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ABSTRACT: Oceanic submesoscale dynamics are associated with horizontal scales between tens of meters and tens of
kilometers and time scales of hours to weeks. Through impacting the transfer of energy and other fundamental ocean prop-
erties such as heat, salt, carbon, and nutrients, submesoscale processes are believed to play an important role in the climate
system and marine biosphere. However, direct observations of these processes, especially in the ocean interior, remain lim-
ited due to their transient nature. Marine seismic reflection surveys offer a solution, resolving thermohaline structures on
scales on the order of 10 m vertically and 100 m horizontally and capturing 100-km swathes in hours. While seismic data
provide vertical temperature/salinity gradients, legacy datasets are often hindered by sparse hydrographic validation and
uncertain inversions. Here, we present an improved inversion method combining root-mean-square sound velocity analysis
and iterative Markov Chain Monte Carlo techniques to extract thermohaline fields with quantified uncertainties. The
method is validated using Gulf of Cadiz seismic data with coincident hydrographic measurements and applied to a new
Mozambique Channel dataset capturing mesoscale and submesoscale activities. Uncertainties for inverted temperature
and salinity are 2.58C (1.658C) and 0.5 psu (0.08 psu) in the Gulf of Cadiz (Mozambique Channel), with Dix-equation-
derived velocity conversion identified as the primary error source. This novel approach expands the use of legacy seismic
reflection data as a tool for ocean fine scale to submesoscale analyses and will aid new, global insights into previously diffi-
cult-to-observe ocean dynamics.
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1. Introduction

Submesoscale currents, defined here as flows with spatial
scales of 10 m–100 km and time scales of hours to weeks, are
of paramount importance in oceanic processes. Taking the
form of fronts, filaments, vortices, and topographic wakes,
submesoscale flows can initiate the downscale transfer of en-
ergy from larger-scale current flows, intensified vertical mo-
tion, enhanced mixing, and boundary layer exchange (e.g.,
Capet et al. 2008; McWilliams 2016; Mahadevan 2016; Gula
et al. 2019; Srinivasan et al. 2019; Gula et al. 2022; Cao et al.
2024). Submesoscale dynamics therefore likely play a critical
role in the transfer of heat and momentum, air–sea interac-
tions, the global overturning circulation, and biological pro-
ductivity (de Ruijter et al. 2002; Chapman et al. 2003; Swart
et al. 2010; Ternon et al. 2014; McWilliams 2016; Su et al.
2018; Strobach et al. 2022). However, a lack of submesoscale
current observations, particularly within the ocean interior,
has meant that this realm of ocean dynamics remains elusive.

New approaches are required to adequately sample small, in-
termittent interior submesoscale currents in the field.

Traditional oceanographic tools, such as repeat hydro-
graphic sections and mooring arrays, typically do not resolve
horizontal length scales of less than several kilometers. As
such, their horizontal resolutions are insufficient to adequately
capture submesoscale phenomena. More recent autonomous
instrumentation, while offering significant improvements, is
still limited to sampling resolutions of hundreds or thousands
of meters (Aulicino et al. 2021). Submesoscale observations
below the upper-surface layers remain particularly rare.

Meanwhile, modeling capabilities continue to advance and
are increasingly showing the importance of submesoscales
(Chassignet and Xu 2021). However, the resolution of most
global models is 1–5 km (Haarsma et al. 2016; Gutjahr et al.
2019; Li et al. 2020; Wang et al. 2021; Uchida et al. 2022), with
nested simulations perhaps reaching resolutions of 0.5–2.5 km
(Tedesco et al. 2024).

Most significantly, model runs are severely lacking observa-
tional validation. The need for novel observational methods
that are able to capture submesoscale time and space scales
throughout the water column is evident.

One solution is the use of marine seismic reflection survey
datasets, also known as seismic oceanography (Ruddick et al.
2009). The technique relies on the reflection of active acoustic
energy (a large bubble pulse) released from the stern of a
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vessel, along temperature and/or salinity gradient horizons
within the water column. Acoustic reflections are recorded by
a long array of hydrophones called a “streamer” (i.e., several
kilometers long) towed by the ship. It should be noted that
most seismic ocean data are a by-product of surveys primarily
conducted to map sub-seabed structures, e.g., by the hydro-
carbon industry. Consequently, there is global and multideca-
dal data coverage (Dickinson and Gunn 2022). Reflections
from seismic sections of the ocean have been shown to corre-
late well with thermohaline submesoscale structures and de-
tect temperature changes of 0.038C and salinity changes of
0.01 psu (Holbrook et al. 2003; Nandi et al. 2004; Ruddick
et al. 2009). In general, temperature variability tends to domi-
nate over salinity gradients in the seismic reflection signature
(Sallarès et al. 2009).

Seismic reflection surveys are ideally tuned to capture sub-
mesoscale structures across hundreds of kilometers and
throughout the water column; their final horizontal and verti-
cal resolutions are on the order of tens of meters, and data
are collected over a matter of hours. Furthermore, by analyz-
ing sequentially collected seismic sections, these data can be
used to give insights into dynamics of submesoscale processes
over several days (e.g., Tsuji et al. 2005; Jones et al. 2010;
Dickinson et al. 2020; Zou et al. 2021; Yang et al. 2022). Fea-
tures such as fronts (Holbrook et al. 2003; Gunn et al. 2020),
submesoscale coherent vortices (Sheen et al. 2012; Gunn et al.
2018; Xiao et al. 2021), and wave features (Eakin et al. 2011;
Tang et al. 2014; Fortin et al. 2017; Geng et al. 2019; Fan et al.
2021) have been captured. Techniques have also been devel-
oped to extract estimates of internal wave energy and turbu-
lent dissipation levels (Sheen et al. 2009; Holbrook et al. 2013;
Tang et al. 2016; Fortin et al. 2017) and instability criterion
(Ehmen et al. 2022).

One barrier to fully exploit the potential of most seismic
ocean data however, is the difficulty of accurately extracting
detailed temperature and salinity information: seismic reflec-
tions represent temperature and salinity vertical gradients
convolved with the seismic source. Several inversion techni-
ques have been developed to estimate temperature and sa-
linity fields: see summary in Table D1 of Dickinson and
Gunn (2022) and Xiao et al. (2021). An accurate inversion re-
quires an accurate initial estimation of the background tempera-
ture and salinity field. Reliable sources of this information are
simultaneously collected hydrographic data over small spatial
scales (Hobbs 2007b). Ideally, hydrographic data need to be
closely spaced (e.g., every few kilometers; Xiao et al. 2021) or
the features of interest be horizontally coherent, i.e., internal
solitary waves (i.e., Tang et al. 2016). Such coincident hydro-
graphic data or oceanographic conditions are not typical for
seismic surveys, limiting the detail and accuracy of inverted
thermohaline fields and the hence interpretation of submeso-
scale flows.

Here, we develop and test a novel approach for extracting
detailed thermohaline fields from marine seismic reflection
survey that lacks high-resolution coincident hydrographic data,
with quantified uncertainty. We combine two inversion techni-
ques to develop a new approach: a velocity analysis (VA) ap-
proach based on and adapted from Gunn et al. (2018) and

spatially iterative Markov chain Monte Carlo (MCMC) (Tang
et al. 2016; Xiao et al. 2021) methods, hereafter called the
“combined inversion.”

The VA method makes use of the sound velocity information
contained in seismic reflection data, itself a function of tempera-
ture and salinity, to estimate low wavelength or “background”
thermohaline fields directly from the acoustic signal. The MCMC
method provides iterative refinement of the VA estimated initial
temperature and salinity fields, accounting for spatial variability
at the scale of the seismic data resolution (i.e., tens of meters). A
careful uncertainty analysis is conducted at both the VA and the
MCMC stages. The result is a combined inversion that can be ap-
plied to almost any seismic reflection dataset (i.e., collected with
or without simultaneous hydrographic data), thereby unlocking a
global legacy dataset.

2. Data

The new combined inversion approach is applied to seismic
reflection datasets from two different locations: the Gulf of
Cadiz (GC) and the Mozambique Channel (MC) (Fig. 1). The
Gulf of Cadiz dataset was obtained in 2007 as part of the Geo-
physical Oceanography (GO) project (Hobbs 2007a,b). The
GO field campaign focused on capturing a subsurface eddy of
warm, salty Mediterranean Outflow Water or “meddy” (Hobbs
et al. 2009; Papenberg et al. 2010; Xiao et al. 2021). Being one of
the few seismic reflection surveys collected primarily to image
the water column, several in situ temperature and salinity meas-
urements were made alongside seismic acquisition. This dataset
thus presents a unique testbed to assess our new combined in-
version methodology and uncertainty estimates. Second, the
combined inversion methodology is applied to a 2016 legacy
industrial seismic data from the Mozambique Channel. Col-
lected primarily for geological exploration, the Mozambique
dataset contains no coeval hydrographic data and thus pro-
vides a demonstration of the utility of the combined inversion
method. Located in a region of high kinetic energy and water
mass confluences along the Mozambique continental shelf
break, the inverted thermohaline fields reveal a multitude of
intricate submesoscale interior structures.

a. Gulf of Cadiz

1) SEISMIC REFLECTION SURVEY

The seismic reflection survey was acquired on 7 May 2007
onboard the RRS Discovery as part of the GO project (cruise
number D318b}Hobbs 2007b). Here, we present data from a
two-dimensional seismic section, GOLR12. Towed 9 m below
the sea surface, the acoustic source fired every 20 s and consisted
of six Bolt 1500LL air guns with a total volume of 2320 in.3. The
final bandwidth of the dataset is 5–70 Hz. Reflected acoustic
waves were recorded along a single 2.4-km streamer that had 192
groups of hydrophones spaced every 12.5 m. The horizontal
sampling interval, defined by the common midpoint (CMP)
spacing, is 6.25 m, while the true horizontal resolution is fun-
damentally limited by the Fresnel zone and is likely to be
coarser than this value under stacked processing. Although
the theoretical minimum is half a seismic wavelength (10 m for
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a 70-Hz bandwidth), in practice, the horizontal resolution is
likely closer to 43–107 m (2–5 times the seismic wavelength)
since prestack migration was not applied. The vertical resolu-
tion ranges between 5.35 and 70 m. The final seismic section
used in this study is 50 km long and traverses the continental
slope covering water depths of 800–1600 m (Fig. 1c).

2) HYDROGRAPHIC DATA

Profiles of in situ temperature, coincident in time and space
with the seismic data, were achieved using expendable bathyther-
mographs (XBTs) spaced approximately every 2.3 km (Hobbs
2007b; Fig. 1a). To obtain salinity information, conductivity–tem-
perature–depth (CTD) data collected from the observation area
were used to train a neural network that models the local tem-
perature–salinity–depth relationship following Ballabrera-Poy
et al. (2009) and Xiao et al. (2021) (three CTD casts were de-
ployed along the same seismic transect just a few hours before or
after the seismic acquisition). In this way, salinities corresponding
to each XBT measurement were estimated with uncertainties of
0.01 psu (Xiao et al. 2021). In total, 24 profiles of temperature
and salinity were available along the seismic section.

A set of historical hydrographic data was also acquired
from the World Ocean Dataset (WOD) within the vicinity of
the Gulf of Cadiz to facilitate the testing of the combined in-
version method (white circles in Fig. 1a). These data collected
during the month of May spanning from 1930 to 2022 and in
the region 368–378N and 98–108W comprise 14 CTD profiles,
60 ocean station data (bottle, low-resolution CTD/XCTD),
and profiling floats. These historical hydrographic data were
utilized to establish the temperature–salinity–depth relation-
ship necessary for the inversion process.

b. Mozambique Channel

1) SEISMIC REFLECTION SURVEY

The Mozambique Angoche survey was acquired between
January and March 2016 by SLB. This three-dimensional seis-
mic survey spans the western continental slope of the Mozam-
bique Channel in the Indian Ocean. Water depths vary from
1000 to 2500 m. The acoustic source comprised an array of 18
air guns, with a combined volume of 5085 in.3. The resulting
bandwidth is 1–90 Hz. The air guns were fired every 10 s at a
tow depth of 6 m. Reflected acoustic waves were recorded

FIG. 1. Map of GC and MC datasets and seismic sections. (a) Bathymetry map. Yellow line denotes location of the
GC seismic reflection profile collected on 7 May 2007, red circles denote XBT casts collected simultaneously with the
seismic data, white circles denote historical hydrographic data from WOD acquired in May between 1930 and 2022,
and white arrows denote surface geostrophic velocities on 7 May 2007 derived from Global Ocean Physics Reanalysis
dataset. (c) Processed GC seismic image. Red and blue bands denote acoustic reflections due to temperature and sa-
linity vertical gradients; black triangles denote XBT locations. (b) As in (a), but for MC dataset collected on 12 Jan
2016, WOD data collected in January–March between 1965 and 2022 and surface geostrophic velocity fields from
Global Ocean Physics Reanalysis dataset. (d) As in (c), but for MC seismic section. Black line denotes seafloor; white
circles denote three possible submesoscale lens-like structures. Data courtesy of SLB and INP.
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along twelve streamers each of 8-km length. Each streamer
had 2571 groups of hydrophones spaced every 3.125 m. On
each traverse, the seismic experiment acquired a three-
dimensional swath of data approximately 800 m wide and up
to 120 km long. Here, we extract and analyze a single vertical
cross section: L02. This seismic section was collected between
0325 and 1720 UTC 12 January 2016, extends 115 km
(Fig. 1d).

2) HYDROGRAPHIC DATA

As is typical with most seismic reflection surveys, coincident
hydrographic data were not collected during the Mozambique
Channel seismic reflection survey. Instead, we rely on historical
hydrographic data to form a local temperature–salinity rela-
tionship as required for the inversion. All available hydro-
graphic data within 160 km of the seismic survey (168–17.58S,
39.58–418E) and collected during the same months as the seis-
mic survey (i.e., January–March) were downloaded from the
World Ocean Database. In total, 16 ocean station data (bottle,
low-resolution CTD/XCTD, plankton data) and 17 profiling
floats fit these criteria, spanning depths of 0.5–2 km (see white
circles in Fig. 1b).

3. Methods

a. Seismic processing to image oceanic structure

Standard seismic processing techniques have been applied
to both the Gulf of Cadiz and the Mozambique Channel data.
Importantly for subsequent inversion work, care is taken to
generate a true-amplitude seismic section. The processing flow
includes 1) geometry setting, 2) frequency filtering using a
10–70-Hz (15–90 Hz) Butterworth filter for the Gulf of Cadiz
(Mozambique Channel) data, 3) seabed mute, 4) direct-wave
removal using an adaptive linear filter, 5) noise attenuation us-
ing a frequency–wavenumber filter (Wei et al. 2025), 6) sorting
into CMP gathers, 7) velocity analysis: picked every 50 (200)
CMPs for the Gulf of Cadiz (Mozambique Channel), 8) spher-
ical divergence amplitude correction, and 9) deconvolution
following the strategy of Sacchi (1997): the source wavelet is
modeled based on the source array geometry and airgun vol-
umes with amplitude calibration conducted using a normal cal-
ibration factor, also following Sacchi (1997). Note that the
dataset was preprocessed with a mute applied below the sea-
floor, so seabed multiples were not available for absolute am-
plitude calibration using the seabed primary and multiple
reflections. These techniques are adapted from those used to
build seismic images of solid Earth (Yilmaz 2001). For more
details about seismic reflection processing, see also Jones and
Levy (1987), Warner (1990), Sacchi (1997), Warner (1990),
and Biescas et al. (2014).

b. Combined inversion for fields of temperature
and salinity

The amplitude of the seismic water reflection is controlled
by changes in sound speed and density within the water col-
umn, which are in turn a function of temperature and salinity

(Ruddick et al. 2009; Sallarès et al. 2009). Therefore, the seismic
reflectivity field contains information about water properties
that can be recovered through inversion.

Two such established inversion techniques for seismic
ocean data include the VA and MCMC methods. The VA
method exploits the integrated impact of water properties on
the velocity of the seismic sound pulse as it passes through the
water column. This method provides a background, smoothly
varying temperature and salinity field (Gunn et al. 2018,
2020). While the advantage of the VA approach is that it does
not require coincident hydrographic data, it is limited in its
ability to capture fine-scale variability (i.e., ,1 km horizon-
tally and ,100 m vertically). Uncertainties in VA inversion
results are also high, particularly at depth. The MCMC ap-
proach on the other hand produces inverted thermohaline
fields (with uncertainties) by matching individual reflector
amplitudes with the most likely temperature and salinity var-
iations (Tang et al. 2016). MCMC outputs therefore capture
the fine-scale detail, but an accurate prior low-wavelength
temperature/salinity field is required: MCMC inversions have
only been successful in datasets with sufficiently highly sam-
pled coincident hydrographic data (Xiao et al. 2021) or where
the thermohaline structures of interest are sufficiently homo-
geneous laterally (Tang et al. 2016).

Here, we combine the two techniques, such that the VA
provides the starting model for the MCMC analysis (bypassing
the need for a dense distribution of independent hydrographic
measurements), while the MCMC iteratively improves the re-
covered spatial resolution of the VA output. These steps are
detailed in Fig. 2. The result is an inversion approach that ex-
ploits the benefits and overcomes the limitations of both the
VA and the MCMC methods and can be applied to any seis-
mic dataset.

1) VA TO EXTRACT INITIAL FIELD OF

OCEAN PROPERTIES

The integrated sound speed, or root-mean-square sound
speed (RMS velocity), y rms, at various depth intervals along
the path between the air gun source and hydrophone receiver
is directly estimated as part of any basic seismic processing
sequence (i.e., the velocity analysis for normal move out
(NMO) correction prior to stacking CMP gathers Yilmaz
2001). The velocity picking process is illustrated in Fig. A2,
using semblance plots, which show coherence of reflected ar-
rivals as a function of RMS velocities. The y rms values are esti-
mated by exploiting the variation in ray path travel times for
different hydrophone receivers, for a given reflection depth.
Semblance plots are utilized to find optimal y rms values for
depths associated with strong reflectors, at regular horizontal
intervals across the seismic survey: known as velocity picking,
this process is typically done by eye and is therefore some-
what subjective. Here, y rms vertical profiles were estimated
every 312.5 m/50 CMPs (316 m/200 CMPs) along the Gulf of
Cadiz (Mozambique Channel) seismic section. The y rms val-
ues (i.e., the integrated sound velocity between each picked
point and the sea surface) are next converted to interval
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velocities, y int (i.e., the average sound speed between any two
picked reflectors), using the Dix equation (Dix 1955):

y int,i 5

���������������������������
y2rms,iti 2 y2rms,i21ti21

ti 2 ti21

√
, (1)

where y int,i, y rms,i, and ti are the interval velocity, RMS veloc-
ity, and time at the i depth layer, respectively. The uncertainty
introduced by this conversion is addressed in section 3c(1).
This dominant source of error is often overlooked in previous
studies that applied the VA inversion method (e.g., Gunn et al.
2018; Chhun and Tsuji 2020). The y rms fields were not interpo-
lated when calculating interval velocities, ensuring that errors
related to the Dix equation could be accurately quantified.

After deriving interval velocities from the RMS velocity us-
ing the Dix equation, following Gunn et al. (2018), interval
velocity fields were interpolated onto the same two-way travel
time (TWTT) grid to match the data sampling rate and allow
consistent smoothing. The velocity fields were then smoothed
horizontally (by a length scale L) and vertically (over a
TWTT interval equivalent to a physical scale H using an

assumed average sound speed 1500 m s21) to enhance the
continuity of physical structures. Here, L and H were chosen
such that L/H ; N/f, where N is the buoyancy frequency and
f is the Coriolis parameter: L 5 7 km and H 5 150 m in the
Gulf of Cadiz and L 5 8 km and h 5 100 m in the Mozam-
bique Channel. The chosen scales are dynamically consistent
with the dominant physical processes in each region.

We then follow the iterative method as documented in Gunn
et al. (2018), with the one key modification: a neural network
approach was employed using MATLAB’s Neural Fitting Tool
to predict the temperature–salinity–depth relationship extracted
from historical hydrographic data (Ballabrera-Poy et al. 2009).
We used 70% of the data for training, 15% for validation, and
15% for testing. The network architecture consisted of two in-
put nodes (predictors: temperature and depth), a single hidden
layer with 10 neurons and an output layer (predicted variable:
salinity). The Levenberg–Marquardt algorithm was selected for
network training. The validation root-mean-square error is less
than 0.04. Finally, a local temperature–salinity–depth relation-
ship is used to convert interval velocities into temperature and
salinity fields.

FIG. 2. Flowchart of the combined inversion steps. The inversion is divided into two stages: (left) extraction of the smoothed tempera-
ture–salinity fields from sound velocity inversion obtained from seismic processing and (right) utility of seismic resolution to add the fine-
scale structure to inversion output fields. Yellow rectangles denote input data; green rectangles denote output data; blue rectangles denote
error estimation.
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2) MARKOV CHAIN MONTE CARLO APPROACH TO

IMPROVE FIELD OF OCEAN PROPERTIES

The MCMC inversion approach is based on the stacked
seismic reflection amplitude analysis, first introduced by Tang
et al. (2016) and then updated by Xiao et al. (2021). The
method requires a prior background temperature and salinity
field: here, we use the output from the VA analysis inversion
(Fig. 2). Small, random perturbations are added to the prior
temperature and salinity fields from which an initial reflectiv-
ity field, Rpredicted, is calculated. A likelihood ratio evaluates
the match between Rpredicted and the observed seismic reflec-
tivity, Robserved. If a threshold likelihood ratio is reached, the
input temperature–salinity pair is updated. The process is re-
peated iteratively for 1000 times, sufficient to reach a con-
verged stable state (Fig. A4). Final temperature and salinity
values are computed as the mean of the last two-thirds of
perturbations that reach a stable state. Following Xiao et al.
(2021), we divide the seismic section into horizontal units for
the MCMC analysis. Within each unit, the MCMC inversion
starts from the boundaries and sequentially moves toward the
center. In Xiao et al. (2021), analysis unit boundaries were de-
termined by XBT positions, where temperature–salinity val-
ues were best constrained. Here, we use the velocity picked
CMP locations to set the analysis box boundaries, i.e., the
Gulf of Cadiz seismic section was split into a total of 186 in-
version units, each 312.5 m wide, and the Mozambique Chan-
nel dataset was split into 52 inversion units, each 2.2 km wide.

While the MCMC inversion was conducted on each CMP
(sampling interval 6.25 m) for the Gulf of Cadiz data, due to
computational time for the larger Mozambique Channel, the
inversion was conducted on every 10th CMP (sampling inter-
val ; 15.6 m). For both datasets, the inversion depth spacing,
or TWTT, was set to 1 m s21 (equivalent to 0.75 m).

Finally, we note that inverted results were excluded if the
associated posterior error [see section 3c(5)] exceeded a
threshold of 0.0058C. Any values exceeding this threshold
were replaced by results linearly interpolated from the back-
ground field. This control mechanism helps prevent any signif-
icant bias of one MCMC-derived profile from affecting the
inversion of the next profile.

c. Quantifying inversion uncertainty

To assess how well the combined inversion resolves fields
of temperature and salinity, we estimate the uncertainty asso-
ciated with both the VA and MCMC methodologies de-
scribed above. Errors are categorized into four groups: (i) the
Dix equation error associated with transforming RMS sound

velocity y rms to interval velocity y int, (ii) the error associated
with the subjective nature of velocity picking to determine the
initial y rms model, (iii) procedural errors from choice of CMP
intervals and CMP locations, and (iv) the posterior error asso-
ciated with the MCMCmethod. To validate the error analysis,
the bias between available hydrographic data and combined
inversion results is also evaluated. The different errors are de-
scribed in detail below and summarized in Table 1.

1) DIX EQUATION ERROR

The conversion of RMS velocities to interval velocities is
inherently complex and prone to uncertainties. Not only does
it involve a derivative, with errors accumulating with depth,
but the y rms function itself can be unreliable (Fig. A2 in the
appendix).

For ease of explanation, we here provide a simplified ver-
sion, the uncertainty estimate (Dy int), [their Eq. (28); Hajnal
and Sereda 1981] which highlights the dominant terms (Hajnal
and Sereda 1981):

Dy int,i ’
2ti21

ti 2 ti21
Dy rms,i21, (2)

where the uncertainty is shown to be inversely proportional to
the interval velocity layer thickness/travel time (i.e., the depth
interval between two picked y rms points) and directly propor-
tional to both the TWTT (i.e., depth) of the velocity pick and
the RMS velocity error [computed as in section 3c(1)]. For the
full version of the equation [their Eq. (27); Hajnal and Sereda
1981], as used in our analysis, the TWTT error is set to 0.001 s,
which is the same order of magnitude as the seismic sampling
interval. We note that the final interval velocity uncertainty is
largely insensitive to the exact choice of TWTT error. For ex-
ample, increasing the TWTT error to 3 ms [i.e., (1/4)f, where f
is the seismic bandwidth] was found to increase the resulting
Dy int by only 0.1 m s21}two orders of magnitude smaller than
the typical Dy int values reported in Table 1. Vertical distances
between velocity picks/layer thicknesses of less than 0.1-s
TWTT produce interval velocity errors of several tens of me-
ters per second, even for weak RMS errors (i.e., 5 m s21). In
addition, the errors grow cumulatively with depth, reaching
100 m s21 or more. Thus, while it is necessary to select a suffi-
cient number of velocity picks to preserve the variability of the
background velocity field, too densely picked velocities (in
depth) generate unfeasible interval velocity errors. We found
keeping picking travel time intervals to greater than 0.2-s
TWTT (approximately 150 m) optimal.

TABLE 1. Summary of inversion uncertainties for the GC data. Sound speed, inverted temperature, and salinity mean (maximum)
uncertainties are computed to assess the error introduced by estimating the velocity picking, varying the CMP interval, varying the
CMP location, the Dix equation conversion, and the MCMC posterior error. The overall error as well as the difference between
inversion outputs and hydrographic observations (column titled “Bias”) is also shown.

Estimation CMP interval CMP location Dix equation MCMC posterior Overall Bias

Sound speed (m s21) 2.2 (3.6) 1.5 (2.2) 1.8 (2.4) 9.5 (26.6) } 15 (34.8) }

Temperature (8C) 0.3 (0.5) 0.2 (0.5) 0.2 (0.5) 1.8 (2.5) 0.02 (0.3) 2.5 (4.2) 0.5 (2.3)
Salinity (psu) 0.05 (0.11) 0.04 (0.1) 0.05 (0.13) 0.36 (0.6) 0.005 (0.07) 0.5 (0.92) 0.14 (0.64)
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The error associated with the interval velocity uncertainty
on the final inverted fields was assessed by recomputing tem-
perature and salinities using interval velocities with the Dix
equation error added and subtracted. Final values quoted rep-
resent half the difference between the two fields.

2) ROOT-MEAN-SQUARE VELOCITY ESTIMATION ERROR

The y rms fields are estimated by selecting points of high co-
herence in semblance gathers}a process known as velocity
picking (Fig. A2 in the appendix). To estimate uncertainty,
we performed three rounds of RMS velocity picking on the
same section. Each round was conducted by the same inter-
preter but separated in time and performed without reference
to the previous picks. Velocity picks were found to be consis-
tent within a standard deviation (std) of 69.2 m s21. No sys-
tematic upward or downward change trends were found between
different picks. Additionally, the spatial density of picks remained
similar across attempts, guided by the same semblance ampli-
tude. For the Gulf of Cadiz dataset, a section between 12.5
and 25 km from the start of the transect with strong submeso-
scale thermohaline structures was chosen. For the Mozam-
bique Channel data, a section between 34 and 66 km was
analyzed. Selected y rms data were converted into three fields
of interval velocities and their corresponding fields of tempera-
ture and salinity. The average and maximum standard devia-
tion between these converted fields quantify the estimation
error (Figs. A3a–c and A5a–c).

3) VELOCITY ANALYSIS PROCEDURAL ERROR: CHOICE

OF CMP INTERVAL

The procedural error associated with the choice of CMP in-
terval for the generation of semblance plots and y rms estima-
tion was quantified. Using smaller CMP intervals can improve
the positional accuracy resolved detail of thermohaline fea-
tures, but this choice is labor intensive and often impractical.
To test the effect of CMP interval, semblance gathers were
generated at intervals of 50 (0.3 km), 100 (0.6 km), 150 (0.9 km),
and 200 (1.2 km), across the same region of the seismic data
(Figs. A3d–f and A5d–f). The average (maximum) standard devi-
ation between inverted fields with different CMP intervals pro-
vides the associated error.

4) VELOCITY ANALYSIS PROCEDURAL ERROR: CHOICE

OF CMP LOCATION

The variability in derived thermohaline fields due to the ex-
act choice of CMP analysis locations was quantified by com-
paring output fields using fixed CMP intervals of 100 and
150 CMP but in different locations (Figs. A3g–i and A5g–i).
To estimate the uncertainty arising from CMP interval and lo-
cation, we generated multiple RMS velocity fields using dif-
ferent CMP configurations and then inverted these to obtain
corresponding temperature and salinity fields. At each spatial
grid point, the standard deviation across these fields was com-
puted to construct a 2D uncertainty field. This pointwise anal-
ysis avoids spatial averaging and preserves local variability in
the uncertainty estimation. The final error is taken to be the
average (maximum) standard deviation between outputs.

5) MCMC PROCEDURAL ERROR: POSTERIOR

The accuracy of the MCMC inversion is highly dependent
on the input temperature–salinity background field (Tang
et al. 2016; Xiao et al. 2021). Here, the initial velocity field is
derived using the VA method, for which the error has been
quantified as described above. Therefore, we only consider
the additional error introduced by the MCMC inversion pro-
cess. The MCMC posterior uncertainty is calculated as the
standard deviation of the final two-thirds of the iterations
that reach a stable state (Fig. A4). Errors are computed at
each inversion point, and thus, the spatial distribution of the
recovered temperature and salinity uncertainty can be ana-
lyzed. Here, the section-mean and maximum uncertainties
are used to represent the overall uncertainty of the MCMC
inversion.

6) FINAL INVERSION BIAS

Finally, we estimate a bias that quantifies the deviation of
the inverted temperature and salinities from the true field.
The bias is also evaluated in relation to our estimated uncer-
tainties. For the Gulf of Cadiz data, hydrographic data (i.e.,
XBTs) collected coevally with the seismic data are used as
the true field (see Fig. 1a). A neural network was employed
to predict salinity based on the temperature–depth relation-
ship, using a model trained on CTD data collected during
the same research cruise (Ballabrera-Poy et al. 2009). For the
Mozambique Channel, inversion outputs are compared with
mean temperature and salinity profiles from available local
historical data.

4. Results

First, temperature and salinity fields produced using the
new combined inversion approach from the Gulf of Cadiz
dataset are presented. Outputs are compared qualitatively
and quantitatively with available coeval hydrographic meas-
urements. Second, the inversion results from the seismic data-
set collected in Mozambique Channel are discussed. This
dataset, which is rich in submesoscale structures, provides a
case study to examine how legacy seismic data without coinci-
dent hydrographic data and their inverted fields can be used
to investigate the ocean.

a. Gulf of Cadiz

The Gulf of Cadiz is a pathway for the exchange of waters
between the Mediterranean Sea and the North Atlantic
Ocean: surface Atlantic waters move toward the Straits of Gi-
braltar, while deeper Mediterranean Outflow Water crosses
westward into the Atlantic Ocean. The westward Mediterra-
nean Outflow Water flow is interspersed with subsurface co-
herent vortices or meddies that are typically 20–100 km wide
with a vertical extent of 700–1200 m (McDowell and Rossby
1978; Armi and Zenk 1984; Richardson et al. 2000; Siedler
et al. 2005; Pinheiro et al. 2010; Bashmachnikov et al. 2015).
An estimated 15–20 meddies are produced annually forming a
significant contribution of the transport of salty Mediterranean
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Outflow Water into the Atlantic Ocean (Bower et al. 1997;
Richardson et al. 2000).

Being significantly warmer (28–48C) and saltier (.0.4 psu)
than the surrounding water, meddies are well imaged by
seismic reflection surveys, e.g., Biescas et al. (2008) and
Papenberg et al. (2010), and a meddy is clearly captured in
the Gulf of Cadiz seismic section presented here (Fig. 1b).
The meddy periphery is characterized by numerous interleav-
ing layers which appear as bright reflections, for example, be-
tween depths of 600 and 1000 m (upper boundary) and around
1500 m (lower boundary). Comparatively, the meddy core is
acoustically opaque, suggesting homogeneity in temperature
and salinity. Several previous studies have utilized this section
or similarly located seismic data to investigate meddy fine-scale
structures and their associated dynamics and tracer transport e.g.,
(Pinheiro et al. 2010; Quentel et al. 2010; Ménesguen et al. 2012;
Xiao et al. 2021; Song et al. 2011).

Although the Gulf of Cadiz data span the sea surface to the
seabed, reflections within the upper 550 m (0–0.7-s TWTT)
are relatively weak. This weak reflectivity may be due to a
combination of factors, including the homogeneous water
properties in the upper layer and potential presence of noise
and attenuation from the seismic processing. In this study, we
focus on the seismic reflections between 800- and 1600-m
depth (1–2-s TWTT), containing the meddy.

1) VELOCITY ANALYSIS INVERSION

The temperature and salinity field outputs from the VA in-
version, which require no coincident hydrographic data, cap-
ture the overall shape and properties of the meddy well
(Fig. 3). The anomalously warm and salty eddy core, with val-
ues that are close to the temperature and salinity measured
by the hydrographic data, as well as the colder and fresher
surrounding water, are reproduced. The average absolute dif-
ferences between the VA-inverted temperature and salinity
and hydrographic values are 0.48C and 0.06 psu, respectively
(within the depth range of 800–1500 m and at transect distan-
ces of 20–54 km). While the inverted temperature and salinity
capture the rapid changes at the meddy boundaries, fine-scale
structures with horizontal length scales less that tens of me-
ters and vertical length scales less than a few hundred meters
are missed.

One of the developments over previous studies which uti-
lized the velocity analysis inversion (Gunn et al. 2018; Chhun
and Tsuji 2020) is the estimation of the error introduced by com-
puting Dix-derived interval velocities [section 3c(1); Figs. 3d,h].
The highest errors, reaching 2.58C and 0.6 psu, are mainly located
at the meddy boundaries: despite the higher signal-to-noise ratio
in these regions, the rapid changes in sound velocity require small
depth intervals between y rms picks to capture the variability but
which in turn amplify the Dix equation error [section 3c(1)].
Table 1 summarizes the different contributions to the VA-
inverted temperature and salinity uncertainties: Errors intro-
duced by the Dix conversion process dominate.

To evaluate the VA inversion results, coincident hydro-
graphic (i.e., XBT) data were compared with inverted T–S
fields. XBT deployment locations are shown in Figs. 3b and 3f.

XBT data were smoothed vertically and horizontally on the
same scale as the inverted data for comparison (Figs. 3e,f). Re-
gions around the meddy boundary display some of the greatest
differences, likely reflecting the large errors here in computing
interval velocities. For example, the mean and maximum tem-
perature bias at the lower meddy boundary reach 2.18C and
2.58C, while salinity bias are 0.4 and 0.5 psu (Figs. 3d,h). Inside
the meddy, the inverted temperature and salinity are slightly
warmer and saltier than the XBT data with a maximum differ-
ence of 18C and 0.1 psu, respectively. Overall, differences be-
tween inverted fields and hydrographic data are less than the
computed uncertainties.

2) COMBINED INVERSION

The final combined VA–MCMC inversion results are shown
in Fig. 4. Compared to the VA inversion alone, the MCMC
adds detail to the recovered T–S at the resolution scale of the
seismic data (order of 10 m in the horizontal and vertical). This
improvement is particularly apparent around the meddy bound-
ary, but increased thermohaline structure is also apparent
within the meddy core. The fine-scale structure captured at the
meddy boundary by the combined inversion illustrates the pres-
ence of double diffusion and water mass exchange processes,
mixing the Mediterranean Outflow Water with the surrounding
cold and fresh Atlantic waters (Xiao and Meng 2022). Overall,
the final temperature and salinity inverted fields have a mean
errors of 0.58C and 0.14 psu, while maximum differences are
2.38C and 0.64 psu, respectively, when compared to coincident
hydrographic data, and are less than the overall expected error
(Table 1). However, the MCMC is unable to recover regions
with large temperature and salinity variations on intermediate
scales (on the order of 1 km horizontally and 100 m vertically).
This discrepancy is particularly apparent in the upper western
edge of the meddy (depths 800–1200 m; distance 16–38 km)
where temperatures and salinity can differ by 1.68C and 0.5 psu,
respectively, compared to hydrographic data. Comparatively, in
the meddy core, temperature and salinity values differ from hy-
drographic data by only 0.048C and 0.008 psu, respectively. De-
spite higher signal-to-noise ratios and strong reflectivity in the
upper-left meddy periphery, essentially, a lack of input informa-
tion at intermediate scales in the VA-inverted fields, or seismic
reflection data, cannot be recovered (see Xiao et al. 2021). In
addition, Tang et al. (2016) note that the uncertainty of the
MCMC posterior distribution increases in regions of higher
temperature and salinity variability. Having said this, the error
introduced by the MCMC is an order of magnitude smaller
than error sources associated with the VA inversion (Table 1).

To further investigate the combined inversion approach, in-
verted temperature and salinities are compared with data
from an XBT profile which cuts through the western side of
the meddy core (at CMP4092, distance of 25.5 km along the
transect) (Figs. 5a and 5b). This XBT was chosen as it demon-
strates both regions where the inversion performs poorly
(mean bias of 1.048C and 0.28 psu between 850- and 1050-m
depth) and well (mean bias of 0.298C and 0.08 psu between
1400- and 1600-m depth). The VA inversion results generally
follow the trend of hydrographic profiles but display large
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systematic differences}up to 1.88C}in some regions. Fur-
thermore, the VA analysis clearly fails to capture variability
on vertical scales less than about 100 m. Comparatively, the
combined inversion outputs capture smaller-scale thermoha-
line variations well, demonstrating the role of the MCMC in-
version which exploits the fine-scale information in the seismic
reflectivity, in refining the VA inversion. The MCMC, how-
ever, is unable to correct for errors on larger length scales in-
troduced by the VA inversion.

Synthetic seismograms show in general that the seismic re-
flectivity matches both the hydrographic data and MCMC
outputs very well (Figs. 5c,d). The black line represents the
synthetic seismogram computed using XBT- and neural net-
work–derived temperature and salinity profiles. Temperature

and salinity data were converted to sound speed and density
profiles using the Gibbs Seawater (GSW) Oceanographic
Toolbox. These profiles were used to calculate impedance
contrasts, which were convolved with a source wavelet match-
ing the seismic data’s dominant frequency to generate the syn-
thetic seismograms. To align the synthetic seismograms with
the observed seismic data, the XBT depth profiles were con-
verted to TWTT using sound speed derived from GSW and
then scaled with a fixed reference sound speed to match the
seismic depth. This adjustment minimizes misalignment and
ensures consistency between the synthetic and observed seis-
mic data. Some small differences between the XBT and seis-
mic data, for example, fluctuations at depths of 1300 and 1520 m,
are likely the result of the seismic data being a sum of

FIG. 3. Comparison of VA-inverted temperature and salinity fields with coincident hydrographic data for the GC
seismic section. (a) Background colors denote the in situ temperature section from VA inversion. Overlayed wrinkles
denote seismic reflection data. (b) Background colors denote in situ temperature from XBT hydrographic data col-
lected at the same time as the seismic data with horizontal and vertical smoothing of 7 km and 150 m, respectively.
Overlayed wrinkles denote seismic reflection data. Black triangles denote XBT locations. (c) The absolute difference
between the (a) VA-inverted temperatures and (b) XBT-smoothed field. (d) VA-inversion temperature uncertainties
due to Dix conversion. (e)–(g) As in (a)–(d), but for practical salinity, with (f) field estimated from XBT data using a
neural network approach.
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reflectively collected over about an hour compared to the al-
most instantaneous XBT. These discrepancies will also con-
tribute to some of the bias in the fine-scale variability of the
inverted results and XBT data. We also considered the im-
pact on MCMC results of noise in the seismic data, which
was found to be negligible: inverted temperature and salin-
ities were compared with results interpolated from neigh-
boring CMPs, and differences did not exceed 0.28C and 0.04
psu, respectively.

b. Mozambique Channel

The Mozambique Channel funnels water from the northern
Indian Ocean to its southern portions. The channel’s circulation
is characterized by a highly energetic western boundary current,
the Mozambique Current. The current is made up of three ma-
jor water mass layers: upper, intermediate, and deep water
masses. The upper water masses include the warm, southward-
flowing Subtropical Subsurface Water (STSW; T . 158C, maxi-
mum S . 35.2 psu, center depths: 200 m) and South Indian
Central Water (SICW; T: 78–88C, S: around 34.8–35.2 psu,
depths 200–600 m) (Wyrtki 1973; Ullgren et al. 2012). The

intermediate water masses consist of a mixture of cooler,
northward-flowing Antarctic Intermediate Water (AAIW; T:
2.58–78C, minimum S: ,34.5 psu, center depths 800–1200 m)
(de Ruijter et al. 2002; Donohue and Toole 2003), and south-
ward-spreading Red Sea Water (RSW) which reaches the
Agulhas Current (T: 58–108C, maximum S: 34.7–35 psu, center
depths 1000 m) (Swart et al. 2010; Ullgren et al. 2012): Inter-
leaving between AAIW and RSW is common (Gründlingh
1985). The deep water mass is represented by the North Atlan-
tic Deep water (NADW; T: 28C, S: around 34.8 psu, depths .
2000 m) (Toole andWarren 1993; van Aken et al. 2004; Quartly
and Srokosz 2004; Beal et al. 2000; Talley et al. 2011; Ullgren
et al. 2012). These water masses and their interactions are visi-
ble in the seismic imagery, particularly in the southeast (SE),
offshore end of the transect (Fig. 1d). Regions of higher reflec-
tivity between 250–500 and 1000–1500 m represent highly strati-
fied, interleaved waters, likely the SICW layer and interaction
of the AAIW and RSW, respectively. An almost acoustically
blank layer at depths greater than 1500 m is attributed to a
more homogeneous, well-mixed water mass, possibly AAIW.
Southward-propagating mesoscale eddies are commonplace in

FIG. 4. Comparison of combined-inverted temperature and salinity fields with coincident hydrographic data for the
GC seismic section. (a) Combined inversion (i.e., VA 1 MCMC) for in situ temperature. (b) In situ temperature
from XBT data without smoothing. (c) Absolute difference between combined inversion temperatures and hydro-
graphic data. (d)–(f) As in (a)–(c), but for practical salinity, with the field in (e) estimated from XBT data using a neu-
ral network approach. Dashed black vertical line denotes XBT used for detailed comparison in Fig. 5. The white strips
in (b), (e), (c), and (f) represent missing values in the XBT dataset, where no temperature measurements were
available.
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the Mozambique Channel (Halo et al. 2014), and surface geo-
strophic current fields indicate that the acoustic section transects
the northeastern edge of one such anticyclonic mesoscale eddy
(Fig. 1c). The seismic signature of this eddy appears as sloping
reflections in the upper water column which dip from 250 m on
the northwest (NW) end of the transect to 700 m at its SE ex-
tent. A more transparent region at distances greater than 40 km
and depths of 800–1200 m may be a downwelling layer formed
by the anticyclonic eddy transitioning the seismic survey at the
time of acquisition (McGillicuddy 2016). Reflectivity generally
increases toward the Mozambique coastline indicating the wa-
ter masses become more stratified and interleaved in character
here.

As commonly seen in ocean seismic images, submesoscale
variability is apparent across the section as acoustically
blank patches and swirling reflection boundaries (Quentel
et al. 2010; Gunn et al. 2018; Tang et al. 2020). For example,
three potential submesoscale lens-like structures, identified

as transparent lenses with horizontal length scales of 20 km
and vertical length scales of 200 m, respectively, are highlighted
(Fig. 1d).

The VA-inversion temperature and salinity fields capture
the general distribution of the water masses in the Mozambique
Channel but are limited in resolving with intermediate scale,
submesoscale details (Figs. 6a,e). Warmer, saltier waters are
visible in the upper 300–500 m, consistent with STSW and
SICW. Between 500 and 800 m, a layer of relatively warm,
freshwater is likely AAIW. Waters below 1000 m are gener-
ally cooler and saltier but exhibit horizontal variability, par-
ticularly in salinity likely caused by RSW intruding into the
AAIW layer (Gründlingh 1985; Ullgren et al. 2012). The lens-like
structures identified in the seismic images are associated with re-
gions of both warmer, saltier likely RSW-sourced water (distance
35–55 km, depth 1000–1250 m, and distance 20–32 km,
800–1100-m depth) and colder, fresher likely AAIW
sourced water (52–65 km, 1200–1600-m depth): See white

FIG. 5. Example depth profile comparing inverted data with hydrographic and seismic reflection data for GC. (a) Black line denotes
temperature depth profile from XBT located at distance 25.5 m (CMP 4092), along section (see Fig. 4 for location); dashed blue line de-
notes temperature profile from the VA analysis only; green line denotes temperature profile from combined inversion (VA 1 MCMC);
and shaded blue area denotes Dix equation error. (b) As in (a), but for salinity. (c) Black line denotes synthetic seismogram (i.e., modeled
acoustic reflection response computed based on XBT-derived temperature and salinity profiles); orange line denotes seismogram from
GC data. (d) Green line denotes synthetic seismogram from combined inversion (VA 1 MCMC), orange line denotes seismogram from
GC data, and dashed blue line denotes synthetic seismogram computed from VA output only.
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dots in Figs. 1d and 6 (Gorman et al. 2018; Ullgren et al.
2012).

The addition of MCMC processing step adds detail to the
VA-inverted thermohaline fields (Figs. 6b,c,f,g). For example,
density contours exhibit increased fine-scale structure and
align better with the seismic reflections than in the VA-
inverted fields alone (at least on horizontal scales . 5 km and
vertical scales . 50 m). Fine-scale interleaving becomes ap-
parent at the edges of lenses, providing a focused view of po-
tential mixing and stirring processes.

With a lack of coincident hydrographic data, we utilize the er-
ror analysis methods verified in section 3c to compute uncer-
tainties in the inverted thermohaline fields (Table 2). The

overall mean error in temperature and salinity for the Mozam-
bique Channel seismic section is 1.658C and 0.08 psu, with a
maximum error of 3.688C and 0.23 psu, respectively. Similar to
the Gulf of Cadiz dataset, the error associated with the Dix
conversion of y rms to y int dominates. In terms of the spatial dis-
tribution, as in the Gulf of Cadiz data, higher temperatures un-
certainties are present in regions of high reflectivity (e.g., at the
boundaries of the submesoscale structures), with lower errors in
more homogeneous areas (e.g., the core of the anticyclonic
eddy). Interestingly, the salinity error distribution follows a dif-
ferent pattern, with higher errors in the upper 500 m and at the
base of the layer of RSW intrusion (Figs. 6g,h). These arise from
differences in how sound speed variations propagate through the

FIG. 6. Inverted temperature and salinity fields for the Mozambique seismic section, with uncertainties. (a) VA in-
version for in situ temperature. Gray contours denote isopycnals ranging from 1026.6 to 1028.25 kg m23 with an inter-
val of 0.1 kg m23, black line denotes RSW boundary characterized by potential temperatures above 58C, and black
box denotes demark region shown in (c). (b) Region indicated by box in (a). (c) As in (b), but for combined inversion
(VA 1 MCMC) output. (d) Computed Dix equation inversion error, the dominant uncertainty source. (e)–(h) As in
(a)–(d), but for salinity, and black lines identifying RSW by salinities between 34.79 and 35 psu. White dots denote
possible submesoscale lens-like structures, as identified in Fig. 1d.
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inversion process. Notably, the sound speed models generated by
adding or subtracting y rms errors to the original y rms are asym-
metric. The high-error band in salinity at 500 m corresponds to
the high-salinity SICW, where large salinity gradients increase
sensitivity to sound speed errors.

Without coincident hydrographic data, the ability of the
combined inversion method to capture mesoscale and smaller
temporal and spatial variability cannot be assessed directly;
however, averaged profiles align closely with historic WOD
hydrographic data, and differences are well within computed
errors (Figs. 7a,b).

The close alignment of inverted temperature and salinity
profiles with key water mass characteristics (STSW, SICW,
RSW, and AAIW) demonstrates the combined method’s ca-
pacity to reproduce thermohaline structures (Fig. 7c). Addi-
tionally, green points represent four CTDs located at the
southern edge of the Mozambique Channel showing the

minimum salinity core of AAIW to highlight the dominant
mixing between AAIW and RSW in the northern Mozam-
bique Channel.

5. Discussion and conclusions

This work has developed a novel inversion approach that
does not rely on coincident hydrographic data to recover tem-
perature and salinity fields from seismic data, with uncertainty
analysis. Inverted temperature and salinity uncertainties are
on the order of 18–28C and 0.1 psu, respectively. The approach
can therefore be applied to the wealth of seismic data available
for which coeval in situ temperature and salinity measure-
ments are typically not available.

The new inversion combines two established inversion ap-
proaches: velocity analysis inversion and spatially iterative
Markov Chain Monte Carlo method. The VA inversion

TABLE 2. Summary of inversion uncertainties for the MC data. As in Table 1, but without the bias column due to a lack of
coincident hydrographic data.

Estimation CMP interval CMP location Dix equation MCMC posterior Overall

Sound speed (m s21) 0.63 (1.59) 0.76 (1.43) 0.5 (0.88) 8.1 (36.6) } 9.99 (40.5)
Temperature (8C) 0.2 (0.4) 0.2 (0.3) 0.1 (0.2) 1.14 (2.26) 0.01 (0.7) 1.65 (3.68)
Salinity (psu) 0.003 (0.009) 0.004 (0.007) 0.002 (0.009) 0.07 (0.16) 0.0008 (0.04) 0.08 (0.23)

FIG. 7. Comparison of historical hydrographic and inverted data for MC. (a) Black solid line denotes mean temperature profile for all
WOD historical data (see Fig. 1c), black dashed lines denote minimum and maximum ranges for WOD data, red solid line denote mean
seismic section temperature profile from combined inversion, and red shaded region denotes Dix equation error. (b) As in (a), but for sa-
linity depth profiles. (c) Temperature–salinity diagram with density contours (black dashed lines), black points denote WOD historical
data, red transparent points denote inverted potential temperature and salinity data, and green points denote four CTDs from Global
Ocean Data Analysis Project (GLODAPv2.2023) data at latitude of 24.68S and longitude of 40.58–418E. Key water masses are labeled, in-
cluding STSW, SICW, RSW, AAIW, and NADW.
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provides the long-wavelength (on the order of 100 m–1 km
horizontally) variation of temperature and salinity, while the
MCMC adds fine-scale detail (on the order of 10 m horizon-
tally and 10–100 m vertically).

Here, we apply the new combined inversion to two seismic
datasets, one from the Gulf of Cadiz and the other from the
Mozambique Channel. The Gulf of Cadiz dataset, which
contains coeval hydrographic data, was used to validate the
combined inversion approach and uncertainty analysis. The
Mozambique Channel data, for which no coincident tempera-
ture or salinity data were available, demonstrated the utility
of the method for legacy seismic data. Submesoscale thermoha-
line variability, for example, interleaving layers at the periphery
of the submesoscale lenses, was resolved. One such lens-like
structure in the Mozambique Channel data, located farthest off-
shore (52–65 km, 1200–1600-m depth), exhibited a diminished
temperature and salinity signature, potentially indicating an
“older” feature. This may reflect prolonged exposure to mixing
with surrounding water, moving farther from its source region.
These submesoscale vortex-type features are likely generated
through interactions between RSW, AAIW, mesoscale eddies,
and the continental slope (Roberts et al. 2014; Vic et al. 2015).

Compared to previous studies, our uncertainties in inverted
temperature (1.658–2.58C) and salinity (0.08–0.5 psu) are nota-
bly higher. For example, Papenberg et al. (2010) report tem-
perature (salinity) uncertainties of 0.18C (0.1 psu), Dagnino
et al. (2016) report temperature (salinity) uncertainties of
0.188C (0.08 psu), and Xiao et al. (2021) report temperature
(salinity) uncertainties of 0.168C (0.055 psu). The difference
reflects the lack of utility of coincident hydrographic data
in our approach, confirming the conclusion from previous stud-
ies that numerous hydrographic measurements are key to re-
ducing uncertainties in the inversion process (Xiao et al. 2021).
Reflecting this, errors in our final inverted fields are dominated
by the error in producing the background long-wavelength tem-
perature and salinity field in the VA process (as opposed to the
MCMC). In particular, the greatest contribution to the uncer-
tainty is the Dix interval velocity estimation, which was not
quantified in previous studies (e.g., Gunn et al. 2018; Chhun
and Tsuji 2020). Minimizing Dix equation errors involves using
large TWTT/depth intervals between velocity picks; however,
this is at the expense of loosing detail in the final inverted field.
Regions of rapidly varying temperature and salinity are there-
fore more prone to error than more homogeneous regions, de-
spite the increased signal to noise in the seismic data. On the
other hand, if no strong reflections are present over too large a
region, accurate velocity picking is also comprised. The lack of
reflectivity in the upper 500 m of the Gulf of Cadiz data made
achieving a sensible RMS velocity field somewhat challenging
and very careful picking was required (surface errors also prop-
agated to picks deeper in the water column). Velocity picking in
the water column is generally less subjective than in solid Earth,
as the acoustic structure is simpler and not affected by interbed
multiples or complex lithological layering. This results in clearer
semblance coherence peaks, which facilitates more consistent
velocity estimation. However, noise contamination can still
introduce uncertainty by broadening the coherence energy
distribution in semblance plots, especially in regions of weak

thermohaline stratification or low signal-to-noise ratio. A no-
table example is found in shallow water, where residual energy
from direct wave arrivals can interfere with early reflections
and bias semblance amplitudes, particularly near the surface.
This effect is evident in the Mozambique Channel dataset,
where the semblance peaks in the upper 500 m are broad and
poorly defined due to noise and weak stratification (Fig. A2).
Automated methods for RMS velocity extraction to further re-
duce uncertainties and improve inversion resolution could re-
duce subjective biases in manual picking, improve efficiency in
picking each CMP velocity, and minimize errors associated
with CMP intervals and locations (e.g., Chhun and Tsuji 2020).
Although the errors are high, this inversion is released from
the requirements of coincident hydrographic data. Further
work should go into increasing the accuracy and conversion of
velocity fields.

The gap between the scales resolvable by VA inversion and
MCMC methods poses a challenge for accurately extracting
temperature and salinity from seismic ocean data. The VA in-
version is suited to resolving features with horizontal scales
greater than 10 km and vertical scales greater than 100 m,
while MCMC excels at capturing fine-scale details with hori-
zontal and vertical scales on the order of 10 m. For example,
in the Gulf of Cadiz dataset, while the fine-scale variability
was reproduced, the MCMC output was unable to adjust for
systematic errors introduced in the previous VA inversion.
Developing inversion methods that can bridge this spatial gap
is a priority. Potentially, this could be achieved by integrat-
ing other data sources such as high-resolution satellite data
or autonomous underwater vehicle observations or the use
of full-waveform inversion techniques (Wood et al. 2008;
Dagnino et al. 2016). Improving the input model needed for
the MCMC analysis could also be achieved through an itera-
tive, adaptive approach within the VA analysis itself or uti-
lizing advances in machine learning (Padhi et al. 2010). A
recent study by Mallick and Chakraborty (2022) proposed
an approach for initial sound-speed model generation without
manual horizon picking, coupled with genetic algorithm–based
waveform inversion. This aligns with our motivation to reduce
the dependence on manual velocity picking and improve the
robustness of temperature and salinity inversion from seismic
data. Data assimilation of seismic fields into high-resolution
models is another exciting future avenue to both validate
model outputs and improve understanding of submesoscale
oceanic processes and their broader impacts (Sonnewald et al.
2021; Qi et al. 2022). For example, Sonnewald et al. (2021) em-
phasize the transformative role of machine learning in three
key areas: observations, theory, and numerical modeling.
Machine learning has shown promise in improving in situ sam-
pling, satellite observations, theoretical exploration, and even
data assimilation processes, accelerating research progress,
and enhancing the accuracy of oceanographic studies. Simi-
larly, Qi et al. (2022) demonstrate the capability of ensemble
machine learning models to reconstruct subsurface thermal
structures using sea surface and geographic data. Building on
these advancements, integrating seismic data, machine learn-
ing–driven interior data, and high-resolution numerical models
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could provide unprecedented insights into the dynamics and im-
pacts of submesoscale and mesoscale processes in the ocean.

Despite these future challenges, the novel combination of
VA analysis and MCMC methods represents a significant step
forward in extracting temperature and salinity with representa-
tive uncertainties from seismic ocean data that lack coincident
hydrographic information. Given the global coverage of legacy
seismic data in key oceanographic regions, the techniques pre-
sented here will aid new insights into fine-scale and submeso-
cale ocean processes for which observations are scarce.
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APPENDIX

Supplementary Figures of Temperature–Salinity
Inversion and Error Analysis

Figures A1–A5 show additional figures that complement
the methodology and uncertainty analysis described in the
main text. Figure A1 shows WOD temperature–salinity scatter
plots for the Gulf of Cadiz and Mozambique Channel datasets,
together with the neural-network fitting approach used to estab-
lish the local temperature–salinity–depth relationship. FigureA2
presents velocity analysis results from both datasets. Semblance
plots are displayed alongside derived RMS and interval veloci-
ties, as well as associated errors. Figures A3 andA5 demonstrate
the uncertainty in GC and MC dataset associated with the esti-
mation procedure, choice of CMP interval, and CMP location
during velocity analysis. Figure A4 displays the evolution of the
MCMC temperature–salinity chain for one depth in each data-
set, showing how the inversion converges to stable values and
uncertainties.
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FIG. A1. (a)–(d) Map of WOD data with temperature and salinity scatters. (e),(f) The relationship between temper-
ature, salinity, and depth. The neural network fitting approach was employed to train the salinity function of temperature
and depth. The salinity is corresponding to a pair of temperature and salinity. A neural network was trained using
coincident CTD data to establish the temperature–salinity–depth relationship. (a),(c),(e) GC and (b),(d),(f) MC.
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FIG. A2. VA from two seismic datasets. The VA estimates signal coherency for a range of stacking velocities over TWTT, generating
semblance plots that reveal how ocean sound speed varies with depth and across the seismic survey. By selecting the peaks of maximum
coherency, the sound speed at each reflection point can be determined. (a),(f) Semblance plots for the GC at CMP5650 and Mozambique
datasets at CMP35800 that show picked RMS velocity as a function of TWTT. The TWTT is the total time required for seismic waves
emitted from the source to reach an impedance and to be reflected or refracted back to the receiver. The warm colors represent the opti-
mal RMS velocity. Black squares are the chosen RMS velocity. The same colormap range is shared in (a) and (f), allowing for a direct
comparison that highlights the extensive range of velocity values in (a). Red contour level is 0.2. (e),(j) The NMO-corrected CMP gather
for picked RMS velocity. The final seismic image is created by a series of stacked NMO corrected CMP gathers. (b)–(d) RMS velocity er-
ror, interval velocity, and interval velocity error for the GC data, respectively. (g)–(i) As in (b)–(d), but for MC data.
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FIG. A3. Error caused by the estimation, choice of CMP interval, and location during VA, GC. (left) The horizontally averaged
sound speed (black solid line) converted from (a) three separate VAs performed at the same CMP locations, (b) VAs performed at
CMP intervals of 50 (0.3 km), 100 (0.6 km), 150 (0.9 km), and 200 (1.2 km), and (c) VAs performed at CMP intervals of 100 (0.6 km)
and 150 (0.9 km) with different CMP locations, respectively. The shaded area is calculated from the std at each depth. (b),(e),(h) As in
(a), (d), and (g), but for the temperature. (c),(f),(i) As in (a), (d), and (g), but for the salinity. The maximum of depth-averaged std from
panels is taken as the error associated with the estimation, choice of CMP interval, and location during VA.
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FIG. A4. The Markov temperature and salinity chain. (a) The GC T–S chain at a depth of
1245 m, CMP 3497. (b) The T–S chain of MC at depth of 1200 m, CMP 43401. The first iteration
value was obtained from the T–S background. Once a sufficient number of iterations have been
completed, the temperature and salinity values converge and exhibit fluctuations within a de-
fined range. The mean and std derived from the final 20% of iterations are utilized to determine
the MCMC T–S field and its associated uncertainty.
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FIG. A5. As in Fig. A3, but for the MC dataset.
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von Storch, N. Brüggemann, H. Haak, and A. Stössel, 2019:
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Schmitt, 2004: Seismic reflection imaging of water mass
boundaries in the Norwegian Sea. Geophys. Res. Lett., 31,
L23311, https://doi.org/10.1029/2004GL021325.

Padhi, A., P. Mukhopadhyay, T. Blacic, W. Fortin, W. S. Holbrook,
and S. Mallick, 2010: Prestack waveform inversion for the
water-column velocity structure- the present state and the
road ahead. SEG Technical Program, Denver, Colorado,
SEG Library, 2845–2849, https://doi.org/10.1190/1.3513435.

Papenberg, C., D. Klaeschen, G. Krahmann, and R. W. Hobbs,
2010: Ocean temperature and salinity inverted from com-
bined hydrographic and seismic data. Geophys. Res. Lett., 37,
L04601, https://doi.org/10.1029/2009GL042115.

Pinheiro, L. M., H. Song, B. Ruddick, J. Dubert, I. Ambar,
K. Mustafa, and R. Bezerra, 2010: Detailed 2-D imaging of
the Mediterranean outflow and meddies off W Iberia from
multichannel seismic data. J. Mar. Syst., 79, 89–100, https://
doi.org/10.1016/j.jmarsys.2009.07.004.

Qi, J., C. Liu, J. Chi, D. Li, L. Gao, and B. Yin, 2022: An ensem-
ble-based machine learning model for estimation of subsur-
face thermal structure in the South China Sea. Remote Sens.,
14, 3207, https://doi.org/10.3390/rs14133207.

Quartly, G. D., and M. A. Srokosz, 2004: Eddies in the southern
Mozambique Channel. Deep-Sea Res. II, 51, 69–83, https://
doi.org/10.1016/j.dsr2.2003.03.001.

Quentel, E., X. Carton, M.-A. Gutscher, and R. Hobbs, 2010:
Detecting and characterizing mesoscale and submesoscale
structures of Mediterranean water from joint seismic and hy-
drographic measurements in the Gulf of Cadiz. Geophys.
Res. Lett., 37, L06604, https://doi.org/10.1029/2010GL042766.

Richardson, P. L., A. S. Bower, and W. Zenk, 2000: A census of
Meddies tracked by floats. Prog. Oceanogr., 45, 209–250,
https://doi.org/10.1016/S0079-6611(99)00053-1.

Roberts, M. J., J.-F. Ternon, and T. Morris, 2014: Interaction of
dipole eddies with the western continental slope of the
Mozambique Channel. Deep-Sea Res. II, 100, 54–67, https://
doi.org/10.1016/j.dsr2.2013.10.016.

Ruddick, B., H. Song, C. Dong, and L. Pinheiro, 2009: Water col-
umn seismic images as maps of temperature gradient. Oceanog-
raphy, 22 (1), 192–205, https://doi.org/10.5670/oceanog.2009.19.

Sacchi, M. D., 1997: Reweighting strategies in seismic deconvolu-
tion. Geophys. J. Int., 129, 651–656, https://doi.org/10.1111/j.
1365-246X.1997.tb04500.x.

Sallarès, V., B. Biescas, G. Buffett, R. Carbonell, J. J. Dañobeitia,
and J. L. Pelegrı́, 2009: Relative contribution of temperature
and salinity to ocean acoustic reflectivity. Geophys. Res. Lett.,
36, L00D06, https://doi.org/10.1029/2009GL040187.

Sheen, K. L., N. J. White, and R. W. Hobbs, 2009: Estimating mix-
ing rates from seismic images of oceanic structure. Geophys.
Res. Lett., 36, L00D04, https://doi.org/10.1029/2009GL040106.

}}, }}, C. P. Caulfield, and R. W. Hobbs, 2012: Seismic imag-
ing of a large horizontal vortex at abyssal depths beneath the

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 421526

Brought to you by UNIVERSITY OF SOUTHAMPTON HIGHFIELD | Unauthenticated | Downloaded 01/28/26 11:31 AM UTC

https://doi.org/10.1029/2020JC016293
https://doi.org/10.5194/gmd-12-3241-2019
https://doi.org/10.5194/gmd-12-3241-2019
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.1190/1.1441160
https://doi.org/10.1190/1.1441160
https://doi.org/10.1016/j.dsr2.2013.10.015
https://www.bodc.ac.uk/data/documents/cruise/8182/#cii
https://www.bodc.ac.uk/data/documents/cruise/8182/#cii
https://doi.org/10.1029/2009GL040215
https://doi.org/10.1126/science.1085116
https://doi.org/10.1126/science.1085116
https://doi.org/10.1175/JTECH-D-12-00140.1
https://doi.org/10.1111/j.1365-2478.1987.tb00800.x
https://doi.org/10.1111/j.1365-2478.1987.tb00800.x
https://doi.org/10.1144/0070549
https://doi.org/10.1007/s00376-020-0057-z
https://doi.org/10.1007/s00376-020-0057-z
https://doi.org/10.1146/annurev-marine-010814-015912
https://doi.org/10.1190/geo2021-0442.1
https://doi.org/10.1190/geo2021-0442.1
https://doi.org/10.1126/science.202.4372.1085
https://doi.org/10.1146/annurev-marine-010814-015606
https://doi.org/10.1146/annurev-marine-010814-015606
https://doi.org/10.1098/rspa.2016.0117
https://doi.org/10.1029/2011GL050798
https://doi.org/10.1029/2011GL050798
https://doi.org/10.1029/2004GL021325
https://doi.org/10.1190/1.3513435
https://doi.org/10.1029/2009GL042115
https://doi.org/10.1016/j.jmarsys.2009.07.004
https://doi.org/10.1016/j.jmarsys.2009.07.004
https://doi.org/10.3390/rs14133207
https://doi.org/10.1016/j.dsr2.2003.03.001
https://doi.org/10.1016/j.dsr2.2003.03.001
https://doi.org/10.1029/2010GL042766
https://doi.org/10.1016/S0079-6611(99)00053-1
https://doi.org/10.1016/j.dsr2.2013.10.016
https://doi.org/10.1016/j.dsr2.2013.10.016
https://doi.org/10.5670/oceanog.2009.19
https://doi.org/10.1111/j.1365-246X.1997.tb04500.x
https://doi.org/10.1111/j.1365-246X.1997.tb04500.x
https://doi.org/10.1029/2009GL040187
https://doi.org/10.1029/2009GL040106


Sub-Antarctic front. Nat. Geosci., 5, 542–546, https://doi.org/
10.1038/ngeo1502.

Siedler, G., L. Armi, and T. J. Müller, 2005: Meddies and decadal
changes at the Azores front from 1980 to 2000. Deep-Sea
Res. II, 52, 583–604, https://doi.org/10.1016/j.dsr2.2004.12.010.

Song, H., L. M. Pinheiro, B. Ruddick, and F. C. Teixeira, 2011:
Meddy, spiral arms, and mixing mechanisms viewed by seis-
mic imaging in the Tagus Abyssal Plain (SW Iberia). J. Mar.
Res., 69, 827–842, https://doi.org/10.1357/002224011799849309.

Sonnewald, M., R. Lguensat, D. C. Jones, P. D. Dueben, J. Brajard,
and V. Balaji, 2021: Bridging observations, theory and numeri-
cal simulation of the ocean using machine learning. Environ.
Res. Lett., 16, 073008, https://doi.org/10.1088/1748-9326/ac0eb0.

Srinivasan, K., J. C. McWilliams, M. J. Molemaker, and R. Barkan,
2019: Submesoscale vortical wakes in the lee of topography. J.
Phys. Oceanogr., 49, 1949–1971, https://doi.org/10.1175/JPO-
D-18-0042.1.

Strobach, E., P. Klein, A. Molod, A. A. Fahad, A. Trayanov,
D. Menemenlis, and H. Torres, 2022: Local air-sea interac-
tions at ocean mesoscale and submesoscale in a Western
Boundary Current. Geophys. Res. Lett., 49, e2021GL097003,
https://doi.org/10.1029/2021GL097003.

Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis,
2018: Ocean submesoscales as a key component of the global
heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/
s41467-018-02983-w.

Swart, N. C., J. R. E. Lutjeharms, H. Ridderinkhof, and W. P. M.
de Ruijter, 2010: Observed characteristics of Mozambique
Channel eddies. J. Geophys. Res., 115, C09006, https://doi.
org/10.1029/2009JC005875.

Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011:
Indian Ocean. Descriptive Physical Oceanography, 6th ed.
L. D. Talley et al., Eds., Academic Press, 363–399, https://doi.
org/10.1016/B978-0-7506-4552-2.10011-3.

Tang, Q., C. Wang, D. Wang, and R. Pawlowicz, 2014: Seismic,
satellite and site observations of internal solitary waves in the
NE South China Sea. Sci. Rep., 4, 5374, https://doi.org/10.
1038/srep05374.

}}, R. Hobbs, C. Zheng, B. Biescas, and C. Caiado, 2016: Mar-
kov Chain Monte Carlo inversion of temperature and salinity
structure of an internal solitary wave packet from marine seis-
mic data. J. Geophys. Res. Oceans, 121, 3692–3709, https://doi.
org/10.1002/2016JC011810.

}}, S. P. S. Gulick, J. Sun, L. Sun, and Z. Jing, 2020: Submeso-
scale features and turbulent mixing of an oblique anticyclonic
eddy in the Gulf of Alaska investigated by marine seismic
survey data. J. Geophys. Res. Oceans, 125, e2019JC015393,
https://doi.org/10.1029/2019JC015393.

Tedesco, P., J. Gula, P. Penven, C. Ménesguen, Q. Jamet, and
C. Vic, 2024: Can mesoscale eddy kinetic energy sources and
sinks be inferred from sea surface height in the Agulhas cur-
rent region? J. Geophys. Res. Oceans, 129, e2023JC020833,
https://doi.org/10.1029/2023JC020833.

Ternon, J. F., M. J. Roberts, T. Morris, L. Hancke, and B. Backeberg,
2014: In situ measured current structures of the eddy field in the
Mozambique Channel. Deep-Sea Res. II, 100, 10–26, https://doi.
org/10.1016/j.dsr2.2013.10.013.

Toole, J. M., and B. A. Warren, 1993: A hydrographic section
across the subtropical South Indian Ocean. Deep-Sea Res. I,
40, 1973–2019, https://doi.org/10.1016/0967-0637(93)90042-2.

Tsuji, T., T. Noguchi, H. Niino, T. Matsuoka, Y. Nakamura, H.
Tokuyama, S. Kuramoto, and N. Bangs, 2005: Two-dimensional

mapping of fine structures in the Kuroshio Current using seismic
reflection data. Geophys. Res. Lett., 32, L14609, https://doi.org/
10.1029/2005GL023095.

Uchida, T., and Coauthors, 2022: Cloud-based framework for in-
ter-comparing submesoscale-permitting realistic ocean mod-
els. Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.
5194/gmd-15-5829-2022.

Ullgren, J. E., H. M. van Aken, H. Ridderinkhof, and W. P. M.
de Ruijter, 2012: The hydrography of the Mozambique Chan-
nel from six years of continuous temperature, salinity, and ve-
locity observations. Deep-Sea Res. I, 69, 36–50, https://doi.org/
10.1016/j.dsr.2012.07.003.

van Aken, H. M., H. Ridderinkhof, and W. P. de Ruijter, 2004:
North Atlantic deep water in the South-western Indian
Ocean. Deep-Sea Res. I, 51, 755–776, https://doi.org/10.1016/j.
dsr.2004.01.008.

Vic, C., G. Roullet, X. Capet, X. Carton, M. J. Molemaker, and J.
Gula, 2015: Eddy-topography interactions and the fate of the
Persian Gulf Outflow. J. Geophys. Res. Oceans, 120, 6700–
6717, https://doi.org/10.1002/2015JC011033.

Wang, P., and Coauthors, 2021: The GPU version of LASG/IAP
Climate System Ocean Model version 3 (LICOM3) under
the Heterogeneous-Compute Interface for Portability (HIP)
framework and its large-scale application. Geosci. Model
Dev., 14, 2781–2799, https://doi.org/10.5194/gmd-14-2781-2021.

Warner, M., 1990: Absolute reflection coefficients from deep seis-
mic reflections. Tectonophysics, 173, 15–23, https://doi.org/10.
1016/0040-1951(90)90199-I.

Wei, J., Z. Zhao, K. L. Gunn, S. P. S. Gulick, D. J. Shillington,
and C. M. Lowery, 2025: Unlocking a global ocean mixing
dataset: Toward standardization of seismic-derived ocean
mixing rates. J. Atmos. Oceanic Technol., 42, 675–697, https://
doi.org/10.1175/JTECH-D-24-0076.1.

Wood, W. T., W. S. Holbrook, M. K. Sen, and P. L. Stoffa, 2008:
Full waveform inversion of reflection seismic data for ocean
temperature profiles. Geophys. Res. Lett., 35, L04608, https://
doi.org/10.1029/2007GL032359.

Wyrtki, K., 1973: Physical oceanography of the Indian Ocean. The
Biology of the Indian Ocean, B. Zeitzschel and S. A. Gerlach,
Eds., Ecological Studies, Vol 3, Springer, 18–36, https://doi.
org/10.1007/978-3-642-65468-8_3.

Xiao, W., and Z. Meng, 2022: Turbulent heat fluxes in a Mediter-
ranean eddy quantified using seismic and hydrographic obser-
vations. J. Mar. Sci. Eng., 10, 720, https://doi.org/10.3390/jmse
10060720.

}}, K. L. Sheen, Q. Tang, J. Shutler, R. Hobbs, and T. Ehmen,
2021: Temperature and salinity inverted for a Mediterranean
eddy captured with seismic data, using a spatially iterative
Markov chain Monte Carlo approach. Front. Mar. Sci., 8,
734125, https://doi.org/10.3389/fmars.2021.734125.

Yang, S., H. Song, B. Coakley, K. Zhang, and W. Fan, 2022: A
mesoscale eddy with submesoscale spiral bands observed
from seismic reflection sections in the Northwind Basin, Arc-
tic Ocean. J. Geophys. Res. Oceans, 127, e2021JC017984,
https://doi.org/10.1029/2021JC017984.
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