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Abstract

Capture-recapture methods for estimating the total size of elusive populations are widely-
used, however, due to the choice of estimator impacting upon the results and conclusions
made, the question of performance of each estimator is raised. Motivated by an application
of the estimators which allow covariate information to meta-analytic data focused on the
prevalence rate of completed suicide after bariatric surgery, where studies with no completed
suicides did not occur, this paper explores the performance of the estimators through use of a
simulation study. The simulation study addresses the performance of the Horvitz—Thompson,
generalised Chao and generalised Zelterman estimators, and develops a novel, generalised,
form of the modified Chao estimator to account for both covariate information and one-
inflation. In addition, the performance of the analytical approach to variance computation is
addressed. Given that the estimators vary in their dependence on distributional assumptions,
additional simulations are utilised to address the question of the impact outliers have on
performance and inference.

Keywords Horvitz—Thompson - Generalised Chao - Generalised Zelterman - Generalised
modified Chao - One-inflation - Simulation study - Performance - Outliers

1 Introduction

Developed for use in ecology, capture-recapture methods are utilised for estimating the total

size of elusive populations. An incomplete list of the individuals is used for the estimation,
as given the nature of these populations, many individuals remain unobserved. Specifically
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for animal populations within ecology, traps are placed in a designated study area to capture
the animals, where those in the captured sample are uniquely marked and released. On
further occasions, additional samples of the animals are taken, recording previously marked
individuals and uniquely marking the unmarked individuals. A capture history for each of the
individual animals observed at least once, used to estimate the total number of individuals
in the population, is achieved by repeating this process a predetermined number of times or
within a predetermined time period.

Capture-recapture methods have evolved to have utility in other fields, including those of
the application of this paper, medicine and epidemiology. The focus of this paper is on count
data with missing zeroes (since single-source capture-recapture studies lead to marginally
zero-truncated data), motivated by Peterhinsel et al. [18], while the interest in one-inflation
comes from the study by Jongsomyjit et al. [14]. In addition, there are now several works that
look at the measurement error associated with the covariates involved in the capture-recapture
modelling (see [1,9, 13] for examples). Here, we assume that covariates are measured without
error which seems justified in the examples considered.

Firstly, Peterhinsel et al. [18] estimates the prevalence rate of completed suicide after
bariatric surgery where studies that do not report any completed suicides are not included
due to the search criteria. Studies without completed suicides could not be identified in
the meta-analysis of Peterhinsel et al. [18] and correspond to zero counts in the context of
single-source capture-recapture that refer to units that equally could not be identified in the
capture-recapture method. Hence, and although the meta-analysis at hand is not a strict single-
source capture-recapture analysis, both have in common that missing target populations need
to be estimated. Single-source capture-recapture methodologies, as discussed in this paper,
lead to a similar zero-truncated likelihood and, as such, can be used for this case study.
Furthermore, in this setting, independent studies can be viewed as individual units of the
target population of a capture-recapture study, and the observation period for each of the
studies is comparable to the trapping period. In this sense, the count of completed suicides
could be viewed as a proxy for the number of identifications of the study. As the counts are
zero-truncated, the number of studies with zero counts remains unknown and therefore it is of
interest to estimate. Table 13 in Appendix C contains the data from the 27 observed studies in
Peterhiénsel et al. [18], including the number of completed suicides, person-years, proportion
of women and the country of origin of each study. When we move to the capture-recapture
context, each study from the systematic review is treated as an ‘individual’.

The second focus, a capture-recapture study mentioned in Jongsomyjit et al. [14], looks at
the number of drug (heroin) users by age and gender in the Chiang Mai region of Thailand,
with the information obtained through using the records of individuals who contacted the
Thanyarak Chiang Mai hospital (and reporting how many times they contacted the hospital).
However, given that it would be very unlikely for every single drug user within the region
to contact the hospital, it is likely that many drug users will be unidentified by this study.
Therefore, the data is zero-truncated as the number of heroin users which did not contact
the hospital is unknown and is of interest to be estimated. Tables 14 and 15 in Appendix C
contain the data from this study.

To estimate the total number of individuals, and consequently the number of miss-
ing individuals, a choice of which estimation method to use is required. However, the
capture-recapture estimators approach data differently, resulting in estimates which can differ
significantly from one another, impacting the accuracy and reliability of conclusions made.

Motivated by case studies, the aim and (summarised) results of this paper are as follows.
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e A a novel capture-recapture estimator which accounts for both covariate information
and one-inflation is developed. In particular, the generalised modified Chao estimator is
developed in Sect. 4.2, which allows for both covariate information and one-inflation to
be accounted for in the estimation process for more reliable and accurate estimates.

e In addition, a simulation study is used to compare the performance of capture-recapture
estimators which allow for covariate information and for some violations of the under-
lying assumptions. The simulation studies are performed in Sect. 6, for both non-inflated
and one-inflated datasets. When there are outliers in the data, results indicated that the
more robust generalised Chao performs best, and if one-inflation is present in the data,
the generalised modified Chao estimator is preferred.

Analysis of the performance of capture-recapture estimators which can incorporate covari-
ate information and cope with additional one-inflation as well as assessing the performance
of the variance formula are novel contributions, the conclusions of which can lead to more
accurate population size estimates and reliable confidence intervals.

2 Motivating applications

In summary, capture-recapture is the methodology of estimating population sizes when some
individuals within the population go unobserved. To illustrate this, we consider two case
studies where the interest is on estimating the number of missing units. The first case study
considers suicide data containing y;, the count of completed suicide, with e;, corresponding
person-years, for each study i = 1, ..., n, where n = 27. For the random variable Y;, it
is assumed that Y7, ..., ¥, are independent. Given that the dataset also includes covariates,
let x = (xj1, xi2)7 be the vector denoting the covariates for the ith study, where x;; is the
proportion of women in study i and x;5 is the country of origin for study i, given as

1 if country origin is USA,
Xi2 = . .
0 if otherwise.

Study 24. Smith (2004) does not include a value for the proportion of women, so is imputed
as x24,1 = 0.823 using a linear regression imputation model, where the model is chosen from
the full model with backwards stepwise Bayesian information criterion (BIC), resulting in
the proportion of women as the response variable and both person-years and country of origin
as main effects with their interaction. Additionally, for model fitting purposes, the country of
origin of Study 21. Kral (1993) is changed from “USA/Sweden” to “USA” given that “USA”
is both listed first, and is the country of origin with highest frequency of occurrence.

The second case study considers heroin users and contains y;, the count of contact [to
the treatment centre] for each individual i = 1, ..., 843. The heroin data also contains
covariate information on both age and gender; however, the covariate information is not at
the individual level and therefore they cannot be modelled together, and instead is treated
as two separate datasets. Within the age dataset, let x;; be the age range for the individual
where

1 if greater than or equal to 40 years old,

Xi1 =
710 ifless than 40 years old.
As for the gender dataset, let x;> be the gender of the individual where

1 if female,
Xi2 = .
0 if male.
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Whilst many approaches can be taken within capture-recapture, this paper focuses on the
methods of the Horvitz—Thompson, generalised Chao and generalised Zelterman estimators
(see [4, 6, 12]). Additionally, for instances where one-inflation is present and covariate infor-
mation is available, a generalised modified Chao estimator is developed through generalising
the modified Chao estimator (see [5]). These methods utilise an expected count value for the
missing information computed from a regression model, and as a result, have the benefit of
allowing for the inclusion of covariate information. Several assumptions are required in order
to use these estimators. Firstly, the population is assumed to be a closed system, for example,
no individuals enter or leave a study once started. The second assumption is of independence
between individuals, which for studies within a systematic review is reasonable to assume
given that to be included in the systematic review, independence between studies is required.
Lastly, there is the assumption of independence between captures. For the suicide data, with
the studies being treated as the individuals it is reasonable to assume that all three assump-
tions are met. The assumptions are more complex for the heroin data given that it is from a
human population.

3 Review of population size estimators

Here we review recently developed capture-recapture estimators, focusing on those which
allow for covariate information, starting with the Horvitz—Thompson estimator.

3.1 Horvitz-Thompson estimator

Proposed by Horvitz and Thompson [12], the Horvitz—Thompson estimator is a popular
capture-recapture population size estimator (see [7], Chapter 11 and [16], Chapter 3). For
a given regression function, h (see Table 11 in Appendix C for more information), with
corresponding coefficients, B, the total number of studies, N, is given by

N I
NHED =3 (1)
; 1 =P =0|f)
where 2; = e; exp |h(x;)T B is the expected count of study i, B is estimated from the

model and /; is an indicator variable defined as

1 if study i is observed,
i = .
0 otherwise.

In our context, for y = 0, 1, .. ., the probability in (1) arises from either a Poisson model
y

P(Y =y) = eXp(—u)%,

or negative-binomial model

P(Y =y)= Ty +a) ( o )“( % )”
T ro+r@ \n+a) \nta)

! Note that log(e;) is an offset in the terminology of generalised linear models and e; corresponds to the
person-years of study i in the first example.
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For assessing uncertainty, the analytical variance can be computed using the conditional
approach proposed by van der Heijden et al. (see [11, page 314]), where the theoretical
formula is as follows.

Var(N#) = E[Var(W D 1) + Var(EIND | 1), 2)
An approximation of the analytical variance is then given as
d ! d " exp(—)
Var(NH) = (3 VG (ilB) | CovB) (D VGl |+ ————.
2 VG 2 V6 ; (1 — exp(—/11))*
(3)

i=1 i=1

where
_exp(log(ii) — i)
(1 = exp(—i1:))?
Whilst widely-used, the Horvitz—Thompson estimator relies heavily on the entire data
following the given distributional assumption. As a result, if the counts do not strictly follow
the distribution, for example, if the data contain outliers as is often the case for real life data,
the accuracy of the resulting population size estimate and precision of confidence intervals
can be negatively affected. In addition, larger count values are more susceptible to deviation
from the given distribution. Therefore, it is beneficial to explore alternative population size
estimators which do not experience these issues and are more resilient to outliers.

VG (il B) = x h(x;)T.

3.2 Generalised Chao estimator

Chao’s lower bound [8] can be used as an alternative to the Horvitz—Thompson estimator,
focusing on estimating the lower bound of the population size. It was developed as a method
thatincorporates unobserved heterogeneity with the flexible mixture probability density given
by

ky () = /0 py()g(u)du,

where py () = exp(—u)u”/y! is the Poisson mixture kernel and g (1) is the mixing density
[6]. Whilst a Poisson mixture kernel is used here, a geometric mixture kernel can also be
used, where py (1) = (1 — )Y 1. The latter has been developed in Niwitpong et al. [17] and
the extension to covariates in Alaimo di Loro et al. [15].

Through using the Cauchy—Schwarz inequality, theoretical probabilities and the corre-
sponding sample estimates ( fy/N), Chao’s lower bound estimator for the frequency of zero
counts can be found as

. S
fo= .
2f

This leads to the conventional Chao’s estimator of N©) = n + %, where fy is the
frequency of exactly ¥ = y counts. However, this estimator does not allow for the inclusion
of covariate information, and therefore does not allow for the incorporation of an exposure
variable either. Bohning et al. [6] adapted this conventional Chao’s estimator to allow for the
inclusion of covariate information. The resulting generalised Chao estimator does so through
regression modelling, resulting in more representative estimates.

Comparative to the Horvitz—Thompson estimator, this approach has a more relaxed distri-
butional assumption requiring only two consecutive counts to follow the given distribution,
rendering it more resilient to outliers. For zero-truncated data, the consecutive counts are
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typically assumed to be ¥ = 1 and Y = 2, with remaining count values truncated. The
resulting truncated likelihood is equal to the standard binomial logistic likelihood, the max-
imum likelihood estimates of the expected counts as follows

24
1—-qi’

where ¢; are the fitted values of the logistic regression model for i = 1,..., M, where
M = (f1 + f>) (please see details in Appendix A).

Using this maximum likelihood estimate, the generalised Chao population size estimate
is given as

NGO _ n+2 fir + fi
— i+ 07/

where f;y is the frequency of exactly ¥ = y counts for individual i.
If no covariate information is available, the generalised Chao estimator becomes the con-
ventional Chao estimator (Chao’s lower bound) as i = % leading to

]V(GC) _ fl + f2
2f2 +(2f2)2/2
f1 + f2

2/ 2f22
Tt

LA+ )

2A(f+ )

2
T _ 5o
T2fh

As with the Horvitz—Thompson estimator, the theoretical formula in (2) proposed by van
der Heijden et al. (see [11, page 314]) can be used to find the analytical variance. B6hning
et al. [6] approximates this variance for the generalised Chao estimator to be

fith T fth

Var(N ) = | 3" vG@ulB) | cov) | D VGulB

i=1 i=1

fitf o 2
R exp(—i;
+ §:<1—q,->(1+7p(@“’)> ,
i=1

“

L

where A L
Wi + [

VG(ulh) = s
@il = G

h(x,) .

3.3 Generalised Zelterman estimator
As with the conventional Chao’s estimator, the conventional Zelterman estimator, developed

by Zelterman [20], assumes that only a small range of count values follow the given distri-
bution, improving its resilience to outliers. The expected count for each study is estimated
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as
kD fea

a Jx

For zero-truncated data, typically k = 1 is assumed, since the missing frequency fp is close
to the frequencies f] and f>. In this case, all counts besides ¥ = 1 and Y = 2 are truncated,
leading to the population size estimator N %) = n/(1—exp(—/)). However, the conventional
approach also does not allow for covariate information, motivating the truncated maximum
likelihood estimate approach of the generalised Zelterman estimator developed by Bohning
and van der Heijden [4]. As with the generalised Chao estimator, if no covariates are included
in the modelling, the generalised Zelterman estimator is equal to the conventional Zelterman
estimator.

Using the same binomial logistic likelihood as in Sect. 3.2, the binary outcome probability,
gi, is connected via a logit link to the linear predictor from the regression model and the
expected count parameter respectively as

_ eexphx)’B) /2
= ,and g; = —2 .
1+ ¢; exp(h(x;)” B) T+ ui/2

Therefore, the expected count can be estimated as (i; = 2¢; exp(h(x,-)T ﬁ), fori =1,...,n.
Using this value of the parameter in the conventional Zelterman estimator, accounting
for covariate information leads to the generalised Zelterman estimator, given formally as

" 1

NED =3

ST —exp(—u)

fori=1,...,n.

The conditioning approach by van der Heijden et al. (see [11, page 314]) can also be
applied to the generalised Zelterman estimator. Following the work of Bohning and van der
Heijden [4], the analytical variance is approximated as

n T n
Var(N@?) = (Z VG([uIﬁ)) Cov(B) (Z VG(M/?))
i=1 i=1

(&)

exp(—u;)
+Z(1—exp( PRyER

where R
exp(log(ii;) — fi;)

VIR = = ooy

x h(x;)T.

4 Novel estimator for one-inflation: the generalised modified Chao
estimator

In some datasets, it can be seen that there are a high frequency of ones, or singletons, relative
to the chosen base distribution or mixing kernel. When this occurs, the data is described
as one-inflated, and these excess singletons need to be appropriately accounted for in the
modelling and estimation processes to avoid grossly over-estimating the total population
size. There is a growing focus on estimation with one-inflated data in this field (see the work
of Tajuddin et al. [19] which looks at a new Horvitz—Thompson estimator, for example).
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In this section, to estimate the total population size when there is one-inflation present, the
singletons are truncated from the estimation processes. Whilst there is a possibility that
ignoring the singletons in an estimation process can lead to reduced efficiency, including
the excess singletons can lead to serious bias [5]. Additionally, in the case of one-inflation
which is modelled by including a separate weight parameter for the singletons [2], there is an
equivalence between one-inflation and one-truncation in the sense that maximum likelihood
estimators for the non-inflated arm of the one-inflation model and the one-truncated model
agree, as do their standard errors.

One-inflation (in addition to the zero-truncation) is accounted for in the modelling through
utilising the one-inflated zero-truncated baseline distribution given below.

st =4 +op(y; )t ify=1, and
’ wp(y; w7t ify=23,...,

where @ € [0, 1] is the inflation parameter, or weight, and p(y; u)™ is the zero-truncated
baseline distribution [3], which in this case, is the zero-truncated Poisson distribution given

below.
pp(y; 1)

1 —pp0; )
__expmpp’
yI(1 —exp(—p))

pr(y;

4.1 Modified Chao estimator

The modified Chao estimator is an extension of the standard Chao’s lower bound estimator,
developed by Bohning et al. [5] to account for one-inflation within a dataset. This modification
accounts for the one-inflation through using substitution to remove the singletons from the
estimator, relying on only the doubletons and tripletons for estimating the total population
size instead of the singletons and doubletons. Whilst the modified Chao estimator avoids the
use of the frequency of counts of one, f, it still gives a lower bound for the frequency of
zero counts, fp (the expected value). The estimated frequency of zero counts is given as

2 £3
FMO) _ aoas f5

13

where a, = , if a Poisson distribution is assumed, or a, = 1 if a geometric distribution is
assumed. The resulting estimated total population size is then given as

3
SOy n—+ %% if Poisson,
N = 3

n+ f—zz if geometric.
73

4.2 Novel generalised-modified Chao estimator

Here we develop a novel capture-recapture estimator. Where the generalised Chao estimator
deals with covariate information, we develop the generalised modified Chao estimator which
accounts for covariate information and one-inflation. As with the standard Chao’s lower
bound estimator, the modified Chao estimator only utilises frequencies and therefore does
not allow for the inclusion of covariate information. The generalisation of this estimator
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to account for covariate information is done through using the work of Bohning et al. [6],
first by truncating all counts except the doubletons and tripletons, leading the the associated
truncated Poisson model below:

exp(—ui) i} exp(—pi) i}
———t=0-g) and py(u)=-——""" =g
2 6
The ratio of neighbouring probabilities, gy, and the corresponding known coefficients, ay,
have the below relationship.

p2(pi) = (6)

a
o= oy, ™
ax+1 4x

where ry < ry41. Given that g» = (1 — ¢) and g3 = ¢, (7) becomes
a q 3 q

asl—q “1—gq

)

which can be rearranged for g as follows.
§= K
3+u]

if a Poisson distribution is assumed, leading to the probabilities in (6) being equal to

i
= and i) = .
31 p3(1i) 3+

The associated truncated Poisson likelihood is

i 2 )
3+ 3+ui)

i=1

p2(i) =

which is identical to the standard binomial logistic likelihood

ftf
L= [T =g,
i=1
and therefore, logistic regression analysis can be utilised to compute the maximum likelihood
estimates for the truncated Poisson model.
The estimated frequency of zero counts for the ith covariate combination can be found
with the following expectation.

p po(iL;)
i0 = E[fiol fiz, fiz,ql = —————(fio+ fi
fio [fiol fi2. fi3. 4] P2(Mi)+P3(IJ«i)(f2 fi3)
1

The generalised modified Chao estimator is then the sum of the estimated frequency of zero
counts across each of the covariate combinations, with the observed counts as follows:

H+f

~ 1
NEMO =y 4 -
; Ai/2+ /6

It is worth noting that in the absence of covariate information in the modelling, as with the
generalised Chao and classical Chao estimators, the generalised modified Chao will become
the modified Chao estimator.
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As with the other estimators, the conditioning approach van der Heijden et al. (see [11,
page 314]) can be utilised for uncertainty quantification with the generalised modified Chao.
Following the same method as Bohning et al. [6], the variance is given by

Var(N MOy = E[Var(NCMO | ;)] 4 Var(E[NCMO | 1;1), (8)

where the first term is estimated to be

Pt r frtfs

Var(NMOI) = | " V6B | CovB) | Y VGl |,

i=1 i=1
when a Poisson distribution is assumed, where for u; = exp(h(x HT fi )ei,

A7+ i /2

e B R T
(122 + A3/6)2h( i

VG (ui|B) =

The second term in (8), the expectation can be given as

E[ﬁ(GMC)|Ii]:E|:n+ZA2/2+ ] le,,
i=1

where w; = 1 + po(u;)/pi with po(u;) = exp(—u;) and
pi = pa(ii) + p3(wi) = exp(—pi) 7 /2 + exp(—pui )i /6.

The indicator variable [; is binary with E(l;) = p; and Var(/;) = p; (1 — p;), hence

N N
Var (Z I; w,) =Y pi(l—ppwyi,
i=1 i=1

which can be estimated as

N
I;
Var(E[N MO = > == pi(1 — p)w}

i=1

fatf3 N 2
. exp(—iLi)

= Z(l—pi)<1++) :

i=1 pi

Therefore, (8) is given as

ft s T s

Var(NOMO)y = [ 3" VG(@1B) | CoviB) | D VG(iilB)

i=1 i=1

/3 A 2
. exp(—[i;
4 §j(1—p,-)<1+7p(ﬁ,“’)) .
i=1

®

L
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Table 1 Values of the BIC statistic for models under consideration, where the Poisson and negative-binomial
distributions model the full data and the binomial distribution models the truncated data

Distribution Linear predictor Log-likelihood BIC
Poisson (full data) 1 —237 50.7
2 — 234 534
3 —23.0 52.6
4 —23.0 55.9
5 —22.7 58.6
Negative-binomial (full data) 1 —23.7 54.0
2 — 234 56.7
3 —23.0 55.9
4 —23.0 59.2
5 —23.7 61.9
Binomial (truncated data) 1 —17.8 18.6
2 —-170 20.2
3 —-17.38 21.6
4 —-170 232
5 —-57 235

Preferred models are indicated in bold text

5 Applications
5.1 Suicide data

Prior to the population size estimation with the capture-recapture estimators, it is important
to explore whether there is one-inflation present given the large number of singletons in
the dataset. If there is one-inflation present, the generalised modified Chao estimator should
be used (the modified Chao estimator can also be used, but it is better to include covari-
ate information when available and significant). Otherwise, either the Horvitz—Thompson,
generalised Chao or generalised Zelterman estimators should be used.

To explore whether one-inflation is present in the data, both zero-truncated models and
zero-truncated one-inflated models are fitted to the dataset, considering the various linear pre-
dictors given in Table 11 in Appendix C to account for the available covariate information.
The best fitting model is selected using the BIC and if the selected model is a zero-truncated
(non-one-inflated) model, then it is reasonable to assume that there is no one-inflation present
in the data. For the Horvitz—Thompson estimator, the choice of distribution is between the
Poisson and negative-binomial distributions, given the nature of count data. Both the gen-
eralised Chao and generalised Zelterman estimators do not have a choice of distribution,
instead both require a binomial logistic regression model to be fitted.

Table 1 gives the log-likelihood and BIC statistic values for each of the linear predictors
and distribution combinations under consideration for the zero-truncated (non-one-inflated)
models. The Horvitz—Thompson estimator utilises the entire data available, and hence the
Poisson and negative-binomial distributions model with the full data. However, the gener-
alised Chao and generalised Zelterman estimators use the truncated data, containing only
counts of Y = 1 and Y = 2, so the binomial distribution models using the truncated data.
Since the data used for the binomial models differs from the other models, the results cannot
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Table 2 Values of the BIC

. Distribution Linear predictor BIC
statistic for the zero-truncated

one-inflated models under Poisson (full data) 1 54.0

consideration ) 60.0

3 59.2

4 63.9

5 67.8

The preferred model is indicated in bold text

be directly compared. Between the models within each distribution, there is little change in
the log-likelihood values, and negligible difference between the Poisson and the negative-
binomial distributions. Therefore, utilising BIC statistics for model selection, the preferred
model to be used in the Horvitz—Thompson estimator is the intercept-only Poisson model, and
for the generalised Chao and generalised Zelterman estimators, the intercept-only binomial
model is preferred.

Given that the Poisson model is preferred for the full data in Table 1, for comparative
purposes, the corresponding zero-truncated one-inflated Poisson models are fitted with the
respective BIC values given in Table 2.

The intercept-only model is also preferred under the assumption of one-inflation, however,
the BIC statistic is greater than that of the intercept-only zero-truncated Poisson model, and
therefore there is not sufficient evidence to suggest that there is one-inflation present in the
data and the generalised modified Chao estimator should not be utilised.

Utilising the preferred zero-truncated models in the application of the Horvitz—Thompson,
generalised Chao and generalised Zelterman estimators respectively, leads to the estimated
total number of studies of NHT) = 134, N(GO) = 173 and N(6%) = 175.Itis to be expected
that the generalised Chao is comparable to, but slightly lower than, the generalised Zelterman
estimate given the similarity of the methods and that the generalised Chao is a lower bound
estimator. However, they both differ largely from the Horvitz—Thompson estimate which is
much smaller as a result of the difference in distributional assumptions and models used.
The difference in population size estimates can lead to differing conclusions, and hence the
estimator chosen can have an impact on the reliability of any conclusions made.

As for the uncertainty assessment for the estimators, using (3), (4) and (5), the vari-
ances for the Horvitz—Thompson, generalised Chao and generalised Zelterman estimators
are Var(NHD)) = 1677, Var(N©©)) = 12707 and Var(N(G?)) = 13425 respectively. The
95% confidence interval for each estimator is computed as

CI = N £ 1.96y/ Var(N), (10)

leading to the corresponding confidence intervals C1H7T) = (51,214), CI1(¢C) = (27,394)
and CI1(G9 = (27, 402).

The latter two confidence intervals are twice the width of the interval from the Horvitz—
Thompson estimator, indicating that there is considerably more uncertainty associated with
using the generalised Chao and generalised Zelterman. This increased uncertainty is expected
given that the observed number of studies is already small to estimate from, and the gener-
alised Chao and generalised Zelterman estimators truncate the data further, estimating from an
even smaller sample size; the more data available, the less uncertainty there is when estimat-
ing. Since the Horvitz—Thompson estimator utilises the entire data available, the uncertainty
is reduced, leading to a smaller variance and narrower confidence interval which has a lower
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Table3 Simulated data with values of the number of completed suicides, person-years, proportion of women
and country of origin of the studies, where the number of completed suicides are sampled from an alternative
distribution to be outliers

Study Number of com- Person-years Proportion of women Country of origin
pleted
suicides

i Vi e Xi1 Xi2

28 14 1862 0.8371998 Other

29 17 2410 0.8087218 USA

30 16 1951 0.8430489 Other

limit greater than the lower bound for the total number of studies, making it a more reliable
confidence interval to draw conclusions from.

However, the question of what happens if the model and distributional assumptions are
not met remains, for example, how do outliers affect the results and inference. To address
the question of the impact outliers have on the estimators and corresponding conclusions,
outliers can be added to the case study data. The observed rates for each study, computed by
dividing the number of completed suicides by the person-years, are used to find the lower
bound for which rates are classed as outliers. Formally, the lower bound for a rate to be
classified as an outlier is computed as

A= 03+3xI0R, (1)

where Q3 is the third quartile and / QR is the inter-quartile range for the observed rate. To
mimic the variability of rates between studies experienced in real life data, the outlier rates
are sampled from a uniform distribution with a lower bound of A” and an upper bound, AV,
computed as

AV =1.2xaL. (12)

To convert the outlier rates into counts, person-years is required, found by sampling the
number of participants in each study from the Poisson distribution and observational period
from the log-normal distribution and multiplying the respective values for each study. The
sampled person-years multiplied by the outlier rates produces counts of completed suicide
which are classified as outliers for the data. With only 27 observed studies, the addition of
3 studies with counts that are outliers leads to a proportion of 10% of the observed data
being outliers, and a proportion of approximately 2% of the total data. Table 3 displays the
values of the number of completed suicides, person-years, proportion of women and country
of origin of the 3 additional studies. Utilising the Horvitz—Thompson, generalised Chao
and generalised Zelterman estimators respectively, the estimated total number of studies are
NHT) — 479717, NGO — 176 and N(GD — 180, and corresponding 95% confidence
intervals are C11T) = (30, 47285488), C1(°©) = (30, 397) and C1¢% = (30, 411).

There is no notable impact from outliers on the generalised Chao and generalised Zel-
terman estimators, with the estimates after outliers differing only slightly from the number
of outliers studies included and the number of studies estimated from the data without out-
liers combined. However, the number of total studies found using the Horvitz—Thompson
estimator is increased significantly after the inclusion of outliers to a number of studies
which is inaccurate, with the corresponding confidence interval indicating a large quantity
of uncertainty with its width.
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Table 4 BIC values for various linear predictors for the zero-truncated and the zero-truncated one-inflated
Poisson model

One-inflation Linear predictor Number of parameters BIC

No (full data) 1 1 2234.07
2 2 2206.69
3 2 2240.71

Yes (Full data) 1 1 2057.16
2 2 2049.95
3 2 2070.46

As the results differ by such a large margin, it is important to know which of the estimators
produces the most reliable results for the given data and hence the best conclusions. Given
that the Horvitz—Thompson estimator is one of the more commonly used capture-recapture
estimators, there is motivation to compare its performance in the presence of outliers to the
more robust estimators. The generalised Chao and generalised Zelterman estimators do not
depend on the higher order counts, so a comparison of these robust estimators to the bias
that is shown in the Horvitz—Thompson estimators may encourage the use of more robust
estimators. This shows the importance of looking at outlier information and will be done
more systematically in Sect. 6.1 with a simulation study to compare the performance of the
estimators. However, first we have our second case study application.

5.2 Heroin data

As with the Suicide data, there are also a lot of singletons in the Heroin data, and it is therefore
important to explore whether there is one-inflation present.

Here we look at the Heroin data, where covariate information is given separately for age
and gender. Given the formatting of this data, we model the covariate information separately
for the two covariates. Therefore, only 3 possible linear predictors can be used, shown in
Table 12 in Appendix C. To assess for possible one-inflation, both zero-truncated and zero-
truncated one-inflated Poisson models with each of the three linear predictors will be fitted
to the Heroin data, with the resulting BIC values compared in the same manner as for the
Suicide data.

Given the results in Table 4, where the BIC values are lower for the models where one-
inflation is assumed, there is evidence to suggest that there is one-inflation present in the
Heroin dataset. Therefore, the generalised modified Chao estimator should be utilised in
order to account for the additional singletons.

To utilise the generalised modified Chao estimator, first all counts besides the doubletons
and tripletons should be truncated, then the binomial logistic regression models with each
linear predictor can be fitted. Table 5 provides the BIC values for each of the competing
models, whilst there is little difference between the BIC values, the value for the intercept-only
model is slightly lower than the others and therefore, the intercept-only model is preferred.
Although the preference for the intercept-only model means that the covariate information
available does not improve the fit of the model and the resulting estimate, it cannot be known
whether the covariate information is significant or not before analysing the data. Therefore, it
is always recommended to use the covariate information available, since there is a possibility
that it could lead to an improvement in the modelling.
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Table 5 BIC statistics from the binomial logistic regression models fitted for each of the linear predictors
under consideration for the generalised modified Chao estimator, where a Poisson mixture kernel is assumed
and all counts are truncated except the doubletons (Y = 2) and tripletons (Y = 3)

Linear predictor BIC
1 304
2 310
3 309

Table 6 BIC statistics from the binomial logistic regression models fitted for each of the linear predictors
under consideration for the generalised Chao estimator, where a Poisson mixture kernel is assumed and all
counts are truncated except the singletons (Y = 1) and doubletons (Y = 2)

Linear predictor BIC
1 734
2 737
3 740

Using the intercept-only binomial logistic regression model to find the value of /i; for the
generalised modified Chao leads to a population size estimate of N(GMC) = 965. Given that
no covariate information is included in this model, the result is the same as found through
using the modified Chao estimator as follows.

3
NMO = p + gf% = 964.94 ~ 965.

g

As for the uncertainty assessment, the variance formula in (9) leads to Var(ll\7 (GMC)y — 1888.
Using the formula for constructing a confidence interval in (10), the corresponding 95%
confidence interval is C1(@M©) = (880, 1050). This interval is of a reasonable width, with
a lower limit greater than the observed number of individuals (843) suggesting that this is an
appropriate interval.

To demonstrate the effect of accounting for the excess singletons, the generalised Chao
estimator is fitted.

Table 6 give the BIC values for the three binomial logistic regression models under con-
sideration, where it can be seen that there is little difference between each of the models, but
the intercept-only model is chosen given that it has the lowest BIC value. Using the intercept-
only binomial logistic regression model in the computation of the generalised Chao estimator
results in an estimate of N(CC) = 2975.376 ~ 2975, which is considerably greater than the
population size when the excess singletons are appropriately accounted for, illustrating that
if the appropriate estimator is not utilised, the results can be greatly impacted.

6 Simulation study
6.1 Design

Aims. The intention of the simulation work is to illustrate the two main issues raised in the
manuscript, the issue of one-inflation and the issue of outliers. Both of these aspects have
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been studied for non-inflated data with different proportions of outliers as well as for one-
inflated data with different proportions of outliers. Additionally, there is a strong focus in
this work around the different forms of the Chao’s estimator, due to its robustness properties.
This includes the conventional form, generalised version for covariates, modified version
for one-inflation and generalised modified version for both covariate information and one-
inflation. This robustness is important as it means that the estimator only allows for the counts
of ones and twos (or twos and threes in the case for one-inflation) to be correct, which in turn
allows for deviations of higher order counts that may arise from model invalidity or simply
by outliers, the latter being the focus of much of this work.
The BIC is used for model selection, and given that it is widely known to be model-
consistent, the performance of the BIC is not the focus of the simulation study.
Non-one-inflated data. To create a data set where for each study i = 1,..., N, the
values for counts, person-years and covariates are simulated to reflect the values in the case
study, certain parameters require defining. For simulating person-years, the mean number of
participants per study, 7, logarithm of the mean y and standard deviation o of the observational
period are required. Using the sampled person-years, and a constant rate of event AC, the
count values can be simulated. As the covariates, & and § are shape parameters for a beta
distribution to simulate x1, and the probability of success for x, is given by p. Using the
predefined parameters, the number of participants in each study is sampled from the Poisson
distribution, #; ~ Poisson(t), and the observational period for each study is sampled
from the log-normal distribution, O; ~ lognormal(y, o), leading to the sampled exposure
variable of person-years, ¢; = #; x O;. The count of events for each study is then sampled
from the binomial distribution as ¥; ~ binomial(e;, AC). In this simulation study, we
include covariate information indirectly through a varying offset (logarithm of person-years)
for each study. Whilst it is not covariate information with an independent parameter to be
estimated, as shown in the Peterhinsel et al. [18] case study, including person-years in the
estimation plays an enormous role. Clearly, generalisations of the conventional Chao and
Zelterman estimator are needed to incorporate this form of covariate information (covariate
with fixed parameter). The sampling process is repeated S times, creating a zero-truncated
data set for each iteration though removing all studies which have a count of ¥; = 0. To this
data, the capture-recapture estimators and respective analytical variances discussed in Sect. 3
can be computed, producing population size estimates and respective confidence intervals.
One-inflated data. To simulate the zero-truncated one-inflated dataset, first a zero-
truncated dataset is simulated using the same methods as given in Sect. ??. Once the
dataset has been simulated, a fifth of the counts are randomly selected and set to equal 1.
Performance measures. To assess the performance of the estimators via the simulation
studies, the following measures are looked at.

— Accuracy: R
median(|N — N|),
where N = (ﬁ Ty enns ﬁs) are the estimated population sizes from each iteration of the
simulation study and N is the true population size.
— Precision:
median(Cly — CIy),
where CI;, = ClIp1,...,Clp s and CIy = Cly i, ..., Cly, s respectively are the

lower and upper limits of the 95% confidence intervals for the estimated population size
for each iteration of the simulation study.
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— Coverage:
1S
3 > Js x 100%,
s=1
where fors = 1, ..., S, J; is an indicator variable defined as

_ 1 ifCILJSNSCIU,s

“7 10 otherwise.

— Robustness: Defined as the resilience of the estimator to outliers.

— In the simulation study, robustness is measured through comparing the values for
accuracy, precision and coverage for data without outliers to values for data with
outliers. To simulate the outlier counts, the person-years are multiplied by an outlier
rate sampled from the uniform distribution, Aio ~ uniform (L, 1Y), where the
boundary values are chosen by an approximation of the results from (11) and (12)
applied to the data being replicated. Given that the order of the studies does not
impact the modelling results, the defined proportion of outliers are included at the
end of the data.

6.2 Results

Non-one-inflated data. Summary of simulation study results:

If no outliers are present, Horvitz—Thompson estimator performs the best overall.
Horvitz—Thompson estimator is very sensitive to outliers.

Generalised Chao and generalised Zelterman estimators very resilient to outliers.
Generalised Chao and generalised Zelterman estimators perform similarly under the same
circumstances.

e If outliers present, generalised Chao estimator performs the best overall.

Table 7 displays the values of accuracy, precision and coverage for the Horvitz—Thompson,
generalised Chao and generalised Zelterman estimators, and total number of studies is N =
1000. The performance measures are given for proportions of outliers varying from 0 to
2% to also assess robustness of each estimator. When the counts follow the distributional
assumptions perfectly, the Horvitz—Thompson estimator is both the most accurate and the
most precise, illustrated in Fig. 1 with the smallest inter-quartile and total ranges for both
measures occurring for the Horvitz—Thompson estimator, and the corresponding plot for
precision being closer to zero than the alternative estimators. Whilst the generalised Chao
has the highest coverage, for all the estimators coverage is desirable at at least 95%, with
negligible difference. However, as outliers are introduced to the data, the preference for the
Horvitz-Thompson estimator becomes less obvious. Up to 0.5% of the counts being outliers,
the Horvitz—Thompson estimator has the best performance for precision, however, once more
outliers are introduced to the data, precision is dramatically reduced. Additionally, with as
little as 0.1% outliers, the accuracy of the Horvitz—Thompson estimator is impacted, and
coverage is significantly decreased, with only 70% of the confidence intervals containing the
true value. As the proportion of outliers increases, the performance of the Horvitz—Thompson
estimator worsens, with estimates getting further from the true value and confidence intervals
getting wider from increased uncertainty. It appears that past a certain proportion of outliers,
the coverage begins to improve, with coverage having an increase of 50% between 1%
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Table 7 Values for the reliability measures of accuracy, precision and coverage for the capture-recapture
population size estimators of Horvitz—Thompson, generalised Chao and generalised Zelterman when there is
no one-inflation present, where S = 1000, N = 1000, 7 = 900, A€ = 0.0004, W= 0.007, 2V = 0.009,

y =150 =0.8,a =36, 8 =28.5and p = 0.4 for various proportions of outliers

Measure Estimator Proportion of outliers
0.0% 0.1% 0.5% 1.0% 2.0%
Accuracy Horvitz—Thompson 16 30 211 677 2.1e+06
Generalised Chao 25 27 27 27 26
Generalised Zelterman 29 32 31 32 32
Precision Horvitz—Thompson 95 100 136 290 6.7e+07
Generalised Chao 162 162 163 162 162
Generalised Zelterman 181 181 185 184 187
Coverage Horvitz—Thompson 95.5% 69.6% 7.0% 7.4% 60.6%
Generalised Chao 96.4% 96.0% 96.4% 96.7% 95.6%
Generalised Zelterman 95.7% 94.7% 95.8% 96.7% 94.8%
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Fig. 1 Box plots showing the values of the population size estimates (left) and the values for the precision
of the confidence intervals (right) for the Horvitz-Thompson, generalised Chao and generalised Zelterman
estimators when there are no outliers in the data and the dashed line represents the true population size of
N = 1000

and 2% outliers, however, this is due to the width of the intervals growing, increasing the
changes of the interval to contain the true value. Changes in the accuracy and precision of the
population size estimates respectively are illustrated in Figs. 2 and 3, where the dispersion
of the Horvitz—Thompson values increases as the proportion of outliers increases, and the
median values grow farther from either the true population size or a reasonable width of
confidence interval.

For completeness, Table 8 demonstrates the effect of outliers on the performance of the
estimators when the total number of studies differs, specifically when N = 500. As with when
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Chao and generalised Zelterman estimators and varying proportions of outliers. The dashed line represents
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Fig. 3 Box plots showing the values of the precision from the 95% confidence intervals for the Horvitz—
Thompson, generalised Chao and generalised Zelterman estimators and varying proportions of outliers when

the true population size is N = 1000
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Table 8 Values for the reliability measures of accuracy, precision and coverage for the capture-recapture
population size estimators of Horvitz—Thompson, generalised Chao and generalised Zelterman when there is
no one-inflation present, where § = 1000, N = 500, 7 = 900, € = 0.0004, 2L = 0.0004, AV = 0.0004,
y =150 =0.8,a =36, =28.5and p = 0.4 for various proportions of outliers

Measure Estimator Proportion of outliers
0.0% 0.1% 0.5% 1.0% 2.0%
Accuracy Horvitz-Thompson 11 - 62 293 4797
Generalised Chao 19 - 19 18 19
Generalised Zelterman 21 - 22 21 22
Precision Horvitz—Thompson 67 - 83 181 10096
Generalised Chao 116 - 116 115 113
Generalised Zelterman 130 - 131 130 130
Coverage Horvitz—Thompson 94.8% - 34.8% 14.5% 51.1%
Generalised Chao 96.9% - 96.3% 96.7% 95.5%
Generalised Zelterman 94.6% - 96.7% 95.7% 95.0%

Number of outliers required to be integers so values for the proportion of 0.1% outliers are not given

N = 1000, when all data follows the distribution, the Horvitz—Thompson estimator performs
the best, but the preference changes to the generalised Chao and generalised Zelterman
estimators once outliers are introduced.

Throughout both tables, there is little difference between the performance for the gener-
alised Chao and generalised Zelterman estimators, for both varying total sizes of data and
proportions of outliers. The generalised Zelterman confidence intervals are on average closer
to the nominal level, which is often preferred, whereas the generalised Chao estimator is on
average more conservative. However, the generalised Chao estimator is consistently more
accurate and precise, and given that the difference in coverage between the estimators is
small, there is still the preference for the generalised Chao estimator. The main variation is
as a result of data sizes, where for larger data sets, the generalised Chao estimator is more
precise, and the generalised Zelterman estimator more precise for smaller data sets.

The values in Tables 7 and 8 suggest that it is the number of outliers rather than the
proportion of outliers that impact the Horvitz—Thompson estimator’s performance. For each
proportion of outliers included respectively, comparing the performance of the Horvitz—
Thompson estimator for N = 1000 and N = 500 indicate that the larger study size of
N = 1000 impacts the estimator more, with a reduction in accuracy, coverage and precision.
However, if the number of outliers is used as the comparison measure, rather than the pro-
portion of outliers, the performance of the estimator is much more comparable. For example,
when 5 outliers are included in the data, the proportion of outliers is 0.5% for N = 1000
and 1.0% for N = 500. For these proportions, the values of accuracy, precision and cov-
erage respectively are more comparable and differ less from each other with the different
population sizes than when a proportion of 0.5% outliers is used for N = 500. Given these
results are replicated for the other proportions simulated, it is important for data to follow
the distributional assumptions for the Horvitz—Thompson estimator to be used, as even for a
very large population size, a very small number of outliers impact its performance.

Overall, the Horvitz—Thompson estimator performs better than the alternative estimators
when the data follows the distributional assumption given. However, this is more often than
not the case as a result of unpredictability within real life populations. Therefore, assumptions
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Table 9 Values for the reliability measures of accuracy, precision and coverage for the capture-recapture
population size estimators of Horvitz—Thompson, generalised Chao, generalised Zelterman and generalised
modified Chao when there is one-inflation present, where S = 1000, N = 1000, 7 = 900, 26 = 0.0004,
AL = 0.007, AU = 0.009,y =1.5,0 = 0.8, ¢ = 36, B = 8.5 and p = 0.4 for various proportions of outliers

Measure Estimator Proportion of outliers
0.0% 0.1% 0.5% 1.0% 2.0%

Accuracy HT 370 81187662 95449602 115553849 130555650

GC 662 797 789 794 784

GZ 749 1217 1218 1226 1234

GMC 46 226 233 214 222
Precision HT 189 5328655340 5843597127 6373528861 6125530967

GC 464 542 536 542 538

GZ 538 773 789 777 781

GMC 279 621 633 611 608
Coverage HT 0% 99.0% 99.9% 100.0% 99.4%

GC 0% 0% 0% 0% 0%

GZ 0% 0% 0% 0% 0%

GMC 93.8% 93.3% 93.5% 93.9% 94.2%

are not always met and in the presence of outliers, the generalised Chao and generalised
Zelterman estimators are the preferred estimator, given they are more robust.
One-inflated data. Summary of simulation study results:

e Generalised modified Chao estimator always performs the best when the data is one-
inflated, whether outliers are present or not.

e Generalised modified Chao estimator is resilient to outliers.

e Generalised Chao and generalised Zelterman estimators remain unaffected by outliers,
but estimates are not accurate and very poor coverage.

o If outliers are present, Horvitz—Thompson has very inaccurate estimates and misleading
coverage results due to very wide confidence intervals.

As with the simulation study for non-one-inflated data, Table 9 provides the values of
the performance measures, with robustness of the estimators demonstrated by the results
also given for varying proportions of outliers in the simulated datasets. For this simula-
tion study, given that the data is one-inflated (with approximately 1/5th of the counts being
excess singletons), the generalised modified Chao estimator is utilised, in addition to the
Horvitz—Thompson, generalised Chao and generalised Zelterman estimators for compara-
tive purposes.

For 0% outliers, each of the estimators are appropriate given the accordance to the desired
levels of accuracy and precision, the coverage of the Horvitz—Thompson, generalised Chao
and generalised Zelterman estimators is at 0%, meaning that none of the confidence intervals
constructed contain the true values and therefore are not appropriate. As with the non-one-
inflated data, the generalised Chao and generalised Zelterman estimators perform consistently
throughout each of the varying proportion of outliers. However, whilst these estimators are
consistent, they are not appropriate estimators for one-inflated data, given the very low
coverage of the corresponding confidence intervals. Additionally, the Horvitz—Thompson
estimator is not an appropriate estimator in the case of one-inflation. Similarly to the simula-
tion study with non-one-inflated data, outliers are introduced to the data, the coverage of the
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Table 10 Values for the reliability measures of accuracy, precision and coverage for the capture-recapture
population size estimators of Horvitz—Thompson, generalised Chao, generalised Zelterman and generalised-
modified Chao when there is one-inflation present, where S = 1000, N = 500, 7 = 900, 26 = 0.0004,
AL = 0.007, AU = 0.009,y =1.5,0 = 0.8, ¢ = 36, B = 8.5 and p = 0.4 for various proportions of outliers

Measure Estimator Proportion of outliers
0.0% 0.1% 0.5% 1.0% 2.0%

Accuracy HT 184 - 27784376 29809669 31229695

GC 333 - 395 394 389

GZ 377 - 609 614 618

GMC 33 - 123 114 115
Precision HT 134 - 2004076150 1814267321 1367398644

GC 330 - 381 382 379

GZ 382 - 546 550 553

GMC 194 - 446 436 433
Coverage HT 0% - 99.0% 99.1% 99.9%

GC 0% - 0% 0% 0%

GZ 0% - 0% 0% 0%

GMC 93.3% - 99.8% 99.6% 99.8%

Horvitz-Thompson estimator gets very close to 100%. This result is misleading given that
the population size estimates are very inaccurate and the only reason the coverage is so high,
is due to the confidence intervals being very wide (poor precision).

Given that the generalised modified Chao estimator has similar relaxed distributional
assumptions to the generalised Chao and generalised Zelterman estimators, throughout each
of the varying proportions of outliers, it has relatively consistent performance, leading to it
being a robust estimator. The generalised modified Chao estimator performs well across each
of the measures, in particular the coverage, which is over 90% for each of the proportions of
outliers. The results from this simulation study indicate that the generalised modified Chao
not only performs well in the case where one-inflation is present, but performs better than
the other capture-recapture estimators. This outcome is expected since the other capture-
recapture estimators explored in the simulation study are not able to appropriately account
for excess singletons in a dataset.

For completeness, Table 10 demonstrates the effect of the varying size of the population
on the performance of the estimators, by changing the total population size from N = 1000
to N = 500. The results of this simulation study follow the same trends as in Table 9,
where the Horvitz—Thompson estimator is not resilient to outliers and performs poorly with
the one-inflated data. Additionally, whilst the generalised Chao and generalised Zelterman
estimators are robust, with reasonable widths of confidence intervals, they are not accurate
and have poor coverage of the resulting confidence intervals. Whilst an accuracy measure
of 333 (for the generalised Chao estimator with no outliers) may not seem overly poor in a
dataset with a large population size, when the total number of studies are only N = 500,
being approximately 333 studies incorrect either way results in very incorrect estimates. The
conclusion of this simulation study is the same as for when the population size is larger,
that the generalised modified Chao estimator not only performs well in the instance where
there are excess singletons in the data, but it also performs considerably better than the other
capture-recapture estimators explored.
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7 Discussion

This paper develops a capture-recapture estimator that accounts for both one-inflation and
covariate information and explores the performance of different capture-recapture population
size estimators when dealing with zero-truncated meta-analytic count data in the case of one-
inflated data and non-one-inflated data, through utilising simulation studies. A benefit of this
approach is the flexibility enabled when creating the data sets, allowing for different data
scenarios to be applied and covariate information included to test the performance of the
estimators more thoroughly.

For the simulation studies in this manuscript, outliers were inserted at the higher order
counts. Neither the Chao or modified Chao estimators are affected by these higher order
count outliers, but all typical full data models are. An explanation behind this choice of
outlier counts is given in Appendix B.

The results from the simulation study for non-one-inflated data indicate a preference
for the Horvitz—Thompson estimator only if the data does not contain outliers. Given that
within real life data, it is a common occurrence for outliers to be included, and even if it is
only a small proportion, the Horvitz—Thompson estimator is not the most reliable. Between
the generalised Chao and generalised Zelterman estimators, there is very little difference
in performance, with the reliability measures unaffected by outliers, demonstrated by the
consistent desirable coverage in addition to appropriate accuracy and precision irrespective
of the proportion of outliers. The negligible difference in performance means that either
estimator is appropriate and would return reliable results, but specifically for larger data, the
generalised Chao is favoured, and the generalised Zelterman favoured for smaller data.

As for the simulation study for one-inflated data, the results indicate that whether there are
outliers in the data or not, the generalised modified Chao estimator is preferable, given that the
alternative estimators are inaccurate with poor coverage of the resulting confidence intervals.
This preference for the generalised modified Chao is expected given that the other capture-
recapture estimators are not able to appropriately account for these excess singletons, leading
to over-estimation of the population size and confidence intervals which do not contain the
true value.

For future work, additional data structures could be explored, such as data with differ-
ent covariate variable types or sampling distributions assumed, to examine the estimators’
performance in a wider range of scenarios. It could also prove beneficial to explore their
performance using alternative confidence interval construction methods like the bootstrap
algorithm and the percentile method, given that the analytical approach taken in this paper
does not produce appropriate intervals for the small number of studies from the case study
used with the generalised Chao and generalised Zelterman estimators. Lastly, the estima-
tors discussed in this paper are not the only capture-recapture estimators available so the
performance of a wider range of estimators could be explored. Examples of further esti-
mators include the Turing estimator [10] and conventional Chao and Zelterman estimators
discussed in Sect. 3. These estimators are not appropriate for the work in this paper since they
don’t allow for the inclusion of covariate information, however, for data without covariate
information or exposure variables, there may be value in exploring their performance.
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Appendix A: The truncated Poisson likelihood

This is largely following [6]. Fori =1, ..., M where M = fj + f5 is the number of studies
with one or two events, let

i = e; exp(h” (x;)B) = e; exp(Bo +h*T (x;)B*)

where e; is the value of person-years corresponding to study i, 8 = (Bp, B*) and h* is equal
to h without the intercept.
The Poisson likelihood truncated for all counts except ones and twos is

M 1 fi1 wi/2 fi2
H(l +Mi/2> (1 +Mi/2> ’

i=l1
_ ﬁ ( I )f ( e; exp(fo + 0¥ (x)B%) )f
1\l + e exp(Bo +h*T (x) %) 1 +eiexp(fo + 0T (x)B") )

M
= [Ta—an’g/™

i=1

1

1+ pif2
This is a conventional binomial logistic likelihood and can be further written as

ﬁ 1 T erexpBy+ 0T x|\
L 2\ 1+ e exp(By + T (x;)B%) 1+ e exp(By +h T (x)B*) ]

i=1

hence, ¢; =

with B, = log(1/2) + o
Once the binomial logistic likelihood has been fitted one can compute

R I~ N Ak
i = 21 ii(j = 2e; exp(fy +h T (x)B ).

4

Note that f;; + fi» = 1 in our case as each study i has either a count of one or a count of
two, given it is a truncated study where all counts are truncated except ones and twos.

Appendix B: Simulation study outliers

For the simulation studies in this manuscript, outliers are only at the higher order counts. If
outliers were added at the count of one, then the data becomes one-inflated and the modified
Chao or generalised modified Chao estimators can be utilised. There is a rationale for the
existence of one inflation, namely, that there is a behavioural change after the first identifi-
cation. There is no such obvious rationale for inflated counts of two and three, however, for
completeness, the potential for inflation at these counts is explored below.

Assume that the counts of 2 and 3 are inflated y some common factor c. Given that the
probability of a 2 is p» = c exp(—A)A%/2 and the probability of a 3 is p3 = cexp(—A)A3/6,
we can estimate that A = 3p3/2p, since the normalising constant drops out. Hence, the
modified Chao estimator would not be affected by this kind of inflation.
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Appendix C: Tables

See Tables 11, 12, 13, 14, and 15.

Table 11 Linear predictors for models under consideration for the Suicide data

Linear predictor Proportion of Country of Interaction x1x  h(x)
women, x| origin, xp
1 No No No hi(x)=1
2 Yes No No hyx) =1, x)T
3 No Yes No hy(x) =1, x)7
4 Yes Yes No ha(x) =1, x1,x0)7
5 Yes Yes Yes hs(x) = A, x1, x2, x1x0) 7
Table 12 Linear p r‘edict(')r s for Linear predictor Age, x1 Gender, x> h(x)
models under consideration for
the Heroin data 1 No No h(v) =1
2 Yes No hy(v) = (1,v)T
3 No Yes h3(v) = (1, vp) 7T

Table 13 Meta-analytic data from Peterhinsel et al. [18], numbered and ordered by decreasing size of person-

years

Study Number of Person-years Proportion of women Country of origin
completed suicides

l Vi € Xil Xi2

1. Adams 2007 21 77602 0.860 USA

2. Marceau 2007 6 10388 0.720 Canada

3. Marsk 2010 4 8877 0.000 Sweden

4. Pories 1995 3 8316 0.832 USA

5. Carelli 2010 1 6057 0.684 USA

6. Busetto 2007 1 4598 0.753 Italy

7. Smith 1995 2 3882 0.889 USA

8. Peeters 2007 1 3478 0.770 Australia

9. Christou 2006 2 2599 0.820 Canada

10. Giinther 2006 1 2244 0.837 Germany

11. Capella 1996 3 2237 0.822 USA

12. Suter 2011 3 2152 0.744 Switzerland

13. Suter 2006 1 1639 0.865 Switzerland
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Table 13 continued

Study Number of Person-years  Proportion of women Country of origin
completed suicides

l Yi €j Xil Xi2

14. Van de Weijgert 1999 1 1634 0.870 Netherlands

15. Cadiere 2011 1 1362 0.834 Belgium

16. Mitchell 2001 1 1121 0.847 USA

17. Himpens 2011 1 1066 0.902 Belgium

18. Nislund 1994 2 799 0.812 Sweden

19. Forsell 1999 1 761 0.761 Sweden

20. Powers 1997 1 747 0.847 USA

21. Kral 1993 1 477 0.812 USA

22. Nislund 1995 1 457 0.592 Sweden

23. Powers 1992 1 395 0.850 USA

24. Smith 2004 1 354 0.823 USA

25. Nocca 2008 1 228 0.677 France

26. Svenheden 1997 1 166 0.791 Sweden

27. Pekkarinen 1994 1 146 0.704 Finland

The table includes the number of person-years, the proportion of women, the country of origin and the number
of completed suicides for each study. The proportion of women for 24. Smith 2004 is unknown but is imputed
to be 0.823. The country of origin for 21. Kral 1993 is reported as “USA/Sweden" but changed to USA for
model fitting

Table 14 Capture-recapture data in Jongsomjit et al. [ 14] of the distribution of counts of heroin users in Chiang
Mai, Thailand by age

Age  fo N1 2 3 fa fs fo f1 f8 fo fio Suu fiz fi13 fia

<40 - 309 100 53 24 11 7 5 7 0 1 1 0 0 1
>40 - 228 52 27 10 4 1 1 1 0 0 0 0 0 0
Total - 537 152 80 34 15 8 6 8 0 1 1 0 0 1

Table 15 Capture-recapture data in Jongsomyjit et al. [ 14] of the distribution of counts of heroin users in Chiang
Mai, Thailand by gender

Age fo N Lo B a4 fs fe 1 8 fo fio S Nz fi3 fia

Male - 482 134 73 30 13 7 5 7 0 1 1 0 0 1
Female - 55 18 7 4 2 1 1 1 0 0 0 0 0 0
Total - 537 152 80 34 15 8 6 8 0 1 1 0 0 1

Supplementary Information ~ The online version contains supplementary material available at https://doi.
org/10.1007/s40300-025-00300-2.
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