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A B S T R A C T  

A Bayesian optimal experimental design framework is developed for experiments where settings of one or more variables, referred to as profile 
variables, can be functions. For this type of experiment, a design consists of combinations of functions for each run of the experiment. Within 

a scalar-on-function linear model, profile variables are represented through basis expansions. This allows finite-dimensional representation of 
the profile variables and optimal designs to be found. The approach enables control over the complexity of the profile variables and model. The 
method is i l lustrated on a real application involving dynamic feeding strategies in an Ambr250 modular bioreactor system. 
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1 I N T R O D U C T I O N 

n a variety of experiments, especially in biological studies, there
an be more flexibility over the control of design variables than
s the norm in standard experimental designs. In particular, it is
ecoming increasingly common to run studies where the value

aken by one or more profile variables can be adjusted during a
ingle run of the experiment. Hence, for these variables, optimal
esign concerns how to vary their values through the choice of
 function for each variable in each run of the experiment. We
efer to such examples as dynamic experiments . 

Previous research on the design and analysis of dynamic exper-
ments can mostly be classified under one of two different frame-

orks. 

(i) Optimal design for dynamic mechanistic models, usu-
ally derived as the solution to a set of differential equa-
tions, which naturally incorporate time-evolving behav-
ior. Early work was reviewed by Titterington ( 1980 ).
Further developments have often come from the field of
control theory (e.g., Espie and Macchietto, 1989 ), espe-
cially applications in chemical and biological processes
where dynamical systems abound (e.g., Braniff and In-
galls, 2018 ). The methods and designs are often quite
closely tailored to the specific experiment or model be-
ing studied. 

(ii) Response surface methodology (RSM), typically using
standard designs. Georgakis ( 2013 ) proposed the ex-
eceived: May 22, 2025; Revised: October 11, 2025; Accepted: November 28, 2025
The Author(s) 2026. Published by Oxford University Press on behalf of The Internationa

reative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), wh
he original work is properly cited.
tension of standard RSM to include profile variables.
Designs were obtained through application of standard
RSM or optimal designs to the so-called sub-factors de-
fined by a dimension reduction of the profile variables
(see Section 2 ). Roche ( 2018 ) applied related methods
to nuclear safety experiments and extended the approach
to include data-driven dimension reduction, for exam-
ple, principal components analysis. These ideas have
now seen fairly wide-spread adoption in a variety of phar-
maceutical applications, see Georgakis ( 2024 ), includ-
ing extensions to experiments with functional responses.

Our work fits within this second framework, and is motivated
y biopharmaceutical process development via experiments us-

ng an Ambr250 modular bioreactor system. Such a system al-
ows process conditions to be individually controlled for each
eaction. A typical experiment would measure the concentration
f the product of interest from each reaction (run of the experi-
ent) after a fixed time period, usually of the order of two weeks.
Design of experiments methods have seen considerable up-

ake on such systems; for example, Tai et al. ( 2015 ) applied a
efinitive screening design to perform variable screening. How-
ver, previous applications of statistically designed experiments
n such systems have only employed traditional static variables,

hose values are set and kept constant through each individual
un. Several studies have, though, highlighted the potential ben-
fits of dynamic experimentation. Yoon et al. ( 2003 ), Trummer
l Biometric Society. This is an Open Access article distributed under the terms of the
ich permits unrestricted reuse, distribution, and reproduction in any medium, provided
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et al. ( 2006 ) and Rameez et al. ( 2014 ) all found that varying
the temperature during a reaction can increase concentration. Lu
et al. ( 2013 ) discussed the increase in concentration that could
be obtained from a dynamic feeding strategy in place of the usual
fixed bolus feeding. However, none of these studies used experi-
ments specifically designed to estimate the effects of profile vari-
ables. 

To study the applicability of such suggestions to their own
studies, our collaborators at GlaxoSmithKline (GSK) wanted to
design and run a series of dynamic experiments. We use one
of these experiments to demonstrate our novel approach to de-
signing such studies. The practicalities of the experiment in-
volved varying three static variables: initial viable cell concen-
tration (IVCC), pH, and temperature, and one profile variable:
feed volume. The study aimed to investigate the titer content of
the product (concentration), with the eventual aim of optimiz-
ing cell growth. 

In this paper, we present a novel Bayesian approach to de-
signing experiments with profile variables, assuming a scalar-on-
function linear model (Section 2 ). Optimal designs are found ex-
ploiting the connections between this model and standard linear
model theory (Section 3 ). The impact of the model on the result-
ing designs is explored via i l lustrative examples (Section 4 ) and
methods demonstrated via application to the Ambr250 experi-
ment (Section 5 ). 

2 S C A L A R- O N - F U N C T I O N  L I N E A R M O D E L S  

A N D  B A S I S  R E P R E S E N TAT I O N S 

2.1 Scalar-on-function linear models 
Suppose there are J profile variables that can be controlled over a
time interval T = [0 , T ] , where x j (t ) denotes the value of the
jth profile factor at time t ∈ T . For j = 1 , . . . , J, it is assumed
that x j (·) ∈ X j ⊂ L2 (T ) , where L2 (T ) is the set of all square
integrable functions on T . The sets X1 , . . . , XJ are determined
by the nature of the experiment and the profile variables. For
example, if the jth profile variable cannot be changed over T ,
then X j wi l l be the set of constant functions. Therefore, a stan-
dard, static experiment with fixed controllable variables is a spe-
cial case. 

The experiment consists of n runs. For i = 1 , . . . , n , the i th
run consists of specifying the J controllable profile variables,
x i (t ) = [

xi 1 (t ) , . . . , xiJ (t )
]T ∈ X = X1 × · · · × XJ , and

measuring the scalar response, yi , at time t = T . 
To investigate the effect of the J profile variables on the re-

sponse, we assume a scalar-on-function linear model (e.g., Ram-
say and Silverman, 2005 , pages 261-277). Specifically, it is as-
sumed 

yi =
∫ 

T 
f [ x i (t )] T 

β(t ) d t + εi , (1)

for i = 1 , . . . , n . In ( 1 ), f [x (t )] ={
f1 [x (t )] , . . . , fQ 

[x (t )]
}T is a vector of regression functions

of the profile variables, controlling the complexity of the model,
where it is assumed that fq : X → Gq ⊂ L2 (T ) . For example,
a first-order model with an intercept has f [x (t )] = [1 , x (t )]T .
Furthermore, β(t ) = [

β1 (t ) , . . . , βQ 

(t )
]T is a Q × 1 vec-

tor of unknown functional parameters. It is assumed that
βq (t ) ∈ Bq ⊂ L2 (T ) . Lastly, ε1 , . . . , εn are random errors, 
which are assumed independent, with expectation E(εi ) = 0 

and variance var (εi ) = σ 2 < ∞ , for i = 1 , . . . , n . The inter- 
pretation of the functional parameter βq (t ) , for q = 1 , . . . , Q , 
are that the times with large absolute value of βq (t ) have highest 
influence on the response (Reiss et al., 2017 ). 

The model given by ( 1 ) with univariate functional param- 
eters wi l l often provide a suficiently flexible representation of 
the data-generating process. It is a special case of the multivari- 
ate functional parameter model of Yao and Müller ( 2010 ); see 
Supplementary Material SM1. However, multivariate functional 
parameters are not straightforward to interpret, hence we focus 
on the simplification to univariate functional parameters. 

2.2 Basis expansions 
2.2.1 Functional parameter basis expansion 

The functional parameters β1 (t ) , . . . , βQ 

(t ) in model ( 1 ) are 
infinite-dimensional. Estimation from a finite number, n , of 
scalar responses, y1 , . . . , yn , can be achieved by assuming a para- 
metric form via a finite basis expansion (Ramsay and Silverman, 
2005 , page 44). 

For q = 1 , . . . , Q , the basis expansion of βq (t ) is 

βq (t ) =
mβ,q ∑ 

l=1 

θql bql (t ) = b q (t )T θq , 

where the functions bq 1 (t ) , . . . , bqmβ,q (t ) are known basis func- 
tions and θq is an mβ,q × 1 vector of unknown coefficients. Con- 
sequently, the problem is reduced to estimating p = ∑ Q 

q =1 mβ,q 

unknown coefficients given by θ = (θ1 , . . . , θQ 

)T . A special 
case of a scalar parameter, θq , is represented by the single 
( mβ,q = 1 ) basis function bq (t ) = 1 . We can write β(t ) = 

B (t )T θ, where B (t ) is a p × Q block diagonal matrix with q th 

block given by b q (t ) , that is 

B (t ) =

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 1 (t ) 0 . . . . . . 

0 b 2 (t ) 0 . . . 

. . . 0 

. . . 
. . . 

. . . 
. . . . . . b Q 

(t ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

2.2.2 Profile variable basis expansion 

In the design of experiments setting, we have the freedom to 

specify the profile variables x 1 (t ) , . . . , x n (t ) to optimize gain 

in information in estimating the functional parameters β(t ) , or 
equivalently coefficients θ, from the scalar responses y1 , . . . , yn . 
Similar to Section 2.2.1 , x i (t ) , for i = 1 , . . . , n , are infinite- 
dimensional. To make the optimization problem tractable, we 
again use a finite basis expansion. For i = 1 , . . . , n and j = 

1 , . . . , J, 

xi j (t ) =
mx, j ∑ 

l=1 

γi jl c jl (t ) = γT 

i j c j (t ) , (2) 

where c j1 (t ) , . . . , c jmx, j (t ) are known basis functions and γ i j = 

(γi j1 , . . . , γi jmx, j ) are coefficients. Let � = (γ11 , . . . , γnJ )T be 
the n

∑ J 
j=1 mx, j × 1 vector of coefficients. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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For observational data, � are estimated and treated as fixed in
he estimation of θ. Conversely, in design of experiments, � are
pecified to optimize gain in information in estimating θ (see
ection 3 ). A sufficiently complex basis expansion should be
hosen so that an optimal choice of � leads to the profile vari-
bles reconstructed via ( 2 ) providing a good approximation to
he optimal infinite-dimensional profile variables. 

2.3 Standard linear model representation of the 
scalar-on-function linear model 

he key to design of experiments for scalar-on-function linear
odels is the observation that the model given by ( 1 ), under

he basis expansions of Section 2.2 , can be written in the form
f a standard linear model. This observation has been made pre-
iously (e.g., Reiss et al., 2017 ) for the case where J = 1 and the
egression functional is of the form f [ xi (t )] = [ 1 , xi (t )] T . Be-
ow we extend this representation to J > 1 , and more general
orms of the regression functional. 

The q th element, fq [x i (t )] , of the regression functional can be
 ritten as fq [ x i (t )] = ∏ 

a ∈Fq 
xia (t ) , w here Fq is a set defining

he q th term. The members of Fq belong to the set 
{

1 , . . . , J
}

nd can be repeated. For example, the intercept has Fq = ∅ , the
ain effect of the jth profile factor has Fq =

{
j
}

, the quadratic
ffect of the jth profile factor has Fq =

{
j, j

}
and the two-way

nteraction between the j1 th and j2 th profile factors has Fq =
j1 , j2 

}
. 

The model given by ( 1 ) can now be written as 

yi =
∫ 

T 

Q ∑ 

q =1 

⎡ 

⎣ 

∏ 

a ∈Fq 

γT 

ia c a (t )

⎤ 

⎦ b q (t )T θq d t + εi . (3) 

sing properties of Kronecker products (denoted by ⊗) 

∏ 

a ∈Fq 

γT 

ia c a (t ) =
⎡ 

⎣ 

⊗ 

a ∈Fq 

γ ia 

⎤ 

⎦ 

T 

⎡ 

⎣ 

⊗ 

a ∈Fq 

c a (t )

⎤ 

⎦ , (4) 

here 
⊗ 

a ∈Fq 
γ ia and 

⊗ 

a ∈Fq 
c a (t ) are both 

∏ 

a ∈Fq 
mx,a × 1

ectors. Note, we use the convention that a Kronecker product
ver the empty set, ∅ , is one. 
Substituting ( 4 ) into ( 3 ) gives yi =

∑ Q 

q =1 z 
T 

iq θq + εi , where 

z iq =
∫ 

T 
b q (t )

⎡ 

⎣ 

⊗ 

a ∈Fq 

c a (t )T 

⎤ 

⎦ d t

⎡ 

⎣ 

⊗ 

a ∈Fq 

γ ia 

⎤ 

⎦ , (5) 

s an mβ,q × 1 vector. Therefore, the model can be written in
he form of a standard linear model as y = Zθ + ε, where y =

(y1 , . . . , yn ) , ε = (ε1 , . . . , εn ) , and Z is an n × p model matrix
iven by 

Z =

⎛ 

⎜ ⎜ ⎝ 

zT 

11 . . . z
T 

1 Q 

. . . 
. . . 

. . . 
zT 

n 1 . . . z
T 

nQ 

⎞ 

⎟ ⎟ ⎠ 

. 

ote that Z is a function of the coefficients, � =
(γ11 , . . . , γnJ )T , of the basis expansion of the profile vari-
bles. However, this dependence is suppressed in the notation
or clarity. 

From ( 5 ), z iq = Rq 
⊗ 

a ∈ Fq 
γ ia where Rq =

 

T b q (t )
⊗ 

a ∈Fq 
c a (t )T d t is an mβ,q ×

∏ 

a ∈Fq 
mx,a matrix.

he elements of Rq are integrals of products of basis functions.
he exact form of the integrands wi l l depend on the choice of
asis functions for both the x i (t ) ’s and βq (t ) ’s. However, for
ny combination of monomial and B-spline basis functions, we
how, in Section SM2 of the Supplementary Material , that the
ntegration can be performed in closed form. We also provide a
losed form expression for the elements of Rq . 

3 O P T I M A L  D E S I G N F O R 

S C A L A R- O N - F U N C T I O N L I N E A R M O D E L S  

3.1 Basis expansions and constraints 
he aim is to specify the vector of profile variable coefficients �

subsequently referred to as the design) to optimize gain in infor-
ation in estimating the unknown functional parameter coeffi-

ients θ. This wi l l be achieved by minimising an objective func-
ion �(�) . The choice of objective function wi l l be addressed
n Section 3.2 . 

However, beforehand, there are several issues that need discus-
ion, in regards to the basis expansion of both the functional pa-
ameters and profile variables, and the complexity of the model
pecified by the regression functional, f (·) . These matters wi l l
eed addressing before the experiment, and therefore can be
onsidered as part of the design process. 
The basis functions, b 1 (t ) , . . . , b Q 

(t ) of the functional pa-
ameter expansion need specification. For these functions, we
onsider monomials and B-splines. Any combination of these,
ombined with B-splines for the profile variable basis expansion,
eads to the integrals in the model matrix Z being available in
losed form (as discussed in Section 2.3 ). Monomial basis func-
ions have the advantage of higher interpretability but B-splines
re more computationally efficient. 
The complexity of the scalar-on-function linear model

eeds to be specified via the regression functional,
f (·) = [

f1 (·) , . . . , fQ 

(·)]T , and the number of basis func-
ions, mβ, 1 , . . . , mβ,Q 

. Specifying the complexity of a statistical
odel before observing the responses is a challenge shared by

ll applications of optimal design of experiments (e.g., Atkinson
t al., 2007 , page 329). It is a subjective decision which should
e made in consultation with the researchers, considering the
umber of runs, n , in the experiment and, potentially, the es-

imability of θ. On this last point, for ZT Z to be non-singular,
nd the least squares estimates of θ to exist, the n × p model ma-
rix Z requires full column-rank. A necessary, but not sufficient,
ondition for this to occur is that p = ∑ Q 

q =1 mβ,q ≤ n . This
laces an upper bound on the complexity ( mβ, 1 , . . . , mβ,Q 

) of
he basis expansion of the functional parameters, based on the
vailable experimental resources ( n ). 
Similarly, the functions, c 1 (t ) , . . . , c J (t ) , and numbers,
x, 1 , . . . , mx,J , of the profile variable basis expansion need

pecification. Ultimately, there wi l l be a compromise between
pecifying profile variables x 1 (t ) , . . . , x n (t ) that are sim-
le enough to be implemented in a physical experiment but

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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complex enough to provide a good approximation to the actual
optimal infinite-dimensional profile variables. The former can
be determined in consultation with the researchers. The latter
can be investigated as part of minimizing the objective function
�(·) (see Sections 4 and 5 for examples). 

For the basis functions, c 1 (t ) , . . . , c J (t ) , the proposal is to use
B-splines. These offer two distinct advantages. Firstly, in combi-
nation with B-spline or monomial basis functions for the func-
tional parameter basis expansions, the integrals in the model ma-
trix are available in closed form. Secondly, as shown below, it is
straightforward to implement constraints on the profile variables
x i (t ) , for i = 1 , . . . , n , via simple constraints on the elements of
design �. 

Often, the profile variable xi j (t ) , for i = 1 , . . . , n and j =
1 , . . . , J, wi l l be constrained in the experiment such that xi j :
T → [ a j , b j ] . For example, if xi j (t ) represented the tempera-
ture at time t ∈ T for the i th run, then a j and b j are the mini-
mum and maximum possible temperatures, respectively. 

Suppose, for j = 1 , . . . , J, the basis functions
c j1 (t ) , . . . , c jmx, j (t ) are B-spline functions. Using the property
of B-spline functions that 

∑ mx, j 

l=1 c jl (t ) = 1 for t ∈ T , if the ele-
ments of γ i j are such that γi jl ∈ [ a j , b j ] , for all l = 1 , . . . , mx, j ,
it follows that xi j (t ) = ∑ mx, j 

l=1 γi jl c jl (t ) ∈ [ a j , b j ] for t ∈ T . 
To implement B-spline basis functions for xi j (t ) , the number,

k j , and location of the internal knots need to be specified. It is
common to choose uniformly spaced internal knots and we use
this approach in this paper. However, the location of the knots
could be incorporated into the design problem. For maximally
smooth basis functions, mx, j = k j + d j + 1 , where d j is the de-
gree. Thus the number of internal knots is specified by the num-
ber of basis functions, mx, j , and the degree. The following lemma
can aid in choosing the number of basis functions. It gives a lower
bound on the complexity of the profile variables for the chosen
complexity of the scalar-on-function linear model. The proof is
provided in Section SM3 of the Supplementary Material . 

Lemma 1: A necessary, but not sufficient condition, for the least
squares estimates of the functional parameter coefficients, θ, to exist,
is mβ,q ≤

∏ 

a ∈Fq 
mx,a , for all q = 1 , . . . , Q . 

Lemma 1 states that the degree of complexity of the basis func-
tions for the functional parameters demands a minimum degree
of complexity in the basis functions for the associated profile
variables. However, this result says nothing about the maximum
degree of complexity for the profile variables. From empirical ev-
idence, for example from the i l lustrative example in Section 4 , it
appears that continuing to increase the complexity of the profile
variables whilst keeping the complexity of the functional param-
eters, and amount of experimental resources ( n ), fixed leads to a,
perhaps anticipated, plateau in the expected gain in information
from the experiment. 

3.2 Objective functions via Bayesian decision-theory 
We formulate objective functions to find designs by using
a Bayesian decision-theoretic approach. Bayesian decision-
theoretic approaches for optimal experimental design are
well established in the broader literature (e.g., Chaloner and
Verdinelli, 1995 ; Rainforth et al., 2024 ; Ryan et al., 2016 ). Our 
contribution is to develop this framework for scalar-on-function 

linear models, which to our knowledge has not previously been 

addressed. The Bayesian approach has the advantages that the 
experimental goal can be incorporated via the choice of loss 
function and all assumed sources of uncertainty are accounted. 
The post-experiment analysis does not necessarily need to be 
undertaken under a Bayesian approach. 

Bayesian decision-theoretic design (or Bayesian design) starts 
with specification of a loss function, denoted � (θ, y , �) , giv- 
ing the loss in estimating parameters θ, using responses y 
obtained from an experiment with design �. The objec- 
tive function, �(�) , follows from the expected loss L (�) = 

Ey ,θ|� [ � (θ, y , �)] , where expectation is with respect to the joint 
probability distribution of the responses y and parameters θ. 
This joint probability distribution of y and θ is given by the 
distribution of the responses y given θ, and the prior distribu- 
tion of θ. Note that the expected loss can always be written 

as L (�) = g [ �(�)] , where g(·) is a monotonically increas- 
ing function. Therefore, it is sufficient to minimize the objective 
function �(�) in place of L (�) . 

The Bayesian design is given by minimizing the objective func- 
tion �(�) over the space of all designs. Recall from Section 3.1 , 
that if the profile variables are constrained such that xi j : T → 

[ a j , b j ] , for i = 1 , . . . , n and j = 1 , . . . , J, then it is sufficient
for γ i jl ∈ [ a j , b j ] , for l = 1 , . . . , mx, j , i = 1 , . . . , n and j =
1 , . . . , J. This defines the space of all designs. 

For the scalar-on-function linear model, the distribution of y 
given θ follows from specification of a distribution for the errors 
ε1 , . . . , εn . For analytical tractability, we assume that the errors 
are normally distr ibuted. For the pr ior distr ibution of θ, we as- 
sume a multivariate normal distribution with mean μ and vari- 
ance σ 2 	, where μ and 	 are a specified p × 1 vector and p × p
matrix, respectively. The matrix 	 is termed the prior scale ma- 
trix. We also assume an inverse-gamma prior distribution for the 
nuisance parameter of the error variance σ 2 . The shape and rate 
parameters are a/ 2 and b/ 2 , respectively, where a and b are spec- 
ified scalar constants. 

Let ˆ μ = ˆ 	
(

ZT y + 	−1 μ
)

, ˆ 	 = (
ZT Z + 	−1 

)−1 , ̂  a = a + 

n and ̂

 b = b + μT 	−1 μ + y T y − ˆ μT ˆ 	−1 ˆ μ. Under the above 
prior specification, the marginal posterior distribution of θ is a 
multivariate t-distribution with mean 

ˆ μ, variance ˆ b ̂  	/ ( ˆ a − 2) 
and 

ˆ a degrees of freedom. 
There are several prior hyperparameters, μ, 	, a and b that re- 

quire specification. However, for the loss functions considered 

in this paper, the expected loss only depends on the prior scale 
matrix 	. There are various approaches to specifying 	. It can 

be specified using prior information: either subjectively via prior 
elicitation (e.g., O’Hagan and Forster, 2004 , Chapter 6) or using 
the results of a previous experiment, that is use ˆ 	 := 	. The 
pr ior scale matr ix can also be specified to represent prior igno- 
rance. Specifying 	−1 to be the p × p matrix of zeros imple- 
ments a uniform pr ior distr ibution for θ. Under such a pr ior dis- 
tribution, the posterior distribution sti l l exists (i.e., is proper), 
as long as p = ∑ Q 

q =1 mβ,q ≤ n . Also, as discussed below, un- 
der such a pr ior distr ibution, and choice of certain loss function, 
the expected loss objective function is equivalent to commonly- 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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sed objective functions from the classical design literature (e.g.,
haloner and Verdinelli, 1995 ). Lastly, 	 can be used to im-
lement a roughness penalty on the functional parameter basis

unctions (see Section 6 and Section SM7 of the Supplementary
aterial ). 
In Sections 4 and 5 , we consider the squared error (SE) loss

unction given by the sum of squared differences of the elements
f θ and their marginal posterior means, that is 

�SE (θ, y , �) = ( θ − ˆ μ) T ( θ − ˆ μ) . 

t follows (see Section SM4 in the Supplementary Material for
erivation) that the SE objective function given by the expected
E loss is �SE (�) = tr 

( ˆ 	
)

. Note that finding the Bayesian SE
esign does not require the prior mean, μ, nor the prior shape,
 , or rate, b, parameters to be specified. 
If an improper uniform pr ior distr ibution is assumed for θ,
hereby the elements of 	−1 are zero, then the SE objective

unction reduces to �SE (�) = tr 
[ (

ZT Z
)−1 

] 
, and the corre-

ponding Bayesian design is equivalent to the classical A-optimal
esign. 
As presented above, the loss function is in terms of the func-

ional parameter coefficients θ. However, these may not be of di-
ect interest. Rather, interest may lie in implied functions β(t ) =
β1 (t ) , . . . , βQ 

(t )
]T . Therefore, we propose an alternative loss,

n terms of θ, that is given by integrating a loss, in terms of β(t ) ,
ver T . 
As an example, consider the SE loss in terms of β(t ) given by 

�SE (β(t ) , y ,�) = 

[
β(t ) − Eβ(t ) |y ,� ( β(t )) 

]T 

[
β(t ) − Eβ(t ) |y ,� ( β(t )) 

]
, 

here Eβ(t ) |y ,� [ β(t )] is the marginal posterior mean of β(t ) .
sing properties of the multivariate t-distribution, the poste-

 ior distr ibution of β(t ) , for t ∈ T , is multivariate t-distribution
ith posterior mean Eβ(t ) |y ,� [ β(t )] = B (t )T ˆ μ. The implied

oss in terms of θ is now 

�W SE (θ, y ,�) = 

∫ 

T 
�SE (β(t ) , y , �) d t 

= 

∫ 

T 

[
B (t )T θ − B (t )T ˆ μ

]T 

[
B (t )T θ − B (t )T ˆ μ

]
d t 

= ( θ − ˆ μ) T BI ( θ − ˆ μ) , 

here BI =
∫ 
T B (t ) B (t )T d t is a p × p matrix. Thus the im-

lied loss in terms of θ is a weighted squared error (WSE) loss.
he corresponding objective function is �W SE (�) = tr 

[
BI ˆ 	

]
see Section SM4 in the Supplementary Material for derivation).
nder an improper uniform pr ior distr ibution for θ, the Bayesian
SE design is equivalent to a classical L-optimal design (e.g.,

tkinson et al., 2007 , Section 10.5). 

4 I L LU ST R AT I V E E X  P E R I M E N  T  W I T H  A  

S I N G L E  P R O F I L E VA R I A B L E  

n this section, we consider an i l lustrative example where
ayesian designs are found for an experiment with J = 1 pro-
le variable. The time interval is T = [0 , 1] , for example, T =
 . The regression functional is f [ xi 1 (t )] = [ 1 , xi 1 (t )] , so that
 = 2 and the model is yi = β1 +

∫ 1 
0 β2 (t ) xi 1 (t ) d t + εi , for

 = 1 , . . . , n . 
For the basis expansion of xi 1 (t ) , we consider degree-zero B-

spline basis functions with uniformly spaced internal knots. If
here are mx, 1 basis functions, then this amounts to each xi 1 (t )
eing a step function on T = [0 , 1] , where the discontinuities
orrespond to the internal knots λ1 , 1 , . . . , λ1 ,k1 , where k1 =

x, 1 − 1 . Explicitly, for l = 1 , . . . , mx, 1 , 

c1 l (t ) =
{

1 if t ∈ [ λ1 ,l−1 , λ1 ,l ) ; 
0 if otherwise; 

here λ1 , 0 = 1 and λ1 ,mx, 1 = 1 . 
Step functions are an important and useful tool in practice. For

nstance, Rameez et al. ( 2014 ) considered an Ambr bioreactor
pplication with a temperature step shift from the high to the low
evel. We wi l l vary the number of basis functions, mx, 1 , which is
quivalent to varying the complexity of the profile variable, to
nvestigate the effect on the performance of the design through
he expected loss. 

For the basis expansion of the functional parameters, β1 is a
onstant so mβ, 1 = 1 and b1 (t ) = 1 . For β2 (t ) , we consider
wo cases with monomial basis functions. In Case I, mβ, 2 = 2 ,
 2 (t ) = (1 , t )T , giving p = 3 . In Case II, mβ, 2 = 3 , b 2 (t ) =

(1 , t, t 2 )T , giving p = 4 . 
For both cases, we find Bayesian SE and WSE designs
ith number of basis functions for the profile variable
x, 1 = 2 (not Case II) , 3 , 4 , 8 , 16 , 100 and n = 4 , 12 . Note

hat mx, 1 = 2 is forbidden for Case II since the least squares
stimate of θ does not exist for this value (see Lemma 1 ). Sec-
ion SM5 of the Supplementary Material gives expressions for
he two matrices, R1 and R2 , which feature in the model matrix
, and the weighting matrix, BI , for Bayesian WSE designs. 
The design, �, is a vector with n

∑ J 
j=1 mx, j = nmx, 1 ele-

ents. The profile variable xi 1 (t ) is assumed to be constrained
o [ −1 , 1] meaning the elements of � are also constrained to
 −1 , 1] (see Section 3.1 ). In each scenario, the coordinate ex-
hange algorithm (Meyer and Nachtsheim, 1995 ) is used to min-
mize the objective function from 1000 random starts, as sug-
ested by Goos and Jones ( 2011 ). 
The methodology is implemented in the fdesigns R pack-

ge (Michaelides et al., 2025 ). The Supplementary Material in-
ludes a vignette that demonstrates how to find the designs dis-
ussed in this section and in Section 5 . 
Table 1 shows the values of the SE and WSE objective func-

ion for the respective optimal designs for each value of mx, 1 and
 . Clearly as n increases, the expected loss decreases. Typically,
s the number of basis functions, mx, 1 , increases, the expected
oss decreases, since the finite-dimensional representation of the
rofile variable becomes a better approximation to the optimal

nfinite-dimensional profile variable. The rate of this decrease
lows as mx, 1 increases allowing a compromise to be made be-
ween profile variable complexity and gain in information. This
ensitivity to mx, 1 also depends on the choice of functional pa-
ameter basis. In Case I, even small values of mx, 1 already achieve
ear-minimal expected loss, so relatively simple profile-variable

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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TABLE 1 SE and WSE objective function values for optimal designs for mx, 1 = 2 , 3 , 4 , 8 , 16 , 100 and n = 4 , 12 . The profile variables for the 
scenario highlighted in bold are shown in Figure 1 . 

SE WSE 

Case I Case II Case I Case II 

mx, 1 n = 4 n = 12 n = 4 n = 12 n = 4 n = 12 n = 4 n = 12 

2 8.750 2.583 – – 1.417 0.472 – –
3 8.828 2.778 386.408 126.409 1.581 0.499 3.363 1.120 
4 8.750 2.570 246.869 67.735 1.417 0.472 3.243 1.022 
8 8.493 2.539 218.479 65.217 1.417 0.472 3.147 1.021 
16 8.427 2.520 208.843 63.610 1.417 0.472 3.099 1.016 
100 8.404 2.512 206.884 63.028 1.417 0.472 3.094 1.010 
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bases provide designs that are close to optimal. In Case II, the de-
signs are more sensitive. Increasing mx, 1 leads to more noticeable
reductions in expected loss, and somewhat larger bases are re-
quired. Nevertheless, once a moderate number of basis functions
is reached, further increases yield little additional gain. These re-
sults reinforce the discussion in Section 3.1 , highlighting the im-
portance of aligning the complexity of the profile variable basis
with that of the functional-parameter basis to avoid unnecessary
increases in dimensionality and computational burden. The ex-
ception to expected loss decreasing with mx, 1 is for mx, 1 = 2 for
Case I. The uniformly-spaced internal knots for mx, 1 = 2 , 3 , 4
are 

{ 1 
2 

}
, 
{ 1 

3 ,
2 
3 

}
and 

{ 1 
4 ,

1 
2 ,

3 
4 

}
, respectively. A change at the knot

at t = 1 
2 is important for small mx, 1 and its absence for mx, 1 = 3 ,

leads to higher expected loss than for mx, 1 = 2 . 
Case II naturally yields larger expected-loss values than Case I

(see Table 1 ), because the number of parameters increases with
the quadratic term in the functional parameter basis. For this rea-
son, absolute magnitudes of the objective functions are not di-
rectly comparable across cases. Instead, the focus should be on
the structural features of the resulting profile variables. In Case
I, most functions have a single step change, with some allow-
ing two step changes. In contrast, in Case II, the designs have
two step changes in most functions, with some profiles having
three step changes. This additional flexibility reflects the need
to capture the curvature of the quadratic parameter functions.
These results indicate that the robustness of the design depends
on the modeling choice, that is Case I designs are simpler and
more stable, whereas Case II designs require more complex step
functions which are sti l l stable once sufficient flexibility is intro-
duced. 

As an example, Figure 1 shows the profile variables
x11 (t ) , . . . , x41 (t ) for the n = 4 SE design for Case I with
mx, 1 = 8 basis functions. This scenario is highlighted in bold in
Table 1 . Three profile variables have exactly one change and the
remaining has exactly two changes. 

5 A P P L I C AT I O N TO  A  DY N A M I C  

E X  P E R I M E N T  I N T H E  A M B R 2 5 0  

B I O R E A C TO R 

We now apply the methodology to a real Ambr250 bioreactor
experiment. GSK are investigating the relationship between titer
content of a product (constrained to (0,1)) and J = 4 variables:
feed volume (denoted xi 1 (t ) ); IVCC ( xi 2 ); pH ( xi 3 ); and tem-
perature ( xi 4 ). Feed volume is a profile variable while the remain- 
ing variables are static, that is mx, 2 = mx, 3 = mx, 4 = 1 . The re- 
sponse, yi , is the logit of titer content. GSK are able to run a dy- 
namic experiment on the (scaled) time interval T = [0 , 1] with 

n = 12 runs. 
In consultation with GSK, the following regression functional 

is proposed 

f [x i (t )] = [
1 , xi 1 (t ) , xi 2 , xi 3 , xi 4 , x2 

i 2 , x
2 
i 3 , x

2 
i 4 
]T 

, 

giving Q = 8 . For all q = 1 , . . . , Q , apart from q = 2 , mβ,q =
1 giving constant parameters. For the functional parameter 
β2 (t ) , we consider the monomial basis function b 2 (t ) = 

(1 , t, t 2 )T , that is mβ, 2 = 3 . This leaves a model with p = ∑ Q 

q =1 mβ,q = 10 . 
For the profile variable xi 1 (t ) , for i = 1 , . . . , n , GSK are able 

to implement step functions with at most three changes during 
T . Thus we consider zero-degree B-splines with mx, 1 = 4 (al- 
lowing up to three changes). For simplicity, we use uniformly- 
spaced internal knots. 

For the matrices R1 , . . . , RQ 

that feature in the model matrix, 
following the same derivation as in Section SM5 of the Supple 
mentary Material , Rq = 1 , for q � = 2 , are all scalars, and R2 is a 
mβ, 2 × mx, 1 = 3 × 4 matrix given by 

R2 = 1 

192 

⎛ 

⎜ ⎝ 

48 48 48 48 

6 18 30 42 

1 7 19 37 

⎞ 

⎟ ⎠ 

. 

After discussion with collaborators at GSK, it was decided that 
focus would be on estimating the θ parameters rather than β(t ) , 
motivating the goal of finding an Bayesian SE design. Also after 
discussion, it was decided to use a prior distribution for θ that 
represented prior ignorance, in particular an improper uniform 

pr ior distr ibution. This means the Bayesian SE design is equiva- 
lent to a classical A-optimal design. 

The design � has a total of n
∑ J 

j=1 mx, j = 84 elements. All 
controllable variables are scaled to [ −1 , 1] meaning elements of 
� are constrained to the same interval. The Bayesian SE design is 
found using coordinate exchange, as in Section 4 . Table 2 shows 
the optimal design for the n = 12 runs. Five unique functions for 
feed volume, xi 1 (t ) , were found, labeled (a)–(e) in Table 2 and 

shown in Figure 2 . Function (a) is repeated four times, function 

(b) repeated five times, and functions (c), (d), and (e) once. The 
optimal design for the scalar variables includes boundary points 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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FIGURE 1 Profile variables for the n = 4 SE design for Case I with mx, 1 = 8 basis functions. 

TABLE 2 SE design for the Ambr250 bioreactor experiment. The feed volume profile variables labeled (a)-(e) are shown in Figure 2 . 

Run Feed volume IVCC pH Temperature 
i xi 1 (t ) xi 2 xi 3 xi 4 

1 (a) 0 −1 1 
2 (a) 1 1 1 
3 (b) 0 1 −1 
4 (c) 0 0 0 
5 (d) 0 0 0 
6 (a) −1 1 0 
7 (e) 0 0 0 
8 (b) 1 −1 0 
9 (b) −1 0 1 
10 (a) 1 0 −1 
11 (b) 1 1 0 
12 (b) 0 0 1 
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nd center points in order to be able to estimate the parameters
ssociated with the quadratic terms. This is similar to the behav-
or of the quadratic function for the profile variable, where the
unctions of the profile variable changes at most twice. 

As a sensitivity analysis, we find the SE optimal design for
x, 1 = 3 , 4 , 8 , 16 , 100 . The value of the objective function is

hown in Table SM1 in the Supplementary Material . There is
imited gain in information in increasing mx, 1 beyond mx, 1 = 4 .

owever, if mx, 1 = 3 , then there is a large increase in the ex-
ected loss. From Figure 2 , the optimal profile variables make at
ost two changes over T . Therefore, the increase in expected
oss for mx, 1 = 3 is due to the position of the internal knots
ather than their number. 

On running the experiment, there were two complications.
irstly, run i = 7 failed to return a titer value, so there are only re-
ponses from the remaining eleven runs. Secondly, the Ambr250
xperimental apparatus used by GSK provides titer content to
hree decimal places. For run i = 1 , a titer content of one was re-
urned. This means the true observed titer content was in the in-
erval [0 . 9995 , 1) , meaning the true observed response y1 (after
ogit transform) was in the interval [7 . 600 , ∞ ) (to three decimal
laces). To address this complication, we assumed that the true

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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FIGURE 2 Five unique Feed volume profile variables of the Bayesian SE design for the Ambr250 bioreactor experiment. 
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response was censored and estimated θ (and σ 2 ) via maximum
likelihood. This means the likelihood contribution for runs i >
1 is φ

{(
yi −

∫ 
T f [x i (t )])T β(t )d t

)
/σ

}
, and for run i = 1 is

1 − �
{(

7 . 600 − ∫ 
T f [x i (t )])T β(t )d t

)
/σ

}
, where φ(·) and

�(·) are the probability density and cumulative distribution
functions, respectively, of the standard normal distribution. 

To investigate the relationship between the variables and titer
content, we used model selection. Specifically, the model that
minimized the Akaike information cr iter ion (AIC), found using
backward selection, retained main effects for IVCC, pH and tem-
perature and a quadratic effect for temperature, with regression
functional f [x i (t )] = (1 , xi 2 , xi 3 , xi 4 , x2 

i 4 )
T . The profile vari-

able of feed volume was found not to significantly affect titer con-
tent. The final estimated fitted model is 

̂ logit(titer) = 1 . 199 + 1 . 324 pH + 1 . 684 IVCC 

+ 0 . 506 Temperature − 1 . 851 Temperature 2 , 

from which, in scaled units, optimal titer content is estimated to
occur when pH is x2 = 1 , IVCC is x3 = 1 and temperature is
x4 = 0 . 137 (to three decimal places). 
6 D I S C U S S I O N 

In this paper, new methodology for finding optimal designs has 
been proposed for dynamic experiments where a scalar response 
depends on profile variables. The methodology uses basis func- 
tion expansions of the profile variables and the functional param- 
eters in a scalar-on-function linear model. It is flexible and can be 
applied assuming a variety of different expansions for both pro- 
file variables and parameter functions. 

As discussed in Section 3.1 , the complexity of the model 
needs to be specified before the experiment. Part of that 
specification involves the number of basis functions for the 
expansion of the functional parameters. An approach is to 

set the number of basis functions as large as possible and 

to penalize via a roughness penalty (Ramsay and Silverman, 
2005 , Chapter 5) implemented through the prior variance 
matrix, 	. Details of this are given in Section SM7 of the 
Supplementary Material . 

Ongoing work is to extend the current methodology to non- 
normally distributed responses and finding designs for scalar- 
on- function generalized linear models. In this case, a chal- 
lenge wi l l be the objective function given by the expected 

loss wi l l not be avai lable in closed form. However, it is antici- 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf169#supplementary-data
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ated that computational advancements in Bayesian optimal de-
ign over the last decade (e.g., Rainforth et al., 2024 ) can be
mployed. 
In this paper it is assumed that time t ∈ [0 , T ] is the contin-

ous single input to profile variables. The methodology can be
aturally extended to scenarios where profile variables have mul-

iple inputs, such as in spatio-temporal studies. 
A limitation of Bayesian optimal design is that it requires as-

umptions about the data-generating process to be made prior
o observing responses. Gibbs optimal design (Overstall et al.,
025 ) is an alternative approach to experimental design which
as been developed to be less sensitive to such assumptions. This

s a further avenue of future research. 
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