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Purrose. To evaluate the association between structural optical coherence tomography
(OCT) biomarkers and functional outcomes in intermediate age-related macular degen-
eration (IAMD) and to investigate whether stratifying eyes by OCT-based biomarkers
identifies phenotypes of iAMD with impaired visual function.

MerHops. The baseline cohort of the PINNACLE trial underwent OCT imaging,
microperimetry, best-corrected visual acuity (BCVA), and low-luminance visual acuity
(LLVA) testing. OCT volumes were assessed for the presence of different morphologic
features. Drusen volume and outer nuclear layer (ONL) and ellipsoid zone (EZ) thickness
were quantified. Linear mixed-effect models evaluated associations between each feature
and functional outcomes, including a stratification into phenotypes based on significant
OCT morphology with each eye assigned to a single group.

Resurrs. This analysis included 247 eyes of 190 patients (mean age, 74.2 £ 7.4 years).
The presence of subretinal drusenoid deposits (SDDs) and markers of retinal atrophy
were significant contributors to lower mean retinal sensitivity (P < 0.05). Also, higher
drusen volume and lower ONL and EZ thickness were associated with lower sensitivity.
Significant changes in BCVA, LLVA, and low-luminance deficits (LLDs) were associated
with increasing drusen volume and the presence of hyperreflective foci (HRF). Signifi-
cant functional differences were found between individual phenotypic groups, especially
highlighting functional deficit in eyes with signs of early atrophy.

Concrusions. Integrating comprehensive analyses of structural OCT biomarkers with func-
tional assessments revealed distinct phenotypic subtypes of iAMD that are associated with
significant functional deficits. Particularly, early atrophy markers should be considered
for patient selection and risk assessment in clinical trials and routine practice.

Keywords: age-related macular degeneration, optical coherence tomography, structure—
function relationships, visual function, early atrophy

ge-related macular degeneration (AMD) is characterized
by progressive morphological changes in the macula
that exhibit substantial interindividual variability. The early
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and intermediate stages of AMD are primarily defined
by the presence of drusen, accumulations of extracellu-
lar deposits under the retinal pigment epithelium (RPE)
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of the macula, and pigmentary abnormalities.! Through
progressive degeneration of the retinal layers and compli-
cations caused by neovascularization, patients may progress
to advanced stages of AMD, posing a substantial risk of irre-
versible vision loss. In recent years, research efforts have
been increasingly focused on developing early therapeutic
interventions aimed at preventing or delaying vision loss
associated with advanced AMD.2"* However, to date, no
specific clinical endpoints for evaluating treatment efficacy
in intermediate AMD (iIAMD) have been qualified by regula-
tors.’

Although most commonly used AMD grading frame-
works rely on structural changes observed in color fundus
photography (CFP), several imaging modalities—including
spectral-domain optical coherence tomography (SD-OCT)—
have enabled the identification of additional pathognomonic
biomarkers of iAMD or provided alternative methods for
grading established abnormalities. Relevant features include
drusen subtypes, subretinal drusenoid deposits (SDDs),
hyperreflective foci (HRF), and early atrophic changes,
which together highlight the heterogeneity of iAMD.>7
Recently, the integration of artificial intelligence (AD-
based methods has enhanced the precision of retinal layer
measurements on OCT and has shown that structural
changes at the subclinical level, such as thinning of the
photoreceptor layer, are valuable prognostic indicators.8-!
Although these structural biomarkers help assess disease
severity and monitor its progression, an optimal surrogate
endpoint for iAMD-related clinical trials should also reflect
corresponding changes in visual function. Establishing a
strong correlation between structural changes and func-
tional outcomes is therefore essential for improving clinical
management and guiding the design of future early interven-
tion studies. Given the risk of irreversible vision loss, early
detection of retinal dysfunction remains a critical priority.

Currently, best-corrected visual acuity (BCVA) is the most
commonly used functional endpoint in AMD clinical trials.
However, BCVA often remains relatively preserved in early
and intermediate AMD because it primarily reflects foveal
function and is therefore insensitive to subtle disease-related
changes occurring in the para- and perifoveal regions.'?'13
Low-luminance visual acuity (LLVA) has emerged as a more
sensitive functional measure, as it has been shown to
reflect non-foveal geographic atrophy more reliably than
BCVA.14%5 Low-luminance deficits (LLD) describe the differ-
ence between visual acuity at standard luminance (BCVA)
and LLVA and has been proposed as an effective functional
measure in the early stages of AMD.!> Another promising
approach is microperimetry, which measures light sensitiv-
ity across the macula while utilizing precise fundus tracking.
This technique enables the detection of topographical func-
tional changes even in early stages of AMD.'>!” By super-
imposing microperimetry test points with imaging features,
derived from OCT, post hoc studies have demonstrated a
reduction in retinal sensitivity overlying specific pathological
features, such as higher drusen volume, SDDs, and photore-
ceptor degeneration.!®1°

PINNACLE is one of the largest ongoing prospective
trials investigating the progression of iAMD, offering a high-
quality dataset comprised of 429 iAMD patients. A prior
study by Riedl et al. (Riedl S, et al. IOVS 2024;65:ARVO
E-Abstract 980) provided a detailed OCT-based morpho-
logic characterization of this large baseline cohort. In this
current work, we built upon these findings to comprehen-
sively assess the impact of a broad spectrum of morpho-
logic features on functional outcomes. The primary objec-
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tive was to identify the key structural features most strongly
associated with visual function deficits in iAMD. To achieve
this goal, we employed a two-step analytical approach. First,
we evaluated the impact of individual OCT biomarkers on
retinal sensitivity, BCVA, and LLVA. Second, we developed a
phenotyping framework based on the presence or absence
of these features, facilitating the prediction of functional
impairment and future disease progression. This phenotyp-
ing approach aimed to provide clinically relevant insights
into the functional consequences of structural alterations.

METHODS
PINNACLE Study

This study is an analysis of baseline data acquired within
the scope of the prospective PINNACLE trial (NCT04269304).
PINNACLE is a non-interventional, multicenter clinical study
conducted at 10 collaborating sites in the United Kingdom,
one in Austria, and one in Switzerland. Study protocols were
approved by the East Midlands-Leicester Central Research
Ethics Committee (ref. 19/EM/0163) and by the institutional
ethics review boards of all participating centers. Details on
trial design have previously been published by Sutton et al.?°
Participants between the ages of 50 and 90 years with a
diagnosis of iAMD, presenting with at least one druse of
more than 125-uym diameter and/or pigmentary abnormali-
ties due to AMD,! were eligible for inclusion. Exclusion crite-
ria were neovascular AMD (nAMD),?! as well as the presence
of complete RPE and outer retinal atrophy (cCRORA), defined
as the presence of (1) a region of hypertransmission at least
250 pm in diameter, (2) a zone of attenuation or disrup-
tion of the RPE at least 250 pm in diameter, (3) evidence
of overlying photoreceptor degeneration, and (4) absence
of scrolled RPE or other signs of an RPE tear on OCT.??
Co-existing ocular diseases that may affect morphology or
visual function were also exclusion criteria. Both eyes could
be included in the study if the inclusion criteria were met. All
participants provided written informed consent. The study
was conducted in accordance with the tenets of the Decla-
ration of Helsinki and adhered to the principles of Good
Clinical Practice.

OCT Analysis

SD-OCT images were acquired using SPECTRALIS
HRA+OCT (Heidelberg Engineering, Heidelberg, Germany).
The imaging protocol was comprised of OCT volume scans
with 193 B-scans and 512 A-scans in a 20° x 20° field of
view centered on the fovea. The high-speed mode with 16
frames averaged per B-scans was used.

Human Expert Grading. OCT volume scans were
independently evaluated by two expert readers (JM, SR)
for the identification of morphologic features, including
SDDs, refractile drusen, hyporeflective core drusen (HCD),
HREF, outer plexiform layer (OPL) subsidence, hyporeflective
wedge, incomplete RPE and outer retinal atrophy (iRORA),
thin and thick double layer sign (DLS), and acquired vitelli-
form lesions (AVLs). All images were graded by both read-
ers, with discrepancies reviewed to achieve consensus. The
morphologic requirements for the grading of feature pres-
ence are summarized in Table 1. Intergrader agreements for
each structural feature, measured as percentage (%) overall
agreement and Cohen’s « prior to achieving consensus, are
reported in Supplementary Material S1.
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TasLe 1. Grading Definitions of Structural Features. OCT Volumes Were Graded for Presence or Absence of Below Listed Features

Structural Feature

Grading Definition

Hyperreflective foci
(HRF)

Hyporeflective core
drusen (HCD)

Hyporeflective wedge

refractile druse/deposit

Wu et al.?>
Incomplete RPE and
outer retinal atrophy
(iRORA)

Outer plexiform layer
(OPL) Subsidence
Refractile drusen

Well-circumscribed, hyperreflective lesions internal and detached from the RPE, with reflectivity
similar to the RPE layer, thickness of at least a third of the Bruch’s membrane (BM)/RPE band® 23
Drusen with a content more hyporeflective than a typical druse?* and which do not classify as

Wedge-shaped hyporeflectivity within the area of the OPL as described within the nGA definition by

As defined by the CAM group: (1) a region of signal hypertransmission (HT) into the choroid; (2) a
corresponding zone of attenuation or disruption of the RPE, with or without persistence of basal
laminar deposits (BLamDs); and (3) evidence of overlying photoreceptor degeneration and when
these criteria do not meet the definition of complete RORA (cRORA) (meaning <250 um

Subsidence of both INL and OPL layers that exceeds the undulation to be expected with respect to
underlying pathology (e.g., drusen) as described within the nGA definition by Wu et al.2>

Pyramidal, possibly “punctate” structures at the level of the RPE; various degrees of outer retinal

).26

structure integrity and occurrence of HT and/or laminar intense hyperreflectivity at the level of

the BM?3:27
Subretinal drusenoid
deposits (SDD)

Accumulations of material internal to RPE: diffuse material on the RPE extending to the EZ,
mound-like on the RPE elevating the EZ, or conical projections from the RPE that may extend

across the EZ?8; a minimum of three lesions have to be present within the entire volume to be

graded as SDD present
Thick and thin double
layer sign (DLS)

Irregular, shallow areas of RPE elevation with clear separation of RPE and BM?: (2) thick, where the
area between the RPE and BM shows multiple layers with different reflectivities, or (b) thin,

where a single zone of low to medium reflectivity occupies the region between BM and RPE

Acquired vitelliform
lesion (AVL)

Dome-shaped hyperreflective mound bounded posteriorly by the inner aspect of the RPE and
anteriorly by the EZ, ELM, or outer aspect of the ONL??

Note that the same definitions were used by Riedl S, et al. (JOVS 2024;65:ARVO E-Abstract 980).

Automated Feature Extraction. Previously pub-
lished, automated Al-based image segmentation and
biomarker quantification tools were applied to OCT volumes
for the quantification of retinal layer thicknesses and drusen
volume.**-% Ellipsoid zone (EZ) thickness was calculated
based on the segmentation of the inner border of the EZ
to the outer boundary of the interdigitation zone using
a U-shaped convolutional neural network (CNN) architec-
ture.3®3! The algorithm has previously been validated on
a subset of the FILLY trial dataset of non-exudative AMD
(NCT02503332).33 An in-house customized CNN, specialized
for layer boundary regression,® was used for segmentation
of the outer nuclear layer (ONL). The ONL thickness was
defined as the measurement from the outer border of the
OPL to the external limiting membrane (ELM).!” Total drusen
volume was quantified by segmenting the region between
the outer boundary of the RPE and Bruch’s membrane.>*3
No differentiation was made between drusen subtypes for
the automatic quantification. The algorithm was previously
validated on early and iAMD SPECTRALIS OCT volumes.*
Metrics were quantified for the full OCT volume.

Functional Metrics

BCVA and LLVA were measured using Early Treatment of
Diabetic Retinopathy Study (ETDRS) charts. Both measure-
ments were recorded as the number of letters read. LLDs
were calculated by subtracting LLVA from BCVA in the
number of ETDRS letters. At the main study centers (Univer-
sity Hospital Southampton, Moorfields Eye Hospital, Univer-
sity Hospital Basel, Medical University of Vienna), patients
underwent microperimetry assessments of the study eye.
All study centers used the CenterVue MAIA device (iCARE,
Padova, Italy) for microperimetry testing under standard-
ized mesopic conditions. The stimulus size was set to Gold-
mann IIT (0.43° diameter). A 24-point PINNACLE standard
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grid (based on the central 24 points of the 10-2 pattern)
was used for all baseline assessments. The grid was fovea
centered and covered the central 10° (3-mm) diameter. The
metric of mean retinal sensitivity (dB) was obtained by aver-
aging the sensitivities across all test points.

Statistical Analysis

Descriptive statistics were used to characterize the patient
cohort. Associations between individual binary, as well
as continuous, OCT-based structural features and func-
tional outcomes—BCVA, LLVA, and retinal sensitivity—
were assessed using univariable linear mixed-effects models
(LMMs) with the functional outcomes as the dependent vari-
able in separate LMMs. For each functional outcome, OCT
features demonstrating a statistically significant effect (P <
0.05) were subsequently included in a multivariable LMM.
This approach enabled the simultaneous evaluation of multi-
ple contributors and their potential interactions to deter-
mine the features most strongly associated with function.
To account for inter-eye correlations in bilateral patients, all
statistical models included a random intercept for patient ID.
Age was added to all multivariable models as a covariate. A
composite binary variable was used for structural features
that showed (multi-)collinearity. The model for mean reti-
nal sensitivity was corrected for fixation stability within the
central 2° range.

In a subsequent analysis, eyes were stratified into groups
based on the presence of significant OCT-based features
identified in the initial analysis, with each eye assigned to
a single group. LMMs were employed to assess the impact
of each structural phenotype on each functional outcome
with post hoc testing for pairwise comparisons between the
phenotypes. To account for inter-eye correlations in bilateral
patients, a random intercept for patient ID was used. Age
was added as a covariate. The model for mean retinal sensi-
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tivity was corrected for fixation stability within the central
2° range. Due to the exploratory nature of the analysis,
no adjustment for multiple comparisons was made. Statis-
tical analyses were conducted using SPSS Statistics 29.0.1.0
(IBM, Chicago, IL, USA). A significance level of « =0.05 was
applied throughout. All analyses are exploratory; hence, the
interpretation of P values is descriptive.

RESsULTS
Cohort Characteristics

In the prospective PINNACLE trial, a total of 552 eyes of
429 patients were included at baseline. For the current anal-
ysis, only patients with complete baseline OCT data and
microperimetry testing using the standardized 24-point grid
were included from the respective investigating sites. Hence,
the cohort for this analysis consisted of 247 eyes of 190
patients. The mean + SD age of subjects included in this
analysis was 74.2 £ 7.4 years. Of the 190 patients, 117 were
female (62%). The mean retinal sensitivity of the cohort was
24.1 + 2.4 dB. Mean BCVA and LLVA were 83.3 + 6.4 and
67.6 £ 9.2 letters, respectively.

Effect of OCT-Derived Structural Features on
Functional Measures

Univariable and multivariable model calculations are
presented in Tables 2 to 5. Univariable models, correcting
for inter-eye correlations, showed significant decreases in
mean retinal sensitivity in the presence of HRF, SDDs, and
HCD, as well as the presence of the atrophic precursors,
OPL subsidence, hyporeflective wedge, and iRORA. ONL and
EZ thickness demonstrated a positive correlation with mean
retinal sensitivity, whereas an increased total drusen volume
was associated with a decrease in mean retinal sensitivity.
Feeding these variables into a multivariable LMM, SDDs and
a composite binary marker consisting of atrophic precur-

IOVS | December 2025 | Vol.66 | No. 15 | Article 54 | 4

sors (OPL subsidence/wedge/iRORA) remained associated
with significantly lower mean retinal sensitivity (—0.8 dB,
P = 0.006; —1.0 dB, P = 0.002, respectively). Also, higher
drusen volume and lower ONL and EZ thickness were associ-
ated with decreases in sensitivity (—3.2 dB/mm?, P < 0.001;
—0.1 dB/pm, P = 0.031; —0.1 dB/pum, P = 0.043, respec-
tively). BCVA showed significant changes in the presence
of HRF and with respect to total drusen volume. However,
in the multivariable LMM, only total drusen volume was
associated with lower BCVA (—6.0 letters/mm?, P = 0.017).
LLVA showed more significant associations with individual
features including HRF, iRORA, HCD, ONL thickness, EZ
thickness, and total drusen volume. However, the multi-
variable LMM indicated that HRF presence (—3.7 letters,
P = 0.003) and total drusen volume (—14.2 letters/mm?,
P < 0.001) were the most significant contributors to LLVA
decrease. LLDs were shown to significantly increase with
the presence of HRF and higher total drusen volume (2.8
letters, P = 0.004; 7.8 letters/mm?®, P = 0.010, respec-
tively). The univariable and multivariable models showed
that thin and thick DLS, refractile drusen, and AVLs were
not associated with visual function deficits. HCD were asso-
ciated with lower mean retinal sensitivity and LLVA in the
univariable analysis, but were no longer associated when
correcting for co-existing features. The calculated models
also indicated the significant impact of age on functional
outcomes.

Functional Outcomes for Progressive Severity
Levels in iAMD Phenotypes

Based on the preceding analysis of how structural features
influence functional outcomes, eyes were stratified into one
of four phenotypic groups, incorporating structural features
that were significant in the multivariable LMMs (P < 0.05).
Each eye was assigned to a single group based on its
most advanced morphologic grading: (1) eyes with drusen
only (phenotype 1, drusen only); (2) eyes with SDDs but

TaBLe 2. Univariable and Multivariable Mixed-Effect Models Showing the Effect of Different Morphological Variables on Mean Retinal

Sensitivity (dB)

Univariable Multivariable
Feature N Estimate (95% CI) P Estimate (95% CI) P
HRF 164 —-1.3(-1.8to —0.7) <0.001 —0.3 (—0.8 to0 0.3) 0.332
SDDs 101 —1.0 (-1.7 to —0.4) 0.002 —0.8(—=1.3to —0.2) 0.006
Thick DLS 7 —0.3 (-2.0to 1.3) 0.703 — —
Thin DLS 19 —0.7 (—1.8 to 0.4) 0.238 — —
OPL subsidence 41 —-1.5(-2.4to —0.7) <0.001 — —
Wedge 14 —2.6 (—4.0 to —1.3) <0.001 — —
iRORA 45 —-1.5(-2.2to —0.8) <0.001 — —
OPL subsidence/wedge/iRORA" 60 —1.6 (=2.2 to —0.9) <0.001 —1.0 (-1.6 to —0.4) 0.002
Refractile drusen 19 —-1.0(-2.1t0 0.2) 0.096 — —_
HCD 42 —1.0 (-1.8to —0.2) 0.011 —0.3 (1.0 t0 0.3) 0.325
AVLs 13 —-0.1(-1.3to 1.1) 0.882 — —
ONL thickness (um) 247 0.1 (0.1 to 0.2) <0.001 0.1 (0.0 to 0.1) 0.031
EZ thickness (um) 247 0.4 (0.2 to 0.5) <0.001 0.1 (0.0 to 0.3) 0.043
Drusen volume (mm?) 247 —3.8 (—=5.7 to —2.0) <0.001 —3.2(=5.0to —1.5) <0.001
Age (y) 247 —0.1 (0.2 to —0.1) <0.001 —0.1 (—0.1 to —0.0) <0.001
Fixation stability 2° (%) 247 0.0 (0.0 to 0.0) 0.003 0.0 (0.0 to 0.0) 0.004

AVL, acquired vitelliform; CI, confidence interval; DLS, double-layer sign; EZ, ellipsoid zone; HCD, hyporeflective core drusen; HRF,
hyperreflective foci; iRORA, incomplete RPE and outer retinal atrophy; N, number of eyes with variable present; ONL, outer nuclear layer;
OPL, outer plexiform layer; SDD, subretinal drusenoid deposits.

Estimates for binary variables indicate the predicted mean retinal sensitivity change in the presence of the variable. NV represents the
number of eyes with that variable present. Bold P-values indicate statistical significance.

* Composite variable of atrophy precursors created due to multicollinearity in the multivariable model.
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TaBLE 3. Univariable and Multivariable Mixed-Effect Models Showing the Effect of Different Morphological Variables on BCVA (Letters)

Univariable Multivariable
Feature N Estimate (95% CI) P Estimate (95% CI) P
HRF 164 —2.4 (—4.0 to —0.7) 0.005 —1.5(—3.1t0 0.2) 0.089
SDDs 101 —0.7 (=2.4t0 0.1) 0.410 — —
Thick DLS 7 0.1 (—3.8t05.7) 0.680 — —
Thin DLS 19 1.0 (2.0 to 4.0) 0.518 — —
OPL subsidence 41 0.2 (—1.9 to 2.4) 0.823 — —
Wedge 14 0.6 (—2.9 to 4.1) 0.738 — —
iRORA 45 —2.0 (—4.0t0 0.1) 0.059 — —
Refractile drusen 19 —0.7 (—3.8t0 2.3) 0.636 — —
HCD 42 -1.1(-3.2to 1.1) 0.332 — —
AVLs 13 —2.9(=6.4t00.1) 0.104 — —
ONL thickness (um) 247 0.1 (—0.1 to 0.2) 0.338 — —
EZ thickness (um) 247 0.3 (—=0.1to 0.7) 0.118 — —
Drusen volume (mm?>) 247 —5.2 (—10.3 to —0.22) 0.041 —6.0 (=11.0 to —1.1) 0.017
Age (y) 247 —0.3 (-0.4 to —0.2) <0.001 —0.3 (—0.4 to —0.2) <0.001

Estimates for binary variables indicate the predicted BCVA change in the presence of the variable. The composite variable OPL subsi-
dence/wedge/iRORA is not included in this multivariable model because no atrophic precursors showed significance in the univariable
models. N represents the number of eyes with that variable present. Bold P-values indicate statistical significance.

TaBLE 4. Univariable and Multivariable Mixed-Effect Models Showing the Effect of Different Morphological Variables on LLVA (Letters)

Univariable Multivariable
Feature N Estimate (95% CI) P Estimate (95% CI) ) 4
HRF 164 —6.0 (8.3 to —3.7) <0.001 —3.7 (-6.2 to —1.3) 0.003
SDDs 101 —1.2(-3.7to 1.3) 0.335 — —
Thick DLS 7 2.5(—4.31t09.3) 0.466 — —
Thin DLS 19 1.2 (3.2 t0 5.6) 0.600 — —
OPL subsidence 41 —0.1 (—3.3 to 3.0) 0.929 — —
Wedge 14 23(-2.7t07.2) 0.374 — —
iRORA 45 —3.7 (6.7 to —0.8) 0.012 —0.8 (—3.7 to 2.1) 0.580
Refractile drusen 19 —3.1(=7.5t0 1.2) 0.159 —_ —
HCD 42 —3.1 (6.2 to 0.0) 0.047 —1.0 (—3.8to 1.9) 0.497
AVLs 13 —4.7 (9.7 to 0.3) 0.066 — —
ONL thickness (um) 247 0.2 (0.0 to 0.4) 0.019 0.1 (—0.1 to 0.2) 0.565
EZ thickness (um) 247 0.7 (0.2 to 1.2) 0.007 0.1 (—0.4 to 0.6) 0.691
Drusen volume (mm?) 247 —16.0 (—22.9 to —9.0) <0.001 —14.2 (—21.2 to —7.2) <0.001
Age (y) 247 —0.4 (—=0.5 to —0.2) <0.001 —0.4 (—0.5 to —0.2) <0.001
(O} Estimates for binary variables indicate the predicted LLVA change in the presence of the variable. The composite variable OPL subsi-
8 dence/wedge/iRORA is not included in this multivariable model because only iRORA was significant. IV represents the number of eyes with
@  that variable present. Bold P-values indicate statistical significance.
.(g
= TaBLE 5. Univariable and Multivariable Mixed-Effect Models Showing the Effect of Different Morphological Variables on LLD (Letters)
a Univariable Multivariable
> Feature N Estimate (95% CI) P Estimate (95% CI) P
ﬁ HRF 164 3.6 (1.7 to 5.4) <0.001 2.8 (0.9 to 4.7) 0.004
O) SDDs 101 0.0 (—1.9 to 2.0) 0.971 — —
O Thick DLS 7 1.8 (7.1 to 3.4 0.489 — —
Q  Thin DLS 19 3.3 (—0.0 to 6.6) 0.053 — —
§ OPL subsidence 41 0.0 (—2.5to 2.5) 0.979 — —
g Wedge 14 -1.9 (-5.8 to 2.1) 0.351 — —
= iRORA 45 1.1 (-1.2to 3.4 0.347 — —
O Refractile drusen 19 1.2 (1.6 to 5.4) 0.283 —_ —_
O HCD 42 1.5 (—1.0 to 3.9) 0.238 — —
) AVLs 13 1.4 (—2.5t05.3) 0.572 —_ —
.= ONL thickness (um) 247 0.1 (0.0 to 0.3) 0.057 — —
S EZ thickness (um) 247 0.2 (—0.2 t0 0.7) 0.259 — —
D Drusen volume (mm?) 247 9.4 (—15.1 to —3.7) 0.001 7.8 (1.9 to 13.6) 0.010
™ Age (y) 247 —0.1 (0.2 to 0.0) 0.140 0.1 (0.0 to 0.3) 0.112
g Estimates for binary variables indicate the predicted LLD change in the presence of the variable. V represents the number of eyes with

that variable present. Bold P-values indicate statistical significance.
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Phenotype 1 - Drus of

Phenotype 2 - SDD

T

f'\ g
Nt st s s

BC 5 LV/A: 84/59 letters

Ficure 1. Example eyes for the structurally defined phenotypic groups with their corresponding 24-point microperimetry grid. Each eye
was assigned to a single group. The phenotypes were defined as phenotype 1, drusen only; phenotype 2, SDDs; phenotype 3, early atrophy;
and phenotype 4, SDDs+early atrophy. The far right shows the en face image with the 24-point microperimetry grid placed centrally on the
fovea. BCVA and LLVA for the eye are given in letters.

no signs of early atrophy (phenotype 2, SDDs); (3) eyes (4) eyes with both SDDs and signs of early atrophy (pheno-
with signs of early atrophy defined by presence of HRF type 4, SDDs+early atrophy). Examples of stratified eyes are
and/or iRORA and/or OPL subsidence and/or hyporeflec- presented in Figure 1. A descriptive analysis of the defined
tive wedge but no SDDs (phenotype 3, early atrophy); and groups is given in Table 6 and Figure 2.

TaBLE 6. Descriptive Statistics of the Phenotypic Groups

Investigative Ophthalmology & Visual Science

Phenotype 1, Phenotype 2, Phenotype 3, Phenotype 4,

Variable Drusen Only SDDs Early Atrophy SDDs+Early Atrophy
Eyes, n (%) 60 (24) 22.(9) 85 (35) 80 (32)
Sensitivity (dB), mean + SD 255 + 1.8 249 + 2.2 24.0+ 2.8 229+ 2.4
BCVA (letters), mean + SD 855 + 6.2 84.0 + 6.8 82.1 +£ 6.9 82.6 £ 5.7
LLVA (letters), mean £ SD 724 £ 7.5 70.7 &£ 7.7 64.9 + 10.2 65.9 + 8.3

LLD (letters), mean £+ SD 13.1 £ 4.1 13.2 + 3.3 17.2 + 6.8 16.7 £ 5.8

Age (y), mean % SD 724 + 6.9 749 + 7.2 735 + 7.8 76.0 &+ 7.3
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1 - Drusen only 2-SDD 3 - Early atrophy

Phenotype
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Ficure 2. Retinal sensitivity (A) and BCVA and LLVA (B) for the four phenotypic groups. Box plots summarize the distribution of outcome
variables across the four phenotypic groups. The mean value is indicated by the point.

TaBLE 7. Pairwise Comparison of Differences in Functional Outcomes (Mean Retinal Sensitivity, BCVA, LLVA, and LLD) Among the Four
Phenotypic Groups Using Linear-Mixed Effect Models

Mean Retinal

Sensitivity (dB) BCVA (Letters) LLVA (Letters) LLD (Letters)

Mean Difference Mean Difference Mean Difference Mean Difference

Phenotype (95% CI) P (95% CI) P (95% CI) P (95% CI) P
1
2 0.7 (=0.2to 1.7) 0.136 0.8 (—2.2t0 3.8) 0.604 0.7 (=3.5 to 4.9) 0.750 0.3 (=3.0 to 3.7) 0.842
3 1.0 (0.4 to 1.7) 0.003 2.6 (0.6 to 4.7) 0.012 6.6 (3.7 to 9.4) <0.001 —4.1 (—6.4to —1.7) <0.001
4 1.9 (1.1 to 2.6) <0.001 1.9 (—0.2 to 4.0) 0.082 5.1 (2.2 to 8.0) <0.001 —-28(-53to—0.4) 0.024
2
1 —0.7 (1.7 t0 0.2) 0.136  —0.8 (—3.8 to 2.2) 0.604 —0.7 (—4.9 to 3.5) 0.750 —0.3 (=3.7 to 3.1) 0.842
3 0.3 (0.7 to 1.2) 0.543 1.8 (—1.0to 4.7) 0.211 59 (1.9t 9.9 0.004 —4.4(-7.7to—-1.1) 0.009
4 1.1 (0.2 to 2.0) 0.015 1.1(-1.8t03.9) 0.457 4.4 (0.4 to 8.4) 0.030 —3.2 (—6.4 to 0.0) 0.053
3
1 —1.0 (1.7 to —0.4) 0.003 —2.6(—4.7to —0.6) 0.012 —6.6(—-9.4to —3.7) <0.001 4.1 (1.7 to 6.4) <0.001
2 —0.3(-1.2t0 0.7) 0.543 —1.8(—4.7 to 1.0) 0.211 —-59(-99to -1.9) 0.004 4.4 (1.1to7.7) 0.009
4 0.8 (0.1 to 1.5) 0.019 —-0.8(—2.7to 1.2) 0.440 —1.5(—4.2to1.2) 0.272 1.3 (—=1.0 to 3.5) 0.278
4
1 -1.9(=2.6to —1.1) <0.001 —1.9 (—4.0 to0 0.2) 0.082 —5.1(—8.0to —2.2) <0.001 2.8 (0.4 to 5.3) 0.024
-1.1(-2.0to —0.2) 0.015 —1.1(-3.9to 1.8) 0.380 —4.4(—8.4to—0.4) 0.030 3.2 (0.0 to 6.4) 0.050
3 —0.8 (-1.5to —0.1) 0.019 0.8 (—1.2to0 2.7) 0.440 1.5 (—1.2 to 4.2) 0.272 —-1.3(=3.5to0 1.0) 0.278
Pairwise comparisons using LMMs correcting for inter- DiscussioN

eye correlations and age were carried out (Table 7). Signif-
icant differences in mean retinal sensitivity were found
between the following structurally defined groups: Drusen
only:Early atrophy [1.0 dB, P = 0.003], Drusen only:SDD +
Early atrophy [1.9 dB, P < 0.001], SDD:SDD + Early atro-
phy [1.1 dB, P = 0.015], Early atrophy:SDD + Early atrophy
[0.8 dB, P = 0.019]. BCVA showed significant differences
between the phenotypic group with only drusen and the
group with signs of early atrophy (2.6 letters, P = 0.012).

In terms of LLVA outcomes, phenotypes 1 and 2 had
significantly higher LLVA values than phenotypes with
signs of early atrophy: Drusen only:Early atrophy [6.6
letters, P < 0.001], Drusen only:SDD + Early atrophy
[5.1 letters, P < 0.001], SDD:Early atrophy [5.9 letters,
P = 0.004], SDD:SDD + Early atrophy [4.4 letters, P =
0.030]. These differences were also reflected in LLDs. No
statistically significant differences were found between the
group with only drusen (phenotype 1) and the SDD group
(phenotype 2).
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In recent years, clinical trials have increasingly highlighted
the importance of structure-function correlations in macu-
lar diseases.>’ This study provides a comprehensive state-of-
the-art analysis incorporating a broad range of OCT-based
structural features to identify the most influential contribu-
tors to functional decline in iAMD during the earliest patho-
physiological processes. The large sample size and standard-
ized high-quality imaging data of a prospective trial further
strengthen the reliability of our findings. Additionally, our
strategic phenotyping framework underscores distinct sever-
ity variations within iAMD, revealing significant functional
loss even at this intermediate stage.

Consistent with previous studies, our analysis identi-
fied microperimetry-derived visual function outcomes as
the most closely linked to structural morphology. As antic-
ipated, BCVA demonstrated the weakest association with
types and levels of structural changes in iAMD. In our
multivariate model, significant loss in BCVA was observed
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only in association with increased drusen volume and failed
to discriminate functional differences among phenotypic
subgroups that were detected by microperimetry and LLVA.
Phenotypes exhibiting reduced LLVA also demonstrated
greater LLDs, underscoring pathophysiological changes that
remain undetected by standard high-contrast visual acuity
testing.

Total drusen volume was shown to be a significant
contributor to all measures of visual function. This is in
line with previous analyses by different groups’-% As
a hallmark feature of AMD, drusen volume is known to
be highly prognostic of progression and conversion to
late-stage AMD.*~% The major cause for this immediate
impact on central visual function is the central location
of drusen deposition preferentially in the foveal region.>?
Drusen volume, however, can fluctuate over time, and stud-
ies have shown that drusen regression does not always
lead to atrophy.*” Considering this, drusen volume by itself
may not be an ideal surrogate marker for use in clinical
trials.

Multiple studies have identified SDDs as a major risk
factor for AMD progression and a potentially critical pheno-
type in AMD*%; however, their impact on function shows
inconsistent findings.>°~> Histological analyses have linked
this structural feature to greater dysfunction of the RPE,>*
and multimodal imaging studies have indicated its associ-
ation with photoreceptor degeneration.*>>5% Importantly,
SDDs have been shown to modify treatment effects in
iAMD.”:*® Our analysis confirmed a significant association
between SDD presence and reduced mean retinal sensi-
tivity,” likely attributable to photoreceptor and especially
rod dysfunction across the macula in eyes presenting with
SDDs.'?51.60-62 However, our findings did not indicate signif-
icant BCVA or LLVA loss in their presence, suggesting that
these measures are less sensitive to this structural feature.
This may be explained by the predominantly parafoveal and
perifoveal distribution of SDDs, where functional impair-
ment is less likely to be captured by standard central visual
acuity assessments. The foveal sparing effect of SDDs has
been shown by a range of different imaging modalities,® %364
as well as histological studies.>*

Atrophic precursors examined in our study included
iRORA, as well as features of nascent geographic atro-
phy (nGA), OPL subsidence, and hyporeflective wedge.
These OCT markers are highly predictive of progression
to GA, underscoring their relevance in risk stratification at
the intermediate stage of AMD.®>% In our analysis, early
atrophic markers emerged as the strongest contributors to
mean retinal sensitivity deficits, highlighting their associa-
tion with overall photoreceptor health beyond a location-
specific effect. LLVA and BCVA did not reflect functional
changes associated with these atrophic precursors, likely
due to their predominantly parafoveal location as demon-
strated by Safmannshausen et al. and by Wu et al%?’
Interestingly, the presence of HRF, representing migrating
RPE cells,”% was not a main contributor to mean reti-
nal sensitivity but impacted LLVA significantly. This may be
attributed to the small size of HRF, limiting their detection
within microperimetry testing. Consistently, pixelwise co-
registration analyses have demonstrated a significant associ-
ation between HRF volume and retinal sensitivity.'?-4> Previ-
ous studies showed HRF to be predominantly located within
the center of the macula, explaining their impact on LLVA
outcomes.® Their impact on LLVA is in concordance with a
recent study by Liu et al.®®
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Our study incorporated Al-based measures of subclin-
ical changes, further elucidating the role of photorecep-
tor layer alterations in functional decline. Histological stud-
ies have demonstrated progressive ONL and EZ thinning
with disease progression toward GA.® Furthermore, Al-
driven analyses have suggested that EZ attenuation precedes
RPE loss and represents one of the earliest anatomical
changes preceding macular atrophy.?>7%7! In our analysis,
both EZ thickness and ONL thickness were inversely associ-
ated with reduced mean retinal sensitivity. This is in agree-
ment with current publications that have reported a point-
wise association between EZ thickness and ONL thickness
with microperimetry-measured sensitivity.!*>7* It is also in
line with work from Roh et al.,”> who previously demon-
strated the strong association with mean retinal sensitivity
in the presence of other confounding factors and coexisting
OCT features. In our univariable analysis, EZ and ONL thick-
ness also proved to be associated with LLVA, but this effect
was no longer present when accounting for other struc-
tural markers in the multivariable model. Previous histolog-
ical studies have demonstrated the increased vulnerability
of rods over cones,’* providing a possible explanation for
why functional assessments centered on the cone-dominated
fovea often remain unaffected until later disease stages.
In contrast, mesopic testing conditions in microperimetry
capture rod-mediated signals and can reveal subtle sensi-
tivity losses at an earlier stage.!® Structural alterations such
as photoreceptor inner and outer segment thinning’?7%7¢
or reduced photopigment regeneration’’ may also reduce
retinal sensitivity well before high-contrast, cone-mediated
visual acuity is affected.

Our phenotypic stratification based on the presence of
key structural OCT markers supports the hypothesis that
iAMD encompasses distinct subgroups with differing func-
tional impairments, likely reflective of the temporal disease
sequence. Especially the presence of early atrophic mark-
ers (HRF, iRORA, hyporeflective wedge, and OPL subsi-
dence) revealed a significant impact on all analyzed visual
outcomes. Only microperimetry revealed that eyes exhibit-
ing both SDDs and early atrophic markers (phenotype 4,
SDDs+early atrophy) showed the greatest overall loss in
retinal sensitivity, consistent with a more severe, globally
impaired disease state. In contrast, the presence of SDDs
alone did not distinguish patients functionally from those
with drusen only, suggesting that, although SDDs contribute
to decreased retinal sensitivity, their presence alone does
not define a patient group with lower function. Neverthe-
less, the frequent co-occurrence of SDDs with early atrophic
features in our cohort supports the view that SDDs may
serve as an indicator of an ongoing, slowly progressing
atrophic process. This observation aligns with prior work
by Kumar et al.,>! proposing that the overall extent of SDDs
within an eye may be an indicator of broader pathogenic
changes contributing to visual deficits.

Various studies have demonstrated the ability of LLVA and
microperimetry to differentiate functional impairment across
different AMD stages compared to healthy controls.”8-8!
However, these studies have also shown that functional
variation within stages suggests that retinal function is not
convincingly dependent on the commonly used classifica-
tion based on conventional CFP gradings.”®®? The asso-
ciations seen between our defined OCT-based phenotypic
groups of iAMD and function, especially retinal sensitiv-
ity, underscore the benefit of incorporating morphologies
seen on OCT into stratification approaches. Given that
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current interventional trials for iAMD?*® largely rely on
drusen-based anatomical endpoints, our findings strongly
suggest that drusen alone may be insufficient for patient
stratification. Early markers of atrophy play an impor-
tant role in progressive retinal dysfunction. Future clin-
ical trials should benefit from incorporating structural
features beyond drusen to refine eligibility criteria and
outcome measures to reflect functional differences better.
Additionally, our study supports the inclusion of mean
retinal sensitivity as a functional endpoint in iAMD
research.

Several limitations must be acknowledged. The cross-
sectional nature of this analysis precludes definitive conclu-
sions on the predictive value of the identified biomarkers
or phenotypic stratification for functional changes and late-
stage AMD development. Longitudinal studies are neces-
sary to assess their long-term impact on functional decline.
Furthermore, it is important to note that functional test-
ing remains inherently subjective, with potential variabil-
ity in a multicenter setting. Moreover, although our study
employed detailed retinal grading by expert graders, the
binary classification of structural markers may overlook
severity and spatial extent. Future research should explore
quantitative approaches for enhanced precision in assess-
ing structure-function relationships in iAMD. Additionally,
our study employed a two-step statistical approach, where
phenotypic groups were stratified based on statistical anal-
ysis of the same dataset. To strengthen the validity of our
findings, future studies will replicate these group compar-
isons using an independent iAMD dataset. Furthermore, as
multimodal imaging offers additional insights into disease
severity beyond the scope of the current analysis, future
studies should integrate modalities such as CFP to enable a
more comprehensive, multimodal characterization of iAMD
phenotypes.
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