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ABSTRACT

A Bayesian optimal experimental design framework is developed for experiments where settings of one or more variables, referred to as profile
variables, can be functions. For this type of experiment, a design consists of combinations of functions for each run of the experiment. Within
a scalar-on-function linear model, profile variables are represented through basis expansions. This allows finite-dimensional representation of
the profile variables and optimal designs to be found. The approach enables control over the complexity of the profile variables and model. The
method is illustrated on a real application involving dynamic feeding strategies in an Ambr250 modular bioreactor system.
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1 INTRODUCTION

In a variety of experiments, especially in biological studies, there
can be more flexibility over the control of design variables than
is the norm in standard experimental designs. In particular, it is
becoming increasingly common to run studies where the value
taken by one or more profile variables can be adjusted during a
single run of the experiment. Hence, for these variables, optimal
design concerns how to vary their values through the choice of
a function for each variable in each run of the experiment. We
refer to such examples as dynamic experiments.

Previous research on the design and analysis of dynamic exper-
iments can mostly be classified under one of two different frame-
works.

(i) Optimal design for dynamic mechanistic models, usu-
ally derived as the solution to a set of differential equa-
tions, which naturally incorporate time-evolving behav-
ior. Early work was reviewed by Titterington (1980).
Further developments have often come from the field of
control theory (e.g., Espie and Macchietto, 1989), espe-
cially applications in chemical and biological processes
where dynamical systems abound (e.g., Braniff and In-
galls, 2018). The methods and designs are often quite
closely tailored to the specific experiment or model be-
ing studied.

(i) Response surface methodology (RSM), typically using
standard designs. Georgakis (2013) proposed the ex-

tension of standard RSM to include profile variables.
Designs were obtained through application of standard
RSM or optimal designs to the so-called sub-factors de-
fined by a dimension reduction of the profile variables
(see Section 2). Roche (2018) applied related methods
to nuclear safety experiments and extended the approach
to include data-driven dimension reduction, for exam-
ple, principal components analysis. These ideas have
now seen fairly wide-spread adoption in a variety of phar-
maceutical applications, see Georgakis (2024), includ-
ing extensions to experiments with functional responses.

Our work fits within this second framework, and is motivated
by biopharmaceutical process development via experiments us-
ing an Ambr250 modular bioreactor system. Such a system al-
lows process conditions to be individually controlled for each
reaction. A typical experiment would measure the concentration
of the product of interest from each reaction (run of the experi-
ment) after a fixed time period, usually of the order of two weeks.

Design of experiments methods have seen considerable up-
take on such systems; for example, Tai et al. (2015) applied a
definitive screening design to perform variable screening. How-
ever, previous applications of statistically designed experiments
in such systems have only employed traditional static variables,
whose values are set and kept constant through each individual
run. Several studies have, though, highlighted the potential ben-
efits of dynamic experimentation. Yoon et al. (2003), Trummer
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et al. (2006) and Rameez et al. (2014) all found that varying
the temperature during a reaction can increase concentration. Lu
et al. (2013) discussed the increase in concentration that could
be obtained from a dynamic feeding strategy in place of the usual
fixed bolus feeding. However, none of these studies used experi-
ments specifically designed to estimate the effects of profile vari-
ables.

To study the applicability of such suggestions to their own
studies, our collaborators at GlaxoSmithKline (GSK) wanted to
design and run a series of dynamic experiments. We use one
of these experiments to demonstrate our novel approach to de-
signing such studies. The practicalities of the experiment in-
volved varying three static variables: initial viable cell concen-
tration (IVCC), pH, and temperature, and one profile variable:
teed volume. The study aimed to investigate the titer content of
the product (concentration), with the eventual aim of optimiz-
ing cell growth.

In this paper, we present a novel Bayesian approach to de-
signing experiments with profile variables, assuming a scalar-on-
function linear model (Section 2). Optimal designs are found ex-
ploiting the connections between this model and standard linear
model theory (Section 3). The impact of the model on the result-
ing designs is explored via illustrative examples (Section 4) and
methods demonstrated via application to the Ambr250 experi-
ment (Section 5).

2 SCALAR-ON-FUNCTION LINEAR MODELS
AND BASIS REPRESENTATIONS

2.1 Scalar-on-function linear models

Suppose there are J profile variables that can be controlled over a
time interval 7 = [0, T'], where x;(t) denotes the value of the
jth profile factor at time t € 7. For j =1, ..., ], itis assumed
thatx;(-) € X; C L>(T), where £2(T) is the set of all square
integrable functions on 7. The sets X}, . .., A are determined
by the nature of the experiment and the profile variables. For
example, if the jth profile variable cannot be changed over 7,
then X; will be the set of constant functions. Therefore, a stan-
dard, static experiment with fixed controllable variables is a spe-
cial case.

The experiment consists of n runs. For i = 1, ..., n, the ith
run consists of specifying the J controllable profile variables,
x(t) = [x,-l(t), cee x,-](t)]T eX =X x---x4&), and
measuring the scalar response, y;, at time { = T.

To investigate the effect of the ] profile variables on the re-
sponse, we assume a scalar-on-function linear model (e.g., Ram-
say and Silverman, 2005, pages 261-277). Specifically, it is as-
sumed

3= / FlnO]7 B dt +e. (1)
T

for i=1,...,n In (1), flx(t)] =
{Ailx®)], ..., Q[x(t)]}T is a vector of regression functions
of the profile variables, controlling the complexity of the model,
where it is assumed that f; : X — G, C L£*(T). For example,
a first-order model with an intercept has f[x(t)] = [1, x(¢)].
Furthermore, B(t) = [,31(1‘), ce ,BQ(t)]T is a Q X1 vec-

tor of unknown functional parameters. It is assumed that

By(t) € By C L2(T). Lastly, €1, ..., €, are random errors,
which are assumed independent, with expectation E(¢;) = 0
and variance var(¢;) = 62 < oo, fori = 1, ..., n. The inter-
pretation of the functional parameter B,(t),forg =1,..., Q,
are that the times with large absolute value of 8, (t ) have highest
influence on the response (Reiss et al., 2017).

The model given by (1) with univariate functional param-
eters will often provide a suficiently flexible representation of
the data-generating process. It is a special case of the multivari-
ate functional parameter model of Yao and Miiller (2010); see
Supplementary Material SM 1. However, multivariate functional
parameters are not straightforward to interpret, hence we focus
on the simplification to univariate functional parameters.

2.2 Basis expansions
2.2.1 Functional parameter basis expansion
The functional parameters S (t), ..., Bq(t) in model (1) are
infinite-dimensional. Estimation from a finite number, n, of
scalar responses, y1, . . ., ¥,, can be achieved by assuming a para-
metric form via a finite basis expansion (Ramsay and Silverman,
2005, page 44).
Forqg =1, ..., Q, the basis expansion of B, (t) is

mg.q

By(t) = Ouba(t) = b, (1)"0,,

=1

where the functions bg; (), . . . , bgn » (t) are known basis func-
tions and 6, isanmg ; x 1 vector of unknown coefficients. Con-
sequently, the problem is reduced to estimating p = Z§=1 Mg 4
unknown coefficients given by 8 = (0, ...,0q)". A special
case of a scalar parameter, 6, is represented by the single
(mg 4 = 1) basis function by(t) = 1. We can write B(t) =
B(t)", where B(t) isa p x Q block diagonal matrix with gth
block given by b, (t), that is

b(t) 0
0 by(t) O
B(t) = 0

Sobg (1)

2.2.2 Profilevariable basis expansion
In the design of experiments setting, we have the freedom to
specify the profile variables x; (t), ..., x,(t) to optimize gain
in information in estimating the functional parameters (¢ ), or
equivalently coeflicients @, from the scalar responses y, . . . , yp.
Similar to Section 2.2.1, x;(t), for i =1, ..., n, are infinite-
dimensional. To make the optimization problem tractable, we
again use a finite basis expansion. Fori=1,...,n and j=

1,....],

My, j

x;i(t) = Z Vijieji(t) = }’iTjCj(t)’ (2)
=1

wherecj (t), ..., Cim,,; (t) are known basis functions and y;; =
Vijts - - - Vijmx.,) are coefficients. Let ' = (y1, ..., y,,])T be

then Z£= | My, j X 1vector of coefficients.
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For observational data, I are estimated and treated as fixed in
the estimation of §. Conversely, in design of experiments, I" are
specified to optimize gain in information in estimating 6 (see
Section 3). A sufficiently complex basis expansion should be
chosen so that an optimal choice of I' leads to the profile vari-
ables reconstructed via (2) providing a good approximation to
the optimal infinite-dimensional profile variables.

2.3 Standard linear model representation of the

scalar-on-function linear model
The key to design of experiments for scalar-on-function linear
models is the observation that the model given by (1), under
the basis expansions of Section 2.2, can be written in the form
of a standard linear model. This observation has been made pre-
viously (e.g., Reiss et al., 2017) for the case where ] = 1 and the
regression functional is of the form f [x;(¢)] = [1, x:(t)]". Be-
low we extend this representation to | > 1, and more general
forms of the regression functional.

The gth element, f, [x; (t)], of the regression functional can be
written as f; [#;(t)] = [, 7 xiq(t), where F is a set defining
the gth term. The members of F,; belong to the set {1, . ,]}
and can be repeated. For example, the intercept has F; = &, the
main effect of the jth profile factor has F; = { ]} , the quadratic
effect of the jth profile factor has F; = { i j } and the two-way
interaction between the jith and j,th profile factors has F; =
U i}

The model given by (1) can now be written as

Q
J= /T ST e [By0)T00 16 3)

q=1 | aeF,

Using properties of Kronecker products (denoted by ®)

Hy;l;ca(t): ®yia ®Ca(t) > (4)

ack, acF, ack,

where ®ae}-q Yia and ®a€.7:,1 c,(t) are both ]_[ae}-q Myq X 1
vectors. Note, we use the convention that a Kronecker product
over the empty set, &, is one.

Q

Substituting (4) into (3) givesy; = ) _ zT0q + €;, where

q=1%ig
= [ 00| Qe & | @l
T acf, acF,

is an mg 4 x 1 vector. Therefore, the model can be written in
the form of a standard linear model as y = Z + €, where y =
15 ---ryn), €= (€1,...,€,),and Zisann x p model matrix

given by
T T
Zyy - 21
T T
Zat -+ Znq

Note that Z is a function of the coefficients, I' =
(G 2T y,,])T, of the basis expansion of the profile vari-
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ables. However, this dependence is suppressed in the notation
for clarity.

From (5), ziy =Ry ®aqu Via
J7by(t) ®aefq c,(t)Tdt is an mp 4 x ]_[uefq My, matrix.
The elements of R, are integrals of products of basis functions.
The exact form of the integrands will depend on the choice of
basis functions for both the x;(t)’s and B,(t)’s. However, for
any combination of monomial and B-spline basis functions, we
show, in Section SM2 of the Supplementary Material, that the
integration can be performed in closed form. We also provide a
closed form expression for the elements of R,.

where R, =

3 OPTIMAL DESIGN FOR
SCALAR-ON-FUNCTION LINEAR MODELS

3.1 Basis expansions and constraints

The aim is to specify the vector of profile variable coeflicients I
(subsequently referred to as the design) to optimize gain in infor-
mation in estimating the unknown functional parameter coefhi-
cients 6. This will be achieved by minimising an objective func-
tion W(T'). The choice of objective function will be addressed
in Section 3.2.

However, beforehand, there are several issues that need discus-
sion, in regards to the basis expansion of both the functional pa-
rameters and profile variables, and the complexity of the model
specified by the regression functional, f(-). These matters will
need addressing before the experiment, and therefore can be
considered as part of the design process.

The basis functions, by (t), ..., bq(t) of the functional pa-
rameter expansion need specification. For these functions, we
consider monomials and B-splines. Any combination of these,
combined with B-splines for the profile variable basis expansion,
leads to the integrals in the model matrix Z being available in
closed form (as discussed in Section 2.3). Monomial basis func-
tions have the advantage of higher interpretability but B-splines
are more computationally efficient.

The complexity of the scalar-on-function linear model
needs to be specified via the regression functional,

()= [fl(), cee, fQ(-)]T, and the number of basis func-
tions, mg 1, . . ., mg, q. Specifying the complexity of a statistical
model before observing the responses is a challenge shared by
all applications of optimal design of experiments (e.g., Atkinson
et al,, 2007, page 329). It is a subjective decision which should
be made in consultation with the researchers, considering the
number of runs, #, in the experiment and, potentially, the es-
timability of §. On this last point, for ZTZ to be non-singular,
and the least squares estimates of § to exist, the n X pmodel ma-
trix Z requires full column-rank. A necessary, but not sufficient,
condition for this to occur is that p = Z;Z:l mg o < n. This
places an upper bound on the complexity (mg 1, ..., mg o) of
the basis expansion of the functional parameters, based on the
available experimental resources ().

Similarly, the functions, ¢(t),...,¢(t), and numbers,
M1, ..., Myj, of the profile variable basis expansion need
specification. Ultimately, there will be a compromise between
specifying profile variables x(t),...,x,(t) that are sim-
ple enough to be implemented in a physical experiment but
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complex enough to provide a good approximation to the actual
optimal infinite-dimensional profile variables. The former can
be determined in consultation with the researchers. The latter
can be investigated as part of minimizing the objective function
W(-) (see Sections 4 and S for examples).

For the basis functions, ¢; (t), . . ., ¢/(t), the proposal is to use
B-splines. These offer two distinct advantages. Firstly, in combi-
nation with B-spline or monomial basis functions for the func-
tional parameter basis expansions, the integrals in the model ma-
trix are available in closed form. Secondly, as shown below, it is
straightforward to implement constraints on the profile variables
x;(t),fori = 1, ..., n,viasimple constraints on the elements of
design T

Often, the profile variable x;;(t), fori=1,...,nand j =
1, ..., ], will be constrained in the experiment such that x;; :
T — [a;, b;]. For example, if x;;(t ) represented the tempera-
ture at time t € 7 for the ith run, then a; and b; are the mini-
mum and maximum possible temperatures, respectively.

Suppose, for j=1,...,], the basis functions
cin(t), ..., Cim,; (t) are B-spline functions. Using the property
of B-spline functions that )"/ ¢;i(t) = 1fort € T, if the ele-
ments of y;; are such that y;;; € [a}, b;],foralll =1, ..., m,,
it follows that x;; (t) = ZT:X{ Yijc(t) € [aj, bl fort € T.

To implement B-spline basis functions for x;; (t), the number,
k;, and location of the internal knots need to be specified. It is
common to choose uniformly spaced internal knots and we use
this approach in this paper. However, the location of the knots
could be incorporated into the design problem. For maximally
smooth basis functions, m, ; = k; + d; + 1, where d; is the de-
gree. Thus the number of internal knots is specified by the num-
ber of basis functions, 1, ;, and the degree. The followinglemma
can aid in choosing the number of basis functions. It gives alower
bound on the complexity of the profile variables for the chosen
complexity of the scalar-on-function linear model. The proof is
provided in Section SM3 of the Supplementary Material.

Lemma 1: A necessary, but not sufficient condition, for the least
squares estimates of the functional parameter coefficients, 0, to exist,

ismgq < ]_[ae}-q My forallg=1,...,Q.

Lemma 1 states that the degree of complexity of the basis func-
tions for the functional parameters demands a minimum degree
of complexity in the basis functions for the associated profile
variables. However, this result says nothing about the maximum
degree of complexity for the profile variables. From empirical ev-
idence, for example from the illustrative example in Section 4, it
appears that continuing to increase the complexity of the profile
variables whilst keeping the complexity of the functional param-
eters, and amount of experimental resources (1), fixed leads to a,
perhaps anticipated, plateau in the expected gain in information
from the experiment.

3.2 Objective functions via Bayesian decision-theory

We formulate objective functions to find designs by using
a Bayesian decision-theoretic approach. Bayesian decision-
theoretic approaches for optimal experimental design are
well established in the broader literature (e.g., Chaloner and

Verdinelli, 1995; Rainforth et al., 2024; Ryan et al., 2016). Our
contribution is to develop this framework for scalar-on-function
linear models, which to our knowledge has not previously been
addressed. The Bayesian approach has the advantages that the
experimental goal can be incorporated via the choice of loss
function and all assumed sources of uncertainty are accounted.
The post-experiment analysis does not necessarily need to be
undertaken under a Bayesian approach.

Bayesian decision-theoretic design (or Bayesian design) starts
with specification of a loss function, denoted €(8, y, I'), giv-
ing the loss in estimating parameters 6, using responses y
obtained from an experiment with design I'. The objec-
tive function, W(T'), follows from the expected loss L(T') =
E,or [£(0, y, T)], where expectation is with respect to the joint
probability distribution of the responses y and parameters 6.
This joint probability distribution of y and  is given by the
distribution of the responses y given 6, and the prior distribu-
tion of #. Note that the expected loss can always be written
as L(T') = g[W(T)], where g(-) is a monotonically increas-
ing function. Therefore, it is sufficient to minimize the objective
function W(T') in place of L(T).

The Bayesian design is given by minimizing the objective func-
tion W(T') over the space of all designs. Recall from Section 3.1,
that if the profile variables are constrained such that x;; : 7 —
laj,bj],fori=1,...,nand j=1,...,], then it is sufficient
for yijy € [aj, b;], forI=1,...,m;,i=1,...,nand j =
1, ..., ]. This defines the space of all designs.

For the scalar-on-function linear model, the distribution of y
given @ follows from specification of a distribution for the errors
€1, ..., €,. For analytical tractability, we assume that the errors
are normally distributed. For the prior distribution of 6, we as-
sume a multivariate normal distribution with mean g and vari-
ance 0> ¥, where g and ¥ are a specified p x 1vectorand p X p
matrix, respectively. The matrix 3 is termed the prior scale ma-
trix. We also assume an inverse-gamma prior distribution for the
nuisance parameter of the error variance o'>. The shape and rate
parameters are a/2 and b/2, respectively, where a and b are spec-
ified scalar constants.

Leti =3 (ZTy+ =7 'n), S = (Z°2+ =) La=a+
nand b= b+ wrE 4+ yty — T3 ft. Under the above
prior specification, the marginal posterior distribution of 6 is a
multivariate t-distribution with mean ft, variance b3 /(a—2)
and 4 degrees of freedom.

There are several prior hyperparameters, #, £, a and b that re-
quire specification. However, for the loss functions considered
in this paper, the expected loss only depends on the prior scale
matrix Y. There are various approaches to specifying X. It can
be specified using prior information: either subjectively via prior
elicitation (e.g., O’Hagan and Forster, 2004, Chapter 6) or using
the results of a previous experiment, that is use ¥ := X. The
prior scale matrix can also be specified to represent prior igno-
rance. Specifying £ ! to be the p x p matrix of zeros imple-
ments a uniform prior distribution for . Under such a prior dis-
tribution, the posterior distribution still exists (i.e., is proper),
as long as p = 23:1 mg 4 < n. Also, as discussed below, un-
der such a prior distribution, and choice of certain loss function,
the expected loss objective function is equivalent to commonly-
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used objective functions from the classical design literature (e.g.,
Chaloner and Verdinelli, 1995). Lastly, ¥ can be used to im-
plement a roughness penalty on the functional parameter basis
functions (see Section 6 and Section SM7 of the Supplementary
Material).

In Sections 4 and S, we consider the squared error (SE) loss
function given by the sum of squared differences of the elements
of @ and their marginal posterior means, that is

Csp(0,y,T) = (0— )" (06— fr).

It follows (see Section SM4 in the Supplementary Material for
derivation) that the SE objective function given by the expected
SE loss is W (') = tr (E) Note that finding the Bayesian SE
design does not require the prior mean, g, nor the prior shape,
a, or rate, b, parameters to be specified.

If an improper uniform prior distribution is assumed for 6,
whereby the elements of ¥ ~! are zero, then the SE objective

function reduces to Wgz(T) = tr [(ZTZ)A], and the corre-

sponding Bayesian design is equivalent to the classical A-optimal
design.

As presented above, the loss function is in terms of the func-
tional parameter coeflicients §. However, these may not be of di-
rect interest. Rather, interest may lie in implied functions B(t) =
[,31 (£), ..., Bq(t )]T Therefore, we propose an alternative loss,
in terms of 0, that is given by integrating a loss, in terms of B(t),
over 7.

As an example, consider the SE loss in terms of (¢ ) given by

Cse(B(t), . T) = [B(t) — Bggeypr (BE))]"

[.3(1‘) — Eg(t)y.r (ﬂ(t))] ,

where Eg ), r [B(t)] is the marginal posterior mean of B(t).
Using properties of the multivariate t-distribution, the poste-
rior distribution of B(t), fort € T, is multivariate t-distribution
with posterior mean Eg(), r [8(t)] = B(t)" jt. The implied
loss in terms of @ is now

Cwss(8.9.T) = /T 055 (B(t). y.T) dt

- /T[B(t)TO—B(t)Tﬂ]T
[B(t)"0 —B(t)"it] dt

=(0—R) B (0-4),
where B; = fTB(t)B(t)T dt is a p X p matrix. Thus the im-
plied loss in terms of @ is a weighted squared error (WSE) loss.
The corresponding objective function is Wyyse(T) = tr [Blf]]
(see Section SM4 in the Supplementary Material for derivation).
Under an improper uniform prior distribution for @, the Bayesian

WSE design is equivalent to a classical L-optimal design (e.g,
Atkinson et al., 2007, Section 10.5).

4 ILLUSTRATIVE EXPERIMENT WITH A
SINGLE PROFILE VARIABLE

In this section, we consider an illustrative example where
Bayesian designs are found for an experiment with ] = 1 pro-
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file variable. The time interval is 7 = [0, 1], for example, T =
1. The regression functional is f [x; ()] = [1, x;; (¢)], so that
Q =2 and the model is y; = B1 + fol Ba(t)x;1 (t) dt + €, for
i=1,...,n

For the basis expansion of x;; (t), we consider degree-zero B-
spline basis functions with uniformly spaced internal knots. If
there are m, 1 basis functions, then this amounts to each x;; (t)
being a step function on 7 = [0, 1], where the discontinuities
correspond to the internal knots A; 1, ..., Ay, where k; =
my 1 — 1. Explicitly, forl =1, ..., my,

Lift € [Ay -1, A11);

0 if otherwise;

cay(t) = {

where A1 o = land Ay, , = 1.

Step functions are an important and useful tool in practice. For
instance, Rameez et al. (2014) considered an Ambr bioreactor
application with a temperature step shift from the high to the low
level. We will vary the number of basis functions, m, ;, which is
equivalent to varying the complexity of the profile variable, to
investigate the effect on the performance of the design through
the expected loss.

For the basis expansion of the functional parameters, f; is a
constant so mg; = 1 and b (t) = 1. For B,(t), we consider
two cases with monomial basis functions. In Case I, mg » = 2,
by(t) = (1,t)", giving p = 3. In Case II, mg, = 3, by(t) =
(1,¢,t*)T, giving p = 4.

For both cases, we find Bayesian SE and WSE designs
with number of basis functions for the profile variable
My =2 (not CaseIl), 3, 4, 8,16, 100 and n = 4, 12. Note
that m, ; = 2 is forbidden for Case II since the least squares
estimate of @ does not exist for this value (see Lemma 1). Sec-
tion SMS of the Supplementary Material gives expressions for
the two matrices, R; and R,, which feature in the model matrix
Z, and the weighting matrix, By, for Bayesian WSE designs.

The design, I', is a vector with nZi.:l My j = nm, ) ele-
ments. The profile variable x;; (¢) is assumed to be constrained
to [—1, 1] meaning the elements of I are also constrained to
[—1, 1] (see Section 3.1). In each scenario, the coordinate ex-
change algorithm (Meyer and Nachtsheim, 1995) is used to min-
imize the objective function from 1000 random starts, as sug-
gested by Goos and Jones (2011).

The methodology is implemented in the fdesigns R pack-
age (Michaelides et al., 2025). The Supplementary Material in-
cludes a vignette that demonstrates how to find the designs dis-
cussed in this section and in Section 3.

Table 1 shows the values of the SE and WSE objective func-
tion for the respective optimal designs for each value of m, ; and
n. Clearly as n increases, the expected loss decreases. Typically,
as the number of basis functions, m, ;, increases, the expected
loss decreases, since the finite-dimensional representation of the
profile variable becomes a better approximation to the optimal
infinite-dimensional profile variable. The rate of this decrease
slows as m, | increases allowing a compromise to be made be-
tween profile variable complexity and gain in information. This
sensitivity to m, ; also depends on the choice of functional pa-
rameter basis. In Case I, even small values of m, ; already achieve
near-minimal expected loss, so relatively simple profile-variable
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TABLE 1 SE and WSE objective function values for optimal designs for m, 1 = 2, 3, 4, 8, 16, 100 and n = 4, 12. The profile variables for the

scenario highlighted in bold are shown in Figure 1.

SE WSE
Casel Case Il Casel Case I1

my 1 n=4 n=12 n=4 n=12 n=4 n=12 n=4 n=12
2 8.750 2.583 - 1.417 0.472 - -

3 8.828 2.778 386.408 126.409 1.581 0.499 3.363 1.120
4 8.750 2.570 246.869 67.735 1.417 0.472 3.243 1.022
8 8.493 2.539 218.479 65.217 1.417 0.472 3.147 1.021
16 8.427 2.520 208.843 63.610 1.417 0.472 3.099 1.016
100 8.404 2.512 206.884 63.028 1.417 0.472 3.094 1.010

bases provide designs that are close to optimal. In Case II, the de-
signs are more sensitive. Increasing m, leads to more noticeable
reductions in expected loss, and somewhat larger bases are re-
quired. Nevertheless, once a moderate number of basis functions
is reached, further increases yield little additional gain. These re-
sults reinforce the discussion in Section 3.1, highlighting the im-
portance of aligning the complexity of the profile variable basis
with that of the functional-parameter basis to avoid unnecessary
increases in dimensionality and computational burden. The ex-
ception to expected loss decreasing with m, ; is for m, ; = 2 for
Case L. The uniformly-spaced internal knots for m, ; = 2, 3, 4
are { % }, { %, % } and { i, %, % }, respectively. A change at the knot
att = % isimportant for small m, ; and its absence for m, ; = 3,
leads to higher expected loss than for m, ; = 2.

Case Il naturally yields larger expected-loss values than Case I
(see Table 1), because the number of parameters increases with
the quadratic term in the functional parameter basis. For this rea-
son, absolute magnitudes of the objective functions are not di-
rectly comparable across cases. Instead, the focus should be on
the structural features of the resulting profile variables. In Case
I, most functions have a single step change, with some allow-
ing two step changes. In contrast, in Case II, the designs have
two step changes in most functions, with some profiles having
three step changes. This additional flexibility reflects the need
to capture the curvature of the quadratic parameter functions.
These results indicate that the robustness of the design depends
on the modeling choice, that is Case I designs are simpler and
more stable, whereas Case II designs require more complex step
functions which are still stable once sufficient flexibility is intro-
duced.

As an example, Figure 1 shows the profile variables
x11(t), ..., x41(t) for the n =4 SE design for Case I with
my,1 = 8 basis functions. This scenario is highlighted in bold in
Table 1. Three profile variables have exactly one change and the
remaining has exactly two changes.

S APPLICATION TO A DYNAMIC
EXPERIMENT IN THE AMBR250
BIOREACTOR

‘We now apply the methodology to a real Ambr250 bioreactor
experiment. GSK are investigating the relationship between titer
content of a product (constrained to (0,1)) and ] = 4 variables:
feed volume (denoted x;; (t)); IVCC (x3); pH (x33); and tem-

perature (x;4). Feed volume is a profile variable while the remain-
ing variables are static, that is m, , = m, 3 = m, 4 = 1. The re-
sponse, y;, is the logit of titer content. GSK are able to run a dy-
namic experiment on the (scaled) time interval 7 = [0, 1] with
n = 12 runs.

In consultation with GSK, the following regression functional
is proposed

T
fl:xl(t)] = [17 Xi1 (t)’ Xi2y Xi35 Xi4, xi22’ xi23’ xi‘.] )

giving Q = 8. Forallg =1, ..., Q,apart from g = 2, mg ; =
1 giving constant parameters. For the functional parameter
B>(t), we consider the monomial basis function b,(t) =
(1,¢, )7, that is mg» = 3. This leaves a model with p =
YL mp.q = 10.

For the profile variable x; (t), fori = 1, ..., n, GSK are able
to implement step functions with at most three changes during
T Thus we consider zero-degree B-splines with m, ; = 4 (al-
lowing up to three changes). For simplicity, we use uniformly-
spaced internal knots.

For the matrices Ry, . .., Rq that feature in the model matrix,
following the same derivation as in Section SMS of the Supple
mentary Material, R; = 1, for q # 2, are all scalars, and R, is a
mg, X My = 3 X 4 matrix given by

48 48 48 48
6 18 30 42
1 71937

Ry= —
7 192

After discussion with collaborators at GSK, it was decided that
focus would be on estimating the 6 parameters rather than B(t),
motivating the goal of finding an Bayesian SE design. Also after
discussion, it was decided to use a prior distribution for  that
represented prior ignorance, in particular an improper uniform
prior distribution. This means the Bayesian SE design is equiva-
lent to a classical A-optimal design.

The design I' has a total of n Zi:l my, j = 84 elements. All
controllable variables are scaled to [—1, 1] meaning elements of
I' are constrained to the same interval. The Bayesian SE design is
found using coordinate exchange, as in Section 4. Table 2 shows
the optimal design for the n = 12 runs. Five unique functions for
feed volume, ;1 (¢ ), were found, labeled (a)-(e) in Table 2 and
shown in Figure 2. Function (a) is repeated four times, function
(b) repeated five times, and functions (c), (d), and (e) once. The
optimal design for the scalar variables includes boundary points
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FIGURE 1 Profile variables for the n = 4 SE design for Case I with m,,; = 8 basis functions.

TABLE 2 SE design for the Ambr250 bioreactor experiment. The feed volume profile variables labeled (a)-(e) are shown in Figure 2.

Feed volume
xi1(8)

Run

-
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Temperature
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—

1
1

—_

— O O O OO

(=]

and center points in order to be able to estimate the parameters
associated with the quadratic terms. This is similar to the behav-
ior of the quadratic function for the profile variable, where the
functions of the profile variable changes at most twice.

As a sensitivity analysis, we find the SE optimal design for
my1 = 3,4, 8, 16, 100. The value of the objective function is
shown in Table SM1 in the Supplementary Material. There is
limited gain in information in increasing m, ; beyond m, ; = 4.
However, if m, ; = 3, then there is a large increase in the ex-
pected loss. From Figure 2, the optimal profile variables make at
most two changes over 7. Therefore, the increase in expected

loss for m, ; = 3 is due to the position of the internal knots
rather than their number.

On running the experiment, there were two complications.
Firstly, runi = 7 failed to return a titer value, so there are only re-
sponses from the remaining eleven runs. Secondly, the Ambr250
experimental apparatus used by GSK provides titer content to
three decimal places. For runi = 1, a titer content of one was re-
turned. This means the true observed titer content was in the in-
terval [0.9995, 1), meaning the true observed response y; (after
logit transform) was in the interval [7.600, 00) (to three decimal
places). To address this complication, we assumed that the true
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FIGURE 2 Five unique Feed volume profile variables of the Bayesian SE design for the Ambr250 bioreactor experiment.

response was censored and estimated @ (and o) via maximum
likelihood. This means the likelihood contribution for runs i >
lis ¢ {(yl — fT f[xi(t)])Tﬂ(t)dt) /o }, and for run i = 1 is
1— @ {(7.600 — [ flx:(t)])"B(t)dt) /o }, where ¢(-) and
®(-) are the probability density and cumulative distribution
functions, respectively, of the standard normal distribution.

To investigate the relationship between the variables and titer
content, we used model selection. Specifically, the model that
minimized the Akaike information criterion (AIC), found using
backward selection, retained main effects for IVCC, pH and tem-
perature and a quadratic effect for temperature, with regression
functional f[x;(t)] = (1, %, xi3, %, 24 )T The profile vari-
able of feed volume was found not to significantly affect titer con-
tent. The final estimated fitted model is

logit(titer) = 1.199 + 1.324 pH + 1.684 IVCC

+0.506 Temperature — 1.851 Temperature?,

from which, in scaled units, optimal titer content is estimated to
occur when pH is x4, = 1, IVCC is x3 = 1 and temperature is
x4 = 0.137 (to three decimal places).

6 DISCUSSION

In this paper, new methodology for finding optimal designs has
been proposed for dynamic experiments where a scalar response
depends on profile variables. The methodology uses basis func-
tion expansions of the profile variables and the functional param-
eters in a scalar-on-function linear model. It is flexible and can be
applied assuming a variety of different expansions for both pro-
file variables and parameter functions.

As discussed in Section 3.1, the complexity of the model
needs to be specified before the experiment. Part of that
specification involves the number of basis functions for the
expansion of the functional parameters. An approach is to
set the number of basis functions as large as possible and
to penalize via a roughness penalty (Ramsay and Silverman,
2005, Chapter S) implemented through the prior variance
matrix, 2. Details of this are given in Section SM7 of the
Supplementary Material.

Ongoing work is to extend the current methodology to non-
normally distributed responses and finding designs for scalar-
on-function generalized linear models. In this case, a chal-
lenge will be the objective function given by the expected
loss will not be available in closed form. However, it is antici-
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pated that computational advancements in Bayesian optimal de-
sign over the last decade (e.g., Rainforth et al, 2024) can be
employed.

In this paper it is assumed that time t € [0, 7] is the contin-
uous single input to profile variables. The methodology can be
naturally extended to scenarios where profile variables have mul-
tiple inputs, such as in spatio-temporal studies.

A limitation of Bayesian optimal design is that it requires as-
sumptions about the data-generating process to be made prior
to observing responses. Gibbs optimal design (Overstall et al,,
2025) is an alternative approach to experimental design which
has been developed to be less sensitive to such assumptions. This
is a further avenue of future research.
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