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We introduce a physics-informed Gaussian Process Regression (GPR) method for data assimila-
tion and uncertainty quantification of Particle Tracking Velocimetry (PTV) data. Unlike traditional
methods based on regression, our approach transparently incorporates statistical information and
physics such as mass conservation, boundary conditions, and statistical symmetries directly into
the regression model. Furthermore, GPR quantifies prediction uncertainty and provides physics-
constrained estimates of the two-point velocity covariance, a quantity of primary interest in tur-
bulent flows. The methodology is demonstrated using synthetic and experimental data from three
canonical turbulent flows: homogeneous isotropic turbulence (HIT), turbulent channel flow (TCF),
and the turbulent wake behind a square prism (SPW). In all cases, we make comparisons relative
to the performance of the vortex in cell method, VIC+. For HIT, the model leverages isotropy to
learn the velocity correlation function from even very noisy and sparse data, achieves a factor of two
improvement over VIC+ in velocity prediction error, and accurately quantifies the prediction uncer-
tainty. For TCF, we introduce a novel and scalable approach to train a high-dimensional GP model
that respects wall-bounded flow physics. GPR significantly outperforms VIC+ in terms of accuracy,
uncertainty estimation, and resolution in this case. In the SPW case, GPR demonstrates improved
accuracy in velocity prediction and improved coherence of the vorticity field obtained from indepen-
dent snapshots of tracers. Our approach lays the groundwork for extensions to time-resolved data,
inclusion of acceleration measurements, and reduced-parameter models based on resolvent analysis.

I. INTRODUCTION

The past decade has seen widespread adoption of Lagrangian particle tracking (LPT) and particle tracking ve-
locimetry (PTV) to measure flows [1]. These techniques are capable of tracking hundreds of thousands of tracer
particles in space and time, which provide access to velocity information sampled at irregular locations in the flow
along particle trajectories. Its advantages include a fundamental improvement in spatial resolution over conventional
particle image velocimetry techniques, because flow information can be resolved to the position of individual particles
with sub-pixel precision [2]. A central issue is the interpolation of these scattered data, usually onto Cartesian grids,
for subsequent analysis with the least possible error [1, 3]. It is desirable to assimilate known flow physics, e.g. mass
continuity and boundary conditions, to improve the accuracy of the reconstruction of the flow field. Furthermore, it
is desirable to quantify the uncertainty in the reconstruction. Often, the reconstruction process is used to facilitate
further statistical analysis. This commonly includes quantifying the mean velocity field, Reynolds stresses, two-point
correlations and identification of proper orthogonal decomposition (POD) modes.

As showcased in the first LPT data assimilation challenge [3], the majority of solutions to this problem so far
are based upon formulating and solving nonlinear regression problems [4-9]. These minimise a cost function which
penalises the residual between observations of velocity (optionally, acceleration) sampled on particle trajectories.
The minimisation is performed with respect to a set of weights which parametrise the velocity and Lagrangian
acceleration fields. The velocity field is usually a linear function of the weights, whereas the acceleration field (if
evaluated) has a quadratic nonlinearity. Penalties may be introduced into the cost function to enforce smoothness
of the solution [5, 7] or to introduce soft constraints, e.g. boundary conditions [4, 10] and mass and momentum
conservation [4, 5, 7]. Alternatively, hard constraints may be introduced either in the formulation of the model
[7, 8, 10] or in the determination of the model coefficients [6, 11].

By incorporating these physical constraints, spatial resolution can be improved by a factor of three to four over naive
linear interpolation [3]. For data assimilation with data at a single time instant, the majority of this improvement is
attributed to the incorporation of acceleration data [5, 8]. This limits the benefits for two-pulse or four-pulse LPT
[12, 13], where acceleration information is not available or may be too noisy to improve the solution. Moreover, these
approaches neglect the statistical information available to predict the flow field and do not quantify the uncertainty
in the reconstruction. This uncertainty can be large: for a cylinder wake flow inside a turbulent boundary layer,
Sciacchitano et al. [3] reported typical velocity errors between 3 and 12% of the bulk velocity.

* j.m.lawson@soton.ac.uk



Gaussian process regression (GPR), or Kriging, is a well-established spatial interpolation technique which aims to
predict the conditional expectation and variance of a variable at an unobserved location (e.g. the velocity field at a
point) given some other random variables (e.g. the velocity sampled on particle tracks) which are known [14, 15]. This
prescribes a linear regression model where the velocity field is a linear function of the input data. The Gaussian process
(GP) framework provides a means to obtain the optimal coefficients for any such linear model which is unbiased and
minimises the mean squared error of the prediction, i.e. the best linear unbiased prediction [14, 15]. Therefore, we
expect suitably constructed GP models to outperform other linear regression models [4]. Furthermore, GPR provides
a measure of the prediction uncertainty, i.e. the conditional variance of the prediction given the measured data.
Linear and non-linear constraints can be incorporated into the regression model to ensure that the resultant estimate
of the velocity field satisfies known physics [16-19]. The regression model can also be formulated incorporate to known
statistical symmetries.

GPR is closely related to linear stochastic estimation (LSE) [20] and extended POD [21]. Stochastic estimation has
long been used within the fluid mechanics community for the identification and interpretation of coherent flow features
[20, 22, 23], whereas extended POD has found application in the interpolation of flow fields from sparse measurements
[24, 25]. All techniques implement a shallow autoencoder neural network which provides an interpretable explanation
of the output velocity field in terms of POD coefficients of the input data and POD modes of the output. This
provides an advantage over “black-box” deep learning approaches, which are harder to interpret [23]. There are
two significant distinctions between GPR and extended POD. The first is that GPR provides an estimation of the
uncertainty in addition to the conditional mean. The second is that extended POD and LSE are typically performed
with a truncated set of POD modes which are not derived from the sparse measurements [24, 25]. In contrast, GPR
predictors typically build the covariance model and mean field from the sparse input data themselves.

Recently, several works have addressed the mean flow estimation problem for PTV data [11, 26, 27]. In contrast,
the velocity covariance is a much more complex quantity to learn: a 3 x 3 tensor field in up to six spatial dimensions
and two temporal dimensions. Since this is not known a-priori, it must be learned from the data by fitting it to
a model. The construction and training of this model is the main obstacle to implementing GPR for PTV data
assimilation. The problem is twofold. Firstly, the number of training data are large: a typical PTV measurement
might yield tens of thousands of point velocity measurements at a single time instant, of which there might be
thousands. Since the computational cost of training and inference scale cubically with the number of data points,
approximation strategies must be employed [28]. Secondly, the formulation of the model itself is an open question.
Very recently, Tirelli et al. [29] have begun to address this by fitting unconstrained radial basis functions to PTV data
to learn the covariance. However, no flow physics are encoded in the model and as a consequence there are a very
large number of hyperparameters to learn.

To summarise: Gaussian process regression provides an attractive alternative to the dominant PTV data assimilation
approaches, because it can transparently leverage statistical information to interpolate scattered data optimally whilst
incorporating physics-based constraints and quantifying measurement uncertainty. When constructing a GP model
for PTV data, estimates of the two-point velocity covariance function and mean velocity field are learned from the
data. Therefore, a GP model for PTV data assimilation necessarily contains quantities of primary interest: estimates
of the mean velocity field and two-point velocity covariance, which can be used to obtain Reynolds stresses and POD
modes of the flow [30].

In this article, we demonstrate how to construct interpretable, physics-informed Gaussian process models for the
reconstruction and uncertainty quantification of incompressible velocity fields obtained from PTV data. We restrict
ourselves to the context of GPR with PTV data which are not time-resolved, i.e. the input data correspond to a
single time instant. This targets the case of reconstructing velocity fields from two-pulse or four-pulse PTV data,
where acceleration information is not available or is too noisy to be useful. We develop models for two prototypical
flows: homogeneous isotropic turbulence (HIT) and turbulent channel flow (TCF). These cases demonstrate how
to encode fundamental statistical symmetries and incorporate linear constraints such as boundary conditions and
incompressibility into the model. We test the accuracy of these models using synthetic particle tracking data obtained
from direct numerical simulations. In both cases, we quantify the accuracy of the GPR predictions of the velocity
field and its estimated uncertainty, as well as the error in the estimates of the mean flow and two-point velocity
covariance. As a real-world test of the method, we train and predict dense flow fields in the wake of a square prism
using the GP model derived for turbulent channel flow. In all cases, we compare the performance of the GP predictors
to interpolation using VIC+ under varying levels of seeding concentration and measurement noise.

The article is structured as follows. We revise Gaussian process regression in section §II A and revise methods to
build models with linear PDE, boundary condition and statistical symmetry constraints in §IIC. We then describe
how to construct and train physics-informed models of the velocity covariance and mean flow in HIT and TCF in
sections §I1 D- §II G. These models are trained on synthetic and experimental datasets described in §IIH. We quantify
the accuracy of GPR prediction, uncertainty estimation and the estimated velocity covariance in §III. We present
conclusions and outlook for future work in §IV.



II. METHODOLOGY
A. Gaussian Process Regression

To apply GPR to PTV data, we proceed as follows. Consider the Reynolds decomposition of the instantaneous
velocity field U (z,t) = U +u into the mean flow field U () and velocity fluctuation w(z,t). We will treat the statistics
of this field as stationary in time ¢. The spatial coordinate within the measurement domain Q is € Q C R3. PTV
data are available for each of ¢ = 1...T snapshots, with IV; particles per snapshot at input points X; = {:L'n,t}ﬁ[;l.
These data are observations y; = (v1;vs;...;vN,) € R3Mt of the velocity fluctuation Ut = U(xp,t) + €, We treat
the additive Gaussian noise €, ; noise as independent of the data, statistically stationary, spatially white and isotropic
with variance o2.

We will suppose that these realisations are statistically independent of one another, so inference of the underlying
velocity field at time ¢ is performed using data from time ¢ only. The Gaussian process framework provides the
means to predict the distribution of the underlying random field z = (u(®14,t);...; u(xgs,t)) at @ query points

X, = {ZBq*}qul denoted with the subscript x. The velocity field and noise are treated as joint Gaussian random
processes. The conditional mean of z given the observations X3, y; is

Hz = E[z|yt] = szf,K;tlytyt (1)
whereas the conditional variance is
3.. = Covlzly] = Koo — Koy K ) Ky, (2)

where Ky, 4., K2 and Ko, = K;z represent the (modelled) prior covariance of the observations and the underlying
velocity field at the query points. Equation (1) provides the best, linear unbiased prediction of z in the sense that it
minimises the sum-of-squares error ||, — 2||3 when the covariances are known exactly. The measurement uncertainty,
i.e. the variance of z which cannot be explained by the covariates in ¥y, is given by the diagonal entries of X, ,. These
expressions for the conditional mean (1) and variance (2) of z hold regardless of whether the underlying process is in
fact Gaussian [14, 15].

Alternatively, we can express the GP from the weight-space view as a Bayesian linear model

u(z) = &' (z)w (3)

where w ~ N (0, Kyq) are a set of normally distributed weights with covariance Koy, and ®(x) is the feature vector
which encodes the input into a higher-dimensional space. An advantage of this formulation is that it is generative:
we can create synthetic realisations of the Gaussian process with the same covariance structure as our training data
by drawing samples of w. We can represent this process as being measured on the input points X; as

Y = int + € 4)

Given the Gaussian prior on the distributions of the weights and the noise, the solution for the weights which maximises
the log-likelihood

1 _ 1
108 (3 K, 02) = — 50 Kby — = 1y — ®faw] + const. 5)
is
Hw = ]K'ww(I:'tI<;;tlyt Yt (6)

with Ky,,, = D/ Kow®: + Kee [31]. Equations (6) and (1) provide identical solutions for g, = ®{ . Equation
(4) represents the general form of linear models which choose different features ®(x) e.g. splines [5] or radial basis
functions [4, 7-9, 32] to represent the velocity field. However, each of these works only retains the sum-of-squares
penalty in (5), so prior knowledge of the statistics of the velocity field is not incorporated.

To use (1) and (2), we must first train a model to learn the mean flow field U, the two-point velocity covariance

R(z,z') = u(x, t)uf(x’, ) and the measurement noise o?. For instance, the covariance of y; is

R(z14, 1) R(z1e,22) -

Kytyt = R(ml{:? ml’t) R(mQ’i'h (13271;) B Kee (7)
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where K. = 0?1 is the covariance of the additive measurement noise. Various techniques exist for learning the mean
flow field from PTV data [11, 26, 27]. However, the velocity covariance tensor field R(x, x’) is generally a complex
thing to learn: a 3 x 3 tensor field in six spatial dimensions. This tensor field is positive definite, and therefore must be
represented as the sum of matrix valued, positive definite kernels k(x, x’; @) with hyperparameters 6. This condition
implies that K, is a positive semi-definite matrix for any set of query points.

B. A general model for incompressible flow

To motivate physics informed Gaussian process regression, consider the following “naive” GP for an incompressible
flow [19]. The mean flow U(x) = ®'(z)w and velocity fluctuation field u(x) = ®(x)w are described by a sum of
matrix-valued radial basis functions

o pt 1 99 LY
®(x) = ¢(T*n)r*nr*n + | A(7sn) + 573015 (I - r*r*) (8)
n=1
centered at N inducing points X, = {z,}\_; with weights w,w € R3" for the mean flow and velocity fluctuations.
Here, 7, = || — @4||2 is the distance to each inducing point and 7, is the associated unit vector. These are defined
in terms of a scalar RBF

o(r.) = exp (3% ) o)

for which we choose the popular Gaussian RBF with uniform scale ¢. Already, this contains some flow physics: (8)
always yields V - u = 0, regardless of the choice of weights. This stands in contrast with other RBF based models for
PTV data assimilation [4, 5, 7, 9, 11], where the solenoidal constraint is enforced by constraints upon the weights.
The number of inducing points scales with the number of particles per snapshot; literature suggests [5, 7, 8, 32] that
as many as 5-20 times inducing points as input data are necessary provide enough flexibility to reconstruct small scale
flow features.

Under the Gaussian process Ansatz, the prior distribution of the weights is w ~ N(0,Kq) with covariance
Kyw = LwL,J[U7 where L,, is a lower triangular matrix with real and positive diagonal entries. This definition ensures
the prior covariance is positive definite. The model has 9N (N + 1)/2 + 1 hyperparameters 8 = {w, L, 0>}, which
encode the prior mean, covariance and model noise. The conventional approach to training GP models is to maximise
the marginal likelihood of the observations

T
1
T'bf E logp yt‘o 5 E ytTKy,ytytT + log |Kytyt‘ + Nt 1Og 27‘-} (10)
t=1

over the hyperparameters @ (the dependence on W is implicit in the definition of y;).

Large GP models can be very expensive to train using (10). The bottleneck is due to the inversion and determinant
of the kernel matrices Ky,,,, which require O (T Nf’) operations and O (Nf) memory. Evaluating the gradient with
respect to the hyperparameters requires a further O (T NN 2) + O (T N 3) operations. Considering that a typical
PTV experiment might track tens of thousands of particles for thousands of timesteps, this can be very costly: with
N = N, = 50,000 particles per snapshot and as many inducing points, there are ~ 10 hyperparameters and ~ 10'°
operations per matrix-matrix multiplication. Therefore, we need a means of reducing the complexity of the model
which retains enough flexibility to fit the data but has fewer hyperparameters to learn.

C. Physics Informed Covariance Models

The premise of physics informed Gaussian process regression is to construct a covariance model which satisfies
known statistical symmetries, boundary conditions and incompressibility constraints. This not only ensures that
the GPR prediction (1) satisfies the boundary conditions and incompressibility, but it also reduces the degrees of
freedom within the covariance model so that it may be learned empirically. For instance, statistical homogeneity
implies R(z, ') = R(0,r) where r = &’ — x, reducing its spatial dimension by three. It can be seen from equation
(1) that linear constraints upon the covariance tensor imply linear constraints upon the estimated velocity field and
vice-versa. For instance, the prediction p(x,) (1) will satisfy incompressibility V, - p(z,) = 0 for arbitrary y; only if
the covariance model satisfies V, - R(z,2’) = V4 - R(z,2’) = 0. Boundary conditions can also be applied, e.g. the
no-slip condition u(xsq,t) = 0 for a set of points xzyu € IN on the boundary can only be satisfied if R(xaq, ') = 0.



These physics can be efficiently encoded into the model using the transformed covariance kernel approach [16].
Homogeneous linear operator constraints of the form L,R(x,2’) = Ly R(x,2’) = 0 can be enforced by choosing
a set of kernels which lie in the null space of the linear operator L, such that L k(x,x’;0) = Ly k(x,2';0) = 0,
regardless of the choice of hyperparameters 6. Statistical homogeneity implies we should choose kernels of the form
k(x,z';0) = k(r;0), whereas isotropy implies k(r;0) is invariant under rotations. In the following sections, we
describe how to construct and fit covariance models for the velocity field in two prototypical flows featuring these
symmetries: homogeneous isotropic turbulence and turbulent channel flow.

D. A model for homogeneous and isotropic turbulence

In statistically stationary, homogeneous, isotropic turbulence, the two-point, single-time covariance tensor of any
solenoidal vector field is defined by a single, scalar valued, longitudinal autocorrelation function Ry (r) as [22]

. 1 OR .

R(z,z') = Ry (r)ir! + (RLL(?“) +tar 8LL) (I —77l) (11)
r

This defines the correlation between a pair of points separated space by a distance r corresponding to the displacement

r = ' —x = r7 between the two points. The incompressibility condition is satisfied by construction. For convenience,

we write R(r) = R(0, 2’ — ). The corresponding longitudinal energy spectrum

By (k) = %/ Rpp(r)e " dr >0 (12)

— 00

is real-valued and non-negative. Furthermore, it is an even function of the wavenumber x and is monotonic decreasing
in k for k > 0 [22].
We fit the autocorrelation function to the data with the linear model

RLL(’I“) = Gme(r) (13)
for the hyperparameters 6,, > 0 and scalar valued kernel functions K,,(r). A natural choice is
K, (r) = sinc(kp,T) (14)

corresponding to a uniform spectral energy density over a band of wavenumbers [—£,, k.m].We note that the matrix
valued kernel (11) corresponding to (14) is of the same form proposed by Narcowich and Ward [19] for the interpolation
of incompressible vector fields. Here, however, the kernel has a specific physical interpretation in terms of the energy
spectrum. The constraint 6,, > 0 conveniently ensures that F;; is non-negative and monotonic decreasing in £ and
that the transverse autocorrelation function

RNN(T)—RLL+§T oy Dm

(r)0m (15)
is also positive definite. Here, K7 (r) = 4 (K (r) + cos(kp,r)) is the kernel for the transverse autocorrelation function.
We note that the covariance model (11) readily generalises to the two-point, two-time covariance by choosing kernels
of the form sinc(kr) cos(w(t’ — t)) for a set of frequencies w and wavenumbers k.

The standard approach to training the hyperparameters is to maximise the marginal probability p(y|0) of all the
observations y = (yi;...;¥y;) given the hyperparameters 8 = {02,6;,...0)} [15]. Given the T sets of observations
y; € R3Vt, this naively involves T inversions of 3N; x 3NN, matrices, which is computationally infeasible. Therefore,
we take a product-of-experts approach by splitting our input data into a set of p = 1... P particle pairs. There are
N, particles per snapshot, so P ~ TNZ. Each pair constitutes an observation y, = (v(xp,t);v(x),t)) of the noisy
isotropic turbulence process at coordinates x, and :c;,, separated by displacement r, = zc;) — ¢, and measured at
the same time instant. In general, these should be drawn from distinct particle tracks to ensure that x, and w; are
independent. We approximate the log-likelihood of our model given the observations as

P
Jiso(8) =logp(y1,y2,...ypl0) = > _logp(y,|0). (16)

p=1

The log-likelihood of the observation y,, is

1 1 _
log p(y|0) = —log2m — S log [Ky,y, | — gypTKy,}ypyp (17)



where the K, ., is the modelled covariance of each pair of observations.
After some algebra, the determinant of this matrix is

1
Ky,y,| = 6745LL(TP)DLL(TP)S?VN(TP)D%VN(TP) (18)
where we have introduced the longitudinal and transverse structure functions

Dpr(r) =2(Rpr(0) = Rpr(r)) Dnn(r) =2(Ryn(0) — Ryn (7))
2

Spu(r) = 2Re(0) + Ron(r)  Sw(r) = 2R (0) + Ran(r) 19)

which describe the second moments of velocity differences A, = v(x),t,) — v(xy,t,) and sums S, = v(x,, 1) +
v(xy,,tp). The data fit term is

KL g = Bt AP (A R (Sy 7)) IS, (S, o)’
v Drp(rp) +202 17 Dyn(rp) +20%  Spp(ry) +20% 77 Syn(rp) + 20

(20)

To accelerate finding the hyperparameters @ which maximise the log likelihood J;s,, we approximate the sum in
(16) using a fine-grained histogram of the separation 7, and corresponding observations of longitudinal and transverse
velocity components. The maximum is found subject to the linear constraints 6, > 0 and ¢ > 0 with a standard
interior-point method. The cost of this approach is dominated by the O(TN?) operations to generate the fine-
grained histogram once, which represents a dramatic reduction in complexity compared to the naive O(T'N}) cost of
maximising the log-likelihood for our full dataset.

The mean flow field is trivial. In periodic box simulations it is identically zero [22]. In grid turbulence [22] or more
sophisticated “zero-mean flow” apparatuses [33], temporal variations in the velocity field far exceed spatial variations
in the mean flow field within a particular region of interest, so to a good approximation the mean flow is uniform. In
general, one might estimate the mean flow field using ensemble PTV methods [11, 26, 27].

E. A model for turbulent channel flow

A less restrictive set of symmetries is embodied by turbulent channel flow: turbulent flow between infinite parallel
plates (“walls”). We consider a channel flow with Cartesian coordinates (x1,z2,x3) aligned with the streamwise,
wall-normal and spanwise directions respectively, bounded by no-slip walls at z; = +h. This flow possesses statistical
stationarity, statistical homogeneity in the spanwise and streamwise directions, and reflection symmetries about the
planes x1 = 0 and x3 = 0.

We consider a cuboidal measurement domain z; € [0,L1],z2 € [a,b], 23 € [0, Ls]. We therefore require a model
of the two-point covariance for zo,25 € [a,b] and 2} — 21 € [—L1, L1], o4 — x5 € [—Ls, Ls]. Due to homogeneity,
the two-point, single-time covariance function is of the form R(x, ') = R(xa, 25, r1,73) [30]. We write a covariance
model satisfying these symmetries as

L N
1;{(x27 56/2, ", 7”3) — Z Z ‘I’;(xg)HR‘I’Q(JC/Q)BiAanriV"m (21)
l=—Ln=—N
where ®5(x3) € R3*3 are a set of B-spline features
B(z) 0 0
®y(z)=| 0 B(x) 0 | . B(z)={Bi(z),Ba(z),... Bu(z)}' (22)

0 0 B(x)

derived from M basis splines B,,(x). This represents the covariance tensor as a weighted sum over wavenumbers Kk =
[A,0,vy] with Ay = wl/L; and v,, = 7n/L3 using a combination of spline and Fourier kernels with coefficients H,, €
C3Mx3M  For each wavenumber, these matrix valued kernels encode spatial inhomogeneity in the wall-normal direction
using spline features ®,(z7). Since R is real, conjugate symmetry implies that H_,, = H.. The eigendecomposition
of H,, specifies the proper orthogonal decomposition (POD) modes [30, 34] of the flow. We note that the largest
wavelength represented in (21) is twice the measurement domain dimension. The model (21) readily generalises to
more homogeneous dimensions (e.g. time) by increasing the dimension of the Fourier kernel, or to more inhomogeneous
dimensions by increasing the dimension of the spline kernel.
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FIG. 1: (a) A realisation of a 1D, stationary Gaussian process with period 2L; = 2 and 16 noisy observations
sampled at random locations on the interval [0,1]. Open markers correspond to samples at inducing points. (b) The
maximum likelihood (27) and least-squares (SoS) (29) estimates of the autocorrelation function inferred from 100
realisations of this process after 30 epochs, in comparison to ground truth.

The kernel (21) is associated with the weight-space formulation
w(@) =Y e " TBh(xo)m, (23)
K

which represents the velocity field as a sum of spline/Fourier features and complex weights 7, for each wavenumber.
Since w is real, weights at wavenumbers x and —k are complex conjugate pairs. The coefficients H,, correspond to

the covariance of the weights 71'“71',1. To express this in terms of a set of real weights w, € R*M for each wavenumber,
we can choose 7, = (W + W_x)/2 +i(w, —w_y)/2.

Linear constraints H,. A, = 0 upon the coefficients specified by A,, € C3M*P can be introduced to satisfy boundary
conditions or incompressibility at discrete points. For instance H,®(—h) = 0 describes the no-slip boundary condition
at 9 = —h whereas

IAZB(Im)
A, = B'(zm) (24)
iv, B(z,)

imposes the incompressibility constraint OR;;/ 8% = OR;;/0x; = 0 on the plane x5 = z,,,. We can construct a set of
coefficients H, = Q,.0,0L QL where ©, € CBM-P)x(BM=P) ig 5 Jower-triangular matrix of kernel hyperparameters
with real and positive diagonal entries and Q,, € C3M*(GM=P) is an orthonormal matrix chosen so that QLA, =0.
Formulating the model in this way, although non-linear in the hyperparameters ®,, automatically satisfies the
constraints H,A, = 0 and guarantees that H, is positive semi-definite. Furthermore, for each wavenumber, it
reduces the number of coefficients needed to specify H,, from 9M? to (3M — P)2.

The mean flow field varies in the wall-normal direction only. The spanwise and wall-normal components are
Us = Uy = 0. We fit the streamwise velocity component

Ul (.’B) = ULmBm(IEQ) (25)

with coefficients ULm using the same set of basis splines by minimising the sum-of-squares loss Jy = Zp (Ul(xlp) —
U1(Xy,t4))?, subject to the no-slip boundary condition U; = 0 at the wall. This mean flow field satisfies incompress-
ibility by construction.

F. Training models with Expectation-Maximisation and the Matheron Update Rule

We use an iterative approach to infer the model hyperparameters based on a modified Expectation-Maximisation
(EM) algorithm and Matheron’s update rule [35, 36]. For the purpose of exposition, consider the stationary, 1D



Gaussian process generated by f(z) = ®f(x)w with noisy observations X;,y; (4). To make analogy with (21), we
pick Fourier features ®(z) = exp(—ivz) for a set of 2N + 1 wavenumbers v,, = nn/Ls with n = =N ... N. The
weights w_,, = w], are complex Fourier coefficients of this periodic process and their covariance K, is a real-valued
diagonal matrix describing the power spectral density. Thus, we have the autocorrelation function

N
R(z,2') = > Onexp(ive(z’ — x)) (26)

n=—N

and constrained hyperparameters 6_, = 6,, > 0. Figure la illustrates one such realisation: black dots show the noisy
observations sampled on the left half of the domain, whereas the solid black line shows the noise-free realisation of
f(@).

The algorithm, described in pseudocode in Appendix A, proceeds as follows. Rather than directly maximising the
log likelihood of observations to infer 6 as in (16), we introduce latent variables z; = <I>th which represent the
process sampled at fixed inducing points X, = {nAx}"_,, conditional on observations y;. A sample of conditional
process paths drawn from p(f|y;) for our 1D example is illustrated by grey lines in figure 1, with observations at
inducing points shown by open markers. By construction, the inducing points cover the region supported by the data
(0 < 2 < 1) and do not include points which are not well informed by the observations. We train the model by
generating an empirical sampling of the process Z and noise E by making S draws of the latent variable z; and noise
€: from each of t = 1...T conditional distributions p(z¢, €:|y:, 0) using the Matheron update rule [35]. Thus, Z and
E have ST columns. These samples are used to infer updated hyperparameters. The process then repeats, with the
updated hyperparameters used to create updated draws of the latent variables at each iteration.

Crucially, the samples correspond to partial observations of the underlying process on fized inducing points. The
standard approach to learning the hyperparameters is to maximise the log-likelihood

1 T
logp(Z|y,0) = fiTr (ZTK;ZIZ) + —% log |K .| + const. (27)

However, this objective function requires O (NST) memory to store Z during the optimisation and costs at least
O (N 2ST) to evaluate, which very quickly becomes infeasible when the number of realisations 7" and sampled paths
S is large. The maximum likelihood estimate of the noise is simply Tr (ETE) /ST which requires only O (N) storage.

As an alternative to maximum likelihood estimation, consider that we can completely determine the autocorrelation
sequence (26) and hence 0 from samples of z = [z, ...2yN] as

~ L Nl
R D vy 2
o=yt 3 o

This can be implemented with a storage cost O (V). However, the resulting empirical autocorrelation sequence Ej is
not guaranteed to be positive definite. Therefore, we minimise the weighted sum-of-squares distance

N

Jr(0) = > (N —|j| + 1)(R; — R(jAz,0))? (29)
j=—N

subject to the constraints 6,, > 0, which costs O (N log N). Figure 1 demonstrates that estimates of the autocorrelation
R(xz — 2') for this 1D example obtained from the approximate inference using (29) do not differ much from the exact,
maximum likelihood inference (27). Secondly, the maximum likelihood estimates of the process (red and blue lines in
Figure 1a) are also similar.

Samples of z; from its conditional distribution NV (p.,3-) can be efficiently generated using the Matheron update
rule [35], without the need to compute p, or 3, from (1) and (2) explicitly. Let w, be an unconditional realisation
of the weights and y, = ®,"w, + ¢, be the associated noisy observation with noise realisation €,. Then the conditional
realisation z;, = @th* is distributed as N (p, X,,) when we choose

wy = w, — Ky, K\ (41 — y2) (30)

where Ky, = KwU,(I)I is the covariance of the weights with the data. Likewise, the conditional realisation of the

noise is €y = Yy — <I>I wy,. We note that, after training, these samples can also be used for uncertainty propagation
using Monte-Carlo methods.



G. Training the turbulent channel flow model

The training of the turbulent channel flow model proceeds analogously to our 1D example. In each iteration, or
epoch, we evaluate (30) to draw S = 201 samples of the velocity field at a set of inducing points defined on a regular,
Cartesian grid for each of the T realisations of the flow. There are L + 1, M and N + 1 inducing points in the
x1, T2, x3 directions respectively. The grid is uniformly spaced over in the z; and x3 directions x1,; = L1 /(2L + 1)
and 3, = nL3/(2N + 1) with [ = 0...L and n = 0... N. The inducing points in the z, direction are chosen to
coincide with the spline knot points. Since we use cubic splines, there are only M — 2 unique knot points, creating
an underdetermined problem. We therefore add an extra pair of inducing points equidistant between the first two

and last two knot pairs. We use these samples to evaluate the empirical covariance R(x,, ) based on the inducing

points &, = [0, T2 ., O]T, x, = [z}, 25, xgn]T We then minimise the weighted sum-of-squares residual

L M M N _
Ja=3 33 Y sulR(@,a)) - Rz,,a))3 (31)

l=—Lm=1m'=1n=—N

over the hyperparameters @, using weights p;, = (L —|I|+1)(N — |n|+1). We use the L-BFGS-B algorithm to solve
this large optimisation problem with approximately (3M — P)?(L + 1)(N + 1)/2 degrees of freedom.

To bootstrap this procedure, we need an initial guess for the velocity covariance function. We obtain this from a
Gaussian-blob model of the velocity covariance, which is projected onto the constraints and tuned so that the initial
guess of the velocity variance R(x, ) matches the least-squares regression estimate of the velocity variance obtained
from a spline regression like (25). We provide details of this procedure in Appendix B.

H. Datasets

In this section we describe the generation of synthetic and real experimental PTV data to test our GP models. The
synthetic data are based on direct numerical simulations of passive tracers in homogeneous, isotropic turbulence and
turbulent channel flow. The experimental data are obtained from time-resolved Shake-The-Box particle tracking in
the wake of a square prism.

In all simulations, the position X (t) of passive tracers advects with the flow as X = u(X,t). Velocity data sampled
on tracer trajectories are used to generate a synthetic two-pulse PTV measurement at times to & At/2. Since the
desired PTV time separation At is small compared to the flow timescales, we locally approximate the trajectories of
tracers at time ¢y with a first order Taylor series expansion X (¢; Xo,t9) = Xo + w(Xo,to)(t — to). Additive white
Gaussian noise is added to these trajectories to model position uncertainty. Finally, a first order polynomial fit is
applied to each position pair to measure the (noisy) tracer position and velocity at tg.

1. Homogeneous isotropic turbulence

We simulate homogeneous, isotropic turbulence at Ry ~ 122 in a 5123 periodic box of side-length 27 using TuRTLE
[37]. TuRTLE implements a standard pseudo-spectral method to solve the incompressible Navier-Stokes equations
in vorticity form. Statistical stationarity is maintained with band-passed Lundgren forcing in the wavenumber range
[2,4]. The trajectories of 222 tracers are integrated from ¢ = 0 to a statistically stationary state at ¢t = 16 corresponding
to a simulated duration of 23.47T;,; integral timescales. The spatial resolution is ky,q.n = 1.87, where k4, = 256 is
the maximum resolvable wavenumber and 7 is the Kolmogorov lengthscale. This ensures that small scales are well
resolved. Particular care is taken over the time integration of tracers: cubic splines were used to interpolate the
underlying velocity field and time-stepping was performed using a fourth-order Adams-Bashforth method.

The snapshot at ¢t = 16 is subdivided into 8% cubic sub-volumes of side-length 7/4 ~ 1071 ~ 1.4L;,;, where L;,;
is the integral lengthscale. To recreate datasets of differing seeding density, we downsample the data to contain

on average 512, 2048 or 8192 particles within each sub-volume. We define the seeding concentration p, to be the

average number of particles per unit volume and associate a characteristic length-scale ¢, = p, 13 The seeding

concentrations tested correspond to ¢, = 13.4,8.4 and 5.3n. The PTV timestep At = 0.157, is chosen so that the
mean square displacement between timesteps is 0.857, around 0.8% of the measurement domain size. This corresponds
to a typical displacement for PTV. For technical reasons with VIC+, trajectories which enter or leave the volume over
the tracked interval are excluded, ensuring that tracks always contain two points within the measurement domain.
Subsequently, additive noise is added to the trajectories. Three levels of measurement noise are considered, which
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correspond to an RMS velocity error of o = 0,0.01 and 0.03v’ in the PTV measurement, where v’ is the RMS velocity
fluctuation.

The covariance model (11) is trained on this data to learn 129 coefficients corresponding to wavenumbers k,, =
0,2,...256. This includes large-scale features whose wavelength exceeds four times the measurement domain size.
To accelerate querying the model, cubic splines are used to interpolate the longitudinal and transverse correlation
functions (13,15) on a regular grid with spacing 0.1677, rather than evaluating the series exactly. This introduces
some small numerical error which can cause Ky, to become indefinite. To mitigate this, we truncate K, down to
the r largest eigenvalues ordered o1 > o2 > ... necessary to capture 99.99% of the signal energy, i.e. >.._, o; >
0.9999Tr (K, ).

To provide a comparison to a naive GP approach, we also train the incompressible RBF GP model (8) upon this
dataset by maximising the marginal likelihood (10) over 25 iterations using the L-BFGS-B algorithm. To reduce the
complexity, we assume a zero mean flow and optimise the hyperparameters 8 = {L,,,0?}. The model uses N = 83,133
and 203 inducing points evenly spaced on a uniform Cartesian grid corresponding to a 1 : 1 ratio between inducing
points and input points. The RBF scale is £ = 1.5h, where h is the spacing between adjacent grid points. Training
with N = 202 inducing points takes around 19,000 core-hours, which is about 10* times more expensive than training
the isotropic model.

2. Turbulent channel flow

We simulate turbulent channel flow in a 47 x 2 x 27 domain, periodic in the streamwise and spanwise directions,
at Re; = 180 using spectralDNS [38]. The channel half height is h = 1 and the skin friction velocity is u, = 0.064.
spectralDNS implements a standard spectral-Galerkin method discretised onto 192 x 128 x 192 intervals using Fourier
basis functions for the streamwise and spanwise directions and Chebyshev polynomials in the wall-normal direction.
Second-order accurate integration in time is performed using the Crank-Nicolson method for the linear terms and an
Adams-Bashforth method for the non-linear terms with a constant time step 5 x 10~3 corresponding to a Courant-
Friedrichs-Lewy number of 0.076. The simulation is initialised from laminar conditions with a small perturbation
added to trigger transition to turbulence and is initially allowed to evolve to a fully turbulent state with a dynamically
adjusted driving force to maintain the bulk velocity U, = 1. After tU,/h = 60 convective flow through times, the
forcing is turned off and the flow is driven by a uniform pressure gradient. After a further 210 convective flow through
times to establish stationarity, 222 tracer particles are uniformly seeded throughout the domain and their trajectories
are integrated using a second-order Heun scheme. The tracer velocity is interpolated using a fourth order barycentric
Lagrange interpolation scheme.

At 21 time steps evenly spaced over tUy/h € [250,300], the tracers are subdivided into 72 equal measurement
volumes of dimension 7/6 x 1 x 27/3 covering the bottom half of the channel xs € [—1,0]. To recreate datasets of
differing seeding density, we downsample the data to contain on average 910, 3640 or 14600 particles. This corresponds
to seeding concentrations p, = 6;3 with ¢, = 19,12 and 7.76,, where 6, is the skin friction length scale. As for the
HIT case, trajectories are selected so that all tracks are entirely within the measurement domain. Finally, a normally
distributed position error is added to trajectories, corresponding to a velocity measurement noise of ¢ = 0.01U,. This
level is representative of typical PTV errors [39].

The velocity is reconstructed on a uniform grid with 33 x 65 x 17 elements with corresponding grid spacing 11.86,,
2.84, and 5.99, in the streamwise, wall-normal and spanwise directions. Correspondingly, the covariance model is
discretised with M = 67 spline basis functions, 65 Fourier modes in the streamwise direction up to a maximum
wavenumber 46.5/h and 33 modes in the spanwise direction up to 90.4/h. This corresponds to a domain [—m/6,7/6],
[0,1] and [—27/3,27/3] in each principal direction and matches the resolution of the underlying simulation in the
streamwise and spanwise directions. It has approximately 1.9 x 107 hyperparameters to learn. These are trained on
up to 1512 snapshots of the tracer field.

Evaluation of equation (23) is accelerated using the nonuniform fast Fourier transform library from the Flatiron
Institute [40]. After solving for the weights w,, the model can be queried in a few seconds on a single core. The
bottleneck lies in evaluating K, and solving for K;;y To accelerate this, cubic splines are used to approximate
the covariance model (21) on this grid in the streamwise and spanwise directions, rather than evaluating the Fourier
series exactly. As in the HIT case, this introduces a small numerical error in Ky,, which we remedy with the same
method.
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FIG. 2: Photograph (left) and sketch (right) the experimental setup, showing (1) Minishaker system, (2) square
prism, (3) LED illumination and (4) the particle tracking measurement volume within the Recirculating Water
Tunnel. The coordinate system origin is at the centre of the prism at the mid-span of the tunnel and is aligned with
the streamwise (z1) and transverse (x2) directions, with x3 pointing out of the page.

8. Square Prism Wake Flow

We measured the flow in the wake of a H = 50mm wide square prism at Rey = 7850 in the University of
Southampton’s Recirculating Water Tunnel using time-resolved Lagrangian particle tracking. Figure 2 shows the
experimental configuration. A square prism was suspended in the 1.2m wide test section, centred at 325mm from the
floor. The freestream velocity was maintained at 0.150 £+ 0.003 m/s at a water depth of 0.65 m and temperature of
2240.1 °C. The flow was illuminated using a Lavision LED-Flashlight 300 lamp using 335 us long pulses at 121.2 Hz.
Two thousand time-resolved burst recordings of the flow were obtained at 3.5 s intervals using a four-camera LaVision
Minishaker 2M PTV system. For comparison, we estimate the vortex shedding period is ~ 2.4 s based on a Strouhal
number of 0.14 [41]. In each burst, 25 images were recorded with a resolution of 1984 x 1264 px.The uncropped field
of view covers a 230 mm tall and 83 mm deep region between 105 and 445 mm downstream of the prism centreline,
corresponding to a spatial resolution of 0.165 mm/vx.

The cameras were calibrated based on a third-order polynomial fit to a single view of a two-step LaVision cal-
ibration plate (model 309-15-3) at the mid-plane of the measurement volume. Subsequently, we applied a volume
self-calibration to refine the calibration, resulting in an average disparity error of 0.03 voxels. Particle tracking was
performed in DaViS 10 using multi-pass Shake-The-Box processing: two passes forward and backward in time, fol-
lowed by a reconnect pass. We used four outer loop iterations to add particles and four inner loop iterations to refine
particle positions with a shaking amplitude of 0.1 voxels. Particles closer than 1.0 voxel were rejected. The average
number of tracked particles is ~ 14,000, corresponding to an image concentration of 0.0056 ppp.

To evaluate the performance of GPR on two-pulse PTV data, we extracted the positions of particles at two
consecutive frames in each burst. The average streamwise displacement of particles between these frames is 5.0 vx.
The measurement volume is truncated to 316 x 197 x 79 mm to eliminate regions of low particle concentration near
the edges. In each burst, particle tracks are randomly partitioned into training and cross-validation data. Training
data are used to train and evaluate the model, whereas cross-validation data are used to check the accuracy of the
velocity field predicted by the model. To test the effect of seeding concentration upon reconstruction accuracy, we
withheld 90, 50 or 10% of the data for cross-validation, leaving ~ 1400, 6700 or 12,500 particles used to reconstruct
each snapshot.

Using these data, we train a model of the form described in §IIE using M = 38 spline basis functions with
uniformly spaced knots in the transverse direction, and 2L+ 1 = 65 and 2N 41 = 17 Fourier modes up to a maximum
wavenumber of 0.303 mm ™! and 0.260 mm™! in the streamwise and spanwise directions, respectively. For the most
sparsely sampled dataset (10% training, 90% cross-validation), we use M = 27,2L+1 = 33 and 2N+1 = 9 modes up to
a maximum wavenumber of 0.154 mm~! and 0.141 mm™" in the streamwise and spanwise directions, commensurate
with the lower seeding concentration. The model is trained with 120 snapshots of the particle velocities over six
epochs. In contrast to the channel flow, where the mean flow is fit using B-spline regression, we instead update the
mean flow field after each epoch based on the sample mean of the inferred weights w;. We found that restricting the
inducing points to only the L + 1 and N + 1 grid points within the measurement domain led to poor convergence
during training. Using the full 2L +1 and 2NN + 1 inducing points, corresponding to the whole grid, resulted in better
performance. Furthermore, to reflect the anisotropic nature of the measurement error, we fit a different noise variance
for each velocity component.
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4. VIC+ processing

To provide a comparison to an industry standard method, velocity fields were reconstructed on a regular Cartesian
grid using VIC+ [7, 8] in DaViS 10. Due to a limitation of DaViS, the grid resolution must be the same in each
direction. Therefore, in the TCF case, the velocity field is reconstructed on a uniform Cartesian grid with resolution
2.99, (62x129x 33 vectors), which is downsampled to match the GPR reconstruction. The first grid point of the VIC+
reconstruction is at x5 = —0.9918%h (y* = 1.47). In the HIT case, the resolution matches the GPR reconstruction:
65 X 65 x 65 vectors on a Cartesian grid with spacing 1.687. Likewise, in the prism wake case, we use a Cartesian
grid of 38 x 61 x 16 vectors with 32 voxel (5.27mm) spacing in each direction. This is matched exactly to the grid
used for GPR. In all cases, the flow field is solved using 40 iterations with de-noising factor of 0.001.

III. RESULTS
A. Homogeneous Isotropic Turbulence

How well does the training of the model recover the underlying covariance function in HIT? Figure 3a shows the
longitudinal (13) and transverse (15) correlations obtained from fitting (16) to the most sparse dataset £, = 13.4n
with the largest additive measurement noise tested, o = 0.03u’. This case is chosen to illustrate the robustness of the
training. The ground truth of Ryr(r) = R (re;) and Ryn = Rj;(re;) (j # 4, no summation implied) is uncertain
due to anisotropy at the largest scales of the motion; the shaded region reflects the variation in these estimates over
the principal directions e;. We observe good agreement between the estimates and the ground truth. The maximum
likelihood estimate is also consistent with the histogram estimates of Ry; and Ryx used to train the model. The
most significant deviations occur at the largest scales, where the statistical convergence is the poorest and the isotropy
assumption begins to break down. The inset of figure 3a shows that there is good agreement at small scales r < 107,
despite the fact that this training dataset contains fewer than one particle per (13.4n)3.

Figure 3b shows the model estimate of the dissipation rate e = —15vR’ ; (0) and the maximum likelihood estimate of
the noise as a function of the seeding concentration p, and true additive measurement noise o. Even with very sparse
data £, = 13.4n, the dissipation rate estimate is in error by less than 25% and under 1.1% at higher seeding densities.
The estimated measurement noise is also in good agreement. This demonstrates the ability of the product-of-experts
ML estimator (16) to recover fundamental statistics of the turbulent flow and correctly infer the measurement noise
with sparse data.

The fitting of the HIT regression model is insensitive to the number of hyperparameters used. We tested models
with half (k,, = 0,4,...256) and twice as many (k,, = 0,1,...256) hyperparameters for the o = 0.03u" noise level.
The estimates of the dissipation rate and noise differ by less than 0.3% and 0.6% respectively; there is negligible
(< 0.1%) change in the mean-square velocity error. We also tested a model with half the wavenumber resolution
(km = 0,2,...128, Kimazn = 0.94). For the highest seeding concentration cases, this results in a small change in
the model estimates of dissipation and noise (less than 0.7% and 1.6%, respectively). It improves the accuracy of
the dissipation and noise estimates in the lowest seeding concentration case, where the relative error in dissipation
reduces from 25% to 2.7% and the relative error in noise reduces from 19% to 14%. However, this results in negligible
(< 0.1%) change in the mean-square velocity error. We conclude that a model with Kmaxn > 0.94 is sufficient to
resolve the mean dissipation rate and that a lower resolution is preferable when training data are sparse.

Figure 4a shows an example of the reconstructed velocity field for a seeding concentration ¢, = 5.3 and additive
measurement noise corresponding to o = 0.03u/. There is a close agreement between the ground truth and recon-
struction, even in the presence of noise. The reconstruction uncertainty is shown in Figure 4b. Both the error and
uncertainty are least near particle locations, i.e. where the velocity field is sampled, and greatest in the gaps between
the input data. We also observe greater measurement uncertainty near the edges of the domain, where fewer data are
available nearby to predict the velocity field.

We quantify the accuracy of the GP reconstruction and uncertainty estimate as a function of seeding concentration
and measurement noise in Figure 5a. The accuracy of VIC+ reconstruction, applied to the same data, is included
to provide a comparison to the industry standard. In all cases, we observe that the mean square measurement
error with GPR is lower than VIC+; it is 50% smaller than VIC+ at the highest seeding concentration. Additive
measurement noise has little effect upon the reconstruction accuracy for the range of seeding concentrations tested here.
Interpolation error dominates: the measurement uncertainty scales approximately as p,, L. The spatial distribution of
the measurement error, averaged over the xo and x3 directions, is shown in Figure 5b. We find reasonable agreement
between the uncertainty predicted by GPR and the mean square error; for a typical level of additive measurement
noise, the model estimates the mean square error to within 22% of the true value at the highest seeding concentration.
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FIG. 3: (a) Comparison of maximum likelihood estimates of longitudinal and transverse autocorrelation function to
ground truth in HIT for o = 0.03u" and ¢, = 13.4n. The dotted line shows the domain size. The shaded region
shows confidence interval for ground truth, based on the variation of Ry and Ryy with orientation 7. The inset
shows the region r < 10n. (b) Estimated dissipation rate (e, left) and noise (o5, right) as a function of seeding
concentration and noise.
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FIG. 4: GP reconstruction of HIT with 8192 particles (¢, = 5.3n) and additive measurement noise ¢ = 0.03u’ across
the plane z3 = L/2. (a) Error in reconstructed velocity field (black vectors) compared to ground truth (red vectors)
and (b) estimated uncertainty. Black markers show particles within x3 &+ 3.3n.

The uncertainty near the domain edges is largest, but affects only a small proportion of the measurement domain. As
the seeding concentration increases, the extent of the affected region is reduced.

To test the local estimate of uncertainty, we define a standardised z-score for the error z = Au/o,, where Au is
the measurement error in a velocity component and o, is the associated uncertainty modelled by (2). Under the
Gaussian process Ansatz, z follows the standard normal distribution. One therefore expects that 95.45% of errors lie
within —2 < z < 2. Figure 6 shows the cumulative distribution function (CDF) of z for a noise level of ¢ = 0.03u’.
We observe that the CDF is closely approximated by the standard normal distribution. The 420, interval captures
at 93% of error values for £, = 5.3, rising to 94.4% for ¢, = 13.4n. The model therefore generates a good prediction
of the true 95% confidence interval.

Let us consider the spectral decomposition of error in the reconstructed velocity field. Figure 7 presents the spectral
coherence of the reconstructed velocity signal | B4y (k)|?/Eaa (k) Eyu (), where Eqy,, Ey, and Egq are the cross-spectral
density and spectral density of the ground truth w(zy,...) and reconstruction @(z1,...), respectively. This can be
thought of as the correlation coefficient between reconstructed and ground truth Fourier modes of the velocity signal.
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FIG. 5: (a) Volume average mean square error of GPR compared to compared to VIC+ and (b) the spatial profile of
the mean square error in comparison to the uncertainty predicted by GPR with o = 0.03u’ additive measurement
noise.
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FIG. 6: Cumulative distribution of the standardised error z = Au/o, for GPR of HIT with o = 0.03w’ at different
seeding concentrations, with the standard normal distribution shown in black. Dashed lines show the 95.45%
confidence interval corresponding to —2 < z < 2 for the normal distribution.

There is a sharp cutoff in the spectral coherence near a wavenumber 7 /¢, which corresponds to the Nyquist frequency
of a signal sampled the at the characteristic spacing of particles. There is a spurious peak at large wavenumber, which
is due to spectral leakage of the 64-point Hann window used. Gaussian Process Regression and VIC+ show a similar
frequency response, with VIC+ showing slightly better coherence at small scales but worse coherence at largest scales.
We conclude that the cutoff wavenumber for both VIC+ and GPR in this case is k. &~ 7/4,,.

B. Turbulent Channel Flow

The first step in training the TCF model is to estimate the mean velocity field. Figure 8a compares the ground truth
mean velocity profile to the velocity profile obtained from the least-squares fit of (25) to the noisy synthetic PTV data.
A total of T'= 360 snapshots were used. We observe that mean flow profile obtained from least-squares regression is
in close agreement with the ground truth, even at the lowest seeding concentration levels. The typical error in the
mean flow is very small, below 0.1% of the bulk velocity. In contrast, the mean velocity profile obtained from VIC+
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FIG. 8: (a) Mean velocity profile and (b) Reynolds stress profile in turbulent channel flow obtained from
least-squares fitting (25) and VIC+ for a seeding concentration £, = 124, in comparison to ground truth. The
abscissa shows the distance from the wall y* = (z3 + h)/d,.

interpolation exhibits large discrepancies near the wall. However, we caution that the strong agreement seen with
GPR here is likely difficult to replicate in practice, because our simulation conditions do not capture the increased
measurement errors and reduced seeding concentration often found in near-wall PTV [2]. Figure 8b compares the
ground truth Reynolds stress profile to the Reynolds stress profile obtained from a least-squares fit in the same form
as (25), which is used to bootstrap the model using the procedure in Appendix B. The least squares fit closely
captures the near wall turbulence, which exhibits a prominent peak near y* = (x5 + h)/d, = 15. In contrast, VIC+
substantially overestimates velocity fluctuations near the wall.

We bootstrap the GP model using the mean flow field and velocity variance profiles shown in figure 8 and iteratively
train the model following §II E. Each pass of the training dataset through this procedure constitutes one epoch. Figure
9 shows the convergence of the mean square velocity residual as the number of training epochs increases. Here, the
mean square residual is obtained by comparison to known ground truth. In practice, convergence can be identified by
cross-validation against a withheld portion of the dataset [15]. The model converges quickly: there are diminishing
returns for training beyond three epochs. Figure 9 also shows the effect of training with more or fewer training
data. Decreasing the number of training snapshots from 7" = 360 to 72 reduces the overall accuracy and results in a
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FIG. 9: Convergence of mean square residual of reconstructed velocity fields with increasing training epochs.
Markers correspond to different seeding concentrations whereas colours represent the number of snapshots used for
training. Dashed lines show the convergence of a half resolution model.

tendency to over-fit the data to noise, evidenced by a decrease in the model accuracy with further training epochs.
However, increasing the number of training data from 7' = 360 to 1512 snapshots results in a marginal increase in
reconstruction accuracy, despite a fourfold increase in computational cost. Therefore, in the following, we consider
models trained on 360 snapshots for five epochs.

To test the effect of model resolution, we also train a half-resolution model with 35 spline basis functions and half
as many Fourier modes (33 streamwise modes up to xk1h = 23.3 and 17 spanwise modes up to kgh = 45.2). This
reduces the number of hyperparameters sixteen-fold and the resulting model is around 40-60% cheaper to train and
query. The dashed lines in Figure 9 show the mean-square velocity error of the half resolution model trained with 360
snapshots. There is a modest difference in accuracy for ¢, = 196, and ¢, = 124,,, but for ¢, = 7.7, the mean-square
velocity error is a factor of two larger. This arises from the half resolution model’s inability to capture high-frequency
information from dense training data, which we address presently.

Does training the model recover the underlying correlation function? Figure 10 illustrates the correlation function of
streamwise velocity fluctuations Ri;(, ') trained on 360 snapshots from the most sparse dataset £, = 194,,. Despite
the sparsity of the training data, the spatial coherence of the velocity fluctuations is captured well in comparison
to the ground truth. As a more quantitative test, Figure 11 compares the streamwise velocity spectrum F1 (k1) to
the ground truth obtained from DNS at three representative wall-normal positions. These are obtained from the
streamwise velocity autocorrelation model Rjq(x,«’). Figure 11a shows that the spectral content of the near-wall
turbulence is adequately captured by the trained model at the lowest wavenumbers. However, the comparison is less
favourable further from the wall where the turbulence intensity is lower and fine-scale details are more difficult to
discern from the measurement noise. Figure 11b shows the relative magnitude of the trained model and ground truth
energy spectrum at different wall-normal distances, with wavenumber scaled by the seeding density scale as x¢,. The
model and ground truth are in good agreement below a cutoff wavenumber of around k.¢, ~ 1 — 2, beyond which
there is insufficient detail in the training data to discern flow features from noise.

Figure 12 compares typical reconstructions of the flow field made at a low seeding concentration ¢, = 196, and
additive measurement noise o = 0.01U,. The GPR-based reconstruction retains the spatial coherence of the hairpin-
like vortical structures near the wall. These vortex signatures are continuous and exhibit the characteristic elongated
shapes and tilted heads that are expected in wall-bounded turbulence. This reflects the ability of GPR incorporate
prior assumptions about smoothness and correlation scales in a statistically consistent manner. In contrast, the
VIC+ reconstruction fails to capture these features as clearly: the isosurfaces appear fragmented and less coherent in
space. Consequently, the GPR results display more physically realistic near-wall flow patterns, whereas VIC+ tends
to produce spurious features that obscure the true flow dynamics.

How accurately can GPR reconstruct velocity fields from PTV data in turbulent channel flow? Figure 13a shows
the mean square error in the velocity field obtained from GPR and VIC+ for different seeding concentrations. The
reconstruction error has a strong spatial variation and is largest near the peak in turbulence intensity at xo = —0.91h.
In all cases, GPR results in a significantly smaller prediction error: the volume averaged mean square error is smaller by
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have been offset by a factor of 107! and 1072, (b) Model spectrum, relative to ground truth.

FIG. 12: GPR (left) and VIC+ (right) reconstruction of flow field with from 903 tracer particles in channel flow
with o = 0.01U,,. Isosurfaces show contours of Q-criterion @™ = 0.0075 coloured by wall-normal velocity to identify
near-wall vortex structures.
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FIG. 13: Profiles of the mean square (a) velocity error Au and (b) vorticity error Aw from GPR and VIC+
reconstructions of the flow field. The black lines show the mean turbulent kinetic energy (u?) and mean enstrophy
(w?) of the ground truth to contextualise the reported error.

a factor of between 2.1 and 2.7 compared to VIC+. As in the isotropic case, there is a sharp increase in reconstruction
uncertainty near the edge of the domain at x9 = 0 due to the lack of data beyond the edge. The reconstruction
with VIC+ also exhibits very large error near the wall. A benefit of Gaussian Process Regression is evident in
this region, where awareness of the boundary condition and local statistics reduce the residual by over an order of
magnitude in comparison. A further benefit of GPR is apparent towards the centre of the channel at the highest
seeding concentration tested. Since GPR is a predictor, not an interpolator, the prediction accuracy can surpass the
noise floor.

How well is measurement uncertainty estimated by the model? The dashed lines in Figure 13a show the spatially
averaged prediction of the measurement uncertainty. The model tends to be overconfident: the prediction uncertainty
near the wall is underestimated by up to 60%, relative to the observed mean square error. However, the uncertainty
near the centreline is captured correctly and the trend with seeding concentration is correct. To understand why
this is the case, consider that the uncertainty lies within the smallest-scale (highest wavenumber) flow features of the
underlying velocity field. However, figure 11b demonstrates that the model fails to accurately capture the covariance
at wavenumbers beyond r. ~ £, L. As aresult, the true uncertainty is underestimated. This discrepancy is particularly
pronounced near the wall, where turbulent flow features are more energetic and smaller in scale.

In practice, we are often interested in the reconstruction of small-scale quantities such as velocity gradients. Figure
13b shows profiles of the mean square residual in the vorticity field evaluated using GPR and VIC+. Again, the
advantage of GPR is most pronounced near the wall, where the turbulence is strongest, and near the centre, where
measurement noise begins to limit the VIC+ reconstruction. Averaged over the measurement volume, the mean
square residual in the vorticity is between 1.7 and 2.6 times smaller with GPR in comparison to VIC+.

To quantify the spatial resolution of the reconstructed velocity field, we evaluate the spectral coherence of recon-
structed velocity fluctuations with respect to the ground truth in the streamwise direction. Figure 14a shows this
comparison at the near-wall turbulence peak, where the mean-square error in the reconstruction is the largest. In all
cases, we find Gaussian Process Regression offers an improvement in the spectral coherence of velocity fluctuations
reconstructed near the wall in comparison to VIC+. The spectral coherence improves with increasing seeding concen-
tration. Figure 14b shows that the coherence approximately collapses when the wavenumber is scaled with the seeding
concentration as k1¢,. However, the coherence varies with wall-normal distance and a single cutoff-wavenumber does
not describe the frequency response well. To illustrate this variation, we calculate an average spectral coherence over
the measurement volume. Based on the variation seen between the near-wall and volume average spectral coherence,
we conclude that a cutoff-wavenumber between 1 < k1€, < 2 adequately describes the frequency response.

The dashed lines in Figure 14 show the spectral coherence of velocity fields reconstructed using the half resolu-
tion model. The half resolution model exhibits almost identical spectral coherence below its maximum streamwise
wavenumber k1 h = 23.3, but drops off sharply thereafter. In the lowest seeding concentration cases, Figures 14 and 11
demonstrate that high-frequency information is not effectively learned, so this cutoff poses no significant detriment.
However, in the highest seeding concentration case, this simpler model neglects high-frequency information which can
be learned from the data. This highlights the importance of adjusting the model resolution to avoid over-fitting sparse
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FIG. 14: Spectral coherence of reconstructed velocity fluctuations in turbulent channel flow with respect to the
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by the average seeding concentration x1p, '~. The dotted lines in (a) mark the wavenumber p,’~.
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FIG. 15: Spatial inhomogeneity of (a) seeding concentration and (b) turbulent kinetic energy in the turbulent wake
of a square prism.

data by matching the model resolution to the cutoff wavenumber.

C. Turbulent Square Prism Wake

We test the performance of GPR under real-world conditions by applying it to the reconstruction of flow fields
in the turbulent wake of a square prism, as described in §IIH. This dataset is particularly noisy and exhibits
strong inhomogeneities in seeding concentration throughout the measurement volume, as illustrated in figure 15a.
Furthermore, as the distribution of turbulent kinetic energy shown in figure 15b demonstrates, this flow does not
exhibit the high degree of statistical symmetry found in our synthetic tests. This flow therefore represents a challenging
test case for GPR, since the model we have used assumes statistical homogeneity in the streamwise and spanwise
directions.

Figure 16a shows the mean-square cross-validation error obtained using GPR and VIC+ for varying concentrations
of the test data. At the lowest seeding concentration, the mean-square cross-validation error with GPR is around 25%
lower than VIC+, but is just 2% smaller at the highest seeding concentration. The cross-validation error is close to
model’s estimate of measurement noise for each velocity component, which corresponds to an RMS error of 11.4, 11.1
and 19.5 mm/s (0.57, 0.56 and 0.98vx) in the streamwise, transverse and spanwise velocity components. Furthermore,
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FIG. 16: Cross-validation of velocity field in the wake of a square prism. (a) Mean-square error, obtained using 10,
50 and 90% of the available data. The dotted line shows the noise estimate for each velocity component from GPR.
(b) CDF of the standardised cross-validation error for each velocity component at each seeding concentration,
obtained from GPR.

for both VIC+ and GPR, we observe that the cross-validation error does not have a strong dependence upon the
seeding concentration. In this case, recovery of fine-scale flow details by increasing the seeding concentration does not
significantly improve the cross-validation error, because this is dominated by error in the cross-validation data. Filled
markers in figure 16a show the mean square uncertainty of the model’s prediction. The average uncertainty in the
cross-validation data is predicted well by the model. Figure 16b shows the CDF of the standardised cross-validation
error. The distribution is more heavy-tailed than the standard normal distribution. Nonetheless, the 2o, confidence
interval predicted by the model covers between 92.9% and 94.6% of the cross-validation data.

To quantify the reconstruction of fine-scale flow features, figure 17 shows the mean enstrophy (w?) averaged over
the measurement volume. With VIC+, the enstrophy decreases as the seeding concentration increases, indicating that
significant noise in the vorticity field is present at low seeding concentration. With GPR, in contrast, the enstrophy
increases with increasing seeding concentration, which is expected as more data improves spatial resolution. To
estimate the contribution of the vorticity error to these statistics, we perform independent velocity field reconstructions
at two times, 16.5ms apart, using four consecutive frames. We do not expect the vorticity to change significantly over
this interval, since it is just 0.7% of the vortex shedding period. Note that temporal coherence of the output is not
enforced by the reconstruction method, since the velocity fields are obtained from separate inputs. The dashed line
in figure 17 shows the mean-square of the change dw in the vorticity field over this interval. Figure 17 demonstrates
that, both in absolute and relative terms, the GP reconstruction of the vorticity field is substantially more coherent in
time. The discrepancy between vorticity fields is 2.1 — 5.3 times smaller in absolute terms, or 1.7 — 3.3 times smaller
relative to the mean enstrophy. This is also demonstrated in the supplementary videos, which show the temporal
evolution of the flow field and fine-scale vortices identified using the Q-criterion.

IV. CONCLUSION

Physics-informed Gaussian process regression offers a powerful and transparent method for PTV data assimilation.
It incorporates statistical and physical information to predict dense velocity fields from scattered data, accompanied
by uncertainty estimates and models of the two-point velocity covariance, enabling further analysis such as POD.
Furthermore, given the input data, the statistical distribution of the underlying velocity field is predicted. This can be
sampled using the Matheron update rule to train the model, or used for uncertainty propagation. We have introduced
methods to create and train physics-informed Gaussian process models of turbulent flows. These methods explicitly
incorporate mass continuity, boundary conditions and statistical symmetries such as isotropy and homogeneity into
the covariance model, permitting a reduction in complexity compared to more general models (e.g. RBF networks)
by exploiting known flow physics. These were tested on synthetic and experimental PTV data with varying levels
of seeding concentration and noise for three canonical turbulent flows: homogeneous isotropic turbulence, turbulent
channel flow and a square prism wake.

In the case of HIT, we have demonstrated that an isotropic, two-point correlation function can be learned by a
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FIG. 17: Volume-average mean-square vorticity magnitude (w?) obtained for different effective seeding
concentrations using GPR and VIC+. Dashed lines show the mean-square difference in the vorticity field between
reconstructions obtained 16.5ms apart.

maximum-likelihood product-of-experts method with a trivial cost that scales quadratically with the number of data.
Even with very noisy and sparse data, the two-point correlation function can be recovered and provides accurate
estimates of fine-scale information such as the kinetic energy dissipation rate. Tests with synthetic PTV data showed
that the model outperforms the industry standard by up to a factor of two in terms of mean-square error in the
velocity field prediction. The uncertainty estimates of these predictions were also shown to be in good agreement
with the observed mean-square-error. Measurements of the spectral coherence of the reconstructed flow field against

ground truth show that the flow features can be resolved up to the average Nyquist rate ﬂpgl,/ 2

In the case of TCF, we have introduced a mixed Fourier/spline feature based GP model that captures spatial
inhomogeneity in the wall normal direction, homogeneity in streamwise and spanwise directions, incompressibility and
the no-slip boundary condition. Even with these symmetries, the model has millions of hyperparameters, necessitating
the use of large datasets to train it. To address this, we have introduced a novel, scalable algorithm to train on very
large datasets using a modified expectation-maximisation approach based on sampling conditional realisations of the
underlying turbulent process using the Matheron update rule. The complexity of training is the same as inference.
This algorithm recovers well the structure of the two-point covariance of the velocity field, even with few, sparse and
noisy training data. This model shows order-of-magnitude improvement over VIC+ in reconstructing the near-wall
velocity fluctuations in terms of the mean square velocity and vorticity error, and by a factor of 2.1 — 2.7 on average.
It also provides reasonable (although overconfident) estimates of the prediction uncertainty. The spatial resolution of
the inferred two-point velocity correlation and flow fields is limited by the seeding concentration p, and the maximum

1/3
resolvable wavenumber scales as pp/ .

As a real-world test of the method, we applied the GP model developed for turbulent channel flow to LPT measure-
ments of the turbulent wake behind a square prism. This flow does not possess the streamwise statistical homogeneity
found in turbulent channel flow. For this particularly noisy dataset, cross-validation confirms that the model closely
predicts the uncertainty of its outputs. A modest improvement in the velocity cross-validation error is achieved with
GPR in comparison to VIC+. However, GPR demonstrates significant improvement over VIC+ in the temporal
coherence of the vorticity fields obtained from two-pulse PTV data.

There are several directions for future research. Firstly, it remains to be quantified how well these models would
perform in more complex flows that do not possess the statistical symmetries found here. We have considered inference
from a single time instant: as we have shown, these models can be easily extended to multiple timesteps, which would
allow the temporal coherence of LPT data to be leveraged. Acceleration information from particle tracks could be
incorporated by adding a penalty on the model’s prediction of the material derivative to (5). Whilst this becomes a
non-linear minimisation problem which precludes using (1) or (2), it allows momentum conservation to be included
in the physics and retains the Bayesian framework. Resolvent analysis could be used to prescribe models a-priori, or
with fewer parameters: [42] provide models of the covariance structure of turbulent channel flow which require only
the mean flow profile to construct. We plan to explore these ideas in future work.
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Appendix A: Modified EM algorithm for training stationary GP models

Input: Noisy observations {(X¢,y:)}i1, inducing points X, = {nAxz}_,, Fourier frequencies v, = 7wn/Ls, initial
hyperparameters 8y and o3, number of iterations I, number of samples per observation S
Output: Learned hyperparameters 0, noise variance o2
Initialize 8 < 8y and o2 + o&;
fori=1to I do
Initialize X2 < 0, N,2 < 0 and R, < 0 for all j = —N,..., N ;
fort=1to T do
for s=1to S do
Sample the prior distribution w, ~ N (0, Kuww), € ~ N (0, 021) ;
Compute y, @Iw* + € ;
Draw posterior weights (30) wi. + ws — Kuwy, Ky, 'y, (Yt — Ys) ;
Draw posterior samples 2, < <I>I'wt* and €44 +— Yt — <I>Iwz* ;
Accumulate model noise 2 += ||€w||3, N2 += N; ;
Accumulate autocorrelation R;:
for j = —N to N do
for n=0to N — |j| do
Ry += 2822l 151 /ST(N = [j] + 1) 5
end

end

end
end
Update 0 by solving constrained least-squares problem (29) ;
Update noise o2 + £,2/N,2
end
Algorithm 1: Modified Expectation-Maximisation algorithm for training large, stationary 1D GPs using
Matheron’s update rule

Appendix B: Gaussian blob initial condition

To bootstrap the training of the model hyperparameters, we require an initial guess for the coefficients H,, in
(21) which are consistent with the constraints upon the model. The idea is to use a covariance function resembling
a Gaussian blob which is projected onto the constraints and then tuned so that the variance matches single-point
statistics of the data.

After fitting (25) to the data, we fit a profile to the single-point, normal Reynolds stresses to velocity fluctuations
as e.g.

(uhuh)(x) = a11,m B (22) (B1)
by minimising the sum-of-squares residual
T N, )
Z Z ((el : Vn,i&)2 - all,mBm(Xn,t : e2)) (B2)
t=1n=1

over the coeflicients a1 ,,,. This initial guess is biased by the noise, but
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We specify Gaussian blob model
L N 22 2 52 . .
Ry(1o,h,71,m3) = 3 > B (22) AB(h)e” N hatrnts)ehimtivars (B3)
l=—Ln=—N

where ®, € R3MX3 correspond to a set of Gaussian RBF features centred on grid points T2,m

bg(z) 0 0
g la) = (e e/ (B4)
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The parameters ¢, 5 and {3 represent characteristic widths of the Gaussian blob in each principal direction. For the
turbulent channel flow, we choose ¢; = 0.2h,¢> = 0.05h and ¢35 = 0.1h, which roughly correspond to the correlation
length-scales found in the flow. The matrix A € R3M*3M ig diagonal with non-negative entries. It represents the
variance of the Gaussian RBF features and prescribes the spatial dependence of the variance. We now seek to project
(B3) onto (21) in a manner which best approximates (B3) but satisfies the constraints in the spline basis. Matching
Fourier terms between (B3) and (21), we have the kernels

Ry (22, 2)) = @;(mg)Ai’g(x’z)e*(/\%“ifg)

(B5)
Ry (z2, 55/2) = CI)T(z2)Qn®n@LQNT'I’(x,2)

We would like to approximate Ry (z2,25) = Ry (22, x5). Since the basis functions are different (constrained splines
versus unconstrained Gaussian RBFs), we can at best make an approximate correspondence over a set of grid points.
Evaluating the Fourier coefficients of the Gaussian blob kernel (B5) at grid points xg ., 25, yields the positive
definite Hermitian matrix 7

Rg(22,1,221) .. Rgu(z21,%2,0m)
Rg,n,m — L c (C3M><3M (BG)
Ry (w20, 221) .. Ry w(®an, 220r)
We define Ry, 5 similarly for R, (z2,2%). Both can be obtained by evaluating the spline/Gaussian RBF features at

the grid points with features ®, = [®(221),...,P(z2,0)] and By = [Py(z2,1),...,Py(z2,1)]. We then find the
kernel hyperparameters which minimise the Frobenius norm distance

IRk — Recellyn (B7)

We note that, from Parseval’s theorem, minimising (B7) for each wavenumber is equivalent to minimising the sum-
of-squares distance between (21) and (B3). The solution is

H, = QnPL,ngﬁ,an,wQL (BS)

where Py, 5 is the Moore-Penrose pseudoinverse of Q,{T@m.
It remains to specify the variance of the Gaussian blob features A. Substituting the solution (BS8) into (21), the
covariance of the velocity field at ro = r3 = 0 over the grid points x5 ,,, x'2_’m is

R, = Z ®LQ.Pf P AP, P Q. P, (B9)

and the velocity variance corresponds to the diagonal of this matrix. We then set up a linear system of 3M equations
in 3M unknowns corresponding to the diagonal entries of (B9) and A. This is solved in the least squares sense, subject
to the constraint that A is non-negative.
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