group samples into
clades by disinfectant treatment, showing that adapted sam-
ples have acquired conserved genotypic adaptations facilitating
survival in the presence of otherwise lethal concentrations of
disinfectant (Table 2) irrespective of exposure time.'® We there-
fore classify the samples as resistant, although only to concen-
trations of disinfectants significantly lower (Table 2) than those
at point of use in commercial products, which are typically in the
102-10% mg/L range.?*?> Despite this, it is still pertinent to es-
tablish what mechanisms are being used to mitigate the effi-
cacy of disinfectants, especially considering how various
factors including dilution factor,® organic load,?’ exposure
time?® and residual compound degradation?? can effectively re-
duce the exposure concentration.

Disinfectant resistant samples displayed short genetic dis-
tances from each other, except for QAC-adapted (BAC, DDAC)
samples (Figure 1b). Genetic distances between adapted clusters
did not align with MOA similarities, with BAC- and DDAC-adapted
clades being furthest apart despite both being cationic
membrane-active agents with a near-identical general MOA.
This suggests small differences in interactions with components
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Table 3. Conserved mutations detected in all biological replicates of K. pneumoniae NCTC 13443 disinfectant-adapted samples (n=3)

Resistant Variation Gene Protein

sample Gene type annotation annotation Protein product

PHMB basS ns-SNP 469A>C T157P Sensor protein BasS/PmrB
kdgR ns-SNP 374A>G D125G Transcriptional regulator KdgR

Chlorocresol marR_1 fs-ins 78dupT T27NfsX3 DNA-binding transcriptional repressor MarR
yicC fs-ins 290_291insC M971fsX4 Protein YicC
acrB_5 ns-SNP 163A>C I55L RND efflux system
cpdA_2 ns-SNP 136A>G S46G 37 5’-cyclic-nucleotide phosphodiesterase
fnr ns-SNP 289G>A D97N Fumarate and nitrate reduction regulatory protein
htrE ns-SNP 2233A>C S745R Fimbriae usher protein StcC
NCTC13443_06216 ns-SNP 104T>G V35G Fimbrial-like protein
NCTC13443_06725 ns-SNP 1690G>T A564S Membrane protein
yjcC 2 ns-SNP 742C>T P248S Cyclic-guanylate-specific phosphodiesterase
fim_1 nfs-del 110 121del 37 41del Fimbrial protein MrkD

Bronopol cpdA 2 ns-SNP 136A>G S46G 3",5’-cyclic-nucleotide phosphodiesterase
htrE ns-SNP 2233A>C S745R Fimbriae usher protein StcC
NCTC13443_06216 ns-SNP 104T>G V35G Fimbrial-like protein
purR_2 ns-SNP 413GT R138L Purine nucleotide synthesis repressor
putA_3 ns-SNP 664A>C T222P PutAP proline dehydrogenase transcriptional

repressor

rha$S 2 ns-SNP 314G>C R105P Negative transcriptional regulator of cel operon
yjeC 2 ns-SNP 742C>T P248S Cyclic-guanylate-specific phosphodiesterase
fim_1 nfs-del 110_121del 37_41del Fimbrial protein MrkD

ns-SNP, non-synonymous single nucleotide polymorphism; fs-ins, frameshift insertion; nfs-del, non-frameshift deletion; RND, resistance nodulation
division; NADP, nicotinamide adenine dinucleotide phosphate; GTP, guanosine triphosphate.

of the membrane can manifest distinct adaptations. Although
sharing few mutations in common, BAC-adapted samples previ-
ously demonstrated cross-resistance to DDAC'® implying over-
lapping mechanisms.

QAC-adapted samples demonstrated a uniquely high number
of mutations (Figure 1b), indicating a strong selection pressure.
Conversely, PHMB, chlorocresol and bronopol-adapted samples
showed fewer mutations and shorter genetic distances between
them, despite more varied MOAs. This shows that few mutations
are required for K. pneumoniae to adapt to these agents, and sug-
gests that the strength of the selection pressure had more influ-
ence on the genotype than MOA similarities.

PHMB-adapted sample 2 accumulated many unique muta-
tions compared with other replicates, indicating inconsistent re-
sistance mechanisms (Figure 1b). PHMB-adapted samples also
showed varying cross-resistance profiles,'® thought to be due
to multiple suggested target sites. While PHMB is primarily re-
garded as membrane-active, research suggests alternative ac-
tion via condensing of nucleic acids.'” Multiple target sites
would allow for different resistance strategies, explaining the
lack of homogeneity between the biological replicates. Despite
this, all PHMB-adapted replicates remained grouped in a single
clade, indicating conserved adaptations.

Quantitative proteomics showed lower expression across all
adapted samples (Figures 2b, 3b, 4, 5, 6), with reduced enrich-
ment of arginine biosynthesis, gluconeogenesis, translation
and TCA cycle biological process GO terms (Figure S1, available
as Supplementary data at JAC-AMR Online), indicating reduced

growth and metabolism. This is characteristic of dormant
phenotypes, which classically show reduced antimicrobial sus-
ceptibility.?®3! This also demonstrates the fitness cost of adap-
tation, with energy being diverted to maintain a resistant
phenotype.

K. pneumoniae resistance to QACs

Mutated genes in QAC-adapted samples were linked to lipid
metabolic and macromolecule modification cellular processes
(Figures 2a and 3a). Both BAC and DDAC-adapted samples con-
tained a conserved non-synonymous SNP in histidine kinase
bass (polymyxin resistance protein B, PmrB), which positively reg-
ulates arnABCDEFT genes responsible for 4-amino-4-deoxy-
L-arabinose (L-Ara4N) synthesis. ArnT modifies lipid A with
L-Ara4N, neutralizing the negative charge of the 4’-phosphate
group and decreasing the net-negative charge of the outer leaf-
let.* This reduces the affinity of cationic peptides including colis-
tin and polymyxin B, facilitating resistance.??

The mutation causes a A68V substitution within the trans-
membrane region (Tables S1 and S2), responsible for physiologic-
al signal detection and conformational changes activate
arnABCDEFT genes.*® Similar mutations in this region constitu-
tively activate E. coli PmrB and cause increased expression of
arnT.>* Proteomics reveals increased expression of downstream
ArnAB in BAC-adapted samples (Figure 2), and ArnA in
DDAC-adapted samples (Figure 3), suggesting the A68V substitu-
tion constitutively activates BasS.
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Figure 1. Genetic characterization of Klebsiella pneumoniae NCTC 13443 disinfectant-adapted samples. (a) Unrooted, unscaled phylogenetic tree re-
sistant samples. Node values indicate bootstrap values as a percentage. (b) The total number of mutations acquired by Klebsiella pneumoniae NCTC

13443 disinfectant-adapted samples compared to the respective untreated parent samples. The phylogram shows the relative genetic relationships of

the samples, with the distance scale indicating the number of nucleotide substitutions per site. InDels, insertions or deletions that are <50 base pairs in
length. PS: parent samples. BR, bronopol-adapted samples; CC, chlorocresol-adapted samples.
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Figure 2. Genomic and proteomic characterization of Klebsiella pneumoniae NCTC 13443 benzalkonium chloride-adapted samples. (a) Network diagram
of genes that contain conserved mutations across all replicates (n=5). Genes are indicated by the coloured dots, arranged according to GO biological
process annotation. Colours indicate biological process annotation. Black dots indicate biological process annotations, as labelled. Lines connect genes
to their annotations. (b) Network diagram of differentially expressed proteins (coloured dots), arranged according to KEGG pathway annotation. Node
labels show associated gene name. Blue and red coloration indicates increased or reduced expression, respectively. Black dots indicate KEGG pathway
annotations, with size proportional to number of associated differentially expressed proteins. Lines connect genes to their annotations.
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Figure 3. Genomic and proteomic characterization of Klebsiella pneumoniae NCTC 13443 didecyldimethylammonium chloride-adapted samples.
(a) Network diagram of genes that contain conserved mutations across all replicates (n=3). Genes are indicated by the coloured dots, arranged according
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Figure 4. Network diagram of differentially expressed proteins in polyhexamethylene biguanide-adapted Klebsiella pneumoniae NCTC 13443 samples.

Differentially expressed proteins are indicated by the coloured dots, arranged

according to KEGG pathway annotation. Blue and red coloration indicates

up or down expression, respectively. Black dots indicate KEGG pathway annotations, as labelled. Lines connect proteins to their annotations. This net-

work map was generated by Cytoscape v.3.9.1 using the ClueGO v.2.5.9 plu

BAC-adapted samples contained a conserved N457S substitu-
tion in arnT (Table S1) in transmembrane domain helix 13 adja-
cent to the lipid A binding cavity, specifically the polar region
that associates with 3-deoxy-D-manno-oct-2-ulosonic acid su-
gars.>®> Asparagine and serine are polar uncharged residues, so
this relatively subtle substitution may alter lipid A binding affinity
and contribute to BAC resistance.

BAC-adapted samples also displayed a conserved V187M
substitution in the linker region of histidine kinase envZ. This
protein regulates OmpF/C expression via the activation of
OmpR in response to changes in osmolarity. No downstream
proteins were detected via proteomics due to protein coverage
limitations, so the impact remains unclear. The absence of this

gin.

mutation in DDAC-adapted samples suggests it is unique to
BAC.

Both BAC and DDAC-adapted samples contained mutations in
DNA repair genes ada and mutY, while BAC also had a mutation in
sbcB. DDAC-adapted samples showed decreased expression of
methyl-directed mismatch repair system protein MutL. Loss of
DNA repair function contributes to hypermutable phenotypes,*®
allowing for greater stochastic development of beneficial muta-
tions and explaining the large number of QAC-associated
mutations.

Regarding efflux pumps, all QAC-adapted samples carried an
E130K substitution in AcrB, the inner membrane component of
multidrug efflux pump AcrAB-TolC. Located in the PN1
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Figure 5. Network diagram of differentially expressed proteins in chlorocresol-adapted Klebsiella pneumoniae NCTC 13443 samples. Differentially ex-
pressed proteins are indicated by the coloured dots, arranged according to KEGG pathway annotation. Blue and red coloration indicates up or down
expression, respectively. Black dots indicate KEGG pathway annotations, as labelled. Lines connect proteins to their annotations. This network map was

generated by Cytoscape v.3.9.1 using the ClueGO v.2.5.9 plugin.

subdomain of the porter domain where both proximal and distal
binding pockets are located,?” similar substitutions can alter sub-
strate specificity,*® resulting in AMR.>*® DDAC-adapted samples
also had conserved substitutions in resistance-nodulation-
division family efflux pumps MdtC and Bepk, plus a F81S substitu-
tion proximal to the ligand binding site of AcrAB regulator AcrR.*°
BAC-adapted samples showed increased AcrAB and BepE expres-
sion, further reinforcing the importance of efflux pumps in QAC
resistance.

DDAC resistance appeared to require additional efflux pump
modifications, probably reflecting necessary modifications to
substrate specificity. This explains the lack of reciprocation in

cross-resistance profiles between BAC and DDAC-adapted
samples.'®

Collectively, K. pneumoniae QAC resistance occurs via modifi-
cation of lipid A with L-Ara4N, lowering cell surface negative
charge and reducing affinity of cationic QACs. As this is a well-
established mechanism facilitating resistance to cationic pep-
tides including polymyxin B and colistin, it is highly likely that
this mechanism confers cross-resistance. QAC resistance is also
associated with efflux pump activity, with DDAC requiring add-
itional efflux modifications compared with BAC. Adaptation is fur-
ther supported by reduced DNA repair functionality, giving rise to
a hypermutable K. pneumoniae phenotype.
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Figure 6. Network diagram of differentially expressed proteins in bronopol-adapted Klebsiella pneumoniae NCTC 13443 samples. Differentially ex-
pressed proteins are indicated by the coloured dots, arranged according to KEGG pathway annotation. Blue and red coloration indicates up or

down expression, respectively. Black dots indicate KEGG pathway annotati
map was generated by Cytoscape v.3.9.1 using the ClueGO v.2.5.9 plugin.

K. pneumoniae resistance to PHMB

Similar to QAC-adaptation, molecular analysis of PHMB-adapted
K. pneumoniae showed links to lipid A modification.
PHMB-adapted K. pneumoniae samples displayed only two con-
served mutations across all biological replicates, in basS and
kdgR (Figure 4, Table 3, Table S3). The BasS adaptation causes
T157P in the dimerization and histidine phosphotransferase do-
main, responsible for phosphotransferase, phosphatase and
autokinase activities. As this domain modulates protein activity,
and expression of downstream ArnA and ArnB was increased
(Figure 4), this mutation probably increases activity or constitu-
tively activates BasS.

ons, as labelled. Lines connect proteins to their annotations. This network

Lipid A modification was also seen in BAC- and DDAC-adapted
samples and is known to underpin polymyxin and colistin resist-
ance.*! As this exact mutation has previously been attributed
with colistin resistance,*! it probably provides cross-resistance
between PHMB and colistin. Collectively, these data suggest
that increased L-Ara4N modification of lipid A is a common
mechanism for resistance to cationic antimicrobials in general,
raising questions regarding cross-resistance between cationic
disinfectants in healthcare and last-resort antibiotics such as
polymyxins.

PHMB-adapted samples also showed a conserved D125G sub-
stitution in 2-keto-3-deoxygluconate (KDG) regulon repressor
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KdgR, which regulates KdgATK proteins responsible for KDG trans-
portation and catabolism. Interestingly, a SNP causing D11G in
KdgR was also found in all BAC-adapted samples (Table S1).
Downstream expression of eda (KdgA) was lower in PHMB and
BAC-tolerant samples, suggesting increased KdgR repressor ac-
tivity. The exact impact this has on BAC and PHMB resistance is
unclear.

K. pneumoniae resistance to chlorocresol

Chlorocresol-adapted samples contained conserved mutations
in cpdA and yjcC (Table 3), which regulate intracellular cAMP
and c-di-GMP levels, respectively. The mutations resulted in
S46G in CpdA and P248S in YjcC.

yjcC (synonymous pdeC) encodes a phosphodiesterase that
hydrolyses c-di-GMP when dimerized,*’ negatively regulating
type 3 fimbriae expression and biofilm formation.*® The observed
substitution is in the second transmembrane region, responsible
for dimerization and protein activation.*” We hypothesize the
substitution of this conserved proline*? impedes dimerization, in-
creasing intracellular c-di-GMP, enhancing biofilm formation and
type 3 fimbriae expression.

CpdA hydrolyses cAMP to 5’-adenosine monophosphate
(AMP). Deletion of this protein causes intracellular cAMP to
increase up to 4-fold,** promoting biofilm formation in
K. pneumoniae via type 3 fimbriae production.*® The adaptations
may therefore increase biofilm formation, probably relating
to mutations in fimbriae-related genes htrE, fim_1 and
NCTC13443_06216 (Table 3), which shares sequence homology
with type 3 fimbria minor subunit MrkB.

Also conserved was a frameshift insertion in marR, truncating
the marRAB operon repressor (T27N.fsX3) (Table 3). This protein is
responsible for AMR-related changes in expression including
down-regulation of OmpF, increased expression of AcrAB-TolC
and resistance to oxidative stress via transcriptional activator
SoxS.“® MarR truncation probably increases expression of
AcrAB-TolC and SoxS, contributing to chlorocresol resistance
through efflux and activation of the superoxide response regulon.
However, downstream changes could not be confirmed by pro-
teomics due to protein coverage limitations.

Interestingly, loss of MarR function has been linked to in-
creased WaaY expression, responsible for phosphorylation of
the inner core of LPS, increasing the net-negative charge of
the bacterial outer surface and susceptibility to antimicrobial
peptides.*” Therefore, truncation of MarR probably contributes
to the collateral susceptibility of chlorocresol-adapted samples
to BAC and DDAC observed previously,’® and potentially poly-
myxin B.

Chlorocresol-adapted samples also showed increased ex-
pression of the MdtC and BepD (MdtA) proteins (Figure 5,
Table 4), all components of tripartite efflux complex MdtABC.
This complex is responsible for resistance to novobiocin and de-
tergent deoxycholate via TolC-dependent efflux,*® and is asso-
ciated with resistance to multiple antibiotics in K. pneumoniae
clinical strains.*® Therefore, this probably contributes to chloro-
cresol resistance.

It should be noted that sub-inhibitory concentrations of DMSO
have been shown to alter gene expression,”® mitigate ROS dam-
age®® and reduce biofilm formation in P. aeruginosa.>® As such,

the specific impact of the presence of low DMSO concentrations
on the observed adaptations remain unclear, particularly those
associated with increased biofilm formation.

K. pneumoniae resistance to bronopol

Bronopol-adapted samples carried conserved SNPs in transcrip-
tional requlators putA, rhaS and purR (Table 3). putA and rha$S_2
encode for regulators of the put and cel operons, respectively.
PutA oxidizes proline and acts as an auto repressor of putA and
putP. Increased PutA expression indicates the mutation impedes
the repressor functionality.

The conserved R138L substitution in the purine biosynthesis
(pur) operon repressor PurR is proximal to the E. coli PurR core-
pressor binding site. Nearby mutations can broaden corepressor
binding specificity and enhance repression activity.”> As
purBCEHLM were all significantly down-regulated (Figure 6), the
mutation likely enhances PurR-mediated repression. This re-
sponse has also been observed in E. coli exposed to oxidative
and antibiotic stressors,>® although the specific mechanisms
are unknown. As bronopol induces oxidative stress through the
generation of ROS, these data support the hypothesis that PurR
has a key regulatory role associated with oxidative stress
response.

Bronopol-adapted samples also displayed conserved
mutations in the secondary-messenger regulators yjcC and
cpdA, alongside in fimbriae-associated htrE, fim_1 and
NCTC13443_06216 genes (Table 3). This suggests resistance
through enhanced biofilm formation as seen with chlorocre-
sol. Similarly, oxidative-stress-inducing hypochlorite and tel-
lurite are associated with increased intracellular c-di-GMP
levels in P. aeruginosa,”*>> alongside increased diguanylate
cyclase activity,”*>* surface attachment®* and biofilm forma-
tion.>> This collectively highlights a link between intracellular
c-di-GMP concentration, biofilm formation and bacterial re-
sistance to oxidative stress-inducing antimicrobials such as
bronopol.

Bronopol-adapted samples showed increased expression of
thioredoxin-like  protein  NCTC13443 01223 and flavin
oxidoreductase-like protein  NCTC13443 03659 (Table 4).
Thioredoxin proteins can reduce the disulphide bonds formed
by the MOA of bronopol, mitigating bronopol-induced oxidative
stress in adapted K. pneumoniae samples. As flavin oxidoreduc-
tase knockouts demonstrate high susceptibility to oxidative
stress in E. coli®® and Streptococcus pneumoniae,®’ increased ex-
pression probably has the opposite effect.

The flavin-dependant N-ethylmaleimide reductase NemA
was among the top proteins up-regulated in bronopol-resistant
samples (Table 4). This protein has previously been shown to
be capable of breaking down electrophiles®® including
24,6-trinitrotoluene (TNT)®? in E. coli. As bronopol and TNT
both contain nitro electrophilic groups, the significant up-
regulation of NemA suggests a potential role in bronopol resist-
ance via enzymatic degradation. The requirement of flavin co-
factor explains the associated up-regulation of NADH:flavin
oxidoreductase. The reduced expression of catalases Katk,
KatG and superoxide dismutase SodB (Figure 6) supports the
hypothesis that NemA can break down bronopol before it is
able to form ROS.
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Table 4. The 10 proteins that demonstrated the highest average increased expression change detected via label-free global proteomics analysis.
Samples consisted of disinfectant-adapted K. pneumoniae NCTC 13443, and were compared with untreated parent samples. n=3, except for
BAC-adapted samples, where n=5

Resistant samples Expression change (log, fold change) Protein identifier Full protein name
BAC 5.64 BudB Acetolactate synthase
5.64 ArnA Bifunctional polymyxin resistance protein ArnA
5.64 YfdX YfdX-like protein
5.06 NCTC13443 01223 Thioredoxin-like protein
4.64 Malz Maltodextrin glucosidase
4.32 FruB Multiphosphoryl transfer protein
3.84 FruB Multiphosphoryl transfer protein
3.64 AcrB Efflux pump membrane transporter AcrB
3.64 FriD Fructosamine kinase FrlD
3.47 AcrA Efflux pump membrane transporter AcrA
DDAC 5.64 YfdX YfdX-like protein
5.64 GlpK Glycerol kinase
5.64 BudC Diacetyl reductase [(S)-acetoin forming]
4.64 NCTC13443 03659 Putative NADH:flavin oxidoreductase
4.06 FruB Multiphosphoryl transfer protein
4.06 Vals Valine-tRNA ligase
3.84 ScrY Sucrose porin
3.32 DmlA D-malate dehydrogenase (decarboxylating)
3.32 LysA Diaminopimelate decarboxylase
3.18 AldB Alpha-acetolactate decarboxylase
PHMB 5.64 GlpK Glycerol kinase
5.64 NCTC13443 03659 Putative NADH:flavin oxidoreductase
5.64 YfdX YfdX-like protein
5.64 NCTC13443 02382 Putative L-fucose isomerase, C-terminal
5.64 NCTC13443 02379 Putative L-fucose isomerase, C-terminal
5.64 BudC Diacetyl reductase [(S)-acetoin forming]
5.06 NCTC13443_01223 Thioredoxin-like protein
5.06 SacA Sucrose-6-phosphate hydrolase
4.64 ThiC Phosphomethylpyrimidine synthase
4.64 NCTC13443 02381 Putative L-fucose isomerase, C-terminal
Chlorocresol 5.64 YebE Inner membrane protein YebE
5.64 MdtC Multidrug resistance protein MdtC
5.06 YfdX YfdX-like protein
5.06 BudC Diacetyl reductase [(S)-acetoin forming]
4.64 AldB Alpha-acetolactate decarboxylase
4.64 BepD Multidrug resistance protein MdtA
4.64 UspG Universal stress protein G
4.32 NCTC13443 03659 Putative NADH:flavin oxidoreductase
4.06 HutU Urocanate hydratase
3.84 FdhF Formate dehydrogenase
Bronopol 5.64 BudB Acetolactate synthase
5.64 YfdX YfdX-like protein
5.64 DDJ638005 —
4.32 NCTC13443 03659 Putative NADH:flavin oxidoreductase
4.06 NCTC13443 01223 Thioredoxin-like protein
3.64 FruB Multiphosphoryl transfer protein
3.47 FriD Fructokinase
3.47 FadB Fatty acid oxidation complex subunit alpha
3.32 NemA N-ethylmaleimide reductase
3.32 DkgB 2,5-didehydrogluconate reductase DkgB
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Conclusion

Chemical disinfectants are relied on worldwide across health-
care, industrial settings, the food sector and household environ-
ments. Understanding mechanisms that mitigate their efficacy is
critical to combating the hundreds of millions of annual HAI
cases. This molecular analysis of K. pneumoniae adaptation to
common disinfectants provides novel insights into potential dis-
infectant resistance mechanisms of HAI-associated pathogens.
The findings highlight similarities between mechanisms facilitat-
ing resistance to cationic antibiotics and disinfectants, raising
questions about the risk of cross-resistance that can be expanded
on in future work. Genetic variation between BAC and DDAC-
adapted samples show how minor differences between similar
agents can manifest distinct adaptations, as demonstrated by
conserved efflux pump adaptations in DDAC-adapted samples
that are not necessary for BAC resistance.

Chlorocresol and bronopol resistance has not been investigated
previously. K. pneumoniae resistance to chlorocresol was asso-
ciated with marR loss of function, increased MdtABC efflux com-
plex expression and promoting biofilm formation, a mechanism
shared with bronopol resistance alongside mitigation of cross-
linking damage. Increased expression of N-ethylmaleimide
reductase NemA may facilitate bronopol resistance via enzymatic
degradation.

Collateral susceptibility of chlorocresol-resistant K. pneumo-
niae to QACs and cationic agents via MarR truncation highlights
how adaptations to one antimicrobial often leaves organisms
vulnerable to others, knowledge that can be used to improve ef-
ficacy of cleaning routines and infection control.

Future studies should validate the mechanisms implicated in
this work. The impacts of QAC and PHMB adaptations associated
with lipid A modification can be assessed via zeta potential ana-
lysis and plasmid-based complementation, while the extent of
QAC-polymyxin cross-resistance can be confirmed through anti-
microbial susceptibility assays. The role of NemA in bronopol re-
sistance can be investigated through enzymatic activity assays.

This study identifies molecular mechanisms of disinfectant re-
sistance in K. pneumoniae samples generated via stepwise adap-
tation, deepening our understanding of the potential routes that
HAI pathogens can exploit to mitigate disinfectant efficacy.
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