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Abstract

The growing computational demands of artificial intelligence have accelerated the development
of energy-efficient neuromorphic systems capable of processing spatiotemporal information.
Reservoir computing (RC) offers a promising approach with low training complexity, particu-
larly when implemented using emerging devices such as memristors. In this work, we present a
memristor-based RC system employing vertically stacked Pt/TiO,/Au volatile memristors that
inherently exhibit short-term plasticity. These devices enable temporal information encoding via
pulse-driven modulation and natural relaxation. Through a modified MNIST classification task,
we demonstrate that the system performance deteriorates significantly with delayed readout and
small levels of device variation, highlighting the need for robust timing strategies. A virtual mem-
ristor model was also developed to evaluate system performance on the Mackey-Glass chaotic
time-series forecasting task, achieving up to 93.6% prediction accuracy by tuning the internal
time constant. These findings highlight the importance of precise readout control and variation
resilience in the design of practical memristor-based RC systems for real-world neuromorphic
applications.

1. Introduction

The surging demand for artificial intelligence (AI) application, ranging from speech recognition to
time-series forecasting, has increasingly relied on vast computational resources [1—4]. The traditional
von Neumann computing architecture struggles to meet the computational and energy requirements
of modern AI workloads, creating an urgent need for alternative paradigms that can process complex
data with lower power consumption [5, 6]. Neuromorphic computing, which draws inspiration from the
highly efficient biological brain, offers a compelling alternative [7]. Operating at just ~20 W, the human
brain excels at parallel information processing and time-dependent tasks, owing to its intricate syn-
aptic dynamics and non-linear behaviour. Unlike conventional computers, the brain performs compu-
tation and stores memory within the same neural structures, allowing for highly efficient and integrated
information processing [8]. As a result, neuromorphic computing seeks to replicate these principles, aim-
ing for systems that are both energy-efficient and capable of sophisticated, brain-like computation.
Among various neuromorphic approaches, Reservoir computing (RC), a specialised form of recur-
rent neural networks, has emerged as a particularly promising method especially for processing tem-
poral data with reduced training complexity [9, 10]. RC employs a fixed, randomly interconnected reser-
voir layer that nonlinearly transforms input signals into a high-dimensional state space [11-14]. Only
the output layer undergoes training, significantly reducing computational overhead while maintaining
competitive accuracy in processing complex spatio-temporal data [15, 16]. Additionally, this approach
promotes efficient learning and enables the use of various dynamical systems as reservoirs, making RC
highly adaptable to a wide range of tasks with minimal parameter tuning [17, 18]. The key to the RC
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system is its reservoir, which acts as a nonlinear transformation layer that projects input signals into a
high-dimensional space, allowing one-layer feature extraction therefore reducing training cost. Different
types of hardware, ranging from traditional transistor-based circuits to spintronic systems, have been
explored as the reservoir layer in the RC systems [19, 20]. However, the complexity of implementing
these hardware solutions and difficulties in achieving robust nonlinear dynamics have driven the search
for alternative platforms that can naturally emulate the non-linear dynamics and memory retention fea-
tures of biological synapses.

Two-terminal memristors have emerged as a compelling solution as they offer compactness, nonlin-
earity, and memory retention that closely parallel synaptic functions in the brain [7]. Memristors can be
classified as non-volatile or volatile, analogous to long-term and short-term memory (STM) in biological
systems [21]. Non-volatile memristors retain their state for extended periods, while volatile memristors
revert to their original state shortly after stimulus removal, with the transition timescales tuneable by
material and device parameters [21-25]. This volatility makes them particularly suitable for the reservoir
layer, where their nonlinear, dynamic responses can be effectively harnessed to build energy-efficient,
scalable, and hardware-accelerated RC systems. Many volatile memristors based on different materials
including ZnO,, WO, SiC and nanoporous silica have been explored as reservoir layer in RC computing
system [26-29]. Among the various memristive materials explored, titanium oxide (TiOy) has emerged
as a leading candidate due to its reliable switching behaviour, excellent material stability, and seamless
compatibility with CMOS fabrication processes [26, 30-32]. TiO, memristors have been shown to effect-
ively emulate synaptic characteristics, including both potentiation and depression characteristics through
pulse modulation, making them particularly well-suited for implementation in RC systems [33, 34]. The
temporal dynamics of TiO,-based memristors have been well-documented in the literature. In particular,
synaptic depression has been observed on timescales ranging from microseconds to milliseconds. This
behaviour provides key neuromorphic computing features, such as learning, forgetting, and spike-timing-
dependent plasticity [35-37]. The TiO,-based memristors have been implemented in applications such as
visual pattern recognition, tactile sensing and electrocardiogram analysis [38—40].

Despite the expanding body of research in memristor-based RC, a critical gap persists in under-
standing and optimising the temporal dynamics of volatile memristors. Since these dynamics involve
the evolution of their current state over time, along with the associated rate of change governed by the
time constant. The role of precise readout timing plays a critical role in overall system performance,
since the information encoded in volatile memristors weakens over time. However, no prior work has
quantified this effect by exploring the optimal readout point or the extent to which this information
is retained. Furthermore, the data retention window of volatile memristors could potentially serve as
a sampling window in field programmable gate arrays (FPGAs), removing the requirement for exact
clock synchronisation without the need for additional resources or introduced delays. Such approach
might offer a promising pathway to address existing FPGA challenges, including the extensive time and
computational resources required by machine learning-assisted synthesis to achieve timing convergence,
such as timing closure and rectifying timing violations as described by Taj and Faroo [41]. Additionally,
while previous studies have demonstrated the feasibility of using memristive devices in RC architectures,
the timing sensitivity of volatile memristors is frequently overlooked, despite its clear relevance to both
memory retention and noise robustness in spatio-temporal tasks.

In this work, we address the optimal read timing and its effects on the system accuracy by system-
atically investigating the role of timing dynamics in TiO,-based volatile memristors for RC. We first
characterise how input parameters (voltage, pulse width, and interval) modulate short-term potentiation
(STP) and short-term depression (STD) rates, establishing design guidelines for optimal reservoir oper-
ation. Secondly, using the MNIST dataset, we then demonstrate that the accuracy of image recognition
tasks is highly sensitive to the final readout timing, revealing that misalignment between the read timing
and the memristor’s state decay can significantly degrade the computational performance. Furthermore,
we quantify the system’s resilience to input noise variation and evaluate the retention window during
which encoded information remains viable for processing. Finally, we translate experimental observations
into a digital twin model that accurately replicates STP and STD dynamics, validating its utility in time-
series forecasting tasks via the Mackey—Glass (MG) benchmark.

2. Experimental methods

This section details the experimental methods employed in fabrication and characterisation of the TiO,-
based volatile memristors, as well as the computational evaluations in RC applications. We begin with
establishing a baseline for memristive behaviour, following by assessments using the MNIST dataset for
pattern recognition and the MG system for time-series prediction.
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2.1. Device fabrication and characterisation
Vertically stacked Pt/TiO,/Au crosspoint memristors were fabricated on a SiO,/Si substrate. The Au bot-
tom electrode (20 nm) with a 5 nm Ti adhesion layer were deposited by e-beam evaporation (Leybold
Lab 700). The TiO, dielectric layer (25 nm) was deposited using reactive magnetron sputtering (Leybold
Helios ProXL), with 8 sccm O, and 25 sccm Ar flow rate. The Pt top electrode (15 nm) was sub-
sequently fabricated also via sputtering process. The patterning of the crosspoint arrays was achieved
through a series of lithography processes and the dimension of each memristor was defined by the over-
lapping area of the crossed bars. The area of the memristor devices used in this work is 35 x 35 pm?.
X-ray photoelectron spectroscopy (XPS) measurements were performed using a Theta Probe System
with an Al Ko source (photon energy = 1486.6 eV). All the binding energies were calibrated with
respect to the peak of the adventitious C—C peak at 284.8 eV. Electrical characterisations were per-
formed using a Keysight B1500A device parameter analyser, integrated with a B1530A waveform gen-
erator. All test devices were individually connected with dedicated pads for probe connections. During
the measurement, a voltage bias applied to the top electrode, while the bottom electrode was grounded.
Read measurements were taken exclusively from the top electrode to ensure a more accurate represent-
ation of the device state. A custom designed probe card was used to map the column and row contact
pads to the corresponding devices in a cross-shaped arrangement. This connected all 32 devices simul-
taneously to the Keysight 34 980 A data acquisition matrix, which is operated by a custom script that
provided the interface to select any device for characterisation.

2.2. MNIST pattern recognition

To assess physical volatile memristors within a RC framework, the MNIST dataset of 28 x 28 grayscale
handwritten digit images (0 — 9) was used to test the system’s performance. The images were binarised
using a fixed threshold of 100/255 to produce binary values for emulating the distinct current states of
the memristor. The preprocessing utilised a small training set of 10 000 MNIST images as an input to
simulate RC system, with binary patterns mapped to the memristor current responses. Binarised images
were converted into sequence of current values that represents the current states. To account for hard-
ware variability, Gaussian noise variation of up to 5% was applied. Feature vectors were split into train-
ing, validation and test sets of 80%, 10% and 10% respectively. A feedforward neural network with a
SoftMax-activated output layer was trained for ten-class classification. System performance was evaluated
through test accuracy across varying levels of CoV. Further details of the MNIST training and associated
training loss curves can be found in section 1 in the Supporting Information.

2.3. Mackey-glass system prediction

The MG system is a well-established benchmark for evaluating chaotic time-series prediction to model
nonlinear processes through delayed feedback mechanisms. The dynamics of the MG system are gov-
erned by the following delay differential equation [42]:

‘CiTx - BLTO)ﬂ —x(f).
t 1+x(t—1))

In this context, represents the state of the system at time t, 79 is the delay time, 8 and =y define the
growth and decay rates of the system, respectively, and n controls the non-linearity of the feedback. To
evaluate the predictive capability of the proposed memristor-based RC framework, the MG system was
simulated using standardised chaotic parameters: 3 = 0.2, v =0.1, n = 10, and 75 = 17 [43]. A raw data-
set of 3000 data points was generated using the MG equation. Every third data point was sampled to
reduce temporal redundancy, yielding a final dataset that was evenly split into training and test sets. A
memristor-based model, parameterised using experimental data (detailed in section 2 of the supporting
information), was implemented to simulate the dynamic behaviour of the volatile TiO, devices.

The RC system was configured as a simulated parallel architecture, utilising 10 virtual memristor
nodes modelled after the experimental TiO, devices, thereby improving computational efficiency through
parallel processing of the time-series data across the nodes. For each prediction instance, the input con-
sisted of 10 previous x—values, with the corresponding target output being the next y-value—thus estab-
lishing a time-lagged prediction framework. Each of the 10 virtual memristor nodes processed the same
input sequence using a unique transformation mask derived from a 10 x 10 mask matrix. This config-
uration enabled the generation of a total of 1000 distinct reservoir states, each reflecting varied dynamic
transformations of the input data. To ensure model robustness, a 10-fold cross-validation strategy was
used on the training dataset to identify optimal hyperparameters for ridge regression. Prior to readout,

a scalar multiplier was applied to normalise the reservoir states, preventing numerical instability due to
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excessively large or small values. The readout layer employed ridge regression to establish a robust map-
ping between the transformed reservoir states and the desired output values, mitigating overfitting and
improving generalisation. The reservoir states were arranged sequentially to form a comprehensive input
matrix, which was then supplied to the readout layer therefore permitting the RC system to integrate the
diverse transformations into a unified prediction result.

3. Results and discussion

The key experimental results from the characterisation of TiO,-based volatile memristors and their
application in RC tasks are presented below, focusing on their influence on volatile characteristics and
examining the impact of timing dynamics on system performance and optimisation.

3.1. TiO4 material characterisation

Figure 1(a) illustrates a photograph of the fabricated Pt/TiO,/Au crosspoint memristor arrays on a 6-
inch silicon wafer. Each array consists of 32 individual memristor cells, as illustrated in the optical
microscope image shown in figure 1(b). To analyse the chemical composition and oxidation states within
the TiO, dielectric layer, XPS was performed. The survey spectrum in figure 1(c) confirms the presence
of both Ti and O peaks, with no visible impurities, consistent with findings reported in [44]. Detailed
analysis of the Ti 2p core-level spectrum, shown in figure 1(d), reveals two distinct sets of Ti 2ps/»

and Ti 2p1/> spin-orbit doublets. The peaks at 459.0 eV and 465.0 eV are attributed to the Ti*+ oxid-
ation state, characteristic of TiO: [45, 46], while the peaks at 457.1 eV and 463.1 eV correspond to the
Ti’+ state, typically associated with Ti>Os [47, 48]. This coexistence of Ti*+ and Ti*4 oxidation states
suggests that the TiOy film is composed of a mixed-phase matrix of TiOz and Ti>Os. The O 1s core-
level spectrum, shown in figure 1(e), further supports this finding. Two prominent peaks are observed
at 530.4 eV and 531.3 eV, corresponding to oxygen bonded in TiO: and Ti2Os, respectively [46, 48].
Quantitative analysis yields a Ti:O atomic ratio of approximately 1:1.78, which deviates from the stoi-
chiometric ratio of TiO: (1:2), indicating a significant level of oxygen deficiency within the film. Such
high oxygen vacancy level is known to result in increased concentrations of oxygen vacancies, which can
contribute to higher leakage currents and reduced retention stability, characteristics commonly associ-
ated with STM behaviour. The implications of this on device performance are examined in detail in the
following section.

3.2. Synaptic switching of TiOx memristor

Figure 2(a) presents a schematic illustration of the Pt/TiO,/Au memristor used in this study, specific-
ally engineered to emulate brain-like functionality by replicating key synaptic behaviours. The synaptic
response to the stimulation of a series of electrical pulses is shown in figure 2(b). The stimulation pulse
consists of a series of 200 pulses (4 V), each with a duration of 100 us and interval of 8 us. The synaptic
weight, which is defined as the memristor current, is collected at a read voltage of 0.1 V after each pulse.
It can be observed that the currents gradually increase upon the application of electrical pulses, reflecting
a facilitation effect. Following the withdrawal of stimulation, the current decays into its initial current
state automatically, demonstrating a typical short-term plasticity behaviour which is crucial for applic-
ation in spatiotemporal information processing. It is worth noting that such STP behaviour is observed
in pristine devices without the need for any electroforming or pre-conditioning processes. This intrinsic
response simplifies device operation and is beneficial for the integration in neuromorphic hardware. This
STP behaviour observed in our TiO,-based memristors is likely attributed to the high concentration

of oxygen vacancies within the dielectric layer. Under the application of positive voltage pulses, these
vacancies are mobilised, forming transient conductive pathways that result in a gradual increase in device
current. However, in the absence of continued stimulation, these pathways are inherently unstable. The
spontaneous relaxation of charge carriers and the thermodynamic re-distribution of oxygen vacancies
toward their equilibrium state lead to a natural decay of the current, thereby producing the character-
istic STP response [49]. Similar STP behaviours were also observed in other oxygen-deficient memristor
devices [37, 50, 51].

The observed STP behaviour is sensitive to temporal parameters and can be modulated by varying
the input pulse conditions. Figure 2(c) presents the potentiation responses of the memristor when sub-
jected to pulse trains with fixed voltage (4 V) and duration (100 us), while the inter-pulse interval was
systematically varied from 8 us to 1024 us. It is observed that smaller pulse interval results in a greater
change in current, especially within the first pulse, indicative of enhanced synaptic facilitation. This
behaviour represents the typical spike-rate-dependent-plasticity (SRDP) where the frequency of input
stimuli can influence the synaptic weight. Similarly, the effect of input amplitude on synaptic response is

4
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Figure 1. (a) Image of Pt/TiO,/Au memristor crosspoint arrays fabricated in this work. (b) Optical microscope image of a
Pt/TiOy/Au cell consisting of 32 memristor devices. (c) XPS survey spectrum of the TiO, film. (d) XPS core level spectrum of
Ti 2p. (e) XPS core level spectrum of O 1s.
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Figure 2. (a) Illustration of the Pt/TiOy/Au memristor capable of mimicking synaptic behaviour in the brain. (b) Gradual cur-
rent change of the Pt/TiOx/Au memristor with a series of voltage pulses and the subsequent auto-decay showing the STP beha-
viour. (c¢) Current response of the device for pulses with fixed 4 V pulse amplitude and different pulse intervals, emulating SRDP
behaviour. (d) Current response of the device for pulses with fixed 8 ps pulse interval and different pulse amplitudes, emulat-
ing SVDP behaviour. Final current state after 200 consecutive pulses under different (e) pulse intervals and (f) pulse amplitudes,
respectively.

shown in figure 2(d). In this case, both the pulse width and interval were held constant at 100 us and 8
us, while only the pulse amplitude was varied from 1.5 V to 4 V. As the pulse number increases, a con-
tinuous rise in current is still observed, indicating that subsequent pulses after the first one continue to
influence the memristor’s state. An increase in current response with higher input voltages is observed,
demonstrating spike-voltage-dependent plasticity (SVDP). The final states after 200 consecutive pulses
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Figure 3. (a) 3D plot illustrating natural relaxation behaviour across different pulse intervals. (b) 3D plot depicting natural relax-
ation behaviour across different pulse amplitudes. (c) Calculated 7 values for the natural relaxation period corresponding to each
pulse interval. (d) Calculated 7 values for the natural relaxation period corresponding to each varying pulse amplitude.

based on SRDP are shown in figure 2(e). Higher-frequency SRDP provides a larger dynamic range com-
pared to lower frequencies with longer pulse intervals. Similarly, figure 2(f) demonstrates that altering
the pulse amplitude of individual pulses produces a greater dynamic range and higher final state.
Figures 3(a) and (b) plot the spontaneous decay processes after applying the pulses with different
intervals and amplitudes. The rate of decay is influenced by the input signal and the intensity of the
pulses. Under natural exponential decay with 0.1 V read pulses at varying intervals shows that higher
pulse frequency (or shorter pulse intervals) triggers a larger reduction in current in comparison to lower
pulse frequency. A similar pattern is observed based on a range of input pulse amplitudes where larger
amplitude produced a more significant current decrease. Most of the decay occurs within the first 5ms
for both types of inputs, whether varying the pulse interval or the amplitude. The relaxation curves for
amplitude variations were fitted using the first 50 data points during the relaxation period. Varying the
pulse interval increases the time constant value, 7, with longer pulse intervals producing the longest time
to reduce by 1 —1/e~ 63.2% of the final state, as shown in figure 3(c). Similarly, modulating the pulse
amplitude results in an increase in the time constant value from 3.0 V to 4.0 V with 4.0 V requiring the
longest time to reach 7 state, thereby a larger dynamic range to travel through, as shown in figure 3(d).
The increase in the time constant with larger pulse intervals or higher pulse amplitudes can be attributed
to the prolonged influence of the input signal on the device’s oxygen ion dynamics. Longer pulse inter-
vals, corresponding to lower stimulation frequencies, reduce the cumulative effect on the device that res-
ults in smaller deviation from the HRS equilibrium state and increased difficulty for the decay. In con-
trast, shorter pulse intervals drive a faster decay rate, which prevents significant stabilisation and keeps
a less stable state. Higher pulse amplitudes deliver greater energy, intensifying the relaxation dynamics,
which requires longer to reduce by 63.2% of the final state.

3.3. Programming and relaxation states
The unique STP property of our TiO, memristor enables its capacity to discriminate between input
sequences with different temporal orders. To demonstrate this capability, the device was stimulated with
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Figure 4. (a) The state of the device after each individual pulse as part of the 3-bit experiment. (b) Illustration showing recorded
current state at the specified read timings, in this example, a ‘101" input is shown followed by decay. Box plot demonstrating the
distribution and variability of the normalised current for each input measured at the reading point of (c) Ti, (d) T3, (e) T3, and
(f) Ty.

a series of pulse trains, each comprising three binary pulse bits. This configuration allows for a total

of eight unique input combinations (from ‘000’ to ‘111”). Each bit was either a high-state pulse (4 V,
denoted as ‘1’) or a low-state pulse (0.1 V, denoted as ‘0’), with a fixed duration of 100 us and an inter-
pulse interval of 8 us. Figure 4(a) presents the current state throughout each unique pulse train. Due to
the nature of the volatile behaviour, increase and decrease in current can be observed during program-
ming. Figure 4(b) illustrates an example of a ‘101° pulse train and four read timings after programming.
To investigate the impact of read timing, we recorded the resultant current at four read time points,
designated T;, T, and Ty —occurring at 0 us, 108 us, 648 us and 1728 us after the final input pulse.
Figure 4(c) plots the current outputs for all 8 states when measured at T;. The results show distinct cur-
rent levels for each pattern, confirming the memristor’s ability to differentiate sequences based on tem-
poral order. This discriminative capability is particularly advantageous for spatiotemporal information
encoding in RC frameworks. The error bars shown represent cycle-to-cycle (C2C) variation, with each
input sequence repeated 50 times to assess statistical stability. Despite inherent variability, the output
currents remain sufficiently distinguishable. However, as the readout is delayed, the distinct separation
between current levels corresponding to different input sequences diminishes due to continued current
decay within the memristor. This effect is illustrated in figure 4(d), which shows the output measured at
read timing T,. The reduced contrast in current levels reflects the progressive relaxation of the device’s
internal state over time. At later read timings T5 and T4, shown in figures 4(e) and (f) respectively, the
differentiation between input patterns becomes increasingly limited. By Ty, the current responses con-
verge to nearly indistinguishable values, indicating that the transient synaptic states have largely decayed.
These observations underscore the critical importance of precise read timing. The ability to capture and
utilise the encoded information depends heavily on when the read operation is performed relative to the
input stimulus. This timing-dependent behaviour and its implications for RC system performance are
further explored in the following section.

3.4. MNIST image recognition

The RC system offers an ideal framework for incorporating the volatile behaviour of memristors as
nodes within the reservoir. This approach uses the dynamic state changes of memristors as shown

in figure 5(a), where input signals with fixed weights (Wi,) are processed through the reservoir then
mapped to output signal with trained weights (Woy). To implement memristor-based RC using exper-
imental data, images from the MNIST grayscale digit database were first pre-processed. The grayscale
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Figure 5. (a) Illustration of the RC system, where the input and reservoir layers utilise fixed weights, and only the output layer
is trained to minimise computational load. (b) The MNIST images were first divided and then rearranged into a 3 X 192 pixel
arrangement for training. (c) Illustration of the data processing flow within a RC system where binary input values are mapped
to the C2C mean values of the device output, which are subsequently used for training the readout layer in the RC framework.
Confusion matrix of the true label against the predicted label with 0.5% CoV at read timing (d) T, (e) Ts, (f) T3, and (g) T4,
respectively. (h) MNIST prediction accuracy at four read timings with varying CoV levels from 0.5% to 5%.

images were converted to binary format by applying a threshold value of 100 (on a scale of 0-255),
assigning a value of ‘1’ to pixels darker than the threshold (black) and ‘0’ to brighter pixels (white). In
addition, all MNIST image (28 x 28 pixels) were cropped to remove the outer 2-pixel border, yielding a
central 24 x 24 pixel region to focus on the core digit structure. Each processed image was subsequently
divided vertically into eight equal parts and recombined into a single 3 x 192-pixel vertical strip, as
shown in figure 5(b). This restructuring is designed to aligns with the experimental input encoding
scheme and facilitates efficient mapping of binary data to temporal memristor states, thereby enabling
effective integration of the device’s dynamic behaviour into the RC system. This binary representation
was then mapped to the experimentally achieved currents at different read timings T, which were used
as input data for the feedforward readout network, as depicted in figure 5(c).

The MNIST classification task evaluates the impact of varied readout timings under a fixed relaxation
time, focusing on the optimal sampling point. Specifically, how different delayed readout points, com-
bined with noise variability, affect pattern recognition accuracy. The performance of the trained RC sys-
tem based on our TiO, memristors was evaluated by classifying digit patterns from an unseen test data-
set under varying readout times and device variation conditions. Under ideal conditions with no vari-
ation (CoV = 0%), the RC system consistently achieved similar classification accuracies over 90% across
all four readout times. This high performance is attributed to the distinct mean current levels associated
with each 3-bit input, which remain separable even at later readout times. However, in practical imple-
mentations, memristor-based systems are inherently subject to both C2C and device-to-device (D2D)
variations. Prior studies have reported such variations ranging from a few percent up to tens of percent
[52-56], which can significantly compromise the stability and reliability of RC system performance.
Additionally, state separability could be further enhanced by utilising memristors with more gradual
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decay characteristics, achieved either through larger input parameters to compensate for slower decay
or by optimising material properties and device designs. This approach would extend the viable relaxa-
tion window and maintain distinguishable current levels over extended readout timings. However, such
extensions are not always feasible without trade-offs, as they would limit the inherent volatility required
for time-dependent signal processing capabilities in RC, potentially impacting switching speed, energy
efficiency, or material stability. More importantly, memristors must possess diverse temporal character-
istics to provide effective time-dependent signal processing. Input signals often feature multiple frequen-
cies, demanding both rapid and gradual decay characteristics. Relying solely on gradual decay prevents
the handling of complex, multi-frequency signals, therefore the use of a combination of rapid and slow
response rates ensures flexible functionality [57].

To emulate realistic device behaviour under varying degrees of uncertainty, we applied controlled
levels of variation to the average current values. This allowed for a more accurate evaluation of the RC
system’s robustness and tolerance to stochastic fluctuations. For each CoV level, noise was introduced
by superimposing a Gaussian-distributed component onto the nominal current values, where the stand-
ard deviation was defined as a fraction of the mean current (i.e., proportional to the CoV). Figure 5(d)
shows the resulting confusion matrix obtained using current values measured at read timing T; with
0.5% CoV, yielding an overall classification accuracy of 86.2%. This result demonstrates the system’s
ability to recognise spatiotemporal patterns under minor variability. The classification performance using
current values measured at is presented in figure 5(e), with a reduced accuracy of 82.6% compared to
T). As the read timing progressed, performance continued to decline, reaching 75.9% and 66.0% at T
and Ty, respectively (figures 5(f) and (g)). This decline reflects a progressive loss of separability among
input states at later readouts. We further investigated the RC system performance across a range of CoV
levels for all four read timings (figure 5(h)). Even small levels of variation led to noticeable drops in
performance. For example at 1% CoV, classification accuracy deteriorated significantly at T5 and T,

(to 50.6% and 43.3%, respectively), where the current distributions had largely converged and become
indistinguishable. This loss of separability directly impaired the RC system’s ability to infer the correct
input patterns. These findings underscore the critical importance of read timing in memristor-based RC
systems. Precise timing is essential to preserve the distinguishability of transient synaptic states and to
maintain high classification accuracy in spatiotemporal tasks. These results emphasise the need for care-
fully optimised readout strategies and variation-aware circuit design in practical memristor-based RC
implementations.

3.5. Mackey-glass forecasting

The MG system is a widely utilised benchmark for evaluating time-series forecasting models, particularly
in the context of RC frameworks [58, 59]. Due to its inherent nonlinearity and time-delayed dynam-
ics, the MG system presents a meaningful challenge for predictive modelling, closely resembling the
complexity of real-world chaotic systems. In comparison to the MNIST classification task, the MG pre-
diction task assesses the role of the relaxation time constant in dynamic time-series forecasting. This
was achieved through an implementation of a fixed readout point and adjusted the memristor’s relax-
ation decay time constant within the device model to demonstrate effects of the ‘forgetfulness’ of the
reservoir states, as illustrated in figure S6 of the supporting information. Figure 6(a) illustrates the per-
formance of the virtual memristor-based RC system, showing a comparison between the predicted and
actual MG time-series in the time domain. The corresponding predicted trajectory in phase space is
shown in figure 6(b), offering a visual representation of the system’s dynamic behaviour. Similar to vari-
ations in read timing, employing a shorter (i.e., more ‘forgetful’) time constant of 0.001 443 ms resul-
ted in a prediction accuracy of 72.2%, evaluated within a +5% tolerance band relative to the ground
truth signal amplitude. Increasing the relaxation time constant to 0.014 43 ms improved the prediction
accuracy to 87.9%, as shown in figure 6(c), with the corresponding phase space plot further confirming
enhanced trajectory fidelity as shown in figure 6(d). A further increase to 1.44 ms in figure 6(e) led to
an accuracy of 93.6%, with strong agreement between predicted and actual time series. The correspond-
ing phase space in figure 6(f), demonstrates the RC system’s ability to faithfully capture and reproduce
the complex, nonlinear structure of the chaotic attractor. These results clearly demonstrate that tuning
the internal temporal dynamics of memristor-based reservoirs—specifically through the relaxation time
constant—significantly impacts prediction performance.
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Figure 6. Comparison of MG prediction with the ground truth data in time domain based on the memristor time constant value
7 of (a) 0.001 443 ms, (b) 0.014 43 ms, and (c) 1.443 ms, respectively. 7 = 0.001 443 ms. The corresponding ground truth and
prediction in phase space based on 7 of (d) 0.001 443 ms, (e) 0.014 43 ms, and (f) 1.443 ms, respectively.

4, Conclusion

In this work, we demonstrated a Pt/TiO,/Au memristor-based RC system capable of performing both
image classification and chaotic time-series prediction by leveraging the device’s inherent short-term
plasticity and volatility. Using pulse modulation and natural relaxation, we achieved stable MNIST clas-
sification accuracy across multiple read timings under ideal conditions. However, performance degraded
significantly with input variability and delayed readout, emphasizing the importance of early measure-
ment to preserve state separability. A virtual memristor model, informed by experimental data, was
employed to predict MG dynamics, showing increased accuracy from 72.2% to 93.6% as the internal
time constant was extended.

Selection of the readout timing is critical in volatile memristor RC systems, as it directly relates
to the relaxation dynamics of the memristors. Fast-relaxation memristors require prompt readouts
post-pulse to capture encoded information accurately, while gradual-relaxation memristors offer a
longer measurement window, supporting robust readouts in complex systems requiring precise input-
output synchronisation. Simpler systems may benefit from fast relaxation memristors for rapid, accurate
responses. These findings highlight the critical role of timing and variability in volatile memristor-based
RC systems and suggest that future improvements could come from higher-resolution temporal sampling
and heterogeneous reservoir architectures to enhance robustness and adaptability for complex tasks.
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