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Abstract

Benthic foraminiferal Mg/Ca, Sr/Ca, B/Ca, and Mg/Li data are used to
reconstruct deep-sea temperature and seawater carbonate chemistry. However, the
concurrent influence of various environmental parameters on these proxies is not fully
understood. Here, we compile published and unpublished element/Ca core-top data
from Cibicidoides mundulus, C. pachyderma, Lobatula wuellerstorfi, Oridorsalis
umbonatus, Nuttallides umbonifera, and Uvigerina spp. to determine the sensitivity of
these species’ Mg/Ca, Sr/Ca, B/Ca, and Mg/Li to temperature, calcite saturation state
(Qcarcite), dissolved inorganic carbon (DIC), and salinity. By applying multivariate linear
regression analysis, we disentangle the effects of these environmental parameters on
the element/Ca incorporation into these species. As a result, we provide multivariate
element/Ca calibrations with temperature and Qe Sensitivities for all species-
elemental system combinations. Overall, our analysis reveals that: 1) the Mg/Ca-
sensitivity to temperature is substantially lower compared to most previous
approaches when accounting for the effect of Qccite; 2) Sr/Ca is driven dominantly by
Qcaicite; 3) B/Ca can be linearly related to Qcaicite; and 4) Mg/Li-temperature calibrations
have substantially lower degrees of unexplained variance compared to Mg/Ca. Our

calibrations offer a statistically robust approach that also allows us to quantify the
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uncertainties in the reconstruction of temperature and carbonate chemistry when
these element/Ca proxies are used. Finally, we develop a user-friendly data processing
software (‘EICaRBenthic’) that can simultaneously solve up to two benthic
foraminiferal element/Ca datasets for temperature and Qcicte (€.8., Mg/Ca and Sr/Ca),
while providing the ability to correct for long-term changes in seawater elemental

chemistry and propagating all sources of uncertainty.

Plain Language Summary

The ratios of magnesium (Mg) to calcium (Mg/Ca) and Mg to lithium (Mg/Li)
measured in benthic foraminifera shells are commonly used to reconstruct deep-sea
temperature, whereas the ratios of strontium (Sr) and boron (B) to Ca (Sr/Ca and B/Ca)
are used to reconstruct ocean chemistry. However, the application of these elemental
ratios is not straightforward. In this study, we compiled and analyzed a dataset
including Mg/Ca, Sr/Ca, B/Ca, and Li/Ca collected from five benthic foraminiferal
species and one genus to understand how each elemental ratio responds to different
environmental parameters (i.e., temperature, carbonate chemistry, salinity). The
results of our statistical analyses show that the benthic foraminiferal Mg/Ca is less
sensitive to temperature when Qe (@ measure of how saturated seawater is with
respect to calcite) is taken into account, and that Mg/Li provides more consistent
temperature reconstructions compared to Mg/Ca. Benthic foraminiferal Sr/Ca and
B/Ca are mainly influenced by changes in Qcacite- TO support paleoceanographic
reconstructions, we develop a software called EICaRBenthic. This software allows users
to solve for temperature and Qi USing paired elemental ratios, while also

propagating uncertainties.

Key Points
e We compile ~1500 core-top benthic foraminiferal Mg-Sr-B-Li/Ca measurements
from five species and one genus to produce new calibrations

e Many benthic foraminiferal elemental systems require multivariate calibrations to
account for temperature and seawater carbonate chemistry

e We present data processing software that can simultaneously solve for
temperature and Q.ate and fully propagate uncertainty
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1. Introduction

The ratio of magnesium to calcium (Mg/Ca) in the tests of foraminifera
provides one of the most widely applied proxies to reconstruct ocean
paleotemperatures. Rooted in thermodynamics, this proxy is based on the fact that
higher temperatures will be recorded as higher Mg/Ca ratios in foraminifera (Chave,
1954; Izuka, 1988; Morse and Bender, 1990; Niirnberg et al., 1996; Rosenthal et al.,
1997; Lea et al., 1999; Branson et al., 2013), a feature also observed in inorganic calcite

(e.g., Katz, 1973; de Choudens-Sanchez & Gonzalez, 2009).

Benthic foraminiferal Mg/Ca (Mg/Cay¢) has become a useful tool in the
investigation of past deep-sea temperatures (e.g., Rosenthal et al., 1997; Martin et al.,
2002; Elderfield et al., 2006; Bryan and Marchitto, 2008; Tisserand et al., 2013; Lear et
al., 2015; Lo Giudice Cappelli et al., 2015; Kubota et al., 2015), in particular, because
few other methodologies are available for quantitative environmental reconstruction
in this realm (e.g., organic geochemical proxies are limited to the upper part of the
ocean). In addition, Mg/Cays can be used in combination with benthic foraminiferal
oxygen isotopes (6'80y¢) to determine the 60 of seawater and thus reconstruct sea
level and ice volume changes throughout the Cenozoic (e.g., Cramer et al., 2011; Lear

et al., 2000; 2015; Miller et al., 2020).

Notwithstanding the impact that benthic Mg/Ca data had on our understanding
of past climates, the application of Mg/Cays is complicated by additional nonthermal
controls. For example, Martin et al. (2002) analyzed Lobatula (Cibicidoides)
wuellerstorfi Mg/Ca and observed that specimens collected at the deepest Atlantic and
Pacific sites were characterized by Mg/Ca values that were not in agreement with the
overall Mg/Ca-temperature relationship for this species. Based on this finding,
different relationships between Mg/Cap; and seawater carbonate chemistry were
proposed, usually parameterized as a function of carbonate ion saturation A[CO3*]
(A[CO3%] = [CO 3% ]in situ - [CO3% |saturation, Where [CO3% |saturation is that which would yield
Qcaicite = 1). Subsequent studies established a Mg/Cays species-specific sensitivity to
A[CO3%], suggesting that species-specific calibrations ideally should be used where

possible (Elderfield et al., 2006, Healey et al., 2008, Raitzsch et al., 2008; Yu and
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Elderfield, 2008). In practical terms, the impact of [CO3%] in down core records has
been addressed by applying region-specific calibrations (e.g., Sosdian & Rosenthal,
2009) with the assumption that temperature and [CO3%] covaried through time to the
same degree as the calibration dataset. In situations where this is unlikely to have
been the case, Mg/Ca data were corrected for changes in seawater carbonate
chemistry by independently estimating the degree to which this factor has changed.
For example, Cramer et al. (2011) parameterized deep ocean A[CO3%] as a function of
the calcite compensation depth (CCD). However, this approach suffers from the likely
inter- and intra-basinal variability in A[CO5%] given that the dataset drew on globally
distributed sites, as well as the uncertainty in deriving A[CO3?7] from a CCD record

(Greene et al., 2019).

Other approaches to correcting Mg/Cays for changes in deep ocean carbonate
chemistry focused on other element/Ca ratios in foraminiferal CaCOs. Bryan &
Marchitto (2008) showed that normalization of benthic foraminiferal Mg to lithium
(i.e., Mg/Liy) resulted in a proxy that combined the temperature sensitivity of Mg
incorporation while removing the (presumably) biologically-driven impact of seawater
carbonate chemistry. The basis of the approach lies in the fact that, while Li
incorporation into calcite is also sensitive to temperature (e.g., Marriot et al., 2004b;
Hall and Chan, 2004, Bryan and Marchitto, 2008), it can also be influenced by changes
in deep water saturation, which is supported by the overall decrease in foraminiferal
Li/Ca with water depth (e.g., Lear and Rosenthal, 2006; Doss et al., 2018). Therefore,
the use of Mg/Liys can account for the impact that A[CO5?] changes have on biological
calcification processes that ultimately influence Mg/Cabf, such as Ca?* utilization at the
calcification site (Rayleigh distillation) and growth rate (Marchitto et al., 2018). A
number of studies have since built on this. For example, Lear et al. (2010) combined O.
umbonatus Mg/Ca and Li/Ca data to subtract the seawater carbonate chemistry effect
from the Mg/Cays temperature signal (see also Dawber and Tripati, 2011; Lear and
Rosenthal, 2006). The development of boron to Ca (B/Cays) as a proxy for seawater
carbonate chemistry offers an alternative tool to directly reconstruct changes in
A[COs%] (e.g., Yu & Elderfield, 2007; Yu et al., 2010; Rae et al., 2011; Brown et al.,
2011; Raitzsch et al., 2011).
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Benthic foraminiferal strontium to Ca (Sr/Cays) has also been suggested as an
alternate proxy to reconstruct A[COs%] in geological records (Dawber & Tripati, 2012
Yu et al., 2014; Lo Giudice Capelli et al., 2015; Keul et al., 2017; Lawson et al., 2014).
However, several studies have shown that Sr/Cays can also be influenced by
temperature, pH, salinity, and ontogenetic effects (Rathburn and Deckker, 1997;
Reichart et al., 2003; Rosenthal et al., 2006; Dissard et al., 2010; Lo Giudice Capelli et
al., 2015). In addition, the influence of temperature on the Sr/Cays of species
commonly used in paleoenvironmental investigations remains unclear (Rosenthal et
al., 1997; Rathmann & Kuhnert 2008; Yu et al., 2014).

As a result, while much progress has been made over the last few decades in
the development and application of (trace) element systems in benthic foraminifera,
much remains to be understood in terms of the relative influence of temperature and
the seawater carbonate chemistry on these proxies. For example, previous work
suggested a wide range of Mg/Cap-temperature sensitivities for the same species
depending on how nonthermal influences were treated, and the degree to which
temperature and carbonate chemistry varied in the underlying dataset (e.g., Lear et al.,
2002; 2010; Yu & Elderfield, 2008; Raitzsch et al., 2008; Lo Giudice Capelli et al., 2015).

In this study, we compile published and unpublished globally distributed core-
top Mg/Ca, Sr/Ca, B/Ca, and Li/Ca. Our dataset includes Cibicidoides mundulus, C.
pachyderma, Lobatula wuellerstorfi, and Nuttallides umbonifera, described as
epifaunal species (e.g., Lutze and Thiel, 1989; McCorkle et al., 1990; Rathburn and
Corliss, 1994), as well as Oridorsalis umbonatus and Uvigerina spp., described as
shallow infaunal species (e.g., McCorkle et al., 1990; Rathburn and Corliss, 1994) (Table
1). We analyze this compilation using multivariate linear regression models for all
proxy system-species combinations with sufficient data and determine the potential
influence of temperature, carbonate chemistry, and salinity on these systems. Finally,
we present a Matlab script (‘EICaRBenthic’) for the calculation of temperature, Qcacite,
and [CO3%] from benthic foraminiferal Mg/Ca, Sr/Ca, B/Ca, or Mg/Li data. This
software: 1) simultaneously solves for temperature and seawater carbonate chemistry
when provided with sufficient data; (2) fully propagates all sources of uncertainty; and
(3) can be applied on timescales across which the elemental composition of seawater

has changed.
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2. Material and methods

2.1 Core-top data compilation

We compiled core-top Mg/Ca, Sr/Ca, B/Ca, and Li/Ca data for five benthic
foraminiferal species (Cibicidoides mundulus, C. pachyderma, Lobatula wuellerstorfi,
Nuttallides umbonifera, Oridorsalis umbonatus) and one benthic foraminiferal genus
(Uvigerina spp.) (Fig. S1) from the Arctic, Atlantic, Indian, and Pacific Oceans (Figure 1;
Table 1) from 25 published studies (Rosenthal et al., 1997; Martin et al., 2002; Lear et
al., 2002; Rathmann et al., 2004; Lear and Rosenthal, 2006; Elderfield et al., 2006;
Marchitto et al., 2007a; Yu and Elderfield, 2007; Yu and Elderfield, 2008; Bryan and
Marchitto, 2008; Healey et al., 2008; Raitzsch et al., 2008, 2011; Lear et al., 2010;
Brown et al., 2011; Rae et al., 2011; Rae, 2011; Tisserand et al., 2013; Yu et al., 2014;
Gray, 2015; Kubota et al., 2015; Lo Giudice Cappelli et al., 2015; Gussone et al., 2016;
Stirpe et al., 2021; Lawson et al., 2024) and two PhD theses (Gray, 2015; Rae, 2011; see
Table 1). The compiled dataset can be found in Pangaea (Nauter-Alves et al., XXXX;
doi:XXXXXX).

The compiled data span a temperature range from -1.15 to 18.6°C, a A[CO3*]
range from -35.4 to 161 umol/kg (as reported in the original publications but
recalculated here, see Sec. 2.2), and a water depth range of 151 to 5159 m. Sediment
samples below 2 cm core depth and all outliers as flagged in the original publication
(e.g., those resulting from analytical error or diagenetic alteration) were excluded from

our analysis.

We note that in some publications, L. wuellerstorfi is reported as Cibicidoides
wuellerstorfi. According to Hayward et al. (2025) (WoRMS database;

https://www.marinespecies.org/index.php), this species is currently classified as L.

wuellerstorfi. Given this and considering the distinct element/Ca signature of this
species compared to the other Cibicidoides species considered in this study (see Sec.
3), we decided to follow the current nomenclature and therefore do not analyze L.
wuellerstorfi data together with C. mundulus and C. pachyderma when investigating

this genus-specific portion of the dataset.
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There is also an ongoing taxonomic debate regarding the classification of
Cibicidoides pachyderma. While the studies utilized here classified this species as
Cibicidoides, genetic analyses disagree in the placement of this species within this
genus (Cibicidoides versus Cibicides; Schweizer et al., 2009; Holzmann and Pawlowski,
2017). Considering that the debate has not yet been resolved and in the light of the
broadly similar test chemistry of C. pachyderma and C. mundulus (discussed in detail
below), we considered C. pachyderma as a Cibicidoides species for the purposes of our

analyses.

Finally, we considered all Uvigerina data included here as Uvigerina spp. We did
so because the studies utilized here were based on U. peregrina, which includes
morphologically variable species as defined in Stirpe et al. (2021), and other species
that were classified only at the genus level (i.e., Uvigerina, Yu and Elderfiels 2007,

2014; Gussone et al., 2016).

The compiled data were measured using different analytical methods, and
samples were prepared according to different cleaning procedures. Some datasets
were collected using a spatially-resolved analytical technique (laser ablation
inductively coupled plasma mass spectrometry - LA-ICPMS), which differs from bulk
(‘solution’) approaches in that it does not average over intra- and inter-specimen
geochemical heterogeneity. In order to convert these datasets to a form that is — as far
as possible — comparable to solution approaches, where data were reported as
individual laser spot measurements or as individual specimen values (Rathmann et al.,
2004; Stirpe et al., 2021), we calculated the average element/Ca per site and used that

value in our analysis.

2.2 Hydrographic data extraction

Seawater hydrographic parameters (temperature, seawater carbonate
chemistry, salinity) were recalculated from each original study to establish consistency
across datasets. We based all calculations on the 0.25° resolution World Ocean Atlas
(WOA) 2018 temperature and salinity datasets (Locarnini et al., 2018; Zweng et al.,
2019) and the 1° resolution GLODAP gridded total alkalinity (TAlk) and pre-industrial

dissolved inorganic carbon (DIC) datasets (Lauvset et al., 2016). Data were extracted
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from the nearest available grid cell by first extracting the closest matching depth in the
gridded datasets to a given sample record, subsequently converting sample locations
and the gridded datasets at that depth to cartesian coordinates, and finally deriving
the closest match using the minimum distance between the sample site and all
available grid cells. In the vast majority of cases, this yielded temperature and salinity
datasets that agreed with the value given in the original publication within £1°C and
10.2 units. However, in five cases, the WOA-derived temperature used here was offset
by more than 2°C. In these instances, we reverted to the value given in the original
publication, on the assumption that the originally reported value better represents the

sample site (e.g., given the resolution of the gridded data products).

Table 1: Sources of the benthic foraminiferal element/Ca datasets used in this study.

Species Mg/Ca Sr/Ca B/Ca Li/Ca
(Elderfield et al.,

2006: Healey et (Rae, 2011; Yu Eﬂgg;g%
Cibicidoides al., 2008; Raitzsch etal., 2014; 2007: Raé (Rae, 2011)
mundulus etal., 2008; Rae, Lawson et al., ot él ’
2011; Tisserand et 2024) 201 1")
al., 2013)
(Russell et al.,
1994; Rosenthal
etal., 1997; Lear
et al., 2002; Martin
et al., 20023; i (Yu and
Elderfield etal, oo 2017 YU Eiderfield,
2006; Healey et (IS’iudice, 2007;
al., 2008; Raitzsch Cappelii et al Brown et
Lobatula etal, 2008, Yu 5415 Gussone 22911 (Rae, 2011)
wuellerstorfi and Elderfield, otal. 2016 Rae et al.,
2008; Rae, 2011; Lawsé’n ot al, 2011;
Tisserand et al., 2024) v Raitzsch
2013; Kubota et etal.,
al., 2015; Lo 2011)
Giudice Cappelli
etal., 2015;
Gussone et al.,
2016)
(Rathmann et al.,
2004; Elderfield et
al., 2006; Healey ) (Lear and
ori . et al., 2008; Lear (Rae, 2011; (Brown ej[ Rosenthal,
ridorsalis X Gussone et al., al., 2011; i
umbonatus etal., 2010; Rae, 2016) Rae et al 2006; Rae,
2011; Tisserand et v 2011)
al., 2013; 2011)
Gussone et al.,
2016)
Nuttallides (Brown et
umbonifera al., 2011)
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(Rosenthal et al.,

1997; Lear et al., (Lawson et al (Bryan and
Cibicidoides 2002; Marchitto et 2024) " Marchitto,
pachyderma al., 2007a; Bryan 2008)
and Marchitto,
2008)
(Elderfield et al., (Bryan and
2006; Bryan and (Rae, 2011; (Rae et Marchitto,
Uvigerina Marchitto, 2008; Gray, 2015; al. 2011: 2008; Rae,
peregrina Rae, 2011; Gray, Gussone et al., éray * 2011; Gray,
2015; Gussone et 2016;) 2015’) 2015; Stirpe
al., 2016; Stirpe et etal., 2021)
al., 2021)
(Yuand
Uvigerina spp. (Gussé%q%;at al., Elderfield,
2007)

Seawater carbonate chemistry parameters were calculated with co2sys (Lewis
et al., 1998), MATLAB version V3.1.2, using the closest available TAIk, pre-industrial
DIC, temperature, and salinity estimates as described above. To accomplish this, we
applied: 1) the carbonate system dissociation constants of Mehrbach et al. (1973) refit
by Dickson and Millero (1987), as recommended by Wanninkhof et al. (1999); 2) the
HSO, dissociation constant of Dickson (1990); 3) the HF dissociation constant of Perez
and Fraga (1987); and 4) the total boron value of Lee et al. (2010). Our carbonate
system calculation results in broadly but not unanimously good agreement with the
values reported in the original publications. Specifically, ~5.5% of the reported A[CO3*]
values (n = 68) are offset from our internally consistent calculation by more than 25
umol/kg, typically to lower A[CO5%]. While investigating the sources of this discrepancy
is beyond the scope of this study, it likely stems from different choices of dissociation
constants, calculation routines, and other parameters required to perform this
calculation between studies, and/or between this study and the original publication.
To ensure consistency in dissociation constants and parameters across the dataset, we

used the recalculated A[CO5%] in all instances.
2.3 Multivariate linear regression analysis

We determine the sensitivity of the proxy systems considered here to a
number of environmental parameters using least-squares multivariate linear
regression models. We used this approach to disentangle the effects of temperature

and seawater carbonate chemistry on element incorporation into benthic foraminiferal

9
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calcite. This carbonate chemistry effect is often ascribed to [CO3%] or A[COs*] (e.g.,
Elderfield et al., 2006; Yu et al., 2014), with the rationale that some of the apparent
sensitivity of (e.g.) Mg/Ca to temperature mechanistically reflects the impact of
seawater carbonate chemistry on test chemistry or vice versa, as is the case for
planktonic foraminifera (see Gray et al. (2018) and Gray and Evans (2019) for
discussion). Here, we alternatively use the saturation state of seawater with respect to

calcite, defined as:
Qcalcite = [Caz+]sw ® [CO32_]SW/K*SpI

Where K*q, is the stoichiometric solubility product of calcite. We decided to do
so for two reasons: 1) In the modern open ocean, [Ca%*].,, is characterized by
extremely little spatial heterogeneity (Zeebe and Wolf-Gladrow, 2001). While pressure
and temperature impact carbon speciation and calcite solubility to different degrees,
Qcaicite and A[CO5%] are —in broad terms - a direct transformation of one another, such
that this has little practical impact on the application of the calibration model (see
Figure S2C-D). 2) [Ca®*],., has varied across multi-million-year timescales (e.g., Brennan
et al., 2013; Zhou et al., 2021), which resulted in a decoupling of [Ca?*]sw and Qcarcite (OF
A[CO3%]) over the Cenozoic (Zeebe and Tyrrell, 2019), as Qccite remained relatively
constant, while [Ca%*],, decreased and [CO3%],, underwent a large increase from the
Palaeogene to today. While it is not necessary to consider changes in [Ca®*]sw when
interpreting Pleistocene data, formulating regression models with Q,cite avoids the
need to apply different calibrations to different time intervals (Dai et al., 2023). In
addition, while Qe and A[CO5%] are not exactly linearly related, they imply a similar
mechanistic driver of element incorporation into foraminiferal calcite in the modern
ocean, given that they are (approximately speaking) different representations of the
same underlying parameters. We argue that the use of Qe is likely more
appropriate on longer timescales, assuming that, in terms of the mechanistic impact of
seawater carbonate chemistry on mineral growth kinetics or biomineralization, a lower

[CO5%]sw is counteracted by a higher [Ca%*]s, (Dai et al., 2023).

We explored parameterizing element/Ca data as a function of both Q. and

1/Q%iie (Tierney et al., 2019), which accounts for the possibility that element

10
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incorporation into foraminiferal calcite becomes less sensitive to seawater carbonate
chemistry under more highly oversaturated conditions. Our preferred regression
models are those based on Q... because these can explain a greater degree of the
variance in the datasets and provide a more robust empirical fit. In addition, we note
that it has been previously suggested that Mg/Ca and A[CO;?] are best described by a
linear relationship (e.g., Elderfield et al., 2006; Yu and Elderfield, 2008), in contrast to
our preferred regression model which is linearized by log-transforming the Mg/Ca data
(described below), thus implying an exponential relationship between Mg/Ca and
Qcalcite OF Q%cacire. We also tested regression models based on an exponential
relationship between Mg/Ca and temperature, and a linear relationship between
Mg/Ca and Q2 i, in order to assess this, and again find that linear models using
log(Mg/Ca) provide better fits to the data in almost all cases. However, coefficients for
all of these alternate model forms are given in the supplementary materials (Table S2)

for completeness.

In the case of the other element systems analyzed (Sr-B-Li/Caps), in which
reconstructing Qeicte OF [CO3%] is the primary objective, we formulated the models in
terms of Qcaiire rather than Q2. because the latter option results in models that yield
prediction uncertainties that vary widely across the range of Qe Observed in both
core-top and downcore applications, even though such variability is not evident in the
model residuals for these elements.

Informed by the above constraints, all element/Ca datasets were related to
seawater hydrographic and carbonate chemistry parameters via a regression of the
form

In(Mg/Ca) = X1 + X,T + x3Q2calcite + X4[DIC] + X5S (Eq. 1)
in the case of Mg/Ca and

Eli/Ely = X1 + XoT + X3Qcaicite + Xa[DIC] + x5S (Eq. 2)
in the case of Sr/Ca, B/Ca, Li/Ca, and Mg/Li). T denotes temperature, Qccite the
saturation state of seawater with respect to calcite, DIC the concentration of dissolved
inorganic carbon, and S salinity. DIC and S were initially included in the model to
explore whether the inclusion of these parameters could explain a greater proportion

of the variance in the elemental datasets, as suggested for planktonic species

11
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(Kisaklreket al., 2009; Haynes et al., 2023). This was broadly found not to be the case
here. For this reason, all preferred models discussed below include only the first three
terms of Egs. 1 and 2 (see Eq. 3 and Eq. 4) with alternative models including a DIC and
salinity component given in the supplementary information (Table S3). Specifically in
the case of Mg/Ca:

In(Mg/Ca) = x1 + XoT + x3Q2calcite (Eq. 3)

And for all other elements:

El1/El; = X1 + XoT + x50 _calcite (Eq. 4)
Element/Ca datasets were retained as raw proxy values in all regressions except
Mg/Ca, which was first log-transformed to linearize the model, accounting for the
thermodynamic expectation that the partitioning of Mg into CaCOs is logarithmically
related to temperature (e.g., Lea et al., 1999). While this is also the case for other
(trace) elements in solid substitution with CaCO3, the more minor or absent resolvable
impact of temperature on element partitioning in most other cases means that this

transformation is unnecessary.

The above analysis is complicated to a degree by the broad covariance of
temperature, Qciite, and DIC in the modern ocean (Fig. S2). Pearson’s correlation
coefficients between temperature and Q% are -0.38, -0.70, - 0.51, -0.68, and —0.79
for the L. wuellerstorfi, Uvigerina spp., O. umbonatus, C. mundulus, and C. pachyderma
datasets, respectively, and 0.63, 0.83, 0.51, 0.60, and 0.95 for Q.. and DIC (in the
same order). As such, while the dataset overall is reasonably well suited to
disentangling the effects of temperature and Q.. (although this is more challenging
in the case of Uvigerina spp. and C. pachyderma), it is not possible to distinguish
between a Qciite and DIC control on C. pachyderma test chemistry based on the data
currently available. However, we consider this latter issue to be of minor importance
given that the inclusion of DIC in the regression analysis does not substantially improve

the predictive power of the model (Table S4).
2.4 Example down-core applications

To compare our regression models to previous approaches, we applied our

calibrations to two different down-core records for which multiple element/Ca
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datasets were available. The first of these uses L. wuellerstorfi Sr/Ca (Yu et al., 2014)
and B/Ca (Yu et al., 2010a, 2010b, 2014) on samples from core VM28-122 (12°N, 79°W,
3620 m, with a sill depth of 1.8 km, Caribbean Basin). Samples for B/Ca were cleaned
following the ‘Mg-cleaning’ method (Yu and Elderfield, 2007), whereas samples for
Sr/Ca were cleaned according to the oxidative and reductive methods (Boyle and
Keigwin, 1985; Barker et al., 2003), prior to solution ICP-MS analysis. The dataset spans
the Holocene and late Pleistocene (the last ~160 kyr). The age model was based on
radiocarbon dating of planktonic foraminifera for samples younger than 30 ka. For
older samples, ages were calculated based on tuning the 880y to the global benthic

foraminiferal stack of Lisiecki and Raymo (2005) (Yu et al., 2010a).

We also applied our calibrations to a second, longer record in order to
investigate the degree to which reconstructions based on benthic foraminiferal
element/Ca data are sensitive to nonthermal parameters that cannot be accounted for
in the modern ocean (i.e., changes in the elemental composition of seawater). To do
so, we used the benthic foraminiferal Mg/Ca, Sr/Ca, B/Ca, and Li/Ca records available
from the Ocean Drilling Program (ODP) Site 806 (0°19.1’N, 159°21.7°E, 2521 m, Ontong
Java Plateau; Lear and Rosenthal, 2006; Lear et al., 2003b, 2015a). Data were collected
from specimens of L. wuellerstorfi, O. umbonatus, and C. mundulus. Samples were
cleaned following Boyle and Keigwin (1985) ‘Cd-cleaning’ prior to solution ICP-MS
analysis. Sample ages were based on the biostratigraphic events reported in the Site
report (Shipboard Scientific Party, 1991), revised with the datum ages compiled by the
ODP Leg 199 Shipboard Scientific Party (Lear et al., 2003a). This age model was applied
to the whole Site 806 record, which ranged from 0.02 to 16.35 Ma (Pleistocene to early
Middle Miocene).

3. Results

Mg-Sr-B-Li/Ca data from each species is shown as a function of in situ
temperature, Qcauite, and dissolved inorganic carbon (DIC) in Figure 2. Multivariate
regression models (Egs. 3 and 4) with two predictor terms (T and Qcaicite OF Q2 caicire) are
given in Table 2. These models can explain a substantial portion of the variance in all

the elemental datasets considered here (R? = 0.60 to 0.84; Tab. 2), with the exception
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of Srincorporation into L. wuellerstorfi and C. mundulus (R? = 0.37 in both cases). In
these species, we find that Sr/Ca cannot be predicted with confidence from T and/or
Qcarcite, although the Qe coefficient is nonetheless significant at the 95% confidence
level in both cases. The preferred models that show statistically significant coefficients

only for each species element/Ca are present in Table 3.

3.1. Mg/Ca
Benthic foraminiferal Mg/Ca spans 0.5 to 10.2 mmol/mol across the dataset
(Fig. 2A). All five species are characterized by a similar range of values. Instead,
Uvigerina spp. is characterized by a narrower (¥1 mmol/mol) range and offset to lower

Mg/Ca for a given temperature or Qcaicite-

Our dataset includes sample measurements conducted following different
cleaning procedures as well as samples that were not reductively and/or oxidatively
cleaned prior to analysis (i.e., samples analyzed by LA-ICPMS). It was suggested that
the choice of cleaning procedure (Barker et al., 2003) could impact (benthic)
foraminiferal Mg/Ca, with the reductive process potentially resulting in the
preferential loss of higher-Mg regions of the test (Rosenthal et al., 2004). As a result, in
some cases, a ~10% correction was applied to samples that were reductively cleaned
(e.g., Lawson et al., 2024). Assessing this complication is challenging because, even if
the reductive cleaning may result in lower Mg/Ca, this loss of Mg may represent the
desirable loss of Mg from a contaminant phase rather than the foraminiferal test. To
determine the impact of reductive versus oxidative cleaning, we examined the
difference in Mg/Ca resulting from these two cleaning processes using the residuals of
the regression models (see Supporting Information, Figure S10), in addition to
conducting statistical tests on subsets of the dataset based on cleaning procedure, and
providing comparative regression models based on these subsets of the database
(Table S6). As previously reported (e.g., Yu and Elderfield, 2008), we find that mean
Mg/Ca is higher in the oxidative cleaning-only group by 5.5%, 10.4%, and 9.0% for L.
wuellerstorfi, Uvigerina spp., and O. umbonatus, respectively. In the case of C.
mundulus, the opposite is the case (6.9% lower), while insufficient data exist to test
this for C. pachyderma. A two-tailed test was used to compare the means obtained
from the two cleaning procedures. The results indicate that C. mundulus is not
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characterized by a significant difference between cleaning methods, while the
opposite is true for L. wuellerstorfi, Uvigerina spp., and O. umbonatus. While this may
support the application of a correction, we do not do so here because it is not
currently clear whether it is desirable to include Mg lost during the reductive cleaning
process in the average sample Mg/Ca value, i.e., reductive cleaning may remove
contaminant phases as well as primary shell material characterized by higher Mg/Ca,
and this is likely true to differing but poorly constrained extents between species and
sample sites. Spatially resolved (e.g., laser ablation) measurements of benthic
foraminifera with diagenetic coatings subjected to both procedures would be one way
of addressing this issue, as has been conducted for planktonic foraminifera (Fritz-
Endress & Fehrenbacher, 2020). We also note that while regression models based on
only reductively and oxidatively cleaned samples do significantly differ from those
based on the complete dataset in some respects (cf. Table 2 and Table S6, e.g., the C.
mundulus Mg/Ca-T slope is nonsignificant in both cases), we cannot unambiguously
attribute these differences to cleaning procedure versus differential sampling of the
underlying parameter space between these data subsets. Given the minor absolute
Mg/Ca offsets observed between reductively and oxidatively cleaned samples, and for
the reasons outlined above, we base our discussion on the combined dataset with no
reductive correction applied. However, we stress that this possible impact on benthic
foraminifera shell chemistry needs to be better and mechanistically understood before

this issue can be conclusively addressed.

Table 2. The relationship between element/Ca, temperature, and Qcarcite (Mg/Ca = X1 + X *T +
X3*Q)2 and El1/El; = X1 + X2*T + X3* Q) for each species considered in this study. Uncertainties
are reported as +1SE (standard error), n denotes sample size. The p-value, R-squared (R?), Root
Mean Square Error (RMSE). The Q-T column provides the coefficient of correlation between
Q.alcite and temperature for the subset of the overall dataset on which each individual
regression model is based. Cibicidoides spp. refers to the regression model based on the
combined C. pachyderma and C. mundulus datasets.

Ratio X1 p- X2 (T) p-value X3 (Q2 p-value Overall model
(interce  value (Mg/Ca) 5
ot) orQ) RZ RMSE  p- QT n

value

L. wuellerstorfi
Mg/Ca 0.55+ <<0.05 0.031 + <<0.05 -0.595 <<0.05 0.66 0.19 <<0.05 -0.47

0.03 0.004 0.028
Sr/Ca 1.09+  <<0.05 -0.0020+ 0.2734 0146+ <<0.05 037 006 <<0.05 0.39
001 00018 ~0.001
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432

433
434
435
436

B/Ca 99.03 <<0.05 0.11+ 0.9208 79.397+ <<0.05 0.69 14.81 <<0.05 0.34 181
5.07 1.11 4.290
Uvigerina spp.
Mg/Ca 0.23 ¢ <<0.05 0.02 + <<0.05 -0.30 <<0.05 0.68 0.16 <<0.05 -0.70 108
0.06 0.01 0.16
Sr/Ca 0.69 <<0.05 0.003 0.30 0.16 £ <<0.05 0.63 0.08 <<0.05 0.80 53
0.03 0.003 0.03
B/Ca 9.02+ 0.020 -1.87 + 0.002 3324+ <<0.05 0.71 733 <<0.05 090 38
3.53 0.56 4.91
Mg/Li 0.059+  <<0.05 0.004+ <<0.05 -0.002+ 0.2960 0.64 001 <<0.05 084 85
0.002 0.001 0.002
O. umbonatus
Mg/Ca 0.38+ <<0.05 0.076 £ <<0.05 -0.056 0.5350 0.60 0.19 <<0.05 -0.55 96
0.06 0.008 0.089
Sr/Ca 077 ¢ <<0.05 -0.001+ 09089 0.077+ 0.2023 0.33 0.05 0.0156 090 24
0.06 0.010 0.059
B/Ca 18.07+  0.4321  -10.10+ 0.1113 4472+ 0.1305 0.21 13.87 0.2647 0.92 14
22.15 5.84 27.36
C. mundulus
Mg/Ca 072+ <<0.05 0.036+ 0.0085 -0.61+ <<0.05 0.43 025 <<0.05 -0.68 125
0.11 0.014 0.12
Sr/Ca 1.01¢ <<0.05 -0.002+ 0.8608 0.13+ 0.0028 0.37 0.06 <<0.05 0.88 67
0.04 0.010 0.05
B/Ca 88.25 + <<0.05 -2.64 £ 0.0978 43.38 £ <<0.05 0.73 9.47 <<0.05 0.94 64
6.34 1.57 7.46
C. pachyderma
Mg/Ca 0.25+ 0.040 0.059+ <<0.05 0.0796+ 0.8539 0.63 0.17 <<0.05 -0.75 87
0.12 0.007 0.4310
Sr/Ca 1.09+ <<0.05 -0.016 + 0.0176 0.1678+  <<0.05 0.84 0.05 <<0.05 0.97 55
0.02 0.007 0.0254
Mg/Li 0.07 = <<0.05 0.014 £ <<0.05 -0.0072 0.1238 0.80 0.02 <<0.05 0.62 48
0.01 0.001 +0.046
N. umbonifera
B/Ca 11.37 ¢ 0.60 4890+ 07555 12621+ 0.0074 060 16.52 <<0.05 0.86 22
21.55 15.479 42.13
Cibicidoides spp.
Mg/Ca 0.62+ <<0.05 0.040+ <<0.05 -0.77+ <<0.05 0.64 0.23 <<0.05 -0.79 212
0.06 0.004 0.21
Sr/Ca 1.04 ¢ <<0.05 0.005+ 0.2569 0.1032+ <<0.05 0.81 0.06 <<0.05 096 122
0.02 0.004 0.0193
Table 3. Preferred models with the significant coefficient for element/Ca, temperature, and
Qcatcite (Mg/Ca = X1 + X2*T + X3*Q? and El1/El, = X1 + Xo*T + X3* Q) for each species considered
in this study. Uncertainties are reported as +1SE (standard error), n denotes sample size. The
p-value, R-squared (R?), Root Mean Square Error (RMSE).
Ratio X1 p- X2 (T) p-value X3 (Q? p-value Overall model
(interce  value (Mg/Ca)
pt) or Q) R2  RMSE p- QT n
value
L. wuellerstorfi
Mg/Ca 0.55+  <<0.05 0.031+  <<0.05 -0.596+ <<0.05 066 0.19 <<0.05 -0.47 448
0.03 0.004 0.028
Sr/Ca 1.095 + <<0.05 - - 0.14 <<0.05 0.37 0.06 <<0.05 0.39 305
0.015 10.01
B/Ca 99.09+  <<0.05 - - 79.54+ <<0.05 069 1477 <<0.05 0.34 181
5.02 4.01

Uvigerina spp.
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437

438

439

440

441

442

443

444

445

446

447

448

449

450

Mg/Ca 0.23 <<0.05 0.023 <<0.05 -0.30 ¢ <<0.05 0.68 0.16 <<0.05 -0.70 108
+0.56 +0.005 0.04
Sr/Ca 0.68 + <<0.05 - - 0.19% <<0.05 0.62 0.08 <<0.05 0.80 53
0.03 0.02
B/Ca -1.85+ <<0.05 - - 18.34 + <<0.05 0.61 8.32 <<0.05 0.90 38
3.19 2.42
Mg/Li 0.057 £ <<0.05 0.0038 <<0.05 - - 0.63 0.01 <<0.05 0.84 85
0.002 +0.0003
O. umbonatus
Mg/Ca 0.346 <<0.05 0.079 <<0.05 - - 0.60 0.19 <<0.05 -0.55 96
0.028 +0.007
Sr/Ca 0.76 <<0.05 - - 0.08+% 0.0035 0.33 0.06 0.01 0.90 24
+0.04 0.04
B/Ca 47.32 <<0.05 - - - - 0.00 14.98 0.93 0.92 14
+15.47
C. mundulus
Mg/Ca 0.72 <<0.05 0.036 0.0085 -0.61 <<0.05 0.43 0.25 <<0.05 -0.68 125
+0.11 +0.014 +0.12
Sr/Ca 1.01 <<0.05 - - 0.13 <<0.05 0.37 0.06 <<0.05 0.88 67
+0.03 10.02
B/Ca 96.64 <<0.05 - - 31.53 <<0.05 0.72 9.60 <<0.05 0.94 64
+3.97 +2.49
C. pachyderma
Mg/Ca 0.27 <<0.05 0.058 <<0.05 - - 0.63 0.16 <<0.05 -0.75 87
+0.06 +0.005
Sr/Ca 1.09 <<0.05 -0.016 0.0176 0.168 <<0.05 0.84 0.05 <<0.05 0.97 55
+0.02 +0.007 +0.025
Mg/Li 0.057 <<0.05 0.013 £ <<0.05 - - 0.79 0.02 <<0.05 0.62 48
+0.012 0.001
N. umbonifera
B/Ca 13.25 <<0.05 - - 114.74+  <<0.05 0.60 16.14 <<0.05 0.86 22
+20.25 20.91

(RMSE) ranges between 0.16-0.25 (Table 2) in units of In(Mg/Ca), equivalent to an

Overall model (in the form of Mg/Ca = X1 + X,*T + X3*Q2) root mean square error

unexplained variance of 0.26-0.40 mmol/mol for a Mg/Ca value of 1.5 mmol/mol (very

approximately equivalent to a calcification temperature of 5°C). Regression models for

all species yield a significant temperature coefficient (p <0.05), although there are

substantial differences in the relationship between Mg/Ca and temperature.

Specifically, the species investigated here broadly cluster into two groups, with O.

umbonatus and Cibicidoides pachyderma characterized by sensitivities of 5.9-7.6 %/°C,

while L. wuellerstorfi, Uvigerina spp., and C. mundulus are characterized by sensitivities

of 2.3-3.6 %/°C (Fig. 3A, Tab. 2). The former group all lie within the uncertainty of the

sensitivity of many species of planktonic foraminifera (Gray & Evans, 2019), whereas

the latter are closer to, albeit slightly higher than, that of inorganic calcite (~2 %/°C;

Burton and Walter, 1991). These sensitivities are in many cases significantly different
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from previous calibration approaches (e.g., Lear et al., 2002; Healey et al., 2008),

broadly being offset to lower values.

In contrast to temperature, only two species and one genus — C. mundulus, L.
wuellerstorfi, and Uvigerina spp. — are characterized by a significant Mg/Ca-Qcacite
slope (m =-0.61, -0.60, and -0.30, respectively; Tab. 2), with Uvigerina spp.
characterized by a lower sensitivity. In these species/genus, a one-unit change in Qcacite
drives a Mg/Ca change equivalent to a ~10°C change in temperature, although we

stress that the nonlinear parameterization of the seawater carbonate system in the

regression model means that drawing a direct equivalence between the temperature
and Qe SlOpes is not possible. Conversely, C. pachyderma and Oridorsalis spp. are
not characterized by a significant sensitivity to the carbonate system. While this finding
agrees with previous studies that have reported a strong A[CO;?] effect on Mg/Ca in L.
wuellerstorfi and C. mundulus (Elderfield et al., 2006; Yu and Elderfield, 2008; Yu et al.,
2014), and no resolvable impact on Oridorsalis spp. (Rathmann and Kuhnert, 2008;
Elderfield et al., 2010), we note that these datasets suffer from strong covariance
between T and Q.. (see above and the Q-T column in Table 2), which may mask a
carbonate system control. More broadly, we acknowledge that a multiple linear
regression approach cannot remove collinearity in these (or any) regressions,
impacting the significance of the predictors and standard error of the overall model
(e.g., Allen, 1997). Therefore, the interpretation of the influence of each variable on
Mg/Ca should be made with caution where covariance in the underlying parameters is
an issue (Table 2). In addition, the C. mundulus dataset spans a narrow Qcicite range,
such that additional data are required to properly assess whether such a relationship
exists in this case. Removing Q2. from the regression model in the case of the two
species that lack a significant Q2. coefficient results in no significant change in the
estimated Mg/Ca-T sensitivity of either O. umbonatus (7.9+1.3 versus 7.6+£1.0 %/°C) or
C. pachyderma (5.8+1.0 versus 5.9 +1.0%/°C).

To assess whether our linear regression models capture the key structure of
the datasets, we corrected Mg-Sr-B/Ca for the influence of all but one of the

regression parameters in turn, and plotted against the parameter for which no
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correction was applied (see Text S1), as a means of determining whether there is any
residual structure in the data. The results of this analysis are shown as a function of
temperature, Q.iw, and DIC, with the alternate parameters subtracted out (Figure 4).
Specifically: 1) Q2. cie-corrected Mg/Ca displayed as a function of temperature shows
Mg/Ca values with the effects of Q2 and the intercept term removed (Q2 ex3 + X1);
2) T-corrected Mg/Ca displayed as a function of Q2. sShows test Mg/Ca with the
effect of temperature and the intercept term subtracted out (Tex, + x;); and 3) T-and
02 icite-corrected Mg/Ca displayed as a function of DIC is a transformation in the
direction of the y axis of a plot of the full model residuals. This latter analysis shows
that while the inclusion of DIC in the regression model overall does suggest a
sensitivity of Mg/Ca to DIC in L. wuellerstorfi and Cibicidoides spp. (Supporting
information, Table S4), we find no significant residual relationship between corrected
Mg/Ca and DIC once the temperature and Q2 .ite S€Nsitivities have been removed
from these datasets, suggesting that the former finding is an artifact of (e.g.) DIC and

temperature covariance in the dataset.

3.2Sr/Ca

The overall Sr/Ca dataset clusters into two groups, with L. wuellerstorfi, C.
mundulus, and C. pachyderma characterized by higher values than O. umbonatus and
Uvigerina spp. at similar temperatures (~1.0-1.6 versus ~0.8-1.0 mmol/mol
respectively; Fig. 2D). Otherwise, the most obvious difference between species is that
the degree of variance at a given temperature is greater in L. wuellerstorfi compared to
the other species, although we note that this dataset is also substantially larger (n =

305 versus 24-67).

Using the regression model described above (Sr/Ca = X; + Xo*T + X3*Q), the
overall model R? ranges between 0.33-0.84 and RMSE between 0.051 - 0.077 (in units
of mmol/mol; Tab. 2). Only C. pachyderma is characterized by a significant Sr/Ca-T
coefficient of -0.016 mmol/mol per °C (Fig. S6M). Conversely, all species investigated
here are characterized by the same Sr/Ca-Qcicite relationship within uncertainty (xs3 =
0.13 to 0.17), with the exception of O. umbonatus (0.08). These findings are in broad

agreement with previous analyses of the underlying datasets (Lawson et al., 2024; Yu
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et al., 2014), although we find no significant Sr-carbonate system relationship in O.
umbonatus, in contrast to Rathmann & Kuhnert (2008). As in the case of Mg/Ca, the
underlying covariance between temperature and Q..ite means that it is challenging to
separate the effect of these two factors on test chemistry in the case of Uvigerina spp.
and C. pachyderma. We also note that neither temperature nor Qi is a good
predictor of C. mundulus Sr/Ca (overall model R? = 0.37), a result of the narrow range
of sample site temperature (95% of the dataset falls between 0.5-4.5°C) and Qcacite (~1-

2) in the context of the variance in the Sr/Ca data (Fig. 2; Fig. S6K).

Reformulating the regression models to exclude nonsignificant terms (i.e.,
removing the temperature coefficient (Fig. 3B) from the regression models for all
species except C. pachyderma) results in no substantial change in the overall model R?
or RMSE, but does result in an overall marginally shallower Sr/Ca-Qccie Slope (0.08-

0.19 mmol/mol per unit; Fig. 3E).

We find a significant, albeit low slope between residual Sr/Ca and DIC (Fig. 4F)
in the case of L. wuellerstorfi, with a slope of 3.9x10* mmol/mol per umol/kg (Fig.
S6C). However, within the context of the model R? (0.05) and RMSE (0.062), the
uncertainty in reconstructed DIC using these slopes would be similar in magnitude to
the entire modern ocean range, such that this may be of mechanistic but not practical

interest.

3.3B/Ca

B/Ca values are lower in Uvigerina spp. and O. umbonatus than the other
species (~0-100 versus 100-250 umol/mol Fig. 2G-1). B/Ca ratios appear to be positively
correlated to temperature for L. wuellerstorfi and C. mundulus (Fig. S7A and J), which is
almost certainly an artifact of the covariance of temperature and the carbonate system
(discussed below). B/Ca ratios in L. wuellestorfi collected from the Norwegian Sea
(Elderfield et al., 2006; Yu and Elderfield, 2007) at temperatures <0°C appear to be
offset from the rest of the dataset (Fig. 2G); however, this can be reconciled by
considering the unusual carbonate chemistry of these sites. We note that the majority
of the L. wuellerstorfi and N. umbonifera B/Ca data come from sites characterized by a

temperature <5°C, such that further data are required to unambiguously resolve
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whether or not temperature variability independent of seawater carbonate chemistry

may play a role in B incorporation into these foraminifera.

Multiple linear regression models that include T and Qcacite can explain much of
the variance in the B/Ca datasets of L. wuellerstorfi and C. mundulus (R = 0.69 and
0.73 and RMSE = 14.8 and 9.5 umol/mol, respectively; Tab. 2), as previously described
(e.g., Yu and Elderfield, 2007; Rae et al., 2011). Based largely on the Uvigerina spp.
data published in this paper, we also demonstrate that this is the case for this genus
(R?=0.71, RMSE = 7.3 umol/mol). However, this is not the case for O. umbonatus or N.
umbonifera (R? = 0.21-0.60, RMSE = 11.4-16.5 pmol/mol). This division coincides with
the size of the underlying datasets, with the two species in the latter group
represented by 12-22 data points (compared to 38-181 in the former group). As such,
this finding may simply reflect that further data are required before boron

incorporation into O. umbonatus, and N. umbonifera can be properly assessed.

None of the species considered here are characterized by a significant
temperature coefficient in the B/Ca regression models except for Uvigerina spp., which
has a temperature slope of -1.9 umol/mol per °C. In contrast, L. wuellerstorfi, C.
mundulus, and N. umbonifera are characterized by significant B/Ca-Qc.icite S€NSItivities
(Fig. 2H). We note that we choose Qe as an independent variable for the sake of
ease of use and consistency in dataset treatment among elemental systems but
studies on planktonic foraminifera species demonstrated that B/Ca may be more
appropriately related to a more complex boron/carbon system parameter such as
[B(OH)41/DIC (e.g., Foster, 2008); on the other hand, studies focused on low-Mg
benthic foraminifera have shown that B/Ca better correlates with deep water
carbonate saturation state (e.g., Yu and Elderfield, 2007). While this is discussed in
more detail below, we note that there is no systematic trend in the residuals of the
B/Ca-Q.aicite regressions, suggesting that a more complex approach may be unnecessary
for practical purposes (i.e. balancing the goal of building regressions that are
mechanistically meaningful with the practicalities of constraining multiple aspects of
seawater carbon and boron chemistry through time). Removing temperature from the
model for all species does not substantially change the goodness of fit of the
regressions, but it does result in a lower slope between B/Ca and Qe in the case of
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Uvigerina spp. and O. umbonatus, this change in slope is justifiable given the
nonsignificant temperature coefficient in almost all cases. On the other hand, including
temperature in the model results in very similar Uvigerina spp., C. mundulus, and O.
umbonatus B/Ca- Qcaite SENSitivities (33 to 45 pumol/mol per Qcrite; Fig. 3C), possibly
indicating mechanistic similarity in boron incorporation when temperature is
accounted for, while removing this component results in an even spread between 1
and 115 pmol/mol (Fig. 3F). However, we focus on models without a temperature
component below, given the overall minor impact on the regression model statistics
and nonsignificant temperature coefficient, and given that omitting it simplifies the

practical application of B/Ca.

We find a significant albeit shallow residual correlation between B/Ca and DIC
in L. wuellerstorfi and C. mundulus, with slopes of —0.27 and 0.091 pumol/mol per
umol/kg (Figs. 41, S8C and L). As for the Sr/Ca-DIC relationships discussed above, these
residual relationships imply possible B/Ca changes in response to DIC far smaller than
the magnitude of the residuals in the overall regression, given the magnitude of the

DIC variability across the modern ocean.

3.4 Li/Ca

Li/Ca data are available only for O. umbonatus, Uvigerina spp., and C.
pachyderma, and are, in isolation, poorly or noncorrelated to temperature in all cases
(Fig. 2J; note that six of the nine C. mundulus Li/Ca data points are from sites with a
temperature range of ~1°C, and therefore we do not interpret the data). Likewise,
there is no significant relationship between Uvigerina spp. and C. pachyderma Li/Ca
and Qe Or DIC (Fig. 2K, and L), although residual O. umbonatus Li/Ca is positively
correlated with Qe (R? = 0.52; Fig. 2K and L, and Fig. S9E). Given the absence of a
clear temperature or carbonate chemistry control on Li incorporation, as shown in
previous studies, we focus on combining these data with Mg/Ca. Linear Mg/Li
regression models are characterized by a far lower degree of relative residual variance
compared to Mg/Ca for the two species for which sufficient data exist (Uvigerina spp.

and C. pachyderma) (Fig. 5).
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Specifically, Uvigerina spp. and C. pachyderma Mg/Li fit to temperature and
Qcaicite results in overall model R? of 0.64 and 0.80, and RMSE of 0.013 and 0.023,
respectively (Tab. 2). We find no significant relationship between Qe and Mg/Li in
the case of Uvigerina spp., while the C. pachyderma data come from sites spanning a
range of Qc,cite that is too small to test whether Mg/Li responds exclusively to
temperature in less oversaturated seawater. Removing Qcaicite from the regression for
Uvigerina spp. and C. pachyderma does not substantially change the goodness of fit (R?
=0.63 and 0.79, RMSE = 1.3 and 2.4x10?), but does result in a moderately lower
Mg/Li-temperature sensitivity of 0.38 and 1.27x10°? rather than 0.43 and 1.39x102
mol/mmol per °C, implying a negative, albeit statistically nonsignificant Qe effect on
Mg/Li (Table 2). There is no significant residual Mg/Li sensitivity to DIC in either species

(see Fig. 5 and discussion in section 4.1).

4, Discussion

4.1 Practical considerations in the application of elemental chemistry in

benthic foraminifera to paleoenvironmental reconstructions

Our regression (re)analysis demonstrates that temperature can explain the
greatest portion of the variance in Mg/Ca for O. umbonatus and C. pachyderma, based
on the ratio of the calibration slopes to the range of these parameters in the
calibration dataset (20°C for temperature and 4 for Qcaqte). In contrast, species with a
shallower temperature slope (L. wuellerstorfi, Uvigerina spp., and C. mundulus) are
characterized by a stronger Qite influence. In the case of Sr/Ca and B/Ca, Qcalcite Can
explain the greatest portion of the variance in these elements in all cases except B/Ca
and Sr/Ca in O. umbonatus, which cannot be predicted from any combination of
temperature and seawater carbonate based on the data currently available. This
finding also emerges when limiting the analysis to samples from locations with
temperature <5°C, which deviate from the general Sr-B/Ca—temperature but not the
Sr-B/Ca-Qcalcite trend (Figures 2D and 2G), suggesting that Qe is indeed
mechanistically responsible for the majority of the observed variance in Sr and B; this
demonstrates that in these instances, our calibration approach correctly attributes

variability to Qccite bearing in mind the Qg cite-T covariance in the dataset. This is in
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good agreement with virtually all of the studies that reported the datasets analyzed
here (Rosenthal et al., 1997; Martin et al., 2002; Lear et al., 2002; Rathmann et al.,
2004; Lear and Rosenthal, 2006; Elderfield et al., 2006; Marchitto et al., 2007a; Yu and
Elderfield, 2007; Yu and Elderfield, 2008; Bryan and Marchitto, 2008; Healey et al.,
2008; Raitzsch et al., 2008, 2011; Lear et al., 2010; Brown et al., 2011; Rae et al., 2011;
Tisserand et al., 2013; Yu et al., 2014; Kubota et al., 2015; Lo Giudice Cappelli et al.,
2015; Gussone et al., 2016; Stirpe et al., 2021; Lawson et al., 2024), and is encouraging
in that, while we show that a multivariate approach is desirable and yields
substantially different sensitivities in many cases (described in more detail below), no
element/Ca response has been incorrectly apportioned to an underlying independent
variable as a result of covariance in the modern ocean (Fig. S2). In addition, our
analysis enables us to provide recommendations when designing paleoenvironmental
reconstructions based on benthic foraminiferal elemental test chemistry, discussed in

more detail below.

We find that the predictive power of Mg/Ca measured in the species
considered here principally depends on the sensitivity of the Mg/Ca-temperature
relationship (Fig. 3). Unexplained variance in the data is greatest in the two species
characterized by a significant Mg/Ca-Q 2.t sensitivity (L. wuellerstorfi and C.
mundulus; Fig. S3B and K) as well as Uvigerina spp., which has the lowest Mg/Ca-
temperature sensitivity (evident in the latter case in that the range of observed Mg/Ca
between 0-2°C is equivalent to that observed between 0-20°C; Fig. S3D). To quantify
the degree to which this is likely to impact temperature reconstructions, we calculated
the inverse prediction interval (IPI) for the key controlling seawater parameter
(temperature in the case of Mg/Ca). The IPI gives the 95% confidence interval of the
residual rotated onto the x-axis (McClelland et al., 2021) and thus provides an estimate
of the uncertainty associated with the approach based on the unexplained variance in
the dataset. We did this by first calculating temperature from Mg/Ca for all samples in
the database (Fig. 6) using the multiple linear regression models presented here (Tab.
2). Then, we calculated the IPI of the predicted versus observed temperature. For
example, the IPI of the L. wuellerstorfi Mg/Ca-derived temperatures is +12.1°C, that is,

95% of the predicted temperatures fall within this range of the in situ world ocean
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atlas temperature (Fig. 6A). C. mundulus and Uvigerina spp. also have relatively high
IPI, of 13.4 and 13.7°C, respectively (Fig. 6D, J). Given that these temperature ranges
are similar in magnitude to the entirety of the Neogene change in deep ocean
temperature (Cramer et al., 2011; Meckler et al., 2022; Evans et al., 2024), it may be
preferable to focus attention on species with less unexplained variance in the

calibration.

Of the species examined here, O. umbonatus and C. pachyderma are
characterized by substantially lower IPI of 4.8 and 5.6°C, largely resulting from their
greater Mg/Ca-T sensitivities (Fig. 6G and M). Coupled with their insensitivity of Mg/Ca
to seawater carbonate chemistry, these species thus represent good targets for

temperature reconstruction.

We note that the IPI represents a best-case uncertainty estimate compared to
paleo applications because in situ Q% measurements are used to account for this
term in core-top samples, and it is unlikely that Q2. can be determined with a
similar degree of accuracy in the geological past. On the other hand, it may be possible
(or likely) that the unexplained variance we find in the core-top dataset might not
characterize geological records featured downcore, because downcore samples may
average over longer time intervals than core-top samples. We refer the reader to a
more detailed discussion of this topic in McClelland et al. (2021), but note that
determining whether this is the case is necessary before choosing the calibration
uncertainties versus IPI values when propagating uncertainty. For example, Elderfield
et al. (2012) and Woodard et al. (2014) observed: 1) a far smaller degree of variance
downcore across multiple glacial-interglacial cycles (G-1G) than the IPI values suggest
we should expect; 2) and coherent G-IG Mg/Ca-derived temperature changes. This is
encouraging and suggests that core-top variance may overestimate uncertainty
downcore, particularly when normalizing paleo records to modern deep ocean

temperature.

Mg/Li has been suggested as an alternative paleothermometer in foraminifera
and other marine calcifying organisms (e.g., Bryan and Marchitto, 2008; Lear et al.,

2010; Marchitto et al., 2018; Raddatz et al., 2013), with the rationale that normalizing
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to Li potentially removes some of the vital effect-driven variance in Mg/Ca that results
from (e.g.) carbonate chemistry, [Ca?*], or Ca?* utilization at the calcification site. Our
analysis confirms the conclusions reached in the original publications that regressions
based on Mg/Li rather than Mg/Ca under similar temperature ranges are characterized
by substantially improved IPIs for both Uvigerina spp. and C. pachyderma (Fig. 5G, H),
an improvement of a factor of 0.5 and 0.7, respectively. This suggests that Mg/Li
temperature reconstructions based on these two species may be less error-prone
compared to Mg/Ca despite the fact that Li is present at a much lower concentration in
foraminiferal calcite and is therefore analytically more challenging to measure.
However, in deeper time this approach may suffer from the limited information
available regarding past changes in seawater [Li*] (Weldeghebriel and Lowenstein,
2023) compared to Mg/Ca (e.g., Coggon et al., 2010; Gothmann et al., 2015; Evans et
al., 2018).

In addition to the above analysis, we present Mg/Ca multivariate regression
models that combine: 1) data from all the species considered here (Fig. 7A); and 2)
data from C. mundulus and C. pachyderma combined to generate a generic Cibicidoides
spp. calibration (Fig. 7B). The former may be useful when working with extinct species,
whereas the latter may be preferable where insufficient specimens exist to
differentiate between Cibicidoides species. The multispecies regression is
characterized by an IPI of 12.9 °C, generally worse than the species-specific approaches
discussed above (Fig. 6). Combining both Cibicidoides species results in a regression in
which both the temperature and Q2. coefficients are significant (Tab. 2), and in
common with the individual species for which this is the case, an IPl around double
(10.8 °C; Fig. 7B) that of species that lack a carbonate chemistry sensitivity (C.
pachyderma and O. umbonatus). Whenever possible, more precise and accurate
temperature reconstructions can be achieved by utilizing C. pachyderma alone (cf. Fig.

7B and 5M).

We investigated the IPI of Sr/Ca-derived Qe Using the same approach
described above to explore the magnitude of the unexplained variance in the
regression models. The IPI ranges from 0.60 to 1.3 (Fig. 6B, E, H, K, N), approximately
equivalent to [CO3%] of 55-120 umol/kg, if [Ca?*].. is equal to modern. Combining both
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Cibicidoides species together yields an overall model with similar statistics to those
described above (R? = 0.81, RMSE = 0.058 mmol/mol per unit, Qcacite Slope = 0.10),
although a marginally worse Qe IPI (1.1; Fig. 7C), driven by the fact that C.
pachyderma has a significant Sr/Ca-temperature sensitivity, while C. mundulus does
not (Figs. 3E, S6J, K, M, N). As per the application of Mg/Ca data from these

foraminifera, it is clearly desirable to work with single species where possible.

Seawater carbonate chemistry reconstructions based on B/Ca are characterized
by substantially lower degrees of unexplained variance compared to Sr/Ca, with an
overall trade-off between ease of making accurate measurements and the utility of the
resulting data. The B/Ca-Quite IPI for L. wuellerstorfi and C. pachyderma are 0.37 and
0.60, respectively (Fig. 6C and L), which translates into an ~20-60% improvement in the
uncertainty with which Qe can be determined compared to using Sr/Ca in the same
species. We find a slightly worse Uvigerina spp. B/Ca- Qcaiite IP1 (0.91) and no predictive
power of O. umbonatus B/Ca in reconstructing Qe (Fig. 6F and 1), but stress that this
may reflect the limited data available for these species, or variability in Qc,cite in their
infaunal pore-water habitats compared to overlying bottom waters (see Rae et al.,

2011).

To produce the most accurate reconstructions, the above analysis indicates
that O. umbonatus is a good choice for Mg/Ca palaeothermometry, because it is
characterized by the lowest IPI and no resolvable sensitivity to Q2. This species also
has one of the lowest Sr/Ca-derived Qi IP1, although we find no significant
relationship between B/Ca and Qe based on the available data. Given that B/Ca-
derived Qe reconstructions are generally more precise than those based on Sr/Ca
(Fig. 6), then the best way to derive information about temperature and seawater
carbonate chemistry would be to combine O. umbonatus Mg/Ca with L. wuellerstorfi
B/Ca (if there are sufficient specimens of these species). This strategy will produce
temperature and Qe reconstructions with the lowest uncertainty propagated based
on the unexplained variance in the regression models, although this should again be
viewed with the caveat that core-top variance may not necessarily be present in

downcore reconstructions, as discussed above.
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While we focus on unexplained variance in the regression models in the above
discussion, we also report uncertainty based only on the multivariate least squares
linear models, often termed ‘calibration uncertainty’ when applied to fossil datasets.
Following Gray & Evans (2019), we account for covariance between the model
intercept and temperature coefficient by bootstrapping the regression. We then derive
67% and 95% confidence intervals for our regression models using a Monte Carlo
approach, sampling all coefficients within uncertainty 10,000 times and calculating the
temperature difference from the central estimate for a range of test Mg/Ca covering
the majority of the data analyzed here (Fig. S11). At the extreme ends of the
investigated Mg/Ca range, the calibration uncertainty exceeds the IPIs described
above, but is generally <3 °C (95% CI) over the typical range of Mg/Ca values in the
case of all species without Mg/Ca sensitivity to seawater carbonate chemistry. In
contrast, those that do have this sensitivity (L. wuellerstorfi, Uvigerina spp., and C.
mundulus) are characterized by 95% confidence intervals derived from calibration
uncertainty alone of >10°C at the upper end of the range of test Mg/Ca for these
species, driven by a combination of the addition of an Q2. coefficient term to the
calibration and the fact that these species are characterized by the shallowest Mg/Ca-
temperature slopes (Fig. 3). Coupled with the fact that all the aforementioned
confidence intervals assume that Qe is perfectly known, this suggests that
temperature reconstructions based on Mg/Ca of these two species are likely to be
associated with relatively high uncertainty even if seawater carbonate chemistry can

be accounted for.

Here, we formulate regression models to a different carbonate system
parameter compared to most previous studies (Q and Q2 versus A[CO3%]), to facilitate
the applicability of these models to deep time (pre-Pleistocene) intervals when [Ca?*]s
was different than today. As such, comparison between the slopes of our multivariate
models and those that have been published for Sr/Ca and B/Ca is not possible.
However, we can highlight the difference in Mg/Ca-temperature slope between this
and previous analyses. Compared to regression analyses that only consider
temperature as the independent variable (e.g., Rosenthal et al., 1997; Martin et al.,

2002; Rathmann et al., 2004; Rosenthal et al., 2006), the temperature coefficients of
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the models reported here (Tab. 2) are substantially lower (2.3-7.6 %/°C versus ~10
%/°C) for all species, as a result of the broad positive relationship between
temperature and [CO3%] in the ocean, and the positive relationship between Mg/Ca
and both of these factors. More recent studies that recognize this covariance have
broadly reported reduced temperature sensitivities (Lear et al., 2010), although those
reported here are nonetheless lower than some previous multivariate calibrations (Yu
and Elderfield, 2008) that do not consider the effect of both temperature and
carbonate chemistry (Raitzsch et al., 2008), or samples from a narrow range of
temperature (Healey et al., 2008). Overall, the multivariate models presented here
would result in a substantially larger magnitude of reconstructed temperature change
for a given measured Mg/Ca change compared to most previous calibrations, all else

being equal (i.e., no covarying change in [CO3%]).

4.2. Element/Ca ratios in benthic foraminifera: a biomineralization and

ecological perspective

All species included in this study belong to the order Rotaliida (Lankester,
1885). Even so, they exhibit different Mg/Ca sensitivities to temperature, with L.
wuellerstorfi and Uvigerina spp. characterized by lower sensitivities than O.
umbonatus, C. mundulus, and C. pachyderma. In contrast, the sensitivity of Sr/Ca to
Qeariite is similar for every species investigated except for O. umbonatus, while the
response of B/Ca to Qe is more heterogeneous (Fig. 3). Although we might expect
biomineralization mechanisms to be broadly similar among species within the same
order (cf. de Nooijer et al., 2023), our data indicate that the relative importance of
different ion transport processes and/or ecological preferences might play a role in the

species element/Ca sensitivity to the environmental parameters considered here.

The exact nature of the biological influence on the chemical composition of
foraminifera is an active area of research (e.g., Branson et al., 2025). However, several
mechanisms have been hypothesized to influence the incorporation of elements other
than Ca within the foraminiferal test. For example, the presence of internal reservoirs
used during calcification in perforate foraminifera (ter Kuile and Erez, 1988) is likely to

be an important feature because it implies a fractionation step between the extraction
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of elements from seawater and delivery to the calcification site (cf. Elderfield et al.,
1996), which may be influenced by biological processes. In particular, the presence of
an inorganic carbon pool might influence the incorporation of B, because the
incorporation of this element has been suggested to be driven by the growth-rate
dependent attachment/detachment rates of borate (B(OH),) and boric acid (B(OH)3’)
to the growing crystal surface, the former of which is de-hydroxylated to BOs*and
substituted for HCO3 or CO3% in the calcite lattice (e.g., Hemming and Hanson, 1992;
Branson et al., 2015). Similarly, the presence of an internal Ca pool might influence the
concentration of cations, like Mg, Sr, and Li at the calcification site if this store is a solid
phase (e.g., Erez, 2003). Additional biomineralization-related processes that have been
proposed as potential ‘vital effects’ include variable precipitation rates (e.g., Erez,
2003), Rayleigh fractionation (Elderfield et al., 1996; Evans et al., 2018), the effect that
symbionts have on the foraminifer’s microenvironment (e.g., Sadekov et al., 2005; van
Dijk et al., 2019), transmembrane transport in combination with the passive transport
of other cations (Nehrke et al., 2013), the involvement of organic linings during
chamber formation (e.g., Bentov and Erez, 2006, Erez, 2003), diffusion of boric acid
along with CO, to the calcifying space (Gagnon et al., 2021), the possible involvement
of an amorphous calcium carbonate phase during calcification (Bentov and Erez, 2006;
Evans et al., 2020), and the ability of foraminifera to control the fluid composition in
the extracellular calcification space (e.g., Bentov and Erez, 2006) and/or to modify pH
during calcite precipitation (Evans et al., 2015). Banding could also arise during calcite

precipitation due to chemical oscillatory zoning (Branson et al., 2015).

Here, we show that the Mg/Ca of different species is affected differently by
oxidative versus reductive cleaning (L. wuellerstorfi, Uvigerina spp., and O.
umbonatus), while for C. mundulus, there is no significant difference in test Mg/Ca
when an oxidative versus reductive cleaning protocol is applied. While this may simply
reflect differential cleaning between studies focused on different regions, it may
alternatively be because different species are characterized by different degrees of
intratest elemental heterogeneity. For example, Glock et al. (2019) reported a
different distribution of nitrogen, sulfur, and iodine between cleaned (following Glock

et al., 2016) and uncleaned specimens. Importantly, in this study the inside of the test
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wall was affected by the cleaning procedure even if the specimens were cleaned
without breaking the test. This has important implications because if the test is
characterized by a microporous texture, the reagents used during the oxidative
cleaning can penetrate deep within the test and remove parts of the organic phase
(Glock et al., 2019), potentially affecting the elements associated with it, to different
degrees in different species. Whether or not this applies to the proxy systems in the
species considered in this study requires intratest chemical heterogeneity to be

comprehensively documented in each species.

Ecological preferences, like microhabitats, can also impact a species' chemical
signature. For example, epifaunal species like L. wuellerstorfi and C. mundulus (e.g.,
Lutze and Thiel, 1989; Elderfield et al., 2006; Raitzsch et al., 2008; Rae et al., 2011) are
exposed to bottom water conditions. In contrast, shallow to deep infaunal species,
such as O. umbonatus and Uvigerina spp. (e.g., Brow et al., 2011; Rathmann and
Kuhnert, 2008; Stirpe et al., 2021), are affected by porewater chemistry (e.g., Jorissen,
1999). Infaunal benthic foraminiferal species are characterized by lower apparent
partition coefficients for Cd, Sr, and B compared to epifaunal species (e.g., Tachikawa
and Elderfield, 2002; Yu et al., 2014). In addition, pore waters often are characterized
by altered or somewhat buffered saturation state compared to bottom water due to
organic matter remineralization and CaCOs dissolution in the upper ~10 cm of
sediment (e.g., Zeebe 2007; Cetiner et al., 2025). Species that calcify from a pore
water-derived fluid have been suggested to have a weak or absent carbonate
saturation effect for this reason (e.g., Elderfield et al., 2006, Raitzsch et al., 2008;
Brown et al., 2011). This is in overall agreement with our observations, namely, that L.
wuellerstorfi and C. mundulus (epifaunal species) are characterized by a similar Mg/Ca
sensitivity, within uncertainties, to Q?..iite (Fig. 3A), whereas no resolvable sensitivity
exists for the infaunal species O. umbonatus. However, this is not the same for
Uvigerina spp., which exhibits a negative sensitivity to Q... This may be a result of
variability in porewater chemistry and related differences in biomineralization
strategy, e.g., as an adaptation to undersaturated conditions. This is additionally
supported by the much lower B/Ca-Q.iie SeNsitivities of the infaunal species (Fig. 3C),

although not all species fit this pattern, with C. pachyderma, which is also an epifaunal
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species (e.g., Rathburn et al., 1996; McCorkle et al., 1997) characterized by a Mg/Ca-Q
2 .icite S€Nsitivity similar to the infaunal species (Fig. 3A). In addition, while microhabitat
similarities can partially explain the observed Mg/Ca and B/Ca sensitivities to Qcicite,
we observe similar Sr/Ca-Q.qte Slopes among all species considered here. Why Mg/Ca
and B/Ca should be buffered in infaunal species while Sr/Ca is not is mechanistically
problematic and potentially suggests that the grouping of sensitivities between
infaunal/epifaunal species discussed above may be coincidental, and perhaps better
ascribed to (e.g.) biologically-driven differences in calcification site carbonate
chemistry among species that inhabit different niches, rather than the direct effect of

bottom/pore water chemistry.

Interestingly, C. pachyderma juveniles were observed up to 4.6 cm deep in the
sediment, which suggests that this species changes microhabitat during different
ontogenetic stages (Rathburn and Corliss, 1994). This could explain the lack of Q?c,icite
influence on C. pachyderma Mg/Ca (Table 2) as observed for O. umbonatus and
Uvigerina spp.. Microhabitat changes during a species life cycle have also been invoked
to explain the Mg/Ca offset between C. mundulus and L. wuellerstorfi, with the former
migrating within the sediment during ontogenesis (Rathburn and Corliss, 1994;
Raitzsch et al., 2008). However, it should also be borne in mind that benthic
foraminiferal distributions in sediment can vary geographically and temporally (e.g.,
Kitazato, 1994; Jorissen, 1999). For example, L. wuellerstorfiis commonly described as
epifaunal, although the presence of this species below 1 cm was also reported (e.g.,
Rathburn and Corliss, 1994), possibly as a consequence of bioturbation in deep-sea

sediments (e.g., Jorissen, 1999).

Overall, we conclude that while microhabitat preferences broadly align with
test geochemical relationships, this factor alone cannot explain differential inter-
species element/Ca sensitivity to environmental parameters. Further studies are
necessary to better understand different species’ ecological preferences and their

relationship with element/Ca incorporation in foraminiferal tests.

4.3.E1CaRBenthic: Calibration implementation, uncertainty

propagation, and downcore application examples
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To apply the calibrations described above (Sec. 3.2 and 4.1), we provide

ElCaRBenthic (https://www.github.com/dbjevans/EICaRBenthic), a Matlab script

for the calculation of temperature, Qcacite, and [CO3%] from benthic foraminiferal
Mg/Ca, Sr/Ca, B/Ca, or Mg/Li data. Following MgCaRB (for planktonic foraminifera;
Gray & Evans, 2019), the program provides a convenient implementation of the above
multivariate regression models. In addition, E/ICaRBenthic can account for nonthermal
controls on Mg/Ca and non-carbonate chemistry controls on Sr/Ca (where relevant),
and it fully propagates uncertainty associated with data, calibration, and all relevant
input datasets (seawater chemistry, Qe in the case of Mg/Ca and temperature in the
case of Sr/Ca, the relationship between seawater and test chemistry). The calibration
inverse prediction intervals (IP1) are also returned. While we focus on Qcaicite and Qcarcite
in the regression models, given that this is easier to implement over a range of
timescales, EICaRBenthic also converts Qcuie to [CO327] using optional temperature and
depth inputs (or using Mg/Ca-derived temperature). Where a given system is sensitive
to more than one factor (e.g., Mg/Ca in the case of L. wuellerstorfi, Sr/Ca in the case of
C. pachyderma; Fig. 3), more than one trace element dataset can be input at the same
time to simultaneously solve for both dependent variables. The script derives the
multivariate calibrations discussed above from the database file provided here each
time it is run, such that it can easily be applied to new datasets or to an updated

version of our compilation database in future.

To achieve this, several reference datasets are required to correct foraminiferal
test chemistry datasets for changes in the minor and major ion composition of
seawater for application in deep time (>1 Ma). Specifically, we use a compilation of
Mg/Cas, datasets (Dickson, 2004; Coggon et al., 2010; Brennan et al., 2013; Rausch et
al., 2013; Gothmann et al., 2015; Evans et al., 2016, 2018; Zhou et al., 2020) with
uncertainty derived from the 2.5 and 97.5" percentiles of 103 bootstrapped LOWESS
fits to the data, resampled within uncertainty. The seawater [Li*] and [Ca?*] datasets
required to correct Mg/Li (via Li/Ca) are, to our knowledge, only available in the former
case from modeling the composition of fluid inclusions measured in marine evaporitic
sequences (Weldeghebriel and Lowenstein, 2023). As such, these [Li*],, data were

combined with fluid inclusion and foraminiferal [Ca%*]s, reconstructions (Brennan et
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al., 2013; Zhou et al., 2021), resampled within uncertainty, and fit using a LOWESS
function 103 times, with the propagated uncertainty taken from the 2.5 and 97.5%

percentiles of the resulting dataset.

In addition to knowledge of how the composition of seawater has changed
through geological time, correcting foraminiferal test chemistry data requires that the
shape of the relationship between seawater and test elemental ratios is known
(exponent Hin Eq. 5). This has been argued to be nonlinear in the case of Mg/Ca
(Segev and Erez, 2006; Hasiuk and Lohmann, 2010; Evans and Miiller, 2012; Evans et
al., 2015a), although linear (i.e., a constant apparent distribution coefficient)
relationships have been applied (e.g., Lear et al., 2000) and even the absence of such a
relationship has been argued for (Lear et al. 2015). Given that no consensus and/or
insufficient data exist to constrain this aspect of deep ocean benthic foraminifera, we
leave H and associated uncertainty as a required E/CaRBenthic input field when
processing samples older than 800 ka, where:

Mg/Cacorrected = M8/Cameasured X 5.2"/ Mg/Cas”  (Eq.5)

Mg/Cas, is the value at a time interval of interest, and 5.2 is the modern ratio. In the
examples below, we follow the recommendation of Evans et al. (2016) regarding the
value of H for the species utilized here, but note that this analysis likely requires

revision in light of the multivariate calibration models presented here.

Foraminiferal Li/Ca are corrected for changes in Li/Cas, using a constant
distribution coefficient, because the limited amount of data from foraminifera cultured
in seawater with varying Li/Ca indicates that foraminiferal test and seawater Li/Ca are

linearly related (Hauzer et al., 2024):

I-i/Cacorrected = Li/cameasured X 26/ I-i/Casw (ECI 6)

where Li/Cayy, is that at a time interval of interest and 2.6 is the modern ratio (in
mmol/mol). We do not include a correction for past changes in Sr/Ca, because the
(high quality) available data suggest that [Sr?*]s, and [Ca®*]., have covaried over the
course of the Cenozoic (Gothmann et al., 2015), but note that this could be accounted
for by correcting the data along similar lines to our processing of Li/Ca (Eq. 6) if

desired. Likewise, no attempt has been made to correct B/Ca data for past changes in
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seawater chemistry given that the secular evolution of the total boron seawater

concentration is very poorly constrained (Lemarchand et al., 2002).

Example application 1: late Pleistocene deep ocean carbonate chemistry. To
demonstrate the utility of B/Ca and Sr/Ca for carbonate chemistry reconstruction, we
applied our L. wuellerstorfi B/Ca and Sr/Ca calibrations to site VM28-122 (3620 m,
Caribbean Basin, e.g., Yu et al., 2010; see Sec. 2.3 for further details and data sources).
We derive Qi directly from the above calibrations, as well as [CO3%] calculated from
Qe USING the depth of the core site and assuming T = 3°C in the absence, to our
knowledge, of published Mg/Ca data for this site (Figure 8). We reconstructed glacial-
interglacial Qciate changes of ~0.5-0.75 units and B/Ca-derived [CO3%] ~40 umol/kg
higher during the last two glacials compared to the Holocene. This latter
reconstruction agrees with Yu et al. (2013) to better than 10 umol/kg throughout the
duration of the record. While this reflects that our L. wuellerstorfi B/Ca calibration
does not differ substantially from previous approaches, we fully propagate all sources
of uncertainty, demonstrating significant G-IG [CO3?] change when considering
calibration uncertainty alone, although with an IPI of the same order of magnitude as
the late Pleistocene variability. Moreover, our new Sr/Ca-derived Qcaicie and [CO3?7]
reconstructions are in good agreement with those based on B/Ca (Fig. 8). While several
previous studies have noted the downcore correlation between B/Ca and Sr/Ca (Yu et
al., 2013; Lo Giudice Cappelli et al., 2015), and Sr/Ca-derived A[CO3*] have been
reported based on a regression of down core Sr/Ca against B/Ca-derived A[CO3*]
(Lawson et al., 2024), our analysis may represent the first truly independent Sr/Ca-
based reconstruction; that is, the Sr/Ca-derived reconstructions (Fig. 8) are based on
independent core-top data rather than an ad hoc downcore correlation. The B/Ca and
Sr/Ca datasets show an good degree of coherence over the last two G-IG cycles,
further demonstrating the utility of benthic foraminiferal Sr/Ca data for the purposes
of carbonate chemistry reconstruction, especially given that it is more routinely and

more easily measured, as

as noted by Lawson et al. (2024). However, as discussed in Sec. 4.1, Sr/Ca based
carbonate chemistry reconstructions are a factor of ~2 times more uncertain than
those based on B/Ca. In addition, we observe substantial offsets in certain intervals;
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998  for example, Qe during the last interglacial period was ~0.3 units lower based on
999  Sr/Ca, outside of the combined calibration uncertainty of the two approaches. This
1000  highlights that calibration uncertainty alone cannot account for all sources of
1001 uncertainty when applying these systems downcore (in contrast to the IPl intervals in
1002  this case) and warrants caution when interpreting the details of reconstructions such

1003  as these at this scale.

1004  Example application 2: Neogene temperature and carbonate chemistry changes.
1005  Using ODP Site 806 as an example, we used data (see Sec. 2.3) reported by Lear et al.
1006  (2003; 2015) and Lear & Rosenthal (2006) to assess Mg/Ca and Sr/Ca-derived

1007  temperature and Qcqte reconstructions across the last 15 Myr from L. wuellerstorfi, O.
1008  umbonatus, and C. mundulus using the multivariate calibration models presented

1009  above. This enabled us to compare results from species that are and are not

1010  characterized by a Mg/Ca sensitivity to Qcaie, including the use of Sr/Ca to reconstruct
1011 and correct for the Qe influence on Mg/Ca-based temperature reconstructions

1012  across multi-million-year timescales.

1013 Calculating temperature from Mg/Ca without accounting for the possible
1014  effects of changing Qe (i.€., assuming Qcacie = 1 £ 0.5 throughout the duration of
1015  these records) results in reconstructions that deviate from each other by up to 8°Cin
1016  the late Neogene (<4 Ma) and by >15°C before then (Fig. 9A). Although all
1017  reconstructions agreed within uncertainty, our results demonstrate the substantial
1018  influence of nonthermal factors on Mg/Ca. In particular, L. wuellerstorfi yielded an
1019  unreasonable degree of cooling in the last 5 Myr. At the same time, temperatures
1020  based on C. mundulus Mg/Ca were 5-10 °C higher between 5-10 Ma compared to the
1021  temperatures obtained using O. umbonatus, the only species in the comparison that is
1022  not characterized by a Mg/Ca-Qcaiite S€NSItivity. Reconstructing Qcaiite Using the species-
1023  specific Sr/Ca calibrations presented here (Fig. 9C) results in somewhat different Qcicite
1024  reconstructions, albeit within uncertainty, with the O. umbonatus and C. mundulus
1025  records in broadly good agreement, while the reconstruction based on L. wuellerstorfi
1026  Sr/Ca would imply that Site 806 was undersaturated with respect to calcite prior to 4
1027  Ma. This disagreement may reflect habitat differences among the species analyzed, or
1028  could highlight the overall limitations of the approach given that a portion of the
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inferred change in Qe based on L. wuellerstorfi is partially driven by the
unreasonably large reconstructed temperature change. We also stress that these

reconstructions are within uncertainty of each other at the level of the calibration IPI.

Our results emphasize that using species-specific results to correct for the
influence of Qe 0N Mg/Ca temperature reconstructions results in much better
agreement among the three species (Fig. 9B), even though the magnitude of cooling
and Pleistocene temperatures remain unrealistic in the case of L. wuellerstorfi. Overall,
this highlights: 1) the power of interpreting Mg/Ca and Sr/Ca (or B/Ca) data together,
without which temperature would have been greatly overestimated using species with
an Qe SENSitivity; and 2) the large degree of inherent uncertainty in using L.

wuellerstorfi Mg/Ca for temperature reconstruction.

5. Conclusions

We compiled published Mg/Ca, Sr/Ca, B/Ca, and Li/Ca core-top data for C.
mundulus, C. pachyderma, L. wuellerstorfi, N. umbonifera, O. umbonatus, and
Uvigerina spp. Multivariate regression models that relate these geochemical datasets
to in situ environmental parameters demonstrate that temperature can explain much
of the variance in the Mg/Ca datasets with species clustering in two main groups: (1)
O. umbonatus and C. pachyderma, with sensitivities of 7.6 and 5.9%/°C respectively
(similar to planktonic foraminifera); and (2) L. wuellerstorfi, Uvigerina spp., and C.
mundulus, with sensitivities of 2.3-3.6%/°C (similar to inorganic calcite). As previously
suggested, we find that Qcite is a significant predictor of C. mundulus and L.
wuellerstorfi Mg/Ca, with the implication that temperature reconstructions using these
species are inherently more uncertain irrespective of whether Q. ite Can be
independently constrained. The combination of Mg/Ca with Li/Ca data results in a
proxy (Mg/Li; e.g., Bryan & Marchitto, 2008) that is characterized by lower calibration
uncertainties despite the possible analytical challenges compared to Mg/Ca (e.g.

determination via ICP-OES may not be possible).

Our results also demonstrate that all species, with the exception of O.
umbonatus, are characterized by the same Sr/Ca-Qcaiie relationship within uncertainty,

suggesting that Sr/Ca data are likely to be a useful means for reconstructing Qcacie, as
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recently suggested by Lawson et al. (2024). Only C. pachyderma exhibits a significant
Sr/Ca-T sensitivity, thus requiring correction before interpreting Sr/Ca data in terms of

seawater carbonate chemistry.

B/Ca is tightly correlated with Qe in C. mundulus, L. wuellerstorfi, and N.
umbonifera without a resolvable temperature influence, whereas the infaunal species
are characterized by substantially lower test B concentrations and no significant

sensitivity to Qe in the case of 0. umbonatus (although limited data are available).

Overall, the most precise and accurate temperature reconstructions can be
obtained from O. umbonatus Mg/Ca (or C. pachyderma Mg/Li), whereas the most
precise and accurate Q.uite reconstructions can be generated using L. wuellerstorfi
B/Ca. However, if data from only one species can be generated, and a choice of species
is available, combined C. pachyderma Mg/Ca and Sr/Ca measurements provide the
best compromise of temperature and Qc.ite data quality, although there is no
substitute for L. wuellerstorfi B/Ca-derived Q.. reconstructions that is not associated
with a substantial (factor ~2) increase in uncertainty. Combining the dataset for all the
species analyzed here into genus or multispecies calibrations results in substantially
larger uncertainties, emphasizing the importance of single-species analysis whenever

possible.

Finally, based on the species-specific multivariate calibrations generated here,
we develop a new processing software (EICaRBenthic) that provides a convenient way
of applying our calibrations to fossil samples. The software can account for the thermal
and non-thermal controls on Mg/Ca, Sr/Ca, B/Ca, and Mg/Li by accepting up to two
datasets simultaneously (e.g., Mg/Ca and Sr/Ca), as well as fully propagating
uncertainty and correcting for changes in seawater elemental chemistry throughout
the Cenozoic. Applying this tool to two published example datasets demonstrates for
the first time the accuracy (i.e. match to B/Ca derived estimates) of Sr/Ca-derived
Qcaicite reconstructions based on core-top calibrations vs. ad hoc down core Sr/Ca
calibration. It also highlights the importance of accounting for Qe in Mg/Ca-based
temperature reconstructions, which increases the agreement among records

generated using different species.
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Figure 1. Site locations of the core-top samples included in this study. The map was generated
using QGIS software version 3.38. See Table 1 for references. The compiled dataset can be
found on Pangaea (Nauter-Alves et al., XXXX; doi:XXXXXXX).

Figure 2. Mg/Ca, Sr/Ca, B/Ca, and Li/Ca data are shown as a function of in situ temperature (A,
D, G, J), Qaalcite (C, F, I, L), and dissolved inorganic carbon concentration (DIC) (B, E, H, K) for all
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species considered in this study. See Figs. S3, S5, and S7 for equivalent plots with each species
displayed in individual panels.

Figure 3. Temperature and Q2aucite / Qealcite regression coefficients for the preferred models
presented here for (A) Mg/Ca, (B) Sr/Ca, and (C) B/Ca; y axis units are the same as those given
on the x axes, per Q2cacite OF UNit Qearcite. The vertical gray shaded region in panels Aand D
shows the range of Mg/Ca-T sensitivities for planktonic foraminifera for which sufficient
laboratory culture data exist to characterize this relationship (Gray & Evans, 2019). Other gray
bars delineate the position of zero. Error bars show 1SE coefficient uncertainties. (D-F) show
equivalent plots based on alternative regression models in which nonsignificant parameters
have been removed (e.g., the Q2% coefficient in the case of C. pachyderma and O.
umbonatus Mg/Ca, see text for details).

Figure 4. Corrected test Mg/Ca (A, B, C), Sr/Ca (D, E, F), and B/Ca (G, H, 1) data shown as a
function of in situ temperature, Qcaicite, and dissolved inorganic carbon concentration (DIC).
Corrected data plotted as a function of temperature are those with the Qcaicite COMponent
subtracted out (e.g., Qiite-corrected Mg/Ca). Corrected data plotted as a function of Qcacite
are those with the temperature component subtracted out (e.g., T-corrected Mg/Ca).
Corrected data plotted against DIC show the residual variance in the data after the
temperature and Qcrite cOmponents have been removed (e.g., T and Q2 iite-corrected Mg/Ca)
(see text for details). See Figs. S4,6,8 for equivalent plots with each species displayed in
individual panels and significant linear regressions overlain. Note that we plot corrected Mg/Ca
as a function of Qcalcite for consistency, although the regression and correction were applied
using Qcaicite.

Figure 5. Controls on Mg/Li for the genus and species for which sufficient data are available to
assess this (Uvigerina spp. and C. pachyderma). (A-C) Mg/Li shown as a function of in situ
temperature, Qcaicite, and DIC. (D-F) As panels A-C, except with the Qcacite (D) or temperature (E)
component subtracted out. Panel (F) shows the residual variance in the data as a function of
DIC. (G-H) In situ versus predicted temperature using our preferred regression model, with the
dashed confidence intervals showing the inverse prediction interval (IPI, see Fig. 6 caption). (1)
The temperature and Qclcite cOefficients of the least-squares linear regression model.

Figure 6. In situ temperature versus predicted temperature based on Mg/Ca (left panels). In
situ Qcalcite Versus predicted Qg,icite based on Sr/Ca (central panels) and B/Ca (right panels)
using the preferred regression model form (see text for additional details). The inverse
prediction interval (the 2SD of residual variance rotated onto the x-axis; McClelland et al.,
2021) is shown by dashed lines.

Fig. 7. In situ temperature versus temperature predicted based on the (A) multi-species Mg/Ca
and (B) Cibicidoides spp. Mg/Ca regressions presented here. (C) In situ versus predicted Q2 cicite
based on the Cibicoides spp. Sr/Ca model presented here. The inverse prediction interval (the
2SD of residual variance rotated onto the x axis; McClelland et al., 2021) is shown by dashed
lines.

Figure 8. Example application of EICaRBenthic to reconstruct seawater carbonate chemistry
using L. wuellerstorfi B/Ca and Sr/Ca from VM28-122 (Caribbean, 3.6 km; with a sill depth of
1.8 km, data from Yu et al. 2010a, 2010b, and 2014). The three shaded regions show the 67 %
and 95 % calibration uncertainties, as well as the prediction intervals derived from the
unexplained variance in the calibration dataset. The regression model is formulated in terms of
Qcaiite (panel A) and is converted into [COs?] (panel B) using the core depth assuming a
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constant S =35and T =3 °C, in order to facilitate comparison to a previous calibration
approach.

Figure 9. Application example of EICaRBenthic to reconstruct temperature and seawater
carbonate chemistry at ODP Site 806 over the last 15 Myr (western Equatorial Pacific, 2.5 km,
data from Lear et al., 2015). (A) Mg/Ca-derived temperature assuming constant Qcaicite = 1
where relevant (L. wuellerstorfi and C. mundulus). The three shaded regions show the 67% and
95% calibration uncertainties, as well as the prediction intervals derived from the unexplained
variance in the calibration dataset. (B) Mg/Ca-derived temperature corrected for changes in
Qcalcite Where relevant. (C) Sr/Ca-derived Qcaicite. NO correction has been applied for potential
changes in Sr/Casw, although Sr/Cas uncertainty is fully propagated into the reconstructions.
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