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ABSTRACT
We need to rethink how users understand and develop queries. The
growing diversity of users, the increasing complexity of query lan-
guages and data architectures - now aided by tools like LLMs - are
challenging the traditional view of a highly-trained user writing
queries in a controlled environment. Query formulation has become
a more exploratory endeavor that needs to be researched and sup-
ported: an iterative cycle of designing, debugging, and maintaining
queries. To ground this vision, we present an empirical analysis of
query logs from the Wikidata Query Service, revealing common
patterns of iterative query modification. Based on these findings, we
propose a concrete research program with hypotheses, user studies,
and research questions for query languages, engines, and interfaces.
Our contributions include a curated query session dataset, a classi-
fication of exploratory-query patterns, and a roadmap for building
system-level support for exploratory querying.

PVLDB Reference Format:
Marcelo Arenas, Enrico Franconi, Janik Hammerer, Olaf Hartig, Katja Hose,
Laura Koesten, George Konstantinidis, Leonid Libkin, Wim Martens, Yuya
Sasaki, Stefanie Scherzinger, Katherine Thornton, and Hsiang-Yun Wu The
Authors. Exploring Exploratory Querying. PVLDB, 18(13): 5731 - 5739,
2025.
doi:10.14778/3773731.3773746
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hartig/ExploratoryQueryingSessions/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 13 ISSN 2150-8097.
doi:10.14778/3773731.3773746

Query 
Intent Debugging 

Phase
Design 
Phase

Maintenance 
Phase

Engine
HCI

Figure 1: (Traditional) query lifecycle

1 INTRODUCTION
Today’s data landscape contains an abundance of different data
models and query languages, which are becoming more and more
complex. The SQL standard alone consists of eleven parts, of which
two (Framework and Foundations) are commonly taught at univer-
sities, while its total page number has grown to about four thousand.
The premise of lightweight declarative query languages has been
challenged by their increasing expressiveness — making query lan-
guages Turing-complete — and by the ongoing addition of complex
features. At the same time, data architectures have evolved from
closed, controlled systems to open, cloud-based architectures where
development and testing are closer to production. On the one hand,
this implies moving from inexpensive and complete access to data
to higher testing and development costs in answering queries. On
the other hand, users are no longer provided with a local, dedicated
and protected testing and development environment.

The proliferation of different data models creates use cases
where the schema is complex, unknown, or non-existent (e.g., graph
databases or RDF). The advent of Large Language Models (LLMs)
allows users to co-develop queries in a constant "vibe-dialogue"
with an AI assistant. Additionally, users of databases have become
much more diverse. Their cultural, socio-economic, professional,
and technical backgrounds can directly affect the process of query
construction, for example, in interpreting intermediate query re-
sults [46]. Public query interfaces, e.g., Wikidata [91], have an in-
creasing number of users who aim to find information while having
little or no formal training, while the labor market faces a deficit
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in highly-skilled data and software engineers. Many users choose
data models and query languages based on their preference and
background rather than their suitability for the task at hand.

Due to the above, query development is now a more exploratory
process where users actively engage in an iterative cycle of de-
signing [16, 100], debugging, and maintaining queries in what we
recognize as the query lifecycle phases (see Fig. 1 and Section 2). This
paper is a call to action for developing (language, engine, and inter-
face) support for exploratory querying throughout this lifecycle. To
gather concrete evidence, we analyzed more than 24,000 user query
sessions from the Wikidata Query Service (Section 3). We found
numerous sessions exhibiting iterative query refinement, extension,
and intent shifts—practical examples of exploratory behaviors. We
develop a curated dataset of query sessions and a categorization
of exploratory query patterns, providing a foundation for our re-
search agenda in Section 4, where we present specific hypotheses,
user studies, research questions, and evaluation metrics to support
exploratory querying in languages, engines, and interfaces.

2 QUERY LIFECYCLE
Central to our investigation is the notion of a query intent, as the
information seeking motive that users have when interacting with
data. If there is no particular query intent in mind, this interaction
falls under the remit of data exploration [28, 42, 54, 59]. On the other
hand, the clearer the query intent becomes, the more we move into
exploratory querying, where one tries to find the right query to
express that intent. Figure 2 depicts this spectrum and the fact that
there is no clear-cut separation between the two areas.

Execution of queries in database systems is well studied, and
its various steps are extensively analyzed. Nevertheless, looking
at queries as artifacts, there is a notion of query lifecycle, similar
to the lifecycle of software products in software engineering. In
a traditional setting, when a software developer creates a query
for an application or when a business analyst creates a query for
an analysis, the lifecycle of the query starts with the query intent.
During the first phase of the lifecycle, the design phase, the query
intent is formalized as an initial query in an available language.

As this initial query may not yet capture the query intent com-
pletely, the query designer may then engage in a form of debugging
in which the query is tested and adapted. We refer to this phase as
the debugging phase. The goal of this phase is to create a query
that captures the query intent correctly and completely.

For the design and debugging phases, we assume that the en-
vironment in which the querying takes place (query processing
system, user interface, schema, data, query language, etc.) does not
change, or at least not to an extent that has an effect on the outcome
of these phases. Eventually, however, parts of the environment may
change such that a query that captured a query intent earlier does
not capture that intent any longer or may even become invalid.
Therefore, the end of the debugging phase marks the beginning
of amaintenance phase in the life cycle of a query. During the
maintenance phase, we may regularly check whether the query
still captures the query intent and is valid. If not, we may decide to
fix the query, and a new debugging or even design phase begins.

Traditionally, life cycle phases take place in the face of database
queries being typically static and predefined. Developers often work

Exploratory
Querying

Data
Exploration

Query Intent
More clearLess clear

Figure 2: Exploratory querying versus data exploration

with a known database schema and a clear query intent that comes
as a functional requirement of their implementation. The queries
they design will later be embedded in the application code and
executed at runtime. If software errors are detected, the query may
need to be debugged, and if the application code or the database
schema evolve over time, queries may require maintenance. This
traditional view is rooted in all our query management practices.

Such static assumptions have not been made only in database
management; in the domain of information seeking early research
has assumed the information need to remain static [38, 89]. Yet,
more recent information seekingmodels emphasize amore dynamic
nature of this process, recognizing that information needs are of-
ten refined or redefined based on the information retrieved during
the process [7]. For database querying, even if existing processes
contain elements of exploration (of alternative query formulations),
these processes have commonly considered a rather constrained
search space, and both the schema and the query intent were tradi-
tionally fairly clear. In contrast, schemas today are not always as
clear, assumptions radically change, and all phases of the query life
cycle becomemore complex and exploratory in nature. For example,
users may now use LLMs to transform natural language questions
into database queries, and start from there.

During the design and debugging phases, a developer may create
and run trial candidate queries, effectively exploring the space of
all possible queries (in the given query language) that capture the
query intent. A user may issue queries to better understand specific
schema or data elements, thus performing schema or data explo-
ration. A user not sufficiently experienced with the query language
may write a number of queries to better understand relevant lan-
guage features before or while attempting to write the actual query.
In the maintenance phase, queries might be rewritten to explore
changes in the logical environment, e.g., changes in data, schema,
constraints, access control methods, or even cloud-hosting pricing
policies, among others, or the physical environment, e.g., changes
in the operating system, storage or execution environments.

3 EXPLORATORY QUERYING CHALLENGES
We performed an empirical study on Wikidata and identified nu-
merous examples that illustrate exploratory querying.
An Empirical Study on Wikidata. We considered the organic
Wikidata query logs (June 2017–March 2018) from [64], i.e., their
heuristic classified them as “having human involvement”. From
these, we extracted streaks of similar queries using the method
of [16] with added time interval constraints (at least 3 seconds and
at most 5 minutes apart). From the original log file, which con-
tains 3.57M queries, this resulted in 24,050 streaks of at least three
queries each. We distributed the analysis effort among the authors
of this paper. Each author manually inspected different sections of
the collection to identify streaks that contain versions of a query
that changes throughout the streak in exploratory directions. We
manually ran the queries on the Wikidata Query Service to better

5732



understand their semantics. We used a shared template to describe
our streak analysis, leading to a collection of a total of 30 sessions
with user stories that exhibit exploratory querying behavior, which
is only a tiny sample due to the manual labor. This collection and
related artifacts are available for further research [85].

Based on our collection of sessions, we observe that the sessions—
and thus, exploratory querying behavior in general—can be grouped
into at least six categories. These categories are neither exhaustive
nor mutually exclusive; some sessions fit into multiple categories
(to provide readers with a sense of the overall distribution, Table 1
lists how many sessions we found per category).

Category: 1 2 3 4 5 6
Number of Sessions: 15 12 4 7 5 7

Table 1: Number of sessions in our collection per category,
where some of the sessions fit into multiple categories.

In Result Refinement (Cat. 1) sessions, the user modifies their
query to limit the cardinalities of answers (rows) in the query re-
sult more and more. Typical query modifications in such sessions
include the addition of further conditions, captured via FILTER ex-
pressions or via filtering triple patterns. In Result Generalization
(Cat. 2), the user gradually generalizes their queries to retrieve
additional entities in the result set, which is essentially the oppo-
site of the previous category. Typical changes to the query within
a result-generalization session are the inclusion of superclasses
in the query pattern and an increase of the value of the LIMIT
clause. In Result Extension (Cat. 3), the user expands their query
to extend the query result with additional attributes of the selected
entities. To this end, the user typically adds more triple patterns
with predicates that correspond to the additional attributes and
variables in the object position. In Query Refinement (Cat. 4),
the user seems to have a specific query intent in mind from the
beginning and starts with an initial query that goes in the direction
of this intent. Then, throughout the session, the user works on this
query to align it more accurately with their intent. In contrast to
result refinement sessions (Cat. 1), query refinement sessions are
not about simply restricting the result set (not only, at least), and
also not about simply adding further properties to be retrieved for
selected entities (as done in the result extension sessions, Cat. 3),
but involve adding and tinkering with more complicated query
features. In Bug Fixing (Cat. 5), the user starts with an incorrect
query (e.g., containing incorrectly written URIs or incorrectly used
features of the query language) and fixes the issues of this query
throughout the session. Finally, in Shifting Query Intent (Cat. 6),
the query intent shifts to different but related topics throughout a
session. Typical changes to queries include adapting values used
for filtering, changing the predicate or the class URIs mentioned in
the query pattern, and also adding or dropping entire parts.

The Search for the Right Query. In each of our identified
sessions, there is clear evidence of exploratory struggles. Evidently,
users struggle with language familiarity. In session [83], the user
seems to start from an overly constrained example query that re-
turns nothing; they make changes until first results are found. Even
if users are aided by simple tools (e.g., graphical tools that allow
them to examine the schema as they are writing their queries) or
more advanced ones such as LLMs or text-to-SQL tools, in the end

they have a query which is just “draft zero” which needs to be
debugged and reformulated until it corresponds to the query intent.

Query reformulation essentially tries to solve a language and
schema problem of the user. In database and related literature,
such as knowledge representation, there are principled approaches
to study query reformulation. These approaches introduce a formal
framework and tool to assist users in formulating precise queries
that accurately reflect their information needs, even if users are
completely unfamiliar with the underlying database schema. This
exploratory querying process could be guided by automated rea-
soning tasks over a conceptual schema (an ontology) that describes
the data domain of the queried database [30]. These tasks leverage
formally defined basic operations available to the user, enabling
them to modify the query, receive contextual feedback, and focus
on relevant information during exploration. While logical AI ap-
proaches offer advantages, they restrict the expressiveness of query
languages because they need to reason about queries, and they do
not cover many features of traditional query languages. In Section 4
we expand our research proposal to study this problem.

In some of the exploratory categories identified, such as the
Shifting Query Intent category, users are particularly constrained
by the query engine assumptions. Consider for example ses-
sion [84] where the user repeatedly needs to change the query until
the engine stops timing out. Current query engines operate under
assumptions of completeness, efficiency, and optimization, without
accommodating iterative exploration or integration with the devel-
opment environment. They execute queries in an agnostic manner,
separate from the broader code base, and assume uniform treatment
of data sources in federated queries, which may oversimplify com-
plex or exploratory querying needs. Retrieval-augmented genera-
tion (RAG) is only beginning to be incorporated, hinting at a move
towards dynamic query responses, but remains in early stages [41].
Approximate query-answering techniques [63] can provide faster,
representative responses by relaxing precision; however, these ap-
proaches are commercially limited, with configurations that are
often inaccessible to non-experts. Query auto-completeness [90, 97]
is also underdeveloped, and provenance tracking [23, 40], which
would help users understand data origins, is not yet standard, and
applicable to restricted classes of queries only. Additionally, en-
gines lack adaptability to the users’ context, backgrounds, or skill
levels, limiting accessibility for non-experts. We discuss in Sec-
tion 4 that a query environment in exploratory mode could do its
job by only showing a part of the results to the user. Knowing
the user’s skill level or background, the engine could customize
which sample it will show. Materialized views, caching, and reuse
can also be deployed [22, 37, 53] but these are mainly suited for
independent queries rather than iterative exploratory processes.
Section 4 suggests future developments that would be more effec-
tive for exploratory querying such as configurable approximations,
contextualized querying, and richer provenance support, enabling
a more adaptable and user-friendly experience.

At the same time, the logs in our empirical study do not have
information about the interfaces that generated the queries. In
practice, query interactions are performed via command-line in-
terfaces (CLI), graphical user interfaces (GUIs), natural language
interfaces (NLIs) [39], voice user interfaces (VUIs), haptic interfaces,
multi-modal interfaces, and so forth [26]. In addition to interfaces
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requiring various hardware support, CLI, GUIs, and NLIs (i.e., Chat-
GPT) are expected to more often be used to support exploratory
querying. Such applications include recommendation systems and
visualizations [20, 31], which provide users with interactivity, as
well as visual explanations. While CLIs are light and handy, they
are not intuitive and require domain knowledge. A GUI facilitates
human-computer communication through graphical components,
e.g., menus and buttons, on desktop, Web, and mobile applications.
Combining such modalities and defining the best interface features
for exploratory querying requires sophisticated thinking. The next
section defines a research agenda to address these challenges.

4 AN EXPLORATORY RESEARCH PROGRAM
To address the challenges of Section 3, we draw a number of re-
search hypotheses and suggest a number of studies and metrics to
form a sociotechnical research agenda around exploratory query-
ing. We structure our agenda around the three main dimensions of
database technology: language/schema, query engine, and human-
computer interfaces, and consider how each of these dimensions
has to support exploratory querying throughout the query lifecycle.
Research Hypotheses.We believe that there are systematic pro-
cesses that people explore in using query languages and writing
queries. Consequently, query languages need to provide functional-
ities that allow users to adjust the query writing process to reflect
their natural habits, better express query intent, as well as enable
easier designing, debugging, and maintenance.

Current query engine technology is not tailored to the iterative
and investigative nature of exploratory querying. In this mode,
users care more about quickly produced overviews of query an-
swers [29, 60], rather than complete, precise answers. Exploratory
querying involves a sequence of dependent queries, each one evolv-
ing from the previous, instead of a set of independent queries. Users
might want to navigate their exploration based on the cost of the
actual query execution in the cloud, or even based on knowledge
or data that resides in other systems, LLMs, or the Web. While
earlier studies have focused on understanding how users conduct
exploratory querying, e.g. [87], less focus has been placed on their
willingness to compromise for better system support.

Regarding HCI support for exploratory querying, we believe that
effective use and combination of interaction modalities (such as
voice, keyword-based, or natural language text inputs), both within
and across different types of interfaces, can enhance query formula-
tion efficiency, increase user satisfaction, and improve success rates
in exploratory querying tasks. For example, offering different visual
representations of complex datasets allows for a larger variety of
entry points for users to develop an understanding of how data
can be queried. Progressively showing or animating the results of
queries in real-time can improve user comprehension and engage-
ment. Modalities across GUIs and NLIs enable query suggestions or
personalized guidance, possibly with better exploration outcomes.
Interfaces can also be designed for collaboration, enabling iterative
query design, debugging, and maintenance in teams.
Suggested Studies. To confirm our hypotheses, we propose a user
study program including user surveys (interviews, questionnaires,
etc.) and user studies (observing users, clicks, mouse-/key-/eye-
tracking, etc.) that span query languages, engines, and interfaces,

to gain an understanding of how people use exploratory querying:
what languages and language features they use and how, what
difficulties they face with traditional RDBMSes, what issues they
identify on the underlying engines, and how they work with query
systems across different interfaces and their combinations.

Most existing studies concentrate on one specific demographic
group (CS students), and do so in one specific scenario: learning a
language such as SQL [17].While useful, this is just a segment of the
population who writes database queries, and has a small intersec-
tionwith the segment that writes real-life production queries. So, we
should expand the surveyed sample to observe a more diverse user
base who routinely write database queries for all different phases of
the query lifecycle. These experiments require carefully designed
user studies that consider varying levels of expertise from novice
to advanced. Existing studies on database system support focus
mainly on a single query language and dataset. At the same time, re-
lated research has examined user aspects of query formulation and
refinement [52, 95], but often this has been in the context of web-
search queries [45, 58]. Our empirical study (Section 3) suggests
that many users tend to build queries in a sequential, pipeline-like
style rather than crafting one monolithic SQL statement.

To explore this further, experiments could present equivalent
queries written in these different styles (e.g., in a language like
PRQL [77] that mimics data science libraries, or pipelined SQL syn-
tax [86] as well as their translations to declarative SQL queries) and
measure which is easier for users to compose and debug. Tomeasure
the effect of modularity, we can compare languages in which queries
are easier to build bottom-up, such as Soufflé and Rel [44, 78]. Such
studies will reveal whether simpler, more modular query paradigms
improve learning and effectiveness and identify language features
that would provide tailored support for exploratory querying.

In parallel, we should quantify the engine performance trade-
offs (e.g., efficiency versus correctness or completeness) that users
tolerate. Controlled tasks requiring iterative query refinement can
measure how long people will wait for answers andwhether they ac-
cept faster, approximate results instead of exact ones. These studies
can pinpoint each user group’s “latency tolerance” and boundaries
for approximation or partial answers. In effect, we could derive
concrete “pain thresholds” (maximum acceptable delay, minimum
result completeness, etc.) that future systems should meet.

Finally, interface-focused studies should investigate how users
interact with different tools and modalities. It remains largely un-
explored how people combine keywords, graphical builders, and
natural-language inputs to formulate queries. We should compare
task performance and satisfaction across interface styles and query
complexities and study how exploration patterns differ between
experts, domain specialists, and lay users. For example, do advanced
users leverage provenance tracking or query suggestions more ef-
fectively? With these lines of inquiry, our suggested studies will
build an empirical foundation describing how real users formulate
and refine queries across languages, engines, and interfaces.
Suggested Research Building on these studies, we can pursue
database research in all dimensions. In query languages, one goal
is to identify a “right-sized” sublanguage that captures common
exploratory needs without the full complexity of a commercial
language such as SQL, GQL or SPARQL. We should investigate
modular, composable languages where blocks of a query can be
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built and debugged independently (unlike SQL where correlated
subqueries cannot be tested independently). In particular, blending
declarative queries with simpler sequential (pipeline) operations
(e.g., PRQL or Python notebooks) may reduce cognitive load. Re-
search results on translating high-level user intent into a tailored
query dialect could streamline design and reduce errors. Through
this research path, we might even introduce new language features
for exploration (for example, fuzzy quantifiers like “find five rep-
resentative answers”) or blur the line between data and schema
by letting queries incorporate schema discovery as part of normal
querying (as in, e.g., Data Hilog [81, 96]).

For query engines, the focus should be on meeting interactive
exploration needs (such as work done in data exploration [29]).
Already today, query optimizers strive to be highly responsive by
returning the first tuple quickly [18]. We can extend existing work
by engineering engines that obey user-set bounds on response time
and accuracy. For instance, an optimizer might drop or replace ex-
pensive joins (e.g., using acyclic joins [34]) to speed up exploratory
queries, or provide partial/streaming results by approximating ag-
gregates or cardinalities [6, 56]. Techniques such as session-aware
caching, pre-computation and dynamic allocation of resources can
be developed so that frequently accessed data or intermediate re-
sults are ready when the user pivots, and lag is minimised. Another
promising direction is federated execution of user-configurable
query plans that would allow users to specify trade-offs (speed
vs accuracy vs cost). This can be combined with RAG methods
where LLMs augment results from multiple sources (e.g. across
polystore [27] or even “polycloud” architectures). Using such inno-
vations, latency and completeness can ultimately become tunable
parameters in query environments.

Query interface research should create more supportive, trans-
parent tools. Future interfaces might offer real-time feedback as
queries are built, e.g., highlighting errors or suggesting relevant
predicates and filters on-the-fly. A unified visual framework could
present the user’s exploration history: visualized query paths, past
results, and strategy annotations that can be reviewed and refined.
Embedding best-practice examples or “how-to” hints in the inter-
face may guide users along proven exploration patterns. Integrated
LLMs could process and understand user intent across modalities
(text, voice, or GUI) and enrich query results with contextual knowl-
edge, thus aiding in sensemaking [51, 76].

Success in the research agenda presented here and defining the
metrics that quantify how effectively a system supports exploratory
querying is a research challenge in itself and will depend on the
gaps that the studies outlined in Section 4 will reveal. Potential
evaluation metrics are session length (total time of an exploration
session), time-to-insight (duration until the user finds useful infor-
mation), query refinement count (number of queries or adjustments
the user makes), result diversity (breadth or variety of results re-
turned). Applying them in benchmarks and user studies (alongside
traditional accuracy and throughput metrics), we can empirically
validate improvements in query languages, engines, and interfaces.

5 THE EXPLORATION LANDSCAPE
Data Exploration. The focus of data exploration is to form an idea
of a dataset or to extract knowledge from it, even though we do

not exactly know the query intent yet. There is a large body of
research on data exploration, including recent work on interactive
data exploration [28, 54, 59], data exploration with privacy guaran-
tees [70], efficient evaluation of data exploration queries [12, 13, 25],
or ML for data exploration [1, 47]. An overview of data exploration
techniques is given by Idreos et al. [42].

Although data exploration and query exploration are different
tasks, there is common ground. Both involve aspects of schema
exploration, which comes in two forms. First, the schema already
exists, and the goal is to explore data and schema together [98]. Sec-
ond, schema information is absent. The task then includes inferring
a schema from given data (e.g. for XML [8, 9], JSON [5, 48, 49, 88, 99],
or graph data [14, 15, 35]), which typically involves classical learn-
ing algorithms [10]. Here, the inferred schema can provide an
adequate summarization of the data and also guide the user in
formulating valid queries. Another related aspect is data summa-
rization [24]. Although a schema can be seen as a summary of a data
set, data summarization techniques focus more on the data values.
For example, an average column value can be seen as a summary of
the column values. Data summarization aims at constructing and
maintaining certain characteristics of the data using a drastically
smaller structure, which can approximate but provides accuracy
guarantees. So, data summaries can also be used in queries. Data
exploration frequently involves searching for queries, where users
often write their own queries to explore a database. However, they
often face challenges in determining the right queries to ask [65].
Model Exploration. A crucial dimension of exploration, closely
related to query exploration, is model exploration, which refers
to the process of investigating and analyzing an ML model to un-
derstand its behavior, performance, and potential improvements.
Model exploration arises from the increasing use of ML models,
often perceived as “black boxes” [82]. Often, these models provide
highly accurate predictions but offer limited transparency about
their internal decision-making processes. This opacity is particu-
larly problematic in high-stakes domains such as healthcare, finance,
and legal systems, where accountability is fundamental. Lack of
insight into why an ML model produces a particular output led to
eXplainable Artificial Intelligence (XAI) [36, 67, 75], an area that
focuses on producing human-understandable explanations for the
output of the ML model. Model exploration is a critical activity
of XAI methods and enables users to investigate, understand, and
refine their interactions with ML models.

XAI methods have traditionally focused on producing localized
explanations for specific predictions, such as feature importance
scores [62, 67, 79, 80]. Although helpful, these explanations are
not a silver bullet [68, 69], as they may be narrow in scope and do
not reveal the broader logic behind an ML model. Consequently,
there is growing interest in systematic approaches that enable a
more comprehensive exploration of ML models, e.g., specialized
query languages for explainability tasks [3, 4], which aim to pro-
vide users with the ability to pose queries that facilitate model
exploration. Drawing inspiration from traditional database query
languages, these explainability query languages are designed to
offer structured and interactive means for users to probe and ana-
lyze ML models [2]. A key characteristic of these languages is their
declarative nature, which allows users to specify the desired ex-
planation without detailing the underlying computational process.
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This approach not only has the potential to simplify the exploration
process, but also to democratize access, allowing users with diverse
expertise to engage with model exploration more effectively.
Exploratory Search. Exploratory search has also been examined
from a user perspective in information seeking and HCI, focusing
on how well intent is articulated prior to querying. The literature
differentiates between simple look-up search and more complex
exploratory tasks [30, 66, 94]. Exploratory queries involve iterative
search processes in which users refine their queries based on inter-
mediate results to discover new insights or patterns [38]. Unlike
fact-based retrieval, exploratory queries focus on sensemaking, en-
couraging deeper engagement with the data and supporting tasks
such as learning, investigation, and decision-making under uncer-
tainty [11]. However, most studies on query categorizations stem
from general search rather than being specific to data search [21],
even though the unique characteristics of data as an information
source from a user perspective have been highlighted [52]. Research
on information seeking for data specifically has emphasized the
inherently exploratory nature of most data search tasks, apart from
direct lookup queries [50]. This is attributed to the nature of data
search systems, where access to data is not direct, but is mediated
through metadata or query mechanisms. These give insights into
the underlying data structure (e.g., the database schema) and return
partial information about a database or a corpus of datasets.
Sensemaking and Exploratory Information Seeking. Research
on exploratory search and sensemaking in HCI and information
science has long emphasized that users engage in iterative, interpre-
tive cycles during information seeking. Naumer et al. [76] review
methodological approaches across domains, highlighting key pro-
cesses like collecting, organizing, and reframing information.

Similarly, classic models like Dervin’s Sense-Making Methodol-
ogy and Kuhlthau’s Information Search Process model [55] describe
general phases of search behavior from initiation and exploration
to formulation and collection. These frameworks focus primarily
on cognitive processes and static information needs, but not on
the mechanism of iterative, exploratory query formulation, esp. in
structured languages such as SQL or SPARQL.
Query Formulation in Search Interfaces and Interactive IR.
Studies in interactive information retrieval have explored how users
formulate and refine keyword-based queries. Wacholder [92] em-
phasizes the linguistic and cognitive challenges users face during
interactive query formulation. Kato et al. [45] classify user refor-
mulation actions (e.g., specialization, generalization, parallel move-
ment) and suggest user interfaces with feedback mechanisms to
steer these behaviors. Li et al. [58] show that users often synthesize
multiple previous queries to meet evolving goals in exploratory
search tasks. While valuable, these studies focus on unstructured
queries and search tasks rather than formal query languages. GUIs
aim to simplify user interaction by abstracting technical complexity;
they enable users to perform advanced operations, such as generat-
ing complex queries, with minimal prior knowledge, due to built-in
functionalities that require only a few clicks. One example is vi-
sual querying [19, 61], a paradigm that facilitates exploratory data
analysis. Visualization tools, such as SQLVis [73], QueryVis [57],
I-Rex [71], and Relational Diagrams [32], are designed to help for-
mulate accurate SQL queries.

Human Factors in Structured Query Languages. Research on
structured queries (e.g., SQL, SPARQL) often focuses on usability
and learning. Early work (e.g., Welty [93]) highlights the role of
human factors, while recent studies identify novice misunderstand-
ings [72] and expert strategies during debugging [74]. These studies
show that query formulation is challenging and iterative, yet they
stop short of uncovering generalized patterns or reusable strate-
gies. Tools such as visual builders and templates [33, 43] assist with
writing but offer limited insight into how users conceptualize and
construct queries in exploratory contexts.
Limitations of ExistingWork andOur Contribution. Sensemak-
ing and IR studies offer important general principles (e.g., iterative
refinement, contextual reasoning), but do not detail the steps users
follow when crafting structured queries. In contrast, SQL usability
studies describe common difficulties but rarely address the struc-
ture of successful query development. We provide a missing link: an
investigation of exploratory querying grounded in structured query
logs (Section 3), identifying recurrent patterns (e.g., broadening,
constraint tuning, schema probing). We propose to extend existing
theories with domain-specific insights about how users build struc-
tured queries iteratively and what language, engine, and interface
features support them. This bridges cognitive theory and database
practice and sets the stage for adaptive exploratory systems.

6 CONCLUSIONS
The way we query data has evolved significantly, driven by in-
creasing data complexity, the use of diverse data models and query
languages, and the integration of generative AI to construct queries
across models and languages. Traditional approaches, relying on
assumptions of well-designed data and user familiarity with query
languages no longer reflect the modern realities. Instead, querying
has become an exploratory process that requires constant itera-
tion within a query lifecycle that includes designing, debugging,
and maintaining queries. We argue that to fully support this shift
toward more exploratory query development, the way we design
and execute queries must be rethought. In particular, we highlight
three key areas where the support for exploratory querying needs
improvement: query and schema languages, query engines, and
user interfaces. Future data management systems should move to-
ward more interactive and dynamic query design, enabling users to
refine queries in real time, receive intelligent debugging assistance,
and leverage AI-driven tools to bridge the gap between query intent
and execution. By explicitly treating exploratory querying, we open
new directions for research and system development. We hope that
this discussion sparks further exploration into methodologies and
frameworks that support more intuitive and adaptive querying in
data management systems. Ultimately, this shift is more than just a
technical advancement; it is a rethinking of how we engage with
data in an increasingly complex and dynamic world.
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