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SUMMARY:
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1. Introduction

In a variety of experiments, especially in biological studies, there can be more flexibility

over the control of design variables than is the norm in standard experimental designs. In

particular, it is becoming increasingly common to run studies where the value taken by

one or more profile variables can be adjusted during a single run of the experiment. Hence,

for these variables optimal design concerns how to vary their values through the choice of

a function for each variable in each run of the experiment. We refer to such examples as

dynamic experiments.

Previous research on the design and analysis of dynamic experiments can mostly be

classified under one of two different frameworks.

(i)

Optimal design for dynamic mechanistic models, usually derived as the solution to a set of
differential equations, which naturally incorporate time-evolving behavior. Early work was
reviewed by Titterington (1980). Further developments have often come from the field of
control theory (e.g., Espie and Macchietto, 1989), especially applications in chemical and
biological processes where dynamical systems abound (e.g., Braniff and Ingalls, 2018). The
methods and designs are often quite closely tailored to the specific experiment or model
being studied.

Response surface methodology, typically using standard designs. Georgakis (2013) pro-
posed the extension of standard response surface methodology (RSM) to include profile
variables. Designs were obtained through application of standard RSM or optimal designs
to the so-called sub-factors defined by a dimension reduction of the profile variables
(see Section 2). Roche (2018) applied related methods to nuclear safety experiments
and extended the approach to include data-driven dimension reduction, e.g., principle

components analysis. These ideas have now seen fairly wide-spread adoption in a variety
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of pharmaceutical applications, see Georgakis (2024), including extensions to experiments

with functional responses.

Our work fits within this second framework, and is motivated by biopharmaceutical process
development via experiments using an Ambr250 modular bioreactor system. Such a system
allows process conditions to be individually controlled for each reaction. A typical experiment
would measure the concentration of the product of interest from each reaction (run of the
experiment) after a fixed time period, usually of the order of two weeks.

Design of experiments methods have seen considerable uptake on such systems; for ex-
ample, Tai et al. (2015) applied a definitive screening design to perform variable screening.
However, previous applications of statistically designed experiments in such systems have
only employed traditional static variables, whose values are set and kept constant through
each individual run. Several studies have, though, highlighted the potential benefits of
dynamic experimentation. Yoon et al. (2003), Trummer et al. (2006) and Rameez et al. (2014)
all found that varying the temperature during a reaction can increase concentration. Lu
et al. (2013) discussed the increase in concentration that could be obtained from a dynamic
feeding strategy in place of the usual fixed bolus feeding. However, none of these studies used
experiments specifically designed to estimate the effects of profile variables.

To study the applicability of such suggestions to their own studies, our collaborators at
GlaxoSmithKline (GSK) wanted to design and run a series of dynamic experiments. We
use one of these experiments to demonstrate our novel approach to designing such studies.
The practicalities of the experiment involved varying three static variables: initial viable
cell concentration, pH, and temperature, and one profile variable: feed volume. The study
aimed to investigate the titre content of the product (concentration), with the eventual aim
of optimizing cell growth.

In this paper, we present a novel Bayesian approach to designing experiments with profile
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variables, assuming a scalar-on-function linear model (Section 2). Optimal designs are found
exploiting the connections between this model and standard linear model theory (Section 3).
The impact of the model on the resulting designs is explored via illustrative examples (Sec-

tion 4) and methods demonstrated via application to the Ambr250 experiment (Section 5).

2. Scalar-on-function linear models and basis representations
2.1 Scalar-on-function linear models

Suppose there are J profile variables that can be controlled over a time interval 7 = [0, 77,
where z;(t) denotes the value of the jth profile factor at time ¢t € 7. For j =1,...,J, it is
assumed that x;(-) € X; C L3(T), where £2(T) is the set of all square integrable functions
on 7. The sets A}, ..., X are determined by the nature of the experiment and the profile
variables. For example, if the jth profile variable cannot be changed over 7, then & will be
the set of constant functions. Therefore, a standard, static experiment with fixed controllable
variables is a special case.

The experiment consists of n runs. For ¢ = 1,...,n, the ith run consists of specifying
the J controllable profile variables, @;(t) = [z (t),...,zi;(t)]" € X = X, x --- x Xy, and
measuring the scalar response, y;, at time t = T.

To investigate the effect of the J profile variables on the response, we assume a scalar-on-
function linear model (e.g., Ramsay and Silverman, 2005, pages 261-277). Specifically, it is

assumed

/fazl B() dt + 6 ()
fori=1,...,n. In (1), flzt)] = {filx@)],..., folx(®)]}" is a vector of regression functions
of the profile variables, controlling the complexity of the model, where it is assumed that
fs: X = G, C L3(T). For example, a first-order model with an intercept has f[x(t)] =

[1,2(t)]". Furthermore, B(t) = [Bi(t),. .., Bo(t)]" is a Q x 1 vector of unknown functional
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parameters. It is assumed that 3,(t) € B, C L*(T). Lastly, €,...,€, are random errors,
which are assumed independent, with expectation E(e;) = 0 and variance var(e;) = 0% < o0,
for i = 1,...,n. The interpretation of the functional parameter 3,(t), for ¢ = 1,...,Q, are
that the times with large absolute value of 3,(t) have highest influence on the response (Reiss
et al., 2017).

The model given by (1) with univariate functional parameters will often provide a su-
ficiently flexible representation of the data-generating process. It is a special case of the
multivariate functional parameter model of Yao and Miiller (2010); see Supplementary Ma-
terial SM1. However, multivariate functional parameters are not straightforward to interpret,

hence we focus on the simplification to univariate functional parameters.

2.2 Basis expansions

2.2.1 Functional parameter basis expansion. The functional parameters fi(t),. .., Bo(t)
in model (1) are infinite-dimensional. Estimation from a finite number, n, of scalar responses,
Y1,---,Yn, can be achieved by assuming a parametric form via a finite basis expansion
(Ramsay and Silverman, 2005, page 44).

For ¢ =1,...,Q, the basis expansion of j,(¢) is

mg,q
Bq(t) = Z Oqubai(t) = bq(t)Teqv
=1
where the functions by (t), . . ., bgm, , (t) are known basis functions and 6, is an mg 4 x 1 vector
of unknown coefficients. Consequently, the problem is reduced to estimating p = fozl mga.q
unknown coefficients given by 8 = (01, ...,04)". A special case of a scalar parameter, 0,, is

represented by the single (mg, = 1) basis function b,(t) = 1. We can write 3(t) = B(t)'0,
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where B(t) is a p x ) block diagonal matrix with gth block given by b,(t), i.e.

[ bu(t) 0 _
s | by(t) 0
0
I bo(t) |

2.2.2 Profile variable basis expansion. In the design of experiments setting, we have the
freedom to specify the profile variables x(t),...,x,(t) to optimise gain in information in
estimating the functional parameters (3(t), or equivalently coefficients @, from the scalar
responses yi, . . ., Y. Similar to Section 2.2.1, x;(t), for i = 1,...,n, are infinite-dimensional.
To make the optimisation problem tractable, we again use a finite basis expansion. For

1=1,...,nand y=1,...,J,

Mg,j

zii(t) = Y vigea(t) = v5e5(t) (2)
=1
where ¢;i(t), ..., Cjm,,(t) are known basis functions and ~,; = (Vij1, - - -, Vijm, ) are coeffi-
cients. Let T' = (v11,...,7,7)" be the n Z;]:l m,; X 1 vector of coefficients.

For observational data, I' are estimated and treated as fixed in the estimation of 6.
Conversely, in design of experiments, I' are specified to optimise gain in information in
estimating @ (see Section 3). A sufficiently complex basis expansion should be chosen so that
an optimal choice of T" leads to the profile variables reconstructed via (2) providing a good

approximation to the optimal infinite-dimensional profile variables.

2.3 Standard linear model representation of the scalar-on-function linear model

The key to design of experiments for scalar-on-function linear models is the observation that
the model given by (1), under the basis expansions of Section 2.2, can be written in the form
of a standard linear model. This observation has been made previously (e.g. Reiss et al., 2017)

for the case where J = 1 and the regression functional is of the form f [z;(t)] = [1,z:(t)]".
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Below we extend this representation to J > 1, and more general forms of the regression
functional.

The gth element, f,[x;(t)], of the regression functional can be written as f, [z;(t)] =
IL.c 7 Tiq(t), where F, is a set defining the ¢th term. The members of F, belong to the set
{1,...,J} and can be repeated. For example, the intercept has F, = @, the main effect of the
gth profile factor has F, = {j}, the quadratic effect of the jth profile factor has F, = {j,j}
and the two-way interaction between the jith and jyth profile factors has F, = {ji, ja}-

The model given by (1) can now be written as

Q
yi:[rz H YiaCa(l) | be(t) 6, dt + €;. (3)

q=1 |aeF,

Using properties of Kronecker products (denoted by ®)
14T

I viea®) = | @ via| |Qeald)] (4)

acFy acFy acFy

where @, 7 Vio and @), 7, €a(t) are both [ . myq x 1 vectors. Note, we use the conven-
tion that a Kronecker product over the empty set, &, is one.
Substituting (4) into (3) gives y; = Z(?:l 23,04 + €;, where

2ig = /T b,(1) | R )| dt | R) v (5)

aEFy a€Fq

is an mg, x 1 vector. Therefore, the model can be written in the form of a standard linear
model as y = Z0 + €, where y = (y1,...,Yn), € = (€1,...,€,), and Z is an n X p model

matrix given by

R
7 —
Zn . Zng
Note that Z is a function of the coefficients, T' = (v,4,...,7,7) ", of the basis expansion of

the profile variables. However, this dependence is suppressed in the notation for clarity.

From (5), zig = Rg @,cr, Via Where Ry = [ b4(t) e, €a(t)T dtis an mg g X [[ ez Maa
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matrix. The elements of R, are integrals of products of basis functions. The exact form of
the integrands will depend on the choice of basis functions for both the z;(t)’s and 3,(t)’s.
However, for any combination of monomial and B-spline basis functions, we show, in Section
SM2 of the Supplementary Material, that the integration can be performed in closed form.

We also provide a closed form expression for the elements of R,.

3. Optimal design for scalar-on-function linear models

3.1 Basis expansions and constraints

The aim is to specify the vector of profile variable coefficients I' (subsequently referred to as
the design) to optimise gain in information in estimating the unknown functional parameter
coefficients . This will be achieved by minimising an objective function ¥(I'). The choice
of objective function will be addressed in Section 3.2.

However, beforehand, there are several issues that need discussion, in regards to the basis
expansion of both the functional parameters and profile variables, and the complexity of the
model specified by the regression functional, f(-). These matters will need addressing before
the experiment, and therefore can be considered as part of the design process.

The basis functions, b (t),...,bg(t) of the functional parameter expansion need specifica-
tion. For these functions, we consider monomials and B-splines. Any combination of these,
combined with B-splines for the profile variable basis expansion, leads to the integrals in the
model matrix Z being available in closed form (as discussed in Section 2.3). Monomial basis
functions have the advantage of higher interpretability but B-splines are more computation-
ally efficient.

The complexity of the scalar-on-function linear model needs to be specified via the regres-
sion functional, f(-) = [fi(+),..., fQ(-)]T, and the number of basis functions, mgy, ..., mgg.

)

Specifying the complexity of a statistical model before observing the responses is a challenge
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shared by all applications of optimal design of experiments (e.g. Atkinson et al., 2007, page
329). It is a subjective decision which should be made in consultation with the researchers,
considering the number of runs, n, in the experiment and, potentially, the estimability of
0. On this last point, for ZTZ to be non-singular, and the least squares estimates of 6 to
exist, the n x p model matrix Z requires full column-rank. A necessary, but not sufficient,
condition for this to occur is that p = Zqul mg,, < n. This places an upper bound on the
complexity (mgy,...,mgg) of the basis expansion of the functional parameters, based on
the available experimental resources (n).

Similarly, the functions, ¢;(t), ..., ¢;(t), and numbers, m, 1, ..., m,, s, of the profile variable
basis expansion need specification. Ultimately, there will be a compromise between specifying
profile variables @ (t),...,x,(t) that are simple enough to be implemented in a physical
experiment but complex enough to provide a good approximation to the actual optimal
infinite-dimensional profile variables. The former can be determined in consultation with the
researchers. The latter can be investigated as part of minimising the objective function W(-)
(see Sections 4 and 5 for examples).

For the basis functions, ¢(t),...,c;(t), the proposal is to use B-splines. These offer two
distinct advantages. Firstly, in combination with B-spline or monomial basis functions for
the functional parameter basis expansions, the integrals in the model matrix are available in
closed form. Secondly, as shown below, it is straightforward to implement constraints on the
profile variables x;(t), for i = 1,...,n, via simple constraints on the elements of design T.

Often, the profile variable x;;(t), fori = 1,...,nand j = 1,..., J, will be constrained in the
experiment such that z;; : 7 — [a;, b;]. For example, if z;;(¢) represented the temperature
at time t € 7 for the ith run, then a; and b; are the minimum and maximum possible
temperatures, respectively.

Suppose, for j = 1,...,.J, the basis functions c¢;(t), ..., cjm, ,(t) are B-spline functions.
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Using the property of B-spline functions that >°,"%7 ¢;;(t) = 1 for t € T, if the elements of Vij
are such that v;;; € [a;,b;], for all | = 1,...,m,;, it follows that x;;(t) = >°,27 vijcu(t) €
laj,b;] fort € T.

To implement B-spline basis functions for z;;(¢), the number, k;, and location of the internal
knots need to be specified. It is common to choose uniformly spaced internal knots and we
use this approach in this paper. However, the location of the knots could be incorporated
into the design problem. For maximally smooth basis functions, m, ; = k; +d; 4+ 1, where d;
is the degree. Thus the number of internal knots is specified by the number of basis functions,
m ;, and the degree.

The following lemma can aid in choosing the number of basis functions. It gives a lower
bound on the complexity of the profile variables for the chosen complexity of the scalar-on-

function linear model. The proof is provided in Section SM3 of the Supplementary Material.

LEMMA 1: A necessary, but not sufficient condition, for the least squares estimates of

the functional parameter coefficients, 8, to exist, is mg, < Haefq My, forallg=1,...,Q.

Lemma 1 states that the degree of complexity of the basis functions for the functional
parameters demands a minimum degree of complexity in the basis functions for the associated
profile variables. However, this result says nothing about the maximum degree of complexity
for the profile variables. From empirical evidence, for example from the illustrative example in
Section 4, it appears that continuing to increase the complexity of the profile variables whilst
keeping the complexity of the functional parameters, and amount of experimental resources
(n), fixed leads to a, perhaps anticipated, plateau in the expected gain in information from

the experiment.
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3.2 Objective functions via Bayesian decision-theory

We formulate objective functions to find designs by using a Bayesian decision-theoretic
approach. Bayesian decision-theoretic approaches for optimal experimental design are well
established in the broader literature (e.g. Chaloner and Verdinelli, 1995; Ryan et al., 2016;
Rainforth et al., 2024). Our contribution is to develop this framework for scalar-on-function
linear models, which to our knowledge has not previously been addressed. The Bayesian
approach has the advantages that the experimental goal can be incorporated via the choice
of loss function and all assumed sources of uncertainty are accounted. The post-experiment
analysis does not necessarily need to be undertaken under a Bayesian approach.

Bayesian decision-theoretic design (or Bayesian design) starts with specification of a loss
function, denoted ¢(0,y,T'), giving the loss in estimating parameters 6, using responses y
obtained from an experiment with design I'. The objective function, ¥(T'), follows from the
expected loss L(T") = E, oir [€(0,y,T")], where expectation is with respect to the joint prob-
ability distribution of the responses y and parameters 6. This joint probability distribution
of y and @ is given by the distribution of the responses y given 8, and the prior distribution
of 8. Note that the expected loss can always be written as L(I') = ¢ [¥(T")], where g()
is a monotonically increasing function. Therefore, it is sufficient to minimise the objective
function ¥(T") in place of L(I).

The Bayesian design is given by minimising the objective function W(I') over the space of
all designs. Recall from Section 3.1, that if the profile variables are constrained such that
vy o T = [aj,bj], fori=1,...,nand j =1,...,J, then it is sufficient for v,; € [a;, b;], for
l=1,...,my;,t=1,...,nand j =1,...,J. This defines the space of all designs.

For the scalar-on-function linear model, the distribution of y given 0 follows from specifi-
cation of a distribution for the errors €y, ...,¢€,. For analytical tractability, we assume that

the errors are normally distributed. For the prior distribution of @, we assume a multivariate
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normal distribution with mean p and variance 02X, where p and X are a specified p x 1
vector and p X p matrix, respectively. The matrix ¥ is termed the prior scale matrix. We also
assume an inverse-gamma prior distribution for the nuisance parameter of the error variance
o?. The shape and rate parameters are a/2 and b/2, respectively, where a and b are specified
scalar constants.

-1

Let p =% (ZTy+ X 'p), 2= (272 +%7") La=a+nandb=b+p™S 'u+yTy -

ﬂTﬁl_lﬂ. Under the above prior specification, the marginal posterior distribution of 0 is a
multivariate t-distribution with mean f, variance b3/(a — 2) and a degrees of freedom.

There are several prior hyperparameters, u, 33, a and b that require specification. However,
for the loss functions considered in this paper, the expected loss only depends on the prior
scale matrix Y. There are various approaches to specifying 3. It can be specified using prior
information: either subjectively via prior elicitation (e.g. O’Hagan and Forster, 2004, Chapter
6) or using the results of a previous experiment, i.e. use 3 :=13. The prior scale matrix can
also be specified to represent prior ignorance. Specifying X! to be the p x p matrix of zeros
implements a uniform prior distribution for 8. Under such a prior distribution, the posterior
distribution still exists (i.e. is proper), as long as p = Zqul mp, < n. Also, as discussed
below, under such a prior distribution, and choice of certain loss function, the expected
loss objective function is equivalent to commonly-used objective functions from the classical
design literature (e.g. Chaloner and Verdinelli, 1995). Lastly, ¥ can be used to implement
a roughness penalty on the functional parameter basis functions (see Section 6 and Section
SMT of the Supplementary Material).

In Sections 4 and 5, we consider the squared error (SE) loss function given by the sum of

squared differences of the elements of @ and their marginal posterior means, i.e.
lsp(0,y.T) = (6 — )" (6 — fu).

It follows (see Section SM4 in the Supplementary Material for derivation) that the SE

11
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objective function given by the expected SE loss is Ugp(I') = tr <i) Note that finding
the Bayesian SE design does not require the prior mean, p, nor the prior shape, a, or rate,
b, parameters to be specified.

If an improper uniform prior distribution is assumed for @, whereby the elements of
7! are zero, then the SE objective function reduces to Wgp(T) = tr [(ZTZ)_I}, and the
corresponding Bayesian design is equivalent to the classical A-optimal design.

As presented above, the loss function is in terms of the functional parameter coefficients
0. However, these may not be of direct interest. Rather, interest may lie in implied functions
B(t) = [pi(t), ... ,6Q(t)]T. Therefore, we propose an alternative loss, in terms of @, that is
given by integrating a loss, in terms of 3(t), over T.

As an example, consider the SE loss in terms of 3(t) given by

lsp(B(t),y,T) = [B(t) — Eguyyr (B1)] " [B() — Eguyyr (B1)]

where Egjy,r [B(t)] is the marginal posterior mean of B3(t). Using properties of the multivari-
ate t-distribution, the posterior distribution of 3(t), for ¢ € T, is multivariate t-distribution

with posterior mean Eggy, 1 [B(t)] = B(t)" fb. The implied loss in terms of 6 is now

éWSE(Ovyvr) = /TKSE(IB(t)ayaI‘) dt,
_ /T [B(1)™0 — Bt a]" [B(1)'6 — B()Tq] dt

= (0—f)' B (0-f),

where By = [ B(t)B(t)" dt is a pxp matrix. Thus the implied loss in terms of 8 is a weighted
squared error (WSE) loss. The corresponding objective function is ¥y sg(T') = tr [B 12} (see
Section SM4 in the Supplementary Material for derivation) . Under an improper uniform prior
distribution for 6, the Bayesian WSE design is equivalent to a classical L-optimal design (e.g.

Atkinson et al., 2007, Section 10.5).
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4. Illustrative experiment with a single profile variable

In this section, we consider an illustrative example where Bayesian designs are found for
an experiment with J = 1 profile variable. The time interval is 7 = [0,1], i.e. T = 1.
The regression functional is f [z;1(t)] = [1,z;1(t)], so that @ = 2 and the model is y; =
Bi+ [ Bo(t)za(t) dt + €, for i =1,...,n.

For the basis expansion of x;1(t), we consider degree-zero B-spline basis functions with
uniformly spaced internal knots. If there are m, ; basis functions, then this amounts to each
z;1(t) being a step function on 7 = [0, 1], where the discontinuities correspond to the internal
knots Ai1,..., Ak, where ky = m,; — 1. Explicitly, for [ =1,...,mg,

1 oift e [Aye1, Ag);

Cll<t> =
0 if otherwise;

where Ao =1 and Ay, , = 1.

Step functions are an important and useful tool in practice. For instance, Rameez et al.
(2014) considered an Ambr bioreactor application with a temperature step shift from the
high to the low level. We will vary the number of basis functions, m, ;, which is equivalent
to varying the complexity of the profile variable, to investigate the effect on the performance
of the design through the expected loss.

For the basis expansion of the functional parameters, [, is a constant so mg; = 1 and
b1(t) = 1. For 55(t), we consider two cases with monomial basis functions. In Case I, mg o = 2,
by(t) = (1,1)T, giving p = 3. In Case I, mgy = 3, by(t) = (1,¢,¢*)T, giving p = 4.

For both cases, we find Bayesian SE and WSE designs with number of basis functions for
the profile variable m,; = 2 (not Case II), 3,4, 8, 16,100 and n = 4,12. Note that m,; = 2
is forbidden for Case II since the least squares estimate of @ does not exist for this value
(see Lemma 1). Section SM5 of the Supplementary Material gives expressions for the two
matrices, R and Ry, which feature in the model matrix Z, and the weighting matrix, By,

for Bayesian WSE designs.

13
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The design, T, is a vector with nz;;l My ; = nmg, elements. The profile variable x;; (%)
is assumed to be constrained to [—1, 1] meaning the elements of I" are also constrained to
[—1,1] (see Section 3.1). In each scenario, the coordinate exchange algorithm (Meyer and
Nachtsheim, 1995) is used to minimise the objective function from 1000 random starts, as
suggested by Goos and Jones (2011).

The methodology is implemented in the fdesigns R package (Michaelides et al., 2025).
The Supplementary Material includes a vignette that demonstrates how to find the designs

discussed in this section and in Section 5.
[Table 1 about here.]

Table 1 shows the values of the SE and WSE objective function for the respective optimal
designs for each value of m,; and n. Clearly as n increases, the expected loss decreases.
Typically, as the number of basis functions, m,, 1, increases, the expected loss decreases, since
the finite-dimensional representation of the profile variable becomes a better approximation
to the optimal infinite-dimensional profile variable. The rate of this decrease slows as m, ;
increases allowing a compromise to be made between profile variable complexity and gain
in information. This sensitivity to m,; also depends on the choice of functional parameter
basis. In Case I, even small values of m, ; already achieve near-minimal expected loss, so
relatively simple profile-variable bases provide designs that are close to optimal. In Case II,
the designs are more sensitive. Increasing m, ; leads to more noticeable reductions in expected
loss, and somewhat larger bases are required. Nevertheless, once a moderate number of basis
functions is reached, further increases yield little additional gain. These results reinforce the
discussion in Section 3.1, highlighting the importance of aligning the complexity of the profile
variable basis with that of the functional-parameter basis to avoid unnecessary increases in
dimensionality and computational burden. The exception to expected loss decreasing with

my 1 is for m,; = 2 for Case I. The uniformly-spaced internal knots for m,; = 2,3,4 are
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{%}, {%, %} and {i, %, %}, respectively. A change at the knot at t = % is important for small
m, 1 and its absence for m,; = 3, leads to higher expected loss than for m,; = 2.

Case II naturally yields larger expected-loss values than Case I (see Table 1), because the
number of parameters increases with the quadratic term in the functional parameter basis.
For this reason, absolute magnitudes of the objective functions are not directly comparable
across cases. Instead, the focus should be on the structural features of the resulting profile
variables. In Case I, most functions have a single step change, with some allowing two
step changes. In contrast, in Case II, the designs have two step changes in most functions,
with some profiles having three step changes. This additional flexibility reflects the need to
capture the curvature of the quadratic parameter functions. These results indicate that the
robustness of the design depends on the modelling choice, i.e., Case I designs are simpler
and more stable, whereas Case II designs require more complex step functions which are still
stable once sufficient flexibility is introduced.

As an example, Figure 1 shows the profile variables z11(t), ..., x4 (t) for the n = SE design

for Case I with m,; = 8 basis functions. This scenario is highlighted in bold in Table 1.

Three profile variable have exactly one change and the remaining has exactly two changes.

[Figure 1 about here.|

5. Application to a dynamic experiment in the Ambr250 bioreactor

We now apply the methodology to a real Ambr250 bioreactor experiment. GSK are investi-
gating the relationship between titre content of a product (constrained to (0,1)) and J = 4
variables: feed volume (denoted x;;(t)); initial viable cell concentration (z;2); pH (2;3); and
temperature (z;4). Feed volume is a profile variable while the remaining variables are static,
i.e. myo = my3 = mya = 1. The response, y;, is the logit of titre content. GSK are able to

run a dynamic experiment on the (scaled) time interval 7 = [0, 1] with n = 12 runs.

15
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In consultation with GSK, the following regression functional is proposed

T
Fleit)] = [1,20(t), Tio, Tz, Tia, T Tj, T3]

giving ) = 8. For all ¢ = 1,...,Q, apart from ¢ = 2, mg, = 1 giving constant pa-
rameters. For the functional parameter (5(t), we consider the monomial basis function
by(t) = (1,¢,t%)7, i.e. mgo = 3. This leaves a model with p = Zqul mg,, = 10.

For the profile variable x;;(t), for i = 1,...,n, GSK are able to implement step functions
with at most three changes during 7. Thus we consider zero-degree B-splines with m,; = 4
(allowing up to three changes). For simplicity, we use uniformly-spaced internal knots.

For the matrices Ry, ..., R¢ that feature in the model matrix, following the same derivation
as in Section SM5 of the Supplementary Material, R, = 1, for ¢ # 2, are all scalars, and R,

is a mga X my 1 = 3 X 4 matrix given by

48 48 48 48

1
Ry = 1092 6 18 30 42
1 7 19 37

After discussion with collaborators at GSK, it was decided that focus would be on estimat-
ing the @ parameters rather than 3(t), motivating the goal of finding an Bayesian SE design.
Also after discussion, it was decided to use a prior distribution for @ that represented prior
ignorance, in particular an improper uniform prior distribution. This means the Bayesian
SE design is equivalent to a classical A-optimal design.

The design I' has a total of ”Z}]:1 mg; = 84 elements. All controllable variables are
scaled to [—1, 1] meaning elements of I' are constrained to the same interval. The Bayesian
SE design is found using coordinate exchange, as in Section 4. Table 2 shows the optimal
design for the n = 12 runs. Five unique functions for feed volume, x;;(t), were found, labelled
(a)-(e) in Table 2 and shown in Figure 2. Function (a) is repeated four times, function (b)

repeated five times, and functions (c), (d), and (e) once. The optimal design for the scalar
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variables includes boundary points and centre points in order to be able to estimate the
parameters associated with the quadratic terms. This is similar to the behaviour of the
quadratic function for the profile variable, where the functions of the profile variable changes
at most twice.

As a sensitivity analysis, we find the SE optimal design for m,, = 3,4,8,16,100. The
value of the objective function is shown in Table SM1 in the Supplementary Material. There
is limited gain in information in increasing m, ; beyond m, ; = 4. However, if m,; = 3, then
there is a large increase in the expected loss. From Figure 2, the optimal profile variables
make at most two changes over 7. Therefore, the increase in expected loss for m,; = 3 is
due to the position of the internal knots rather than their number.

On running the experiment, there were two complications. Firstly, run ¢ = 7 failed to
return a titre value, so there are only responses from the remaining eleven runs. Secondly, the
Ambr250 experimental apparatus used by GSK provides titre content to three decimal places.
For run i = 1, a titre content of one was returned. This means the true observed titre content
was in the interval [0.9995, 1), meaning the true observed response y; (after logit transform)
was in the interval [7.600, c0) (to three decimal places). To address this complication, we as-
sumed that the true response was censored and estimated 8 (and o) via maximum likelihood.
This means the likelihood contribution for runs i > 1is ¢ {(y; — [ fl2:(t)])*B(t)dt) /o },
and for run i = 1is 1 — ®{(7.600 — [ fla;(t))TB(t)dt) /o}, where ¢(-) and ®(-) are
the probability density and cumulative distribution functions, respectively, of the standard
normal distribution.

To investigate the relationship between the variables and titre content, we used model
selection. Specifically, the model that minimised the Akaike information criterion (AIC),
found using backward selection, retained main effects for initial viable cell concentration

(IVCC), pH and temperature and a quadratic effect for temperature, with regression func-
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tional flx;(t)] = (1, i, Ti3, Tia, 22,)T. The profile variable of feed volume was found not to

significantly affect titre content. The final estimated fitted model is

o —

logit(titre) = 1.199 4 1.324 pH 4 1.684 IVCC

+0.506 Temperature — 1.851 Temperature?,

from which, in scaled units, optimal titre content is estimated to occur when pH is x5 = 1,

IVCC is x3 = 1 and temperature is x4 = 0.137 (to three decimal places).
[Figure 2 about here.|

[Table 2 about here.|

6. Discussion

In this paper, new methodology for finding optimal designs has been proposed for dynamic
experiments where a scalar response depends on profile variables. The methodology uses
basis function expansions of the profile variables and the functional parameters in a scalar-
on-function linear model. It is flexible and can be applied assuming a variety of different
expansions for both profile variables and parameter functions.

As discussed in Section 3.1, the complexity of the model needs to be specified before the
experiment. Part of that specification involves the number of basis functions for the expansion
of the functional parameters. An approach is to set the number of basis functions as large as
possible and to penalise via a roughness penalty (Ramsay and Silverman, 2005, Chapter 5)
implemented through the prior variance matrix, 3. Details of this are given in Section SM7
of the Supplementary Material.

Ongoing work is to extend the current methodology to non-normally distributed responses
and finding designs for scalar-on-function generalised linear models. In this case, a challenge

will be the objective function given by the expected loss will not be available in closed form.
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However, it is anticipated that computational advancements in Bayesian optimal design over
the last decade (e.g. Rainforth et al., 2024) can be employed.

In this paper it is assumed that time ¢ € [0, 7] is the continuous single input to profile
variables. The methodology can be naturally extended to scenarios where profile variables
have multiple inputs, such as in spatio-temporal studies.

A limitation of Bayesian optimal design is that it requires assumptions about the data-
generating process to be made prior to observing responses. Gibbs optimal design (Overstall
et al., 2025) is an alternative approach to experimental design which has been developed to

be less sensitive to such assumptions. This is a further avenue of future research.
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SUPPLEMENTARY MATERIALS

Web Appendices and R code referenced in Sections 4 and 5 are available with this paper
at the Biometrics website on Oxford Academic. The supplementary archive SM_Code.zip
contains the scripts used to generate the optimal designs in Section 4 (illustrative examples)
and Section 5 (Ambr250 application).

The Ambr250 data are proprietary to GlaxoSmithKline and cannot be shared, however,
the R code illustrates the optimal design construction process. The proposed methodology
is implemented in the R package fdesigns (version 1.2), available on CRAN at https:

//cran.r-project.org/package=fdesigns.
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Figure 1.

Profile variables for the n = 4 SE design for Case I with m, ; = 8 basis functions.
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Figure 2. Five unique Feed volume profile variables of the Bayesian SE design for the
Ambr250 bioreactor experiment.



SE and WSE objective function values for optimal designs for my1 = 2,3,4,8,16,100 and n = 4,12. The profile
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Table 1

variables for the scenario highlighted in bold are shown in Figure 1.

SE WSE

Case | Case 11 Case | Case 11
Mmg1 n=4 n=12 n=4 n=12 n=4 n=12 n=4 n=12
2 8.750 2.583 - - 1417 0.472 - -
3  8.828 2.778 386.408 126.409 1.581 0.499 3.363 1.120
4 8.750 2.570 246.869 67.735 1.417 0.472 3.243 1.022
8 8.493 2.539 218.479 65.217 1.417 0.472 3.147 1.021
16 8.427 2.520 208.843 63.610 1.417 0.472 3.099 1.016
100 &8.404 2.512 206.884 63.028 1.417 0.472 3.094 1.010
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Table 2

SE design for the Ambr250 bioreactor experiment. The feed volume profile variables labelled (a)-(e) are shown in
Figure 2.

Run Feed volume IVCC pH Temperature

{ x;1(t) Tiz T3 Tia
1 (a) 0 -1 1
2 (a) 11 1
3 (b) 0 1 1
4 (o) 0 0 0
5 (d) 0 0 0
6 (a) -1 1 0
7 () 0 0 0
8 (b) | 0
9 b) -1 0 1
10 (2) 10 1
11 (b) 11 0
12 (b) 0 0 1




