(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Wolfram 14.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 154, 7] NotebookDataLength[ 4615505, 111974] NotebookOptionsPosition[ 4451106, 109100] NotebookOutlinePosition[ 4451519, 109116] CellTagsIndexPosition[ 4451476, 109113] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ submitted version (141128) ***VERSION SD3.10.2 IS REQUIRED***\ \>", "Title",ExpressionUUID->"596b3f98-b533-4fd7-80b5-ac81673a7af6"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetSpinSystem", "[", "2", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"SetBasis", "[", RowBox[{"SingletTripletBasis", "[", "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"SetOperatorBasis", "[", RowBox[{"CartesianProductOperatorBasis", "[", "]"}], "]"}]}], "Input", CellChangeTimes->{{3.963042899098922*^9, 3.9630429277001133`*^9}, { 3.97063788464751*^9, 3.970637893137129*^9}}, CellLabel-> "In[561]:=",ExpressionUUID->"4bed8f6d-ff13-4ba9-8d7c-ceeb32f60b21"], Cell[BoxData[ TemplateBox[{ "SetSpinSystem", "set", "\"the spin system has been set to \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}]\\)\"", 2, 562, 34, 25793684326715730430, "Local", "QM`Hilbert`SetSpinSystem"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[561]:=",ExpressionUUID->"802f8565-0acc-450f-b98c-70ad9433679a"], Cell[BoxData[ TemplateBox[{ "SetBasis", "alreadyset", "\"The basis is already set to \ \\!\\(\\*RowBox[{\\\"SingletTripletBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"BasisLabels\\\", \ \\\"\[Rule]\\\", \\\"Automatic\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 563, 35, 25793684326715730430, "Local", "QM`Hilbert`SetBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[561]:=",ExpressionUUID->"3b53f336-e46b-46e6-9a0a-de7eb0d76242"], Cell[BoxData[ TemplateBox[{ "SetOperatorBasis", "alreadyset", "\"The operator basis is already set to \ \\!\\(\\*RowBox[{\\\"CartesianProductOperatorBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"Sorted\\\", \\\"\ \[Rule]\\\", \\\"SpinProductRank\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 564, 36, 25793684326715730430, "Local", "QM`Liouville`SetOperatorBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[561]:=",ExpressionUUID->"1b361aee-0f7b-4000-b587-b8bc86612e8a"] }, Open ]], Cell[CellGroupData[{ Cell["general", "Chapter", CellChangeTimes->{{3.963042943915021*^9, 3.963042952378562*^9}, { 3.963051166848508*^9, 3.963051167271718*^9}, {3.963565547304324*^9, 3.96356554820802*^9}},ExpressionUUID->"3a87af98-9b5a-4bc8-9d4a-\ a699ebd02384"], Cell[CellGroupData[{ Cell["Symbols", "Section", CellChangeTimes->{{3.9630430251858473`*^9, 3.9630430342824993`*^9}},ExpressionUUID->"d974cde5-cc1d-439b-9680-\ b03cbd9192e5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[CapitalOmega]1", "]"}], "=", SubscriptBox["\[CapitalOmega]", "1"]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[CapitalOmega]2", "]"}], "=", SubscriptBox["\[CapitalOmega]", "2"]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]\[CapitalDelta]", "]"}], "=", SubscriptBox["\[Omega]", "\"\<\[CapitalDelta]\>\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]\[CapitalSigma]", "]"}], "=", SubscriptBox["\[Omega]", "\"\<\[CapitalSigma]\>\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]J", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Theta]ST", "]"}], "=", SubscriptBox["\[Theta]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.963043046291065*^9, 3.963043097532342*^9}, { 3.9630434343454313`*^9, 3.963043449216013*^9}, {3.963115015361786*^9, 3.963115019383296*^9}, {3.963115188099082*^9, 3.963115234109486*^9}, { 3.963565532218693*^9, 3.963565539964328*^9}}, CellLabel-> "In[565]:=",ExpressionUUID->"813f7191-0838-4abb-970f-35695e4e0cde"], Cell[BoxData[ SubscriptBox["\[CapitalOmega]", "1"]], "Output", CellLabel-> "Out[565]=",ExpressionUUID->"6e2b99f4-4b39-424b-b255-e3504348b5c8"], Cell[BoxData[ SubscriptBox["\[CapitalOmega]", "2"]], "Output", CellLabel-> "Out[566]=",ExpressionUUID->"ff4dd70c-63ce-464f-aef9-2a1ea36fd5b5"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]], "Output", CellLabel-> "Out[567]=",ExpressionUUID->"a78d7965-0d1b-4797-80da-a6eea601b09f"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]], "Output", CellLabel-> "Out[568]=",ExpressionUUID->"948bd2f6-c6f4-4f7e-9b35-fc5345766140"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"J\"\>"]], "Output", CellLabel-> "Out[569]=",ExpressionUUID->"db9a2236-be01-494e-bbb4-6ebb7a777441"], Cell[BoxData[ SubscriptBox["\[Theta]", "\<\"ST\"\>"]], "Output", CellLabel-> "Out[570]=",ExpressionUUID->"91233be5-8a2b-4fc7-aab1-25bf4ee49047"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[Omega]nut", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}]], "Input", CellChangeTimes->{{3.964842377201112*^9, 3.9648423818494596`*^9}}, CellLabel-> "In[571]:=",ExpressionUUID->"990edfdd-7c56-4db8-b3e2-97d1cc781634"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"nut\"\>"]], "Output", CellLabel-> "Out[571]=",ExpressionUUID->"7926b8c8-786a-435f-8ef6-730ed4799de1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[CapitalDelta]\[Omega]nut", "]"}], "=", SubscriptBox["\[CapitalDelta]\[Omega]", "\"\\""]}]], "Input", CellChangeTimes->{{3.964842377201112*^9, 3.9648423818494596`*^9}, { 3.964843123684497*^9, 3.964843128648045*^9}}, CellLabel-> "In[572]:=",ExpressionUUID->"29df7a7a-5870-4352-9179-4a244d0ef2f8"], Cell[BoxData[ SubscriptBox["\[CapitalDelta]\[Omega]", "\<\"nut\"\>"]], "Output", CellLabel-> "Out[572]=",ExpressionUUID->"2ba76800-4d4e-4c99-bac9-9bf5e81d149c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[Theta]e", "]"}], "=", SubscriptBox["\[Theta]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]e", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.965295868666984*^9, 3.965295891315959*^9}}, CellLabel-> "In[573]:=",ExpressionUUID->"137f9588-c565-434b-afef-fbfef6fdab6b"], Cell[BoxData[ SubscriptBox["\[Theta]", "\<\"e\"\>"]], "Output", CellLabel-> "Out[573]=",ExpressionUUID->"c0f918b4-76e7-464c-986e-78422c567087"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"e\"\>"]], "Output", CellLabel-> "Out[574]=",ExpressionUUID->"0d6ec611-ae36-494c-ba38-23b706396087"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[Phi]B", "]"}], "=", SubscriptBox["\[Phi]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Phi]C", "]"}], "=", SubscriptBox["\[Phi]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.965295868666984*^9, 3.965295891315959*^9}, { 3.9652963564376783`*^9, 3.965296376070313*^9}}, CellLabel-> "In[575]:=",ExpressionUUID->"007cae36-982c-483d-addd-f30549e6295c"], Cell[BoxData[ SubscriptBox["\[Phi]", "\<\"B\"\>"]], "Output", CellLabel-> "Out[575]=",ExpressionUUID->"d823b9ac-9f73-41ef-af61-9720ce881195"], Cell[BoxData[ SubscriptBox["\[Phi]", "\<\"C\"\>"]], "Output", CellLabel-> "Out[576]=",ExpressionUUID->"5b277726-99b5-41ba-9f1d-6be2a4b8301d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[Tau]1", "]"}], "=", SubscriptBox["\[Tau]", "\"\<1\>\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Tau]2", "]"}], "=", SubscriptBox["\[Tau]", "\"\<2\>\""]}]}], "Input", CellChangeTimes->{{3.9706381580189123`*^9, 3.970638173256489*^9}}, CellLabel-> "In[577]:=",ExpressionUUID->"6d442ae3-4172-49c2-a2a9-7402f2a12503"], Cell[BoxData[ SubscriptBox["\[Tau]", "\<\"1\"\>"]], "Output", CellLabel-> "Out[577]=",ExpressionUUID->"f960fa8e-ee3d-46f5-9734-42fe72927a98"], Cell[BoxData[ SubscriptBox["\[Tau]", "\<\"2\"\>"]], "Output", CellLabel-> "Out[578]=",ExpressionUUID->"025800e3-3018-4027-a0a5-263d08200d92"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[Epsilon]rf", "]"}], "=", SubscriptBox["\[Epsilon]", "\"\\""]}]], "Input", CellChangeTimes->{{3.970647599901046*^9, 3.97064761897964*^9}}, CellLabel-> "In[579]:=",ExpressionUUID->"473904d7-49c2-4a15-9b8c-f3ef7115697d"], Cell[BoxData[ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]], "Output", CellLabel-> "Out[579]=",ExpressionUUID->"882d4be3-a757-4f76-8245-2f360419a14f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[Kappa]p", "]"}], "=", SuperscriptBox["\[Kappa]", "\"\<'\>\""]}]], "Input", CellChangeTimes->{{3.970647599901046*^9, 3.97064761897964*^9}, { 3.970648324685358*^9, 3.9706483567977457`*^9}}, CellLabel-> "In[580]:=",ExpressionUUID->"48665cf9-bc02-4e4d-9234-1ac3103d903a"], Cell[BoxData[ SuperscriptBox["\[Kappa]", "\<\"'\"\>"]], "Output", CellLabel-> "Out[580]=",ExpressionUUID->"95f7d4ec-860c-4a54-aeeb-69338eeece08"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Hamiltonians", "Section", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706410591621923`*^9, 3.970641062117014*^9}},ExpressionUUID->"9c193533-2509-42b3-9dc5-\ c91fe4806ae0"], Cell[CellGroupData[{ Cell["HJ", "Subsection", CellChangeTimes->{{3.970641091775093*^9, 3.970641092013958*^9}},ExpressionUUID->"15f8c798-271f-4c72-918a-\ f57016858fa5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HJ", "=", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.970641096713191*^9, 3.9706411057395372`*^9}}, CellLabel-> "In[581]:=",ExpressionUUID->"26671669-7fd0-4f30-b488-bf3616dc02c1"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], "Output", CellLabel-> "Out[581]=",ExpressionUUID->"2125c083-b5b4-4f71-a238-a807a1abb041"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["H\[CapitalSigma]", "Subsection", CellChangeTimes->{{3.970641091775093*^9, 3.970641092013958*^9}, { 3.970641169862938*^9, 3.970641171914267*^9}},ExpressionUUID->"7fba926f-2a67-4f67-99d7-\ ef33a1eb4f15"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalSigma]", "=", RowBox[{"\[Omega]\[CapitalSigma]", " ", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "+", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}], "/", "2"}]}]}]], "Input", CellChangeTimes->{{3.970641096713191*^9, 3.9706411057395372`*^9}, { 3.970641175710094*^9, 3.970641197967865*^9}}, CellLabel-> "In[582]:=",ExpressionUUID->"3d8eeb31-07ba-4594-af34-6f4f6fe3e39f"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[582]=",ExpressionUUID->"c09b627a-b48d-4573-afd0-f014d212a5b6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["H\[CapitalDelta]", "Subsection", CellChangeTimes->{{3.970641091775093*^9, 3.970641092013958*^9}, { 3.970641169862938*^9, 3.970641171914267*^9}, {3.970641205900329*^9, 3.970641206870489*^9}},ExpressionUUID->"e5d8bf69-2aa6-447f-95be-\ 0a07448fc189"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalDelta]", "=", RowBox[{"\[Omega]\[CapitalDelta]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}], "/", "2"}]}]}]], "Input", CellChangeTimes->{{3.970641096713191*^9, 3.9706411057395372`*^9}, { 3.970641175710094*^9, 3.970641218992981*^9}}, CellLabel-> "In[583]:=",ExpressionUUID->"1f34b7ad-4a9d-46e1-a02b-ed1d0d320d95"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[583]=",ExpressionUUID->"e33dfec0-4e22-4bb7-824e-7277d864c10f"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["INADEQUATE", "Chapter", CellChangeTimes->{{3.963042943915021*^9, 3.963042952378562*^9}, { 3.963051166848508*^9, 3.963051167271718*^9}, {3.970640239871278*^9, 3.970640245388781*^9}},ExpressionUUID->"e45e2ad6-4de0-4679-8aa4-\ 7caa332a7a72"], Cell[CellGroupData[{ Cell["Hamiltonian", "Section", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}},ExpressionUUID->"613d1735-f67e-4aea-8635-\ ff7306cc36e6"], Cell["factor out overall offset", "Text", CellChangeTimes->{{3.963043477783227*^9, 3.963043483647252*^9}},ExpressionUUID->"e5c77566-f2ab-4867-9f38-\ c0dce8fc2196"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], "\[Omega]\[CapitalDelta]", " ", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", " ", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}]}], "+", " ", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]}]], "Input", CellChangeTimes->{{3.963042957412291*^9, 3.9630430185866003`*^9}, { 3.9630434628276*^9, 3.963043472772011*^9}, {3.963115028316148*^9, 3.9631150540949163`*^9}}, CellLabel-> "In[584]:=",ExpressionUUID->"d30a7fc1-4e8c-4ca3-bab3-9970685cc3f0"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[584]=",ExpressionUUID->"a3ded133-50e3-4d50-99ad-145965a2e8a2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]ini", "Section", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.96304315576457*^9, 3.9630431581540422`*^9}},ExpressionUUID->"ce6f64c3-6506-4ebd-87a4-\ cc18c319a522"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]ini", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963043161727894*^9, 3.963043165697791*^9}}, CellLabel-> "In[585]:=",ExpressionUUID->"64fb747a-12a8-42bb-b7f4-bdb2c2ae2925"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[585]=",ExpressionUUID->"258bd602-1add-4efd-9571-8f417d309d5b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["calculate \[Rho]f", "Section", Evaluatable->True, CellChangeTimes->{{3.9630485738329973`*^9, 3.963048578916974*^9}, { 3.963048677530424*^9, 3.9630486802896214`*^9}, {3.9630487357541103`*^9, 3.9630487421619987`*^9}, {3.970638257251072*^9, 3.970638260850562*^9}, { 3.9706393279127293`*^9, 3.970639329967347*^9}}, CellLabel-> "In[586]:=",ExpressionUUID->"d1730f92-3983-4832-aba8-a44bac9d3238"], Cell[BoxData[ RowBox[{"calculate", " ", "\[Rho]f"}]], "Output", CellLabel-> "Out[586]=",ExpressionUUID->"b11bd79a-ca94-4a83-8ab5-49fe3bea3d78"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "[", "\[Rho]ini", "]"}], "]"}]], "Input", CellChangeTimes->{{3.970638275194282*^9, 3.970638291383995*^9}}, CellLabel-> "In[587]:=",ExpressionUUID->"fa2733dc-e5a7-433b-a1c6-497de33eb155"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[587]=",ExpressionUUID->"2fcbe5e7-6803-4352-a112-d03956e30a72"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]f", "=", RowBox[{"Fold", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Operator", "[", RowBox[{"MatrixRepresentation", "[", RowBox[{"#2", "[", "#1", "]"}], "]"}], "]"}], "&"}], ",", "\[IndentingNewLine]", "\[Rho]ini", ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]1", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]1", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.970638297762117*^9, 3.9706383541418753`*^9}, { 3.970638384798575*^9, 3.970638459035128*^9}, {3.970638525409279*^9, 3.970638598021092*^9}, {3.970638646827735*^9, 3.9706387010655117`*^9}, { 3.970638732920212*^9, 3.970638741311322*^9}}, CellLabel-> "In[588]:=",ExpressionUUID->"fa73271b-9ddf-4381-9193-df73acc3c5ec"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{"Operator", "[", RowBox[{ RowBox[{"<<", ".."}], ">>"}]}], RowBox[{",", " ", RowBox[{"OperatorType", "\[Rule]", "\<\"None\"\>"}]}], " ", "]"}], DisplayForm]], "Output", CellLabel-> "Out[588]=",ExpressionUUID->"b7149101-23f9-4a11-843b-e732905ececd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]f", "=", RowBox[{"Fold", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Operator", "[", RowBox[{"Together", "@", RowBox[{"Simplify", "@", RowBox[{"PowerExpand", "@", RowBox[{"Normal", "[", RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"#2", "[", "#1", "]"}], "]"}], "/.", RowBox[{ RowBox[{ RowBox[{"\[Omega]J", "^", "2"}], "+", RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}]}], "->", RowBox[{"\[CapitalOmega]", "^", "2"}]}]}], "]"}]}]}]}], "]"}], "&"}], ",", "\[IndentingNewLine]", "\[Rho]ini", ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]1", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]1", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.970638297762117*^9, 3.9706383541418753`*^9}, { 3.970638384798575*^9, 3.970638459035128*^9}, {3.970638525409279*^9, 3.970638598021092*^9}, {3.970638646827735*^9, 3.9706387010655117`*^9}, { 3.970638732920212*^9, 3.970638741311322*^9}, {3.970638921111055*^9, 3.9706389932977133`*^9}}, CellLabel-> "In[589]:=",ExpressionUUID->"411f1b65-6b57-4e74-8f40-699c3cc10d26"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{"Operator", "[", RowBox[{ RowBox[{"<<", ".."}], ">>"}]}], RowBox[{",", " ", RowBox[{"OperatorType", "\[Rule]", "\<\"None\"\>"}]}], " ", "]"}], DisplayForm]], "Output", CellLabel-> "Out[589]=",ExpressionUUID->"b0048ae6-c8b3-4857-bc07-68567ecd9299"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixRepresentation", "[", "\[Rho]f", "]"}]], "Input", CellChangeTimes->{{3.9706389367629757`*^9, 3.9706389402391253`*^9}, 3.970639005099148*^9}, CellLabel-> "In[590]:=",ExpressionUUID->"1fc25a0b-0428-4585-8e84-44af9cd4756e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], ",", "0", ",", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], ",", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], ",", "0", ",", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"], " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], ",", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}], ",", "0", ",", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], RowBox[{"4", " ", "\[CapitalOmega]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"4", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", RowBox[{"(", RowBox[{"\[CapitalOmega]", "+", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}]}]}]], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], RowBox[{"8", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[590]=",ExpressionUUID->"eb52261b-75a1-4735-9e26-8e8619e29f57"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["DQ amplitude", "Section", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}},ExpressionUUID->"e6062482-930d-4498-b881-\ 3e05b4e17d61"], Cell[CellGroupData[{ Cell[BoxData["\[Rho]f"], "Input", CellChangeTimes->{{3.963115409161748*^9, 3.963115409163665*^9}, { 3.970639030470071*^9, 3.970639031163369*^9}}, CellLabel-> "In[591]:=",ExpressionUUID->"082f04fe-dd21-4d0d-b1d7-61ffc5d3476e"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{"Operator", "[", RowBox[{ RowBox[{"<<", ".."}], ">>"}]}], RowBox[{",", " ", RowBox[{"OperatorType", "\[Rule]", "\<\"None\"\>"}]}], " ", "]"}], DisplayForm]], "Output", CellLabel-> "Out[591]=",ExpressionUUID->"46440644-2638-43f1-97df-0061e516733e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ RowBox[{"Simplify", "[", RowBox[{"ExpToTrig", "@", RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]f", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]", "^", "2"}], "->", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}], "+", RowBox[{"\[Omega]J", "^", "2"}]}]}], "}"}]}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]J", "->", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", " ", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Sin", "[", "\[Theta]ST", "]"}]}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.970638056191329*^9, 3.97063811282584*^9}, { 3.970639196336478*^9, 3.970639234677383*^9}, 3.9706394576512012`*^9}, CellLabel-> "In[592]:=",ExpressionUUID->"4420a601-f148-48f8-be31-23fe27dc4994"], Cell[BoxData[ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[592]=",ExpressionUUID->"de291e5c-1630-457b-a1db-68f821999cf2"] }, Open ]], Cell["as in eq.(2) [vs 251028]", "Text", CellChangeTimes->{{3.970639475285986*^9, 3.970639491052553*^9}},ExpressionUUID->"16904800-0572-4da9-a1ae-\ 55ca85272ff5"], Cell[CellGroupData[{ Cell["DQF amplitude", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, 3.970639471641202*^9},ExpressionUUID->"055e82bf-ae9b-4dc1-bd64-\ 6e9c3e70c0ae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "=", RowBox[{ RowBox[{"ComplexExpand", "[", RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "*", RowBox[{"Conjugate", "[", RowBox[{"aDQ", "[", "\"\\"", "]"}], "]"}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.970639495810238*^9, 3.970639530619465*^9}}, CellLabel-> "In[593]:=",ExpressionUUID->"852c1e5a-13e1-4f67-af8c-0b9b6b3034f3"], Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}]}], ")"}], "2"]], "Output", CellLabel-> "Out[593]=",ExpressionUUID->"d0543a3e-9fee-4b54-a5d9-c9eb4efbdbd9"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["INADEQUATE density plot vs \[Theta] and \[Tau], as in the paper", \ "Section", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.9686520228833847`*^9}, 3.969015965423497*^9},ExpressionUUID->"373d2a0f-1a17-4859-8396-\ 8877a52547e5"], Cell[CellGroupData[{ Cell["aDQF[\[OpenCurlyDoubleQuote]INADQ\[CloseCurlyDoubleQuote]]", \ "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.9686520228833847`*^9}, 3.969015965423497*^9, 3.97063945177063*^9},ExpressionUUID->"0461d793-eca9-49fc-84b9-\ 728ab886e1c2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aDQF", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[594]:=",ExpressionUUID->"1b3d09e0-f0f5-4b5d-97ca-5519c724149f"], Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}]}], ")"}], "2"]], "Output", CellLabel-> "Out[594]=",ExpressionUUID->"26fabb24-ee3d-4672-a38c-7d04f7a36674"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["INADEQUATE density plot vs \[Theta] and \[Tau], as in the paper", \ "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.9686520228833847`*^9}, 3.969015965423497*^9},ExpressionUUID->"1ea731b1-61df-4776-ba0d-\ 0afb91181a15"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aDQF", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[595]:=",ExpressionUUID->"2f550fb6-d24f-49a2-b30f-827015b9d109"], Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}]}], ")"}], "2"]], "Output", CellLabel-> "Out[595]=",ExpressionUUID->"e6e5c75e-a406-4dfd-af91-1d4988d8f5ba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]1", "->", RowBox[{"J\[Tau]1", "/", "J"}]}], ",", RowBox[{"J", "->", RowBox[{"\[Omega]J", "/", RowBox[{"(", RowBox[{"2", "\[Pi]"}], ")"}]}]}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}]}], ",", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970639576264605*^9, 3.9706396922176247`*^9}, { 3.970639742571499*^9, 3.970639773775444*^9}, {3.970639853530776*^9, 3.97063985401131*^9}, {3.9706399278746443`*^9, 3.970639928318927*^9}, { 3.970639987445243*^9, 3.970640001891354*^9}}, CellLabel-> "In[596]:=",ExpressionUUID->"d688ac99-5e5a-4ae5-8523-0101661a970c"], Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ "0.0039071657419707745`", " ", "J\[Tau]1", " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ "0.0039071657419707745`", " ", "J\[Tau]1", " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ "0.0039071657419707745`", " ", "J\[Tau]1", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ "0.0039071657419707745`", " ", "J\[Tau]1", " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ "0.0039071657419707745`", " ", "J\[Tau]1", " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], "]"}]}], "]"}]}]}], ")"}], "2"]], "Output", CellLabel-> "Out[596]=",ExpressionUUID->"5861f3a6-e429-41d4-8a0b-77f2ca7474c6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]1", "->", RowBox[{"J\[Tau]1", "/", "J"}]}], ",", RowBox[{"J", "->", RowBox[{"\[Omega]J", "/", RowBox[{"(", RowBox[{"2", "\[Pi]"}], ")"}]}]}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}]}], ",", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]1", ",", "0", ",", "2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ColorFunction", "->", RowBox[{"(", RowBox[{ RowBox[{"GrayLevel", "[", RowBox[{"1", "-", "#"}], "]"}], "&"}], ")"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, 3.96901520910387*^9, {3.970639790317367*^9, 3.970639808385195*^9}, {3.970639858217025*^9, 3.970639858663221*^9}, { 3.970639922326191*^9, 3.9706399227858686`*^9}, 3.970640014506275*^9, { 3.970640049512128*^9, 3.970640091751581*^9}, {3.970640124741678*^9, 3.970640126414625*^9}, {3.9706401859417763`*^9, 3.970640205407539*^9}}, CellLabel-> "In[597]:=",ExpressionUUID->"bf8719c5-dd96-45d8-8fcf-6770b8709cc7"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0., 0.}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]1\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]1\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> {{0, 90}, {0, 2}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[ SparseArray[ Automatic, {201, 1}, 1., { 1, {{0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200}, {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, { 1}}}, CompressedData[" 1:eJwt1D1MU2EUxvG6GWZmxA03o47iM+KozExGXcXEwaCDA6zC4CAOBgOJMSEE o0Y0agqIIBZsKf2E0vvV9rb3tnUQZ+nh/yY3TXvPe87zO0PP37o3eudMIpHY OnkK8+PDfYWulkbcif6lrqaimysDU12NTa8dD411ddlOV31W2FWvasTt6KTo pLIjK5vu6K6djoatsKN+a9hR3GsXtWVla229mO2dtu5bYVvXrWFb52xwW/96 ZcexdlK9E2uhF28+1iNrGGvUBse6YAFjJezEOnVEOCIcEY4IR4QjwtHC0cLR wtHSNSts4WjhaOJo4mjK4o03cTRxNHGEOEIcIY4QR4gjxBHiaOBo4GjgaOBo 4GjgqOOoa8YC1nHUcdRx1HHUcNRw1HDUcNRk7QZqOAIZIxXgCHAEOAIcAY4A h4/Dx+Hj8HH4OHwcHg4Ph4fDw+Hh8HC4OFwcLg4Xh4vDxeHgcHA4OBwcDg4H h0P+Krmr5K2S84h8R+Q6Ik+FHBXmV5h7KEs1cSiLM3SovO3pQJO2nwNdsr0c yLPCMnso4y/jLuEt4SzhK+Iq4iniKOIo4CjgKODI48jjyOPI4cjhyOHYx7GP Yx9HFkcWRxbHHo49HHs4MjgyODI40jjSONI40uT/Te5d8u6Sc4d8KXKlyPNL juXY1lWbv63nNven/lrhlm5Ywy0t2p42ddb2s6nbtpcfSto+NjRoe9jQYxv8 XUVzr+uKeddxruFbxbWKJ4kjSf5v5P5K3i/k/Ey+T+RaIc9HcnzQQ5v/Xhdt 7juFNu+t5qzhspbt2pIGre+iZqzfG53+4b/WE7u/oD9275WSVv9Sc1Y3y/tn /P6U75N8PsCRSPwH5JkZpg== "]}], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"GrayLevel", "[", RowBox[{"1", "-", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[597]=",ExpressionUUID->"81a2bf4c-d41b-446f-b3e1-486a28287383"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["DQ excitation schemes", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.9706403954132013`*^9, 3.970640395830967*^9}, { 3.9707335811456614`*^9, 3.970733585109808*^9}},ExpressionUUID->"b24105b8-18dc-432f-8fea-\ 854de86b7ecf"], Cell[CellGroupData[{ Cell["geoDQ", "Section", CellChangeTimes->{{3.970733768311295*^9, 3.970733769496619*^9}},ExpressionUUID->"6e662062-2339-4065-8135-\ 66d7d1575699"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733741040708*^9}},ExpressionUUID->"1de0ade5-d049-405e-a3d1-\ fa59e2b57001"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.970733587628942*^9, 3.970733617842553*^9}}, CellLabel-> "In[598]:=",ExpressionUUID->"d5adb326-b746-4eda-8fd0-ed6d5ba744bd"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[598]=",ExpressionUUID->"60d31ccb-7828-4ffc-85df-f14dec8e8ac2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}},ExpressionUUID->"a7ed3cb2-bcbc-4eca-b929-\ 6edef2032723"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]2", "=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]1", ".", RowBox[{"Adjoint", "@", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}}, CellLabel-> "In[599]:=",ExpressionUUID->"5475811d-1699-4d6a-9bb0-0d4658bc2e7c"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[599]=",ExpressionUUID->"ea18d2cb-0761-4204-ae2b-189c8a1e65ed"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[600]=",ExpressionUUID->"2f4374f4-e8e3-4449-b0da-0fdcd6edac9d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.970733683820307*^9, 3.970733725260545*^9}}, CellLabel-> "In[601]:=",ExpressionUUID->"1585bf75-24b0-4051-9fd8-97e2761e9302"], Cell[BoxData["True"], "Output", CellLabel-> "Out[601]=",ExpressionUUID->"9cbe01f1-a1f4-4e8b-8e2a-efda110c6c19"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}, 3.970733791048154*^9},ExpressionUUID->"be0d6166-fba1-4a72-a672-\ e5301be1ce0b"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]3", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Pi]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", "\[Rho]2", ".", RowBox[{"Adjoint", "@", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Pi]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}, { 3.970733793750455*^9, 3.970733831144637*^9}}, CellLabel-> "In[602]:=",ExpressionUUID->"ce935df3-419f-41aa-850a-2c830a9ab8f5"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[602]=",ExpressionUUID->"79d4061e-de41-462f-b7ea-3311feac0538"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[603]=",ExpressionUUID->"10b2c67b-0a5b-4742-b520-3456c7d5ee71"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]4", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}, 3.970733791048154*^9, 3.970733871692173*^9},ExpressionUUID->"95921e5e-d3c5-4b40-8c16-\ 1b8160725355"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]4", "=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]3", ".", RowBox[{"Adjoint", "@", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}, { 3.970733793750455*^9, 3.970733831144637*^9}, {3.970733879584391*^9, 3.970733895198388*^9}}, CellLabel-> "In[604]:=",ExpressionUUID->"d34c07da-8e3a-4c14-a848-41b27f8700dc"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[604]=",ExpressionUUID->"24110bda-d010-47e4-9460-739b973844bb"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[605]=",ExpressionUUID->"d84545dc-b91b-4a20-8e11-1b47e6ee8488"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "==", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.97073396995294*^9, 3.970733996229995*^9}}, CellLabel-> "In[606]:=",ExpressionUUID->"0fdd2cec-e2fd-42b3-b1d8-9809304b4084"], Cell[BoxData["True"], "Output", CellLabel-> "Out[606]=",ExpressionUUID->"948c8e61-b203-4d74-b93b-6f32c8186a8c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970734020686849*^9, 3.970734029075924*^9}}, CellLabel-> "In[607]:=",ExpressionUUID->"14516dce-8f02-4038-8bda-a34a3b9000fd"], Cell[BoxData[ RowBox[{"-", "\[ImaginaryI]"}]], "Output", CellLabel-> "Out[607]=",ExpressionUUID->"6410fbdc-dceb-4b58-8684-d3a5d236696b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"4", ",", "2"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970734020686849*^9, 3.9707340383752327`*^9}}, CellLabel-> "In[608]:=",ExpressionUUID->"a76910d8-4066-46cb-9fa0-9e35237c2509"], Cell[BoxData["\[ImaginaryI]"], "Output", CellLabel-> "Out[608]=",ExpressionUUID->"64d92d98-ddea-4ce7-9c7a-a853f5897bae"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["spinorDQ", "Section", CellChangeTimes->{{3.970733768311295*^9, 3.970733769496619*^9}, { 3.970734051694418*^9, 3.9707340527320433`*^9}},ExpressionUUID->"f5cc1933-a66f-44b5-be64-\ fadd3c8fc953"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733741040708*^9}},ExpressionUUID->"797f66ac-4d8c-40ed-b404-\ 85dc0d53961f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.970733587628942*^9, 3.970733617842553*^9}}, CellLabel-> "In[609]:=",ExpressionUUID->"d0baed64-b188-4c08-a084-6ed1b0f2df28"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[609]=",ExpressionUUID->"71845184-d510-4f65-ad64-81b593d8a6b3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}},ExpressionUUID->"5257e732-3956-49c4-89ee-\ 6ec937640921"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]2", "=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]1", ".", RowBox[{"Adjoint", "@", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}}, CellLabel-> "In[610]:=",ExpressionUUID->"cf699703-0bd9-4a95-9089-d4e2136030ed"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[610]=",ExpressionUUID->"91c3d333-3431-4c5a-a641-1472064920f0"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[611]=",ExpressionUUID->"ea0d8ed1-c6ab-4b0e-98e3-c3b33f764b55"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.970733683820307*^9, 3.970733725260545*^9}}, CellLabel-> "In[612]:=",ExpressionUUID->"e1e63c77-76f5-4e2b-9126-e34537c38ad4"], Cell[BoxData["True"], "Output", CellLabel-> "Out[612]=",ExpressionUUID->"0d114524-27da-4464-aca7-e2ad89be3cb8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}, 3.970733791048154*^9},ExpressionUUID->"bab7feda-5a8c-47f2-b6cc-\ 5fc2ceae2a1a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"C12", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Pi]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.970734079413501*^9, 3.970734084177547*^9}}, CellLabel-> "In[613]:=",ExpressionUUID->"2829c1c7-c150-4d81-80a7-a3ad86acd7b2"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[613]=",ExpressionUUID->"ae2fe7f0-32f6-41ce-9f39-f7cb9ca5dd00"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]3", "=", RowBox[{"C12", ".", "\[Rho]2", ".", RowBox[{"Adjoint", "@", "C12"}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}, { 3.970733793750455*^9, 3.970733831144637*^9}, {3.970734070505251*^9, 3.9707340923996067`*^9}}, CellLabel-> "In[614]:=",ExpressionUUID->"660c61f9-0ef8-4bac-a5d7-6b2feab62811"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[614]=",ExpressionUUID->"fc6c26b2-a2f4-4340-b547-e77754ff4f8b"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[615]=",ExpressionUUID->"fd81e76e-384e-4561-b37f-38c1ac467691"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]4", "Subsection", CellChangeTimes->{{3.97073374038195*^9, 3.970733747729435*^9}, 3.970733791048154*^9, 3.970733871692173*^9},ExpressionUUID->"8659cb32-0479-448e-a4af-\ 221efd5974cb"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Rho]4", "=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]3", ".", RowBox[{"Adjoint", "@", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{"ExpressOperator", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.970733625996469*^9, 3.970733664212482*^9}, { 3.970733793750455*^9, 3.970733831144637*^9}, {3.970733879584391*^9, 3.970733895198388*^9}, {3.97073410871334*^9, 3.970734111696623*^9}}, CellLabel-> "In[616]:=",ExpressionUUID->"36b4f04c-ca6f-46a6-b09c-4d45dd079611"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[616]=",ExpressionUUID->"a60962e5-3115-4580-8ac3-15a10c2ae230"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[617]=",ExpressionUUID->"cf608bdf-150d-4e15-ba66-60efda516b7c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "==", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.97073396995294*^9, 3.970733996229995*^9}}, CellLabel-> "In[618]:=",ExpressionUUID->"72aba179-15cf-4933-ba46-1377e6a16246"], Cell[BoxData["True"], "Output", CellLabel-> "Out[618]=",ExpressionUUID->"d1665676-41fe-450e-a64a-1853a4cc6ab0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970734020686849*^9, 3.970734029075924*^9}}, CellLabel-> "In[619]:=",ExpressionUUID->"83db34b4-bd63-4a5a-be70-c5e3ea18eeff"], Cell[BoxData[ RowBox[{"-", "\[ImaginaryI]"}]], "Output", CellLabel-> "Out[619]=",ExpressionUUID->"29118599-2294-43ed-8c1c-dc06710bdc60"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"4", ",", "2"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970734020686849*^9, 3.9707340383752327`*^9}}, CellLabel-> "In[620]:=",ExpressionUUID->"614909e8-9a27-4edc-a582-d4546a5e19a9"], Cell[BoxData["\[ImaginaryI]"], "Output", CellLabel-> "Out[620]=",ExpressionUUID->"0f45030e-acf4-4bf8-a124-99285a73eaa8"] }, Open ]] }, Closed]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["PulsePol", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.9706403954132013`*^9, 3.970640395830967*^9}},ExpressionUUID->"fd55361a-209a-4705-a629-\ b95e0a0eabd6"], Cell[CellGroupData[{ Cell["scaling factors \[Kappa]", "Section", CellChangeTimes->{{3.964104881201468*^9, 3.964104884222802*^9}, 3.9641053512137823`*^9, {3.9641055270543327`*^9, 3.964105528508299*^9}},ExpressionUUID->"de9956ce-7ed3-44df-a384-\ 5895531d303f"], Cell[CellGroupData[{ Cell["new derivation for PulsePol basic element 90y-\[Tau]-180x-\[Tau]90y", \ "Subsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105225744646*^9}, { 3.9641053638491488`*^9, 3.964105365429331*^9}, {3.964105482154252*^9, 3.964105484445127*^9}, {3.96410584420643*^9, 3.9641058538079357`*^9}, { 3.964146804187456*^9, 3.964146834969098*^9}, {3.9643493502559557`*^9, 3.964349358271246*^9}},ExpressionUUID->"e1da7c73-61ff-4757-9b7d-\ cd11b61d9170"], Cell[CellGroupData[{ Cell["rf Propagator for basic element of duration \[Tau]R", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964255815728779*^9, 3.964255831640748*^9}, {3.9642558909186783`*^9, 3.964255896706644*^9}},ExpressionUUID->"7d9036f0-c8c1-4933-929d-\ d0a9859fd7f5"], Cell[BoxData[ RowBox[{ RowBox[{"Urf0", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", RowBox[{"\[Tau]R", "/", "2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], ",", RowBox[{ RowBox[{"\[Tau]R", "/", "2"}], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}], "}"}]}], "}"}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.964255823816115*^9, 3.964255905457793*^9}, { 3.9643493792569637`*^9, 3.964349385559317*^9}}, CellLabel-> "In[621]:=",ExpressionUUID->"21e8ecf8-6ef0-4d2e-8d77-f7f4c01ee1d2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Urf0", "[", "t", "]"}]], "Input", CellChangeTimes->{3.9642559181139517`*^9}, CellLabel-> "In[622]:=",ExpressionUUID->"17bc6438-fc21-432a-aed8-9b076f3e302f"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm], RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, { TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm], RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[622]=",ExpressionUUID->"aa37fdeb-9b3d-4770-8a1f-867915c707cf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["derive rf Euler", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964255815728779*^9, 3.964255831640748*^9}, {3.9642558909186783`*^9, 3.964255896706644*^9}, {3.964255985237948*^9, 3.964255988808528*^9}},ExpressionUUID->"d86ecef0-20e9-45c9-ac17-\ f0437acacfab"], Cell[BoxData[ RowBox[{ RowBox[{"U", "=", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.964256065951293*^9, 3.964256080366497*^9}, 3.964256323360474*^9}, CellLabel-> "In[623]:=",ExpressionUUID->"c1d3bd09-7a31-49bf-bcab-24babc5b32e2"], Cell[BoxData[{ RowBox[{ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", "ang_", "]"}], ":=", RowBox[{"RoundToSubmultipleOf\[Pi]", "[", RowBox[{"ang", ",", "36"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", RowBox[{"ang_", ",", "n_"}], "]"}], ":=", RowBox[{ RowBox[{"Round", "[", RowBox[{"ang", "/", RowBox[{"(", RowBox[{"\[Pi]", "/", "n"}], ")"}]}], "]"}], "*", RowBox[{"(", RowBox[{"\[Pi]", "/", "n"}], ")"}]}]}]}], "Input", CellChangeTimes->{{3.964257352729574*^9, 3.964257420712021*^9}, { 3.9642588644840803`*^9, 3.964258903788796*^9}}, CellLabel-> "In[624]:=",ExpressionUUID->"58676bbd-8408-4f7c-8b9d-c630f8e7855a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", "3.1", "]"}]], "Input", CellChangeTimes->{{3.964257426679492*^9, 3.964257437687461*^9}, { 3.9642589211095753`*^9, 3.964258927227663*^9}, {3.964258961667079*^9, 3.964259014031188*^9}}, CellLabel-> "In[626]:=",ExpressionUUID->"f6c5dc62-5839-40aa-a256-45f39f77a958"], Cell[BoxData["\[Pi]"], "Output", CellLabel-> "Out[626]=",ExpressionUUID->"2a1a08c3-e518-4070-9e88-c7f00029fb70"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"OperatorToEuler", "[", "U_", "]"}], ":=", RowBox[{"Map", "[", RowBox[{"RoundToSubmultipleOf\[Pi]", ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Reverse", "@", RowBox[{"AxesToEuler", "@", RowBox[{"Outer", "[", RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"U", ".", "#1", ".", RowBox[{"Adjoint", "[", "U", "]"}]}], "->", "#2"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}]}], "}"}]}], "]"}]}]}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9642561290874577`*^9, 3.96425619207092*^9}, { 3.96425655154058*^9, 3.964256573648122*^9}, {3.964257445841289*^9, 3.964257474846155*^9}, 3.964331935952899*^9}, CellLabel-> "In[627]:=",ExpressionUUID->"ffc0238e-f004-4b99-9ed1-638c6b6ab218"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.964256601579446*^9}}, CellLabel-> "In[628]:=",ExpressionUUID->"2d8a3d2f-ff3c-4706-a18f-c067b6ff83e5"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}]], "Output", CellLabel-> "Out[628]=",ExpressionUUID->"5f327b7d-9578-4fe3-8174-5b0ca9c37a48"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "180.`"}], "}"}]], "Output", CellLabel-> "Out[629]=",ExpressionUUID->"c227ee00-fbb3-4b74-8bef-ac0e4eb95659"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.9642566182494507`*^9}, 3.9643494857901506`*^9}, CellLabel-> "In[630]:=",ExpressionUUID->"844f98e6-bac8-4545-a546-df23d283d07c"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}]], "Output", CellLabel-> "Out[630]=",ExpressionUUID->"7e1cfe10-f152-4ee1-9deb-5bcbb4a86222"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "180.`"}], "}"}]], "Output", CellLabel-> "Out[631]=",ExpressionUUID->"f09ff701-f44f-4acc-bcc3-48af2ed3e8f8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.964256636545467*^9}, { 3.96434947695903*^9, 3.9643494802560062`*^9}}, CellLabel-> "In[632]:=",ExpressionUUID->"9f6e988c-f530-4adc-8ad3-e70f577cb2de"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "0"}], "}"}]], "Output", CellLabel-> "Out[632]=",ExpressionUUID->"31c46a8b-69e3-46a0-acbc-a57f66c9c7db"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "0.`"}], "}"}]], "Output", CellLabel-> "Out[633]=",ExpressionUUID->"2f9be4ad-46ce-460b-bb33-ef186c8f9573"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["rf Euler", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}},ExpressionUUID->"eb373707-621a-4cb1-9288-\ d903cf7aa51d"], Cell[BoxData[ RowBox[{ RowBox[{"\[CapitalOmega]rf0", "[", "t_", "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Piecewise", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", RowBox[{"\[Tau]R", "/", "2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"OperatorToEuler", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}], ",", RowBox[{ RowBox[{"\[Tau]R", "/", "2"}], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}], "}"}]}], "}"}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.964256712188922*^9, 3.964256796985009*^9}, 3.9643494398324003`*^9, {3.964349507816242*^9, 3.964349517085968*^9}}, CellLabel-> "In[634]:=",ExpressionUUID->"8d314d76-aa99-4520-b554-51ca01ee20ef"], Cell[BoxData[ RowBox[{ RowBox[{"\[Alpha]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "1"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, 3.964257200831918*^9}, CellLabel-> "In[635]:=",ExpressionUUID->"f53b0572-ae20-40c5-8366-a8810263a703"], Cell[BoxData[ RowBox[{ RowBox[{"\[Beta]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "2"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, {3.964257200831918*^9, 3.96425721873658*^9}}, CellLabel-> "In[636]:=",ExpressionUUID->"0134bd4e-bf91-4510-8f50-26552473444c"], Cell[BoxData[ RowBox[{ RowBox[{"\[Gamma]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "3"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, {3.964257200831918*^9, 3.964257226821866*^9}}, CellLabel-> "In[637]:=",ExpressionUUID->"960c6d97-ec2c-4ebd-873f-34c80247e0d5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{ 3.964257243063431*^9, {3.9642576763667183`*^9, 3.964257677970603*^9}}, CellLabel-> "In[638]:=",ExpressionUUID->"11e578c4-b4af-4486-bb54-c32107e0c475"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}], RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, { RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "0"}], "}"}], RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[638]=",ExpressionUUID->"20510ea2-33f6-4c4d-bf44-450edfb379f9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Alpha]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{3.964257243063431*^9}, CellLabel-> "In[639]:=",ExpressionUUID->"e32a3a46-f606-4754-b916-25b53356ca04"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"\[Pi]", RowBox[{ RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}], "||", RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[639]=",ExpressionUUID->"419bbf6b-3b14-406f-a76a-4d03b731c627"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Beta]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.964257243063431*^9, 3.9642572534313374`*^9}}, CellLabel-> "In[640]:=",ExpressionUUID->"c63047ae-37ad-4c5c-86c4-eefa65ca0ad0"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{"-", FractionBox["\[Pi]", "2"]}], RowBox[{ RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}], "||", RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[640]=",ExpressionUUID->"3089ac32-e0d0-4673-b2fd-ccfda8f4af71"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Gamma]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.964257243063431*^9, 3.964257263690803*^9}}, CellLabel-> "In[641]:=",ExpressionUUID->"d7609959-a560-4776-928f-53a7a7b5b669"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"\[Pi]", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[641]=",ExpressionUUID->"a4c7bd05-cca6-47d1-bea2-d95b94e692f3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["K factors (eq.37 of Sabba 2022)", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}, {3.970640461352921*^9, 3.970640464551746*^9}},ExpressionUUID->"d75b6dbd-3556-49ea-a9de-\ 7e8509b46ddd"], Cell[BoxData[ RowBox[{ RowBox[{"K", "[", RowBox[{"m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"\[Tau]R", "^", RowBox[{"(", RowBox[{"-", "1"}], ")"}]}], RowBox[{"Integrate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Wignerd", "[", RowBox[{"\[Lambda]", ",", RowBox[{"{", RowBox[{"\[Mu]", ",", "0"}], "}"}]}], "]"}], "[", RowBox[{"-", RowBox[{"\[Beta]rf0", "[", "t", "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{"I", RowBox[{"(", RowBox[{ RowBox[{"\[Mu]", " ", RowBox[{"\[Gamma]rf0", "[", "t", "]"}]}], "+", RowBox[{"m", " ", "\[Omega]J", " ", "t"}]}], ")"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]R"}], "}"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "\[Element]", "Reals"}], ",", RowBox[{"\[Tau]R", ">", "0"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]}]], "Input", CellChangeTimes->{{3.9641471091710052`*^9, 3.964147243953417*^9}, 3.964147306290182*^9, {3.96414812048209*^9, 3.964148130959465*^9}, { 3.964148176056793*^9, 3.9641481889045153`*^9}}, CellLabel-> "In[642]:=",ExpressionUUID->"b3166afc-2af0-4c05-bc7a-a1e8a728f4cb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]], "Input", CellChangeTimes->{{3.964147316264282*^9, 3.9641473172538357`*^9}}, CellLabel-> "In[643]:=",ExpressionUUID->"af6d8fe5-ada2-4596-bd37-3566dd8305b4"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"]}], RowBox[{ SqrtBox["2"], " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]], "Output", CellLabel-> "Out[643]=",ExpressionUUID->"b0366428-2b58-4647-9a74-38a6b9373748"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}]], "Input", CellChangeTimes->{3.96425798058283*^9}, CellLabel-> "In[644]:=",ExpressionUUID->"6109cd16-253e-45ed-8974-f87eb7ec9d5e"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "bigN", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "n", " ", "\[Pi]"}], "bigN"]]}], ")"}], "2"]}], RowBox[{"2", " ", SqrtBox["2"], " ", "n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[644]=",ExpressionUUID->"8849468a-b661-47f2-9a86-a90df93a6384"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.964258001879951*^9, {3.964332220669828*^9, 3.9643322267646933`*^9}}, CellLabel-> "In[645]:=",ExpressionUUID->"8ceecdbc-8d20-4e4a-8236-27a7d27519d9"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "3"], "+", FractionBox["\[ImaginaryI]", "3"]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}], "\[Pi]"]], "Output", CellLabel-> "Out[645]=",ExpressionUUID->"482ee2ca-aa26-4db5-b899-2b5fa5d90c33"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{3.9642580214845467`*^9}, CellLabel-> "In[646]:=",ExpressionUUID->"55b86a87-09b6-402c-a4f4-cee3b65cb1a4"], Cell[BoxData[ FractionBox["\[Pi]", "4"]], "Output", CellLabel-> "Out[646]=",ExpressionUUID->"9faaeb5c-3ea6-4bee-bbcd-6f9fec5c72bb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.964258045685547*^9, 3.9642580565836143`*^9}}, CellLabel-> "In[647]:=",ExpressionUUID->"867545be-3651-4937-9629-d1ae733bac34"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "4"]}]]], "Output", CellLabel-> "Out[647]=",ExpressionUUID->"7451e482-bf53-4728-be77-99a5ec3a3af0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellLabel-> "In[648]:=",ExpressionUUID->"187550cf-d339-4280-8b18-6346a7bff13b"], Cell[BoxData[ RowBox[{"-", FractionBox["\[Pi]", "4"]}]], "Output", CellLabel-> "Out[648]=",ExpressionUUID->"9e769a39-5c1b-4e3f-b727-9f3fdf260929"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Kappa] factors (eq.36 of Sabba 2022)", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}, {3.964147374045471*^9, 3.964147377674576*^9}, {3.970640491969554*^9, 3.9706404924707336`*^9}},ExpressionUUID->"fe5dbfb7-e47e-464a-8c23-\ 39c249328a7d"], Cell[BoxData[ RowBox[{"Clear", "[", "\[Kappa]", "]"}]], "Input", CellChangeTimes->{{3.964332485883819*^9, 3.964332488067111*^9}}, CellLabel-> "In[649]:=",ExpressionUUID->"6e53201c-29ed-4eb8-af1b-589bd3767b2c"], Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"l_", ",", "m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"m", ",", "\[Lambda]", ",", "\[Mu]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.964147384059618*^9, 3.9641474328396606`*^9}}, CellLabel-> "In[650]:=",ExpressionUUID->"dea224ad-3b6d-48f7-a975-8b471225f07e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.964258045685547*^9, 3.9642580565836143`*^9}}, CellLabel-> "In[651]:=",ExpressionUUID->"6e9f4202-d8c1-4441-8dfa-a3e52233de18"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "4"]}]]], "Output", CellLabel-> "Out[651]=",ExpressionUUID->"cdc659a5-745e-4316-829d-a6e5f6d3532f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellLabel-> "In[652]:=",ExpressionUUID->"704b1750-2439-472b-aada-ec05aa8ac734"], Cell[BoxData[ RowBox[{"-", FractionBox["\[Pi]", "4"]}]], "Output", CellLabel-> "Out[652]=",ExpressionUUID->"22cec113-374d-43f1-93e2-a4c88d6ccabb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Arg", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.964332343715365*^9, 3.964332348075358*^9}}, CellLabel-> "In[653]:=",ExpressionUUID->"657f829a-4cab-44bd-a813-24b47268528a"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "3"], "+", FractionBox["\[ImaginaryI]", "3"]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}], "\[Pi]"]], "Output", CellLabel-> "Out[653]=",ExpressionUUID->"62a5f762-5c92-4e4c-ab8f-9e127d77f279"], Cell[BoxData[ FractionBox["\[Pi]", "4"]], "Output", CellLabel-> "Out[654]=",ExpressionUUID->"b79bfef0-d757-49b5-b10f-5f021e5030c2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], ")"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Arg", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.964332366535212*^9, 3.964332431930401*^9}}, CellLabel-> "In[655]:=",ExpressionUUID->"b857c4af-2ebb-4cdc-b086-c83bf7e9f69c"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[655]=",ExpressionUUID->"af92bba0-ba6c-4b9f-b7e1-c9895727b191"], Cell[BoxData["0"], "Output", CellLabel-> "Out[656]=",ExpressionUUID->"82f09a80-39d3-4ec6-a931-8d466ae78b64"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{3.964332471048263*^9}, CellLabel-> "In[657]:=",ExpressionUUID->"44da7387-707f-4f22-9c51-69e14a0def02"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[657]=",ExpressionUUID->"78214764-b3e3-4317-9f98-af5d3c90fa73"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}]], "Input", CellChangeTimes->{{3.964147440325817*^9, 3.964147442383706*^9}}, CellLabel-> "In[658]:=",ExpressionUUID->"b2c76a4a-477c-4e6f-9ce7-926b58f2e438"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"}], "bigN"]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"]}], RowBox[{ SqrtBox["2"], " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]], "Output", CellLabel-> "Out[658]=",ExpressionUUID->"3e815371-2f47-4562-8322-484ac8a55571"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964147460529414*^9, 3.964147532033119*^9}, { 3.96416248861728*^9, 3.964162496851832*^9}, {3.9642590638647957`*^9, 3.9642590685876007`*^9}}, CellLabel-> "In[659]:=",ExpressionUUID->"2d2e2953-12d2-4860-a422-85dde0b7413f"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[659]=",ExpressionUUID->"8bd9a7b4-ff09-4cd4-9c63-04a8040505cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Abs", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "N"}]], "Input", CellChangeTimes->{{3.964147545240823*^9, 3.9641475521041393`*^9}, 3.964162503092874*^9}, CellLabel-> "In[660]:=",ExpressionUUID->"bbbc513e-7693-41ba-b182-4a8af514e38b"], Cell[BoxData["0.5123120295082291`"], "Output", CellLabel-> "Out[660]=",ExpressionUUID->"b582dffc-941b-40c4-9ddd-b87966182e00"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.964148207166089*^9, 3.964148219362404*^9}, { 3.964162509428624*^9, 3.9641625171582747`*^9}}, CellLabel-> "In[661]:=",ExpressionUUID->"2f25a853-ec55-4b5d-8a4c-93eb00f29832"], Cell[BoxData["0"], "Output", CellLabel-> "Out[661]=",ExpressionUUID->"c3314344-b49f-414c-adbf-a03af45b4bc4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.9642590906815653`*^9, 3.964259092812952*^9}}, CellLabel-> "In[662]:=",ExpressionUUID->"c5063600-cb86-4846-92f6-f401ba34d8e9"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]}]], "Output", CellLabel-> "Out[662]=",ExpressionUUID->"32aea556-8537-471e-a866-9272c625f299"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["propagation with R431", "Section", CellChangeTimes->{{3.964104881201468*^9, 3.964104884222802*^9}, 3.9641053512137823`*^9, {3.9641055270543327`*^9, 3.964105528508299*^9}, { 3.964331887714327*^9, 3.96433189395383*^9}},ExpressionUUID->"c9a9eab0-2f3f-4aad-9227-\ a8574dde2c2a"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825099185545*^9}},ExpressionUUID->"7dd09e84-c60c-421c-bbfd-\ d9fd97d95f5e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.9638251244560013`*^9, 3.963825132750079*^9}}, CellLabel-> "In[663]:=",ExpressionUUID->"2f534a13-74f0-4ca8-978e-fd8183a3e18b"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[663]=",ExpressionUUID->"b52fb34a-3b3f-42bd-b9bc-1b67e1d3dc16"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]1", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825181640724*^9}}, CellLabel-> "In[664]:=",ExpressionUUID->"76cc1b07-f9d3-4e15-8714-8b86730f241c"], Cell[BoxData["True"], "Output", CellLabel-> "Out[664]=",ExpressionUUID->"a4aa7337-0ce1-4e15-a256-f8284224f4fd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}},ExpressionUUID->"884618ee-77bc-47d1-b60a-\ ccf4a5ce8078"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]2", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}}, CellLabel-> "In[665]:=",ExpressionUUID->"302193a5-eda9-4963-8972-2c5ac626c787"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[665]=",ExpressionUUID->"00ff5560-f8ba-42ab-9866-8f8138df8ac1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}}, CellLabel-> "In[666]:=",ExpressionUUID->"4103190e-9125-4d5e-acf9-ff5adc379690"], Cell[BoxData["True"], "Output", CellLabel-> "Out[666]=",ExpressionUUID->"fffb5c47-f943-430d-b69e-cad085503d10"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825278157222*^9, 3.963825318508017*^9}}, CellLabel-> "In[667]:=",ExpressionUUID->"8a26f1cf-e044-4395-8801-befaeaea0556"], Cell[BoxData["True"], "Output", CellLabel-> "Out[667]=",ExpressionUUID->"be3ec482-32b7-4e9d-9360-6f87e66e3a01"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}},ExpressionUUID->"fde8a8e5-a356-4f0f-bc67-\ 1c89a670f1d3"], Cell[BoxData[ RowBox[{ RowBox[{"Rx12", "[", "\[Beta]_", "]"}], ":=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Beta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825339200245*^9, 3.9638253827131557`*^9}, { 3.963845456135232*^9, 3.963845465680891*^9}, {3.9643325783792763`*^9, 3.9643325997436113`*^9}, {3.9643497747300863`*^9, 3.964349778654896*^9}}, CellLabel-> "In[668]:=",ExpressionUUID->"36ce9884-740f-4097-9795-160c31c2ef16"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]3", "=", RowBox[{ RowBox[{"Rx12", "[", "\[Beta]", "]"}], ".", "\[Rho]2", ".", RowBox[{"Adjoint", "[", RowBox[{"Rx12", "[", "\[Beta]", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.963825390400277*^9, 3.96382541651367*^9}, { 3.9638454744998283`*^9, 3.963845476079973*^9}, {3.964332605749374*^9, 3.964332616329121*^9}, {3.9643497829994087`*^9, 3.964349785406869*^9}}, CellLabel-> "In[669]:=",ExpressionUUID->"19b5e9a3-2db7-41de-8905-ea18a1695bcd"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[669]=",ExpressionUUID->"9ac97a88-3517-4d21-9800-2d579a25436f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]3", ",", RowBox[{"CartesianProductOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.964332631506423*^9, 3.964332643030121*^9}}, CellLabel-> "In[670]:=",ExpressionUUID->"17c1a6ff-0337-423a-9faf-a86118daefc3"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}]], "Output", CellLabel-> "Out[670]=",ExpressionUUID->"21cfafee-18f2-40cb-93d1-c9695e316d7e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}]}], "==", "\[IndentingNewLine]", RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], "+", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}]}], ")"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}, { 3.963825496971867*^9, 3.963825508954565*^9}, {3.963845485751045*^9, 3.9638454962000303`*^9}, {3.9643327098992968`*^9, 3.964332767636991*^9}, { 3.9643498046468887`*^9, 3.9643498106004763`*^9}}, CellLabel-> "In[671]:=",ExpressionUUID->"6bc68dad-0275-4767-9ca2-637df6befd1e"], Cell[BoxData["True"], "Output", CellLabel-> "Out[671]=",ExpressionUUID->"aa6b1635-254b-4050-a89f-7d28e89e7bcc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]4", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}, { 3.970640707997675*^9, 3.97064070817794*^9}},ExpressionUUID->"0a29f736-d1f6-444d-881a-\ 2bb6d82da1ae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]4", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]3", ".", RowBox[{"Adjoint", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9706407214151287`*^9, 3.970640770857437*^9}}, CellLabel-> "In[672]:=",ExpressionUUID->"a64f6b88-3f0e-4e8f-828a-ee6a425a8bf1"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], "-", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], "-", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}]], "Output", CellLabel-> "Out[672]=",ExpressionUUID->"86156fdc-e739-41cb-8093-ab24074a35e6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]4", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.970640780427628*^9, 3.970640798533457*^9}}, CellLabel-> "In[673]:=",ExpressionUUID->"8bef9de1-6e76-465a-bda9-747cbb21fcdc"], Cell[BoxData[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}]], "Output", CellLabel-> "Out[673]=",ExpressionUUID->"24b3ceb9-0d8f-4542-b768-b7a95922f0df"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["aDQ[\[OpenCurlyDoubleQuote]PulsePol\[CloseCurlyDoubleQuote]]", \ "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}, { 3.970640707997675*^9, 3.97064070817794*^9}, {3.97064082117982*^9, 3.970640826431836*^9}},ExpressionUUID->"3060a8e6-b9fa-4c2f-ab98-\ fc95459fc11a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "]"}]}]], "Input", CellChangeTimes->{{3.970640831601307*^9, 3.970640881998735*^9}}, CellLabel-> "In[674]:=",ExpressionUUID->"be87a9ed-4b00-460b-93b3-d1615d3d45c4"], Cell[BoxData[ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}]], "Output", CellLabel-> "Out[674]=",ExpressionUUID->"635d7d5b-81b3-45d9-a71d-e402a7b44366"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["aDQF[\[OpenCurlyDoubleQuote]PulsePol\[CloseCurlyDoubleQuote]]", \ "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}, { 3.970640707997675*^9, 3.97064070817794*^9}, {3.97064082117982*^9, 3.970640826431836*^9}, 3.970640896862056*^9},ExpressionUUID->"c8876369-2611-4290-bba7-\ a0dc660b870d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "=", RowBox[{"ComplexExpand", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{"aDQ", "[", "\"\\"", "]"}], "]"}], "^", "2"}], "]"}]}]], "Input", CellChangeTimes->{{3.970640831601307*^9, 3.970640923429986*^9}}, CellLabel-> "In[675]:=",ExpressionUUID->"d5203839-a195-4c17-af0e-8232460fb3db"], Cell[BoxData[ SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "4"]], "Output", CellLabel-> "Out[675]=",ExpressionUUID->"b5547ead-aaae-4f93-9c3a-44906b8e318f"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.9706403954132013`*^9, 3.970640395830967*^9}, { 3.970640943709763*^9, 3.970640944490295*^9}},ExpressionUUID->"9d2c13cf-f861-464b-be20-\ 690d742dae44"], Cell[CellGroupData[{ Cell["terms", "Section", CellChangeTimes->{{3.9706422192541723`*^9, 3.970642229964279*^9}, { 3.9707397140949917`*^9, 3.970739714814237*^9}},ExpressionUUID->"d6a50bd8-483d-424c-91f7-\ b2539929fc74"], Cell[CellGroupData[{ Cell[TextData[{ "W (eq.76 ", StyleBox["[251029]", FontSize->16], ")" }], "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.970738281624751*^9, 3.9707383041522903`*^9}},ExpressionUUID->"b70492a0-3773-4dae-9b95-\ cfc01e2cbcb5"], Cell[BoxData[ RowBox[{ RowBox[{"W", "[", "t_", "]"}], ":=", " ", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\<-y\>\""}], "}"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HJ", " ", "t"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]J"}], " ", "t"}], ",", "\"\\""}], "}"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.970640969393902*^9, 3.9706410399372673`*^9}}, CellLabel-> "In[676]:=",ExpressionUUID->"d33d70e5-3310-4e71-94da-f6af61d80009"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"W", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.970641021534234*^9, 3.970641022534267*^9}}, CellLabel-> "In[677]:=",ExpressionUUID->"8c5158e8-8d4f-43d3-a6f2-2f6aa15841a7"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[677]=",ExpressionUUID->"0c72ee74-b6c6-4966-b3f9-5ed17e67ed70"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "H\[CapitalDelta]tilde (eq.83 ", StyleBox["[251029]", FontSize->16], ")" }], "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.97064136327728*^9, { 3.970738334092119*^9, 3.970738358071906*^9}},ExpressionUUID->"4498393b-2bb5-4a41-8513-\ 565bf79c624f"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", "H\[CapitalDelta]", ".", RowBox[{"W", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.970641275624976*^9, 3.9706413045204897`*^9}, { 3.970641651504409*^9, 3.970641655322432*^9}}, CellLabel-> "In[678]:=",ExpressionUUID->"37577eb7-834b-46d0-b6c0-76b89e8cbffd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.970641310504477*^9}, CellLabel-> "In[679]:=",ExpressionUUID->"a73509e6-f422-43ac-966d-90bccdd3a0de"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "-", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[679]=",ExpressionUUID->"db7200e5-cd3e-4e84-846b-327b2e7c6251"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}}, CellLabel-> "In[680]:=",ExpressionUUID->"e9db4b91-db27-49fb-8687-aab5b81a75a1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}]}], "}"}]], "Output", CellLabel-> "Out[680]=",ExpressionUUID->"37320978-8218-4156-be1e-57a2e65efe4a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ExpToTrig", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.970641408379081*^9, 3.97064142229877*^9}}, CellLabel-> "In[681]:=",ExpressionUUID->"5e5dbffb-5137-4d50-ad3f-40a9e51c51f9"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "2"]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"Sin", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[681]=",ExpressionUUID->"4559c35f-3bab-4c1e-a947-d1aed4fb18d9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "H\[CapitalSigma]tilde (eq.83 ", StyleBox["[251029]", FontSize->16], ")" }], "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.970738366281786*^9}},ExpressionUUID->"0c9d9692-d1fc-47fe-907c-\ 50a7f1127b34"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", "H\[CapitalSigma]", ".", RowBox[{"W", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.970641275624976*^9, 3.970641337835032*^9}, { 3.970641631385697*^9, 3.970641638481979*^9}}, CellLabel-> "In[682]:=",ExpressionUUID->"4e0ecad8-db4b-4c60-9fac-548042a9d8f7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.970641310504477*^9, 3.970641341574252*^9}, CellLabel-> "In[683]:=",ExpressionUUID->"2af70cb5-4322-4063-82f3-f44a5cc00638"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[683]=",ExpressionUUID->"14dc2ea4-2621-466e-ae5a-9f3f13337152"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641581889613*^9, 3.970641609544393*^9}}, CellLabel-> "In[684]:=",ExpressionUUID->"83b377aa-b69d-471f-b2c9-59d7f95fbe35"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], ",", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[684]=",ExpressionUUID->"bf9c9644-072b-4a0a-a3aa-cd11106c2606"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ExpToTrig", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.970641408379081*^9, 3.97064142229877*^9}}, CellLabel-> "In[685]:=",ExpressionUUID->"93bfcbe8-3f27-4e5d-b3e1-8cb137f9e2ab"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ",", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"Cos", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[685]=",ExpressionUUID->"e81091bd-1bc3-4974-9060-74a633b10e1d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ "Hbar (eq.85 ", StyleBox["[251029]", FontSize->16], ")" }], "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.9707384095009947`*^9}},ExpressionUUID->"f222a4cd-baf2-45c3-b0bf-\ 3fb7dcb0fe85"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Hbar", "=", RowBox[{ RowBox[{ RowBox[{"-", "\[Kappa]"}], " ", "\[Omega]\[CapitalDelta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "-", RowBox[{"\[Epsilon]rf", " ", "\[Omega]J", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.970738412776*^9, 3.9707384493613453`*^9}}, CellLabel-> "In[686]:=",ExpressionUUID->"23390f0b-c907-4ff0-a49e-f62794ce7a4e"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "\[Kappa]"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ")"}]}], "-", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}]}]], "Output", CellLabel-> "Out[686]=",ExpressionUUID->"f87ce154-cd56-4758-8320-504ca727548a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "@", "Hbar"}]], "Input", CellChangeTimes->{{3.970738459198925*^9, 3.970738462096723*^9}}, CellLabel-> "In[687]:=",ExpressionUUID->"ae18be47-eace-4cd6-8a7b-2a28b9570ac3"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], SqrtBox["2"]], "+", FractionBox[ RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]}]], "Output", CellLabel-> "Out[687]=",ExpressionUUID->"6d3663fe-cc85-44dc-8a91-2174a6d25bf8"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["SLIC(a)", "Section", CellChangeTimes->{{3.970739396859899*^9, 3.970739397639347*^9}, { 3.970739441605235*^9, 3.9707394473191833`*^9}},ExpressionUUID->"8d114983-35de-441b-bf11-\ bffc88503ef5"], Cell[CellGroupData[{ Cell[TextData[{ "eq.87 ", StyleBox["[251029]", FontSize->16] }], "Subsubsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.9707384095009947`*^9}, {3.970738494811262*^9, 3.970738507790066*^9}, {3.970739401375966*^9, 3.9707394031033087`*^9}},ExpressionUUID->"d65e5790-3b35-4685-ac72-\ 1a20d540b418"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Adjoint", "@", RowBox[{"W", "[", "0", "]"}]}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"W", "[", "0", "]"}]}]], "Input", CellChangeTimes->{{3.9707385124912643`*^9, 3.9707385283149443`*^9}, { 3.9707385873696527`*^9, 3.970738588742692*^9}}, CellLabel-> "In[688]:=",ExpressionUUID->"ef3eeb52-9cf6-41c6-b90d-314acdde48b4"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[688]=",ExpressionUUID->"f8d329bc-a680-4efb-8ada-41bc3330f5a3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.970738631667674*^9, 3.9707386361468277`*^9}}, CellLabel-> "In[689]:=",ExpressionUUID->"984c986e-25dd-4074-9d10-3da2c394c23c"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[689]=",ExpressionUUID->"1a4d4454-065e-41ea-bdf7-0151bbc763cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "==", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.970738535291657*^9, 3.970738576336447*^9}}, CellLabel-> "In[690]:=",ExpressionUUID->"e4a66a2d-1361-4113-8cc3-9e756c6510bc"], Cell[BoxData["True"], "Output", CellLabel-> "Out[690]=",ExpressionUUID->"a2b00cda-9b49-40c0-8aae-de72fd01172e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "eqs.90 to 92 ", StyleBox["[251029]", FontSize->16] }], "Subsubsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.9707384095009947`*^9}, {3.970738494811262*^9, 3.970738507790066*^9}, {3.970738609175475*^9, 3.970738618778369*^9}, { 3.9707391843516817`*^9, 3.970739188299259*^9}, {3.970739408546665*^9, 3.970739410058621*^9}},ExpressionUUID->"4af4c8ec-be67-460f-99a8-\ fffcd4936eab"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"R12", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "Hbar", " ", "T"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]rf", "->", "0"}], ",", RowBox[{"T", "->", RowBox[{ RowBox[{"-", "\[Beta]12"}], "/", RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", " ", "\[Kappa]"}], ")"}]}]}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.970738651768608*^9, 3.970738665068039*^9}, { 3.970738696297196*^9, 3.970738853594097*^9}, {3.9707388845758667`*^9, 3.970738888960967*^9}, {3.970738938387082*^9, 3.970739025880122*^9}}, CellLabel-> "In[691]:=",ExpressionUUID->"a320ea03-71d3-48d6-952d-6f88cf198da5"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[691]=",ExpressionUUID->"d93167db-f460-4160-86ad-d1455fab097f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"R12", ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "[", "R12", "]"}]}], "->", "#"}], "\[IndentingNewLine]", "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970739031508687*^9, 3.970739107772344*^9}}, CellLabel-> "In[692]:=",ExpressionUUID->"7b4ef71b-ab08-4430-b5cc-0073ae19e59a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SqrtBox["2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}]}], ",", RowBox[{ SqrtBox["2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], ",", SqrtBox["2"]}], "}"}]], "Output", CellLabel-> "Out[692]=",ExpressionUUID->"64e763d6-258a-4c3b-b9f5-827fdc2ad433"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"R12", ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "[", "R12", "]"}]}], "/.", RowBox[{"\[Beta]12", "->", RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}]}]}], ")"}], "->", "#"}], "\[IndentingNewLine]", "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970739130240741*^9, 3.970739172070524*^9}}, CellLabel-> "In[693]:=",ExpressionUUID->"a678c525-aff5-4b47-b9d7-ba0a5c3bb430"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox["2"]}], ",", "0", ",", SqrtBox["2"]}], "}"}]], "Output", CellLabel-> "Out[693]=",ExpressionUUID->"7be8dbe9-ab79-4ab1-a49b-d773decee9f7"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "eq.93 ", StyleBox["[251029]", FontSize->16] }], "Subsubsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.9707384095009947`*^9}, {3.970738494811262*^9, 3.970738507790066*^9}, {3.970738609175475*^9, 3.970738618778369*^9}, { 3.9707391843516817`*^9, 3.970739216770186*^9}, {3.970739415070573*^9, 3.97073941676606*^9}},ExpressionUUID->"6948a782-29ce-48b5-9cac-\ 5e443c2d22f1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "=", RowBox[{ RowBox[{"W", "[", "T", "]"}], ".", "R12", ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "[", "R12", "]"}], ".", RowBox[{"Adjoint", "@", RowBox[{"W", "[", "T", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.9707392440689173`*^9, 3.9707392764844418`*^9}, { 3.9707396302740383`*^9, 3.97073963508925*^9}}, CellLabel-> "In[694]:=",ExpressionUUID->"e185dd7d-525a-4c56-867e-aa5e22687c44"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[694]=",ExpressionUUID->"8d50ac19-d453-4adc-9cfc-2446a6c06e72"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.970739287357417*^9, 3.9707393179535646`*^9}, 3.970739643036113*^9}, CellLabel-> "In[695]:=",ExpressionUUID->"40fbbfb9-12ea-4ff5-a1d4-ab8241514ef0"], Cell[BoxData[ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[695]=",ExpressionUUID->"326474a0-8708-4aeb-8393-7f920049c90d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "eq.94 ", StyleBox["[251029]", FontSize->16] }], "Subsubsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9, { 3.9707383660510807`*^9, 3.9707384095009947`*^9}, {3.970738494811262*^9, 3.970738507790066*^9}, {3.970738609175475*^9, 3.970738618778369*^9}, { 3.9707391843516817`*^9, 3.970739216770186*^9}, {3.970739343270772*^9, 3.970739347053043*^9}},ExpressionUUID->"de92f839-59a7-49b9-8a4e-\ 94740ea39da7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "//", "ExpToTrig"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.970739351688699*^9, 3.9707393832450933`*^9}, 3.970739647251031*^9}, CellLabel-> "In[696]:=",ExpressionUUID->"246e9b05-bf8c-4dfd-a1ea-d233c0b8a3ba"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[696]=",ExpressionUUID->"20547b1f-83f5-4a4a-aec5-376f98684b58"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SLIC(b)", "Section", CellChangeTimes->{{3.970739396859899*^9, 3.970739397639347*^9}, { 3.970739441605235*^9, 3.9707394473191833`*^9}, 3.9707394797456217`*^9},ExpressionUUID->"381cf675-c970-44c2-b531-\ c6e6ce4fc73c"], Cell["add a (\[Pi]/2)x pulse on the end", "Text", CellChangeTimes->{{3.9707395648583183`*^9, 3.9707395757476807`*^9}},ExpressionUUID->"f55f9a49-9671-4f9b-8c1b-\ 77d8a96cb12b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.9707395002002497`*^9, 3.970739517365296*^9}, { 3.970739656628878*^9, 3.9707396750372553`*^9}}, CellLabel-> "In[697]:=",ExpressionUUID->"409246af-207b-43d9-95ec-306c5c85917f"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "T"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]12", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[697]=",ExpressionUUID->"12153ec8-e1a5-4067-82d2-c1ecf462c1ae"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{3.970739682268896*^9}, CellLabel-> "In[698]:=",ExpressionUUID->"3fd64bbe-3f8b-4688-a541-186120f02fd5"], Cell[BoxData[ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Cos", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"]}]], "Output", CellLabel-> "Out[698]=",ExpressionUUID->"75ee9092-417c-4f5e-af88-71b61a4cb803"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]f", "[", "\"\\"", "]"}], "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "//", "ExpToTrig"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.970739351688699*^9, 3.9707393832450933`*^9}, 3.970739544997828*^9, 3.97073968754916*^9}, CellLabel-> "In[699]:=",ExpressionUUID->"b2ea2d78-6b83-41d8-9c39-0ae7d83d9120"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"]}]], "Output", CellLabel-> "Out[699]=",ExpressionUUID->"2979d014-d49f-4433-8bed-2f2dcfe5a69a"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["more", "Title", CellChangeTimes->{{3.970733352440103*^9, 3.970733353082137*^9}},ExpressionUUID->"057bfdac-6ed8-41f6-8b13-\ 9024673a3f2a"], Cell[CellGroupData[{ Cell["SLIC", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.9706403954132013`*^9, 3.970640395830967*^9}, { 3.970640943709763*^9, 3.970640944490295*^9}},ExpressionUUID->"c098ec99-bdb1-418c-98b3-\ 6016f378934d"], Cell[CellGroupData[{ Cell["general", "Section", CellChangeTimes->{{3.9706422192541723`*^9, 3.970642229964279*^9}},ExpressionUUID->"c5083c23-9b3f-45cd-948b-\ c8b68fe69dfa"], Cell[CellGroupData[{ Cell["W transformation", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}},ExpressionUUID->"cce3e464-a190-4537-a4e3-\ 818422b05d3c"], Cell[BoxData[ RowBox[{ RowBox[{"W", "[", "t_", "]"}], ":=", " ", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\<-y\>\""}], "}"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HJ", " ", "t"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]J"}], " ", "t"}], ",", "\"\\""}], "}"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.970640969393902*^9, 3.9706410399372673`*^9}}, CellLabel-> "In[700]:=",ExpressionUUID->"49325eca-2b25-4b73-b817-c55f0d9bef8b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"W", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.970641021534234*^9, 3.970641022534267*^9}}, CellLabel-> "In[701]:=",ExpressionUUID->"3d175cf1-2c16-4a0e-a716-ae4c282a28c9"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[701]=",ExpressionUUID->"fed5c4c0-7075-471f-b306-55435db90c2a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["H\[CapitalDelta]tilde", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.97064136327728*^9},ExpressionUUID->"5a83f04d-83d2-473e-812f-\ f884d9ecd109"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", "H\[CapitalDelta]", ".", RowBox[{"W", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.970641275624976*^9, 3.9706413045204897`*^9}, { 3.970641651504409*^9, 3.970641655322432*^9}}, CellLabel-> "In[702]:=",ExpressionUUID->"e20bd37b-7218-4ab5-9cb1-c765e3e31adf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.970641310504477*^9}, CellLabel-> "In[703]:=",ExpressionUUID->"2030d1dc-9811-4f8c-89ef-679ccc51d203"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "-", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[703]=",ExpressionUUID->"b9a5a761-e4ed-4d46-aa89-36f83b44a0ec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}}, CellLabel-> "In[704]:=",ExpressionUUID->"a502baf4-8552-440c-95c5-e550843f0b19"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}]}], "}"}]], "Output", CellLabel-> "Out[704]=",ExpressionUUID->"b7229691-a282-41ce-ab42-01a2e7924671"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ExpToTrig", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.970641408379081*^9, 3.97064142229877*^9}}, CellLabel-> "In[705]:=",ExpressionUUID->"edfc3fff-0243-4cb4-867c-e001cf76e2f8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "2"]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ",", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], ",", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"Sin", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[705]=",ExpressionUUID->"ff92f746-1a5b-4a7a-9d6e-20213e21e341"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["H\[CapitalSigma]tilde", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706412606141157`*^9, 3.970641272396864*^9}, 3.970641360738852*^9},ExpressionUUID->"2c666ce3-a266-4222-9a2d-\ d8c70c6ed520"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", "H\[CapitalSigma]", ".", RowBox[{"W", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.970641275624976*^9, 3.970641337835032*^9}, { 3.970641631385697*^9, 3.970641638481979*^9}}, CellLabel-> "In[706]:=",ExpressionUUID->"10be30f4-a859-4d14-9198-227a072350ae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.970641310504477*^9, 3.970641341574252*^9}, CellLabel-> "In[707]:=",ExpressionUUID->"df102cbb-0231-4075-b2c5-16a94a78f070"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[707]=",ExpressionUUID->"052b8d7d-e86e-4c80-a800-57c3013a8490"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641581889613*^9, 3.970641609544393*^9}}, CellLabel-> "In[708]:=",ExpressionUUID->"c8b7cdb4-6199-45fa-b31e-b81a6915912f"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], ",", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"3", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "+", RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[708]=",ExpressionUUID->"1f98ad50-a7a0-4c2c-b5ea-0bb1a73ca6d1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ExpToTrig", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.970641408379081*^9, 3.97064142229877*^9}}, CellLabel-> "In[709]:=",ExpressionUUID->"34c9bc82-0e0c-41b4-8777-ca130233f1a9"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ",", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"Cos", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "}"}]], "Output", CellLabel-> "Out[709]=",ExpressionUUID->"94408f33-cf2a-424d-a6f8-fca9dfe5b34e"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["SLIC(a) [with exact rf field]", "Section", CellChangeTimes->{{3.9706422192541723`*^9, 3.970642221340502*^9}, { 3.970642381421338*^9, 3.970642388904207*^9}},ExpressionUUID->"6ccec5f3-aada-455d-a5ea-\ 22c429aab9d1"], Cell[CellGroupData[{ Cell["step 1 (eq.84 [v251028])", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}},ExpressionUUID->"e1110006-15d0-4720-a09a-\ 4b9dcecbdcda"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "0", "]"}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"W", "[", "0", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.970641715312228*^9, 3.970641742459118*^9}}, CellLabel-> "In[710]:=",ExpressionUUID->"dd4d3008-74ef-484f-a7c8-efe72c2d2b76"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[710]=",ExpressionUUID->"42c815d5-c7de-461e-8078-79168dd0703d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"%", "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641766248693*^9, 3.970641784773143*^9}}, CellLabel-> "In[711]:=",ExpressionUUID->"fbc287f2-8b5a-434e-bc18-bb08b8825eea"], Cell[BoxData[ RowBox[{"{", RowBox[{ SqrtBox["2"], ",", SqrtBox["2"]}], "}"}]], "Output", CellLabel-> "Out[711]=",ExpressionUUID->"78942ece-81e5-4e03-ab85-1893da3e3b93"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["step 2 (eq.89 [v251028])", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}, {3.970641834919025*^9, 3.970641840290991*^9}},ExpressionUUID->"a0a415a7-db8d-4982-ad20-\ 6d2b352d9880"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Beta]12", "=", RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}]}]], "Input", CellChangeTimes->{{3.97064184871406*^9, 3.9706418517711563`*^9}, 3.9706419373259277`*^9}, CellLabel-> "In[712]:=",ExpressionUUID->"94d37d06-bcef-4b99-956b-6c932a7cae51"], Cell[BoxData[ RowBox[{ RowBox[{"-", "2"}], " ", "\[Pi]"}]], "Output", CellLabel-> "Out[712]=",ExpressionUUID->"f5b742fc-b02d-4672-86d7-fbf253f38c04"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Beta]12", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "\[Beta]12", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.970641715312228*^9, 3.970641742459118*^9}, { 3.9706418631964483`*^9, 3.97064190836493*^9}}, CellLabel-> "In[713]:=",ExpressionUUID->"0cca5390-7e5b-44fc-b366-1af541b36fc6"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[713]=",ExpressionUUID->"2d107eb1-4907-43c2-bb94-ea727abb0a72"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"%", "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641766248693*^9, 3.970641784773143*^9}}, CellLabel-> "In[714]:=",ExpressionUUID->"08053377-b1fd-4f81-a3b9-9ba341da6e47"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox["2"]}], ",", SqrtBox["2"]}], "}"}]], "Output", CellLabel-> "Out[714]=",ExpressionUUID->"65f8434b-fcb3-4cfc-a27f-8df13cdb687d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["step 3", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}, {3.970641834919025*^9, 3.970641840290991*^9}, { 3.970641962748809*^9, 3.970641970367922*^9}, {3.97064241564843*^9, 3.9706424190537367`*^9}, {3.9706479120203743`*^9, 3.970647933359219*^9}},ExpressionUUID->"a7099b0d-b428-42e5-8521-\ 36577a080d74"], Cell[BoxData[ RowBox[{"Clear", "[", "\[Beta]12", "]"}]], "Input", CellChangeTimes->{{3.97064198202883*^9, 3.970641984738492*^9}}, CellLabel-> "In[715]:=",ExpressionUUID->"4d5b9290-8a5f-4390-a4e7-5052ed10d9d4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"W", "[", "T", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Beta]12", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "\[Beta]12", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Adjoint", "[", RowBox[{"W", "[", "T", "]"}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9706420575289593`*^9, 3.970642073668934*^9}}, CellLabel-> "In[716]:=",ExpressionUUID->"ab9e026e-85cf-43f2-8850-4d1d8e20280c"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]12", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], SqrtBox["2"]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]12", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], "Output", CellLabel-> "Out[716]=",ExpressionUUID->"8620d825-ed4c-4fe3-b1e2-0691a612f10f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["aDQ: eq.90 [v251028]", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}, {3.970641834919025*^9, 3.970641840290991*^9}, { 3.970641962748809*^9, 3.970641970367922*^9}, {3.97064241564843*^9, 3.9706424190537367`*^9}, {3.9706479120203743`*^9, 3.970647927603998*^9}},ExpressionUUID->"49619ec3-94bc-4700-bfef-\ dd47a2075a71"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"%", "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641766248693*^9, 3.970641784773143*^9}, {3.970642008221858*^9, 3.970642013457554*^9}}, CellLabel-> "In[717]:=",ExpressionUUID->"b291cb48-894d-4a64-8fc4-0eb3a1be4675"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"]}], "}"}]], "Output", CellLabel-> "Out[717]=",ExpressionUUID->"53fad9c0-e5f3-4cb8-864d-17e106f3da2f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpToTrig", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.9706420998563013`*^9, 3.970642106921599*^9}}, CellLabel-> "In[718]:=",ExpressionUUID->"d8aa4034-7df4-4688-8426-086371e1d0b1"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", RowBox[{"2", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"2", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], "}"}]], "Output", CellLabel-> "Out[718]=",ExpressionUUID->"e2666bc5-addb-4078-9f16-7ffa11fc04bf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.9706421121389313`*^9, 3.970642115098597*^9}}, CellLabel-> "In[719]:=",ExpressionUUID->"c4509247-b6fb-4696-839d-9c671b12894b"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]12", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "}"}]], "Output", CellLabel-> "Out[719]=",ExpressionUUID->"51ad1756-fe93-49b9-af21-94e533c0a7bd"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC(b) [with rf field error]", "Section", CellChangeTimes->{{3.970642325838537*^9, 3.9706423311362963`*^9}, { 3.9706423638483953`*^9, 3.970642367604486*^9}, {3.97064243962105*^9, 3.9706424459080048`*^9}},ExpressionUUID->"2b4f993d-9150-4aa3-95be-\ 984a2ae5c02e"], Cell[CellGroupData[{ Cell["H1bar eq.82", "Subsection", CellChangeTimes->{{3.970647649579266*^9, 3.9706476554284363`*^9}},ExpressionUUID->"42223077-4cd2-4ed1-bf73-\ 558e34e755bc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H1bar", "=", RowBox[{ RowBox[{ RowBox[{"-", "\[Kappa]"}], " ", "\[Omega]\[CapitalDelta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "-", RowBox[{"\[Epsilon]rf", " ", "\[Omega]J", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.9706475510754957`*^9, 3.9706475845183496`*^9}, { 3.970647633114786*^9, 3.970647638795087*^9}}, CellLabel-> "In[720]:=",ExpressionUUID->"dd58011b-19df-48c6-8022-183ca22ebc4f"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "\[Kappa]"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ")"}]}], "-", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}]}]], "Output", CellLabel-> "Out[720]=",ExpressionUUID->"51774364-036d-463b-a996-0af4c9585107"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["step 1 (eq.84 [v251028])", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}},ExpressionUUID->"1e16a656-2f4e-45a8-9ec4-\ ed22bbf72cbf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "0", "]"}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"W", "[", "0", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.970641715312228*^9, 3.970641742459118*^9}}, CellLabel-> "In[721]:=",ExpressionUUID->"e9cbfb57-5ae1-4773-b44b-e62509b393a0"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[721]=",ExpressionUUID->"e3d3f8b0-db0d-4df8-857c-7b9cb9e429b7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"%", "->", "#"}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970641365507906*^9, 3.9706413965844183`*^9}, { 3.9706414315771646`*^9, 3.970641465739666*^9}, {3.970641766248693*^9, 3.970641784773143*^9}}, CellLabel-> "In[722]:=",ExpressionUUID->"d096d7d5-ab61-4da7-8b7d-bbfc30c31f41"], Cell[BoxData[ RowBox[{"{", RowBox[{ SqrtBox["2"], ",", SqrtBox["2"]}], "}"}]], "Output", CellLabel-> "Out[722]=",ExpressionUUID->"44c797b4-b9b6-44d5-ac9a-e842b3ac9c08"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["step 2 (eq.89 [v251028]) but with finite \[Epsilon]", "Subsection", CellChangeTimes->{{3.9706409785080338`*^9, 3.970640981914315*^9}, { 3.9706417104298067`*^9, 3.9706417116307077`*^9}, {3.970641793126528*^9, 3.9706418028734303`*^9}, {3.970641834919025*^9, 3.970641840290991*^9}, { 3.970647841925829*^9, 3.970647847106765*^9}},ExpressionUUID->"88e21436-e921-4a1e-9b5d-\ c1ff8ce062df"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "H1bar", " ", "T"}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "H1bar", " ", "T"}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.970641715312228*^9, 3.970641742459118*^9}, { 3.9706418631964483`*^9, 3.97064190836493*^9}, {3.970647859303941*^9, 3.970647865451612*^9}, {3.970647995570365*^9, 3.970647998850021*^9}}, CellLabel-> "In[723]:=",ExpressionUUID->"1d53b9e1-8ac3-4834-af5e-03342649afba"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]]}]], "Output", CellLabel-> "Out[723]=",ExpressionUUID->"82dc4295-ab82-4dd7-b684-7c60f037d889"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp", "=", "%"}]], "Input", CellChangeTimes->{{3.970648054906292*^9, 3.970648056478808*^9}}, CellLabel-> "In[724]:=",ExpressionUUID->"a6a9ae54-d2cf-4859-992b-e0694d61369f"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]]}]], "Output", CellLabel-> "Out[724]=",ExpressionUUID->"19b4e6ff-54fc-4193-96e1-603aa371b61f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.9706480632301617`*^9, 3.970648067204056*^9}}, CellLabel-> "In[725]:=",ExpressionUUID->"50d0e3fe-ade7-4528-880a-1ccf3b805487"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]}]}], ")"}]}]]], "Output", CellLabel-> "Out[725]=",ExpressionUUID->"23611957-215e-498e-ba90-6a3fa07a66da"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp", "\[LeftDoubleBracket]", RowBox[{"1", ",", "3", ",", "2", ",", "3", ",", "2"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.9706480751809063`*^9, 3.9706481072831583`*^9}}, CellLabel-> "In[726]:=",ExpressionUUID->"79f5e644-8fa1-49c9-b516-eea762beec0d"], Cell[BoxData[ SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]]], "Output", CellLabel-> "Out[726]=",ExpressionUUID->"3a987436-3897-4cea-800a-e7a3762e3225"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"temp", "\[LeftDoubleBracket]", RowBox[{"1", ",", "3", ",", "2", ",", "3", ",", "2"}], "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970648169345297*^9, 3.9706481771958513`*^9}}, CellLabel-> "In[727]:=",ExpressionUUID->"7afe5b87-1332-4892-9411-e006793e669c"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"]}], "-", RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}]], "Output", CellLabel-> "Out[727]=",ExpressionUUID->"17cc79a9-f823-4599-8ff9-f5ecd8a316c0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"temp", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "//.", RowBox[{ RowBox[{ RowBox[{"temp", "\[LeftDoubleBracket]", RowBox[{"1", ",", "3", ",", "2", ",", "3", ",", "2"}], "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "->", RowBox[{ RowBox[{"-", " ", RowBox[{"\[Kappa]p", "^", "2"}]}], " ", RowBox[{ "\[Omega]\[CapitalDelta]", "^", "2"}]}]}]}], "\[IndentingNewLine]", RowBox[{"PowerExpand", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.9706481914759903`*^9, 3.970648272294215*^9}, 3.970648307767962*^9}, CellLabel-> "In[728]:=",ExpressionUUID->"8a80e523-57c3-405a-a0dc-e669afb5511b"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]]], "Output", CellLabel-> "Out[728]=",ExpressionUUID->"b51bd2e5-bec0-4c1b-86de-a89c076a2fd3"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]]], "Output", CellLabel-> "Out[729]=",ExpressionUUID->"b72cfdfb-a3b7-4229-a6df-dc06d5027a1f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"temp", "//.", RowBox[{ RowBox[{ RowBox[{"temp", "\[LeftDoubleBracket]", RowBox[{"1", ",", "3", ",", "2", ",", "3", ",", "2"}], "\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "->", RowBox[{ RowBox[{"-", " ", RowBox[{"\[Kappa]p", "^", "2"}]}], " ", RowBox[{ "\[Omega]\[CapitalDelta]", "^", "2"}]}]}]}], "\[IndentingNewLine]", RowBox[{"temp2", "=", RowBox[{"PowerExpand", "[", "%", "]"}]}]}], "Input", CellChangeTimes->{{3.9706481914759903`*^9, 3.970648272294215*^9}, 3.970648307767962*^9, 3.970648424312689*^9, {3.970648511950295*^9, 3.970648516555911*^9}}, CellLabel-> "In[730]:=",ExpressionUUID->"be854397-f2e7-468a-ac0d-965f1ea7005f"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ")"}]}]], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SqrtBox[ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"]}], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}]}], ")"}]}]]}]], "Output", CellLabel-> "Out[730]=",ExpressionUUID->"952f791b-aca8-48b3-a9e4-df245f72e32d"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"} ]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubsuperscriptBox["\[Epsilon]", "\<\"rf\"\>", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SuperscriptBox["\[Kappa]", "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", "\[Kappa]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"4", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]]}]], "Output", CellLabel-> "Out[731]=",ExpressionUUID->"bfbe649b-3dd2-4974-90b4-ad1b91db17f9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp2", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.9706484603179607`*^9, 3.970648492327256*^9}, { 3.97064852358265*^9, 3.97064855420189*^9}}, CellLabel-> "In[732]:=",ExpressionUUID->"28636ee9-515a-4dea-b5a7-dfafb9ba7aa6"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]]], "Output", CellLabel-> "Out[732]=",ExpressionUUID->"fb8eff2d-72de-405d-867f-43e5655f77e1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp2", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970648583763142*^9, 3.9706485841235228`*^9}}, CellLabel-> "In[733]:=",ExpressionUUID->"2ee53243-59f6-4835-8188-b525717ba246"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}]], " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], " ", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[Kappa]", "\<\"'\"\>"], ")"}], "2"], " ", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], ")"}]}]]}]], "Output", CellLabel-> "Out[733]=",ExpressionUUID->"3e76e7bf-973e-4b88-af8b-656be5cb0177"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Series", "[", RowBox[{"temp2", ",", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.9706485995476513`*^9, 3.9706486184901037`*^9}}, CellLabel-> "In[734]:=",ExpressionUUID->"b56eded9-c725-400a-8659-4c52b96f7214"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}]}], ")"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"4", " ", SqrtBox["2"]}]], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "]"}], "2"], SeriesData[$CellContext`\[Omega]\[CapitalDelta], 0, {}, 0, 2, 1], Editable->False]}], SeriesData[$CellContext`\[Omega]\[CapitalDelta], 0, { Rational[1, 4] E^(Complex[ 0, -1] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) ((-2) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, -2] E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, 2] E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, 2] QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, -2] E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "z", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, -2] E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, 2] E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, 2] QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, -2] E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "z", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + QM`SpinOperators`opI[1, "x", True] + E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[1, "x", True] + Complex[0, -1] E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`opI[1, "x", True] + Complex[0, 1] E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`opI[1, "x", True] + Complex[0, -1] QM`SpinOperators`opI[1, "y", True] + Complex[0, 1] E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[1, "y", True] - E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`opI[1, "y", True] - E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`opI[1, "y", True] + QM`SpinOperators`opI[2, "x", True] + E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[2, "x", True] + Complex[0, -1] E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`opI[2, "x", True] + Complex[0, 1] E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\ \[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J QM`SpinOperators`opI[2, "x", True] + Complex[0, -1] QM`SpinOperators`opI[2, "y", True] + Complex[0, 1] E^(Complex[ 0, 2] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[2, "y", True] - E^(Complex[0, Rational[ 1, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`opI[2, "y", True] - E^(Complex[0, Rational[ 3, 2]] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J QM`SpinOperators`opI[2, "y", True]), Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 2]] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J) \ $CellContext`T $CellContext`\[Kappa] (2 QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + 2 E^(Complex[ 0, 1] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "x", True], QM`SpinOperators`opI[2, "y", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] - 2 E^(Complex[ 0, 1] $CellContext`T $CellContext`\[Epsilon]rf $CellContext`\[Omega]J) QM`SpinOperators`OperatorProduct[ QM`SpinOperators`opI[1, "y", True], QM`SpinOperators`opI[2, "x", True], SpinDynamica`Sorted -> True, SpinDynamica`Checked -> True] + Complex[0, -1] QM`SpinOperators`opI[1, "z", True] + Complex[0, 1] E^(Complex[ 0, 1] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[1, "z", True] + Complex[0, 1] QM`SpinOperators`opI[2, "z", True] + Complex[0, -1] E^(Complex[ 0, 1] $CellContext`T $CellContext`\[Epsilon]rf \ $CellContext`\[Omega]J) QM`SpinOperators`opI[2, "z", True])}, 0, 2, 1], Editable->False]], "Output", CellLabel-> "Out[734]=",ExpressionUUID->"e7c5ca9a-0f0a-409c-b95e-13a4752ce75b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp3", "=", RowBox[{"Normal", "[", "%", "]"}]}]], "Input", CellChangeTimes->{{3.970648684881469*^9, 3.970648694405304*^9}}, CellLabel-> "In[735]:=",ExpressionUUID->"b6d4191e-6b36-4149-a3cf-8adbdccd783b"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}]}], ")"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{"\[ImaginaryI]", " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]}], ")"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]}]], "Output", CellLabel-> "Out[735]=",ExpressionUUID->"4000466c-d9a6-47e6-9174-193fe85ecc0b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp4", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"W", "[", "T", "]"}], ".", "temp3", ".", RowBox[{"Adjoint", "[", RowBox[{"W", "[", "T", "]"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9706486984573812`*^9, 3.9706487223631144`*^9}}, CellLabel-> "In[736]:=",ExpressionUUID->"a24bb6bf-8776-4e2f-9664-d84385b06738"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["7", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["7", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["7", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["7", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["11", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["9", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["5", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["11", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["9", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["11", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["9", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["5", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["11", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["3", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["9", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], RowBox[{"16", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", RowBox[{ FractionBox["5", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["9", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["9", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["5", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["9", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["3", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["5", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["5", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["9", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["9", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["5", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["9", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["3", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["5", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"8", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", RowBox[{ FractionBox["3", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["5", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["7", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["7", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["7", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["3", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["3", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ FractionBox["3", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["5", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["7", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["7", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["7", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["3", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["3", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "32"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"64", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"64", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"64", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", "\<\"\[DoubleStruckOne]\"\>"}], RowBox[{"64", " ", SqrtBox["2"]}]]}]], "Output", CellLabel-> "Out[736]=",ExpressionUUID->"7e4393ae-1618-4340-81b2-315f6f62a70a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "temp4", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.970648748641961*^9, 3.9706487574639*^9}}, CellLabel-> "In[737]:=",ExpressionUUID->"a25e8ce0-e203-4f5f-b03f-abe5dd5c8d05"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["3", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]]}], "-", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]]}], "+", RowBox[{ FractionBox["1", "16"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"32", " ", SqrtBox["2"]}]]}]], "Output", CellLabel-> "Out[737]=",ExpressionUUID->"5f264d4a-8a05-4c75-a1f0-ef09c1173f80"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"%", "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9706487666326237`*^9, 3.9706487728543253`*^9}}, CellLabel-> "In[738]:=",ExpressionUUID->"5296d557-c4f6-4b1b-9757-8be76bf13926"], Cell[BoxData[ RowBox[{ FractionBox["1", "32"], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"2", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{"16", " ", "\[ImaginaryI]", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"2", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"3", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"3", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}]], "Output",\ CellLabel-> "Out[738]=",ExpressionUUID->"f9278b6b-f199-4a2f-bfd6-a4c6bdfb9208"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]rf", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.970648842262106*^9, 3.970648865478298*^9}}, CellLabel-> "In[739]:=",ExpressionUUID->"8b638a54-3396-4ac0-bf12-a507c1d9dac4"], Cell[BoxData[ RowBox[{ FractionBox["1", "32"], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{"16", " ", "\[ImaginaryI]", " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"1", "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"3", "+", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "+", RowBox[{"4", " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"1", "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{"4", " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"3", "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"3", "+", FractionBox[ RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}], "+", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{"3", "+", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], SubscriptBox["\[Omega]", "\<\"J\"\>"]]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[739]=",ExpressionUUID->"eb8811c0-a57f-4ecb-8fea-14ac8cdb99be"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.9706488704327497`*^9, 3.9706488730834637`*^9}}, CellLabel-> "In[740]:=",ExpressionUUID->"77fffa16-313f-4d6e-a645-03a84aa84a88"], Cell[BoxData[ RowBox[{ FractionBox["1", "32"], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{"T", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "+", RowBox[{"16", " ", "\[ImaginaryI]", " ", "T", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"], "]"}]}], "-", RowBox[{"4", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}], "-", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"T", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"T", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "+", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "+", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{"4", " ", "T", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{ SqrtBox["2"], " ", "T", " ", "\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "+", RowBox[{"8", " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "T", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[740]=",ExpressionUUID->"aef5e4aa-fc5b-43e5-9e31-996a5c7d6be2"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["more", "Title", CellChangeTimes->{{3.970637475303608*^9, 3.970637490529707*^9}},ExpressionUUID->"79b906df-9280-4d3c-aef1-\ 4a3dd94dc191"], Cell[CellGroupData[{ Cell["general", "Chapter", CellChangeTimes->{{3.963042943915021*^9, 3.963042952378562*^9}, { 3.963051166848508*^9, 3.963051167271718*^9}, {3.963565547304324*^9, 3.96356554820802*^9}},ExpressionUUID->"2cd953eb-35a5-450f-9cf8-\ 13e2fec76b87"], Cell[CellGroupData[{ Cell["Symbols", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.9630430342824993`*^9}},ExpressionUUID->"65b61f37-5e71-4aae-a4f1-\ f5cc4fc5ea34"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[CapitalOmega]1", "]"}], "=", SubscriptBox["\[CapitalOmega]", "1"]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[CapitalOmega]2", "]"}], "=", SubscriptBox["\[CapitalOmega]", "2"]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]\[CapitalDelta]", "]"}], "=", SubscriptBox["\[Omega]", "\"\<\[CapitalDelta]\>\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]\[CapitalSigma]", "]"}], "=", SubscriptBox["\[Omega]", "\"\<\[CapitalSigma]\>\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]J", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Theta]ST", "]"}], "=", SubscriptBox["\[Theta]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.963043046291065*^9, 3.963043097532342*^9}, { 3.9630434343454313`*^9, 3.963043449216013*^9}, {3.963115015361786*^9, 3.963115019383296*^9}, {3.963115188099082*^9, 3.963115234109486*^9}, { 3.963565532218693*^9, 3.963565539964328*^9}}, CellLabel-> "In[741]:=",ExpressionUUID->"ffbe4f2d-b007-4d37-8083-1deef3338ae8"], Cell[BoxData[ SubscriptBox["\[CapitalOmega]", "1"]], "Output", CellLabel-> "Out[741]=",ExpressionUUID->"c3a73b36-8b5a-4086-96ad-989729a12b87"], Cell[BoxData[ SubscriptBox["\[CapitalOmega]", "2"]], "Output", CellLabel-> "Out[742]=",ExpressionUUID->"fdbfbace-64bb-47e9-97b5-c37896f765a5"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]], "Output", CellLabel-> "Out[743]=",ExpressionUUID->"62864254-5fee-4ac1-82e0-a1c4bf8b0b94"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]], "Output", CellLabel-> "Out[744]=",ExpressionUUID->"3b29afa8-6c95-4969-9a3a-830202f391ad"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"J\"\>"]], "Output", CellLabel-> "Out[745]=",ExpressionUUID->"71a51c65-7a3b-482d-91ac-cbaa71556f8e"], Cell[BoxData[ SubscriptBox["\[Theta]", "\<\"ST\"\>"]], "Output", CellLabel-> "Out[746]=",ExpressionUUID->"443e4327-5d55-4f93-a849-2f8238fda7d6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[Omega]nut", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}]], "Input", CellChangeTimes->{{3.964842377201112*^9, 3.9648423818494596`*^9}}, CellLabel-> "In[747]:=",ExpressionUUID->"36d405c7-12fe-4f31-9bf9-6152bb6b6759"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"nut\"\>"]], "Output", CellLabel-> "Out[747]=",ExpressionUUID->"dffe266f-41b3-4bf9-8c47-1f7e64ed636d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Format", "[", "\[CapitalDelta]\[Omega]nut", "]"}], "=", SubscriptBox["\[CapitalDelta]\[Omega]", "\"\\""]}]], "Input", CellChangeTimes->{{3.964842377201112*^9, 3.9648423818494596`*^9}, { 3.964843123684497*^9, 3.964843128648045*^9}}, CellLabel-> "In[748]:=",ExpressionUUID->"d60723a0-6046-4cee-be23-890945a62555"], Cell[BoxData[ SubscriptBox["\[CapitalDelta]\[Omega]", "\<\"nut\"\>"]], "Output", CellLabel-> "Out[748]=",ExpressionUUID->"531011a0-18de-4ab2-b19e-3c867eaa3f0d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[Theta]e", "]"}], "=", SubscriptBox["\[Theta]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Omega]e", "]"}], "=", SubscriptBox["\[Omega]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.965295868666984*^9, 3.965295891315959*^9}}, CellLabel-> "In[749]:=",ExpressionUUID->"6d30885d-3f10-4abe-b7bd-c27ae04b37ba"], Cell[BoxData[ SubscriptBox["\[Theta]", "\<\"e\"\>"]], "Output", CellLabel-> "Out[749]=",ExpressionUUID->"796eb420-a7e9-4232-93fb-43cf7d832e59"], Cell[BoxData[ SubscriptBox["\[Omega]", "\<\"e\"\>"]], "Output", CellLabel-> "Out[750]=",ExpressionUUID->"c7cfb2fd-36a9-46bd-8106-14732e72127c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Format", "[", "\[Phi]B", "]"}], "=", SubscriptBox["\[Phi]", "\"\\""]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Format", "[", "\[Phi]C", "]"}], "=", SubscriptBox["\[Phi]", "\"\\""]}]}], "Input", CellChangeTimes->{{3.965295868666984*^9, 3.965295891315959*^9}, { 3.9652963564376783`*^9, 3.965296376070313*^9}}, CellLabel-> "In[751]:=",ExpressionUUID->"b3d691d0-37c3-4d20-aa84-7bf8cde85ed8"], Cell[BoxData[ SubscriptBox["\[Phi]", "\<\"B\"\>"]], "Output", CellLabel-> "Out[751]=",ExpressionUUID->"2ad30d1f-f387-48e8-a3ba-131908762c25"], Cell[BoxData[ SubscriptBox["\[Phi]", "\<\"C\"\>"]], "Output", CellLabel-> "Out[752]=",ExpressionUUID->"f220baa1-fdd9-4472-8ece-68f0cc97b622"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SubstitutionRules", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963043553937702*^9, 3.9630435625109043`*^9}, 3.963565973140945*^9},ExpressionUUID->"cd3e0ee6-686e-4c12-a119-\ 1fd5bf1ab9c2"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"SubstitutionRules1", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Omega]J", "^", "2"}], "+", " ", RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}]}], "->", RowBox[{"\[CapitalOmega]", "^", "2"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"SubstitutionRules2", "=", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]", "^", "2"}], "->", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}], "+", RowBox[{"\[Omega]J", "^", "2"}]}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"SubstitutionRules3", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]J", "->", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", " ", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Sin", "[", "\[Theta]ST", "]"}]}]}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"SubstitutionRules4", "=", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]", "->", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"\[Omega]J", "^", "2"}], "+", RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}]}], "]"}]}], ",", RowBox[{"\[Theta]ST", "->", RowBox[{"ArcTan", "[", RowBox[{"\[Omega]J", ",", "\[Omega]\[CapitalDelta]"}], "]"}]}]}], "}"}]}]}], "Input", CellChangeTimes->{{3.96304356390554*^9, 3.963043606523417*^9}, { 3.963115070729959*^9, 3.9631150828071947`*^9}, {3.963115165749032*^9, 3.963115175606289*^9}, {3.963115243045726*^9, 3.963115245864987*^9}, { 3.963115706393189*^9, 3.96311570679493*^9}, {3.963116489667169*^9, 3.9631165045403557`*^9}}, CellLabel-> "In[753]:=",ExpressionUUID->"5c72753a-bced-4c6d-852e-5cb690cfcf43"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], "+", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}], "\[Rule]", SuperscriptBox["\[CapitalOmega]", "2"]}], "}"}]], "Output", CellLabel-> "Out[753]=",ExpressionUUID->"ae2499a7-3380-4fe5-8332-280c6c10d1b6"], Cell[BoxData[ RowBox[{"{", RowBox[{ SuperscriptBox["\[CapitalOmega]", "2"], "\[Rule]", RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], "+", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]}], "}"}]], "Output", CellLabel-> "Out[754]=",ExpressionUUID->"892be656-77a5-4cf3-88aa-83c29c569835"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "\[Rule]", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}]}], ",", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "\[Rule]", RowBox[{"\[CapitalOmega]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}]}]}], "}"}]], "Output", CellLabel-> "Out[755]=",ExpressionUUID->"3bc89f02-4f41-4b66-9e5b-02b8c71bc0e2"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]", "\[Rule]", SqrtBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], "+", SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"]}]]}], ",", RowBox[{ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "\[Rule]", RowBox[{"ArcTan", "[", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], ",", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], "}"}]], "Output", CellLabel-> "Out[756]=",ExpressionUUID->"056d93c9-a304-4601-9545-858c6eec0e43"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["INADEQUATE for general 2-spin-1/2 system", "Chapter", CellChangeTimes->{{3.963042943915021*^9, 3.963042952378562*^9}, { 3.963051166848508*^9, 3.963051167271718*^9}},ExpressionUUID->"b2cfed8e-2863-49fa-a912-\ a4d4db0e60bf"], Cell[CellGroupData[{ Cell["Hamiltonian", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}},ExpressionUUID->"9130ca91-13eb-4b09-8802-\ f6bdc9387367"], Cell["factor out overall offset", "Text", CellChangeTimes->{{3.963043477783227*^9, 3.963043483647252*^9}},ExpressionUUID->"413c9513-49f3-41a9-96a9-\ 7a83837b112a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], "\[Omega]\[CapitalDelta]", " ", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", " ", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}]}], "+", " ", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]}]], "Input", CellChangeTimes->{{3.963042957412291*^9, 3.9630430185866003`*^9}, { 3.9630434628276*^9, 3.963043472772011*^9}, {3.963115028316148*^9, 3.9631150540949163`*^9}}, CellLabel-> "In[757]:=",ExpressionUUID->"421b529d-4d24-4160-aa8c-754b62c11d96"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[757]=",ExpressionUUID->"d431d125-919f-411e-a344-49d9614205cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]ini", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.96304315576457*^9, 3.9630431581540422`*^9}},ExpressionUUID->"d2bd65e1-68a5-44aa-995e-\ 51fbd2ea35a6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]ini", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963043161727894*^9, 3.963043165697791*^9}}, CellLabel-> "In[758]:=",ExpressionUUID->"3ef7a798-d851-4153-b9d4-855c4cda6523"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[758]=",ExpressionUUID->"932be947-75cc-4dc4-9e10-8336b7cd7c5c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["propagation through 3-pulse sequence", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.9630486585782757`*^9, 3.9630486686422157`*^9}, 3.963048733255343*^9},ExpressionUUID->"42cd2ab2-31fb-4834-ace5-\ c015e7937b27"], Cell[CellGroupData[{ Cell["calculate and save \[Rho]final (execution disabled)", "Subsubsection", CellChangeTimes->{{3.9630485738329973`*^9, 3.963048578916974*^9}, { 3.963048677530424*^9, 3.9630486802896214`*^9}, {3.9630487357541103`*^9, 3.9630487421619987`*^9}},ExpressionUUID->"9b089666-8b4a-4b5c-b903-\ 2bb1066c2802"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]final", "=", RowBox[{"Fold", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"PowerExpand", "[", RowBox[{ RowBox[{"ComplexExpand", "[", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"#2", "[", "#1", "]"}], ",", RowBox[{"CartesianProductOperatorBasis", "[", "]"}]}], "]"}], "]"}], "/.", "SubstitutionRules1"}], "]"}], "&"}], ",", "\[IndentingNewLine]", "\[Rho]ini", ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Tau]", " ", RowBox[{"CommutationSuperoperator", "[", "H", "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ Evaluatable->False, CellChangeTimes->{{3.963044077270887*^9, 3.963044097598401*^9}, 3.963115744264688*^9, {3.963130961919815*^9, 3.963130966353578*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"86e47304-8925-4db0-a91c-24e5a33d52e0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], RowBox[{"2", " ", SuperscriptBox["\[CapitalOmega]", "2"]}]], "+", FractionBox[ RowBox[{"4", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "2"], "]"}], "2"]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{"4", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "2"], "]"}], "2"]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}]}], "\[CapitalOmega]"], "-", FractionBox[ RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}]}], "\[CapitalOmega]"], "+", RowBox[{ RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", RowBox[{ RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"J\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "+", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], SuperscriptBox["\[CapitalOmega]", "2"]], "-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "\[CapitalOmega]"], "-", FractionBox[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "\[CapitalOmega]"]}]], "Output", CellChangeTimes->{3.9631311008276987`*^9, 3.9631313845225*^9}, CellLabel->"Out[15]=",ExpressionUUID->"37c0691d-5779-4d7a-8338-f039486a1974"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Save", "[", RowBox[{"\"\\"", ",", "\[Rho]final"}], "]"}]}], "Input", Evaluatable->False, CellChangeTimes->{{3.963044200115651*^9, 3.963044272841545*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"17c549d3-224f-44d5-a79e-23954183356a"] }, Closed]], Cell[CellGroupData[{ Cell["read \[Rho]final", "Subsubsection", CellChangeTimes->{{3.9630485738329973`*^9, 3.963048586336237*^9}},ExpressionUUID->"68f9fe2a-f1cb-44d7-925f-\ ec34e7f31d37"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Read", "[", "\"\\"", "]"}]}], "Input", CellChangeTimes->{{3.963044200115651*^9, 3.963044272841545*^9}, { 3.963048588420205*^9, 3.963048601422391*^9}}, CellLabel-> "In[759]:=",ExpressionUUID->"dc0ef314-1da0-4259-89e3-dfaf0c48c6cb"], Cell[BoxData[ TemplateBox[{ "Read", "noopen", "\"Cannot open \\!\\(\\*RowBox[{\\\"\\\\\\\"rhofinal-INADQ.m\\\\\\\"\\\"}]\ \\).\"", 2, 760, 37, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[759]:=",ExpressionUUID->"cbf1f42a-1a1c-409f-9538-7741719aa86e"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[760]=",ExpressionUUID->"dc846133-fc5c-4c17-848a-8ead1f232fc5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["\[Rho]final"], "Input", CellLabel-> "In[761]:=",ExpressionUUID->"3d40fa8e-560f-44ac-a9a4-9068c126a487"], Cell[BoxData["\[Rho]final"], "Output", CellLabel-> "Out[761]=",ExpressionUUID->"bcfa5fa1-0b3a-4235-b3b2-1a8004961ac3"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["DQ amplitude", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}},ExpressionUUID->"4ff86564-c053-4269-9b27-\ 15640a8f00f0"], Cell[CellGroupData[{ Cell[BoxData["\[Rho]final"], "Input", CellChangeTimes->{{3.963115409161748*^9, 3.963115409163665*^9}}, CellLabel-> "In[762]:=",ExpressionUUID->"ca64886b-257f-40a0-9903-a583c1a2d7b3"], Cell[BoxData["\[Rho]final"], "Output", CellLabel-> "Out[762]=",ExpressionUUID->"9906803f-4309-4b94-987e-d16dc6f4e609"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp1", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"I", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "->", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<+\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<+\>\""}], "]"}]}]}], "]"}]}], "/.", "SubstitutionRules2"}], "]"}]}]], "Input", CellChangeTimes->{{3.963045748785242*^9, 3.963045760325008*^9}, 3.963045794453926*^9, {3.9631153261742687`*^9, 3.9631153503764353`*^9}, { 3.9631154324845753`*^9, 3.963115458984095*^9}, {3.963115794191523*^9, 3.963115807010005*^9}, {3.963115870943139*^9, 3.963115890637982*^9}}, CellLabel-> "In[763]:=",ExpressionUUID->"e805d489-5bd0-43e8-b05a-b91fda513dd6"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[763]=",ExpressionUUID->"abad768d-e571-4039-a8b1-25ea571eea68"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp2", "=", RowBox[{"Simplify", "@", RowBox[{"PowerExpand", "[", RowBox[{"iDQamp1", "/.", "SubstitutionRules3"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.963115468354298*^9, 3.963115516771161*^9}, { 3.963115938630109*^9, 3.963115947767692*^9}}, CellLabel-> "In[764]:=",ExpressionUUID->"29ec939e-6cc2-4f24-a436-aee189978c5e"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[764]=",ExpressionUUID->"1d11843e-c014-4181-8e06-904c6442613f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp3", "=", RowBox[{"FullSimplify", "[", RowBox[{"iDQamp2", "/.", RowBox[{"{", " ", RowBox[{ RowBox[{"\[Tau]", " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}], "->", RowBox[{"\[Tau]", " ", "\[Omega]J"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963045418063909*^9, 3.963045427181254*^9}, { 3.9630454831896143`*^9, 3.963045558252634*^9}, {3.963045706068368*^9, 3.963045721245879*^9}, {3.963045806915494*^9, 3.963045818813221*^9}, { 3.9631159995904083`*^9, 3.9631160215442867`*^9}, {3.963116060233477*^9, 3.963116060429619*^9}}, CellLabel-> "In[765]:=",ExpressionUUID->"dc47ee90-3cac-4850-9bf9-84205814737a"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[765]=",ExpressionUUID->"ca4407ef-903e-4372-a04e-7e85ec8e8e47"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp", "=", "iDQamp3"}]], "Input", CellChangeTimes->{{3.9631160736*^9, 3.963116078115541*^9}}, CellLabel-> "In[766]:=",ExpressionUUID->"46cd4d8c-06ad-43ef-bd15-5545204b509f"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[766]=",ExpressionUUID->"1db4983a-64c2-4d01-87d6-21897311b996"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]ST", "->", RowBox[{"\[Pi]", "/", "2"}]}], ",", RowBox[{"\[CapitalOmega]", "->", "\[Omega]\[CapitalDelta]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.9630455838206577`*^9, 3.963045589987159*^9}, 3.963045734585226*^9, {3.963116033838161*^9, 3.963116038080409*^9}, { 3.9631161336386347`*^9, 3.963116140942416*^9}, 3.9631161810335712`*^9}, CellLabel-> "In[767]:=",ExpressionUUID->"1f11779d-9d5d-428a-a50d-a987e99188f8"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[767]=",ExpressionUUID->"5ca27074-f73c-491f-9d6a-cd9c9ed9abdc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]ST", "->", "0"}], ",", RowBox[{"\[CapitalOmega]", "->", "\[Omega]J"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.9631160900511847`*^9, 3.963116121895438*^9}, 3.963116185020995*^9}, CellLabel-> "In[768]:=",ExpressionUUID->"2b654f1d-b85c-4b81-961f-f8cf3ac93017"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[768]=",ExpressionUUID->"ee0165ea-1aa1-4052-8aeb-9d2916575dee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["\[Rho]final"], "Input", CellLabel-> "In[769]:=",ExpressionUUID->"c88bbad3-ab4f-4c40-9779-246543e4bfcd"], Cell[BoxData["\[Rho]final"], "Output", CellLabel-> "Out[769]=",ExpressionUUID->"2f5d7005-3886-458b-a9d5-9ebb60d3db09"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"PowerExpand", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]final", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "/.", "SubstitutionRules2"}], "\[IndentingNewLine]", "]"}], "/.", "SubstitutionRules3"}], "\[IndentingNewLine]", "]"}], "/.", RowBox[{"{", " ", RowBox[{ RowBox[{"\[Tau]", " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}]}], "->", RowBox[{"\[Tau]", " ", "\[Omega]J"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9648567922762327`*^9, 3.964856803120813*^9}, { 3.964856835733705*^9, 3.964856858242679*^9}, {3.964856898496447*^9, 3.964856954470257*^9}}, CellLabel-> "In[770]:=",ExpressionUUID->"c3b4f6d5-61d0-43b7-ba5a-ad953a0c902b"], Cell[BoxData[ TemplateBox[{ "MatrixRepresentation", "badop", "\"MatrixRepresentation may only be applied to an operator, a Ket or a \ Bra.\"", 2, 770, 38, 25793684326715730430, "Local", "QM`SpinOperators`MatrixRepresentation"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[770]:=",ExpressionUUID->"3f09ace3-fff0-4131-9a89-4672482fa16e"], Cell[BoxData[ TemplateBox[{ "Part", "partd", "\"Part specification \\!\\(\\*RowBox[{\\\"$Failed\\\", \\\"\ \[LeftDoubleBracket]\\\", RowBox[{\\\"2\\\", \\\",\\\", \\\"4\\\"}], \\\"\ \[RightDoubleBracket]\\\"}]\\) is longer than depth of object.\"", 2, 770, 39, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[770]:=",ExpressionUUID->"8956801d-a9f9-4ef5-a764-322e1742d2f8"], Cell[BoxData[ RowBox[{"$Failed", "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Output", CellLabel-> "Out[770]=",ExpressionUUID->"6195f073-ba10-4845-b1bb-a8ab0d844088"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["back substitute DQ amplitude and plot", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491618960943`*^9}},ExpressionUUID->"f25c1114-d83d-450b-bf10-\ a003a0fdba15"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp4", "=", RowBox[{"Simplify", "[", RowBox[{"iDQamp", "/.", "SubstitutionRules4"}], "]"}]}]], "Input", CellChangeTimes->{{3.963048789065489*^9, 3.963048836746607*^9}, { 3.963116172562023*^9, 3.9631161998033*^9}, {3.963116246749687*^9, 3.963116278751093*^9}, {3.963116556636166*^9, 3.963116559304124*^9}}, CellLabel-> "In[771]:=",ExpressionUUID->"0431d140-e686-4850-99a1-db592d286f41"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[771]=",ExpressionUUID->"07e51dc8-d848-42ae-bfde-f781ea86de4d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"parameters", "=", RowBox[{"{", RowBox[{ RowBox[{"J", "->", "50"}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"(", RowBox[{"1", "/", RowBox[{"(", RowBox[{"4", "J"}], ")"}]}], ")"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}]}], "}"}]}]], "Input", CellChangeTimes->{{3.963048817954331*^9, 3.96304891333643*^9}, { 3.96304895793301*^9, 3.963048975360407*^9}, {3.9631162095048723`*^9, 3.96311620982353*^9}}, CellLabel-> "In[772]:=",ExpressionUUID->"4d14a8c0-a7ed-4a82-95b6-8a368246d6f7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"255.94`", "\[Rule]", "50"}], ",", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "\[Rule]", "1608.1184475195432`"}], ",", RowBox[{"\[Tau]", "\[Rule]", "0.0009767914354926936`"}], ",", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "\[Rule]", "111.84069846779664`"}]}], "}"}]], "Output", CellLabel-> "Out[772]=",ExpressionUUID->"d3434c93-93f0-4639-9517-d9d3126cd9da"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp4", "//.", "parameters"}]], "Input", CellChangeTimes->{{3.963048843777055*^9, 3.9630488476825933`*^9}, 3.9630488828903437`*^9, 3.96311621870815*^9}, CellLabel-> "In[773]:=",ExpressionUUID->"527e5500-195b-4b4c-a139-efa2dcb81ce8"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[773]=",ExpressionUUID->"5b77dbca-74e3-45b1-9186-43a50fc0d3cb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"iDQamp4", "//.", "parameters"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[CapitalDelta]", ",", "0", ",", "1000"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", "All"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"\"\<\[CapitalDelta]\>\"", ",", "\"\\""}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.963048924426235*^9, 3.963048945321916*^9}, { 3.963048990385634*^9, 3.9630489990345182`*^9}, {3.963049148074236*^9, 3.963049148387995*^9}, {3.963116295381839*^9, 3.963116338623625*^9}, { 3.963116404643406*^9, 3.963116405307694*^9}}, CellLabel-> "In[774]:=",ExpressionUUID->"118570d3-8e1f-437c-85f5-4e899c6fb32a"], Cell[BoxData[ GraphicsBox[{{}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox["\"iDQ\"", TraditionalForm], None}, { FormBox["\"\[CapitalDelta]\"", TraditionalForm], None}}, FrameStyle->Directive[ GrayLevel[0], AbsoluteThickness[1.5], FontSize -> 30, FontWeight -> "Light", FontFamily -> "Helvetica"], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, LabelStyle->Directive[FontFamily -> "Helvetica", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[774]=",ExpressionUUID->"0c1c5ba5-bbc4-4f32-9f24-3455bd9a0fcb"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["compare with simulation (* good *)", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.9630494837326803`*^9}},ExpressionUUID->"c7e5ed86-6fc0-4d1f-afc3-\ 9b760f8f5cb1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H", "//.", "parameters"}]], "Input", CellLabel-> "In[775]:=",ExpressionUUID->"e87b15e6-bb7f-414f-be4c-5f538b61bf8f"], Cell[BoxData[ RowBox[{ RowBox[{"55.92034923389832`", " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{"1608.1184475195432`", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[775]=",ExpressionUUID->"1b505ca3-2bbe-463e-a885-09a5c1b519e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", "\[IndentingNewLine]", RowBox[{"TransformationAmplitudeTable", "[", RowBox[{ RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], "->", RowBox[{ RowBox[{"-", "I"}], " ", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<+\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<+\>\""}], "]"}]}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", RowBox[{"Delay", "[", "\[Tau]", "]"}], ",", RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ",", RowBox[{"Delay", "[", "\[Tau]", "]"}], ",", RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "}"}], "//.", "parameters"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[CapitalDelta]", ",", "0", ",", "1000", ",", RowBox[{"{", "71", "}"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"BackgroundGenerator", "->", RowBox[{"(", RowBox[{"H", "//.", "parameters"}], ")"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.963049181705797*^9, 3.9630493393146763`*^9}, { 3.963049395467043*^9, 3.963049463154583*^9}, {3.963116409707245*^9, 3.9631164104224577`*^9}, {3.96313171947237*^9, 3.9631317234037933`*^9}}, CellLabel-> "In[776]:=",ExpressionUUID->"66e16caf-888c-4e31-bb24-eb1d36320651"], Cell[BoxData[ TemplateBox[{ "TransformationAmplitudeTable", "invaltabvars", "\"One or more table variables has an assigned value. Each table variable \ must be a symbol.\"", 2, 776, 40, 25793684326715730430, "Local", "Simulations`Simulations`TransformationAmplitudeTable"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[776]:=",ExpressionUUID->"c8bd4799-58f1-4e6b-b8e6-14885765c88c"], Cell[BoxData[ TemplateBox[{ "ListPlot", "lpn", "\"\\!\\(\\*RowBox[{\\\"$Failed\\\"}]\\) is not a list of numbers or pairs \ of numbers.\"", 2, 776, 41, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[776]:=",ExpressionUUID->"96c45fdc-519b-4f3a-94b3-af956285dc74"], Cell[BoxData[ RowBox[{"ListPlot", "[", "$Failed", "]"}]], "Output", CellLabel-> "Out[776]=",ExpressionUUID->"ff954c4e-d016-4310-b947-6e8545acaafa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["contour plot vs \[CapitalDelta] and \[Tau]", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}},ExpressionUUID->"88b20ac3-6e6a-41b8-aa0e-\ 481bcfbca6ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iDQamp4", "//.", RowBox[{"{", RowBox[{ RowBox[{"J", "->", "50"}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", " ", "/", "J"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}]}], "}"}]}]], "Input", CellChangeTimes->{{3.963116574125662*^9, 3.963116583329832*^9}}, CellLabel-> "In[777]:=",ExpressionUUID->"974691c6-0b2f-4cc2-a78b-039e41144a22"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[777]=",ExpressionUUID->"a2a8a2d1-4a0f-462e-905e-4f06e2be7edc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ContourPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", "\[IndentingNewLine]", RowBox[{"iDQamp4", "//.", RowBox[{"{", RowBox[{ RowBox[{"J", "->", "50"}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", " ", "/", "J"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}]}], "}"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[CapitalDelta]", ",", "0", ",", "500"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"\"\<\[CapitalDelta]\>\"", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9630495279429197`*^9, 3.963049646687457*^9}, { 3.963049679359694*^9, 3.963049742085443*^9}, 3.9631164626624403`*^9, { 3.9631165925479183`*^9, 3.963116620581503*^9}}, CellLabel-> "In[778]:=",ExpressionUUID->"d951fd06-cc1f-40c2-a508-f001494c9346"], Cell[BoxData[ GraphicsBox[{{}, {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox["\"\[CapitalDelta]\"", TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], LabelStyle->16, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotRange->{{0, 500}, {0, 1}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[778]=",ExpressionUUID->"c7dd717e-c4c1-4dfc-bc52-60f94efb531e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ContourPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", "\[IndentingNewLine]", RowBox[{"iDQamp4", "//.", RowBox[{"{", RowBox[{ RowBox[{"J", "->", "50"}], ",", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", " ", "/", "J"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}]}], "}"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[CapitalDelta]", ",", "0", ",", "100"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "10"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"\"\<\[CapitalDelta]\>\"", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "Medium"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9630495279429197`*^9, 3.963049646687457*^9}, { 3.963049679359694*^9, 3.963049769052059*^9}, 3.963116637946322*^9}, CellLabel-> "In[779]:=",ExpressionUUID->"a44e5292-ae5b-4fd1-8d73-0f1dbaf55d23"], Cell[BoxData[ GraphicsBox[{{}, {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox["\"\[CapitalDelta]\"", TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], LabelStyle->Medium, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotRange->{{0, 100}, {0, 10}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[779]=",ExpressionUUID->"4e32aecc-1209-4904-b4cd-de2e6f7159bb"] }, Open ]], Cell[CellGroupData[{ Cell["contour plot in relative units", "Subsubsection", CellChangeTimes->{{3.963049830396929*^9, 3.9630498377720633`*^9}},ExpressionUUID->"e948220a-884a-4325-8784-\ 9c7b8e0869fa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{"PowerExpand", "[", RowBox[{"iDQamp4", "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", " ", "/", "J"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}], ",", RowBox[{"\[CapitalDelta]", "->", RowBox[{"\[CapitalDelta]byJ", " ", "J"}]}]}], "}"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.9631166921701927`*^9, 3.963116723900126*^9}}, CellLabel-> "In[780]:=",ExpressionUUID->"630c47d5-dcf0-4da2-9212-0369d95d80ad"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]final", "\[Rule]", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm]}], "]"}]}]], "Output", CellLabel-> "Out[780]=",ExpressionUUID->"28da42a2-c690-40e0-8efd-671cbec44b2c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]STtick", "[", "\[Theta]ST_", "]"}], ":=", RowBox[{"{", RowBox[{ RowBox[{"Tan", "[", "\[Theta]ST", "]"}], ",", RowBox[{"N", "[", RowBox[{"\[Theta]ST", "/", "\[Degree]"}], "]"}], ",", "0.02"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]STticks", "=", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Tan", "[", RowBox[{"#", " ", "\[Degree]"}], "]"}], ",", "None"}], "}"}], "&"}], "/@", RowBox[{"{", RowBox[{"5", ",", "10", ",", "30", ",", "50"}], "}"}]}], ",", RowBox[{"\[Theta]STtick", "/@", RowBox[{"{", RowBox[{ RowBox[{"20", "\[Degree]"}], ",", RowBox[{"40", "\[Degree]"}], ",", RowBox[{"60", "\[Degree]"}], ",", RowBox[{"70", "\[Degree]"}], ",", RowBox[{"80", "\[Degree]"}]}], "}"}]}]}], "]"}], ",", RowBox[{ RowBox[{"N", "[", RowBox[{"First", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"graphics", "[", "\"\\"", "]"}], "=", "\[IndentingNewLine]", RowBox[{"ContourPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{"PowerExpand", "[", RowBox[{"iDQamp4", "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", " ", "/", "J"}]}], ",", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"2", "\[Pi]", " ", "\[CapitalDelta]"}]}], ",", RowBox[{"\[CapitalDelta]", "->", RowBox[{"\[CapitalDelta]byJ", " ", "J"}]}]}], "}"}]}], "]"}], "]"}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[CapitalDelta]byJ", ",", "0", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\[CapitalDelta] / J\>\"", ",", "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\""}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"GridLines", "->", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Tan", "[", RowBox[{"#", " ", "\[Degree]"}], "]"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{"10", ",", "85", ",", "10"}], "]"}]}], ",", RowBox[{"Range", "[", RowBox[{"0.25", ",", "5", ",", "0.25"}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"GridLinesStyle", "->", "White"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", RowBox[{"BarLegend", "[", RowBox[{"Automatic", ",", RowBox[{"LegendLabel", "\[Rule]", "\"\\""}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"Contours", "->", RowBox[{"Chop", "@", RowBox[{"Range", "[", RowBox[{ RowBox[{"-", "1"}], ",", "1", ",", "0.1"}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Automatic", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.25", ",", "\"\<1/4\>\""}], "}"}], ",", RowBox[{"{", RowBox[{"0.75", ",", "\"\<3/4\>\""}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "\"\<5/4\>\""}], "}"}], ",", RowBox[{"{", RowBox[{"1.75", ",", "\"\<7/4\>\""}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Automatic", ",", "\[Theta]STticks"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicksStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "@", "Gray"}], ",", RowBox[{"Darker", "@", "Gray"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Darker", "@", "Gray"}], ",", "14"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]}], "Input", CellChangeTimes->{{3.9630495279429197`*^9, 3.963049646687457*^9}, { 3.963049679359694*^9, 3.963049742085443*^9}, {3.963049970123147*^9, 3.963049986380703*^9}, {3.9630503565642853`*^9, 3.963050621937408*^9}, { 3.963050659081019*^9, 3.963050669983836*^9}, {3.963050818473113*^9, 3.963050889162487*^9}, {3.963050945739539*^9, 3.963050956843161*^9}, { 3.9630510136444683`*^9, 3.963051054795113*^9}, {3.963051116839631*^9, 3.9630511291691313`*^9}, {3.9631166722386436`*^9, 3.963116674714829*^9}, { 3.963116739337349*^9, 3.963116758440593*^9}, {3.963116807639826*^9, 3.963116908249893*^9}, {3.963116962467457*^9, 3.963117361034856*^9}, { 3.963117438072153*^9, 3.963117445774796*^9}, {3.9631174977295094`*^9, 3.963117642618992*^9}, {3.9631176994119596`*^9, 3.963117781710061*^9}, 3.9631178385683737`*^9, 3.9631178712964077`*^9, 3.963118079104693*^9, 3.963118153632324*^9, {3.96311818815679*^9, 3.963118188349058*^9}, { 3.963118224933249*^9, 3.96311833355939*^9}, {3.9631223549977293`*^9, 3.963122387004344*^9}, {3.9631224314590073`*^9, 3.963122450020956*^9}, { 3.963122517591324*^9, 3.963122559754676*^9}, {3.963122607234014*^9, 3.963122780236763*^9}, {3.963122881549786*^9, 3.963122929202035*^9}, { 3.963122965788065*^9, 3.9631229757642403`*^9}, {3.9631231090887117`*^9, 3.963123136414509*^9}, {3.963123170231431*^9, 3.96312317101298*^9}, { 3.963123797181625*^9, 3.963123819399016*^9}, {3.963220880282058*^9, 3.963220902643838*^9}, 3.963220964344914*^9, {3.963221011512394*^9, 3.963221198142159*^9}}, CellLabel-> "In[781]:=",ExpressionUUID->"ba94c135-d3c6-4510-8f91-0900815b4fea"], Cell[BoxData[ GraphicsBox[{{}, {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{ FormBox["\"J \[Tau]\"", TraditionalForm], FormBox["\"J \[Tau]\"", TraditionalForm]}, { FormBox["\"\[CapitalDelta] / J\"", TraditionalForm], FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm]}}, FrameTicks->{{Automatic, {{0.25, FormBox["\"1/4\"", TraditionalForm]}, {0.75, FormBox["\"3/4\"", TraditionalForm]}, {1.25, FormBox["\"5/4\"", TraditionalForm]}, {1.75, FormBox["\"7/4\"", TraditionalForm]}}}, {Automatic, {{ NCache[ Tan[5 Degree], 0.08748866352592401], None}, { NCache[ Tan[10 Degree], 0.17632698070846498`], None}, { NCache[ Tan[20 Degree], 0.36397023426620234`], FormBox["20.`", TraditionalForm], 0.02}, { NCache[3^Rational[-1, 2], 0.5773502691896258], None}, { NCache[ Tan[40 Degree], 0.8390996311772799], FormBox["40.`", TraditionalForm], 0.02}, { NCache[ Cot[40 Degree], 1.19175359259421], None}, { NCache[3^Rational[1, 2], 1.7320508075688772`], FormBox["60.`", TraditionalForm], 0.02}, { NCache[ Cot[20 Degree], 2.7474774194546225`], FormBox["70.`", TraditionalForm], 0.02}, { NCache[ Cot[10 Degree], 5.671281819617709], FormBox["80.`", TraditionalForm], 0.02}}}}, FrameTicksStyle->{{ RGBColor[ 0.33333333333333337`, 0.33333333333333337`, 0.33333333333333337`], RGBColor[ 0.33333333333333337`, 0.33333333333333337`, 0.33333333333333337`]}, { RGBColor[ 0.33333333333333337`, 0.33333333333333337`, 0.33333333333333337`], 14}}, GridLines->NCache[{{ Tan[10 Degree], Tan[20 Degree], 3^Rational[-1, 2], Tan[40 Degree], Cot[40 Degree], 3^Rational[1, 2], Cot[20 Degree], Cot[10 Degree]}, {0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4., 4.25, 4.5, 4.75, 5.}}, {{ 0.17632698070846498`, 0.36397023426620234`, 0.5773502691896258, 0.8390996311772799, 1.19175359259421, 1.7320508075688772`, 2.7474774194546225`, 5.671281819617709}, {0.25, 0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4., 4.25, 4.5, 4.75, 5.}}], GridLinesStyle->GrayLevel[1], LabelStyle->16, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotRange->{{0, 6}, {0, 2}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[783]=",ExpressionUUID->"42d4d41a-3aeb-4879-b347-4714230e14ce"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"SetDirectory", "[", RowBox[{"ParentDirectory", "[", "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"SetDirectory", "[", RowBox[{"ParentDirectory", "[", "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"SetDirectory", "[", "\"\\"", "]"}]}], "Input",\ CellChangeTimes->{{3.9631238389282923`*^9, 3.9631239363328457`*^9}}, CellLabel-> "In[784]:=",ExpressionUUID->"45788cec-ed12-4e71-9c9d-49e005107cfa"], Cell[BoxData["\<\"C:\\\\Users\\\\Mohamed\\\\Desktop\\\\Southampton\\\\\ Notebooks\"\>"], "Output", CellLabel-> "Out[784]=",ExpressionUUID->"c2c94302-b7cf-4ed5-8f06-784d5fb0bc77"], Cell[BoxData["\<\"C:\\\\Users\\\\Mohamed\\\\Desktop\\\\Southampton\"\>"], \ "Output", CellLabel-> "Out[785]=",ExpressionUUID->"be849a24-7a23-4877-a5f4-ac6aba8c6c86"], Cell[BoxData["\<\"C:\\\\Users\\\\Mohamed\\\\Desktop\"\>"], "Output", CellLabel-> "Out[786]=",ExpressionUUID->"b9d7a376-5d33-40cd-9ff7-89aced364ae2"], Cell[BoxData[ TemplateBox[{ "SetDirectory", "cdir", "\"Cannot set current directory to \ \\!\\(\\*RowBox[{\\\"\\\\\\\"manuscript/graphics\\\\\\\"\\\"}]\\).\"", 2, 787, 42, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[784]:=",ExpressionUUID->"3ed7ad55-838e-4683-9aae-f3031a70437f"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[787]=",ExpressionUUID->"3435c40e-0a3d-4aa3-a1b0-c3d30d26e921"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Export", "[", RowBox[{"\"\\"", ",", RowBox[{"graphics", "[", "\"\\"", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.963123944176998*^9, 3.963123982816908*^9}}, CellLabel-> "In[788]:=",ExpressionUUID->"f80fd435-cdc4-492e-b255-00c67f138f55"], Cell[BoxData["\<\"INADQ-contour-plot.pdf\"\>"], "Output", CellLabel-> "Out[788]=",ExpressionUUID->"01d365b4-22a1-4642-8753-a2adbb4be3ba"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["H0 in single-transition operators", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}},ExpressionUUID->"9ed58ae5-f662-42a6-960f-\ f76d64b77b4f"], Cell[CellGroupData[{ Cell["Hamiltonian", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}},ExpressionUUID->"af6f25f0-7ec2-41ad-b4c7-\ 8540c8bf7914"], Cell["factor out overall offset", "Text", CellChangeTimes->{{3.963043477783227*^9, 3.963043483647252*^9}},ExpressionUUID->"5ecb3334-ef7a-4e1c-8eb9-\ 03eaf29a6ccf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H0", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], "\[Omega]\[CapitalDelta]", " ", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", " ", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], "\[Omega]\[CapitalSigma]", " ", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "+", " ", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}]}], "+", " ", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]}]], "Input", CellChangeTimes->{{3.963042957412291*^9, 3.9630430185866003`*^9}, { 3.9630434628276*^9, 3.963043472772011*^9}, {3.963115028316148*^9, 3.9631150540949163`*^9}, {3.963565504339128*^9, 3.963565519205207*^9}}, CellLabel-> "In[789]:=",ExpressionUUID->"ef2a3539-a5ae-4a19-96b4-7260b9ae7f89"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[789]=",ExpressionUUID->"5f6843b1-32b7-4eec-8fbc-165e31987554"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetBasis", "[", RowBox[{"SingletTripletBasis", "[", "]"}], "]"}]], "Input", CellChangeTimes->{{3.9635655668504667`*^9, 3.963565573104883*^9}}, CellLabel-> "In[790]:=",ExpressionUUID->"0b4ad165-6932-46a9-ab89-8d8988af2c7d"], Cell[BoxData[ TemplateBox[{ "SetBasis", "alreadyset", "\"The basis is already set to \ \\!\\(\\*RowBox[{\\\"SingletTripletBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"BasisLabels\\\", \ \\\"\[Rule]\\\", \\\"Automatic\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 790, 43, 25793684326715730430, "Local", "QM`Hilbert`SetBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[790]:=",ExpressionUUID->"52f64239-95f5-4f62-955b-241bc009fd97"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "H0", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.963565576010511*^9, 3.963565584082335*^9}}, CellLabel-> "In[791]:=",ExpressionUUID->"67469f7d-c1c8-4b4b-8285-d33537496a75"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0"}, {"0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}], "0", "0"}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "0"}, {"0", "0", "0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 3, 5, 6}, {{3}, {1}, {2}, {1}, {3}, {4}}}, { Rational[1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-3, 4] $CellContext`\[Omega]J, Rational[1, 4] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] $CellContext`\[Omega]J, Rational[1, 4] $CellContext`\[Omega]J + Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma]}}]]]]], "Output", CellLabel-> "Out[791]//MatrixForm=",ExpressionUUID->"6c1e56f8-e8d2-4075-8333-\ 4f8050b4860d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "-", RowBox[{"\[Omega]J", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "-", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]J", "/", "4"}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "+", RowBox[{"\[Omega]\[CapitalSigma]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]J", "/", "4"}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}]}], "\[IndentingNewLine]", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.963565599866095*^9, 3.963565791869413*^9}}, CellLabel-> "In[792]:=",ExpressionUUID->"9767f6cd-639b-4591-91d7-2d44c59b323d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0"}, {"0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}], "0", "0"}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "0"}, {"0", "0", "0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 3, 5, 6}, {{1}, {3}, {2}, {3}, {1}, {4}}}, { Rational[-3, 4] $CellContext`\[Omega]J, Rational[1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J, Rational[1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] $CellContext`\[Omega]J + Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma]}}]]]]], "Output", CellLabel-> "Out[792]//MatrixForm=",ExpressionUUID->"89171b73-0260-4fde-813d-\ c00354f833f1"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"H0STops", "=", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", " ", "\[Theta]ST", " ", RowBox[{"CommutationSuperoperator", "[", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "]"}]}], "]"}], "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", "\[CapitalOmega]"}], " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "]"}], "+", RowBox[{"\[Omega]\[CapitalSigma]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]J", "/", "4"}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}], "-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}]}]}], ";"}]], "Input", CellChangeTimes->{{3.963566698316763*^9, 3.9635667219584427`*^9}}, CellLabel-> "In[793]:=",ExpressionUUID->"21f0cf1c-017d-4867-9892-384cab0bcaa5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ "MatrixRepresentation", "[", "\[IndentingNewLine]", "H0STops", "\[IndentingNewLine]", "]"}], "//", "Normal"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"%", "/.", "SubstitutionRules4"}], "//", "Simplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.963565835924279*^9, 3.963565936364336*^9}, { 3.963566008111226*^9, 3.963566044548503*^9}, {3.963566081496037*^9, 3.9635661164241056`*^9}, {3.963566506718601*^9, 3.96356656105846*^9}, 3.963566730270123*^9}, CellLabel-> "In[794]:=",ExpressionUUID->"fc066e74-c857-4f37-be8d-556d212eb90d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0"}, {"0", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}]}], ")"}]}], "0", "0"}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "2"], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "0"}, {"0", "0", "0", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}]}], ")"}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[795]//MatrixForm=",ExpressionUUID->"7cf95290-b8ec-4bb4-ab17-\ cb7cc9deb1f2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Simplify", "[", RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "H0", "]"}]}], "]"}], "==", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "H0STops", "]"}]}], "/.", "SubstitutionRules4"}], "]"}]}]], "Input", CellChangeTimes->{{3.96356673938061*^9, 3.963566800242847*^9}}, CellLabel-> "In[796]:=",ExpressionUUID->"52feecc6-394e-48a6-bac6-40d69f666d8b"], Cell[BoxData["True"], "Output", CellLabel-> "Out[796]=",ExpressionUUID->"55fdda2a-71af-4f2e-81d4-0eac0e656a5c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eigenstates", "Subsection", CellChangeTimes->{{3.963567172575492*^9, 3.963567174215761*^9}},ExpressionUUID->"2b729682-2a36-4927-a8e7-\ a6aa91db48de"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ket1p", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", " ", "\[Theta]ST", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "[", RowBox[{"Ket", "[", "1", "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "ket1p", "]"}], "//", "Normal"}], "//", "Simplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.963566969785015*^9, 3.963567049185903*^9}}, CellLabel-> "In[797]:=",ExpressionUUID->"131c69ca-3347-46db-a86d-e526ca4f86ca"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{ RowBox[{"Cos", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ "-", "\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>"}]\ , "+", "\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>"}], ")"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", "+", "\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>"}], ")"}], " ", RowBox[{"Sin", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[797]=",ExpressionUUID->"60ead8c5-b931-45d4-96de-04c2f0bb00d2"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", TagBox[GridBox[{ { RowBox[{"Cos", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}, {"0"}, { RowBox[{"-", RowBox[{"Sin", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}]}, {"0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], Column], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[798]//MatrixForm=",ExpressionUUID->"7e8166c9-e159-4105-8185-\ eb3ee5de5456"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ket2p", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", " ", "\[Theta]ST", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "[", RowBox[{"Ket", "[", "2", "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "ket2p", "]"}], "//", "Normal"}], "//", "Simplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.963566969785015*^9, 3.963567049185903*^9}, { 3.963567181784536*^9, 3.963567188023552*^9}}, CellLabel-> "In[799]:=",ExpressionUUID->"9fd64289-882a-4644-920b-b8334a3671e8"], Cell[BoxData["\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\>\ "], "Output", CellLabel-> "Out[799]=",ExpressionUUID->"1e0590f7-2648-472c-912c-915315cbe558"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", TagBox[GridBox[{ {"0"}, {"1"}, {"0"}, {"0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], Column], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[800]//MatrixForm=",ExpressionUUID->"88780ba5-f895-48fd-b7a4-\ 4cdc988e6380"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ket3p", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", " ", "\[Theta]ST", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "[", RowBox[{"Ket", "[", "3", "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "ket3p", "]"}], "//", "Normal"}], "//", "Simplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.963566969785015*^9, 3.963567049185903*^9}, { 3.963567181784536*^9, 3.963567188023552*^9}, {3.963567257599118*^9, 3.963567262792624*^9}}, CellLabel-> "In[801]:=",ExpressionUUID->"d6843155-2428-4618-b67e-86951a1311a1"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{ RowBox[{"Cos", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}], " ", RowBox[{"(", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", "+", "\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>"}], ")"}]}], SqrtBox["2"]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ "-", "\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>"}]\ , "+", "\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>"}], ")"}], " ", RowBox[{"Sin", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[801]=",ExpressionUUID->"c5659187-9537-468c-bbdd-b2d5c39988d8"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", TagBox[GridBox[{ { RowBox[{"Sin", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}, {"0"}, { RowBox[{"Cos", "[", FractionBox[ SubscriptBox["\[Theta]", "\<\"ST\"\>"], "2"], "]"}]}, {"0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], Column], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[802]//MatrixForm=",ExpressionUUID->"7bc0739f-332d-467c-b472-\ 4bfae119fa48"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ket4p", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", " ", "\[Theta]ST", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "[", RowBox[{"Ket", "[", "4", "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "ket4p", "]"}], "//", "Normal"}], "//", "Simplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.963566969785015*^9, 3.963567049185903*^9}, { 3.963567181784536*^9, 3.963567188023552*^9}, {3.963567257599118*^9, 3.963567262792624*^9}, {3.963567867030656*^9, 3.9635678733407583`*^9}}, CellLabel-> "In[803]:=",ExpressionUUID->"471c33aa-4702-42ca-8036-a2eaacada9be"], Cell[BoxData["\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>"]\ , "Output", CellLabel-> "Out[803]=",ExpressionUUID->"2bfa438d-ec31-44c7-949d-d7d52a3dc108"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", TagBox[GridBox[{ {"0"}, {"0"}, {"0"}, {"1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], Column], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[804]//MatrixForm=",ExpressionUUID->"f6e80e34-ac72-479e-be10-\ 127a43bc3c6a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eigenvalues", "Subsection", CellChangeTimes->{{3.963567172575492*^9, 3.963567174215761*^9}, { 3.9635674098455153`*^9, 3.963567410854382*^9}},ExpressionUUID->"385b97a8-4979-4cee-976d-\ 831a65ead5fb"], Cell[CellGroupData[{ Cell["eval2", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567728211018*^9}},ExpressionUUID->"67623474-88cb-4323-b940-\ 29426d2c9751"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eval2", " ", "=", " ", RowBox[{ RowBox[{"\[Omega]\[CapitalSigma]", "/", "2"}], " ", "+", " ", RowBox[{"\[Omega]J", "/", "4"}]}]}]], "Input", CellChangeTimes->{{3.963567439208112*^9, 3.9635674870468817`*^9}, 3.963567697295076*^9, {3.963567737645565*^9, 3.9635677501983147`*^9}}, CellLabel-> "In[805]:=",ExpressionUUID->"38acb584-bdad-4e12-a00f-93754e733a24"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[805]=",ExpressionUUID->"4491ab7b-311b-44a4-a517-e38a4568ff5f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"H0STops", " ", "[", "ket2p", "]"}], "-", RowBox[{"eval2", "*", "ket2p"}]}], "\[IndentingNewLine]", "]"}], "//", "Normal"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.963567495014862*^9, 3.96356766273904*^9}, { 3.9635677077817707`*^9, 3.9635677080346727`*^9}, {3.9635677545190783`*^9, 3.963567758828923*^9}}, CellLabel-> "In[806]:=",ExpressionUUID->"2e704966-59ca-457c-82ac-c15742d94b60"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[806]=",ExpressionUUID->"67d18546-7b9e-4daf-9c6c-5557e33c6b40"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eval3", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567728211018*^9}, 3.963567774114731*^9},ExpressionUUID->"a2415342-58f7-46d6-bab8-\ 083b73ab5d48"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eval3", " ", "=", RowBox[{ RowBox[{"\[CapitalOmega]", "/", "2"}], " ", "-", " ", RowBox[{"\[Omega]J", "/", "4"}]}]}]], "Input", CellChangeTimes->{{3.963567439208112*^9, 3.9635674870468817`*^9}, 3.963567697295076*^9, {3.963567737645565*^9, 3.9635677948450737`*^9}}, CellLabel-> "In[807]:=",ExpressionUUID->"fd0f152c-0f2e-4502-a431-6fd28c123f15"], Cell[BoxData[ RowBox[{ FractionBox["\[CapitalOmega]", "2"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"]}]], "Output", CellLabel-> "Out[807]=",ExpressionUUID->"6b592b01-f11d-4f34-9723-5575dc0e7a89"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"H0STops", " ", "[", "ket3p", "]"}], "-", RowBox[{"eval3", "*", "ket3p"}]}], "\[IndentingNewLine]", "]"}], "//", "Normal"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.963567495014862*^9, 3.96356766273904*^9}, { 3.9635677077817707`*^9, 3.9635677080346727`*^9}, {3.9635677545190783`*^9, 3.963567758828923*^9}, {3.9635678027093554`*^9, 3.963567807373567*^9}}, CellLabel-> "In[808]:=",ExpressionUUID->"d7fd5b30-c7d9-45f6-adce-821da68acb1b"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[808]=",ExpressionUUID->"4fd36687-fd84-4e31-bac1-072672fdd93d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eval4", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567728211018*^9}, 3.963567818405931*^9},ExpressionUUID->"a965c8d7-190b-4f73-b928-\ 957410a775a2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eval4", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]\[CapitalSigma]"}], "/", "2"}], " ", "+", " ", RowBox[{"\[Omega]J", "/", "4"}]}]}]], "Input", CellChangeTimes->{{3.963567439208112*^9, 3.9635674870468817`*^9}, 3.963567697295076*^9, {3.963567737645565*^9, 3.9635677501983147`*^9}, { 3.963567820932308*^9, 3.963567837145246*^9}}, CellLabel-> "In[809]:=",ExpressionUUID->"93c514bb-f864-47df-9c82-89430a7694ea"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[809]=",ExpressionUUID->"911c85d8-77c6-4599-9dee-e87bbc43e85e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"VectorRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"H0STops", " ", "[", "ket4p", "]"}], "-", RowBox[{"eval4", "*", "ket4p"}]}], "\[IndentingNewLine]", "]"}], "//", "Normal"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.963567495014862*^9, 3.96356766273904*^9}, { 3.9635677077817707`*^9, 3.9635677080346727`*^9}, {3.9635677545190783`*^9, 3.963567758828923*^9}, {3.9635678402904243`*^9, 3.9635678438203373`*^9}, { 3.963567884066708*^9, 3.9635678842693357`*^9}}, CellLabel-> "In[810]:=",ExpressionUUID->"49dcc5b7-950b-43d2-8afe-efc363444995"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[810]=",ExpressionUUID->"4ed2a98a-a145-4578-8779-4e377c15c76e"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["approx eigenvalues", "Subsection", CellChangeTimes->{{3.963567172575492*^9, 3.963567174215761*^9}, { 3.9635674098455153`*^9, 3.963567410854382*^9}, {3.96356885218876*^9, 3.96356885329298*^9}},ExpressionUUID->"0211436d-d03f-441e-83ce-\ f8c8a4078919"], Cell[CellGroupData[{ Cell["eval1", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567718580586*^9}},ExpressionUUID->"d4b6dc8c-626f-4492-bd1e-\ bb76e8a17aef"], Cell[CellGroupData[{ Cell[BoxData["eval1"], "Input", CellLabel-> "In[811]:=",ExpressionUUID->"ae4ceea1-fae8-40db-a3ce-be08adbfa147"], Cell[BoxData["eval1"], "Output", CellLabel-> "Out[811]=",ExpressionUUID->"cb448f54-3408-4c3a-a2fc-987ee14e1eb2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{ RowBox[{"%", "/.", "SubstitutionRules4"}], ",", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//", "PowerExpand"}], "//", "Normal"}]], "Input", CellChangeTimes->{{3.9635690588528748`*^9, 3.963569084298209*^9}, { 3.963569148789496*^9, 3.963569149303629*^9}}, CellLabel-> "In[812]:=",ExpressionUUID->"df2f142e-479d-45e1-b53c-1c9ae101954d"], Cell[BoxData["eval1"], "Output", CellLabel-> "Out[812]=",ExpressionUUID->"8348152c-9df8-44e5-a3fc-356998de5e5f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eval2", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567718580586*^9}, 3.963569107121867*^9},ExpressionUUID->"7fb0bb11-13aa-4e5e-a5f6-\ f03cddbd5785"], Cell[CellGroupData[{ Cell[BoxData["eval2"], "Input", CellChangeTimes->{3.963569108659575*^9}, CellLabel-> "In[813]:=",ExpressionUUID->"9112d0f6-5679-4a1a-9e60-9c49ca071dba"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[813]=",ExpressionUUID->"b8a2077e-80a6-4702-854b-f163d1a70019"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//", "PowerExpand"}], "//", "Normal"}]], "Input", CellChangeTimes->{{3.9635690588528748`*^9, 3.963569084298209*^9}}, CellLabel-> "In[814]:=",ExpressionUUID->"7d87126f-6d38-4d9e-9b57-b4dc69cc8052"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[814]=",ExpressionUUID->"ccc8ad09-edb5-4353-939a-9cb076e33abe"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["eval3", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567718580586*^9}, { 3.963569107121867*^9, 3.96356912338647*^9}},ExpressionUUID->"3ae34c6c-6fdf-46a9-a2c4-\ 911109a991ba"], Cell[CellGroupData[{ Cell[BoxData["eval3"], "Input", CellChangeTimes->{{3.963569108659575*^9, 3.963569125234418*^9}}, CellLabel-> "In[815]:=",ExpressionUUID->"03bc0c63-e431-49df-892b-02c307c9899d"], Cell[BoxData[ RowBox[{ FractionBox["\[CapitalOmega]", "2"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"]}]], "Output", CellLabel-> "Out[815]=",ExpressionUUID->"83ad5c8f-3dc1-4c7f-bfad-7f26f60cefbe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{ RowBox[{"%", "/.", "SubstitutionRules4"}], ",", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//", "PowerExpand"}], "//", "Normal"}]], "Input", CellChangeTimes->{{3.9635690588528748`*^9, 3.963569084298209*^9}, { 3.9635691541935987`*^9, 3.963569157141115*^9}}, CellLabel-> "In[816]:=",ExpressionUUID->"7bf6a8ed-a57b-4dee-a0fd-b6e7a045b2c3"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ SubsuperscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>", "2"], RowBox[{"4", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]], "Output", CellLabel-> "Out[816]=",ExpressionUUID->"125561be-4ae3-437f-a7f7-5e0805c8b3cd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["eval4", "Subsubsection", CellChangeTimes->{{3.9635677176450043`*^9, 3.963567718580586*^9}, { 3.963569107121867*^9, 3.96356912338647*^9}, 3.963569173816791*^9},ExpressionUUID->"4630f0ad-95a6-488d-8de9-\ 61e7e4c599bf"], Cell[CellGroupData[{ Cell[BoxData["eval4"], "Input", CellChangeTimes->{{3.963569108659575*^9, 3.963569125234418*^9}, 3.963569176193227*^9}, CellLabel-> "In[817]:=",ExpressionUUID->"5cfafd71-35cb-41fe-b1be-91a0add54f86"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[817]=",ExpressionUUID->"ab0c6bae-5655-4921-a509-11606fcc36cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{ RowBox[{"%", "/.", "SubstitutionRules4"}], ",", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//", "PowerExpand"}], "//", "Normal"}]], "Input", CellChangeTimes->{{3.9635690588528748`*^9, 3.963569084298209*^9}, { 3.9635691541935987`*^9, 3.963569157141115*^9}}, CellLabel-> "In[818]:=",ExpressionUUID->"42690e7f-c757-4042-8c43-2291d788b4e2"], Cell[BoxData[ RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], "2"]}]], "Output", CellLabel-> "Out[818]=",ExpressionUUID->"19c7a247-a865-4a68-8683-0e7a9bb7a3de"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["density operator transformations", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}},ExpressionUUID->"d04f8965-650e-4443-9a15-\ c8c409073e1b"], Cell[CellGroupData[{ Cell["geoDQ", "Section", CellChangeTimes->{{3.963825049724143*^9, 3.963825050722321*^9}},ExpressionUUID->"e8a25ab5-f023-4689-94bb-\ c295ee3cadee"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825099185545*^9}},ExpressionUUID->"41445d7a-eaab-4772-9c80-\ 72398bd5a23f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.9638251244560013`*^9, 3.963825132750079*^9}}, CellLabel-> "In[819]:=",ExpressionUUID->"b03e9cf1-7904-44bb-9946-7e2be88704fa"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[819]=",ExpressionUUID->"3ce2b3c1-9c34-49e4-8a7a-2421f331c597"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]1", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825181640724*^9}}, CellLabel-> "In[820]:=",ExpressionUUID->"16146b05-4c44-4f73-a20e-11b036274b66"], Cell[BoxData["True"], "Output", CellLabel-> "Out[820]=",ExpressionUUID->"92294814-df24-4bc2-ac76-66d3227bf396"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}},ExpressionUUID->"eb85df0d-e6be-46a8-9573-\ e881bf9a6674"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]2", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}}, CellLabel-> "In[821]:=",ExpressionUUID->"96b327af-4a98-4583-8b16-f5141f6075ed"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[821]=",ExpressionUUID->"808b085e-1be0-4849-aab8-8338e8a819a7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}}, CellLabel-> "In[822]:=",ExpressionUUID->"5e92a15a-f4a9-46ca-bf69-a83f0a7c00aa"], Cell[BoxData["True"], "Output", CellLabel-> "Out[822]=",ExpressionUUID->"46237eac-5692-490d-9d5a-6d8f45ff224a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825278157222*^9, 3.963825318508017*^9}}, CellLabel-> "In[823]:=",ExpressionUUID->"b37d0854-de0d-4eb2-8b67-3b8424ceb8b5"], Cell[BoxData["True"], "Output", CellLabel-> "Out[823]=",ExpressionUUID->"040cd890-347b-4a95-b9fb-9b3fb3eef65a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}},ExpressionUUID->"9c976353-9a7f-446c-b945-\ d15635f3a936"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[CapitalPi]z13", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Pi]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825339200245*^9, 3.9638253827131557`*^9}}, CellLabel-> "In[824]:=",ExpressionUUID->"08333290-93e6-4e81-ae31-049ca732bd50"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "2"]}], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "2"]}], ")"}]}]]], "Output", CellLabel-> "Out[824]=",ExpressionUUID->"d1b8219e-9108-402b-bc98-5260970d418b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]3", "=", RowBox[{"\[CapitalPi]z13", ".", "\[Rho]2", ".", RowBox[{"Adjoint", "[", "\[CapitalPi]z13", "]"}]}]}]], "Input", CellChangeTimes->{{3.963825390400277*^9, 3.96382541651367*^9}}, CellLabel-> "In[825]:=",ExpressionUUID->"6032e6d6-d002-4992-a0ef-e451abf55220"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[825]=",ExpressionUUID->"58daf6f5-3c43-4d73-8aaa-570ea96c4073"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "\[IndentingNewLine]", "-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}, { 3.963825496971867*^9, 3.963825508954565*^9}}, CellLabel-> "In[826]:=",ExpressionUUID->"29ceb05f-711b-4ce6-ac58-f5c6ee0e25c4"], Cell[BoxData["True"], "Output", CellLabel-> "Out[826]=",ExpressionUUID->"0aa00bd1-8822-4cba-98e5-9d4472368689"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], "I", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "-", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825427363975*^9, 3.963825475567219*^9}, { 3.9638255320961227`*^9, 3.963825541824942*^9}}, CellLabel-> "In[827]:=",ExpressionUUID->"ba875d81-ce5b-4a70-9f86-26b595150ee3"], Cell[BoxData["True"], "Output", CellLabel-> "Out[827]=",ExpressionUUID->"a6afe1c2-799a-457c-8c55-9076d2939ae5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Commutator", "[", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"%", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]}], "Input",\ CellChangeTimes->{{3.9638256153866262`*^9, 3.9638256579465427`*^9}}, CellLabel-> "In[828]:=",ExpressionUUID->"fe8be6b2-5228-472f-95c6-3a8aa4b07b86"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], RowBox[{"4", " ", SqrtBox["2"]}]]], "Output", CellLabel-> "Out[828]=",ExpressionUUID->"573982ee-a306-498d-a3e1-687c2b58c8ab"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", FractionBox["1", "4"], "0"}, {"0", RowBox[{"-", FractionBox["1", "4"]}], "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 2, 2}, {{3}, {2}}}, { Rational[1, 4], Rational[-1, 4]}}]]]]], "Output", CellLabel-> "Out[829]//MatrixForm=",ExpressionUUID->"f074df2e-8b48-44f4-b630-\ e702ec687ea2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"opA", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"opB", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"opC", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Commutator", "[", RowBox[{"opA", ",", "opB"}], "]"}], "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"(", RowBox[{"I", "/", "2"}], ")"}], " ", "opC"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Commutator", "[", RowBox[{"opA", ",", "opC"}], "]"}], "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"I", "/", "2"}], ")"}]}], " ", "opB"}], "]"}]}]}], "Input", CellChangeTimes->{{3.963825672497807*^9, 3.963825867217805*^9}, { 3.963825897295779*^9, 3.9638259060887547`*^9}}, CellLabel-> "In[830]:=",ExpressionUUID->"51d17233-9c89-4d3e-a4ca-f2d2376ffbf5"], Cell[BoxData["True"], "Output", CellLabel-> "Out[833]=",ExpressionUUID->"8c66bd05-f28a-4e9c-ad1a-7b65e87e35a0"], Cell[BoxData["True"], "Output", CellLabel-> "Out[834]=",ExpressionUUID->"16a3c557-4030-4322-82b1-42e81d7763dd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"opA", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"opB", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"opC", "=", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Commutator", "[", RowBox[{"opA", ",", "opB"}], "]"}], "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"I", "/", "2"}], ")"}]}], " ", "opC"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Commutator", "[", RowBox[{"opA", ",", "opC"}], "]"}], "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"+", RowBox[{"(", RowBox[{"I", "/", "2"}], ")"}]}], " ", "opB"}], "]"}]}]}], "Input", CellChangeTimes->{{3.963825672497807*^9, 3.963825867217805*^9}, { 3.963825897295779*^9, 3.9638259060887547`*^9}, {3.9638260665381823`*^9, 3.963826078218156*^9}}, CellLabel-> "In[835]:=",ExpressionUUID->"e5ee5266-9b48-48f7-9041-3ec62ceae799"], Cell[BoxData["True"], "Output", CellLabel-> "Out[838]=",ExpressionUUID->"f8171ec1-de47-416d-ab65-9a2f39123108"], Cell[BoxData["True"], "Output", CellLabel-> "Out[839]=",ExpressionUUID->"425f10c1-dd5b-45c4-abd4-bf4e084a7402"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]3", ",", " ", RowBox[{"CartesianProductOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9638264057654*^9, 3.963826419093278*^9}}, CellLabel-> "In[840]:=",ExpressionUUID->"7ec7fbf3-3477-4840-8f27-1b48509d482d"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[840]=",ExpressionUUID->"e2b65037-d445-45bd-8d7d-e10e83ac9c23"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]4", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251163387833`*^9}},ExpressionUUID->"1f998b72-565d-4127-a3b5-\ 69764b06dad5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]4", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]3", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9638894326457367`*^9, 3.963889472306831*^9}}, CellLabel-> "In[841]:=",ExpressionUUID->"e51ff073-8c04-4155-bf7b-459ae8fd043a"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[841]=",ExpressionUUID->"73bb259d-8062-412d-9e35-12f0a6024926"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]4", ",", RowBox[{"ShiftAndZOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9638894861840553`*^9, 3.963889499140929*^9}}, CellLabel-> "In[842]:=",ExpressionUUID->"d0bc7005-1a4e-4c50-aa2b-ee549428b061"], Cell[BoxData[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "-"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "-"], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[842]=",ExpressionUUID->"9d358018-09f0-42c0-a117-82110740ed39"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{"I", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "-", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963889841765245*^9, 3.9638899333853607`*^9}}, CellLabel-> "In[843]:=",ExpressionUUID->"33f390e8-7ace-43da-89f8-06e29544c2bb"], Cell[BoxData["True"], "Output", CellLabel-> "Out[843]=",ExpressionUUID->"9ba9cebc-6398-4879-9b1a-74a227b7661f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.964857926765203*^9, 3.964857938866688*^9}}, CellLabel-> "In[844]:=",ExpressionUUID->"25897d00-4a79-4e07-b2b8-feac53b2ec9c"], Cell[BoxData[ RowBox[{"-", "\[ImaginaryI]"}]], "Output", CellLabel-> "Out[844]=",ExpressionUUID->"05bacf99-0c27-4798-b67f-d58cecf2c692"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["spinorDQ", "Section", CellChangeTimes->{{3.963825049724143*^9, 3.963825057319604*^9}},ExpressionUUID->"5363bd46-e06e-4bd0-abe5-\ 2ee72be39f89"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825099185545*^9}},ExpressionUUID->"92e64746-aca8-4e28-9b68-\ 2057b709b0dc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.9638251244560013`*^9, 3.963825132750079*^9}}, CellLabel-> "In[845]:=",ExpressionUUID->"c9cfa385-b234-4a1f-aaf6-7f6e2988705f"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[845]=",ExpressionUUID->"1e69004e-b55c-4395-9908-6d75332f5c87"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]1", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825181640724*^9}}, CellLabel-> "In[846]:=",ExpressionUUID->"c4f661d1-7b00-4039-89a7-1430a9f46f93"], Cell[BoxData["True"], "Output", CellLabel-> "Out[846]=",ExpressionUUID->"0db41106-93df-49d9-b84d-dfc95bc26e35"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}},ExpressionUUID->"5d6e1bb3-daf2-41f2-b73c-\ b5058b9e336e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]2", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}}, CellLabel-> "In[847]:=",ExpressionUUID->"23e216a3-6203-4ca9-8153-932bc0c5939f"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[847]=",ExpressionUUID->"31006cf9-4398-482a-98f5-e59f80326a27"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}}, CellLabel-> "In[848]:=",ExpressionUUID->"e6187137-13f1-4b49-b9f8-db40e429b5b1"], Cell[BoxData["True"], "Output", CellLabel-> "Out[848]=",ExpressionUUID->"99430236-e08e-4730-b549-fc78a6ff3866"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825278157222*^9, 3.963825318508017*^9}}, CellLabel-> "In[849]:=",ExpressionUUID->"cef1415e-ec98-491f-978e-6543ba79c0dc"], Cell[BoxData["True"], "Output", CellLabel-> "Out[849]=",ExpressionUUID->"9a120f49-20d3-445d-84b0-73c6d95d2f70"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}},ExpressionUUID->"9c50e73e-d278-471b-a50a-\ 7ac113e49d41"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"C12", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", " ", "\[Pi]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825339200245*^9, 3.9638253827131557`*^9}, { 3.963845456135232*^9, 3.963845465680891*^9}}, CellLabel-> "In[850]:=",ExpressionUUID->"47145851-9875-47d0-b45f-c5923501028c"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], RowBox[{"2", " ", SqrtBox["2"]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[850]=",ExpressionUUID->"8c69799d-b50f-423e-bf6f-c440c6988b6b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]3", "=", RowBox[{"C12", ".", "\[Rho]2", ".", RowBox[{"Adjoint", "[", "C12", "]"}]}]}]], "Input", CellChangeTimes->{{3.963825390400277*^9, 3.96382541651367*^9}, { 3.9638454744998283`*^9, 3.963845476079973*^9}}, CellLabel-> "In[851]:=",ExpressionUUID->"ce01a6cd-a9a5-45ab-b911-be936ee62f3a"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], SqrtBox["2"]]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[851]=",ExpressionUUID->"bc0370dd-1bd6-4c53-896d-d006e448af9a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}, { 3.963825496971867*^9, 3.963825508954565*^9}, {3.963845485751045*^9, 3.9638454962000303`*^9}}, CellLabel-> "In[852]:=",ExpressionUUID->"2f6d2e3a-caa1-4e95-bf99-9bee9d82d09b"], Cell[BoxData["True"], "Output", CellLabel-> "Out[852]=",ExpressionUUID->"8d956524-aa51-4f0c-9e2c-f2ea72b5c7d4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "-", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825427363975*^9, 3.963825475567219*^9}, { 3.9638255320961227`*^9, 3.963825541824942*^9}, {3.963845510283819*^9, 3.963845516781155*^9}}, CellLabel-> "In[853]:=",ExpressionUUID->"baa46526-b76a-4839-8be4-cd6d0067be20"], Cell[BoxData["True"], "Output", CellLabel-> "Out[853]=",ExpressionUUID->"1aed2e77-46ee-42d2-9ff8-e1ac5b4e472d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]3", ",", " ", RowBox[{"CartesianProductOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9638264057654*^9, 3.963826419093278*^9}}, CellLabel-> "In[854]:=",ExpressionUUID->"d219f69f-0485-4750-8586-f5df02c67245"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[854]=",ExpressionUUID->"cd29d088-998b-4a17-a3db-56b764aa82b3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]4", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251163387833`*^9}},ExpressionUUID->"b83b57a5-a9a6-4d0d-b467-\ bb003ea6d4af"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]4", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]3", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9638894326457367`*^9, 3.963889472306831*^9}, { 3.9638905807836514`*^9, 3.963890583316022*^9}}, CellLabel-> "In[855]:=",ExpressionUUID->"f13817a8-3d60-463c-a52d-c481d12160df"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[855]=",ExpressionUUID->"abd101be-48e5-4ecf-84f2-85dd7d21bf86"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]4", ",", RowBox[{"ShiftAndZOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9638894861840553`*^9, 3.963889499140929*^9}}, CellLabel-> "In[856]:=",ExpressionUUID->"3305a488-9738-4aa7-8692-0dd4e842aefc"], Cell[BoxData[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "-"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "-"], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubsuperscriptBox["I", "1", "+"], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubsuperscriptBox["I", "2", "+"], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[856]=",ExpressionUUID->"40ec4b42-7b95-4b41-82d8-4b84219d998f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{"I", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "-", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963889841765245*^9, 3.9638899333853607`*^9}}, CellLabel-> "In[857]:=",ExpressionUUID->"7a0480d1-b275-4fd3-870c-978795ad9618"], Cell[BoxData["True"], "Output", CellLabel-> "Out[857]=",ExpressionUUID->"8e70d584-2a25-4ca3-84ce-a52a705dc114"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["PulsePol theory", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}},ExpressionUUID->"42fdae1a-3e38-4e56-91df-\ c4ef3f4cd629"], Cell[CellGroupData[{ Cell["scaling factors \[Kappa]", "Section", CellChangeTimes->{{3.964104881201468*^9, 3.964104884222802*^9}, 3.9641053512137823`*^9, {3.9641055270543327`*^9, 3.964105528508299*^9}},ExpressionUUID->"32a54e41-00d1-4b7f-bf7e-\ ab9f1e73e09c"], Cell[CellGroupData[{ Cell["calculations using eq.49 of Sabba 2022", "Subsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105225744646*^9}, { 3.9641053638491488`*^9, 3.964105365429331*^9}, {3.964105482154252*^9, 3.964105484445127*^9}, {3.96410584420643*^9, 3.9641058538079357`*^9}},ExpressionUUID->"0bd6e015-2a35-40d6-ad36-\ 38e583c4e57c"], Cell[CellGroupData[{ Cell["eq.49", "Subsubsection", CellChangeTimes->{{3.964104891712111*^9, 3.9641049002306213`*^9}, 3.964105861845228*^9},ExpressionUUID->"df1fb622-6ba5-4183-a412-\ e78e59111068"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "=", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", RowBox[{"bigN", "/", RowBox[{"(", RowBox[{"n", " ", "\[Pi]"}], ")"}]}], ")"}], RowBox[{ RowBox[{"(", RowBox[{"-", "1"}], ")"}], "^", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"bigN", "+", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", "bigN"}], ")"}]}], ")"}]}], RowBox[{ RowBox[{"Sin", "[", RowBox[{"n", " ", RowBox[{"\[Pi]", "/", RowBox[{"(", RowBox[{"2", "bigN"}], ")"}]}]}], "]"}], "^", "2"}]}]}]], "Input", CellChangeTimes->{{3.964104904576268*^9, 3.9641050444564734`*^9}, { 3.964105117732181*^9, 3.964105119961945*^9}}, CellLabel-> "In[858]:=",ExpressionUUID->"1ac300ea-f6bc-498a-9c07-1469ee3bef33"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ImaginaryI]", FractionBox[ RowBox[{"bigN", "+", "n", "-", "\[Nu]"}], "bigN"]], " ", SqrtBox["2"], " ", "bigN", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], RowBox[{"2", " ", "bigN"}]], "]"}], "2"]}], RowBox[{"n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[858]=",ExpressionUUID->"cc6ec879-2f84-4d29-b88a-c795abbe67c4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "=", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", RowBox[{"bigN", "/", RowBox[{"(", RowBox[{"n", " ", "\[Pi]"}], ")"}]}], ")"}], RowBox[{ RowBox[{"(", RowBox[{"-", "1"}], ")"}], "^", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"bigN", "-", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", "bigN"}], ")"}]}], ")"}]}], RowBox[{ RowBox[{"Sin", "[", RowBox[{"n", " ", RowBox[{"\[Pi]", "/", RowBox[{"(", RowBox[{"2", "bigN"}], ")"}]}]}], "]"}], "^", "2"}]}]}]], "Input", CellChangeTimes->{{3.964105057503113*^9, 3.964105067865299*^9}, 3.964105126576906*^9}, CellLabel-> "In[859]:=",ExpressionUUID->"9e83e24a-dd92-47ee-a3dd-e10b7eebc671"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ImaginaryI]", FractionBox[ RowBox[{"bigN", "-", "n", "+", "\[Nu]"}], "bigN"]], " ", SqrtBox["2"], " ", "bigN", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], RowBox[{"2", " ", "bigN"}]], "]"}], "2"]}], RowBox[{"n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[859]=",ExpressionUUID->"69debc39-198f-48be-9ac5-06598fc819cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Kappa][1,1,1,1]", "Subsubsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105220805099*^9}},ExpressionUUID->"96dab93a-b205-4d89-85b0-\ be2ccd431eaf"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"%", "//", "N"}]}], "Input", CellChangeTimes->{{3.964105074875545*^9, 3.964105097797737*^9}}, CellLabel-> "In[860]:=",ExpressionUUID->"125fe485-0a4f-4c54-8703-715e0275199c"], Cell[BoxData[ FractionBox[ RowBox[{"4", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], RowBox[{"3", "/", "4"}]], " ", SqrtBox["2"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Pi]", "8"], "]"}], "2"]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[860]=",ExpressionUUID->"2e1c9e73-6020-444f-b1e0-ba75876c2d85"], Cell[BoxData[ RowBox[{ RowBox[{"-", "0.3622593101487115`"}], "+", RowBox[{"0.36225931014871154`", " ", "\[ImaginaryI]"}]}]], "Output", CellLabel-> "Out[861]=",ExpressionUUID->"98ff58c5-ad2e-462a-9c9d-26e2139753a2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Abs", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.9641051013606653`*^9, 3.964105103414815*^9}}, CellLabel-> "In[862]:=",ExpressionUUID->"348d9ea9-c620-4900-9ee9-028d3a7a924e"], Cell[BoxData["0.5123120295082292`"], "Output", CellLabel-> "Out[862]=",ExpressionUUID->"4a8eb8d6-29c3-46c0-a6e5-24a4e2d14894"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Arg", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.9641052543977747`*^9, 3.964105257583749*^9}}, CellLabel-> "In[863]:=",ExpressionUUID->"7e2630e7-49b3-4fd5-b8c7-5a7859ec30fa"], Cell[BoxData[ FractionBox[ RowBox[{"3", " ", "\[Pi]"}], "4"]], "Output", CellLabel-> "Out[863]=",ExpressionUUID->"442b7a70-b9e1-4181-97b7-d72d1ce20f0e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Kappa][1,-1,1,-1]", "Subsubsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105225744646*^9}},ExpressionUUID->"9c72effc-cc53-4e60-b5f8-\ 998ab23db644"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"%", "//", "N"}]}], "Input", CellChangeTimes->{{3.964105074875545*^9, 3.964105097797737*^9}, { 3.964105160764229*^9, 3.9641051631902723`*^9}}, CellLabel-> "In[864]:=",ExpressionUUID->"e1e8064b-1b25-4c0c-a999-f5e3739cbff4"], Cell[BoxData[ FractionBox[ RowBox[{"4", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], RowBox[{"1", "/", "4"}]], " ", SqrtBox["2"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Pi]", "8"], "]"}], "2"]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[864]=",ExpressionUUID->"a771880a-b9f6-40f9-b8e4-686e8d2de89e"], Cell[BoxData[ RowBox[{"0.36225931014871154`", "\[VeryThinSpace]", "+", RowBox[{"0.36225931014871154`", " ", "\[ImaginaryI]"}]}]], "Output", CellLabel-> "Out[865]=",ExpressionUUID->"7f1c9f41-bef2-43ae-a289-6c43fac120cb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Abs", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.964105176229682*^9, 3.964105178573135*^9}}, CellLabel-> "In[866]:=",ExpressionUUID->"d3423205-755e-4127-84c7-3919980a317f"], Cell[BoxData["0.5123120295082293`"], "Output", CellLabel-> "Out[866]=",ExpressionUUID->"fce1f9b0-8d75-4c88-8375-89d2ae730117"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Arg", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.964105300628182*^9, 3.9641053028564157`*^9}}, CellLabel-> "In[867]:=",ExpressionUUID->"50f02380-5276-4ae2-ba33-1483e476b0d8"], Cell[BoxData[ FractionBox["\[Pi]", "4"]], "Output", CellLabel-> "Out[867]=",ExpressionUUID->"d1821cfa-3992-4642-9413-1e2a0430607b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["conclusion", "Subsubsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105225744646*^9}, { 3.9641053638491488`*^9, 3.964105365429331*^9}, {3.964105482154252*^9, 3.964105484445127*^9}},ExpressionUUID->"4647fa7f-459e-44c7-b584-\ f8a8ba5abc9b"], Cell["\<\ This is surprising: If the equations are correct, the \[Kappa] scaling \ factors have phases of \[Pi]/2 \[PlusMinus] \[Pi]/4. This is not what I \ expected!\ \>", "Text", CellChangeTimes->{{3.964105367512456*^9, 3.964105454692759*^9}},ExpressionUUID->"0669d2b2-97f0-48ec-aec8-\ 39ada24e5455"], Cell["\<\ This result also contradicts the table, where the scaling factor is shown as \ being negative. Maybe something is wrong with eq.49. \ \>", "Text", CellChangeTimes->{{3.964105770897238*^9, 3.964105830175618*^9}},ExpressionUUID->"641399c9-4037-4708-b354-\ 76411c668b4a"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["new derivation for PulsePol basic element 90y-\[Tau]-180x-\[Tau]90y", \ "Subsection", CellChangeTimes->{{3.9641052071129217`*^9, 3.964105225744646*^9}, { 3.9641053638491488`*^9, 3.964105365429331*^9}, {3.964105482154252*^9, 3.964105484445127*^9}, {3.96410584420643*^9, 3.9641058538079357`*^9}, { 3.964146804187456*^9, 3.964146834969098*^9}, {3.9643493502559557`*^9, 3.964349358271246*^9}},ExpressionUUID->"d874ecd0-00fc-4ab5-9879-\ 7620a265f17f"], Cell[CellGroupData[{ Cell["rf Propagator for basic element of duration \[Tau]R", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964255815728779*^9, 3.964255831640748*^9}, {3.9642558909186783`*^9, 3.964255896706644*^9}},ExpressionUUID->"74897943-01e7-4379-864f-\ 169c88946300"], Cell[BoxData[ RowBox[{ RowBox[{"Urf0", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", RowBox[{"\[Tau]R", "/", "2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], ",", RowBox[{ RowBox[{"\[Tau]R", "/", "2"}], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}], "}"}]}], "}"}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.964255823816115*^9, 3.964255905457793*^9}, { 3.9643493792569637`*^9, 3.964349385559317*^9}}, CellLabel-> "In[868]:=",ExpressionUUID->"77b3ef64-dd5c-48b9-b1e5-99d9d6ce2af2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Urf0", "[", "t", "]"}]], "Input", CellChangeTimes->{3.9642559181139517`*^9}, CellLabel-> "In[869]:=",ExpressionUUID->"4801c505-180d-434a-a04b-089ddfacf66f"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm], RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, { TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm]}], DisplayForm], RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[869]=",ExpressionUUID->"99318d27-beea-4b93-b8ec-58bd6a9c5d28"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["derive rf Euler", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964255815728779*^9, 3.964255831640748*^9}, {3.9642558909186783`*^9, 3.964255896706644*^9}, {3.964255985237948*^9, 3.964255988808528*^9}},ExpressionUUID->"8d5f1e8c-73e3-4638-83f3-\ 43b44412a648"], Cell[BoxData[ RowBox[{ RowBox[{"U", "=", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.964256065951293*^9, 3.964256080366497*^9}, 3.964256323360474*^9}, CellLabel-> "In[870]:=",ExpressionUUID->"29c4fcd5-8353-48e0-b310-9d5fb0ce36bd"], Cell[BoxData[{ RowBox[{ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", "ang_", "]"}], ":=", RowBox[{"RoundToSubmultipleOf\[Pi]", "[", RowBox[{"ang", ",", "36"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", RowBox[{"ang_", ",", "n_"}], "]"}], ":=", RowBox[{ RowBox[{"Round", "[", RowBox[{"ang", "/", RowBox[{"(", RowBox[{"\[Pi]", "/", "n"}], ")"}]}], "]"}], "*", RowBox[{"(", RowBox[{"\[Pi]", "/", "n"}], ")"}]}]}]}], "Input", CellChangeTimes->{{3.964257352729574*^9, 3.964257420712021*^9}, { 3.9642588644840803`*^9, 3.964258903788796*^9}}, CellLabel-> "In[871]:=",ExpressionUUID->"801a9bed-e941-4900-8e40-c956e95ba799"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RoundToSubmultipleOf\[Pi]", "[", "3.1", "]"}]], "Input", CellChangeTimes->{{3.964257426679492*^9, 3.964257437687461*^9}, { 3.9642589211095753`*^9, 3.964258927227663*^9}, {3.964258961667079*^9, 3.964259014031188*^9}}, CellLabel-> "In[873]:=",ExpressionUUID->"c4df22b2-f7b7-4ce6-a4ed-af2f48905189"], Cell[BoxData["\[Pi]"], "Output", CellLabel-> "Out[873]=",ExpressionUUID->"a5afe357-75ba-4c83-9d40-668bd752926c"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"OperatorToEuler", "[", "U_", "]"}], ":=", RowBox[{"Map", "[", RowBox[{"RoundToSubmultipleOf\[Pi]", ",", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Reverse", "@", RowBox[{"AxesToEuler", "@", RowBox[{"Outer", "[", RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"U", ".", "#1", ".", RowBox[{"Adjoint", "[", "U", "]"}]}], "->", "#2"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}], ",", RowBox[{"opI", "[", "\"\\"", "]"}]}], "}"}]}], "]"}]}]}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9642561290874577`*^9, 3.96425619207092*^9}, { 3.96425655154058*^9, 3.964256573648122*^9}, {3.964257445841289*^9, 3.964257474846155*^9}, 3.964331935952899*^9}, CellLabel-> "In[874]:=",ExpressionUUID->"cb97814f-c04d-4d18-85ac-ab7ee761ad37"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.964256601579446*^9}}, CellLabel-> "In[875]:=",ExpressionUUID->"b9a222a0-5511-47f3-ab3d-a3ba68729200"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}]], "Output", CellLabel-> "Out[875]=",ExpressionUUID->"703e38d9-3790-4548-bad6-0f110299ae13"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "180.`"}], "}"}]], "Output", CellLabel-> "Out[876]=",ExpressionUUID->"57cf5eaf-aa5e-41e1-91af-45efc6fa3539"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.9642566182494507`*^9}, 3.9643494857901506`*^9}, CellLabel-> "In[877]:=",ExpressionUUID->"6a15e46b-cf01-48a1-98d9-ef50f29d1cca"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}]], "Output", CellLabel-> "Out[877]=",ExpressionUUID->"c900c5f9-fc8a-4dd6-b4dc-bbd1ac7cea8f"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "180.`"}], "}"}]], "Output", CellLabel-> "Out[878]=",ExpressionUUID->"797b18d5-f566-4c29-b3c3-09eb0e07621d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"OperatorToEuler", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"N", "[", RowBox[{"%", "/", "\[Degree]"}], "]"}]}], "Input", CellChangeTimes->{{3.964256582572534*^9, 3.964256636545467*^9}, { 3.96434947695903*^9, 3.9643494802560062`*^9}}, CellLabel-> "In[879]:=",ExpressionUUID->"dff6a241-c6ef-40f0-907c-7c1be4cf4fcd"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "0"}], "}"}]], "Output", CellLabel-> "Out[879]=",ExpressionUUID->"31cdacf7-a7ad-4730-9ad0-656a5ed8ca44"], Cell[BoxData[ RowBox[{"{", RowBox[{"180.`", ",", RowBox[{"-", "90.`"}], ",", "0.`"}], "}"}]], "Output", CellLabel-> "Out[880]=",ExpressionUUID->"b920efd3-00bc-47a7-9926-538881b1dabf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["rf Euler", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}},ExpressionUUID->"507feb41-f5e0-4fba-9122-\ 1ae25860a3d4"], Cell[BoxData[ RowBox[{ RowBox[{"\[CapitalOmega]rf0", "[", "t_", "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Piecewise", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"OperatorToEuler", "[", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", RowBox[{"\[Tau]R", "/", "2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"OperatorToEuler", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}], ",", RowBox[{ RowBox[{"\[Tau]R", "/", "2"}], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}], "}"}]}], "}"}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.964256712188922*^9, 3.964256796985009*^9}, 3.9643494398324003`*^9, {3.964349507816242*^9, 3.964349517085968*^9}}, CellLabel-> "In[881]:=",ExpressionUUID->"30fba79c-a223-46da-acd6-a2c66892915c"], Cell[BoxData[ RowBox[{ RowBox[{"\[Alpha]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "1"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, 3.964257200831918*^9}, CellLabel-> "In[882]:=",ExpressionUUID->"e2d4cfeb-b150-4dd3-85dc-674c6c7473d1"], Cell[BoxData[ RowBox[{ RowBox[{"\[Beta]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "2"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, {3.964257200831918*^9, 3.96425721873658*^9}}, CellLabel-> "In[883]:=",ExpressionUUID->"f9c0bcac-e61d-476e-846b-5332279f39fe"], Cell[BoxData[ RowBox[{ RowBox[{"\[Gamma]rf0", "[", "t_", "]"}], ":=", RowBox[{"MapAt", "[", RowBox[{ RowBox[{ RowBox[{"Part", "[", RowBox[{"#", ",", "3"}], "]"}], "&"}], ",", RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964146878625745*^9, 3.964146966446555*^9}, { 3.964256680084375*^9, 3.964256702790894*^9}, {3.964257200831918*^9, 3.964257226821866*^9}}, CellLabel-> "In[884]:=",ExpressionUUID->"b9ed6b06-a06e-44ce-b843-5f695f2924d4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[CapitalOmega]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{ 3.964257243063431*^9, {3.9642576763667183`*^9, 3.964257677970603*^9}}, CellLabel-> "In[885]:=",ExpressionUUID->"eae92dda-85f4-4153-82cf-87738dd3449a"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "\[Pi]"}], "}"}], RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, { RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ",", "0"}], "}"}], RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[885]=",ExpressionUUID->"7355cf38-bd48-4d2a-89e2-7d5ed29e5f38"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Alpha]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{3.964257243063431*^9}, CellLabel-> "In[886]:=",ExpressionUUID->"7c03dce0-4986-4ae0-a835-4e63501e0fca"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"\[Pi]", RowBox[{ RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}], "||", RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[886]=",ExpressionUUID->"9e7ec4e6-1a27-4b39-804d-707d45a8e3e8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Beta]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.964257243063431*^9, 3.9642572534313374`*^9}}, CellLabel-> "In[887]:=",ExpressionUUID->"2d9de5bd-bad1-4259-892f-6788a56ea134"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{"-", FractionBox["\[Pi]", "2"]}], RowBox[{ RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}], "||", RowBox[{ FractionBox["\[Tau]R", "2"], "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]R"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[887]=",ExpressionUUID->"a96d3a1d-1427-493d-b429-022b55de85ba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Gamma]rf0", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.964257243063431*^9, 3.964257263690803*^9}}, CellLabel-> "In[888]:=",ExpressionUUID->"ca12c07b-db9a-4cd9-bf5d-824e547fe643"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"\[Pi]", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", FractionBox["\[Tau]R", "2"]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[888]=",ExpressionUUID->"1342418b-8ea6-4058-b77d-906c7a0fa818"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["K factors (eq.37)", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}},ExpressionUUID->"448dcf8e-2e8b-4b63-9352-\ 73eb5d9855f5"], Cell[BoxData[ RowBox[{ RowBox[{"K", "[", RowBox[{"m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"\[Tau]R", "^", RowBox[{"(", RowBox[{"-", "1"}], ")"}]}], RowBox[{"Integrate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Wignerd", "[", RowBox[{"\[Lambda]", ",", RowBox[{"{", RowBox[{"\[Mu]", ",", "0"}], "}"}]}], "]"}], "[", RowBox[{"-", RowBox[{"\[Beta]rf0", "[", "t", "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{"I", RowBox[{"(", RowBox[{ RowBox[{"\[Mu]", " ", RowBox[{"\[Gamma]rf0", "[", "t", "]"}]}], "+", RowBox[{"m", " ", "\[Omega]J", " ", "t"}]}], ")"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]R"}], "}"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "\[Element]", "Reals"}], ",", RowBox[{"\[Tau]R", ">", "0"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]}]], "Input", CellChangeTimes->{{3.9641471091710052`*^9, 3.964147243953417*^9}, 3.964147306290182*^9, {3.96414812048209*^9, 3.964148130959465*^9}, { 3.964148176056793*^9, 3.9641481889045153`*^9}}, CellLabel-> "In[889]:=",ExpressionUUID->"990c43b2-ea47-4f20-8f54-b52181edf1f6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]], "Input", CellChangeTimes->{{3.964147316264282*^9, 3.9641473172538357`*^9}}, CellLabel-> "In[890]:=",ExpressionUUID->"c7aca1f0-89d2-4845-be1d-cdeef9d4571a"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"]}], RowBox[{ SqrtBox["2"], " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]], "Output", CellLabel-> "Out[890]=",ExpressionUUID->"4a86c216-9baf-44e5-b3db-7e1f672600a5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}]], "Input", CellChangeTimes->{3.96425798058283*^9}, CellLabel-> "In[891]:=",ExpressionUUID->"74cccc8e-66f7-499d-afb5-9c5942cf3204"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "bigN", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "n", " ", "\[Pi]"}], "bigN"]]}], ")"}], "2"]}], RowBox[{"2", " ", SqrtBox["2"], " ", "n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[891]=",ExpressionUUID->"803746b5-6302-4531-a640-fb5a891d6d4b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.964258001879951*^9, {3.964332220669828*^9, 3.9643322267646933`*^9}}, CellLabel-> "In[892]:=",ExpressionUUID->"f392ebeb-d963-4c31-9901-1ad9746aea5b"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "3"], "+", FractionBox["\[ImaginaryI]", "3"]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}], "\[Pi]"]], "Output", CellLabel-> "Out[892]=",ExpressionUUID->"3a60fe2c-d14e-4e1f-afd5-331e5487da2c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{3.9642580214845467`*^9}, CellLabel-> "In[893]:=",ExpressionUUID->"62dbe546-f7aa-40a4-a4e3-ebb37958d800"], Cell[BoxData[ FractionBox["\[Pi]", "4"]], "Output", CellLabel-> "Out[893]=",ExpressionUUID->"aa4528ce-f499-454c-96ea-a9a721f812b5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.964258045685547*^9, 3.9642580565836143`*^9}}, CellLabel-> "In[894]:=",ExpressionUUID->"438d585d-1694-4549-88eb-b95f9aecdf35"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "4"]}]]], "Output", CellLabel-> "Out[894]=",ExpressionUUID->"a5a8525c-bfd6-4a4e-8f37-0dbac2b01969"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellLabel-> "In[895]:=",ExpressionUUID->"c826b566-0766-4ba5-b3d3-5ba566321c84"], Cell[BoxData[ RowBox[{"-", FractionBox["\[Pi]", "4"]}]], "Output", CellLabel-> "Out[895]=",ExpressionUUID->"f3e9058f-e140-486f-ae36-3a75afafc265"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Kappa] factors (eq.36)", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}, {3.964147374045471*^9, 3.964147377674576*^9}},ExpressionUUID->"5324d4fc-cd57-4a0b-9d43-\ 2ed748fa7921"], Cell[BoxData[ RowBox[{"Clear", "[", "\[Kappa]", "]"}]], "Input", CellChangeTimes->{{3.964332485883819*^9, 3.964332488067111*^9}}, CellLabel-> "In[896]:=",ExpressionUUID->"94e5a018-6aad-4aac-8875-964915bac613"], Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"l_", ",", "m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"m", ",", "\[Lambda]", ",", "\[Mu]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.964147384059618*^9, 3.9641474328396606`*^9}}, CellLabel-> "In[897]:=",ExpressionUUID->"f687e771-f16d-41ff-9c3b-e933dd708ff8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.964258045685547*^9, 3.9642580565836143`*^9}}, CellLabel-> "In[898]:=",ExpressionUUID->"78e38f66-b1bd-4a7c-ac81-c7dd92b0eee3"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "4"]}]]], "Output", CellLabel-> "Out[898]=",ExpressionUUID->"34472f3e-c718-4af9-b568-f37c347be1d0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", "%", "]"}], "//", "Simplify"}]], "Input", CellLabel-> "In[899]:=",ExpressionUUID->"bf5a76f3-d1f4-4918-814c-3e9aa17f7cf9"], Cell[BoxData[ RowBox[{"-", FractionBox["\[Pi]", "4"]}]], "Output", CellLabel-> "Out[899]=",ExpressionUUID->"a94b0222-cd12-420b-a3ec-b45c94344975"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Arg", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.964332343715365*^9, 3.964332348075358*^9}}, CellLabel-> "In[900]:=",ExpressionUUID->"a6b9cea0-3caf-48d9-bf46-4812063c5e32"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "3"], "+", FractionBox["\[ImaginaryI]", "3"]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}], "\[Pi]"]], "Output", CellLabel-> "Out[900]=",ExpressionUUID->"98a76930-c113-4092-9430-5f41066bb228"], Cell[BoxData[ FractionBox["\[Pi]", "4"]], "Output", CellLabel-> "Out[901]=",ExpressionUUID->"bcedb23e-9b2c-4b9b-b940-551f1792dad6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], ")"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Arg", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.964332366535212*^9, 3.964332431930401*^9}}, CellLabel-> "In[902]:=",ExpressionUUID->"e556789d-a25b-4830-9d15-8e70d2caaaca"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[902]=",ExpressionUUID->"07cf005a-a908-4f1a-b9f7-6e4c574c3680"], Cell[BoxData["0"], "Output", CellLabel-> "Out[903]=",ExpressionUUID->"e9344d23-c07b-45db-8a11-efe61a36ec43"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{3.964332471048263*^9}, CellLabel-> "In[904]:=",ExpressionUUID->"a9ead313-02a3-4431-9a10-2c534784717c"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[904]=",ExpressionUUID->"95dcd2bd-302b-4d95-9ada-a4486699f423"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}]], "Input", CellChangeTimes->{{3.964147440325817*^9, 3.964147442383706*^9}}, CellLabel-> "In[905]:=",ExpressionUUID->"a269aafa-27f4-45fb-8926-bcdadb992c37"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"}], "bigN"]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"]}], RowBox[{ SqrtBox["2"], " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]], "Output", CellLabel-> "Out[905]=",ExpressionUUID->"89a64ff0-093b-4c4e-846e-576529cb8086"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.964147460529414*^9, 3.964147532033119*^9}, { 3.96416248861728*^9, 3.964162496851832*^9}, {3.9642590638647957`*^9, 3.9642590685876007`*^9}}, CellLabel-> "In[906]:=",ExpressionUUID->"febe7675-dcc4-4c46-9348-e949808b7361"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[906]=",ExpressionUUID->"16d208b8-ae7c-4f1b-baa9-ee382a5c54ea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Abs", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "N"}]], "Input", CellChangeTimes->{{3.964147545240823*^9, 3.9641475521041393`*^9}, 3.964162503092874*^9}, CellLabel-> "In[907]:=",ExpressionUUID->"6a383aae-accd-4361-9f58-fbd27c6730d3"], Cell[BoxData["0.5123120295082291`"], "Output", CellLabel-> "Out[907]=",ExpressionUUID->"bc4164af-46c5-4841-9d5b-4d9ecf524a2f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.964148207166089*^9, 3.964148219362404*^9}, { 3.964162509428624*^9, 3.9641625171582747`*^9}}, CellLabel-> "In[908]:=",ExpressionUUID->"71d9ea1f-bed2-4a39-a173-0df6c96ed952"], Cell[BoxData["0"], "Output", CellLabel-> "Out[908]=",ExpressionUUID->"60421545-ea9d-4fae-9548-faa7a208ffc8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.9642590906815653`*^9, 3.964259092812952*^9}}, CellLabel-> "In[909]:=",ExpressionUUID->"e6479515-7c8d-409e-b50e-00aacfb32b1e"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]}]], "Output", CellLabel-> "Out[909]=",ExpressionUUID->"39d3bf73-131a-4e91-8584-676fe57195ac"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["K factor for general symmetry numbers", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}, {3.9644533993967524`*^9, 3.964453407586053*^9}},ExpressionUUID->"5af77aba-4b22-4d84-9f6d-\ 05cb2fd739af"], Cell[BoxData[ RowBox[{ RowBox[{"K", "[", RowBox[{"m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"\[Tau]R", "^", RowBox[{"(", RowBox[{"-", "1"}], ")"}]}], RowBox[{"Integrate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Wignerd", "[", RowBox[{"\[Lambda]", ",", RowBox[{"{", RowBox[{"\[Mu]", ",", "0"}], "}"}]}], "]"}], "[", RowBox[{"-", RowBox[{"\[Beta]rf0", "[", "t", "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{"I", RowBox[{"(", RowBox[{ RowBox[{"\[Mu]", " ", RowBox[{"\[Gamma]rf0", "[", "t", "]"}]}], "+", RowBox[{"m", " ", "\[Omega]J", " ", "t"}]}], ")"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]R"}], "}"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "\[Element]", "Reals"}], ",", RowBox[{"\[Tau]R", ">", "0"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]}]], "Input", CellChangeTimes->{{3.9641471091710052`*^9, 3.964147243953417*^9}, 3.964147306290182*^9, {3.96414812048209*^9, 3.964148130959465*^9}, { 3.964148176056793*^9, 3.9641481889045153`*^9}}, CellLabel-> "In[910]:=",ExpressionUUID->"a6589f1e-af2f-4775-a860-2500d63edddf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]], "Input", CellChangeTimes->{{3.964147316264282*^9, 3.9641473172538357`*^9}}, CellLabel-> "In[911]:=",ExpressionUUID->"211a17bc-3c4c-478b-9b4a-74e9ab05597c"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], "2"]}], RowBox[{ SqrtBox["2"], " ", "\[Tau]R", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]], "Output", CellLabel-> "Out[911]=",ExpressionUUID->"3a18a03d-7f7a-43d8-af48-86fddea403c6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"ExpToTrig", "[", RowBox[{"Exp", "[", RowBox[{"I", " ", "n", " ", RowBox[{"\[Pi]", "/", "bigN"}]}], "]"}], "]"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Element]", "Integers"}], ",", RowBox[{"bigN", "\[Element]", "Integers"}]}], "}"}]}]}], "]"}]], "Input",\ CellChangeTimes->{{3.9644535954971247`*^9, 3.9644536536399803`*^9}}, CellLabel-> "In[912]:=",ExpressionUUID->"21c1651d-726d-4330-ae28-58e4cb7e298e"], Cell[BoxData[ RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], "bigN"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], "bigN"], "]"}]}]}]], "Output", CellLabel-> "Out[912]=",ExpressionUUID->"b0fba8d0-b090-454b-9eb6-3f711cdd4a5f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"ExpToTrig", "[", RowBox[{ RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Element]", "Integers"}], ",", RowBox[{"bigN", "\[Element]", "Integers"}]}], "}"}]}]}], "]"}]], "Input",\ CellChangeTimes->{ 3.96425798058283*^9, {3.964453449729946*^9, 3.964453567561555*^9}, { 3.9644536642768383`*^9, 3.964453665278853*^9}, {3.964453710464158*^9, 3.96445371139533*^9}}, CellLabel-> "In[913]:=",ExpressionUUID->"e206427d-aecd-45ef-8d14-2bd6965df3d6"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "bigN", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "n", " ", "\[Pi]"}], "bigN"]]}], ")"}], "2"]}], RowBox[{"2", " ", SqrtBox["2"], " ", "n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[913]=",ExpressionUUID->"bf614f08-721d-49ae-9a10-759b5d91bace"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Kappa] factors for general symmetry numbers", "Subsubsection", CellChangeTimes->{{3.964146854165872*^9, 3.96414687504675*^9}, { 3.964147097372149*^9, 3.964147105843584*^9}, {3.964147374045471*^9, 3.964147377674576*^9}, {3.964453738459043*^9, 3.964453744036145*^9}},ExpressionUUID->"e63212ac-d05f-4698-8d9c-\ 23afee72aa81"], Cell[BoxData[ RowBox[{"Clear", "[", "\[Kappa]", "]"}]], "Input", CellChangeTimes->{{3.964332485883819*^9, 3.964332488067111*^9}}, CellLabel-> "In[914]:=",ExpressionUUID->"368e59e1-fde0-4153-975f-dd68aaeaf926"], Cell[BoxData[ RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"l_", ",", "m_", ",", "\[Lambda]_", ",", "\[Mu]_"}], "]"}], ":=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"m", ",", "\[Lambda]", ",", "\[Mu]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.964147384059618*^9, 3.9641474328396606`*^9}}, CellLabel-> "In[915]:=",ExpressionUUID->"47ce04ef-1dea-48e4-bd88-0d3014f0f00c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.964258045685547*^9, 3.9642580565836143`*^9}, 3.964453759169688*^9}, CellLabel-> "In[916]:=",ExpressionUUID->"c93b9b44-ba4b-41cf-85eb-7d64e9f7000b"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"}], "bigN"]}]]], "Output", CellLabel-> "Out[916]=",ExpressionUUID->"9c66bf2e-ca5e-41b9-920e-20f056e1a077"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"ExpToTrig", "@", RowBox[{"Expand", "[", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], ")"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", "1"}]}], "}"}]}], ")"}], "\[IndentingNewLine]", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Element]", "Integers"}], ",", RowBox[{"bigN", "\[Element]", "Integers"}], ",", RowBox[{"\[Nu]", "\[Element]", "Integers"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.964332366535212*^9, 3.964332431930401*^9}, { 3.964453807809867*^9, 3.96445396934291*^9}, {3.964454021263788*^9, 3.9644540234018908`*^9}, {3.964454106269346*^9, 3.964454111328369*^9}, { 3.964454178387204*^9, 3.964454198295046*^9}, {3.9645176417488127`*^9, 3.964517689759863*^9}}, CellLabel-> "In[917]:=",ExpressionUUID->"8eb7db4e-228b-447d-b0c1-3de085456fcc"], Cell[BoxData[ FractionBox[ RowBox[{ SqrtBox["2"], " ", "bigN", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], RowBox[{"2", " ", "bigN"}]], "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], "bigN"], "]"}]}], "+", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], "bigN"], "]"}]}], ")"}]}], RowBox[{"n", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[917]=",ExpressionUUID->"80c5ddd1-5d80-4f4e-ba08-3ae18c417a49"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"%", "/.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"Abs", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"Simplify", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"%", "//", "N"}]}], "Input", CellChangeTimes->{{3.964454049298142*^9, 3.964454083106612*^9}, { 3.964454155977893*^9, 3.964454158488586*^9}}, CellLabel-> "In[918]:=",ExpressionUUID->"85e7689e-bafe-4e76-951d-8b701a5702ec"], Cell[BoxData[ FractionBox[ RowBox[{"4", " ", SqrtBox["2"], " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Pi]", "8"], "]"}], "2"]}], RowBox[{"3", " ", "\[Pi]"}]]], "Output", CellLabel-> "Out[918]=",ExpressionUUID->"198f66ee-03b4-4340-8ef2-0d0c77690abe"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"4", " ", RowBox[{"\[Sqrt]", "2"}], " ", SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"\[Pi]", "/", "8"}], "]"}], "2"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", "\[Pi]"}], ")"}]}]], "Output", CellLabel-> "Out[919]=",ExpressionUUID->"85f35ee2-7e29-4f4f-b9ff-685d3d2242d7"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"4", " ", RowBox[{"\[Sqrt]", "2"}], " ", SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"\[Pi]", "/", "8"}], "]"}], "2"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", "\[Pi]"}], ")"}]}]], "Output", CellLabel-> "Out[920]=",ExpressionUUID->"86fd1622-457b-4532-a117-ca19f413383f"], Cell[BoxData["0.5123120295082292`"], "Output", CellLabel-> "Out[921]=",ExpressionUUID->"e3450651-a1f1-4509-9920-c13727f0a266"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Abs", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "N"}]], "Input", CellChangeTimes->{{3.964147545240823*^9, 3.9641475521041393`*^9}, 3.964162503092874*^9}, CellLabel-> "In[922]:=",ExpressionUUID->"3e279452-ed5a-4ea4-8544-77a7439c4c14"], Cell[BoxData[ RowBox[{"Abs", "[", RowBox[{"\[Kappa]", "[", "\<\"R431\"\>", "]"}], "]"}]], "Output", CellLabel-> "Out[922]=",ExpressionUUID->"ca976df5-a5f3-4384-8538-21669898c63b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Arg", "[", RowBox[{"\[Kappa]", "[", "\"\\"", "]"}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.964148207166089*^9, 3.964148219362404*^9}, { 3.964162509428624*^9, 3.9641625171582747`*^9}}, CellLabel-> "In[923]:=",ExpressionUUID->"6f371806-6d1e-490e-a262-408c5a8e2654"], Cell[BoxData[ RowBox[{"Arg", "[", RowBox[{"\[Kappa]", "[", "\<\"R431\"\>", "]"}], "]"}]], "Output", CellLabel-> "Out[923]=",ExpressionUUID->"2eeda0e9-5de5-4b2f-869f-026c9cf57afd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{ RowBox[{"\[Kappa]", "[", RowBox[{"1", ",", RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"bigN", "->", "4"}], ",", RowBox[{"n", "->", "3"}], ",", RowBox[{"\[Nu]", "->", "1"}], ",", RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.9642590906815653`*^9, 3.964259092812952*^9}}, CellLabel-> "In[924]:=",ExpressionUUID->"99e84b2e-41e6-40cd-b905-77bd4ef8364d"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], RowBox[{"3", " ", "\[Pi]"}]]}]], "Output", CellLabel-> "Out[924]=",ExpressionUUID->"6231f418-00a8-474d-b232-c8f5b7503256"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"ExpToTrig", "@", RowBox[{"Expand", "[", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Mu]", " ", RowBox[{"(", RowBox[{"\[Pi]", " ", RowBox[{"\[Nu]", "/", "bigN"}]}], ")"}]}], "]"}], RowBox[{"K", "[", RowBox[{ RowBox[{"-", "1"}], ",", "1", ",", RowBox[{"-", "1"}]}], "]"}]}], ")"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]R", "->", RowBox[{"n", " ", RowBox[{"\[Tau]J", "/", "bigN"}]}]}], ",", RowBox[{"\[Tau]J", "->", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}], ",", RowBox[{"\[Mu]", "->", RowBox[{"-", "1"}]}]}], "}"}]}], ")"}], "\[IndentingNewLine]", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Element]", "Integers"}], ",", RowBox[{"bigN", "\[Element]", "Integers"}], ",", RowBox[{"\[Nu]", "\[Element]", "Integers"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.964332366535212*^9, 3.964332431930401*^9}, { 3.964453807809867*^9, 3.96445396934291*^9}, {3.964454021263788*^9, 3.9644540234018908`*^9}, {3.964454106269346*^9, 3.964454111328369*^9}, { 3.964454178387204*^9, 3.964454198295046*^9}, {3.9645176417488127`*^9, 3.964517689759863*^9}, {3.964517950321301*^9, 3.964517962697927*^9}}, CellLabel-> "In[925]:=",ExpressionUUID->"670e241d-b897-46a6-82ca-35ca824343ff"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SqrtBox["2"], " ", "bigN", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"n", " ", "\[Pi]"}], RowBox[{"2", " ", "bigN"}]], "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], "bigN"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"n", "-", "\[Nu]"}], ")"}]}], "bigN"], "]"}]}]}], ")"}]}], RowBox[{"n", " ", "\[Pi]"}]]}]], "Output", CellLabel-> "Out[925]=",ExpressionUUID->"6a1cccb9-7a74-4483-989c-a7b3330eb591"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["propagation with R431", "Section", CellChangeTimes->{{3.964104881201468*^9, 3.964104884222802*^9}, 3.9641053512137823`*^9, {3.9641055270543327`*^9, 3.964105528508299*^9}, { 3.964331887714327*^9, 3.96433189395383*^9}},ExpressionUUID->"3ad6c166-ec09-4e36-bbfe-\ c1b177adc027"], Cell[CellGroupData[{ Cell["\[Rho]1", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825099185545*^9}},ExpressionUUID->"e117bad1-5761-4b52-9b7e-\ 9547656a199a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.9638251244560013`*^9, 3.963825132750079*^9}}, CellLabel-> "In[926]:=",ExpressionUUID->"a4a4d2cd-7aa2-4163-a015-2569984b7d55"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]], "Output", CellLabel-> "Out[926]=",ExpressionUUID->"ad2be3ec-b157-453d-ab12-07a62684342f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]1", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"2", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825181640724*^9}}, CellLabel-> "In[927]:=",ExpressionUUID->"0eff672a-9269-4c09-ad05-3bc1db35bf1c"], Cell[BoxData["True"], "Output", CellLabel-> "Out[927]=",ExpressionUUID->"c1d4f330-fab7-472b-b081-815bcc1e5e3d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]2", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}},ExpressionUUID->"2acf890d-baaa-47bc-8f0a-\ d22689d3f6d1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]2", "=", RowBox[{"opI", "[", "\"\\"", "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}}, CellLabel-> "In[928]:=",ExpressionUUID->"7151fb4b-7619-4d75-9ffa-ad67d3c9d4a2"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[928]=",ExpressionUUID->"59775056-8b8e-4206-8f5f-d24753a5ba6a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",\ CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}}, CellLabel-> "In[929]:=",ExpressionUUID->"34ebc0fb-6c72-492f-b134-d8f77cf93b11"], Cell[BoxData["True"], "Output", CellLabel-> "Out[929]=",ExpressionUUID->"db4693aa-4562-47c8-92d9-4e2c39cc42a5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "==", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}], "\[IndentingNewLine]", "+", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}], "+", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.963825278157222*^9, 3.963825318508017*^9}}, CellLabel-> "In[930]:=",ExpressionUUID->"13359ea9-6658-4311-81fd-6bf8aef363bd"], Cell[BoxData["True"], "Output", CellLabel-> "Out[930]=",ExpressionUUID->"351f9ed7-0b10-4d7e-9250-210063484a20"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]3", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.9638251104796953`*^9}},ExpressionUUID->"08fd1ade-1721-47f8-8ca0-\ 1227e3d892f2"], Cell[BoxData[ RowBox[{ RowBox[{"Rx12", "[", "\[Beta]_", "]"}], ":=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Beta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.963825339200245*^9, 3.9638253827131557`*^9}, { 3.963845456135232*^9, 3.963845465680891*^9}, {3.9643325783792763`*^9, 3.9643325997436113`*^9}, {3.9643497747300863`*^9, 3.964349778654896*^9}}, CellLabel-> "In[931]:=",ExpressionUUID->"14c0e74f-6179-46ae-ac6f-22d22da3678f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]3", "=", RowBox[{ RowBox[{"Rx12", "[", "\[Beta]", "]"}], ".", "\[Rho]2", ".", RowBox[{"Adjoint", "[", RowBox[{"Rx12", "[", "\[Beta]", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.963825390400277*^9, 3.96382541651367*^9}, { 3.9638454744998283`*^9, 3.963845476079973*^9}, {3.964332605749374*^9, 3.964332616329121*^9}, {3.9643497829994087`*^9, 3.964349785406869*^9}}, CellLabel-> "In[932]:=",ExpressionUUID->"c280cb80-86f2-4c47-821d-334361d8c70d"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[932]=",ExpressionUUID->"387566c6-47a2-45b3-9195-995a3ad6fe43"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]3", ",", RowBox[{"CartesianProductOperatorBasis", "[", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.964332631506423*^9, 3.964332643030121*^9}}, CellLabel-> "In[933]:=",ExpressionUUID->"e5494495-081a-41fa-9570-15c3ec3a2236"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", FractionBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "2"], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}]], "Output", CellLabel-> "Out[933]=",ExpressionUUID->"f860b7eb-0db7-463e-a251-da4be2f6a74c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}]}], "==", "\[IndentingNewLine]", RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], "+", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}]}], ")"}], "\[IndentingNewLine]", "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", "]"}]}]}]], "Input", CellChangeTimes->{{3.963825148320899*^9, 3.963825258408087*^9}, { 3.963825496971867*^9, 3.963825508954565*^9}, {3.963845485751045*^9, 3.9638454962000303`*^9}, {3.9643327098992968`*^9, 3.964332767636991*^9}, { 3.9643498046468887`*^9, 3.9643498106004763`*^9}}, CellLabel-> "In[934]:=",ExpressionUUID->"fff07f9a-715b-49ef-998d-d0aa38499b05"], Cell[BoxData["True"], "Output", CellLabel-> "Out[934]=",ExpressionUUID->"83f5da31-4785-4cf1-969f-d333a36c608b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"2", "/", RowBox[{"(", RowBox[{"3", " ", "0.512"}], ")"}]}]], "Input", CellChangeTimes->{{3.964340106137348*^9, 3.964340116806611*^9}}, CellLabel-> "In[935]:=",ExpressionUUID->"f6832917-7543-4cf2-9b43-68a6015565d8"], Cell[BoxData["1.3020833333333333`"], "Output", CellLabel-> "Out[935]=",ExpressionUUID->"63abd00c-df22-4b93-8675-7e1b05462b5e"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["propagator of one-half of R432", "Section", CellChangeTimes->{{3.964104881201468*^9, 3.964104884222802*^9}, 3.9641053512137823`*^9, {3.9641055270543327`*^9, 3.964105528508299*^9}, { 3.964331887714327*^9, 3.96433189395383*^9}, {3.967438920967307*^9, 3.967438930016592*^9}},ExpressionUUID->"9fa76e92-b9ff-409d-8fab-\ f456cc89f8c5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"\[Pi]", "/", "4"}]}], "}"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.967438959625104*^9, 3.967438994643718*^9}}, CellLabel-> "In[936]:=",ExpressionUUID->"4069344b-be97-4ed2-ac71-f4d8b869b8ae"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", FractionBox["\[Pi]", "4"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", FractionBox["\[Pi]", "4"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[936]=",ExpressionUUID->"e84dd6fd-181a-4667-9efc-78a304c1cb37"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "0", "0", "\[ImaginaryI]"}, {"0", "0", RowBox[{"-", "1"}], "0"}, {"0", RowBox[{"-", "\[ImaginaryI]"}], "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {4}, {3}, {2}}}, { 1, Complex[0, 1], -1, Complex[0, -1]}}]]]]], "Output", CellLabel-> "Out[937]//MatrixForm=",ExpressionUUID->"eeeb9bb2-c146-49ca-b8cd-\ 774280a24c47"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "4"}]}], "}"}], "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", RowBox[{"\[Pi]", "/", "4"}]}], "}"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.967438959625104*^9, 3.967439012794716*^9}}, CellLabel-> "In[938]:=",ExpressionUUID->"47808c61-5a1a-4c58-b9f2-b377567f9f4a"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[938]=",ExpressionUUID->"4ae1a52d-ceca-4621-9a13-c12ae6effeca"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", RowBox[{"-", "1"}], "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", RowBox[{"-", "1"}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, {1, -1, 1, -1}}]]]]], "Output", CellLabel-> "Out[939]//MatrixForm=",ExpressionUUID->"aa83f7c9-aba5-4d37-9125-\ 42ad25c14eba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.967439019508678*^9, 3.967439039475418*^9}}, CellLabel-> "In[940]:=",ExpressionUUID->"0aece0ee-3eda-46f8-ae7c-c849a86c1694"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", "\[Pi]", ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[940]=",ExpressionUUID->"1db2b888-de7d-46e6-9a02-2e529c1a4bc9"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", RowBox[{"-", "1"}], "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", RowBox[{"-", "1"}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, {1, -1, 1, -1}}]]]]], "Output", CellLabel-> "Out[941]//MatrixForm=",ExpressionUUID->"451f38c8-d254-4057-9653-\ 316962367637"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC theory", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.964772874385695*^9, 3.964772875044032*^9}},ExpressionUUID->"2bcf8a1c-b5be-4532-9457-\ b0c642d3a5c8"], Cell[CellGroupData[{ Cell["H0", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}},ExpressionUUID->"18a8d758-1bc9-46eb-9f40-\ 5dac2b48e9dd"], Cell[CellGroupData[{ Cell[BoxData["H0"], "Input", CellChangeTimes->{{3.964772972748047*^9, 3.964772973039483*^9}}, CellLabel-> "In[942]:=",ExpressionUUID->"9d54b8f8-32e7-4fe3-9580-19b2b75c70a6"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[942]=",ExpressionUUID->"ac259be2-ef51-4178-bca0-952befb76d57"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["HSLIC", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.964772947328741*^9},ExpressionUUID->"8f6d4b67-a0f7-439b-a607-\ 067aa6b72cd5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HSLIC", "=", RowBox[{"H0", " ", "+", " ", RowBox[{"\[Omega]nut", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.964772950436791*^9, 3.9647729504394503`*^9}, { 3.9647729895394278`*^9, 3.964773003714903*^9}, {3.964842350791407*^9, 3.964842351401058*^9}}, CellLabel-> "In[943]:=",ExpressionUUID->"4694b63d-4d0b-4ac5-ab9d-c71902393717"], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[943]=",ExpressionUUID->"e280292c-a222-4258-a785-3d55768f6541"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["HTSLIC", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}},ExpressionUUID->"30aba3d1-047f-4438-92d8-\ a62d0867d918"], Cell[CellGroupData[{ Cell["T-transform", "Subsubsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434539431267`*^9}},ExpressionUUID->"64c3e5a7-ad66-4d9f-bd9d-\ 5625f1b483db"], Cell[BoxData[ RowBox[{ RowBox[{"TransformOp", "[", RowBox[{"op_", "?", "OperatorQ"}], "]"}], ":=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "op", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"+", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.964773021161518*^9, 3.964773063517867*^9}}, CellLabel-> "In[944]:=",ExpressionUUID->"e279598f-65db-42e4-a005-78d419d014f7"] }, Closed]], Cell[CellGroupData[{ Cell["HTSLIC", "Subsubsection", CellChangeTimes->{{3.964843441116534*^9, 3.964843463181644*^9}},ExpressionUUID->"ec2e31ad-e4ca-44e5-ab41-\ 85f188c6742e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HTSLIC", "=", RowBox[{"ExpressOperator", "[", RowBox[{"TransformOp", "[", "HSLIC", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}, { 3.964772909963624*^9, 3.964772936365891*^9}, {3.9647730727174253`*^9, 3.964773098074885*^9}}, CellLabel-> "In[945]:=",ExpressionUUID->"0e43d3fc-c22e-4aba-b0d5-38b21a2993c6"], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]}]], "Output", CellLabel-> "Out[945]=",ExpressionUUID->"4757fc5e-d41f-42bb-99ef-86ebb9ccde76"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"HTSLIC", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9647731622168083`*^9, 3.964773169433538*^9}}, CellLabel-> "In[946]:=",ExpressionUUID->"fccb3f33-7f50-4034-aa25-c194e61c363f"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0"}, {"0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 3, 6, 9, 12}, {{1}, {2}, {4}, {2}, {1}, {3}, {3}, {2}, {4}, { 4}, {1}, {3}}}, { Rational[-3, 4] $CellContext`\[Omega]J, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] $CellContext`\[Omega]J + $CellContext`\[Omega]nut, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J - $CellContext`\[Omega]nut, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma]}}]]]]], "Output",\ CellLabel-> "Out[946]//MatrixForm=",ExpressionUUID->"dcaa5bd5-2622-4306-a2fe-\ f335d5f7b5aa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["decomposition", "Subsubsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}},ExpressionUUID->"faa7c67f-e36a-4eb5-a495-\ 72b51857390e"], Cell[BoxData[{ RowBox[{ RowBox[{"HA", "=", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}]}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"HB", "=", RowBox[{"\[Omega]nut", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"HC", "=", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}]}], RowBox[{"(", RowBox[{"\[Omega]J", "+", RowBox[{"2", "\[Omega]nut"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\<1\>\""}], "]"}], "-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\<1\>\""}], "]"}]}], ")"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, 3.964847148539315*^9, {3.965287864640869*^9, 3.965287871989793*^9}, {3.965287945922621*^9, 3.965288049300097*^9}, { 3.9652881019194813`*^9, 3.9652881737981243`*^9}, {3.965288227182234*^9, 3.965288433713874*^9}}, CellLabel-> "In[947]:=",ExpressionUUID->"ab7043e9-c549-42db-aa07-7788591424f3"], Cell[BoxData[{ RowBox[{ RowBox[{"HD", "=", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"\[Omega]\[CapitalSigma]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}]}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"HE", "=", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"HF", "=", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, {3.964847148539315*^9, 3.96484716732489*^9}, { 3.9652876872952137`*^9, 3.965287690656354*^9}}, CellLabel-> "In[950]:=",ExpressionUUID->"5baae279-131f-43a6-8604-37e06f072fe7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"HA", "+", "HB", "+", "HC", "+", "HD", "+", "HE", "+", "HF"}], ")"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964842541380924*^9, 3.964842542477215*^9}, { 3.964846155334676*^9, 3.964846169518865*^9}, {3.964846217655809*^9, 3.964846218495405*^9}, {3.964846295658024*^9, 3.9648462993766336`*^9}, { 3.964846426705791*^9, 3.964846431533573*^9}}, CellLabel-> "In[953]:=",ExpressionUUID->"a2057b5b-7948-484e-9412-52727d76742d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0"}, {"0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 3, 6, 9, 12}, {{4}, {1}, {2}, {1}, {3}, {2}, {4}, {3}, {2}, { 1}, {3}, {4}}}, { Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[1, 2] (-$CellContext`\[Omega]J + $CellContext`\[Omega]nut), Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[-1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[ 1, 2] ($CellContext`\[Omega]J - $CellContext`\[Omega]nut)}}]]]]], \ "Output", CellLabel-> "Out[953]//MatrixForm=",ExpressionUUID->"f1b54a59-1e3e-4761-a544-\ 62d10114702c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"HA", "+", "HB", "+", "HC", "+", "HD", "+", "HE"}], ")"}], "-", "HTSLIC"}], ")"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964846185959552*^9, 3.964846187925243*^9}, { 3.9648462307649813`*^9, 3.964846231484544*^9}, 3.96484631458832*^9, { 3.964846437533649*^9, 3.9648464514882727`*^9}, {3.964846487648904*^9, 3.964846497684298*^9}}, CellLabel-> "In[954]:=",ExpressionUUID->"21d1e411-eacd-41b2-a057-ab691680de10"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", "0"}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"]}], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], "0", "0"}, {"0", "0", RowBox[{ RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"]}], "-", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], "0"}, {"0", "0", "0", RowBox[{ RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 4, 5, 6}, {{1}, {2}, {1}, {2}, {3}, {4}}}, { Rational[3, 4] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[1, 2] (-$CellContext`\[Omega]J + $CellContext`\[Omega]nut), Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 4] $CellContext`\[Omega]J + Rational[-1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[-1, 4] $CellContext`\[Omega]J + Rational[-1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[-1, 4] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[ 1, 2] ($CellContext`\[Omega]J - $CellContext`\[Omega]nut) + \ $CellContext`\[Omega]nut}}]]]]], "Output", CellLabel-> "Out[954]//MatrixForm=",ExpressionUUID->"2a7d5292-7cf3-4fca-accc-\ 9dc5fa8c78e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ "HA", "+", "HB", "+", "HC", "+", "HD", "+", "HE", "+", "HF"}], ")"}], "-", "HTSLIC"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Omega]nut", "->", RowBox[{"\[Omega]J", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}]}]}], "}"}]}], ")"}], "//", "MatrixRepresentation"}], "//", "Normal"}], "//", "Expand"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964846185959552*^9, 3.964846187925243*^9}, { 3.9648462307649813`*^9, 3.964846231484544*^9}, 3.96484631458832*^9, { 3.964846437533649*^9, 3.9648464514882727`*^9}, 3.9648465080683107`*^9, { 3.96528772161543*^9, 3.965287759805058*^9}}, CellLabel-> "In[955]:=",ExpressionUUID->"d82cd257-bb85-4081-aa90-a10d7b49a456"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[955]//MatrixForm=",ExpressionUUID->"1687f07f-4364-4fef-935d-\ c59efda4508e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["check terms commute", "Subsubsection", CellChangeTimes->{{3.9647825983070173`*^9, 3.9647826018469973`*^9}},ExpressionUUID->"2a375ef4-8bc9-4e5c-b26d-\ eedfdaa3887b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HA", ",", "HB"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782785506209*^9}}, CellLabel-> "In[956]:=",ExpressionUUID->"9bed0a2c-0803-4bf9-b1d7-f9405716f20e"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[956]//MatrixForm=",ExpressionUUID->"aa3a2884-d250-4da9-a754-\ 287d002f3345"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HB", ",", "HC"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782795298531*^9}}, CellLabel-> "In[957]:=",ExpressionUUID->"1038c56f-4d21-49da-b58f-61f863dced60"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[957]//MatrixForm=",ExpressionUUID->"a9fed6c8-2241-4c44-b98a-\ d488e04fce6d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HA", ",", "HC"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782803896161*^9}}, CellLabel-> "In[958]:=",ExpressionUUID->"f1f544e4-a669-4d8f-8a8e-2dfb3ea798dd"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[958]//MatrixForm=",ExpressionUUID->"68f1b489-bf08-4ec5-b2f6-\ b982e88ef4b3"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]1T", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9, { 3.96484853221037*^9, 3.964848533963821*^9}},ExpressionUUID->"c48761f5-3e13-43f1-8d27-\ 9707fbda64fc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1T", "=", RowBox[{"ExpressOperator", "[", RowBox[{"TransformOp", "[", "\[Rho]1", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.964848537757135*^9, 3.9648485567354603`*^9}}, CellLabel-> "In[959]:=",ExpressionUUID->"aa3e174a-0891-4531-a625-46c1bdd619ed"], Cell[BoxData[ RowBox[{ RowBox[{"-", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[959]=",ExpressionUUID->"1ff7eb74-9297-4954-a139-3421a144520b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]1T", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964848567773385*^9, 3.964848574735949*^9}}, CellLabel-> "In[960]:=",ExpressionUUID->"349531e3-fff5-496d-b453-fd11855d3c53"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0"}, {"0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 3, 4}, {{3}, {2}, {4}, { 3}}}, {-2^Rational[-1, 2], -2^Rational[-1, 2], -2^Rational[-1, 2], -2^ Rational[-1, 2]}}]]]]], "Output", CellLabel-> "Out[960]//MatrixForm=",ExpressionUUID->"26f8a05e-5c5c-4a29-9f5a-\ e5ee37837184"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UTSLIC", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9},ExpressionUUID->"4a73fd47-5160-4ea3-925c-\ a8a13e8fb06e"], Cell[CellGroupData[{ Cell["propagators UA, UB, UC", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}},ExpressionUUID->"b5d5625f-036d-4706-a8de-\ 1ee01ea2e5ba"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"UA", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HA", " ", "\[Tau]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "UA", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.964782725912025*^9, 3.96478274166529*^9}, { 3.9648486079033833`*^9, 3.964848625135253*^9}}, CellLabel-> "In[961]:=",ExpressionUUID->"e4a84204-46a3-416e-85d2-768ecf3c85d1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}], "0", "0", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}]}]}, {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, { RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}]}], "0", "0", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 3, 4, 6}, {{1}, {4}, {2}, {3}, {1}, {4}}}, { Cos[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], Complex[0, 1] Sin[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], 1, 1, Complex[0, 1] Sin[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], Cos[ Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] \ $CellContext`\[Omega]\[CapitalDelta]]}}]]]]], "Output", CellLabel-> "Out[962]//MatrixForm=",ExpressionUUID->"d6c010e0-d15c-47e9-83c9-\ cd65d81a05c7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"UB", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HB", " ", "\[Tau]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "UB", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.964848634612598*^9, 3.964848641767049*^9}}, CellLabel-> "In[963]:=",ExpressionUUID->"29c492e0-c80c-4922-96ab-993b4e483f68"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { 1, E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut), E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut), 1}}]]]]], "Output", CellLabel-> "Out[964]//MatrixForm=",ExpressionUUID->"0f66684b-8417-47d8-8f84-\ cf8da1692b75"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"UC", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HC", " ", "\[Tau]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "UC", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.964848634612598*^9, 3.964848662497641*^9}}, CellLabel-> "In[965]:=",ExpressionUUID->"eafd480c-5f0d-4842-85b6-587d76d9736d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[ 0, Rational[1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)), E^(Complex[ 0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)), E^(Complex[ 0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)), E^(Complex[ 0, Rational[1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut))}}]]]]], "Output", CellLabel-> "Out[966]//MatrixForm=",ExpressionUUID->"abc7245a-fd9f-4802-847a-\ 9207bb4811b7"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["apply UA to \[Rho]1T", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}},ExpressionUUID->"7b8f3ed7-75d4-4cef-86d9-\ 02eb5b380c5d"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"UA", ".", "\[Rho]1T", ".", RowBox[{"Adjoint", "[", "UA", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"%", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]}], "Input",\ CellChangeTimes->{{3.964848688673833*^9, 3.964848710936077*^9}}, CellLabel-> "In[967]:=",ExpressionUUID->"c21da02f-7aec-4674-a66b-17812e848085"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm], ")"}]}], "-", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[967]=",ExpressionUUID->"9f6a549f-e711-44d4-9315-fc7b984c4db5"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}]}], SqrtBox["2"]]}], "0"}, {"0", "0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0"}, { FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}]}], SqrtBox["2"]], RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}], SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "]"}], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 5, 6}, {{3}, {3}, {1}, {2}, {4}, {3}}}, { Complex[0, -1] 2^Rational[-1, 2] Sin[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], -2^ Rational[-1, 2], Complex[0, 1] 2^Rational[-1, 2] Sin[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], -2^ Rational[-1, 2], -2^Rational[-1, 2] Cos[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] $CellContext`\[Omega]\[CapitalDelta]], -2^ Rational[-1, 2] Cos[Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Tau] \ $CellContext`\[Omega]\[CapitalDelta]]}}]]]]], "Output", CellLabel-> "Out[968]//MatrixForm=",ExpressionUUID->"94e195e2-6fc7-483a-b1b4-\ a23d02125a02"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["apply UB to \[Rho]1T", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}, 3.964848737259717*^9},ExpressionUUID->"cf499657-ef44-4bd2-84e3-\ bdf131ad5ad2"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"UB", ".", "\[Rho]1T", ".", RowBox[{"Adjoint", "[", "UB", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"%", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]}], "Input",\ CellChangeTimes->{{3.964848688673833*^9, 3.964848742747849*^9}}, CellLabel-> "In[969]:=",ExpressionUUID->"b520c189-63fd-48a8-86e2-078e611256f4"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"2", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"2", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}]}], ")"}]}]], DisplayForm]}], DisplayForm], ")"}]}], "-", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"2", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"2", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}]}], ")"}]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[969]=",ExpressionUUID->"71f617d7-a4f7-4d17-8ef7-94d6aa1f41ec"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0"}, {"0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 3, 4}, {{3}, {2}, {4}, {3}}}, {-2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut), -2^ Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut), -2^ Rational[-1, 2] E^(Complex[ 0, Rational[ 1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut), -2^ Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut)}}]]]]], "Output",\ CellLabel-> "Out[970]//MatrixForm=",ExpressionUUID->"49bc915c-5393-473f-992d-\ a9d3c78bab1e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["apply UC to \[Rho]1T", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}, 3.964848737259717*^9, 3.964848777187468*^9},ExpressionUUID->"30d96f09-49f6-4fc6-8e1c-\ a9c55d6e1ef1"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"UC", ".", "\[Rho]1T", ".", RowBox[{"Adjoint", "[", "UC", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"%", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]}], "Input",\ CellChangeTimes->{{3.964848688673833*^9, 3.964848742747849*^9}, { 3.964848779857358*^9, 3.9648487817311296`*^9}}, CellLabel-> "In[971]:=",ExpressionUUID->"34026ad0-7581-4ed8-bd84-c43f29cd328a"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm], ")"}]}], "-", TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[971]=",ExpressionUUID->"3e36c3e0-4612-405a-879b-1ff210bebed5"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0"}, {"0", RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 3, 4}, {{3}, {2}, {4}, { 3}}}, {-2^Rational[-1, 2], -2^Rational[-1, 2], -2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)), -2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut))}}]]]]], "Output", CellLabel-> "Out[972]//MatrixForm=",ExpressionUUID->"b305b804-ae3d-4c56-8be6-\ 7a3372aef8bd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["derive \[Rho]2T", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}, 3.964848737259717*^9, { 3.964848777187468*^9, 3.9648488005705233`*^9}, {3.965200391761137*^9, 3.965200395584085*^9}},ExpressionUUID->"b557e846-e6e5-4859-920f-\ c6b04c7bf863"], Cell["introduces \[Kappa] = 1/sqrt{2}", "Text", CellChangeTimes->{{3.965200493725209*^9, 3.9652005094598627`*^9}},ExpressionUUID->"6acc1c6d-bca3-4f5a-8520-\ 33d4705ca7e6"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Rho]2T", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"UA", ".", "UB", ".", "UC"}], ")"}], ".", "\[Rho]1T", ".", RowBox[{"Adjoint", "[", RowBox[{"(", RowBox[{"UA", ".", "UB", ".", "UC"}], ")"}], "]"}]}], "/.", RowBox[{"{", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"\[Kappa]", " ", "\[Omega]\[CapitalDelta]", " ", RowBox[{"Sqrt", "[", "2", "]"}]}]}], "}"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Rho]2T", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.964848688673833*^9, 3.964848742747849*^9}, { 3.964848779857358*^9, 3.964848855801889*^9}, {3.96520041655721*^9, 3.965200473057149*^9}}, CellLabel-> "In[973]:=",ExpressionUUID->"89284fa4-9741-441b-9f5e-3720ff8e5146"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}], "0"}, {"0", "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0"}, { FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]], RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 5, 6}, {{3}, {3}, {1}, {2}, {4}, {3}}}, { Complex[0, -1] 2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], -2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut), Complex[0, 1] 2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], -2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut), -2^ Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], -2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]]}}]]]]], "Output", CellLabel-> "Out[974]//MatrixForm=",ExpressionUUID->"bf1461fc-fbbd-46e1-a6da-\ c9818ec341af"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "1", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}}, CellLabel-> "In[975]:=",ExpressionUUID->"99013cbe-1b93-4aca-be0b-251cfc661326"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}], "+", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[975]=",ExpressionUUID->"ba20a0f8-2371-46bd-9314-13649dec6e08"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "1", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, {3.964849556766617*^9, 3.9648495584199123`*^9}}, CellLabel-> "In[976]:=",ExpressionUUID->"04f48f90-26a3-4db1-9692-27c0a4d69319"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "]"}]}], "+", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "]"}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[976]=",ExpressionUUID->"0b42a073-6968-4cf6-a1bc-1247b18ed5a9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9}, CellLabel-> "In[977]:=",ExpressionUUID->"f01850b7-411f-42cf-b7f7-d3064853626b"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[977]=",ExpressionUUID->"12509a3a-b029-4643-93b8-07dab4d8272c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.96484973656863*^9, 3.964849740214943*^9}}, CellLabel-> "In[978]:=",ExpressionUUID->"0a91c5b4-b1e3-466c-99b0-434848158276"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[978]=",ExpressionUUID->"f152cba3-afaf-4bf7-83ab-dd7bd43982af"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.964849790629033*^9, 3.964849793481786*^9}}, CellLabel-> "In[979]:=",ExpressionUUID->"66b16e1c-8670-4b8c-b01a-42b790f66d5e"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "]"}]}]}], ")"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[979]=",ExpressionUUID->"36efa303-298a-4d29-b0b8-0fad51180364"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.964849790629033*^9, 3.964849793481786*^9}, {3.964849851995661*^9, 3.96484985374903*^9}}, CellLabel-> "In[980]:=",ExpressionUUID->"e03a253b-4654-45c7-b87a-8b41d5815cea"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[980]=",ExpressionUUID->"5aa21731-890c-4a22-b80c-af19aad87643"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}}, CellLabel-> "In[981]:=",ExpressionUUID->"0b0bf7d8-5f21-4b9c-9761-9d32f70d4452"], Cell[BoxData[ RowBox[{ SqrtBox["2"], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]], "Output",\ CellLabel-> "Out[981]=",ExpressionUUID->"0a9099c5-0624-43b8-852f-9293b306ec53"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849237543704*^9}}, CellLabel-> "In[982]:=",ExpressionUUID->"2b2d1bc0-230e-4802-ab94-642fb0eb3385"], Cell[BoxData[ RowBox[{ SqrtBox["2"], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]], "Output",\ CellLabel-> "Out[982]=",ExpressionUUID->"f998c03d-b6eb-4d57-aec6-95e25adb5c9a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849259081008*^9}, { 3.964850149920141*^9, 3.964850150321842*^9}}, CellLabel-> "In[983]:=",ExpressionUUID->"7812330e-8abb-4df6-8ba0-8ebe8f8112d2"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]], "Output",\ CellLabel-> "Out[983]=",ExpressionUUID->"48f1fd2c-8242-4042-acf2-6208fd5f6c3c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849267515239*^9}, { 3.964850153892274*^9, 3.964850154206869*^9}}, CellLabel-> "In[984]:=",ExpressionUUID->"5b546351-d08b-4af6-b36b-f6581ea6ce62"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]], "Output", CellLabel-> "Out[984]=",ExpressionUUID->"a1d2dc49-f64b-4882-9f17-f7f533f5a4d9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849259081008*^9}}, CellLabel-> "In[985]:=",ExpressionUUID->"3e36e4d3-5167-46f6-9cdb-6aa25872476e"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[985]=",ExpressionUUID->"641b0c9d-74b2-42ea-8820-07f96b2df15b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849267515239*^9}}, CellLabel-> "In[986]:=",ExpressionUUID->"9bfedb40-2247-4df0-a885-d30dac3c8fc6"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[986]=",ExpressionUUID->"82e1399d-6634-4cd6-bb20-59f41823d8e1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2T", "]"}], "//", "Normal"}], "//", "FullSimplify"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964850823009335*^9, 3.964850881138932*^9}}, CellLabel-> "In[987]:=",ExpressionUUID->"ed214497-d5fc-4b1c-88b2-93e5a9356d27"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}], "0"}, {"0", "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0"}, { FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]], RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], SqrtBox["2"]]}], "0", RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}]}, {"0", "0", RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[987]//MatrixForm=",ExpressionUUID->"bcd7319c-8cd7-4560-9d6a-\ d7f14964a9f8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["derive coefficient of important DQ term", "Subsubsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}, 3.964848737259717*^9, { 3.964848777187468*^9, 3.9648488005705233`*^9}, {3.9648513186223373`*^9, 3.964851325837205*^9}},ExpressionUUID->"08c92f4c-230a-4ae6-be21-\ 5d5012f7cf26"], Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]2", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]2T", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9648514999118843`*^9, 3.964851544614319*^9}}, CellLabel-> "In[988]:=",ExpressionUUID->"27af38e8-c7c3-4ece-bd65-0391dfb8137c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2", "->", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<+\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<+\>\""}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.964851553103313*^9, 3.964851577431541*^9}}, CellLabel-> "In[989]:=",ExpressionUUID->"10a158b1-e1f2-46a3-a7d8-308dcaf37bab"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], ")"}]}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[989]=",ExpressionUUID->"853c2466-cc60-4309-a22b-5bf48fd56c1d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2", "->", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<-\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<-\>\""}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.964851590869049*^9, 3.964851592778179*^9}}, CellLabel-> "In[990]:=",ExpressionUUID->"c0025cc9-ccfd-427d-9c4a-65ade8e3268f"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], ")"}]}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"6", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[990]=",ExpressionUUID->"9eecb59f-d52d-4006-a332-632b4a70f314"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<+\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<+\>\""}], "]"}]}], "-", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\<-\>\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\<-\>\""}], "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.964851605182564*^9, 3.9648516180425653`*^9}}, CellLabel-> "In[991]:=",ExpressionUUID->"657b7595-3886-4ee7-a134-41e01991e354"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[991]=",ExpressionUUID->"7fbe0afe-0ec9-4b85-9da9-3163af6cb895"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2", "->", RowBox[{ RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], "+", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}]}], "]"}], "//", "FullSimplify"}]], "Input", CellChangeTimes->{{3.964851634342997*^9, 3.964851663095149*^9}}, CellLabel-> "In[992]:=",ExpressionUUID->"b9bb63f5-bce8-408b-9f2f-d4fbb014df01"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}], "+", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "-", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}], "+", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "+", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}]}], ")"}]}]], "Output", CellLabel-> "Out[992]=",ExpressionUUID->"0930eb2c-7f46-4976-882b-5465091545d8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"TransformOp", "[", RowBox[{ RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], "+", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.964851689139533*^9, 3.964851710434484*^9}}, CellLabel-> "In[993]:=",ExpressionUUID->"265c4ed1-23c3-4d8c-9548-48b24e39ef25"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[993]=",ExpressionUUID->"df3b563e-2b85-48b2-84a4-dadd0ba143b3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"2", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}], "+", RowBox[{"2", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}]}]}], "]"}], "//", "FullSimplify"}]], "Input", CellChangeTimes->{{3.964851722648796*^9, 3.964851752124378*^9}}, CellLabel-> "In[994]:=",ExpressionUUID->"d8e2d741-ffbf-49f9-8b1c-d8f8917381fc"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}], "+", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "-", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "+", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}]}], ")"}]}]], "Output", CellLabel-> "Out[994]=",ExpressionUUID->"51538737-11ce-4441-9c97-4236b944bd01"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["transformation back to get \[Rho]2", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9, { 3.964858744647792*^9, 3.9648587484885178`*^9}, {3.965200647007578*^9, 3.9652006487653637`*^9}},ExpressionUUID->"f5203c3a-1aa7-4048-8f33-\ 167920288244"], Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]2", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]2T", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9648587691000147`*^9, 3.964858817173501*^9}}, CellLabel-> "In[995]:=",ExpressionUUID->"10d6dd18-d2c7-4429-b834-938e3acd3a78"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964858821033593*^9, 3.964858832758711*^9}}, CellLabel-> "In[996]:=",ExpressionUUID->"d48e5ea1-85cf-4b63-a778-62616eef0ea8"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], "0", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}]}, { RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}]}], RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}]}]}, {"0", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}]}], RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 6, 8, 12}, {{2}, {4}, {4}, {1}, {3}, {2}, {2}, {4}, {2}, { 1}, {3}, {4}}}, { Complex[0, Rational[1, 2]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], Complex[0, Rational[-1, 2]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], Rational[-1, 4] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 4] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 4] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[-1, 4] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[-1, 4]] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[ 0, Rational[1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Complex[0, Rational[-1, 2]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[ Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Rational[1, 4] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 4] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 4] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[1, 4] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[1, 4]] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[ Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Rational[1, 4] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 4] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 4] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[1, 4] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[1, 4]] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[ Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Complex[0, Rational[1, 2]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Sin[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut], Rational[-1, 4] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[ 0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 4] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Rational[-1, 4] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Rational[-1, 4] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] + Complex[0, Rational[-1, 4]] E^(Complex[0, -1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[0, 1] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[1, 4]] E^(Complex[ 0, Rational[1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut] + Complex[0, Rational[-1, 4]] E^(Complex[ 0, Rational[-1, 2]] $CellContext`\[Tau] $CellContext`\[Omega]nut + Complex[0, Rational[ 1, 4]] $CellContext`\[Tau] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)) Cos[Rational[ 1, 2] $CellContext`\[Kappa] $CellContext`\[Tau] $CellContext`\ \[Omega]\[CapitalDelta]] Sin[Rational[1, 4] $CellContext`\[Tau] $CellContext`\[Omega]J + Rational[ 1, 2] $CellContext`\[Tau] $CellContext`\[Omega]nut]}}]]]]], \ "Output", CellLabel-> "Out[996]//MatrixForm=",ExpressionUUID->"6bea787c-21c5-4a62-a5e8-\ 10527c1b6a2b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.96485886233305*^9, 3.964858904892421*^9}, 3.9652006710136023`*^9}, CellLabel-> "In[997]:=",ExpressionUUID->"75db9687-4fb5-4fe2-b5ed-5c230d46ed4d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "2"]}], "]"}]}]}]], "Output",\ CellLabel-> "Out[997]=",ExpressionUUID->"fd1e4574-2300-4293-911e-37c321a2a285"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "//", "FullSimplify"}]], "Input", CellChangeTimes->{{3.965200683817226*^9, 3.965200691303409*^9}}, CellLabel-> "In[998]:=",ExpressionUUID->"1135b830-739d-4205-8fa2-e9be43f7b3e5"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "-", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}], "-", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "+", RowBox[{"\[Kappa]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}]}], ")"}]}], "]"}]}], ")"}]}]], "Output", CellLabel-> "Out[998]=",ExpressionUUID->"4dd68d97-f68e-40bb-8522-6cb9017dc6a3"] }, Open ]], Cell[BoxData[ RowBox[{"MapAt", "[", RowBox[{"TrigReduce", ",", TemplateBox[<| "InUUID" -> "1135b830-739d-4205-8fa2-e9be43f7b3e5", "OutUUID" -> "a6f6b30a-6552-4455-82c3-f78bc7e9370c", "InUUIDOffset" -> 0, "KernelEvalInfoKey" -> {"Global`", 12}, "OutNumber" -> 261, "Status" -> "PercentReferenceExists_KernelY_InY_OutY", "DisplayCache" -> TemplateBox[{"\[Times]"}, "SmartPercent_Infix"]|>, "PercentRef"], ",", "3"}], "]"}]], "Input", CellChangeTimes->{{3.9652008851616993`*^9, 3.965200953051195*^9}}, EmphasizeSyntaxErrors->True, CellLabel-> "In[999]:=",ExpressionUUID->"2e9f45a5-3292-4a4e-88cf-4930a50eff85"], Cell[CellGroupData[{ Cell[BoxData["ApplyTo"], "Input", CellChangeTimes->{{3.9652008182622557`*^9, 3.965200820663274*^9}}, CellLabel-> "In[999]:=",ExpressionUUID->"f33dd6f9-7eb7-4f40-9739-6401f113c867"], Cell[BoxData["ApplyTo"], "Output", CellLabel-> "Out[999]=",ExpressionUUID->"36b3b15d-2521-4585-92a9-a1c0a5ca937f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "//", "TrigReduce"}]], "Input", CellChangeTimes->{{3.965200724107695*^9, 3.965200766526473*^9}}, CellLabel-> "In[1000]:=",ExpressionUUID->"9f57dc13-a180-40a4-960e-084f417f6b15"], Cell[BoxData["ApplyTo"], "Output", CellLabel-> "Out[1000]=",ExpressionUUID->"98d6d97f-6370-402f-9b72-d8d034ca23cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TrigReduce", "[", RowBox[{ RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}], "]"}]], "Input", CellChangeTimes->{{3.965200781604179*^9, 3.96520080375746*^9}}, CellLabel-> "In[1001]:=",ExpressionUUID->"61a60d42-c258-4edf-9395-1aebfb1e6f50"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]"}], "]"}]}], ")"}]}]], "Output", CellLabel-> "Out[1001]=",ExpressionUUID->"fbdd43a6-fcfe-4eb4-965e-4f9244d4d88d"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC theory (v2)", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.964772874385695*^9, 3.964772875044032*^9}, { 3.9652129157310677`*^9, 3.965212917486761*^9}},ExpressionUUID->"6f65c6d3-3eaa-4685-856b-\ 56b85be9a520"], Cell[CellGroupData[{ Cell["test cases", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, {3.9653841087453213`*^9, 3.965384114582753*^9}},ExpressionUUID->"64739643-d703-4d3e-8986-\ 127a1f6ada6a"], Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"type", ":", RowBox[{"_String", "|", RowBox[{"{", RowBox[{"_String", ".."}], "}"}]}]}], ",", "sa_SparseArray"}], "]"}], ":=", RowBox[{"TestCase", "[", RowBox[{"type", ",", RowBox[{"Normal", "[", "sa", "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.965384837302194*^9, 3.965384894452525*^9}, { 3.965385060933969*^9, 3.965385081964016*^9}}, CellLabel-> "In[1002]:=",ExpressionUUID->"30c46f00-4596-4d6a-8e24-6b68da366b32"], Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", "expr_"}], "]"}], ":=", RowBox[{"FullSimplify", "[", RowBox[{"expr", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", "->", "0"}], ",", RowBox[{"\[Theta]e", "->", RowBox[{"\[Pi]", "/", "2"}]}], ",", RowBox[{"\[Omega]e", "->", RowBox[{"\[Epsilon]", " ", "\[Omega]J"}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.965384124284412*^9, 3.965384233755436*^9}, { 3.965384937605584*^9, 3.965384944009327*^9}}, CellLabel-> "In[1003]:=",ExpressionUUID->"6c97843d-64db-49ac-b829-9cfbd08c605e"], Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", "expr_"}], "]"}], ":=", RowBox[{"FullSimplify", "[", RowBox[{"expr", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", "0"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.965384124284412*^9, 3.965384204981987*^9}, { 3.965384238614861*^9, 3.965384247330697*^9}, {3.9653845424366217`*^9, 3.965384559942485*^9}, {3.9653849482992992`*^9, 3.9653849504745617`*^9}}, CellLabel-> "In[1004]:=",ExpressionUUID->"147f1ded-ab77-4f5f-a2e0-f740cc7a89b6"], Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "expr_"}], "]"}], ":=", RowBox[{"FullSimplify", "[", RowBox[{"expr", "//.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", "->", "0"}], ",", RowBox[{"\[Theta]e", "->", RowBox[{"\[Pi]", "/", "2"}]}], ",", RowBox[{"\[Omega]e", "->", RowBox[{"\[Epsilon]", " ", "\[Omega]J"}]}], ",", RowBox[{"\[Epsilon]", "->", "0"}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.965384124284412*^9, 3.965384204981987*^9}, { 3.965384238614861*^9, 3.965384247330697*^9}, {3.9653845424366217`*^9, 3.96538460066635*^9}, {3.965384952699518*^9, 3.965384955079658*^9}}, CellLabel-> "In[1005]:=",ExpressionUUID->"3592c172-6fdf-4d11-8372-373abf1ae05b"] }, Open ]], Cell[CellGroupData[{ Cell["H0", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}},ExpressionUUID->"7ec1419c-0961-4629-8e49-\ fe9ec5822102"], Cell[CellGroupData[{ Cell[BoxData["H0"], "Input", CellChangeTimes->{{3.964772972748047*^9, 3.964772973039483*^9}}, CellLabel-> "In[1006]:=",ExpressionUUID->"379d2628-68aa-4004-a0ee-4642eaa2bee9"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[1006]=",ExpressionUUID->"183b3bf7-4925-4beb-92d2-6bba30f45367"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["HSLIC", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.964772947328741*^9},ExpressionUUID->"7c483b2b-96d2-4ee3-a530-\ 0515d26c7538"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HSLIC", "=", RowBox[{"H0", " ", "+", " ", RowBox[{"\[Omega]nut", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.964772950436791*^9, 3.9647729504394503`*^9}, { 3.9647729895394278`*^9, 3.964773003714903*^9}, {3.964842350791407*^9, 3.964842351401058*^9}}, CellLabel-> "In[1007]:=",ExpressionUUID->"40f2a478-2378-436e-b71a-e653e87b7792"], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[1007]=",ExpressionUUID->"411e401b-7ebc-4f6b-a23c-37b8fb16b1d8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["HTSLIC", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}},ExpressionUUID->"83f8558d-7901-4bee-9ca1-\ 7089a3b0f3d3"], Cell[CellGroupData[{ Cell["T-transform", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434539431267`*^9}},ExpressionUUID->"3647bea8-c8cc-4c8c-bf04-\ c337185160c2"], Cell["The sense is reversed compared to the previous version", "Text", CellChangeTimes->{{3.965300792578377*^9, 3.9653008016712103`*^9}},ExpressionUUID->"71789219-9d7f-49c8-9071-\ 9d24ce86f808"], Cell[BoxData[ RowBox[{ RowBox[{"TransformOp", "[", RowBox[{"op_", "?", "OperatorQ"}], "]"}], ":=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "op", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.964773021161518*^9, 3.964773063517867*^9}, { 3.965212921979394*^9, 3.965212934465913*^9}}, CellLabel-> "In[1008]:=",ExpressionUUID->"e6a3ccb4-64d6-469b-8639-e0460de04298"] }, Closed]], Cell[CellGroupData[{ Cell["HTSLIC", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.964843463181644*^9}},ExpressionUUID->"56d00ce6-edc3-4040-9453-\ 3f8f424dbd39"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HTSLIC", "=", RowBox[{"TransformOp", "[", "HSLIC", "]"}]}]], "Input", CellChangeTimes->{{3.963825192476555*^9, 3.963825217997805*^9}, { 3.964772909963624*^9, 3.964772936365891*^9}, {3.9647730727174253`*^9, 3.964773098074885*^9}, {3.9652129515464563`*^9, 3.965212954899351*^9}}, CellLabel-> "In[1009]:=",ExpressionUUID->"ead65e25-7c8d-4dbf-8d2c-4a7a00be1b92"], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm]}], "-", RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "+", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], "-", RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}]}]], "Output", CellLabel-> "Out[1009]=",ExpressionUUID->"57d53a06-be5e-48ad-848d-541607c25fb3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"HTSLIC", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9647731622168083`*^9, 3.964773169433538*^9}}, CellLabel-> "In[1010]:=",ExpressionUUID->"f5a23f9d-2664-412b-9f24-492d997a6c5d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0"}, {"0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 3, 6, 9, 12}, {{1}, {2}, {4}, {2}, {1}, {3}, {3}, {2}, {4}, { 4}, {1}, {3}}}, { Rational[-3, 4] $CellContext`\[Omega]J, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 4] $CellContext`\[Omega]J - $CellContext`\[Omega]nut, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J + $CellContext`\[Omega]nut, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma]}}]]]]], "Output",\ CellLabel-> "Out[1010]//MatrixForm=",ExpressionUUID->"dfc37299-f519-4230-afb2-\ 7ae849064264"] }, Open ]], Cell[CellGroupData[{ Cell["SLIC match condition \[Rule] 12 resonance", "Subsubsection", CellChangeTimes->{{3.96538298452995*^9, 3.965383005569807*^9}},ExpressionUUID->"935965a2-9d8b-466c-acf9-\ cb2dd5f31d79"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"HTSLIC", "/.", RowBox[{"{", RowBox[{"\[Omega]nut", "->", "\[Omega]J"}], "}"}]}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965212975791288*^9, 3.965212983862686*^9}}, CellLabel-> "In[1011]:=",ExpressionUUID->"96f75ff7-7c32-477d-bbd3-cc9d93f3101f"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0"}, {"0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ RowBox[{"5", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 3, 6, 9, 12}, {{1}, {2}, {4}, {2}, {1}, {3}, {3}, {2}, {4}, { 4}, {1}, {3}}}, { Rational[-3, 4] $CellContext`\[Omega]J, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-3, 4] $CellContext`\[Omega]J, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 4] $CellContext`\[Omega]J, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[5, 4] $CellContext`\[Omega]J, Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma]}}]]]]], "Output",\ CellLabel-> "Out[1011]//MatrixForm=",ExpressionUUID->"4f375abb-d41e-4d96-9eeb-\ a421a027f4df"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["test decomposition", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.96528910175104*^9}}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"b904f301-b584-49d4-8529-89fb6f46f3e3"], Cell[BoxData[ RowBox[{ RowBox[{"testop", "=", "\[IndentingNewLine]", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}]}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}], "+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"+", "\[Epsilon]"}], " ", "\[Omega]J", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], "\[IndentingNewLine]", ")"}], "+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Omega]nut"}], " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}], "+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}]}], RowBox[{"(", RowBox[{"\[Omega]J", "+", RowBox[{"2", "\[Omega]nut"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\<1\>\""}], "]"}], "-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\<1\>\""}], "]"}]}], ")"}]}], ")"}], "+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalSigma]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], ")"}], "+", "\[IndentingNewLine]", RowBox[{"+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}]}], "\[IndentingNewLine]", ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.965282644864814*^9, 3.965282652291206*^9}, { 3.9652826983265676`*^9, 3.965282776852481*^9}, {3.965282919844445*^9, 3.965282931037416*^9}, {3.965283016203663*^9, 3.965283103579195*^9}, { 3.965283146429996*^9, 3.965283307743588*^9}, {3.965283362044639*^9, 3.965283461958014*^9}, {3.965283513949458*^9, 3.965283612380937*^9}, { 3.965284297681601*^9, 3.965284304866252*^9}, {3.965284494134411*^9, 3.965284556680805*^9}, {3.965284642570621*^9, 3.965284728241312*^9}, { 3.9652848162856913`*^9, 3.965284835342021*^9}, {3.965284894511208*^9, 3.965284908362721*^9}, {3.965288512906464*^9, 3.9652886208555803`*^9}, { 3.965288654616685*^9, 3.965288689797841*^9}, {3.96528873446628*^9, 3.965288763589274*^9}, {3.9652887963425493`*^9, 3.9652888535879917`*^9}}, CellLabel-> "In[1012]:=",ExpressionUUID->"b46b0e13-2dae-4912-8396-8ff7e4d7d520"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"testop", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965282659279146*^9, 3.965282665037487*^9}}, CellLabel-> "In[1013]:=",ExpressionUUID->"164262ea-c6b8-439b-9fcb-7c8e7c2de1e4"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0"}, {"0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 3, 6, 9, 12}, {{4}, {1}, {2}, {1}, {3}, {2}, {4}, {3}, {2}, { 1}, {3}, {4}}}, { Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut), Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[-1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut), Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[-1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalSigma], Rational[1, 2] $CellContext`\[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut)}}]]]]], "Output", CellLabel-> "Out[1013]//MatrixForm=",ExpressionUUID->"50c63552-6e37-46fe-9f9c-\ da08e2265861"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"HTSLIC", "-", "testop"}], ")"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.96528267913972*^9, 3.965282684238614*^9}, { 3.965282827236689*^9, 3.965282829603286*^9}}, CellLabel-> "In[1014]:=",ExpressionUUID->"f0588421-8df9-4757-b2b2-ad4e5f8f885a"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], "-", FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], "0", "0", "0"}, {"0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}]}], "0", "0"}, {"0", "0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"]}], "0"}, {"0", "0", "0", RowBox[{ FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "-", RowBox[{"2", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}]}], ")"}]}], "+", FractionBox[ SubscriptBox["\[Omega]", "\<\"nut\"\>"], "2"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { Rational[-3, 4] $CellContext`\[Omega]J + Rational[-1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[1, 4] $CellContext`\[Omega]J + Rational[ 1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J - $CellContext`\ \[Omega]nut + Rational[1, 4] ($CellContext`\[Omega]J + 2 $CellContext`\[Omega]nut), Rational[1, 4] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[1, 2] $CellContext`\[Omega]nut, Rational[1, 4] $CellContext`\[Omega]J + Rational[1, 4] (-$CellContext`\[Omega]J - 2 $CellContext`\[Omega]nut) + Rational[1, 2] $CellContext`\[Omega]nut}}]]]]], "Output", CellLabel-> "Out[1014]//MatrixForm=",ExpressionUUID->"35f8124e-bae5-4fbf-be77-\ d947a22616cb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"HTSLIC", "-", "testop"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Omega]nut", "->", RowBox[{"\[Omega]J", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}]}]}], "}"}]}], ")"}], "//", "MatrixRepresentation"}], "//", "Normal"}], "//", "Expand"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.96528267913972*^9, 3.965282684238614*^9}, { 3.965282827236689*^9, 3.965282898678138*^9}, {3.965282962724102*^9, 3.965283001547256*^9}}, CellLabel-> "In[1015]:=",ExpressionUUID->"cafcb216-f86b-4ac0-a429-6de583b381a6"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1015]//MatrixForm=",ExpressionUUID->"87880ff3-0d22-49a0-9ffe-\ 4c888856293e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["HA", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, 3.965383040257139*^9}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"4144d05f-753a-4813-9cb4-ec2d9182358f"], Cell[BoxData[ RowBox[{ RowBox[{"HA", "=", RowBox[{"(", RowBox[{ RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}]}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}], "+", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"+", "\[Epsilon]"}], " ", "\[Omega]J", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], "\[IndentingNewLine]", ")"}]}], ";"}]], "Input", CellChangeTimes->{3.9652837563999653`*^9, 3.9652888818647337`*^9}, CellLabel-> "In[1016]:=",ExpressionUUID->"d8edb813-b064-452e-ab15-6a3ac3a42242"] }, Closed]], Cell[CellGroupData[{ Cell["HB", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, { 3.965383040257139*^9, 3.96538304725902*^9}}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"5eb07f3c-f74c-4e9c-b0c0-e5323826d778"], Cell[BoxData[ RowBox[{ RowBox[{"HB", "=", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Omega]J"}], RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, 3.964847148539315*^9, 3.965212994635281*^9, { 3.965213246933489*^9, 3.965213260081258*^9}, {3.965213335399869*^9, 3.9652133393158703`*^9}, {3.965282486897551*^9, 3.965282489766637*^9}, { 3.965283752158577*^9, 3.965283754030633*^9}, 3.96528890250284*^9, { 3.965289680204342*^9, 3.965289686609927*^9}}, CellLabel-> "In[1017]:=",ExpressionUUID->"a67dcac6-ed27-4c07-a34d-b9d4a4f26534"] }, Closed]], Cell[CellGroupData[{ Cell["HC", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, { 3.965383040257139*^9, 3.965383054370112*^9}}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"3d2f924b-01aa-423a-a064-0577566afcbf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HC", "=", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}]}], RowBox[{"(", RowBox[{ RowBox[{"3", "\[Omega]J"}], "+", RowBox[{"2", "\[Epsilon]", " ", "\[Omega]J"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\<1\>\""}], "]"}], "-", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\<1\>\""}], "]"}]}], ")"}]}], ")"}]}]], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, 3.964847148539315*^9, 3.965212994635281*^9, { 3.965213246933489*^9, 3.965213260081258*^9}, {3.965213335399869*^9, 3.9652133393158703`*^9}, {3.965282486897551*^9, 3.965282489766637*^9}, { 3.965283773817801*^9, 3.965283781257452*^9}, 3.9652889152078457`*^9, { 3.965289736245171*^9, 3.965289763724724*^9}}, CellLabel-> "In[1018]:=",ExpressionUUID->"e96ef96e-507a-4502-8d2f-72b71773a318"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]], "Output", CellLabel-> "Out[1018]=",ExpressionUUID->"abeef835-8128-488f-b69c-b6d7c1b00496"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["HD", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, { 3.965383040257139*^9, 3.965383054370112*^9}, 3.96538316766604*^9}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"b882987f-fd85-4c01-835e-aea7ed6d5eff"], Cell[BoxData[ RowBox[{ RowBox[{"HD", "=", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalSigma]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, {3.964847148539315*^9, 3.96484716732489*^9}, { 3.965213081933235*^9, 3.9652130948664227`*^9}, {3.965213155732027*^9, 3.9652131770474453`*^9}, 3.965213225421533*^9, 3.965282494409338*^9, 3.965283803086413*^9, 3.9652889261574097`*^9}, CellLabel-> "In[1019]:=",ExpressionUUID->"9457f1b4-0b21-434c-afca-93660fdff667"] }, Closed]], Cell[CellGroupData[{ Cell["HE", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, { 3.965383040257139*^9, 3.965383054370112*^9}, {3.96538316766604*^9, 3.965383174475806*^9}}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"8200507a-d08d-4b82-8f04-ee859dc958b9"], Cell[BoxData[ RowBox[{ RowBox[{"HE", "=", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.964842423173923*^9, 3.9648425288908777`*^9}, 3.9648426033785133`*^9, {3.964842781907178*^9, 3.9648427948655663`*^9}, { 3.964842860460723*^9, 3.964842864313946*^9}, {3.9648429674199944`*^9, 3.9648429693837967`*^9}, 3.9648432086532917`*^9, {3.96484613776791*^9, 3.964846214054646*^9}, {3.964846270542429*^9, 3.964846289052813*^9}, { 3.964846321663146*^9, 3.964846409111288*^9}, {3.9648465176354523`*^9, 3.964846527818165*^9}, {3.964847148539315*^9, 3.96484716732489*^9}, { 3.965213081933235*^9, 3.9652130948664227`*^9}, {3.965213155732027*^9, 3.9652131770474453`*^9}, 3.965213225421533*^9, {3.965282494409338*^9, 3.9652824971348953`*^9}, 3.9652838733394623`*^9, 3.96528393361096*^9, 3.96528894238443*^9}, CellLabel-> "In[1020]:=",ExpressionUUID->"1a762324-32b1-4c32-8ebc-d91b0b658524"] }, Closed]], Cell[CellGroupData[{ Cell["tests", "Subsection", CellChangeTimes->{{3.964843441116534*^9, 3.9648434747029123`*^9}, { 3.964846123098301*^9, 3.9648461252570267`*^9}, {3.965213283977749*^9, 3.965213289271559*^9}, 3.965287808611721*^9, {3.965289098869761*^9, 3.965289109775134*^9}, {3.9653008704437723`*^9, 3.965300873849153*^9}, { 3.965383040257139*^9, 3.965383054370112*^9}, {3.96538316766604*^9, 3.965383186312646*^9}, {3.9653832300084877`*^9, 3.965383230589439*^9}}, Background->RGBColor[ 1, 1, 0.85],ExpressionUUID->"52a4d554-4583-413a-97d2-13ce01d2ffeb"], Cell[CellGroupData[{ Cell["sum terms", "Subsubsection", CellChangeTimes->{{3.96538323361545*^9, 3.965383235721919*^9}},ExpressionUUID->"bc512593-daf1-4540-82f2-\ b1efc8ad0fd1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"HA", "+", "HB", "+", "HC", "+", "HD", "+", "HE"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Omega]nut", "->", RowBox[{"\[Omega]J", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}]}]}], "}"}]}], ")"}], "//", "MatrixRepresentation"}], "//", "Normal"}], "//", "Expand"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964842541380924*^9, 3.964842542477215*^9}, { 3.964846155334676*^9, 3.964846169518865*^9}, {3.964846217655809*^9, 3.964846218495405*^9}, {3.964846295658024*^9, 3.9648462993766336`*^9}, { 3.964846426705791*^9, 3.964846431533573*^9}, 3.965213027248337*^9, { 3.965283715667276*^9, 3.9652837236872787`*^9}, {3.9652889591213017`*^9, 3.965288959585869*^9}}, CellLabel-> "In[1021]:=",ExpressionUUID->"59f1e14b-9d3e-40d6-81ca-21b9125ede65"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"]}], "-", RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0"}, {"0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ SubscriptBox["\[Omega]", "\<\"J\"\>"], "4"], FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}, { FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ FractionBox[ RowBox[{"5", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "4"], "+", RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1021]//MatrixForm=",ExpressionUUID->"a84c691f-57c9-459b-80f9-\ 7ddabd2c7a1c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ "HA", "+", "HB", "+", "HC", "+", "HD", "+", "HE", "-", "HTSLIC"}], ")"}], "/.", RowBox[{"\[Omega]nut", "->", RowBox[{"\[Omega]J", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}]}]}]}], "//", "MatrixRepresentation"}], "//", "Normal"}], "//", "Expand"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9652132966259937`*^9, 3.9652133013515053`*^9}, { 3.9652838940730886`*^9, 3.965283903178255*^9}, {3.9652889646534357`*^9, 3.9652889765196238`*^9}, {3.965289038828432*^9, 3.96528904086876*^9}}, CellLabel-> "In[1022]:=",ExpressionUUID->"4fe2569f-47b8-4979-b647-06572e0d47a6"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1022]//MatrixForm=",ExpressionUUID->"8bc06de5-55b6-42a4-bd07-\ d334e7c29b72"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["check HA, HB, HC commute", "Subsubsection", CellChangeTimes->{{3.9647825983070173`*^9, 3.9647826018469973`*^9}, { 3.965383209429103*^9, 3.965383218891733*^9}},ExpressionUUID->"d104ec62-fdcd-4895-9336-\ fd7e50ac0c48"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HA", ",", "HB"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782785506209*^9}}, CellLabel-> "In[1023]:=",ExpressionUUID->"3f464569-41b3-4d7a-b3f4-3cb1266e572f"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[1023]//MatrixForm=",ExpressionUUID->"79eea29a-2677-4a3a-8713-\ 2942cfa0505e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HB", ",", "HC"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782795298531*^9}}, CellLabel-> "In[1024]:=",ExpressionUUID->"784ad62b-0199-4d51-b0b4-e75892e96720"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[1024]//MatrixForm=",ExpressionUUID->"d42013d2-5c3b-4f2f-ad95-\ b7bb5cfa4b73"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Commutator", "[", RowBox[{"HA", ",", "HC"}], "]"}], "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964782772498184*^9, 3.964782803896161*^9}}, CellLabel-> "In[1025]:=",ExpressionUUID->"4d88eb02-85bd-4652-aec6-9641bfda81f1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, {1, {{0, 0, 0, 0, 0}, {}}, {}}]]]]], "Output", CellLabel-> "Out[1025]//MatrixForm=",ExpressionUUID->"9fdf8707-dae2-44fe-b0d4-\ 6a382179d0a0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["check reformulation of HA term", "Subsubsection", CellChangeTimes->{{3.9647825983070173`*^9, 3.9647826018469973`*^9}, { 3.965381502117532*^9, 3.965381516650855*^9}},ExpressionUUID->"16f4c296-1756-4326-a8a9-\ a739aef99b5b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "HA", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965381518607871*^9, 3.965381532275416*^9}}, CellLabel-> "In[1026]:=",ExpressionUUID->"890a2f24-4b54-4001-b98e-27d7672567db"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", "0"}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{"-", FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"]}], "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 4, 4, 4}, {{1}, {2}, {1}, {2}}}, { Rational[1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J, Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[-1, 2] $CellContext`\[Epsilon] $CellContext`\[Omega]J}}]]]]], "Output", CellLabel-> "Out[1026]//MatrixForm=",ExpressionUUID->"54320b49-dc4d-46f5-8199-\ 402ab66bdce5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"MatrixRepresentation", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Theta]e", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Omega]e"}], " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], ")"}], ".", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "\[Theta]e", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], "\[IndentingNewLine]", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]e", "->", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], "^", "2"}], " ", "+", " ", RowBox[{ RowBox[{"(", RowBox[{"\[Epsilon]", " ", "\[Omega]J"}], ")"}], "^", "2"}]}], "]"}]}], ",", RowBox[{"\[Theta]e", "->", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], ",", RowBox[{"(", RowBox[{"\[Epsilon]", " ", "\[Omega]J"}], ")"}]}], "]"}]}]}], "}"}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", ")"}], "//", "Normal"}], "//", "FullSimplify"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965381540292758*^9, 3.965381758227199*^9}}, CellLabel-> "In[1027]:=",ExpressionUUID->"d4d78097-01a7-4ef9-bb81-884fd31f5f49"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"], RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", "0"}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{"-", FractionBox[ RowBox[{"\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "2"]}], "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1027]//MatrixForm=",ExpressionUUID->"249b5fbb-7ced-44ee-ba3e-\ 68df86fc1a12"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["UTSLIC", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9},ExpressionUUID->"fc3db0bb-b2f2-4801-b7c9-\ 53caf19590fd"], Cell[CellGroupData[{ Cell["UA", "Subsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, 3.965381931124341*^9},ExpressionUUID->"99b08a2a-8b56-4a77-b97d-\ 0b71f74636c6"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"UA", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Theta]e", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], RowBox[{"(", RowBox[{ RowBox[{"-", " ", "\[Omega]e"}], " ", "\[Tau]"}], ")"}], " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "\[Theta]e", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"UA", " ", "=", " ", RowBox[{"Operator", "[", RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "UA", "]"}], "//", "Normal"}], "//", "FullSimplify"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "UA", "]"}], "//", "Normal"}], "//", "FullSimplify"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.964782725912025*^9, 3.96478274166529*^9}, { 3.9648486079033833`*^9, 3.964848625135253*^9}, {3.96529574490241*^9, 3.9652958479988623`*^9}, {3.965301104469997*^9, 3.965301108171595*^9}}, CellLabel-> "In[1028]:=",ExpressionUUID->"99e88b3d-8865-4aae-ad70-9d245fd6376e"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "0", "0"}, { RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1030]//MatrixForm=",ExpressionUUID->"413bbf09-6ed1-4235-95d8-\ ace3dbbf010a"] }, Open ]], Cell[CellGroupData[{ Cell["test cases", "Subsubsection", CellChangeTimes->{{3.965383390913498*^9, 3.9653833990905647`*^9}, { 3.965384700457056*^9, 3.96538470309896*^9}},ExpressionUUID->"9ae8d8e9-a56e-4e88-a463-\ c0774e77d293"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UA", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.965384922350666*^9, 3.965384928753952*^9}, 3.965384968389728*^9}, CellLabel-> "In[1031]:=",ExpressionUUID->"db92ba86-e81d-4b96-9690-ec657a2b7c18"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Epsilon]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Epsilon]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1031]//MatrixForm=",ExpressionUUID->"d2c8b8d9-1f3c-44a7-b637-\ 6e7c2803f6c7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UA", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384714861291*^9}}, CellLabel-> "In[1032]:=",ExpressionUUID->"c61f4cb3-7961-44f8-bf81-9e6eb3bc200c"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "0", "0"}, { RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1032]//MatrixForm=",ExpressionUUID->"8f8e76cf-44e3-47c2-aa4a-\ 866bc9626d7b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"MatrixRepresentation", "[", "UA", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384738650195*^9}}, CellLabel-> "In[1033]:=",ExpressionUUID->"f47c81fa-da3b-46aa-b103-aaa071455805"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1033]//MatrixForm=",ExpressionUUID->"6a80ea6c-19f3-48bc-8962-\ a9f0fd902038"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UB", "Subsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.965381931124341*^9, 3.9653819375856733`*^9}},ExpressionUUID->"c46d4258-b1fb-4db7-bac4-\ 5af4ff76b0ba"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"UB", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HB", " ", "\[Tau]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "UB", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.965381990134632*^9, 3.965382010027073*^9}}, CellLabel-> "In[1034]:=",ExpressionUUID->"c1e8a03a-6a74-49f8-a7b4-430e9d9e9a49"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "2"]}], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "4"], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "4"], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "4"], "+", FractionBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "4"]}], ")"}]}]]], "Output", CellLabel-> "Out[1034]=",ExpressionUUID->"ecf26187-0bed-4125-8e8f-b6eedb0e1bc1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { 1, 1, E^(Complex[0, Rational[1, 2]] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J), E^(Complex[0, Rational[-1, 2]] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1035]//MatrixForm=",ExpressionUUID->"0f2c6a75-6ddd-4528-801c-\ af461c92e7bf"] }, Open ]], Cell[CellGroupData[{ Cell["test cases", "Subsubsection", CellChangeTimes->{{3.965383390913498*^9, 3.9653833990905647`*^9}, { 3.965384700457056*^9, 3.96538470309896*^9}},ExpressionUUID->"22747da7-0cfd-45ed-b1b3-\ fdb853ab37ce"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UB", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.9653847659923964`*^9, 3.965384766234432*^9}}, CellLabel-> "In[1036]:=",ExpressionUUID->"ba7429a0-d380-4c4e-a5a5-2ad6fe9b88ba"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1036]//MatrixForm=",ExpressionUUID->"bfd8fc9c-6dfd-4108-bf27-\ 54236936a053"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "UB", "]"}]}]], "Input", CellChangeTimes->{{3.965384805311926*^9, 3.965384810436541*^9}}, CellLabel-> "In[1037]:=",ExpressionUUID->"ec15dd74-3970-4dbe-bb10-6922b58d7db8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[1037]=",ExpressionUUID->"ef5c7c96-d223-4429-a9dd-89f120dbaf8c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", "UB", "]"}]}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384714861291*^9}, { 3.965384782163487*^9, 3.965384782389536*^9}, {3.965384814445634*^9, 3.96538481564146*^9}}, CellLabel-> "In[1038]:=",ExpressionUUID->"4816a6a4-0ddb-497d-a531-1ee45e927456"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1038]//MatrixForm=",ExpressionUUID->"8a8897b9-60e3-4cf4-bbf2-\ 88abc8ada6ec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"MatrixRepresentation", "[", "UB", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384738650195*^9}, { 3.965384774917289*^9, 3.965384775189711*^9}}, CellLabel-> "In[1039]:=",ExpressionUUID->"5867d46c-73b7-4367-a064-554863a6835d"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1039]//MatrixForm=",ExpressionUUID->"76fcab83-0b97-4d4a-8127-\ dc79a2072913"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UC", "Subsection", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.965381931124341*^9, 3.965381945713315*^9}},ExpressionUUID->"f769baa6-4a19-424b-b827-\ 2716fd05ffd8"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"UC", "=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HC", " ", "\[Tau]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MatrixRepresentation", "[", "UC", "]"}], "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.965381990134632*^9, 3.965382010027073*^9}, { 3.96538204457863*^9, 3.965382049616558*^9}}, CellLabel-> "In[1040]:=",ExpressionUUID->"79b3f439-f131-4298-bc43-d86fc6ec5b59"], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}]}]]], "Output", CellLabel-> "Out[1040]=",ExpressionUUID->"217139d4-8e43-4015-a725-bddcb8a4b5f9"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "+", RowBox[{"2", " ", "\[Epsilon]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]}], ")"}]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[1, 4]] $CellContext`\[Tau] ( 3 $CellContext`\[Omega]J + 2 $CellContext`\[Epsilon] $CellContext`\[Omega]J)), E^(Complex[0, Rational[1, 4]] $CellContext`\[Tau] ( 3 $CellContext`\[Omega]J + 2 $CellContext`\[Epsilon] $CellContext`\[Omega]J)), E^(Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ( 3 $CellContext`\[Omega]J + 2 $CellContext`\[Epsilon] $CellContext`\[Omega]J)), E^(Complex[0, Rational[-1, 4]] $CellContext`\[Tau] ( 3 $CellContext`\[Omega]J + 2 $CellContext`\[Epsilon] $CellContext`\[Omega]J))}}]]]]], "Output", CellLabel-> "Out[1041]//MatrixForm=",ExpressionUUID->"07498ff6-24ac-4b26-8d83-\ 4afc7f2b2750"] }, Open ]], Cell[CellGroupData[{ Cell["test cases", "Subsubsection", CellChangeTimes->{{3.965383390913498*^9, 3.9653833990905647`*^9}, { 3.965384700457056*^9, 3.96538470309896*^9}},ExpressionUUID->"b01c8d9b-4243-449b-8b0f-\ a5ed6888f773"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.9653847659923964`*^9, 3.965384766234432*^9}, {3.9653851148713093`*^9, 3.965385115127822*^9}}, CellLabel-> "In[1042]:=",ExpressionUUID->"91188862-b487-444f-bfdd-cf0b1ea40348"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1042]//MatrixForm=",ExpressionUUID->"2c36b6d7-bbeb-428d-b1de-\ e3e15d8eb548"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384714861291*^9}, { 3.965384782163487*^9, 3.965384782389536*^9}, {3.965384814445634*^9, 3.96538481564146*^9}, {3.965385122281266*^9, 3.9653851252332573`*^9}}, CellLabel-> "In[1043]:=",ExpressionUUID->"00235911-0da2-44c2-85f2-8ade34046350"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1043]//MatrixForm=",ExpressionUUID->"b4cb351d-7418-4422-ae1d-\ d1888e5b3a60"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"MatrixRepresentation", "[", "UC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384738650195*^9}, { 3.965384774917289*^9, 3.965384775189711*^9}, {3.96538513182238*^9, 3.965385132228243*^9}}, CellLabel-> "In[1044]:=",ExpressionUUID->"e67f30d5-5a57-44e7-987f-b39033a4491c"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1044]//MatrixForm=",ExpressionUUID->"f219dda9-84a2-46a4-b01b-\ 8671b6da4b41"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UABC", "Subsection", CellChangeTimes->{{3.965382459059799*^9, 3.9653824598099413`*^9}},ExpressionUUID->"4d832011-15b1-43e6-a6ed-\ 468a084aa0a6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UABC", "=", RowBox[{"Operator", "[", RowBox[{"Simplify", "@", RowBox[{"Normal", "@", RowBox[{"MatrixRepresentation", "[", RowBox[{"UA", ".", "UB", ".", "UC"}], "]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9653820622209787`*^9, 3.965382095113407*^9}, { 3.965382139274922*^9, 3.965382143850647*^9}}, CellLabel-> "In[1045]:=",ExpressionUUID->"d8227029-0f2d-4c60-9210-dee6a435d984"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{"Operator", "[", RowBox[{ RowBox[{"<<", ".."}], ">>"}]}], RowBox[{",", " ", RowBox[{"OperatorType", "\[Rule]", "\<\"None\"\>"}]}], " ", "]"}], DisplayForm]], "Output", CellLabel-> "Out[1045]=",ExpressionUUID->"3a77dfcd-5bca-4d78-b0fc-e8a35cb1694d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"UABC", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965382101952511*^9, 3.9653821492029133`*^9}}, CellLabel-> "In[1046]:=",ExpressionUUID->"12633efd-ada9-4e70-8f13-dd5b0115d2cb"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "0", "0"}, { RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"2", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1046]//MatrixForm=",ExpressionUUID->"7e35c8be-ab04-48bb-823a-\ 71a4bf61d790"] }, Open ]], Cell[CellGroupData[{ Cell["test cases", "Subsubsection", CellChangeTimes->{{3.965383390913498*^9, 3.9653833990905647`*^9}, { 3.965384700457056*^9, 3.96538470309896*^9}},ExpressionUUID->"8851721c-e66c-418b-b7e6-\ fd53d875a2c2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UABC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.9653847659923964`*^9, 3.965384766234432*^9}, {3.9653851148713093`*^9, 3.965385115127822*^9}, 3.965385168515047*^9}, CellLabel-> "In[1047]:=",ExpressionUUID->"a454b6de-d05a-4722-afa9-5bd543f0605a"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"4", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", "\[Epsilon]"}]}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1047]//MatrixForm=",ExpressionUUID->"d245868d-4f2d-4208-a7fa-\ a2ae0030e3c9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "UABC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384714861291*^9}, { 3.965384782163487*^9, 3.965384782389536*^9}, {3.965384814445634*^9, 3.96538481564146*^9}, {3.965385122281266*^9, 3.9653851252332573`*^9}, 3.965385174289301*^9}, CellLabel-> "In[1048]:=",ExpressionUUID->"d662186a-f580-4d81-a18b-fa98b6b40e6c"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "0", "0"}, { RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1048]//MatrixForm=",ExpressionUUID->"f2109ccb-af94-4317-a476-\ 55ae9373c091"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"MatrixRepresentation", "[", "UABC", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384738650195*^9}, { 3.965384774917289*^9, 3.965384775189711*^9}, {3.96538513182238*^9, 3.965385132228243*^9}, 3.965385182585017*^9}, CellLabel-> "In[1049]:=",ExpressionUUID->"0026852c-375f-42aa-acf9-76806ef6af05"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1049]//MatrixForm=",ExpressionUUID->"f4d84103-8e7e-41d2-ac48-\ 0ef9d718324e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]1T", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9, { 3.96484853221037*^9, 3.964848533963821*^9}},ExpressionUUID->"a2d6af6e-ead1-4efa-bcd3-\ 0f8e6819f118"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]1T", "=", RowBox[{"ExpressOperator", "[", RowBox[{"TransformOp", "[", "\[Rho]1", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.964848537757135*^9, 3.9648485567354603`*^9}}, CellLabel-> "In[1050]:=",ExpressionUUID->"f7b3a169-fcb1-464d-90e2-c6699f835aa9"], Cell[BoxData[ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}]], "Output", CellLabel-> "Out[1050]=",ExpressionUUID->"ca081bbd-6a85-44de-bc96-c4ca6814818b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]1T", "//", "MatrixRepresentation"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964848567773385*^9, 3.964848574735949*^9}}, CellLabel-> "In[1051]:=",ExpressionUUID->"007b2a9f-9d5c-4f21-81f1-fd2c4dfb23de"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", FractionBox["1", SqrtBox["2"]], "0"}, {"0", FractionBox["1", SqrtBox["2"]], "0", FractionBox["1", SqrtBox["2"]]}, {"0", "0", FractionBox["1", SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 3, 4}, {{3}, {2}, {4}, {3}}}, { 2^Rational[-1, 2], 2^Rational[-1, 2], 2^Rational[-1, 2], 2^ Rational[-1, 2]}}]]]]], "Output", CellLabel-> "Out[1051]//MatrixForm=",ExpressionUUID->"64b6bb45-f143-43c0-82fb-\ 683fd7e78f2d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\[Rho]2T", "Section", CellChangeTimes->{{3.9648485919221687`*^9, 3.96484859765415*^9}, { 3.964848675940515*^9, 3.9648486803623533`*^9}, 3.964848737259717*^9, { 3.964848777187468*^9, 3.9648488005705233`*^9}, {3.965200391761137*^9, 3.965200395584085*^9}, 3.965383337110305*^9},ExpressionUUID->"8efb5fa1-26c5-4c93-bfe9-\ db1f4302a5cd"], Cell[CellGroupData[{ Cell["derive \[Rho]2T", "Subsection", CellChangeTimes->{{3.965383841404149*^9, 3.965383848904065*^9}},ExpressionUUID->"4ca85a63-4e21-46ff-a869-\ 47846e981df5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]2T", "=", RowBox[{"Operator", "[", "\[IndentingNewLine]", RowBox[{"FullSimplify", "@", RowBox[{"ComplexExpand", "[", "\[IndentingNewLine]", RowBox[{"Normal", "[", "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"UABC", ".", "\[Rho]1T", ".", RowBox[{"Adjoint", "[", "UABC", "]"}]}], "]"}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.9653012264594927`*^9, 3.965301290809166*^9}, { 3.965301673464511*^9, 3.9653016738425207`*^9}, {3.965301713184143*^9, 3.965301728098432*^9}, {3.965301771264381*^9, 3.9653018406557703`*^9}, { 3.965382157998662*^9, 3.9653822005062113`*^9}}, CellLabel-> "In[1052]:=",ExpressionUUID->"df4a6c71-b555-41aa-ac2b-0a889b33dd0e"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{"Operator", "[", RowBox[{ RowBox[{"<<", ".."}], ">>"}]}], RowBox[{",", " ", RowBox[{"OperatorType", "\[Rule]", "\<\"None\"\>"}]}], " ", "]"}], DisplayForm]], "Output", CellLabel-> "Out[1052]=",ExpressionUUID->"b1528369-d4d4-4ede-89e7-739020ed39e2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2T", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965296426967063*^9, 3.9652964396139297`*^9}, { 3.9653013400187263`*^9, 3.965301343216837*^9}, 3.965301538734276*^9}, CellLabel-> "In[1053]:=",ExpressionUUID->"92429419-d67a-4439-92ff-1615c7da8852"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]], "0"}, {"0", "0", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]}], "0"}, { RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]}], RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]}], "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1053]//MatrixForm=",ExpressionUUID->"60415b10-fe62-44aa-8bcf-\ bb46e50dbd4a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["explore \[Rho]2T cases", "Subsection", CellChangeTimes->{{3.965383841404149*^9, 3.9653838768030033`*^9}},ExpressionUUID->"cbeb2d66-0f24-44cf-8a69-\ cd8cb9835fd2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "\[Rho]2T", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.965384922350666*^9, 3.965384928753952*^9}, 3.965384968389728*^9, 3.965385219868247*^9}, CellLabel-> "In[1054]:=",ExpressionUUID->"040bc1a3-7376-4720-ba81-aa5dcb168868"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"}, {"0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1054]//MatrixForm=",ExpressionUUID->"2fef7f4e-d472-4610-9ae2-\ 1349930f532e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"MatrixRepresentation", "[", "\[Rho]2T", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384714861291*^9}, 3.96538522846144*^9}, CellLabel-> "In[1055]:=",ExpressionUUID->"f512178d-d52c-4430-9882-9ce0c52e9ab9"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]], "0"}, {"0", "0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], SqrtBox["2"]], "0"}, { RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]}], FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], SqrtBox["2"]], "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1055]//MatrixForm=",ExpressionUUID->"fa929679-cde5-4f27-8fa9-\ 09a01125d91a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"MatrixRepresentation", "[", "\[Rho]2T", "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.965384738650195*^9}, 3.965385240895034*^9}, CellLabel-> "In[1056]:=",ExpressionUUID->"6846be88-ea83-4872-9581-f3b525121de9"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"}, {"0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}, {"0", "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1056]//MatrixForm=",ExpressionUUID->"843eeb5f-604f-4597-a2a3-\ 69951fc8a40a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["projections", "Subsection", CellChangeTimes->{{3.965383841404149*^9, 3.9653838768030033`*^9}, { 3.965385275160424*^9, 3.9653852850271683`*^9}, {3.965385388164826*^9, 3.965385391434902*^9}},ExpressionUUID->"926c5e76-c1d6-4c51-bb1f-\ 968612f2bde3"], Cell[CellGroupData[{ Cell["projections onto pre-DQ", "Subsubsection", CellChangeTimes->{{3.965383841404149*^9, 3.9653838768030033`*^9}, { 3.965385275160424*^9, 3.9653852850271683`*^9}, 3.965385393939418*^9},ExpressionUUID->"252d141f-05d6-4e13-9566-\ 5865ead766eb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"preDQ", "=", RowBox[{ RowBox[{"2", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}], "+", RowBox[{"2", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}]}]}]], "Input", CellChangeTimes->{{3.965385310360949*^9, 3.965385313604135*^9}}, CellLabel-> "In[1057]:=",ExpressionUUID->"256433de-0c01-45af-a3d1-2b69d243a27c"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[1057]=",ExpressionUUID->"d289ae44-1c74-44e9-941d-d4586f471395"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", "preDQ"}], "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.965384922350666*^9, 3.965384928753952*^9}, 3.965384968389728*^9, 3.965385219868247*^9, {3.965385289196868*^9, 3.9653853187038937`*^9}}, CellLabel-> "In[1058]:=",ExpressionUUID->"3007e3a5-a224-414b-a9f8-0c8db43f9d5b"], Cell[BoxData[ TagBox["0", Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1058]//MatrixForm=",ExpressionUUID->"9a478231-b7b4-4701-baa0-\ c4683be66dad"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", "preDQ"}], "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.965384922350666*^9, 3.965384928753952*^9}, 3.965384968389728*^9, 3.965385219868247*^9, {3.965385289196868*^9, 3.965385334907987*^9}}, CellLabel-> "In[1059]:=",ExpressionUUID->"bffb03a3-8988-49fc-a710-d1ef7436fe8b"], Cell[BoxData[ TagBox[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1059]//MatrixForm=",ExpressionUUID->"68c2720a-1e86-4f7a-b444-\ 1eec6e930956"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", "preDQ"}], "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.965384662133078*^9, 3.9653846889409*^9}, { 3.965384922350666*^9, 3.965384928753952*^9}, 3.965384968389728*^9, 3.965385219868247*^9, {3.965385289196868*^9, 3.965385356597804*^9}}, CellLabel-> "In[1060]:=",ExpressionUUID->"47af7536-3c44-4b1d-af29-35416d492a4e"], Cell[BoxData[ TagBox["0", Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1060]//MatrixForm=",ExpressionUUID->"4a22274c-9af1-47dc-8289-\ 06c1ab448040"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["project onto ket.bra", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.965302756241809*^9}},ExpressionUUID->"1ab2db26-48ff-45ec-868f-\ 0c06cd58f4a9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "1", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}}, CellLabel-> "In[1061]:=",ExpressionUUID->"ef8b00d9-134a-441e-b54b-b47c484904e0"], Cell[BoxData[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1061]=",ExpressionUUID->"4a7beef3-7705-4de0-b246-16f3a513875f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "1", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, {3.964849556766617*^9, 3.9648495584199123`*^9}}, CellLabel-> "In[1062]:=",ExpressionUUID->"ee7022a7-30e6-47cc-9737-315e93562401"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], SqrtBox["2"]]}]], "Output", CellLabel-> "Out[1062]=",ExpressionUUID->"bfcc7d32-2480-40b2-bcb8-8c16464ddf5f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9}, CellLabel-> "In[1063]:=",ExpressionUUID->"644a48b8-c389-4a43-889e-04c6c9c995d6"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1063]=",ExpressionUUID->"1d721d65-10d0-4221-8be1-012cf77ff27b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "2", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.96484973656863*^9, 3.964849740214943*^9}}, CellLabel-> "In[1064]:=",ExpressionUUID->"2661ddb3-e3ae-4a7b-ae3a-8b1b06e8eba3"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], ")"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1064]=",ExpressionUUID->"8062962c-eca6-421c-9605-b7a2600f737e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "3", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.964849790629033*^9, 3.964849793481786*^9}}, CellLabel-> "In[1065]:=",ExpressionUUID->"8d51187e-5238-46ad-819c-875cef41dcb8"], Cell[BoxData[ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]], "Output", CellLabel-> "Out[1065]=",ExpressionUUID->"1daf365a-dd88-4059-b441-f402556d649c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{ RowBox[{"Ket", "[", "4", "]"}], ".", RowBox[{"Bra", "[", "3", "]"}]}]}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}, { 3.96484929175352*^9, 3.964849303545261*^9}, 3.964849645265869*^9, { 3.964849790629033*^9, 3.964849793481786*^9}, {3.964849851995661*^9, 3.96484985374903*^9}}, CellLabel-> "In[1066]:=",ExpressionUUID->"08425118-d107-4771-9e55-1d59c59ec2fb"], Cell[BoxData[ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]], "Output", CellLabel-> "Out[1066]=",ExpressionUUID->"52189815-e458-4345-97d3-bc5dcfab9a86"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["project onto Ix13", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}},ExpressionUUID->"6b6a7af5-5f25-4206-8f34-\ 3b1b472468e4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.9648492271334887`*^9}}, CellLabel-> "In[1067]:=",ExpressionUUID->"a5ae07d4-bcf1-41a7-b49e-5cadb7a70ce5"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1067]=",ExpressionUUID->"a82e3efd-93c6-4dbf-91d1-c754e271cc93"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386132227004*^9, 3.9653861625075693`*^9}}, CellLabel-> "In[1068]:=",ExpressionUUID->"be609d3b-4c35-4570-a5ac-668a7375402a"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]], "Output", CellLabel-> "Out[1068]=",ExpressionUUID->"828fc5ba-9d5d-45c3-ab6c-b42602fbab43"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["project onto Iy13", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}, 3.965386176698681*^9},ExpressionUUID->"26c2ba11-4065-4b46-a290-\ b672e033215a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849237543704*^9}}, CellLabel-> "In[1069]:=",ExpressionUUID->"32cb9010-0913-4ed4-8659-b451bee3e4c5"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]], "Output", CellLabel-> "Out[1069]=",ExpressionUUID->"a151a0b4-a946-482a-9b8a-f98ddd79a337"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386132227004*^9, 3.9653861625075693`*^9}}, CellLabel-> "In[1070]:=",ExpressionUUID->"4209226b-c499-4cf8-88b2-eaad98655d92"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]], "Output", CellLabel-> "Out[1070]=",ExpressionUUID->"5ae6eac7-1a91-4a81-8752-4138854d9973"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["project onto Ix34", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}, {3.965386176698681*^9, 3.965386206307699*^9}},ExpressionUUID->"e4f19691-aeda-4cd4-a7c3-\ 28cd2edc845b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849259081008*^9}, { 3.964850149920141*^9, 3.964850150321842*^9}}, CellLabel-> "In[1071]:=",ExpressionUUID->"8a666b93-e30a-4707-9840-0653534da5ed"], Cell[BoxData[ RowBox[{ SqrtBox["2"], " ", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1071]=",ExpressionUUID->"6e934184-f300-4bd4-80ae-9242256ed083"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386132227004*^9, 3.9653861625075693`*^9}}, CellLabel-> "In[1072]:=",ExpressionUUID->"920bdc29-0f00-49c2-9ac8-e64b2f2bb2f2"], Cell[BoxData[ RowBox[{ SqrtBox["2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1072]=",ExpressionUUID->"a236b38e-f5f5-42b3-8d5d-44e4d2eb6968"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["project onto Iy34", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}, {3.965386176698681*^9, 3.9653862275782127`*^9}},ExpressionUUID->"f6b84d99-9e51-4a7b-8d9b-\ 22c22c851036"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849267515239*^9}, { 3.964850153892274*^9, 3.964850154206869*^9}}, CellLabel-> "In[1073]:=",ExpressionUUID->"aa38d8dc-0f05-4dd5-8c4a-e36b38fc0520"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1073]=",ExpressionUUID->"95f7aff7-0a48-4b69-b25e-88a55d638fff"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386132227004*^9, 3.9653861625075693`*^9}}, CellLabel-> "In[1074]:=",ExpressionUUID->"13fc5873-e302-4e07-a425-848dd37fa569"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1074]=",ExpressionUUID->"ef158daa-cfda-4e98-8c4e-f6c4db5881ae"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["project onto Ix23", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}, {3.965386176698681*^9, 3.965386206307699*^9}, {3.9653862489496813`*^9, 3.96538624920656*^9}},ExpressionUUID->"326197be-2b7f-40f3-b67f-\ 240d473dfb7c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849259081008*^9}}, CellLabel-> "In[1075]:=",ExpressionUUID->"c883e2c5-847a-456f-94fc-fb9a65d8ad3f"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}]}], ")"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1075]=",ExpressionUUID->"4841c195-5bf3-44a0-aee8-630ae8fab900"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386282491198*^9, 3.965386283134707*^9}}, CellLabel-> "In[1076]:=",ExpressionUUID->"89b822e6-0691-44fb-8889-4176ec29a30f"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"e\"\>"], "-", SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"e\"\>"], "+", SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], "-", RowBox[{"2", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1076]=",ExpressionUUID->"aa97640f-4175-4065-ba69-2e29222811e8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.9653863360460176`*^9, 3.965386338817088*^9}}, CellLabel-> "In[1077]:=",ExpressionUUID->"782ca74d-1bb9-46bf-b858-545cdc82648a"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"e\"\>"], "-", SubscriptBox["\[Omega]", "\<\"J\"\>"], "-", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"e\"\>"], "+", SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], "-", RowBox[{"2", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1077]=",ExpressionUUID->"7f2656bb-9181-46e9-a4bc-4569962d65d4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "/.", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{"\[Omega]e", "-", "\[Omega]J", "-", "\[Omega]nut"}], ")"}]}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{"\[Omega]e", "+", "\[Omega]J", "+", "\[Omega]nut"}], ")"}]}], "]"}]}], "->", RowBox[{"2", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", " ", "\[Omega]e"}], "]"}], RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", RowBox[{"(", RowBox[{"\[Omega]J", "+", "\[Omega]nut"}], ")"}]}], "]"}]}]}]}]], "Input", CellChangeTimes->{{3.965386431592949*^9, 3.9653865296808863`*^9}}, CellLabel-> "In[1078]:=",ExpressionUUID->"7dc9ba28-a3f7-4a8a-a3ed-133c825a8dcc"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"2", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1078]=",ExpressionUUID->"7d48dd02-d123-4809-be06-0e14909256c9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "//", "Simplify"}]], "Input", CellChangeTimes->{{3.965386560670006*^9, 3.965386562635407*^9}}, CellLabel-> "In[1079]:=",ExpressionUUID->"16b7ff1d-a108-4f13-a80f-c082542dee0b"], Cell[BoxData[ RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}], "-", RowBox[{ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[1079]=",ExpressionUUID->"c4501a3f-06d0-4de9-9e69-1c0f9b26a857"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["project onto Iy23", "Subsubsection", CellChangeTimes->{{3.965302751005446*^9, 3.9653027660663643`*^9}, { 3.965386119056325*^9, 3.96538612016369*^9}, {3.965386176698681*^9, 3.965386206307699*^9}, {3.9653862489496813`*^9, 3.965386256363535*^9}},ExpressionUUID->"df498970-3cd5-4111-826e-\ ca120a859528"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]2T", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9648491873579206`*^9, 3.964849267515239*^9}}, CellLabel-> "In[1080]:=",ExpressionUUID->"168a0e63-678f-4000-aa79-581db661733c"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}], "-", RowBox[{ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], ")"}]}]}], ")"}]}], SqrtBox["2"]]], "Output", CellLabel-> "Out[1080]=",ExpressionUUID->"5893cf49-ac28-4433-b5a1-2a7cc358bbf3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{"%", "/.", RowBox[{"{", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.965386282491198*^9, 3.965386283134707*^9}}, CellLabel-> "In[1081]:=",ExpressionUUID->"08ef1419-dd6e-4ce3-9800-90da925b12b2"], Cell[BoxData[ RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[1081]=",ExpressionUUID->"0f5ce436-466a-4563-8c9d-eae91948412b"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["transformation back to get \[Rho]2", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9, { 3.964858744647792*^9, 3.9648587484885178`*^9}, {3.965200647007578*^9, 3.9652006487653637`*^9}},ExpressionUUID->"27d106c9-5041-4eb6-9425-\ 86f6158d5422"], Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]2", "=", RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", "\[Rho]2T", ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9648587691000147`*^9, 3.964858817173501*^9}}, CellLabel-> "In[1082]:=",ExpressionUUID->"73f51992-1632-4c45-ab97-be9414d52e0c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.964858821033593*^9, 3.964858832758711*^9}}, CellLabel-> "In[1083]:=",ExpressionUUID->"8c3bc671-e7f2-41aa-9523-bfdca0581b43"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "0", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}, { RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], RowBox[{ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}]}, {"0", RowBox[{ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}], RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 6, 8, 12}, {{2}, {4}, {4}, {1}, {3}, {2}, {2}, {4}, {2}, { 1}, {3}, {4}}}, { Complex[0, Rational[-1, 2]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Complex[0, Rational[1, 2]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[1, 4] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 4] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 4] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Rational[1, 4] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 4]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 4]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Complex[0, Rational[1, 2]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[-1, 4] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 4] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 4] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Rational[-1, 4] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 4]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 4]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 2]] 2^Rational[-1, 2] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[-1, 4] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 4] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 4] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Rational[-1, 4] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 4]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 4]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Complex[0, Rational[-1, 2]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 2] 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 2]] 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e], Rational[1, 4] E^(Complex[0, -1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 4] E^(Complex[0, 1] ( 1 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) + Rational[1, 4] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Rational[1, 4] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Cos[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[-1, 4]] E^(Complex[0, Rational[-1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e] + Complex[0, Rational[1, 4]] E^(Complex[0, Rational[1, 2]] ( 2 + $CellContext`\[Epsilon]) $CellContext`\[Tau] $CellContext`\ \[Omega]J) Sin[$CellContext`\[Theta]e] Sin[Rational[ 1, 2] $CellContext`\[Tau] $CellContext`\[Omega]e]}}]]]]], "Output",\ CellLabel-> "Out[1083]//MatrixForm=",ExpressionUUID->"967bb102-daf3-4361-95dd-\ bc1352a55740"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}]], "Input", CellChangeTimes->{{3.96485886233305*^9, 3.964858904892421*^9}, 3.9652006710136023`*^9}, CellLabel-> "In[1084]:=",ExpressionUUID->"bd022190-03a1-4086-b6a2-61e8cf86daee"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "-", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]"}], ")"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}]}]], "Output", CellLabel-> "Out[1084]=",ExpressionUUID->"b5f96f76-b5cd-4f6b-906d-c115462eb6ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["aDQ", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, 3.96478245885328*^9, { 3.964858744647792*^9, 3.9648587484885178`*^9}, {3.965200647007578*^9, 3.9652006487653637`*^9}, {3.96538224781387*^9, 3.965382248638072*^9}},ExpressionUUID->"65f4ace4-11bf-44ab-971f-\ eea92c7e428b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aDQ", "=", RowBox[{"FullSimplify", "@", RowBox[{"ExpandAll", "[", RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]2", "]"}], "\[LeftDoubleBracket]", RowBox[{"2", ",", "4"}], "\[RightDoubleBracket]"}], "/.", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.965200683817226*^9, 3.965200691303409*^9}, { 3.96530197493178*^9, 3.965301976490057*^9}, {3.9653887513205843`*^9, 3.9653887617902203`*^9}}, CellLabel-> "In[1085]:=",ExpressionUUID->"a7a2ad36-e814-4b56-beca-75d1cb64c909"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[1085]=",ExpressionUUID->"ae6baf48-e23b-4e8c-a166-dcde632672b9"] }, Open ]], Cell[CellGroupData[{ Cell["test cases", "Subsection", CellChangeTimes->{{3.965385607725716*^9, 3.9653856248028173`*^9}, { 3.9653892069215813`*^9, 3.965389207702619*^9}, {3.965813273396443*^9, 3.965813274213662*^9}},ExpressionUUID->"3a6c8b92-0969-4f32-b4fe-\ 01d396ec9b82"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", "aDQ"}], "]"}], "/.", RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}]}]], "Input", CellChangeTimes->{ 3.965389027347658*^9, {3.965389062505455*^9, 3.9653890659824667`*^9}}, CellLabel-> "In[1086]:=",ExpressionUUID->"cd43bb87-7878-496e-aa5f-66f5d03bab6e"], Cell[BoxData["0"], "Output", CellLabel-> "Out[1086]=",ExpressionUUID->"9279b923-c68d-4809-92e8-c4d8ad12206b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"TestCase", "[", RowBox[{"\"\\"", ",", "aDQ"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], ",", RowBox[{"\[Omega]nut", "->", "\[Omega]J"}], ",", RowBox[{"\[Theta]e", "->", "0"}], ",", RowBox[{"\[Omega]e", "->", RowBox[{"\[Kappa]", " ", "\[Omega]\[CapitalDelta]"}]}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{ 3.965388998967786*^9, {3.965389076621874*^9, 3.965389163903308*^9}}, CellLabel-> "In[1087]:=",ExpressionUUID->"d26d7b6e-6e50-4889-b554-3a130ba89d7b"], Cell[BoxData[ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1087]=",ExpressionUUID->"5191ee0e-04a9-4d2d-8dac-77a09fcb1d80"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"TestCase", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "aDQ"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]nut", "-", "\[Omega]J"}], ")"}], "/", "\[Omega]J"}]}], ",", RowBox[{"\[Omega]nut", "->", "\[Omega]J"}], ",", RowBox[{"\[Theta]e", "->", "0"}], ",", RowBox[{"\[Omega]e", "->", RowBox[{"\[Kappa]", " ", "\[Omega]\[CapitalDelta]"}]}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{ 3.965388998967786*^9, {3.965389076621874*^9, 3.965389163903308*^9}, 3.9653892007306023`*^9}, CellLabel-> "In[1088]:=",ExpressionUUID->"aacefc23-4dba-40b7-a378-a4d1380597d6"], Cell[BoxData["0"], "Output", CellLabel-> "Out[1088]=",ExpressionUUID->"2f188419-2c56-440c-9b97-70c494d1fb4f"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC theory (v3)", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.964772874385695*^9, 3.964772875044032*^9}, { 3.9652129157310677`*^9, 3.965212917486761*^9}, 3.9679061963533792`*^9},ExpressionUUID->"16b6a252-e86e-431d-8042-\ 76c32efa2fe3"], Cell[CellGroupData[{ Cell["H0, HJ, Hrf", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, {3.967959357409524*^9, 3.96795935876917*^9}, { 3.967960933233165*^9, 3.967960937373598*^9}},ExpressionUUID->"7cb18a4c-dc3f-4bfb-927d-\ 6f59e67863c3"], Cell[CellGroupData[{ Cell[BoxData["H0"], "Input", CellChangeTimes->{{3.964772972748047*^9, 3.964772973039483*^9}}, CellLabel-> "In[1089]:=",ExpressionUUID->"b6c20595-516b-4ea4-9fe3-9751cb2b2d04"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "-", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], ")"}]}], "+", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]}]], "Output", CellLabel-> "Out[1089]=",ExpressionUUID->"29ab23b3-1aea-42ff-a303-ad03c474c599"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HJ", "=", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.967909094991007*^9, 3.9679090959060097`*^9}}, CellLabel-> "In[1090]:=",ExpressionUUID->"302c987c-b491-4495-8ee6-08db0ccbdbf3"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], "Output", CellLabel-> "Out[1090]=",ExpressionUUID->"752fd200-9def-4bb5-96c2-53f33c7d0e5c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Hrf", "=", RowBox[{"\[Omega]nut", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}]}]], "Input", CellChangeTimes->{{3.9679609442516537`*^9, 3.967960954623867*^9}}, CellLabel-> "In[1091]:=",ExpressionUUID->"f992bf21-f681-44fd-9b06-577096551b20"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "+", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[1091]=",ExpressionUUID->"2a8e40c2-c90a-46f8-9011-ff25df0b4fc4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UJ", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, {3.967959357409524*^9, 3.96795935876917*^9}, { 3.967960933233165*^9, 3.967960937373598*^9}, {3.967960982479282*^9, 3.967960984975358*^9}},ExpressionUUID->"822839cf-ae8f-413f-9087-\ 63f8bce55750"], Cell[BoxData[ RowBox[{ RowBox[{"UJ", "[", "t_", "]"}], ":=", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HJ", " ", "t"}], "]"}]}]], "Input", CellLabel-> "In[1092]:=",ExpressionUUID->"a6ccefb4-7a64-4220-a4eb-5546efea91dd"] }, Open ]], Cell[CellGroupData[{ Cell["W0", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9},ExpressionUUID->"8c98371d-f397-4826-8db8-\ 698c8e8f6ccd"], Cell[BoxData[ RowBox[{ RowBox[{"W0", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"UJ", "[", "t", "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]J"}], " ", "t"}], ",", "\"\\""}], "}"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.967961007045869*^9, 3.96796102869496*^9}, 3.967968046429834*^9}, CellLabel-> "In[1093]:=",ExpressionUUID->"8f3b667a-1da1-4260-915c-8d5b4db68101"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"W0", "[", "t", "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.967961043661969*^9, 3.967961053755582*^9}}, CellLabel-> "In[1094]:=",ExpressionUUID->"0d215710-f237-47eb-8fa9-901eb69e4ce3"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[-1, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[ 0, Rational[-5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1094]//MatrixForm=",ExpressionUUID->"faf6e4fc-3a5c-401a-80da-\ 0089b72dbed7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Adjoint", "[", RowBox[{"W0", "[", "t", "]"}], "]"}]], "Input", CellChangeTimes->{{3.9679610610799932`*^9, 3.9679610655962048`*^9}}, CellLabel-> "In[1095]:=",ExpressionUUID->"e1441345-028a-4d85-9a5f-a74db5a47738"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1095]=",ExpressionUUID->"0c6eede3-177e-4fc9-af3c-ddd41f1e444b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Adjoint", "[", RowBox[{"W0", "[", "t", "]"}], "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.967961043661969*^9, 3.967961073461259*^9}}, CellLabel-> "In[1096]:=",ExpressionUUID->"0a1bfdb2-8725-42db-abc9-94828cbb5930"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["5", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[1, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[ 0, Rational[ 5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1096]//MatrixForm=",ExpressionUUID->"5798f2ce-c25d-495d-84a0-\ c819c174274b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"W0", "[", "t", "]"}], ".", RowBox[{"Adjoint", "[", RowBox[{"W0", "[", "t", "]"}], "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9679610868781357`*^9, 3.9679610871477833`*^9}}, CellLabel-> "In[1097]:=",ExpressionUUID->"91e9a05c-839b-439e-b527-cae724e909b8"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, {1, 1, 1, 1}}]]]]], "Output",\ CellLabel-> "Out[1097]//MatrixForm=",ExpressionUUID->"f41f0a18-4382-4cf4-a868-\ 57e863a99f24"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["W (* bugs fixed *)", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9, 3.967961099276441*^9, { 3.9679613541073933`*^9, 3.967961358552497*^9}, {3.96918054468244*^9, 3.969180545954739*^9}}, Background->RGBColor[ 0.4, 0.6, 1, 0.33],ExpressionUUID->"c7054e38-c3ed-476e-bc60-b069cb811771"], Cell[BoxData[ RowBox[{ RowBox[{"W", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"W0", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.967961007045869*^9, 3.96796102869496*^9}, { 3.967961100654587*^9, 3.9679611232491617`*^9}}, CellLabel-> "In[1098]:=",ExpressionUUID->"8f41af19-ed0f-4e69-84b5-e4be2f48ef3a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"W", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.967961127172907*^9, 3.967961128169635*^9}}, CellLabel-> "In[1099]:=",ExpressionUUID->"32de12a4-e940-4840-8021-d18576ca3678"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", FractionBox["\[Pi]", "2"], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1099]=",ExpressionUUID->"3b3bbf64-c8f9-4de4-b7ad-c04501c5b7ce"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"W", "[", "t", "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.967961043661969*^9, 3.967961053755582*^9}, { 3.9679611323930473`*^9, 3.967961138205393*^9}}, CellLabel-> "In[1100]:=",ExpressionUUID->"0ade86f9-0ee5-446d-ab99-107d1a544155"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}], RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}, {"0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}]}, {"0", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 6, 9}, {{1}, {2}, {3}, {4}, {2}, {4}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[ 0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), -2^ Rational[-1, 2] E^(Complex[0, Rational[-1, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[0, Rational[-5, 4]] $CellContext`t $CellContext`\[Omega]J), 2^Rational[-1, 2] E^(Complex[ 0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), -2^ Rational[-1, 2] E^(Complex[0, Rational[-5, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), 2^Rational[-1, 2] E^(Complex[0, Rational[-1, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[ 0, Rational[-5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1100]//MatrixForm=",ExpressionUUID->"35e78df0-610a-4fbf-9c83-\ ff8565116c87"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}]], "Input", CellChangeTimes->{{3.9679610610799932`*^9, 3.9679610655962048`*^9}, 3.967961142893971*^9}, CellLabel-> "In[1101]:=",ExpressionUUID->"37ce915e-9470-431a-8ce1-188099b6f49f"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", FractionBox["\[Pi]", "2"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1101]=",ExpressionUUID->"3441b44a-0d09-4af0-963c-a5ee441f056f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], "]"}], "//", "MatrixForm"}]], "Input",\ CellChangeTimes->{{3.967961043661969*^9, 3.967961073461259*^9}, 3.967961146473323*^9}, CellLabel-> "In[1102]:=",ExpressionUUID->"322b82c8-2e49-44b3-a51d-d32185b2c31c"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]], RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}, {"0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}], "0", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}, {"0", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["5", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["5", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], SqrtBox["2"]]}], RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["5", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 6, 9}, {{1}, {2}, {3}, {4}, {2}, {4}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), 2^Rational[-1, 2] E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[ 0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), -2^ Rational[-1, 2] E^(Complex[0, Rational[1, 4]] $CellContext`t $CellContext`\[Omega]J), 2^Rational[-1, 2] E^(Complex[0, Rational[1, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[ 0, Rational[5, 4]] $CellContext`t $CellContext`\[Omega]J), -2^ Rational[-1, 2] E^(Complex[0, Rational[5, 4]] $CellContext`t $CellContext`\[Omega]J), Rational[1, 2] E^(Complex[ 0, Rational[ 5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1102]//MatrixForm=",ExpressionUUID->"20262e66-8a4b-49d9-bd35-\ 15da71eae29c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", RowBox[{"MatrixRepresentation", "[", RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{"%", "//", "MatrixForm"}]}], "Input", CellChangeTimes->{{3.96796123659311*^9, 3.967961248645015*^9}}, CellLabel-> "In[1103]:=",ExpressionUUID->"ad97d3c4-c233-402a-b770-ae50f01d1830"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKr6z 28B155YX9jfcl6+rmfbW/mRE7r/4r+9HzSEgDgDactH8 "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["10", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKr6z 28B155YX9jfcl6+rmfbW/mRE7r/4r+9HzSEgDgDactH8 "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["10", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.625`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ "1", ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ "1", ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ "0", ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ "0", ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { ItemBox[ "\"\[VerticalEllipsis]\"", Alignment -> Center, StripOnInput -> False]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 7, 10}, {{1}, {2}, {3}, {4}, {2}, {3}, {4}, {2}, {3}, { 4}}}, {1, 1, 0, 0, 0, 1, 0, 0, 0, 1}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1103]=",ExpressionUUID->"d00a9ed4-d133-4517-bbc9-f1765a3d35da"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 7, 10}, {{1}, {2}, {3}, {4}, {2}, {3}, {4}, {2}, {3}, { 4}}}, {1, 1, 0, 0, 0, 1, 0, 0, 0, 1}}]]]]], "Output", CellLabel-> "Out[1104]//MatrixForm=",ExpressionUUID->"056a06ab-6046-4fe8-b48c-\ 7e4866c2900a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["interaction frame transformations", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9, {3.967961457055564*^9, 3.967961463183187*^9}, {3.9679616679798737`*^9, 3.9679616719218073`*^9}},ExpressionUUID->"1b33f294-a33d-4edb-a8a1-\ b02a2ebebf67"], Cell[CellGroupData[{ Cell["transformation of rf field term", "Subsection", CellChangeTimes->{{3.967961662156734*^9, 3.967961681148694*^9}},ExpressionUUID->"49683bf2-4a72-480a-a859-\ 75f55d4aa050"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "0", "]"}], "]"}], ".", RowBox[{"(", RowBox[{"\[Omega]nut", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}], ")"}], ".", RowBox[{"W", "[", "0", "]"}]}]], "Input", CellChangeTimes->{{3.967961477751278*^9, 3.967961516700034*^9}}, CellLabel-> "In[1105]:=",ExpressionUUID->"be8b8a75-e3c2-417c-ad79-227b16fa6d36"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"nut\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[1105]=",ExpressionUUID->"b955b70a-0240-42b3-9322-fa0f0479157b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Omega]nut", " ", RowBox[{"opI", "[", "\"\\"", "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"%", "==", "%%"}]}], "Input", CellChangeTimes->{{3.967961529673534*^9, 3.967961569146603*^9}}, CellLabel-> "In[1106]:=",ExpressionUUID->"381ae24d-6417-4cb9-baa0-18a92e8fcd93"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKs4A Bg+gNAJQy/yh7h5c4gAl+LVe "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["2", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKs4A Bg+gNAJQy/yh7h5c4gAl+LVe "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["2", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.125`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ SubscriptBox["\[Omega]", "\"nut\""], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", SubscriptBox["\[Omega]", "\"nut\""]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 1, 2}, {{2}, { 4}}}, {$CellContext`\[Omega]nut, -$CellContext`\[Omega]nut}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1106]=",ExpressionUUID->"fc15b99c-f266-41b9-a445-d230d2138a5b"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKs4A Bg+gNAJQy/yh7h5c4gAl+LVe "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["2", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQ26p8d9wspXP2c4wXbTH/ccX+xSLFx4GrXtmTKs4A Bg+gNAJQy/yh7h5c4gAl+LVe "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["2", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.125`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ SubscriptBox["\[Omega]", "\"nut\""], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", SubscriptBox["\[Omega]", "\"nut\""]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 1, 2}, {{2}, { 4}}}, {$CellContext`\[Omega]nut, -$CellContext`\[Omega]nut}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1107]=",ExpressionUUID->"709c0f86-9fe2-4357-9856-203915a7ff5d"], Cell[BoxData["True"], "Output", CellLabel-> "Out[1108]=",ExpressionUUID->"c5ce9f18-ce7d-45b7-a2d0-8475167a721b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["transformation of I1z term", "Subsection", CellChangeTimes->{{3.967961662156734*^9, 3.967961681148694*^9}, { 3.967961737889661*^9, 3.9679617411532784`*^9}},ExpressionUUID->"aa5ad3ee-afbe-44b2-95aa-\ 3b237f1a8b75"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "0", "]"}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"W", "[", "0", "]"}]}]], "Input", CellChangeTimes->{{3.967961477751278*^9, 3.967961516700034*^9}, { 3.9679617453170958`*^9, 3.967961753321259*^9}}, CellLabel-> "In[1109]:=",ExpressionUUID->"19b08be8-ee39-41bc-8d4f-33979f0a5351"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1109]=",ExpressionUUID->"789bcce4-a480-4510-bc4d-32a20fa979a8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"MatrixRepresentation", "[", RowBox[{"-", RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"%", "==", "%%"}]}], "Input", CellChangeTimes->{{3.967961529673534*^9, 3.967961569146603*^9}, { 3.9679617777858343`*^9, 3.967961795255665*^9}}, CellLabel-> "In[1110]:=",ExpressionUUID->"496057f3-fd27-456a-9693-f8424a6091df"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQW+F9qLZw3VF7BigQ2XLy4WS/y/ZW5bvjZimds59j vGiL+Y8r9i8WKT4OXPXKnlT11DIHl/qd3QauO7e8sL/hvnxdzbS39icjcv/F f31Pc/dTy14A3tewaA== "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQW+F9qLZw3VF7BigQ2XLy4WS/y/ZW5bvjZimds59j vGiL+Y8r9i8WKT4OXPXKnlT11DIHl/qd3QauO7e8sL/hvnxdzbS39icjcv/F f31Pc/dTy14A3tewaA== "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.5`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { ItemBox[ "\"\[VerticalEllipsis]\"", Alignment -> Center, StripOnInput -> False]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 4, 6, 8}, {{2}, {4}, {1}, {3}, {2}, {4}, {1}, {3}}}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1110]=",ExpressionUUID->"317f84c0-c158-4aa6-ae24-24b35339030f"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQW+F9qLZw3VF7BigQ2XLy4WS/y/ZW5bvjZimds59j vGiL+Y8r9i8WKT4OXPXKnlT11DIHl/qd3QauO7e8sL/hvnxdzbS39icjcv/F f31Pc/dTy14A3tewaA== "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQW+F9qLZw3VF7BigQ2XLy4WS/y/ZW5bvjZimds59j vGiL+Y8r9i8WKT4OXPXKnlT11DIHl/qd3QauO7e8sL/hvnxdzbS39icjcv/F f31Pc/dTy14A3tewaA== "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.5`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { ItemBox[ "\"\[VerticalEllipsis]\"", Alignment -> Center, StripOnInput -> False]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 4, 6, 8}, {{2}, {4}, {1}, {3}, {2}, {4}, {1}, {3}}}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1111]=",ExpressionUUID->"a7f7d9b4-d397-41fc-bd81-6e70ceecbf12"], Cell[BoxData["True"], "Output", CellLabel-> "Out[1112]=",ExpressionUUID->"27f0d959-b678-4e07-b434-3b1505648766"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"W", "[", "t", "]"}]}]], "Input", CellChangeTimes->{{3.967961865642726*^9, 3.967961867981292*^9}}, CellLabel-> "In[1113]:=",ExpressionUUID->"03df4f51-8490-4ff0-9125-c3b13e1f56d1"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1113]=",ExpressionUUID->"3c2ca800-384c-4d6d-bcda-68fe81e53edc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"MatrixRepresentation", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"MatrixForm", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.967961879574851*^9, 3.9679618839509287`*^9}}, CellLabel-> "In[1114]:=",ExpressionUUID->"7e15e290-9247-4673-b1b4-1df2b6907a7a"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQGwIe2DNgBZjiVuW742YpnbOfY7xoi/mPK/YvFik+ Dlz1yp5Uc4aK+bjU4xLf2W3gunPLC/sb7svX1Ux7a38yIvdf/Nf3ONUDABFU ZeQ= "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["10", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQGwIe2DNgBZjiVuW742YpnbOfY7xoi/mPK/YvFik+ Dlz1yp5Uc4aK+bjU4xLf2W3gunPLC/sb7svX1Ux7a38yIvdf/Nf3ONUDABFU ZeQ= "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["10", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.625`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", "2"], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "+", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{ FractionBox["3", "8"], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]]}]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "3"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]]}]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { ItemBox[ "\"\[VerticalEllipsis]\"", Alignment -> Center, StripOnInput -> False]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 7, 10}, {{3}, {1}, {2}, {4}, {1}, {2}, {4}, {1}, {2}, { 4}}}, {Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2] + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), Rational[3, 8] + Rational[1, 8] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 8] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 8] E^(Complex[0, -3] $CellContext`t $CellContext`\[Omega]J), Rational[1, 4] + Rational[1, 4] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), Rational[1, 4] 2^Rational[-1, 2] + Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, 2] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 8] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 8] E^(Complex[0, 2] $CellContext`t $CellContext`\[Omega]J), Rational[-3, 8] + Rational[-1, 8] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J)}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1114]=",ExpressionUUID->"f9e67e31-f048-4983-ae4a-7f5382cdecd1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", FractionBox["1", "2"], "0"}, { RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]]}], "+", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], RowBox[{ FractionBox["3", "8"], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}], "0", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "3"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}]}, { RowBox[{ FractionBox["1", "4"], "+", RowBox[{ FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}], RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["2"]}]], "-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], "0", RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], "+", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}]}, { RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], "+", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"4", " ", SqrtBox["2"]}]]}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}], "0", RowBox[{ RowBox[{"-", FractionBox["3", "8"]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 4, 7, 10}, {{3}, {1}, {2}, {4}, {1}, {2}, {4}, {1}, {2}, { 4}}}, {Rational[1, 2], Rational[-1, 4] 2^Rational[-1, 2] + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), Rational[3, 8] + Rational[1, 8] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 8] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 8] E^(Complex[0, -3] $CellContext`t $CellContext`\[Omega]J), Rational[1, 4] + Rational[1, 4] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), Rational[1, 4] 2^Rational[-1, 2] + Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 4] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 4] 2^Rational[-1, 2] E^(Complex[0, 2] $CellContext`t $CellContext`\[Omega]J), Rational[-1, 8] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J) + Rational[1, 8] E^(Complex[0, 2] $CellContext`t $CellContext`\[Omega]J), Rational[-3, 8] + Rational[-1, 8] E^(Complex[ 0, -1] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1115]//MatrixForm=",ExpressionUUID->"90248029-bfcd-4b6e-b32e-\ 8dc37f21d328"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Dot", "@@", RowBox[{"(", RowBox[{"MatrixRepresentation", "/@", RowBox[{"{", RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W", "[", "t", "]"}], "]"}], ",", RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ",", RowBox[{"W", "[", "t", "]"}]}], "}"}]}], ")"}]}], "\[IndentingNewLine]", RowBox[{"MatrixForm", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.967961914868209*^9, 3.9679619452304296`*^9}}, CellLabel-> "In[1116]:=",ExpressionUUID->"07e75111-37e4-47a0-ba94-68547f2eb1d4"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["SparseArray", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQGwIe2DOgAavy3XGzlM7ZzzFetMX8xxX7F4sUHweu emVPqnpqmYNL/c5uA9edW17Y33Bfvq5m2lv7kxG5/+K/vqeavbjEqWUvALIn iew= "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["13", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGBggWIQGwIe2DOgAavy3XGzlM7ZzzFetMX8xxX7F4sUHweu emVPqnpqmYNL/c5uA9edW17Y33Bfvq5m2lv7kxG5/+K/vqeavbjEqWUvALIn iew= "], {{0, 0}, {4, 4}}, {0, 1}], AspectRatio -> 1, Axes -> False, Frame -> False, FrameLabel -> {None, None}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], LabelStyle -> {}, Method -> { "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GridBox[{{ RowBox[{ TagBox["\"Specified elements: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["13", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Dimensions: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Default: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Density: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.8125`", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Elements:\"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"\"", "SummaryItem"]}]}, { TagBox[ TagBox[ GridBox[{{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ "0", ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], "\[Rule]", StyleBox[ PaneBox[ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\"J\""]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], ContentPadding -> False, FrameMargins -> 0, StripOnInput -> True, BaselinePosition -> Baseline, ImageSize -> {{1, 300}, Automatic}], LineBreakWithin -> False]}]}, { ItemBox[ "\"\[VerticalEllipsis]\"", Alignment -> Center, StripOnInput -> False]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 6, 9, 13}, {{2}, {4}, {2}, {3}, {4}, {1}, {2}, {3}, {4}, {2}, { 3}, {4}, {1}}}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 2] $CellContext`t $CellContext`\[Omega]J)}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1116]=",ExpressionUUID->"2be2912c-75f9-4699-9902-1d83692415b1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { FractionBox["1", RowBox[{"2", " ", SqrtBox["2"]}]], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0"}, {"0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}]}, { RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 6, 9, 13}, {{2}, {4}, {2}, {3}, {4}, {1}, {2}, {3}, {4}, { 2}, {3}, {4}, {1}}}, { Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -2] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[1, 2] 2^Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, -1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[0, 1] $CellContext`t $CellContext`\[Omega]J), 0, Rational[-1, 2] 2^Rational[-1, 2] E^(Complex[ 0, 2] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1117]//MatrixForm=",ExpressionUUID->"c5693ac4-ae31-40b2-b231-\ 100d4b0ad51c"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ modified interaction frame transformations to target |1><2| transition\ \>", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9, {3.967961457055564*^9, 3.967961463183187*^9}, {3.9679616679798737`*^9, 3.9679616719218073`*^9}, { 3.9679620252839317`*^9, 3.967962040236246*^9}},ExpressionUUID->"0a48def0-ac2f-4d70-857a-\ 002dceafaaac"], Cell[CellGroupData[{ Cell["W0a", "Subsection", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9, 3.967962062415543*^9},ExpressionUUID->"f85b0018-e152-4551-90c9-\ a6a2446db648"], Cell[BoxData[ RowBox[{ RowBox[{"W0a", "[", "t_", "]"}], ":=", RowBox[{"W0", "[", "t", "]"}]}]], "Input", CellChangeTimes->{{3.967961007045869*^9, 3.96796102869496*^9}, { 3.967962064257575*^9, 3.9679620929084053`*^9}}, CellLabel-> "In[1118]:=",ExpressionUUID->"449c2004-4c38-4eaf-b550-cfac1df83bed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"W0a", "[", "t", "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.967961043661969*^9, 3.967961053755582*^9}, 3.967962088308548*^9}, CellLabel-> "In[1119]:=",ExpressionUUID->"6afc1b30-3bef-4d8c-b804-6e3f2de3aa7b"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["3", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["5", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[-1, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[ 0, Rational[-5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1119]//MatrixForm=",ExpressionUUID->"85a34317-e787-4e53-97d6-\ 2b8057383255"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Adjoint", "[", RowBox[{"W0a", "[", "t", "]"}], "]"}]], "Input", CellChangeTimes->{{3.9679610610799932`*^9, 3.9679610655962048`*^9}, 3.967962117788588*^9}, CellLabel-> "In[1120]:=",ExpressionUUID->"e5bc6ec2-06a0-4d3e-93c7-38baf01f49e7"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1120]=",ExpressionUUID->"b621edb8-e8bb-4ebb-b3d9-8817303d17cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"Adjoint", "[", RowBox[{"W0a", "[", "t", "]"}], "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.967961043661969*^9, 3.967961073461259*^9}, 3.967962122293939*^9}, CellLabel-> "In[1121]:=",ExpressionUUID->"5257fe55-9549-4908-b6ec-182703911c1a"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0", "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["3", "4"]}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0", "0"}, {"0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], "0"}, {"0", "0", "0", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["5", "4"], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, { E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[-3, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[0, Rational[1, 4]] $CellContext`t $CellContext`\[Omega]J), E^(Complex[ 0, Rational[ 5, 4]] $CellContext`t $CellContext`\[Omega]J)}}]]]]], "Output", CellLabel-> "Out[1121]//MatrixForm=",ExpressionUUID->"0a94b555-72c5-423e-aeec-\ 0f6091273650"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{ RowBox[{"W0a", "[", "t", "]"}], ".", RowBox[{"Adjoint", "[", RowBox[{"W0a", "[", "t", "]"}], "]"}]}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9679610868781357`*^9, 3.9679610871477833`*^9}, { 3.967962126618091*^9, 3.967962128078636*^9}}, CellLabel-> "In[1122]:=",ExpressionUUID->"6eb1ade3-9361-4865-a15e-11ec010c1016"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0", "0", "0"}, {"0", "1", "0", "0"}, {"0", "0", "1", "0"}, {"0", "0", "0", "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 3, 4}, {{1}, {2}, {3}, {4}}}, {1, 1, 1, 1}}]]]]], "Output",\ CellLabel-> "Out[1122]//MatrixForm=",ExpressionUUID->"83821af8-e3d5-43ab-a8bf-\ 97bf3ad91aa8"] }, Open ]] }, Closed]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SLIC theory (v4)", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.963825040520768*^9, 3.963825045649035*^9}, {3.964104874372725*^9, 3.9641048778763647`*^9}, {3.964772874385695*^9, 3.964772875044032*^9}, { 3.9652129157310677`*^9, 3.965212917486761*^9}, 3.9679061963533792`*^9, 3.967968256679894*^9},ExpressionUUID->"1c0bea02-defd-40bc-8cd1-\ cb685d69b670"], Cell[CellGroupData[{ Cell["new round of expressing interaction frame terms:", "Section", CellChangeTimes->{{3.9638250985570297`*^9, 3.963825104838079*^9}, { 3.964772903079967*^9, 3.96477290468526*^9}, {3.964772947328741*^9, 3.96477296979593*^9}, 3.967908993126635*^9, {3.967959458086203*^9, 3.96795945960995*^9}, 3.967961004727303*^9, {3.967961457055564*^9, 3.967961463183187*^9}, {3.9679616679798737`*^9, 3.9679616719218073`*^9}, { 3.9679620252839317`*^9, 3.967962040236246*^9}, {3.9679679440369577`*^9, 3.967967952661511*^9}, {3.967968238050777*^9, 3.967968242168786*^9}},ExpressionUUID->"21f8b3d1-d1ad-4f8d-9238-\ d93e9a342e92"], Cell[BoxData[ RowBox[{ RowBox[{"W0", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"UJ", "[", "t", "]"}], ".", RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]J"}], " ", "t"}], ",", "\"\\""}], "}"}], "]"}]}]}]], "Input", CellLabel-> "In[1123]:=",ExpressionUUID->"c9afce2e-e3fe-4a9c-8898-58bbe71ff512"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"W0", "[", "t", "]"}]], "Input", CellLabel-> "In[1124]:=",ExpressionUUID->"a3aa29df-c78f-4551-bc05-052e7a7f6104"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1124]=",ExpressionUUID->"f1eb2e1e-84cc-4ed2-87a1-7b671ba27685"] }, Open ]], Cell[CellGroupData[{ Cell["H\[CapitalDelta]tilde", "Subsubsection", CellChangeTimes->{ 3.967968307804455*^9},ExpressionUUID->"147d7803-5be1-4286-94be-\ 911dfa71fb1f"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalDelta]", "/", "2"}], ")"}], RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W0", "[", "t", "]"}], "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}], ".", RowBox[{"W0", "[", "t", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.9679679560644827`*^9, 3.9679680072255487`*^9}, { 3.967968145358725*^9, 3.9679681478661633`*^9}}, CellLabel-> "In[1125]:=",ExpressionUUID->"598cb6da-5847-4800-833b-0a06c79d4cc1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.967968013341373*^9}, CellLabel-> "In[1126]:=",ExpressionUUID->"bb2b85d9-a22a-4ffa-83b0-fabd8eb294b1"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "-", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[1126]=",ExpressionUUID->"f5b26267-164d-453b-9a29-e4be8d91edc4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9679680916117153`*^9, 3.967968103287521*^9}}, CellLabel-> "In[1127]:=",ExpressionUUID->"17c04832-91d6-4a62-952c-0cdaa915903b"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{"-", FractionBox[ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", "0", "0"}, {"0", "0", "0", "0"}, { FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0", "0", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 3, 3, 4}, {{2}, {4}, {1}, {1}}}, { Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, -2] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalDelta], Rational[-1, 2] 2^Rational[-1, 2] $CellContext`\[Omega]\[CapitalDelta], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, 2] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalDelta]}}]]]]], "Output", CellLabel-> "Out[1127]//MatrixForm=",ExpressionUUID->"4747b198-a13e-4118-a977-\ c5ca11a4f0e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968184534*^9}}, CellLabel-> "In[1128]:=",ExpressionUUID->"d3366058-adf0-41e6-91e9-4f12eaf1e461"], Cell[BoxData[ RowBox[{"-", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], ")"}]}]], "Output", CellLabel-> "Out[1128]=",ExpressionUUID->"d0f6b76b-00c7-4084-b331-b868ef087365"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968194341508*^9}}, CellLabel-> "In[1129]:=",ExpressionUUID->"24e207c4-62dd-457f-ab88-f7e7656f388c"], Cell[BoxData["0"], "Output", CellLabel-> "Out[1129]=",ExpressionUUID->"4d10ce3b-99b2-4252-8737-1c4881d9dd55"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.96796821394598*^9}}, CellLabel-> "In[1130]:=",ExpressionUUID->"e8fc3c4e-3e49-43b7-a790-a9eac934770e"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1130]=",ExpressionUUID->"77f67bd7-d656-4530-a08d-9204adafd96f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalDelta]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.9679682231301117`*^9}}, CellLabel-> "In[1131]:=",ExpressionUUID->"0ad11bdb-fc10-4173-8487-9fc304dd29bc"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"2", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1131]=",ExpressionUUID->"a7bc6a1c-c871-4737-9c1a-a2bfdad587fe"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["H\[CapitalSigma]tilde", "Subsubsection", CellChangeTimes->{{3.967968307804455*^9, 3.967968318998316*^9}},ExpressionUUID->"17742d82-5b2b-4b87-bdbf-\ 572b5fc4e3b8"], Cell[BoxData[ RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]\[CapitalSigma]", "/", "2"}], ")"}], RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W0", "[", "t", "]"}], "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "+", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}], ".", RowBox[{"W0", "[", "t", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.9679679560644827`*^9, 3.9679680072255487`*^9}, { 3.967968145358725*^9, 3.9679681478661633`*^9}, {3.967968322001834*^9, 3.967968331058619*^9}}, CellLabel-> "In[1132]:=",ExpressionUUID->"fc7d9cf2-da00-47f0-acdb-028fd7530cf9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}]], "Input", CellChangeTimes->{3.967968013341373*^9, 3.967968336730505*^9}, CellLabel-> "In[1133]:=",ExpressionUUID->"faacebb7-2094-4007-b29c-5e19a365cf84"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}]], "Output", CellLabel-> "Out[1133]=",ExpressionUUID->"d648bd33-5c87-4e47-8580-038fb5a425fc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9679680916117153`*^9, 3.967968103287521*^9}, 3.967968343392357*^9}, CellLabel-> "In[1134]:=",ExpressionUUID->"7608b111-34ae-4afb-9f14-9515dbf333ea"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0"}, {"0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]]}, {"0", "0", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 0, 1, 3, 4}, {{3}, {2}, {4}, {3}}}, { Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, -1] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, 1] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, -1] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalSigma], Rational[1, 2] 2^Rational[-1, 2] E^(Complex[ 0, 1] $CellContext`t $CellContext`\[Omega]J) $CellContext`\[Omega]\ \[CapitalSigma]}}]]]]], "Output", CellLabel-> "Out[1134]//MatrixForm=",ExpressionUUID->"d294cc7f-0e35-4d68-950c-\ c8f01dac8210"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968184534*^9}, {3.967968364613511*^9, 3.967968380662857*^9}}, CellLabel-> "In[1135]:=",ExpressionUUID->"df81a57f-ff17-40fa-b587-650ceb01c943"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1135]=",ExpressionUUID->"274faf66-ccf1-431b-9ba6-72543a097102"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968184534*^9}, {3.967968364613511*^9, 3.967968389416114*^9}}, CellLabel-> "In[1136]:=",ExpressionUUID->"30331923-e353-448c-a23e-ef7229f91cd7"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1136]=",ExpressionUUID->"07d88dd8-50e0-4511-9dcd-4817c2fd59cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968184534*^9}, {3.967968364613511*^9, 3.967968405799798*^9}}, CellLabel-> "In[1137]:=",ExpressionUUID->"f2c75daa-9597-40b2-8383-5eafe4d07b5e"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Cos", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1137]=",ExpressionUUID->"0de5c66f-44ec-4043-94c3-2c3b6cb5535e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"H\[CapitalSigma]tilde", "[", "t", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9679680711887283`*^9, 3.967968087638318*^9}, { 3.967968170965765*^9, 3.967968184534*^9}, {3.967968364613511*^9, 3.967968410759213*^9}}, CellLabel-> "In[1138]:=",ExpressionUUID->"5460a154-8485-458f-bbce-489ec4b2aa9b"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalSigma]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1138]=",ExpressionUUID->"07397424-3067-49b1-aa43-f45fd8196e70"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], "+", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.967968847791245*^9, 3.9679688621927977`*^9}}, CellLabel-> "In[1139]:=",ExpressionUUID->"89e13d47-cc22-4621-bc40-a1c8d438216d"], Cell[BoxData[ RowBox[{ RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], "+", RowBox[{ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]}]], "Output", CellLabel-> "Out[1139]=",ExpressionUUID->"1dee1bff-2884-45a4-86a6-8c7a7470dc47"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["W", "Subsubsection", CellChangeTimes->{{3.967968307804455*^9, 3.967968318998316*^9}, { 3.968043428486455*^9, 3.968043434681222*^9}, 3.968043536261779*^9},ExpressionUUID->"3eaca01f-bd9b-4d5c-b54a-\ 93c9ecd7d8a6"], Cell[BoxData[ RowBox[{ RowBox[{"W", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"opR", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ".", RowBox[{"W0", "[", "t", "]"}]}]}]], "Input", CellChangeTimes->{{3.9680435385221243`*^9, 3.968043565711388*^9}}, CellLabel-> "In[1140]:=",ExpressionUUID->"1d43291e-0a96-4627-b677-8b365cd453a1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"W", "[", "t", "]"}]], "Input", CellChangeTimes->{{3.968043569719658*^9, 3.9680435704257593`*^9}}, CellLabel-> "In[1141]:=",ExpressionUUID->"25654b89-7a78-4b6e-81f5-d10ed34246ee"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "t"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]], "Output", CellLabel-> "Out[1141]=",ExpressionUUID->"0ce9dc1e-74f7-434b-982f-e1dd22997f52"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\[Rho]SLIC", "Subsubsection", CellChangeTimes->{{3.967968307804455*^9, 3.967968318998316*^9}, { 3.968043428486455*^9, 3.968043434681222*^9}},ExpressionUUID->"8bd5baa2-6677-4418-a6d2-\ 0d24be6365b3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]fSLIC", "[", "\[Tau]_", "]"}], "=", RowBox[{ RowBox[{"W", "[", "\[Tau]", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Beta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "\[Beta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Adjoint", "[", RowBox[{"W", "[", "\[Tau]", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.968043445854032*^9, 3.9680434489387608`*^9}, { 3.968043594945059*^9, 3.968043697181202*^9}}, CellLabel-> "In[1142]:=",ExpressionUUID->"bbf793dd-650f-463e-a2c1-2d3b6ac36fe3"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "\[Tau]"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "\[Tau]"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{ RowBox[{"-", "\[Tau]"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{ RowBox[{"-", "\[Tau]"}], " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\[Beta]", " ", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "+", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "-", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "z"}]], "(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "z"}]], "(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "y"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}]], "Output", CellLabel-> "Out[1142]=",ExpressionUUID->"3956f8b7-8545-42c5-b9a4-8f2cb47f2fc8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ExpressOperator", "[", RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "]"}]], "Input", CellChangeTimes->{{3.968043710728938*^9, 3.968043718480668*^9}}, CellLabel-> "In[1143]:=",ExpressionUUID->"8e11557a-fe5e-4d66-9b5b-e4a3564d7f12"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "y"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "z"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ SubscriptBox["I", RowBox[{"1", "z"}]], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ SubscriptBox["I", RowBox[{"2", "y"}]], DisplayForm], DisplayForm]}], DisplayForm], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"1", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", TagBox[ SubscriptBox["I", RowBox[{"2", "x"}]], DisplayForm], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}]}]], "Output", CellLabel-> "Out[1143]=",ExpressionUUID->"7eb65dff-1c24-43fa-afba-65474013fdae"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9680437291177483`*^9, 3.9680437529397287`*^9}}, CellLabel-> "In[1144]:=",ExpressionUUID->"a8373304-6401-4d94-b7fc-8d17e1b0411f"], Cell[BoxData["0"], "Output", CellLabel-> "Out[1144]=",ExpressionUUID->"d6d6e11a-c3f4-4665-bc8d-a774f0140b68"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9680437291177483`*^9, 3.968043761538028*^9}, { 3.968043802568502*^9, 3.968043810701316*^9}}, CellLabel-> "In[1145]:=",ExpressionUUID->"1763a76b-fa53-4613-9d5c-dc4e7f5863fd"], Cell[BoxData[ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "4"}], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1145]=",ExpressionUUID->"6144e79c-a855-4000-93c6-824448330039"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "->", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "]"}], "//", "ExpToTrig"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9680437291177483`*^9, 3.968043761538028*^9}, { 3.968043802568502*^9, 3.968043810701316*^9}, {3.968044709278346*^9, 3.968044714842318*^9}}, CellLabel-> "In[1146]:=",ExpressionUUID->"39ec5bc9-5325-4448-890c-6a8a26944bad"], Cell[BoxData[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "4"}], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]], "Output", CellLabel-> "Out[1146]=",ExpressionUUID->"9ee35487-1460-47a0-8b0f-32374ada716d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "]"}], "//", "Normal"}], "//", "ExpToTrig"}], "//", "FullSimplify"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9680438569175577`*^9, 3.968043912714456*^9}}, CellLabel-> "In[1147]:=",ExpressionUUID->"3477ba7b-9d55-4900-8567-6b50685bffcd"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], FractionBox[ RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], SqrtBox["2"]], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}, {"0", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}], "0", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], SqrtBox["2"]]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}]], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], FractionBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], ")"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}], "-", RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]}], RowBox[{"2", " ", SqrtBox["2"]}]], RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], " ", RowBox[{"Cos", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], "]"}]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1147]//MatrixForm=",ExpressionUUID->"95cb1d57-c93d-4541-8c5f-\ e6545a33a62d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "]"}], "//", "Normal"}], "//", "ExpToTrig"}], "//", "FullSimplify"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Tau]", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.96804420870933*^9, 3.968044352069478*^9}, 3.968044544708665*^9}, CellLabel-> "In[1148]:=",ExpressionUUID->"e0a52c38-4f8d-4e56-8eb3-5f840f37e226"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}]}, {"0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}], "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1148]//MatrixForm=",ExpressionUUID->"97ec9518-f3b0-4358-b6a4-\ 9da10309450a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "]"}], "//", "Normal"}], "//", "ExpToTrig"}], "//", "FullSimplify"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Tau]", "->", RowBox[{ RowBox[{"(", RowBox[{"3", RowBox[{"\[Pi]", "/", "2"}]}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.96804420870933*^9, 3.968044352069478*^9}, { 3.968044544708665*^9, 3.968044561524889*^9}}, CellLabel-> "In[1149]:=",ExpressionUUID->"b6a97fb7-e42d-4430-87bd-1dd5330ad195"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}], RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}]}, {"0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]], "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1149]//MatrixForm=",ExpressionUUID->"6253e8c0-9982-43e7-85ce-\ d660aa3d2aa0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"MatrixRepresentation", "[", RowBox[{"\[Rho]fSLIC", "[", "\[Tau]", "]"}], "]"}], "//", "Normal"}], "//", "ExpToTrig"}], "//", "FullSimplify"}], ")"}], "/.", RowBox[{"{", RowBox[{"\[Tau]", "->", RowBox[{ RowBox[{"(", RowBox[{"5", RowBox[{"\[Pi]", "/", "2"}]}], ")"}], "/", "\[Omega]J"}]}], "}"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.96804420870933*^9, 3.968044352069478*^9}, { 3.968044544708665*^9, 3.96804458286203*^9}}, CellLabel-> "In[1150]:=",ExpressionUUID->"8d216311-48c5-40c9-9efb-f2f67889470e"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]], RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}]}, {"0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}], "0", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "4"], "]"}], "2"]}], SqrtBox["2"]]}], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellLabel-> "Out[1150]//MatrixForm=",ExpressionUUID->"78a6ecaa-7a18-4e2c-9b0e-\ cf3a65394216"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]fstrob", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.968044392227804*^9, 3.9680444131717663`*^9}}, CellLabel-> "In[1151]:=",ExpressionUUID->"0edb1304-d612-4046-a3c3-b3ec59cd8211"], Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]fstrob", "\[Rule]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}]}], ")"}], "/", "2"}], "-", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}]}], ")"}], "/", "2"}]}]}], "]"}]], "Output", CellLabel-> "Out[1151]=",ExpressionUUID->"6343ec1c-c49c-4cb0-8f0e-78629a99ce78"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Density plots", "Chapter", CellChangeTimes->{{3.963565474702964*^9, 3.9635654932654753`*^9}, { 3.968652000451229*^9, 3.968652002777629*^9}},ExpressionUUID->"cb1f292a-3af2-4bb8-96e3-\ 83c6168b74a2"], Cell[CellGroupData[{ Cell["INADEQUATE density plot vs \[Theta] and \[Tau], as in the paper", \ "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.9686520228833847`*^9}, 3.969015965423497*^9},ExpressionUUID->"0003ea1a-ec10-4145-9a02-\ 07f9571329b2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Simplify", "@", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"I", " ", RowBox[{"Cos", "[", "\[Theta]ST", "]"}], RowBox[{"Sin", "[", RowBox[{"\[CapitalOmega]", " ", "\[Tau]"}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Omega]J", " ", "\[Tau]"}], "]"}]}], "-", RowBox[{"I", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "\[Theta]ST", "]"}], "^", "2"}], " ", "+", " ", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "\[Theta]ST", "]"}], "^", "2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[CapitalOmega]", " ", "\[Tau]"}], "]"}]}]}], ")"}], RowBox[{"Sin", "[", RowBox[{"\[Omega]J", " ", "\[Tau]"}], "]"}]}]}], ")"}], "//.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[CapitalOmega]", "->", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"\[Omega]J", "^", "2"}], " ", "+", " ", RowBox[{"\[Omega]\[CapitalDelta]", "^", "2"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", "/", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"\[Omega]J", " ", RowBox[{"Tan", "[", "\[Theta]ST", "]"}]}]}]}], "\[IndentingNewLine]", "}"}]}], "\[IndentingNewLine]", "]"}]}]}]}]], "Input", CellChangeTimes->{{3.968651009441765*^9, 3.968651187368496*^9}, { 3.968651471636375*^9, 3.968651481782325*^9}, 3.969014747703936*^9, { 3.969014782955984*^9, 3.969014896309475*^9}, {3.969014926816895*^9, 3.9690150034099293`*^9}, {3.969015127761239*^9, 3.969015131055338*^9}}, CellLabel-> "In[1152]:=",ExpressionUUID->"8b06b61e-7301-4499-8384-bdacbb9c1827"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Times\\\"}]\\) in \ \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \\\ \"2\\\"], \\\" \\\", \\\"\[ImaginaryI]\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{RowBox[{\\\"Cos\\\", \\\"[\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \\\"\[Tau]\\\", \\\" \\\ \", RowBox[{\\\"(\\\", RowBox[{SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"J\\\ \\\\\"\\\"], \\\"+\\\", SubscriptBox[\\\"\[Omega]\\\", \ \\\"\\\\\\\"nut\\\\\\\"\\\"]}], \\\")\\\"}]}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Sin\\\", \\\"[\\\", SubscriptBox[\\\"\[Theta]\\\", \ \\\"\\\\\\\"e\\\\\\\"\\\"], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Sin\\\", \ \\\"[\\\", FractionBox[RowBox[{\\\"\[Tau]\\\", \\\" \\\", SubscriptBox[\\\"\ \[Omega]\\\", \\\"\\\\\\\"e\\\\\\\"\\\"]}], \\\"2\\\"], \\\"]\\\"}]}], \ \\\"-\\\", RowBox[{\\\"Sin\\\", \\\"[\\\", RowBox[{\\\"\[Tau]\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \ \\\"]\\\"}], \\\"+\\\", RowBox[{RowBox[{\\\"Cos\\\", \\\"[\\\", \ FractionBox[RowBox[{\\\"\[Tau]\\\", \\\" \\\", SubscriptBox[\\\"\[Omega]\\\", \ \\\"\\\\\\\"e\\\\\\\"\\\"]}], \\\"2\\\"], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Sin\\\", \\\"[\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\ \" \\\", \\\"\[Tau]\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"J\\\\\\\"\\\"], \\\"+\\\", \ SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"nut\\\\\\\"\\\"]}], \\\")\\\"}]}], \ \\\"]\\\"}]}]}], \\\")\\\"}]}], \\\")\\\"}], \\\"[\\\", \ RowBox[{\\\"\\\\\\\"\\\\\\\"\\\", \\\"\[Ellipsis]\\\", \ \\\"\\\\\\\"Q\\\\\\\"\\\"}], \\\"]\\\"}], \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]\\) is \ Protected.\"", 2, 1152, 45, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1152]:=",ExpressionUUID->"f49ad752-871a-4e80-91e4-c829cac352bc"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[1152]=",ExpressionUUID->"aa83dd20-4cb3-41aa-a085-e2742240457e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}]], "Input", CellChangeTimes->{{3.969014854782339*^9, 3.9690148567182493`*^9}}, CellLabel-> "In[1153]:=",ExpressionUUID->"893011e2-6f82-4b71-8165-b2e411a9aa02"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], ")"}], "/", "2"}], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], ")"}], "/", "2"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}], ")"}], "[", "\<\"INADQ\"\>", "]"}], "[", RowBox[{ SubscriptBox["\[Theta]", "\<\"ST\"\>"], ",", "J\[Tau]"}], "]"}]], "Output",\ CellLabel-> "Out[1153]=",ExpressionUUID->"bffa48d7-2842-4f06-a0fb-7f267ae656ba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "]"}], "^", "2"}]}]], "Input", CellChangeTimes->{{3.9690151534670067`*^9, 3.9690151697924023`*^9}}, CellLabel-> "In[1154]:=",ExpressionUUID->"198cf943-e5f6-4237-afc8-a6c87f6d4910"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Power\\\"}]\\) in \ \\!\\(\\*RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\")\ \\\"}], \\\"2\\\"], \\\"[\\\", RowBox[{RowBox[{SubscriptBox[\\\"\[Theta]\\\", \ \\\"\\\\\\\"ST\\\\\\\"\\\"], \\\":\\\", \\\"_\\\"}], \\\",\\\", \ \\\"J\[Tau]_\\\"}], \\\"]\\\"}]\\) is Protected.\"", 2, 1154, 46, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1154]:=",ExpressionUUID->"5a70eb22-f725-44e4-bf84-2479c9620b5c"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[1154]=",ExpressionUUID->"99129378-b8d9-4556-b119-cd84c57154f6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}]], "Input", CellChangeTimes->{3.969015179249908*^9}, CellLabel-> "In[1155]:=",ExpressionUUID->"046ec13d-2e5d-498c-aac9-46b1bca04a5b"], Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Cos", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]"}], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}], "2"], " ", RowBox[{"Sin", "[", RowBox[{ SubscriptBox["\[Tau]", "\<\"1\"\>"], " ", "\[CapitalOmega]", " ", RowBox[{"Cos", "[", SubscriptBox["\[Theta]", "\<\"ST\"\>"], "]"}]}], "]"}]}]}], ")"}], "2"], "[", RowBox[{ SubscriptBox["\[Theta]", "\<\"ST\"\>"], ",", "J\[Tau]"}], "]"}]], "Output",\ CellLabel-> "Out[1155]=",ExpressionUUID->"889ede33-e961-41bc-a253-fc5fee5c421f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, 3.96901520910387*^9}, CellLabel-> "In[1156]:=",ExpressionUUID->"a38fa502-ab79-4fba-b877-eb1d2178e972"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0., 0.}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> {{0, 90}, {0, 2}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1156]=",ExpressionUUID->"1ca673ab-70c2-4485-bcbd-7d92282a663e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "40"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}}, CellLabel-> "In[1157]:=",ExpressionUUID->"80b4eb01-8b5d-4d1b-a716-dd90b8789864"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0., 0.}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> {{0, 90}, {0, 40}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1157]=",ExpressionUUID->"18ddcdec-443e-4e9b-95c7-678375781e34"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "40"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.25", ",", "1", ",", "5", ",", "10", ",", "20"}], "}"}], ",", "None"}], "}"}], ",", "Automatic"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}, { 3.969015500686777*^9, 3.969015505126626*^9}, {3.9690156071659946`*^9, 3.9690156714088078`*^9}, {3.969015712715014*^9, 3.969015715324134*^9}, { 3.96901576285259*^9, 3.969015862156475*^9}}, CellLabel-> "In[1158]:=",ExpressionUUID->"1d489997-9f05-4901-832d-7af6a512c88f"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}, AxesOrigin -> {0., Automatic}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> NCache[{{0, 90}, {-Log[ Rational[128, 5]], Log[40]}}, {{0, 90}, {-3.242592351485517, 3.6888794541139363`}}], PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1158]=",ExpressionUUID->"64f15644-3b43-491f-a91d-ff1736d157de"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SLIC density plot vs \[Theta] and \[Tau] (approximate version)", \ "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.968652047220417*^9}},ExpressionUUID->"260aa715-92bb-42ae-9560-\ 424783704ee8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", RowBox[{ RowBox[{"I", " ", RowBox[{"Sin", "[", RowBox[{"\[Omega]J", " ", "\[Tau]"}], "]"}], RowBox[{"Sin", "[", RowBox[{"\[Beta]12", "/", "4"}], "]"}]}], "//.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Beta]12", "->", RowBox[{ RowBox[{"-", "\[Kappa]"}], " ", "\[Omega]\[CapitalDelta]", " ", "\[Tau]"}]}], ",", " ", RowBox[{"\[Kappa]", "->", RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", "/", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"\[Omega]J", " ", RowBox[{"Tan", "[", "\[Theta]ST", "]"}]}]}]}], "\[IndentingNewLine]", "}"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.968651009441765*^9, 3.968651187368496*^9}, { 3.968651471636375*^9, 3.968651481782325*^9}, {3.9686520576734333`*^9, 3.96865205860471*^9}, {3.9686520960439463`*^9, 3.968652223612667*^9}, { 3.9690159897364283`*^9, 3.969016002875566*^9}}, CellLabel-> "In[1159]:=",ExpressionUUID->"0e551822-89bf-4d68-90d5-ae6b629e10a6"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Times\\\"}]\\) in \\!\\(\\*RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]\\) is \ Protected.\"", 2, 1159, 47, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1159]:=",ExpressionUUID->"122791aa-a153-4db9-b86a-387af746c86f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}]], "Input", CellChangeTimes->{{3.968652210337717*^9, 3.968652211952396*^9}}, CellLabel-> "In[1160]:=",ExpressionUUID->"dc335a27-bf29-47ae-bbda-9039383162e0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}], ")"}], "[", "\<\"SLIC\"\>", "]"}], "[", RowBox[{ SubscriptBox["\[Theta]", "\<\"ST\"\>"], ",", "J\[Tau]"}], "]"}]], "Output",\ CellLabel-> "Out[1160]=",ExpressionUUID->"bcdeb9c8-c196-4122-b732-eca83b865bbd"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", RowBox[{"Chop", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "]"}], "^", "2"}], "]"}]}]], "Input", CellChangeTimes->{{3.96865124234936*^9, 3.968651258253336*^9}, { 3.968651491620483*^9, 3.968651493434802*^9}, {3.968651566957727*^9, 3.968651570048929*^9}, {3.968652251330613*^9, 3.968652272009623*^9}}, CellLabel-> "In[1161]:=",ExpressionUUID->"0f628092-8c0b-40b9-bd20-c47303649527"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.968651686985516*^9, 3.968651711104594*^9}, 3.968652281594656*^9}, CellLabel-> "In[1162]:=",ExpressionUUID->"d5dbc7b6-185c-4f97-86fd-994ea346d218"], Cell[BoxData[ SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}], ")"}], "[", "\<\"SLIC\"\>", "]"}], "[", RowBox[{ RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], ",", "J\[Tau]"}], "]"}], "]"}], "2"]], "Output", CellLabel-> "Out[1162]=",ExpressionUUID->"6e3d28cd-5d38-42d3-bb86-c9ccac847fb8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "40"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "500"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.25", ",", "1", ",", "5", ",", "10", ",", "20"}], "}"}], ",", "None"}], "}"}], ",", "Automatic"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}, { 3.969015500686777*^9, 3.969015505126626*^9}, {3.9690156071659946`*^9, 3.9690156714088078`*^9}, {3.969015712715014*^9, 3.969015715324134*^9}, { 3.96901576285259*^9, 3.969015862156475*^9}, {3.969016042282217*^9, 3.969016075372615*^9}}, CellLabel-> "In[1163]:=",ExpressionUUID->"8ecbb31d-e101-4c51-8088-a5e818e48e33"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}, AxesOrigin -> {0., Automatic}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"SLIC (approximate)\"", TraditionalForm], PlotRange -> NCache[{{0, 90}, {-Log[ Rational[128, 5]], Log[40]}}, {{0, 90}, {-3.242592351485517, 3.6888794541139363`}}], PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1163]=",ExpressionUUID->"075ea708-6e6d-4953-aee7-f7b87025930e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["PulsePol density plot vs \[Theta] and \[Tau] (av. Ham. approx)", \ "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.968652047220417*^9}, {3.969016235950458*^9, 3.9690162445048437`*^9}, {3.969016651112197*^9, 3.969016652865402*^9}},ExpressionUUID->"d1697033-51cc-4906-ba3f-\ e2041d52f813"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"-", "I"}], " ", RowBox[{ RowBox[{"Sin", "[", RowBox[{"\[Omega]nut12", " ", RowBox[{"\[Tau]", "/", "4"}]}], "]"}], "^", "2"}]}], "//.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Omega]nut12", "->", RowBox[{"\[Kappa]", " ", "\[Omega]\[CapitalDelta]"}]}], " ", ",", "\[IndentingNewLine]", " ", RowBox[{"\[Kappa]", "->", RowBox[{"2", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", "\[Pi]"}], ")"}]}]}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]J", "->", RowBox[{"2", "\[Pi]", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Tau]", "->", RowBox[{"J\[Tau]", "/", " ", "J"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Omega]\[CapitalDelta]", "->", RowBox[{"\[Omega]J", " ", RowBox[{"Tan", "[", "\[Theta]ST", "]"}]}]}]}], "\[IndentingNewLine]", "}"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.968651009441765*^9, 3.968651187368496*^9}, { 3.968651471636375*^9, 3.968651481782325*^9}, {3.9686520576734333`*^9, 3.96865205860471*^9}, {3.9686520960439463`*^9, 3.968652223612667*^9}, { 3.9690159897364283`*^9, 3.969016002875566*^9}, {3.969016260777412*^9, 3.9690164004469748`*^9}}, CellLabel-> "In[1164]:=",ExpressionUUID->"c903c93b-33f9-4013-b5a5-81725828f677"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Times\\\"}]\\) in \ \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \\\ \"2\\\"], \\\" \\\", \\\"\[ImaginaryI]\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{RowBox[{\\\"Cos\\\", \\\"[\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \\\"\[Tau]\\\", \\\" \\\ \", RowBox[{\\\"(\\\", RowBox[{SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"J\\\ \\\\\"\\\"], \\\"+\\\", SubscriptBox[\\\"\[Omega]\\\", \ \\\"\\\\\\\"nut\\\\\\\"\\\"]}], \\\")\\\"}]}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Sin\\\", \\\"[\\\", SubscriptBox[\\\"\[Theta]\\\", \ \\\"\\\\\\\"e\\\\\\\"\\\"], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Sin\\\", \ \\\"[\\\", FractionBox[RowBox[{\\\"\[Tau]\\\", \\\" \\\", SubscriptBox[\\\"\ \[Omega]\\\", \\\"\\\\\\\"e\\\\\\\"\\\"]}], \\\"2\\\"], \\\"]\\\"}]}], \ \\\"-\\\", RowBox[{\\\"Sin\\\", \\\"[\\\", RowBox[{\\\"\[Tau]\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \ \\\"]\\\"}], \\\"+\\\", RowBox[{RowBox[{\\\"Cos\\\", \\\"[\\\", \ FractionBox[RowBox[{\\\"\[Tau]\\\", \\\" \\\", SubscriptBox[\\\"\[Omega]\\\", \ \\\"\\\\\\\"e\\\\\\\"\\\"]}], \\\"2\\\"], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Sin\\\", \\\"[\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\ \" \\\", \\\"\[Tau]\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"J\\\\\\\"\\\"], \\\"+\\\", \ SubscriptBox[\\\"\[Omega]\\\", \\\"\\\\\\\"nut\\\\\\\"\\\"]}], \\\")\\\"}]}], \ \\\"]\\\"}]}]}], \\\")\\\"}]}], \\\")\\\"}], \\\"[\\\", \ RowBox[{\\\"\\\\\\\"\\\\\\\"\\\", \\\"\[Ellipsis]\\\", \\\"\\\\\\\"\\\\\\\"\\\ \"}], \\\"]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]\\) is Protected.\"", 2, 1164, 48, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1164]:=",ExpressionUUID->"187213b0-9486-44f7-bf75-2ff727632db2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}]], "Input", CellChangeTimes->{{3.968652210337717*^9, 3.968652211952396*^9}, 3.969016408035551*^9}, CellLabel-> "In[1165]:=",ExpressionUUID->"4ce46660-ab61-4555-9383-146d244f6984"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}], ")"}], "[", "\<\"PulsePol\"\>", "]"}], "[", RowBox[{ SubscriptBox["\[Theta]", "\<\"ST\"\>"], ",", "J\[Tau]"}], "]"}]], "Output",\ CellLabel-> "Out[1165]=",ExpressionUUID->"952b3597-68bd-43c5-af58-6d82651b5f1b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", RowBox[{"Chop", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"aDQ", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "]"}], "^", "2"}], "]"}]}]], "Input", CellChangeTimes->{{3.96865124234936*^9, 3.968651258253336*^9}, { 3.968651491620483*^9, 3.968651493434802*^9}, {3.968651566957727*^9, 3.968651570048929*^9}, {3.968652251330613*^9, 3.968652272009623*^9}, { 3.969016418050459*^9, 3.969016420427616*^9}}, CellLabel-> "In[1166]:=",ExpressionUUID->"f1083b83-aaa4-4d9e-b451-36958a742df0"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Power\\\"}]\\) in \ \\!\\(\\*RowBox[{SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \ FractionBox[\\\"\[Beta]\\\", \\\"4\\\"], \\\"]\\\"}], \\\"4\\\"], \\\"[\\\", \ RowBox[{RowBox[{SubscriptBox[\\\"\[Theta]\\\", \\\"\\\\\\\"ST\\\\\\\"\\\"], \ \\\":\\\", \\\"_\\\"}], \\\",\\\", \\\"J\[Tau]_\\\"}], \\\"]\\\"}]\\) is \ Protected.\"", 2, 1166, 49, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1166]:=",ExpressionUUID->"31c6027b-d49a-417e-84d0-bf281e809f0d"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[1166]=",ExpressionUUID->"2df749d1-3b2d-4949-8100-5354d6ab846f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.968651686985516*^9, 3.968651711104594*^9}, 3.968652281594656*^9, 3.969016425342205*^9}, CellLabel-> "In[1167]:=",ExpressionUUID->"d2aff45d-50e1-42f3-a5db-23f38090b319"], Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"Sin", "[", FractionBox["\[Beta]", "4"], "]"}], "4"], "[", RowBox[{ RowBox[{"0.017453292519943295`", " ", "\[Theta]STdeg"}], ",", "J\[Tau]"}], "]"}]], "Output", CellLabel-> "Out[1167]=",ExpressionUUID->"8c336d6b-d46c-48f5-bf3e-a73c12f055d5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "J\[Tau]"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "40"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.25", ",", "1", ",", "5", ",", "10", ",", "20", ",", "40"}], "}"}], ",", "None"}], "}"}], ",", "Automatic"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}, { 3.969015500686777*^9, 3.969015505126626*^9}, {3.9690156071659946`*^9, 3.9690156714088078`*^9}, {3.969015712715014*^9, 3.969015715324134*^9}, { 3.96901576285259*^9, 3.969015862156475*^9}, {3.969016042282217*^9, 3.969016075372615*^9}, {3.969016435359832*^9, 3.969016476230884*^9}, { 3.969016537809452*^9, 3.9690165384269733`*^9}, {3.969016579228613*^9, 3.969016580316671*^9}}, CellLabel-> "In[1168]:=",ExpressionUUID->"d9f32874-8c4a-4616-ad20-4e7245095f88"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}, AxesOrigin -> {0., Automatic}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"PulsePol (using av Ham)\"", TraditionalForm], PlotRange -> NCache[{{0, 90}, {-Log[ Rational[128, 5]], Log[40]}}, {{0, 90}, {-3.242592351485517, 3.6888794541139363`}}], PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1168]=",ExpressionUUID->"ae3ed98a-ec67-47c8-9a89-c69cdd83bf77"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["comparison with numerical calculations", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.968652047220417*^9}, {3.968652655709169*^9, 3.968652660526184*^9}, {3.968653196305544*^9, 3.968653205679247*^9}},ExpressionUUID->"778cf154-0773-4d02-b793-\ 7cf9c4a542b5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetBasis", "[", RowBox[{"SingletTripletBasis", "[", "]"}], "]"}]], "Input", CellChangeTimes->{{3.968653886665791*^9, 3.96865389440178*^9}}, CellLabel-> "In[1169]:=",ExpressionUUID->"5290ac33-34f2-4c70-8ae9-86aaced5f069"], Cell[BoxData[ TemplateBox[{ "SetBasis", "alreadyset", "\"The basis is already set to \ \\!\\(\\*RowBox[{\\\"SingletTripletBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"BasisLabels\\\", \ \\\"\[Rule]\\\", \\\"Automatic\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 1169, 50, 25793684326715730430, "Local", "QM`Hilbert`SetBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1169]:=",ExpressionUUID->"f911faf2-50c3-46b7-8281-46a5342bd39d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"aDQ", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"\[Theta]ST_", ",", "J\[Tau]_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Tau]", ",", "\[Omega]\[CapitalDelta]", ",", "J"}], "}"}], ",", RowBox[{"(", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"take", " ", "J"}], "=", "1"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"J", "=", "1"}], ";", "\[IndentingNewLine]", RowBox[{"\[Tau]", "=", RowBox[{"J\[Tau]", "/", "J"}]}], ";", "\[IndentingNewLine]", RowBox[{"\[Omega]\[CapitalDelta]", "=", RowBox[{"2", "\[Pi]", " ", "J", " ", RowBox[{"Tan", "[", "\[Theta]ST", "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"TransformationAmplitude", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"opI", "[", "\"\\"", "]"}], "->", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Delay", "[", "\[Tau]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{"\[Pi]", ",", "\"\\""}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Delay", "[", "\[Tau]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Pulse", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"BackgroundGenerator", "->", RowBox[{ RowBox[{"2", "\[Pi]", " ", "J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}], "+", RowBox[{"\[Omega]\[CapitalDelta]", " ", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "-", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}], ")"}]}]}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", ")"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.968653254318519*^9, 3.968653467551311*^9}, { 3.968653519461451*^9, 3.968653631113673*^9}, {3.968653720546392*^9, 3.9686537377939568`*^9}}, CellLabel-> "In[1170]:=",ExpressionUUID->"66b605e6-348a-4f5d-9d52-7c3929c9a637"], Cell[BoxData[ TemplateBox[{ "SetDelayed", "write", "\"Tag \\!\\(\\*RowBox[{\\\"Times\\\"}]\\) in \\!\\(\\*RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]\\) is \ Protected.\"", 2, 1170, 51, 25793684326715730430, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1170]:=",ExpressionUUID->"88c4b6e7-199f-4ea3-9a7a-64dd0ba3d26f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"aDQ", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{ RowBox[{ RowBox[{"\[Pi]", "/", "2"}], "-", RowBox[{"(", RowBox[{"\[Pi]", "/", "1000"}], ")"}]}], ",", RowBox[{"1", "/", "4"}]}], "]"}]], "Input", CellChangeTimes->{{3.9686536393720913`*^9, 3.968653644392254*^9}, 3.968653707307994*^9, {3.968653747746756*^9, 3.968653786963935*^9}, { 3.968654048845058*^9, 3.968654060685893*^9}}, CellLabel-> "In[1171]:=",ExpressionUUID->"abbe3974-1566-4ef3-b290-7a95ee1e3e90"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}], " ", RowBox[{"Sin", "[", SubscriptBox["\[Theta]", "\<\"e\"\>"], "]"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}]}], "-", RowBox[{"Sin", "[", RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], "]"}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Tau]", " ", SubscriptBox["\[Omega]", "\<\"e\"\>"]}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["1", "2"], " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "+", SubscriptBox["\[Omega]", "\<\"nut\"\>"]}], ")"}]}], "]"}]}]}], ")"}]}], ")"}], "[", RowBox[{"\<\"INADQ\"\>", ",", "\<\"simulated\"\>"}], "]"}], "[", RowBox[{ FractionBox[ RowBox[{"499", " ", "\[Pi]"}], "1000"], ",", FractionBox["1", "4"]}], "]"}]], "Output", CellLabel-> "Out[1171]=",ExpressionUUID->"3e55a67e-7209-4929-a284-b4e7e60de503"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListDensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Flatten", "[", RowBox[{"#", ",", "1"}], "]"}], "&"}], "@", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "J\[Tau]", ",", RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"aDQ", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{ RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}], ",", "J\[Tau]"}], "]"}], "]"}], "^", "2"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "90", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"J\[Tau]", ",", "0", ",", "2", ",", "0.02"}], "}"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686523667824173`*^9, 3.968652371645105*^9}, {3.968652415785283*^9, 3.968652448100037*^9}, { 3.9686525243896933`*^9, 3.968652546757416*^9}, {3.968652763018291*^9, 3.9686527631723223`*^9}, {3.9686540841548986`*^9, 3.968654112198186*^9}, { 3.9686542381716948`*^9, 3.9686542462623987`*^9}, {3.968654406560657*^9, 3.968654434301054*^9}, 3.968654479977257*^9, {3.968654533711144*^9, 3.968654583728284*^9}}, CellLabel-> "In[1172]:=",ExpressionUUID->"0cf68543-4c2d-4964-ac22-77b0fd1c631a"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{}, { DisplayFunction -> Identity, AspectRatio -> 1, AxesOrigin -> {Automatic, Automatic}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J \[Tau]\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultColorFunction" -> "M10DefaultDensityGradient", "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> {{0, 1}, {0, 1}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt /tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp /ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir 1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/ ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7 RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI 7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9 +HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+ 9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR 2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu 4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/ Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8 jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV /B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4 i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6 5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF 2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+ HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa 38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1 mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk 59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz 2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9 wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4 myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1 jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO 9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V 89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6 3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{"\"M10DefaultDensityGradient\"", ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1172]=",ExpressionUUID->"a7cff107-6dcc-435a-b9e5-4dd01f8eaadc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["INADQ/PulsePol comparison", "Subsection", CellChangeTimes->{{3.9630430251858473`*^9, 3.963043041202373*^9}, { 3.963043114506312*^9, 3.963043122986128*^9}, {3.963045848476151*^9, 3.963045856046089*^9}, {3.9630487740177298`*^9, 3.963048777505775*^9}, { 3.963049160559461*^9, 3.9630491767920027`*^9}, {3.963049480911737*^9, 3.963049522189348*^9}, {3.9686493506190166`*^9, 3.9686493644695187`*^9}, { 3.968651989824527*^9, 3.968652047220417*^9}, {3.969016235950458*^9, 3.9690162445048437`*^9}, {3.969016651112197*^9, 3.969016652865402*^9}, { 3.969016685078034*^9, 3.969016694555084*^9}},ExpressionUUID->"207ac694-3ec1-43cb-8912-\ 7285e1aa4057"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ResourceFunction", "[", "\"\\"", "]"}], "[", "All", "]"}]], "Input", CellChangeTimes->{{3.969073022080426*^9, 3.96907303379436*^9}}, CellLabel-> "In[1173]:=",ExpressionUUID->"f5a23d14-9f92-4aca-91ed-b9134c0ed518"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TripleCross\"\>", ",", "\<\"Y\"\>", ",", "\<\"UpTriangle\"\>", ",", "\<\"UpTriangleTruncated\"\>", ",", "\<\"DownTriangle\"\>", ",", "\<\"DownTriangleTruncated\"\>", ",", "\<\"LeftTriangle\"\>", ",", "\<\"LeftTriangleTruncated\"\>", ",", "\<\"RightTriangle\"\>", ",", "\<\"RightTriangleTruncated\"\>", ",", "\<\"ThreePointedStar\"\>", ",", "\<\"Cross\"\>", ",", "\<\"DiagonalCross\"\>", ",", "\<\"Diamond\"\>", ",", "\<\"Square\"\>", ",", "\<\"FourPointedStar\"\>", ",", "\<\"DiagonalFourPointedStar\"\>", ",", "\<\"FivefoldCross\"\>", ",", "\<\"Pentagon\"\>", ",", "\<\"FivePointedStar\"\>", ",", "\<\"FivePointedStarSlim\"\>", ",", "\<\"FivePointedStarThick\"\>", ",", "\<\"DancingStar\"\>", ",", "\<\"DancingStarRight\"\>", ",", "\<\"DancingStarThick\"\>", ",", "\<\"DancingStarThickRight\"\>", ",", "\<\"SixfoldCross\"\>", ",", "\<\"Hexagon\"\>", ",", "\<\"SixPointedStar\"\>", ",", "\<\"SixPointedStarSlim\"\>", ",", "\<\"SixfoldPinwheel\"\>", ",", "\<\"SixfoldPinwheelRight\"\>", ",", "\<\"SevenfoldCross\"\>", ",", "\<\"SevenPointedStar\"\>", ",", "\<\"SevenPointedStarNeat\"\>", ",", "\<\"SevenPointedStarSlim\"\>", ",", "\<\"SevenfoldPinwheel\"\>", ",", "\<\"SevenfoldPinwheelRight\"\>", ",", "\<\"EightfoldCross\"\>", ",", "\<\"Disk\"\>", ",", "\<\"H\"\>", ",", "\<\"I\"\>", ",", "\<\"N\"\>", ",", "\<\"Z\"\>", ",", "\<\"S\"\>", ",", "\<\"Sw\"\>", ",", "\<\"Sl\"\>"}], "}"}]], "Output", CellLabel-> "Out[1173]=",ExpressionUUID->"6a2263d3-fcf4-4685-b546-944787749a29"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"star", "=", RowBox[{ RowBox[{"ResourceFunction", "[", "\"\\"", "]"}], "[", "\"\\"", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.969073103789139*^9, 3.9690731090401697`*^9}, 3.9690738826391983`*^9}, CellLabel-> "In[1174]:=",ExpressionUUID->"2de953ed-dbbe-4175-9ca8-a1b7383c04d3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"exptcoords", "[", "\"\\"", "]"}], "=", RowBox[{"{", RowBox[{"4.3", ",", RowBox[{"2", " ", "325.0", " ", SuperscriptBox["10", RowBox[{"-", "3"}]], "255.0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.969073813841177*^9, 3.969073821940838*^9}, { 3.969073897620322*^9, 3.96907396696504*^9}, {3.969073997805718*^9, 3.969074029474568*^9}}, CellLabel-> "In[1175]:=",ExpressionUUID->"93a0da4d-ac25-43cd-8807-94e1ad5791fa"], Cell[BoxData[ RowBox[{"{", RowBox[{"4.3`", ",", "165.75`"}], "}"}]], "Output", CellLabel-> "Out[1175]=",ExpressionUUID->"599a9831-4f83-4695-88a0-8458ad817ef3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ColorData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], "]"}]], "Input", CellChangeTimes->{{3.9690818506468143`*^9, 3.969081851991515*^9}, { 3.969081949472144*^9, 3.9690819580938263`*^9}, {3.969081989752883*^9, 3.969081992333167*^9}}, CellLabel-> "In[1176]:=",ExpressionUUID->"93894482-de64-4fb1-b247-ee1c66f94105"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["ColorDataFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GridBox[{{ RowBox[{ TagBox["\"Name: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"GrayTones\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Gradient: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ StyleBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxdlXk0FQgbxslWyb5rjJQkmUS2YfJMDWEqDMmISIUoyxiV6BuyRMpSWoZJ YYSM7KWyXbJGXJfLxcVd3P1mKZWkfOb783vP+Z33+ec5zz/veV6dE2Gu/mIi IiKiq/iv8q/Oyf53nuP/d7HhffIx03rstNSXfBNdDyZv7kxsaz1qmgsUNvc3 oHX4acSP3o0wtHKw8Rc0guBafIgd1AT3c3ZTWXuaYdXunLJ1PQHst2Rb9zUE LKzjP/w9gwDfkJjf/vy2BSE/UE7U9RNg42nsrRXXggSV4qPSu1vxLmksTiO3 BSklUYqd4a0oaST99If9S0T3U+/HBLeC9LG5K9zvJXr9vxrOe7VBRGOqYcLi Jb6xl4rVdG3DnIyB6qnwdlw5QR+DRBsC7jiZte1rh8pT95XhxA5sKGMu5pPa UMm6LQjZ3QErn8tcx+xO3HzPUhXPa8eS6US+mm4nfCQfDzQ87oI6uKYBIR2w TdT9tUW5C/HllBdGrd3IS+G7dll1In3wjOwZiW4UHxEvLBh+BT2SMNxgbRco m2valD90o/erUZqKoAdlG2fTr5O7oBOxFN3EfoXZIq/zKSu9MPGfL5sp6MaZ lr3Gp0d6oOyc7PtZqQ/Pyt+9cgl/hafyVzkKXb34/mO1Q6h+P2wW33Or9/Rg xZeYW//sNcqdZ/8M/5aI9r2LkirSvXCsUDvs/6gPhC1JMqUlRBy8tqR7gdKL rK8+6+Vy+jH4UTOeaTIAvx66Y8vV19ggy1r6bhcR07F3my7dHcAF6e5Qaes+ 9N/LCT+cRcR7KeXPKssDSDtQmeUu7MONHS7s6A9ESGZmWlQcJ6Hg2t1nD3L7 cfiFhHe+5wBU1WUiHdpJoPo3z0RuI0LNsX6gs2EA2/KuVtK3D4IjsVtUM46I 0ZFw+xltEv53XumDePuwSKmZQsS9AL1G5QQSHCvjtyu/G8SynabeKeMB+L4f N7Fmk3DUcsX/sccQpNhplutSB6CTeKPEz3EQwYSYgv0NQ1C8InqgnDGAaUX7 b1PKBhHjsDg5tYkMLb1zx9ysSSjKX84qlxvCdWLkxotJZOh3cMMWs0gI2lW9 jhwxhNxf5z0U+WSYBHjH5wpJMGwOjP1MHkI5LeTWP07D2CNJvLXPbhCzh7Te 63xPRvNpPtG2ZhgORT8Vc3IHUU0lBTvcI4M4FyAzqTYC1/11z69/GETkmRRa 6AoZtCim44VLI/BhG/QaOw/BfGnPkdsnhjEvcvyKPH0Ep6/cnxwuHsKnlHc9 9e3DWHOV2vrIjoLf9RTnY0TIaFB7tJehPwIlBc+VfaUU/NGRJKbjSUZskU/d 2usj0M0mW1NlRxHdxn2eNENG8TmC5gZNCrjfvdQVzRjF+dYD4fyEYfTZbv5D roSC0tZKGT25MUQQyvWcNUbwQSmRrmg+ilCP+x9+zhhDaJPCRE35CLSZLFvV tlGYCK9NhcmNI7ghMkvdlgL7avsSDdcxvI+72HUrYxyBL0Yc/zNKQdjlR9Ja tDE8Vwmsei5HxclnViKM0FHcdZEO2xQ6jkulh3MmM6jweZr7dL/4GJq0Q0hb lscB7EsQk5+AV61IyD/ZY2DP9JltS6VizZDRWf3MCXhUn9wibzQO2aZd2Qbq E+g4reV+SH4SbpUdo5Ft4zBPu7n8XdEEUr+st4nInIRL+fbMUU8qfL0XfI1N J3Ho5qLeXfkpHCy7vt9mlorkHUdemrZOQmEbW64hcwoOpbPLBYkTqFiq07N0 mQJ/IuhS+FoabEtca6Q0JzHSrZFqPbnqL6HNxTvQsLfoSdDZiknE9Tae1zan oTzCw/92Cg17CtU3DdhOQbk2VF/nPzTI7+kbLe6iwbIgZthsbArFf2mPbW6j IVzKzunFWjo0XcL2v7agwTqBeE1Xmg7SQH1rrwMd6v15+bHxNPQHX96j50qH 6T0Ti6kUOtzUrAgTTBpU+Q/ukEvpaBXXdakZpiPdd3DS2o6OY0FNs4liDDiH qAQl6zLQXXz2S3YRHYVcqoOpNwMTZMl4rwgGxOckvlmUYkAQ+DmfWctAsM1i jhGBAVg+sDoSxIAJR+PzTRkmFot4NWKyTETHWXrWvmLgYoDl4X0BTFyRG+8d 8WLiSdfABUVDJgisI4/nm5hQiupl/fOIiTn5M3fC05iQ8j8nma82jXxa49fY j0wYeoo/6Zthwmk6y9clfBo7/y0uu2kE5OcOGrpM487J6mcrXdNoqMrbpZ81 jTye+dvUqmmMM4gKFTosOGredFymTYNqTJTnKbKw+cRssE80C8PxCSeIO1lQ jQ4yso9kIZgu0yYzyMIpQWRM4SUWXFvXOD0ks1B53FCrcQcbb90CbkW9YiFt /b2zYhZsLE79fP5sIhuxDR6PD6qz0eVqds3vTzbgG9S/cYKNDVsdOzYFsCH2 V9+j5k9sXJlM1u8x4yAnzWpqoYYNG2Zgl5YXB6+PFV2OTudA/8OOxS5RDi7u EOXENHCgPNE2tp3DwRMfLYVcZw5qf8+RGNPiwsubuXsUXPzUKWvwWy4HPYq5 /qp+XBzS50lWxHPBjes2CaJwwKh60O5ayAUWZkYT27lIs0q09lPiYtGlYGsG hwtjwkLZ0bU8mCzY2Ho6cSE7V5jUY8DD5utLsbsO8DD8+NPBX65ysTWjmCUV yoPyryJukuk8xATWuju2cfHDzlI72yoeJHUl9ahEHjbphPnsXeHC7XXZw7gF HhZnpT9VKfHRPrY98HsrHoLPVkg0WvDBr1foTT7CR/Ct6TDjczzESVf7f4rm g5qs9uBYNh+yTg+itlfycLe0tt2siY8+N62I3VQ+aqWOXtYR8FDuWLc1QlQA gvYWu3XaAqw+21QNvdWc1RortxWgSqCvPuUnwJfo/psKfnyMJzew+MkC/F23 U1BbKECBaepf6+7x8Vav2W5bjwC3E0ybUjkC2M/YFoqO8LGuo+XhSVkhkp2t bhw3EEJYvFL2SUEAbf82ibxfhIja+OMp8xAhMv1ePJk/KIC5eKc/9ZYQwRw7 iw2VQphtPNfEW807+Hd3uzpFCO+aA+sZb4UYGzLqpLcKcHJf71b3jW/gFPvL RJ3ZG8Sm8/tHvwgQTe9LuuHzBj8e8KhMi3oDXYeHlAFLIf4LAtLTYg== "], {{0, 0}, {1, 1}}]}, { ImageSize -> 65, BaselinePosition -> Bottom, AspectRatio -> NCache[ Rational[1, 8], 0.125], PlotRange -> {{0, 1}, {0, 1}}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Selectable -> False, StripOnInput -> False], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GridBox[{{ RowBox[{ TagBox["\"Name: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"GrayTones\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Gradient: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ StyleBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxdlXk0FQgbxslWyb5rjJQkmUS2YfJMDWEqDMmISIUoyxiV6BuyRMpSWoZJ YYSM7KWyXbJGXJfLxcVd3P1mKZWkfOb783vP+Z33+ec5zz/veV6dE2Gu/mIi IiKiq/iv8q/Oyf53nuP/d7HhffIx03rstNSXfBNdDyZv7kxsaz1qmgsUNvc3 oHX4acSP3o0wtHKw8Rc0guBafIgd1AT3c3ZTWXuaYdXunLJ1PQHst2Rb9zUE LKzjP/w9gwDfkJjf/vy2BSE/UE7U9RNg42nsrRXXggSV4qPSu1vxLmksTiO3 BSklUYqd4a0oaST99If9S0T3U+/HBLeC9LG5K9zvJXr9vxrOe7VBRGOqYcLi Jb6xl4rVdG3DnIyB6qnwdlw5QR+DRBsC7jiZte1rh8pT95XhxA5sKGMu5pPa UMm6LQjZ3QErn8tcx+xO3HzPUhXPa8eS6US+mm4nfCQfDzQ87oI6uKYBIR2w TdT9tUW5C/HllBdGrd3IS+G7dll1In3wjOwZiW4UHxEvLBh+BT2SMNxgbRco m2valD90o/erUZqKoAdlG2fTr5O7oBOxFN3EfoXZIq/zKSu9MPGfL5sp6MaZ lr3Gp0d6oOyc7PtZqQ/Pyt+9cgl/hafyVzkKXb34/mO1Q6h+P2wW33Or9/Rg xZeYW//sNcqdZ/8M/5aI9r2LkirSvXCsUDvs/6gPhC1JMqUlRBy8tqR7gdKL rK8+6+Vy+jH4UTOeaTIAvx66Y8vV19ggy1r6bhcR07F3my7dHcAF6e5Qaes+ 9N/LCT+cRcR7KeXPKssDSDtQmeUu7MONHS7s6A9ESGZmWlQcJ6Hg2t1nD3L7 cfiFhHe+5wBU1WUiHdpJoPo3z0RuI0LNsX6gs2EA2/KuVtK3D4IjsVtUM46I 0ZFw+xltEv53XumDePuwSKmZQsS9AL1G5QQSHCvjtyu/G8SynabeKeMB+L4f N7Fmk3DUcsX/sccQpNhplutSB6CTeKPEz3EQwYSYgv0NQ1C8InqgnDGAaUX7 b1PKBhHjsDg5tYkMLb1zx9ysSSjKX84qlxvCdWLkxotJZOh3cMMWs0gI2lW9 jhwxhNxf5z0U+WSYBHjH5wpJMGwOjP1MHkI5LeTWP07D2CNJvLXPbhCzh7Te 63xPRvNpPtG2ZhgORT8Vc3IHUU0lBTvcI4M4FyAzqTYC1/11z69/GETkmRRa 6AoZtCim44VLI/BhG/QaOw/BfGnPkdsnhjEvcvyKPH0Ep6/cnxwuHsKnlHc9 9e3DWHOV2vrIjoLf9RTnY0TIaFB7tJehPwIlBc+VfaUU/NGRJKbjSUZskU/d 2usj0M0mW1NlRxHdxn2eNENG8TmC5gZNCrjfvdQVzRjF+dYD4fyEYfTZbv5D roSC0tZKGT25MUQQyvWcNUbwQSmRrmg+ilCP+x9+zhhDaJPCRE35CLSZLFvV tlGYCK9NhcmNI7ghMkvdlgL7avsSDdcxvI+72HUrYxyBL0Yc/zNKQdjlR9Ja tDE8Vwmsei5HxclnViKM0FHcdZEO2xQ6jkulh3MmM6jweZr7dL/4GJq0Q0hb lscB7EsQk5+AV61IyD/ZY2DP9JltS6VizZDRWf3MCXhUn9wibzQO2aZd2Qbq E+g4reV+SH4SbpUdo5Ft4zBPu7n8XdEEUr+st4nInIRL+fbMUU8qfL0XfI1N J3Ho5qLeXfkpHCy7vt9mlorkHUdemrZOQmEbW64hcwoOpbPLBYkTqFiq07N0 mQJ/IuhS+FoabEtca6Q0JzHSrZFqPbnqL6HNxTvQsLfoSdDZiknE9Tae1zan oTzCw/92Cg17CtU3DdhOQbk2VF/nPzTI7+kbLe6iwbIgZthsbArFf2mPbW6j IVzKzunFWjo0XcL2v7agwTqBeE1Xmg7SQH1rrwMd6v15+bHxNPQHX96j50qH 6T0Ti6kUOtzUrAgTTBpU+Q/ukEvpaBXXdakZpiPdd3DS2o6OY0FNs4liDDiH qAQl6zLQXXz2S3YRHYVcqoOpNwMTZMl4rwgGxOckvlmUYkAQ+DmfWctAsM1i jhGBAVg+sDoSxIAJR+PzTRkmFot4NWKyTETHWXrWvmLgYoDl4X0BTFyRG+8d 8WLiSdfABUVDJgisI4/nm5hQiupl/fOIiTn5M3fC05iQ8j8nma82jXxa49fY j0wYeoo/6Zthwmk6y9clfBo7/y0uu2kE5OcOGrpM487J6mcrXdNoqMrbpZ81 jTye+dvUqmmMM4gKFTosOGredFymTYNqTJTnKbKw+cRssE80C8PxCSeIO1lQ jQ4yso9kIZgu0yYzyMIpQWRM4SUWXFvXOD0ks1B53FCrcQcbb90CbkW9YiFt /b2zYhZsLE79fP5sIhuxDR6PD6qz0eVqds3vTzbgG9S/cYKNDVsdOzYFsCH2 V9+j5k9sXJlM1u8x4yAnzWpqoYYNG2Zgl5YXB6+PFV2OTudA/8OOxS5RDi7u EOXENHCgPNE2tp3DwRMfLYVcZw5qf8+RGNPiwsubuXsUXPzUKWvwWy4HPYq5 /qp+XBzS50lWxHPBjes2CaJwwKh60O5ayAUWZkYT27lIs0q09lPiYtGlYGsG hwtjwkLZ0bU8mCzY2Ho6cSE7V5jUY8DD5utLsbsO8DD8+NPBX65ysTWjmCUV yoPyryJukuk8xATWuju2cfHDzlI72yoeJHUl9ahEHjbphPnsXeHC7XXZw7gF HhZnpT9VKfHRPrY98HsrHoLPVkg0WvDBr1foTT7CR/Ct6TDjczzESVf7f4rm g5qs9uBYNh+yTg+itlfycLe0tt2siY8+N62I3VQ+aqWOXtYR8FDuWLc1QlQA gvYWu3XaAqw+21QNvdWc1RortxWgSqCvPuUnwJfo/psKfnyMJzew+MkC/F23 U1BbKECBaepf6+7x8Vav2W5bjwC3E0ybUjkC2M/YFoqO8LGuo+XhSVkhkp2t bhw3EEJYvFL2SUEAbf82ibxfhIja+OMp8xAhMv1ePJk/KIC5eKc/9ZYQwRw7 iw2VQphtPNfEW807+Hd3uzpFCO+aA+sZb4UYGzLqpLcKcHJf71b3jW/gFPvL RJ3ZG8Sm8/tHvwgQTe9LuuHzBj8e8KhMi3oDXYeHlAFLIf4LAtLTYg== "], {{0, 0}, {1, 1}}]}, { ImageSize -> 65, BaselinePosition -> Bottom, AspectRatio -> NCache[ Rational[1, 8], 0.125], PlotRange -> {{0, 1}, {0, 1}}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Selectable -> False, StripOnInput -> False], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Class: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Gradients\"", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], ColorDataFunction["GrayTones", "Gradients", {1, 0}, Blend[{{1., RGBColor[0.1, 0.1, 0.1]}, {0.8, RGBColor[0.225356, 0.246889, 0.268731]}, {0.6, RGBColor[0.333565, 0.367922, 0.391532]}, {0.3999999999999999, RGBColor[0.51593, 0.541278, 0.547958]}, {0.19999999999999996`, RGBColor[0.753644, 0.757794, 0.737969]}, {0., RGBColor[0.917794, 0.920966, 0.881936]}}, #]& ], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[1176]=",ExpressionUUID->"50fedc35-c875-4e5b-b7aa-11da865f2578"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"plot", "[", "\"\\"", "]"}], "=", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", RowBox[{"JT", "/", "2"}]}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"JT", ",", "1", ",", "200"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.25", ",", "1", ",", "2", ",", "5", ",", "10", ",", "20", ",", "40", ",", "100", ",", "200"}], "}"}], ",", "None"}], "}"}], ",", "Automatic"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ColorFunction", "->", RowBox[{"ColorData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], "]"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"exptcoords", "[", "\"\\"", "]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", "->", RowBox[{"{", RowBox[{ RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{"Yellow", ",", "star"}], "}"}], "]"}], ",", "Large"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}, { 3.969015500686777*^9, 3.969015505126626*^9}, {3.9690156071659946`*^9, 3.9690156714088078`*^9}, {3.969015712715014*^9, 3.969015715324134*^9}, { 3.96901576285259*^9, 3.969015862156475*^9}, {3.969016712320509*^9, 3.9690167428275414`*^9}, 3.969016832546605*^9, {3.969016901502116*^9, 3.969016919972719*^9}, {3.9690169935259733`*^9, 3.9690170030357943`*^9}, { 3.9690722060142097`*^9, 3.969072224144619*^9}, {3.969072517797282*^9, 3.969072558706648*^9}, {3.9690726175762177`*^9, 3.969072690831718*^9}, { 3.969072838621203*^9, 3.969072847337667*^9}, {3.969072883919943*^9, 3.9690729004147863`*^9}, {3.96907305947707*^9, 3.969073082961022*^9}, { 3.969073117080256*^9, 3.9690731176576767`*^9}, 3.9690732605284977`*^9, { 3.969073405551323*^9, 3.969073483884321*^9}, {3.969073691134886*^9, 3.969073707239956*^9}, {3.96907379140176*^9, 3.969073793831627*^9}, { 3.969073831619001*^9, 3.969073867077896*^9}, 3.969073972967619*^9, { 3.969074050938095*^9, 3.969074075578865*^9}, 3.9690742571049128`*^9, { 3.969081750445222*^9, 3.9690817709370623`*^9}, {3.969082002545516*^9, 3.969082016170268*^9}}, CellLabel-> "In[1177]:=",ExpressionUUID->"28852584-f3d5-46e6-8d15-b292cc932dac"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{}, {}}, {{}, {{{}, {}, { Hue[0.67, 0.6, 0.6], Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]], LineBox[{{4.3, 5.110480629065972}, {4.3, 5.110480629065972}}]}}, {{ Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]], GeometricTransformationBox[ InsetBox[ BoxData[ FormBox[ StyleBox[ GraphicsBox[{ RGBColor[1, 1, 0], PolygonBox[{{0, 0.9438289524745919}, {0.2119028023834478, 0.2916591860977535}, {0.8976346755189895, 0.2916591860977535}, { 0.3428659365677708, -0.11140389595821101`}, { 0.5547687389512186, -0.7635736623350494}, { 0, -0.3605105802790849}, {-0.5547687389512186, \ -0.7635736623350494}, {-0.3428659365677708, -0.11140389595821101`}, \ {-0.8976346755189895, 0.2916591860977535}, {-0.2119028023834478, 0.2916591860977535}}]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]]}, StripOnInput -> False], TraditionalForm]], {0., 0.}, Automatic, Offset[20]], {{{4.3, 5.110480629065972}}, {{4.3, 5.110480629065972}}}]}}}, {{}, {}}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}, AxesOrigin -> {0., Automatic}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[2], 0.6931471805599453], FormBox[ TagBox["2", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}, { NCache[ Log[100], 4.605170185988092], FormBox[ TagBox["100", HoldForm], TraditionalForm]}, { NCache[ Log[200], 5.298317366548036], FormBox[ TagBox["200", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J T\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J T\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[2], 0.6931471805599453], FormBox[ TagBox["2", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}, { NCache[ Log[100], 4.605170185988092], FormBox[ TagBox["100", HoldForm], TraditionalForm]}, { NCache[ Log[200], 5.298317366548036], FormBox[ TagBox["200", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"INADQ\"", TraditionalForm], PlotRange -> NCache[{{0, 30}, {0, Log[200]}}, {{0, 30}, {0, 5.298317366548036}}], PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxlV3k0ld/7pcGQjJEUioSkpMhUdkIRIUUJDYpSpkSJpFBK0SRFhDI1kCLK PM/DvZdrHu693BlFhVSffrfvv7+z1lnPu9ZeZz/77Oecs55Xyc3X3n0hHx9f E2/y8+a/72Bq+40HRyew0+pQXkzQBFQsMnqJ+uP48qDN4dv2Cexx76pXPjQB e+6eLodV4zi5q3Wdw6oJ2ITtHyrSnUBYLKej7w8XvdPNPwp/jsMhof2btfQE crRjWlwpXOx72VS3onccLvlWS2jT4+jv0mqgVnNRdaDxcXAhj6+tcc0l4jiE gkjV7hlcbFvU4D4YN46zTHO9pXnj0F0VWM6O4uJ1QZ2u8YVxnOev2ZcWy1tX LlvsfZaL1e61i1P3jyNo1c5T27zH8eBE8ccpay7iZGrI/JvHcU23LLjFahzl i1zfB2pxIVRflXFSbBxRtoYPjmuMYzzr79ufklyEXqwMrBvnItazKOuH0Djk rF5kh37nYFq1wlythYvHETrl0Uwu9kyapfP3cODRUyZz+xUXScnvu1bXcxHw gJly4zMHA1GldA5P78uiTdyCdC5e6EQ/E07iwE6/5KO1B28fxDf8eyO4IPRo Pom5ykEt6/ONXDMu3nPVV4yc4OJPcMdDyRMcGCR8cpBYy8WnxZmbAnZysUHR P/axKQe5lkXr/Pm5qFi91lx4NReHq6Sj5VQ5UJ7/+KNzhIN6g1Tn5384uHmq 6EayEAdP/hlXzkHbAQX/rYMc5Aseua7EZWOpc/7jJzxdXd6JtxqLOaC+/n0l o42NayIf3H8G/9uHbIprAgdiNilB6/PY+FGSp+vsxAEtLe7j9CUOtk+ZBOQ8 ZMPT693iMj0OOCWSrVGOHJyNG/PVDmRjWD6XrLicgylyLE1el6dDL+rcx0Ns HGh7m3HtOxtzX0R+vl/GQV3/+tMGhmw0hL4JpJHY+Ct8W3zPNBvToa1uZfJs bN/02tzsPRsCKgKqgwQ21ij5HjX5y8L74WyZzHtsiBpHbD//jg2bWskjdVQW 1t3Logv6sCF9mO+AQCwbIacLHCxrWUhE5kdPazZW+Yd6PvNi49WSQ/vbMlkQ +5p+o0WDDeW782Gbrdjozvlpvf82CxGpLx02CrOxPvNSfN16NhbtT7Ign2Nh zu7FuntMFjZXfn97RIgN7e/GZk42LHjxp/34WseCXv/5mi8MFo49oWJoMwvU 9yl19uksGH+f7Ivk4XcNI41OLGPB0e3544JwFnaLeX2V4+HFQ6p69B9MNEsl uy8/wYK1OlvgHQ9nXWva4tnLBGqe6QaBhYO7PBTMeLiMitemiWIm8i8kLu5X YOGIy+jWPh5u2iCmcT6ZifiOfTMaE0wUyR+Mus7L91sqXiHqIhOXN/AzQ0qZ kB6q7V/PZOLjUQXJZFsmnKMKelrvMOGXrLuJxOP1eZ2+KF+diR2jpxsVnJlo c828HhzLhNrMhrlGfibWYNVnHw0m1ivKkpXdmKCa5HOH+xlY8Kz9VcVPBm4M R6m36DKRGGM48j2fAfrM9USJJgZoz+dCLggzcaCvirQkhoFGe907J54ygGOe HauGGFi6zrJ+jQcDr3NZIR9OM/Bsdb9ybR4D9X6Ez9vAwN0lSV4L9RiYHdl7 0SuSgbDSQznWKxjw9bB1PSjAwMHUkibpwwzoC42kuk3Rsb96gU0GmY6845oK ZRsYmDrgERfUTIeOYqHxTDodokrJfu5/6XidMhEV+5KO5cGeWnsC6PCkitaK dtJxihsQkn6Fjp9k+TVPTemoT7sqW5hJh4Leb59iBzoGtAkSbCk6lN2+nD0a TEd3eIQbYRMd5TER/Ia0MYQpHy8XsKHjXvsSR4YgHansbdPR78cwSCNIvlOi w3LlQ8vflDFEmHNoA9fGoP/SxP3QjzEs8JDbIVU8Bo+05E5NuzHEnfzw6W/j GErep25WfzQGiz92taGrxzC1du3S7KQxBPxRUzH2GoOG06KP7ZOj2Df26Jid 3xg2Wr6TPWg+BtGPRRmry0fxr6xzpmNgxG0TOas4hi8S5+L9YkYh4B4okCY7 hlRK2X9hs6MgeSlGVbmM4uQ6hpMldxROmubTjwmjKGgkXpLSHEUF3TFniscn FdRKf/NqFPEqN86c/EWDfGYDX+LDUbTU8CocPorL1/SdCpppCPLQ5x3dUUSK D7T2OI/CZZBruTiRhi7VV1kcg1EYO7tVTujwon6KoaMnDdpMuV8PRUcxm8nO Xyg2CqU4+w1Z+jTEZkXbGFFpyJv2y5Jj0rDw62L5OUEaOKd/pY0W0HDWeC5R q5IGhtXnpZY9VOxR9/px5xYNa6PDYs0TaGjM8vqTkEnFS9aghY4LDYNkgXBn fxreLFwzyQmkgu/VvqRBLRoeK8UGnreiIeZY57CRORUunuVfIhfSYOMt4xml QoNfyc2Ou9JUfFqvZbqRl0foc5JL8h8q7GUNK4dGKZDhpMSTX1NRtUjFLr+b Cp0LE3mb8inwfy3BCb1KRbDdG9Omd1TIdqSmhYVT0H72+g5Veyq2Jm3RG7lF xVNxoQBVVwoWzWafythExQK92d/kM1TI2fnubtOjwDCCcEdFhAoisaS61YKK xPvdKwKkKPATn/vwkklBmte1WzXqVOi9COnW7R9B1v8uEg8XNLcpFqLCYO3e kIh7IxhS28P/IpUCvBCWfs/i8aavWEM0G4FUgY+6UigFYjva+7IaKdi+jlmr OD8Mi53xtqlOFAz3PEx5nk2BMe9Z9Xo3jKutZRdXb6Mgx/+Q++NbFOxUixQr PjWMgsP05Oc8XVdE5TfcPUPBrmz7fMGVwyA3yUUbDY/AKpvyNdyCArP1Socd OoZgQjvTa/BkBCtNMwovq1Ow+/WX3y8ih5AzX6SqbzcC9pDnFT8hCiw2lKd9 NRiC3DLBwG3CIzg/5RLZThjB3rd3dxt/GcSNDY41OtXDEFdjiJfeH4H1Rmfu nfRBTJlmSG4NGUaOi++zVzw+m9z19/ucBnHU5fsxbZ1hWD+cU30iMQI7rTkd NfFBNAeY5mpNDIHTcP1DJGEY9nn1fQG1A9gW8/D3xswh3P6zxNj//jAOaj++ Wn15AC8yqHs1jw1BbWtc0zG7YTh+OLlWQmsAYuWbEzRWDKHujILDPolhHN66 pdF1rB/B3WFMdeIgTj3PpBgShnCkgM/7TUI/GJPtumrRg1jQpeWlfn8ILrod kj9t+mEvqBi5znQQqcKfZ2XshnC0MLlw96J+lK/2Jq39PQBj7IpYKDGE43pe znGf+6ChX7pG+eMABgNaxKY6BuH2yZCP5tOHeDsR3zU+Awh5fTBx+B4vv4Fw hpZKHxZ4HilTVBuAHGVoXavtIDyKeyxD+3rhc/2ViAKlH0Uyp99/5vlyxihz sjm2F/0Jc06reHodrb5uz+oYgGdpwKMVZr3Y/WFPtpx9P75fu9wYd28A53aY 6nv87MGH5vgZWZF+PCxccDDcdgDe5ZJD+bk9UBylmy2v7cPm8TsjvuID8AXl Ov+pHkT/0nkkHdqHdiWZc64d/ThfmatqK9eDmWWRVKltffA+9Hxm771++JuE tiS1d8NNs1NL8ksvRGLUwvVt+3Gx2sqPE9GNDjPlq+LZvXhTnSeqKt6PINOV MvoG3TByPd8qeqIXlnMGCcs6+hD8ryGbJCMrsHLl0pW9YG2sUeG/14cr5kVH O1+SsSxW3HNJZw9unrTOm7Tpw9X6GwuVnMgIyzxaJHS3ByoJZKNBsT5cnrEK btckQ3Ek4krgkR7IOzxJvjfYiwuqUlMhfGSUyr4yoan3YJmk099dr3n+Ovae Xt/VBWe7dgHb2W6ItK08MXOpF2duPh/uzurC/K1vLSV13Vhwe7D6lXkvThae cogM6cLTqhUP1OO6MW/2XMV1WS9cGRqt2rZd0Jvf4fjYrRtTfMdvSlB7cHj5 1K4R5S6Qt5xctUC7G+xSJVYNz/cDu4s+353pRMC5WxSfv2RQgkYtL13pwb6L oZsNmzuxLD0nY6CNjF6djDcae3tgkWmaxUzuxPtB0lmLJDI6vnqIDsv2YFe3 sOLj852wk5nT+niWjIa36r4P6N3YIUCI22XeiS/7FH4oGZBRfoZDMMvvhv62 eJGvKzoRc3NXcawgGYUqb7fMXevGFg+X8ORxEjQrTof9Inchl+Id98amGxvj lX/urSShefau2Zn0LmQkac0cle+GWj3Ld+4RCZ6bPwiT/buQfHjqkBSHDOWZ XEbGaRKEPHvaTUy6ECed/7muiAx51UDXA0YkZKb9fpQr3oW7hIBVl2+QIeto 1MUnToJ5v5LTquFORNzdFqp5gAypm/xWuTQixqT2KN5624kQi7nhkTVkiBY2 VDkXEhFp5TX6PZjn36LinY8muyDEiNEXjiZCOfJB9gnLTpyrDHmxu7QLC5Yf fFfoSkRVaaF3u2wnTl7ZsWj+dhf+mK9UPaVNxLEfA1uMGCQc0f/rnnOoC3OB lCTJxUT8t5F/LquABPvvlQ3H13VhOiNzWUUvAckeqmXSESRY5oWvl/7WiQmy V7TXWwKMUqzCr+8nwcTL7E5DZSeYi7fyr7xGQH+P357J1SToqwtMBMd2gqb7 81LDAQKCJOKXOk8SsXmswWaTSycG3SsmA9QIkLUsITaUEqGeejuPur4TuRtE WsxmOlB4nRKvc4eI1S5WUo9nSXh558mnlOQOHCxe7JLmRMTyFaIBFnUkPOWu zZw368C3aQ0lMXUixLrayb8ekhBrlffIYbwdDzfYMYJnCBC4f1/v3XESwt9s v573qB2bTwW+YdYS8MfKPsFtEwlBIk0+Ikbt6EhK9Dv4iIAfgtK/ZH4T4X3O wcWD1gYfcoVu1QkCxmvILk1NRLi1UC2rbrdhqRh9fuNmAsbCnpRfeULEoQ0+ evLabXCMkb6m+6cDA0ZOaza7E2F9Z17lUm8rHv13dIl4Ygc6Z1eGj24h4rbH T5n6862YdDTSKlbqQLMooaF+goA6kzkBGZFW/Gur3F+1o2rtDdHX2QQsUJid PZnegnTB70ES2u0oMjA8EHOSAMz9YH3Y0YK/xwjJJZ/akGv75amfIgFXOr/3 8fc048int9UeO9uwt8WiLOtDBz7lfmu282tGgcRtpmRjK/RnP1j4qHdg9vZ0 SYpwM6Q83ZeW2bZi/VqFLp3n7dBxn3o7+aIJ3lUm2md6WrDcNurYr2XtOL/z a/KO7U1olFN0XHasBYtCpjj/fMld9SX2LrkRa/3ng8sZzZjOdL54628rODMT YQM+jbja3J3i6dOMEVIdv21gK9RI434aQo3oU86vlZ5pQtt/WjEy3BacyuGe uJzWAJ2Qe+yK0CYUaySuGDzegtRbHPtGwwbEdp4TO7e4CdmOi9JfdDdj6CTb VLarHpwNFluXxzQiPtxHy9O6GSvB0vHwrodZpArvV7YREbm9xVrVTXBcyVz3 UaAeKYN8oV5JDfDr37V7Rq8Jj37Qly9KrcO8zlCarEoDjgrkEEtzGkEgjAke MKiDQ8zn+uo39bDeIusasbYRS9+OzqWRapFHf8z13loPw6PXWZYJDbCMorG/ nquFiLG/hFxJHdSiuRckxBtw043aj8W18Ii30a3dVQfpQoe/3ZH1qN5BaYl9 XoPKSY0jvs21WECriE6erwOf3EjpkF4N5PcIhq20r8VXUY3lp/zqsP37UI4m sRoXU0Zf1vXVYNggLk2DUYugjsHnIWerQZqtaPQ7UYMW9/80p5xrUfh64F7z wmpo2iVNrGJX49ODM5+KiDWYvtF/TS65ClHZQVINftXILCOZXt1TA60TfefP bKsCjc9Bz3+uCnHs7R1mZdXw2t7rVtRRiR1O2i4K16oQLpN1RGRrNbJlew4I eFbi6XvR642CVfA1kWQQs6vAmiabOSyoxIwwJ+PCvUoc9w45/1SxChZJr85Z 6FXAzq2+WVG2EjYJ9N9H4ypRbZ+1j+FZjkOB5iOPdlTAqM721rollTDitQ+R SWVYqvqfOse6HPa0C2q9f8tRUPFCUrmjFNXdhf47XcqwydDC2J3LixdTv1Xw lyIoyrc0/lwphB7KO0x3lyJL8znZVacEm/73UJVgjFelsOoSKI0+K/rlUYwx FsXWNLoY5SZ14Utzi5GY8G98/n/x/wAuvpaE "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", TemplateBox[<|"color" -> RGBColor[0.1, 0.1, 0.1]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8`", ",", TemplateBox[<| "color" -> RGBColor[0.225356, 0.246889, 0.268731]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.6`", ",", TemplateBox[<| "color" -> RGBColor[0.333565, 0.367922, 0.391532]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3999999999999999`", ",", TemplateBox[<| "color" -> RGBColor[0.51593, 0.541278, 0.547958]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.19999999999999996`", ",", TemplateBox[<| "color" -> RGBColor[0.753644, 0.757794, 0.737969]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", TemplateBox[<| "color" -> RGBColor[0.917794, 0.920966, 0.881936]|>, "RGBColorSwatchTemplate"]}], "}"}]}], "}"}], ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1177]=",ExpressionUUID->"af187061-9e46-4bde-b49b-ca463daa26d1"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"star", "=", RowBox[{ RowBox[{"ResourceFunction", "[", "\"\\"", "]"}], "[", "\"\\"", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.969073103789139*^9, 3.9690731090401697`*^9}, 3.9690738826391983`*^9}, CellLabel-> "In[1178]:=",ExpressionUUID->"0812c6be-1541-4932-81d6-7dc5295d244f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"exptcoords", "[", "\"\\"", "]"}], "=", RowBox[{"{", RowBox[{"4.3", ",", RowBox[{"9", " ", "8", " ", "1.405", " ", SuperscriptBox["10", RowBox[{"-", "3"}]], "255.0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.969073813841177*^9, 3.969073821940838*^9}, { 3.969073897620322*^9, 3.96907396696504*^9}, {3.969073997805718*^9, 3.969074029474568*^9}, {3.969074204141646*^9, 3.969074243442439*^9}, { 3.96907429528272*^9, 3.969074296028678*^9}}, CellLabel-> "In[1179]:=",ExpressionUUID->"eff51670-d406-44a4-b438-2d2a1bbe78bb"], Cell[BoxData[ RowBox[{"{", RowBox[{"4.3`", ",", "25.7958`"}], "}"}]], "Output", CellLabel-> "Out[1179]=",ExpressionUUID->"3c15dfd9-ec0e-41eb-8de1-8c0fb26c4b6f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"plot", "[", "\"\\"", "]"}], "=", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"DensityPlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"PowerExpand", "@", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"aDQF", "[", "\"\\"", "]"}], "[", RowBox[{"\[Theta]ST", ",", "JT"}], "]"}], "/.", RowBox[{"\[Theta]ST", "->", RowBox[{"N", "[", RowBox[{"\[Theta]STdeg", " ", "\[Degree]"}], "]"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]STdeg", ",", "0", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"JT", ",", "1", ",", "200"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(ST\)]\) / \[Degree]\>\"", ",", "None"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "->", "16"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "->", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotPoints", "->", "100"}], ",", "\[IndentingNewLine]", RowBox[{"PlotLabel", "->", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0.25", ",", "1", ",", "2", ",", "5", ",", "10", ",", "20", ",", "40", ",", "100", ",", "200"}], "}"}], ",", "None"}], "}"}], ",", "Automatic"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ColorFunction", "->", RowBox[{"ColorData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], "]"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"exptcoords", "[", "\"\\"", "]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", "->", RowBox[{"{", RowBox[{ RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{"Yellow", ",", "star"}], "}"}], "]"}], ",", "Large"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ScalingFunctions", "->", RowBox[{"{", RowBox[{"None", ",", "\"\\""}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.9686494271143217`*^9, 3.968649481414373*^9}, { 3.9686496087625017`*^9, 3.968649779065383*^9}, {3.9686498751179533`*^9, 3.968649876052168*^9}, {3.9686499127148314`*^9, 3.968649934781023*^9}, { 3.968650184823433*^9, 3.968650212522874*^9}, 3.9686506079164753`*^9, { 3.9686506395949802`*^9, 3.968650645884974*^9}, {3.968650720134507*^9, 3.968650740532536*^9}, 3.968650776628346*^9, {3.968650928956662*^9, 3.968650943186326*^9}, 3.96865161766646*^9, {3.9686516607225018`*^9, 3.968651672367375*^9}, {3.968651721984611*^9, 3.9686517584885883`*^9}, { 3.96865183006065*^9, 3.968651845685339*^9}, {3.9686528159087763`*^9, 3.968652826925047*^9}, {3.96901520910387*^9, 3.969015236021202*^9}, { 3.969015500686777*^9, 3.969015505126626*^9}, {3.9690156071659946`*^9, 3.9690156714088078`*^9}, {3.969015712715014*^9, 3.969015715324134*^9}, { 3.96901576285259*^9, 3.969015862156475*^9}, {3.969016712320509*^9, 3.9690167428275414`*^9}, {3.9690167860783052`*^9, 3.969016797784127*^9}, 3.969016847047955*^9, {3.9690169366357403`*^9, 3.969016975050474*^9}, { 3.969072262959235*^9, 3.9690722853997583`*^9}, {3.969074262960126*^9, 3.969074279299507*^9}, {3.9690820396707582`*^9, 3.9690820543601103`*^9}, { 3.969082317744272*^9, 3.9690823327950993`*^9}}, CellLabel-> "In[1180]:=",ExpressionUUID->"fc06c197-67a0-461f-baec-57fd988a1f9b"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{}, {}}, {{}, {{{}, {}, { Hue[0.67, 0.6, 0.6], Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]], LineBox[{{4.3, 3.2502116879780534`}, {4.3, 3.2502116879780534`}}]}}, {{ Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]], GeometricTransformationBox[ InsetBox[ BoxData[ FormBox[ StyleBox[ GraphicsBox[{ RGBColor[1, 1, 0], PolygonBox[{{0, 0.9438289524745919}, {0.2119028023834478, 0.2916591860977535}, {0.8976346755189895, 0.2916591860977535}, { 0.3428659365677708, -0.11140389595821101`}, { 0.5547687389512186, -0.7635736623350494}, { 0, -0.3605105802790849}, {-0.5547687389512186, \ -0.7635736623350494}, {-0.3428659365677708, -0.11140389595821101`}, \ {-0.8976346755189895, 0.2916591860977535}, {-0.2119028023834478, 0.2916591860977535}}]}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.012833333333333334`], AbsoluteThickness[1.6], Thickness[Large], RGBColor[0., 0., 0.]]}, StripOnInput -> False], TraditionalForm]], {0., 0.}, Automatic, Offset[20]], {{{4.3, 3.2502116879780534`}}, {{4.3, 3.2502116879780534`}}}]}}}, {{}, {}}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}, AxesOrigin -> {0., Automatic}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[2], 0.6931471805599453], FormBox[ TagBox["2", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}, { NCache[ Log[100], 4.605170185988092], FormBox[ TagBox["100", HoldForm], TraditionalForm]}, { NCache[ Log[200], 5.298317366548036], FormBox[ TagBox["200", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox["\"J T\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox["\"J T\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(ST\\)]\\) / \[Degree]\"", TraditionalForm], None}}, FrameTicks -> {{{{-1.3862943611198906`, FormBox[ TagBox["0.25`", HoldForm], TraditionalForm]}, {0, FormBox[ TagBox["1", HoldForm], TraditionalForm]}, { NCache[ Log[2], 0.6931471805599453], FormBox[ TagBox["2", HoldForm], TraditionalForm]}, { NCache[ Log[5], 1.6094379124341003`], FormBox[ TagBox["5", HoldForm], TraditionalForm]}, { NCache[ Log[10], 2.302585092994046], FormBox[ TagBox["10", HoldForm], TraditionalForm]}, { NCache[ Log[20], 2.995732273553991], FormBox[ TagBox["20", HoldForm], TraditionalForm]}, { NCache[ Log[40], 3.6888794541139363`], FormBox[ TagBox["40", HoldForm], TraditionalForm]}, { NCache[ Log[100], 4.605170185988092], FormBox[ TagBox["100", HoldForm], TraditionalForm]}, { NCache[ Log[200], 5.298317366548036], FormBox[ TagBox["200", HoldForm], TraditionalForm]}}, None}, { Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], LabelStyle -> 16, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotLabel -> FormBox["\"PulsePol\"", TraditionalForm], PlotRange -> NCache[{{0, 30}, {0, Log[200]}}, {{0, 30}, {0, 5.298317366548036}}], PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Charting`ScaledTicks[{Log, Exp}]}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJxlV3k0ld/7pcGQjJEUioSkpMhUdkIRIUUJDYpSpkSJpFBK0SRFhDI1kCLK PM/DvZdrHu693BlFhVSffrfvv7+z1lnPu9ZeZz/77Oecs55Xyc3X3n0hHx9f E2/y8+a/72Bq+40HRyew0+pQXkzQBFQsMnqJ+uP48qDN4dv2Cexx76pXPjQB e+6eLodV4zi5q3Wdw6oJ2ITtHyrSnUBYLKej7w8XvdPNPwp/jsMhof2btfQE crRjWlwpXOx72VS3onccLvlWS2jT4+jv0mqgVnNRdaDxcXAhj6+tcc0l4jiE gkjV7hlcbFvU4D4YN46zTHO9pXnj0F0VWM6O4uJ1QZ2u8YVxnOev2ZcWy1tX LlvsfZaL1e61i1P3jyNo1c5T27zH8eBE8ccpay7iZGrI/JvHcU23LLjFahzl i1zfB2pxIVRflXFSbBxRtoYPjmuMYzzr79ufklyEXqwMrBvnItazKOuH0Djk rF5kh37nYFq1wlythYvHETrl0Uwu9kyapfP3cODRUyZz+xUXScnvu1bXcxHw gJly4zMHA1GldA5P78uiTdyCdC5e6EQ/E07iwE6/5KO1B28fxDf8eyO4IPRo Pom5ykEt6/ONXDMu3nPVV4yc4OJPcMdDyRMcGCR8cpBYy8WnxZmbAnZysUHR P/axKQe5lkXr/Pm5qFi91lx4NReHq6Sj5VQ5UJ7/+KNzhIN6g1Tn5384uHmq 6EayEAdP/hlXzkHbAQX/rYMc5Aseua7EZWOpc/7jJzxdXd6JtxqLOaC+/n0l o42NayIf3H8G/9uHbIprAgdiNilB6/PY+FGSp+vsxAEtLe7j9CUOtk+ZBOQ8 ZMPT693iMj0OOCWSrVGOHJyNG/PVDmRjWD6XrLicgylyLE1el6dDL+rcx0Ns HGh7m3HtOxtzX0R+vl/GQV3/+tMGhmw0hL4JpJHY+Ct8W3zPNBvToa1uZfJs bN/02tzsPRsCKgKqgwQ21ij5HjX5y8L74WyZzHtsiBpHbD//jg2bWskjdVQW 1t3Logv6sCF9mO+AQCwbIacLHCxrWUhE5kdPazZW+Yd6PvNi49WSQ/vbMlkQ +5p+o0WDDeW782Gbrdjozvlpvf82CxGpLx02CrOxPvNSfN16NhbtT7Ign2Nh zu7FuntMFjZXfn97RIgN7e/GZk42LHjxp/34WseCXv/5mi8MFo49oWJoMwvU 9yl19uksGH+f7Ivk4XcNI41OLGPB0e3544JwFnaLeX2V4+HFQ6p69B9MNEsl uy8/wYK1OlvgHQ9nXWva4tnLBGqe6QaBhYO7PBTMeLiMitemiWIm8i8kLu5X YOGIy+jWPh5u2iCmcT6ZifiOfTMaE0wUyR+Mus7L91sqXiHqIhOXN/AzQ0qZ kB6q7V/PZOLjUQXJZFsmnKMKelrvMOGXrLuJxOP1eZ2+KF+diR2jpxsVnJlo c828HhzLhNrMhrlGfibWYNVnHw0m1ivKkpXdmKCa5HOH+xlY8Kz9VcVPBm4M R6m36DKRGGM48j2fAfrM9USJJgZoz+dCLggzcaCvirQkhoFGe907J54ygGOe HauGGFi6zrJ+jQcDr3NZIR9OM/Bsdb9ybR4D9X6Ez9vAwN0lSV4L9RiYHdl7 0SuSgbDSQznWKxjw9bB1PSjAwMHUkibpwwzoC42kuk3Rsb96gU0GmY6845oK ZRsYmDrgERfUTIeOYqHxTDodokrJfu5/6XidMhEV+5KO5cGeWnsC6PCkitaK dtJxihsQkn6Fjp9k+TVPTemoT7sqW5hJh4Leb59iBzoGtAkSbCk6lN2+nD0a TEd3eIQbYRMd5TER/Ia0MYQpHy8XsKHjXvsSR4YgHansbdPR78cwSCNIvlOi w3LlQ8vflDFEmHNoA9fGoP/SxP3QjzEs8JDbIVU8Bo+05E5NuzHEnfzw6W/j GErep25WfzQGiz92taGrxzC1du3S7KQxBPxRUzH2GoOG06KP7ZOj2Df26Jid 3xg2Wr6TPWg+BtGPRRmry0fxr6xzpmNgxG0TOas4hi8S5+L9YkYh4B4okCY7 hlRK2X9hs6MgeSlGVbmM4uQ6hpMldxROmubTjwmjKGgkXpLSHEUF3TFniscn FdRKf/NqFPEqN86c/EWDfGYDX+LDUbTU8CocPorL1/SdCpppCPLQ5x3dUUSK D7T2OI/CZZBruTiRhi7VV1kcg1EYO7tVTujwon6KoaMnDdpMuV8PRUcxm8nO Xyg2CqU4+w1Z+jTEZkXbGFFpyJv2y5Jj0rDw62L5OUEaOKd/pY0W0HDWeC5R q5IGhtXnpZY9VOxR9/px5xYNa6PDYs0TaGjM8vqTkEnFS9aghY4LDYNkgXBn fxreLFwzyQmkgu/VvqRBLRoeK8UGnreiIeZY57CRORUunuVfIhfSYOMt4xml QoNfyc2Ou9JUfFqvZbqRl0foc5JL8h8q7GUNK4dGKZDhpMSTX1NRtUjFLr+b Cp0LE3mb8inwfy3BCb1KRbDdG9Omd1TIdqSmhYVT0H72+g5Veyq2Jm3RG7lF xVNxoQBVVwoWzWafythExQK92d/kM1TI2fnubtOjwDCCcEdFhAoisaS61YKK xPvdKwKkKPATn/vwkklBmte1WzXqVOi9COnW7R9B1v8uEg8XNLcpFqLCYO3e kIh7IxhS28P/IpUCvBCWfs/i8aavWEM0G4FUgY+6UigFYjva+7IaKdi+jlmr OD8Mi53xtqlOFAz3PEx5nk2BMe9Z9Xo3jKutZRdXb6Mgx/+Q++NbFOxUixQr PjWMgsP05Oc8XVdE5TfcPUPBrmz7fMGVwyA3yUUbDY/AKpvyNdyCArP1Socd OoZgQjvTa/BkBCtNMwovq1Ow+/WX3y8ih5AzX6SqbzcC9pDnFT8hCiw2lKd9 NRiC3DLBwG3CIzg/5RLZThjB3rd3dxt/GcSNDY41OtXDEFdjiJfeH4H1Rmfu nfRBTJlmSG4NGUaOi++zVzw+m9z19/ucBnHU5fsxbZ1hWD+cU30iMQI7rTkd NfFBNAeY5mpNDIHTcP1DJGEY9nn1fQG1A9gW8/D3xswh3P6zxNj//jAOaj++ Wn15AC8yqHs1jw1BbWtc0zG7YTh+OLlWQmsAYuWbEzRWDKHujILDPolhHN66 pdF1rB/B3WFMdeIgTj3PpBgShnCkgM/7TUI/GJPtumrRg1jQpeWlfn8ILrod kj9t+mEvqBi5znQQqcKfZ2XshnC0MLlw96J+lK/2Jq39PQBj7IpYKDGE43pe znGf+6ChX7pG+eMABgNaxKY6BuH2yZCP5tOHeDsR3zU+Awh5fTBx+B4vv4Fw hpZKHxZ4HilTVBuAHGVoXavtIDyKeyxD+3rhc/2ViAKlH0Uyp99/5vlyxihz sjm2F/0Jc06reHodrb5uz+oYgGdpwKMVZr3Y/WFPtpx9P75fu9wYd28A53aY 6nv87MGH5vgZWZF+PCxccDDcdgDe5ZJD+bk9UBylmy2v7cPm8TsjvuID8AXl Ov+pHkT/0nkkHdqHdiWZc64d/ThfmatqK9eDmWWRVKltffA+9Hxm771++JuE tiS1d8NNs1NL8ksvRGLUwvVt+3Gx2sqPE9GNDjPlq+LZvXhTnSeqKt6PINOV MvoG3TByPd8qeqIXlnMGCcs6+hD8ryGbJCMrsHLl0pW9YG2sUeG/14cr5kVH O1+SsSxW3HNJZw9unrTOm7Tpw9X6GwuVnMgIyzxaJHS3ByoJZKNBsT5cnrEK btckQ3Ek4krgkR7IOzxJvjfYiwuqUlMhfGSUyr4yoan3YJmk099dr3n+Ovae Xt/VBWe7dgHb2W6ItK08MXOpF2duPh/uzurC/K1vLSV13Vhwe7D6lXkvThae cogM6cLTqhUP1OO6MW/2XMV1WS9cGRqt2rZd0Jvf4fjYrRtTfMdvSlB7cHj5 1K4R5S6Qt5xctUC7G+xSJVYNz/cDu4s+353pRMC5WxSfv2RQgkYtL13pwb6L oZsNmzuxLD0nY6CNjF6djDcae3tgkWmaxUzuxPtB0lmLJDI6vnqIDsv2YFe3 sOLj852wk5nT+niWjIa36r4P6N3YIUCI22XeiS/7FH4oGZBRfoZDMMvvhv62 eJGvKzoRc3NXcawgGYUqb7fMXevGFg+X8ORxEjQrTof9Inchl+Id98amGxvj lX/urSShefau2Zn0LmQkac0cle+GWj3Ld+4RCZ6bPwiT/buQfHjqkBSHDOWZ XEbGaRKEPHvaTUy6ECed/7muiAx51UDXA0YkZKb9fpQr3oW7hIBVl2+QIeto 1MUnToJ5v5LTquFORNzdFqp5gAypm/xWuTQixqT2KN5624kQi7nhkTVkiBY2 VDkXEhFp5TX6PZjn36LinY8muyDEiNEXjiZCOfJB9gnLTpyrDHmxu7QLC5Yf fFfoSkRVaaF3u2wnTl7ZsWj+dhf+mK9UPaVNxLEfA1uMGCQc0f/rnnOoC3OB lCTJxUT8t5F/LquABPvvlQ3H13VhOiNzWUUvAckeqmXSESRY5oWvl/7WiQmy V7TXWwKMUqzCr+8nwcTL7E5DZSeYi7fyr7xGQH+P357J1SToqwtMBMd2gqb7 81LDAQKCJOKXOk8SsXmswWaTSycG3SsmA9QIkLUsITaUEqGeejuPur4TuRtE WsxmOlB4nRKvc4eI1S5WUo9nSXh558mnlOQOHCxe7JLmRMTyFaIBFnUkPOWu zZw368C3aQ0lMXUixLrayb8ekhBrlffIYbwdDzfYMYJnCBC4f1/v3XESwt9s v573qB2bTwW+YdYS8MfKPsFtEwlBIk0+Ikbt6EhK9Dv4iIAfgtK/ZH4T4X3O wcWD1gYfcoVu1QkCxmvILk1NRLi1UC2rbrdhqRh9fuNmAsbCnpRfeULEoQ0+ evLabXCMkb6m+6cDA0ZOaza7E2F9Z17lUm8rHv13dIl4Ygc6Z1eGj24h4rbH T5n6862YdDTSKlbqQLMooaF+goA6kzkBGZFW/Gur3F+1o2rtDdHX2QQsUJid PZnegnTB70ES2u0oMjA8EHOSAMz9YH3Y0YK/xwjJJZ/akGv75amfIgFXOr/3 8fc048int9UeO9uwt8WiLOtDBz7lfmu282tGgcRtpmRjK/RnP1j4qHdg9vZ0 SYpwM6Q83ZeW2bZi/VqFLp3n7dBxn3o7+aIJ3lUm2md6WrDcNurYr2XtOL/z a/KO7U1olFN0XHasBYtCpjj/fMld9SX2LrkRa/3ng8sZzZjOdL54628rODMT YQM+jbja3J3i6dOMEVIdv21gK9RI434aQo3oU86vlZ5pQtt/WjEy3BacyuGe uJzWAJ2Qe+yK0CYUaySuGDzegtRbHPtGwwbEdp4TO7e4CdmOi9JfdDdj6CTb VLarHpwNFluXxzQiPtxHy9O6GSvB0vHwrodZpArvV7YREbm9xVrVTXBcyVz3 UaAeKYN8oV5JDfDr37V7Rq8Jj37Qly9KrcO8zlCarEoDjgrkEEtzGkEgjAke MKiDQ8zn+uo39bDeIusasbYRS9+OzqWRapFHf8z13loPw6PXWZYJDbCMorG/ nquFiLG/hFxJHdSiuRckxBtw043aj8W18Ii30a3dVQfpQoe/3ZH1qN5BaYl9 XoPKSY0jvs21WECriE6erwOf3EjpkF4N5PcIhq20r8VXUY3lp/zqsP37UI4m sRoXU0Zf1vXVYNggLk2DUYugjsHnIWerQZqtaPQ7UYMW9/80p5xrUfh64F7z wmpo2iVNrGJX49ODM5+KiDWYvtF/TS65ClHZQVINftXILCOZXt1TA60TfefP bKsCjc9Bz3+uCnHs7R1mZdXw2t7rVtRRiR1O2i4K16oQLpN1RGRrNbJlew4I eFbi6XvR642CVfA1kWQQs6vAmiabOSyoxIwwJ+PCvUoc9w45/1SxChZJr85Z 6FXAzq2+WVG2EjYJ9N9H4ypRbZ+1j+FZjkOB5iOPdlTAqM721rollTDitQ+R SWVYqvqfOse6HPa0C2q9f8tRUPFCUrmjFNXdhf47XcqwydDC2J3LixdTv1Xw lyIoyrc0/lwphB7KO0x3lyJL8znZVacEm/73UJVgjFelsOoSKI0+K/rlUYwx FsXWNLoY5SZ14Utzi5GY8G98/n/x/wAuvpaE "], {{ Rational[-15, 2], Rational[-225, 2]}, { Rational[15, 2], Rational[225, 2]}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[-225, 2]}, { Rational[-15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[225, 2]}, { Rational[15, 2], Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5, 112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -112.5}, {7.5, 112.5}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -112.5}, Offset[{4., 0}, {7.5, -112.5}]}, {{7.5, -67.5}, Offset[{4., 0}, {7.5, -67.5}]}, {{7.5, -22.5}, Offset[{4., 0}, {7.5, -22.5}]}, {{7.5, 22.5}, Offset[{4., 0}, {7.5, 22.5}]}, {{7.5, 67.5}, Offset[{4., 0}, {7.5, 67.5}]}, {{7.5, 112.5}, Offset[{4., 0}, {7.5, 112.5}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -101.25}, Offset[{2.5, 0.}, {7.5, -101.25}]}, {{7.5, -90.}, Offset[{2.5, 0.}, {7.5, -90.}]}, {{7.5, -78.75}, Offset[{2.5, 0.}, {7.5, -78.75}]}, {{7.5, -56.25}, Offset[{2.5, 0.}, {7.5, -56.25}]}, {{7.5, -45.}, Offset[{2.5, 0.}, {7.5, -45.}]}, {{7.5, -33.75}, Offset[{2.5, 0.}, {7.5, -33.75}]}, {{7.5, -11.25}, Offset[{2.5, 0.}, {7.5, -11.25}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 11.250000000000014`}, Offset[{2.5, 0.}, {7.5, 11.250000000000014`}]}, {{7.5, 33.75}, Offset[{2.5, 0.}, {7.5, 33.75}]}, {{7.5, 45.}, Offset[{2.5, 0.}, {7.5, 45.}]}, {{7.5, 56.25}, Offset[{2.5, 0.}, {7.5, 56.25}]}, {{7.5, 78.75}, Offset[{2.5, 0.}, {7.5, 78.75}]}, {{7.5, 90.}, Offset[{2.5, 0.}, {7.5, 90.}]}, {{7.5, 101.25}, Offset[{2.5, 0.}, {7.5, 101.25}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 22.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 67.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 112.5}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1], FontSize -> 16], Directive[ Opacity[1], FontSize -> 16]}}, StripOnInput -> False], { "GraphicsLabel"}, StripOnInput -> False]}, { "GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 225}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontSize -> 16, FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", TemplateBox[<|"color" -> RGBColor[0.1, 0.1, 0.1]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8`", ",", TemplateBox[<| "color" -> RGBColor[0.225356, 0.246889, 0.268731]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.6`", ",", TemplateBox[<| "color" -> RGBColor[0.333565, 0.367922, 0.391532]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3999999999999999`", ",", TemplateBox[<| "color" -> RGBColor[0.51593, 0.541278, 0.547958]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.19999999999999996`", ",", TemplateBox[<| "color" -> RGBColor[0.753644, 0.757794, 0.737969]|>, "RGBColorSwatchTemplate"]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", TemplateBox[<| "color" -> RGBColor[0.917794, 0.920966, 0.881936]|>, "RGBColorSwatchTemplate"]}], "}"}]}], "}"}], ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", "16"}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "225"}], ",", RowBox[{"Charting`AxisLabel", "\[Rule]", "None"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1180]=",ExpressionUUID->"d7771f15-5b0a-4960-b2e4-90e55b1c27bc"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["PulsePol transformation", "Chapter", CellChangeTimes->{{3.963042943915021*^9, 3.963042952378562*^9}, { 3.963051166848508*^9, 3.963051167271718*^9}, {3.969181639658972*^9, 3.9691816454259577`*^9}},ExpressionUUID->"8bfc1f6d-9bbd-40c3-99ce-\ caf92ea230ba"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetSpinSystem", "[", "2", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"SetOperatorBasis", "[", RowBox[{"CartesianProductOperatorBasis", "[", "]"}], "]"}]}], "Input", CellChangeTimes->{{3.963042899098922*^9, 3.9630429277001133`*^9}}, CellLabel-> "In[1181]:=",ExpressionUUID->"64b54d4a-e7c1-460a-8c84-59b1ff36bb7e"], Cell[BoxData[ TemplateBox[{ "SetSpinSystem", "set", "\"the spin system has been set to \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}]\\)\"", 2, 1182, 52, 25793684326715730430, "Local", "QM`Hilbert`SetSpinSystem"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1181]:=",ExpressionUUID->"648128dd-1e1d-4753-b138-baddc5b02b42"], Cell[BoxData[ TemplateBox[{ "SetOperatorBasis", "alreadyset", "\"The operator basis is already set to \ \\!\\(\\*RowBox[{\\\"CartesianProductOperatorBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"Sorted\\\", \\\"\ \[Rule]\\\", \\\"SpinProductRank\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 1183, 53, 25793684326715730430, "Local", "QM`Liouville`SetOperatorBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1181]:=",ExpressionUUID->"eea16c3b-aea4-4fd5-88e4-add7bdbe5132"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]3", " ", "=", " ", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}], RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", ")"}]}]}]], "Input", CellChangeTimes->{{3.969181665990782*^9, 3.9691817404627523`*^9}}, CellLabel-> "In[1184]:=",ExpressionUUID->"3d6b61f5-0623-41d0-a6bb-edc9cb869886"], Cell[BoxData[ RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}]}], ")"}], "/", "2"}], "-", RowBox[{ RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}]}], ")"}], "/", "2"}]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "Out[1184]=",ExpressionUUID->"b295bafc-fdd2-4f22-ab1d-cc111e933c83"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]3", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.96918176100217*^9, 3.969181772294639*^9}}, CellLabel-> "In[1185]:=",ExpressionUUID->"d15ac049-a2d7-4f1d-bebc-c8dfafc84bed"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], SqrtBox["2"]]}], "0"}, {"0", "0", FractionBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], SqrtBox["2"]], "0"}, { FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], SqrtBox["2"]], FractionBox[ RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}], SqrtBox["2"]], "0", FractionBox["1", SqrtBox["2"]]}, {"0", "0", FractionBox["1", SqrtBox["2"]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 1, 2, 5, 6}, {{3}, {3}, {4}, {2}, {1}, {3}}}, { Complex[0, -1] 2^Rational[-1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], 2^Rational[-1, 2] Cos[Rational[1, 2] $CellContext`\[Beta]], 2^Rational[-1, 2], 2^Rational[-1, 2] Cos[Rational[1, 2] $CellContext`\[Beta]], Complex[0, 1] 2^Rational[-1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], 2^ Rational[-1, 2]}}]]]]], "Output", CellLabel-> "Out[1185]//MatrixForm=",ExpressionUUID->"ab137841-f602-49bc-b7d1-\ b4a88f5bdb43"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]4", "=", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "\"\\""}], "}"}], "]"}], "[", "\[Rho]3", "]"}]}]], "Input", CellChangeTimes->{{3.9691818784287043`*^9, 3.969181890469767*^9}, { 3.9691820100684357`*^9, 3.969182010309692*^9}}, CellLabel-> "In[1186]:=",ExpressionUUID->"3e54c84b-bc7f-4aa7-852a-32c7e418aee5"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Beta]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Beta]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], ")"}]}], "+", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}], " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Alpha]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "+", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Alpha]\ \[RightAngleBracket]\"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}]}], "+", RowBox[{"2", " ", "\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm], "-", TagBox[ RowBox[{ TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"\[Pi]", "/", "2"}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\ \"\>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"1", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ TagBox[ RowBox[{ SubscriptBox["R", RowBox[{"2", "x"}]], "(", RowBox[{"-", RowBox[{"(", RowBox[{"\[Pi]", "/", "2"}], ")"}]}], ")"}], DisplayForm], DisplayForm]}], DisplayForm]}], ")"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "2"}], "]"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}]], "Output", CellLabel-> "Out[1186]=",ExpressionUUID->"7c33528c-a17d-482a-acf9-394b31dedcec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MatrixRepresentation", "[", "\[Rho]4", "]"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.9691818992594643`*^9, 3.9691818994867563`*^9}}, CellLabel-> "In[1187]:=",ExpressionUUID->"6083a1e9-87bd-4005-80ba-57267ba87d2b"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], "0", FractionBox[ RowBox[{"1", "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SqrtBox["2"]}], "+", RowBox[{"\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}, {"0", FractionBox[ RowBox[{"1", "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0", FractionBox[ RowBox[{"1", "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]]}, { RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Sin", "[", FractionBox["\[Beta]", "2"], "]"}]}], FractionBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SqrtBox["2"]}], "-", RowBox[{"\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}]}], RowBox[{"2", " ", SqrtBox["2"]}]], FractionBox[ RowBox[{"1", "+", RowBox[{"Cos", "[", FractionBox["\[Beta]", "2"], "]"}]}], RowBox[{"2", " ", SqrtBox["2"]}]], "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 5, 7, 10}, {{2}, {4}, {1}, {4}, {3}, {2}, {4}, {1}, {2}, { 3}}}, {Rational[1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], Rational[1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], Rational[1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], Rational[1, 2] 2^Rational[-1, 2] (Complex[0, -1] 2^Rational[1, 2] + Complex[0, 1] 2^Rational[1, 2] Cos[Rational[1, 2] $CellContext`\[Beta]]), Rational[1, 2] 2^Rational[-1, 2] (1 + Cos[Rational[1, 2] $CellContext`\[Beta]]), Rational[1, 2] 2^Rational[-1, 2] (1 + Cos[Rational[1, 2] $CellContext`\[Beta]]), Rational[1, 2] 2^Rational[-1, 2] (1 + Cos[Rational[1, 2] $CellContext`\[Beta]]), Rational[1, 2] Sin[Rational[1, 2] $CellContext`\[Beta]], Rational[1, 2] 2^Rational[-1, 2] (Complex[0, 1] 2^Rational[1, 2] + Complex[0, -1] 2^Rational[1, 2] Cos[Rational[1, 2] $CellContext`\[Beta]]), Rational[1, 2] 2^Rational[-1, 2] (1 + Cos[Rational[1, 2] $CellContext`\[Beta]])}}]]]]], "Output", CellLabel-> "Out[1187]//MatrixForm=",ExpressionUUID->"a0f95b91-56fc-474a-969a-\ 75aa11125a20"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]4", "->", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9691820180665503`*^9, 3.969182043580351*^9}}, CellLabel-> "In[1188]:=",ExpressionUUID->"14e769e7-8299-4897-a0b8-f2b950edde62"], Cell[BoxData[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "4"}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1188]=",ExpressionUUID->"9b07aff5-a1d5-44ae-b8db-7c704eee64b9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{"\[Rho]4", "->", RowBox[{ RowBox[{"Ket", "[", "2", "]"}], ".", RowBox[{"Bra", "[", "4", "]"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.969182262165451*^9, 3.9691822852261963`*^9}}, CellLabel-> "In[1189]:=",ExpressionUUID->"b626b9a1-26df-4d92-bf0d-22ddaa63af7f"], Cell[BoxData[ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"\[Beta]", "/", "4"}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1189]=",ExpressionUUID->"bce573c0-354b-4435-a053-d188503fbecc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["cSLIC avHam theory (from Mohamed)", "Chapter",ExpressionUUID->"7256d7f6-f390-4a88-89ab-3d9d888a5cf0"], Cell[CellGroupData[{ Cell["setup", "Section",ExpressionUUID->"a8deb5a2-029f-4c82-ab1c-252865415769"], Cell[BoxData[ RowBox[{"Needs", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[1190]:=",ExpressionUUID->"b4b287b5-bf88-4fac-b895-8ab02babcaa4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetSpinSystem", "[", "2", "]"}]], "Input", CellLabel-> "In[1191]:=",ExpressionUUID->"88c00b8a-9145-4c20-b610-7cf847f7de77"], Cell[BoxData[ TemplateBox[{ "SetSpinSystem", "set", "\"the spin system has been set to \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}]\\)\"", 2, 1191, 54, 25793684326715730430, "Local", "QM`Hilbert`SetSpinSystem"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1191]:=",ExpressionUUID->"8d4056d2-791d-437e-8832-33bf3e6cf09d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetBasis", "[", RowBox[{"SingletTripletBasis", "[", "]"}], "]"}]], "Input", CellLabel-> "In[1192]:=",ExpressionUUID->"874987bd-4252-4d58-94cf-141c90560ddc"], Cell[BoxData[ TemplateBox[{ "SetBasis", "alreadyset", "\"The basis is already set to \ \\!\\(\\*RowBox[{\\\"SingletTripletBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"BasisLabels\\\", \ \\\"\[Rule]\\\", \\\"Automatic\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 1192, 55, 25793684326715730430, "Local", "QM`Hilbert`SetBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1192]:=",ExpressionUUID->"173a5a52-2188-45b1-9b77-9248ad288c39"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetOperatorBasis", "[", RowBox[{"CartesianProductOperatorBasis", "[", "]"}], "]"}]], "Input", CellLabel-> "In[1193]:=",ExpressionUUID->"548a80d2-31da-4120-a439-610384b92269"], Cell[BoxData[ TemplateBox[{ "SetOperatorBasis", "alreadyset", "\"The operator basis is already set to \ \\!\\(\\*RowBox[{\\\"CartesianProductOperatorBasis\\\", \\\"[\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \ \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", FractionBox[\\\"1\\\", \\\"2\ \\\"]}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"Sorted\\\", \\\"\ \[Rule]\\\", \\\"SpinProductRank\\\"}]}], \\\"]\\\"}]\\). No action has been \ taken.\"", 2, 1193, 56, 25793684326715730430, "Local", "QM`Liouville`SetOperatorBasis"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1193]:=",ExpressionUUID->"64fc7885-3596-4a59-95b6-9444df11b51e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Hamiltonian terms", "Section",ExpressionUUID->"8c2824e4-8ff8-4dd4-96f1-18e4e25e5797"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HJ", " ", "=", " ", RowBox[{"\[Omega]J", " ", RowBox[{ RowBox[{"opI", "[", "1", "]"}], ".", RowBox[{"opI", "[", "2", "]"}]}]}]}]], "Input", CellLabel-> "In[1194]:=",ExpressionUUID->"1fad59b4-3da4-44cb-b5fd-98fdedbfacfd"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], " ", RowBox[{"(", TagBox[ RowBox[{ TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "1"], DisplayForm], AdjustmentBox["\[Bullet]", BoxMargins->{{-0.3, 0}, {0, 0}}], TagBox[ SubscriptBox[ OverscriptBox["\<\"I\"\>", "\[RightVector]"], "2"], DisplayForm]}], DisplayForm], ")"}]}]], "Output", CellLabel-> "Out[1194]=",ExpressionUUID->"a837428e-8084-4f03-8cd6-c1cd76bd30c3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"H\[CapitalDelta]", " ", "=", " ", RowBox[{"\[Omega]\[CapitalDelta]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", "\"\\""}], "]"}]}]}]], "Input",\ CellLabel-> "In[1195]:=",ExpressionUUID->"134c50f4-0b65-4f14-ac76-d0db88290ed1"], Cell[BoxData[ RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Beta]\[Alpha]\[RightAngleBracket]\"\ \>", ".", "\<\"<\[Beta]\[Alpha]|\"\>"}], "/", "2"}], ")"}]}], "+", RowBox[{ RowBox[{"\<\"\[LeftBracketingBar]\[Alpha]\[Beta]\[RightAngleBracket]\"\>\ ", ".", "\<\"<\[Alpha]\[Beta]|\"\>"}], "/", "2"}]}], ")"}]}]], "Output", CellLabel-> "Out[1195]=",ExpressionUUID->"9c2b0054-0629-4126-9876-c4398de0b614"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["piecewise definition of rf field for cSLIC", "Section",ExpressionUUID->"9026b92a-4f42-4807-ad7f-f5fdc98dc114"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"\[Omega]strong", "/", RowBox[{"(", RowBox[{"\[Omega]strong", "+", "\[Omega]J"}], ")"}]}], " ", "==", "\[Alpha]"}], ",", "\[Omega]strong"}], "]"}]], "Input", CellLabel-> "In[1196]:=",ExpressionUUID->"8467fe8b-6d48-4a09-861d-0b71fb6bfc58"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\[Omega]strong", "\[Rule]", RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Alpha]"}], ")"}]}], ")"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[1196]=",ExpressionUUID->"24e7d3ba-9bf9-423e-966c-ed7158df7089"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]", "[", "t_", "]"}], "=", RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Omega]a", " ", "t"}], ",", RowBox[{"0", "<=", "t", "<=", "\[Tau]a"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]b"}], " ", RowBox[{"(", RowBox[{"t", "-", "\[Tau]a"}], ")"}]}], "+", RowBox[{"\[Omega]a", " ", "\[Tau]a"}]}], ",", RowBox[{"\[Tau]a", "<", "t", "<=", RowBox[{"\[Tau]a", "+", "\[Tau]b"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Omega]a", " ", RowBox[{"(", RowBox[{"t", "-", "\[Tau]a", "-", "\[Tau]b"}], ")"}]}], "-", RowBox[{"\[Omega]b", " ", "\[Tau]b"}], " ", "+", RowBox[{"\[Omega]a", " ", "\[Tau]a"}]}], ",", RowBox[{ RowBox[{"\[Tau]a", "+", "\[Tau]b"}], "<", "t", "<=", RowBox[{ RowBox[{"2", "\[Tau]a"}], "+", "\[Tau]b"}]}]}], "}"}]}], "}"}], "]"}]}]], "Input", CellLabel-> "In[1197]:=",ExpressionUUID->"75ea49f1-cdf4-4da4-9b07-bf2a55b6bfca"], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{"t", " ", "\[Omega]a"}], RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]a"}]}, { RowBox[{ RowBox[{"\[Tau]a", " ", "\[Omega]a"}], "-", RowBox[{ RowBox[{"(", RowBox[{"t", "-", "\[Tau]a"}], ")"}], " ", "\[Omega]b"}]}], RowBox[{"\[Tau]a", "<", "t", "\[LessEqual]", RowBox[{"\[Tau]a", "+", "\[Tau]b"}]}]}, { RowBox[{ RowBox[{"\[Tau]a", " ", "\[Omega]a"}], "+", RowBox[{ RowBox[{"(", RowBox[{"t", "-", "\[Tau]a", "-", "\[Tau]b"}], ")"}], " ", "\[Omega]a"}], "-", RowBox[{"\[Tau]b", " ", "\[Omega]b"}]}], RowBox[{ RowBox[{"\[Tau]a", "+", "\[Tau]b"}], "<", "t", "\[LessEqual]", RowBox[{ RowBox[{"2", " ", "\[Tau]a"}], "+", "\[Tau]b"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]], "Output", CellLabel-> "Out[1197]=",ExpressionUUID->"2eab889e-c941-4058-94cf-9134ea7ec6c0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["cSLIC interaction frame Hamiltonian", "Section",ExpressionUUID->"3ee80749-a68e-49a4-850c-7ffa8b1fdb22"], Cell[BoxData[""], "Input", CellLabel-> "In[1198]:=",ExpressionUUID->"de24e827-a692-45e4-bc60-6eba9d3aa668"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"assumptions", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]b", "<", "\[Tau]a"}], ",", RowBox[{"\[Omega]J", "\[Element]", "Reals"}], ",", RowBox[{"\[Tau]a", "\[Element]", "PositiveReals"}], ",", RowBox[{"\[Tau]b", "\[Element]", "PositiveReals"}], ",", RowBox[{"t", "\[Element]", "PositiveReals"}], ",", RowBox[{"\[Omega]a", "\[Element]", "Reals"}], ",", RowBox[{"\[Omega]b", "\[Element]", "Reals"}], ",", RowBox[{"\[Omega]strong", "\[Element]", "Reals"}], ",", RowBox[{"t", "\[Element]", "PositiveReals"}], ",", RowBox[{"\[Epsilon]rf", "\[Element]", "Reals"}], ",", RowBox[{ RowBox[{"\[Alpha]", "\[Element]", "PositiveReals"}], "&&", RowBox[{"q", "\[Element]", "PositiveReals"}]}]}], "}"}]}]], "Input", CellLabel-> "In[1199]:=",ExpressionUUID->"c9ed90ad-1c7b-4576-a61e-5c780c0017f2"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Tau]b", "<", "\[Tau]a"}], ",", RowBox[{ SubscriptBox["\[Omega]", "\<\"J\"\>"], "\[Element]", TemplateBox[{}, "Reals"]}], ",", RowBox[{ RowBox[{"\[Tau]a", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"\[Tau]a", ">", "0"}]}], ",", RowBox[{ RowBox[{"\[Tau]b", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"\[Tau]b", ">", "0"}]}], ",", RowBox[{ RowBox[{"t", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"t", ">", "0"}]}], ",", RowBox[{"\[Omega]a", "\[Element]", TemplateBox[{}, "Reals"]}], ",", RowBox[{"\[Omega]b", "\[Element]", TemplateBox[{}, "Reals"]}], ",", RowBox[{"\[Omega]strong", "\[Element]", TemplateBox[{}, "Reals"]}], ",", RowBox[{ RowBox[{"t", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"t", ">", "0"}]}], ",", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], "\[Element]", TemplateBox[{}, "Reals"]}], ",", RowBox[{ RowBox[{"\[Alpha]", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"\[Alpha]", ">", "0"}], "&&", RowBox[{"q", "\[Element]", TemplateBox[{}, "Reals"]}], "&&", RowBox[{"q", ">", "0"}]}]}], "}"}]], "Output", CellLabel-> "Out[1199]=",ExpressionUUID->"c31cf74a-d72d-4e13-b72d-7a6a664529a6"] }, Open ]], Cell[CellGroupData[{ Cell["useful pre-simplification", "Subsection",ExpressionUUID->"ef526673-76b4-4470-8326-5ebf6da35860"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"W\[Epsilon]", "[", "t_", "]"}], "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"MatrixRepresentation", "@", RowBox[{"RotationOperator", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", RowBox[{"\[Pi]", "/", "2"}]}], "}"}], "]"}]}], ".", RowBox[{"MatrixRepresentation", "@", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "HJ", " ", "t"}], "]"}]}], ".", RowBox[{"MatrixRepresentation", "@", RowBox[{"RotationOperator", "[", RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"\[Phi]", "[", "t", "]"}]}], ",", "\"\\""}], "}"}], "]"}]}]}], ")"}], "//", "Normal"}], ")"}], ",", "assumptions"}], "]"}]}], ";"}]], "Input", CellLabel-> "In[1200]:=",ExpressionUUID->"3299f6c3-e4e7-4f7d-850f-554c5cfb0a60"] }, Open ]], Cell[CellGroupData[{ Cell["interaction frame Hamiltonian", "Subsection",ExpressionUUID->"9708921a-c863-46b7-8324-a5a652df63ca"], Cell[BoxData[ RowBox[{ RowBox[{"integrand", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"Adjoint", "[", RowBox[{"W\[Epsilon]", "[", "t", "]"}], "]"}], ".", RowBox[{"MatrixRepresentation", "[", "H\[CapitalDelta]", "]"}], ".", RowBox[{"W\[Epsilon]", "[", "t", "]"}]}], ",", "assumptions"}], "]"}]}], ";"}]], "Input", CellLabel-> "In[1201]:=",ExpressionUUID->"e7a27f82-0c53-43ef-a2ea-a5dbf909d6d3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["cSLIC average Hamiltonian", "Section",ExpressionUUID->"0f1e027f-c92c-495c-a1ed-632185adbe2a"], Cell[CellGroupData[{ Cell["(splitting up the integral makes it faster.)", "Subsection",ExpressionUUID->"ff915701-9d9c-4fa0-a54c-d6957a84e4b2"], Cell[BoxData[ RowBox[{ RowBox[{"integral", "=", RowBox[{ RowBox[{"(", RowBox[{"1", "/", RowBox[{"(", RowBox[{ RowBox[{"2", "\[Tau]a"}], "+", "\[Tau]b"}], ")"}]}], ")"}], RowBox[{"(", RowBox[{ RowBox[{"Integrate", "[", RowBox[{"integrand", ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]a"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]a", ">", "0"}], "&&", RowBox[{"\[Tau]b", ">", "0"}]}], "}"}]}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{"integrand", ",", RowBox[{"{", RowBox[{"t", ",", "\[Tau]a", ",", RowBox[{"\[Tau]a", "+", "\[Tau]b"}]}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]a", ">", "0"}], "&&", RowBox[{"\[Tau]b", ">", "0"}]}], "}"}]}]}], "]"}], "+", RowBox[{"Integrate", "[", RowBox[{"integrand", ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"\[Tau]a", "+", "\[Tau]b"}], ",", RowBox[{ RowBox[{"2", "\[Tau]a"}], "+", "\[Tau]b"}]}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Tau]a", ">", "0"}], "&&", RowBox[{"\[Tau]b", ">", "0"}]}], "}"}]}]}], "]"}]}], ")"}]}]}], ";"}]], "Input", CellLabel-> "In[1202]:=",ExpressionUUID->"9f5f60c9-1888-4f8c-82c1-6b1f5f559f01"] }, Open ]], Cell[CellGroupData[{ Cell["The following is essentially the exact average Hamiltonian.", \ "Subsection",ExpressionUUID->"e04cbba1-65ae-4317-b9d5-e2899d912de3"], Cell["\<\ this substitution makes life easier. we want to do away with \[Omega]a and \ \[Omega]b and define everything relative to \[Omega]J.\ \>", "Text",ExpressionUUID->"94027e3a-ab41-4b1d-bded-628c806cb662"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"\[Omega]strong", "/", RowBox[{"(", RowBox[{"\[Omega]strong", "+", "\[Omega]J"}], ")"}]}], "==", "\[Alpha]"}], ",", "\[Omega]strong"}], "]"}]], "Input", CellLabel-> "In[1203]:=",ExpressionUUID->"80c2f67f-9fdd-4406-a994-016cde5dc714"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\[Omega]strong", "\[Rule]", RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"J\"\>"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Alpha]"}], ")"}]}], ")"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[1203]=",ExpressionUUID->"001aa639-52bb-4db7-8c08-da56c410630d"] }, Open ]], Cell[BoxData[""], "Input", CellLabel-> "In[1204]:=",ExpressionUUID->"b5db8db2-bcc6-4ff9-8b00-67d145410448"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HavExact", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"integral", "/.", RowBox[{"\[Tau]a", "->", RowBox[{"\[Alpha]", " ", RowBox[{"\[Pi]", "/", "\[Omega]J"}]}]}]}], "/.", RowBox[{"\[Tau]b", "->", RowBox[{"2", "\[Pi]", RowBox[{ RowBox[{"(", RowBox[{"1", "-", " ", "\[Alpha]"}], ")"}], "/", "\[Omega]J"}]}]}]}], "/.", RowBox[{"\[Omega]b", "->", RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", "/", RowBox[{"(", RowBox[{"1", "-", "\[Alpha]"}], ")"}]}], ")"}], "\[Omega]a"}]}]}], "/.", RowBox[{"\[Omega]a", "->", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "\[Epsilon]rf"}], ")"}], "\[Omega]J"}]}]}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[1205]:=",ExpressionUUID->"b9760c07-af22-4232-b6e3-cdba8f8d6fbe"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}], " ", "\[Pi]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}]}], ")"}]}], ")"}]}], ",", "0", ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}], " ", "\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}], " ", "\[Pi]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}]}], ")"}]}], ")"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sin", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"\[Sqrt]", "2"}], " ", "\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}]}], ")"}]}], ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[1205]=",ExpressionUUID->"e139ae52-408e-4cf3-bbf7-b9d2aa583f2f"] }, Open ]], Cell[TextData[{ "the average Hamiltonian strictly contains ", Cell[BoxData[ FormBox[ SubsuperscriptBox["I", "x", "12"], TraditionalForm]],ExpressionUUID-> "df3d1eda-d4af-4639-ba0d-27111c3ab05e"], " and ", Cell[BoxData[ FormBox[ SubsuperscriptBox["I", "x", "14"], TraditionalForm]],ExpressionUUID-> "a2225e85-793c-4cc9-9d47-8a7a9ebe2e78"], " terms.\n\nlet\[CloseCurlyQuote]s rewrite the Hamiltonian as a sum of ", Cell[BoxData[ FormBox[ SubsuperscriptBox["I", "x", "12"], TraditionalForm]],ExpressionUUID-> "2879afdc-902e-4b6e-b795-22ba74349e39"], " and ", Cell[BoxData[ FormBox[ SubsuperscriptBox["I", "x", "14"], TraditionalForm]],ExpressionUUID-> "2d88d1d6-a964-4654-838c-df63865acab3"], " operators, each multiplied by some coefficient. These two coefficients can \ then be called c12 and c14" }], "Text",ExpressionUUID->"87a164cd-8c60-40d7-b7e9-832800db7d1e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{"Operator", "@", "simplerintegral"}], "->", RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}], "]"}]], "Input", CellLabel-> "In[1206]:=",ExpressionUUID->"8b3850c4-2eed-4fe9-83e4-1b7b1d9eaf91"], Cell[BoxData[ TemplateBox[{ "Operator", "badop", "\"Operator may not be applied to an expression \ \\!\\(\\*RowBox[{\\\"simplerintegral\\\"}]\\) that is not an operator or a \ matrix\"", 2, 1206, 57, 25793684326715730430, "Local", "QM`SpinOperators`Operator"}, "MessageTemplate2"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[1206]:=",ExpressionUUID->"bf750b47-ce7f-497a-9b30-caf1b8372c80"], Cell[BoxData["$Failed"], "Output", CellLabel-> "Out[1206]=",ExpressionUUID->"70dcdce5-af5e-4dc8-8851-604ebda46316"] }, Open ]], Cell["\<\ c12 and c14 are then associated with the resonant components f12 and f14:\ \>", "Text",ExpressionUUID->"8b0af256-7a68-4482-94c2-4ddde7c9fdf0"], Cell[BoxData[ RowBox[{ RowBox[{"f12", "==", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}]}], ";", RowBox[{"f14", "==", RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]rf"}], ")"}]}]}], ";"}]], "Input", CellLabel-> "In[1207]:=",ExpressionUUID->"f303de7b-7996-449e-a575-e4eff8a4fc42"], Cell["such that c12 and c14 may be written as:", "Text",ExpressionUUID->"0b364137-59c8-4067-bd89-ce8c734c8b58"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{"c12", ",", "c14"}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"-", "\[Omega]\[CapitalDelta]"}], ")"}], "/", RowBox[{"Sqrt", "[", "2", "]"}]}], ")"}], RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"f12", "/", "\[Pi]"}]}], ")"}], " ", RowBox[{"Sinc", "[", " ", RowBox[{"\[Alpha]", " ", "f12"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", RowBox[{"f12", "/", "\[Pi]"}]}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", RowBox[{"(", RowBox[{"1", "-", RowBox[{"f14", "/", "\[Pi]"}]}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"1", "-", RowBox[{"\[Alpha]", " ", RowBox[{"f14", "/", "\[Pi]"}]}]}], ")"}]}], ")"}]}], RowBox[{"Sinc", "[", " ", RowBox[{"\[Alpha]", " ", "f14"}], "]"}]}]}], "}"}]}], "//", "Simplify"}]}]], "Input", CellLabel-> "In[1208]:=",ExpressionUUID->"e89b3388-eaef-49b6-936c-ed6c86080a92"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"f12", "+", "\[Pi]"}], ")"}], " ", "\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sinc", "[", RowBox[{"f12", " ", "\[Alpha]"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", RowBox[{"\[Pi]", "+", RowBox[{"f12", " ", "\[Alpha]"}]}], ")"}]}], ")"}]}], ")"}]}], ",", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "f14"}], "+", "\[Pi]"}], ")"}], " ", "\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sinc", "[", RowBox[{"f14", " ", "\[Alpha]"}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"\[Sqrt]", "2"}], " ", RowBox[{"(", RowBox[{"\[Pi]", "-", RowBox[{"f14", " ", "\[Alpha]"}]}], ")"}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[1208]=",ExpressionUUID->"1ed32bbb-73a1-43ed-a3a8-3d8fab7b2a75"] }, Open ]], Cell["sanity check that this result is true:", "Text",ExpressionUUID->"b2233143-2d51-4c11-8e7c-10c0f21514cd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"EqualTo", "[", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"c12", ",", "c14"}], "}"}], RowBox[{"{", RowBox[{ RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "}"}]}], "//", "Total"}], "//", "MatrixRepresentation"}], "//", "Normal"}], ")"}], "/.", RowBox[{ RowBox[{"Sinc", "[", "x_", "]"}], "->", RowBox[{ RowBox[{"Sin", "[", "x", "]"}], "/", "x"}]}]}], "/.", RowBox[{"f12", "->", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}]}]}], "/.", RowBox[{"f14", "->", RowBox[{"\[Pi]", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]rf"}], ")"}]}]}]}], ")"}], "]"}], "[", "HavExact", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[1209]:=",ExpressionUUID->"e7f0fd22-8015-4ebf-92de-3d03a41a52a2"], Cell[BoxData["True"], "Output", CellLabel-> "Out[1209]=",ExpressionUUID->"298d83a3-24e5-4952-8fb5-9feae7b67c01"] }, Open ]], Cell["\<\ in the limit of an infinitely short compensating pulse, the coefficients are \ incredibly simple:\ \>", "Text",ExpressionUUID->"f9f2b27f-49ea-4fd8-bfe6-35356fc2f6fa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Limit", "[", RowBox[{ RowBox[{"{", RowBox[{"c12", ",", "c14"}], "}"}], ",", RowBox[{"\[Alpha]", "->", "1"}]}], "]"}], "//", "FullSimplify"}]], "Input",\ CellLabel-> "In[1210]:=",ExpressionUUID->"16050db9-b893-4adb-afb7-ebd8d55b678d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sinc", "[", "f12", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}], ")"}]}], ",", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"Sinc", "[", "f14", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[1210]=",ExpressionUUID->"7fb1c5dd-e958-46dd-be89-61b1f902366d"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ expression for DQ excitation amplitude under a general effective Hamiltonian \ of the form \[OpenCurlyDoubleQuote]c12 Ix12 - c14 Ix14\[CloseCurlyDoubleQuote]\ \>", "Section",ExpressionUUID->"8901f20a-c127-46ba-8a83-73b91c34be96"], Cell["\<\ we have the following basic rotation operator identity, which makes life \ easier:\ \>", "Text",ExpressionUUID->"12427661-a969-47d1-81e0-e372e14fa407"], Cell[BoxData[ RowBox[{"Needs", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[1211]:=",ExpressionUUID->"22afdbfa-ced4-4ad7-8d18-b2702a867f22"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MaTeX", "[", RowBox[{ "\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "20"}]}], "]"}]], "Input", CellLabel-> "In[1212]:=",ExpressionUUID->"e5a1f9a4-3fd8-4e7d-94c6-74eb3b1907d8"], Cell[BoxData[ GraphicsBox[ {Thickness[0.001843012219171013], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{13.784399999999998`, 19.5531}, {13.784399999999998`, 18.537499999999998`}, {13.2672, 15.6094}, {9.264059999999999, 15.6094}, { 7.01406, 15.6094}, {8.32813, 20.846899999999998`}, {8.507809999999997, 21.584400000000002`}, {8.587499999999997, 21.623399999999997`}, {9.36406, 21.623399999999997`}, {10.7969, 21.623399999999997`}, { 12.510899999999998`, 21.623399999999997`}, {13.784399999999998`, 21.106299999999997`}, {13.784399999999998`, 19.5531}}, CompressedData[" 1:eJx11AtIU1EYAOBZQzNQQ90qNtG53blH3WWb64HVX5KmhJpGDrKizMqENLK3 gvYuyx6Gr4aVGkNQlGq+QDMqssxHRSVaaGWgpWFSssq0nXt3/wtJP1wuH5x7 zn/OPf8v25YSkzhNIBDE2R/yroVjHx4f0sHAbu1Y/jsFcF6gKffqVFCQuMMe oTr4NfyleUkIBRm/l6a2z+CdKXx0MbCWRo+TdynNfudMgdD1nG9CDg1JKSMn n9xVQEEhiflQPjZ46FmfDLZvehs63aaFkZIqvzaVjF3fpkEz43+q0VlkvTiH C3i/VftUTCbI0XVkHpMCpMWb1a2dDtsCoOPVhiFdjxryL3kcMWpVbH7uGtCR /Zap0VVU//HiNt5Sy8Aa2leDDruX4bPYZb5jXwFgY/ZPw5+x/X3mQCV8IufZ SMOi4MaYPJnWkYcOWh6sqkyaoCG1IrtnV2YgustzdGWHUY9utk+/86GBPY8u LZT1Nrmb9UZoaai74BytRKtGFYNFrrPRfau3rCzaK0Izx13vPcX3T1ninr4I QufEpinyrwex84WL0M+YEKMNenvkSqaYyf8A7zSr6Hfr8v/7R333uT+iILiX 3XTMECJh83higNjhl98KsmbBCbeoqquUAqL6w18E5Xqw96XZH251Wz4GhnjA 0V5bt36jP5QxFqKZeQoFaGtE9WLzz4kV/5q7P5z1TMhgI2WStgc7Aec3bj3i xBre35u+WXfmCdEDGR+TO4ZcwGNTdO/CMBl0kfFjM9HryX7ei9E5puwop+g5 6Hiy3vhcnC+d5JksQfs23GhKdJeifYi/TrXX4Stpbd95c/tl8jXy9ibjhBI0 87/V4iluJb+9gvfZ4PCGHZ5y9Jl/zNXfe3L/1omhMSV9uNAqh7rYpaZJiwQG 9tkvQDIN8tcfYgVmf3Tk88vxEwlK9G16T6mTNMDRZ+ahmT5Rp0Fz9bi2xWXZ NauSrbvLKphG6nOPEswl8vrx0wHwlKknir13dygQkOijsF9xNpI6zVKgDz6o WV1YKYP+rTdfG3Qqtg7i/SB9tDo6uVuDFp2P+Cz0ptFc/2T6RCTfT7n++hfL rFRo "]}], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGI9IGYCYhNjIFA2czh92Gltpp2xw4FaWYv0K6Zw/kwQ OGnq8Odb6YM5jMYOtpURK0zXmjrYg2hbI4h8p6mD/8WJMf+YjRwK13TfziiA 8h8bOhhorRS+sMQEzudyUy1lskLwb0vXJBotNYTzvU+w285mNXL4svNW119T I4f+4BKV6feNHLaY/ziUImXsEKPg+DHZxhhqj7HDtAn8VWbRpg5+IP3Jpg4w /7zI0v42XdYMzn+SuPCaSb05nA92h5SlQ4T49osM90wczoCAjpUDAwg4GMP5 YH8vNITzS7aK/j69zsBhOsje0xZwPq//+impM8zh/BUvPPT+PzRz2KiXt5jR xxDOvy70yfF8GIIPMx/GB4f7P0OHLxsCsmeJm8P5PCD3diH4YHe/M3dQfdI8 7+wuQ4flIP2GFnDzUfhmCD44PPURfHD8qBg6nASZq2fhUP/bquBchqFDt9cr FhNFS0j8aho53ADF01FLh78g9woaw/k9IHWOJnA+2D2/TBw+gdx/3ALOh4U/ jN8Hcoe/mYND06PjM7yh6t1NHQpA8dpgDImnZBN4eILD0cYQzk9PA4JnBg4g Ku2YKZyPnp4BSJlCmQ== "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {0, 1, 0}, {0, 1, 0}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQAGIQffyw09pMO1sH1SfN885aGTvA+BJTr3BmLDJ28DnB bjv7qjUGXwWk/pclnF+yVfT3aTsrOL9gTfftjAArhyX39/HNWYzg17Mc7Tds R/BjFBw/Jtcg+P9BIN4aYo6qlYNtZcQKU11zuP0wPsy9PP7rp6TesMLge4P0 fzWE8/9+K30wp9DQocfrFYvJRSuHCPHtFxn8DCH2n7GE829K1yQatWLy09OA 4JkBxP3XLR2eZ2l/m/7WAGLeRys4/wZIfag1nK/+lnefwU4E/6rQJ8fz12zg /NrfVgXnNGzh5sP4MPv/gNz90AbOzweF0wNrOB8W3jD/wfgw/8P46PEL4wMA YRji0w== "], {{26.914100000000005`, 19.6344}, {23.525, 19.6344}, { 26.914100000000005`, 24.8922}, {26.914100000000005`, 19.6344}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Ax41g5k9UO5HthcARA4CmQ== "], CompressedData[" 1:eJx1lGlIVFEUx8elxMptxhzDcnTUaLV5y0xSyRyDjGyZIQ1HsMXURtPUQMsB Ldrsg5WULW7YJmkxolZWRii0l41mhZZailloaeaKuTb3Puc+MDpwP/w+vHPP /3/+97nvjt8aaSEQCMyMZ5vxmBvPG1SxCphEpZTCfn16U1SCApoXL9BPhkuh r1Qdk3NQAcHWTieZDJ6zso1VwbNIdy7R4OkBuN8mBXjWtwUKYj3giOWzDErM 80dhn1/tkJxwqXfcdTO9HASo1B5wJjDR81KGnOuvk3Lfn2RB1zLcyKQ7QqNL ShidZGIRYbeHVyoj40RwaHRVQo2GhdZ1O/1y6oRwKuCHJevAQmD3+94sPweA o20vsnIZaLBpcoq8Z8vp7qEJ26hKzkcu4lm7x1hONBiwT0LC+L5fIsKhXpr5 NfPF0ID0HaDhQeAqzaTWhZu/geZ8iZVA9ZO1xdETNDyKT+nOPuEGqrqzoRMi BpDc7E6e1+ufFQqS3QnjfVyXwmGkr4jm+I4HzPb3SjIfoQhjvWUywr46TZF8 uQxOa9JVZmoJYb1wma32iythR7S/AlfwQ/6slnF6Ql2hKnWBjzaI5xVLbore JvIcvr3Z3yJZBgOVveXai66cH2kyKEb9d0igDO23WQZ229UttJWU0xNOkby0 h12tZ3umsR1NGH+/6V/uuVbiZvCREsb5POwOMjSfJ83lqdSN9A/C+5dM5ZwC ljFWv5hwV9q+dNrFiTD246kjYezfb1t4klYY/Jqe2nfKHNj40so39xvP2M/N DOGOvUuHLhkY0GC2gbsrhx9HBLAgQfmpsQeN+H6dYAvL3VNlz+XPmYWO1K8x tV2zOD0DDKjbN7yTZ86ECOz3VF7mmUE/en9iBlI6jo5crPijxH6couHyy8yC mIV9SjzPZ4qw+MIH66jbPON8WlGgwv37lONDSa15dTL4MPq8If/TmNK0v/Yt nbvGL48pm9B7G/w/J6D/xy6KMJ6vkOLek2JqXiMfF6fOiH5uQRjrCZlJ8oH9 W2MFr9B78ebZdJ+JTflDsdvzfQbhDLSvBAHh8oBSnzzdIKfPgYICkfWNnJCf xB8TOyN/1jKEvdqP5RtuscTvxPK5o9W2crLP6f/Pv5QDU6M= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYCYu8T7LazVZ0cXtQ+zj7/htcBxn+Oxk9NAwE+ h0jx7RcZ5JwcDnTvazJ5zOfgrlrKNGuFo0N/RLc/o4Gww5PEhddM8h0cQt5e /jgjURbOf56l/W26rDacDzb3qLGDfdOj4zMWOzqcAQEfMwce//VTUhWcHDbq 5S1m9DF34IbyN0D5MPdMm8BfZRaN4G8x/3EoJQvBnwkCleZw9/pdnBjzr9nc oTJihelZYQT/uKbVpNPfHeH81d23MxjkHR3UnjTPO8tl5nB/H98c40UODtxu QI/eMnZ4w7vPYKaSg4M/SP1iQ4dwkPn/7B3OXw17o/9bD86fs0h55x91bTgf 7D4vDYf631YF5wQcHNYI6fCl5yk7XMyPZz+30sHhy76PW9OnyTi0Lw8/ZaQC Cw8Rh9vSNYlGXx0dtnptsJjzkwfufhgfFl4wPsz/6p9UXs7yRMQfLH4BiFXU 9Q== "]], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYCYjfVUqZZB9wcZJe/8NCLV3d4w7vPYOYkBL/H 6xWLSaWbw5viraK/u1UczoBAipvD32+lD+YIqkDUR7k53NGUXfP/srKDguPH 5DO+bg7dNp670pqUHXQnLPhhOM0VzgerL0LwweZ3OsP5DCBQ4OowZ5Hyzj/q 2g4OTY+Oz+B2c2hhOdpvWK7rAHNvehoQiBnA+U8SF14z4TeC8+t+WxWcyzBx CClRmf7/gquDiTEQHDZ1uCldk2h01AXOB/tnjTOcf38f3xxjJmcHA62Vwheu GMP53CCDuYzgfJByY2dDhw16eYsZfZwdZoKApiHEf1kIfvvy8FNGLQi+K8h9 F5wd+P3XT0n1QPBVnzTPO/sLwa8HuX+GEcSffc4O14U+OZ4/ZgQ3H8bP4fy5 ID0awYe55w8ofg4aOVzOj2c/5+js0AgKv+1GDg9A7i9yhocPOH7YXBxKgNF7 2s4U4s6FCP7OW11/U+td4Xyw+wSg4X3fGJUPDH8YfzEooIINHBbY6FyZ1efq sNX8x6GUVboOIGem/XVxEAdFvIg2PDxLD29znSmrhBq+xooQ/zW7wfno6RUA g74epw== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{0, 2, 0}, { 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{55.2219, 18.617199999999997`}, {55.2219, 20.6484}, {54.58439999999999, 22.6188}, {52.951599999999985`, 22.6188}, { 50.1641, 22.6188}, {47.1969, 16.7844}, {47.1969, 12.4031}, {47.1969, 11.487499999999997`}, {47.39529999999999, 8.401560000000002}, {49.4859, 8.401560000000002}, {52.1953, 8.401560000000002}, {55.2219, 14.096899999999998`}, {55.2219, 18.617199999999997`}}, {{ 53.389099999999985`, 15.809399999999997`}, {49.18749999999999, 15.809399999999997`}, {49.4859, 16.984399999999997`}, {49.9047, 18.656299999999998`}, {50.70159999999999, 20.070299999999996`}, {51.3578, 21.2656}, {52.05629999999999, 22.221899999999994`}, {52.93129999999999, 22.221899999999994`}, {53.5891, 22.221899999999994`}, {54.0266, 21.664099999999998`}, {54.0266, 19.751599999999996`}, {54.0266, 19.0344}, {53.96719999999999, 18.0391}, {53.389099999999985`, 15.809399999999997`}}, {{53.24999999999999, 15.210899999999995`}, { 52.75309999999999, 13.259399999999998`}, {52.33439999999999, 12.0047}, { 51.6172, 10.75}, {51.04059999999999, 9.734380000000002}, { 50.34219999999999, 8.79844}, {49.506299999999996`, 8.79844}, { 48.88909999999999, 8.79844}, {48.39059999999999, 9.276560000000002}, { 48.39059999999999, 11.2484}, {48.39059999999999, 12.5422}, { 48.709399999999995`, 13.8969}, {49.02809999999999, 15.210899999999995`}, {53.24999999999999, 15.210899999999995`}}}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYC4hzOnwvStf0cgt9e/jhjoYQDjO++5uhyhh8S DroTFvwwVPNzOAMCPpIQeWkEP0J8+0UGMQRffOoVzgwhP4e1Qjp86XaSDjNm AgGnn0N6GhCwSTrIO35MPnPU14EBBBaIOzg0PTo+o9nXoVWBXfXMFzGIfX4I /p5bXX9T3/vA+fYg9d0+DuqfVF7OeikB55sYA0GwHJwfAvJPorzDmu7bGQz9 Pg7OE5qF0rIUHJ4kLrxmMt8H4r8ORYcvGwKyZx33hfPv7+ObY/wIwXdRLWWa xeCHwQeb9wvB548NuG8UruRQslX09+l3vnD+XBudK7POIfgCnxzPp631gfOX vvDQ+3/Tx+ERKCAfqEDC19nXISEkSH1BphrcPTA+LLxh/P21shbpJgj+U5D/ /DH5m/TyFjPeQfB3gALeQh0SXtYIPix+YXywf+75wvngcGZG8O+C3Cfk4zCl vTXqco0KnK987VEwg4wCnA+JfymH/yAw3cfBAxSeN0Qd6n9bFZzz8IXz/8Tk Hv23C8GHpUeQtcbCiPQJS68A3qYpKQ== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYCYmMQWB/g8DxL+9t0WW0HGH+LXt5ixj+6Dt7V zfo+ywIcNoD4OYYO8o4fk89EBji8AKn/a+zgqlrKNEsmwIEBBATMHMyvHc01 yfB38Ls4MeZfs7nDjJlA4IngL33hofffEcE/qmk16bS5v0PJVtHfp+sQ/FvS NYlGqeYOR6D8m1C++NQrnBlW/g5fd97q+htq7sCyeJIVo62/w0aQ+3zMHZ4k Lrxmst3f4QwI+Jg5iHsE/JEoD3DwPsFuO/uoMZw/Z5Hyzj/q2nD+l30ft6aX yTpcyI9nP7fT38F9zdHlDBHCcPO3em2wmLOTD25/ahoI8MHd+6L2cfb5N7w4 +Qe69zWZKPPC/Q827ycPPHxgfB+QO1MRfHB8yAc4BL29/HFGoogDSPnM2AAH kcpJJWdVZB2+s8XP8Jkb4LBWSIcv/Z8SPP5mTOCvMvNWd0CPXwDC9c2E "]], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGJpIIaxWZDYzKNsktkA7A8Ckw== "], CompressedData[" 1:eJxllGlIVFEUx8eMTMIKJDVtE7Qax93xvtGQToJLLuV9RvlBE81JW0RBpSyl yCTIPlRQqYklJRiamEtRgmFhmksqapkLhamUWalFJpNO79439z6wC+/Db87c s/zP/z3HxDRRb65SqcykR5SeFdKzbc/skc5ZDKHPczfrQlzBNjTqr908humM hg2GSjfYSuILGPRHpbPdA37WRJ0oNmDY+c2qyXOvJ/iQY8RQL/x5keTiJcfN RVgT7Jy1otib86bSw+qOGR/Oi7+zPpY80nKm99u1vH5S3EiweZsvrF64m1w3 Z8pvj8BIzg8MQw45Cd56BB+a1pb4fMcQ1mYRcLvFFJfuV3wOdTc2I9jl2l88 aSnCffLHOgQ7xvNKu+xFOV6G4HRMhW+XRoRYIsQVBA0Xc3rqgkRQkZOOgMiS HKNwXGrLUu0phXOrHyeeyxZhX++12KU+hSNIPxPL4tYCOHwdQ/aZIownlL3V xgs8P2NWnzHrz+5Gv2VKoADRmU63jHYiBGRLATcBkslebEQoIkdtyq8SIb2q YDhlvcD1oXFLQdZX0o/uI0rgenq6PLDuqRf4vjvJKdFB+Nk8j4glDAVhUyu1 jn58X4NE/3KFqR/U/px/PR26vBik8O4LY62Fjf5yP5OYMxmjq/V/lv21jNUK 031V+cn6dGNZj1EdkLL6PgxzpO4lnaznewxa4tNPAty77m8WOWKaP12Q5xpV 9GH3aT4rQf69GcPNq+vOIAcBQoitazDXn853B/P9UP3yMd9fpbQGVYbCtP9o hWNsn/SqRFN+A+JM5/2isDPx7TME+7fYHI88hLn/WH7GrD5j1h/zN/VLLeb+ T4u3eLOxAct+LUfQSObvwND+MvDhsSbE9WHv17uWVO35YVO+k0j2yaDJP05I 1rcfA5B9dvjyfbH3mzGdq1ph9n1gHE7qDXjJ+vdi6B44OO1hcOf7TEmbyX99 wBWmJZmKhiT96X0N74/O+UoD86viCyMmFGZ+X860vykNLP8e/gOw4UcJ "]], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{87.9844, 19.5531}, {87.9844, 18.537499999999998`}, { 87.46719999999999, 15.6094}, {83.46409999999999, 15.6094}, { 81.21409999999999, 15.6094}, {82.5281, 20.846899999999998`}, { 82.70780000000002, 21.584400000000002`}, {82.7875, 21.623399999999997`}, {83.5641, 21.623399999999997`}, {84.99689999999998, 21.623399999999997`}, {86.7109, 21.623399999999997`}, {87.9844, 21.106299999999997`}, {87.9844, 19.5531}}, CompressedData[" 1:eJx11AlIVEEYAOBNRY0w8YxE09VdPFuvdSmx+EW8QtN8+56WF7keZYlCWpaK luZVlImlK2YiggnWguYVaEZZmatZFIgZHqmtmaRR4pHZO/a9IZYGluV7b97M P//8M/yE9IgkLR6PF0n+qP9ZU6vBuRwCVKnOq9WfBMDazanFZFQgBDnVsgjY WFrsP+gnBB+X97XzacixaQN/2mTI14981RGfJCApmWy6Qlgy6HOTxxFwOn35 6uAjAfCoBgS0rC5kK6f4kB1132t4FwHLjQqbYQc+M/8izpnur0Sm5+tSuwZ5 wtGqdVtmx7kbrsy8jBJARcOa+/wLtdfsobQ58rXHKxyqKwwvSZwdmPhGcHCl 1tvkyFkhnC2sH0a2bFYFiaydOAc+ybM6oLcfesbLt5IKcVij1y+C1msfT/Ew HOaofPaKQJopqN5eJr+vj3McGnUFf2GWVu1ZAjKojgXunMeMf/i+kXhy7ieH T3kuZvKhR0DTZN/uOk8J0GEROGdT8rPkLYwz3f8zMj3OmKafFpOJeOfF+QZG BnrPixlvGpne/3XkqD1db3kBUg3T8Z9Hzuww2xw6/H//ohJn5sXkB6TMPINi UHUptL9UYVBkEKaoEgrAhIqnDGPqpd+W2c9iDHIm18Y9o23hJmURMj2OEbJi euF2m76m2fph7Uk3PuivN6S0myMXHgu+W2CBnPewMyHfHbmEqqcQDAxjwyc9 Avng7F05lJ+ITMe7gWzjuyJTGkk50/vtIuXG+zCQJi7wQ+4oyh1tD0WOoeo7 WtMmFyszh38is+ulttkjHDkjXm9k7yFkun6/YxoeUpKtFbnMJ/hxsrEddKtd qjb7nj1/9P2wgkFveu6SvMMOwveZp4YGSkF1jiyAMyJorPTeETqFvKobXxNy HP/3fQYOeZveGSP6LpwTYycCtLudOLPnkc6XDIet1aypulsO8I06nydwqGu0 6/ldYs/kNwQHMZWudiFQy1IG4dx9xVri0xtx57KA84Vnnf7yB+p6qMSZ5zE2 YLk4I7FQIdPrCyM4s/enzs5ya9lRdJ+y9+tfK3Bu4g== "]}], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGI9IGYC4pkgIBrhcPqw09pMO2MHG50rs54xIvgmxkDw P9zhz7fSB3MYjR1kXj8yk/oR7mBfGbHC1NYIIv8+3MH/4sSYf8xGDi+2r2d+ /gLKf2zoECG+/SLDNgQ/QE4sy3c2gn/ksnaq5LcwOP/BPr45xnzhDl923ur6 a2rksOHhy6mbXMIdtpj/OJQiZezwRET25NPocIfCNd23MwqMHT5tCMie9Tjc wQ+kP9nUAeafF1na36bLmsH5TxIXXjOpN4fzudxUS5mkLB2WTLJi9D0S7nAG BHSsIHQMgt/j9YrF5GsYnK9pNel0/Y4wh+kT+KvMTlvA+bz+66ekzjCH81e8 8ND7/9DMoQIYTGfvI/hNgZ5zGx4h+DDzYfwDtbIW6TxA/4P8JW4O5/OA3NuF 4IPD9Z25w7WjuSYNv8McloP0G1rAzUfh30LwweF5A8EHm3MtzOEkKL71LBxA wcrwPMyhG+QuRUtI/IqHO9yQrkk0OmoJcW8ggl8Qz35Oci6CD3bP6XBIvBy3 gPNh4Q/j9wWXqEz3N3OIyT36b9N8qHp3U0j6yQmH2JtsAg/PjXp5ixltDOH8 9DQgeGbgAKLS/oXD+ejpGQCX/02D "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {0, 1, 0}, {0, 1, 0}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQAGIQ3eGY8PTCo0gH1SfN885aGTvA+BJTr3BmLDJ2qMva UzK5A5OvAlL/yxLOL9kq+vu0nRWcX7Cm+3ZGgJUDiCtRg+Avct32+W8Jgv97 5cdLvkUIvjEIZEc6+Jxgt52tauXQFOg5tyEuAm4/jA9z74MqkXXunpEYfG+Q /q+GcP7fb6UP5hQaOhRnTHxb4x7pECG+/SKDn6FD84FTC13ZEHwtq0mn679E YPDT04DgmYGDlP5dFTbOSIfnWdrfpr81cCgCmeeP4PdMzxNqzkDwgb69UtGI 4Jt3AgP4BILvAxK4Gwk3H8aH2X9Hha1x6mkEX/zmue/B3Qg+LLxh/oPxYf6H 8dHjF8YHAGDO6KE= "], {{101.21399999999998`, 19.6344}, {97.82499999999999, 19.6344}, {101.21399999999998`, 24.8922}, {101.21399999999998`, 19.6344}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzCSwGaB8BjL0DhR7oNwMAEUOAp8= "], CompressedData[" 1:eJxdlH8s1GEcxw+N2riuc+4wzvccNqMpZ01q+lgTiUXa9/mumE07NhJ/sKYY S9HKYv7hTGVm2eqKZZFmZhOL3ZGKNlmapCYSa01b0T3Pc/c847M9f7z2PJ/n 8+v9PLrswjNGF5lM5mRbyLacbauudePgYqQEOdhG1OBg4UXrgFGugdNadV5K hAR96THSVoIGjoS/a14M5XwUs45zenFQ45YggYyYBpKuVkUka+333VHD3IC8 xeAqgWdpQ7G1fR9cSzt5t/INgvceH9TGHjk9/5Czd2LqX+/bnF++DTP6XEEQ gO8bVzBOMA93yLw9GUcZbJaugmfXy153lyNIxPvRXrCg8h/9YruP1LvoTc89 QvBYGS7PjRUgPrjEufk5guP1VcqcJR3U435MI5pvkB62iHHe3MEhC1X3rL4S 4/InPdkV+yWa36tA+Nbb6fJVIYEFW0sg68en+Ky45jUdYxI/jzPJb0AAnK5B I0F/YdmK6YYAmQXDm0/1nEk/YznXJi3tikqTAO1R1xiO6RjTOjjrp+fTZeF6 2pcQCWZD/c1b3Xqar4wz2R9DjP2+zx/yNSPYm5k6F+kWSOfejmi8Ch1MDRdE VdYhUOD9Rj3c7EBjkdIO/0TORVlu4z4r4vb4/SLNz11gbMb9+KhlrCJ60sJg uX907qAIGcGS33iGFnb/ac3tHuEsxK1dsFg5r3el5jdPiFQH3VpQrcdN5EyK dD7LWsjA/V0VaT11gTCN6wnj81bi8/GcTdgKdnAJgtW2TsG6oWN8eagn3pTC mfStS4C2hhinlCLE6iX7RgRlcxszhnx/mmeCXb8jXrSewwisON+LSqrvAP5e TmA9/xQZV+P+L3Mm/lPi9vc2JEKN4BZsUSlovM8izaNUQeMuiZBLdKJkTPQ7 yZm89x+ecBb/B7N2f5OK1mnhvOwxcMDUw7lv5tY/4327/yVPxo7/wsFN5Lwc frtmNSWP2udZ5s7m5WByvy9iTPQSjeA8mb+Cnj+FaD0PlCBpeidl53j/iH81 9/+F9dLBmejLWWLs+D+Jfmq9YOf/+h+mUkv1 "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4nA+3U1z50c7vKh9nH3+Da8DjP8cjZ+aBgJ8 Dhvmvl9+bHa0w4HufU0mj/kceJi028USox36I7r9GQ2EHRRu/6zLOhLlEPL2 8scZibJw/vMs7W/TZbXhfO8T7Lazjxo72Nz3750eF+1wBgR8zBwWuG77/HdO tMNGvbzFjD7mDvOh/A1QPsw90ybwV5lFI/hbzH8cSslC8GeCQKU53L1+FyfG /Gs2d5BvfR24YxqCnyAQYbmlA8G3N43b5SkT7aD2pHneWS4zh+vnvgc/vhvl wO2mWsp0y9hhvfvDKpF5UQ7+IPWLDSHqe6Iczl8Ne6P/Ww/On7NIeecfdW04 H+w+Lw2H8n3zpfSnRjmsEdLhS89TdqgBKXgY5fBl38et6dNkHL78vVLxUg4W HiIO9VOdu3Paox22em2wmPOTB+5+GB8WXjA+zP/qn1RezvJExB8sfgF8ZeVk "]], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGJZIIaxWZDYzKNsqrEBLWICow== "], CompressedData[" 1:eJx1lHtMFFcUxvERxfjAmirEugGRdVl2l50pgmAwflSNtGCpkJJN985tAdEV qQ9EXAkPLW0QwaipuCjWJq1GTajyx4IbX7VqdBMV0WAao8QXxgcQxTaoAcW5 c+VONPEm94/fZPfMd77znZmavTI9d1hAQMAQ9TrUO1S9QY4Er/8wRXBt2yjX mShcYucExVH8dO+C24rUmVVJP1ymuOMIPnp1Q7Tg6q+eDJ/xiSSY/byuWkJH a/jNV+cp/p3wPOlKr4TcJepppjB1jz0lJch4733pMl5k3N9fv4/iwKPk6IEs Ge1pWzwrdusccfNVWV6Nzlq9MoqgtCM7cpNllHx6eMHdAgrvzJdnFk+WUV47 tzp/KYUzLKknp0tCiL09YkQWxd+lhvilXp37e9fe2bNR5/K+WataHBKOFLi2 dy+mGGDHLoGVL87X+2XyJlS/0/+FXej1Rq/4c0i/TbDmY41VcCmrH2iFtXLS jRYPRd0u9ay3YN3j6XLgDgrPtqDiuM4oGH7pXOQrorBNDf0/P86EPU8PnE+x U9wyGxoGcqahY3/9uTC/Inhbd8mc2DKdtXl8q8B/zLdlxHgj15+qoI7VTzGh 8Te1oFPh/boiUaO2U+FSUPK88Zvlu804F9ZY4FqtiDxo+goVPMyz9HoMFiSP GWqpLFKQdnU7eVOhs+bXbZ21et9ZRb1U/8jZ9U1WGOXAhinZOs+IUU+Kzto8 khSet9MWeP1Fp36fpQh/DvZcW5gtKTyfPjOvF6UgmQ24MhLzmv973RapwMAC 872J+/mGcD2Tjdz3f4jwK1a164FbZy1vVp0n3mh5kTGaIC7xZPrOLKPgr1n/ 902Ch43aHJrTEsn1jSd42d15OuGsmc8rhAg/tX4tBD+PVQNstHG/MglqWX/L 7Whzq4ZvInw+fgmVqrzWzQSz1zsOxrZLfB41ROR7kD/bS80XA2TBg/vQpNrh riJ8XjEyz28FAZMRM1fm+SonYp+Ch2eOsxV/nK+o611WQN7fvzwi9vth36Ge a7kEWzMKIzyh794vE1xgeXxmF/78Zeyo2Pujjevtd4r5anqeOvE505dhBovz g0dOtF7P7LIfNwnuWtM0sS9luuBDvY/dlyR9XuvONs/fdTmMz3uZzpr/x3VW xTgS+gkusn1tCOffI6sCH8tXvJHPL15BVeKXx5b8ES7yO/h/LW8+nV0nCn8N SaSCS/PUB5soprD5PDPiw+/tW38VZO0= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYCYpO4XZ48fAkOwW8vf5yxUMIBxndfc3Q5ww8J h9s/67L28CQ4nAEBH0mIPBeCnywQYbmFA8HXbhe7eY49wWGtkA5fup2kw0wQ YE1wSE8DAjZJhwdVIuvcX8Y7MIDAAnGHKxUv1QxPxDu0KrCrnvki5qB7V4Wt cS2Cv9b9YZVIHYLvmwS00CfeQf2TystZLyXgfBNjIAiWg/NDQP5JlHe4fu57 8GPfeAfnCc1CaVkKDntKJkuwhMVD/Neh6CDOEsan+wrBL8iY+LbmO4Lff+ir RgxzAgYfbN4vBJ8/NuC+UbiSw9PfKz9e+hsP54OM3/QWwW95HbhDLhbBZ18j E5VSHO/wKEJ8+8UHKg5Pls4+orAi3iEhJEh9QaYa3D0wPiy8YXx7U2CECCD4 scDoYRLH5G/Sy1vMeAfB3+HQ9Oi4hbqDuiHHGhkhBB8WvzD+c5B/vsbD+f9B oB3BLwG5jz/eYUp7a9TlGhU4X/nao2AGGQU4HxL/Ug53/Xun5wXFO3iAwvOG qEO7Y8LTC6sQ/CnO3TnPHyP4sPQIil5jYUT6hKVXAAaVHZ4= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJLIGYCYvNOx4SnXxIcWnj91095quYA40tMvcKZoaTu UDJZgiXsU4LDowjx7Rcd1B0Of9WI6X+HyX8I5U/PE2o+8Aohb8t1fXHBywSH lNg7bswS6g42aPwrFS/VDF8kOPhenBjzj1ndYf+pha7bHkP1J6hB7L+W4PDr 7esDlskqDkDZz393JDh8WLRe4ewMRYePl3yTBKYg+EDXHPragOCf/x78eGl9 goP7mqPLGWYowfkeIH6FMk4+2D3OKg4zQaAxweHUYae1mftUHOa+X37Me3OC g+qT5nlnZxk43DgH1PAWwd8NcvAvBF/59s+6LIZEDP51oU+O578h+CVbRX+f 1jN0YG+c6tz9JwHO124Xu3nuPYJvueVE2b7tCD7Qtxox5xMcGlmO9huKmzjE P72gdPsi1L1xCH7db6uCcxkIfoyC48fkHgQfFNwM90wg/j2Z4LBRL28xI4+p Q3SK9X3/gwg+OL72IPjA0DDvXAs174+Jw+wjChuKViQ4aLzl3WcQaeIQyqe7 aW4/wr3g+A1G8LOf/1750Q3BBwWvuSMmH+y+cwZwPiw8mcOAFrgi+PnA5Hcq EMEH+u5nXReCD3ZfQoJD4C3pmsRNapDwi05w2ABS4KsKSa+RwPSwv1bW4rkK nA9LfzD+bU3ZNf+blRzCQRGSl+BQfnib68yzCg7zpfTvqkxC8MH2X0LwYfnr RZb2t+lzEfkNlv8AgqKtgA== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4t0lkyVY9iU6PM/S/jZdVtsBxt+il7eY8Y+u w/Jj3uadOxMdNoD4OYYOc98DRSYnOrwAqf9r7JAsEGG5pSTRgQEEBMwcZh9R 2FDkkOjgd3FizL9mc4czIGCB4H/+e6XipRmCb8CxRibKJNGhZKvo79N1CP4t 6ZpEo1RzB30o/yaUv9B12+e/QP7Xnbe6/oaaO3TnPP+90jTRYSPIfT7mDkDT 1QxDEiH2+pg5nAZpWJjo4H2C3Xb2UWM4f84i5Z1/1LXh/C/7Pm5NL5N12D9f Sv8uUL/7mqPLGSKE4eZv9dpgMWcnH9z+1DQQ4IO790Xt4+zzb3hx8g9072sy UeaF+x9s3k8eePjA+NrtYjfP2SP44PgoS3QIenv544xEEQdQ8JtPTXQQqZxU clZF1gEoG8a3NdFhrZAOX/o/JXj8zZjAX2Xmre6AHr8AQajepQ== "]], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{156.484, 19.5531}, {156.484, 18.537499999999998`}, { 155.96699999999998`, 15.6094}, {151.96399999999997`, 15.6094}, { 149.71399999999997`, 15.6094}, {151.028, 20.846899999999998`}, { 151.20799999999997`, 21.584400000000002`}, {151.28799999999998`, 21.623399999999997`}, {152.06399999999996`, 21.623399999999997`}, { 153.49699999999999`, 21.623399999999997`}, {155.211, 21.623399999999997`}, {156.484, 21.106299999999997`}, {156.484, 19.5531}}, CompressedData[" 1:eJx11HlIVEEYAPDNxOxSsQOhJNfdzVXzanXL1PosTCXMciOvzHjjURq50GZW GpqaR6aZlYpH5JEIluaViuZ6YHlsigiaB0oHGSGd2pZFvdnd9+aPpYHH48fj zXzzzfcNl4rxC9fhcDj+9IPfgw88mr8pEMxHWS/lz/CBsb1V9YYRvgDS3U+9 GxlA8Gvho9z5gADOvl+u/tJHTH81n+oiVkreVBbJEYRH0ENPACWfqvoOdSI4 E/M5tb+RDxw86hBUL32IG5rjwsTLH5I3dxF8Lqs1Uwi56vVTidtleSa6scQV Urc149EaFxBPW5rW/EU81i1w7fXzAD78vBrVLjuvsdICovGEMgT5twwvi62F 6vguIrDD+62wZF0reJtcqiDeWjXvZbvNirVnZ4Lp7lU2oHvcwKb+KAKlav+2 YD/D10tyRvAO57PDFrLyzxknp9P/l560HByxg9/VX0Z96PxJa25MnU50YD1h /NV9WCxiLaenj+x1BEOb+pJPeQgqZp8ZFIvEoF+zNSjMhbiyqNesLptircpf EvFY3IftDvHa7rpe5T8w6sQ6WyLj5993AmQU4NyYSDyERxZxaJv3Op0Gbavi jyWWNW1aHtz7fy+2Tmb+2eSkzk8dBYV49DuCv3Pji9ggClLW+9beEfDV8Ryj 1PUiN1efp4SCK7PKSVGwxhbEqnhNiO1xwjZqm6kfxiLV4EJO96LwxBbiyNyF +H2mxFN4QSGxhQM9gZgCw5Ajszs9ubB2vFzqtp+YrsZy6U3iXRl0QxUQL+Pz fkjmo1fP6X5CvMI6bfOrZuJQ3G8d2t5w6bZM8Z2Y2a+q3luIe/ACj4nlA3TB pGl7EOexhjjD1bstwpgHnRqna8x8Z/oPh7+YTkFHTPxCYRMPhun2rqTPe/48 XQDRthCME8xBrHG7lrsS49+FXggSlvdIX+rvYB0WMn1wZYsVa6YfVflyR/Bn 6cJcca4QAsNcZn3dEBSX8Vp/p1mo+0mMwBGnq0EAPHyAjuS+Yix27fC7l8Rn fbGn2aPwERfGfCijgECkrqsTZkDPRhmlEKv295SYuT91V2duQ4fJfcrcr/8A 1bR6SQ== "]}], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGI9IGYC4g7HhKcXZqU4nD7stDbTzthBI6b/0NcJCH4o n+6muf0pDn++lT6Yw2js8PGSb5JAT4qDfWXEClNbI4h8e4qD/8WJMf+YjRzm HFHYUNQC5T82dIjb5cnDlI3g9+Q8/70yFsG/sbjAlosbwT9Rtm++lHiKw5ed t7r+mho5lEyWYAkzSnHYYv7jUIqUscOpha7bPtumOBSu6b6dUWDskCfUfOBU Y4qDH0h/sqkDzD8vsrS/TZc1g/OfJC68ZlJvDudzuamWMklZOiyQ0r+rUpTi cAYEdKwc0kDADsG3ue/fO50LwT/ubd7p+CbZYfoE/iqz0xZwPq//+impM8zh /BUvPPT+PzRzmOrcnfP8P4KfMfFtjT1jCpwPMx/GB0mbigH9vyEge5a4OZzP A3JvF4IfIb79IsM7c4evoAjjTXFYDtJvaAE3H4X/NxnON+BYIxP1B8GPB8XP 72SHk6D41rNwKAJpYE5x6PZ6xWKiaAmJX+kUhxvSNYlGRy0dfgQ/XjrbAsE/ BHJAHIIPdk9pisMnkPuPW8D5sPCH8fuCS1Sm+5s5LAFG//V4qHp3U4cIyy0n ytxSHEyMgSDZBB6eG/XyFjPaGML56aB4emYAUQdMnzA+enoGAM4ISVI= "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {0, 1, 0}, {0, 1, 0}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQAGIQPfFtjb1pXaqD6pPmeWetjB1gfImpVzgzFhk78DBp t4sFYvJVQOp/WcL5JVtFf5+2s4LzC9Z0384IsHJgBHJveiH4c98vP+btjuCf Wui67bMrgp8GAk6pDj4n2G1nq1o5fLzkmySwJwVuP4wPc68t1/XFBYapGHxv kP6vhnD+32+lD+YUGjqwNk517jZIdYgQ336Rwc/QgU9309z3/Aj+jcUFtlzs mPx0kLueGThEpVjf9xdMdXiepf1t+lsDBzaQeSYI/hQJljA+RwR/xTFv805f BD8DFMCFCH4RSKAaYT6MD7Pf5r5/7/QiBD/CcsuJsiAEHxbeMP/B+DD/w/jo 8QvjAwB6LdM5 "], {{169.61399999999998`, 19.6344}, {166.22500000000002`, 19.6344}, {169.61399999999998`, 24.8922}, {169.61399999999998`, 19.6344}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Ax41g5k9UO5HthcARA4CmQ== "], CompressedData[" 1:eJx1lHtIk1EYxrdKLbFlztRybXMzMeyCmqld2DskuogprcuqdcHvmKamIRJJ VnSVWLLKMq8ZqVlgJKZRIQZR5h+5yiS7WympldlKydKwc863nQNFL5w/fnzf 9748z/uczy8+fVXCWIlEIsVnDT5j8JkXiqsKwSgpnQasPwydlZhfzZxePSpo wOnAmSjzJQTrJnjlhFo4FxTiuslZnnUqs8VfC7RfOQL/p+8NklQt5J5N8zhU wrnkrromo4Bz867GsmkWBBJScVpACztic832/lkaeKR5+XNfMoKsjqEXoWZP aIoOP6ZPcrCcsfrW+caENDnEuxsj6xCCt0u26Isee0BEHZ6wEYGh74mtQD8Z TvuMWyuLQdA+8aVXwnUZrJHNri0N5zyrtrS/SsmZjlcgaHmAK9WDMZ33Rc7Y NMOosCq8RX2BCG4YFhhHE31F/fMQPKDfq4A8TopE0JCe3Vd4RA3JDZl5PosQ ELmFvZyXVt+rkuz2Y0z3Ua6BymLcYY6dr2kBuzf3tQ/nSKK3X2Ds74wX1CFA rtEcK41TMa72mCVLfKNk7En2V6EU/XkniHpMSjBZ7gwGdnFu290bENzDeQjH pRjzQKOtPjFfCYnbcH0U4Arpv1kFbmOCcrwGBZi0Ka4jxEUDgcHjqxXOPC8Z SSf7sr3/Yl/ONB/af7n/wlV1S4SGMc3nfj/AX+vClPY81ahZ/9V0/yrRZykS c/rdm/HnozvMIb5ejKkfdz0ZU/++yoDEpV9l33e2G4xctrXGzOdM/YzijNPU FG1AYKQ8EQZ+YwfjEahIfqzucALbaxLs9++2O+xc7NpebkLQs7cz5eFnV9Fv I4K4ruWtYXnOot/L7HmZKgUyzozzkd1z8Ff+zZ866kcQgrLmvIqUgG86Il83 hTN+O7V7Emd6v34JEEv7f9PhbT23fhegbbip/dzzEZ1jf10re7f+LhvR3Sf3 bej/fDy1e/iyE2JM5Flk9vs0XwoOPuy912l701jGVM96Z5YP6t8iF8C0AY0K jB3zHOzIH4ndtg9OjC1kXzsljOtX1ESUZA2K+oYFqJBPuFi0/hPzx8HPyA9Q z5nIsaVxv/Ftb8jcw/f59//zDxdRVmo= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYCYp12sZvn4tMcXtQ+zj7/htcBxn+Oxk9NAwE+ hxvnvgc/jk1zONC9r8nkMZ8Da+NU526HNIf+iG5/RgNhhwlva+xNP6U6hLy9 /HFGoiyc/zxL+9t0WW043/sEu+3so8YOc98vP+Ztn+ZwBgR8zBwuKN3+WReX 5rBRL28xo485nL8Byoe5Z9oE/iqzaAR/i/mPQylZCP5MEKg0h7vX7+LEmH/N 5g4TDn3ViIlG8A041shEhSD4C6T076rIpTmoPWmed5bLzCHn+e+VH/+lOnC7 qZYy3TJ2uLG4wJbrfqqDP0j9YkOI+mupDuevhr3R/60H589ZpLzzj7o2nA92 n5eGg819/97pt1Id1gjp8KXnKTvsmw9UwJDm8GXfx63p02QcftZl7SmRh4WH iMOBUwtdtwWnOWz12mAx5ycP3P0wPix8YHyY/9U/qbyc5YmIP1j8AgC1Nuj8 "]], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, { 0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYC4kNfNWL629IdZJe/8NCLV3e4sbjAlqsawU8S iLDcUpLu8KZ4q+jvbhWHUD7dTXPz0x3+fit9MEdQxWGKBEsYX266wx1N2TX/ Lys7JDy9oHQ7M92h28ZzV1qTsgNI+XtrBB9svjGCDzZ/RxqcnwYCRukOcxYp 7/yjru0QlWJ93z8y3aGF5Wi/YbmuA8y96SB1YgZw/pPEhddM+I3g/LrfVgXn MkwcdIDWL/dKdzAxBoLDpg4HTi103caO4M8EgYNpcH7O898rP05LczDQWil8 4YoxnM/tplrKxGUE54OUGzsbOhxR2FCUsTINYo6mISQ8NiL4P+uy9pRsR/DB 7juV5sDvv35KqgeCr/qked7ZXwh+Pcj9M4wc9pRMlmDZleZwXeiT4/ljRnDz YfyMiW9r7Nci+DD3/AHFz0EjB0btdrGby9IcGkHhtx3q/k1p8PABx8/1NIcS YPSetjN16HAExuA/BJ/rOjDCzNLhfLD7oqDhfd8YlQ8LfyB/8f19fHOCDRxM 4nZ58lilO2w1/3EoZZWuA0j6kGi6g3iP1ysWEW14eJYe3uY6U1YJNXyNFR1U 2BqnOpenw/no6RUAOaw3gg== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{0, 2, 0}, { 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{197.922, 18.617199999999997`}, {197.922, 20.6484}, {197.28399999999996`, 22.6188}, {195.652, 22.6188}, { 192.86399999999998`, 22.6188}, {189.897, 16.7844}, {189.897, 12.4031}, { 189.897, 11.487499999999997`}, {190.09500000000003`, 8.401560000000002}, {192.18599999999998`, 8.401560000000002}, { 194.89499999999998`, 8.401560000000002}, {197.922, 14.096899999999998`}, {197.922, 18.617199999999997`}}, {{ 196.08899999999997`, 15.809399999999997`}, {191.88799999999998`, 15.809399999999997`}, {192.18599999999998`, 16.984399999999997`}, { 192.605, 18.656299999999998`}, {193.402, 20.070299999999996`}, { 194.05799999999996`, 21.2656}, {194.75599999999997`, 22.221899999999994`}, {195.63099999999997`, 22.221899999999994`}, { 196.28899999999996`, 22.221899999999994`}, {196.72699999999998`, 21.664099999999998`}, {196.72699999999998`, 19.751599999999996`}, { 196.72699999999998`, 19.0344}, {196.66699999999997`, 18.0391}, { 196.08899999999997`, 15.809399999999997`}}, {{195.95, 15.210899999999995`}, {195.45299999999997`, 13.259399999999998`}, { 195.03399999999996`, 12.0047}, {194.31699999999998`, 10.75}, { 193.74099999999999`, 9.734380000000002}, {193.042, 8.79844}, {192.206, 8.79844}, {191.58899999999997`, 8.79844}, {191.091, 9.276560000000002}, { 191.091, 11.2484}, {191.091, 12.5422}, {191.409, 13.8969}, { 191.72799999999998`, 15.210899999999995`}, {195.95, 15.210899999999995`}}}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYC4vSJb2vsEzMdgt9e/jhjoYQDjO++5uhyhh8S Dny6m+a+j890OAMCPpIQ+VgEf6pzd87zaAQ/bpcnDxOQv1ZIhy/dThIiHpHp kJ4GBGySDosLbLmuu2c6MIDAAnGHue+XH/M2z3RoVWBXPfNFzOHUQtdtnzUR fK7rQB1CCH5UivV9/58ZDuqfVF7OeikB55sYA0GwHJwfAvJPorzDfCn9uyq/ MhycJzQLpWUpOICcb/ovA+K/DkUHe1Ogiz0y4fzs579XfvRD8A991YjpD8Pk g837heDzxwbcNwpXclAz5FgjE4Tgm4ACxAvBByk/xIjgm3c6JjzlyXR4FCG+ /eIDFQcVtsapzuqZDgkhQeoLMtXg7oHxYeEN4xdlAH2UjOBPAPkvC5O/SS9v MeMdBH+HQ9Oj4xbqDpGg8EpF8GHxC+Org/zjh+CDgtlYHMHPAbnvVobDlPbW qMs1KnC+8rVHwQwyCnA+JP6lHJRu/6zL+pPh4AEKzxuiDt+DHy+drZEJ5/+9 UvFSzRXBh6VHsL3CiPQJS68A7J8vVQ== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4j0lkyVY9LIcnmdpf5suq+0A42/Ry1vM+EfX Yfkxb/NOzSyHDSB+jqHD/PdAEeYshxcg9X+NHVIEIiy3PMl0YAABATOHOUcU NhRtyHTwuzgx5l+zucMZEFiB4H/5e6Xi5TIE34BjjUzUkkyHkq2iv0/XIfi3 pGsSjVLNHfSh/JtQ/gLXbZ//Avlfd97q+htq7tCT8/z3yqWZDhtB7vMxd7he 8VLN8EgmxF4fM4czC4EaBLMcvE+w284+agznz1mkvPOPujac/2Xfx63pZbIO ++dL6d8F6ndfc3Q5Q4Qw3PytXhss5uzkg9ufmgYCfHD3vqh9nH3+DS9O/oHu fU0myrxw/4PN+8kDDx8YX6dd7Oa59Qg+OD6eZToEvb38cUaiiAMo+M1ZsxxE KieVnFWRdZgiwRLGp5rlsFZIhy/9nxI8/mZM4K8y81Z3QI9fANYD4ks= "]], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}, {{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgAmJ+KB1uueVE2bEch/iQIPUFK/UcYPwnEeLbLyboO5z9 Hvx46W4E/wwIbEDwQdKzfbIRfI2Y/kOOCP6Xv1cqXpph8mH2wfhb9PIWM/7R dZhzRGFDkQOCbxK3y5PHC8HvP/RVI2ZzDpxv3umY8HQPgg9zPzof3X9T2luj Ls9RR6g3/3EoxUsDYR6UD7cPyoe7B8qHuxfKh/sHjQ+zD8Zv4fVfP+WpGjy8 4HxoeML4sPCG8WHxAePD3I/Oh9kHACn06as= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}, {{0, 2, 0}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQAGIQbbHlRNm+7jyHgFvSNYlG2g4wvvjUK5wZTvoOV3yT BCIy8xyuC31yPJ9m6JAgEGG5RQHB/3ul4qXa3Vw4P5RPd9Pc5bkOcxYp7/xz XA/ON7fZGzTtoSacn5n/ofXkFhWHmP5DXzWe5Do8cI13nPVQweHAqYWu29Tz 4PyriwtsufIRfKDr5ksB3VfzaUNAtpQqnC8zL07z9AcEPyX2jhuzhZrDnpLJ EixtuPnLj3mbdzYi+KadjglPG/Icfr59fcBSWc0BpDysLs+h4bdVwbkVqg4G HGtkogryHO5oyq75/1nJISLF+r6/b57Dh0XrFc7OUIT4RwfBv/OzLmuPAIIP Ds+vuQ7lh7e5zuxVgvufhbNLPtlPxUHlNlDDhVwHHUX5LzlhanD+8V07etk2 aMD5TxIXXjPp13J4D/ZAHpwPiz+wf3Yg+GfAAMGHxTcA4M7oHg== "], {{ 243.29200000000003`, 13.5781}, {238.53300000000002`, 13.5781}, { 238.67199999999994`, 16.4453}, {240.20500000000004`, 17.082800000000002`}, {241.00199999999995`, 17.082800000000002`}, { 242.35599999999997`, 17.082800000000002`}, {243.27199999999993`, 15.809399999999997`}, {243.29200000000003`, 13.5781}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGJVIAaxQYAJSjNCxZiR+AxobErUIIuTag4lZpKqd6j4 EQDgwgJ9 "], CompressedData[" 1:eJxdlAsslWEYx0+coSY1FRUV53zioM5BFot5ZEg1jMJyiVyOiu+1MmnUKltm NJrkGsrs0LRa081OaSGSI12oXKapJsXUSjKs3u873u+tnu3dt9/ePbf/+zyf 5QEUFK8rEokW4eOPjw4+BROZHs6dCJx4swTC0r6RYJGbBFILV4tDrlIenDl5 SF2NoO7nWHpXoATcl7yuSTmPoIuzPCkkqrGHG4JnvSHj8gxbqC1vtbiRhqCk FNsaObg0dqQ9yEXwpGX7tYP+Cli66ealyRoEvzmrUmi/zQgGzDJjHGspc+6l MgfQbzDfF1eIID84lSne4KCt9wzlUFecgKXM59tP/QmT+NHLw1wbExFYfciq 1JQpABlnPexMRhAbOeijm0jZrDJK9tSCcvSeIOvqHDkYcPUoaX/tu7bmeMYh COjHCV5shgtYPiNnBKZ5Oz+LV9pBtfft7/NzLFRckd6bU8mB0Ttd5DXNQriF 57dYQ4XAygRsJpR5HeSU3Y+H1TknKyAvaXS2fp4V9KvAch8xoP0RJv3Pv0of 2zjDCvpM2UTkPxqiHP2xRzKgoZzCPbCachvXXx37r/5lrBCfMMlP/Al7OEc1 +bWyWj0LFLDXCA/ASxbam+6e0/sqh/tVa+VD5gjehZneeS6yBQ6Z9Qg+Hb21 avaLDCLitg0HWCIYjbnct+U6Zd6/gPKO5hPrXJQyeNM9Hfx+jAWFbf2KHsYK xHbZJm9HWNjdoe9eXsRo633MQuhik2wnJBH6i+f095FAbw3uoJgV5p8w2RcN Dl/bwsKyyMBhR19LYAbwgvRQ5vUfp1zklZs0Ok39CZP4/P78oPlJ/RnDv/qd wimrUeZEqbdUYA23f3NSiGzyM9SZZLX7mMRAHDffOB6vxyijnVMZglPitnyH aRvtfMYs8DFGq3fCgn76jDDvDcb2RkpWKjDfjzVl34Y2lahEIviT+vn9Dqf/ D8Kkf36eDyNBH3t8rTpLuZUb0It/3ePn61ZRxtM7ZaOm/P//7A+69hpu "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, { 1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQBmIQ/bbG3jSursBhveqT5nlnNR1gfP9b0jWJl/QcXqoZ cqxJKnAQn3qFMyPI0CH+6QWl244Ivnzr68Adegg+iCsnX+CwxfzHoZRVBg4T QQaKFThMaW+NurxHH86HqWdtnOrc/SAfol4Kwf+681bX36kGDv690/OEmAvg /NMLXbd9Zi1waGQ52m9YjuDra60UvsCiD+dHq0bInIuRgPO/7Pu4NT1MFOIf lgKH3ohuf8YPInD70PlrhXT40u8JOSwpsOW6/j7fIT0NCNiE4ebB+P5JAhGW fAg+MHR+1okh+Mza7WI3VRD8iyB5nQK4+TA+zP7sPSWTJSQQfKBtf68AzQt6 e/njDEdROB/mPxh/5beXFWcWKDusd39YJaJQ4CBcOank7BdFh991WXtKdAsc HrjGO856qOAA9L1MlB2CD46POAQfFv+/3r4+YJms4oCePgBPNfE4 "], CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/R8EMgscfrx9fcDysKYDjL/DoenRcQtVh5kgEFrg IFw5qeRsi6LDff/e6Xk2CH7O898rPxog+N48TNrtKgUO3Taeu9KMlByeXlC6 /VOqwOHvt9IHcwRVHFy3ff57RQzK/4jgs3B2ySfrqaLKX0TwM/I/tJ7cogvn g93rrAfnzwC5U1LfIWPi2xp75QKIuz0NHJi128VuAt0TIb79IkOcgYP7wyqR dfoFDteFPjme/2bgINx84NRCewS/WmSd+8MwBB8WHmtVnzTP89VzQA8vAKP2 pgo= "]}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIlIGYC4v8g4FjoYGIMBJv/2cP4W7w2WMz5+d/+sm+S QASQX7i8ZMM/fwYH+dbXgTscCh3UP6m8nHWSwcEkbpcnj1Ghw5d9H7emT+Nw SE8DAplCB7A5+4Uc4oHSTPyFDm/acruNdss7uD+sElnHXuhQfnib68xaZQfX bZ//XmEpdEiJvePGPEMdzn9TvFX0t7c2nH+4bXn4qUdGDuadjglPJQodzoBA j5kDyDly9oUOS+7v45ujbOkAc3+31ysWk0AE36Hp0fEZ0Qi+9wl229mpCH7d b6uCczMsHX7WZe0psUfwJVjC+HTtEPwjChuKMizR5DUKHa4LfXI8n2bhYAoK DxVg+Jn/OJQiZeGQbH3fv5e50OHvt9IHczaaQvzzrsBho17eYkYZIzhfX1H+ S06YNpzPwtkln7xOFeLPbwUO02cCQaS0gzcPk3a7QqFDi3gta+Yxbodae6CN yoUO9iWOtafvcDoAbZueZ1Ho4LHV/3hy2297mPthfJj/YHyY/9H5sPQAAHoL CWw= "]], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}}, {{{290.81999999999994`, 13.5781}, {290.81999999999994`, 13.976599999999998`}, {290.44199999999995`, 13.976599999999998`}, { 290.16299999999995`, 13.976599999999998`}, {279.30899999999997`, 13.976599999999998`}, {279.031, 13.976599999999998`}, { 278.65299999999996`, 13.976599999999998`}, {278.65299999999996`, 13.5781}, {278.65299999999996`, 13.179699999999997`}, {279.031, 13.179699999999997`}, {279.30899999999997`, 13.179699999999997`}, { 290.16299999999995`, 13.179699999999997`}, {290.44199999999995`, 13.179699999999997`}, {290.81999999999994`, 13.179699999999997`}, { 290.81999999999994`, 13.5781}}}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{ 1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" 1:eJxTTMoPSmViYGAwBWIQLcESxqe7qMihhdd//ZSnag4wfkrsHTdmCXUH807H hKcLihweRYhvv+ig7vD0gtLtn/MQ/MdLZx9RmIPga7eL3Tw3u8hBYuoVzgwl dYeJb2vsTWcVOWTmf2g9WaLmELhDrvX1xCKHPfk1b2deVXJgBmloKXL4sGi9 wtkZig6GHGtkoqoQfE8eJu32MgTfJG6XJ09RkYP7mqPLGXYg+DNB4KUSnH/2 DBD8UXaQiUqxvl9a5MDC2SWfrKfq4A3yUCXUvQlqDiDvbuovcqj/bVVw7oSu g+6mue+XTyhyqPm0ISBbSs+hWmSd+8NJRQ7+t6RrEi8h+KI9Xq9YpujD+f9B YL6Bg/jNc9+DO4sclr/w0PufaOjADDK/EsFPTwOCGAT/ezAwBAOKHKa0t0Zd /qMD578p3ir6ezWC/+Pt6wOWzToQ/wQWORzdtaOXLUDHIXtPyWSJEAQfHD9h CD7QN8e8w4sctjs0PTpeoeNQnwXUEAEMv/21shbsug6+SQIRlglQ9+sbOGwH Rk9gTpHDRr28xYx/DBym5wk1H6hA8IWbD5xaWI3gS+vfVWFrLHK4LvTJ8fw3 BH/x/X18c4IR/BOHndZmztOHpKeaIoe1qk+a5/nqweMbzM/VhYRnHtS9OzTh fH2tlcIXlmg6mILiN6XIwQDEZ1GDpL+kIgczm71B0xJV4f45BbJvnwqc7wH2 L4KvfO1RMIONEiT8soocyg9vc515VgGePmD8ZKDyLdMQfFj+eJGl/W36XER+ geUfAKsRcEw= "], {{297.97700000000003`, 21.026600000000002`}, { 297.97700000000003`, 21.325000000000003`}, {297.738, 21.6828}, { 297.29999999999995`, 21.6828}, {296.84100000000007`, 21.6828}, { 296.32300000000004`, 21.2453}, {296.32300000000004`, 20.728099999999998`}, {296.32300000000004`, 20.229699999999998`}, { 296.74199999999996`, 20.070299999999996`}, {296.981, 20.070299999999996`}, {297.51899999999995`, 20.070299999999996`}, { 297.97700000000003`, 20.5875}, {297.97700000000003`, 21.026600000000002`}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGJZIIaxWZDYzKNsqrEBLWICow== "], CompressedData[" 1:eJx1lHtMjWEcx0805ZIIRUqJ0+k4p877ukTG9kszEaImR1pXXZYj9jwuMbfE jBhGKvfLH7TlMutyVi5nsRUREa1Vcl04NdeFFXme9zk9z9j8tvePz9l5f8/v 9/1+n3ds4uqI5L4qlcqOPEby9CFPnU/Tz61pGNxy6/unVU4AFS0ThjLY8aoq Uw9n3A0t49dgeGF0K6vbHsA5Z94H+8lDJc707/k5Ejhk5YbkZGBocPkS/LBT gtQUUukYNB1ON6UgGf46L0KGmrOzS78mY7jwLjSgJ0GGO95XUVqSYNLN1BYn WOkXg8E5/MqR5FAZ2hebx+xahqF46o/KFe4y6K+d/HghCsNy7+DPSe0SHBlp HzV4CYZbWzynpRYL7u5c9+JEluBtXdPX1BolyHzvKzuS93toGSSIJO2tS8W+ dLxDcbb5Zxn4vMUBGeftuv0536e1T895C+3vqIf8DJdsSyKG/AJSG3Wg3+3a WJuAIe+g86ZA6wQYfnnOy03RGPzHen0zBWqguHr9zdOhGJq1nkU9SeOAqPWr PkCw5FjkEe0h+DT1wwVDdbl5f78haja/MzmP9g/TQBBtOMy2b5of0HU6XDFs /nJ10cpjWvhVTxQYJfKgo/MRbkvXdeZ56qA1fH9ehjuG8LpDMb+zBSt6tQpW +kXreb/51Q4zj5fowa2x9nvkCMFUhgJnwYepH062vFl08HNr+vW1A4U+U/cE x791tOXTrGX9HDCEUoN3+0Fc+dxBfQh70sDEaZie3YjN466GSbQ6ENdrNJGr X5NgJW9VgodlW+6dvYUgcMaNiKMJas4L6f6vNZz79t/rlVTrx+azIPjRYbUE 3dYyvyoR11PZl/Tf6UQCrPZnej1GkEv3W2kAOyr4c8T8qZaAjpfVimDmRuPF KS0S84Nwb757efSpWG2NSubcex8qiBw6wopfk2SW3xbEdAiRWb6aEb9PTxYk DjE2/Z/p9TY1CrbS+9eA+P2uCiMKPENwIHLt+Dwv2/l3EVTRPH4ycH0uqd9k n1rlz+atQNxfZR4zgol0vkgt86cMwaOnUe2GCg3ndlwyoivMl3Nh5/vM+5Lw a8Pt0tkFD7zZng2CFf2tguPfPvJp6kJQQ+9rkQ/7HpH8mGm+pqmZfwMw7Jkx tzzlnA/Pb+/7St50gt91FX5+HCbY1EZ+iMXgQf35pIZ/v7d/AIr4byY= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYCYv8kgQjLQ8UOwW8vf5yxUMIBxndfc3Q5ww8J B4UNRRkTDxY7nAEBH0kHX5D8AQQ/xfq+f+9+BP9E2b75UkD+WiEdvnQ7SQcG ENhX7JCeBgRskg5vAnfItW4thogvEHfImPi2xn5tsUOrArvqmS9iDg1Ze0om L0Pw5VtfB+6YheCf8DbvdOwrdlD/pPJy1ksJON/EGAiC5eD8EJB/EuUdXqoZ cqwB8p0nNAulZSk4JAOdv2UC1H8dig6WW4Au3orgB/ROzxPaieDXiKxzf7gH kw827xeCzx8bcN8oXMlBZ9Pc98t3Ifgg4+dvQ/BByqsmIfimcbs8eWYUOzyK EN9+8YGKwxqZqBTrpcUOCSFB6gsy1eDugfFh4Q3jXwFFyGEEH+y/Y5j8TXp5 ixnvIPg7HJoeHbdQdzgOCq8jCD4sfmF8XZB/diD44HCei+CD3Vdf7DClvTXq co0KnK987VEwg4wCnA+JfykHnXaxm+f6ix08QOF5Q9RhqnN3zvOlCL4ESxif 7hYEH5YeQdYaCyPSJyy9AgDNpCNA "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGILIGYC4oDe6XlCsSUOqk+a5529ZeAA478o3ir6+7We Q+AOudbXgSUOcxYp7/yTrutgueVE2T7DEgeZeXGapy9oOyyQ0r+rYlDisEEv bzHjHm0HE2Mg0C+B0JMRfH1F+S85YUh8rZXCF1i0HRKeXlC6DeS38Pqvn/JU yyENBIxKHDz218paHNeCuycz/0PryS0acD4LZ5d8cp8anG8EMjdYBc6vvv/j lvFqIYcjChuKMoB8kcpJJWdbBBwkWML4dJNKHA5072syUeZ2mPi2xt60oMTB rsSx9nQMm8OL3ys/XqovcZgJApKMDkLNB04tnAl0z1b/48ltv+0vKt3+WTcH wfd4WCWybj6CDwqe+QtKHM6AwR84f+6JyUuyl/2H85fcWv7Y0JnRgQEEgPwX tY+zz+cwOqyRiUqxnl3isNVrg8UcSyaHDrGb575PhPJ/Mju0vAbGSGWJA7cj n9eMlxwOFS/VDDlKShz6I7r9GQMEIf4vLnEQBvnXRQjOl9+1YF9qHoIPtjdB FM4PvCVdk1ikAuf7XpwY869ZDc4/DfJOjqZDK8h++xKHN6D04a0Nl08ICVJf 4KkL58suf+Gh918fzgcHh4whnB8pvv0iwz9TOB8c72LmcH5fcInKdHkLiPi8 EodTh53WZspZOsDCD5RcUjUQ/GgFx4/JPgg+WF8Ygg9KTuktlg6w+Kr7bVVw boalAyw+YfwT3uadjrMQfAlg8Afnljh4n2C3nf3VAp5+QMFltNQcnt42gtI/ D4IPdu89MzgfnO6ZEXxYfgMA3vN7GA== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGINIGYC4n9XKl6q2Zc6pIHAM1UHGP9p4sJrJvxqDq7b Pv+9YlfqsEH1SfM8XTWHH8GPl862QfDf1tibxlkh+CZxuzx5gPyfb18fsFRW cwgBKj9iUeogu/yFh958VYeLSrd/1hmUOghXTio5m6LksEOu9XWgXKnDh0Xr Fc7OUHTYcqJs33wBBP+Yt3mn458SOJ8ljE930+MSh24bz11pn5Th/ITYO27M NzTh/BZe//VTnuo7PKwSWef+u8Rh+gT+KjNuQ4d17kARvlI4/wLIPVIIPsj5 TLqlDlvMfxxKWWXgwAACJqUOPhcnxvxT1nc4tRAYIroIvpT+XRU2VUy+DMi/ +3XhfFObvUHTFuo4GHCskYnSKXU4umtHL1uADjw8YHxQcOwwQvA7xG6e+25d 6sDC2SWfnIfgmxgDwWVdOH/x/X18c4INHP6s/HjJV63U4brQJ8fzaYYOm+a+ X36MF8EH++dNCZwP0h58vsQhFRz/enD+elB8ntWE881A7m9UgYTn2xKHB67x jrMeKsDNh/HB8qYIPiw96SrKf8kpQ6QvWHoDAPmyGUg= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, { 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{348.983, 12.860899999999999`}, {348.983, 15.410899999999996`}, { 347.1310000000001, 17.4016}, {344.961, 17.4016}, {342.789, 17.4016}, { 340.938, 15.410899999999996`}, {340.938, 12.860899999999999`}, {340.938, 10.3531}, {342.789, 8.440629999999999}, {344.961, 8.440629999999999}, { 347.1310000000001, 8.440629999999999}, {348.983, 10.3531}, {348.983, 12.860899999999999`}}, CompressedData[" 1:eJxTTMoPSmViYGCQBGIQLXbz3Pfg3aUOW8x/HErh0nKA8Se3t0ZdrtFwSBKI sNyyq9RhJghIqjnk7CmZLLGp1OHErh29bAYqDrs8eZi0V5Y6VN//ccs4Wslh 2+e/Vypmlzp8WLRe4ewMRQcf807HhH4EPw0EGhB8oG2PlxaXOqSDxLcpOeyQ a30dmFPq4HtxYsw/ZxUHA441MlEppQ5PExdeM+FXcziisKEoIxnqXi8NVD7Q /TB+A8vRfsPt2g4VL9UMOYD6639bFZw7oQs3X7TH6xXLFH2I/4pKHZa/8ND7 X2jgAJTdIVdf6nBbuibRSNQQ7n4YnyWMT3fTXARfpx0YYkD/f915q+vvVAOH X3VZe0o2ljp47K+VtTiuDw/POYuUd/55rgvng/3rpu2AHv4Aaga16w== "]}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGIpIIaxWZDYzFRgM0D5DFQ0k55uI0YNAMSPAnk= "], CompressedData[" 1:eJxllH0slVEcx6+yXH+EvDRbmXtdL/dyXfeRe7lSftgdLVbRqlkvyGuzsvKc pCxCKlsoJenNWjMLlUn+qFheulPJyvRihRtRyEqKUTrn8pxn1dnOnn2es/M7 v9/39z1HHLMvPG6xQCAwwnMdnovwTL6fetY2EMH02EiTRuIMHJcUmqer3aSg fOe4JEuDoL05sDpprQy6wmIstqkQ3INj+scNMpDnLX/T4YYgVGeypmzSFdxr L49XiBAU5+VGvvRzg/5065pgKwTGpqfsd592A02dDj00QpAx45vSIZRD5rmg /OQRFjKNWwuYEp49XCutOo09KGeRdRMlEBwaZ6EgItWxxJ6BmmB8ggWibGu8 xczdE/297oVgitQXpABR7simBq+F/GblUEw24HrqvKcexbbLgaR3VY1gjoxG OYhu708s8ub5Ugv+4/s/64g+73kePnDXZibfnfKKKztlTwQM5adkbGdg4EZZ iwhzxXCIYi6aASKvxofn5KGZyq9qnrn8uP2GL643pSq/J9GCgajBToceBsEd xd7rRrNKIDitQHCU6K1TQtonZ0aIuTHDziehTgnDOPwLCR/f0G8bBK8svwU8 j+f15ZikVzfKUj6B2/+zl4WB6PJuL38l5UHCHgrKF0rJcAVrElCw0I9mGZB2 1ZoiiIvH47gMiH3a7BCo/R6EnzeSzdfnuOC311Kon/jVlYb9piLrYilYZje1 l3sgCCEFVbhQfQzx2pwpG/yz1Yny4d6pt6tuSqg+VofOpD7LEUMIMewyntvL tfUTkyxlgx64/pylG24VOzkCI6xaGfmRpeeHep8MiBpkYT25DyopZYNf/KWg JQXoec7B6Wv7eOb04vZzHLU53OVakgvlg8312tJqMeUEUu8PEY0n6dZHCEZF UDR2xF+l59lwXz/wvIfc9wF+v6EfOF/zHRt7PYPFMIvtEfaFhWpLuVnCbwcg 9qn6zkJQYbZl/GfxvH/mWOjT7gq42C+i+nGM1YldzfDMvS/BVa0VAqEE/n1/ /gCKmSCu "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4iSBCMsta8ocXtQ+zj7/htchEcp/DuXD5FPT QIDPwXLLibJ9q8scDnTvazJ5zOcQ0Ds9T2humUN/RLc/o4Gww1Tn7pznpWUO IW8vf5yRKAvnP8/S/jZdVhvO9z7Bbjv7qLHDnCMKG4rmlDmcAQEfMwfTuF2e PED7NurlLWb0MXcwgfI3QPkw90ybwF9lFo3gbzH/cSglC8GfCQKV5nD3+l2c GPOv2dxBZJ37w6pVCP7TC0q3fy5D8GWiUqzvd5c5qD1pnneWy8yh5cCpha41 ZQ7cbqqlTLeMHXbItb4OzClz8AepX2wIUZ9e5nD+atgb/d96cP6cRco7/6hr w/lg93lpOOTsKZkskVXmsEZIhy89T9lhDUhBbZnDl30ft6ZPk3Hw4mHSbu+B hYeIg86mue+XA9231WuDxZyfPHD3w/iw8ILxYf5X/6TycpYnIv5g8QsARhXf xQ== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{0, 2, 0}, { 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{372.62199999999996`, 18.617199999999997`}, {372.62199999999996`, 20.6484}, {371.984, 22.6188}, {370.352, 22.6188}, {367.56399999999996`, 22.6188}, {364.597, 16.7844}, {364.597, 12.4031}, {364.597, 11.487499999999997`}, { 364.7950000000001, 8.401560000000002}, {366.88599999999997`, 8.401560000000002}, {369.595, 8.401560000000002}, {372.62199999999996`, 14.096899999999998`}, {372.62199999999996`, 18.617199999999997`}}, {{ 370.789, 15.809399999999997`}, {366.58799999999997`, 15.809399999999997`}, {366.88599999999997`, 16.984399999999997`}, { 367.30500000000006`, 18.656299999999998`}, {368.102, 20.070299999999996`}, {368.75800000000004`, 21.2656}, { 369.45599999999996`, 22.221899999999994`}, {370.331, 22.221899999999994`}, {370.98900000000003`, 22.221899999999994`}, { 371.42699999999996`, 21.664099999999998`}, {371.42699999999996`, 19.751599999999996`}, {371.42699999999996`, 19.0344}, { 371.36699999999996`, 18.0391}, {370.789, 15.809399999999997`}}, {{370.65, 15.210899999999995`}, {370.153, 13.259399999999998`}, {369.734, 12.0047}, {369.01700000000005`, 10.75}, {368.44100000000003`, 9.734380000000002}, {367.74199999999996`, 8.79844}, {366.90599999999995`, 8.79844}, {366.289, 8.79844}, {365.791, 9.276560000000002}, {365.791, 11.2484}, {365.791, 12.5422}, {366.109, 13.8969}, {366.42799999999994`, 15.210899999999995`}, {370.65, 15.210899999999995`}}}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYC4he/V368NLvcIfjt5Y8zFko4wPjua44uZ/gh 4bDLk4dJG8g/AwI+khD5mQj+3ysVL9WQ+EkCEZZbZpQ7rBXS4Uu3k3SYCQLT yx3S04CATdKh9XXgDrn+cgcGEFgg7sCo3S52s63coVWBXfXMFzEHCZYwPt0G BH+HHFBHCYKf8PSC0u30cgf1TyovZ72UgPNNjIEgWA7ODwH5J1HeoeXAqYWu GeUOzhOahdKyFBz+AJ3vmwX1X4eiwxVfoIv7EfyXaoYcayYh+CLr3B9WTcPk g837heDzxwbcNwpXcjjmbd7pOAXBBxlvOQHBBykXyUHwL3wPfry0sNzhUYT4 9osPVBxct33+e6Wu3CEhJEh9QaYa3D0wPiy8Yfyc58AImYPgg/23AJO/SS9v MeMdBH+HQ9Oj4xbqkPCai+DD4hfGPwHyzyQEHxzPZQg+2H0R5Q5T2lujLteo wPnK1x4FM8gowPmQ+JdyOKKwoSgjs9zBAxSeN0QdDO6qsDXWI/ib5r5ffqwX wYelR1D0Ggsj0icsvQIAiUBCIA== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4olva+xNmSocnmdpf5suq+0A42/Ry1vM+EfX oUPs5rnv/8sdNoD4OYYOTNrtYjfflDu8AKn/a+yQYn3fv/duuQMDCAiYOTRM de7OOVzu4HdxYsy/ZnOHmSCwH8HX2TT3/fJ9CL6Peadjwt5yh5Ktor9P1yH4 t6RrEo1SEfybUD5LGJ/uJiD/685bXX9DzR0qXqoZcgDN2whyn4+5w7z3y495 ny13OAMCPmYOEiANX8odvE+w284+agznz1mkvPOPujac/2Xfx63pZbIOQs0H Ti0E6ndfc3Q5Q4Qw3PytXhss5uzkg9ufmgYCfHD3vah9nH3+DS9O/oHufU0m yrxw/4PN+8kDDx8Y/0TZvvlShxF8cHzcK3cIenv544xEEQcdYPCfe1vuIFI5 qeSsiqwDUDZu199yh7VCOnzp/5Tg8TdjAn+Vmbe6A3r8AgC6H9ya "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJrIGYCYtO4XZ48LRUOzhOahdJeKTrA+NX3f9wyjlZy eLx09hGFJgS/9XXgDrlqBN/bvNMxIR2Tf/oMEKxB8PljA+4bqSs7eKHxYfJr hHT40vOUHXQ3zX2/PKPC4e+30gdzBFUczn0Pfrx0coXDFvMfh1J2mTh48jBp t0+rcAAZfybH1OHflYqXatMrHPqCS1Smzzd1uO/fOz1vHYLfONW5O2crgt8u dvPc9+2Y/II13bczGMzg/CX39/HNMTZzEFnn/rBqC4IP8n7rZgQf5NxjaxH8 YFCALatw0HjLu89A08xBSv+uCttCBD/+6QWl25UI/rbPf69UFCP480EactDM T0XwV8tEpVgnI/i19sAYi8fkH2xbHn7qkimcD/Nv84FTC12TEHxYeMP4aSBQ g8m/IfTJ8XwZgl+yVfT3aTsEf9oE/iozaVMHyy0nyvYB00eMguPH5D8m8PQC Vn/OxCFrT8lkiYAKhxZe//VTVFUc0ie+rbH3rXBY+e1lxZkDSg6g6J7tg0hP l32TBCJMEXxg6L8O1EPwweGnjcn/sGi9wtkZinC+MRgoOuiA/KuH4B8DJUAD BB8c/6YIPig7MNlC06u7ogPI+h1OCD4oObzORPDB4VuA4IOiz7scYR4wNYms q0XwQd6zbEDwYfkPnQ/LnwApzpgp "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJZIGYC4hNl++ZLyVY6pKcBwTMDBxg/Qnz7RQY/QwcJ ljA+XTEEn61xqnM3E4IvE5VifZ+x0qH2t1XBuQoEX/0t7z6Dnwh+PcvRfsPr lnC+Bkhe0wrOPwMCOlYORxQ2FGX8rYDzTeN2efL8qHCIUXD8mHzG0sG80zHh 6ZsKBz7/9VNSPSwdgK7JeX4Vky89L07z9AMLh8kgD9xG8Ce+rbE3fYbgi6xz f1j1qcLheZb2t+m2lnA+zP0wPsx/2u1iN899rEANn3sIfgbIguuYfFj4PqwC mngXat9bAwegbye+/YTgNx84tdD1F4J//nvw46XA8IHx/Xun5wmJI/jo8QcA BPzM3Q== "]], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGI9IGYC4u/Bj5fOnlDpcPqw09pMO2MH94dVIuu6Efy4 XZ48TED+n2+lD+YwGjuslolKse6sdLCvjFhhamsEkW+vdPC/ODHmH7ORQ+NU 5+6cVij/saFDkkCE5ZYKBL/ipZohRxGCL9/6OnCHB4I/PU+o+YBfpcOXnbe6 /poaObytsTeNi6l02GL+41CKlLGDBEsYn25SpUPhmu7bGQXGDll7SiZLtFQ6 +IH0J5s6wPzzIkv723RZMzj/SeLCayb15nA+l5tqKZOUpUPzgVMLXWsqHc6A gI6VQxoIJCH4F5Vu/6zzQPDFb577HmxZ6TB9An+V2WkLOJ/Xf/2U1BnmcP6K Fx56/x+aOfy7AvSxM4L//PfKj5eQ+DDzYXyQtC/I/xsCsmeJm8P5PCD3diH4 EeLbLzK8M3dYB4owr0qH5SD9hhZw81H4jgi+t3mnYwISHxw/DpUOJ0HxrWfh kAPS4FLp0O31isVE0RISv4GVDjekaxKNjlo66N9VYWuMR/BFQA4oQvDB7qmr dPgEcv9xCzgfFv4wfl9wicp0fzMHUPTLFUPVu5s63PfvnZ6XVulgYgwEySbw 8Nyol7eY0cYQzk8HxdMzA0i8dCH46OkZAAUEWR8= "]], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzCSwGaB8BjL0DhR7oNwMAEUOAp8= "], CompressedData[" 1:eJxdlH9IU1EUx5eFVuicb3OK5XzbVAiFKJN+/JFHRFaE/RqkkKkI/sBEQaTu s2GEiEQ/LcLMwoxMApuSZmpmaWZSujIiNa2lZqVlKgVqBvbOfdu7sAPvj8+7 95x77jnfc/WpuQfTVioUihXiFy9+buJX/ONAs04tQDpatxaczLfebE9T+sHe VFXCdk6AFvOOhGWTH5zQWE2jKhdWMg6/f2OmRmQFNT8o0Q7Z5r0c8c5r4VVV bNNvDwHUwqX8vts+sG7jx2D3JQIDXsPatCYlTLwxDC/OMm7d7ekWNsm4Li+z dPoLgSCMZ1PJbKp9XqPwV8u8JUI0swa+Ld2deztBYBeub/OFPVtPR6eI8eh9 v/oDbouYI3CPC1dm7OTB/dSVmDN/CMRcLOLSp/QwXl3Rxf8jUr7BRsnPXZA5 zYV7jrVXBngxxnJ0+whSfj0GaMANawXoRbtukOvxOTY5+tqcXmZ6fhZjml87 D6XTlqhITwHaci3T5cU8YHnN3ozJZOim1VrG2L7GAAHi12hLIqL0Mi9TY2x8 P2ZWhBul/2K8kQ2BtcsNRilfd8ZJ2JBFIjOWK1usn/eR/fbNHgbo4uvzMmeI dN5JPRQ9fVkVO0VAhetlRqjADSPM377vXFnOIGPTaIHG2sGYwwAPiJSfJy9z Ldbjk05mDdWTDlA+hU0EEkMS1tsSdWDFgM2Mk1FgLYxRHnGtDr006KAsR4wo Mu3PTx0068SJ6HTc54IBMD1TP9PD9kaxQAOMw1Dwoy48TmDmVh3ft6CX+fiz ptjyOMZ0XOp5wHEqGGP3pet2Ahb7woeIo4FS/wcd+u32BTfc8I5AH+abzQEu J9nYvFA9dzL+W5jVlt/BOAXr8chl3h4SKOE9Qno1Kmk+nhAoRxNUUv9F/ww8 P5STmeq3nzGd919qeD1vHq9+7PAv10j6aGEciQ6NjF/ggFod/jlqmZ3vhZOv 0v1KCMIHy9lfi6fcLydf9l91SNnHGNtVKdbrMO2/CvxwfoYc97nDAT4PEyOs HjS/78yf6mWWMcqXE+fTyc73k+rnrC+4vq//AWE6X5Q= "]], FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}}}, {{{428.5199999999999, 13.5781}, {428.5199999999999, 13.976599999999998`}, {428.14200000000005`, 13.976599999999998`}, { 427.86300000000006`, 13.976599999999998`}, {417.00899999999996`, 13.976599999999998`}, {416.731, 13.976599999999998`}, {416.353, 13.976599999999998`}, {416.353, 13.5781}, {416.353, 13.179699999999997`}, {416.731, 13.179699999999997`}, { 417.00899999999996`, 13.179699999999997`}, {427.86300000000006`, 13.179699999999997`}, {428.14200000000005`, 13.179699999999997`}, { 428.5199999999999, 13.179699999999997`}, {428.5199999999999, 13.5781}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGIpIIaxWZDYzFRgM0D5DFQ0k55uI0YNAMSPAnk= "], CompressedData[" 1:eJxllH0s1WEUxy9ZtAlD/VHKvV7vdS/33rgkb0fSZZjQqqnk/dIMk7Q8xPUu iaKkVrL+MMtLmTCrWPIylaxML1YXq7HUWlmNUXqeH7/fs+lszx+fPTvnd873 fJ+fIDolNG4Dj8fTwscfH218dA4Z2LdVIVj8NtframkDLNdUGmY6i4UwmPG4 blsZguG+vc2JniJImllq/FGEoBPypge7RPCUfy8tIRtB4JCux41fdjAY4FLq nYagurgw/LW7GLJMW5RTsQh0Np03j7kohrGgaKMjYQiyl/akjuhJwEz6wWqj B4Jcnf4KeQ1lqV2jyaiOlGM1udeVAUG1N4KKsHSrGnM5KKcyTVuiKLff/N4w kL/uvhDBApnPxwE6dxbOhRSt9bcsAWkbTsDc7rLwJHZYAsG4PdcSBCskeiTQ 5a+vLS6l7BTR7a9/4X8eIvp8pDx76sGWpTJ7jrffihA948k5fk7imByyvBQR 3Vjfhlk/h5UoORB5X5VS1lVf8Skrocz2x+ar4nEUIEhtKptIMJLD8rmTD9Px /Pcdku9oLcsgB2NVLoIcoveQDIzye4frcxD0ZO/YrWqXQS4un3Sa1mf2rULw xvin98t4qi/Ly7i9IE/K5nj9l+QIPkXVjzt5yTj+TFjqwPG1WhJ20EoKhq7t o08EdXhdAUcRxJE5ikQQiO0TmYLA2f1R6FUt0ep8GWt+eyuE4PKaZGPsNwW5 FwihySw81k2NwI8M1GDL6cPUG7DhmPHPYWuOkWbhveNdS04fk7OX018UCGAS j6uMoRzrpgkuV1Jm9MB+LNgc3FptbQVD9b4d8y70+zOjFhOLzggCyHtQCDlm /OIlBA0ZwIkyaV8jp8zqxeazHHkw1PZ2oi3HZ/o6fGubBRwzOv3mc/Usx6fD eF/5ICne+m7EkTLzXhWUmfeuoPnMPvA8hscPaHYpBVCN7THjhaDZWGKg+msB Bdg+vvsR+FTmG8d/Eaz6JwTBpO8J7+tTfE4/lvd1zP8Zy6PM/l+UTf0NPD1L WP//+QeLXAF9 "]], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" 1:eJxTTMoPSmViYGAQA2IQ/fyC0u2fD6odjMFA0QHGV772KJjBRslBgiWMT/cc gp9ifd+/92y1w4yZQFCJ4H9YtF7h7AtlOF986hXOjCBDB/NOx4SnK6odtpj/ OJQiheB/3Xmr6+9UA4fpeULNB3Yh+PPfLz/mvbfaoZHlaL9hOYKvr7VS+AKL PpzfbeO5K+2TMpwfzinWbpyv5FDxUs2QYw/CvQLNB04tXI7Jh/n3QZXIOvf1 1Q78sQH3jdyh/t+D4Oc8/73y4xEE/3vw46WzzyD450ECN9H0I4UnAOYhoUo= "], {{445.086, 20.628100000000003`}, {445.086, 21.106299999999997`}, { 444.708, 21.4438}, {444.289, 21.4438}, {443.8110000000001, 21.4438}, { 443.4729999999999, 21.065600000000003`}, {443.4729999999999, 20.628100000000003`}, {443.4729999999999, 20.15}, {443.8520000000001, 19.8109}, {444.269, 19.8109}, {444.74699999999984`, 19.8109}, {445.086, 20.190600000000003`}, {445.086, 20.628100000000003`}}}], FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGITIGYC4hNl++ZLtdY4GIOBogOMr3ztUTCDjZJDgkCE 5ZYCBL9hqnN3Tn6Ng3DlpJKzKQh+t43nrrRPynA+C2eXfLKfLpyvqyj/JSdM 3+G4t3mnY06Ng/jUK5wZQYYOupvmvl/uhuBv/fz3SoUugp+aBgQKNQ4OTY+O z5A2cBBoPnBqoXSNg8zyFx568/UcgLqPeWPhw/TX2JvG7fpa7bDF/MehFCkE /+vOW11/pxo4ePAwabdz1MD5PkDnJXDXODSyHO03LEfw9bVWCl9g0YfzYf6F 8cM5xdqN85UccvaUTJbgQoQXzD50Piy8r/gmCUT8rXbgjw24b+SuCDcPxnd/ WCWyThjBP7HQddtnaQS/BRgcrloIfsAOudbXhoj4hPFh9qdY3/fvlUXwwfpl EPEJ48P8B+OnxN5xY56hDeeDw9dJH+JfvRoH6XlxmqcZDB3u+vdOz3NB8P+D QDSCz9oITBBxNQ5PIsS3X0zQh/NbwOGtC+fD7IfxYeH7ABgc7rFI4QvkPvTA 5MP8D47fAET4wMyD8V22ARNcGoJ/HJT+8xH8H3VZe0pqkcIfLb8AAAfiRhs= "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4inO3TnP39c4vKh9nH3+Da8DjP8cjZ+aBgJ8 DjnPf6/8+K7G4UD3viaTx3wOLQdOLXR9UOPQH9Htz2gg7HCibN98qZ01DiFv L3+ckSgL5z/P0v42XVYbzvc+wW47+6ixw9nvwY+X3q9xOAMCPmYO6RPf1tgD 7duol7eY0cfcIRXK3wDlw9wzbQJ/lVk0gr/F/MehlCwEfyYIVJrD3et3cWLM v2ZzB/eHVSLr3iL4EixhfLqvEHz/3ul5QudrHNSeNM87y2XmsPXz3ysV+2sc uN1US5luGTu8Cdwh17q+xsEfpH6xIUT96hqH81fD3uj/1oPz5yxS3vlHXRvO B7vPS8Nh7vvlx7zX1jisEdLhS89TdrgLUnCgxuHLvo9b06fJONTYm8btOg8L DxGHhKcXlG6/rHHY6rXBYs5PHrj7YXxYeMH4MP+rf1J5OcsTEX+w+AUAQn34 ew== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{0, 2, 0}, { 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{472.82199999999995`, 18.617199999999997`}, {472.82199999999995`, 20.6484}, { 472.18399999999997`, 22.6188}, {470.55199999999996`, 22.6188}, { 467.76399999999995`, 22.6188}, {464.79699999999985`, 16.7844}, { 464.79699999999985`, 12.4031}, {464.79699999999985`, 11.487499999999997`}, {464.9949999999999, 8.401560000000002}, {467.086, 8.401560000000002}, {469.7949999999999, 8.401560000000002}, { 472.82199999999995`, 14.096899999999998`}, {472.82199999999995`, 18.617199999999997`}}, {{470.989, 15.809399999999997`}, { 466.78799999999995`, 15.809399999999997`}, {467.086, 16.984399999999997`}, {467.50499999999994`, 18.656299999999998`}, { 468.30199999999996`, 20.070299999999996`}, {468.9579999999999, 21.2656}, {469.65599999999995`, 22.221899999999994`}, { 470.53099999999995`, 22.221899999999994`}, {471.1890000000001, 22.221899999999994`}, {471.6269999999999, 21.664099999999998`}, { 471.6269999999999, 19.751599999999996`}, {471.6269999999999, 19.0344}, { 471.56699999999995`, 18.0391}, {470.989, 15.809399999999997`}}, {{ 470.8499999999999, 15.210899999999995`}, {470.3529999999999, 13.259399999999998`}, {469.93399999999997`, 12.0047}, {469.2169999999999, 10.75}, {468.6409999999999, 9.734380000000002}, {467.94199999999995`, 8.79844}, {467.106, 8.79844}, {466.489, 8.79844}, {465.99099999999993`, 9.276560000000002}, {465.99099999999993`, 11.2484}, {465.99099999999993`, 12.5422}, {466.30899999999997`, 13.8969}, {466.62799999999993`, 15.210899999999995`}, {470.8499999999999, 15.210899999999995`}}}], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGIdIGYCYhn9uyps92sdgt9e/jhjoYQDjO++5uhyhh8S Dm9q7E3j7tU6nAEBH0mI/F0E34BjjUzUHQR/inN3zvPbtQ5rhXT40u0kIeK3 ah3S04CATdJhu1zr68BLtQ4MILBA3MEkbpcnz6lah1YFdtUzX8QcfMw7HRMO I/hvAnfItW5H8KdIsITxra51UP+k8nLWSwk438QYCILl4PwQkH8S5R22fv57 pQLId57QLJSWpeCgC3R+41qo/zoUHVgbpzp3X0LwZaJSrO9fRfDdH1aJrLuJ yQeb9wvB548NuG8UruTwpy5rT8l1BL8BaHzOZQT/AVC5+3oEn0G7XezmllqH RxHi2y8+UHEof6lmyHGo1iEhJEh9QaYa3D0wPiy8Yfz5UsAIeYDgg6Kn8TEm f5Ne3mLGOwj+DoemR8ct1CHh9RDBh8UvjP8D5J+rCP5/ENiJpB7kvtm1DlPa W6Mu16jA+crXHgUzyCjA+ZD4l3L4Hvx46ew1tQ4eoPC8IeqQIhBhueUQgv/0 gtLtnxcQfFh6BEWvsTAifcLSKwAjcSzN "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJ5IGYC4iMKG4oyXOscnmdpf5suq+0A42/Ry1vM+EfX YYcnD5O2c53DBhA/x9DBJG6XJ49BncMLkPq/xg5T84SaDyjUOTCAgICZw5YT Zfvms9U5+F2cGPOv2dzhDAgwIfgJTy8o3WZE8Ouz9pRMZqhzKNkq+vt0HYJ/ S7om0SjV3KEWyr8J5Zt3OiY8BfK/7rzV9TfU3GGNTFSKNdC8jSD3+Zg7AE3/ WSdQB7HXx8zBB6TBvM7B+wS77eyjxnD+nEXKO/+oa8P5X/Z93JpeJuvguu3z 3ytA/e5rji5niBCGm7/Va4PFnJ18cPtT00CAD+7eF7WPs8+/4cXJP9C9r8lE mRfuf7B5P3ng4QPj/1n58ZIvG4IPjg/FOoegt5c/zkgUcYgFBj+TYZ2DSOWk krMqsg7rizImvnWoc1grpMOX/k8JHn8zJvBXmXmrO6DHLwAJTth8 "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJrIGYC4vSJb2vsj9c5OE9oFkp7pegA41ff/3HLOFrJ QfTmue/BRxH87XKtrwP3Ifj1WXtKJq/C5J8+AwRrEHz+2ID7RurKDrVofJj8 GiEdvvQ8ZYf4pxeUbq+uc/j7rfTBHEEVBwbtdrGb1+octpj/OJSyy8Shxt40 btfNOgeQ8WdyTB30OdbIRN2qc+gLLlGZPt/UQaT5wKmFHxH8LSfK9s3/geDv 8ORh0v6NyS9Y0307g8EMzl9yfx/fHGMzB/eHVSLrviP4skDv7/iG4IOc+/MD gt8qBgywl3UOGm959xlomjn4JglEWD5B8KdIsITx7UXwX6gZcqzZhuBfAWlY j2b+CgT/vn/v9LxlCP76ooyJbxdh8g+2LQ8/dckUzof5d+vnv1cqliL4sPCG 8WfMBIL9mPwbQp8cz5ch+CVbRX+ftkPwp03grzKTNnXIef575Udg+ohRcPyY /McEnl7A6s+ZOMx9v/yY9+Q6hxZe//VTVFUc5hxR2FA0oc5h5beXFWcOKDno AKP7XD8iPbE2TnXurkDw3wTukGstRPDB4ZeHyf+waL3C2RmKcL4xGCg6JID8 W4jg/6kDJsBiBB8c/5UI/gRgdjBtgKZXd0WHAKD1r1sR/BZgcpBbi+CDw3cz gg+KvrpdCPNqRNa5PzyA4DcAvZdzGMGH5T90Pix/AgBmtavp "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJZIGYC4j8rP17yTah3SE8DgmcGDjB+hPj2iwx+hg4+ 5p2OCZEIvsWWE2X7XBF8/97peUJAfu1vq4JzFQi++lvefQY/Efx6lqP9htct 4XwNkLymFZx/BgR0rBy+Bz9eOtsBwU+f+LbG3rreIUbB8WPyGUuHnD0lkyUM 6h34/NdPSfWwdAC6Zr6UJCZfel6c5ukHFg5HvYEekEPwjyhsKMrQRPDdH1aJ rDOtd3iepf1tuq0lnA9zP4wP81/sLk8eJlO08FFE8OeALJDC5MPCV2Qd0EQF qH1vDRyeLJ19RMEMwd/6+e+VClsEn0G7XeymC4LfcuDUQtcoBB89/gB6ksww "]], FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {0, 1, 0}, {0, 1, 0}}}, {CompressedData[" 1:eJxTTMoPSmViYGBQAGIQnSAQYbnlRr2D6pPmeWetjB1gfImpVzgzFhk7zJfS v6tyCJOvAlL/yxLOL9kq+vu0nRWcX7Cm+3ZGgJWDDJDLth/BT5/4tsZ+L4Jf n7WnZPIeBP8MCOyqd/A5wW47W9XKQaD5wKmF5Qj7YXyYe7fLtb4O3ITJ9wbp /2oI5//9VvpgTqGhg0xUivX9jfUOEeLbLzL4GTrIbyjKmLgQwW95HbhDbi4m Pz0NCJ4ZOBz1Nu90XFTv8DxL+9v0twYQ8zYj+E+Wzj6isAvBf1Njbxp3AMH3 TQIG8CUE/wpI4DrCfBgfZj/QtoSnlxB8l22f/145hODDwhvmPxgf5n8YHz1+ YXwArHHrAg== "], {{507.21399999999994`, 19.6344}, {503.82500000000005`, 19.6344}, {507.21399999999994`, 24.8922}, {507.21399999999994`, 19.6344}}}], FilledCurveBox[CompressedData[" 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzCSwGaB8BjL0DhR7oNwMAEUOAp8= "], CompressedData[" 1:eJxdlH9IU1EUx5dpEtha25wj53zbnCVOAmdoP9AjMtREUmdqpRaSGiYJIaUy dhOTEUVpP7BlUUYmwTTRMhORICsJlQopzErtl5SaSH+oqdi99729Sx64jM/u O+eee873XF1eSVr+WolEsgavTLw88HqsrZ5MzUBQQOyFCtzMdd3uyZf6wemr ceeK9yF4Yt2ZtRLvB83x4xXK9FWcxvjw99f6kVQEEmp+0Jno4xGaKsS7oIKl obKfwUkIFOWXSgfuboLkPFnWjmgE7zeMqPI7pKD2zJCGRTCessVszzUx/tZY 38ttRRBI4g3KRI53PW+SqBUiR5ixWZWg2fYpaF0IggSyH+ULqKi79LJJuO8P NeSTX3xes9wkLYzmIOph38meSARxNVXygl868B0enLPGCPkGGeCaE1si47pV vHR/9m1yCmNSjoV0Ib8+PUwskg8Q9BO7oRfrMWY5FHt9VicyPb+IMc2vh4Ne rvXE0b0Iukts085qDhJweR1pjF2aA0d27WdM2jeRgyBzvcphjtGJvEKNseHd F6vEZBDqhuBjSIBrpd3A55vIuGYaN2Q3Y1KuW7h+G3NSRsO99TBn/dpYHy6c h3Tw6M/yUFkYAhnZrzPAAPkgkPnLqp6+avBnbFO2xI97MrZ04ADzdj4/H05k F6nHZ63ISqonLRD5tC3YIduYpRnM1sJYBQ64yPgKEdgy4zAsj0rM9N7tWuhv IBHtfH+mtDCV2qmt9hLuc1EPJL0KJetvMSnQZsY5XVjwxlW8BcHMnQfcwLxO 5FPPOizOZMZ0XFo5INFbjEi8L903ILCNzn8wHwvg++/vnldfiMjFH6gRDJB8 i+UQiLdrN7F5oXr2YmxquznT5MmY1mPF/v+8/bWDg/M29itl/Hx4ICAyd5bL +P5j/0Lyf7BcZKrfN4zpvP9WgCTUoRqWCP5OJa+PJbvIhbXYYY7xvB0P6Kyd 9z+uENn9XriZzqFTCim4PZPu/tp8xH65+WVS5NlYGWOqZz8EB2n/Zfz8aIT7 3JNDMX4e1ByrD80vlPmT56TSzPgMlq9lD2P3+0n1c94XVr+v/wBngFFu "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJTIGYCYn7dTXPfqzc4nAGBNyoOMP6U9taoyzZqcH5m /ofWk1s0HMRvnvsebAOV36PlkJ4GBHYNDsd37ehl+6DlcODUQtdtWPj6ivJf csK04fwt5j8OpWQh+H++lT6Ys1HbYSYI2DZAzD2mDbdfYuoVzoxHunD+/lpZ i3QWAzi/keVov6G6IZwP0p62zMwhnA8oAOSDzd1p7hAK4is0OHzeEJA9K9zC 4eMl3yQBuQaHvuASlen9Fg7vlx/zNhdvcFhyfx/fHGVLh+e/V368xNngUPfb quDcDEsH/97peUIcCP72z3+vVLAh+P9BgLXB4Uniwmsm9Qg+2D1hCD6v//op qRqWkHAH6j912GltppylA8i4l+wNDn4XJ8b8E7aE+EemweG2dE2ikagFnA82 T8wczq8F2f/DFM5Pjr3jxixhCOfLLn/hofdfH85PCAlSX+Cp6wD0TfMBM0T8 wOTB7tfXhPMZQOCBGpw/Z5Hyzj/pKnB+1f0ft4y9ReH8HcFWEf/VBeF8+xLH 2tN3OB1SrO/79wLDb6vXBos5lkwOBbZc1xcD/f+i9nH2+RxGePgsubX8saEz gj/3xOQl2cv+28P4M0DxKfnXHhb+Hlv9jye3/baHxQ+Mz319cYEtEl+FrXGq s2yDQ7RqhMy5PYwQ/6s0QOyx54Gnn/6Ibn/GAgFUvoEQnO+x5uhyBgtRB/T8 AwBgXYVr "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJLIGYC4s0nyvbNn93g0MLrv37KUzUHGF9i6hXODCV1 B+funOe/ZzU4PIoQ337RQd3h+uICWy4s/IdQPg+TdrvYTIT8V42Y/kMzGhxS Yu+4MUuoO3xB488+orChCMj3vTgx5h+zuoP4zXPfg6dD9SeoQeyf3ODw6+3r A5bJKg7nvwc/XtrT4PBh0XqFszMUHZRv/6zLakbwga65vrgOwY9Osb7vD+S7 rzm6nGGGEpzvAeJXKOPkg93jrOJwBgSA/FOHndZm7lNx8E0SiLDsbnBQfdI8 7+wsAweZKKCGmQj+VJCD5yD4+ndV2BrnYfKvC31yPP8NwS/ZKvr7tJ6hw/Jj 3uadcxF8A441MlGzEPySyRIsYT0IPjcoAiY1ODSyHO03FDdx2D9fSv/uJKh7 4xD8ut9WBecyEPwYBcePyT0IPii4Ge6ZQPw7ocFho17eYkYeU4cae9O4XX0I Pji+ehF8/gjLLSc6oeb9MXHonZ4n1NzR4KDxlnefQaSJw++VHy/5NiHcC47f YgTfMeHpBaUCBD8ZGLxb8jD5YPedM4DzYeH5HGRBPoLPDEx+N4sQfGlwACP4 YPeVNTgE3pKuSdykBgm/0gaHDSAFvqqQ9FoCTA/7a2UtnqvA+bD0B+Pf1pRd 879ZyWEPKEKqGhzKD29znXlWwYFfd9Pc900IPtj+yQg+LH+9yNL+Nn0uIr/B 8h8ApgSg1w== "]], FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" 1:eJxTTMoPSmVmYGBgBGJVIGYC4jsqbI1TrzQ4vCneKvrbW9sBxud2Uy1lqjJw COXT3TT3QoPDFvMfh1KqTBxu/6zL2rO7wSEl9o4b8w1zh/9XKl6q7WpwuC1d k2gkauHAH2G55cT6Boe631YF52ZYOmwoypj4dg2C/3jp7CMKSPzdJZMlWFY3 OJw87LQ2sw/B9z7Bbjs7FcHv9nrFYhJo6SB+89z3YCB/+QsPvf+Olg4aMf2H vgL5h9qWh58ysnQIB7l3c4PDTBDQtIDI721wOAMCPWYO+neBHjzS4LACpD/R 2CEaKK1xosFBfOoVzoxJhhB9J6H+5dKH8/UV5b/khGnD+Sd27ehlC1CH62cA AQdlB2mQBUDzH7jGO87aKAe3v/L+j1vG3cIOh78CRbY0OMwAmRPJ5WDLdX1x ATA8XtQ+zj6fwwj37xavDRZzfv63h/Gv/D52fV4kgm9iDASb/8H5809MXpKt 9sceFr4eW/2PJ7f9toeFP4wfnWJ93389gu/fOz1PaEeDwzaQfZXsDs7dOc9/ 72xwuM57Wyx1G6cDN9B5tqcaHNYK6fCl14nB04fzhGahtCwlB/T0AwCT1BUt "]]}, AspectRatio->Automatic, BaselinePosition->Scaled[0.31347611672202014`], ImageSize->{542.5870684931507, 27.54325280199253}, LabelStyle->Directive[FontFamily -> "Helvetica", FontSize -> 14], PlotRange->{{0., 542.59}, {0., 27.54}}]], "Output", CellLabel-> "Out[1212]=",ExpressionUUID->"079fee98-5f96-4f0f-8d11-29b8fd9f13bb"] }, Open ]], Cell["sanity check:", "Text",ExpressionUUID->"40c7379c-e536-4241-8c11-c32efffbc57d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"EqualTo", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], " ", "t"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], "//", "MatrixRepresentation"}], "//", "Normal"}], "]"}], "[", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "\[Theta]\[Epsilon]", "]"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}]}], "-", RowBox[{ RowBox[{"Sin", "[", "\[Theta]\[Epsilon]", "]"}], RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}]}], ")"}], "t"}], "]"}], "//", "MatrixRepresentation"}], "//", "Normal"}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[1213]:=",ExpressionUUID->"db2052b5-74c6-42c7-8486-357d986cb2c3"], Cell[BoxData["True"], "Output", CellLabel-> "Out[1213]=",ExpressionUUID->"f628f1cd-efd6-4554-8d85-16a8c9c8857e"] }, Open ]], Cell["this is essentially the DQ excitation amplitude.", "Text",ExpressionUUID->"ef3f5e6c-ec02-4557-886f-652242bb9fd5"], Cell[BoxData[ RowBox[{"Clear", "[", RowBox[{"\[Theta]\[Epsilon]", ",", "\[Omega]\[Epsilon]"}], "]"}]], "Input", CellLabel-> "In[1214]:=",ExpressionUUID->"6daeb10c-48ed-4be7-a45d-1f8955718fcc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aDQ", "=", RowBox[{"OperatorAmplitude", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}], "-", RowBox[{"2", RowBox[{ RowBox[{"opI", "[", RowBox[{"1", ",", "\"\\""}], "]"}], ".", RowBox[{"opI", "[", RowBox[{"2", ",", "\"\\""}], "]"}]}]}]}], "->", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], " ", "t"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], ")"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "@", RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], " ", "t"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], ")"}]}]}]}], "]"}]}]], "Input", CellLabel-> "In[1215]:=",ExpressionUUID->"a1dc8c01-ed03-4725-a03e-af5ecf65c5ed"], Cell[BoxData[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]"}], ")"}], "/", "4"}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1215]=",ExpressionUUID->"6a4396ad-e105-4f44-8367-4388c52aaac0"] }, Open ]], Cell["(or, we can add imaginary factors just so Malcolm is happy:)", "Text",ExpressionUUID->"2ac38956-29d3-4acf-99e8-6f10c25407cf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Bra", "[", "2", "]"}], ".", RowBox[{"(", RowBox[{ RowBox[{"RotationSuperoperator", "[", RowBox[{"{", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], ",", "0"}], "}"}], "]"}], "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], " ", "t"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], ")"}], ".", RowBox[{"opI", "[", "\"\\"", "]"}], ".", RowBox[{"Adjoint", "@", RowBox[{"(", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"+", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "\[Omega]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", "\"\\""}], "]"}], " ", "t"}], "]"}], ".", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], " ", "2", "\[Theta]\[Epsilon]", " ", RowBox[{"SingleTransitionOperator", "[", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", "\"\\""}], "]"}]}], "]"}]}], ")"}]}]}], "]"}], ")"}], ".", RowBox[{"Ket", "[", "4", "]"}]}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[1216]:=",ExpressionUUID->"28d326f8-1282-4b5e-aa21-7a948d01ba88"], Cell[BoxData[ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]"}], ")"}], "/", "4"}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1216]=",ExpressionUUID->"b3b900f0-34e0-4375-b8bb-38d05fa1a822"] }, Open ]], Cell[CellGroupData[{ Cell["analytical forms for the case of cSLIC", "Subsection",ExpressionUUID->"27bb3f23-651a-4c5b-93a6-02484f2b7ada"], Cell["\<\ let\[CloseCurlyQuote]s apply this expression to our case. we simply need to \ extract the parameters \[Theta]\[Epsilon] and \[Omega]\[Epsilon] and we\ \[CloseCurlyQuote]re good.\ \>", "Text",ExpressionUUID->"5e8613be-5f8e-4d4c-8db1-c8578513f84a"], Cell["this is the detuning angle in general:", "Text",ExpressionUUID->"efb18a65-cbf9-4508-b3b2-5a39defbdc8d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Theta]\[Epsilon]exact", "=", RowBox[{ RowBox[{"ArcTan", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "c14"}], "/", "c12"}], "/.", RowBox[{"f14", "->", RowBox[{"f12", "+", RowBox[{"2", "\[Pi]"}]}]}]}], "/.", RowBox[{"f12", "->", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}]}]}], "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[1217]:=",ExpressionUUID->"7a132c39-fc15-42cf-a75d-38ef71b53613"], Cell[BoxData[ RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}], " ", RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}]}], ")"}]}], "]"}]], "Output", CellLabel-> "Out[1217]=",ExpressionUUID->"7068545f-413d-49bd-915f-f0a0c7e21035"] }, Open ]], Cell["and in the delta pulse limit:", "Text",ExpressionUUID->"b0fa6fdb-76c2-43c7-be55-7e8a2ef316b6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Theta]\[Epsilon]", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Limit", "[", RowBox[{"\[Theta]\[Epsilon]exact", ",", RowBox[{"\[Alpha]", "->", "1"}]}], "]"}], "/.", RowBox[{ RowBox[{"Sinc", "[", "x_", "]"}], "->", RowBox[{ RowBox[{"Sin", "[", "x", "]"}], "/", "x"}]}]}], "//", "FullSimplify"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[1218]:=",ExpressionUUID->"f4f45426-3090-4f35-ab32-e5872870ebb0"], Cell[BoxData[ RowBox[{"ArcTan", "[", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], "/", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]], "Output", CellLabel-> "Out[1218]=",ExpressionUUID->"f5475d75-59ea-40fa-81dd-8c34f2c2bbc4"] }, Open ]], Cell["this is the effective field magnitude in general:", "Text",ExpressionUUID->"9b89d6b1-a2b1-491b-9e74-17498ed80493"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Omega]\[Epsilon]exact", "=", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ SuperscriptBox["c14", "2"], "+", SuperscriptBox["c12", "2"]}], "]"}], "/.", RowBox[{"f12", "->", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}]}]}], "/.", RowBox[{"f14", "->", RowBox[{"\[Pi]", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]rf"}], ")"}]}]}]}], ",", RowBox[{ RowBox[{"\[Omega]\[CapitalDelta]", "\[Element]", "PositiveReals"}], "&&", RowBox[{"\[Alpha]", "\[Element]", "PositiveReals"}]}]}], "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[1219]:=",ExpressionUUID->"b48d122d-a11e-4b47-b98f-05ea4d51210a"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}], "2"], "/", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], "2"]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}], "2"], "/", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}], "2"]}]}], ")"}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1219]=",ExpressionUUID->"d3c9ae28-32dc-45e9-b17c-ef7e8de4bbde"] }, Open ]], Cell["and in the delta pulse limit:", "Text",ExpressionUUID->"36ea68e9-951e-45e1-acb3-3977dc66a1f0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Omega]\[Epsilon]", "=", RowBox[{ RowBox[{"Limit", "[", RowBox[{"\[Omega]\[Epsilon]exact", ",", RowBox[{"\[Alpha]", "->", "1"}]}], "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[1220]:=",ExpressionUUID->"83f1e442-cde6-4f20-ab97-b3034482ceb0"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}], "2"], "+", SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}], "2"]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", "2"}], ")"}]}]], "Output", CellLabel-> "Out[1220]=",ExpressionUUID->"49107492-b2a9-4ee9-af9b-89ab461baf77"] }, Open ]], Cell["basic trig identities show that these forms are equivalent:", "Text",ExpressionUUID->"f5c37117-541b-4bda-bd3c-5ef3cd6f2183"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Abs", "@", RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}]}], RowBox[{"Sec", "[", "\[Theta]\[Epsilon]", "]"}]}], ",", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}], "2"], "+", SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", "\[Epsilon]rf"}], ")"}]}], "]"}], "2"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Epsilon]rf", ",", RowBox[{"-", "8"}], ",", "8"}], "}"}]}], "]"}]], "Input", CellLabel-> "In[1221]:=",ExpressionUUID->"ee40a0e9-e8f3-4bbb-9c01-57dad22142b8"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwUl3c8198Xx+299yYrJFkpKueTqG+KkCQVkmQnu7KiRApR9ioj2Xvzvj7Z KwmVvbM/ssn4fX5/vR+vx33fc8895957nueIxSODB2QkJCRXqEhI/v+VA675 w0NhhE8ls2nXcFZ/tCMWtLMrjIwYv1vgvupBQbGC5NqGMDL950/f0WgOilI6 FjMLwihgc7iBu80JTrG+GOj4KYwOxY4f1nT5AW7yb1tsvjCSWirebW4Oh+eJ h9aRWcLovdtrm/Lv7wB/k5H6bbowuk9XOr81EAGaHVIX/OKFEcd+TL/Mwnu4 XGpWbfVKGPFYJUeGk8SCwavObCUzYdQfd0oxyTMFIs8PXj5uIoxshWTGr6+n QO+/2T+SN4RRaZ4cXuHRRzByohDnuyKMKuOFmS9ZfILbt84kkJwSRlc82OZI zqWB5bEvbzqZhJH+22hmsbrPkD5dJtNMK4xwgWKvv0tlwkxyQwuiEEblP/U7 FSIywYZjjKJkVwh9KNiTXDT/Ao77XN5xM0Lox492j5ClLPD49sLhYZ0Qsvhj 5PKtNhfeLLj/XK8QQlyKPLK23HnwidrmvH+xEBoITSuleJQHHaDDmZgphAZn +FYEePJh4jb4yqQKISaqs91vbPJhy0NhrjxRCNG55IyNVeSDaAFnbU+EEKph +lLxVqoATndQHzV/K4TmNb0Td68WgM7sTvjSKyEUqes4ddWpADxFRixpvIXQ jebY3A/FBdAVnsGg/lAIvZS/QbCWLYSpnBj39ntE+yoKkoWXCmGn5fWY8R0h FHTPabzlXiGIkz4qcdEXQr0OIs53IwpBTfCeEOlVIfRZm1Dfl1kI11SvB4Ve FEIvynEhHHWF8PTxqTtfzgihN18cHw5PFUL4W+kmFRUhxOj5Iun+ZiGkf+GX b5AXQtUJf6IzqYqgqpExTv+YEMpUl0/I4iyC7vFD8lEJIZTeS09nLVYEM/t/ HexFhFCJmKXR6Iki+Mc79XOHTwjpoRcMzGeKgEWl//wrTiEkygxdG5pFIGnQ ks3BIoTE8AyGETpFcNaxivMTnRAi+ybvMGlYBPqvc3xPUAqhtcH+wz8mRWCV kTRXcyiI2EQUaJPNisALH35de1cQZZa8T6S+XwQRI/61P9cFUaTh+1mRB0Xw edf16AOCIHr2ivf4PFHXcD18tzoniNRUvBotiLpH8dY/3ylBZJERI/aaOH9W 98oDxlFBZDkw2W1mXgT7tue+xf0WRG8MfRwnbxcB26sTqlK9gihDTauUw6gI pFKPpJZ2CSK/X+Nua7pFcA5jZ7zQKoge+v6M8b1YBAaDlB7dXwWRRn2YUOXZ IrDe2hq7W0dcj/KBcIpCEXizz2svVAiiDrfsdmUJov8nhko8iwVR6YUKOw/u Isi80iVElSeI/pz/Y2ZNUwS1D1FQZKYgGvuRJEKzXQg9AUWrIqnEcXkD9Zsz hTCbnHYnL1EQCe0+v2f0oxD2q6OazsQIoiTRam0qrBCk1p/GGb0VRNFpmXPP iOdDncWBYuqVIOITiIy58LQQrsuaOT72F0RhKtOHmHkh+Fhe0HjjIYjEseS/ g9KF8N7vZA6vsyCaOUxR9mEohC8JR7k+2wuiM2wiHweWCqC3l36+/p4g2gxm dmjJKYDnlqV12XcE0cJwHkP+mwKQWzeN/HBTEN2IqQjwtSuAIPaiszY6gojC 8qTllEQBnDMwDmNRFUQKRxT9hvnzYX6c1HJXSRDVPL4yktmWBzGPs09PyQmi c5Mxsg888mA1/GC8XFwQ3Z3N66hvy4WMb2nKZiyCSP7U0enXt3Lgupku7WV6 QbRVVZt4ZzsbSAhbw4pUgoj+6CyH1odsMGG68opqTwBJDyREP2rNAmadv79z /wigkoSb+s38X8Cz7ZzvXp0Aknp9erPVIR0kTP5cn6kUQCqO/MYtK2nQMxcu 1V0igNJ8omtxzmkgSzv1PTVLAOVMOxvVOKXC+KXX4leiBNA/k+c/c+98BO3G /tZYBwHE5W6VGbwcC1uGfkkB1gLo+cV7t5faYiBtStrF4b4A0h3xCzufHg2H 5N4C528JIJmAC8Ukhh+gREPs0aymAOr4rt/SFB8O93o6LvSAAJpF0a+Uf4QC k4U7T42aADL/+Xbil90bsH7eWh8mL4D+9MnQ5L5/BYLoEccpAQGUciJx5vi7 Z9DBdtJVjVsAubjZhepWusPTB7s/zrEJoOsxFlXTw49BqgJTOs8ogOR4Yys8 Dmygn+5lpCaNALqXSXBUOmMOL+5qr10iF0AGOflTGm2XQamA+fqVA36UxNOQ sdSvBhNkfUW6O/yo6KaBGu0tEwi/EcdmsM6PwqiEcN2kD0E908z5BoEfDfyx UuRycIKlXfEe43l+JJHSKO9v4gbaKfnvzMb40UrxUuLcKV8gX2hgcejgR79j 7E5aPA2GonOvnZya+VEQttRh/DcEzMOvdbvg+VHh/gor/mEo1JwcCHtawY/S afORzJd34O5HYApK40fnncZfyb2NgjlOPsZUL37EITGldpozBWKsR+0zPPjR uw7pT9dzUuBidVrHF2eiP7c/05dqfIRP5ifeFFjzI4OooWZxh09wJ1uTvs6Q Hx3lte4sLU+Db7hHtL9l+dFUkHdrDvH8+EQq2wwd5Uckcj+Hxj99AdmZnZZR UX6kOUiy3yGVBUEhL4JmePjRbXspqVT5bNDoj6Vep+BHVyeOS9w/kQuldg2U zMN8qDiEOp7qMbF+iDgqZPzkQ9pVQyK0uQVQ1ct991wPHwoSef9y/08BoHN2 JXbNfMT4J2p/MSmENma2+y2FfEg2U5kzVLEIdBqqQ81y+NCjNE3XFOL71+35 oGozgw/5c7KdfB5dBH3jFawSCXzoICDkSeJWEYwVm6HngXzoofmb7J7MYrCw pl3kec6H6BkHFOe+F8O0QDF3wTM+tO3Gbp6/UwzzL6kejTjxoasGlgNntUrA Qa0gzs2ODyUHn3Lbty6BleVbTQxWfCjqwa6+eUgJbNzMFTxzmw8pzJ65T9JR Ap4MNy/33OBDdF9p407Nl8AuInGz0SPab5nhpqQuBW+3rBSSK3wo+5oLj5Vo KZDIGHZEa/GhiLOihJtnS8F/ZH9LDseHqi1dqX8ZlgJl5GexJjViPKwUpyft SoFub/fp+gk+xJnT/vTDh1J4W5CWESLDhxTZIkpVMkuB5YFuj6gEH2owIq8x qSyFCN7t/UphPkRQ8go9bCkFzq6P0vp8fOjd5cGLYj9LIcb/yo1ZDj507Vs+ T8NkKfCd2vDzZeZDIklW+mPLpZC4kJTDRceHLr91M3bfLgWRlP9+5VLwIXXh l/kvSMrgk+EqudYhL6p9GrNKS10GErQJJ4Z2eJF7jtIvCoYyyKzVuu2yzovE 5PwUXJnLQMaZEEhH4EXG+Y/mjVjLIFcytujjHC+6IDhMm0PU8oMaI6eneNH2 dHahM0sZFIUt0naP8CJX12mhLMYyOKkZdfLhb17kO9H7RZ+2DCq24d7BD170 YVikyZq8DNRy59586OJFV2smyQj/SqH2XmSFbCsvqqyvp5taLQUc17mpr195 0aU3+6mXZksB3zbDfLuOF63nvi7gHSoFLd/wM6sVvKjQTkjOpKsUWpTUHgYX 86L8j+oqtFgpaM9ORojk8SK6dt0DybxS6Ex4W1eeyYt+yMT/LI4vBT39U/O6 qbwoncPiRMGrUuihHOecSeRF764Phgo4l8KNqtfnvWN40bfcc/E7JqXwy1HZ gSOSFyUF4Dn/0ygFE7GRmOy3vKgx6PMgjVQpmL9RWPntT/w/Jl57erkEnpZE BHZ686IMe1Fe4Z4S+DC0JlDvyYsKciYtyUpKoE227HKmIy8S933C1eZSAlOG 3GPxNrxIkuYBWaF+CRx4ebqHWfKijYTPHhflSkCpUy3V3YQXaf8xWPWfLAbd jXhV2xu8aKDjP8njNcVgLbj/7a4eL8rMf497E1kMCQ7YnuZF4n5+kNs5qRcD FZOmEbsiMT5blavUL4tARCV9keo4LyrjOS8afr0IzphSBewe5UXTXK19wyJF 4JTXkj8uSNxv+1rcj/JC+K2rQ1tAy4sYZK2qHv8sgJwwo5qr4zzIW0LyFxnK habycgPcEA+6cXfnjsXpXBgf5ZlT+smD4BupSG5eDnDJD3Lyd/KgkjjdkCPE eujbbfZoroIHWdxz6b6l/QUMWG1EA8N50HlqTzquu2lgr9pW8SSEBwU9kj8+ WJ4Kr+4du+YQyIPOlgw4MbOmQk3h0jNDLx6UM/4tbr7uI0gYOPeJWvMg12io XGRLgu2IZ0EY8KDaD8c6RRsj4I9A/fxFNaI/vYff3ii+g/4MKp0uZR5k0MQo +PpMGBRXvWMdluZB95sUngkOBcEnzZ8uluI86JN28kx+xksI7xLoXxDiQVkZ vf21Dv7gOPE5bpedB72fMb1kNuUBd+yX9p4z8aDGswnHGMwfw5VNRTNaWh4U UqCL1nMegJqfZ304OQ+yOuf93lNEH6To6sR4DrjR11NemomGGsD9njwweZsb qWcvHr+CvwdUQpdnJde40ZzTrs6FTUeYVOjNOTnLjSJSVBO9y72gp5qXuXaC G+UKOrz0yHkOSMvsseYwNxrWeD60uf8Ckm7Nn7zew41uLVpmGX8KAePnJJhT DTdiYT0lQOn2Hrq6Zb9nh3OjOz1uOuvfUqDGxFlJKYSoBzU+CqV8hOyp8g9V L7nR778Vw4GPPkHQtoZJ61Oif5lJBz/o0+CCyK3JGUtuFMJl/rXs9GeoePRy 44gqN6raErd1MMqFzzttN78ocaMNC4E0c/Y8iApgqZKX40aP7f+qfOrKA5fo eB8Q40YNv2jvLAgTeQ0rpL7LyI3ogmnUq18WQirTCG/MOBdausX9pVKwBCJu A7XqEBdS/Cp8sGVTAv6ZKeu/+7mQeuu3U3vE+2Shcf8bfwfx/7efP6pfKgVR 99kXyWVcKNjO/yrtnTJg+3rZGVfIhYo5pq72JpYBGUu22Xg2F0rzpM85NVIG E18c1MQ+ciGny43qRSbl8Gl4lZARwoVY/SKezZyvgAgZw+FLgVwoY8c3c9Kj Avw9Sttm/biQceq9Sb2cCrBg9UyXcedCc/Vv2GxYKsHA9HdEuxMXMlPop6fH VYJGtpqfvR0XEqbsEKR3rIQjWvsmeeZcSGH4dxZHYyWwRJj+d+02FzryAzY5 lyuBZBQ7uXKDC91KjPtnyVkFY57+LIpXiPsbn9oeMq2C7sbJ/R4tLhTIcjr6 wK8KEJvWgguOC5kE/Tlr9rEKUnKom0pPcqE8ThnB7qEqCN+xLjaS50KZ7ioj v7eqwO9iW8qWDBcSey5ewslaDU6Rx0JjJIjxoH2d5SdVDeZjb56pinChGke7 eW71atA7vmw9wEf0b8an6pd+NeCeXjN6xsmFJA4dfNH9apBvLrggwMKF9Iw4 azpcqkGYg02hlo4L7bvgWf89rwamey5CppRcqPP7I9zl0Go4yO2lPzzkRHdI DyVLY6pheffkTvIuJ+ojOH09+7EaRi5Fz+A2ONHl8wJKI5+roev99o9xAidq wMaLonOqoW78Vr3/PCea/mWa/DC/GvLkqvPEpjmRuaSQ29WCakh6JpDQMMqJ gvYauzWJ46Et3sEPBjiR0j/NR9eI8304R92p+jhRTsLecTuifUcLnOXnb5yI Bpuji06pBtP8j/r/tXGiSbF28Z7oatDdI4O5Bk7EPqlVzf+2GtQvW8q+xjhR XAf1CRe/apCLauQ9VsWJqsv+kP56XA2Ck5LUHSWc6EUJ+c/L96qBQT5o3T6f EwkpDju36FbDntfcOGMWJ3q55lx9Xa0aFlu1v+WlcSL6NeOKBbFqGOLKqbmW zIncBLoiwumroeM+Y9ZKLCfanPj2QeNvFdQUOEa/e8+JdPKOyZH1VUGCtoLz j2BO1C8U/iwnqgrE6bXbul9wIrXDm6Gr7lWQ3W4h2uVL1ObXXwXfqIKqq+97 WtyI/qWv43MZq0CDMVemyYkT7Te9Yz33pxLaOhv9v9pxIr5FA9MjWCXx/d9S rLvHiS6ZVkgs21SCOTNLSPUdTmQg5f3099lKmP0mNVlxkxMt4BKfCzNVwrae SWSxDtHfPQZ3fHYFcF2vXctU5URmdx+cjf1RDkns/VcylDnRz3f3SkJjy0Gi dzk19QQnyv2RxUm4Ww7KN0QMkyQ4UUqqbcTueBkY3AwoiWTlRE+cTWZeEXko 7PZlN585DhQQK/BT6lkxcAlYdD6b4kBLNn1istLFkDT0VOLJKAeyoxMK6Owr gry7OX0ufRyodeP0m12ZIugwY1axqedAGcpdBi6NBUBj2bd5PZYDNVlebszy zoZw8WVd/fcciGzsm9aHwizgnqb6rBvGgYRfaaTpTX4BSavTNy+/5EBGpFyL lrhM0LKOL1d/zIHyjkyh0xNp4G9/z1P6Mgfy3anTN0+Mh5FQ04SqCxzIy99R yOFTLKgV3kZX1DnQpw7JPI60aFjduEHjqMSB0tBX/orESNDluS57eJwDWQX8 aNn88A6y1PT0wqU40B6Nf0Y2Vxjc89WOKRLkQFdjWpb/DQZCzcdLNRd4ONDz oalgnnJ/4GnQHOtl40B97LY6nPze4DpznsKKkQNJsonlKmCu0E0DUlvUHChQ NbRaqswaZI+dvRpERhxfdrhq+fQaBOmoOvHus6MJ7oMqIyYDmHqk8j5rix31 k959QrZrA7gIpYozq+zIwETsuKWXGySUyA91LLIjrRT7wmOkPrDdf5zE9A87 Mtw7yWGhFQAF/FL/+Q2xo0rjSjxdXwgIpwv8amgi/l+fflXZPwoOyim3deLZ 0fH1pWdyv1LBZIBMYPQDO7roEikQMpcGZXuH4BTOjo4JUNvo7aaD4/ndVxEv 2dGlsGNszbyZMNy2zP3zETti+p1npKGbAzXDP0+Za7Ij34j0VXn1IuAh6bv9 V50ddf8jexVZWwSuoj2+/qrsKGNMco/pbDHIPuxoTpNjRwf+7y/JqJRAwgq6 OcfDjpyAM2xWsAyekWd5OC+xIeumw0e3iivBMdaUynyWDdEPJYRW8lSBxQn2 DzqTbMi2yH/um1cVaN/2KpL6zYaoG8Qnyc5XA0+x7tJIAxt6rfRwr7aiBhgu k3t1YGwo73pgOT17LRyOlNNVVbEhhkt713/Z1cIM3RGpDwVsSLY9v/wHTx2U WKxZXElgQ8bSdW2JZhhkbn/+ezqaDZ2O+l0tm4tBfOgdP8kINpSdT+tNvYOB f1VjImkQG3r2i1yuQQuBu95TWYI/G2rVNieiFgLbGbnqIW82xB3P89ozBIE+ W8yvchfifth+9Qd3ItDMvPow3ZEN3fXrvSW3hOC0OulmhA0b6mZ42jFOXw8i trbsjmZsiJXrxbDtxXpYrj+rK36FDWk/CZisza+HiZt/h1gvsiFUwNv8rrke +pbS7Q5xbCgRFUWZj9RDDS9z8IAK0R9p4aVpGjwU5H/lblFgQ9gHA+YYATyk aXlmlMoS9d9Ew7Mn8BDyePxruCgbWvWy5b6ujwcf6igDH0E2VBDQmlxvjgfn RO1xOx42FPPzyj2+R3iwUiLmiZ0NuV578vK2Fx5MWosPLjKxITmHMM2AIDzo mlm/VaYl+teYMR0WiYfzGwICohRs6HnhzzrfRDwoh3zPYj5kRe4apif1M/Ag dSRQdX+HFZ3yqa0ly8ODQLlay/w6Kzr5e3wwogQPzDoEo18EVrS7oiFGUoUH ssnU6cZ5ViQWQHHqch0eNj2NXYunWRFNMlebfT0e5pkYyT+OsSKM+UayzVc8 DKfVvwsdZEX39tKD1Rvw0K3mLuLVz4r8a7jt54njDd0y+TbfWVHzyL6qPR4P FVaj5252sKI0M8YtPIaH7L3IDs1mVnSCybN8qRoPSRH/3VbEsyItQeqUhTI8 REjtzwnXsqK5EeWZ6gI8BNYVejJWsCKFTK3uu1/w8NTQivpfESuaHDQr7U7B g+M8X9RsLiva4E3dZ4/Gwz2/b+L9maxIL0Jd9OgbPBj9TlYfTmVF1N4PPl72 w4O2opPxVBIrSj0tT3XJBQ8QgnNeiGVFVCRdpMIPiPGcYnmz+p4VxWc/ufH9 Bh6kz42n74SxIo/14J67WngQiirESEJYESz4mTQo4YHmP4M1puesSIrytoUw Ix72U0QZubxYket83Cb7dj2s7qxKCnqwIvtL7+smxuthMDvS5JgDK+p42dDE XFQP3RSWrorWrMjiZXmSY0w9NNxVDlW9T9zvn+Xfmd71kMfcV3/pFiuqqM4x K9Ssh1Tr9EFdQ1b00fpJk59kPcTUu23cuEaM54xo63HqenjuwiVtqcWKbB7V vxNrRGD482a4nwIreiBRaBmlhOCyvFTWK1lifljO2NoyIFAP3v4aepSY/yE1 tUstGEidid1KEGRFQp49Rz6IYPAvacC0kpYVDSRrHIqW18LKVpYnomBFfIXN kbY3a2FK71lE8yELwhy59yI3aqCLTKCpb4MFafqceBp3rAY+Wd09vjrOguK2 hirHfKrgP7mxfzJVLEi55Ko5a1MZnHtVwKlYyoIIi/UB9y+WgeKY3wnVAhaU Gy6zNtJQCvwRR+5fymBBZm9uzD2sKYHlDYu2+xEsaF7K64plVBF8qJ2OSbBl Qde32MLWNrPB1DPO59QDFtTbpsPPlZkFUkrXLHvMWNBgrkdO/40vUJVZcYLm BguaDV677P05A0YiQ5pcgAV5jOb5+0l8hM+6uBwmNRYkkcVtYfEsGZxoN959 UWZBdpFHTp3NSAAyX9O7o9IsaJqEY4Z0MQqO2iqsa3OwIJs86QGBJ4GwIj7z e5qJBYlzWJZ9f+0HlaNxmB8tC+KhvWpvLeUG/nHX0vkpWNA7Dkbp50YWEJ1F w+Wwz4ymg46e/UFzCWREnMc/rTIjFd5U3oEtB6j5MJjz6w8zmpLpPfJU/BmM +eVd0OxhRqMBu3yTncHgvMnN/LSZGRkaq8k/Xw8DCvvnA/k1zOjWPb3fZ1ki Qfqm4WP+z8xIupATPC7EgvPx3aTVZ8yow4rbtHrsE1Ck3reVekxc7+5wiYlz GkTxdJ40tWJGTIGjWoEUGVBNntLRqseMbNWftfDKfAGKAa3dFAmi/VSHc3oe +RAV+O7GtW9MqMyghf88aRlUjUox5Igyoat6FdtTVPXgdZY0N46HCQknGOc9 vlMP52J/6wQzMaFxfrtzpoX1gAxeh1ntMiIv0QAt3C08NDcusB3pYURx04Ys r1O+Qm92Hm/Uc0ZUPCfy8xpNE0TRvKp64cGI1kfOPVTVb4KbD8xuuzgwokOd zD7p2CYYEGJJ1LtF1I9qqmklm2H83WMRegVGFGRepyCv1AKfli/X70gyogGh OaZqlxawvCJqMSvAiH7ITt0TLW6BWYofqY00jOj7kfz2x3KtsOyhfNRvjAFt 4wgmL7naoKCXocWxnwEZ2B+99UCnDR4rTFvf7WBAC7olL3f822B9/kOWWgUD OpbTSXlsvg3KLjlekc5jQBQDS/g6/nbwTLu4yJ3GgAbrmPzXrrTDv7tbxzfC GFBrg7nx8cx2qKn61jX5kgHF1NSoSPe2gw935qOeZwzoPNtKevFBO5B9Ny7M f8iArjmfuWZxrQMajisYJN1lQJdeiJd5u3XAy9e0a2+uMyC1ZXIarrgOoNGs UrYFBnTyEv/tnJEOaEuJ6DM+yYBio2M2Px50wJt9W/dLxxiQtwtzEblgJ+ia XOBWOcKAPohW+3SqdgJzOX+FODcD4nEvvPPPsBO62deN2RkZkNi4wO1gx06I cOrYISVnQDeX3WJcAjuBS8b7zOgyPYptyI3WKeyEX4E3hjqn6FEVJ8n0yYZO iJ087l0zQI8MzD4E2fV1ggmOSii7mx6J2hWvzE91gkDiSF1sEz2633s6oWC1 E0Z2ysyCaugRe8l3vsqDTkgxCiPxKKIn8vgxRlLaLrAofvjxQSY9EoqWknjJ 2gViLDgNwyR6VEzKJqnB0wWh8uNPbSOJ9qaddF4LdhF537/YL4geUSSRsZWI EOc/FluM8qZHLi9l4quPdEHHuwbxXGd6VKRuI51IHFcpenD360N6JMf2iesG cX5KD1XU7zv0aHfDtH+Uuwvo1j53EfTp0cpZ9k1Vli5wZb9MTXWJHg3M3hE0 p+qCEaV5EDhLj1rjNJmu7XbCf4YhnooK9Che0CudfLETilxlC/+TpEenA+MH ng52guCHzjlTfnqUM30HFbZ0QlCpo6gbCz2qDup/kV7cCat9zLdDKOmRbH3x 4+sJnXBnsyDy4y4dYjxpv1jh3wlNXAYd5QQ65Jr/xP2HVSfIn1qj6JqiQ8xO b3JT/uuEuJvvz039pkO/1muvCEl1AoXnSffdLjokeQZ/VJuyEx7F9OexNNAh MVfuk6JjHTBQ4fFHspIOpUgrv0ir6ADN3zwi5/LoUPG3Yo1voR3Aw3f7nU0M HSJJIrvJrdwB/mp7rb5v6dA5nrPxCuQdsGiSSBblT4c+sf87tvytHerjR13w 9nSIJXH35mWLdrAVtDTiP0+HngSPuNvbtkHvOcowBRU6JIGZLnhJtoG6aUbz pWN06J3XOzrpsVZgT5497cpJh3qm6s5dv9oKNSIO/J1ztEjhP3nCMnULSJ5n MpwcoUWsvrW3BguaIfxe/pudH7Ro4fSkr+XNZnjw6e++RB0tUmUz/HUtsQmY xN3HfCJokQGP5Kt0hkbw1OTm/fCKFp2YjELvPjXAhGWFfrYXLXrP0xstptIA 5em7+J9WtAgNVkypG30F86O+6fJnaJFkubjS66f1UCQTZDsxSYPGG0CaO7sK hL+bVx77TYNi2mVt9yIq4Y2HKo1bFw1KeGWGfXavgAcN8+nUlTQoWfEZqb1C GfCY6ozLhtIgPe1uH3e3QnhBISnvHkCD2giRzkZnC+Bv1oEP5kmD6M6cCn98 kAttW/kCBvdpEB/j5Tc6q5ng/Y7N2OM0DRr0SH8WspsA86cWMtBxGtQ6+mrk bFw0GI183aAVo0Epe9kBQsci4OuLBM3rPDTItOVOfaFJMMgfc4tMYKRBxsld nYYvvCDhu87ENBkNOvp6lfLXQ2Og9ZRUOLFNjUYlKesYg53AXejQ13OJGn1e +CJCURQAEw0/u+onqJHmk0YZ8TNhcM2uQJD+FzV6F0zl0vToA9SwBtsbdlKj hahC88fX4uGDqRrdn3JqdLGgg+10fCr8t52gxfCWGuV9J9md6cqH0iS39zf8 qZHtE8mjScR4iGrpTiZ5UKPEWDPfBqpi+Pfu0E/BghrlRJtRdBPjl3fMosbo FDXCN7cu2X2pAQ6zo0ofx6mQvr9n+3naRhhtLBRRUaFCN273HRmK+Q5e13c0 T8tSoZfbboE2lD3AM46zUROlQmWv3daUnHtAb+9boToTFYosXFF0vvoDkOKy xqUZSmSwLp6qRN4HKckyD4yjKJFUlGpZtfsvsHiS+uXpJgWSzW6Xp7o7CgdU C51eixQo6fjfWMu2UYh7r7jqM0GBYp48M2rmH4Oe/Hq1gC4KFLnT1xQfNAYX ZkbbQzIoUO5Tsrs15uMgfl1gOcGIAjE+uZqlTzsJ07IfFLEyclT+0pWx4cQM yPikL89mk6NSxbXjI/dnwPFbaRbbR3JEcibXJzZ6BrYf94tahZCjwDGD5oX9 GaAr52ZnNCdH76uY/Voa/4D8+bg1E1pyNPnqoLEWNwduEVn5Lw7IkIzdYiuV 4xxUTVbZ5a2RoRZWXfsfcXNwIXBwknSEDFWY8P9eWZ0Do3aB3swiMsR4JiuD KXEent1ILtm8TYbCFPgXn/1cAJSR7ySiT7Tnmvnz/N4CUGxjstoXyZAy/yrO RWQRQuPG0hLlydBJvXwz9oeLkDJ65IMmJRn68IqXRnJpEablFfUdd0kRR5LS sjjjEsj4azDGEEhRsPxSxkvZJSgWv/9y4TcpAn+ac9Y2S9Bkk+YWkUeKksoa 4MPgEtBXlyjUpJKifkHoerm5BHoMjUvTMaRIpFT8fDfLMvzOm36gGkCKxP94 P3h0YRmESDaP3PckRbaa3Y/xt5fBQp9q5I0DcX0LYx57l2VYXJM0GrtJivio n6mhlGWQ1zrFRqdDihbu11+xKVsGt6hLXUoapIjEO0nUqn0ZDk5bX3wlS4pu nCVLMl5bBlafLypypMTxur5+ljMECCyTamHZIkHWwmU/T2sTYHf58621RRKk EXTI32xMgAmzDK+KXyRoo8VQjNOVAEYxEkzxXSSIUbxPt9ePAG3dacneDSTo skJG6PYbAhSdT8VrFJAg3aznJo9SCSD5VNRQIoMEGV6/4VWfS4C4oo/T1Akk SFiDZsSjnABMCyIe8+9IEP5WvHEEIoC/WApN5ysS1N2U38bSSoDN28Jx+d4k 6B8hgGetmwC275OORbiQoA6ulWOqvwgw0iFY62pDgn6nW6xPjBDAgDJR96YZ CXp/YshqZYoATecExlRvkKAm/gXve/MEUHOPfyxwhQQpU31WVSEQIC+Pj/wQ R4LW27KTHdcIIPon9v24Cgl6p8VRTbdFgChhXskGWRKkX+2aQLdLADrjmPIM UWJ8DntvOe4RwCec+3IwDwmyPZfFpHJAgLWWqAE7JhJU6NU9eO+QAA9Juex1 KUiQVk/An79EXeYi8+/e+iGmrnbr7gxRJ01JCR0dO8RYdU45AlEH3jh6frH9 EBu4rau3v08AxyYJy8LyQ2wvjAVEiOsZnRJ/5Z56iHEHSz/L3CGAeqZo1pmw Q+xuo5t21CYBjvIe6SR5dohRlu5sza0SgOW18Eqj1SF25fWvH6nLBNjeFWQP MTjE2sq1lRrmCDBmJ6Cip36IVUq9d7pCjFfLEN8tTplD7Orx3XlVYjwLdHi9 BjgPsYvClVThPwkQU8ednEx6iBnV7cjqEvNhncIxLf37ALsvfXiDgpg/PVZ2 GkLDAfan6tqF/TICnPZnPVZScIBd0hZlMSfmn9aS6bF60AFG62Oj/yCGAKu9 DO/JXQ+wUleSfpq3BBjQoi9vMTvA2vM0TXieEyDrKM2+wakDLMd2q9j7IQEi YqhEeMQOMNX1oNreWwR4Skt5YZjpAFO3XJWLu0IA7QXS4Icz+1hvvcC483EC KN4hyZHt2ceedGt7vhIkAF/nQdff2n3sSxajOCMjARby/nF4fdjHGv1UIh3n l6FXePfU+ef72FEan84rv5ahJnzbhMphHyvHHdAmNi7DG+eNlHDNfUzZv+tj UtIyyKoQZNPX9rDH7tINytrLYCXn61s5vIcpfor+OKGwDMmSzD2dzXvYQpDy 3BrPMrBxn/DYjN/DDCmnT2lNL8HWlmP9Jc09LFdZ48pX9yWQXzlgvyO3hwVa /fyec2sJbGdDrZx4iPapnyqQn12CoV959LGL/7C1tkDvfweLgK9cvjH//h9G bS3Cqe6zCHuFPpkHPv8wlErOVXRnEU5mMf1js/mHLQg6XE5UW4TMOLmUM+f+ YU7/odyR9QV4+8xx/s30Llbs+/ar0v0FMD637HNCZRcTMOxeMpeah4iTPt8v iOxiZjOtucsHc9B+nEncmG4XK8vhl6brmwN1IblWv5EdzMUzTnLFdw7EDh3Y ewJ3sHOHQYofu2dhGS19dv25jZ3nvMU7ZvoHAjSXuis9tzDWe68yD05PAf6/ xWvK97ew4k43UwbKKSDRWejK09nCGEdMpX51T4LXjbmOVNEt7A2EUeU/nAR3 q+mWtx2bWJLdarNXxARYBw2jeyKb2OR9W4+M4TG42tFZQNuyjnWmnAmhTRuA 190dJ14UrWNkhQml4vID0NLbnneQsI5dyzFPIq35DVrDrTlrj9exsxXmMdQ/ foH6cmPmMP86ttRwnNfloB/kWepSCh+tYc5f6fSliPWX0zAv/Bb3KvZ09OUT 3dhmKJIMqdIiX8UUaCsChsubQG/n4ZQC4S828+WThnZ/I7xOOnKarvkvdvwE JedXtgY4mH0/WuX+F5M+USd65zWC+OrHtJ8t/mJcwndUqPQwOB2qqxSp+xcz 6ZCSPRpSC85KNK/sJP9i5p+/iy+RVMGM9zM5gf4VzJizSb93vggC9IyNafAr mGfKmSpKiUIQETvpv567gtHliSar1+WBSctyX8fLFUyLxFlGJuMzbMW1H1Y8 XsFu81W9WuRNg/cOmdLpd1ewnA1dtci3KdDFZuHtfXIFsy7KeqcxFwF20+qf bY6sYKOhLSWXU14BTQX/9xuMKxjPo8Nvg4POoM35dyNglYDF9VWoLbDeh5dV WZfvtBGwoxH7+0Ob/oDMLBOVPxEwN8PQ2Ij34bBLIfSX4SkBI7/xcjc5Nxoc r72LqZUmYIo90ugz4RNkrmsvfiAlYK1SG+SEZxkwEUuBc/y9jM1RPbzCTZMF RlMef4SCl7El/yHff2EFAE9MVfxml7D8uj/fijLKgSX1WK/G50Vse97GKW4G D0Wbjcwt4vOYprXbweun3RCa9QmvvjOHDRrLGaWudYOdqa9baeccdl/M8nKc /XcQbzo9+Ml9Dvt4T2JKyLQHoj5kZ3i3zGJm24wZd6EXniq/O6dk/wfr3x6M cNr5CRrOd+ySiqewtIkEJWvcKAhJqgpxBk1hXhtLMoZFo/DvN+f3kDtTWIKU Esc66xiUnP+m8oRyCmtNta0+9B8DSVYNMsObk9iR1Cr9fotxoCs4Gkv7bxwb OqNc9pRnEtIHp9/OvRjB5pf9pfoMZmDAiys5UWkEqzbsrCvymwEmoUsF+hPD mO75tzkX82bA3TyzpxKGsYgSva03NH/g4rQt9+vdQUzlrvaOc+UfmF0mpMg4 /cYotNgUU+jnQCBcpGhE6DfmeAKTM1aeAz0F/a8Rnb+w/a7XM8V35qDCpWh6 V+YXVvXYflA/Zw6Ct11l2qf7sauOW2eoL82DDNlusd3tXizOOJX2hs0CmKbK NArT9WJyl8Oba0MWIELzdv+Pih/YRWnqifLcBdgNrNk+w/UDG0Co5vbKArTT +55j+P4dC+S9e+uC0yKQ5ObrIt/vWImW/XmesEVQ1h0zc5X7jj13/trrlrsI CeHn/YdCurFCjU9tTbOL8EuGJvTW2y5McGKILZX4XuIcbArq5zsxls/qVimu S5CZ39Yj/V8nJtJtry4UtgRPlN9y75J1YMlWTfHR+CXgU2f7GOfZipHL0Ly0 ElsGfz+Xr2T9Ldg1zftWOmrLsIDvnbZVasE4trWMc/WI9eBStMyZ5Sbs13TU Su+zZbirL1AyeL8BkzYIuZrd/n8+21B1a/iKCde+/zUzvAxeUd8wJomvmLm0 8t04wjIkDPq3n5+pxxy+hrpZsRJA1ueO/uDFeiw0Si7d+wgBqkVUfrp+RljP c21KOgUClLT3NF77XofpZARU+OoSoJcl8Lt/RC02e1626eEdIm/cUB0uvV6D zf72f4K3Ida7seR1/v5KTI37kXOnPwH0Ja6TXIuuwIyKZiO8QgngZEvF4G9c joW+/cuUEEuA/HV7sdmBEkyOu31fOo8AXaoiJ/gTirGlIgeHaCKfLfv8UNO9 W4QxT5gouhDrO2ND4MXnQoWYz8R6X00LAYzZXNOssXxsZJlzxoXIA9EJA9Vd 53MxaRH+jWgiL/RLnv+h3JCFWTATYqWIPMFR+Hk+7mImVqfC4SRB5I3rZ5jI SFvTsUrWfO5QIo9ENLryPrySijn9CztpQeSV7muD8p2dKdhY21mXj0SeESoJ CLdKScBuye76XCHyTnyLHqaYHo0VlPfSmxN5iGdYcPngSwT2Df/l+8g/Ahyb 7FONuhuCUa+ceNtM5ClJBqdouYfPsWKPw0NeIm/59Ur18n91wCZk41b6iFqW ediW8rgh2J0lghpR9//1T2bZ9gSVjE3vYKJeuXZ09ZFzIMg6hSM/Iu89i7zY ZqccDskRxR1jRD478HkSn3ziAyQmjj3/QuRFP9sc+x8ycSDCndMwQORJcqPR c9SSyeD6rsHHdZ0AX0WCXyWyfIKJJ9tJ7isEeBEl6nQqNA1Ek8/wji8Q4CJD jfF3+s9g+ihnpniGANT+N87bBX+BN0sxlIQxIq9tLUtTUufA2t2AJxEDBHjt EMSW/CIPwr9IXkn6QYCMv+HeAs8L4LTn0yC2DiKPPpSxKjsoguEI4xjlagL8 J+phEnCuBNa7RD9OFBJAavirrp5XKagli/nvfCbAvMHdU/M75SBbEeBiEUHk fcasY+WnK2G3NmiqJJAA2S2bwi88qmCniJ3g9JQA9urhNEIbNaAnk9whaU4A nZ2hvXmlOmjEzckcMSCAXIn033JnDLB9HdXAC0QefT++KLWNQECztvydOAEq 6Z714d2+QsOL/OSK0WVIOc75I1+0AUw0HhDcifcrUC+/O+FbA3xLorgWTOx3 DKMm292lm0DlcWBbzutlWDlyFS8z3AIl1tniZMeW4afmDMb9uhVueHEqurIu Q91Dv1qKU23gWuksidtagpDckoqR8HaQf6qrOoeWQFJVMD9Cswt0cM86Yq8u AcOd8hzfv13QOoBPXT++BGs++ln2Sd/AklKLspBpCcwn8AZiXt1AntFZa9C1 CHJSWzr7fd+hjpFq6tbFRWgtNtMsDO4F4d7e1RC+BTjbKPv16FgvUJG+fxW2 Og8F/Tvnk1T6YPZHBSVt2zxE7URCyGQfSJDHl9z3mAdLaFF7cO4nfDrcnJ5o n4PDNnkF3r+/waiELdbl7iycnCAVem48Cna0jlL/nZgGuaqbf+W/jELmQ93b K3tTIBmR2zC2MwqWt6XMDdqmgP5jzskUnTFIta/8pG05BXt6xkOHy2Pw38T0 1JkPkzBckC+NKUxAWeXF458XxyHZybThXPkUcCZLqOnsDUHCHdq8D6NTwHpt X2vmzRDE/FcSvUQ9DWGBT4MeCA5BuAidXaLxNPS4KLtKqA+CX3cp6/7ONEg6 Gh9j8/0N9+QZzWrO/gFej56cftJ+EFup3lHDz0F/9J0zP//rAq/OCy/Wl4h9 /vukgCKzTujPamfK452Hk/bXIsw8OuD1g0GxI4/nwdDnpob+lzZYGdjVoRZZ ALeCNC9fnmaoa1T99MN7Ed54Ph87dQwBT2q97Nsvi6Bmk1AnkVEHzn6Xyy/2 LUL9K1yh/3YNSJy51VFJ7OO3wk4aOqRXwpsCz81kYt9+3oY5JPlIMcy8JXl+ i3oZPno1gVRQIeDsgujZlZbhVfOv3KjJfFiTiBEJJJ47VB2vKJf4BUziy7Xt VYl9iMkZp5G6OCjxhD6JB8R3y/DPaUH8e2AyajYbDSf2IVDL3J7xFqyVrs3H 1BCg9qxQ27fp51DP8tPVYJYA0n5/TVKobIDRI/+Qkm4FLsyZdZzmfABVD9Ya JoRXQLr+90hZnh88NDz1Gju5AuV21GandkOA48KzawlXVkBS8qN1dWQk1Ctg HE/urUDPPRlSZv5YcBQhH7jhsQK4t8yVCxFJ0LL/2pI5dQXCKOdmO76kwbOK uCf+uytw8kQa7iRdPkh9HlE3Y/kLwaZ362abCqD3gyjFWcm/sPO10i+Eogjk XLJCN/T/wqn8BgtZlxKYOF6Vav3lL2y5rERsClTC5dTfnbrGq1C7Eu0n3oVg 5WWeVaPDKpA+pYn4eLkeYqwDDs8ErMJvX4quGXw9zB4/riCdtwpWrLExKA8P QRV+78kp1mBozjnOw64B5ONvHH/KuwY4t4Gb/3ob4Je3TNOK3Brc+i9n8NTZ RpC60Ls1fGsN2qT0C/rIm6Cl8+jtivw1SFWg1nnh0QxOBXtrco1r8GAencjt agaeyO9v0gfWgLFItjlQrAWsjZ/VRVCuw8F9+tPaTS3AckbvJi3/OgwG+tgr cbRChaDEiq/8Onx58Ja+w6wVaCa7jjjcXoc5rw5f+pVWKGhMrZp0WofJpNSY IuU2MM70vG4SuE7s83CptB5tkOkg+vJS4Tq8uvjGoHW9DfT0tgTrmtahItLg iJJ8O2wrdpQpD63DZ/qxk9ds2uHSttvsEeoN8PYlq/vY2w7LA9rPYwQ2IOab BAxQdUBUrTAfs+IG/GD6K9Kq0gEz/q1X9u5sQMZZUaNvYR0Q+iBpytl5A4Ij uqLmKjpA5T8X77lXG3Bs7CEbGu2AQEbB/P6iDThPcP6aKdkJcit/L+m0bEC8 4sP6uovE+9fTNPZ1eAPU+Xdfx1h2gk9p/BO1tQ0Izcy8dNqvEyRjnNgKaTbB Ke6FakpsJ3Q91co+KrQJ5EOUtT0FneB+l08zSWkTWEMH/utp7AQhHGGI4/Im nCopdfj4qxOaRBvcQkw34XyQQL/GXCc4UsYykbluwoa74sXKrU7gmnX47Bm8 Cb9aA+KpKbqgrk0DR0jahHuk3zrkmbrAKpf794OSTYDJjrlTXF3AFL74eKiV 6A9ui09EoAvKnOvpro9uQry77sdF4S4wvRGV2rq+CYQCwf6UI11AddruLI5u C6gXa2VwRJ3Hh+srE96CGXRTqkuoC4z2ORyPn9wC8X+pj3T5uuBgdI4qTXsL 4CCrooG9CzLwdcl85ltw/sC/R5m+C3TTI0+/c9uCA2bG1E8kXbD5yvo7dcgW cHEWSrKtd0KS7Tlbn5QtEAnicXo13QlaOmzkG6VbcPf47Geqvk4IvUf7d6d1 CwJTg6+Nf+2EX24kowfDW6C4GXCPqbATjrze6iBf3YJzqlJO7xI6wTZpuYqG ahtMTnwQdAzshOKi6UxGvm2YZfTnz3TshL2moSg2uW34FE1z7MINon1Cm7OA 0Tb4RSx3ZQt2wk9yvPkR223IPuUn//ywA0R4KnUlfbbhT0nyuWbi+SjGfZaR z9iG4AuVkaXxHfDrXcDEhc1tmBvtbgoj7YAjGU+7/6PbAR7PsDLTn+1gW/W4 TkdoB94znZBA2e2wN2EWd/PiDpSJ5pte1WuHI8pnDeyidsCVknefNrgNbP9T wjll7cDjJXetxettUHJHRs6tbgcuVh//91KwDS6+5KHzndmBez11m6s5rWDb v14fobILJasfr5+tbYHi+YX8aO1dsJHYHbPwaYG9g4nEBNNdqPjjYWWt3gKh R78/yQjchW/8PK3i1c1Q7JmrUNW/C1YJl/LWPjfBHp/Vx3H3f9B5vWQ28HoD hJn99JMv34Ph1z8ySRTqIHDxLMx07ME0s256lVMt+Dz5tB8/sQcam7lWVvk1 4Bjp8JSaaR8OyXyVO6SrQbeZ3HXEch9O3xe4asZRAUwn5B++YTuAQIazyRSd hUBV80FCQ+oAKAiJwz5khXDw37/JrXMHMDITo9JxqgCWLZrM79scgOTDinty mrnQFXXHRA0dwKdgKq+fSxnQJIbnWek7gJc/WC7tGKdDXcHRn+kLB3A1Mnc6 tiEV8tpWr7NyH4K/0G2oT0yB0IMgnVmHQ/iRGa9OWfoeAkOW6ZMCDkF1/eWH xZh34MNj2HY99hCGxru8Rg7egHt6ZRBt/iGc4rYM9fkeCI6KwpewhkM4blqZ K5DlB1bYC0q3gUNouX0yW4XNDUyvzn+VWTkEAWvjT07V9yB78ej5FTISXHwl 6XlSTW04Wmwi0s5IgjtQsdx4gDlC6pO3h+k8JDiN04tyog+fgTAOjfiJkeBq 5z710OQHAHenRKKKKgnuhPpficaQMKD+s8L7yZIE1yGVnwE28RCQK7bj9YgE V5LzES+slQSHLka/bj4lwdnU/VdQ8zYFtkhqohjDSXDSm3MTHrdT4Q/fK/Yn 1SS4C2fkbJR6MqFZV5BRj40UpxXb+bb3bSFwyI1zOQuQ4v7TGbtVIlwE5ozp Iu8lSXFnvOK/DOYXwW67rPIvNVJcs0b1iZm2YpC9fPa2+X1SnGjfFdNTC6Xg KUXywN+BFJfB6LWW5FgGjdQNjmkepLindrcZBVbKwLTpiv9sCClu0JZSA7dU DuEXbn9xKiHFPUlcPRX3rRKGRIWLI+pIceHOcRFcF6pAmmyypqSFFBdMmt3u U1IFeGTbvT1EiiuRl35P8q4aNs493fKjJMMdtenW0pevBQ1BddJUZjIc7wcV 6+KIWgjdI6Vv5CXD2f48+3hstRakqoOFaOXIcAYht+68zakDk9OxWu+MyHDR W4Nl9mQIMrjvXis2J8MlctnqJ8ggWNsUudVnS4abcRQ2StdH8KY0057Xlwxn F4CW1RMQ/H5v734mmAy3Ps5i3IkhkHSV97sbSYb7x2bQLz+BAFOsiPz4mQx3 v/2Zv4tYPTCweSV+LST6d6aZU1+jHoz/wufpajIcbrM+iMS8Hlbzm6uku8lw 87QsST3R9aAeFtJwZYAM90zx2sn1wnoIcbzW5TBFhqO5RRU13VYP4sd/jhdu k+HeXqS3UNmpByeG+IUfZOS4b0yjeh+Y8FC7YLqxwUCOi3cSYfkqige6dtFD bm5y3A5H51vsJB6MsmZo1I6Q40r1vVpfX8IT71UW251j5LiBOr1ecWM8EKwd BXxOkuMaJ2e73z7Ew9n/FCVTgBzHva+71uhG5JGjmyfwl8lx9MN//Dr98dBL VaU6dZ0c5/7HvDstFA9HZrwvUJmS4/pkEi9fjcWDY+N5HSlrchxNzMcHDZ/w UJVGeVPbmRwnb+KXx5iNB+oXreb2XuS4q3oXMKkiPBjef2sbGkiOk83qu8BV gYcUDX3XgnBynFXW4nZ/DR6WjnD69MSR4wTCCNl2CA+nn318XJ9Gjru8x7PW jseDf+/xBwV5RH/L/vvI2ICHjuNVxskV5Lg3f2QyFIia69XFq6F4chxeyoNE 9SsezMd6wLuDHNe+018rXo+HLFUzJft+ctyrwPbdjVo8rEcsSN4eI8fhSiMm civxoL7owac9T46re06fr1NCjIcWBZPqOjkuNiM2sz8XDz1J4aRSB+S4niga Se0MPAhsC2xw0VDgLrc6vPmSiAcr/S+zlGwUuAvGdNc2I/FQkHVyaJ2fAlew eYygEIyHXXL8t0kJCpzZOca9u954CCsbKKtXpcDVzPUPv7XAwwDzw6yCCxS4 6Kw8zg/X8SBus5aYrEOBy1oY8428gIcKfoaX3vcocM5bfJreInggc4vxtLej wLHznrSzZ8TD1S5x+9tuFLihnJemJsTzM+Z37rpqMAVu/19Gt1pXPcgMtF6U iqTAUaQd8VcorwdXJSM17kQKHLPWb8sTyfVAM+N4ZKOAAsdv5P7lsn09KFxJ IRT8osB5+t1XUv2HwCtNdjJ5ggK3Ez0jkDWEoGm/oj90kQK30kFx9mQtApOC 77X2JJQ4ehB+nPYMgT8n+RspKUpc5gJ1icUQBh2OYb7cipS4kasRb73eYcDV wu9CdZYSJ75IBpuaGGQ9VTaZukaJi1VtMRD5XAc/Rh9IpXhQ4tSWCDobxrUg pLrKH/acEvcMDTgVk9aCdYQPs08IJc7xfXQg6Zca2NOM3rydTInTjZfssVqr BvGslgbuZkrcOnWKKJ1nFbi5HrsXxkWFuz1qcMb/Yjlw0RFqjI5Q4cYF8eFH e8qgIrmIR0iWCpc/peUad6cM9tpUu3PO/6+l64ynwv3ilJV9cS/3GlcyS1FR UjmHFCVlZ6QiyUqUFFlZlcyMRLLnxXWtrJBQFL9IsiIptIxSRtL/vvi//H6e c85zxvM853tePRz4On9Sis+9CoI36kOnGwfOZWiT5UMrILrbQZL9KQcaXzIU j2LOE6oOij4vuzhwXVaZlSpbKfQsf+2LH+DAbSVtT5JXi0FE7nKkzAwH/ula lWX/UgQp12/8ATIn7lukXLGrzYM8xYeDvhc5MaXxgFPalQeg32inruPLiaKd b4ZtTVPgs6lc3IYwTnRPEinl3J4MyoHF+skpnMjPL/G5+Fs8dIt45JzO5cTh K5zNPzrj4GLRThaFMk5U4L2YcsE0Bsrf1D2qauPE5RSbsvu94WDmGiDs/4oT nb6Rtr5KCIZfLDoXdYc5cdPWfVSjcj9ISmJ/wTPJia2H1l18DV6godwh/3qO E/Xsp2555Z6HoSeRwSl/ONEgfcD14UkDuH7CaNSOgwu/vdt79VCfKUh8F9ZU InBhwEA5p3GaCzQGv02cE+fCcYV9JjkZV+CMWOr8I3kunLup6+jzxR9YS08Z Bm7nwhWP6ohuYgjoDn5i49fjwiYBftM3+negU2Xh8pZLXCjCqtIQ+igR3o4I mjg+58J56c89jIwsOHLn3IBXLxe2dfF1PA3KhoY9dadCRriQz/fFZrbTOZCR dNY1Y44LA5XXot4T88DJqDp0SGwD7rU7EtbiWggrT20eHXPegGjhVxlYSge3 S2X7bS9vwPcV/06Td5XBqDR7q6v/Bvy++pJeEV8GLf6lr27FbcAr8ne/iRow 4M5u1i8ttRuwd6jhunRROUjQ8iR2c3PjTK/qvQi5Koi2+pN1UIQbEyr9Qi8w zxMLl5GSmRQ3SvdoVb6qqoKPDsvqnju48atezToerIYSqaPHadbceFlqeXpF +xFId2W8qXXgxupr9M6IgEdw9/ovm+fu3MhQuvQipPYReA88dPoUzI28Kuuu 52+uAa278zeoNG4ketq7XF2ugTI8xLWtihs/hRU6E5RqQWY2JXpfEzfakNZ1 rD9RCxxHdVOtXnNjPylN/WtJLVxbSd7o9I4bPfmWjrzrr4UvBd/zvae4sa0o 49XGtVr4j/1eZfwfbnSQCTmZplcHOpVfNbPYefDTzfm9vc51UGmPT8oEeDC0 i6hlHlEH8oREvSYyD/4SmoyVK6yD5KbPXV2beFB0z1U/nfY64HbXMhvZyoOA i/a08Trwk4gf+rKbB32U85pP/6mDMz77pjiP8iDpY5VZIZOPbnZ4/mbGggc7 wlYXPkI9/Dxm1vrGjgcv1w1aSpnVM+v/vrzBjamvM37D3LEewmXdMrOv8uDH Oq3ECO96MBJYiokI5sGXuqnDj0PrgbwSEuAZxYPywyxPZmPr4cNHgQuWyTzI b13fJ51aD8X/pdpANg8ua+7uMM6uB+86hSPypTxosWH0ckhhPUBuhQZfLQ+e i597WV1SD1yxoLDwlAfHhk7NfqPXQ6/vC+JwNw/Gd6SJKZTVw4NzJ9haBnnw a4lvgWNpPTgaTfwo+MiDjJBv0iVF9aC69+J4zCwPOvJNyK3m1MOy3J//vFd4 MLVF2N88rR5aBG822rLzokByK199fD1E/hEq0RXkxf15Ce+33aoHi8mHqVvE edGwQoda4VsP0j2bI4TkefFsrqfIEdd6+FJffW1ZlRfDP7hs+W1VDxV5Ouff 7+VFq+zR2dpD9eAX123+7BAvkrSy+JK318MhP2vdUmNePHzRzSieUg+C5yd3 JJ7kRZa8mOxS1noYNL600e88L2pZlRO+T9aBm0LE2mF/XmwsuMb2nlYHu4RI 31Vv8WKUyQWN1Dt18G81c1g0nhd5xhw/hTPPy93e2ppPBbzo0qVhukatg5OP D+a/rODFDS/HGHFLtSBX0JNY0ciLTTn+rQ5Mflnj//nSjT5e1ICPfkNXayHY 6Yqd0xgvcosdygk7XAsGpqxGx7/wYi2LWPANci2MKpK3SrLw4eTT7bH+lTVQ IJwrzsbDh/nPjlFuBtaA55oq91ciH8qebeZb0K8Btj79qZotfLgvzO0fz9tH sDnwWqbZCT78meAl3vq+Ghac2WL32vNhynMD/Wvp1fDYLDZA5gIfkjdtm69l 9g+jzQU2c8F8aPw7xHu1twq837wlRpbyoQohX1WGXglPt+yOeMrOj3FVFoeM tpTDKRWz7HkBfmSP1DnvMMyApR2eDVQKP3Yd7iVHRjBAWZM2c30bP9a389op T5ZBgj7VVO0EP16aL5xPlaeD4zlOidwCfvQcnhCFhEJgcZZVf13Oj51c1S47 RwogxU37GOtjfvxa4+TGtakAui9fD7Lt4ce38SydoSV5sDt49iNxhR9P1Zay ij/KBq70tyXhBgIYrmnya/JYKmRlLbRXmgugrPYxqnn7fdiXR3j/4bQA+pYf T+TdnwweJQZC4CWAvw0nf9QqJsJgfZP34gMB7O3fzx2wGAVeTSMxcvkC2GG0 Ym70PgL4ny4XmDIEsOUP74f9HTdBp3PnML1NAIeN11tufXADRrqMFt79J4Bv /eg+0nz+4N1zgY93SAB9HjnkZEx4g+CbCHnNjwJooJ3ssrfBA4oG8sFpRgAv xW47nbntHBwcabVMWhJAkP1v6l+fMczNzmnYswpi2HCStM99TXjsGXjQh0MQ L7bcGzspfBoifvKZxPIIIrVpwki7xhVOXHlwKl9QECeyNTlJs5dBdnGzayNR EHvZF2at/vpA44pe6DeqICqPXd+0lT0E7vj1x66XE8S+2nZNFbZwsFxzSKNs FsRGrpST0iy34QdrcLW+miCa1GxMoMxEg/yGhukcfUEsHZb+2HYsEX482+aS ZSiIi9FKhjY1SdAYnvk13UQQNax1K7uoyWDBdnMm5aQgKpEjqctTKRD2z3gh 1kMQDx548j5jawZ8/DX1zy9ZEK+5r+f2PZULZZXWN3zTBLH2Ucn9gr+54He5 a921LEH8NbKdTzU1D0Tmy9kvFwvi2PTsjEJPPhz45s/j3CyIHPqnHfoViiDr g7Co+bQg/pRLaHT1KQX3zPBkk++CaNZwyc17pRQ0zyyTjX4I4jbjjQ/sfOjQ +25UwmBVEM+8GGA9o1EGrIOFMtqCBAxQddvuI8OAl/ckcrSIBCwTdnu52ZoB yRYxcvsoBMy4eWRdVSwDVPu8FHfLEnATf32n/goDzvwH27ZqMNfXzXUoNpWD cnQ5ffN+Aj5Me1Jp9b0clo7KbVfUIaDGxh0HjCgVENPJrbbpKAHjZDdBuEcF WN/2r5I2JiDx59TbJ/crQF5/bpeUBQEFCpdd6p9UQGPbmz3kMwT8esKpbJyv EiJC9etJ5wio+OilMs+OSrA4UL9PxIWAO1sKdn8zq4SZ5gwQ8GL6N6Dp/F9S JdQFCj/h9SEgodd3pbuqEsK1wnW4AwjYNWw5G/S6EiQbXA+y3yLgn0bqo0Xu KhAhr6y4RxFwbuRC8aB8FfB63yobuEvAnt5Bj23aVcD2muSok8z0/93FDb+s qmBVJVe8OI2Ah+JM7il7VsFC5M4eYjYB74vXn+gLr4Kvn5+EBxYQsDRtMftr ShV8OGS073MJAc8+PD/vWVIFQ9mj8yYVBBRO8u5xbKyCXpYL+Q01BBRPTJjv 6KqCDts/J+UbCfiKY6t46nAVNNfdFop9SkDVu6k7h6aqoEZU7PnycwKyUaj7 bv6ogjKvPP+z3Uz7o53GWX+qIL9HbWfXawJaPrlSsmV9NTzc9nR61yABR8vy szdtqIakO8YPM0YJKK8RlhPBVw3R02Om3B8JmK9Zu9dOsBrCDrpv8PpMQOXh k4IFhGrwy1ptfDdDwMy4dx9PM7HXvwgvvQUCfvMcT7otUA1uJ8mbGcsEXMpT osrzVsPZ2vwxyj8COshejtvFWQ3WpF2JoWxCqHPXXKKBpRpMLrcemdkghJFX pDfULFXBkVcmLJYCQvg7ubp+y2wVaG8dr3oiIoRLNefLxT5WgUbERdctFCH8 4f08LOhtFahO/ZVOpAphRtKtaYeOKlDUjexfkxXC3Nt6+c9qq4CaSYl02syU P3q+oKigCvhtdi/uVRfCPL/1d5ZvVAFHTVtxrqYQ2m85W+PsVgV/RczsBVAI R8+FNtmbV8G3bo+uD0eEMDl5hG1Zhsn/tvwLPmokhB9+bTNP5ayC4VtRGtXm Qtiuxpn96ksldOoUZd8+I4Tr5t6f/VdcCS3pGlY/zwlhvJNAwdqdSqhdbee3 dRXCWJX0Ow+cK6GgesJH1VsIR9KmXjVLV8LNzZJGb+8w/VmYSOYKrICAmzR2 7Tgh9NCK8LUyrQDvj3vqi5KY+twfrjnIV4DjQwv5gEwhrLGok6p5Xg66QrGr so+EsDVR4VHbGgP2XZQqj24Qwoqs0HiLDgbsfFl8fumJEB4Tdd7RcpcBMuEd vS9eCqHGU6rHXub9Z1lZV3jpgxDOLEi0qauVwZmJwZ+BU0Jo1VtAj12gQ/PL Mq2ob0LIG6mosBhAh6D0U335v4WwKzBUsSC6FP7p1v0b4RbGRdJd4aCUYliL 8bTQ2ymMSva306+6FsApH/1MMw1h7Ms+cTZjLB8a7anf7PYLY36AIXuCST4E qHfd8NMTxgHrzIcs6nnwd0ixhGEjjJZJezb//JYNq3Lv10uECmP653p9jrMP 4aTAo2NKt4Uxgmx0IWhrGjQsRd3fFS2MaYZ/ZZp/p4Lfi70qxsnCmFg0azsa dh/+eNyzDi8WRhuGcWhdcgJYW7vnxjOEcfC4sXmYTTzUHTg4l1EtjJv9BePL Je+CL+lnWH2zMM4l7V1h146BlfpjjLk+YVQWG/M7oBsG1rlyq38HhTG+Tm3P 0dZgqItePcQzJowePj86THWDwMeuaETuszBeXR7//Pu2NwwcuaGwc0YYp5cG nvTe8QQNNctL+FMYM5yLWZ5JOkOypMpjwyVhvH1MZ3LQ8BQscXBw2fwVxv6W u5rt3bpgOTdi4rROBPukro8c/K4DNYMVaVc4RbDo07tRdgNbEHsaMR3MK4Lr //ruPRLhBNeK7XbGEkRQ/GRO0U01TxhI1AhII4mgns0RtzRpb9AIFOgoEhfB VL9edvEN12HR+PGpNjkRTKoc5CKcD4bgQfo7rS0iqFzvO7XMFQb8dlkna1RF UJ/SySlScBPkPW5a0/aK4MRN7biN7yLBLNrYIs5YBI0uxC2+jI6Hss5Phrb+ Irh/4Km6l1Ma7DMZeNkfLIJX9RkbzyQ/hGeDnQZGt0Tw+PB0UGhbOoxO0w8f iBdBL9a1+bs8mcDL6XtQqVAET2uyb+g9kg3OB/j3/+oTQZO4D8bJV/NhoZOl wX2Iab/uS8bwQj4EmfzUnB5j+vPrOVHJowCS7QY0hr+IYECfwVLLmUJoD8xS e8JCxMPW2tuoSjQw4Uys0OQgoocqv+JYIg3eRd/cUclDxOJG8yB3lmJYSHNT zScRUZGbk3u8uxhkGnYpRykTMeiv9eHzRqVQekCJxrGDiIaTK70/ikphzwvx zUG7iRhJka2SXE8HoyEWxcs6TP1xqaF9xXQYsfuZ902PiJkxIvsU/tLh/OdP co6GRLTULU/pliuDgKXOTVaWRNQutRSN8igD7qDHWb22RCTR79jzJpRBImfZ xqNniVhazyN4uLoMikmJVHAnYqu+67afv8tA4+HNhzWXiahTEqVkS2RAq5yv 5A4fIiYM01L9dzBgWO20uFwoEZNX5NaPODHAcVldIOw2EU3z127l3GDA3GPe 9Z+iiXhKYXrv5vsM8A2e+K2bQETaJS8+NzoD2PTqvuTcJ2LFze/szq0MiOaJ G2VLJ2LB0ZO60gMMIL863+uQw8zvh6i12C8M2GZFrJOlM/O1x1LlAU851Eh+ KwmtJOL7KN8QdUo56HxoyfxYS8TvmZf4wxXK4WXe/UTdJiLuO7h6NWpnOZxw 9bid00rEqImkAAOtcvigoufP1knExXVBi0165eC2IOnp8B8RvfcUd385Xg6/ axYcWvuIGJbSyPHSohyC/F9Yyg4RUe/hWs3Zk+XArZN1NHSMiBdCjhLLz5RD IocPfvxIRKutIvaPzpaD9IvjarpfiDgbqLV6+Vw5FMXIK+bMErFFc+OJaSZW M/srzvaLiPrmF1ZFmLhRrE/AYYWI0+/EI1fsy0H/XdH61n9EfGFr1XD/dDm8 zryxuImdhFefXrT6ac2cHxwtv4ZwkxD7Sw9ymZfD9GaVsQkBEr5VM/UZNCyH S7Psrw8QSSgx7rrO6WA5rFaMtGdTSNhr08hWtbccwq9V1K2XJuE5k8LaJ6rl QNgfUXpWjoQx4+weMbLl8IDVLuvpZhJeu8gZSRUtB/n23UmbVEn4lUq5eZmr HMoi+CNC1ElY86lpNnKJAZrHP/lPaJLw20435wtTDDg+cPdc9kESKpzwDYt4 woChB85W6w1I+PeFdH9nMQMc7NDwrBEJm1fZEgaTGHDty3e1TTYkHNGduety ngHr6K2KIWdIuF/ffdO8IQOiLqdKTJwjIfvFtqZjOxmQtarPlu1Bws8bWO4m r5TBC/6c1zLhJHxzWJy15HoZWLz2fRZ8h4QZ8WovtluVwft7xvUfYkko84Df O0u9DBak/2VlpZLQkvfRubx+OkjttL4kwyBhfYbXZGxCKRQsqjoGV5PQ/Yb2 2HoohR0NnNYf6kl453vzxhtTJaB3sEo7q52E/2aM1Kt3lIDHCUGCzAgJeXRO Sb8up4F9gUqK3DgJKyqU1Laa08B8+dgmpUkSit5tJ7H/LgLN1Ch11TkSTozH 0PR2FgH7GLe1FpsoHqt2oXY/YM5vjuzZ1sqiGHAlTaVrey5EPpJVPrVdFA93 3quWbcqBQC7dKrtdorg2L/P2vEEOOBQFP3NCUdyl6RbcfSYbVGb+ffU2E0VT AfbU2cBMaL2yohbvJ4oHg27KXVBOhep2cmPSDVHMMjN1K9uSAoWie/RSwkVx 37nx5idK9yG69qpVZqwoOp15nxQtcw+s/i7403NE0XNVyDCeKx6OHhPhrCgU xWxlv1Uulruglb4ztrpUFP3fjZd0/Y4FWe1LWY9rmPvfsBPjbouCmdDZ9hcv RdGYGvb9k1MYjL/hN/qvRxT3vOjPOG4UAn3y2wZ7+0WxvFr/ss3uG1D73O3r 4HtRTNCfzKne4AvF5Eivd59EcUZEyE367RV46EL7+/6LKGpY6LX15HhCKO8X gekFUWz9PNNFCbUHb9sN978ui6IP3huy0zcD51JFmdk1UYxMlJyMv6AMJ//p 0X6sF0ObS9kEhuEROGZ0Xu03lxj+ztdjwT5b0M4Mf7zMJ4bSQS+aW/adB7Uf uYf+Comhen5N85uIi0BO+GjJJimGH8MX3xXyXAONECrJS0YM9/ebXZcP8QOL S9avJxTEkLRRNf3s9SC4a/TK8OkOMWZ/1E1+MB0KvHwNOsH6Ypj37H2OUm4U rIXFK7N4iWF34lVjms49kLjS/fmiD1Neu6yHrJ8Mex025I8FiGEb+0srB4P7 cE0ncGPTbTF0ub5WoWeQCvNrLqSAdDEsKznt6bwtHT5e1WFZ7RTDhtPbU6b3 ZMO68/6PXV+JIdFhISgtPxukLWp8h9+I4YavsxnNwjlgq7btV917MXzw+EqE +lQO9M+Rv/j8FsNxp72LEr55sDBmlv/5jxiu/Xr7NGwoD4T/i3GwYiWj2Rk+ YcU9+WBUwj6mwUvGL18STrLO50OH8/zrxY1ktMnMPnj+SCFMWyrHnVcgY/fW wPE/qYXAoX/+2FtlMqa3RU6kfS0EHfl3z6t3k7H6YkLz79AiOEMUC5ffT8Y7 jeFHc7qLIJDN9ECSDhkvPJPLPEqiQcOH54+vGJJx10BHgV86DYZ61l//ZELG WWNLrdX3NFhq1tIwtyTjFn+KvaN0MainV5arnSXjlYvr278mF0OpTUb+z2tk LP8c0mTrUQJqbzetcASQ0fPAmV/FaSVQb5J/lBJCxmPmrkHEjhJ4frh0HqPI uO+yReNmSikcb9uua3aXjG4yZr2vme9DP1Ylnb9HRuGo0b/RZ0thYnfD3uhM Mk4zPjHUc0vBpQKiM/PImFcjEi/1tBTmtj19X0kjo1ic/n6RsVK4WnRo5/My Mq7bFFNEXC6FNbnOsOEqMgYcIy1sJNAhNNNwYKaOjPL/tploKNCBR7Jn87pm MrpaHpOw3EuHu8lm/sQ2MhL/8HYEGdJBTGTgP8VOMp46JzvDsKXDwxgbmX3/ kVHW3QW/utJBjmfM63gfGceHO+OVr9GhONz+mf0gGd+IwfCVYDrsWDdJ9h4l owt7q+KzCDrU+ju73Z4g4/xnwxLpODrg8rfGB9NkPHC7riY4kQ7tXh6Esu9k pJk/qf1+jw6Gcz/PPv1BxpaO8f32yXToc71a3b9Ixo7J4/Pvk+hgPbXC9WWV jGlDow9d4ukwbh9g85eVgqPdn1VYoungNMpaKshJwdgJzeKscDrMWIWxyPJS UO3E3B5TfzpcecNluptAwYrR05LCl+iwahSZe4REQQeVpZoJBzoEvxRYshWn YOVj6ah2czpw6ccf8ZSm4Fi5qMZjXTrEPCWlhcpRMFWi+0rHdjqQIGX23mYK 2lq1UL9L0OFBnaQOTYWCbK0Dyps56LBpV2ZCoxoFCVk7GMHfS6GIITvVs4eC LifWjy71lsKjgi2RSwcoGJMnG66XXApasvRRnsMU5ApK+yl7rRRa03dspx6j 4MoOv+9KFqXQm7Sn/6AlM56ElMwq3lKwFHqsaGVLwdAhPhWdTyUwFoXX3ewp GBUwNsPaUALfQvWk490o+E8vZlDBoQQus7y4lOdJwRBsYSSol8DK9WNttd4U 3PX+BkmHvQQ4L5u7vA+ioLHehfUX0pl80+5s5dZECtpoXQh0b6JBwcgkh3YK BYXijpGOhNBAxdLFyiydgumR0S/CDtJg33HPNd9CCv7+Vqei0lYEJ/YH6j9/ TEH0VbTsZBTCyK9JgZYWCgqXHP52z6UQ7EuPva1/RsG88Z/9yxsLwY0q5Ujv oeA+tYS5qMgCCGZ9HJL0iYKihxe2BxvnQ2nbSqMDnzi2v9laty09B9QC7MNP CYnjFfiRVHggB2p3dRpaiorjvwcjS3xT2dCaf3/EYKM48p66/l/R5mwYvK2x skNdHL+6D5wdyc0EtmPe6qy24hjqwdLMPfEAIjhGV1fsxPGBoJfWZ/4HINB0 sHXBURwlTHuF7fekAkWVaDrtIY7OMoHnT0TcBxWhSo//QsXRYog1rFUyCaz7 52lpxeL4TmnJeVw5Gt5HW12+xxDHW7SESm+HSDin90Qzrpopv7r11VxKBHjU xHaENoujQHttLiv7TQhPUZly7RPHwKq1zzszA4HX9F7puUFxFFS3sKtg84M4 nn9XTo+K46RvNL3q/DV44NfNZjotjrT17QrUrZ6wUX3Xy6PfxTF9Wo8+TXWF vO9p8Yd+iGM53fqZ0eRZUM5jt8FFcTx0PMDluY0VME5dkNFcFcf6m3dCtUcO gn3VnGQGqwTua+/Qae7dASK8XmQOTgnM+llzKd/YDNrsF0XceCVwenLLuoGf duBd6yvYS5DAKOGEzKE6Z1AQXOPREJVApbCtUwWNHjDgeIPzoYQE/rI3lbZO 8wJNkVtrzgoSmHOg6AiviR+0dGQN3TeRwI8P51TVDkbBZWn5/n8nJLAigfPt lGQMyF4t7DlnK4HBVZEvJnxiIVy27Pl2Jwm82FhGOmRwFwwCH1d3+EvgrYIf z08NJUKf2sDd5QIJPPSw6V3egwcQdscm+nSpBGqNmAfvck2DXR9Gb7dVSGBB 16S7++6HkBzzKSiuUQKD+OZcM5+ng+2XH+5KfRKoaRp2xNQxE/i1vV1iBpn7 y4R8C32aCc33ls/9GmXGezPP/wQ1C2QOstg++SyBvtkv6571ZsFkOp+B1T8J bHXTqFZTzIF7v2MPNbFJIm9nskqXTw7oG4royHFLYkv1xLqhjhwoWqHsmReR xF3u+pH7zuXCRXNFhdubJfHerT8RD2/lgXQxTWZWRRIdUwedTLryoHedipS5 uiQ2ismfMhfMB7UydeJGlETwPrlXIy4flrgPrK81l0SGKOt1joACEJrhT2ix lsSuhHk2ZUYBbOkZkn15WhID3IX3NH0ogFP3Lh0ac5ZE6wiHDFntQrjqq/V2 2l0SXX+dEP5xoRBibbmdflyWxKIerbJN9wvh6aas2+wBkni90YyV9oV5nznc KQIhkrhu8WXLqmAR/P68hyZ2SxL1+JaeF6kXgWJZz8stdyUx/frXYRHfItCJ T7NVv8e0n2Pa3nW/CGy8nWe0HkiiTn532cijIojexypokieJbFWb7BdniqCA 2pVhQ5PE/r7lARYuGjxZd3/7uTJJ/Hhjhm5DZfbvTw4t7lWSuL6NwMqpToOF 56qm1+oksX73d5Z1h2nAX7w6caNJEpu33FozsKGBQsxzrzutksip4XL2oysN 8FICe2KHJA5veVDR6UsDa/MzSQ+7mfE55Uet3aSBl4ayQsFrSfTOjC8KjKdB lPjSI8YAU55t4p1hGg3y1p7q17+TxDsvIonOuTRoHo8ZbP0gifd3/LbqodFg sNXGpXtKEhtGP3eFl9HgR77Cn7ffmPksiiq9XUED3js/74zPS2L8uIXpUCUN 5NybJL7+ZtZ3cnWrDxNrGd8pWfgjie0GLp2OzPnAUu2E1hqLFKZYFHdnl9LA U3TTf5wcUji/9H5FtZAGESszpwk8Unhbc5OSQBYNct7VzVEEpfCrqLch3KfB 4+bwG7JEKQx+W3KlJZoG/dkmQtsoUljWf6LjfjAN5sKlsndTpfDzq4zb7V40 4Hb5slNbVgq7s/YQjpyjwSbD6tYjSlJoekezT86M+d6rBpubbZNC2e9sZ2y0 aWAhfGzSdqcUBt3dZPNNmQYev8lXz2tI4TZvpbAhJv+6PfiJ03O/FDoJx1Qr /CuChnR/pVA9KcyPW+Wd6iyC/uDDdVFHpTDHXPaUbWkRzJ4jGtwzlsIx4gP+ vbFFIKNc4lZkI4XtChZz6seLYK+Az9+KM1L4+1ELv6VyEZj90I1+fE4Kz6xe c/zKWQQ3a0bory4y4zHnTfeoK4SM1AIc8pLCa6qXFJ3iCqEuwKtnwkcKT+Z3 7R1xLIRvurw/f4dIoe7GfoNDfIVg0rN3l2SyFLokhqz66RcA916eJw1pUmi7 aebPVb4CeJIzZHAyWwrVg7Ilyl/lg+o1H7vUUmY9+uIqlpj9ip/6KJLcJoXL KT/pTpgH7bfCRWs7mf4V/zr6azEX/H+YZ1m+kkIJCBCcKcmFb20Lj+4NS2FR UFPTPmIudLjtmCD+kEKvhneVrL3ZENTP6l61KIV77EzLMv2zQQN7lsz+SuHS pXuL4wrZkCfswZ/ARcUSr+Qzp69lQWhdyR4hKhW1y895krgzAbmUYvmPUvHT 38U7bDOpsOS5RCk1pqKFrbjkLulUoA8/yzU8QcXLj2v+philgBTdsT7Snorq X06pY3EyrJrnTHL7ULFxykuiwygRHmVT93PmUXHCYFb7cH0kuPPNPsujMdcF zr7o+xUB8lcbTQ4xqGggV7lxatttSDhi6xTWQMVnD29aKqeFwaX5lPj1r5ny 0dp/pUf8YLONi1T2ABUdrzydMtH2gfHWPYU6o1S0i8l90pp7BYySBxpvfKZi +CFRi/XDbsC1ruDwxlkqBolRosuzzkGT69W+5gUmVjoVotB/ErzfHDp9ZoWK mmvUvy96j8L//ydBM9nrJ/4KuGn9D9nvRZs= "]]}, Annotation[#, "Charting`Private`Tag$620492#1"]& ], TagBox[ {RGBColor[0.26666666666666666`, 0.4666666666666667, 0.6666666666666666], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwUl3c8198Xx+29996EJCsiOZ+kpaxSSYUkyUpkfDOjjJRE2TNC9t68r0/2 TqiE7OyPbDJ+n99f78frcd7n3Ps+57zveV5Ry8dXH5CRkJBcpiIh+f9THrjm Dw+FUVbmpk2HtrPW4x3x4J1dYSTJ+NUS98UQCksUpdY2hNGFf/70nU0WoCSt ZzmzIIzcNkcaududQI31xVDnd2G0K37ssLbbD3CTf9tjC4SR1FLJbktLODxP PLSJzBZG71xfPar4+g7wNxmp33wSRuZ0ZfNbQxGg0yl91i9eGLHsxwzKLryH S2XmNdZBwojTOjkynCQWrgZ15SibC6OBODWlJI8UiDzz69IxU2FkIyQ7fm09 Bfr/zf6Rui6MSvPl8YqPU+GGE4UE32VhVBUvzHzB8iPcvnUqgURNGOm6s82R nE4Hq6OfX3cxCSODN9HM4vWZ8Gm6XLaFVhhpBYq/+iqdBTPJja2IQhiVfzfq UozIgkccYxSlu0IoonBPatHiMzjuc3nHzQihb9863EOXssG954XDw3ohZPXn hktPXR68XnD7vl4phLiUeORsufPhI/WjM/4lQuhHWHoZxeN86AQ9zsQsITQ0 w7ciwFMAE7fBVzZNCDFSafa+flQAW+6KcxWJQojWJXdsrLIAxAo56/oihFAt 0+fKN9KFcLKT+ojFGyE0p+OduHulEPRmd8KXgoRQpL7j1BWnQvAQGbWi8RZC xi2xeR9KCqE7PINB66EQeqlwnWAjVwRTuTFuHfeEEJ2qolTRhSLYaX01ZnJH CAXfcxpvvVcEEqSPS12MhFC/g4jz3Ygi0BC8J0R6RQhl6hIaBrKKwED9WnDY eWK8ClwoR30RPHuidufzKSEU+tnx4chUEYS/kWlWVSV+j8eLpPubRfDpM79C o4IQqkn4E51FVQzVTYxxRkeFUJaWQkI2ZzH0jh+S/5YUQp/66elsxIthZv+v g72IECoRt7rx+3gx/OOd+r7DJ4QM0QsG5lPFwKI6eCaIUwiJMUP3hk4xSF1t zeFgEULieAbjCL1i0HSs5vxIJ4RIexQcJo2LwehVru9xSiG09mvw8I9pMVhn JM3VHgoidhFF2mTzYvDCh1/T3RVEWaXvE6nvF0PEqH/d93VB9N74/azIg2LI 3H165AFBEHkG8R6bJ+parofvVucE0SlVryZLou5TuvXPd0oQWWbEiL8i+s/q X37A+FsQWQ1N9ppbFMO+7emeuJ+C6LWxj+Pk7WJgCzquLt0viDI1zpVx3CgG 6TTRtLJuQeT7Y9x1Tb8YTmPsjGfbBJGN7/cY3/PFcPUXpXvvF0F0tuGtUJVm MdhsbY3drSeuR/lAOEWxGLzZ53UXKgVRp2tOh4okcf/Hh0s9SgRR2dlKO3fu Ysi63C1ElS+I/pz5Y25DUwx1D1FwZJYgGvuWJEKzXQR9AcWrImlEu8JVrZsz RTCbnH4nP1EQCe4+v3fjWxHs10Q1n4oRREliNbpUWBFIrz+Lu/FGEEWnZ815 EvtDi8WBYipIEPELRMacfVYE1+TMHZ/4C6Jw1elDzKIIfKzOar92F0QSWPLf XzJF8N7vRC6vM3G9wxQVH4Yi+JxwhCvTnphPNpHUoaVC6O+nn2+4J4g2Q5gd WnML4blVWX3OHUG0MJLPUPC6EOTXzSI/3BRE12MqA3ztCiGYvVjzkZ4gorQ6 YTUlWQinr5q8ZVEXRMqiSn4j/AUwP05qtassiOqeXB7Nas+HmCc5J6fkBZHW ZIzcA/d8WA0/GK+QEER3Z/M7G9rzIKMnXcWcRRApqh2ZfnUrF66Z69NeohdE O9V1iXe2c4CEsDWiRCWIGI7Mcpz7kAOmTJeDqPYEkOxQQvTjtmxg1vv7M++P ACpLuGnUwv8ZPNpP++7VE+2vTm62OXwCSdM/12aqBJCaI79J60o69M2FS/eW CqAMn+g6nHM6yNFOfU3LFkB50843ap3SYPzCK4nLUQJo3/T597w7qaDbNNgW 6yCAeNyss0KWY2HL2C8pwEYABZy/d3upPQbSp2RcHO4LoKujfm/PfIqGQ3Jv gTO3BJB8wNkSEuMPUKot/nhWRwD1fDVqbY4Ph3t9nWf7QACtoOgglW9hwGTp xlOrIYDivr+Z+GH3GmyetzW8VRBAywOyNHnvg0AQPeZQExBA+ccTZ46984RO thNPNbgF0HNXuzD9Kjd49mD322k2AbQdbVk9PfIEpCsx5TOMAugyb2yl+8Ej GKR7GalDI4ByMgmOyqcs4MVd3bUL5AKoObdgSrv9EigXMl+7fMCPWFgbM5YG NWCCbKBYf4cfidy6qkF7yxTCr8exXV3nR05UQrhe0oeglWXufJ3Aj1RnrZW4 HJxgaVeiz2SeH3GmNCn4m7qCbkrBO/MxfnSldClxTs0XyBcaWRw6+VFCjN0J y2chUHz6lZNTCz8qx5Y6Tf6GgkW4Qa8Lnh9l76+w4h+GQe2JobfPKvlRKm0B kv38Dtz8CEzB6fzIxGk8SP5NFMxx8jGmefEjNskpjZOcKRBj89s+w50f+XfK fLyWmwLna9I7PzvzI/HbmfRl2qnw0eL460IbfmQYNdwi4fAR7uTo0Ncb8yNe Xpuusop06ME9pv0px4+Wgr3bcon94xOp8mj4CD86PPZ9ePzjZ5Cb2Wn9LcaP 1H+R7HdKZ0Nw6IvgGR5+ZGAvLZ2mkAPag7HU6xT8SHfimOT943lQZtdIyTzC h0pCqeOpnhDnh4ijYsZ3PnSxeliENq8Qqvu5757u40PBIu9f7v8pBHTartSu hQ8l8iTqfjYtgnZmtvutRXzoeJYKZ5hSMeg11oSZ5/Ih53SdpynE86/X40H1 ZgYf8uVkO/E8uhgGxitZJRP40G5A6H+JW8UwVmKOngfyIWuL1zl9WSVgaUO7 yPOcD9EzDinNfS2BaYES7kJPPrTlym5RsFMC8y+pHo868SGDq1ZDmudKwUGj MM7Vjg+lhqi57tuUwsryrWYGaz4U+WDXyCK0FDZu5gmeus2H5GdP3SfpLAUP hpuX+q4T43+hjVObL4VdROL6yJAPbbTOcFNSl4G3a3YKyWU+lGPgwmMtVgYk ssad0ef4UISmGOGmZhn4j+5vyeP4UI3VU+ofxmVAGZkp3qzBh5KslaYn7cqA bm/32fpxPsSR2/Hsw4cyeFOYnhEqy4eU2CLKVLPKgOWBfp+YJB9qvEFea1pV BhG82/tVwnzor7JX2GFrGXB2p8oY8fGht5d+nRf/XgYx/pevz3LwoSs9BTyN k2XAp7bh58vMh0SSrI3GlssgcSEpl4uOD11642ritl0GIikXf+RR8CEQflnw gqQcPhqvkp875EW1z2JWaanLQZI24fjwDi9yz1X+QcFQDll15267rPMicXk/ xafM5SDrTAikI/Aik4LH8zdYyyFPKrY4dY4XnRUcoc0laoVf2qMnp3jR1nRO kTNLORS/XaTtHeVFT59OC2UzlsMJnagTD3/yIr+J/s9GtOVQuQ33Dr7xougR kWYb8nLQyJt7/aGbF+nXTpIR/pVB3b3ISrk2XlTV0EA3tVoGOK7TU1++8KLz r/fTLsyWAb59hvl2PS9az3tVyDtcBud8w0+tVvKiIjshedPuMmhV1ngYUsKL ClK1VGmxMtCdnYwQyedFdB36B1L5ZdCV8Ka+IosXfZON/14SXwaGRmrz+mm8 KI3D8nhhUBn0UY5zziTyovBrv8IEnMvgevWrM94xvKgr73T8jmkZ/HBUceCI 5EWpAXjOi9plYCo+GpPzhhe1BGf+opEuA4vXiis//XlRT0y87vRyKTwrjQjs 8uZFn+zFeIX7SuHD8JpAgwdxv7mTVmSlpdAuV34py5EXifr+x9XuUgpTxtxj 8Y94kQTNA7Iio1I48PJwe2vFi1YTMt3Py5eCcpdGmpspMV9/rq76T5aA/ka8 uu11XjTSeVHqWG0J2Aju99w15EW5Be9xryNLIMEB29M5z4uivpHbOWmVABWT zg12JWJ+tqpWqV8Wg4jqp0WqY7yogueMWPi1YjhlRhWwe4QXTXC1DYyIFINT fmvBuCAvSu9Yi/tWUQQ/9fVoC2l5EaOcdfWT74WQ+/ZG7ZVxHhQqKfWDDOVB c0XFVdwwD3pwd+eO5ck8GP/NM6f8nQed7SEVycvPBS6FX5z8XTyoPE4/VJQ4 D317zR/PVfIgq3suvbd0P8NV1kdigeHE96k96LjupoO9envlf6E86NVjhWO/ KtIg6N5RA4dAHnS6dMiJmTUNaouWPI29eFDKeE/cfH0qSF51HhCz4UFR0VC1 yJYE2xGewRjwoNQPR7vEmiLgj0DD/HkNYvz+w57XSu9gMINKr1uFB8U3Mwq+ OvUWSqrfsY7I8KD8ZkVPweFg+Kjz3cVKggc91E2eKch4CeHdAoMLQjyoJKN/ sM7BHxwnMuN22XlQ5ozZBfMpd7hjv7T3nIkHGWomHGWweAKXN5XMaWl5UGGh PlrPfQAafh4N4eQ8qOi093sPESOQpqsX5zngRsfVvHQSjbWB+z15YPI2N+LN WTx2GX8PqIQuzUqtcaPSx7t6ZzcdYVKxP/fELDfaTlZP9K7wgr4aXua6CW6U Lujw0j33OaBz5k90RrjRW+3nw5v7LyDp1vyJa33cyGDRKtvkYyiYPCfBnGq5 EQOrmgCl63vo7pX7mhPOjUz7XPXWe1Kg1tRZWTmUG9n+0k4VSkmFnKmKD9Uv udH3v5UjgY8/QvC2tmnbM250Oivp4Bt9OpwVuTU5Y8WNYrgsvpSfzITKxy83 RNW5UdWWhK3DjTzI3Gm/+VmZG01YCqRbsOdDVABLtYI8N/Kx/6v6sTsfXKLj fUCcG7X/oL2zIEzkNayI+i4jNyILodGqeVkEaUyjvDHjXGj1FvfnKsFSiLgN 1OrDXOjoF+GDrUel4J+Vsv5zkAtptfWo7RH/J0vt+z38nVxo4U1mqtaFMhBz m32RXM6F/O38r9DeKQe2L5eccUVcqJhj6kp/YjmQseSYj+dwoSwP+ly10XKY +OygIZ7KhVwvNWkVm1bAx5FVQkYoF2L2i/CcOVMJEbLGIxcCie/v+GZNuleC v3tZ+6wfF7qVdm/SMLcSLFk9Psm6caGZhtdsj1iq4KrZz4gOJy50R3GQnh5X Bdo5Gn72dlyIn7JTkN6xCkTP7ZvmW3AhxZGf2RxNVcASYXbR4DYXkvgGm5zL VUDyGzuxcp0YPzHunxVnNYx5+LMoXeZCK+NT28Nm1dDbNLnfd44LvWQ5GX3g Vw2I7dyCC44LmQT/0TRPrYaUXOrmshNcKJdTVrB3uBrCd2xKbihwoUw31dGf W9Xgd749ZUuWC0k+lyjlZK0Bp8ijYTGSXCiN9lW2n3QNWIy99lQX4UJ1jnbz 3Fo1YHhs2WaIjwsJzfhU/zCqAdwzgxuenET/QwdfdL8GFFoKzwqwcCG9G5y1 nS41IMzBplhHx4X2XfCs/57XANM9FyEzSi7U9fUx7lJYDRzk9dMfHnKiu6SH UmUxNbC8e2IneZcTfSM4fdFMrYHRC9EzuA1OpHtGQHk0swa6329/GydwIjw2 XhydWwP147ca/Oc50Z8fZskPC2ogX74mX3yaE1lKCbleKayBJE+BhMbfnOjV XlOvDtEe1uod8mCIEyn903lsQPT34fztRjXAiXIS9o7ZEeM7WuKsMns4ETU2 RxedUgNmBalGF9s50aR4h0RfdA3o75HBXCMnYps8V8P/pga0LlnJvcI4UUIn 9XEXvxqQj2riPVrNierK/5D+eFIDgpNS1J2lnOhFKfn3S/dqgEEheN2+gBMJ KI04t+rXwJ7X3DhjNicKXnOuuaZRA4ttuj356ZyIas2kckG8Boa5cmsNkjmR m0B3RDh9DXTeZ8xeieVEWxM9H7T/VkNtoWP0u/ecyDD/qDzZQDUk6Co6fwvh RL+Ewj1zo6pBgl63vfcFJzp5eDNs1a0acjosxbp9OZGaxbWgkOvVUH3lfV+r KycK+LSOz2OsBm3GPNlmJ05E3vKO9fSfKmjvavL/Ykfc7+JVM1Gsinj+bynV 3yPWw6xScvlRFVgws4TW3OFEV6W9n/3UrILZHunJypucaAWX+FyYqQq2DU0j S/Q40d4egxs+pxK4rtWtZalzItO7DzRjv1VAEvvg5QwVTvTj3b3SsNgKkOxf Tks7zolyv2VzEu5WgMp1EeMkSU6UmmYbsTteDldvBpRGsnIiV2fTmSAiD729 fcnVZ44DvYgV+C7tWQJcApZdnlMcaOXRgLicTAkkDT+T/O83B3KlEwroGiiG /Lu5Ay4DHOjrxsnXu7LF0GnOrPqogQNlqHRfdWkqBBqrgc1rsRyowupSU7Z3 DoRLLOsbvedAlGM95z4UZQP3NFWm/lsOJBqknW44+RmkrE/evPSSA5mQci1a 4bLgnE18hdYTDlQsOoVOTqSDv/09D5lLxP3t1BtZJMbDaJhZQvVZDhTg7yjk 8DEWNIpuo8taHCirUyqfIz0aVjeu0zgqc6Bs9IW/MjES9HmuyR0e40B2Ad9a Nz+8g2wNQ8NwaQ5EReufkcP1Fu756sYUC3Ig05jW5X+/AqE29ULtWR4OFDY8 FcJT4Q88jTpj/WwcaJndVo+T3xuezpyhsGbkQDg28TxF7Cn00oD0FjUHqlEP q5EutwG5o5pXgsk40PqywxWrZwYQrKfuxLvPjjy5D6pvMF2Fqceq77O32NFH 0rv/ke0+AlyEcuWpVXZ00lT8mJWXKySUKgx3LrIjmRT7oqOkPrA9eIzE7A87 Or93gsPyXAAU8ktf9BtmRzkmVXi6gVAQ/iTwo7GZHUHDpysq/lFwUEG5rRdP 9F9f8pT/kQamQ2QCvz+wozMukQKhc+lQvncITuHs6IgA9SPD3U/geGY3KOIl Ozr79ihbC28WjLQvc39/zI7of+bf0NbPhdqR72oWOuzIJ+LTqoJWMfCQDNz+ q8WOev6RBUXWFcNTsT5ff3V2lDEmtcekWQJyDztb0uXZ0T//9xdkVUshYQXd nONhR47A+XZWsBw8ybPdnZfYkHXz4eNbJVXgGGtGZTHLhuiHE8KqeKrB8jj7 B71JNmRT7D/X41UNure9iqV/siHKRolJsjM1wFOivzTayIZClB/u1VXWAsMl cq9OjA3lXQusoGevg8PRCrrqajZEd2Hv2g+7OpihE5X+UMiGZDoKKr7x1EOp 5Zrl5QQ2ZCpT355ojkHWdubfk9FsSDXqZ41cHgbxYXf8pCLYiPxH6029g4F/ dVMiaTAbevaDXL7xHAI3w2dyBH821KZrQUQtBLYz8jXD3myIO57nlUcoAiO2 mB8VLsTvYfsxGNKFQCfrysNPjmzojl//LfklBCe1SDcjHrGhHoZnneP0DSBi a8vuaM6GWLhejNieb4DlBk19icts6PJ/AZN1BQ0wcfPvMOt5NtRQyNvyrqUB BpY+2R3i2FAiKo6yGG2AWl7mkCFV4n5khJemafBQWPCFu1WRDWEfrjLHCOAh /ZxHRpkc0f9vorHmcTyEPhn/Ei7Ghv562XJfM8KDD3XUVR9BNlQQ0JbcYIEH 50TdcTseNhT1/fI9vsd4sFYm1omdDbkY/PfythceTNtKDs4zsSF5h7c6AcF4 0De3eaNCy4ZQU8b020g8nNkQEBCjYEPPi77X+ybiQSX0azbzISty1TY7YZSB B2nRQPX9HVak6lNXR5aPB4EKjdb5dVZ04uf4r4hSPDDrEW78ILCi3RVtcZJq PJBNpk03zbMisQAKtUv1eNj0MHlaMs2KqJO52u0b8DDPxEieOsaKEPP15Edf 8DCS3vAu7Bcrstz7FKLViIdeDTcRr0FW5F/LbT9PtDf2yhY8+sqKWkf31e3x eKi0/n36ZicrSjdn3MJjeMjZi+zUaWFFCkweFUs1eEiKuHhbCc+KzglSpyyU 4yFCen9OuI4VzY6qzNQU4iGwvsiDsZIVKWad6737GQ/PjK2p/xWzoslf5mW9 KXhwnOeLms1jRZu8afvs0Xi459cjMZjFigwitMSOvMbDjZ/JWiNprIjG+0Hq JT886Co5mUwlsaKPJxWoLrjgAUJxzguxrIiKpJtU+AExn1Msr1ffs6K4nP+u f72OB5nT45923rIij/WQvrvn8CAUVYSRhLIi3IKfaaMyHmguXl1jes6KZClv Wwoz4mE/RYyRy4sVuc3HbbJvN8DqzqqUoDsrsr/wvn5ivAF+5USaHnVgRR0v G5uZixugl8LqqZINK7r3siLJMaYBGu+qhKnfZ0Uqf5Z/Znk3QD7zQMOFW6yo uibXvEinAdJsPv3SN2ZFqTb/NftJNUBMg+vGdQNWpDQj1naMugGeu3DJWJ1j RXaPG96JNyEw/n4z3E+RFd2XLLKKUkZwSUE6O0iOWB+WU7a2DAi0Qra/hB1h RTLDGhoXWjGQPhW7lSDIiiQ8+kQ/iGDwL2nIrIqWFY0nax+KVdTByla2B6Jg RQJFLZG2N+tgytAzouWQhchf3HuRG7XQTSbQPLDBgrR9jj+LO1oLH63vHlsd Z0FJW8NVYz7VcFF+7J9sNQs6XnrFgrW5HE4HFXIqlbGg1cWGgPvny0FpzO+4 eiELKg+XXRttLAP+CNH7FzJY0K3X1+ce1pbC8oZl+/0IFrQs7XXZKqoYPtRN xyTYsqCLW2xv1zZzwMwjzkftAQsaatfj58rKBmllA6s+cxZEyHPPHbz+Gaqz Ko/TXGdBByFrl7wzM2A0MrTZBViQ3e98fz/JVMjUx+UyabAgw2xuS0vPZHCi 3Xj3WYUFuUaKqmlmJACZr9nd3zIsaImEY4Z0MQqO2Cqu63KwIM98mSGB/wJh RWLm5zQTC/LjsCr/+soPqn7HYX60LAhHe8XeRtoV/OMMPvFTsCCMnVHm+Q1L iM6m4XLYZ0afgo5ofqO5ALIizuMfV5nRLE8a79CWA9R++JX74w8zqpbtF30m 4QljfvlndfqYUUfALt9kVwg4b3IzP2thRiEmGgrP198Chf3zoYJaZmRwz/Cn JkskyNw0fsKfyYyEijjB/WwsOB/bTVr1ZEbN1txmNWMfgSLtvq30E2akc3ek 1NQ5HaJ4uk6YWTMjmsDf5wIpMqCGPKWzzZAZ3dfybOWV/QwUQ+d2UySZ0bU0 h9OG7gUQFfjuukEPE/p8tZX/DGk5VP+WZsgVY0IGhpXbU1QN4KVJmhfHw4SE E0zyn9xpgNOxP/VCmJjQFL/dabOiBkBXX7213mVEPmIB53C38NDStMAm2seI kqeNWV6lfIH+nHzeqOeMqHxO5LsBTTNE0QRVv3BnRJujpx+qGzXDzQfmt10c GBG5ftaATGwzDAmxJBreYkQkTrU1tFItMP7uiQi9IiMKtahXVFBuhY/Llxp2 pBjRgNAcU41LK1hdFrOcFWBE3+Sm7omVtMIsxbe0JhqiFi3oeCLfBsvuKkf8 xhjQPxzB9CVXOxT2M7Q6DjKga/ZHbj3Qa4cnitM2dzsZ0Lx+6csd/3ZYn/+Q rVHJgORyuyiPzrdD+QXHyzL5DIh8aAlfz98BHunnF7nTGdDPeib/tcsd8O/u 1rGNtwyotdHC5FhWB9RW93RPvmRAUbW1qjL9HeDDnfW4z5MBnWFb+VRy0AFk X02KCh4yIEPnUwaWBp3QeEzxatJdBnT+hUS5t2snvHxFu/b6GgM6tUxOwxXX CTQ61Sq2wICUL/Dfzh3thPaUiAGTEwwoOjpmM/WgE17v27pdOMqA/FyYi8kF u0Df9Cy3qijRLlbj06XeBcwV/JUS3AyI263ozj/jLuhlXzdhZ2RA4uMCt0Mc uyDCqXOHlJwBmSy7xrgEdgGXrPep38v0KLoxL1qvqAt+BF4f7pqiR1WcJNMn GrsgdvKYd+0QPbpq/iHYbqALTHFUQjm99EjYrmRlfqoLBBJH62Ob6ZF1/8mE wtUuGN0pNw+upUfcpV/5qg66IOXGWxL3YnrU/+4oIyltN1iWPEx9kEWPhKKl JV+ydoM4C07bOIkeVZCySWnzdEOYwvgz20h6ZDXtpPdKsJvI+/4lfsH0iCqJ jK1UhOj/RHwxypseub6Uja8R7YbOd40Sec70qFjrkUwi0a5a/ODul4f0SJHt I9d1on9KH1XUzzv06N+G2eBv7m6gW8vsJhjRo1VN9k11lm54yn6JmuoCPRqa vSNoQdUNo8rzIKBJjzridJgMdrvgonGoh5IiPUoQ9PpEvtgFxU/lii5K0SON wPihZ7+6QPBD15wZPz3Km76Dilq7ILjMUcyVhR5VBw+++FTSBasDzLdDKenR 8YaSJ9cSuuDOZmFk6i4dojthv1jp3wXNXFc7Kwh06GnBf27frLtAQW2NonuK DrE4vc5LudgFcTffn576SYeG1+suC0l3AYXHCbfdbjokewp/RJeyCx7HDOaz NNIh6afcJ8TGOmGo0v2PVBUdSpJReZFe2Qk6P3lETufToeqeEu2esE7g4bv9 7lEMHSJPIrvJrdIJ/hp7bb5v6JAmj2a8InknLJomkkX506EU9n9Hl3s6oCH+ twveng5xJu7evGTZAbaCVjf4z9Aht5BRN3vbdug/TflWUZW4Pma24CXVDlpm GS0XjtKhd17v6GTG2oA9efbkU0461DVVf/ralTaoFXHg75qjRccvKhCWqVtB 6gyT8eQoLeL2rbv1q7AFwu8VvN75RosWTk76Wt1sgQcf/+5L1tMiDTbjHwaJ zcAk4TbmE0GLjHikgj4xNIGHDjfvhyBapDIZhd59bIQJq0qjHC9a9J6nP1pc tREqPu3iv1vTIuxX5ZTWjS9gccT3k8IpWiRdIaH86lkDFMsG205M0qCJRpDh zqkG4a8WVUd/0qCoDjnbvYgqeO2uTuPaTYPigsyxTLdKeNA4/4m6igaVKXmS 2iuWA4+Z3rhcGA3S0+31cXMtghcUUgpuATSolRDpfEOzEP5mH/hgHjRoXUMt /MlBHrRvFQhcvU+DTjJeeq23mgXe79hM3E/SoA73T56huwkwr7aQgY7RIJmx oFHNuGi4Mfplg1acBh3s5QQIHY2ALy8SdK7x0KD+1jsNRaYhoHDUNTKBkQbl JHd3Gb/wgoSvehPTZDTIJ3SV8sdDE6D1kFI8vk2NJI9Q1jOGOIGb0KGvxxI1 6lr4LEJRHAATjd+7Gyao0aP/mmQlTr0FA7tCQfof1EguhMql+fEHqGUNsTfu oka5UUUWTwzi4YOZBt2fCmp0urCT7WR8GlzcTjjH8IYahX0l2Z3pLoCyJNf3 1/2p0a3/pI4kEfMhdk5/MsmdGn2INfdtpCqBf+8O/RQtqVFxtDlFLzF/+Uct a2+oUSOspW3J7nMtcJgfUU4dp0LG/h4dZ2ib4HdTkYiqKhXSuz0gOhzzFbyu 7eiclKNCL7ZdAx9R9gHPOO6RhhgVKn/luqbs3AeGez1FWkxU6H3RipLzlW+A lJa1L8xQIsN1iTRl8gFISZZ9YBJFiaSi1Mtr3H6A5X9pn59tUqAjOR0KVHd/ wwHVQpfXIgVKOfY31qr9N8S9V1r1maBA0f953mjhH4O+ggaNgG4KFLkz0Bwf PAZnZ353hGZQoPxnZHdrLcZB4prAcsINCsTw35VsI9pJmJb7oISVk6PKl08Z G4/PgKzPp+XZHHJi/6wdG70/A449ZdlsqeSI5FSeT2z0DGw/GRSzDiVHr8au tizszwBdBTc7owU5iqpm9mtt+gMKZ+LWTGnJ0VTQQVMdbg5cI7ILXhyQIWm7 xTYqxzmonqy2y18jQ62s+vbf4ubgbOCvSdJRMoSZ8v9cWZ2DGx0C/VnFZIj9 VHYGU+I8eF5PLt28TYYiFfkXPb8vAMoocBIxIsZ7mvX9zN4CUGxjcrrnydBx /lWci8gihMWNpScqkCEFwwJz9oeLkPJb9IMOJRmKDuKlkVpahGkFJSPHXVLE lqS8LMG4BLL+2owxBFIUrrCU8VJuCUok7r9c+EmKdPxpTts8WoLmR+muEfmk KL68ET78WgL6mlLF2jRS9EMQul9uLoEhQ9PSdAwpkiyTONPLsgw/86cfqAeQ Iok/3g8en10GIZJN0fsepOi+Tu8T/O1lsDSiGn3tQFzf0oTH3mUZFtekbozd JEWi1J4aKGUZFM6psdHpkaL5+w2XH5Uvg2vUhW5lbVLE6Z0kZt2xDAcnbc4H yZGim5pkSSZry8Dq81lVnpQUkdcPDLKcIkBguXQryxYJshMu/35SlwC7y5m3 1hZJ0MXgQ/4WEwJMmGd4Vf4gQSutxuKcTwlwI0aSKb6bBLFLDOj3+xGgvTc9 2buRBOkqZoRtvyZA8Zk0vHYhCbLJfm76OI0AUs/EjCUzSJDpteteDXkEiCtO naZOIEHC2jSj7hUEYFoQcZ9/R4KwW/EmEYgA/uIpNF1BJAjfXNDO0kaAzdvC cQXeJIhzJYBnrZcAtu+Tjka4kKBNrpWj6j8IMNopWPf0EQna/mS5PjFKgKuU ifo3zUnQq+PD1itTBGg+LTCmfp0EfeNf8L43TwANt/gnApdJ0GWqTHVVAgHy 8/nID3Ek6HRHTrLjGgHE/sS+H1clQSbnOGrotggQJcwr1ShHgiJrnibQ7RKA ziSmIkOMBNUc9t9y3COATzj3pRAeEtR/OptJ9YAAa61RQ3ZMJCjXq/fXvUMC PCTlstenIEGEnoA/f4m63EX23731Q4xO89bdGaJOmpIWOjJ2iOlfUXMEog68 fuTMYsch9ua2vuH+PgEcmyWtiioOsY63LCBCXO+GmkSQW9ohhguR8czaIYBW llj2qbeHmHyTq27UJgGO8Ip2kXgeYlRlO1tzqwRgeSW80mR9iF1/9eNb2jIB tncF2UOvHmLTFbrKjXMEGLMTUDXUOsTypN87XSbmq3WY7xan7CEmeGx3Xp2Y z0I9Xq8hzkMMhKuowr8TIKaeOzmZ9BC7Wb8jp0+sh00Kx7TMzwPslMzhdQpi /QxZ2WkIjQdYd7XB2f1yApz0Zz1aWniAXdYVY7Eg1p/WiumJVvABRunzyOhB DAFW+xnekz89wHKfkgzSvCHA0Dn6ilbzA6woX8eU5zkBso/Q7F9VO8AybLdK vB8SICKGSoRH/AATXg+u679FgGe0lGdHmA4wFatV+bjLBNBdIA15OLOPfWsQ GHc+RgClOyS5cn37mEevrkeQIAH4ug66/9btYynZjBKMjARYyP/H4fVhH/vi pxrpOL8M/cK7amee72N8ND5dl38sQ234timVwz5WgzugTWxahtfOGynhOvuY mn93alLSMsipEuQ+re1hNm4yjSq6y2At7+tbNbKHCX+MTp1QXIZkKea+rpY9 bDFYZW6NZxnYuI+7b8bvYTcpp9XOTS/B1pZjwwWdPaxERfvyF7clUFg5YL8j v4d5W3//mntrCWxnw6ydePYwW+pniuSaSzD8I58+dvEfRmgP9P53sAj4quXr 8+//YSQ2IpxaPouwV+STdeDzD0Np5FzFdxbhRDbTP7ZH/7AVQYdLiRqLkBUn n3Lq9D/s8UWUN7q+AG88HedfT+9iBb5vvijfXwCT08s+x1V3MT7j3iUL6XmI OOHz9azILnZ3pi1v+WAOOo4xSZjQ7WKVufwydANzoCUk3+Y3uoO5eMRJrfjO gfihA3tf4A6mfhislNo7C8toKfPp921Mm/MW75jZHwjQWeqt8tjCWO8FZR2c nAL8xUUDlftbWFGXqxkD5RSQ6C105+ttYYyjZtI/eifB6/pcZ5rYFvYG3lIV PJwEN+vp1jedm1iS3WqLV8QE2ASPoHsim9jUfVv3jJExuNLZVUjbuo71pJwK pU0fgle9ncdfFK9jVEUJZRIKQ9Da35F/kLCOGeZaJJHW/oRzI225a0/WMa1K ixjqbz9Aa7kpa4R/HVtpPMbrcjAICiz1KUWP1zCXL3RG0sT5y2mcH36LexXz /v3yP/3YFiiWCq0+R76KKdNWBoxUNIPhzsMpRcJfbO7zR23dwSZ4lSR6kq7l L6Z4nJLzC1sjHMy+/13t9hc7erxe7M4rBPE1T2gzLf9ifMJ3VKkMMTgZpq8c qf8XM+uUljsSWgfOyjRBdlJ/MevMrxJLJNUw4+0pLzC4gt3lbDbqny+GAEMT Exr8CuaVcqqaUrIIRMRP+K/nrWBs+WLJWvX5YNq6PND5cgXTJ3GWlc3IhK24 jsPKJyvYfb7qoEXedHjvkCXz6e4KVrKhrxH5JgW62Sy9vU+sYM+Ks99pz0WA 3bRW5iPRFewgrLX0UkoQ0FTyf73OuILdenzY8+uXM+hy/t0IWCVgAgOVGgus 9+FldfalO+0EjCZif3940x+QuVWiykcC9sA4LDbifTjsUgj9ZXhGwNaNX+4m 50WDo8G7mDoZAna0TwZlEj5C1rru4gdSAvZFeoOc4JkBE7EUOMefy9gE1cPL 3DTZcGPK/Y9QyDI27z/s++9tIcB/Zqp+s0tYev2fnuKMCmBJO9qvnbmIbc0/ coqbwUPxZhNzq8Q8dtbG9eDVs14Iy/6I19qZw4ZM5G+krfWCnZmva1nXHGYp bnUpzv4rSDSf/PXRbQ5LvSc5JWTWB1EfcjK8W2cx823GjLvQD89U3p1Wtv+D DW7/inDa+Q7aznfskkqmsPSJBGUb3G8QklIX4gyewjw3lmSNi3/Dv5+cX0Pv TGEJ0soc66xjUHqmR/U/yimsLc225tB/DKRYtcmMb05iomnVRoOW40BXeCSW 9t849uuUSvkznkn49Gv6zdyLUWx+2V964OoMDHlxJScqj2I1xl31xX4zwCR0 odBoYgTTO/Mm93z+DLhZZPVVwQgWUWq49ZrmD5yftuV+tfsLU72ru+Nc9Qdm lwkpsk4/MYpzbEop9HMgEC5SPCr0E3M4jsmbqMyBoaLRl4iuH9h+96uZkjtz UOlSPL0r+wOrfmL/yyh3DkK2n8p2TA9ilx23TlFfmAdZst0Su9v9WLxJGu31 RwtglibbJEzXj8lfCm+pC12ACJ3bg98qv2HnZagnKvIWYDewdvsU1zdsCKHa 2ysL0EHve5rh61csiPfurbNOi0CSV6CPfL9ipefsz/C8XQQV/THzp/JfsefO X/pd8xYhIfyM/3BoL1ak/bG9eXYRfsjShN16040JTQyzpRHPS5zDo8KG+S6M JVPLOuXpEmQVtPfJXOzCRHrttYTeLsF/Km+4d8k6sSTr5vho/BLwabGlxnm0 YRSyNC+txZfB38/lC9lgK2agc99aT2MZFvD907bKrRjn9jmTPEPiPLgQLXtq uRn7OR210u+5DHeNBEp/3W/EZK6GXsnp+D+fbai7Nn7BhOre/5gZWQavqB6M SfILdk9G5W4cYRkSfvl3nJlpwBy+hLlasxJAzueO0a/zDVhYlPwnb1EC1Iio fn+aibCvz3Up6RQJUNrR12TwtR7Tywio9NUnQD9L4Ff/iDps7oxc88M7RN64 rj5Sdq0Wm/3p/x/+EXHejSWv8w9WYRrcj527/AlgJHmNxCC6ErtZPBvhFUYA J1sqBn+TCizszV+mhFgCFKzbi88OlWLHuTv2ZfIJ0K0ucpw/oQRbKnZwiCby 2bLPNw39u8UY04SpkgtxvjM2Bp5/LlSEeU+sD9S2EsCE7Wm6DVaAjS5zzrgQ eSA6Yaim+0weJi3CvxFN5IVBqTPfVBqzsXvMhFhpIk9wFGXOx53PwjBVDidJ Im9cO8VERtr2CatkLeAOI/JIRNNT3oeX07An/96esCTySq/BL4WurhRsvF3T JZXIM0KlAeHWKQmYidyuz2Ui78S3GmJKn6Kxgop+egsiD/GMCC4ffI7AevCf v47+I8DRyQH1qLuhGPXK8TctRJ6SYnCKln/4HCtxPzzkJfKWX790P/8XB2xc Lm5lgKjlmEdsKY8Zg50mEdSIevCvfzLLtgecyNj0DiHqFYMjq4+dA0HWKRz5 EXnPM/J8u51KOCRFlHSOEfnswOe/+OTjHyAxcez5ZyIv+tnm2n+TjQNR7tzG ISJPkt/4fZpaKhlc3jX6PF0nwBeRkKBElo8w8d92ktsKAV5EiTmphaWDePIp 3vEFApxnqDX5Sp8J5o9zZ0pmCEDtf/2MXchneL0UQ0kYI/La1rIMJXUurN0N +C9iiACvHILZkl/kQ/hnqctJ3wiQ8TfcW+B5Iah7PAtm6yTy6ENZ6/KDYhiO MIlRqSHARTF304DTpbDeLZY6UUQA6ZEv+oZeZaCeLO6/k0mA+at31eZ3KuBo ZYCLZQSR9xmzj1acrIJ/dcFTpYEEyGndFH7hXg3bxewEp2cEsNcKpxHaqAVD 2eROKQsC6O0M780r10MTbk5W9CoB5Etl/lY4Y4D29dQDzxJ59P34ovQ2AgGd uop3EgSoovMcwLt+gcYXBcmVv5ch5RjntwKxRjDVfkBwI/5fgYYFvQk9jdCb RGEQQrzvGEdNdrjJNIPak8D23FfLsCJ6BS870golNjkSZEeX4bvODMb9qg2M vTiVnrIuQ/1DvzoKtXZ4WuUshdtagtC80srR8A5QeKavPoeWQEpdsCBCpxuu 4Dw7Y68sAcOdilzfv93QNoRPWz+2BGs+Rtn2ST1gRXmOsohpCSwm8FfFvXqB LKOr7mr3IshLb+ntD3yFekaqqVvnF6GtxFynKKQfhPv7V0P5FkCzSe7LkbF+ oCZ9H/R2dR4KB3fOJKkOwOy3Skra9nmI2omE0MkBkCCPL73vPg9W0Krx4PR3 SDvcnJ7omIPDdgVF3r8/4WYpW6zL3Vk4MUEq9NzkN9jSOkpfPD4N8tU3/yp8 /g1ZD/Vvr+xNgVREXuPYzm+wui1tcbV9CuhTc0+k6I3BR/uqj7pWU7BnaDJ8 uDwGFyemp059mISRwgIZTHECyqvOH8tcHIdkJ7PG0xVTwJksqaG3NwwJd2jz P/yeAlaD/XMzr4ch5mJp9BL1NIQFPgt+IDgM4SJ0dokm09DnovJUUusX+PWW se7vTIOUo8lRNt+fcE+B0bxW8w/wufflDpIOgvhKzY4Gfg4Go++c+n6xG7y6 zr5YX5qDc++TAorNu2Awu4Mpn3ceVOwNIszdO+HVg1/iok/mwdjnprbR53ZY GdrVoxZZANfCdC9fnhaob1L/+M17EUI9no+pHUXAk9Yg9+bzImg8SqiXzKgH Z79LFecHFqExCFfkv10LkqdudVYR7/G7b08YO3yqgteFHpvJxHv7mUfMocmi JTDzhuT5Lepl+OjVDNLBRYCzC6ZnV16GkJYfeVGTBbAmGSMSSOy7+pp4JfnE z2AaX6Frr048d01POY3Wx0GpBwxIPiCAhPGfk4L498B0o8X8dzgBqKCOuSPj DdgoG8zH1BKgQ1OovWf6OTSwfH96dZYAp/z+mqZQPQJG94JDSroVaJ817zzJ +QCqH6w1TgivgGrDz9HyfD94aKz2CjuxAk121OZqu6HAcdbTIOHyCvBLpdrU REZCgyLG8d+9FWi5J0vKzB8LjiLkQ9fdV0DlDXPVQkQStO6/smJOW4HXlHOz nZ/TwbMy7j//XWL84+m4E3QFIJ05qmXO8hdCzO7WzzYXQv8HMQpNqb+w9aXK L5SiGORdssM2jP6CWkGjpZxLKUwcq06z+fwXNlxWIjYFquBS2s8ufZNVqFuJ 9pPoRrDyMt+6yWEVSJ/RRKReaoAYm4DDUwGr8NOXonsG3wCzx44pyuSvgjVr bAzKx0Nwpd97coo1GJ5zjnO3awSF+OvHnvGuAbgO3fzX3wg/vGWbV+TX4NbF 3F9qmk0gfbZ/a+TWGrRLGxUOkDdDa9eR25UFa5CuSK33wr0FnAr31uSb1sB6 Hh3P624Bnsivrz8NrQFDsVxLoHgr2Jh41kdQrsPBffqTus2twHLK8CYt/zr8 DPSxV+Zog0pByRVfhXXIfvCGvtO8DWgmu0Udbq/DnFenL/1KGxQ2pVVPOq3D ZFJaTLFKO5hkeVwzDVyHzS1cGq17O2Q5iL28ULQOwedfX21bbwdDwy3B+uZ1 KI+8Kqqs0AHbSp3lKsPr8Jl+7ITBow64sO06K0q9AT6+ZPWp/R2wPKT7PEZg A2J7JGGIqhOi6oT5mJU24BvTX5E21U6Y8W+7vHdnAzI1xW70vO2EsAdJU87O GxAS0R01V9kJqhddvOeCNkBu7CEb+t0JgYyCBYPFG3CG4PwlS6oL5Ff+XtBr 3YAEpYcN9eeJ/19f89iXkQ3Q4t99FWPVBT5l8f9prG3Am6ysCyf9ukAqxomt iGYTnOJeqKfEdkH3s3M5R4Q2gWKYsq6vsAvc7vLpJClvAmvY0MW+pi4QwhGG OS5tglppmUPqjy5oFmt0DTXbhDPBAoPac13gSBnLRPZ0EzbclM5XbXUB16xD pkfIJvxsC4inpuiG+nZtHCFpEyxIezoVmLrBOo/754PSTcBNds6pcXUDU/ji k+G2TXiM2+ITEeiGcucGumu/NyHOTT91UbgbzK5HpbWtb8JKoeBgimg3UJ20 08TRbQH1Yp0sjqjz+XAD5cJbMINuSncLdcONfQ7HYye2QOJf2mN9vm44+D1H la67BXCQXdnI3g0Z+PpkPostOHPg36dC3w36nyJPvnPdggNmxrSPJN2wGWTz lTp0C7g4i6TY1rsgyfa0rU/KFogG8zgFTXfBOT028o2yLbh7bDaTaqALwu7R /t1p24KgtBCD8S9d8MOV5PfByBYobQbcYyrqAtFXW53kq1ugpS7t9C6hC2yT lqtpqLbB9PgHQcfALigpns5i5NuGP4z+/FmOXbDXPBzFJr8NqdE0R89eJ8Yn tDsL3NiG5xHL3TmCXfCdHG8harsNOWp+Cs8PO0GEp0pfyofoX5p8uoXYHyW4 TFmFjG0IOVsVWRbfCT/eBUyc3dyGud+9zW9JO0E041nvRbod4PV4W272vQNs q5/U6wntwAem45IopwP2Jszjbp7fgXKxArMrhh0gqqJ51S5qB55S8u7ThrSD 7UVlnFP2DjgvuZ1bvNYOpXdk5V3rd+B8zbF/LwXb4fxLHjrfmR2w6KvfXM1t A9vB9YYI1V0oWU29pllHnPPzCwXRurtgI7k7ZunTCnsHE4kJZrtQ+cfd2kar FcKOfP0vI3AXevh52iRqWqDEI0+xenAXHiRcyF/LbIY9PuvUcbd/0H2tdDbw WiO8Nf/up1CxByOvvmWRKNZD4KImzHTuwSSz/qdqpzrw+e/jfvzEHpzdzLO2 LqgFx0iHZ9RM+3BI5qvSKVMD+i3kT0et9kH1vsAVc45KYDqu8PA12wEEMGgm U3QVAVXtB0lt6QOgJCSO+JAVwcHFf5Nbpw/g90yMaqdaISxbNlvcf3QARx5W 3pPXyYPuqDumGugAkkOovL4vZUCzOJ5nZeAAAr+xXNgx+QT1hUe+f1o4AP3I vOnYxjTIb1+9xsp9CAFCt6EhMQXCDoL1Zh0OoSMrXouy7D0Ehi7TJwUcgub6 yw+LMe/Ah8e4/VrsIfwe7/YaPXgNbp+qgmkLiHZuqzCfr4HgqCR8AWs8BCWz qjyBbD+wxl5Qug4dwtbtEzmqbK5gdmX+i+zKIfxnY/LRqeYe5CweObNCRoJz rCY9Q6qjC0dKTEU6GElwympWGw8wR0j7783hJx4SnN/JRXmxh54gjEOjfuIk uJG5j300BQHA3SWZqKpOgtPT+ivZFPoWqP+s8H60IsF9ky7IgEfxEJAnvuP1 mAT3JTcVL3wuCQ5dbvy4+YwE51R/sbD2TQpskdRGMYaT4BQ35ybcb6fBH74g 9v9qSHAXTsk/Uu7LghZ9QUZDNlLchdiuN/1vioBDfpzLWYAUd0lv7FapcDFY MH4SeS9FitPwiv/8q6AYdjvkVH5okOKatGuOz7SXgNwlzdsW90lx4gOXzdQW ysBDmuSBvwMpLoPRay3JsRyaqBsd091Jca52txkFVsrBrPmy/2woKe6nLaU2 bqkCws/e/uxUSorzSFxVi+upgmEx4ZKIelLcW+e4CK6z1SBDNllb2kqKCybN 6fAprQY8su3dHibFlSvIvCd5VwMbp59t+VGS4SQe9Z4zUqgDbUEt0jRmMhzP B1Wbkog6CNsjpW/iJcM9/K75ZGy1DqRrQoRo5clwRqG37rzJrQfTk7Hn3t0g w0Vv/Sq3J0OQwX3XoMSCDJfAZWuUIItgbVPk1oAtGe6Po/CNT0YIXpdl2fP6 kuHsA9CyVgKCn+/t3U6FkOHWxllMujAEUk8V/O5GkuF22a4OKkwgwJQqI1Mz yXBWHZ7+LuINwMDmlfiliAzHe6qF00i7AUz+QuZ0DRnuzGZDMIlFA6wWtFTL 9JLh5mlZkvqiG0DrbWjj5SEynKeSwYn1ogYIdTTodpgiw9Heooqabm8AiWPf x4u2yXBvztNbqu40gBND/MI3MnJcD9Nvww9MeKhbMNvYYCDHxTuJsHwRwwNd h9ghNzc5boej6w12Ag83smdoNETJcWVGXm2vLuDhY0g2252j5Lhf9Yb9EiZ4 INg4CvicIMc1T872vnmIB82LSlIpQI7j2tdfa3Il8siRzeP4S+Q4+pE/fl3+ eOinqlafukaOc/tj0ZsehgfRGe+zVGbkuAHZxEtXYvHg2HRGT9qGHEcbk/qg 8SMeqtMpb+o6k+MUTP3yGXPwQP2izcLeixx3xfAsJl2MB+P7b2zDAslxctkD Z7kq8ZCibfS0MJwcZ529uD1Yi4clUU6fvjhynMBbQo4dwsNJz9QnDenkuEt7 PGsdeDz49x97UJhPjuMuv5jK2IiHzmPVJsmV5LjXf2QzFImaK+j8lTA8OQ4v 7U6i/gUPFmN94N1JjuvYGayTaMBDtrq5sv0gOS4osGN3ow4P6xELUrfHyHFn yiIm8qrwoLXozqc7T46rf05foFdKzMc5Cib1dXJcbEZs1mAeHvqSwkmlD8hx fVE0UroZeBDYFtjgoqHAXWxzeP05EQ/WRp9nKdkocGdN6Aw2I/FQmH1ieJ2f Ale4eZSgGIKHXXJ8z6QkBc7sNOPeXW88vC0fKm9Qp8DVzA2OvLHEwxDzw+zC sxS4mOx8zg/X8CDxaC0xWY8Cl7Mw5ht5Fg+V/Awvve9R4J5s8el4i+CBzDXG w96OAsfOe8LOnhEPV7ol7G+7UuCGc1+amRL7Z8zv9DX1EArc/r+MXo3uBpAd ajsvHUmBo0wX9VesaICnyjc0uBMpcMznflodT24AmhlH0Y1CChz/DbfPl+wb QPFyCqHwBwXuP7/7yur/EHily00mT1DgdqJnBLKHETTvVw6GLVLg/nZSaJ6o Q2Ba+LXOnoQSRw/CT9I9Efhzkr+WlqbEZS1Ql1oOY9Dp+NaXW4kSN3ol4o3X Owy4WvldqDQpcZKLZLCpg0H2MxXTKQNKXKx661WRzHr49vuBdIo7JU59iaC3 YVIHQuqr/G+fU+K80JBTCWkd2ET4MPuEUuIc30cHkn6uhT2d6M3byZQ4/Xip Puu1GpDIbm3kbqHEbVKniNF5VIPr06P33nJR4W7/vnrK/3wFcNERam+IUuHG BfHh/2vpOuOpcL84ZWVf3Mu9XFeyKpWKEuUcUmkoWRlpoMykkiIrs2TvSPa8 uK69ItGg+EWSFUoRlVHKSPrfF/+X5/M55/s943mec86rR7G7CmrSyiSklbmQ 8emAW/LpKlhp3/O6SJsL3+aNSwu4VIL/ej1od+bCuXRtskJgOUR02lI5W7jQ 8Kq+ZDhrn1CxVfJ41cGFazNLzVU4SqBr6WtPbB8X7i5+2py0UgRi8tfCZKe5 cKVjRY5zqhCSb93+A2Ru1FqgXD9fmwu5Sg/7PS9z48PG/fap1x+AXuN5NR1P bqS0vx20MkqGSSP56HVB3OiaIFbCvT0JlH2L9JKSuZEgKDVZ9C0WOsVcs8/m cOP769yPf7RHw+XCnWyKpdyozH85+ZJRJJS9rauufMqNK8mWpfe7g8HYyUfU +zU3unwjbXkd5w+/2HQu6w5y4+Ute2kGZV6QkMD5km+cGzsPrrn8BtxAXblN 4c0sN5pbT9xxy7GDgeYw/+Q/3Bif1uf08PRRuHXKYPg8Fw/2DGveONhjBFLf RTU2EnjQua+M+2SqIzT6v4ufleTBfsW9htnp1+GcRMpctQIPToToXvSY8gb2 kjP6vttZ9q5VoZ3EANDt/8wheIgH64QEjd7q3YP2bfPXNl/lQRH2bQ2B1fHw bkjY8OILHlyUmexipmfCkXsX+ty6efBRh0Bbi18WNOypOxMwxIP8ni83cZzN hvQEG6f0WR4MVl4NHyXmgr1BVeCAxDrcfv5I0BOnAlhusaw+7rAOd5t6VfiW MMD5auk+q2vrcKT831nyrlIYluFsdfJeh5MrrxjlsaXwxLvk9Z3odeimEPNN /CgT7u1mn3pSuw77BhpuyRSWgRQ9V2o3Ly9Od6skhspXQoT5n8wDYrwYXeEV eIl1nth4DDYaS/MirUur4nVlJXyyXVK7soMXvx+qWcOHVVAsfewE3YIXXaWX vixrV4NMR/rbWlteLL/JaA/1qYaYW78sX7jwInPj1ZcBtdXg3vfQ/rM/Lwpt W3Mrb1MNaMXM3abReVHkirXjjaUaKMWDPFsrefFzUIEDYWMtyM4kR+xt4kVL 0pq2tadqgeuYbor5G17sJaWqfS2uhZvLSevt3/PiZYHFI+97a2Eq/3ue+wQv thamv16/Wgv/cSZWxP7hRTvZgNOph+pAp+KrRiYnH34KmdPsdqiDCmtsLhXi Q/8OopZJaB0oEOIPNZH58JfIeJR8QR0kNU12dGzgQ+KeG146z+qA10XLeGgL H2rjgjX9Qx14ScUOTO3mQw/l3Mdn/9TBOY+9E9zHWPqfKo0LWPPoJtsXb6dN +fBF0Mr8J6iHn8eNW9+e50O3un4zaeN6Vv1Hyxqc+dBT58Ntk4v1ECznnJF1 gw/H6rTiQ93rwUBoMTLUnw9f6qYMPgqsB/JygM+VcD6UH2Rrnomqh4+fhC6Z JfGhkEV9j0xKPRT9l2IJWXy4pLG77WRWPbjXKR5RKOFD03XD1wIK6gFyytUF avnQLnb2VVVxPfBEgeJ8Cx+ODpyZ+caoh27Pl8TBTj6MbUuVUCythwcXTnE8 6efDqWLP/Isl9XDRYOxH/ic+ZAZ8kykurAcVzcsfImf48ILAmPxKdj0syf/5 z32ZD5OfiHqbpNbDE+GQRitOfhRMahWoj62HsD8ixbrC/LgvN2506516MB1/ mLJZkh/1y3Vo5Z71INO1KVREgR9tcq6IHXGqh6n6qptLKvwY8tFx82/zeijP 1bEb1eRHi6zhmdqD9eAV3Wny/CA/imtlCiRtr4eDXha6JSf5Ue+ys0EspR6E 7cZ3xJ/mR7bcyKwS9nroP3l1vZcdP6J5GeH7eB04K4auHvbmx6b8mxyj9DrY JUL6rnKHH8MML6mn3KuDfysZg+Kx/Lhu5OLnYNZ5iemurfmcz4/OHepGq7Q6 OP3oQN6rcn7kfTXCjF6sBfn8rvjyRn5szvZutWXNlzXek1dv9/CjOnzyGrhR C/7218/bj7DwJA5mBx2uhaNG7AYnpvixmk3C/za5FoaVyFuobAL4uWV7lHdF DeSL5khy8AlgwfPjlBDfGriyqsL7lSiAcjaPBeb1aoCjR2+iZrMA7g1y/sf3 rho2+d7MMD4lgD/j3CRbR6tg3oEjStNaAJNeHNW7mVYFj4yjfGQvCSB5w9a5 Wlb/MNiUbznrL4DGvwPcV7orwf3tO2JYiQCqEPJUZBkV0LJ5d2gLpyBGVpoe NNhcBme2GWfNCQkiZ5iOne0gExZ3XGmgUQSx43A3OSyUCcoa9OlbWwWx5hn/ eeXxUojToxmpnhJEz7mCuRQFBly8wC2Vky+IHoNj4hBXAGwOcmpvygSxm6fK cedQPiQ7ax9nfySIP2rsnXk25EPntVt+Vl2C2BfL1h5YnAu7/Wc+EZcF0aC2 hF2yOgt40t4VBx8VwhANw1/jx1MgM3P+WYWJEMprH6eZPLsPe3MJox/PCuGl shPx/PuSwLX4qAi4CeEX/fEftUrx0F/f5L7wQAh/9e7j9VkIB7emoUj5PCF8 ZbBsYjAaCoItS/lGTCF89of/4762ENBp3znIeCqET06uNdvy4DYMdRjMv/9P CDO9GB4yAt7g3nVJgH9ACBurbbPTx9xB+G2ogsYnIYzSTnLUbHCFwr48sJ8W wpWorWcztl6AA0OtZgmLQnhS/r+Jfz0nYXZmVt2aXRjZBxNkPO5rwKMrvgc8 uITx+JPEkdOiZyH0p4BhFJ8wCjWNGWjXOMGp6w/O5AkLIylbg5s0cw3kFjY5 NRKFkYtrfsb8rwc0Lh8K/EYTRt6RWxu2cAbAPa/eqLXywlhW+0xjG0cwmK3a plI2CWMqT/JpGba78IPdv0pPlcVXsz6OMh0BCusavmTrCWPRoMynp8fj4cfz rY6Z+sI4EbFR37ImARqDM76mGQqjmoVuRQctCUw5QqaTT7NkchhtaSIZgv6d nI9yFcaj+5tH07ekw6dfE/+8koTxistaXs8zOVBaYXHbM1UYa6uL7+f/zQGv ax1rbmYK46+h7QIqKbkgNlfGea1IGIe/zEwrduXB/m/efA6PhZFD76xtr2Ih ZH4UFTf5Ioxz8nGNTh4l4JIRnGT4XRjNG646uy+XgMa5JbLBD2FUOrn+wXkP BnS/H5Y6uiKMZ1/2sZ9TLwX2/gJZbWECeqs4b/eQZcKrRKlsLSIBGaLOrzZZ MCHJNFJ+L4WAqSFH1lRGMUGlx01ptxwBNwjWt+stM+Hcf7B1izoBM9fMtik1 lYFyRBlj0z4CPkhtrjD/XgaLx+S3K+kQUH39jv0GlHKIbOdV3XCMgLFyGyDY tRws7npXypwkIPHnxLvm++WgoDe7S9qUgIIFS471zeXQ+PTtHvI5An4/ZV/6 QaACQgP16kkXCKhY/UqZb0cFmO6v3yvmSMCdT/J3fzOugOnH6SDkxvKvT8Ph v4QKqPMVbeb3IKBwt+dyZ2UFBGsF6/D6ELBj0GzG700FUBucDnDeIeBKI616 gbcSxMjLyy7hBJwdulTUr1AJ/O53SvtiCPi6u991q3YlcLwhXdRJImD0+8vr fplXwsq2HMmiVAIejDZMVL5SCfNhO7uIWQRMlKw/1RNcCV8nm4N98wlYkrqQ 9TW5Ej4eNNg7WUxAm4d2c1eKK2Ega3jOsJyAognuXRcbK6Gb7VJeQw0BpeLj 5to6KqHN6s9phUYCdnFtkUwZrITHdXdFoloIqBKTsnNgohJqxCVeLL0gIAeF tjfkRyWUuuV623QS0Hq4/WTmn0rI61Ld2fGGgObN14s3r62Ch1tbvuzqJ+Bw aV7WhnVVkHDv5MP0YVY+1YOyQwWqIOLLiBHvJwLmatRqnheugqADLuvcJgm4 efC0cD6hCrwyVxrfTxMwPfr9p7Ms2e1fqNuheVZ9rnxIuCtUBc6nyZuYSwRc yN1IU+CvApvavBHKPwLayl2L3sVdBRakXfGBHCKoE2Mi1cBWBYbXWo9MrxPB 8Osy62oWK+HIa0M2MyER/J1UVb95phK0t3yobBYTwcUauzKJT5WgHnrZaTNF BH+4vwjye1cJKhN/ZeJpIpiecOeLbVslKOmG9a7KiWDu3UN5z2srgZZBCbPf JILzx+zyC/MrQdBy94Kmmgjmea29t3S7ErhqnhblaIig9WabGgfnSvgrZmwt hCI4ciGwydqkEr51unZ8PCKCSUlDHEuyrPlv8z//YwYi+PHXVpMU7koYvBOu XmUigs9VubNeT1VAu05h1t1zIsg+O2rzr6gCnqSpm/+8IIKx9kL5q/cqoHbl maCVkwjGbEu798ChAvKrxjxU3EXwferE68cyFRCyiWrw7p4I2syPJfH4loNP CJ1TO1oEXbVCPc2NysH90576wgQRjOL9eNNWoRwuPjRV8MkQwRrTOumaF2Wg KxK1Ilctgq3xitVPV5mw97J0WUSDCFZlBsaatjFh56siu8VmETwm7rDjSQwT ZIPbul++EsE9LTRXTdb9Z1teU3D1owhOz0s9VVMthXNj/T99J0TwbHc+I2qe AY9flWqFfxNBkTAlxQUfBvilnenJ+y2Cnb6BSvkRJfBPt+7fEK8oLpBiRP2S i2A18orpoZ2iKGd9N+2GUz6c8dDLMFYXxd6sUzbpI3nQaE37dn6fKOb76HPG GeaBj1rHba9DothtkfGQTS0X/g4oFTMtRdEwYc+mn9+yYEV+dK1UoCiWTNbr cdk8hNNC1cc33hVFX7LBJb8tqdCwGH5/V4QoRun/lX38OwW8XmpuO5kkiomF M1bDQffhj2uiRXCRKFoxTwbWJcWBhYVLTixTFF+dOGkSZBkLdfsPzKZXiaKy t3BsGTUGPEk/g+ofi+J8guYyp3YkLNcfZ872iOJ2iRGv/bpBYJEjv/K3n4Vf p7rnWKs/1EWsHOQbYfF7/Ggz0vUDj/OFQ/KToui39GHy91136DtyW3HntCjK L/U1d9+7AuqqZlfxpyjqOBSxPac6QBJ12yP9RVHMO64z3q9/Bha5uHgs/4qi SEuMxrNOXTCbHTK0XyOGidK3hg5814Ga/vLU69xiWPnp/TDnUSuQaAn94s8v huf+emoeCbWHm0Xnd0YRxFDsdHZhiOoV6ItX90kliSFaHnFOlXEHdV+htkJJ MYzz6uaUXHcLFk4+OvNUXgxjKvp5CHb+4N/PeK+1WQz313tOLPEEgeD5zNM1 KmK4idLOLZYfAgquIRZ0TTFcDtGOXv8+DIwjTppGn2ThX4peeBURC6Xtn/Wt vMVwb1+Lmpt9Kuw17HvV6y+G7nrM9eeSHsLz/vajBnfE8NjgF7/Ap2kw/IVx eH+sGF5lX52L4csAfm7PAxsLxPCMBue67iNZ4LBfcN+vHjE0iP54MulGHsy3 szW4DIjhvrqp9MH5PPAz/KnxZUQMx369IG50zYek833qg1Ni6N1zdPHJuQJ4 5pup2sxGRD0L7a20jXQw5I4v1+Ai4mUVQaWReDq8jwjZUcFHxKJGEz8XtiKY T3VWySMRUYmXm/dDZxHINuxSDlcmou9fi8N2BiVQsn8jnWsHEY+PL3f/KCyB PS8lN/ntJuI9ilwldS0DDAbYlK7pEFHhg/TA3iIGDJ3/mfvtEBHTI8X2Kv5l gN3kZ/mL+kQ8pVuW3ClfCj6L7RvMzYioXWImHu5aCrx+jzK7rYhIZNyz5o8r hXju0vXHbIhYXM8nfLiqFIpI8TRwIWKrntPWn79LQf1hyMOaayz74vCNVkQm tMp7Und4EDF+kJ7ivYMJg6pnJeUDiZi0LL92yJ4JF5fUhILuEtEob/VO9m0m zD7iX/s5gohnFL9obrrPBE//sd+6cUSkX3UTcGYwgeNQ3VT2fSKWh3zndGhl QgRf9DBHGhHzj53WleljAvm1XbdtNhEPfwxfjZpiwlZzYp0cg5WvPWbbHvCV QQ31W3FgBRFHwj0D1ChloPPxScanWiJ+z7gqGKxYBq9y78frNhFx74GVG+E7 y+CUk+vd7FYiho0l+BzVKoOP2w55c7QTcWGN30LToTJwnqdesf2PiO57ijqn TpTB75p529YeIgYlN3K9Mi0DP++XZnIDrHo/XK2xOV0GvDqZxwJHiHgp4Bix 7FwZxHN54KdPRDTbImZdbVMGMi9PqOpOEXHaV2vl2oUyKIxUUMqeIeITjfWn vrBkVeO/khy/WHgml1bEWHKjRI+Q7TIRv7yXDFu2LgO994VrW/8R8aWVecP9 s2XwJuP2wgZOEt5ouWz+04K1P1w0+xrAS0LsLTnAY1IGXzZtGxkTImGvqpFH v34ZXJ3hfLOfSELqB6c19gfKYKV86FkWhYTdlo0clZplEHyzvG6tDAkvGhbU NquUAWFfaImNPAkjP3C6RsqVwQP285ktm0h48zJ3GE28DBSe7U7YoELCrzRK yDWeMigNFQwNUCNhzeemmbBFJmic+Ow9pkHC6Z3ODpcmmHCiL+ZC1gESKp3y DAptZsLAAwfztUdJuPJSpre9iAm251HfxoCEzSsccf0JTLg59V11gyUJB3Wn YxztmLCG0aoUcI6E+/RcNszpMyH8WorU2AUScl1+2nR8JxMyV/Q4slxJOLWO LSZpuRReCma/kQ1mxX9Ykr34VimYvvF87n+PhOmxqi+3m5fCaOLJ+o9RJJR9 IOieqVYK8zL/MjNTSGjBX30ht5cB0jstrsoySdiQ7jYeFVcC+QsqF/2rSHj5 tvbIWiiBHQ3cFh/rSRj2/fH62xPFcOhApXbmMxL+mzZQq9pRDK6nhAmyQyTk 1zkj86aMDtb525LlP5Cwonyj6hYTOpgsHd+wcZyE4jHPSJy/C0EjJVxNZZaE Hz9E0g/tLATOEV4LLQ5xPF7lSOt8wNrfLnJmWSiLo8/11G0d23MgrFpO+cx2 cTzcnlgl15QNvjy6led3ieO/Odl3dkezwbbQ/7k9iuNuDWf/znNZsG3631d3 Y3E0FuJMmfHNgNbry6qxXuJ40C9E/pJyClQ9Izcm3BbHbGMj59LNyVAgvudQ crA4al348Lh5432IqL1hnhEljg7nRhMiZBPB/O+8NyNbHN1WRPRjeWLh2HEx 7vIClr2y1woPWwxope2MqioRR9/3H4o7fkeBnPbVzEc14mh6+7wE79NwmA6c efbylTga0oK+f7YPgg9vBQ3+6xJHzZe96ScMAqBHYWt/d684VlbpXbPcfRtq Xzh/7R8VxxS98eyqdZ5QRA5ze/9ZHH+JiTjLvLsODx3pf0enWP6aHnralX0F AvmnhL7Mi2PX5HQHJdAa3K3W3f+6JI5xmDhwXs8YHEqUZGdWxdEmgToee0kZ Tv87RP+xVgLlrmYRmPpH4LiBnepvHgkczDvEhj1WoJ0R/GhJQAJP+L58/GSv Haj+yDn4V0QCFfJqHr8NvQzkuE9mHFQJ9A5eeF/AdxPUA2gkN1kJVOs1vqUQ 4AWmVy3ejClKoOh6lTSbW34QY/Bav2WHBCZ56SY9+BII/AINOv56Epj5fDR7 Y044rAbFKrO5SWBH/I2TdJ1EkLreOXnZQwKTtUu7yHpJoGm7Lm/ERwJbOV+Z 2x69Dzd1fNc33ZVAh1ur5YeOpsDcqiPJJ42lX3z2isPWNPh0Q4dtpV0C689u T/6yJwvW2Hk/cnotgUTbeb/UvCyQMa3xHHwrgTxfZ9Ifi2aDlerWX3WjEhjz 6Hqo2kQ29M6Spzx+S+CoveaClGcuzI8Y503+kcDVX+9aggZyQfS/SFtzdjKe PicgqrQnDwyKOUfU+ck4ORV3mn0uD9oc5t4srCejRUbWAbsjBfDFTDnaTpGM HVt8P/xJKQAuPbvj75TJmPY0bCz1awHoKLx/UbWbjBWX4x7/DiyEc0SJYIV9 ZAxtDD6W3VkIvhxG+xN0yOj8XD7jGIkODR9fPLquT0a1vrZ8rzQ6DHStvfXZ kIyzJ820VkbpsPhYS93EjIybvSnWF2WKQC2tokzVhoxXLq999jWpCEos0/N+ 3iQjczKgycq1GFTfbVjm8iGj6/5zv4pSi6HeMO8YJYCMhiZOfsS2YnhxuGQO w8m495pp4yZKCZx4ul3XOIblj6xx9xvW+9CLlQl2iWQUDR/+G2FTAmO7GzQj Msg4xfzMVMspAcdyiMjIJWNujVisdEsJzG5tGa2gk1E8Wm+f2EgJ3Cg8uPNF KRk5N0QWEpdKYFW+PWiwkoxex0nz6wkMCMzQ75uuI6PCv62G6ooM4KN2bVrz mMVvdlzKTJMBMUnG3sSnLP4//G1++gyQEOv7T6mdjGcuyE0zrRjwMNJSdu9/ ZJRzccSvTgyQ5xtxO9FDxtHB9ljlmwwoCrZ+bt1PxrcSMHjdnwE71oyT3YfJ 6MjZqvQ8lAG13g7Od8fIODOpXywTzQBc+tb44AsZde7W1fjHM+CZmyuh9DsZ 6SbNtd8TGaA/+9Om5QcZm9s+7LNOYkCP042q3gUyvhg/MTeawACLiWWeqRUy pg4MP3SMZcAHax/Lv+wUHOmc3MYWwQD7YfYSYW4KRo5pFGUGM2DaPIhNjp+C aqdm9xh5M+D6Wx6j3QQKVgyfpYpeZcCKQVjOERIFbbYt1ozZMsD/ldCilSQF yx/JhD8zYQCPXuyRKzIs/DJx9Ue6DIhsIaUGylMwWarzett2BpAgeSZxEwXP mD+hfZdiwIM6qg59GwU5WvuUN3ExYMOujLhGVQoSMncw/b+XQCFTbqJrDwUd T60dXuwuger8zWGL+ykYnisXfCipBLTkGMN8hym4zi/1p9zNEmhN27GddpyC yzu8vm80LYHuhD29B8woqBqXnFHJXwJmIo+UzK0oGDggsE3nczGMhOMtZ2sK 3vUZmWZvKIZvgYdkYp0pyKYX2a9oWwzX2F5ezb1CQV98woxTK4blW8ef1rpT cPfobZIOZzFwXzNxHPWj4LFDl9ZeSmPNm+dtKrbEU9BS65KvSxMd8ofGubST WfFEHycdCaDDNjNHc+M0Vj7CIl4GHaDD3hNXVj0LKLjwrW7btqeFcGqfr96L RxTU8FQya2cWwNCvcaEnTygoWnz4W6JjAViXHH9X/5yCOR9+9i6tLwBnmvRF RhcF96nGzYaH5YM/+6OAhM8UFD88v93/ZB6UPF1utBWQxOdvt9RtTcsGVR/r 4DMikugOPxIK9mdD7a52fTNxSVyXOrQoMJEFrXn3h46ul0SBM7f+K9yUBf13 1Zd3qEniL5c+m6GcDOA47q7GbiWJwa5sj3nHHkAo1/DK8nlJTBV205oUfABC TQda5y9KIq9Rt6j1nhSgqBCNvrhKopOsr92p0PuwTaTC9b9ASdw/wB7USk0A i945emqRJI5uXHT4oBwBoxHm1xKZkhhGj6twtw2DC4eaNaKrWHwrW17PJoeC a01UW+BjSRR5VpvDzhkCwcnbJpx6JDGgcnVyZ4Yv8Bslllzol0SSmun5cg4v iOb7d/3ssCTq3opgVNrdhAdenRxGXySRufaZIm3LFVivtuvVse+SeGbyEOML zQlyv6fGHvwhiU0Mi+cG4zagnMtpiQuSeO6Ej+MLS3Ngnrkkq7Eiid9C7gVq Dx0A68pZajq7FA48bdN53L0DxPjdyFzcUnj3Z83VvJPG8NR6QcyZXwoHxzev 6ft5HtxrPYW7CVJ4WzQuY6DOARSFV/nUxaXQK2jLRH6jK/RdvM39UEoKZ6yN ZCxS3UBD7M6qg6IUpu0vPMJv6AVP2jIH7htK4ejDWRXVA+FwTUah998pFn4c 97sJaiTI3SjoumAlhX6VYS/HPKIgWK70xXZ7KbzUWEo6eDQGjvo+qmrzlsIH +T9enBmIhx7VvpilfCnUfdj0PvfBAwi6ZxlxtkQK9w6Z+O9ySoVdH4fvPi2X wpyOcReX3Q8hKfKzX3SjFPoIzDplvEgDq6kfLht7pFDFKOiI0cUMENR2d4zs Z8UnG/AtsCUDHicuXfg1LIXhIbnep2iZIHuAzap5Ugo9s17VPe/OhPE0gaPm /6Sw1Vm9SlUpGxJ/Rx1s4qCiWHvStg6PbNDTF9OR56Vic9XYmoG2bChcpuyZ E6PiLhe9sL0XcuCyiZLi3U1UTL3zJ/ThnVyQKaLLzmyj4oWUfnvDjlzoXrNN 2kSNig0SCmdMhPNAtVSNuB6pCO6nNdWj82CRd//aWhMqMsXZb3H55IPItGDc EwsqdsTNcSgz82Fz14Dcq7NUDHAR3dP0MR/OJF49OOJARYtQ23Q57QK44an1 7osLFV1/nRL9cakAoqx47X9co2Jhl1bphvsF0LIh8y6nDxV9G43Z6VOs+8zl QhEKoOKahVdPVoQL4ffkHrrEHSoeFFh8UahWCEqlXa82x1Ax7dbXQTHPQtCJ TbVSS6Sic7bRs477hWDp7jCt9YCKB/I6S4eqCyFiL7uwYS4V11ZusF6YLoR8 Wke6JZ2KvT1LfWw8dGhec3/7hVIqfro9zbCksfr3Z9snLpUs/acEdm41Osy/ UDG6WUfF+t3f2dYcpoNg0crY7SYqPt58Z/WoJR0UI1+43Wul4jp1R5tPTnTA q3Gc8W1UHNj8oLzdkw4WJucSHnZS8ZZ9XvhqCB3c1JUV899Q0T0jttA3lg7h kovVzD4qDnKMvddPpUPuaote/Xsq3nsZRnTIocPjD5H9rR+peH/Hb/MuOh36 Wy0dOydY/gxPdgSX0uFHnuKfd99Y+SwML7lbTgf+ez/vfZijYuwHU6OBCjrI uzRJff1NxabxlS0eLFnr5L3i+T9UfHbUsf0iaz8wUz2ltcomjfdNizqzSuhw RXzDf9xc0vhjcXRZpYAOocvTZwl80nhXY8NGoUw6ZL+vm6UIS+NXcXd9uE+H R4+Db8sRpTHgXfH1JxF06M0yFNlKkUZG76m2+/50mA2WztpNk8Yvr9PvPnOj A6/j1E5tOWnszNxDOHKBDhv0q1qPbJRGw3saPfLGrPdexd/EeKs0yn3nOGep TQdT0ePjVjul0Tdmg+U3ZTq4/ibfsFOXxi3uG4MGWPPX3f7P3Ff2SaOjaGSV 4r9CaEjz3hh4SBrzolf4J9oLodf/cF34MWnMMZE7Y1VSCDMXiEcTT0rje+ID Qc2oQpBVLnYutJTG54qms2onCkFTyONv+Tlp/Fn9RNBMuRCMf+hGPLogjWdX bl78yl0IITVDjNeXpXHchD/Nta4A0lPyccBNGj1UrirZRxdAnY9b15iHNJ7O 69AculgA33T5f/4OkEbd9b1HDwoUgGGX5i5qEsvf+IAVL7184NXka25IlUar DdN/bgjkQ3P2wNHTWdKo6ZclVfY6D1RuepxPKZHGuZ7o8kVWvxKkVYeRn0rj cvJPhj3mwrM7weK17dJ4rujXsV8LOeD9wyTT7LU0SoGP8HRxDnx7Ol+dOCiN hX5NTXuJOdDmvGOM+EMavRreV7B3Z4FfL7tL5QKL77xRaYZ3Fqhj16LxX2lc vJq48EExC3JFXQXjeGhY7JZ07uzNTAisK94jQqOhTtmFKyTeDECejVGCx2g4 /nfhHsd0CixeWaSUnKThKStJ6i6ZFGAMPs/RP0VDm0c1f5MNkkGacbE+zJqG alNn1LAoCVZMssd5PWj4eMJNqs0gHqqzaPu4c2nYeHRG+3B9GLgIzDzPpdOw WcjmZc+vUFC40Wh4kEnD4/IV6ye23oW4I1b2QQ00bH8YYqacGgRX55Jj176h YUuE9l+ZIS/YZOkondVHQ+frLROG2h7woXVPgc4wDWsic5pbc66DQVJf4+1J GkYfFDddO+gMPGvyD6+foeE9CUpEWeYFaHK60fN4noaJG88EKPaeBve3B8+e W6bhxVXa35fdx+D//5PgwbPBp/4KOWv9D8aFQUo= "]]}, Annotation[#, "Charting`Private`Tag$620492#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], AbsoluteThickness[1.5], FontSize -> 30, FontWeight -> "Light", FontFamily -> "Helvetica"], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, LabelStyle->Directive[FontFamily -> "Helvetica", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-8, 8}, {0., 0.9999976948837576}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[1221]=",ExpressionUUID->"3fbae12a-d535-4987-8b55-302dff9f0997"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}], RowBox[{"Sec", "[", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"2", "+", "\[Epsilon]rf"}], ",", "\[Epsilon]rf"}], "]"}], "]"}], RowBox[{"Cos", "[", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"2", "+", "\[Epsilon]rf"}], ",", "\[Epsilon]rf"}], "]"}], "]"}]}], ",", RowBox[{ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}], RowBox[{"Sec", "[", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"2", "+", "\[Epsilon]rf"}], ",", "\[Epsilon]rf"}], "]"}], "]"}], RowBox[{"Sin", "[", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"2", "+", "\[Epsilon]rf"}], ",", "\[Epsilon]rf"}], "]"}], "]"}]}], ",", RowBox[{ RowBox[{"Cos", "[", "\[Theta]\[Epsilon]", "]"}], RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}], RowBox[{"Sec", "[", "\[Theta]\[Epsilon]", "]"}]}], ",", RowBox[{ RowBox[{"Sin", "[", "\[Theta]\[Epsilon]", "]"}], RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Epsilon]rf"}], "]"}], RowBox[{"Sec", "[", "\[Theta]\[Epsilon]", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Epsilon]rf", ",", RowBox[{"-", "8"}], ",", "8"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellLabel-> "In[1222]:=",ExpressionUUID->"6161fd34-738a-4137-898e-0d9d56270ecd"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwdV3k4lG8Xtox9nWGGGWZIkaRsqYgeLSpE1haERKKiUhEVSVGIbEl2hrHP 2PfntEuWfpJS2SJJokRF5Jvr++d9r/s6y32fc94/7neFu5+tJx8PD8967uP/ b0SZWF5WAiyxcRi+eLb4za+MnF9QgjupjO5Xijsxu1JH7eecEpgvcOo3KNlj XXVL97GvSiB1UvAvz0oPvIkY/q79jRIMtu5171M9h01GfrTdK1eCuVO/kwjy 4fhq+vLxhCIl+BGvTGh0uI4fHpAQimEqwZFcmzc342/gne3qO0LvK8HnrwOF KiI3sVm1a+OxCCUIslpUXTEeg20jOor1XJWg/0HADpOyBJyw7b3ZOkclEPYM XDq0LRH3/B3/rOagBE/IvAZerxLx/tOEVTQLJfirqx2waTYJOx3aksazSQn+ U5IV4axOwR5rC6M7JJXgQXHgZUurNMz8VKPxTEQJro4YPT3TnobHMh+3AkEJ yJEraf/2pGNv2SFC1QIDPN6+KVtvnIF9lyiXU8cY8H5VdcJN4Swc0BV+yquF AT5Xy2+sZWfj6K8X3szWMSDgb7pu82g2zhHy3hZWyQDbrc8wVT4HtyNLcjqL AdGPtfVXBufgj04oRCOXAa8sg9a1FuXg3wE6X2rTGeDQWb5avS8Hq7DJzd3x DEj5r2+9qG4u3twutNothgErzAvmw51zseX4fNy3CAbIvWduL7meiwOVBzyE LzOALzbz8cyrXNwZly++1YsBYtMP+wXc8vBoScqFF0cYAB491rdC8vB8662h g84MmPzgnZSTnodX8fpV+dsw4Mf8uFj46zxsSD/C4N3LgIG4jQZ7pvPwPgO7 yNu7GHB12kgrWYiJg85sci7cwoBPq35ef6rHxHExa55u3MgAo5SJ8rzdTMws VNB+rM0Al/lIfYIjEzc8kUi1WcsA0ZS9xiM+TPxyeJl/UJUBJ+0dhU2CmHhs 6cepk8oMEH+WPyMfycR/qaNv5mkMME+g+59MZGLpjb3bIsgMYA89VTDIZGI1 29ZiWWkGmP6ZuHeZxcRGvg3kHFEGaPNtqNnMZmKbWyUhWgIMIA532HvXMPGx /IwvTct0mFodfl6ykYkvPYyzM1+gg4L6gN7qFiaOHwhrfjNLh72yBs8qMBMX LJxb7TlNB9+NQ2FsLm6ieN2Z+UKHfv2VvUrc/G7dQ39DRunw6ITPXh5uv3Er C0+JQToc22EWY8PlW/Ix7krto0NC3m1nGa4eUoSWgXoPHbSO2aWacvWq567I re6kg/UzwR3jGUxsjGUkdjyng9q3QL+/CUxs+14g4OUjOkR6jNiHRDDx8d+/ hw630CGVOb3z3EUmviwzYf61jg7uKY2l77y5+rU+VAVW0iGa+oFaeZCJWRad DMEyOhhdOaz9z5SJm70gMoHF5ac8rGrS4eq/VjGjnEuHguJ/N6YVuPoz85zL 0unwjud87l0CV39j8tMtKXT4bTapUvM1D6vPBqXuj6ED61bDFqfqPLxV+hRh NIIOiTu3JI7ezcN2mq6+Z8LokOHws+NLYB6+4rFje3QAHU7o77znuzEP9/SI TTw4QoeHKmr3kzNz8VWP6pZiZzqURDpMLQbm4vWzLglJB+iAZ05/ZNjk4kiZ CiNvSzqw0/Z9SV/Kwca2B2OlDegQEk5IfLo7B08M83os6NFhRrjmym65HJxy pnjz6Ho6hNVrJiV/ysYzcf+Ga1fR4eyaHuGiK9k4vytvg6s0HXTNugrncrKw nauViJkY914rTwhs8s7CPNO/+3UF6aAYdFTMZX0WdpS0iBBcVATegsDgHp9M LGX5o6/0syLUc/pTak6l48A245DFFkV4Zf3jUZXsPazq+NlurF4RvrrUXLe4 moK7v8Spv6xSBCfn/SVqk3expsjof7lFiqAb6zXS3pSMh3ffWmWRrAiZvNRb 3eaJ2PxJ7/N7pxQhXcNL5PWO25gOfrKbFBWhdX4sWV30NG4n6Z8zlFOEf92t l3ec9sFBnguvjEmK4ErljGa0euBe0esJO4UVQcs279uLQVsc55BKsp1VgLcl zr87Gx0R/9fH0qfaFcB9/G72rdjL6AuZJpF7SQFevq3Z5ZMaj1KOD57MD1CA LAd79tY9CWhXY1574VkFOB9sa6oxl4By3LSi2ccVoMPC97Di3iTkXLxTrMWe G5eLYe/8dhd1mfiJ9GkqgGHWpb7En2noSsIG7w+rFUB+2Uh1PiYdaY7Ntw6q KMDemfWhL9UyUGRUeOSYvAK4rPjA5thlou2994RmCQqQZ/xx4F57Fqo+8VhA qp8GMp8G1FI+5aDNyr46+W9okCAyMB+wJhc19MgdNu6mAenYLiHqyVwExieq TjyjgaJxnMatb7moTYp0tJVDg+d09XtpQ3nI8nHjbdcSGnh7v2uYpzLRy0DP hl/5NKjsjZ/7bsNEr4friKppNCBHVXbeb2aioUpXuHqDBmsLV8z6XMtH7sdF JuWv0iCy95yKMicffVKslGMH02BA5ADRqj8fTVwX9Bs4TQMl4BwR0ClApwzZ qedP0OAzeXV6xMEC9H3q0FPxYzSITqm3PHelAM0dKKVvcaKBb3LteMiTAhQo fsCs24EGfzc0hKeMFaAF4DnvbU2DL8235yUFWejy+aIsHgsa9MeEeQ6tZCEe Dfv2u6Y0GNJcyS9qwkJhA0u/15vQIFspeM1NRxYSSChY+dSQBrpv9+518mch 0cWFoFktGji62X2eymShGHZefpQGd7830t4WV7KQtKdVt4oqDX7Gfq+reMJC 8dQ/S/VKNDAqf3ebt5eFyJ3Za2xoNMjRf3MleZSFUsIsHMZlaaDzMfSF3w8W om2aCw2RokGjRtPrqEUWSv+aUUIRpUHv5SHFLwKFSDlrz9tSAvdeQYNbb0gU ohz7GX7TZSqUUnz+HJEpRKoiaVof5qlwskFGNViuELGaTZ38Z6kQaeyPX1IL kcbZ6Rui01Qwe7Vt+AitEJWq3avI/sKtfxvwaB03rv1++8DmUSpIX/dq0aMU oorYSZGXA1RYG/TazJ9YiPR3Jut79VFBTEdq6atoIar7g478e8Xl27Z8O52v EBmWfolO6qSCxVXUG/GHhZqPJNRpPqdC1oL686JJFjKhGI8+ekQFterhy4KD LPSwbUzKqYUKUbbHNe53sZBpSNyWmToqHApOX+XdwkKteoZeNyup0Eqz+Hi6 mIXMx0filcuocOf4mvmKZBbqSItpqWVRwRQPM7RDWcjaZtOEVS4Vxo2l1nzx YqFugWHyWDoVLDcYSwxaspBDw61tl1OoYHhoZIiky0JvfTeckk2gwrHnrn3X ZVnIceVASnEMFW50TVkYzBUgt2id731hVNjzxiLBi1OAgqrib3RcpsJN35Wq R2MLUNKHn4oPAqkweUI3auBEAWrTrDFj+VLhV02OoZNyARq1lxu6700FL47I T9c/+ejfpcALsR5UeDcYd/hrZz7S6zDMveBIhe0yqzQzAvKR1dx9Ax8HKqSW s5uem+Wj4/SlrsPWVLh9WftgOC0fpZ3Cizt3cefbbS/KrmUiQcmd+2V0qSDL 7z+8ejgPKW9kTgqu4/K/v19MZOWhLS6C1xZWU6FtS+KtzFN56HRZa/kwnQou ji/rK2dzUZ+VpQhbhAqajbtl5H/moJLY/U17h+Xhd17s2HhlFnpaW2tr8kEe OoxjK8uOZaHhQfkvem/k4U87U9JOPgtRtN+TFTrkQU1KuujO9wwU8tLV70ud PMRJPJPr2J+GbIneKjfi5OHXVUM7jSfJ6E98cCRG8vDMx/9E/adw9FnxwcQu Q3mwVi5+KrrqGurNF7Ts3CAP6edOK2u5XUWVDXeI/Wvk4cV3/aL+vGDk+7Eg dUGG208tYE7xpg8a0ekp0R+XA7TLYMejl36486Xmf8VxcvC+4Kfpush43OR4 Vk8vSg4qLnllEU4m4OLR2qSG63Lg1t8lPGiViCP/bHd8HiQH7P4QeUdiMt6h fGhkzEMOgneZx9yNuIfr/K7PrTCQgxeQcuokOQsXzLcdKNSTA4lW86nE4Cyc fE26QXu9HJi/rhRpHsrC/nfvX0Er5eDnL6but4JsvB5zhA5LyEHgFsuyP+q5 OFdygJoyTIGOk6+Xrae5fsMJCRl8oMDmNhvxIJN8HMbKmu3rpcCPrdc+GcXl Y/ftR7sU2inAUy/kHrC2AKtcGA/PrKHAt7N2OvLWLEx6ZHbWhEOB4l3HmryS WJhPuth1uJibj3X1VfpY+GPhKcOV2RQ4dUvc6qFTIc7pn5nOj6IA8ie40y2L cLyGff/uGxRQbdgyo3O9CIcFVLeNh1KA6RrdH9lYhN2JgUyNCxQwK2qO+KpS jG1d+uJfnKaAcs2835RdMd5ebBh68gQFZM42CqpcK8YrTJccy9woYGU2+kb0 QzGWjnfZs8+JO89rHo06gRLMM4j1vztQ4HtileONdSV4KDBMWteCAoeVtN9f CCjBL5+MLHWbUuCay+kt8fdKMJBMv/qbUKAvt+s+1JfgrBKhp9X6FNiiPz1g NluC4+aPV+7XpkBd58GeDMlSHLqrLeu3BgUUrjVML6iV4tMJa2+nqFLAQ3NL jJNxKXYbig42UKbACuVEjRabUmy9bur4OxoFfs7s9VL2KMUmQfv2B5Mp4CQx Rwg9V4q1n7F3KEpTIF7C6fO7sFKsJEvSaRalAO+PB7JasaVY8og/w0WAAv68 sjVB90rxv9IeseVlMghdlZFryi7FUwv685kLZPgofTP/R0EpHth9d8xkjgy2 nX6/qCWluDPxz6vhaTJEqCg16ZWV4pbhQw/CJsjQa3L2pTEXl61vLFv5iQzT +75pbeLmZwQrpj0eJMMlw6EFBqsU3269fNPzHRlyVkacn+XyXSEPXhB8TYZ1 l9SFa7l6fN1NPAq6yOBTrY2OcfW6lGfb7GkjQ+Btixe810qx1SIf+vKYDCnz QVdvcufdauaheQuTISh5rdPS0VK8PvkJdW0DNx/vunCYuy/6iJpQexUZRtS2 k4uMSrG4duTsyXIy9PCtyxxRLcWLl74MSxSR4dvjhkxRiVI8+dy8qyyPDPec LZ4pzZTgD5SSpn2ZZHjG+2Ni5esS3H5Uouj7PTKIRfgT5GtKcBPb9+6dRDKo 6djoLiWW4DRznbOvbpJhZjp1MXNvCV4lZt72MpwMzWnP18mql+DiF+4qnSFk eBh3evohbwlu2JvY3XqeDOUt39V7y7nfp0SpxtPTZJDWMx83Di/GbR1Pwh6d IMPiJ/5nY/uLcZ/Vb92WI2SQ3RCXxf+7CLtJSUc1OpPhx7fxluDHRXi8S32k 7gAZ3EMidxjHFeE/1o4JlZbcepH4GaZKEabYNf9kGZBhTHdqzkGvEGfI9Frk byBDtKVBkttPFlbtmcrN1SID7lQyauOw8AYHZfsMVTIM3Y3zebaGhW0PXKtK IJIht9kttFWwAMc6mZ2/8kUWzu6lzely/T9F0b0jeFQW6BdfPfiolIczPgSp XhyUhbQD40baT3Nx2eGS1/6vZaHZcqtRrWQubneV2uj9QBbqj++xXY7NxsIe r3/Z3ZOFFd5xF5XYaTjs5JHANWay0PZ2MNotLRoP3HZJa9ghCwZ9dFccdQsb cpzAYqssnI/YcZcRGIln5hyEffVk4dPB5R2+e8LxkRDzlAo6l4/ECcxNDsAm 8Xp1W2ZkoMojp99F9hj6Vyvwx/K+DChPKBxt3ZSIHN/xKQ4myYBF9mKAqUUS qllcRqfjZMBt6dOJN4eTke+2hYj46zKweUf40YmQFNTfNiX3xk8GGoTp4dnV aaip/80mt50yXH9j+IN0IgfJ87x2+rFVBmaOUND78Rx0TqU7JMxABrpyOL/u eOYiTa/2Z3nrZSC7wZPIdMpDad/hwBd5GbDPDbZwMchHwfxFAWe/kWB1Lt+Z zZWFyPeei6DbOAkEPj94gmWLkLuWTJLlCAk0Njit7z9XhMydLlWo95GA9Nku C2sXI/lKq28Dj0lA3HFX8FRyCRI347/UjkkQtEsueOprCVoeqBVtaCBB6vUz /3WjUjQmukI9iU0Cv+0rqCUfS1GV+093izQSCPF2wJJMOWL9Kfix+S4JGipE HWecytH9286havEkeBNcTlXMKUdhDU/SeSNJUCEpuHRJlo0uWAdpToeRQMb+ 8fh/G9jIZ2x944fLJFBvf8PYZM9GNqSUt7X+JGDtkOOox7HRTtZeL6YvCXie XrVll7DR5q28v+K9SbB5kPx8aysbKfv4yPi6kuDahxUHvRbZSJZHKcfJkQSV /WtUl2Q5SCj5lbaZAwkotA7tO5ocNPXAyGqVBQk6o/jFSw5y0McDPz4Qd5Fg a9FtgtYpDnr9jXli2YQEdTPTMaxQDmq95rgwuYUENRV6HykJHNRElbr5biMJ Yi+XmgfmcRC7/JFcqw4JHvbSlF9UcVCeaWB+tSYJCPxP2iQec1DUmeFHcSrc +9w5F+s8yEFXhJJtr9BJ8CPqa6vnVw46m24+fEKeBFwLQTn0i4OO6S37HZIh QcKaV9r6PBXI8Xnlv12SJMgWNB/8I1yBrFyPx2wQ4eLxwoUc6Qq0bU5RUYVA gtHymRO6chVoQ9R/RVLLRPhVVKeZr1iB1FfcMFiaJ0KUr/HuJeUKpFhr2Dox S4QNTRG9G1dVICnL6f1vp4nAcyFI0FatAvGN5H56MkGEFekTMlarK9CvwIPn Kj8RYe5Q1V4NLp6QlODPHiLCTbEuqTHVCtSf9+DO7fdEIB126whdWYFeGl5Q vtRLhHjXTsEFpQr0+KVGufd/RHDIf2llo1CB6o4NGh9oJ8JZj1CzG+QKVLyY 0L7zGRE0bnmVpEhWoIz4PU66D4lwZ+j21kjBChSvvvRFqZkI61Si3tovcdCN Fk6gRB0RrKVuevyb4aAg+2NCfyuIMHrp4ED4Zw7ynaAlj5cSIdL5gt34Ow46 Etq1qpdFhLdN5BH1Dg7a35e5tT+XCLdVq0ISWzjIXPf0wdEMIrR9zZ8fL+Og DaPS0TOJRNBcutBtGc1Ba4yHmfOxRMiOmuJxvchBjGQO5oniYsJcsaMnBwnv sf0peZUI71iK7TKGHLSUpSJBuUQEQ9fCxG4VDpqZn1GjB3D13U8NvSLKQe+L ExzXniJC10QVI7uXjcqkXj/YfYgIzsVZcZrubJR7nPneyp4ITcl5dL/tbJTy 4Pycwz4ivEzt0y5YwUZX/SlrPEyJcNDaMnehvhzZvzkQF6pDhLyCfw2vb5ch M231oghNIlQ0vZEVQGVo680/j26vJkKv/UW3zd9KkfqWe7/T6ETwjPPJqN9R iv5mvHOpFyHCkNsz86S+YvT9d1EgEIigbF73xSaoGI1aB8c/W5aGW/bs3XrU YtTJp/j09Zw07D/9auqCTRHKOXZ43cywNPSf99sUVcJCe9YP/dVokAb/5Y6B O0QmMo5gk3WrpWHh49q7QnfzkO5QqJYBm4tVU7/O0/KQQvyKo7vzpeHf27dq voxcNDXn3nY0XhqGn3rVWMlmo6TmTylpPtLQ7pDUyAi/h1wCU69s8pSGKC3W 3ei9KUhdb59Ht6s0CKwecQgk3UUNrDotYQdpONO41pB2NxENJEQ99UfSUP3t fckdsVi02kdn1lxWGnRWK+nxrj+Hzq5byJgJlgK5N5HtdwvjMCH3qI/6GSlY mBphfhOMx8nyHfoux6TAbcEvdPpoAm7kz2p/bi0Fi8C+maSYjAnvTBeyVKUg MwGCmq/fx8k37jjs65KEUIryIIGYixsG1cVLVCTh6J6COavJEnzJiLc0VV4S Cp00xgK5fsX4Xp/lTUlJqBTtE9P5W4rB9lbssQUJGBRwLFtNKMfPnnwlreiW gPW/xIVTr7JxpMrjSqlWCXjuuj/EB7OxeUia/b9mCVjz+3uZyyIbd262TH5f KAEH/E4YZftzcE9xGTX5qgREpRTE0g5U4GThiIbwAAm4UC3PnxhTgQ94ujr5 n5IAFyx+SPpRBX7HkE63PiQBafX7V/CtrcTDd84oi+lIQIR0qqrbVCXOmTJ7 MK8mAWd+JDreUKzCHhYq7uOKEiA2Us+5Y1aFxwmvcp8Ic+PbZybNsqrwVMCG 1aFD4nDxRvTHj6gas3vEW317xSHltwuxx6Man9H5dPxwuzj8Da/eFBdZjWcn kooM68ThE0089HB7Na7Z7WuxpkwcyrR6Xx+frMaBebsm5fLEIXJkVZSeWA3+ e/j3urlYceic6dNf3FmDmxq6Okeui8MRWbvPs641+Iocy687WBwqhT+czrlY g03OhUo/OCMOsdvLnfniazDffwc55V7i0P+f+G5SYQ1+vE7HNuOwOOhTfAa6 Wmrw9VsiP6PtxGEgPGtk86saLLyzYYMPEofejQIphD81uC0r/vVBfXF4mHpW 7ahwLY5e8rmwe604mFneHvaQq8VWjjvkNq4Qh69pD8eFVGuxVK1C3So5cRi+ 8tHXXKcWv5SZPSgjIQ6fI2waNIxqcfzp9nlefnGIGtJQLTCtxfYdeanf/4gB SdeL3mJZiykal7cMTomB3U1eVV/7Wvz2hsOHjlExGNJU6K4+VIvvjay73PRO DPKOMroSDtdiRxNBRvFLMShYM/RO0K0WK6YPtNx7KgZ6L6FV4kgtHpivcY1s EgPhiBehBdx41v5YnoAKMVjV3rPc7VKL3Su9sj1ZYlCO7x6IdarFK6VNtttn iMHsoe6y9/tr8W3t4SCfBDHoEQ4/qWJdy/WXYZWhkWJAyb7AW7ubW39m5WTy ZTEI9TtXmmJci9vvPF5VelYMroi/73jKnX9jhefhR15i4Mdq6jdZxeXvFkzu c+bqPbt8XpBci0V/FnRO24hBpVywpRyhFp+TMRMS3C0GfXayBv4/avCA3gRS NBKDmuTetbT+GrzHPipQV0cMxqrENok/q8EV5zQ5e9S48zBtbpmV12B6UscX FwUx+Gxa5t+dVIMjq31VzkuLgcqabNeCoBo881rKKUpADAKP6vW1Hq7BTym2 7bXToiCX5Wg4y6jB2pt+EjpHRUGmYOV/y4vVOPVAovFonyiE5AjYO/VVY7+U 3jLpx6LwwtSmUzCmGr+rC/isVi8Key/W+Bzifu87++SVjctEIUF4nTGvYTWW pznd8U4RhaY/fsoHhqpwmOHi85AYUXiwUbZdmFOFJx3T+ZLDRGHYx2eEElqF H9wf9H94UhSEvv18b02twj50j/0K20TBJeik9ZXNlbjHWCBWZ6MoGObdHLBf rMBbXfKf7V4rCuLvpxfvt1RgmczxzefIoqDsX2AYubUCNymfUuj4IgK1gRdP 6mtysNo2SfuRARHouxXoPDnCxnFHyqPnX4nARmeXK1qpbOyZ82NJtUUEel8f s/PhY2PJVReGrsSLgGtdQZN1eCkO3ClHTYoQgU/vHzid7C/BHz3qbIoviYCU 9ZTImF4JrmUuPHxzTARcisSv0/q4/yurQ5jaW0QgeVerSZ4AC1doRPp8HBGG WBX1R0+/Z2Ol/9zq1/YJQ+ju9ZIh6tk4OsBA+HynMByLurXC0SULez6eYArV C8PkUqaD7c10LO9iOax5WxhSsodAciEZX75DOhiwWRj05Xadu5cVhvf8STMV jxGCMbbxhOnJBFSdcT7RIUwITr5q/PgOJSEVU6uRjAAhoFWoLmfL3EV/7yyH 6rgLwaf/BMr3NKaisrXuTfs3CUH8pQsM4M9Gsq6r9bKHBWHse3NV2xYWGnzC Ud64URCkfadeKc1VoEt28zs3awoCdQRS1R0qkfywibehiiBY7LGZOlxViawX uzhbJQXh4BDp+4bTVQh0p7bvHhOAhsJLQ6MfqpEz6HuZfRAASsmsR45+Dfpj eTnKolsAljP8mI4xNUjbW7xnX4sAvHT9Ts41qEVZmRqeB5MF4McRCcnJ8Dpk tO7sTcdoAajQUIl+01OH3jbUlzqHCYC0koD17ZX1SLp3zy83XwFYOOH4fFdz Pboq7hXhvUsAOvsKjXYNNyBGalnxCSMBePW6Y9+UWiNqWP2r65SuACyxN+3S P9GIZrZflz/LEICy7DtNt6YbkfvF3MKgXwQocKo+8misCf0T/NpxaZIAz7T6 6/9TbkapibozVz4SgOx76ND+Q82ou/yB4bVOAvQR8zzKnzQjX2MR1+uPCbBL at3FoPlmJPrC+lpEAwFK/q1YXbi2Be0YG3wRlU+AXhHp00pRLWjIf/X3mDQC qKbS9rrUtaBLvH6ycfEEOKdnvXN6pAVVKf5zTrxCgCdGmuO/9DGyLjK9mnyO AO1qSxc8nTGa3BTDTPEhQH3IyDj5Kkar7BSn0vYTIPAZr9q6JxjB0FFS5l4C LOW+CokexcjZt3hj9nYCxF3cekqKF9CfvzOOuZsJsEyMcfwuCSjxpmEIcz0B hlJf2H5WAKQtF5ZbsIpbz7lYMrMaUHve82eFNALIjD94Lq0H6LgucbJYmgB7 41PlTYwBEeCgdJkgAUwpY6SQXYCyLLM2sBf54VlZ/NZ2K0BG7z8frJjhB7mC +nVq+wG9Pa51uWqcHwhiLVeinAGd+3Uhu2aAHxqe+3xYOAJIOrzlSV0PP5wz k/539higEqLgREMbP+j6ZBfMeAPak2kp2Qz8cHeuqzDwJKBPmkm6uIbbP0j9 I78vII0rzKnxYn44gP89TuBi367qIlI2P7CbeMQXTgGqVH56zCiZH0KccaA+ t/7PmV6VY1H8sH3busGd3P5Gj8YGYkP5Yf/gI9XVnoCuyv5OrT/PD8vxBabv XQE99RQ6MOLD5WO3mbsdAiRaKycj4cbVGyllX20DaJ+wetdGB36wO+ad0LeH u99Dm6PczPlBPnDRsn0rd/6iPbtvIX5oLDL6EM3dJ33xIH/VBn6wPi1WROPu 293SG/ev4QfV0z0bz1MB5WdcDBZS4gcJRiE5TZR7n22pPx1F+IFhoPkjtRuj 8/FF5eH/+OCV7pRYeSlGDSMNJ8p+8oHw9z3fD93AaMeN9yO8A3ywcNFx1l8b o8g3XzPXvuKDpODw4yO8GLWrLzo5tPIBcenivomXLWj/C8UeVgUftKdODoBX C0pVXBfXXcDt73hNJV6rBQ2eMt67mMYH6ICt1L/ZZnRc2uXxvgg++KljPFQU 2IyCHTKrfjnxwVHqX5vwo00I8stPK9vwgZYk4jjINyHCH6xpvosP7jy8Pd7V 1ohupw7lpWvzQdm8nORz9UaUNbgiaacAHzDNCtMZz+vRJ21dG98FXvhMr+S9 caIeaYRtl0iZ5gXtPtLbMrF6VLnq6PWvfbzgcFPdxN60Dj31zjsfX8YLORF5 be4ZNUissUqnKZcXzskl+5hp1SBr8SffPqXwwmSPdoBsSzXqK/vkaXCNF5K3 3Hc5+boKTf5U2z90gBdEFw79afxagYhXCjeu5+UFl3k71x2BpehGjXqr9G8e iOls2sTwK0ELUwWHfk7yQAT9/qUF92L00TX/Ut1bHkgrv3B2fFshqtiW+3A7 mwckj97b+68/D9kKpFsdcOWBgNa2qTb9uyjirt33s6I8YDJ41UTkrQf6H4St ZZU= "]], LineBox[CompressedData[" 1:eJwVV3c81d8bt8km6+JeI4RUKpKvcQ4tiaiQkUpDUqQSpUhWoYSsIntce+/x yOZqiISEjEJy7ZXxu7+/Pq/36xnneZ73+Zxz3lKXb5+5xkBHR+fBSEf3/y9j h7mE6J8tePd6MtJk/iqsrBG3B57Zgp8XnYRXBSOgpV/UQlBxC243S/fZmEaD XbzAmELvJqwl1g38mk+EjJ1sG2fUNsF+nFtuOiYblA5SlVLm16H2j77tw4vl YLvnyZPyH+sQ7r3udYu/AuLkeL58aF4HqttSe2BDBfAL73Vdil4Hf7ZqK4Jc FSwvO74/fmQdhBKl41f6a6CufNp0MuwfXJzpW6ZnrYP1fA/ypsc/uNXCpFdq VgeqGdz/+G/8AxPkaRCZUgfkt3viNbT+gex7+vYqXA8vHzlOvhhbg9dJQhsj NxvAXGvaY+/BNbBf7rf7/aoJQlU9Og5LrkGIxeLk/k9NQNnNLWPOvgYisavc OlzNoE3a0+o5sAoybejIC99m2LHlsP2L3yrM/kro2WfbAueXN679clqFZ+mj sWNvWyCC+rJszXIV2KVFd+/62AJsQ9nWO/augpXvu+0myq0wXfs3zfnbCmhW p/E9Gm6FneXua8/fr0BDdHmbKEcbXMrnMnyXuQLKjtzhpP1t0Jmwe67xyQpI jtx5o/moDTjfVh/pu7ECzytsCQbv2uBYqGHk9NkVGD1CUsuoboMyLwdNYfkV 8HPpC9JabYM5t42gXfwr8E26KdxOgAK77r38idaX4YLQTNeH3RS4epOoYvJr Gd46FV+0O0qB2CvZfnafl2G5lfH8ASsKfLPS6n1csQyDCtkMircpwGvyYVdI 8jIY7KiMO/6UAvoG1h4pQcuQyv8+9FkIBbyP/P1c/mAZ2lx3G43FUaBOb8pI 5coyWDhLJsllUYDO8M/HHMNlKHD+mhtUQgHt05OGCoeWQTey7RIBKPDYdKI9 SXoZcugFiusaKVBhMX6SxLUM5PYE8GujwKr177ao5SVg3eabZvOBAocu/zqx fXgJfvUeIBt9pICL7VjLy/Yl8Ilr5zOk2YvsR4+zlS5B6x7zE2a0+DnHkSav hCUw4ONovU7Lr3xv+OhG4BJ0tvpKetRQ4LbrzwZXlyU4SBBYDC+mQM6jocNz l5bgA/pDn5VBgakng3W3Ti6Bmdp1kep3FFD0GdD5rboE0T+PSTYFUcDu+Y9a G8kl2Nj5W7jBnQKpL/pRP/sS8LO5CxTZU2A0+HuN2eIi1Pqf0n1tSgHp8D6t jsFF4IueHL2gTQGbN71VJ9sW4dTHi+cEZCkQ/65Ho6loEUqW7nDmb6PAQMK3 Chy3CDfiPwbtn2oDy4yvZarOi2C1PBTbl9EGUTldankXFuH1Cf3Kdb826C7o LFE8sQjBEk11a5fa4GxlR5EEaRH28yTWenG3QSh8PvCWbREUBRM5t9H24+f6 TwUC8wvg5nCSeqWwFQzaP+Rta1mAd/UVGiFGrRDwuX2vT8EC2A0+ar4k2got XZSczZgFmL6gsGdruAWO/mjNmr+zAK8fD0wnObSAz8+WXY7nF+CP6TZN8t4W qBtrzhg/tgAZdun6rlTa/zXdSP4htgAnDVhL79o1w+O5hp3mLAugyX7wxzup ZqhYqk/9MjMPex7Mm4b0NIHa1vvk5sZ50OGwWf2EmkCZtyY+//Y85G52C6fP N4CjQLWEkuU8pDYzy26PboAskarY1CPz8J2e//1R3AAKUhUx0YR5sC8p+8Ti Uw/S+0uifOvn4GLBxlOu2fcgaJITbCE8B/aylzSuNVRBgVxgxVHGOfh0TKxx +UclGK9eH91HnYWeT8L2nfMVEBArdYi9eRb0BdRanAXKYXM8bLDCZRZasafF Z4Vi+OX+aI949wy0H588OHM6HbyNzc3Z6maAL2wpyIo/DSR3qHotZM+A0F+F jQVKMli2TH9t952BVD8Lo1HFePjIf9ndXXUGoguHOyOuBoCjUUhUtQIVnMzZ A3wfRCPygv5UOD0VFkvsLztdjkfDb5iwY+80fHP0fu3NnYTMRl1/k/yngaVq 6z/BB2SEHl446Dn+Fxxm3nxwbc5HvEm7unTTpuDzj9fE+9bVqGCpkadFZhJe G+2edyJRUFBGYp326gTcyFR/srJJQTcvPLlf/GEC7OQZf98dakcyTYe+J7pM gEaGqLlk6kcUEZ6Z6t4yDm1vb5ypJnYgN5UQrQO3fsOT4i+1d+q7kO7d8zdj C0dho/WLTO++fkSSUycJPh+FikC/SO70fvSvV7Aj8PwocHo8H9wn+QMV6Xw6 +JB5FBJHnJ32cg8gOT5dBpNzI1DmrfLZZ3wQseftfLPt309Q/HpA7EjrT5Ty fezlhM8AhKz67KEYjqG+x0Jx7w4MgGO/a/9BzzHETTqed3r4B2zX2/3VsmAM uVwifylHP2AH4bVPg+AvdGzMXjhg7TuUcL6+9rfnFxqfpsYrOvVC/4FiNz6j cSQeLFkwQOqFOv/RUuXH48h43+n60A898EIu++sUeRyV3SsYW1Psgcs265qq 9BPIf8VZkTLWDRwkf82+rAmkyLBWeNOqCzqSMj+LUyfRhSTFRgn2LvCLcAs2 EvyDQo9YdXeWdcKnOuo6i8YftOZXtaIh1AlXtqYtNn3+IArHEy3Ojg7QQ40v J/inEF127qnaJx2QLVG0KaY6hVRODV103tMBkjaUFy1mUygmWMerP/AzPHoe wRsYNYV6FNmCLF5+BBlZb7Uwwb8IO9zIez/5Aapmi2fvH/iLyLltXxT0PkBv nvyNFuO/6KHKS+E1hnZInelHlf5/kag2f8LbB62Qcvs/78qFv8jL8149Q3cL PG4/vcbMPY3+1HWN2R9ogZpTLSLlctOo6nikosZ0Exy99y/N1GwaWZ8WL/p+ pQGCfhA+GuVMo6n5RfX7DfXg/59BhU3dNHoc8Qm4Zeshp5qu7vvXaRTz3Yui 8+s9LPKz2TD/m0ZKHudPfz/2HpjZbycXclJRpeTBb85ptSD1N8iqmUhFRZQv jUYdNbAsfaxcXJuKunj9OrxCq+H53g41a0MqmjdV/1F8tgrYNLb10Z2nov1D cQti3eVgbUl2ue1KRadlz9IZRZbBu+Ss++o+VORkz8LpZV4KuduTEq4GU1Hu wq0d431FcHWhs7k/lYo+qkvuFYspBKZ4ugX5fCqa9uj875R1AVjncuZ3VVAR V4PfsaekfBhmx6mD9VRkzu+cbAe5kNaS6HminYoiY/oqP+pkA7WEbp6vi4q6 5XQ6VRoyYDhtqvjQdyoSyE+bfHuMDBIe9c+qf1LRWQ1uBvrWFCCs5SjF/6ai 0EZnwvWTScCnR3YcmqKiz0bflT98iIe0U25Ej1kqIhV5B9vGx0BzdT33w0Uq im4xhv0pkfD7xwqxY4WKRH4QpzfTQ+GVxDUlv39UtGvkq3qEdSAw3VSSitqg IjlOp8g9158Co7LBBMsWFXl2yXeJ1TtAomqM6xcafn4q8C6H+IvKeA32kBka 7p71iuNdeYDC5+5+ekLDM0Y7527f9UOSlTPRNptU9Oj1sbabKsHIoOmFSvw6 FW16PIyO2xuO1tavpWus0fLbZ93qVHyL9mrf51VZpiJGs0EtVrk4RHF84es/ T0X1kv7P3vEmIscTpoqaVCryiZB2UgtKRn7TRnIGk1R0jLPKvIMjDbmodKSW j1IRq5epzk3/dCRQRjfoM0BFLcvTCsysWSggu5s15xsVBTg854/zyUEJdwiX VD9TUepssLv40zyU+91SSayFiq5fV7Qt2SxA2mFsxowlVKQn7WrprVWE1m1c DFmyqEj+R/0p48fF6FDNAPuNBCqaPGOtNrlailIXa4yNAqiojStjV+mhcpQz ti27052KMluWJHxcKxCzz5RTuRMV3dIOZiMtVqHCxkeCmSZUZLjavz55oAat uGsulx6loj1FCrOldwGZCBfoyh+kopWwn1PyK7Vo1M7MTFWQisrZH32tu1+P GHKYr/C3T6P43YKdudINKLlaoimiZBr5Ged+jvnUgJhCBkft4qeRScQIxUWh CZ0P+yG0dmcazUgZ1Cn+aEEDW1H7pjin0bcjv0A4oBU9ibSSXpv9i2que1Yz qbUhMaV07gvdf1FgdlHZQDAFycUSnyq9+4vk1Im5oUc+onh3j5/MO/4izvOl WU9mP6IF2BcyxvAXzXuczrgV+wm5bmPRlB2eQpeG687sePwZ3Wzkp2+LnUJ7 5JcNN752IGL2TokO3inUWnjxSL5/F5LR53KX751Emo1K9TuHutAKq82d8txJ lNe9qhN78CvqcpMTrfedRBGrr1HgyFckcirK/bjyJLqKWv67pvUNHRh+ZnHs yQTaalPeR5jtRS8Ttd5WsIwj1WF60lPzQfSimTRk0DqK9lScm1VOH0SzUm1k 44hRJBea3TC0OoiUN1TWBa+MIo6ELNV4wyHE8WnCburfCFo3Nu/fmh5CEbcj C9cUR9CPvFwF2DeMRBojhg94/kRxThcatEpHUef7CZ2/O/tRzPltOeGDo8ib NDJoV/4dRekVRf5lHUP3mqp7+/W/o2BJ9pvvzMdQjPozryqHPuT5uZhvY3UM oTqj5NrCHmSjzHWxSvM30r3xkJHpyFe0Y6Zy9b+6CSSuGLXFKf4BPf5w2Gfh 7wRaKP5y0lK9HXVnULhzCJNIj8L+6O05Cgq49n2H1J1JxK1dHbA9shXN9K0Z skr+QfsM+D80SDehmkb1xE73KeQfE+wU+rsGiSS9V3qZPoX4f91vrjleje56 nig99nUKfaJrWIKMSiSrYdFervQXMecfWXF5WIZe5D1Yivv+F925oaAtr1GA LKNL9W+pU5EVo5UCm/0bVPQAfZW9RkWUuriyptLXiNus+eIg7RzVvPsis3nn C/Se95vzmXHauRMS84cVriOBw4+MYk7OoHesIl1FL0LhUdnbh15rM4hccipr 7Gw2yKcNaF/knUW9KeuBsvm50BUuzaQpN4uOyptGcjLmw557GUGLp2eRuvr0 /J2ThTC8uyLJLn0WxbUwDBikl8KJpN4Pp8znUK+AMsOpMIAZ3xzbRoc5FLCW aV+vWQtRdt5bGt5z6HAII71adi2M7969TyFnDvHyX3V+9+w9PC/zDGNkmkfH t3obdaTrQTnadLcbYR75dqTtuONdDz3uik0ze+bRDjyz4TBcD/KHu5Z/WMwj mUi18x/eNEDLh51WZbnzyOWw4V7B6UZwyluf39M4j6i2xyUStZpA5HXHi5S+ eWSlHFa1GtAEduaPakKZF1A0z0jMNolm4NUwPrdNbAHp/lC4W3etGcqIsjNP lBcQH5FEOJ7RDGwjH6UcrBZQia7EzhKlFshrTKoYcVpAmvtISwn2LWBOfnDW 0m8BXT943/Z8aguQHaR9j+cvoH0f2sV1hFvB2HiZWNO0gCa1u2McDFphZX97 iUr/Ajodzrzf4UkrHF+5Py7FuoiM+uZ2/Rmg6dk+/adR4ovoXk1I1C2afo2o lhDl2b+ITPTaFJpV20A7fqHA9/gi2rySnbhu3Qa/vFpPrp9fRMb3dQa5fdog 6Frs6N27i4jw16xrK60NDurdc594toga0qxedbS2gR8XMbe7YBG9OjzBIslK gT0zs8cNWxbRemDNuQRpCnR/aRqq/7GINkwrIjg1KeBRHP3wv/lFROcdceLq WQrIRTnx57MtoaFWX65MOwp8dDuauZO0hHynNyNGHtH0orXokdgDSyi13y+f 9yUFSJjaL3BiCS2QHyLVGAo0STfcD7ywhLQef1E3SaeAI/MbbgbnJSR6ay7X qYgCQuMOaQ/8l1DrEdvml9UUqGnTxdTYJdR/PLMyp4ECttnCvdeKlpDTyNyP 7lYKcAdP3elvXUJj18bCttH0acnd9+xnB2n15F85r0/TrxdMI5JaF5bQs4Xj jTE0O8uhm5qYfRmN2MneZ6LQ9Kgo/loisYyUJVnlfJsoYLYh4LhbdRlFDu5O la6lwObgBEuy/jJq4vnwbaiUpj/rauJEL9H8G5vy6rMpcCrl9aGQ+8sobdT2 v08JFFh6ZtfBGriMgu2IIaxhNP1vr2XvEb+MptrURp18KHDUkJ9xsXgZBUS9 uc9zjwJBNttmV1uX0bMrxvnIhgI99+kGN38so9W58J3jhhSQClhuZ5xbRpcT 1Vw51SlgHztdwcaygkx1tAzyaHwVFoyRuURX0NWlwovf2Cmw3tQfwb9nBdml PHD1naXtB2rbXXGzFRRwXIHdr6INvjHWXZKyX0FtxQunhmLaQFKk/JScxwr6 nHJhV4d7GxTiNEXl1BVE/H77vZ9GG/SEeA8fXlpBubtqXYtSW0Eq1e2zHvsq +vBl/r+DHq1gX3GnxpC0ihhPuf+8bdIK68MX3547tor+qws+Ir7RAlIqmmdu RqwiFibSja+oBez1DmCnjFW0fmYXSyhXCxSdV9xzv2YVzZ9sNFTsa4ZjviLs T36torNP1y7TOTWDfffC+9CDa0j34+xqY1ATFE7+yY3UX0MFwt3MI2ebYH1z +F3MhTVkfSLKj16kCYJ2djxM9VtDXjL0+mbvGqHwQfa+iu41NP1Hse13TAOs i9om/HT5h2KdhIQZnOvg1cVvnsql6+h2tSjbin4l+E1pol/t68ioeW5cLboC PB4mbkQPryPj489m302Wg+NrBzdW7g3Ur3fSifdZGZxqZnQeuLqBlCa2PVkt LQbuvcrXX/BvIiFcGM/PnAdBm88Nxx22kKWOd8zoy1DwC5zmiPXeQjJvIouX /F6Bh4hJ29k3NDvf2oGwZX9w3C9xHBq2kDbdkvJGlzvsLLSUpHDR4cKA51dY PG4i1t8zhMSrdPj2j4BF2ftRyDt7x+rj23SYbSo8zZouGm3dM+s550aHRwQY N0/7vUPLdFURXMF0+KJq6lkqTkC/RZ9tf1hJhxVeMKx3ElJR8ykilzE/Pb6l yRl1ZX8uEtjzU+iuOA0TOZ17CHnoEleKZJgcPdYXDa4ej8pDaxQllZ7/6DE4 NHfvDc1HSic0rS5docfvXquy1DkVogfydNe8HOjx/fmpL6TRQtTI2uCY7EqP p5t9AipNi9CFppNe44H0mDyXKJ54oBgFH7ZKdyqix1zRZDVybwnql5YoDK2h x/QHfGafaZciBYaRqqIWeryosd/DN6EU1dXaf17pp8dvW66YUGzK0KKW27In MwPunK0uk6KUI12iNn0SDwNWFb80FyRZgYLW6TkaCQz44n6z6q17FUi+0p+0 bQ8DptiRdX4KVCLLQ2+OhpgxYMfjJyMualehVGFro8JLDPhK5z+uZO8qNL8k afHVngE/2svZ2ttUhV4Uk28RnjDg3HktzE+7z3vDbrlo+DPghlGH33w+1UjO WdnT+jUDftnDRl6vqUawv+x1QhoDZh1ZJAftqUGc/I/f1eczYOHH8l8OXKlB 5rMobaySAYco2/2C8Bo0l9tcofCZARuZ5qz7L9Qg7VeBDSf7GHBT24ORJklA gY5GHx1GGfChtCyPcX1AMru//cxfYcDlTlLzPVGAnDij/3QyMOLLJ09lpFUB qv5zYXGRkxGzifp0WA4AYqdIbwkLM2K/6YrkuQ1AZhm/2P6TYsRuBzGUctWi RP8M/vO7GHGW9J8/dmK1iGrnKO6hyojVwllluORrkabefrl4xIi3y5jWJR+o Rc93Lu2tO8GIA2MjlJW1a1EXS4X66FlGXGHg8Tv3eC2S+uV+mOUCIza598ZR xrgWOTbqGMrbMWIjosb5oHO1qCKZ+Zz+XUY8rWRrOm1di1h9Wi/desyIh4pL uI5eqUUmV17aB/kx4pUE/eOvr9eieN3TznnBjFg9Mf1Lr30t+isl6PHlLSP+ 55AVRHCoRYceJdx5n8yI9U1TwcixFnl17b6Wl8OI7y077guk4fbdFeZxZYz4 17TLj3aav9CzYwZBdYx49htLm+CtWnRp6Atyb2fE337Ksl+/UYsy1C8euNXN iH0oT6rfX6tFC6F/5KyGGPFbQ33enTa1SHvKVVR/kmafV9CIsqLN4ygTt/oC I8bXhLyFTGvRl9hgevlNRly9Q1s9ybAWia+ILwqxMWHH8okKdLQW2Z5OH2fm Z8IcNhfu/NWoRXkZqv0LYkx4h0xtR/a+WrTGWPdpRJYJB96bP+8lV4telfSV vFdnwm+d7fY50vjq47mekXeYCR+6degW3xZtP9yYfxdnyITVggLKHv0EVCbG 6etuw4RJ/ac3N+IBMdyPenDrJhOG1nxJogcgg48yt6zuM2EPlxPfnlgAGvLU Oqvuz0Q7o+e0JDgAKfa1HpN/zYQnGJxqr/ysQc4HzP4TfseEX+5zePSvuAax /XKUWsxjwg41HiRVyxq072Q8Na+HCcsedVrUe1WNHicrjcQNM+Euk0r/WPNq 1LRR1h00xYQLh5yN7CWrkWVeR/UtOmZ8O4pezzWzCnkJMr6Ql2fGxesfwqdz K1G746snwvuZ8VnhrsHHDpVIqEXsHosmMx6ZD6whK1SiDDcVy1EjZmy2SRSZ fleBOgevyce7MuOVagbXBpdyRFKfE3v1lBmbfE1S7VIoR3ahHjwegcy4ydmz IOt7GVo/ErlkFceMh57cuP9RowzJZLQ0CDfT1us1Db8/XYLuO++yeSXEgpND tNMfSBchIXZqlZkUCz4m8OVPe1UhKosrECEpsWBROW3BHWaFaL1N/XOWDgt2 fL/6d8G3AHlJ6aG2WyyYNyJbk+d7Hgr6eJXIXM+Csx6df3q7IQOlysf2ut1m xd6Hnh6Qco1CejU2qrpurJjHIPjYnfgINHFWNmSbLyvu72UW728NQ0pPsvSi 3rLio+t/Fp4SQ1DB14rS4kZWnMztoc8Z6Y1qvL6Fz4ixYcQsPGjhfxe+9fOe sW1hw1+aYyKfdseBfuC1HucvbHjozNdbLBnxUKVeccG7nw1n5Vqo77meAPER V27Gz7DhqeuKCY/7E8HOuMSnT2Qbvpl6bo25IAXW6q1KT93YhtMYjh9oosuE W3fztKzvbcN23gNMpxIyYUCSueGm+zbMTLr9i4yyoM495/PzkG043fSgaPn9 bAhUo5+sK9+G1f7TiXVuygXxzFRxNXZ27MllcP7AWj4EWfxLPCrAjod7fH7d VCsAOjZjBRMSO6ZfUIqxuFcAo1dXVe/sZ8fmnC9P6v8ugGySgVGmJTs2k1eq 0oJCkPwQ/7X8Kjv2Fb7B3T9bCKGPFq1aHNnx9TQ7HeKOInDpibUb82LHpETD Os+nRaAdOvtUIpMW/9vaIGZ3MeThY2x7itmxxGV+eSnTYpCmvg3SBHa8PX+O X/NRMbAYHIm26GTHF1vTTu+tL4YHa1FSdj/Y8bnqJDfmsWKYJP9Nc/nNjoVt Ra0dmEvgE3Nk0et/7DhyNXlqWqcEdIv+/JfIzIGVzPdKsl4ogaLL+H0eDwfe NyIsmvOgBOT4wo8DgQNPGw2bjISUQBRMfPiwgwNXP5G2SU0vAXZHbZP+3RxY 0vXe2BKUwGPx132Tahy4TcwhtqurBC491PzNasCB71pc5VZbKwHFqy1fp804 8Au+hwe5OUth/pRJw1cbDkwn4ma7T7yUxv9QQdUtDvznjfC3eMVS8JO5lZDk yoErD44MnFcrBWOelVcBXhx4NP/A3DXdUiCseXvcecmBtapZkqpOlsLwKI+D eRQHVh4circ5WwpZn6KtUBIHnnXNLDO1KAWXip36cjkc+OJEcNcb61JAKYWH uMo5MO9Y9789l0qBLRjtXKjnwAKjJWeEbErhixtF8PtHDnylXUX0NM0ec+0c U10vrf/m+dwhWryt8cgceZQDsxpvC2qi5VfWuP3zFZUDH7//UZ/JpBRWZf99 clnjwBdscqOiDUqhjvdZjTUzJ54lrh4NOlwKL/7xZx/h5cRd8SmaA4dKwexX bPQuMU78aoec10ulUpDsUAzgl6Phtl1qsaRSmKwsebCqzInfxztG8vOUQmGq 7vUhDU7sMnV3dWqDNv+Qj6bNxzjxzWGDj3v/lMCxx5ZHck5z4n+VlxN+dJcA 7/Vf+8PPc+J01d0iq7Ul0Hv6rtTj65xY9tHSrA+Nz1s7AzZPuHPi/oUDJ1fv l8BBfqG/ys85cfHFhebfFiWwtZ7wXfg1J17aCwlnNEsg9Et52RiZE997xeWS sV4M56uPprUX0vJreuyL7SsGWXJHeGENJy5S0qCI0d6jZe4Td592cWIZQ19i /c1iGJAn7CbSceGqsz7tSg1FQN6eIsbEwYU/P9O62htRBHc2ldn/CHLhRa4/ MnvtioCpS+932S4uzM//6PxvliJQfPIgweQcF/4VJhfPqloICzeYgjUuc2GO 3aTxhxsFUG0S7CHtwIX3Z8tRyhsKwFiRbDXjxYWF7bz+FRsVgMvXb4Ivcrhw +o7QSSXzfKjfpRZQz8yNT/bMmVy8nQMX9pokzfJwY+kso7k749k0vXynSkKU G7vqsT5muJQNSv9lTj/aw42VxTUZ6vWzIExP4qzKOW5s28Yh9IEnA2yvsYqn kLlxspGE2MtLKcAW9y3b7yQP/v5snZPUFAGJiQtNRaY8OMUjoofBIxw0U/mG hi/y4KsXZnyvqYaBU/ZJfuTMg5k/m+ctJYZAbyW4LMfw4KdD/Y84lp9DRk8a spvmwan9dx6OxduA3Laq8WQ9XnxLYHP9UUEImmveY59oyIsfv9C1Vx0IRTV+ CX/izvBiZdZsYSG2MGTG9Gz67XlefLp09gyHWQTy3Tq9EOzEi1t0llrpet+i 0cXfW4+jePHGxZqvNSUJKK/I8qnbO15seizvhMx/iejxvQ8MDxJ5sa++N9pR lYgEZguY72XxYvXUGIsvlUno8JQ7x41aXmy57+5zjfQUlDi8Xdh0nBezx1FK 6w+mI8cEv6gzf3nxm6nMrfr4dPTfpVWC8RwvNve9l7jOloG+/BgQP7nOixPf XnnN0JWB6HvTpXV4+TCzK91Kz9ks1B4pnqwtyIdryG7E7blZKMrslaymKB9u e3Fl8iJbNlLucpZXk+HDwY8V/0oWZ6NLn9Ce3Yf4sPO5/emdSzlIKaggV1GL D2uF0+uq6uaiFQPZffK6fDhtPCs5MDAXvWpjV9lhwIdjwmdIzJx5yNLfvVjy NB+W003HEbvzkJzezEGSGR9+f+JMl9ipPFTT+FWdcIkPy/gabN8KzEMBPnqV Qtf4MJ/goJ5leh4yO1ypKWDPh3cOLDGlNOah6dp4xOPMh2snO74z/ctDFU+2 v+d8yIczuZuYRQTykZ+2ny67Bx+2DsnsElLKR8Sqm0eZn/PhXeZH1brM85EA YW3N8SUfrhLo1zx2Ox9xujzP6wnlw6wHzpbc9slHTJ1CtrpRfFjFcn7eKCof re9NEct6x4eVjylY/8rIRwsvDnQIJvFhsoOX0/6qfPRn4r3fEzIf3iKQ6w+0 56PhY8aaE9l8+PycOeNkXz7qSxqYPVPIh9fWLs2bjOejL3QOaVVltHrYgx2d F/JRq/W/83I1fDi1KMdWbysf1Vb48wfX8+HIgjujn9kKUJmwSMtqCx9mh5us 3HwFKM851f3KRz6cM7/BTCdSgNI6VA586OTDsYnHdqcRC1Dsnvrxg718+EQe 909G6QIUEXg6Nn6AD9++XRwtJFuAgsYHz7KP8mEnerHpQbkC5HvUcZvzBB8W 0/J/cmlnAXqcuF7zY5oPu5Oiud7Q7M5bAc7HF/hwx3vpWwEyBejWeYJi/iof fjnF5asqVYCulKcNim7x4WS5E+bR4gXIUuhguA8TP9a8nvCvSqgAnbnXoD+9 jR8rnkt+G81TgPQ/n6Ez5+HHPkpPXA6xFiCd3T+L3wvw436p/rGwjXx0KOD2 zV2i/DjyRY1JwVw+Uv69IRkuQcsXbn0k9Fc+kj/yontThh9LhG/oH+zNRxIJ oi/sFPlxhnjL9vi2fMRtpbasocqPDy8y0rWn5yOWssaslP/4caJyy1BIZD7a EDC5zIP58SiZcVOGxvfUR6cPw/r8+OyZ/ccqLfLR6K4tLwNjftx8t+ZjnW4+ +v785aESU35c+DT4VLxiPmrTzUjyv8SPvbOeNvxaykN1cYcs5q/xY8MXhgUm tPdh+XoTt/VNfmyz08AvsSYPkUtGHiq78OPkCsOY8ad56Jki0fhbID9W69cW /76UizyeZTLrhPBjtxiVO2dycpHLqHplRgQ/HgpkFym7kotsY83kPBL48cTp MFm7lhx0hD94XaaUH0c8K2wScstGdGsM6XeH+fHWFZeYvz4Z6NJI7/yT3/x4 heHTwm3ZDFTbnqf9coofu1J+iQQ0pCPPuAtdaUv8uHf80O34TTLaOlKx1c++ HZu/tvqw/Uoa2nx1x+z4ge34gDPBTms+Ca3LDjGK+2zHiz3mBEJrFDrPU3pK wX871vI9uMnaHomqVl6+ORi0HT897HmZ8WMEekzR2Hs6ajsuu8QfcPFTGPrn FGnpl7Udu5hse+zQGozWKk/lz3Rtx0oPbFTbTz9Fy6erLzTKCuATsw8isv66 g1dv7g/tXQI4X2vU5rLoU+C2STxfpiyAf/El5vhreIOc0zPLTA0BjC1Yjba7 PAOToNNmIadp8RPqnowtryCvbczQ2l0AT3h1Mf4djATNMz3t3V4CeH9bD4G1 Owqae9tOGj8XwKX2y8c6W9/AwHjuicOvBfBljzAVnYxo4GR1O6qQLoBvh+Qw VhjEwY3D3FqLXQKYVEXX5cucBAttdFWOfQL4EP4sGmqfBJ5n5v8bHxTA/Rl/ 2hg+JkGUTc+h75MCuIj1882VV8nQ9CRR5T2dIJ7q6xJ7uZUCZ1jDC/9jEcRa uQUHBc6lwo+gZ/uLOASx28fD+zqyUmHh3S3lNCFBXBEbyd9zJg2kqw4qvVQS xA4fNB8HPydDzmGFTJb9gpjzsGG4ZgcZ1Cliip5qgrhUBr6uCKeDcR+d/D1d QWx79lV2SFw69NvMp04dF8R3qWGvbYfS4frEmKytoSCOCM3V1pTIAI+Vth0W 5oLYt/mcTH9EBrB7Vid+sRbEBh0Cg3GfMiCcNU/K4IogfpgbdvEcSyZkCYVL IEdBrBynej7CIRMOxT6LLbsniK2o/4JEYjOhQdaNuP+hIN4nxbbo3Z4J31Uu isn6COJbU5dcuXZkge2qKo+vvyBWiOA7fId2/89UczKOBdHiZdSbW29ngZvX yNKRMEF8cfmOs+DrLGA6XjGZ/EYQZ4mIDJ0pyoIgjpABpjhB/JHeuMGzMwsI n69/uZosiIkj7HSxM1mwx0KwQiZXED8X6M5PlMmGMuJUtk+RIA78Q3n3XCMb dIfrEkbLBXHTb5YPlsbZ0J76JvwICGKT2kvdIley4dxNJ//kBkEcYnDtft29 bBjee9ydqU0QP3I4GnDOKxtuLRDvXP0kiGW8mwk9QdmwVLZwtaFLEJfdVjU8 8iYbPN0p5jJ9gviDot7dmIRsYNdNNPAZFMSWv3n/DaVlQzjLQzw6Kog3Pw66 82dlgyTFSOXIpCC+bSpfvC8nGzJeycknUwUx3c4rTxANq5hsiDEt0vgo/jug SfOvEeniubomiB2v/V5VJGeD3o8MxoYtQUx/hVOUIzEbOhOeLu9gFsLVYkFZ A7R6Ltia//FmF8Ii1yd00l5lw7ji3sERHiEsfaHipa13NtylMnceFhTCh3+/ tCXR9N16YX9TkqgQdlnLa/x8NRv8HhRWMEoK4R8JG01PzmQDn1ZAzhVZIWxT mULerZ0NMfQ2ifWKQlje819b/85skGtSi9ihLIS5utXyXvFkQ14Ad4C3qhCO ddJe11vMgv+MxtxH/hPCkk0XnTl6s8CoJ/Ra0lEhfGDrc1Lp2yzoi7lhwXiS ZkfhAWkPsuCqDTa8YiyEiVsd/7JMsuDB5F+VHVZCeL/jS8TCmgUMuQ3y3peE cP6Igq7Nj0x4eS9afOSaEK4UH9wzlJ8Jiet6TElOQvjyx7jHFqaZQOFO7pT2 o+XnJHjm+GWAWadbs1egEH7def1VzKkMGIo8XTkcLIRXrU+ufxbIgAXJrcTE aCG8vkPaUDImHUgHLO9K5wvhFIYzFr8iyEBeVrb1KhHCiidXxMJOk2F/Favl cCWtf2Odwnx2Mhw/WqyT2CSE3W58Zzr7IA2czvHySfcL4eKxGysdOqlwmbz3 rexPIYzCRkMkl1LAdPXUDoVfQjjd5RCfZnoK/Bf9UlV5hsaPS7z9NEcKMA+y W2ozCeM3giqBXfVJ8NaWOclSSRgLfL9Ze58hARrur6m8fiyMBXnP72JrCYeS JkJNxFNh3OHL7vh1NQzShdWPv/UTxoivNbJYMQyCyl0tEoKFcVaZs+CwfyhY bCy45yYLY5WvYpsZHkEw7UNtorQLY2b7i1qsMk+BEDZqzkQUwfSVagt3/ruH DnlLCDlLi+DkiFc1l9tdkNldy86RnSIYDrGNiFi5oVDjz4b1+0XwNU3il6kS T8TJVaXrpSeCb4i5WMzkPUObvq+V6JxF8NKAybn3r0OR+P2PE7cfiuCAC2cv K159jTSubksb9BDBLhlCxV/3h6EHuk+kwF8ER2xOTVe2haPZTXshjzgRHFzP 5WYwEoVGXXXp1ttEMEqORAezYhHDdffqm59FcAfxWXacZRySNCtz+/5VBH86 n/4ZM8Yja5U9ixVDIphXoeS5TmY86p4hTD5cEsEsK7HhCn8S0MKgSdrEPxHc 7q+mk6mWiLZ/enXVgp6ARa8c/wJeicg4m3nwECcBs94NWQ0SSEKtN2Y7l6UI eHpU4KeeXDIaN1cKub6TgLVUOh6N2iYjFr3rp74pEfCTGqGgmZRkpCv3o6VE jYCz8ra4T0qkoEuCIn5yWgQ8ad1+ONQiBT1hOns4QpeAbb72P9YITUFVwy3V 9w0J+BNj8rfUzRTU18H4aOwMAY8HPSy6vD8VrdRqHzI1J+DNPjlO56upSDWu qEDlCgF7+ruuBtanohyr+LT5BwSsGu1x5oRDGlL5tmONxYOAH25IOE4Hp6HK M2kGot4EfLZvczdPYRpqOZEzi18SsC69fF71XBoyatx3xCSUgL2Zsiv0eMmo GxdHXI8kYA60vnpCiYxG1Ko0ghIIODryZknGRTKyL0RBCakEHH+WWYfNlYxm 9tQPFWUS8NuC62I9L8jINePYgZY8Al58LhdASCCjTdk23+/FBCz/PWKSUkhG PgmGPdMVBFyt9KlguoGMOIgdigy1BPzHMPXO0y4yCo0ycRdsJGBBct5H72Ey EhHo+STfRsD32DUDFqfJKPaVlbTmJwK+tHzCvXuVjGQ5Bp2Nugh4573nb+QY 01GW3+Xmy70E7Gd6YmKMPR3tZ/hFcBkg4EHSg1cCfOmo3P3GLf8RGn9ngpoL BNMRXp2qiRkn4AemfmO1IumoydmJL+8vAff0tJsi0XRkODN/pX6OgMOald/t oeGum64l3csEnFfXYf6K5m/5e41tcp2A/+3k0r5My/fzsofVBr0oTkm9IUrm TUd2A/Q5vKyi+NKVp502tHqmLXzpZDhF8efsSdtghnR0/yvbWTU+UYxPSEyq 0PpZN36Roi8kirP1LwcY0/r1audZsRYTxYeCkl+M/iQjNr3X+nckRTGp6brh XCcZvaoXeucjK4ozZePxI9o8hdBbaqQibb2MsFlP2rxjKoi6mXtp+ZhrGJhp fOw4mBBWoyKKxxWSd297SUYZ+TK/O9RF8cbjCt1XND5LybterBwWxejc5oC8 Hhlpy+QOcJwQxWNrZg/wHjJqiNu/T+KUKO6TGJMY5iejLxHq3UfNRXHW75yC 9m9pyJy/Wt7CWhQv7NpvI1qWhgZf4ke3LotiDWaJ5H8RaWjK57jk61ui+JxF q6W3cRq6R0e5m3pHFEe/OKS1d1caWnt0qrHchTafYp6Qh0xpiPWeqf2Qpyg+ KNhxarEgFUnbXCnaHS6KVbLLvg9upSBy/y8WnbeieAecd/r6KQXtNbe3MIkT xVNBAvTesSlI0+jOplu6KH4xlnNS4FAKOqf1RK+lWhSXWdf+czmfjPoXf/HU 1Yni3F0ib8t3JKPLOae+VTaLYgvj4eUfE0nolgTJNrdDFO933WH7/W4S8qKv 9o4Yo817jcFH5EEiymlcq7nKJYbPRvhtHD0bj1Q8Lvtd4BfD8R5miyHs8aj8 YJuhubAY7hO+m8nqFYca0t70n5QSwyNSAjt6zGJRr/+htf2qYth+UVSK/Dca MZ1yUaW3FsNzF/Rt3vVEoACWgfU1GzF822QtylM5AvHA0YYFWzF8aRtJ+9Sz cCSqLHh23EkMj9XaRH/ZF4b28hc5ffIRww53otJTH4Ugy+7ZzHdZYvhIWPts yrdnKP+Cg/R/62JYTXkjMUZHB10uniHG04tjQQmqmlbpbhDgdCawsIrj9MnH pW+2GYNLuRvvFz5xnOPw1P7Iqavwn8DzzRs7xfFuJ/9INXMXqGtN7HtzRhxz ZRCSSILP4J6kXPfWOXF8zv+yo6f/c5BxTe+4Zi2OrdjyKqL/+YOfTF7LPjtx nFdqyxHd8wJOPqkuaXUXx5ubxG9+6iHQpdITukoWx6Rv2iu+ARHgG2gVdDFH HBPrMo6MKUXCweEB/8ZCcUw5Kr3v+odIiHo15hlSI47dy7o3yWxvwHpyzlGh SxxX2REdWK9HA7eOi/2rXnH8Jtq83Ho1GmojV68tDojj+cCidj//GJA+Smf9 fkIcL37iuK6U9A5+xXGdtNgSx4Us26C9Ig4il4KPARMR7/bWqbhIjAc9QwFd WXYibrzxsVPifDxkrImqzwoQcTTf7oTRr/FAe/ft9FckYkaDATuRigSQzMqU pu4lYv3fR/oHqAnwhWEvyVSViGelyv8zkkkElTxVQSlMxAMD26Wl/BNhhf0w Y7kpEfPMLbOp6SYB/zR3WJ0lEdtduDMuT9Mnuzr6ZNovErGatJXtj+AkuBB5 99jgDSJ+66ER5deXBK5u2t/GHYn4nkZRputGEgRbs9vN3SPicZF2cRmJZKjf kejP7EHE1rz/FZMvJEM/i6MojzcRD8/tHHB/nAxLE+qZIs+JeB8/sx3bm2SQ z+to3xVKxG+Y2LwPfUwG3dfvrFUjiXjx50j591/JYOVyY1o7hog9w/a927uZ DEGa9LxnUmn9O01FjsmnAFniQ7xVJhFfIESsHdVMgfcMb/ZdyyPiLk61+LOn UqBv7GqdYzERm/+8MMx1MQUWWpTPPqgg4rQ/9nudHVOAO2t95CkQ8Ve+5+x+ j1Ng56sW58AGIr5jXchx2D8F8N0w5vBWIk4xKB/MCEsBS9NLEbEfifjv8AG9 6tgUcD6ktJPcScRxD5+JuaWlwEuxldL8HiLWPT1w5GdOCqRu1utV/iBijlHp hrmiFKj9+aq3YZiIrdZWsnPKU6C3wcr+428ilvIq3iVYnQJzaTv/fZsiYqqC 6SM5SAHOwPnAn7NETKm9Qx2mYVlHEP+zRMSxVgep+jSsfTowe+EfDeucWbpA izdXOae9SUfCcfGTYRIVKXBHeMcnVhYSrmYPvP2yOAUC1qYv8nGQcHiNAErP TYHkHxUzorwk/KAy6/M9cgpU1/o9lREkYYkkMvN0XAp0J53h3yNKwifs3TpF IlJgxo+UpCZBwvR9bw8vBqQAu/3kAR0ZEpYduXvPxyMFdhiWNOgrkPBo4+Gw ZqcU0FT2MjXZQ8Lbebj/gE0KmG0/9cv6AM3fwfWz4+kUcFoiuF4/RMKLF3Lz vqIU8O8dY72jRcLT1Wc4lpRSoCrOXcHnOAmPaEHQDUZaPV4nKl4akPDZoS6h 2qlkoF4TPBl5moTXFXO+dXclg7RS9q0MKxK+voMz1CAhGTR4Hm4UXiLhbl+9 p7m+yWAydySo+hoJr7k5hvXZJcOzsv7cz7dJeNP50feQXckQH03Gfc4kTOn5 GyHNkQwVHs4dIw9p8yJz+/pMJMHUEc75JW8SdhgTpTQmJsGZDo2DxCgSth2/ 7OnHmgTsGhzvq96RsJ/fNo+tnkR4n9x38nwSrb/Pz1RF0xNB+cFDm+gcEq7q XL9/9GgicEuUviA0kjCS0Nv21yEBmp77CZe3kfDG0M2ZKZUEcJ8zTTT/TKuv WfZYwVo8TDUulEZ+J+H3cifb4r3iofXW/hHBORK2fL5sr7otDjy76R2Ll0n4 X8Lu8RSfWDiEO1ZMNki4/RVvzvzGO0jd7sQdxiaBSVsJB85OxoBPRbY6v4QE Ptxt+PlC5lvAbArB3AYS+PkCaWOlJxxW7qyI5pyWwL7bhcZz1MIh93tziuE5 CSxE6pajDw8DUq5t5YvLEnj+eqBAzsnXsG6a/Iv9oQQ27bhiGpERDKVJElqs qRL4sZihziNnP3DkojanZkrgN1E/Rtv4fEHOtebMsXwJvJr9s2Ij2xvC9K3t fKsksGv7vVi3EU+4O/v2NWOnBL7kK5GeHOgCilb2pKQemt27+/6Dinvws0E9 XXdAAvt8JGi2jTuBcVRPzdMJCWxdIjzp528LbAzkE1JUCazZ+EE3f+wSwE3X rtoFCWyxK6dV3NcMXL4eu3hpTQK/+9Rks8frGOxBQpNbWxK4huvgz9qJazX/ A75ypUs= "]]}, Annotation[#, "Charting`Private`Tag$620549#1"]& ], TagBox[ {RGBColor[0.26666666666666666`, 0.4666666666666667, 0.6666666666666666], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVV3k41N8Xtu/bDDMMZizZkspSRHEtURGlQlG2EIpKhW+LijYUsoUQ2fcx siTcI0t2UpGSpZAtk6VNi9/8/vnc5zzvPc997/ueez/3KLifPuDJwcbGJs36 /H/chMiza2tyICma/qFIz6/h9K91d36tysFUuCg5tN8S0yu0VJa/yYFLz2wY edARa6tZu0/NyYFYtN1/qyO+WI9w413XoBxEq91IOj99ERt/WuxILpMDtTBF Qb/xCHw9bc07rlAOIgZbZFYj7+LnDsK893LkIO60YvDVrVF4Z5ea2bWHcjAS UKN683kM3lPp8szrthwM7o73fcwfjw/c7i7ScZGDh62Cbt2+KTjO5P2ejY5y sE9DZ6VB6yF+/Xv6s4qdHLy8Fm7j/OMhtj/DpSRtJQeci6G7z4ekYacj21PZ 9OTgATevka1hBvbYUHC3W0QOPH0s6HpiWThnskr9Bb8caGUGgqlXFp561NwG XHKwRyT8185nWdhHYozrySoNPhSZ3Jdyz8b+f8lXUqZoEGq7Sj3+OAcH9d7w O9FAAy1vJmlhOg/fnQscXKmhQV/29qqrWvn4Ma+PSWgFDRraU8aDg/NxF7Im peXTQL47kRHBXoA/OqGr6lk0yBHx4U0yK8A/grRmqtNoYJaQZvE9rAAr0kn1 /bE04AjMIsSsFeBtXbyqrvdooMcw2dBoUIitp3/FfLlNg8BshtWm84U4WH7E g+8KDejX7f7ljxfinphcIaMTNKjtNDuclluEJ4qTAjvdaEBKEBXY8KoI/2qL GDt8lAY7rI6m9v0twkrsp5+cs6VBpgS18KB1MTagutHY99JAm9j/cH1AMd6n f/BOlAUNKL2aTnwJxfjiWb2jBdtpMMotkdn/uhjH3FvfqqtLA9cnqLh6sRjn FMhoNmvSwPLDz6gkoRJc2yKcYruBBqoiAe4ByiW4b3yNc1SZBvd6ZI6b7ijB U38X/U7J06Bzx+ev3LYl+DdlYvCXNA2EbG9F1x4vwWK6Aya3STQohYKpY+dL sMqBtiIJMRpsuLLj+ZfQErzDv5b0WIAGLW2pRO/oEmwbUXx1MzcNFIf75zuS S7BXbvpM3RoVRKRaIiQel+DLz2MOWq5Swb7Bx8osvwTHjoTWD65QIX3jd4Zd cQnOWz2v6smkwrqHgictS0twHfnE/aUZKvRYjJvKs+J+7SO/r05Qgah8avNA UQmetrHyFB6lwo/VMKuTeSX4r69hb8oQFTZOc78dySjBxNub9dVeU4Hr6Mp2 zaQSrJalkFXZQwX62Xgul3sl2BCLC5u1U2Ef/c6k77USfOA9d1BfExW8NGZq Dp4twd4/fowda6CCOO+RqxTXEnxFfNZyroYKlbsprnV7Wfw3Dz8JrqBClASl YIdeCc636qHxlFLhnTZnb4pcCa4/AXfi8qkgw9ztN8jN4h/GWJLPokL/bnWL 5ZliPP0o+2hpGhU6zj8zZXYW47/PElu3J1FhrvhzQFdRMVZbuZhif4/Fz4R5 erNnMTYS8+OauE2F5/QXtBqjYnxQw8X/bCgVTvOotaiSi3GIh5np3SAqmFsM ejU1FOH4a1uLKQFUEDX48d9ydBEuSFUl552igvI62hOiSxF+/VpwttGNCicP tp9X+1GIr3tUNhQdpUJ2ZVDJUFMh3rTiHJfgwNL/a/x4a1QhviPO2OFjTYVc 8XcKLnKF2PDA4WgxfSpohVNj+zcU4Nlxdo9VHSrUU6/5ls7m46SzRdsmNlGh vPX+1+G8fLwU82+8WokKFx/pByFqPs7tzd7iIkaFhxvb4kJWcvFBFxv+PYKs +lia0D+Ym4vZmD8+aPNQIdm4WD/JPhc7iljd5vkjC6OjgrI3GDlY1HpxqOSz LFjMvlp1PpyNgzsMr/5pkAU11WcD+10zsbLj54NTT2VB468cz5HfGbh/Jkat 74ksNP6UtZVPyMAa/BMvswplQXs80IEn4hEe3xWhZJUoC0eNfctCNqZiy5aB 9mQ/Waj5WdrLLpqAWUpL6MmycP+TPeknA3EXcet5A0lZ2DAv1FF0KQBf9Fx9 ZUiUhcf9w3r7CX54QOBm3E4+WSii1et6+TjiGLsU4oEVGbAKYqR3PnVHnHPN Yn5dMlBf7cdfCjfQDElaOOuyDLQPcWhEGqagJO/RU7lBMvDq8uGEpi0PkcWz 7K6CABkI53zAM6Seih67br5L95aBDKNmDWfxdHS0aKdgwyEZ2P+1UJI0m4F6 jU/zD2nIwOXOvbtGwrJRSNwWn2FVGcjOzdg8tpSNNKZ+tY0qykAfUrJ455qD 7kTeuDMlJQP9myLqUvRzkelAMu8KlwzEK8f0hn/IQ5Unm7lFP0iDorjQB92Z QrRN3l8rd1Aazvnq8G7dW4RqX0seM+yXhmthgX0hJUUIDE8+OflCGmhv+nQH fItRhyjxeFu5NHT6Fy5Dbwmybn4W5VIsDbwPtXh3K5WivmDP2u+50uA29+7c aGApejNeQ1BOlQbBHu+RdeQyNFbhAtdvSUMgabZBiUZH7t7881LXpSGkIPn2 XmM6mpStkKRfkoYYL6PH7m50NHuT5/TIGWk4n90ia5NBR34G9JQLJ6XhzZpm H7WBjr4uHGkV8pKG/V3SV/re0dE3hxLqdidpqHp1UvO1WDkKFnLY028nDfkn z8vIq5ejVWC74LNfGsxmitt3mpYjNvVDXQ/MpSFrIIxP9HQ5Ch35+2OTMWu/ 8i9I9LByxB2Xt67VQBr0HWdG5R+UI4E/qxdXNktDtWvIZZ/acnSPnp0bqS4N C04LPoYd5UjM06ZfUVkaeChxlkNvy1Es5effp3LS8IrnnfP2qXJE6slcbyst Dd3MD7/dlspRUqiV3bSENEhujom0+luOpPW+XbsqKg3jsWN3v/MwUNpcejFZ QBqWpj/FuYkykHzG7rclXNLQqPVrTySZgR4fWuI0X6OAdtAXvwBZBlLmT908 /IsCRWa01yQFBsqvN3c6t0IBu6oUr/NKDKQewLwlwKTAdy0z5XsqDFSikszI nKHA0uPPyi6qDKT53nRk2wQFdB094mdYOCN6nr9vhAJsF+sZG5QZaOvOxK0n hijAs7RtSEmRgWp+Ird/ryhwhC8o8DWVgQxKZu4m9FBg7lS4qIEUA9W7xdVo tFOg9zWfsR2BgYzJhhNNTRSIl1lfq8zPQM87pkSdGiigOt1pUbRWjsyvxmxf qqGAxav7LZMr5ahNx+BEeAUFCoVnNd5MlyPL6U+x8qUUmAyTj/jvfTnqTr3X UJ1PAbcQX/ZXXeVov63erE0WBW48W+werytH/dzjpKk0CpRyjJjkFpUju9oI kytJFEjYdKxVPrkcvfXf4icRRwHTkoL3tjfLkeO6kaSiexQQviBKMThTjlzv an0dCqVAm3njsDarXi4+ib3VfYUCh8xUxX6x6ilheFm2MZgC+x/8yMwilqMO jao9+f4U+GomYFMwQkcThyTHHvpQQHIizZKniY7+XQ4OjPagwDfrrb5WuXSk 022QFejI8mdsLTHWh45svj3U97WjQOP8d8KDPXTkTf3be2w/BdLlvCPvqNFR qh/+s9OCAiWLSapnWssQj8hOe3FtCjjmkmamH5Qied2ceZ6NFHie6PqCvKsU bXfmCVtVpcAIVr21baUEnSltKxunUsAgalHmxO4SNGRjzU/np8Dlz+t1Jt4W oeJo+7q941KwSVJ20jM9H7VWVx8wHpaC3unInslN+Wh8VGpGZ1AKkAO3QW59 HiJrvifJdEuB3fhnQbaBXHS1z+X0TI0UnN95eO9z1v10gOCjeCtGCk4kf+PZ +jED/Yy9dAcjKTBVaZFO2hyNPss2zloYSMEoPpRSHncXDeTyWPdskYKCDUFd P5bDUUXtfcKH9VJgnK28igtuIP+PeSmr4lKgljvp9WDkHPqk9bp467QkSDwY rQuaDsI9fRovi2Ik4czLPPUIkVRc5xigoxMpCfqyG0PWfNNw0UR1Qu1NSWDG BoRbtqbjOz9NHdsvSsKOg2ZNV+oysJn8kU9THpIgJ3L6xJpnFq45ffObgr4k RMTJRmqG5+O8Xx0OBTqS8L13PFNFrQAnhonVam6ShN8fq1UaWgrwuQcPQ9A6 SQgqE3yS8Yf1/8XlvMeEJWFAcNbqo0MJzhIZoSSNk6E3OJ2D9wMdxzohXv1h MoTl/9eUQC3HofkZK0MDZCiLcd+meKwcu5se75XpIrPer25f5YbKsWLg9I1H VWTW+YrNXtfMwMSmPQHG5WRgLvtWSPxhYA6xIpfxIjLYMDldhrUr8McCP4N1 mWT4Ku+9+UNqBX78YYmZG0kGaubvH6ruT3Cs+qEPu26RwfifUf3+mCc4NKiy Y/oaGQaPdOhsrH+C3QnBOeqBZJB7YaS4SKzEB5yHYjvPkEGfFPu8b3slNi0y uHbqJCtfKcvz0PFKrGD+17HUlQwr50WmtpVWYrFY5937nMiw0LTpfuzLSsw2 ird+tSPDhLjW++vLlXgsOFRM24oMOoyBN+I6Vbiv5dPffnMyODpQOen7qzAQ zefOGZPh7k/p9tenqnBGMW9r5VYWPz4b8eKMKhzzy7vCXpMM/pTpzsM1Vfia RUfGD3UyVGvfuhXaU4XPxG2ISlImw9Tv90kqn6qw69jdS/ryZBg2HD5j+r0K 79+44P1Omgz757/Fv+KtxsYX99lfIrH4wL7sQclqrPmCbiYrRoZ1LhwOe1Wq sZwEUategAwBArYhm3WqsYjbOZozNxmO949xXTWqxv9KXguurZHg866FhW27 q/HC6tZfj1ZJYF1w3dFpfzUe2fVgyvgbCcxvZl6dsK/GPfE/X40zSfC3N4ze 71SNG8aPNIbOksDMq/6Ikks1Lt30rHTdJAnKV09zvHWtxumXZFObR0nQ4R24 d54VR7VdCfd8RwJ73+gVF9b8ENJoIM8bEkgW3erXOlqN/d2NPfJ6SeChd3TI 1aEaO5dl2u7uIEGxia/kPIuPzR8ONNNMAoEd4VX9LL5Gezw0IjAJ2ky0/4ij arwpsYWyoZbE6mcf7Slj7Zf6SYW36wkJvtTPy2Sz9BDSvLNyqowEA/FaQkss vf5cnhkXLiTBgkBGbxJLz/l2y97SbBJMDqbqJX2rwsPk4rp9j0iQUz+o9XW8 CncdFy78mkwCrx63toyuKlxH939wP54E6XONCoWVVTjVUivgVTgJqg6+N28L rcJKgpYdfTdIEJkyd6bTuwoXdbor9lwlwV0n2x4X6ypcuze+v+0CCbSSci4a EauwqXCJeusZErwsdNwYsVSJO7pbQptOkuBH7p8hH1Y9Dtn80G5wI4G2fvfb 6YhK7CoqFvnsKAnaT4UZRnhW4uletU81Dix/zHQbm4wq8c/9jnEV1iTonObZ zvXlCSYfrF/O1yeB78/4Q5+2PcHp4gNWuVtIUG+pc96P7wlWfr2QlbWZBG4t RyRSByrwFjv5Q+nKJJivvZS14F+BDziEPYkjkKDw/ZxNdjQDv5NMFbovRALD brrGvUMM7Pb2iUcULwnG+aQPakgx8JkjUxLhfyVAY3ff4oOH5Tjaac+FkBkJ eBcVYhsQR8dkWffuSxMSMBqUVutoQ8fpwxeV/xuVAHLWx2AxPjouPVb85twb CZCe02H/yCzFXS6iuj6NEuDLnzjcGVeM+TzefD+YLAELKhMvnp7LwzFKCza2 8ax8hVzLhNZcLDnJk2cTLQEoUNj/pmQuVvHa5rDnJisOx8ovKrKxuffDaqOz ElDH9O/pG8jEoafcgtfvkQDa2fXj79If4JEo59RaMwmQGfDmNV1IwAblTmBl JAHXY22Mkg3i8dI3Oz5/HQlgBAY8v9URg92uWiYxqBKgb/xc5kt8GDaO1anZ viQOPw4bW3f4B6B/1dw/rR+KQ3VHXnO6eCZyfMchO5ogDgPr3x3Fa5mo6s8a OhMjDsIrT69fmHuM/E1Wb8feFIf4vRFWLo3Z6EPHguTgaXGwGNO6beuZj+o+ DOq57mTN1znU8iWkDEmxvXFaNBIH8yXur8ab6Oi8Yv/VUH1xWBOsJexLpSON E10vsjeJw8zTV5vIgeUo9Ss4zEiJg8fP7R4n5CrQJc7CoIAvRPjruILnTKqQ f7Izj+s0EW4sPJV9lVKF3DeLJ1h/IsLwYNRSzlIVsnS6zFAbIoL+q7uvV9Kr kVSFzZeRZiLsnPK9ED5Tg4T2cF7uwkQwyWhwoOk/RWsj1QK1tUTYdO7Ef363 n6IpAQW1BDoRcsW6exXla9ET92V3q1QizNNeGu0yeYbyf+YtbntAhMBCu62C t56hh1FHr6nEEuE6v3KCU/szFFrbksZ+hwj7upRfRlrVIVti0tvqc0TwWDnZ mmBYj3bm7z2R40+EhJ7rCmqB9WibEfv3WB8i6Pyi6VBL6pG8r6+4vwsR2IU+ c8iSG9BC4w4bJSsiTHMpBk+/akAfHRaHCRZECOc4qCy01oDefMk5uWZMhLQ2 uTI/NYzqKKLh73SJMHBqy/WhCxjRy5ok27SIYBXOk/g+GaNs8+DcSg0iGE+p KAjWYRR5drwpRpG1foCT1qdVjEJ4Ew+EUInAoZBMey4IKCDNcvykFBH61z+d UqAA8tJZO31EnAiRItxa0cqAHNsr/lmIEIH7+cs9fFqAbFy8723hJ4LruW/h kdsBmXyTlVXkYvG/NmsvaQ5oS+TLQtE1AnAMLioWWgNSU7il//cXAQyfbvEz tQMkW23QNrtCAJ7lycYRJ0Ci1kz7t0wCrPN3r73iBojjU9ZkyywBUjRs/1K9 AH0PPny+YpIAQtnPjRp8AM2KCHNmjhHgUfA+42OnAH3Ibrwf9Z4Aq/G6L3/5 AeozCJS/PECAibSLPbH+gJr71Mt8XhJAHP9TVGXFNV6jhg5dBIjsffyikpVf 9Ceua+cLApztdG4y9AWUHrvbSfs5Acoyj21oYK0fq/Z3Rq6eABoHJdfpugO6 1VAeLFxDgH3uvsPZRwFdPOTF+5tBgLCYJw/47QH5z0onTpew8OnZrOM2gNyu 9SoN5BPAnFjuzGDpYz/0yOhDFgGkpS4NqO0AZKl95vBEOgHi/J47pbH0RZHG AXPJBLiZrnBVVIWl54TY3aV4AhSHEEZDWP6sNxzP+RVNgALe36pzLP9oieWY LZIAx2Xuq+Wz/OXbfWBZ5DpL79M7RXRrMfqboShMvkyA2Wjd2MVEjJZ+LalQ gwgw0zJqmXMWo/dFcY4b/Ahgy5y5/k0eoz4uj/Pa3gRI0Fp0iv3WgJqPbYnS P06AlnANRbW2BlQq+qZx1xEC7BWr9TY+0YCyvHPe2xwiwM/RGxrNOg0oqfHC N7t9BKhRTDlu9q8eXT9HXu9hToAcgsyK3r16dGjQIeaaFgECEPtt6bg6tEdT rfC2BgFeOzDZUvbVIaPwn01RqgSYf2pwWU6gDqltT/6RSiVAo9TbBbP/nqHf 6e+cn/ITYBNT/uZG41r09UdhMHCx/Hpc+Zv85Sma2H8p9sWaGMh1zXhIJT1F PRyyrW++iUH16Dl9/+ka9Njr2MalcTEgJz4Oqw2oRrs3jf1WrxWDG/io1zvN J8jwNp2kXSkGn91VsnqgAmmPXdusTxcDI/eqKol9FUgmVuH4rlwxKNnJaM/3 YqCFb+4dx2PF4H3YcFxQKB0l1E8mpfqKwUqrumPYx3zkHJwSoucpBj+u6R8m 1uYhNZ19Hv0uYoBPVzoER+Wi2vyazXx2YqDwXbycf1M2GomLbD2HxMBhw1yO Snw6UvXVWrGUEIOtxYyzBRI3UMDG1fSlS6Kw5G1al/01A3NlHfdVOysKVHKG jo3jY5wo1b3V2UsU1IoGCPnNWfgZZ0ZX+35RMG747Sj2MBdzvTNfzVAWhR32 MZyKe4tx4q37dvt6ReDS9vwOlTcVuHZUTahYUQR2izcv57xuwJd3sJekSIlA /Jf4acZZjA2Th6zDRURAY73b6hAPYDgQEe21KgyhqMNmSybgFy1zRIV+Ybj+ TBvV9TTi10WllMTrwlDUPi8XzdeME/lu194IEoaBKTHDXXubsYOni9M5P2EQ SrvOUIluxu9oYmn7jwhDuUCs6y5iCx6/f1ZeUEsYCNXC06HCrXghaIvqtTEh sLjMkX/v1QtMfy3U5j8gBM1lBTJevG34rNak97EuIVhwPeomadCGV2YTCg1q hMBR+27V4sM2XLXL32p9qRA4V5jcJHS24eBsi3nJbCEwafia/eNnG/597MfG b9FC0Hua+JTLth3X1fb2fLopBPXhZlWKl9pxiGT+6f5LQiAk4kX+ltWOOV4e Li87IQR2G/6E5Cy24+aNWgfSjwnBpN/x8YvkDnwzgn/57kEhmGPIOC3rd2C+ nbVbfJEQ0Dlboe5yB+7IiH1zeKsQq7/zcOFO7cB3//oG7togBLcF110ae9qB RatlapQkWXyHXhGMFjtwn/jKYXFhIehxCnlUI9CJY890/WLnFIKT8up9lYqd mKx+ZfvogiAc22DWpWbTid/eshvunhCEC35RhAdunTj508Yrde8EYfNzroXg c53Y0ZiHVtQnCNTwCOgI68SyaSMNya2CsBSx+u1ObCce+VXlcqdOENwITvz0 R504wz6aLYghCPsCiDd2FHVi94oTmZ75gjAiKPNPvbITrxMzNj2ULgippbq0 4PpOHKU5ftE3jpUfIf1fanMn630YWnHtjiAwBoT/62ln5Z9dN594RRCepVaR Bbo7cdf9ZqWSAEF4YGjiatXTiXUZnseaTgiCdFn+f1EsPKOfJ3HoqCCcov9N 7e3oxALLeT1MW0HQWCqWFmztxOfF9/Dy7BIEr43NRwwxi7/OLJLdIQi/lXTf uld14t2HIoO1tQRh2z3qhmAWf8Z5jfLdKoIg/ubfv//SOzE1oXvGWYa1/y4+ Kc/oTnyn0l/xgpggtKgcOqAb0omX3og6RXILglqnwuNZ30589Ds9LnNVAPCa pMRVu07cSj7QVc0UgKOOId1fDTuxpt4yV8+EAPx3JVjIUKkTpzjEG04MCUB+ MlJz4+vEXMFbA1d7BCCQ7njfcbYDn04aKBVrFoCZ+DcvVTo68LuaoM8qTwUA cgLvNeV14J1DUvKGpQJAMVq+vimsA0tJO933SRKA6x81o710OnCowZ/2q/cE oHlbd+5mvg4875jGkRgqAKP7nL41vGvHjQ9Hzz0/JcC67/2c1v/XjjXqrhW/ dROA+Zy+3ezm7ThxWGFywV4A/m3SpSSLtGNfqoe9jIkAfMxO38HJOj+vDbmj tXQFoCKk2+TVsTZs5Jz7YtcGFh/fjChnWhsWfzS97TxJAPiNhx5kJb3AdfJ+ Mt0z/OAkldL+5mwrVjEROfRphB+0HV/k+ym24hi3sru/XvFDXlfzZF1fC/Z8 vPhXuYEfBnZx511XacEiSoFjIbH84Fzv+7moqgkH75SkJNzmh8thByK57Zrw R48a26LL/ECacRqjLD7H1Tmrzwe9+OGh1Y0LgYrPsavq1RzN7fywb2o1T94X MEP9ju/HT3ywx3udqiX1KZZ76fp0wxAfGNCEXNIla/DdIH2+Cz18wO5TfqZd uBp7Ns/m8D7lg0fv8w4+ZfUzUs7W4xpRfFAv77k/4zIdX7lPPBy0jQ8+5Azq LJ95iGf15nJhIx+0USU485wSsf1I0zf+dXzQ4mpk6qt3H2tuuBCXKswHZNWG +scCl/DH5sGexo+8ULj1mSM5/x7a/TPVXOgeL2xWaNSRsixFlekX4u1CeeGV MsGFkUlHiuY2n9KDeCGuz3jsvAID/b6/dk3LnRcidJfV5dUrUekG9zp7PV4Y sAg1b3R+hiRcVHUyx3mArX/fObJyMxptKZfX1eUBk/yg/V5LfejywV87t2nw wI/iUlOvoy+R1Lixj4EiDxiKFscyWl+i/X96y41EWHj1MdN1qf0ItBdMd01x w/BD2Qd8lq9RxiN1z8OJ3BD550zHUukgcv8vq+Didy44xXWuT+TmCPrHM9d9 eZ4LiITCaPalEZQSr70U8pELuOwudb50HkX9ZY0GYT1ckHPrvsY/mTFkNjXa GZnLBWKG7PcFVsaQ0kHZhVR7Lrg03RQolf4RTWokaOMqThDZaX81oXsSqYfk LEwXcUKO9/rD9zmmkH9vZSExkxOU/rx00tWbQj/PDih6RXKCho74kXOPppBA taS4sCsnuKW8EQk5+RlpmqQsO/JzQtb8yHO+r9PoQmxh2Y1/HLDElbyaRptB tZ9qT5Yuc4CTWM2LZ3tnkNmt95/YRzggl1YZHp43g+w7ZV/nM1j4iNodfYdZ dMnu0ZPvThzwk2vhsWPaHILcsjPythwQPsAX8qhpDnH9xBqWFhwgwkZ/vX9m DkWljGWnaXLAsPuj0iXteZQxqpCwk5sDDK03hfDheTSpqW3rv8oOHJy8gbfG 5pF6qKlwEpMdPv+38a8H+xdUoXT85twQO5hu69luZPIFtfpkX4gtZYey4uWQ HU+/IMFnT7Tqsthhz7O6tuQ3X9B+oZYvk0ns0MG72c568QsaKp301A9jB4PF 27EMlQVEY/uucDyYHdbf8+V0N15A7rY8I3f92GGnu6De8SMLaH5ZxX7MgR1C xLsr7cMXkKa5HlHAmh2qtg+vWmQsoAuJu3p0TNnhn3XG9xtVC+jfNm+L2xrs IO/11GFqbAERQgp0N7GzA+lo4l6VjUx0q0qtTewHG1zXqumyNGSi1YW8I8vz bHDMe16rZy8TfXTJvVzzlg32PE4+wfRhIvskZZGHPWywfdeK0t0gJuroy350 pZkNvAs0M2/eYCKGSdZzUzobbFv4sng3lYlULioeUs5lA3HCgU/JeUyUwsic 5E1lg0p/7252BhOJzMkHzd5nA4udXdbNz5godF0GX/dtNli4ocU33sxE353k UsqusIHyZ+9ch24m8o1P3xB7jg120I+/VX3DRCNd1PrzPmzw3EDvkO0wEx3g TrNxcGEDLV35gVcfmajVUHZM344NJrNuypdNM5FB4MOzslZscCji9++PX5io tFSac82YDX77mOudXmIixc/J8eO6bCB4/HDewe9MlChHUWnWYIMK6jHVmF9M JHA4qTpXkQ1O+JYnKf1hopAYyT3hUmzwI2Hmo9g/JlpuS3x3UoQNzK69XD60 xkRhDw5+DRBgg7kDvFtyWfH/AD3s28k= "]], LineBox[CompressedData[" 1:eJwtV3VUVc/3pbu7Hl0iIIogIDJDKaIoKJIiooCKyAcRUVEakZCQRhEej+6Q riElpVu6Q0o6hO/7rfW7/9y115l79j5nZu7MFnj03x0rIgICgjhiAoL/ex91 GfFxrZyiGn3yiymn68Dup4hlfskpkgGkQr+O1oHBJeFPTomnyK/wXDnfwTpQ SRPMuBx8iqZWu6+27qwDMU6BXwTvT1GdgvNi++Y6YPDn22i0xuPulQax1XWw f4hhDrhziiQVMBS/F9bB5HMeeV2VUzQL5Gfnp9ZB8yiXMavEKbL+Hfjlxu91 kKfD+WGE9RRZJKTeouxbB9HV7PHxhKdIiPb8Q/72dfAUyzJ3ZvgEKf4iLzAt Xwe6jMwU6w0naObY8qt73jpQ8GQ8W5h3guSEtcUIUtYBpSXdSxXfE0Q3uFHL ELwO/vbRhBM7nqDzmh5pOM91MKJJXdJsfoIwC1JzIa/XQYYYxb87l07Q+9Ne fW/jdRAaTcbPIXSCQE9diL/2OnCmJFUfoztBlstZF9eV1oH2CqHfk/l/qFcK kQ9wroML9wmyJHv+odIerf+MKdYB16+Tjs2qf2h8xzP3yu4aWMk5YvkQ8Q/J vSR7frZrDfTxHV5S9fiH3jaq6shXroHKkH0Tshf/UHUb4UBS6hr47LCDDdH4 h2i3RhZyP6wBSfl1yeStY9TW3ZIQzrcGrKXd3MrGjtFoSkZROckaiBel7/nV dIw8ikoEzi+tAib2c292vx2j7Ze/mpnzVsHenl3tNY1j1MgPTHrlVoHMxgnz felj9DBXiSiedRXYLAZZ23McIx6u2huN23/A6FAOdcyfI3SO0NJOLP8PqCtb u7ccfoQOyFY5nwv+Acf5rmknrkdI7L1k48V/K0Aug+6I6dkRaqVPZbUaXAFp X6Wxl68coaA+ESEC/xUQ+N5u+fPcIfIzqMq/tbgMjK6suZ6TP0RgcGJiwH8J hMq5dqvzH6JvlpZ1w/eXQJsUnbAR1SF6O9o1Zi69BFR4pVvcxw9Q48eV7/86 F4HQ6QvmHp8DxEs4dL+EdhGs1aymOg7uo73R1ea/jvPAS2O1q+ztHpINi/lY QzgD6rT+3L74eA9FVQt/0WuZBgQ6Kx05OnvogXJdUXbINPhwb6k9UXAP9TSo SnXxTgMn67nmwPZd5LJqq36sMAWe+o7VWPDvouaYFYtfv8bBzfZfeZTN22jT /LKD5ctB4N/Vfs67YBu1OA5y7hwNgOa+tpyT2G3kIUV6PcNnAGiOtWRtvdxG ckcWb8Ji+4HKWmPaGPc2GimXxA619gIZhmps/n9bSNeNTHL4Yhdg1c8JMWb/ i0ioRVwciupAgWhAuSbxX2R8YFAVulkLdA+ezJ5f30RjC1ST7dK1wD9OQIGq aRNtmaVmXDdG4GQxfKLcaRNRRjNVbtuWgXmX99I8Axvo0XONjgOeLOCla2RE UbeB9ALE7zWYpQN+ITnP7ewNZIXBNCkmpQCT5rX+9o8bqIQzfMtWLQF0MD1y cZHbQG3hA4RW7AHA7vaX6Koz6+h8XOgYOdNXlLat/SeCcB1NzZNteLXFoekY Emg3vIYeBh93DVUkIIPZNwu8fmuIdvql4+jdFATePZB3X1xF5YSMuLHzuciZ l8PfqGYVWWCi6Amz8lBhffeYTPQqesptpBdckY/E6TQ/Tl1bRU8UTwuoun4g hsSzfWqpf9BS6ee2zV8lSFtrTozb7Q/CcJydMmwoRd6rce+3DP6gtQfcI8wl ZWj/EpNQEtkfVD5f6ubypQJNte+/JLVeQSQXAlnyOREq2G2kbxZeRiXEFRtv yutQUAauTuVgCbGQXtA15KtHzx+4vS76tYRI3FV3tz3qkfBPhd84pyVkqfe0 +AlsQJERmSkuzYvITlX2JyeuETlc9zXejl1Eta+IdYa3G9Htf5Y0z18uouLZ VZ27mj8RhRWvgxHXIhpcsDl2mviJnC9+uSJru4CMWc+deu83IYPFFxvpcAG9 jmFy51NsRrKx2on8rAuo3JLg95s3zegPMQklXfU88umKm7NabUbNJZMV3qHz SMtmvuqfcAtKfl5ld2Q9j7xd+GoNTVrQg16nvkX6eXRDSq/JsLoFKX26+8l8 dg71jgb9IlhtQeyXZZQGSucQVN4lceBsRV24pfh6izlkN5h8sfB5K8oy+HlH SX4O9VXUkfp9aUV+VImk+VRz6PPEvTKpolak5nD/edyPWURPEBy9vtOKeEUV eVl9Z5FC/C9bRuY2dDTM2h1wfxZRRtx0pJFuQ0OBf72Izs8i0Wc5ajNX21Ch aqf8O9JZNEbt7x1t1oZCdjKX1odnkNnYhVNphzb0It031jpnBnV+cAtJ925D 2mZWt8c8ZxDR42Bp6og2JMqoRqRvOIPe3wxeMEhsQ0SNvEWtZ2dQv9OHqeDc NjTx9uiJKsEMels0b1xW1oYqJYe4SvumUYlFfvJAbRuKniz8JZ0+jUQlemVW mtqQY/gX92SXadTayOJ62NaG9LTsZHnuTKP+oA5Rio42JH2sPR8qOo1CKZNH 2PGYKk8shvJoCuFMNcyl2tvQ/GOSm+6dU4iglCvkZnMbqmefOtlNnEJCDYwP 3tW1IWxbVf6Lt1Oo6/BqZ0l5G/rg9tVy9uYUvo76E+r8NmQk+4bdVGAKGT6S 4XFObkNyC3dbu3cmUY91yHOy6DbE9E3GRat1Evlf3tAo8m1Da7doZVDcJNq+ wsMS8KYNtRItT8u9mkSFtXeMPlu2odTinxFZ1yZR6OxOYtXtNuRtk6glxDOJ 0EflWCHFNlSjTLAnOzWBrlhN79fxt6F3SWX3Bfwn0DP7QS8sWRu6QPOqjk52 ArnANY7a5VaU/HsucMl7HG2/0BafyG5FIx/Y4r/LjiOaheBOoeBWRMd7LU9v egzJd6l37ti1IqeHaT1lYAxVxPrX35FoRRmEwzMv1kZRocjRjXnSVjSOo9wR +D6KVLS49DkmW9DVORt2/8PfaEUH+j8LaUHOPt/EVdJ/I6ePpqlfrFtQjli7 4l/D3+hOYqeAzWX8+rWRum9SNIJwkpc9VKaa0eLaOlbCfhhRcwUb7GGaEU8I f8E47zByGj3jLrzchHTP69WH/hpCG7rSKWJFTaj0VcHcocQQiiAtfVh/rQn5 7TtKtM0NoDELFD1i/hNJEB3+eG7ah9+fNJbr5g3oQaJEIx9VH4qwMvrQy92A QjVMB3pLe5FMxWDI+EA9OvSp3L/M1os4qGOyXLXrURu12xWa7m7UzB9t6yxe h4YkKIKMAzuQMw0dNZ0vQmZ6PIW/Hzeg83Jqm+1XitCfrR3F1w31qOZd5p5W VCH6ENmJ6ETqUdX6xVabjR8o9rdnm+p8LZIZwAg0JRSgwraextvd1WjKOK97 izAP5W7bCi2OFKJcals/Go9k5N4n3sdd/wLt6y/+6+gyQwT//6z5kToFJxZU D2x6xjPsvwW0KqKv4OxT8D7sauvziyGgvPpNlTiTO6jn9/v0nQEH+I8d14RL voAnTySsi08KgKELJbuNKA5oCb4x8bpSCEzNTe3MNROB+Fj9Ld0PRWB/piBg 0CIJLN8xu7R8UALcnOOducNSgK1KCAXvTiWQd1Ca+tyfAcqo3vfXva4HVGp0 fa1P8gFWirU3V7ABPKRJ9UxZzgc+urldsZ0N4N3CHop9XgD0I2fanM78BDVO /6bQkx9gQ+BmncRYM4Afpc4paRWBQY15xO7fAgi8EvLVKopA9RP3KpJLrWAi 36zkkmQxCMguLB0PaQMb7GyXe8lLgKgiJjdUowMw1sW630wuBTT3S7LcNjuA cvi0xUXyMrDlqpdhG9cJlHoOa2ety8DD6bo7Qh+6gHLyU5IQvnLQtxXcHdPT BZaSHLq83paDa6RmugxnukGLas/a+c5yIC2+p/OvvxtY8D2qyHtdAXCKDe2v JHvA82rJ7+8bKwDrjS83lj17QJ+mr8IOUyU4fnH2+uC5XvDjxuOW5ZRK0PLD XCPfrw+YTalHJxZUAeVGyXqxyT4QM5H4LHW9CuQNHKjGyfeDxy6UbtoS1SDy IAwEzPSD4NshTc+iqwEVtUU1odIAuOYfQjnbVg1ceKSvvA0ZAAkr/NkHx9XA EjQrWV0ZBCsVD3e2DREY0o0o+x02CLSypFeHPRC48eiRwp3lQTD/xeuPUToC 1a/OlTTDITA3J0vo0IHAhY/HciBqCDh/W3wosolAcmRLYdHqEPhD7FxYRlED ONIiZSU1hoG+JtPtHPYa8LnscQHu6zCId9EesBepAaetMuc5N4eB3n9VPwgv 1ACH0X+5wddGwHe5d5YWV2rA/GqrNFncCMCcm30bcq0GGJ9GZX/YHgEbvdjw YN0a0M5gJbml/RtEvLO3MzeqAVDwQuazhN9gkYy1i8C8BvyQPT0zufcbTH89 H+loWQNENdvTDG6Ngq/iEnkVT2vAV4MYsV9Jo0COmoh/8HkNoHtqnaJ+NApc wxUPm17UAI93siLlemOgIDrDKtiuBmz7EyTJpI2B5MPH36Tx+GnsL8HUkzHQ ouQ9n2JbA35nf03A3BsHZ2iYkw6e1YBb6Al/eOY4uP53WE3cugbUdV2MpyKa ADPLl9UvWtQAuWlCXg+jCfw9nuYSn2kNkC433JRJnwCfXMvn7PTxekOzGyYP JoDWz/2Mxps1gL6I8KaWyCTYUUvfEdaoAdQJWXJYnUmQA5+qBinVAIpAQ779 15PgX91zNmKZGkDyjohSN24SvMU9ovwoXAOOdY1GT9cmAVP92+Fiqhqwr0z8 05B9CtSzaSj17SOwLZ6TmwumwJIMV9SjEQT+EJB4mYdMAceRv/ak0Qgs/smx LSmdAr8rGt4IOCIwO2RsQD81Bfp5RZ443kJgLC/3DDo/DbjOsNF0/qsGI7Em zOwm0+DYZO9kvKcaDPiS/rPznAaXM2z15VOqQcdD0y7e3mmAw/8V269Vg2oG 8jeujjMgJ/uTN+ubKlB+nP9wIHYGMA3ZqI2rVIHixfva0o0zgJZc7QozaRXI qSnAjLPOgsD24J/9nytBvP2Dhisls2BJzoT3pn8FiL1PmRMxMQscM5LkSK9W gGitwqhV8jnwnOUXtT5BBQjhp3r+3WgO2Jzc22y2LwfuXUWM/w7mAAZDOpyl WgYsZGjNK5UXgGmeZ6pjWjF4wFOqxWK1AF74lNUq6RYDE4rHF2wDF0CV12nD 9m4RuDNZSsozvgBqGSIzzVSLgFqIZdZ7t0XQV/T3oLD1BxDaqDhQqlsCBn+3 vISK8sCHX+re26tLgN5RkSD6ah4YyGijy+FcBjKyPVPRObnA3+q3kMDLZWBl FhcovZoNNkYOdcj5V0D0Zp6HlmkGqG5UxPW6/AFrtalrl6kSgcm3Em1bxXXA keozlZfhDgrfgn4Rq3Wgd8bmN/HOO0Bn0GQ+EbIO2PUHXH1jHPA6Bx3vLK6D X489q6pibgMW9fe3Y29sgHdZV4VpKd+h96Vf33keboDgV8wOGvfCkXjquIo5 wyZw+5nZZEgdifoiBEmURTfBoFrN7O3qKCT9KiNoR28TkJ6Eu7hxfUPTUuWJ T9M3gYxObr5DHxZdTxz+dcvoLwh/LjYSQ5yKNj7mWDe++Avqit43KFSmouin XqeXvf4CnUsZWxEOaWhRSur8mZy/4E6L/geLoXTkW+oeTkyyBaAh5TXhT1lI 5ts9KWfOLbBExCrwTTIbDblI/NyQ3gIpe+iPR2c2Elfv2xsz3gKVqaIL72lz UfMvMdPS3C2w+PDG3a+Fecg+73hLunELSJNYOMYd5yGOsO7PySNbgNKZqlFR PR89NXpfHUq6DbhesgWItecjipkOgRem28CI+me1e3sBymtMLJ+x3wZ2UwWF 4xQ/kFHa27smPttgm2uhq0z9B0p7IfjxWv42+G2O8R0t/IGu7b9eFCDfAdek E18FeheitRFtj2ieHcB8PtA4sLAQRVbxcdFf2AFJ9B8e7E0XonnPlhvH93dA dE2AOdHlIhRkFTfr4LADpixeb8RbFiF5rVcuS592gLYKcSv2cxHyocXkDhTs gCqu9Mqfg0VIemPzmk7zDijLfKm7dFiEBnp+TtaP7YCrriqCNjzFSDTanimf Yhf0eb3I9zQpRh3OmplivLsg28ugk+NNMXIy49KIk90FXoGqfyhDi9FPwYbX AQ92wX83JPiO6oqRHWkMHZHjLrh1ydf5cKgYsS2+SH3rtwtMb/ib310tRtWt anA9bheQXN4qISUoQdbZ7MNWhbtAlaTHj5GxBNGF/Hk52rILeP1t95z4S1Cx Qy3V3YldcNtWHMhLl6AH9yITW7Z3QQuvQ8VtpRJEpvBcGVLtgTZ13HS9RgnK 4YL9xXx7QPnG1NUwnRJk8I/FTkpuD+iaUEZW65egk4klsiTtPWDj6hNz1aQE pdRVx3M93AMG0nLykg9K0K3kMIUvr/cABwbY2j8sQbufnnaTB+yBKItdAxaL EhRnc8XGFYvHuzmSnPi4pg4T8U7RHrCOjFRxNytBQRaUmwcte+AShtAUa1yC hl4TTJyM7QGFU40DEzy/gP9eO/HfPZCv8uhZPl6fTdxaOQXZPkgxlqBP1ixB Pwrm0mi59gG1G++jS8ol6PjnaCST9D5Yrrq5+uw8nu93rze72j44lJG8rSKC 51tvdeAx2AeyZ94qFrOXoEHiuocCNvuAxYTqZS9FCeLnKLsl6roPJKgKf0Xt FyMbyTzls6H7oFabTYl0oRj9gKkSMin74JHiux+YvmJ0rB/HIVe+D/Z0cNdn UDG6+iyCTKljH3iWpvMaZRSjoS9e0+q7+6A37gZ+KxQjgRTnLi2qAyD4Suz9 ogU+f/nLah3eA8CVQkF5/ho+37T5V8OrB2C1/1XYDm0x0twz8L1vcgCcZkrL nNbx65f6lpOF3QHoG2DLKe8sQgIXle88jzwAAx5atJH49WujJQvtMw7Ahwkx MdlnRajwvoT06+oD4KrdYRunUYSufuSgcps/AH6S2n4re4XIZmC7NlT+EIhE yzaV6BaiH8sruVHah2DnyUEQRrgQHZ9Mf499cAh+vnkk/nz3BwoS636X4nMI cs7HlLRF/UA/3mafLx84BN3We+FkHQXomMs6YcrpCOSTV1fnUucjzXNmwfP+ R0DVtzP1VmceClLXd1mJOwKkLpYVTKF5SMBWzXjn5xEQqg9S52bNQ1ereBkp 2Y9BRpi15E2hHBRsPuguU3IM2JuF6Yi605HPH2Uw334MAmbJXzRdTEeu73D/ vk0fg9XrfwYuRKUhu7AXzuR0/wDD5YDas0ap6FYTseO45T9g9PNM1n5bEqI7 J/PkM9MJ8NX8z+4ldTwKOvHVWXxxiu+fjpv4Y0/kE7BGHed1Cp7m5O8rXHdD rhz6rXdjToER0Tn3tF/vkN0Fvmuo4RR88gom0ix7gcR+mPC30RJASbnV0xE/ U0C+sMGJsySAx9Ppp/y1vqDpFoZWl4kQ3qHfehXGhQUs0lNsDjyEUL2GqfpM EhY8pE3mDxclhIrmFNWWkgngsE3y4pASIWSVpyXLVMAByevKpg8fE8KEsy3e 2SAJvBUnsPJ8QQgbxZK/fa9KAo3kDXZJbwih3Ssq2wPFZPDg5w3PxQBCKPGa o2VYKgWEqJum2xcSwmMepWp/wjQwKsj3I7SaENKZm4qKOKSBM0QzlYXNhDDn dYrlwWQaqKux6dofxWO66DyFsnSwc8V5z52UCGb1Ylyd72YCNYwKYSI9Ecz4 o16mXZQJgo4JqRs5iWDhPlmsBGsWEK/w46WUJoLNtNKpZJ1ZwEQhRvOLARFs ynMGhRI5IIXd7PaPh0SQ3ttB5eOHHLC1y2/cb0MEA29kLai354DPRWm2nG5E 0JlJqPq9VS4YDrd1uuxHBNcvsZOs4c9zUUcZd7MwIkjAfCICd3MBulAalpBK BP+d1Rm4DPIADdOH7/X5RJCIjhKbaZ4HjDZB6lwFEYyxjvEhdcsDf3Obys90 EUE2heMYh/I8oBIc0HBjhAiaf6618RrIAwF2tztezBJBJT097LvNPCAsNTiV v08E+ZsvazAJ5wN7mm8rvUTEcE+Bb7bgcj6oWnmws0NDDAcfzN+Qu5MPqNoE T9nZiWHiudKaaLwfM8iYp1ASIIbfd91iRt/nA5xfBtP9s8TQ7eOqCkFwPlh/ asfjKkcMFY0czxIn5ANfsd1zddeJ4W8/C57k2nzQR1auOHuXGKo02dipd+UD gXkXdbIHxJDusAWHxvKBXaOqjvhTYvjEMuwzJ97vlSeRGmo7EMP1AS8GvZ18 QO7d8tD2AzHUDdgXtj7NB/qPA22CfIjhr725biOKAoBV03PMCyGGK7G/ZM4w FIBVAVbXnq/E0KujwHaQrQAovE94WZtEDNdEzkZo8xQAzz4pq7wcYihOHW+X yl8A2qXKjeJLiWGWofadNaECwPbp6s2gOny+Zot0PtEC8HCyB7i0E0NWY5LV y2IFIEPRXNZ2gBg+Kzmboo7H26EroqaTxPDh1LcXl/DjVf684dJeJoZs490r 7MIF+H1KQqe4TQylvm8OzeH5euJCCMVPiOHqYcFxAl4Pzz7PDhsFCWxe1pHW YS8A1nrpi6RMJJCx1Up/EV9PXobc6DY3Cbw1umXpSFkADonrOmdESODSXxmr vwQFQMPsVn3PORLYqOr67PFePgguHimuVSSBCY90Ipr/5IMR+icZeeoksN+X nFtoKh8IP9v6Hq9DAk0Xti479uH7X+f2JcgQn08bo1X1Mx+UctN8dLEggczL 8nGnJfmA6HX0W9vnJFD5hXumclo+uNkhbGv6mgT6yKSvvI7KB5PuV+4q+pFA 7NcepRmHfCAx0nJVPIwEmvPd9eUyzweOsgZK7N9JoP3wq4/62vmAYt5OYCeP BMaIfU0axOSD8zew63lDJJDa04jidhn+PpwkORM/TQLp1KeJur7ngZ//SgeC /pDAh3/y5B575AGTvO4qWwJSyAz2T5s184AnK/FncXFS2EmpR5T0KRe02wW7 sV8ghfw2N99rqeUCtmbuV2TKpJD3NVuX/FEOyHC+aDJ7mxQmFU57kj7NAb0T VuLYN6RQVjyf/1QqG/Aq/uUO9iCFH/lrFz/+zgJPQ13pXQNIoeQ8LsfjUxY4 1ojaNY0nhRul7rrrI5lAOKO5gb2JFH4ffbCqZZ8BXjuetQhmI4OiFn5dD01S ARvVeqWBABl0PyODhJdSQGl8AQevJBks/GT0LcgpBRy3KnZlqZLBsG7Xf06B ycBTQAu02pJBLjLl/0KzEkFQhyWGtJ4MOqRKdXT8Fw9SxOOGnf8jh0tlGXfJ WQKBVrWFnJozOexvf+D5bckfLN0V+UL5kRwe/d1w+lDtCyTdsrSiv5LDca2z fDXW3qCgv7ykqJEcWi0MlbA9fwOqPQcjNrgp4Lmfq7drtKzR4CjDHetmCihQ Vtc7ZRSGtAOshhx7KGBf52TAjno4qlQsf+A1SgFL2F62GEtFIGzk4+fYDQr4 8fv23PhhJHqqW+w9wkEJYz66eNq7fUWH9aYlt55RwiSGbrWFL1hk65B3xewV JTQMwNAQ7GHROD9pw3MXSnjVt/r9hEkCqnPJ6fL9QglNT0HCKC8OBVwiXK4r o4RpbSQ8V6ISEU9mCs8lKip4Z2L1nbZmCgoyPsJpslDBR1oVmg7hKYiAQveM Pi8VxGRZ2LFMp6BZywO5lxeoYN22AUvp21SUzXvzdqYJFSRmaydiCUtD/L+w /WWWVDDb6Pa95P40FPp+x7TZjgreo7omEM6WjpyG4p7OeVJBjUdfUl3C0pFK 6KYHXyYVDFQRGpd+l4Hy4FUK6SIqOGOE+WGck4EE178GKSMqyKub2tA2lYHI bmp8M+6lgu/jPXw+qGeit4fRAk/HqKDUasRG8ctMtJy2muq0QAVVq5aoZOIy USdpVGHYEV5vMMnuwGYmUitcUcKRUkO92EBzQs4sVPgI1ubRU8Mc/+2MxypZ KBot/folRA0tHrnqtHplISo7Ff1RKWpYykPG256YhT7whI0sX6KGLXJq9QR1 WejhO+UF8pvUcFjVr/BkPwtJWDb3rxlQQ57lEbufzNlo65Z+Q78FNaQ+h67Z 4v1UpeJkQaUtNdzFKn9ZV8tGPsK2CYlvqOFY+JWG24bZSJd+P9jfkxo+cvNx //wsG3Eeerm+DKSGltj0z8nvstH0LP0Lo2hq6Eu43//1UzbK6vxmChLx/C3/ 2duGZSOncjFt0RxqeLiYGsn1PRuB5B8KtGXUsI2nLD05KRtRhACx7XpqOH1X +DxdRjbqcW5j/d1BDa/aF4/oZ2ejWCtDkrphaghfPHN2zslG1rozf9NmqeHs ihqVOz4uc/m/qeB1aog9I5Nhjf/+QOSo0+mQGvpYTsSfS85GdQyfqs1IaaB5 fqTBKJ7/8xFTtgYDDbxxjcLcLjwbGczHfTvLTQNvagr/t+Cbjfi7JfyZRGng v50Fi+vvs9FyRfHbAxkaKBopcSnyeTb6kaL2ZPIyDYzFPWHuMs5GH7503Gu6 SgNDC3zAgWY2uvrBRCNHjwZyzGDFWWSyEcOT+QsR92kg/3C9uRBHNhrWcxD4 8IQGWpkXxJw5yUI45RP6xw408L9kXM6Z6SxkK+Z/ct2FBmaKHMaINmQheSa2 VRlfGiihQO4slJSFTo8TfrOH0cBtw9JgIc8sFNpTVjqXRgNt6DDUlxWy0P0q zdT2HzTw8yHfd2OGLCSS1h3xo5oG5v/XUOk3n4lKXZYcPPpo4LBI0nPpwEzk +fS1xdMJGuh7p/RcplkmunGXUPf2Mg389v7F8nXJTDQuzimFIaCFiiFPaE7r M1AaczI3CTUt/DG6lMwbmIFenshQrbDSQjXZxhgH/QxE0qe1UHqWFhJwO6u3 jaUjCbe3CfqGtHDJi22983ca2n5GEnL5ES1c0bfsF8Dfh6v0Q1wFX9DCR+wv bHp005CuRJrphictTP9lNmyNUpFT/yDr5xxaOOk4f0Lin4Lqz17yryelg/QC 9gOpI4nowTn9xE16OvhI9TJY905E+xdeVvJx0UGymJoBYelEJKmUufZemg7+ UJyjcHDBoXAtvrsXDelgiL5g/mWGBGRtRc6TnEYHc+lYDEfZYxFF/GC2zw16 yDwmshAoFIRwuO2fhffo4W3+jpg3jp+Rcgrj5LQ5PaxOcJDVb/BH9tk3mIAj PbSy5+O7a/EJDVcgp71YesjhUXX9cZg7yhhKBU/X6GGLxIPcqQ+GSJSycjFJ iwF+XXfw2aj4BP42SdvgdBgguY9e8mtdP1Dtk7ASf4cBsl5fU+6a9gcGJJ/W vt5ngCMmDDHpBEHg46nedog9Awx8/SRSgT4UzO4snH6IZoDn+pk6/BeiQF6h iYfzdwZoV2B3Uf1bNPjw6hfRWxw+nwcFRlEnBrBsFpC+ysKPX/Q9LMr8CtT/ uFA/q2GAwg8+es3rfQe4aWb2e4sMcEL3ZlEoJgHYJfhE31llgEZOlwilniQA pYcHnLp/GSAvzK+My00APWPjPDeOGaDTkofYgTIOEA6nC6oyMEK63swoweuJ oD2KJ0mFlRFSnb2QwuCXCKINgkWUuRihkqCTfVlTIpDpcxS/JMwInWdHHkir JoGHnUBaSoERHpOc09QVTgaSQQW5ElcYIRu5qUa1cTLYvylyXlyNEWJ7h+07 8edpcCvVRaGbjNDz6l3B7s1kYOLnUsSvxwi57ur/rBRIAaJaG/K8BoyQNnu1 X1U3BVQ39ityPmSETz2uPqNPTwH+3loVbFaMsJXRs+pubwowUK9QZrFhhF4s H3jPHKeAtRosoHdkhDZMtPFu11NBuRtzLc07RvhC/bX6vxepwEfFR43KlRHa vrI4IfmSCjCVzzVJfRlhkudxRVZPKmDhPDy0C2SEnyJrHnRtpQIaJ9+8oVBG KCsVYy/HnAZIetms1aIZ4XaKmfOITBo4PpfMnfWdEV42/SVcfTMNbH+W7WZN ZISiZ74qTFingZWlWh+3NDx/h32cslsamL6qq7yUzQhrSE4f9EekgZHE8c07 P/D9t97DpWWkgR6CF6mVpYxQk4P5R1FVGmgxO7ovWs0IU1UZ94860kBNuR9T SD0jvHq18NB5PA2UsnM0HzQzwrrOyscX/qSBPMcUl8cdjLAKO30ksJ8GUrsv yv7qZYTycm2Z14nSQZx0/aL8MCPUO3/yPp0qHUQG6MVhxxmhPnYwXJUxHQQt TtylmmWEQaRvVZjY0sFHTTtKxyVGyKlaMMnNmQ4+4I6rx9YY4W/tPSJzrnTg eOrveG0bP5+N4OYoPm57n1Mi/4ARuttueYazp4PHZakTXKeM8OBBx2df5nRg wiYf4U3CBEe1G+zKaNPBnVcN2muUTNDDeeqmOFk60O66Q2BEzwRlm8/YDByn AVWpqaJaFiao7/xavHEzDSj4//f8LBcTrKe+SbE7mwZkFv7xR/AxQdxMZZrN QBoQ1/g8cCLMBEkJ5JuEf6YBvgSuz08lmOCDKCMgWpgG2E7SVHvOMUG1wjaq l9g0QGd6ae+yHJ6/k0aVPCANkJU2ZiUrMcFyWxX2lVdp4B+L/iN6yATtqrYn eE3TwJ8O+1/T2kyQullexF04DcyePfW8qYvnL1McKiBLA799AxWK7zFBab/L y2AhFbSqZST6PWSCSm3Puh0TU0FdvILxlhUT1ONPQIJuqaDs+Ced2XMmCBee qVwyTgVpxTPvZJyYYC/xlk4CRSr4JIHRHQxggja+9jJj+inA9VMmqeoXPJ+q nZmgcApwmlWsyIhkglbLzP4r+P1kHWcg6prABOcszrhz+SUDDaaQY+ESJphf t+5qmZIElP/jLQiqZIIJXt+j1GySgGx71pP9WibIN8Vp1CyZBAR9Wnra2vH6 btEZjWcnAoJDonSHaSbI9v53cS0WBx7ODG+5LTBBAlopPWFzHKhpz1MJ/IPn T9TxdeXBAff4B32pu0yQMmO1+Gx4AjjVKD8dpWKGRZMtXktvsOAk+KXBNVlm SOQnrq4qEQuORSaJebyZoVNtIrF++Bdwn77k1hk/ZqjhpujAPR0CKvcDY+SD mOFNgntYrnMh4EPb5XN60cyQsZrNfiQwEBzZR5n4ZDHDv84J9mD8EzisuJW/ 0ccMZwyVdXNz3oI9vaoHjSIskFreQo/T9jXyHM4dUznLAn0ZeosHXN4iOgvc /VIZFvhp5e+HuM/vkaj9J5PMyyxw4Vyhj0KXO9IP0jP4oscCz3pNdUf98kF5 rXM6Zi4sUK7F63X22S9I+c5Q+4AnHsuuSRKPf0FNw603dH1ZYPk2fNwaFIrG F3Ovq4exQMJPZqcfVsIQDbmz5pl0Fhj+ycxJPCQSPVOnu7LTxwKDmaIaqj98 Q9utBJV2IyyQcYJMt5MhFrnf2VJanGCBDtpjygm4WBRtMaTwe5kFthnwTD9C 39FPN9zFWgJWGC+pSWQ6Go/ukEf8UCJjhWJizB/LpLFoLOjThUJqVqh5Pw8S 2WHR9ndbmVQ2Vvg4riurbBGLBCvlJQMlWaFOSIGLfkcCylE/k0l2gRWy9fiX GpPgkGIbt4T7JVZ4id5w7J8CDumOEIi/UmOFs+kfVlnjcGjUYivlzzVW6CV7 CevVgUNPluZErHVYYUYfabvXPxxy3W8VMjZihY0ZDloyhomIyr0K12PGCrco YpUGPRJRBHmewM3HrDAg7MoSaWYiymKL4AN2rHD3esnGxn4iUoj7FFf6Cq/3 FX9rGiYJNYg4Yy68Y4XXNCwsJmAS+n3RnFvEmxU+/NZIWOuZhKwP5Og/+rHC 8Yz3S6PYJLRRRUM8F8QKFxMu+btWJSFnz5ldjXB8PT2BL5OGkhDJtfLlpBhW 2EnedU3nbxIKov4yThLPCtu/cHe9oUpGnF1PeiyTWGHDf1aLggLJSNqYtVw4 lxWyZCk17V5PRqWYP9nehazwG6dSF+Z+MlKbrkuYLWOFggZn12ptk1F7SkyE BmKFLZ9yP06/T0aGz+39khpY4YvvFmxufslo+tw1F5JWVlju3q8UFZGMbLcx Ly078f34LyJNApuMdku3LRv6WGHXB4yMYnoycndpMxIeYYWvlfor6/KSEZUa 7qb3BCs8/Ux+r6k4GUWQvYOzs6zwTsYQ57WKZMTfdvuixjIrrNNQuqZWnYwy gkXFk9ZZIdXsmGwZSkYX9f9xk+ywwo8vRPSy8Liao4/e8pAVxowxnuXBj9ca yyBuOGWFg7IyTynx+XoTPPaESNkgV7h3iyOe74G10YoXFRsEca8kzPF6FiXO TczQs0Hm03T3lrRk5LBO2qvOygYfKhONFsYno+Mfoz8Tudhgd/VTa0F8vT5v f5QT87PBWe7qx8z4fjBe8c95LMIGS3Al5/3w/YoltMDVS7BBf+nqax/x/RT9 eSlSSIYNflJtk6fE9zvPn87fS44N0j3XSGfTTkZKt+dcZpTY4NPjvke58smo gbnypTpkg4b0V2E/fv5uD4VaJWqywXdT+pf8qZPRSOwzY+IbbFDO95NB11YS srSAOo912aAPAUFj+kgSeru8elHIlA0OTyin8CUlIaLcBnGvh2yQKiV5ssYn CQW++sYzY8UGZX5fOjh5koRwx1okifZs8NGdL8b3RZNQG11Sr6APGwwQcDta Dk1EBr3OTZ4BbJDl6ZOkWptENBmlVzEdwgYjd66n31RNRNv8pzjcNzbYkRYq FbiMQ7yyJg6C+WwwfJI4nEsah9L2ZKw9i9kgK4PA7s5RArpQSW4yXcEGb3X7 J+CaE9A1zSJV3E82+CpasdXtQQKyN2RgFBxlg5nuP1WrPmDRo7RzX0Wm2GA7 gVtPlCYW3Tu4JXRmng2mcczw+9JikdK3QDmZDTZ4O4j99Uu5eEQ6QWWiQsIO G3juL3269x19tSZNNJFkh83rNhl/r8eghteHF8M+sEOaxOqAGyAEFf/krI70 YIcOD+YDM28Go3R2xWtffdhhouD168qcQSio7I1xQgg7JBCaqebNCUDG/7Zd cpPYYUD/+8sELT5ozXv9Z1s7O+zcHWJRSXuHOMNnjUgwHLCiqXTQZNIWKHjx sTkKcsBPYscvrfleAgMHk94ZMQ5Y3vBJ2K39FQjV7dKpv8ABXQK5QQjfO0BD W6nmqcWB90v9tYQ9HuDkY5gkgSMH/LDt4tV/EgB4Xncs/feOA55FRxoeSoHg siVl6oQrByxll53NeRUE3qq5CSA/Dij9UVkW818I2DyxYXON54A+TVPfZpvx 9/k3agTHrRwwFLNTFy8TBYieuFQ97+KAZqFiIrVFUYDfoNT5dz8HNCb++5ZM MRqYXZTeKZ/kgDkvMbdHFGPAwAbn8rtdDii1pWFTKfQNbE/opy4dccDWeRJG pphvgLkz2NKYkBPKX3NV1aaJBbrZpBMKNJyQb+uZq8afWNDybLN3T4ATDpj7 qcZ8iQOLRpJfnohxQrXmmG2lnThApvXk1qAkJ5S6+u3gk0E8UBMday6+xAk7 q0naSCmx4CErh4/oFU64vDIpxy2PBW4kd9Uj1Tjh94n7vocWWFA53Vz1WocT 4i7m8dAUY8FIN/H7uTuc8LXB24uK41iwX6OicM+IEyoyMEyKkCYAufjCgouP OeFha3r8xdsJIMcUm7r1lhOKOVzMWulNABcHhQ7JXDnhuA6r2fx6Aqi4k3qT y4sTeqgxlVdQ4UDz9ZxNGMgJ/UJw2pt4f3K78byGfignnPXqYr2tjwMDsCjy SRQn/OptU+lpgwMzlyovByVwwgWq9OgnYThg8wMEJaRwQsHu+CO2FBzYkK6f LMzkhKGxpeHRJTjwJuOqbHMeJ7w2lZe+0oQDJyKtH38XcUKQIhpGP4gD3gk6 Q2vlnDBN6nsl8RwOUGO6JYhqOKHSK/ekpk0cCI3Wd2Ft5IS27mKjJv9wgINl qFO8FV9fVD95FXkiiAs2FVTu5ITHF8rHVxkSgQj1hOPtPk6oMrUuscqRCLJ8 HjU9GuaEzzbetZTzJYILRPOcTuOc8OkezDAQSQRlLs9s/WY4IbccXVfNmUQA D/5Uxy5ywsnmj7oHkongp6M9Y94qJ/zZwKdPcC4R6GxsPa7/ywlFufjZBvC4 7/mb4oE9TmhjETjrjMcmC4cUy8eckM1VlH9dKhFMPXI1/UfIBdv4DJVlzyaC p+OEOQzkXNBT4Cy6JpYI1ow/EgjTcMH1JqgqJZgIXvdT3L3EyAUfTZa9mOVO BMe6n5O12bigbO1ZIjuWRODZTr9vxs0FL0kFdbRSJwIKrTDtl/xc8Bn3maIj wkQQXM/23VuEC1paemQQ7uEAG/i6HiXBBUUNNYrGlnEgthyjlnmOC7rLX1gL GcMBIfmE8OqLXJA5gdydpxMHMvKFF7oVueB/c1apHggHStLOft5X54KL/MJE 47E4oCKcO059HT9ezIR8yA8HGuIvnOe7xQUNzYM081/jQE+k4oCmERe0xr7q ItfGASOmKnFjMy64PbjwzvcCDkwEwve2j7hgWGQC6zonDvzxvsYfZssFr2ps R72eSwCvCNocUl5yQSV9nUcxLQng8P2txjInLnjujMh8RlYCIH91z2bSHV/P WdPI+P8SgKDF40KpCC54NkTdlW4JC9JG58lUv3JBMXtvn/EGLDhnZGOsH88F 83k4R3PisUD59ssT53QuGPz6x5jJHSwwvOKm1VzFBRWUQ1aMjOLB6M48fV0d F0QRKyl3ieLBo5xbgxVNXBBswqLAjDhgy8drndvNBb3dzjYO7HwHnoRVXpFz XPBAc3no0dtYkNN4WG1Jyw0lPGxjJi7EgIuuj3weMHHDotQXAvn10aBMvlXH iJ0b/gjxlhe/Gw0aUmNGbwhww/Wnd58I2UWBYT+Fwwty3FA6/4YZR0QEILnl JEdoxg1v9D/K+5j9BfiTjR8fWnDDDoVhPxHJL4AeaTZsW3PDVLHclJn0EMAl w3p30Z4b1o3FmhVpBoNzTIX2nd7ckFNHK1GSPQCYDGxmfs/ihtpUtkNzrp4g /8ELQaVjbvj7BfN9ykEl8KhoA4Ml5IE/ML9FqTBiiIXGkZOMnAeeQ0IsU1ta yKnMmaGHkQdyfJo4SvlqjpRYfE+eifHAYUuvsLfWL1FdC24k5g4PfHBvOCz5 1AO94hcdODXkgc/Ml1O7BL2Q8Jv0biszHijjPO6qo+GNfITzms8/5YFuFRf9 Vj180A23quIWFx6Ys6lJnTrnj/ouDoUepPHALfVXS5rxX9DHANMg8xweyP07 f3qbNxTJT4/7Nf7ggel0lNUK30NRdPCc+5dqHvjZKtHHLCIMmS3/tTvTxwNb tVtS5F9FIDpVJ5vgYR6o0+SnkDofgWqiDqx2xnmgjVmgt61RJBLUJDCrXeKB v727vQblo9B8PO0N41Me+DfFccZqPBpF7YZcRSQYqGFFJF2gHoO0dFjURKgw 0F50jpo7NQZlHHIpbrJgoEeBPNGZp1/Rf/fExfwkMHDtH41hQM83xJ+VKbh+ DgOfSJzUMYjHoh6ic7z35DAwoaHd0+t9LLqYJ8cqADGw/tKMFA/Pd7RPpU5c dg8D8X9b9i/qcYhpjS68zgQDuc6lVrz2ikNnu0eE280xcGe7t+15bRx6EOVw deIZBkYr715zuxSP3jirDC7aYaDQ8H5g5H/xKMSM6unfVxi4kK63XZAcj+qF cH6krhhoN/WYY58Ui0bJ7LjovfD1JE+ukfJi0e6SYiaHLwau3PeWZJTDIvG8 7vazoRjopaluyf0Qi9TCvpvJReH1pEppczhikanTszWVWAx0YNqxo/uERUHK hAx3UjBQkJj0dDodi9L4fmFNMzGwmfZgEJVhUS1RzHmrPAx8tC7TFtqMRSNz lnV2RRhInG6iYDqA90/NMnfflmOg2ouPwRwzWESXdTzjgTDwPomoXusaFokF NzsGNGDgpgwXnf0BFkGHcNKIFgz8wJr5hJI4AZncexgZ14GBuV+D6COpE5Cj gqRYWi8G5g8sNLEyJ6BA7v2S/CEMbHx99bEvZwJKOanXqhjDQAvh5IZV3gRU MxU83DCNgXJH1hOaQglouMHUpmMBAx1X75aEiCagv6liR4N/MPCfYvjDDvEE RBOwFTC1iYE1ExmnJ2cSkIgd4lnZxUAOtv9aBCUSkIpeQPb2EQZmtZAQK+Hj RhcNVU4IeGEkbx+hplgCesku1ElOxgu/7bud1RBOQP6Ha+aM1Lzwov/vnUv8 CShprHyDi4EX3l0Zn+fnTkBVNT4ewqy8cLX0a/gpSwIaSLzDJM3FC2mrJZL7 aBPQhg9v4iU+XtiSmtqBJU1AVDbLsqrCvPCggX3Q8hiLhHSKG7TP8MLdngfh An+xSFnG856+NC+MG5L8MziPRQbMt+bNZHlhM8OfXt8RLLLf5XzzRIEXVs9l 68r9wiK/4Tnyl1d4Yd0J25vxaiyqjHc5432NFw6m9j48G49FA57XywNv8sKv t0K+dgdi0boV640oPV4Yxhlt8+493g9LZttmmPJCycw3Fr13segy/bt/Px7y wmtPa9/4qmCR/l+NoCorXujeREKsKY5Fn0pHc7v+44Xi57e3ijbjEfZbGhxx 5IW99tiI/1A8Knd17J55xwtlCIyKNAPi0R8Nmq1dL144kuGjYoDB+/Xuy/KY aF5ITpWp7nQ2DlFdpq6t/I7PH/3kXf/0d1SbNHLjfiIvXBOgvUIc/R3JvH1n 8S0HPz8vNadmjmIRHV/JZ85GXtjfEvzKMeMb+unrw17WiuffFPtFqPcNufy9 hzPq4oXauT2h4Ttf0Z/G7ZKo37yQtCvq66LCV9Rie2GG9S8vzN7J7BRJj0bu A4R2RXu8MFaRpqIURiMF2L2v/48XDhCPnoQMRKEUZnu6cAo+6JsfuiH7LxJ5 l2crMvHxQe4PnElKlyIQpDgTQneTD3pWlhc8sP6C9l/uc+Xo8cEXktPvfedD UO7vpmQdQz6YSid8P9AqBPHmWld8fsQHj/6KrCfUBKHje0nzVO/4oDf1uhgK 80cliXxXyFP44LZTG3P0Hw9kR7velJLJB3kVUsiZe9yR6JvqO1fz+aDKEb+G 5As3FK5t9vRjJR/en07Kchw6I4fNr2HEvXzQ0NciQoHEAUmY2vAmDvFBpauV dDu+/6GpBsV0tXE+WDk4S25I8RzpRg9VeyzxwY2t3V4W0keIgijtusA6H4Se MZmQzBSh52/6arbx9X9uc+4huoOc+q+aPzzkg1duD0fzEKohacC2fHrKB/Wf fnH99cmi+n/TiT/G "]]}, Annotation[#, "Charting`Private`Tag$620549#2"]& ], TagBox[ {RGBColor[0.9333333333333333, 0.4, 0.4666666666666667], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwdV3k41F8Xt4x9nWGGGWZIkaSypCK6WlSIEJUlJBIV/VIRhaQoS7InZBvG PmPf72mXLKUoyRZJJUpURN553n++3+c859zzWc7949wVbr42Hnw8PDzruZ// /xHly/KyEmCJTSPw2aPFd35l5PyCEtxOY3S/UtyF2ZXaaj/nlMBsgVO/UckW 66hbuI1/VQKpU4J/eVa6483E8Hftb5RgsHWfW5/qOWw8+qPtTrkSzJ7+nUSQ D8dXMpZPJBQpwY94ZUKj3TX84JCEUAxTCY7mWr+5EX8d72pX3xl6Vwk+fR0s VBG5gU2rXRqPRyhBkOWi6oqJGGwT0VGs66IE7+/77zQuS8AJ2/tN1zkogbBH wJL99kT8+u/EJzU7JXhM5tX3fJWID54hrKKZK8FfHS3/zbNJ2NF+azrPZiXo VpIV4axOxe5rC6M7JJXgfnHAZQvLdMz8WKPxVEQJro4aPvmvPR2P33vUCgQl kIlcSfu3NwN7yQ4TqhYY4P72Tdl6o0zss0S5nDbOgP5V1Qk3hLOwf1f4ac8W BnhfKb++lp2No79eeDNbxwD/vxk6zWPZOEfIa3tYJQNstj3FVPkc3I4syBks BkQ/0tJbGZSDPziiEI1cBryyCFzXWpSDf/trf67NYIBdZ/lq9b4crMImN3fH MyD1Zd96UZ1cvKVdaLVrDANWmBXMhzvlYouJ+bhvEQyQ62fuKLmWiwOUB92F LzOA79a9RzOvcnFnXL74Nk8GiE0/GBBwzcNjJakXnh9lALi/troZkofnW28O H3ZiwOR7r6ScjDy8ite3ys+aAT/mJ8TCe/KwAf0og3cfA4biNunvnc7D+/UP RMbuZsCVacMNyUJMHPjfZqfCrQz4uOrntSe6TBwXs+bJpk0MMEz9Up63h4mZ hQpaj7QY4DwfqUdwYOKGxxJp1msZIJq6z2jUm4lfjCzzD6ky4JStg7BxIBOP L/04fUqZARJP82fkI5n4L3XszTyNAaYJdL9TiUwsval3ewSZAezhJwr695hY zaa1WFaaASZ/vty5zGJiQ58Gco4oA7T4NtZsYTOx9c2SkA0CDCCOdNh61TDx 8fzMz03LdJhaHX5espGJLz2IO2C2QAcF9UHd1S1MHD8Y1vxmlg4WsvpPKzAT FyycW+0xTQefTcNhbG7cRPG8PfOZDgN6K3uVuPXdOvZ/Q8bo8PCk9z4ebr8J S3MPiSE6HN9pGmPNxVvyNupK66NDQl6skwyXDylig776azqsP34gzYTLVz13 RW51Jx2sngrunMhkYiMsI7HzGR3UvgX4/k1gYpt+Af8XD+lww33UNiSCiU/8 /j18pIUOaczpXecuMvFlmS9mX+vo4JbaWPrOi8t/w/uqgEo6RFPfUysPMzHL vJMhWEYHo+AjWv9MmLjZEyITWFx8yoOqJm0u/6sVM8q5dCgo/nd9WoHL/16e U1kGHfp4zuemELj8G5OfbE2lw2/TSZWar3lYfTYw7WAMHVg3G7Y6VufhbdKn CWMRdEjctTVxLCUPH9B08fkvjA6Zdj87Pgfk4WD3nTui/engrbfrjs+mPPz6 tdiX+0fp8EBF7W7yvVx8xb26pdiJDiWRdlOLAbl4/axzQtIhOuCZMx8Y1rk4 UqbC0MuCDuz0/Z8zlnKwkc3hW9L6dAgJJyQ+2ZODv4zwui/o0mFGuCZ4j1wO Tv2veMvYejqE1WsmJX/MxjNx/0ZqV9Hh7JrXwkXB2Ti/K2+jizQddEy7Cudy svABF0sRUzE6eK48KbDZKwvzTP8e0BGkg2LgMTHn9VnYQdI8QnBREXgLAoJe e9/DUhY/+ko/KUIdZyC15nQGDmgzCllsUYTXVj8eVsnewaoOnw6M1yvCV+ea a+ZXUnH35zj1F1WK4OR0sERtMgVrioy9zC1SBJ1bnqPtTcl4ZM/NVebJipDJ S73ZbZaIzR73PrtzWhEyNDxFenbGYjr4ym5WVIRn8+PJ6qJncDtJ75yBnCL8 6269vPOMNw70WHhlRFIEVypnLLPVHfeKXkvYJawIG2zyvj0fssFxdmkkm1kF eFvi9Luz0QHxf30kfbpdAdwmUrJv3rqMPpNpErmXFODF25rd3mnxKPXE0Kl8 fwW4Z2fL3rY3Ae1uzGsvPKsA54NsTDTmElCO64Zo9gkF6DD3OaK4Lwk5Fe8S a7Hl5uVi2Lu+paAuY1+RPk0FMMi61Jf4Mx0FJ2z0er9aAeSXDVXnYzKQ5vh8 65CKAuybWR/6Qi0TRUaFR47LK4DrivdszoF7aEfvHaFZggLkGX0YvNOehapP PhKQGqAB6eOgWurHHLRF2Uc7/w0NEkQG5/3X5KKG13JHjLppQDy+W4h6KheB 0cmqk09pQDeK07j5LRe1SZGOtXJo8Iyufid9OA9ZPGqMdSmhgZfXu4Z5KhO9 CPBo+JVPg8re+Lnv1kzUM1JHVE2nATmqsvNuMxMNV7rAles0WFu4Ytb7aj5y OyEyKX+FBhG951SUOfnoo2KlHDuIBkMih4iWA/noyzVB38EzNFAGzlEB7QJ0 2oCddv4kDcbJqzMiDheg71P2T8SP0yAmtd7iXHABmjtUSt/qSAOf5NqJkMcF KED8kGm3HQ3+bmwITx0vQAvAc97LigYTzbHzkoIsdPl8URaPOQ3ex4R5DK9k IR4N2/YUEy6+5kp+UWMWChtc+r3emAZZSkFrbjiwkEBCwconBjTQebtvn6Mf C4kuLgTObqCBveuBT1P3WCiGnZcfpUEDmevpb4srWUjaw7JbRZUGP299r6t4 zELx1D9L9Uo0MCx/F8vby0Lkzuw11jQa5Oq9CU4eY6HUMHO7CVkaaH8Ife77 g4Vom+dCQ6Ro0KjR1BO1yEIZXzNLKKI06Lk8rPhZoBApZ+19W0rgzjNwaNt1 iUKUYzvDb7JMhVKK95+jMoVIVSR9w/t5KpxukFENkitErGYTR79ZKkQa+eEX 1EKkcXb6uug0Ffa+2j5ylFaIStXuVGR/pkLZW/+H67h5rf4dg1vGqCB1zbNF l1KIKm5NirwYpMLawB5TP2Ih0tuVrOfZRwVRbamlr6KFqO4POvrvFRVObV+O zeArRAaln6OTOqlgfgX1RvxhoeajCXWaz6iQtaD+rGiShYwpRmMPH1JBtXrk suAQCz1oG5dybKFCtM0JjbtdLGQSErd1po4K9kEZq7xaWKhV18DzRiUVWmnm H84Us5DZxGi8chkV4k+sma9IZqGO9JiWWhYVTPAIQyuUhaysN3+xzKXChJHU ms+eLNQtMEIez6DCvo1GEkMWLGTXcHP75VQq6NuPDpN0WOitz8bTsglU8Hjm 0ndNloUcVg6mFsdQ4XrXlLn+XAFyjdb+3hfG9euNeYInpwAFVsVf77jM9dNn peqxWwUo6f1PxfsBVJg8qRM1eLIAtWnWmLJ8qPCrJsfAUbkAjdnKDd/1ooIn R+Sny5989O9SwIVb7lR4NxR35GtnPtLtMMi94ECFHTKrNDP985Hl3F19bzsq pJWzm56Z5qMT9KWuI1ZUiL2sdTiclo/ST+PFXbu5+vbYirJrmUhQctdBGR0q yPL7jaweyUPKm5iTguuoMNd/t5jIykNbnQWvLqymQtvWxJv3TuehM2Wt5SN0 Kjg7vKivnM1FfZYWImwRKqxr3CMj/zMHldw62LRvRB5+590an6jMQk9qa22M 38tDh9GtyrLjWWhkSP6z7ht5+NPOlDwgn4UoWv1khQ55UJOSLrr9PROFvHDx /VwnD7clnsp1HExHNkQvletx8vDrisEBjcfJ6E98UCRG8vDU2+9k/cdw9Enx /pfdBvJgpVz8RHTVVdSbL2jRuVEeMs6dUd7gegVVNtwmDqyRh7bvekUDeUHI 50NB2oKMPMyp+c8p3vBGo9qvS/Qm5ADt1t/58IUv7nyh+bI4Tg76C36arIuM x00OZ3V1o+Sg4pJnFuFUAi4eq01quCYHrgNdwkOWiTjyzw6HZ4FywBkIkXcg JuOdyvaj4+5yELTbLCYl4g6u8702t0JfDp5D6ulT5CxcMN92qFBXDiRazaYS g7Jw8lXpBq31cmDWUynSPJyF/VLuBqOVcvDzF1PnW0E2Xo85Qkck5CBgq0XZ H/VcnCs5SE0doUDHqZ5lq2nuvuGIhPTfU2BLm7V4oHE+DmNlzfb1UuD7tqsf DePysduOY10K7RTgrRdy819bgFUuTITfq6HAt7MHtOWtWJj00PSsMYcCJbuP N3kmsTCfdLHLSDEFeLCOnkofC38oPG2wMpsCp2+KWz5wLMQ5AzPT+VEUQH4E N7pFEY7XsB3Yc50Cqxq2zmhfK8Jh/tVtE6EUYLpED0Q2FmE3YgBT4wIFTIua I76qFGMb577452cosKJm3nfqQDHeUWwQeuokBWTONgqqXC3GK0yWHMpcKWBp OvZG9H0xlo533rvfkQIzPTwadQIlmGcI63234+pLrHK4vq4EDweESeuYU8BZ Sav/gn8JfvF4dKnbhAJXnc9sjb9TgoFk8tXPmAJ9uV13ob4EZ5UIPanWo4Ch 3vSg6WwJjps/UXlQiwJ1nYdfZ0qW4tDdbVm/NSigcLVhekGtFJ9JWBubqkoB d82tMY5Gpdh1ODpIX5kCysqJGi3Wpdhq3dSJdzQK/JzZ56nsXoqNA/cfDCJT wElijhB6rhRrPWXvVJSmQLyE46d3YaVYSZak3SzKnceP+7IbbpViyaN+DGcB CvjxytYE3inF/0pfiy0vk0HoioxcU3YpnlrQm7+3QIYP0jfyfxSU4sE9KePG c2Sw6fT9RS0pxZ2Jf16NTJPhhopSk25ZKW4Zsb8f9oUMPcZnXxhx47L1jWUr P5Jhev+3DZu59ZlBiumPhshwyWB4gcEqxbGtl294vCND9sqI87NcvGDy0AXB HjKsu6QuXMvl4+Nm7F7QRQbvai10nMvXuTzbem8bGQJizZ/zXi3Flot86PMj MqTOB165wdW7zdRd8yYmQ1DyWselY6V4ffJj6toGbj3efeEI1y/6qJpQexUZ RtV2kIsMS7G4VuTsqXIyvOJbd29UtRQvXvo8IlFEhslHDfdEJUrx5DOzrrI8 MqQ5mT9VminB7yklTfvvkeEp748vK3tKcPsxiaLvd8ggFuFHkK8pwU1sn5Tb iWRYrW2ts5RYgtPNtM++ukGGmem0xXv7SvAqMbO2F+FkaEl/tk5WvQQXP3dT 6Qwhw4O4M9MPeEtww77E7tbzZChv+a7eW869nxKlGk/OkEFa12zCKLwYt3U8 Dnt4kgyLH/mfjh8sxn2Wv3VajpJBdmNcFv/vIuwqJR3V6ESGH98mWoIeFeGJ LvXRukNkOBYSudMorgj/sXJIqLTgnheJn2GqFGHKgeafLH0yjOtMzdnpFuJM mV7z/I1kiLHQT3L9ycKqr6dyczeQATqVDNs4LLzRTtk2U5UMwylx3k/XsLDN oatVCUQy5Da7hrYKFuBbjqbngz/Lwtl9tDkd7v5PUXTrCBqTBcbFV/c/KOXh zPeBqheHZCH90ISh1pNcXHakpMevRxaaLbYZ1krm4nYXqU1e92Wh/sRem+Vb 2VjYvefXgTuyoOwVd1GJnY7DTh0NWGMqC8/fDkW7pkfjwVjn9IadsrClj+6C o25iA44jmG+ThXMRO1MYAZF4Zs5O2EdXFj4eXt7pszccHw0xS62gc/FInIDc ZH9sHK9bt3VGBqrccwacZY+jf7UCfyzuyoDyF4VjrZsTkcM7PsWhJBkwz170 NzFPQjWLy+hMnAwcXfp48s2RZOSzfSEi/poMbNkZfuxLSCoaaJuSe+MrAw3C 9PDs6nTUNPBms+suGe5+Y/CDdDIHyfP0OP7YJgMzRymofyIHnVPpDgnTl4Gu HM6v2x65SNOz/WneehnIbvAgMh3zUPp3OPRZXgZsc4PMnfXzURB/kf/ZbyRQ z+X7b0tlIfK54yzoOkECwqf7j7FsEXLbIJNkMUqCtRsd1w+cK0Jmjpcq1PtI IPPpQBbWKkbylZbfBh+RgLQzRfB0cgkSN+W/1I5JELBbLmjqawlaHqwVbWgg wd1r/73sRqVoXHSFehKbBL47VlBLPpSiKrefbubpJBDi7YAlmXLE+lPwY0sK CRoqRB1mHMvR3VinULV4ErwNKqcq5pSjsIbHGbyRJKiQFFy6JMtGF6wCNafD SCBr+2ji5UY28h5f3/j+MldP+xvGZls2sialvq31IwFrpxxHPY6NdrH2eTJ9 SMD75IoNu4SNtmzj/RXvRQL9IfKzba1spOztLePjQoKr71cc9lxkI1kepRxH By7ewBrVJVkOEkp+pWVqRwIKrUPrtiYHTd03tFxlToKuKH7xksMc9OHQj/fE 3STYVhRL2HCag3q+MU8uG5OgbmY6hhXKQa1XHRYmt5KgtkL3AyWBg5qoUjfe bSJB3OVSs4A8DmKXP5Rr1SbBg16a8vMqDsozCciv1iSBAP/jNolHHBT138jD OBXufG6fu+U0xEHBQsk2wXQS/Ij62urxlYPOZpiNnJQnAXeFoNj/4qDjusu+ 9jIkSFjzSkuPpwI5PKv8t1uSBNmCZkN/hCuQpcuJmI0iJMiZKFzIka5A2+cU FVUIJBgtnzmpI1eBNka9LJJaJsKvojrNfMUKpL7iuv7SPBGifIz2LClXIMVa g9Yvs0TQa4ro3bSqAklZTB98O00EnguBgjZqFYhvNPfj4y9EWJHxRcZydQX6 FXD4XOVHIszaV+3T4MZfJCX4s4eJcFOsS2pctQIN5N2/HdtPBOIR147QlRXo hcEF5Uu9RIh36RRcUKpAj15olHu9JIJd/gtLa4UKVHd8yOhQOxHOuoeaXidX oOLFhPZdT4mgcdOzJFWyAmXG73XUeUCE28Ox2yIFK1C8+tJnpWYirFeJemu7 xEHXWzgBEnVEsJK64f5vhoMCbY8L/a0gwuilw4PhnzjI5wsteaKUCJFOFw5M vOOgo6Fdq3pZROhrIo+qd3DQwb572wZyiRCrWhWS2MJBZjpnDo9lEqHta/78 RBkHbRyTjp5JJMK6pQvdFtEctMZohDl/iwjZUVM8Lhc5iJHMwTxR3JgwV+zg wUHCe21+Sl4hQj9LsV3GgIOWslQkKJeIYOBSmNitwkEz8zNqdH8ijN1NCw0W 5aD+4gSHtaeJ0PWlipHdy0ZlUj3399gT4UhxVpymGxvlnmD2W9oSoTE5j+67 g41S75+fs9tPhJdpfVoFK9joih9ljbsJERysLHIX6suR7ZtDcaHaRMgt+NfQ E1uGTLXUiyI0iVDZ9EZWAJWhbTf+PIxdTYRe24uuW76VIvWtd36n04lwLM47 s35nKfqb+c65XoQIw65PzZL6itH330UBQODO36zus3VgMRqzCop/uiwNUbbs PbrUYtTJp/ikZ04aDp55NXXBugjlHD+ybmZEGvrP+26OKmGhveuH/2o0SIPf csfgbSITGUWwyTrV0jD/YW2KUEoe0hkO3aDPloYF1bSv87Q8pBC/4tiefGlY fvtWzYeRi6bm3NqOxUvDyBPPGkvZbJTU/DE13Vsa2u2SGhnhd5BzQFrwZg9p uLGBlRK9LxWp6+5373aRBoHVo3YBpBTUwKrbIGwnDf81rjWgpSSiwYSoJ35I Gqq/9ZfcFruFVntrz5rJSoP2aiVd3vXn0Nl1C5kzQVIg9yayPaUwDhNyj3mr /ycFC1OjzG+C8ThZvkPP+bgUHF3wDZ0+loAb+bPan1lJwRKwbyQpJmPCO5OF LFUpyEiAwOZrd3Hy9dt2+7skIZSiPEQg5uKGIXXxEhVJOLa3YM5ysgRfMuQt TZOXhEJHjfEA7r5idKfP4oakJFSI9olp/y3FYHPz1vEFCRgWcChbTSjHTx9/ Ja3oloD1v8SF066wcaTKo0qpVgl45nIwxBuzsVlIuu2/ZglY8/t7mfMiG3du sUjuL5SAQ74nDbP9OPh1cRk1+YoERKUW3KIdqsDJwhEN4f4ScKFanj8xpgIf 8nBx9DstAUewuL30wwr8jiGdYWUvAen1B1fwra3EI7f/UxbTloAI6TRV16lK nDNlen9eTQJ8fyQ6XFeswu7mKm4TihIgNlrPuW1ahScIr3IfC0vA2R0zk6ZZ VXjKf+Pq0GFxCLge/eEDqsbs1+KtPr3ikPrbmfjavRr/p/3xxJF2cVgMr94c F1mNZ78kFRnUicMYTTz0SHs1rtnjY76mTBxKN/T2nJisxgF5uyfl8sThxuiq KF2xGvz3yO91c7fEoXOmT29xVw1uaujqHL0mDkdlD3yadanBwXIs3+4gcagS fn8m52INNj4XKn3/P3GI3VHuxBdfg/leHuaUe4rD+5fie0iFNfjROm2bzCPi oEfxHuxqqcHXbor8jD4gDoPhWaNbXtVg4V0NG72ROPRuEkgl/KnBbVnxPYf1 xOFB2lm1Y8K1OHrJ+8KeteJgahE74i5Xiy0ddsptWiEOX9MfTAip1mKpWoW6 VXLiMBz8wcdMuxa/kJk9LCMhDhMR1g0ahrU4/kz7PC+/OEQPa6gWmNRi2468 tO9/xICo40lvsajFFI3LW4emxMDmBq+qj20tfnvd7n3HmBgMaSp0V9vX4juj 6y43vRODvGOMroQjtdjBWJBR/EIMWGuG3wm61mLFjMGWO0/EQPcFtEocrcWD 8zUukU1iIBTxPLSAm886eIvHv0IMVrW/Xu52rsVulZ7ZHiwxYOOUQ7cca/FK aeMdtpli8NO+u6z/YC2O1RoJ9E4Qg9fC4adUrGq5+2VYZWikGFCyL/DW7uGe /2/lZPJlMQjxPVeaalSL228/WlV6Vgwui/d3POHq31ThceShpxj4sJoGjFdx 8bsFk/ucxKDg7PJ5QXItFv1Z0DltLQaVckEWcoRafE7GVEhwjxj0H5DV9/tR gwd1vyBFQzGoTe5dSxuowXttowJ0tMVgvEpss/jTGlxxTpOzV42rh2l907S8 BtOTOj47K4jBJ5Myv+6kGhxZ7aNyXloMlNdkuxQE1uCZHinHKAExCDim29d6 pAY/odi0106LglyWg8EsowZrbf5J6BwTBZmClS+XF6tx2qFEo7E+UQjOEbB1 7KvGvqm9ZdKPRKHNxLpTMKYav6vz/6RWLwr7LtZ423Pv+64+eWWjMlFIEF5n xGtQjeVpjre9UkWh6Y+v8qHhKhxmsPgsJEYU7m+SbRfmVOFJhwy+5DBRGPH2 HqWEVuH7d4f8HpwSBaFvP/utqFXYm+5+UGG7KDgHnrIK3lKJXxsJ3NLeJAoG eTcGbRcr8Dbn/Kd71oqCeP/04t2WCixzb2LLObIoKPsVGERuq8BNyqcVOj6L QG3AxVN6mhystl3SdnRQBN7dDHCaHGXjuKPl0fOvRGCTk3PwhjQ29sj5saTa IgK9PccPePOxseSqC8PB8SLgXFfQZBVeigN2yVGTIkRgrP++46mBEvzBvc66 +JIISFpNiYzrluBa5sKDN8dFwKVI/Bqtj/teWR3C1NoqAsm7W43zBFi4QiPS +8OoMMSpqD988j0bK710rV/bJwyhe9ZLhqhn42h/feHzncJwPOrmCgfnLOzx 6AtTqF4Yvi7ds7O5kYHlnS1GNGOFISV7GCQXkvHl26TD/luEQU9u97k7WWF4 7590E/EYIfjENvpicioBVWeeT7QLE4JTrxo/vENJSMXEcjTTXwgUK1SXs2VS 0N/by6HabkIw9lKgfG9jGipb69Z0cLMQxF+6wAD+bCTrslo3e0QQxr83V7Vt ZaGhxxzlTZsEQcpn6pXSXAW6dGB+1xZNQaCOQpq6XSWSHzH2MlARBPO91lNH qiqR1WIXZ5ukINgPk75vPFOFQGdqx55xAWgsvDQ89r4aOYGep+l7AaCUzLrn 6NWgPxaXo8y7BWA505fpEFODtLzEX+9vEYAXLt/Jufq1KOuehsfhZAHu+0JC cjK8DhmuO3vDIVoAKjVUot+8rkNvG+pLncIEQFpJwCp2ZT2S7t37y9VHABZO Ojzb3VyProh7RnjtFoDOvkLD3SMNiJFWVnzSUABe9XTsn1JrRA2rf3Wd1hGA f+zNu/VONqKZHdfkzzIEoDT7dtPN6UbkdjG3MPAXAViO1Ucfjjehf4JfOy5N EuDphoH6l8rNKC1RZyb4AwHIPvb2B+2bUXf5fYOrnQR4R8xzL3/cjHyMRFyu PSLAbql1FwPnm5Hoc6urEQ0EKP23YnXh2ha0c3zoeVQ+AXpEpM8oRbWgYb/V 32PSCbAqjbbPua4FXeL1lY2LJ4CfrtWu6dEWVKX4zykxmABPDDUnfulhZFVk ciX5HAHa1ZYueDhhNLk5hpnqTYD6kNEJ8hWMVh1QnEo/SICAp7xq6x5jBMPH SPf2EeBf7quQ6DGMnHyKN2XvIEDcxW2npXgB/fk745C7hZsnxjh8lwSUeMMg hLmeAENpz20+KQDSkgvLLVhFgCXOxZKZ1YDa8549LaQRQGbi/jNpXUAndIiT xdIE2BefJm9sBIgAh6XLBAmwizJOCtkNKMsiayN7kR+elsVva7cEZNj/6XDF DD/IFdSvUzsI6O2JDZerJviBINYSHOUE6NyvC9k1g/zQ8Mz7/cJRQNLhLY/r XvPDOVPpf2ePAyohCn5paOMHHe/sghkvQHvvWUg2Az+kzHUVBpwC9FEzSQfX cPsHqn/g9wGkEcycmijmh0P436MEbuzTVV1EyuYHThOP+MJpQJXKT44bJvND sBMO0OOe//Nfr8rxKH7YsX3d0C5uf8OH44O3Qvnh4NBD1dUegK7I/k6rP88P y/EFJv0ugJ54CB0a9ebisdvMXO0BidbKyUi48oNfpJRttTWg/cLqXZvs+OHA ca+Evr1cf+23RLma8YN8wKJF+zau/qK9e24ifmgsMnwfzfWTvniYv2ojP1id ESuicf12s/DCA2v4QfXM603nqYDyMy8GCSnxgwSjkJwuyp3P9rSfDiL8wNDX /JHWjdH5+KLy8H988EpnSqy8FKOG0YaTZT/5QPj73u/21zHaeb1/lHeQDxYu Osz6aWEU+ebrvbWv+CApKPzEKC9G7eqLjnatfEBcurj/y4sWdPC54mtWBR+0 p00OgmcLSlNcF9ddwO3vcFUlfkMLGjpttG8xnQ+2HbKR+jfbjE5IOz/aH8EH P7WNhosCmlGQ3b2qX4584E79ax1+rAlBfvkZZWs+WC+JOHbyTYjwB2ua7eaD 2w9iJ7raGlFs2nBehhYflMzLST5Tb0RZQyuSdgnwQZ5pYQbjWT36qKVj7bPA C5/olbzXT9YjjbAdEqnTvKDdR3pbJlaPKlcdu/a1jxcO3lA3tjWpQ0+88s7H l/FCTkRem1tmDRJrrNJuyuWFc3LJ3qYbapCV+ONvH1N5YfK1lr9sSzXqK/vo oX+VF5K33nU+1VOFJn+qHRw+xAuiC/Z/Gr9WIGJw4ab1vLzgPH/AZWdAKbpe o94q/ZsHYjqbNjN8S9DCVIH9z0keuE6/e2nBrRh9cMm/VPeWB9LLL5yd2F6I KrbnPtjB5gHJY3f2/RvIQzYCGZaHXHjAv7Vtqk0vBUWkHPh+VpQHjIeuGIu8 dUf/A/ClZZY= "]], LineBox[CompressedData[" 1:eJwVV3c8le8btskm6+AcEkIqFUnG89BSURJFKFKSL6JEKZJVUkJWkT2Ovfe4 ZXM0REKijEI49sr4nd9f7+f63Pd9vfd6n/e5dly7bXiDgY6OzpORju7/T8YO EwnRv1vw7vVEpNH8dVhZI24PNNyCX1edhFcFI6ClX9RUUGELbjdL9VkZR4Nt vMCofO8mrCXWDfyeT4SMXWwbhqqbYDfGLTsdkw2Kh6iKKfPrUPv3tM2Dq+Vg s/fx4/If6xDms+5tz18BcbI8Xz40r8OM+1J7YEMF8Avvc1uKXocAtmozgmwV LC87vj95bB2EEqXiV/proK582ngi7B9cnelbpmetg/V8T/Km5z+wb2HSLb1Y ByoZ3P/4b/0DI+SlF5lSB+S3e+PVNf+BzHv69ipcDy8fOk68GF2D10lCG8P/ NYCJ5rTnvkNrYLfcb/vnVROEqnh2HJVcg1DTxYkDn5qAsodb2oR9DYRjV7m1 uZpBi7S31WtgFaTb0LEXfs2wc8th+xf/VZj9ndCz36YFzJc3bvx2WoWn6SOx o29bIIL6smzt8ipskxLds/tjC7D9zLbYuW8VzP3ebTdSaoXp2qk0l28roFGd xvdwqBV2lXusPXu/Ao3R5W2iHG1gmc+l/y5zBZQcucNJB9qgM2HPXOPjFZAY dn6j8bANON9WH+u7tQIBFTYEvXdtcCJUP3L6wgqMHCOpZlS3QZm3g4aw3Ar4 u/YFaa62wZz7RtBu/hXokWoKtxWgwO67L3+h9WW4IjTT9WEPBa7/R1Q2+r0M b52Kr9oep0Csdba/7edlWGplND9oRoFvZpq9jyqWYUA+m0HhNgV4jT7sDkle Br2dlXEnn1DgtJ6FZ0rQMqTyvw99GkIBn2NTn8vvL0Ob255zo3EUqNOdPKds vQymLpJJslkUoNP/+zFHfxkKXL7mBpVQQOv8hL784WXQjmyzJAAFHhmPtydJ LUMOvUBxXSMFKkzHzpC4loHcngD+bRRYtfjTFrW8BKzb/NKsPlDg8LXfp7YP LcHv3oPkcx8p4Goz2vKyfQl849r59Gn2IruRk2ylS9C61+TURVr8nONwk3fC Epzh42i9SeNXujt0fCNwCTpb/SQ9ayhw2+1Xg5vrEhwiCCyGF1Mg5+HPo3OW S/AB/aXPyqDA5OPBOvszS3BR9aZI9TsKKPgOaP9RWYLoXyckm4IoYPvsR62V 5BJs7Poj3OBBgdQX/aiffQn42DwEiuwoMBL8vebi4iJAwFmd18YUkArv0+wY XAS+6ImRK1oUsHrTW3WmbRHOfrx6SUCGAvHvetSbihahZMmZM38bBQYSvlXg uEWwi/8YdGCyDS5nfC1TcVkEs+WfsX0ZbRCV06Wad2URwk6drlz3b4Pugs4S hVOLECzRVLdm2QYXKjuKJEiLcIAnsdabuw1C4fPBt2yLoCCYyLmNto+f6z8V CMwvgLvDGap1YSvotX/I29ayAO/qK9RDzrXC88/t+3wLFsB28GGzpWgrtHRR cjZjFoB6RX7v1lALHP/RmjXvvACvHw1MJzm0gO+vlt2O5gvw13ibBnlfC9SN NmeMnViADNv0025U2vc13Uj+IbYAZ/RYS+/YNsOjuYZdJiwLoMF+6Me7Hc1Q sVSf+mVmHvbenzcO6WkC1a33yc2N86DNYbX6CTWBEm9NfP7tecjd7BZOn28A R4FqCcXL85DazCyzPboBskSqYlOPzcN3ev73x3EDyO+oiIkmzINdSdknFt96 kDpQEuVXPwdXCzaecM2+B0GjnGBT4Tmwk7FUv9FQBQWygRXHGefg4wmxxuUf lWCwenNkP3UWej4J23XOV8Dz2B2H2Ztn4ZSAaouLQDlsjoUNVrjOQgv2Mv0s Xwy/PR7uFe+egfaTE4dmzqeDj4GJCVvdDPCFLQWZ8aeB5E4V74XsGRCckt9Y oCTD5Zbpr+1+M5Dqb3puRCEePvJf8/BQmYG3hUOdEdefg+O5kKhqeSo4mbA/ 97sfjcgLpyfD6amwWGJ3zelaPBp6w4Qde6fhm6PPax/uJHRxxO0PKWAaWKu2 jgjeJyP04Mohr7EpsJ9588GtOR/xJu3u0kmbhI4fr4n3LKpRwVIjT4v0BLw+ t2feiURBQRmJdVqr43ArU+3xyiYF/Xfl8b3iD+NwU47xz52f7Ui66fD3RNdx OJIhaiKZ+hFFhGemerSMQdvbW4bVxA7krhyiedD+Dzwu/lLrXN+FdO6Y/xdb OAIbrV+ke/f3I5KsGknw2QhUBPpHcqf3o3+9gh2B5iPA5flscL/kD1Sk/enQ A+YRSBh2cdrHPYBk+XQYjC4NQ5mP8mffsUHEnrfrzbZ/v0Dh60GxY62/UMr3 0ZfjvgMQsuq7l6I/ivoeCcW9OzgADv1u/Ye8RhE36WTe+aEfsF13z9fLBaPI 1ZL8pRz9gJ2E174Ngr/RiVE74edr36GE8/WNqZ7faGyaGq/g1Av9B4vd+c6N IfFgyYIBUi/UBYyUKj0aQwb7z9eHfuiBF7LZXyfJY6jsbsHomkIPXLNa11Ch H0cBKy4KlNFuYCcFaPRljSMFhrXC/8y6oCMp87M4dQJdSVJolGDvAv8I9+Bz gn9R6DGz7s6yTvhUR11nUf+L1vyrVtSFOuH61rTppu9fROF4rMnZ0QG6qPHl OP8kosvOPVv7uANyJIo2xVQmkfLZn1dd9naApBXlRcvFSRQTrO3dH/gZ3J9F 8AZGTaIeBbYg05cfQUbGRzVMcAphh1t57yc+QNVs8ey9g1OInNv2RV73A/Tm yd1qMZhCD5RfCq8xtEPqTD+qDJhColr8CW/vt0LK7SM+lQtTyNvrbj1Ddws8 aj+/xsw9jf7WdY3aHWwBONsiUi47japORiqoTzfB8bv/0owvTiOL8+JF360b 4OUPwsdzOdNocn5R7V5DPQQc0auwqptGjyI+AbdMPeRW09V9/zqNYr57U7R/ v4dFfjYr5n/TSNHT/Pz3E++Bmf12ciEnFVVKHvrmklYLklNBZs1EKiqifGk8 11EDS1InysW1qKiL17/DO7Qanu3rULXQp6J5Y7UfxReqgE19Wx+dORUd+Bm3 INZdDhaXya633ajovMwFunORZfAuOeuemi8VOdmxcHqblELu9qSE68FUlLtg v3OsrwisFzqb+1Op6KOa5D6xmEJgiqdbkMunomnPziNnLQrAPJczv6uCirga /E88IeXDEDtOHaynIhN+l2RbyIW0lkSvU+1UFBnTV/lROxuoJXTzfF1U1C2r 3anckAFDaZPFh79TkUB+2sTbE2SQ8Kx/Wv2Lii6oczPQt6YAYS1HMf4PFYU2 uhBunkkCPl2y489JKvp87rvShw/xkHbWneg5S0WkIp9gm/gYaK6u536wSEXR LQZwICUS/vxYIXasUJHID+L0ZnoovJK4oej/j4p2D39Vi7AIBKb/FHdEbVCR LKdT5N6bT4BJSW+cZYuKvLrkusTqHSBRJcbtCw3br8fW2J8fqoxXZw+ZoeHu We843pX7KGLuzqfHNDxzbtfc7Tv+SKJyJtpqk4oevj7R9p9yMDrT9EI5fp2K Nj0fRMftC0dr6zfS1ddo/HZZ9p0Kb5GS1j1e5WUqYrw4qMkqG4coji/8Auap qF4y4Ok73kR0+5SxggaVinwjpJxUg5KR//Q5Wb0JKjrBWWXSwZGGXJU7UstH qIjV21j7v4B0JFBGN+g7QEUty9PyzKxZ6Hl2N2vONyp67vCMP843ByU4EyxV PlNR6mywh/iTPJT7/bKiWAsV3bypYFOyWYC0wtgMGEuoSFfK7bKPZhHasHLV Z8miIrkf9WcNHhWjwzUD7LcSqGjC0EJ1YrUUpSzWGJx7TkVtXBm7Sw+Xo5zR bdmdHlSU2bIk4etWgZh9J53KnWj90wpmIy1WocLGh4KZRlSkv9q/PnGwBq16 aCyXHqeivUXys6V3ABkJF+jIHaKilbBfk3IrtWjE9uJFFUEqKmd/+LXuXj2i z2G25m+fRvF7BDtzpRpQcrVEU0TJNPI3yP0c86kBMYUMjtjGTyOjiGGKq3wT Mg/7IbTmPI1mdujVKfxoQQNbUfsnOafRt2O/Qfh5K3ocaSa1NjuFam56VTOp tiFRxXTuK91TKDC7qGwgmIJ2xRKfKL6bQrJqxNzQYx9RvIfnL+adU4jTvDTr 8exHtAD7Q0YZptC85/kM+9hPyG0bi4bM0CSyHKoz3PnoM7Jr5Kdvi51Ee+WW 9Te+diDx7F0SHbyTqLXw6rH8gC4kfZrLQ653Amk0Ktbv+tmFVlmtnMtzJ1Be 96p27KGv6Ku7rGi93wSKWH2NAoe/IpGzUR4nlSbQddRy5IbmN3Rw6Knpicfj aKtNaT9hthcFJWq+rWAZQypD9KQnJoPoRTPpp17rCNpbcWlWKX0Qze1oIxtE jCDZ0OyGn6uDSGlDeV3QegRxJGSpxOv/RByfxm0n/w2jdQOT/q3pnyjidmTh msIw+pGXKw/7h5BIY8TQQa9fKM7pSoNm6QjqfD+uPbWrH8WYb8sJHxxBPqTh Qdvy7yhKtyhyinUU3Wmq7u0//R0FS7L/985kFMWoPfWucuhDXp+L+TZWRxGq O5dcW9iDrJS4rlZp/EFHbz1gZDr2Fe2cqVw9UjeOxBSitjjFP6BHH476LkyN o8XiL2cuq7Wj7gwKdw5hAulS2B++vURBz29837nDeQJxa1U/3x7Zimb61vRZ Jf8iJT3+Dw1STaimUS2x02MSPYsJdgr9U4NEkt4rvkyfRPy/7zXXnKxGd7xO lZ74Ook+0TUsQUYlklE3bS9XnEJM+cdWXB+UoRd595fivk8h51vyWnLqBehy dOlpezUqMmc0k2eze4OK7qOvMjeoqL0urqyp9DXivth8dZB2jmrceZHZvOsF es/7zcVwjIoUQmL+ssJNJHD04bmYMzPoHatIV9GLUHhY9vaB99oMIpeczRq9 kA1yaQNaV3lnUV/KeqBMfi50hUsxacjOouNyxpGcjPmw925G0OL5WaSmNj3v fKYQhvZUJNmmz6L4FoYBvfRSOJXU++GsyRzqE1BiOBsGMOOXY9PoMIeer2Xa 1WvUQpStz5a6zxw6FsJIr5pdC2N79uyXz5lDfPzXXd49fQ/PyrzCGJnm0cmt 3kZtqXpQijbe406YR/4daTudfeqhx0OhaWbvPJLCMxsOQ/Ugd7Rr+YfpPJKO VDX/8KYBWj7sMivLnUduR/X3CU43glPe+vzexnlEtTkpkajZBCKvO16k9M0j M6WwqtXnTWBr8rAmlHkBRfMMx2yTaAZedYNL28QWkPYP+Tt1N5qhjCgz81hp AfERSYSTGc3ANvxxh4PZAirRkdhVotgCeY1JFcNOC0hjP2kpwa4FTMj3L1z2 X0A2h+7ZmKe2ANlByu9k/gI68KFdXFu4FQwMlok1TQvor1Z3jINeK6wcaC9R 7l9AhuHMBxwet8LJlXtjO1gXkUHf3O6/AzQ923f6SZT4InKpCYmyp+nXiGoJ UZ4Di8hIt02+WaUNtOIXCvxOLqIN6+zEdYs2+O3dembdnBZ/T3uQ27cNgm7E jty5s4hEpi52baW1wSHdux7jTxdRfZrZq47WNvDnIuZ2FyyiV0fHWSRZKbB3 ZvakfssiWg+suZQgRYHuL00/63/Q+I0rIjg1KOBZHP3gyPwiovOJOHX9AgVk o5z489mW0K9WP65MWwp8dD+euYu0hHynNyOGH9L0ooXosdiDSyi13z+f9yUF SJjaL3BqCS2QHyCVGAo0STXcC7yyhDQffVEzSqeAI/MbbgaXJSRqP5frVEQB oTGHtPsBS6j1mE3zy2oK1LTpYGrsEvp+MrMyp4ECNtnCvTeKlpDz8NyP7lYK cAdPOve3LqHRG6Nh22j6tOTOe/YLg0vIL9/a/DRNv14xjkhqXVhCTxdONsbQ 7CyH/9PA7Mto2FbmHhOFpkdF8dcSiWWkJMkq69dEgYsbAo57VJZR5OCeVKla CmwOjrMkn15GTTwfvv0spenPupo4UctltL+xKa8+mwJnU14fDrm3jMgjNkc+ JVBg6altB2vgMgq2JYawhtH0v52mnWf8MppsUx1x8qXAcX1+xsXiZRQQ9eYe z10KBFltm11tXUZPrQ3ykRUFeu7RDW7+WEarc+G7xvQpsOP5cjvj3DKySlR1 41SjgF3sdAUbywoy1tbUy6PNq7BglMwluoKuLxVe/cZOgfWm/gj+vSvINuW+ m98sbR+obXfEL66gwJPy7P4VbfCNsc5yh90KaiteOPszpg0kRcrPynquoI6U K7s7PNqgEKcpKKWuIPHvt9/7q7dBT4jP0NGlFZS7u9atKLUVdqS6f9ZlX0Xt X+aPHPJsBbsK5xp90ipiOuvx67ZRK6wPXX176cQqUq8LPia+0QI7lDUM/4tY RSxMpFtfUQvY6R7EThmr6J/hbpZQrhYoMlfYe69mFc2fadRX6GuGE34i7I9/ r6ILT9au0Tk1g133wvvQQ2tI5+PsamNQExRO/M2NPL2GCoW7mYcvNMH65tC7 mCtryOJUlD+9SBME7ep4kOq/hryl6U9ffNcIhfez91d0r6Gpvwptf2IaYF3U JuGX6z/0zklImMGlDl5d/ealVLqOnKpF2VZOV4L/pAb63b6OzjXPjalGV4Dn g8SN6KF1ZHDy6ey7iXJwfO3gzsq9gfp1zzjxPi2Ds82MLgPXN5Di+LbHq6XF wL1P6eYL/k0khAvj+ZnzIGjzmf6YwxYy1faJGXkZCv6B0xyxPlto55vI4iX/ V+ApYtR24Q3Nzrd2MGw5ABwPSJyEhi2kSbektNHlAbsKL0tSuOhw4fNn1iye /yHWPzOExOt0+PaP54sy96KQT/bO1Ue36TDrZHiaBV002rp7seeSOx0eFmDc PO//Di3TVUVwBdPhqyqpF6g4Af0Rfbr9QSUdln/BsN5JSEXNZ4lcBvz0+D8N zijrA7lIYO8voTvi9NieyOnSQ8hDllwpkmGy9Pi0aHD1WFQeWqMoKvccocfg 0Ny9LzQfKZ7SMLO0psfvXquw1DkVovtydDe8Heix6/zkF9JIIWpkbXBMdqPH U82+zyuNi9CVpjPeY4H0OG0uUTzxYDEKPmqW7lREj7miyark3hLULyVRGFpD j+kP+s4+1SpF8gzDVUUt9HhJ/YCnX0Ipqqu1+7zST4/ftlgbUazK0KKm+7IX MwP+OltdtoNSjnSIWvRJPAxYRdxyLkiyAgWt03M0Ehjw1QMXq7fuViC5ygDS tr0MuN2WrP1LoBJdPvzmeMhFBuxw8kzEVa0qlCpsca7QkgFf6/zHlexTheaX JE2/2jHgh/s4W3ubqtCLYrI94TEDzp3XxPy0/3lvmL2regADbhxx+MPnW41k XZS8LF4z4Jc9bOT1mmoEB8peJ6QxYNbhRXLQ3hrEyf/oXX0+AxZ6JPfloHUN MplFaaOVDDhUyfY3hNegudzmCvnPDPiscc56wEIN0noV2HCmj8bfdn+4SRJQ oOO5jw4jDPhwWpbn2GlA0nu+/cpfYcAVTjvme6IAOXFG/+1kYMTWZ85mpFUB qv57ZXGRkxFvE/XtuDwAiJ0itSUszIj9pyuS5zYAXcz4zXZkByN2P4ShlKsW JQZk8JvvZsRZUn//2orVIqqto7inCiNWDWeV5pKrRRq6B2TjESPeLm1cl3yw Fj3btbSv7hQjDoyNUFLSqkVdLBVqIxcYcYWe55/ck7Vox2+PoyxXGLHx3TeO 0ga1yLFRW1/OlhGfJaqbB12qRRXJzJdO32HE04o2xtMWtYjVt9XS/hEj/llc wnXcuhYZWb+0C/JnxMsJp0++vlmL4nXOu+QFM2K1xPQvvXa1aGqHoOeXt4z4 n0NWEMGhFh1+mOD8PpkRnzZOhXOOtci7a8+NvBxGfHfZcX8gDbfvqTCJK2PE v6ddf7TT/IWentALqmPEs99Y2gTta5Hlzy/Io50Rf/slw37zVi3KULt60L6b EftSHle/v1GLFkL/ypr9ZMRv9U/z7rKqRVqTbqKnJ2j2eXn1KDNaP44zcast MGJ8Q8hHyLgWfYkNppfbZMTVO7XUkvRrkfiK+KIQGxN2LB+vQMdrkc359DFm fibMYXXFeUq9FuVlqPQviDHhndK1Hdn7a9EaY92nYRkmHHh33txbtha9Kukr ea/GhN+62O53pM2rj+dmRt5RJqxmf9ieb4u2D7fm38XpM+HDQc/LHv4CVCbG 6edhxYSJ/ec3N+IBMdyLum//HxOubc2XJHoC0vsobW92jwl7up769tgU0E8v zQtqAUy0M3pOU4IDkEJf6wm510x4nMGp1vpXDXI5ePGI8DsmHLTf4eG/4hrE 9ttxx2IeE3ao8SSpXK5B+8/EU/N6mLD0cadF3VfV6FGy4nDcEBPuMqoMiDWp Rk0bZd1Bk0y46KfLOTvJanQ5r6Pano4ZO0XR67plViFvQcYXcnLMuHj9Q/h0 biVqd3z1WPgAM74g3DX4yKESCbWI3WXRYMbD84E1ZPlKlOGufHnkHDO+tEkU mX5XgToHb8jFuzHjlWoGtwbXckRSmxN79YQW/zVJpUu+HNmGevJ4BjLjJhev gqzvZWj9WOSSWRwz/vn41r2P6mVIOqOlQbiZGRv2Goffmy5B91x2W70SYsHJ IVrp96WKkBA7teriDhZ8QuDL3/aqQlQWVyBCUmTBorJagjsvFqL1NrXPWdos +Pb71akFvwLkvUMXtdmzYJ6IbA2e73ko6ON1InM9C858aP7kdkMGSpWL7XW/ zYp9Dj85uMMtCunWWKnouLNiHr3gE87xEWj8gkzINj9W3N/LLN7fGoYUH2fp Rr1lxSfW/y48IYaggq8VpcWNrDiZ2/M0Z6QPqvH+Fj4jxoYRs/CgacAd+NbP a2jTwoY7m2Min3THwenAGz0uX9jwT8Ov9iwZ8VClVnHFp58NZ+Waqu29mQDx Edb/xc+w4b83FRIe9SeCrUGJb5/INmyfemmNuSAF1urNSs/e2obTGE4ebKLL BPs7eZoWd7fhWz4DTGcTMmFAkrnhP49tmIV0+zcZZUGdR87nZyHbMNn4kGj5 vWwIVKWfqCvfhlWPaMe6NOWCeGaquCo7O37MpWd+cC0fgkz/JR4XYMdDPb6/ /1MtADo2A3kjEjumX1CMMb1bACPXV1WcD7BjU86XZ07/KYBskt65zMvs+JKc YpUmFILkh/iv5dfZsZ/wLe7+2UIIfbho1uLIjm+m2WoTdxaBa0+s7ag3OyYl 6td5PSkCrdDZJxKZtPg/Fnoxe4ohD59g21vMjiWu8cvtMC4GKerbIA1gxwL5 c/waD4uBRe9YtGknO77SmnZ+X30x3F+L2mH7gxZfneTOPFoME+SpNNc/7FjY RtTCgbkEPjFHFr3+x44jV5Mnp7VLQKfo75FEZg68x2SfJOuVEii6ht/n8XDg A8PCojn3S0CWL/wkEDgw9dyQ0XBICUTB+IcPOzlw9WMpq9T0EmB31DLq38OB d7jdHV2CEngk/rpvQpUDt4o5xHZ1lYDlA40/rHoc2Nn0OrfqWgkoXG/5On2R AwfyPTjEzVkK82eNGr5acWA6EXeb/eKltPn/LKiy58B/3wh/i1coBX9p+4Qk Nw5ceWh4wFy1FAx4Vl499+bAI/kH527olAJhzcfT+SUH1qxmSao6UwpDIzwO JlEcWGnwZ7zVhVLI+hRthpI48KxbZpmxaSm4Vuw6LZvDgS3Hg7veWJQCSik8 zFXOgflGu//ttSwFtmC0a6GeAwuMlBgKWZXCF3eK4PePHNi6XVn0PM0ec+MS U10vB65pns/9SYu3MRieI49wYFaDbUFNNH4l9du/XlE58Ml7H08zGZXCqsy/ T65rHNjCKjcqWq8U6nif1lgwc+JZ4urxoKOl8OIff/YxXk7cGZ+iMXC4FC7+ jo3eLcaJX+2U9X6pWAqSHQrP+WVpuG23aiypFCYqS+6vKnHi2njHSH6eUihM 1bn5U50Tu03eWZ3coPU/5KNx8wlObDek93Hf3xI48ejysZzznPhf5bWEH90l wHvz94Fwc06crrJHZLW2BHrP39nx6CYnlnm4NOtLm6f9ruebpzw4cf/CwTOr 90rgEL/QlNIzTlx8daH5j2kJbK0nfBd+zYmX9kGCoUYJhH4pLxslc2KXV1yu GevFYF59PK29kMav4bk/tq8YZMgd4YU1tHhFdYoY7T5a5jF+50kXJ5bW9yPW /1cMA3KEPUQ6Llx9wbddsaEIyNtTxJg4uPDnp5rXeyOKwHlTif2vIBde5Por vc+2CJi6dP+U7ebC2/kfmv9hKQKFx/cTjC5x4dEw2XhWlUJYuMUUrH6NC3Pu IY092CiAaqNgTykHLnwgW5ZS3lAABgpksxlvLixs6/2v+FwBuH79Jvgihwun 7wydUDTJh/rdqs/rmbnxmZ45o6u3c+DKPqOkWR5uLJV1bs55LJuml52rJES5 sasu6yMGy2xQPJI5/XAvN94vrsFQfzoLwnQlLihf4sY2bRxCH3gywOYGq3gK mRsnn5MQe2mZAmxx37L9z/Dg/qfrnKSmCEhMXGgqMubBqZ4RPQye4aCRyvdz 6CoPvn5lxu+GShg4ZZ/hRy48mPmzSd5SYgj0VoLrcgwP9vrZ/5Bj+Rlk9KQh 22kenNbv/GA03gpkt1WNJevyYnuBzfWHBSFornmvXaI+L370QsdOZSAU1fgn /I0z5MVKrNnCQmxh6CLT0+m35rz4fOmsIcfFCOS3dX4h2IkXN2svtdL1vkUj i3+2HkXx4o2rNV9rShJQXtHlJ+7veLHxibxT0kcS0aO7HxjuJ/Jiv9M+aGdV IhKYLWC+m8WLj6TGmH6pTEJHJz04btXyYrP9d56pp6egxKHtwsZjvHhbHKW0 /lA6ckzwjzKc4sVvJjO36uPT0RHLVYLBHC828bubuM6Wgb78GBA/s86LE95a v2boykD0velS2rx8mNmNbqXnQhZqjxRP1hLkw0B2J27PzUJRF1/JaIjy4bYX 1hNX2bKRUpeLnKo0Hw5+pDAlWZyNLD+hvXsO8+F7lw6kdy7lIMWgglwFTT6s GU6vo6KTi1b0ZPbL6fDhtLGs5MDAXPSqjV15px4fjgmfITFz5qHLAR7Fkuf5 sIxOOo7Yk4dkdWcOkS7y4bpThl1iZ/NQTeNXNYIlze6nt30rMA8999WtFLrB h/kFB3Uvp+ehi0crNQTs+PCugSWmlMY8NF0bj3hc+HDtRMd3pn95qOLx9vec D/hwJncTs4hAPvLX8tdh9+TDFiGZXUKK+YhY9d9x5md8eLfJcdUuk3wkQFhb c3zJh6sF+jVO3M5HnK7P8npC+TDbwQslt33zEVOnkI1OFB8+eHl+/lxUPlrf lyKW9Y4P7z8hb/E7Ix8tvDjYIZjEh8kO3k4HqvLR3/H3/o/JfHiLQK4/2J6P hk4YaIxn82HzORPGib581Jc0MGtYyIdX1yznjcby0Rc6h7SqMlo+7MGOLgv5 qNXin7lsDR9OLcqx0d3KR7UVAfzB9Xw4osB55DNbASoTFmlZbeHD7PAfKzdf AcpzSfWw/siHc+Y3mOlEClBah/LBD518ODbxxJ40YgGK3Vs/dqiXD5/K4/7F KFWAIgLPx8YP8OHbt4ujhWQKUNDY4AX2ERqmF5selC1Afscdt7mM82ExzYDH lrsK0KPE9Zof03z4ESma6w3N7rL13OXkAh/+8l7K/rl0AbI3Jyjkr/LhF5Nc fio7CpB1edqg6BYfTpY9ZRItXoAuCx0K92Xixxo3E/5VCRUgw7sNp6e38ePd l5LfRvMUoNOfDelMePixn+Jj18OsBUh7z6/i9wL8uH9H/2jYRj46/Pz2f7tF +XHkixqjgrl8pPRnQzJcgsYXbnEs9Hc+kjv2ontTmh9LhG+cPtSbjyQSRF/Y KvDjTPGW7fFt+YjbTHVZXYUf6ywy0rWn5yOWssaslCP8OEGp5WdIZD7aEDC6 xoP58QiZcVOaNu/Jj04fhk7z4wuGB05Umuajkd1b3noG/Lj5Ts3HOp189P3Z y8Mlxvy48Enw2XiFfNSmk5EUYMmPfbKeNPxeykN1cYdN52/wY/0X+gVGtPth +XoTt8V//Nhql55/Yk0eIpcMP1By5cfJFfoxY0/y0FMFosG3QH6s2q8l/n0p F3k+zWTWDuHHD2KUnQ1zcpHriFplRgQ/HgxkFymzzkU2sRdlPRP48fj5MBnb lhx0jD94XbqUH4c/LWwScs9GdGsM6XeG+PGWtWvMlG8GshzunX/8hx+vMnxa uC2TgWrb87ReTvJjN8pvkecN6cgr7kpX2hI//jZ2+Hb8JhltHavY6mffjk1e m33Ybp2GNl85Xzx5cDtWdiHYas4noXWZn4zivtvxYo8JgdAahcx5Ss/KB2zH Wn6HNlnbI1HVyss3h4K2Y6+jXtcYP0agRxT1feejtuMyS/7nVz+FoX9OkZf9 s7ZjV6Ntjxxag9Fa5dn8ma7tWPG+lUr7+Sdo+Xz1lUYZAaw7ez8ia8oDvHtz f2jtFsD5miNW10SfALdVonmZkgD+zZeYE6DuA7JOTy9nqgtgZMp6brvrUzAK On8x5LwAPjWu5sXY8gry2kb1LTwE8IR3F+PUYCRoGPa0d3sL4ANtPQTW7iho 7m07Y/BMAJfZLZ/obH0DA2O5p46+FsBWnmHK2hnRwMnqflw+XQA7heQwVujF wa2j3JqLXQKYVEXX5cecBAttdFWOfQL4MP4sGmqXBF6G80fGBgXw94y/bQwf kyDKqufw9wkBXMT6+b+VV8nQ9DhR+T2dIP7b1yX2cisFDFnDC4+wCGLN3IJD ApdS4UfQ0wNFHIL4wcej+zuyUmHhnb1SmpAgroyN5O8xTAOpqkOKLxUFscMH jUfBz8iQc1Q+k+WAIOY8qh+u0UEGNYqYgpeqIC6Rhq8rwulg0Ecnd1dHENtc eJUdEpcO/VbzqZMnBbEzNey1zc90uDk+KmOjL4gjQ3O1NCQywHOlbaepiSD2 a74k3R+RAexe1YlfLASxXofAYNynDAhnzduhZy2I3XPDrl5iyYQsoXAJ5CiI leJUzCMcMuFw7NPYsruC2Iz6L0gkNhMaZNyJBx4I4v072BZ92jPhu/JVMRlf QWw/aenGtTMLbFZVePwCBLF8BN9RZ9r/f6aak3E0SBBfllZrbr2dBe7ew0vH wgTxlWVnF8HXWcB0smIi+Y0gzhYR+WlYlAVBHCEDTHGC+AO9QYNXZxYQPt/8 cj1ZEBOH2eliZ7Jgr6lghXSuIH4m0J2fKJ0NZcTJbN8iQfz8L+XdM/Vs0Bmq SxgpF8RNf1g+XDbIhvbUN+HHQBAb1Vp2i1hnw6X/nAKSGwRxiN6Ne3V3s2Fo 30kPpjZa/Q7Hn1/yzgb7BaLz9U+CWNqnmdATlA1LZQvXG7oEcdltFf1jb7LB y4NiIt0niD8q6N6JScgGdp1EPd9BWn1/eP/9TMuGcJYHeGREEK9/HPTgz8oG Sco55WMTgvi2sVzx/pxsyHglK5dMFcR0u6wfIxpWNtoQY1qkzaN4akCD5l8j 0sVzfY22Dzf+rCqQs0H3RwZjwxbN35pTlCMxGzoTnizvZBbC1WJBWQO0fK7Y mPz1YRfCIjfHtdNeZcOYwr7BYR4hvONKxUsbn2y4Q2XuPCoohI/+eWlDoum7 9cL+piRRIey2ltf4+Xo2+N8vrGCUFMI/EjaaHhtmA5/m8xxrGSFsWZlC3qOV DTH0Von1CkJYzutfW/+ubJBtUo3YqSSEubpV817xZEPec+7nPipCOM5Ja113 MQuOnBv1GD4ihCWbrrpw9GbBuZ7QG0nHhfDBrc9JpW+zoC/mlinjGZodhT9P u58F162wvrWBECZtdfzLMsqC+xNTyjvNaP6OLxELaxYw5DbI+VgK4bxheR2r H5nw8m60+PANIVwlPrj3Z34mJK7rMiU5CWHrj3GPTI0zgcKd3CnlT+PnJHjl +GfAxU73Zu9AIRzaefNVzNkM+Bl5vnIoWAivWpxZ/yyQAQuSW4mJ0UJ4faeU vmRMOpAOXr4jlS+EkxkMTX9HkIG8rGTjXSKE5c+siIWdJ8OBKtbLQ5VCmNNA uzCfnQwnjxdrJzYJYfdb35ku3E8Dp0u8fFL9Qrh49NZKh3YqXCPveyvzSwij sJEQyaUUMF49u1P+txBOdz3Mp5GeAkeiX6oozQhhHdd4u2mOFGAeZL+sxSSM 3wgqB3bVJ8FbG+aky4rCWOD7f7X3GBKg4d6a8utHwliQ13w3W0s4lDQRaiKe COPPfuyOX1fDIF1Y7eRbf2GM+VojixXCIKjczTQhWBhnlbkIDgWEgunGgkdu sjBW/iq2meEZBNO+1CZKuzBmsruqySr9BAhhIyZMRBFMX6m64HzkLjrsIyHk IiWCkyNe1Vxrd0UX71zuHN4lgmsPsw2LmLmjUIPP+vUHRPANDeKXyRIvxMlV peOtK4JvibmazuQ9RZt+rxXpXETw0oDRpfevQ5H4vY/jtx+I4MArF64pXH+N 1K9vSxv0FMGuGULFXw+Eofs6j3dAgAgO35ycrmwLR7ObdkKecSI4uJ7LXW84 Co246dCtt4lglByJDmXFIoabHtX/fRbBHcSn2XGX45DkxTL3719F8Cfz9M+Y MR5ZKO9drPgpgnnlS55pZ8aj7hnCxIMlEcyyEhsu/zcBLQwapY3/E8HtAara maqJaPunV9dN6QlYzPrkF/BORAbZzIOHOQmY5U7IapBAEmq9Ndu5vIOAp0cE funKJqMxE8WQm7sIWFO54+GITTJi0b159psiAXvVCAXNpCQjHdkfLSWqBJyV t8V9RiIFWQqK+MtqEvCERfvRUNMU9JjpwtEIHQK2+tr/SD00BVUNtVTf0yfg T4zJ31I3U1BfB+PDUUMCHg96UHTtQCpaqdU6bGxCwJt9spwu11ORSlxRgbI1 AT8JcFsNrE9FOWbxafP3CVgl2tPwlEMaUv62c43Fk4AfbEg4TgenoUrDND1R HwK+0Le5h6cwDbWcypnFLwlYh14ur3ouDZ1r3H/MKJSAvZmyK3R5yagbF0fc jCRgDrS+ekqRjIZVq9SDEgg4OvK/koyrZGRXiIISUgk4/gKzNpsbGc3srf9Z lEnAbwtuivW8ICO3jBMHW/IIeOGZ7HNCAhltyrT5fS8mYLnvEROUQjLyTdDv ma4g4GrFTwXTDWTEQexQYKgl4L/6qc5PusgoNMrIQ7CRgIXIeR99hshIRKDn k1wbAd9l13i+OE1Gsa/MpDQ+EfDV5VMe3atkJMMx6HKui4B33X32RpYxHWX5 X2u+1kvA/sanxkfZ09EBht8E1wECHiTdfyXAl47KPW7ZBwwTsIZhUHOBYDrC q5M1MWMEfN/Yf7RWJB01uTjx5U0RcG9PuzESTUf6M/PW9XMEHNas9G4vDXf9 51bSvUzAeXUdJq9o/pf/rLFNrBPwv11cWtdofL+ueZpt0Ivi5NRbomTedGQ7 QJ/DyyqKLa2fdFrR8pk29aOT5hTFn7MnbIIZ0tG9r2wXVPlEsfYpiQllWj3r Bi9STguJ4uzT154b0Or1budZsRATxYeDkl+M/CIjNt3Xp50lRTGp6ab+XCcZ vaoXeucrI4qzZOLxQ1o/hdBbaqSCKL6aETbrRet3TAVRJ3MfjY+5hoGZNo+d hxLCapRF8Zh88p5tL8koI1/6T4eaKN54VKHzijbPUvLuFytHRTG6tDkgp0tG WtK5AxynRPHo2sX7eC8ZNcQd2C9xVhT3SoxKDPGT0ZcIte7jJrT3/8kpaP+W hkz4q+VMLUTx/O4DVqJlaWjwJX5of00UH2GWSP4XkYYmfU9KvrYXxZdMWy/7 GKShu3SUO6nOovjti8Oa+3anobWHZxvLXWn9KeYJecCUhljvGtv99BLFqoId ZxcLUpGUlXXRnnBRrJxd9n1wKwWR+3+zaL8VxdJg7vT1UwraZ2JnahQniqeC BOh9YlOQxjnnTfd0URw4mnNG4HAKuqT5WLelWhSXWdT+czVPRv2Lv3nq6kRx 7m6Rt+U7k9G1nLPfKptFsYnB0PKP8SRkL0Gyye0QxQfddtp8v5OEvOmrfSJG RXHGGoOvyP1ElNO4VnOdSwxfiPDfOH4hHil7XvO/wi+G4z0vLoawx6PyQ236 JsJiuE/4TiardxxqSHvTf2aHGB7eIbCz52Is6g04vHZARQzbLYruIE9FI6az rir0FmJ4/sppq3c9Eeg5y8D6mpUYdjRai/JSikA8cLxhwUYMW20jaZ19Go5E lQQvjDmJ4dFaq+gv+8PQPv4ip0++NH/nqPTUhyHocvds5rssMXwirH025dtT lH/FQerIuhg+rLSRGKOtja4VzxDj6cWxoARVVbN0DwhwuhBYWMVx+sSj0jfb DMC13J33C584znF4Ynfs7HU4IvBs89YucazoFBCpauIKda2JfW8MxTFnBiGJ JPgU7krKdm9dEscmAdccvQKegbRbescNC3FszpZXEf0vAPyl81r224rj/FIb juieF3DmcXVJq4c43tgkfvNXC4Eu5Z7QVbI4Jn7TWvF7HgF+gWZBV3NouC7j 2KhiJBwaGghoLBTH7cel9t/8EAlRr0a9QmrEsUdZ9yaZ7Q1YTMw5yneJ4ypb ogPrzWjg1na1e9Urjt9Em5RbrEZDbeTqjcUBcTwfWNTuHxADUsfpLN6Pi+Ol Txw3FZPewe84rjOmW+K4kGUbtFfEQeRS8AlgIuI9PtoVV4nxoKsvoCPDTsSN tz52SpjHQ8aaqNqsABFH8+1JGPkaD7R7364ABSJm1BuwFalIAMmsTCnqPiI+ /edY/wA1Ab4w7CMZqxDx7I7yI+ekE0E5T0VwBybigYHtUjsCEmGF/ShjuTER 884ts6nqJAH/NHdY3WUitr3iPCZH0ye7O/qk268SsaqUmc2P4CS4EnnnxOAt In7rqR7l35cEbu5a38YcifiuelGm20YSBFuw287dJeI/Iu3i0hLJUL8zMYDZ k4gteI8Uk68kQz+LoyiPDxEPz+0a8HiUDEvjapkiz4h4Pz+zLdubZJDL62jf HUrEb5jYfA5/TAad1+8sVCKJePHXcPn338lg5nprWiuGiL3C9r/bt5kMQRr0 vIaptPqdJiNH5VKALPEh3iyTiK8QItaOa6TAe4Y3+2/kEfFXTtX4C2dToG/0 ep1jMRGb/LoyxHU1BRZalC7cryDi1L92+1wcU4A7a334CRBxN98zdv9HKbDr VYtLYAMR37Eo5DgakAL4ThhzeCsRp+iVD2aEpcBlY8uI2I9EPDV0ULc6NgVc DivuIncScdyDp2LuaSnwUmylNL+HiLXPDxz7lZMCqZv1upU/iJhjRKphrigF an+96m0YIuLLayvZOeUp0NtgZvfxDxFLehfvFqxOgbm0Xf++TRIxVd74oSyk AGfgfOCvWSKm1DpTh2hYxhHE/y4RcazZIeppGtY6H5i98I+GtQ2XrtDiTZQv aW3SkXBs/ESYREUKOAvv/MTKQsI17IG3XxanwPO16at8HCQcXiOA0nNTIPlH xYwoLwnfr8z6fJecAtW1/k+kBUlYIonMPB2XAt1Jhvx7RUn4lJ17p0hECsz4 k5JUJUiYvu/t0cXnKcBuN3FQW5qEZYbv3PX1TIGd+iUNp+VJeKTxaFizUwpo KHkbG+0l4e083H/BKgUubj/72+IgCcs6uH12PJ8CTksEt5uHSXjhSm7eV5QC Ab2jrM6aJDxdbcixpJgCVXEe8r4nSXhIE4JuMdLy8T5V8VKPhC/87BKqnUwG 6g3BM5HnSXhdIedbd1cySClm22eYkfDNnZyhegnJoM7zYKPQkoS/+ek+yfVL BqO5Y0HVN0h4zd0xrM82GZ6W9ed+vk3Cmy4Pv4fsTob4aDLucyFhSs9UhBRH MlR4unQMP6D1i8zt5zueBJPHOOeXfEjYYVSU0piYBIYd6oeIUSRsM3bNy581 CdjVOd5XvSNhP/9tnls9ifA+ue+MeRIJL35+qiKanghK9x9YReeQcHXn+r3j xxOBW6L0BaGRhJGE7rYphwRoeuYvXN5Gwhs//5uZVE4AjznjRJPPtPyaZU4U rMXDZONCaeR3En4ve6Yt3jseWu0PDAvOkbDps2U7lW1x4NVN71i8TOtHwp6x FN9YOIw7Vow2SLj9FW/O/MY7SN3uxB3GJkHTRwkHL0zEgG9Fthq/hAQ+1q3/ +UrmW8Bs8sHcehL42QJpY6UnHFacV0Rzzktgv+1CYzmq4ZD7vTlF/5IEFiJ1 y9KHhwEp16byxTUJPHczUCDnzGtYN07+zf5AAht3WBtHZARDaZKEJmuqBH4o pq/90MUfHLmozamZEjgq6sdIG58fyLrVGJ7Il8Cr2b8qNrJ9IOy0ha1flQR2 a78b6z7sBXdm375m7JTAln4S6cmBrqBgZkdK6pHArj7d9+5X3IVfDWrpOgMS 2PcjQaNtzAkMonpqnoxLYIsS4Qn/ABtgYyCf2kGVwBqNH3TyRy0B/nPrql2Q wKa7c1rF/S6C69cTVy3XJHDMpyarvd4nYC8SmtjaksA1XId+1Y7fqPkfntyn JQ== "]]}, Annotation[#, "Charting`Private`Tag$620549#3"]& ], TagBox[ {RGBColor[0.13333333333333333`, 0.5333333333333333, 0.2], Thickness[ Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVV3k8lN8Xtu/bDDMMZki2pLIUUVxrC1ESirJVQlGp0KYilRSyhRDZ9zH2 9R5ZspOktFgKX0uZbC1a/Ob3z3s/53PPOc9znnPu+953nfvZgyc52NjYpFmP /6+bEXl2bU0OyKKpHwt0fRrP/lp/79eqHMyGiZKDBywwvUxTeWlFDtx6Z0PI bxyxlqqV+9ScHBAi7S6vjnhjXcLtd91v5CBS9XbCxekr2OjzQmdiiRysD1EQ 9Bm/j2+lrHnG5MtB+JtWmdXwB/i5gzDvwyw5eHRWIfDGtghs1q1qevOJHIz5 VauEPo/Ceytc6jzuysH7PbHez/hj8cG7PQXaLnKQ3Cbo1uOdhGOM3+/d5CgH Nuray42aT/Dg7+n/lO3koOtmmLXzjyfY/hyXorSlHKx9C95zMSgFOx3Zkcym KwePuXkNbQzS8ImNeQ96ROTAw2sXXVcsA2dNVqq94JcD7XR/MPHIwFNPW9qB Sw4sRMJ+mdVlYC+JMa7yVRqMFBg/knLPxL5/ydeTpmgQYrNKPf4sCwf03fY5 1UgDTU8maX46Bz+Y83+zXE2D/swdlTc0c/EzXi/j4DIaQEfSeGBgLu5GVqSU XBpQe+IZ99nz8CcndEMtgwY5Il68CaZ5+EeA5kxVCg2M41J2fQ/Jwwp0UsNA NA3Y/DMIUWt5eHs3r4rrQxroMYw3NunnY6vpX1Ff79LAL5NhufliPg6UHznB d50GFbfs/uWO5+PeqGwhw1M0qO4yPZySXYAnChP8u9xoQIoTFdj4qgD/ar8/ dvgoDZDl0eT+vwVYkf1s+QUbGjyVoObbWhVifaobjX0fDXSIA082+BXi/Xq2 9yJ20UC2T8OJL64QXzmvezRvBw3GuSXSBwYLcdTDDW06OjRwKkeFVQuFOCtP RqNFgwYWH39GJAgV4dpW4SSbjTTYIOLn7qdUhPvH1zhHlWgQ2Stz3GRnEZ76 u+BzRp4GvTv/+8ZtU4R/Uybe/JKmgbDNncja40VYTGfI+C6JBkWQN3XsYhFW PtheICFGg43Xdz7/GlyEd/rWkp4J0KCtPZnoGVmEbe4X3tjCTQOlDwNfOhOL sEd26kz9GhWEpFrvSzwrwteeR9larFLBqdHL0jS3CEePBDe8WaZC+qbvDLvC IpyzelHlJJMKSk8ET1sUF+F68qlHizNU6Nw1biLPsge0jvy+MUEFCaUzW4YK ivC0teVJ4VEq/F4NsTydU4T/ehv0JQ1TYdM099uRtCJMvLtFT3WQCpxHl3do JBRh1Yx1GRW9VCg+H8vl8rAIG2BxYdMOKljS70163yzCB99zB/Q3U+GE+ky1 7fki7Pnjx9ixRiqI8x65QXEtwtfFZy3mqqlQvofiWr+PxX/Lh/LAMipESFDy duoW4VzLXhpPMRWGtTj7kuSKcMMpuBeTSwUZ5h6fN9ws/iGMRfkMKrzao7Zr aaYQTz/NPFqcQoX2i3UmzK5C/Lcuvm1HAhW+Fv7n111QiFWXryTZP6TCfmPm 2S0nC7GhmA/XxF0qtNJf0KoNC7Gtuovv+WAqnONRbVUhF+KgE6YmDwKoYL7r jUdzYwGOvbmtkOJHBRH9H5eXIgtwXrIKOecMFVTW08qJLgV4cFBwtsmNCqdt Oy6q/sjHt05UNBYcpUJORUDRcHM+3rzsHBPnQIX+b7HjbRH5+J44Y6eXFRWe ib9b5yKXjw0OHo4U06OCZhg1emBjHp4dZz+xqk2FBupN7+LZXJxwvmD7xGYq lLU9+vYhJxcvRv0br1KkwrWnegGImouz+zK3uohRIXlTe0zQcja2dbHm3ytI hYOLE3q22dmYjfnjoxYPFZ4YFeol2GdjRxHLuzx/ZOHDqKDsbUYWFrVaGC76 TxbMZ1+tOh/OxIGdBjf+NMqCmkrd0AHXdKzk+J/tVI0sbPorx3PkdxoemIlS 7S+XhaafsjbycWlYnX/iZUa+LGiO+zvw3H+Kx3ffV7SMl4UjRt4lQZuSsUXr UEeijyzU/CzuYxeNw1Q4K6ErKwtHfU/3pp72x93EbRf1JWVB/YtQZ8FVP3zl 5OorA6IspA980D1A8MFDAqExZnyyUEBr0PHwcsRRdknEg8syYBnASO2qcUec cy1iPt0yAFU+/MVwG82QpIUzrsnAi2EO9XCDJJTgOXomO0AGXl87HNe89Qna VZfZnecnA3c5H/MMqyWjZ65bHtA9ZSDDsEXdWTwVHS0wE2w8JAM23/IlSbNp qM/oLP+wugzc6Nq3eyQkEwXFbPX6oCIDz7LTtowtZiL1qV/towoy0I0Ud71z zUL3wm/fm5KSgcHN9+uT9LKRyVAi7zKXDMQqRfWFfcxBFadbuEU/SoOcuNBH nZl8tF3eVzP7jTQEeGvzbttXgGoHJY8ZDEjDtRD//qCiAgQGp8tPv2D5v+7X GfIuRJ2ixOPtpdLQ4Zu/BH1FyKqlLsKlUBqEn2jy7lEsRv2BJ2u/Z0uD+9y7 C6P+xej1eDVBKVkaBHo9R9aTS9BYmQvcuiMNgaTZRkUaHbl78n+RuiUN1/MS 7+4zoqNJ2TJJ+lVpiPAwfObuRkezoTxnR85Jw8XMVlnrNDry0acnXTotDYNr Gv3URjr6Nn+kTchDGg52S1/vf0dHKw5F1B1O0lD56rTGoFgpChRy2DtgJw3Z py/KyKuVolVgu+R1QBrMZgo7zExKEZvaoe7H5tKQPhTCJ3q2FAWP/P2x2Uga ZOVfkOghpYg7Jmd9m7406DrOjMo/LkUCf1avLG+RhirXoGtetaXoIT0zO1xN Ghad5r0MOkuR2EnrAQUlaeChxFgMvy1F0ZSff2vkpOElzzvnHVOliNSbvsFG Whp6mR9/uy2WooRgS7tpCWkgb4kKt/xbiqR1V27eEJWGT9FjD77zMFDKXGoh WYCVf/pzjJsoA8mn7XlbxCUNWPPX3nAyAz07tMhpvkaBbQFfffxkGUiJP3nL h18UyDOlDZLWMVBug7nThWUKOFQmeVxUZCA1P+YdASYFvmuaKj1UZqAi5URG +gwFvj37T8lFhYE03puMbJ+ggI7jidgZ1j4j8gt//wgF2K40MDYqMdA2s/ht p4YpwLW4fVhRgYGqfyK3f68o4MQX4D9IZSD9opkHcb0UmDkTJqovxUANbjHV 6h0U6BnkM7IjMJAR2WCiuZkC8TIbapX4Geh555SoUyMFVKa7dhWslSLzG1E7 FqspsOvVo9bJ5VLUrq1/KqyMVY/wrPrr6VJkMf05Wr6YAhMh8vcvvy9FPckP G6tyKeAW5M3+qrsUHbDRnbXOoMDtuoWe8fpSNMA9TppKoUAxx4hxdkEpsqu9 b3w9gQJxm4+1ySeWore+W30kYihgWpT33ia0FDmuH0koeEgBwUuiFP1zpcj1 gea34WAKtJo3fdBizcuV8ug7PdcpYGeqIvaLNU9xH5ZkmwIpYPX4R3oGsRR1 qlfuzfWlwFdTAeu8ETqaOCQ59sSLApITKRY8zXT071qgf+QJCvyw2uZtmU1H 2j36Gf6OFLAdW4uP9qIj65Unet52FGj68p3weC8deVL/9h07QIFkOc/we6p0 lOyD/5jtokDhQoLKubYSxCNiZi+uRYEj2aSZ6cfFSF4n6wvPJgo8j3d9Qd5d jHY484SsqlDgPVa5s325CJ0rbi8Zp1JgR8SCzKk9RWjY2oqfzk+BK/9t0J54 W4AKI+3r941LwSZJ2cmTqbmorarqoNEHKeibDu+d3JyLxkelZrTfSAFy4NbP bshBZI33JJkeKbAf/0+QbSgb3eh3OTtTLQUBZof3PWe9nw4SvBTuREmBR+IK z7ZPaehn9NV7GEnBLuVW6YQtkeg/2abZXfpSMIYPJZXGPEBD2TxWvVuloHBj QPePpTBUVvuI8HGDFBhnKq3ivNvI91NO0qq4FChmT3o8HrmAPmsOFm6blgTi 49H6gOkA3Nuv/rIgShLOvsxRuy+SjOsd/bS1wyVhq+ymoDXvFFwwURVXGyoJ zGi/MIu2VHzvp4ljxxVJ2Glr2ny9Pg2byh/5PHVCEuRFzp5aO5mBq8+GrqzT k4TQGNlwjbBcnPOr0yFPWxK+942nK6vm4fgQsVqNzZKw9qlKubE1D194/CQI rZeEgBLB8rQ/rO8vLuU9JiwJbwRnLT85FOEMkRFKwjgZugNTOXg/0nG0E+LV +0CGW7mXm+OopTg4N215eIgMpVHu2xWOlWJ3k+N9Mt1k1v3V7ZvccClW8J++ /bSSDLNnojPXtzAwsXmvn1EpGeaXvMsk/jAwh1iBy3gBGfYxOV0+aJXhT3k+ +uvTyfBV3nPLx+Qy/OzjIjM7nAzU9N8/VNzLcbTaoY+775DB6J9hw4Gochwc UNE5fZMMr490am9qKMfuhMAsNX8yyL0wVFggVuCDzsPRXefIsJMU/bx/RwU2 KdC/eeY0y1bMOHnoeAVeZ/7XsdiVDEsXRaa2F1dgsWjnPfudyPCtefOj6JcV mG0Ub/tmR4Ypcc33t5Yq8FhgsJiWJRm0GEOvxbUrcX/r578D5mQ44kDlpB+o xEA0n7tgRIb7P6U7Bs9U4rRC3raKbSx+fNbihWmVOOqXZ5m9BhnOUaa7DldX 4pu7OtN+qJGhVuvOneDeSnwuZmNEghIZZn6/T1D+XIldxx5c1ZMnw3uDD+dM vlfiA5vmPd9Jk2H/l5XYV7xV2OjKfvurJDJsg/2ZbySrsMYLuqmsGBkUXDgc 9ilXYTkJomaDABkuCdgEbdGuwiJuF2jO3GTwGBjjumFYhf8VDQqurZFgcvf8 /PY9VXh+dduvp6skOJB3y9HpQBUe2f14ymiFBGah6Tcm7Ktwb+zPV+NMEvzt C6EPOFXhxvEjTcGzJDD2aDii6FKFizfXFa+fJEHJ6lmOt65VOPWqbHLLKAna Pf33fWHZEe3Xw06+I4Gtd+SyC8s/iDTqz/OaBJIFdwY0j1ZhX3ejEzl9JHDX PTrs6lCFnUvSbfZ0kqDQ2FvyC4uP9R8ONNNCAr6dYZUDLL6Ge0+o38ckeGGs 9UccVeHN8a2UjbUkcO59ureEVS/1szJvdzkJ5hu+yGSy9BDSuLd8poQEg7Ga Qossvf5cmxkXzifBnEBaXwJLzy8dFn3FmSSYfZOsm7BSiT+QC+v3PyVBZsMb zW/jlbj7uHD+t0QSHO91a0/rrsT1dN/Hj2JJkD7XtC6/ohInW2j6vQojQZnt e/P24EqsKGjR2X+bBFFJc+e6PCtxQZe7Qu8NEkQ42fS6WFXi2n2xA+2XSKCd kHXFkFiJTYSL1NrOkWAg33HT/cUK3NnTGtx8mgQr2X+GvVjzOGz9Q6vRjQRa ej1vp+9XYFdRsfC6oyRoOxNicP9kBZ7uU/1c7UCC36Y6Tc2GFfjnAceYMisS dEzz7OD6Wo7Jtg1LuXok8PoZe+jz9nKcKj5kmb2VBNhC+6IPXzlWGpzPyNjC 0r/1iETyUBneaid/KFWJBF9rr2bM+5bhgw4h5TEEEuS9n7POjGTgd5LJQo+E SGDYQ1d/eIiB3d6Wn4jgJcE4n7StuhQDnzsyJRH2VwI27+lfePykFEc67b0U NCMB7yOCbPxi6Jgs695zdUICRgJSah2t6Tj1wxWly6MSQMr4FCjGR8fFxwpf X3gtAVJz2uyfmMW420VUx6tJAs7yx3/oiinEfCdef7dNlIA55YkXNRdycJTi vLVNrASQ12VbxLVlY8lJnhzrSAkw9Bf2DZXMxsoe2x32hkqAURhWelGWic09 n1QZnpeAOqZvb/9QOg4+4xa4Ya8E0M5vGH+X+hiPRDgn15qy8Ic8eU3m47B+ qRNYGkrAzWhrw0T9WLy4Ysfnqy0BZf5+z+90RmG3GxYJDKoEbDd6LvM1NgQb RWtX71gUhx+Hjaw6ff3Qvyrun1ZPxKG6M6clVTwdOb7jkB2NE4e3G94dxWvp qPLPGjoXJQ5CyzW3Ls09Q77Gq3ejQ8Xh8b77li5Nmehj57zkm7PiYD6medfm ZC6q//hG19VMHAS0D7V+DSpBUmyvnRYMxWH3Ivc3o810dFFh4EawnjiwCdUS 9ifTkfqp7heZm8VhuubVZrJ/KUr+Bg4zUuJw8ueOE6fkytBVzvwAv69E+Ou4 jOeMK5FvojOP6zQRQudrZF8lVSL3LeJxVp+JMPImYjFrsRJZOF1jqA4TQffV g8Hl1CokVWb9daSFCLumvC+FzVQjob2c17oxEYzTGh1oejVobaRKoLaWCOoX Tl32uVuDpgTWqcbRiZAh1tOnIF+Lyt2X3C2TiTBHe2m427gO5f7MWdj+mAh+ +XbbBO/UoScRR28qRxPhBr9SnFNHHQqubU1hv0cEq26ll+GW9ciGmPC26gIR TiyfboszaEBmuftOZfkS4XHvrXWq/g1ouyH792gvImz7RdOmFjUgeW9vcV8X InAK/cchS25E8007rRUtWfhcCoHTrxrRJ4eFD4RdrPo5bJWE1hrR669Zp9eM iJDaLlfio4pRPUU07J0OEQbPbL01fAkjekmzZLsmEazDeOLfJ2KUaR6YXaFO BMMp5XWC9RiFnx9vjlJg4fs5aX5exSiIN/5gEJWFvy6R9lwQkF+KxfhpKSK8 2lAztY4CyEN77ewRcSI8EOHWjFQC5NhR9m+XCBG4n7/cy6cJyNrF8+FWfiK4 X1gJC98ByHhFVlaBiwjTN2ftJc0BbQ1/mS+6RgDONwsK+VaAVNfd0fv7iwA7 a7b6mNgBkq3Sb59dJgD30mTTiBMgUSum/VsmARR93WuvuwHi+Jwx2TpLgER1 m79UD0DfAw9fLJskgHDmc8NGL0CzIsKc6WMESA3cb3TsDKCPmU2PIt4TYDVW 5+UvH0D9+v7y14YIMJlypTfaF1BLv1qJ10sCkPA/BRWWXe0xauDQTYAHfc9e VLDiC/7EdJu9IMCFLudmA29AqdF7nLSeE6A4/djGRhZ+tOrfGbkGAmyylVyv 4w7oTmNpoHA1AQ64e3/IPAroyiEP3t8MAoRElT/mtwfkOysdP11EAJvp2Yzj 1oDcbvYpDuUSwIxY6sxg6WM//NTwYwYBpKSuDqnuBGShde7wRCoBYn2eO6Ww 9EXhRn5ziQQITV13Q1SZpeeE2IPFWALkBxFGg1j92WAwnvUrkgA5vL9V5lj9 o8WXYrZwAnjIPFLNZfWXb8/BJZFbBNA/ayaiU4vR3zQFYfI1AnyJ1IleiMdo 8deiMjWAANOtoxZZ5zF6XxDjuNGHAFbMmVsr8hj1c524qOVJgBTNBafolUbU cmxrhN5xArwIU1dQbW9ExaKvm3YfYfmL1XoanWpEGZ5Z760PEWBl9LZ6i3Yj Smi6tGK3nwAVCknHTf81oFsXyBtOmBMglyCzrPuwAR164xB1U5MA5xD7XemY erRXQzX/rjoB3jgw2ZL21yPDsJ/NESoEmKnRvyYnUI9UdyT+SKYSoEHq7bzp 5Tr0O/Wdcw0/qx9M+dBNRrXo24/8QOAiQNGzit/krzVo4sDV6BdrYiDfPXNC KqEG9XLItr1eEYPa0Qt6vtPV6JnHsU2L42JAjH8WUutXhfZsHvutVisGwfio xzuNcmRwl07SqhCDCXfljF4oQ1pjN7fo0cVgp3tlpcT+MiQTve747mwxKDFj dOR6MND8invn8WgxeBfyISYgmI7iGiYTkr3FYLFNzTHkUy5yDkwK0j0pBks3 9Q4Ta3OQqvb+EwMuYgBnKxwCI7JRbW71Fj47MZD7Ll7KvzkTjcSEt11AYuC4 cS5LOTYVqXhrLltIiMHWQsb5PInbyG/TauriVVH45mlSn/ktDXNlHPdWPS8K MuQ0bWvHZzheqmebs4cobCoYIuS2ZOA6zrTujgOisKvxt6PYk2zM9c58NU1J FHbYR3Eq7CvE8Xce2e3vE4HLO3I7lV+X4dpRVaFCBREwF29ZyhpsxNd2shcl SYlA9NfYacZ5jA0Sh63CRERAbYPb6jAPYDh4P9JjVRhCUKf11nTAL1rniOsG hCG4TgvV9zbhwYJiSvwtYcjr+CIXydeC4/nu1t4OEIbBKTGD3ftasMNJF6cL PsLAn3KLoRzZgt/RxFIOHBGGEoFo193EVjz+6Ly8oKYwiFcJTwcLt+H5gK0q N8eEwOQaR+7DVy8wfVCo3XdICJpL8mQ8eNvxec1Jz2PdQrDgetRNUr8dL8/G 5etXC8FhrQeVC0/aceVuX8sNxULgWGYcSuhqx4GZu75IZgoBavyW+eNnO/59 7MemlUgh6D9LrOGy6cD1tX29n0OFoC7MtFLhagcOksw9O3BVCIREPMgrGR2Y 4+Xh0pJTQmC78U9Q1kIHbtmkeTD1mBBM+Rwfv0LuxKH3+Zce2ArBNEPGaUmv E/OZ1W71RkLA4GyD+muduDMt+vXhbUIwjk+4cCd34gd/vf13bxSCUMH1V8dq OrFolUy1oiSL7/ArguFCJ+4XXz4sLiwE3U5BT6sFunD0ue5f7JxC4C2v1l+h 0IXJatd3jM4LgvNG025V6y789o7dh54JQQjwiSA8duvCiZ83Xa9/Jwjaz7nm Ay90YUcjHlpBvyDIhd2HzpAuLJsy0pjYJgjM+6sr96K78MivSpd79ax8BCd+ +tMunGYfyRbAEAQbP+LtnQVd2L3sVPrJXEEYF5T5p1bRhdeLGZkcShWExGId WmBDF47QGL/iHSMIx+5LX05u6WLdD4PLbt4TBPqQ8OXeDlb8+fVf4q8LQnVy JVmgpwt3P2pRLPJjxRsYu1r2dmEdxsljzacEQbIk93IEaz9tgCd++KggeNP/ Jvd1dmGBpZxepo0gqC0WSgu2deGL4nt5eXYLwolNLUcMMIu/9iyS3SkIq4o6 b90ru/CeQ+GBWpqCoP+QujGQxZ9xUb10j7IgiL3+9+9yahemxvXMOMsIwkI3 n9TJyC58r8JX4ZKYILQpHzqoE9SFF1+LOoVzC4Jy17pns95d+Oh3ekz6qgA0 rUlK3LDrwm3kg91VTAE45hjU882gC2voLnH1TgjAleuBQgaKXTjJIdZgYlgA shORqhtfF+YK3Oa/2isAF+mOjxxnO/HZhKFisRYBmIp9/VK5sxO/qw74T7lG AJqz/B8253Ris2EpeYNiAZA0XLq1OaQTS0k7PfJKEIDbnzQiPbQ7cbD+n44b DwWgdXtP9ha+TvzFMYUjPlgAxvc7rTS+68BNT0YvPD8jADZMH6cNlzuwev3N wrduAjCb1b+H3bwDx39YNzlvLwB/NutQEkU6sDf1hL2MsQBMZqbu5GSdn0ED 7khNHQEoCeoxfnWsHRs6Z7/YvZHFxzstwpnWjsWfTm+/SBIAAaPhxxkJL3C9 vI9Mzww/HJFK6nh9vg0rG4sc+jzCDxqOL3J9FNpwlFvJg1+v+CG/u2Wyvr8V n3y28FepkR9e7ebOuaXcikUU/ceCovnBtcH7v4LKZhxoJkmJu8sP10MOhnPb NeNPJ6ptCq7xA2nGaYyy8BxXZa0+f+PBD8mWty/5KzzHrio3sjR28IPV1GqO vDdghto970+f+cDKc72KBbUGy710rdk4zAe6NCGXVMlq/CBAj+9SLx+weZWe 6xCuwidbZrN4a/gg5X2ObQ3rf0bK2WpcPYIP6uRPHki7RsfXHxEPB2zng3dZ b7SXzj3Bs7pz2bCJD9qoEpw5TvHYfqR5hX89H7xwNTTx1n2ENTZeikkW5gOK SmPDM4Gr+FPLm96mT7yQt63OkZz7EO35mWwu9JAXNq9r0payKEYVqZdi7YJ5 4bUSwYWRTkcK5tafUwN4Ia7faOziOgb6/WjtpqY7L9zVWVKTV6tAxRvd6+11 eeHVrmDzJuc6JOGiop0+zgP/Xu6/QFZqQaOtpfI6OjxglhtwwGOxH12z/WW2 XZ0HVgqLTTyOvkRS40Ze+go8oC9aGM1oe4kO/OkrNRThgV9Vx0zWJw8g0Jo3 2T3FDaNPZB/zWQyitKdqJw/Hc0PEn3Odi8VvkPvljLwr37ngHNeFfpHQEfSP Z67n2hcuECbkR7IvjqCkWK3FoE9cwGN3teul8ygaKGnSD+nlgtw7j9T/yYwh 06nRrvBslr8B+yOB5TGkaCs7n2zPBdenm/2lUj+hSfU4LVzJCeJm9jfieiaR WlDW/HQBJ+R4bjj8iGMK+fZV5BPTOUH1z0snHd0p9PP8kIJHOCeoaIsfufB0 CglUSYoLu3KCU9JrkaDT/yEN46QlR35OSPky8pzv2zS6FJ1fcvsfB/zgSlxN oc2g2s+1p4uXOMBVrPpF3b4ZZHrn/Wf2EQ5Io1WEheXMIPsu2cFcBgfYjaje 03OYRVftnpZ/d+KAb1zzzxxT5hBkl5yTt+GAqCG+oKfNc4jrJ1a32MUBJDb6 4IGZORSRNJaZosEBn92fFi9qfUFpo+vizLg5wMxqcxAf/oImNbRsfFfZQZCT 1//O2BekFmwinMBkh5HLm/6eYP+KyhSPh84Ns4P+9t4dhsZfUZtX5qXoYnao LlwK2lnzFQnWlWvWZ7CDbV19e+Lrr+iAUOvXyQR2GOTdYme18BUNF0+e1Ath B9OFu9EM5XlEY/u+7nggO2g/9OZ0N5pH7jY8Iw982MHaXVD3+JF59GVJ2X7M gR0uiPdU2IfNIw1zXaKAFTs07fiwuittHl2K392rbcIO36zSvt+unEf/tnvu uqvODuoeNQ5TY/OIEJSns5mdHTiOxu9T3sREdypV28V+sEGUZnW3hQETrc7n HFn6wgZ7PL9o9u5jok8u2deq37KB47PEU0wvJrJPUBJ50ssGVruXFR8EMFFn f+bT6y1sYJOnkR56m4kYxhnPTehsIDv/deFBMhMpX1E4pJTNBhsJBz8n5jBR EiN9kjeZDR77evawM5hIZE4+YPYRG7iYdVu11DFR8Po0vp67bCAYqsk33sJE 353kkkqus8G/Kc9shx4m8o5N3Rh9gQ1I9ONvVV4z0Ug3teGiFyufvu4hmw9M dJA7xdrBhQ0O68gPvfrERG0GsmN6dmxQmBEqXzLNRPr+T87LWrJB6P3fvz99 ZaLiYmnONSM2KPcy1z27yEQK/yXGjuuw6jt+OMf2OxPFy1GUW9TZgJt2TCXq FxMJHE6oylZggwmv0gTFP0wUFCW5N0yKDQziZj6J/WOipfb4d6dF2MD01sul Q2tMFPLY9pufABtYHOLdms2y/wc8b9rc "]], LineBox[CompressedData[" 1:eJwVV3c8lt8btnf25rVXQsoIyTlWSSlKMpIUKuErSSWbhDLKLvF67b33OPZO 9sreZGaP+L2/v57P9bnPc13XfZ9znue++R//d8eSiICAIJaYgOD/z6MuQ17O P6eoRp9cNvl0Hdg1CVvklZwiaUAq+PNoHRhcEvrolHCK/AvPl/MerAOVVIH0 y8GnaHK1+2rbzjoQ5eD/SfD+FNUrOC92bK4D+gDejUarU1TX/adBdHUd7B9i mD7dOUWSChiK3wvrYPIFt7yuyimaBfKz81ProGWU04hF/BRZ/Q78cuP3OsjV 4XAZYTlF5vEptyj71kFUNVtcHOEpEjhz4RFfxzp4hmWeOzt8gpR+kueblK8D XQYmivWGEzRzbPHNI3cdKHgxnCvMPUGyQtqiBMnrgNKC9qWK3wmiG9yopQ9e B3/7aMKIHU/QBU3PVJzXOhjRpC5pMTtBmAXJuZDX6yBdlOLfnUsn6P1pr76P 0Tr4GkXGxy54gmBPXUiA9jpwpiRVH6M9QRbLmbLrSutA+w+h/9P5f6hHEpEP cKyDiw8IMiV6/qHSHq3/jCjWAefPk87Nqn9ofMcr58ruGviTfcTsEv4Pyb8k e3Guaw308R5eUvX8h941qurIV66BypB9YzLbfwi1Ew4kpqyBzw472BCNf+jM 1shCjssakJBfl0jaOkbt3a3xYbxrwErK3b1s7BitJKcXlZOsgTgRup6fzcfI s6iE/8LSKmBkO/9m9/sx2nn5s4UpdxXs7dnVXtM4Rk18wLhXbhVIb5wwPZA6 Ro9ylIjiWFaB9WKQlT37MRLnrL3RuL0CRoeyqaNXjpAUoYWdaN4KqCtbu7cc doQOyFY5XgisgOM8t9QTtyMk9l6iUfbfHyCXTnvE+PwItdOlsFgO/gGp36Sw l68coeA+YUGCgD8g8L3d8ue5Q+RnUJV3a3EZGF5Zczsvf4jA4MTEQMAS+Crn 1q3Od4i+W1jUDT9YAu2StEKGVIfozWjXmJnUElDhkWr1GD9ATR/+/Pj3axEI ntoy9fgeIAHCoQclZxbBWs1qiuPgPtofXW356zgPvDVWu8re7qGLodEfaghn QJ3Wym3ZJ3soslroi17rNCDQ+dOZrbOHTJXrirJCpoHLvaWOBIE91N2gKtnF Mw2crOZaAjt2keuqjfqxwhR45jdWY863i1qj/5j//DkObnb8zKVs2UYbZpcd LF4OgoCujvM++duo1XGQY+doALT0tWefxGwjT0nS6+m+A0BzrDVz6+U2kj0y fxMa0w9U1hpTx7i20Ui5BHaorRdI01dj8/7bQrruZBLDsl2ART87xIjtLyKh FnZ1KKoD+SKfyjWJ/yKjA4Oqr5u1QPfg6eyF9U00vkA12SFVCwJi+RWomjfR lmlK+nUjBE4WwybKnTYRVRRj5bZNGZh3fS/FPbCBHr/Q6DzgzgTeuoaGFHUb 6M4nsXsNpmmAT1DOaztrA1liMM2KicnAuGWtv+PDBirhCNuyUYsHnYyPXV3l NlBb2AChJdsnYHf7S1TV2XUkHft1jJzxG0rd1l4JJ1xHU/NkG97tsWg6mgTa Da+hR8HHXUMV8chg9s0Cj/8aOjP90nH0bjIC7x7KeyyuonJCBtzYhRzkzMMe YFiziswxkXSEmbmosL57TDpqFT3jMtQLrshDYrSaH6auraKniqf5VF0FiD7h XJ9aygpaKv3cvvmzBGlrzYlyua8gDPu5qfsNpchnNfb9lsEKWn3INcJUUob2 LzEKJpKtoIr5UnfXLxVoqmP/JanVH0R8MZA5jwOh/N1GuhahZVRCXLHxprwO BaXj6lQOlhAz6UXd+7z16MVD99dFP5cQiYfq7rZnPRJqUviNc1pCT/SeFT+F DSgiPCPZtWUR2anKNHHgGpHDdT+j7ZhFVPuKWGd4uxHd/mdB8+LlIiqZXdW5 q9mEKCx5HAw5F9HQgvWx00QTcpb9ckXGZgEZsZw/9dlvRgaLthtpcAG9jmb0 4FVsQTIx2gl8LAuowoLg95s3LWiFmISStnoe+XbFzlmutqCWkskKn6/z6Lr1 fNU/oVaU9KLK7shqHnm68tbeN25FD3ud+hbp5tENSb3m+9WtSOnj3Y9ms3Oo dzToJ8FqK2K7LK00UDqHgPIuiQNHG+rCLcXVm88hu8Ek2cIXbSjToOmOkvwc 6quoI/X/0ob8qRJI86jmUODEvTLJojak5vDgRWzBLKIlCI5a32lDPCKKPCx+ s0gh7qcNA1M7Ohpm6f70YBZRhd90pJFqR0OBf72JLswi0efZajNX21Gh6i/5 d6SzaIw6wCfKtB2F7GQsrQ/PIJOxi6dSDu3INs0vxip7Bv1ycQ9J82lH2qaW t8e8ZhDRk2Ap6vB2JMKgRqR/fwa9vxm8YJDQjogaeYrazs2gPieXqeCcdjTx 9uipKsEMelc0b1RW1o4qJYY4S/umUYl5XtJAbTuKmiz8KZU2jcTEe6X/NLcj x7AvHkmu06i1kdntsL0d6WnZyXDfmUa9QZ0iFJ3tSOpYe/6ryDQKpUwaYcNj qlzRaMqjKZRoomEm2dGO5p+Q3PT4NYUISjlDbra0o3q2qZPdhCkk2MDw8F1d O8K2V+XZvp1CPw+v/iopb0cu7t8sZm9O4fOoP6HOa0eGMm/YTPin0P3H0tzO Se1IbuFuW/fOJOq2CnlBFtWOGL9Lu2q1TaKAyxsaRX7taO3WGWkUO4m2r3Az f3rTjtqIlqflXk2iwto7hp8t2lFKcVN45rVJ9HV2J6HqdjvysU7QEuSeROiD coygYjuqUSbYk5maQMByer+Orx29Syx7wB8wgZ7bD3pjydrRRZpXdbQyE8gV rrHXLrehpN9zgUs+42jLVltsIqsNjbiwxv2QGUfUC8G/BIPbEC3PtVy96TEk 36X+a8euDTk9Su0pA2OoMiag/o54G0onHJ6xXRtFRcJHN+ZJ29A4jnKH/8co uqLFqc8+2YquzlmzBRz+Rks6MOB5SCty9v0uppL2G735YJLyxaoVZYt2KP69 /xvdSfjFb30Zf36tJR8YF40gnMRlT5WpFrS4to4Vtx9G1JzBBnuYFsQdwpc/ zjOMXo+e9RBabka6F/Tqv/4cQuu6UsmiRc2o9FX+3KH4EAonLX1Uf60Z+e87 irfPDaAxcxQ1YtaExIkOC16Y9OHvJ43FulkDepgg3shL1YciLA1derka0FcN k4He0l4kVTEYMj5Qjw59K/cvs/YiduroTDftetRO7X6FprsbNfNF2TiL1aEh cYogo8BO9J6GlprWDyFTPe7C308a0AU5tc2OK0VoZWtH8XVDPap9l7GnFVmI XCJ+IVrhelS1LttmvVGAYn57tavO1yLpAQx/c3w+KmzvabzdXY2mjHK7twhz Uc62jeDiSCHKprbxp/FMQh59Yn1c9bZoV3/xX2eXKeJnylOxfBBR6Xubwik4 Ib96YNMrjn7/LaBVEXkFZ5+B96FX217IhoDy6jdVYoweoJ7P/+MPehzgP3Zc Eyr5Ap4+FbcqPskHhq6UbNYiOKAl8MbY+0oheGBmYmemmQDExupv6boUgf2Z /E+D5olg+Y7ppeWDEuDuHOfMFZoMbFRCKHh2KoG8g9LU5/50UEb1vr/udT2g UqPta3uaB7CSLL05Ag3AjCbFK3k5D/jq5nTF/GoA7xb2UMyLfKAfMdPudLYJ IKd/U+hpAdjgv1knPtYCVD9InlfSKgKDGvOILaAVEHrH56lVFIHqpx5VJJfa wHieackliWLwKauwdDykHWyysV7uJS8BIoqYnK8anYCuLsbjZlIpoHlQkum+ 2QmUw6bNZcnLwJabXrpN7C+g1HNYO2tVBh5N190RdOkCl5OekYTwloO+reDu 6J4usJjo0OX9thxcIzXVpT/bDVpVe9Yu/CoHUmJ7Ov/6u8Ej3scVua8rAE6x oeOVRA+wqZb48b6xArDc+HJj2asH9Gv6KewwVoJj23PXB8/3goIbT1qXkytB a4GZRp5/HzCdUo9KyK8Cyo0S9aKTfSB6IuF5ynoVyB04UI2V7wdPXCndtcWr QcRBKPg00w++3A5pfh5VDaiozasJlQbAtYAQytn2auDKLXXlbcgAwP7hyzo4 rgYWoEXJ8sogWK14tLN9H4Eh3fCy36GDQCtTanXYE4Ebjx8r3FkeBPNfvFcM 0xCofnW+pAUOgdk5GUKHTgQufjiWA5FDwPn74iPhTQSSIloLi1aHwAqxc2EZ RQ1gT42QkdAYBnc1GW9ns9WAz2VP8nHfhkGcq/aAvXANOG2TvsCxOQz0/qsq ILxYAxxG/+UEXxsBP+TeWZhfqQHzq21SZLEjAHN+9m3ItRpgdBqZ5bI9AjZ7 sWHBujWgg95SYkv7Nwh/Z29nZlgDoMDFjOfxv8ESGUsXgVkNKJA5PTu59xtM f7sQ4WhRA0Q0O1INbo2Cb2LiuRXPasA3g2jRn4mjQI6aiG/wRQ2gfWaVrH40 CtzCFA+bbWuA5zsZ4XK9MVAQlW4ZbFcDtgMIEqVTx0DS4ZPvUnj8LOanQMrJ GGhV8plPtqkBv7O+xWPujQNxGqbEg+c14BZ6yheWMQ6u/x1WE7OqAXVdsnFU RBNgZvmyuqx5DZCbJuTxNJzA9/E0l3hNaoBU+f1N6bQJ4OdWPmenj/f7Nath 8mACaDXtpzferAF0RYQ3tYQnwa5a2o6QRg2gjs+Uw+pMghz4TDVIqQZQBN7n 3X89Cf7VvWAllq4BJO+IKHVjJ8Fb3GPKD0I14FjXcPR0bRIw1r8dLqaqAfvK xE332aZAPauGUt8+Atti2Tk5YAosSnNGPh5BYIWAxNssZAo4jPy1J41CYHEl 26akdAqMVjS84XdEYHbIyIBuagr08Qg/dbyFwFhuzll0YRqwn2Wl+fWvGozE GDOxGU+DY+O9k/GeajDgR/rPzmsaKKfb6MsnV4PORyZdPL3TIB7/Vey4Vg2q 6cnfuDnOgOysjz4sb6pA+XHeo4GYGcA0ZK02rlIFihcfaEs1zgAacrUrTKRV ILsmHzPOMguCOoKb+j9Xgjj7hw1XSmbBkpwxz82AChDzgDI7fGIWvEpPlCO9 WgGitAojV8nnwAvmn9T6BBUghI/qxQ/DOWB9cm+zxb4ceHQVMfw7mAMYDOlw pmoZMJc+Y1apvACMc71SHFOLwUPuUi1mywVg51tWq6RbDIwpnly0CVwA1d6n Ddu7ReDOZCkp9/gCqKWPyDBVLQJqIRaZ790XQW/R34PCtgIguFFxoFS3BO79 3fIWLMoFLj/VfbZXlwC9oyJB1NVcMJDeTpvNsQykZXqmorJzQIDlb0H+l8vA 0jQ2UGo1C2yMHOqQ8/0BUZu5nlom6aC6URHX67oC1mpT1i5TJQDj7yXaNorr gC3Fdyo33QMUvgX9wpb4ufms9W/inXeA1qDZbCIEH9cfcPOLdsD7HHS8s7gO Op54VVVF3wbM6u9vx9zYAO8yrwqdoXyH3pd+e+d1uAGCXzE5aNwLQ2Ip4ypm 9JvAqymj+T51BOoLFyBRFtkEA2o1s7erI5HUq/SgHb1NQHIS5urO+R1NS5Yn PEvbBNI6OXkOfVh0PWH45y3DvyDshehINHEK2viQbdVo+xfUFb1vUKhMQVHP vE8ve/8FOpfSt8IdUtGipOSFs9l/gV6rvov5UBryK/UIIybZAvA+5TWhj5lI +vs9SWeOLbBExML/XSILDbmKN21IbYGkPbTi+SsLian37Y0ZbYGyFJGF92dy UMtPUZPSHPz6RzfufivMRfa5x1tSjVtAisTcMfY4F7GHdn9OGtkClM5UjYrq eeiZ4fvqr6TbgPMl6yfRjjxEMdPJb2uyDYyom6o9OvJRbmNC+Yz9NrCdyi8c pyhAhqlv7xr7boMdzoWuMvUClGor8OFa3jYYNcP4jRYWoGv7rxf5yXfANamE V4E+hWhtRNszinsHMF0INAosLEQRVbycdBd3QCKdy8O96UI079V64/jBDoiu +WRGdLkIBVnGzjo47IAp89cbcRZFSF7rlevSxx1wXYW4Dfu5CPmeweQM5O+A Ks60yqbBIiS1sXlNp2UHlGW81F06LEIDPU2T9WM74KqbioA1dzESibJnzKPY BX3etnlexsWo01kzQ5RnF2R5G/xif1OMnEw5NWJldoFPoOoK5ddi1CTQ8PrT w11ge0Oc96iuGNmRRtMSOe6CW5f8nA+HihHrom3KW/9dYHIjwOzuajGqblOD 67G7gOTyVgkpQQmyymIbtizcBaokPf4MDCWINmTl5WjrLuAJsNlz4itBxQ61 VHcndoGujRiQlypBD+9FJLRu74JWHoeK20oliEzhhTKk2gMd6rjpeo0SlM0J +4t594DyjamroTolyOAfs52k3B7QNaaMqNYvQScTS2SJ2nvA2s03+qpxCUqu q47jfLQH7knJyUs8LEG3kkIVvrzeA+wYYGP/qATtfnzWTf5pD0SZ7xowm5eg WOsr1m7YPRC5my3BgY9r6jAS7xTtAauICBUP0xIUZE65edC6BxQwhCZYoxI0 9Jpg4mRsDyieahwY4/X5A/Y6iP/ugTyVx8/z8P6sY9fKKcj2QbKROF2SZgkq yJ9LPcO5D2jceR5fUi5Bx02jEYxS+2C56ubq8wt4vd+9Pmxq++BAWuK2ijBe b73NgdtgH8icfatYzFaCBonrHvFb7wMmY6qXvRQliI+97JaI2z4Qpyr8Gblf jKwlcpXPfd0HtdqsSqQLxagApohLJ++Dx4rvCjB9xehYP5Zdrnwf7Ongrs+g YnT1eTiZUuc+8CxN4zFML0ZDX7yn1Xf3QW/sDfxVKEb8yc5dWlQHQOCV6PtF czx/+ctqHZ4DwJlMQXnhGp5v2uzb/asHYK3/VejOmWKkuWfg98D4ALyZKS1z WsefX+pbTuZ2B6B/gDW7/FcR4pdVvvMiAo89tc5E4M+vtZYMtE8/AC4ToqIy z4tQ4QNxqdfVeKzdaROrUYSufmCncp8/AP4S2v5/9gqR9cB27Vf5QyAcJdNc oluICpb/5ERqH4KdpwdBGKFCdHwy/SPm4SFofPNY7MVuAQoS7X6X7HsIci5E l7RHFqCCt1kXygcOQbfVXhhZZz465rSKn3I6Annk1dU51HlI87xp8HzAEVD1 +5Vy61cuClLXd/0TewRIXC0qGL/mIn4bNaOdpiMgWB+kzsWSi65W8TBQsh2D 9FAriZuC2SjYbNBDuuQYsLcI0RJ1pyHfFWUw33EMPs2S2zbLpiG3d7h/36eP wcr1lYGLkanILtTWmZz2H6C//Kn2nGEKutVM7Dhu8Q8YNp3N3G9PRLTnpZ9+ ZjwB/pr/2b2kjkNBJ346i7an+PrpuIs98UK+n9aoY71PwdPsvH2F6+7IjV2/ 7W70KTAiOu+R+vMdsrvIew01nAJf72AizTJbJFpgzNd+hgCek1s9HfE3AeQL Gxw4CwJ4PJ12ylfrB5pvYc7oMhLCO3Rbr0I5sYBZaorVgZsQqtcwVp9NxIJH Z5L4wkQIoaIZRbWFRDw4bJeQHVIihKzyZ8gyFHBA4rqyyaMnhBB7rtUnCySC t2IEll62hLBBNOn7j6pE0EjeYJf4hhDavqKyOVBMAg+bbngtfiKEYq/ZW4cl k0GIukmafSEhPOZWqg4gTAWjArwFX6sJIY2ZiYiwQyo4SzRTWdhCCLNeJ1sc TKaCuhrrrv1RPKaNylUoSwM7V5z3PEiJYGYvxs35bgZQw6gQJtARwfQV9TLt ogwQdExI3chBBAv3yWLEWTKBWIU/D6UUEWw5I5VC9isTGCtEa34xIILNuc6g UDwbJLOZ3i54RARpfRxUPrhkg61dPqN+ayIYeCNzQb0jG3wuSrXhcCeC7xkF q99b5oDhMBuny/5EcOMSG8ka/n8u4ijtYRpKBImYToThbg5AF0tD41OI4L9z OgOXQS6gYXT5UZ+Hj9NSYjPMcoHhJkiZqyCC0VbRvqTuueBvTnP52S4iyKpw HO1QngtUgj813Bghgmafa629B3LBJ7vbnbazRFBJTw/7bjMXCEkOTuXtE0G+ lssajEJ5wJ7m+59eImK4p8A7m385D1T9ebizQ0MMBx/O35C7kweo2gVO2diI YcL50poo/DxmkD5PocRPDH/sukePvs8DOP90xgfniKHHh1UVguA8sP7MjttN jhgqGjqeI47PA36iu+frrhPD3/7m3Em1eaCPrFxx9i4xVGm2tlPvygP8867q ZA+JIe1hKw6N5QG7RlUdsWfE8KlF6GcO/LxXnkh6X9uBGK4NeNPr7eQBcp/W RzYuxFDv076Q1Wke0H8SaB3kSwx/7s11G1LkA6yanmNuCDFcifkpfZY+H6zy s7j1fCOG3p35NoOs+UDhffzL2kQ8n/C5cG3ufODVJ2mZm00Mxajj7FL48kGH ZLlhXCkxzLyvfWdNMB+wfrx6M6gOz9dinsYrkg8eTfYA1w5iyGJEsnpZNB+k K5rJ2AwQw+cl55LV8Xj76x8Rk0li+Gjqu+0l/HqVlTec2svEkHW8+w+bUD7w 0yShVdwmhpI/Nofm8Ho9sSGEYid4P4f5x/F4P9z73DusFCSwZVlHSoctH1jp pS2SMpJAujZL/UV8PrnpcqPbXCTw1uiWhSNlPjgkrvs1I0wCl/5KW/4lyAca prfqe86TwAZVt+dP9vJAcPFIca0iCUx4rBPespIHRuiepueqk8B+P3Iuwak8 IPR860ecDgl8sLB12bEPX/869y9B9/F82hitqqY8UMpF88HVnAQyLcvHnpbk AaLXUW9tXpDAy7YeGcqpeeBmp5CNyWsS6Cud9ud1ZB6Y9LhyV9GfBOK+9SjN OOQB8ZHWq2KhJNCM964fp1kecJQxUGL7QQIdhl990NfOAxTzdvw7uSQwWvRb 4iAmD1y4gV3PHSKB1F6GFLfL8P1wosRM3DQJpFWfJur6kQua/pUOBK2QQPOV XLknnrn4Pry7yoaAFDKD/dMWzVzgxUL8WUyMFP6i1CNK/JgDOuyC3dkukkI+ 65vvtdRyAGsL1ysyZVLI85q1S/4oG6Q7yxrP3iaFiYXTXqTPskHvhKUY9g0p lBHL4zuVzAI8in+5gj1JoQ9f7eKH35ng2Vc3OrdPpFByHpft+TETHGtE7prE kcKNUg/d9ZEMIJTe0sDWTAq/jT5c1bJPB68dz5kHs5JBEXP/rkfGKYCVar3S gJ8Mep2VRkJLyaA0Lp+dR4IMFnw0/B7klAyO2xS7MlXJYGi32z+nwCTgxa8F 2mzIIBuZ8n9fMxNAUKcFhrSeDNqnSHZ2/hcHksVih53/I4dLZel3yZkDgVa1 uZyaMzkc7Hjo9X0pACzdFf5C+YEcHv7dcHKp9gMS7plaUd/I4YTWOd4aKx+Q 319eUtRIDp8uDJWwvngDqr0Gwze4KOD5ptXbNVpWaHCU/o5VCwXkL6vrnTIM RdqfLIcceyhg/6/JTzvqYahSsfyh9ygFLGZ92WokGY6wEU9eYDco4Icf23Pj hxHomW6xzwg7JYz54Opl7/4NHdablNx6TgkT6bvVFr5gkY1D7hXTV5Tw/icM DcEeFo3zkTa8cKWEV/2q308Yx6M61+wuvy+U0OgUxI/y4NCnS4TLdWWUMK2d hPtKZALizkjmvkRFBfUmVt9payajIKMjnCYzFXyiVaHpEJaMCCh0z+rzUEFM prkd83QymrU4kHt5kQrWbxswl75NQVk8N29nGFNBYtYOIubQVMT3E9tfZkEF Mw1v30vqT0Vf3++YtNhRQX2qa/xhrGnIaSj22ZwXFdR4/CXFNTQNqXzd9OTN oIKBKoLjUu/SUS68SiFVRAUnDTEFRtnpSGD9W5AyooI8uikN7VPpiOymxnej XiroEufp66Kegd4eRvE/G6OCkqvhG8UvM9By6mqK0wIVVK1aopKOzUC/SCML Q4/wfoNJdgc2M5Ba4R8lHCk11IsJNCPkyESFj2FtLh01zAvYTn+ikomi0NLP n4LU8MljN50270xEZaeiPypJDcu4yXg6EjKRC3foyPIlatgqp1ZPUJeJHr1T XiC/SQ2HVf0LT/YzkbhFS/+aATXkWh6xa2LKQlu39Bv6zakh9Xl0zQY/T1Uq TuZX2lDDXazyl3W1LOQrZBOf8IYajoVdabh9Pwvp0u0HB3hRQ3N3X4/Pz7MQ x6G328tAamiBTfuc9C4LTc/S2RpGUUM/wv3+bx+zUOav7yYggRr2t/5nbxOa hZzKRbVFsqnhwWJKBOePLASSChTOlFHDDu6ytKTELEQRAkS366nh9F2hC7Tp WajHuZ3ldyc1vGpfPKKflYViLO+T1A1TQ2D73Nk5OwtZ6c78TZ2lhnN/1Kg8 8HHpy/9NBa9Tw7iz0ulW+PcPhI9+OR1Sww8WE3Hnk7JQHf3HalNSGvgwL8Jg FK//+YgxS4OeBt64RmFmF5aFDOZjv5/jooE3NYX+W/DLQnzd4gGMIjTwZGfB /Pr7LLRcUfz2QJoGikaIX4p4kYUKktWeTl6mgTG4p0xdRlnI5UvnvearNDA0 3xccaGahqy7GGtl6NJBtBivGLJ2F6J/OXwx/QAN5h+vNBNmz0LCeA7/LUxpo aZYfffYkE+GUT+ieONBAuyRc9tnpTGQjGnBy3ZUGZggfRos0ZCJ5RtZVaT8a KK5A7iyYmIlOj+N/s4XSwO37pcGCXpnoa09Z6VwqDXxGi6G+rJCJHlRppnQU 0MDPh7w/jOgzkXBqd3hBNQ3M+6+h0n8+A5W6Ljl49tHAYeHEF1KBGcjr2Wvz ZxM08OOd0vMZphnoxl1C3dvLNPD7e9vl6xIZaFyMQxJDcAYqhjylOa1PR6lM SVwk1GdgwehSEk9gOnp5Ik31h+UMVJNpjHbQT0ckfVoLpefOQEIuZ/X2sTQk 7v42Xv/+Gbjkzbr+63cq2n5OEnL58Rn4R9+inx/fD1fph7gJ2J6BT9hsrXt0 U5GueKrJhtcZmP7TdNgKpSCn/kGWz9ln4JTj/AlJQDKqP3cpoJ6UFtLw2w+k jCSgh+f1EzbpaOFj1ctg3ScB7V98WcnLSQtJo2sGhKQSkIRSxtp7KVpYoDhH 4eCKQ2FavHdl79PCEH2BvMv08cjKkpw7KZUW5tAy3x9li0EUcYNZvjfoIMuY 8EKgYBDC4babCu/Rwdt8ndFvHD8j5WSGyWkzOlgV7yCj3xCA7LNuMAJHOmhp z8t71/wjGq5ATnsxdJDds+r6k1APlD6UAp6t0cFW8Yc5Uy73kQhl5WKiFj38 tu7gu1HxEfxtlrLG6dBDcl+9pNe6/qDaN/5P3B16yHx9TblrOgAYkHxc+/aA Hg4a00enEQSBD6d62yH29PDz66cRCnRfwezOwqlLFD2U7mfsDFiIBLmFxp7O P+jhi3w7WfXvUcDl1U+itzh6yOJJgVHUiQbMm/mkrzLp4flFv8OijG9AfcWV +nkNPRR9+MF7Xu8HwE0zsd1bpIcTujeLvmLigV28b9SdVXp43+kSoeTTeKD0 6IBD9y895IF5lbE58aBnbJz7xjE9dFryFD1QxgHC4TQBVXoGSNebESlwPQF0 RHInqrAwQMpzF5Pp/RNAlEGwsDInA1QScLIva04A0n2OYpeEGKDz7MhDKdVE 8OgXkJJUYICHJOc1dYWSgERQfo74FQbISm6iUW2UBPZvCl8QU2OA2N5h+1/4 /2lwG5Ws4E0G6HX1rkD3ZhIw9nct4tNjgBx39Zsq+ZOBiNaGPI8BA6TNWu1X 1U0G1Y39ihyPGOBzz6vP6dKSQYCPVgWrJQNsY/CqutubDAzUK5SZrRmgN7ML z9njZLBWgwV0jgzQlvFMnPv1FFDuzlRL844B2qi/Vv9nmwJ8VXzVqNzw+JX5 CcmXFICpfKFJ6scAE7yOKzJ7UgAzx+GhXSAD/BhR87BrKwXQOPnlDn1lgBck o+3lmFIBSS+rlVoUA9xKNnUekU4Fx+eTuDJ/4Otj8lOo+mYq2P4s082SwABF zn5TmLBKBX+Wan3dU/F+Ou1jld1TwfRVXeWlLAZYS3L6sD88FYwkjG/eKWCA Z6z2cKnpqaCHwDalspQBXmVnKiiqSgWtpkcPRKoZYIoqw/5RZyqoKfdnDKnH x68WHjqPp4JSNvaWgxY836/KJxdXUkGuY7Lrk04GWIOdPuLfTwUp3bIyP3sZ oKxce8Z1ojQQK1W/KD/MAHUvnLxPo0oDEZ/0YrHjDPAedjBMlSENBC1O3KWa ZYBBpG9VGFnTwAdNO0rHJfz+qOZPcnGkARfccfXYGgP8rb1HZMaZBhxPAxyv bTNAz0ZwcxQft3nAIZ53gMc2W15hbGngSVnKBOcpAzx42PnZjykNGLPKh/uQ MMJR7Qa7sjNp4M6rBu01Skbo6Tx1U4wsDWh33SEwpGOEMi1nrQeOU4Gq5FRR LTMj1Hd+Lda4mQoUAv57cY6TETZQ36TYnU0F0gv/+MJ5GSF2pjLVeiAViGl8 HjgRYoRkBPLNQk2pgDee8/MzcUb4MNIQiBSmAtaTVNWe84xQtbCd6iU2FdCa XNq7LMcIPX7RqJJ/SgVkpY2ZSUqMsNxGhe3Pq1Twj1n/MR1khLZV2xM8Jqlg pdP+57Q2I6RukRf2EEoFs+dOvW7qMkJcmeJQPlkq+O0XqFB8jxFK+V9eBgsp oE0tPcH/ESNUan/e7ZiQAuriFIy2LBmhHl88EnBPAWXHTbSmL/B+Fp6rXDJK AanFM++knRhhL/GWTjxFCvgojtEd/MQIrf3spcf0k4HbxwxS1S/4fFXtTAWE koHTrGJFegQjtFhmCviDv09WsQYibvGMcM78rAenfxLQYAw5FiphhHl1624W yYlA+T+e/KBKvF/vH5Fq1olApiPz6X4tI+Sd4jBskUgEAr6tPe0deH+3aA3H sxIAwSFRmsM0I2R9/7u4FosDj2aGt9wXGCHBGUk9ITMcqOnIVQlcYYSWCTp+ btw44BH3sC9llxFSpK8WnwuLB6ca5aejVEywaLLVe+kNFpwEvzS4JsMET/3E 1FXFY8Cx8CQxtw8TdKpNINYP+wIe0JXcOuvPBDXcFR24pkNA5X5gtHwQE7xB cA/LeT4EuLRfPq8XxQTpqlntRwIDwZF9pLFvJhP86xxvD8Y/gsOKW3kbfUxw 5r6ybk72W7CnV/WwUZgZnpE31+OweY28hnPGVM4xQ3/63uIB17eI1hz3oFSa Gfr9+esS+/k9ErH/aJxxmRkunC/0VejyQPpBegZf9JjhOe+p7sifvii3bU7H 1JUZyrV6v8469wUp3xnqGPBihvIyaxLE419Q83DbDV0/ZlixDZ+0BX1F44s5 19VDmSHhR9NTlz+hiIbcWfNsGjMM+2jqJBYSgZ6r017Z6WOGQYyRDdUu39F2 G0Gl3QgzpJ8g0/1FH4M87mwpLU4wQ3vtMeV4XAyKMh9S+L3MDDsNuKcfox+o yR0nW0vAAmMlNIlMRuPQHfLwAiUyFigqyvShTAqLxoI+XiykZoGaD3IhkR0W bf+wkU5hZYFPYrsyyxaxSKBSXiJQggXqhOS76nfGo2z1sxlkF1kga09AqREJ Dim2c4l7XGKBCnT3x/4p4JDuCIHYKzUWOJ/mssoSi0Oj5lvJK9dYoLfMJax3 Jw49XZoTttJhgel9pB3e/3DIbb9N0MiQBTalO2hJ309AVB5VuB5TFrhFEaM0 6JmAwslz+W8+YYH+oVeWSDMSUCZrOC+wY4F710s2NvYTkELsx9jSVyzw8Su+ tlRMImoQdsZcfMcCr2qYm0/ARPRb1oxL2IcFmn9vJKz1SkRWB3J0H/xZ4ET6 +6VRbCLaqKIhngtigYvxlwLcqhKRs9fMrkYYC5TvCXyZOJSISK6VLydGs8Bf 5F3XdP4moiDqL+MkcSyw7QtX1xuqJMTR9bTHIpEFNv5nuSjAn4SkjFjKhXLw 9clUat69noRKMStZPoUs8DuHUhfmQRJSm66Lny1jgQIG59ZqbZJQR3J0uAZi gS0fcz5Mv09C91/Y+yc2sEDbH+as7v5JaPr8NVeSNhZY7tGvFBmehGy2MS8t frHAT/+Fp4pjk9Bu6bZFQx8L7HLBSCumJSEP13ZDoREW6KTUX1mXm4So1HA3 fSZY4Oln8nvNxUkonOwdnJ1lgXrpQxzXKpIQX/ttWY1lFlinoXRNrToJpQeL iCWus0DK2TGZMpSEZPX/cZHssEBfW2G9TDyuZu+jszhkgRFjDOe48eu1xtKJ G05Z4KCM9DNKPF9vvOeeICkr5ArzaXXE6z20MvzjTcUKQewrcTO8n0Xx8xMz dKyQ6TTNozU1CTmsk/aqs7BCc2Wi0cK4JHRcMNqUwMkK+6qfWQng8/V9W1BO zMcK57iqnzDh68FwJSD7iTArLMGVXPDH1yuG0BxXL84KA6Sqr33A11Ok6VKE oDQr9FNtl6fE1zs3gDbAW44V0r7QSGPVTkJKt+dcZ5RY4bPjvsc58kmogany pTpkhYZ0V2E/fv9uD321TNBkhe+m9C8FUCehkZjnRsQ3WKGc30eDrq1EZGEO dZ7ossKPBASNaSOJ6O3yqqygCSscmVBO5k1MREQ5DWLej1ghVXLSZI1vIgp8 9Z17xpIVXvh96eDkaSLCHWuRJNizwid3vhg9EElE7bSJvQK+rPAzv/vR8tcE ZNDr3Oz1iRWyPHuaWGudgCYj9SqmQ1hh5M71tJuqCWib7xSH+84Kf6Z+lQxc xiEeGWMHgTxWGDZJHMYphUOpe9JWXsX49+n5d3eO4tHFSnLj6QpWeLM7IB7X Eo+uaRap4ppY4asoxTb3h/HI/j49g8AoK8zwaFKtcsGix6nnvwlPscIOAvee SE0sundwS/DsPCtMY5/h8zuDRUrfA+WkN1jh7SC21y/l4hDpBJWxCgkbbOB+ sPTx3g/0zYo0wViCDbasW6f/vR6NGl4fyoa6sEGahOpPN0AIKm7iqI7wZIP2 D+cDM24GozQ2xWvffNlgvMD168ocQSio7I1RfAgbJBCcqebJ/oSM/m275iSy wc/97y8TtPqiNZ/1pvYONti9O8SskvoOcYTNGpJg2GFFc+mg8aQNUPDmZXUU YIcfRY9fWvG+BAYOxr0zouywvOGjkHvHK/BVt0un/iI7dAvkAiG87wDNmUo1 Ly126Henv5awxxOcfAiVIHBkhy7brt79J58A9+vOpf/esUMJdKThqRQILltQ pky4scNSNpnZ7FdB4K2aOz/yZ4eSH5RlMP+FgM0Ta1a3OLx+89T32RZ8P/9G jeC4jR1+wezUxUlHAqKnrlUvutjhg6+iwrVFkYDPoNT5dz87NCD++5ZMMQqY ykrtlE+yw+yXmNsjitFgYINj+d0unn9Lw7pS8DvYntBPWTpih+3zJAyM0d8B 069gCyNCDih/zU1VmyYG6GaRTijQcED+reduGisxoPX5Zu8ePwfsN/NXjf4S CxYNJb48FeWAai3R20o7sYBM6+mtQQkOKHn1+8FHgzigJjLWUnyJA3ZVk7ST UmLBIxZ2X5ErHHD5z6QclzwWuJPcVY9Q44AxEw/8Ds2xoHK6peq1DgfEyeZy 0xRjwUg38fu5OxzQ0eCtrOI4FuzXqCjcM+SACvT0k8Kk8UAurjBf9gkHPGxL i5O9HQ+yTbApW285oKiDbOaf3nggOyh4SObGASd0WEzn1+NBxZ2Um5zeHNBT jbG8ggoHWq5nb8JADugfgtPexM8ntxsvaOh/5YCz3l0st/VxYAAWRTyN5IDf fawrvaxxYOZS5eWgeA64QJUW9TQUB6wLQFB8MgcU6I47Yk3GgQ2p+snCDA4Y GlMaFlWCA2/Sr8q05HLAa1O5aX+aceBEuO3D7yIOqJIsEko3iAM+8TpDa+Uc MFnyRyXxHA5QY7rFiWo4oOIrj8TmTRz4GqXvytLIAf/zEB01/ocD7MxDv8Ta 8PlF9pNXkSeA2GATAeVfHPD4Yvn4Kn0CEKaecLzdh+efWhdfZU8Amb6Pmx8P c8DnG+9ay3kTwEWieQ6ncQ74bA+mGwgngDLX5zb+MxyQS462q+ZsAoAHK9Ux ixxwsuWD7oFEAmhytGfIXeWATQ28+gTnE4DOxtaT+r94fU4+1gE87nvxpnhg jwNamwfOOuOx8cIhxfIxB2RzE+Fbl0wAU4/dTP4RcsJ23vvKMucSwLNxwmx6 ck7oxX8OXRNNAGtGHwiEaDjhejNUlRRIAK/7Ke5eYuCEjyfLbGe5EsCx7uck bVZOKFN7jsiOOQF4ddDtm3JxwkuSQZ1t1AmAQitU+yUfJ3zGdbboiDABBNez /vAR5oQWFp7phHs4wAq+rUeKc0KR+xpFY8s4EFOOUcs4zwk95C+uhYzhgKB8 fFi1LCdkiif34P6FA+l5QgvdipzQds4yxRPhQEnquc/76pxwkU+IaDwGB1SE csapr3NCZlFj8iF/HGiIu3iB9xYnNDAL0sx7jQM9EYoDmoac0Ar7qotcGwcM GavEjEw54d/BhXd+F3FgIhC+t3nMCUMj4lnWOXBgxecaX6gNJ7ymsR35ei4e vCJod0h+yQmV9HUeR7fGg8P3txrLnDjh+bPC8+mZ8YD81T3rSQ9OKHzOJCLu v3ggYP6kUDKcE0qEqLvRLmFB6ug8meo3Tihq7+M73oAF5w2tjfTjOGEeN8do dhwWKN9+eeKcxgmDXheMGd/BgvtX3LVaqvD1VA75Y2gYB0Z35unq6jhhVfif 5LtEceBx9q3BimZOqLIJiwLTY4ENL49VTjd+/9zPNQ7s/ABehFXeEXOccFdz eejx2xiQ3XhYbXGGC0p42kRPXIwGsm6PfR8ycsHiFFv+vPooUCbfpmPIxgUL Qnzkxe5GgYaU6NEb/Fxw/dndp4J2kWDYX+HwohwXlMq7YcoeHg5IbjnJEZpy wRv9j3M/ZH0BAWTjx4fmXLBTYdhfWOILoEOaDdtWXDBVNCd5Ji0EcEqz3F20 54J1YzGmRZrB4Dxjof0vHy7IqaOVIMH2CRgPbGb8yOSC16lshubcvEDeQ1sB pWMuOGLL9IByUAk8LtrAYAm5YT7mtwgVRhQx0zhykJFzw4tIkHlqSws5lTnT 9zBwQ/aPE0fJ38yQErPfyXNRbjhs4R361uolqmvFjUTf4YZm94ZDk0490Ss+ kYHT+9zwudlySpeANxJ6k9ZtaYrncx5309HwQb5CuS0XnnFDjwpZ/1VPX3TD vaq41ZUbZm1qUqfMBaA+2aGvB6nccEv91ZJm3Bf04ZNJkFk2N+T8nTe9zfMV yU+P+zcWcMM0WspqhR9fUVTwnMeXam4YYJngaxoeikyX/9qd7eOGP7Vbk+Vf hSNaVSfr4GFuqNPsr5AyH45qIg8sd8a5obVpoI+NYQQS0CQwrV3ihiM+3d6D 8pFoPu7MDaNTvH6y44zleBSK3A25ikgwUMOSSCpfPRpp6TCrCVNh4EuROWqu lGiUfsipuMmMgV758kRnn31D/90TE/UXx8CVfzT3P/V8R3yZGQLr5zHwmfhJ Hb1YDOohOs9zTw4D4xo6vLzfxyDZXDkWfoiB9ZdmJLm5f6B9KnXisnsYmBr1 lO2LeixiXKMNqzPGQO7zKRWvvWPRue4RoQ4zDNzZ7m1/URuLHkY6XJ14joHR yrvX3C/FoTfOKoOLdhgoOLwfGPFfHAoxpXr29xUGLqbpbecnxaF6QZw/qRsG 2k49Yd8nxaJRMjtOOm8MtE+aXCPlwaLdJcUMdj8M/PPAR4JBDovEcrs7zn3F QG9NdQuuR1ikFvrDVC4SAzlTJLXZHbHIxOn5mkoMvh6MO3a0H7EoSJmQ/k4y BgoQk55Op2FRKu9PrEkGBraeORhEZVhUSxR9wTIXAx+vS7d/bcGikTmLOrsi DCRKM1YwGcDPTy3Sd9+WY6Ca7Ydg9hksos08nvFEGGhKIqLXtoZFosEtjp8a MHBTmpPW/gCLoEMYaXgrBrqwZDylJI5HxvceRcR2YmDOtyC6COp45KggIZra i4F5AwvNLEzxKJBrvyRvCAMbXl994scRj5JP6rUqxjDQXCipYZUnHtVMBQ83 TGOg3JHVhKZgPBpuMLHuXMBAx9W7JSEi8ehviujR4AoG/lMMe9QpFo9oPm19 mtrEQDSRfnpyNh4J2yHuP7sYyM76X6uAeDxS0fuUtX2EgVmtJMRK+Lih7H2V EwIeGM7TR6gpGo9esgn+Iifjgd/33c9pCMWjgMM1MwZqHngx4PfOJb54lDhW vsFJzwPv/hmf5+OKR1U1vp5CLDxwtfRb2ClzPBpIuMMoxckDaavFk/rOxKMN X56ES7w8sDUlpRNLGo+orJdlVIV44EED26DFMRYJ6hQ3aJ/lgbs9D8P4/2KR srTXPX0pHhg3JLEyOI9FBky35k1leGAL/Uqv3wgW2e9yvHmqwAOr57J05X5i kf/wHPnLKzyw/oT1zXg1FlXGuZ71ucYDB1N6H52Lw6IBr+vlgTd54LdbId+6 A7Fo3ZLlRqQeDwzjiLJ+9x4/D0tk2aSb8EDJjDfmvXex6DLdu38Fj3jgtWe1 b/xUsEj/r0ZQlSUP9GomIdYUw6KPpaM5Xf/xQLEL21tFm3EI+z0VjjjywF57 bPh/KA6Vuzl2z7zjgdIEhkWan+LQigbN1q43DxxI91UxwODn9e7L8pgoHkhG laHudC4WUV2mrq38wQPdo56+65/+gWoTR248SOCB6/xnrhBH/UDSb9+Zf8/m gZEvNadmjmIQLW/JZ45GvF5r8CvH9O+oyc+XrayNB/Ztiv4k1PuOXP/ewxl2 8cDrOT1fw3a+oZXG7ZLI3zyQtCvy26LCN9Rqc3GG5S8PzNrJ+CWcFoU8Bgjt ivbw+61IU1EKo5AC7N7X/4f3Szx6EjIQiZKZ7GnDKHihX97XDZl/EcinPEuR kZcXcrtwJCpdCkeQ4mwI7U1e6FVZnv/Q6gvaf7nPma3HC20lpt/7zYegnN/N STr3eWEKrdCDQMsQxJNjVfH5MS88+iu8Hl8ThI7vJc5TveOF3tTroig0AJUk 8F4hT+aFu07tTFErnsjuzHpzcgYvxCgkkzP1eCCRN9V3rubxQpUjPg0JW3cU pm367EMlL+QMm5RhP3RGDpvfQol7eeF9P/NwBRIHJG5izZMwxAuVr1bS7vj9 h6YaFNPUxnlh2eAs+X2KF0g3aqjac4kXbmzt9jKTPkYURKnX+dd5oapXdAYk M0HoxZu+mm1e6P+53bmH6A5y6r9q9uiQF165PRzFTaiGpADr8ukpL9R/9sXt 50fz6v8B/7NDag== "]]}, Annotation[#, "Charting`Private`Tag$620549#4"]& ], {}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ GrayLevel[0], AbsoluteThickness[1.5], FontSize -> 30, FontWeight -> "Light", FontFamily -> "Helvetica"], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, LabelStyle->Directive[FontFamily -> "Helvetica", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[1222]=",ExpressionUUID->"adebdc11-ec8e-4370-b947-6ef880d737e1"] }, Open ]], Cell["this is our expression in the delta pulse limit:", "Text",ExpressionUUID->"eb2c4ceb-4c0d-46f6-af8b-5be2eba6e1c7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]"}], ")"}], "/", "4"}], "]"}], "2"]}]], "Input", CellLabel-> "In[1223]:=",ExpressionUUID->"99599ac0-7a45-4ba2-b62e-c9af85a24981"], Cell[BoxData[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", RowBox[{"ArcTan", "[", RowBox[{ SubscriptBox["\[Epsilon]", "\<\"rf\"\>"], "/", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}], "2"], "+", SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}], "2"]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"4", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "]"}], "2"]}]], "Output", CellLabel-> "Out[1223]=",ExpressionUUID->"91086f45-9645-443f-93c8-51d1c323a0b3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"aDQ", "/.", RowBox[{"t", "->", RowBox[{ RowBox[{"Sqrt", "[", "2", "]"}], " ", "2", " ", RowBox[{"\[Pi]", "/", "\[Omega]\[CapitalDelta]"}]}]}]}], ",", RowBox[{"{", RowBox[{"\[Epsilon]rf", ",", RowBox[{"-", "3"}], ",", "1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"32", ",", RowBox[{"Thickness", "[", "0.0015", "]"}], ",", "Black", ",", RowBox[{"FontFamily", "->", "\"\\""}]}], "]"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\!\(\*SubscriptBox[\(\[Epsilon]\), \(rf\)]\)\>\"", ",", "\"\\""}], "}"}]}]}], "]"}]], "Input", CellLabel-> "In[1224]:=",ExpressionUUID->"b1f586df-a519-4422-843f-ede5f89e806f"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.7333333333333333, 0.7333333333333333, 0.7333333333333333], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwlm3c8l+/3x9/mW1pSZDSMitCgbV1UirKyElJJ9qekCElC2SOySlIys1dG nJtslb237Pe430iyf/f38fvL4/m43dd1n+s653XO64+3sNkDnXvMJBIpmIVE +t/fqP2bFzY2yNjLlbzDiY+5yopWd1S5rZExNe5L/PpVjeXdPXzhS8tkbN+r Wt/0Tkr5UuF+M6d/ZKxD/6iFi8VGucCbQ9LzC2RMXDzPjGl1M8g+PEKynyd4 c6OyO4UHjDVPNlEZZEwzwD8mMnE/uEnKxVnTifXfMwJ+Rx2EWI7z/01QyNij Zrpt9SUp+DauKn93moyF2vUkRTKkYaBSa/PwBBkLPxJ0xPbkaVj/YNBrMkbG HppJK5bhsrDv2c3UnhEyNnPyXnj+DiVQNDJ3NhgiY87ZSxcPTp2HW2dsL7f1 kzGOO9VScSsqED/rPP6ji4yV3BwsMulTB+zX83y1DjJ2JCi4XEFPG0a+vPKq aSVji/RNNySMdEDE4o0w9pOM2RwIOD5XZQAXLrxjyDeSMbaAqxZnJW6AudAn KK4jY+mNB77nZBlDYm/WzbzvZKyOPwvjCL4NNV8LpY5XkLEPscaB2UxmMPGm bCW9nIxxyx8V6nt5F8S1GmOSismY/fP1V0KYBaR9n+iIySJjctX9IfIb/0FD PO0zbwYZu+fXkdm49AAoz/48Ck8jY46f3Vk6mB+C1Flm7qBEMlb08B1Tv/gj yEzfq+nxjozVyKuLjg8+gV9+B/auRZOxy/rqnypFXAC3kKS6RBLxZXVYpj5w hePC5/wfvSZjgRaBApUHnkFehF6NhQ8Z+1IUqp/n/gLaHYwjfnsT572ro8xG xRP+aJmZ3/YkY2eOrq61c3nBaU57ZqNnZOzAYWOV7gJvKHIPUNR4RMa0OsrX Zc75wjfLysITt8iYy1J2I2VXKNQ6ltq6mpCx2cGQTf1podDqlS9UcYOMiXnk ymIXXsPkhyR/TT0yxkyOeWrvHgbc3f6m1mpEfGGcBpW7I2DvhNfO7EtkrMCF U+dzdQSI/3Gr+3uBjO0OOyD72ikSFLgeyHgrkjHvv67PIkeiwEpVl/3DCTJ2 rCNuX1T/W3hkoF46fpyMrW2I8PInvAN3cxV7qaMEG787UmIXC+EeZ3qLxclY 34X6v2ab4qC8SDCzfS8Z85jIvX8pPx52Hh7T5+QgY1P97Systz/DvjMDnNfY yJhfr4tLaf9nEFfphChmIj4pMi+3cSIo3qk7fHCNHVv2Mav8YJIEVjHpa2iO HSOFTBhqP0qB8k2OiY797JjKLwHwx9Ohfvd9o2897JhxxXzf81cZ0H7QcjtL FzvmtdN4eM/+TJhWvuES2sKO+Qis/9LSz4JdrgoaX2rYsRGnX7NNM9lgM8O2 MJzNjq1c3K7OHJ4HSrlGQ/qZ7Bi5/K/jwHge7HbNqm/4wo4FP9VbeHguH6o2 3YjLT2LH3BffJdaM5sO+w+mXfWPZsZ+nm/8JKhZCm6XO22O+7Ni6gMkX/d3F ID8eh9xvsWMbmxxtjHUAuDPmD8+bsGM98p8cSN8Aph+r7rIyYseisqpOSu7E IJJ1buqaPjv2+j/6Rz93DGZFVcIOXmXHzmTfu3/nRgUkmVHGfpxmx7Yaqz9W 2v8dtg+f8Rfcxo6dz25d85muAQs/Adn3m9mx8JhJiRixWiiXWZvet4k4r7bW 6wv3asHuZaWaCCs7ZjoXtDvody3USWhsOrzMhtmZ8+QcHa0DT0cz39MTbFj/ qrBAL7UBFjiDXl0rZ8M2lgfVg082Qd+pUU+f+2xYyhDXr7oz7SBdw/fProIV 4/ISzL/BPwTP6hWqhvazYpnx+9YLfcbgcfBtR9G9rJhc70fgih0DO12vQ5YC rJipkf8Jk+wxMBqo86XvYsWm0UZQbfcYnJ3V1VjbxIrxDwx9poiPwxyfTafA Hxas0k7R5XLNOFhZRU7p17FgUdJcafp/JuDWkeKYmGoWzE5858E49kkwmOu7 MlDJgr0NaWBu55sEFTfhDPMyFqyYacSVrDAJIqHpDx/lsmD/kX76+HtPwsDX yuXQWBasilt3jrJ9CnTI+JYf9izYDXOxjoDd09CQ8cFrz30WjIUWzrRFbBrO 62kv29myYBcUfgw+OT0NMh9zJrdasGCcfv/cufWngVvucaWWMQvGVp92Suf1 NLTcX3rSpsKC6T2J6Z9nmwHtTpbfvQIs2JmGrPHooRmoc8u/IcnHgoWM3XR+ QZ0BJdF7zU95WDDUoimsvzQDx+1ryvZwsWB3XOTKyrgpwMXpF23KxoJpfug2 f3ORAs0K2zRHcWbsb87SsNFnCmgl8hVPVzFjevhZaVc9KoSxHbxnVcmMZb+9 ErHPlAqd96R3TAIzFtEuF5hjSQXTQ1esx0qYMa0M3CjBlQr3k5/yD2UzY/mu U/FfP1AhMHXQpT2WGWtpY0lKn6BC8ybKQd23zJjMkxpjhFNhl81iS0sUM/bv TZ9JxSIV3klwSTSFMWMh878cwzlokPZFubfelxnbZWHn/vAwDeoyPsvCY2Ys 11hBT9iKBlu25UwoODBjGpaValkPaKB9vyzs2wNmTFFX5uGRJzToOto5U2zD jOk87X2z/JIGE1nkd/m3mTEFGxlGzycasOXarKSqM2M/ObfblvbQ4Hzh8W9v DjBj7K+6eL3k6WB/+ZjmgDAzJv94K+Sep0Nc95Hhg/uZsbjVFItWVTosL0uw fuVnxm4xBHlG9eiQiw6q92xjxr79ob1VsaODcD1//94lJkxD6PCkTDQdNI34 7lv8ZcJsZme23H9PBzcKLylrngkrPvxf+dtPdOjeuuuAEp0J8/P4cLg+nQ6h OtvszH4Tz8uGxtwwOpD6mVeTfjJhk081hAzG6XD0P6ZgvIEJi7/lPFIwTQeT 9Y39Z+uYsF8f9ldx0OlQJLR2ob6SCXs/aajr+5eI595iAOUrE/bFJsh0lh2H YTpF8PgnJmz82sCZFwdx2OYxk+H8gQkbOSE8se8wDvI7plFFLLE+E69qjhQO 0Scm7upEMWGGcut++Sdw0HYe/vI4kAkLvRNWeEYZB2DqkCt2YsJO9XGvqBjh UKR+jOX4YybMYwGZcdzEITfKryHpIRNmqhShVHkLh6Qjijfe2DFhVafwzD33 cAi+kez0wIwJM99ifff+AxxMclxyDmoS53fbxC7CEweD1Tbn2KtMmIPiPo5u b2L/y0eVdqoxYbEpVOWdPjhcGBj9RbrIhH1qFOx8FICDxCZ1at85Jow/fdRy KByHf7f3iYUdZMK0e0O2PUjAYe6LM51DlAlz3ZsddiERB+rf1oLnQkS8Yh0V O5JxGAr0ufifIBPW/Fbv9rs0HGqKGHdUdzBhPRwnrt3LwSGC63vs+ioJm/CU ODpSRny/8V5zx2UStqn1wMvrgINv0hNJ6iIJe/Y943EdhoObvFRJzxwJUy3a ovf2Ow7mVhFd+VMkjCJ8z3+jDgcZzJLbtp2EnXzAsq2vFYd0qtYHegsJm6ov urLShoMY/1kphyYSVi2kv3t3Bw57HDguuTSQsI845q/chQPbgVQXH4yEBXws XjHrw8FD+zX75nISthG00nO7H4dlN5fw4FLiuZNBjNEADvQOtYyIQhKWdEdk RHkIh26fmeGEdBJ2t/90xPAoDjr5rf+JpZEw4cn7z8p/4/BzuGQ5LZmEeWda B0eP4VB5LmBX7icivpTIq8oTxPdSJFWxaBLmuS2Ty2Iah+da/2X1exPxRblI s+DE/k/15W97kjDnZPljyQQ/TlGo//2chDne1au9zMDBimnb7xlXEjYZpj/g Pkvsn5fJu2RPwuw5jM5Uz+PwYygywe0+CbPKf/9B8w8Ol7c8P06yI2G115Ma 2wmWv6d1hWxJwt4PJ3p0LeBwaDfjGc9NIp6bPs2FizjEX+jmjDEiYf4cyg2H /uEgaI9F7TEkYVqPviaFE8xVH5ojqkvCCkVP7DJfwsF/wVkxWZuEPfJZTqsl mFXkTqOEJgkL+cV8XHwZhyVX6XFpNRIWtunVtmGCHyfzOxRcImG7Te/bnVkh zreNaePsRRImetGhIoDgUalWPiVEwkIjWq5LrhL5faMk8bs8CTN2uBjrRHDX y08yl2VJWFoB02A5wT8GHdQ1T5GwV/vzbl5aw+G4vAa8kyHO94Zlrz/BETFi MtPHiPNhW25qJHj5L1Pi6SPE+ylLipvWcTDV69/tLUGsr1YsdoHgypxC/xYx EvbdVtvfhWCx7a/X9h0kYY+53lmkE8yoV/ldvJ+EiWi+9idv4KAnJmRA3kvC UvUbm48RXOy9XKcnQOQb1hGkR/C+0Xa5T7tJ2PFNdzFHgj1RVia+i4Sxy8xY hBM8GesnrMBNwvb9SHqeQbD68t03/ttJWMJaNEcVwdnXFcndW0hYnd/LjU6C eQr4XA9ykrCmnoU7EwS7cs9THcgkjJt89sgcwYMPft7CWIn1JkxNlwk+/zO5 dSszCRvnPj+3TrCmPmtA4foGcK4/G98geDdXsf21pQ0QX3l0co3g4Yb/DKjz G6CmfaXvL8FpL0XkfegbYHyJ2kEl+JFSl7DI9AZ8l+UUGiJYfiWAXPZ7A5Zz +At+EsxeqES7PrgBurb6oUUEN9kvtM51b0CRY1n6B4KjJdOKgto24K3KbjYv gu9MmMaJ/9qA3kZauBnBEh93en+v24DhoNe6igTPG9dZm34n3i/nU+Ql+Bvv M62lsg3QunFLY4a4j5ct0qfeFG0AJkd+WkKwZuCEwLG8Dai74Iy9Inj35Xek howNOGo3zKtF8DCT9oR5ygY4U0482Ulw6jfWHxufNsBH90hvG5EfDk+Kc96+ 3wCnXI2zoQSz0USeNYcR+9dM1awS+fYrucvMNmgDmuUuT6YTHG0WqMruuwHx 9m9GDQmW6F7YKf9sA+xStC9/JvJ5PixtqfPJBmz+1x93geBvGreGHjpsAGMu LGOQqAfN73VpyZbEei+vNpAJ3u3+LPS82QakCKZVRRD1NHxWxmnAZAMq8mY0 9xPskPlOeafOBizFW0wfIOpRzlpbLFN9A+DG+bF4on5ZD7BtVbu8AdZKyhf5 CI6Mud/tLr8BszHB7EtEvd/SEy3nP7MBvnvqrpkRLL69OyFfegMEjVbaagh9 KPFWfjBzaAO+fWlTf0HoydCDXewGOzbgoapSTgmhP0pxHgYaWzbg6ecW+U0E x/+gJl0kb4B8poeKLqFXZoerL59YW4eo0eCPPTQcJkYd/bim12H+1uULmTOE Hu0Y7SGPrUOMf+GTLkL/UpCmxMbgOrxQY/6xMoWDdeyhRlr7OmxnKv50apLo N/pdWxqxdTigJptkR+irhveFm5Wl6wCcx5z/I/Q3Mzcro7hwHUZ/a7JYj+Dw YLuvZkr6Ouz9xrRdm9DrubqzoS+j1yEvfLNrfy+hR3JvdyrZr0Pw4kPB0WYc jGzYzc/YrsNNXHTUp4mIP9oh/6jFOnxc2ucq9ovoRwtX9PearIPDtgdDuo04 kLJWIpcvr8Pg0O7vt6qJ/B2wnJw9vw7cB98YthL9qnJz+5lphXUQ3H0CKVbi 4GWV3t11Yh3Wv/qVMRH9jl3kpkDB/nVoVRROOVWEg6V2vU26wDpcKuGctS/E oc79VGkCzzpEd75hSczHwa9vq0nY5nVINChHi9k4bIkof/9gcQ2Kf/IcOp+K w04OIWGJpjW4wSY3cScaB9Voe4WC+jViLhKLY0Tg4C5ecUOpag3Mm16+dCT6 +5SqWZhB8RqIKvB53gkm8tHvM4tXwhoUta74ghfRbzcfnuh7sgbxHiFS7nY4 xLxzYbZ0WIM3ywoG5tZE/ks27JuzWwNOiWFhZIHDWXXb6xxma6BLiz/bSswr W4My6k6qr8GYcVa4rQ4OhdtkvgQJrYEKs9hVvVM4UOI8a/kE12DS1vOxszQO QsfafifwrMEWu6wPIUeIfqL1eE8JJxEfdfl1JDFv3QotDJr4swqRCR7MrDw4 cHDL2aP6VRh5ND+tMksHhU8BgQ3fVwlfv7cxiEoHB5n+FP3yVXj+vpm9dpIO /TrPRmzzVmHf6TMHtg7SISccdKLfr8LkJn2e8Xo6GPFcPDX7cJXw7aW/0+OI edIquz/CbhWoAQVDfDF0qC3d4y1ruQrS5kuSjuF0OGm20Oplsgq+Hz311n3o sDUryZ738irMpbVf0LanA6a6KV1uD7He4mrHgAId/r5z1B3mXYXWNJXUC2fo IIWPLHvvWAXZq+m60cfpEBNRovaLfRXmrRXbtooS3z9qO3l7dgUW7CI5xch0 OOj2S+RVzQpERrGf3WikgUmTbINExQpc0REXV62iQZhI8sOm0hVQmnOOcP9G g/W65xhfzgow9ZZF5qXToJtH2vTLuxVwlfhClg+kgX9WeEyz/QrY/en4XXCZ BoxRQy5BwRU4c6mgqjWLCuWpbiJ7eFdA0NeHyzCJ8Cf28Sf37liB5uwhm8ZY KoivTxruJxMcZCvs5keF2/xPPorOL8Nhn/3urGaEf9GKkJFqXAaW6rL5lO1U yPnWoqfwdBni6lpObb1JAQ+vBQtFp2Vwsvd7evEaBTSv8Lugh8sgWhG/YKVC gZmu2++VLYn/37bm5nKEAiLz+LiK7jLkasd+KlqdgbDD255oSi7D9yWzwMyo GXCIvBJzq28JSo7xhXjCNOwCnSd/OpbgrJDp0aPZ0/B10kjfr3kJWrl617/H T8PqWdsdedVLgM3XG2a+mIaXfQF+7NlL0P76wvbn56chWuinS4b3EuQ9al4V wKagLE3LaOXIEnzQjplN+TIJHKAnGOXxD65y1odyqo3DeeNd5r5P/4GTnc3f Y6fHwW2xLd3F6R+sSjaEXhYdB8YxXUUTu38Q4zg/qrE2Bt3x1+4IG/6DzffH /EoIf57iqZn85dg/4DHhNpXmGQO1S6onsMFFGIhWTXvdMQr+P+WuTssvwitl 7v4/8sOw/5rc46ODC1CwFPEmmbcDjnKv7PzZvQCr4qbgR2kHxbaSPNu2BfjJ uYnXC2sHU33Z+ZS6BeizHj1QZtMOsTfOOYjmLUBpSdd3Y6wN+MzO2PP5LsDI ixWnVPtW2PHohB2zzAIo9Nn8VWxpAqGT85s/Si2AyR1t8wDPJji+kPsFiS3A XfX7AiInm0D7iQzFbc8CLMKkj3T0Lwh+Km2zyE6wF7cU/e5P4PQ+ZkXt+wNH dUVu+HA2AkuEpHnnyz/wzo+2LhxTA2n1n+63ePyBc/8KWNNv1IDOOr/Lj6d/ QPRpVqGfQA3EW3IEVz78A9XfMKry+2pQkB3/mnnzDyzPiY7mJFXBk6G4zT6n /kAzP0WfWl8JlMPceWfG54H3R6rvx5RyCDP1K5MZngfKw82v9yqVg2w4qe5I 3zy8fraT6Xp3Gfiu0vtFW+bh6ombAyyby+BgUyM7V9k8zMWd23rNpRRuPX5p NPVmHuj/bLU5XIugrfwfU8zFecC55pUDt+YR85Retxiah3jelc/+hbnQQMnK LDw3D4OPu6Qf3M6FSj5L4/aj8+DDX2g5U5gD2Q4d+dv554FlwlYv8X42BB7K tXxFm4Mmy1SphR3pwFG2VZFnag5MfL8o+Hp8AS9d612fR+eg7reP9hAjDVw9 hCoquubgWkp+c0dnKlj1BgusVczBOUMqe93XZFAJtv35KHIO/i7qs5b8SADs QG0C8+s5+HLmlwn5egLIl4q4vg6Yg2S9zh7W35/g5FTPoSyPOdgkL12+ifQJ RM6reszYzAFX7YTEZs14ws8nGLjcmwMWc/NR3cYPwP9gQ4rj9hxkFIzYdqzF AVdsYc9B/TmgLZdkvbF7D+sLB07cQXOEj4sbCLV/C66BHpsY5+agivPbj6fF MbAg0j/kfnIO0uI6SH5sMUDVCg+MPTwHr7TLGxaToqA3lWmia+cceG++dPfj tgj4enMwWnNqFm5OFrIV2oVCg+Vsz7nfs3Cfn86S1h8Cgw9ZBQ8OzkJtv//M r7FgYH0l8X6lbRYW+iM9klmC4Fqm08cUmAXJgMPRXq5+YF7kNxpeMgtpbVPh 0wm+4FwZK/q8YBbMx3YlTLb4QFxnZaL+l1kgH2996Sn3Cijr29KYo2ahycXM aPNFL1jnEKHQXs/C0fDDGZyvPYF75ympnsBZiORbcFcffQFnxYwzszxnQein GsPmtQe81ErONbk/C1qVR6pTld0g+kbJ/GXrWRiJPnRff+9TSL/78+QJc2J9 Ten/fpFcofXJfOEmo1mQA/k99YNPYH88Ki1UmQVfn29n5f88Apk0ndWPSrPw xBlvydz8CC7l31MIkpsFBRvHT5ISDmBXFwB3pWdhKP3usaGn9vC8NY6kJTUL qtNndGpuPoCw/hxlWbFZkIge+LK75T8oZnR959o7Cy+nYoTrBm3gx/IM6+ru WVDm+KcCztYwzLquMsk9C2xyLr+P7bcCdv4DdWUcs1BG+meVFnoPdJXtf9j8 YYBX9wexY6Q7YHHVa6sBzoC3xn16Coxb4Kofqak8wwANOPshf+EmxFt/a949 zAD945VN+ciI0NmmHSx9DPhi0T5x28sQap6N6tA7GBC+92UqpdcAaK85Oqoa GfB49Y/T4HddIMUK8mbXMODKaQrZQk8HdiUdvf6uggGHOXkNNi9qg2yJXs/D rwxQ5VnkaRtRB40qS4GbuQzgrHVEz4KvwO1frsaqGQxw3ENJbDNWBZ/R+IF9 CQwYbGy0p+ldhNisplTROAY0OPFXdvich2y3dUfxGAZob//ImtupBFVqR84f ecOARJ1EWc0XitDDa7JNJoQBE3AhM9dPDui//XtP+zNATbG2qbvqLDDnFCfJ vWRA6OZbM+zSp0Hy6m6k8pQB76+NNQVHSIMS36XNV5wYYHSF/Gto1zHQG3/c pfmQAdN17y816UiCVW5Cgq4dA1421b64PyIGz563PjC0ZMB/zhtSimUHIEyd Sf6mGQM8hnoUy0aFIYn/OIfZTQbsfNvP0xq7D0omTNstDBnA1h38xXWJH5ry guJtdYnzkvrWYtXOA2Me3+zsNRkQZi+rEXyIG/5pUM46qjFgx3/FLvktW2GL oACb60UGLMqc83IQ5wDhKdUWd8SA37WJGpIXWOB0wZP3XrLE+UktHzYVWy+/ 4plk7XuKAVVXzXnf7F4sN9XqOBV0nAF7DAau+cnOlj/aw8ocJsmADo7MpZDJ qXLfaZlfkYcY0KztvCNFY6Q8tvDO23fCDLgkXmOZ1d9Znu0VahG/hwGR5TVa l8//KK/WBpnE3QwQ2LL3HXsvlPfupa+ncjPA4X6Rk5teVjl9Zk9j5lYGGAyY 5j7Jji5nLroalcfBgGqegjseFi7lu1+63i1iYYBkFv/d+UpUfv2zzi1Xwudp v0l1FWqYV/BQzF70+p/vcQjlOFVhppjavTU0iPApLit8HQlKAYqtDrbiUYSv UJx9fP/Fi8+KK1vqsfgOYg6/8muX8XSh4oHkQzfSCJ8g8iE+1ieiWlFD2Xs2 r4KYuyNPmn890aro1DfiV/aVmItJMWrmlv2KHxyRSG0GDjrmH7P+UsYU67a/ L2lOwMEpwjwo5ylNcTZ1Wac3BofedQfE2PpHUeCiIeV3COETwOZ7ieey4oXB Ai/aSxyC812s9fcwITvnnXsWnxK+VrdlnCeJDUVwP8wnORA+ufd6QjOVE5Wn /1LntMKB7+zo+xvPudDkJanxnaY4XDycbDb/ZyfiGvF7tlcPB4Ew3orLg7vR uaeTPGJXcJh1EFS1OL8HmfGoZB5XwiHnrtjEkTdCKCDr0yXZ0zicDpjfH3NV FOWrkYYuSBG+d8hE5d+VQ2jg980nGiI4OLqKSf+MOIzY3Uu3X+cjfEc2647o Y0fQMT7+lNvbCN/8tjuFEnQcGeY6Kdmw4lC/HlzNkiWDXqi3dz9apgOc0yls WT2J0iakHz5j0OGwZEL7DpczqM0jZJPPBB0M6asPnx+URasCtI+h/XRYVGL6 1c6igDS0UloT6uhQKKPCG5SpjPZl/GLuKKND2tLnnKU3FxCDc0GGPY8OB6z7 FcZiVVClleDdMynEfhvPJe/WXkZvapTDrd7TIWQbhSWQ5wqyOGD1PSaMDn26 bGaPfNXRGc/g+QbCB7TrbKdICWuhXoU+3SMOdMATOrYeN9dB6e+YvE0t6WDd +5LkTtVFz5bE8kNM6KCzdAd1+ekjoYLHu+Yu0eFooDGtlu0GmuN+d1FUng5O yl68duNG6Lt9xWM9aTpkNzL+new3QRZS2zoKBemg/a9tKsH3Njrrf5JtiosO YkXfOtVT7qBNU0an+NnpsPLMnCW03QylJyRHPGXQYIpt3m5a9x5yZ/pVnT5O g7iRjyseyRZI+9afhYFeGujLX7Yu4LBC8wLKBkrVNHjqG5s6/8cGVTlbvnpY QviK1eDFpx52KLIzqPBTFg0sW4p2xwncR7Jhvbxsbwkf4dyh3V5mjzw2Pe6q v0+DjVfL2rVPHyMdy7fklbs0KM8Rntd67ohEq7EzUjdowIZH7OMPcEI1Hluj gy/QYCbyBG201Blt+ZdkqMtHA3a2r9wvXj5Dg/o/fb230mBHvOYB+V/uKCtv vqiAmQalOq6t27g8kM4DJX4+GhUu1YoojTx4gWImenr6K6hgL3KKXm3ljWwu kji3faVC6PEXB2RPvETynw7JonQqsBzZoKQzv0LDNx+9/RhJhZ/jno8qsn3Q oY4txha2hM8R/Pqb7WoA+idzIiDqNhW8Axw5mhQDUX3ojdI6fSo8CkptXjoT hOzUkwQllajwgOm4fIJsCMr9jvrxXVTg/Vm660LFa5TH0THSw0mFmMQBiL4c hvI1bCa/k6ggKWUt919zGCrsejMXRaUAzVF4IGE6HJVQpjmUqijAdmXbsTLZ SFR6/Pk2iRIKXMvQOvi8IxJ9c9y1a1c2BTR+q40OO0Sh8g3F/VPvKHD23Z4d 4QXRqHLnm1OhjyjgJO0SLmD8Dn03PCznak0Bzh0RLhc2x6Kq9+VK5rcoEPqC z+hweSyqEZu+evYqBY52f312TioONcgpmg2LEOsVGDP9fhOPWu5OBR9vnQHf sabX0Z0JqDXl2RuBuhl4F1PLr6nyGbXSuN+yls/AzRfS5i4Fn1H7E4XE7tQZ SLaYmz/1NhF1B4SVeryYAWuFRh4Lx2Q0nCc/1Xx8BuYlfUOeP/qCRv610EoO zUDl6evzW5a/oFEFy/nPe2YgYzqDf79nOhqrfb3uzDED6fcOqLRHZqCpvold wsPTYJ1/1SisNQsxWF4rPwyZBqtYt6IRtVz0dgs+6Ok9DU1Hdx4Sis9FF3g0 3N64TMMJuuzXS4u5KPLQpq9f707DvdUXfuopeUhe7YXU+plpUFl395HjKUB+ wQ93BwxPgfxGlHG0QBES4dehfZaegtlqSb2klnL0Qzjbv/DQFNyN8Vp9dxGQ o8Q28TrBKXjcGNNuXwSoTq7BjMI2BRrTxt+MrmHovun5buneSbhxTj+0UakC lSbIfC/3nASX49Y25JPfkd7RnTHdbRNwZcL77herWkQqS1HfWz8BkYbRrCsZ tSj9qiLJrHwCxt6HWCbP1yJWa2tLSsoESDeyb9rlUYfyE+DU+rMJuL4D3ZF8 X4928du1iopPgNaHSLGKyUbUwVK9+YHbOGS8v8PdZNKMDHqc3NkOjsGbIgmR X687kLT2G7D8PAJR4p+UX60MoUK/O8OBMSOwJVVBwnnXMJL9fpQpN3gEfP7i Vw9LDqPzp+vPrzqPgJ/Ff1PuhsNIZ896dajGCOj2uLHO5g4jhynLH8V/h0FX 9XlAmcUIyvWQ69msNgz3HyZet6sbReZm1eO3+gbgxL9bDT1W46gxQaFVsHYA vg4viEQ9HUcy4wXlXbkD0CW+RfpS8DjasEyK0vIfgLf35v84542jt//5qKFz A5BdlThyZG0ctTirZeyL6odKUd3P34ImkGLIz8cDOn2QGux6oPTTJEpsVrkT o9gHdmER+k/zJtEW7nINfYk+4E36KyJRNYl63mQe+snUB+0rQZd1xyfR47ch 3d+ye4G88QJaDk2hL4nX5GO39UIiZabTPmkK8X3rYDFu6AaJ3Nq/HVHTyHtT 2Z5nhd3gznvamSVpGjEMPp/68KkbDqzuTN+XP41qZx0sf7t2Q7T/w+37mqeR kxhXo61kN+Tr5uxSIs+g9rArYW6BXSBtNvphi8MMCrUGoTjNTij9do+Rd46C VguTzmGynRDGxywVqkJBVqzBOqOHOqGzwqblxjUKQh9MvA9tdMDNmT93C6wo iN6+NJmZ1QEKpww3giIpSF3pZBZwdcClxdKUOjoFkXenKoy0tsEWzvttQa+p qIoi/EqnrA3UPBTnGe+oyAN7++t7chtIafIeQElUtGwdeCvJrQ3etJXQYkuo iP7twQvbQ21g+m30061RKuo0O1294NIKbcYmAduO0lD4maytluatYK5i63H4 DA1pbxE36NZshVKzQJfjSjTUUMA/WSLaChaJ6WXMOjRUzrHG4fGzBc6lT7wo eUxDiZnf1TmFWyBAjWHgU0hDZl7yEU83t4DX5mQp23Ia2mdYMEBdaIa7j9RP y9fQUDRT8v2mhmZId9M5m9RBQ4F6/qFvHjdDnmGqSuw8DU39+ZiiENoE6txP PUWl6OhV4LevFoM/gLs6naYQSkflrdZxUoU/QDm+gfY6go4W+Ha/nAv6AftD xLZ1v6Uj88SHOu4KP+CeAX1DNpGOzpcfokXENkJxXGn/zWI6WsNDRaqNGiDZ P1r18BAdnTytuClApgHUBmV+pfymIzs3Cq7N2QDRmedKBKfoqJfjUll/cT14 vz/M18+goyLhlet/+OpB50vJ0XomHD3WvRck2lULbIYHJy2EcZQew/14OrMW Jg1MfQ4dxNHvITDKelULy/XXenrFcaRjJyAud7oWLJ7yjwsfx9Hxl02VOhE1 0C7DMSipiCNK4bl/L3Srwbx4n7ayIY5E1iYGL0tWQ2DqSLa+MY6MLryp3spS DVo15zbfNsVRXRM9LCa3Ctb8764ZmOMoaSrhSM6OKjDpYOFsfoAjM4Ftd4eb KmHrcoIE6SWO5B8Mplz8XAmvl5+n5frgiLcqk57iXAmq71S7jfxxVP+flutD 4UoY8Qj8EBhCfF9F6GvmRxXwyMDL2zkGR5y8d7osLlfAtp+8e/re4WjMRnpv o2AFvNJJFTkZh6PoXa0p4VUY/Bs+2lf/CSf0YCd2gBeDeudon1dfcJTrUruZ uwOg+WnzwQ8ZOLIQtYrqfQZwuTqYmpmFo59OqZm2TeXw88iERn4ejmL3Sg0E OZSBxrpEs2Epjs7ZSsu2FpXA8jxrr2A9jqi7Wqvf3imBvsJM1ZwGHMWXO1y7 y1kC/6QWz6AfOOLgzrf6Y1wMvunUqYtNOOosOh3Fu/EVkvIzypfaceRv1iUy lPwVLOoKb+p34khxi3NmsvZX0Hi1xp/WhaPEW8XVZz8VwmSA4inUS9w3u/wf I5UC4G8/u8Q/hCPx7P7novR82H5i9yulYRz13Xi2mRqZD0b7zSpuj+DofEa5 yLOpPBDCLvoG/8bRDj3lax8CcqGW6+2xj5M4qlob6bc8mQuHTwZtiprCkXOy p9XxgRywfTrN6zONo+Hl788rjuZAmFUkpwEFRyYXgkxqE7LA5JsVUw4dRyWb yhrGSVngo8S2aofjaHcz9SyraSZwevNoH2DgqNVEnUeZLwNIXroyL2dxpOq0 +VdJYBpQSvx4d/wh8kVeTr5nOhVKth7iSSWYhcU2bfFSKpzd6Vklv4Cj8pCG VyeZUoBPl2R6/S+OTqX6oUzHRBCptAs2+oejsAfFGT9aPwO5+OWhFoIZp6YF Kcc+Q/P69m8Xloh6qFT9JzbzCcL1Ypj3LhP54+dscenyJ8jYXVrlRbClVkq7 +eePUKkanjRBsEg/OeejaTzMh9RMx68Q+XPxgaLHkw8gfmvU6B/BJS2/BMqk 4yD356nN6qtEflKC2k4nvYPzPvyXpwimPKFlPbr9FsjerCPH14j4WDUCswVi QEitv9OR4D37tqhIhETC33Xe2T8Ed6XZCluqRQB5zkbk2DoRz5nGtQSWNzD0 LKj+HsEaVRK9w2Vh4K76khpNMMc1/8K9zq+hSknydR3B3wemw4xkQoHsI1H2 h+C19rDBoz1B4GZActq7QeQL/VpUikYAXMNXsPMEz5B3aItU+kLSC8UEc4Jv CzdzxJ5+BUr8pcJeBHfKhlTwfPGCJb/TynEEq+tpuobsfwGkm5fZCwl+1Sdg wS3+DLrL9R0bCHbYFtPFtsMZhO6/C+sj+JbybrWlJQfY+UXUbJrgqCkJx55q W+gWa5ycJ9heU8wQi7oDEUtIbIXgAy3B1NgkDTjlz3Rgg2DG0Y1tIaKnEXvA 7ZH/MSepdo1n/AYiT7mbrREsJTAp+FnIEm36ppW2SLCEkWOsabI98lSJKqUT rCC2KGFb7oik+meiRwnW/uNc/KTDFVlPZl9sI9i8YvmyN/U50u8QqsAIlr+s aFv3whN95b7A9YXgmiPPczW3vkRRLLMnwv73/i5sqT3aB2Wsth9xIrhnmaRs fMAfOSvYbBgQbDai7DuSFYhOUFZTTxJMrfVsspQLQfe3pB3dTrDHFeZjsofD 0Fee/voS4n6c1nIC3lqFozvWP9oDCbbLvjO1nPwGbQx+7DMm2JC34mPpoSjE FBEywCDyQ7Pefl3QIhqpxnp3FxJ80U3I2C0xBgXo8zW5ECw9+nyXwoFYdFH9 b/pfIv/EI449fH/3Pdo8g4VlE7xPdejn2qc4tIdZ8qElwWzXP1wYCo1Hfl0b 3D+IfJ79tr76YXsCsk8QAHsi/+0iDSS1sxLQBT0PxE3w1IPMGyStz+jQmTtp 2UQ9DYqYFt4OTkQ9l66eGiPqrcG37IHw1hSklKD56+AijlTMeOJa0lMQfc9V nUyiXjG5/368UE9F9tFNyScILqTvOTwakIYqu2q+niTq+5Oe2+gnzgzUxPPo z/Z5HO092s6lm5aBDOKGg93nCD0nSyGWK5noUvzRrmlCP0JK+t7d9ctCR6wd TAoJfVEMfS/BzZqDxHxfvz9E6NGqW73yjG4OavouusWVhqNi6wXDyoQcVCB8 e7meiqOTFzR8HC7kouXKBLlbhJ5J/F393eqZhzSlJkNNCf2bGhVfSWvNQwWa 7goRhD4mNulxe4nkI829ktJ1EzgSSk1XOlGZjzJ5H/8SGSf6l4nJ+3CmQrSV rWg1ldBb5spSAz2PItSQv+j9rwdHT19/zMI7i1Cn4UGWnm4c/bntwxFwpBjp HQx2yif0fXxDp6SitxhRPz/iMOkg+qnCzN5jp0rR2KE2E7tmHClvbXZqCChF URphnKJE/yjpL2i6N1qKTihuQe0/cfTl6YsXsSHfUN/cAaZDjTgKLuYb3zRT hrZWZSm/rMYR2W9dIVGpHBUKPXDfVkXko+FYpFJUOapabKh5XYmjh4tZqk8I X5I2KXXuFeAo7a2ogYMWhihXd7ceKMZRUHdJ8VBqBep9rpt6mOifV7AjFkc6 KhBn9Ejs1VQcsafEcz8lVaIMtzhPi2QcuT95Zct7vRKdSNbsfpVA1Duvzl4N 1u/oiKBc0AOiX+vqTXuUmFahscIrH5v8cMQlb3KEw78KMeyVHj0h5oEfok09 +gVVaJO1+h9eYl64OJ8vM7u5GjWwDmbIe+DodJjHmFhxNZLjE/kg5IQj/ubd qhE7a9FJbeddZ27jiE+wKW5DrhbtC+Sze3GTuB+LVwvW5rUoKshB67sRjnat /vmkWFCLvIrf/3dEn9hfvHVt0qAO2Z5rnI1WI+LxCMyTfVuPZPquSX8j5iO2 xguciZX1yGjXUWWnIzhi5V25vZ1Sj852aycdkiDuO91625hcAwoJ7xSyESX0 t+uSddBAA3KStEl24SHu+xjT/mGhH4g16umt1EU6mnctcryi9gOJdQ0Ywzwd zVU/+JH/8Aea2kO2bcDpCDcedPGr/IFUYg7bwyQdzfiUtsuY/0QhR+/2inTR 0ciQo//L5F/o0qsT2mV5dDR5ecGVJ6oZ2ZOVlHPv0ol4wWklvRk9yk06+Osm HV309nMYqWxGa5iIbO91OorH9tpk0JuR0sOtIZVX6cjw3KUbKpdakMBf1WMt MnTUIBF1xnGhBQ00jP1qXqOhf6p3ThhvbkUOe1YOjP2loUOWkseUhVvRF+cb BydwGvJKgENbNVpRYfi72oIRGpLfM8WT+LkVff75d8uLKhrK3HruT7tuGyLX WM7nvaKhfkkWRol1G7rTyqyV7E5DnFd+UuKft6HDN4dnfZxoyPLVnd92X9pQ 1rPuEi4LGhLa8GtlZWlHJef0RRUv0tBrRm/2ydx2JJmzWXtxlYoet7n994ar E5HnDJItb1HR+/Eu+V2HOlGREGfADn0qqlmU2fJGrhNNWDgZJF+hIv4902nh Fp1II8DfMfIUFZWb60+FfetETGcyY19wUhHH3yN3X1t1ofMNMc2e2RT0nm/I MBjrRs88nSdXqDOoRkJWfFtnN9KVXF/dMTyDGPIRi0GUbhRhFCe0s20Gnb9z NTKItwfhZh+DO4tm0FTq17ZAux7Eel+X2cxrBsnIhWoG8PUibMnbMXAXsd5N 5Yu+9n1o++NsPk2xaRT6sdwq0rsPnX32lb2LbxoZj8sFfY7uQ1tFONU1OQm/ aHe6E8P6UNS9U6wctCkk4CZptcTVjzZ2ERNwzhS6/5Yn0CanH/mv0Eszzkwh 3q7pNvW5AcQ6nPpb+MwkOiFen8MhO4wU5it3Msjj6OZXJa3J2VH0t0zmjJTN EMp0XQ8NJXy1qU/bsoJEByqm/Nzv/XIcGV+Tb3Zm6UBVJu8zn4SMo3pRN6Oa /nbUoyj/wzRhHA0xVQ29DWlHrCyu5CON42hL5O8+mb9tyDhg4Vm9wASKrNj2 16K2FXHEUm2YSyaQp+m1oW1uzWjn1m9LC98n0K/1348VDJvRPvcA3+mfE8h4 LOCd78lmdOK2RFLzyATyYz78mNLbhEwPWI3EbZpECzcOjt6r+IXy039fl7sx icbETprNxPxAd8p6Lz7+N4na2j0iC9zqUJXNiJwSyxTCw7nZOs/UoUN8UzJb tk2hTa39KurztWjGYUHos+gUWv5y3VDethY5iHOttWlOof+21XOfu1WDvMNV Ck4kTqEab7mbOwyrUIp19sH5a9Poh9sdTCEUQ5y7v+4Bk2mkusDbsWSAIbuq sp0BltNo/6GReb59GJLe38gk+mwabbKJm2Q2BlTSPj6gkzKNXsRV72T/VIYa kWBk7vo0QuEqtav6JYjO84rd4csMOhZZPHzaMB8J9+8Vf1kwg4Rc7j44wpaP 9D4VqEXDDDI8/LukJzcPFR8dDywn8q4soqhWlysPeV++uHPz6gwSDwxo/tWW gwRdmIU+q1OQ8JXTlbCUiTTRW+WvBhQ0tTCrY2mTiTzYZO423KYgh7GlEpf+ DDTx+k4S4zEFBd7UFRmsSke5aZiUwnsKqi+ihL9PSkOq/e7nOmkUpHXwnG1y RhJ6+onXeHqRgroeZZ7rOJmEMq0y3VaZqOjmIp5rWZaIdi4MgAgvFTHF779b 1PoZDW5VuPRAkYoE+rf8XNyagBzRig5HCBX1PXxqmhn4AaWwhT8WjKGi2NgM SZbaONTbKBF5NIGKnOyqqzlZ45CSoVGP3lcqEg9teiT5KhZteVh86+MQFan8 FVH1SItBnz49sZM9TkPaNvE1tQ/foB1OvJ4ucjS0c4am61EVjjzUCqKKLtHQ qV07lv4TCEemjLnK0zdpyN2jbbav6TXiV7zPf8KfhmazTFO1KoKR746txxwi aChL57XJzZgg9Hfsy8WceBoK4NrrGv8kELUHTD849pWGtkeg32mX/FFoj3mN 5BgN+TwYvkQ++gptpLP02xA66exwuXLx9Et03+PTbOoyDYVi1Du/VbyRutjw HvEddBTbmWQd5OiJOByNHx1QpKPx65snE067oyeqy7531Qid1hGb8UxyQxOC MXGf9Oiorvd9T4/wU1RV2VkvZEtHbfFcqRmyzug5l47Q3mg6Mjv29h/fvAOi /2acMkmgoxQp0fNj3x4ik68hV99l0tFUTYNn/Gt7JGv604m/mo6enDO6ov7V DqVK2wUaNtPRLSmVkuiPNoiPbfOnqD46ysiueyT70Qr9/aL6k2eOjvjueWH0 IXN07/nkqN4aHZX+E9Aq3ncXteu8+hfOgSOdyy5Cag53UO7Sd1Hu/TjaYur0 VT3TBAn/NDt3jeibExVu/+k130Ch8Uxaoadw9K/ttgMmcB3dv4xct6njSNBK 7co7MR00IDAYonGdmPO+XLGfatVC6nS3xEAzHEFpsunmxKuotEKwtPE/HLXp 7xsjV19GEhElzZwuOCI9FKKoyFxEMVY3JtS8cZSBuuqkqEqIQ/7fim8IMZeU 53hdGpNDTtujdtS9JebO9ry9+31Oo/HRU2LkJOL524LKTJBGeoXt8pdycBTR cv7jc35JVOn3SOflN2IO+Syme6ZXFEnf5LaqqiV8xKjtHwl3QRR/POcZSxuO TuRlq+gE7EDbWbXDzw8S7z92M1/PYEHuXfSUF4SvfqrE2y36cFaRlhZUjhG+ l+R/VueceYuiibtU+/98j/f//55R4f8AO1zACQ== "]]}, Annotation[#, "Charting`Private`Tag$620604#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ "\"i\[Times]\\!\\(\\*SubscriptBox[\\(a\\), \\(DQ\\)]\\)\"", TraditionalForm], None}, { FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(rf\\)]\\)\"", TraditionalForm], None}}, FrameStyle->Directive[32, Thickness[0.0015], GrayLevel[0], FontFamily -> "Helvetica Light"], FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->600, LabelStyle->Directive[FontFamily -> "Helvetica", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[1224]=",ExpressionUUID->"77fa7880-db78-4d38-8c42-0fa7f720cdf6"] }, Open ]], Cell["this is what happens outside the delta pulse limit:", "Text",ExpressionUUID->"017a968a-44e4-45dc-9efa-dda463b04b89"], Cell[CellGroupData[{ Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]exact"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]exact"}], ")"}], "/", "4"}], "]"}], "2"]}], ")"}], "2"]], "Input", CellLabel-> "In[1225]:=",ExpressionUUID->"86711d21-4bd0-45dc-a556-ca2618053ea3"], Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"2", " ", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], " ", RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}], " ", RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}]}], ")"}]}], "]"}]}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Alpha]", " ", SubscriptBox["\[Omega]", "\<\"\[CapitalDelta]\"\>"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], "]"}], "2"], "/", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Alpha]", " ", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}]}], ")"}], "2"]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"Sinc", "[", RowBox[{"\[Pi]", " ", "\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}], "]"}], "2"], "/", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"2", "+", SubscriptBox["\[Epsilon]", "\<\"rf\"\>"]}], ")"}]}]}], ")"}], "2"]}]}], ")"}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"4", " ", RowBox[{"\[Sqrt]", "2"}]}], ")"}]}], "]"}], "4"]}]], "Output", CellLabel-> "Out[1225]=",ExpressionUUID->"821f4253-02fb-43a8-ad37-ac74aea2425a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]exact"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]exact"}], ")"}], "/", "4"}], "]"}], "2"]}], ")"}], "2"], "/.", RowBox[{"t", "->", RowBox[{ RowBox[{"Sqrt", "[", "2", "]"}], " ", "2", " ", RowBox[{"\[Pi]", "/", "\[Omega]\[CapitalDelta]"}]}]}]}], ",", RowBox[{"{", RowBox[{"\[Alpha]", ",", "0.5", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Epsilon]rf", ",", RowBox[{ RowBox[{"-", "2"}], "-", "1"}], ",", RowBox[{"0", "+", "1"}]}], "}"}], ",", RowBox[{"PlotPoints", "\[Rule]", RowBox[{"{", RowBox[{"100", ",", "100"}], "}"}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\[Alpha]\>\"", ",", "\"\<\!\(\*SubscriptBox[\(\[Epsilon]\), \(rf\)]\)\>\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"32", ",", RowBox[{"Thickness", "[", "0.0015", "]"}], ",", "Black", ",", RowBox[{"FontFamily", "->", "\"\\""}]}], "]"}]}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "False"}], ",", RowBox[{"ColorFunction", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{"Black", ",", "Purple", ",", RowBox[{"Darker", "@", RowBox[{"Darker", "@", "Blue"}]}], ",", RowBox[{"Darker", "@", "Blue"}], ",", "Blue", ",", RowBox[{"Lighter", "@", "Blue"}], ",", RowBox[{"Lighter", "@", RowBox[{"Lighter", "@", "Blue"}]}], ",", "Cyan", ",", "White"}], "}"}], ",", "#"}], "]"}], "&"}], ")"}]}], ",", RowBox[{"PlotLegends", "\[Rule]", "True"}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]], "Input", CellLabel-> "In[1226]:=",ExpressionUUID->"4aca8e49-3ccd-4e3a-aeed-0b9a9ddec013"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{ GraphicsComplexBox[CompressedData[" 1:eJxc3Hvo51Wdx/FJ16xwCcSlotiQrDCpTSRTbDumSXaxi1FSEZVdJNvFldxK ao0ooogiFCmKSqTCohtTrSG2Wpl2Eckwu9i6p+uaNjWllrnp7pzP7/14Hc4O A8MDZn7z/X4+5/N5/vc69PSzTn31frt27Xrq4bt2jT93fvW28+f9rnzrJ47/ 7MsOn773GW978RWnTv/b3q8d+PC3TP/1wv2+fN4npt983Imn33zd9N397Q98 8l3T577zqss/cujP4ruOOODMe54x/cbrT3rQS8+Z/tMbxj+Y/teHXXP2w66Z vmN8nL3Trz/j5GtvesjP4z8e9O5zjztx+uzd337Uh/9peu9pD7jh7gunz7pn fOHp3138nsdddsv0P48ff/Av4t/uGf/B9OsuOOXoH79q+tZj3veLfb/j1958 3fs/eOn0LdvlmT7j8OfedtoDfhn/evz1o6Zffc64QNO/fMjBt7/hndOvvOLU i278/PTPXzU+0PQrxtfd71dx//whl9x5xPTLXjB+Td9897jB0y/d99MPuWT6 p+N2XT/9ktvGBZ3+yfj4h/06ftG+q3PBKdM/uml8genTxnG7aPrGfXdr97en XzAu/+3TN5w9DsR/x88fH+ek6e/vO21HnjX9vNPHDZj+3jg+X5t+zr7T/9zb pq8bl/OQW+JT7hoHevra8ePPmH7mOP7vn/7OLdsBip++HYfpb+27OHsO+k38 tHF5jp6++rzxQE6fNP76u6evGsd59/SJZ40HYPrr4/YecGv8lMvGB5q+cnzd 06bbeBzfNv0fnx6/pv9xHM8bpi+/czzA08eN2/Wo2+LLjt8uaHzs+PjnTn9l XJ2Lp5945PgC0/8+jtud0094y3gB/Tb+0rj8J08fNV4PZ0/vHh/nw9NHjsfl qukvjNO5Z/ofxvF50J74c+P1dvz0Y8flPHP6M+Nxv2D6iPHjL5/+9Hb8pw9/ 8jhAv4svGcfhmOlHj9fV6dOfHJfnPdOPHI/vl6c/Pv76zdOPGMf5wN/HF4/X 7ZHTh47b++Lpi8br5+3TDx9f97PTHx2P443TO3/u/X/ubf/t3x2YfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6s7u2+28+d/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1Y3dv9t/939oP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/VjdW8HbZ/rvukH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrx+reHrh9 7tkP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/Wj9W9Hbx9r9kP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/Wj9W9 /d32vQ9IP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9W9/bg7brMfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6s7u2h23Wb/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1Y3dvfb9f1b9IP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/Wj9W9Hbpd99kP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/Wj9W9Hbbdl9kP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/Wj9W9PXq7b/unH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+re3vMdl9nP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9W9/bY7b7PfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6s7u3x27nY L/1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9WN3bUdu5mf1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9WN3b 0du5mv1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9WN3bsdu5u0/6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +rG6tydt53L2g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9WN1b207t7MfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6t7O2E717vSD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1o/VvZ20nfvZD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1o/VvZ28PRezH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+re7tw+3v/e4V+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfqzu7UPb/zP7wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+rG6t49tn/Pe 9IP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/VjdW8f377nPekH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrx+re PrVdp9kP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/Wj9W9fW67zn9NP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9W9/bF7T79T/rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6sbq3r2z3efaD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1Y3VvX93Oyd3pB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH68fq3nbO2ewH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrx+rertnO6V/SD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1o/VvV27nfO70g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9aP1b1dvz0nsx+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfq3u7cXvO /px+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfqzu7abtOf1T+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfqx ure+PeezH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+re/vV9p64M/1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9WN3brdt75o70g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9WN1b7/f3lOzH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+re7tje8/dnn6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+rO7tL9sx/2P6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+rG6t3u39+zsB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH68fq3vZ/43hP /yH9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/Vjd2/1+Nl5ke9MP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W j9W9/e0zx4M7+8H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfqxurfDdn5u+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfqxurfH7Xyv9IP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/VjdW/H7FzX9IP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/VjdW8n7NzX9IP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/VjdW/P2jlX6QfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+vH6t5euHOu0w/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9aP1b29fOe5Sj9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/Vvd25s5znX6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+rO7tnJ33 SvrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6sbq383bea+kH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrx+re 3rXzXk0/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1b3dv7Oez39YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /Vjd27Hbv/uv9IP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/VjdW/P3q7bf6YfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6t7e+V2bn6SfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6s7u1N223+YfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6sbq3927vjR+kH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+re7t4e29+ P/1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9WN3bpVs3vpd+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfqzu 7QPbff9u+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfqxurcrt+f+m+kH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrx+refrO9969MP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9W93bYg8eFuzT9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/Vjd255/GefuU+kH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrx+reTr56PCjv SD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/Vvd2/kPH//uxlv3dcvZ3y9nfLWd/t5z93XL2 d8vZ3y1nf7ec/d1y9nfL2d8tZ3+3nP3dcvZ3y9nfLWd/t5z93XL2d8vZ3y1n f7ec/d1y9nfL2d8tZ3+3nP3dcvZ3y9nfLWd/t5z93XL2d8vZ3y1nf7ec/d1y 9nfL2d8tZ3+3nP3dcvZ3y9nfLWd/t5z93XL2d8vZ3y1nf7ec/d1y9nfL2d8t Z3+3nP3dcvZ3y9nfLWd/t5z93XL2d8vZ3y1nf7ec/d1y9nfL2d8tZ3+3nP3d cvZ3y9nfLWd/t5z93XL2d8vZ3y1nf7ec/d1y9nfL2d8tZ3+3nP3dcvZ3y9nf LWd/t5z93XL2d8vZ3y1nf7ec/d1y9nfL2d8tZ3+3nP3dcvZ3y9nfLWd/t5z9 3XL2d8vZ3y1nf7ec/d1y9nfL2d8tZ3+3nP3dcvZ3y9nfXbzv/f6a8WLcPftR Tj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K 6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5 /SinH+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5/Sin H+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0 o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6Uc5/SinH+X0o5x+ lNOPcvpRTj/K6Uc5/SinH+X0o5x+lNOPcvpRTj/K6cfi3o6/elz3y9MP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/Wj9W9/fn8cSG+kX6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+rO7tuhPG uf9W+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+vF/Zd1riFXV/8DhLuMF uyBhIhZmIlEhIl2gN7YoCIMsECoCrUQQKkokit5ZRIREhIRIiJSImUVUyEAF wTlZ+CIIut/NnTqOM12OiBCVdNnfs5+12nte/Xj++8zMWnvvsz7r7Jn+sn6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrRdpZdP1vP+OPeD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1o+0qXR/r9qe5H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB9tV+mKWLe+ yP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9aLtKc+J9+1XuB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH60fb Vfrnm1hocj9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/2q7S5LK48XI/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9Y P1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/ WD9YP9qu0pebYyC5H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB9tV2lt0wX9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/Wi7Snc267J+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrRdpZXNuqgfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH21X6cZmXdIP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/W D9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP 1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/Wj7ardF2zLugH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH 6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfr B+sH6wfrB+sH6wfrR9tVWtq8L/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1o+0qLW7eF/rB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6 wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB +sH6wfrB+sH6wfrB+sH60XaV5jf3pX6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+ sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6w frB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+tF2l2c19 oR+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+s H6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wfrB+sH6wf rB+sH6wfrB+sH6wfrB+sH6wfbVdpenNd9IP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/Wj7Sqd fmV4XvSD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1 g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD 9YP1g/WD9YP1g/WD9YP1g/WD9YP1o+0qnfx8OC79YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g /Wi7/P810Q/WD9aP3KGmH6wfrB+sH6wfrB+sH/xo57+j1w/WjzzPph+sH6wf rB+sH/xQ57/D1A/WD9YP1g/WD9YP1g9e3/nvePSD9YP1g/WD9YP1g/WD7+78 Hbh+sH6wfrB+sH6wfrB+8B2dvyPUD9YP1g/WD9YP1g/WD76183co+sH6wfrB +sH6wfrB+sE3dX6PqR+sH6wfrB+sH6wfrB+8vPMcXD9YP1g/WD9YP1g/WD/4 2s5zFP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9YP1g/WD9 YP1g/eDu/74Y8x9LW2Ie0/sXx/yLd8T8x9LW+N9p/fkx/2PZ2+N1U70tvu+0 /rw4H8UvxPkonhvno3hbnI+px7fHdSzHeU6cr/HsrXG+ii+I8zU+5fU74rKO 5Nez1/PzcX6LZ8f5Ld4S53fq8Z1x35bjfH6c9+PZz0Wvi8+9pV5Ap3pXvE9G +s9Gv4tnbasnVvxM9Lv4yejpZFo1XHd6Z5xXX5Bix1cP18V8nI13VdNd42Xn a0XTReeLnQ92Ptj1XO7ftWquD7s+7Oex++vqpkvuL3b/sPv3iqYj7lfuRy+q 9GSMc0Z/+D4pHvZl0Dl+Ivus/XWQJvL5tX6z9btr5/uJOK/FP0bfBumvWBff 6/n5XEUfB+nW++rruK+3NuZR7OvZ1/O66O0gPb6oPu8v5e/Hvh/7fuz7sfmf Gqkv1HfJ/cXuLzZf/jv2c8Uzf6o3WMdTtaZe1w+mzbH/nMievqQOXvHTsf8s Hnms/oLip2L/WWy8bLxsvOz9+NFofV8fSt6P7P3I3o9sPmw+bD5sPmw+bD5s Puz9t7rZt3v/sfc3e3+z+bL5svmy+bL5svmy+bL5svd/d71h6w2bL5sv2x+y /SGbL5svmy+bL5svW3+66x1b79h82X6Y7YfZfpjth9n1ZdeXzZfNl62P3fWW rbdsvmz/z/b/bP/P5suuL7u+7Pqy+bL9jPXffqbbAzZf9nmHfd5hn3fY9WXX l11fdj+z+fLO2LeM5T4tiP1rsf0bmy+bL+d/H7hx/veBG7u+7Pqy68vmy+bL u2JfdDRd0nxuWhj787Fs82PzY/Nj82PzY9eTXU82PzY/3h37rqPpwqbLi+Lz RrH5sPmw+bD5sPmw+bD5sPnwntjXHU3n+O9gYh9QbPxs/Gz8bPxs/Gz8bPy8 Nz7fHUlnNp/LLovPd0ezjZeNl42XjZeNl42XL4/Pm0fS78uHn8uMh42HjYeN h42H7Qf/uP//n7uKX4vPv0eyjYeNh42H7Z+6tq/084ee2W8fn9n3+d9+0ec9 +0OfD+33fD5kr2efL+3nfD37evb1bL9r/2Z/y8bLnlew5yn2W56nsOcp7HkK e57Cnqew8bHxsedB9k+eB7HnQex5EBs/Gz8bPxs/Gz8bP+u7/ZH9DNvPsOdd bH5sfmx+bH5sfmx+bH6s5/ZD9i9s/8Lmx8bPxs/Gz8bPxs/2I/Y39iNsP8LO Lzu/bHxsfGz/YD9i/8D2D+z8sPPDzg8bH3uea/+g96z37Hyw88HOB7uebLzs +bP+e/7Mnj+z8bLzxc4XO19s/Gz87Hm5vntezsbLxsvGy8bLzi87v2w+bD7s eb++e97Pxs/Gz8bPxs/Gz8bPxs9+P6Hvfj/BxsvGy8bLxsvGy8bLfn+i735/ wsbHxsfGx8bHxsd+f6P3fj77+ezns5/f3S/ot98X6bufx35ee39xItt64nme 9Y6td7w2vl+Vboh1YUZ/uP8YZDt+enTYccfZ+93zTO939n5n6xNbn7rPQxfE +S7HPd+0frH1la2v3eehl8b+pjzfvHP4fsrPL9nnkYti31ieD/M18fuO8bQm 7ovyvNjxffH7j3Lc503zWRb7vfF0b9x3I/1FsV+fTLcPu9jbGZ8/ig/H+jCZ 7hpex3yc18Z6UWy/6fp5/rZ4Xj3At3vul+7zwF831ifm1Xy8+/yv+/Xd53m+ 3vMk/16f5xv5319qzrfjro9/X8PX539vqrnf7F/dj93fS7gf28dn5uetzofz 072fvc71d/+w6+d+cJwddz84zo77vO44O74x3v/j6WCsQ+X94P3K7mf3l+Ps uOcbjrPjnu84zo57vmO81hd+MNa3/zoZ61p5v+2J83p29uL4HFO+n+PsuOdl jrPj7qfu7y+83v6te9zXez95f3me7Pm6zxvs/eX1nl9Yr+wfeDR+P3osv/9d X79PYuvFVdGxsl64vl7PXv9WfH4sr7eeuh6OW19cb+Nj99sbcd7K611/r2ev Xxrn8Xh+vevr9ez1r8d1KK+3Prs+jq+L+6jcH+6/JfG/5bj7wXzZ61+L/3t5 vevv9ez1V8Y4y+utPz4f+/zH1uu8/ja/77Ce+rzLm+L9PEizY318N6+XX8Tf jXyQPRHj6vesR8di3enl37d0P2/zE/F9BunDhfXr38xff11sLEZ7h6PP5fO2 3w+z77/hnfr1TyW++UA4f7+579fe3fP7A5+/fd7kXbGdnUiD7fUJ/z5tir+v mfr7mlkx76+zu/9+vNffE/v3yfTnhvrnfJufn/v87f3Oe+M+/G9ffbJ+TnYw /77Ice9v9v4eO1CfqB/y826fn92vnO/X5u+m7Cccd7/wutgvT6RPFtTn+1B6 JP6eqKzvp+LviYofjutZfDL+nmiqvZ/0wvp7IvaLxRuih2V9/i32p1Pt/ree +/58JF430v8lvq74gXhd8WSMs3w/dnx/7I8G6bP99ddt7dk/en86P36+/aTj zpfj9peOO3+O2z9ab5wv47OfdNz5c9z+0nHn03E91B/na328ruy/HXf+HLcf d9z5dNz9a7+0MJ5Hl/vV/We/ZH1yv1lPrc9sfba+Ol/66nyy9dL7y/wd7/aX XX/zsf9bMfy7orz/Xjn8PJl7e9twXcl99nr2eufD6+1nrWfWS3b/RQZHf37P +mQ9YuvRgvj9RVl/zNd+wvkwPz/f+ml99vP+BQQ/Sjw= "], {{{ EdgeForm[], GrayLevel[0.8], GraphicsGroupBox[{ PolygonBox[CompressedData[" 1:eJws3XO8JcfaxfHpjbZ27GSSTM5MbNu2bdu2bdu2bdu2bePW7671R32e07UK 3Xu6vvtMct+8wzfcbsVtO8OGDfts+WHDuqEuODRsGNebhrb5MPX1Qts2tCy0 PLTNhmkM2RbO+6FtHVoSWhralu6LQ9vKlWz30EYPbYzQtvFY1t0ttNGc7Rha FVod2vahFaGVoW3n/bneyXkT2q6hDTx/Z/e1oe3iSraD12DdPbz/mKEdGtrw 0CYNbe/Qxg5tnND2cR03tL1CG8vZvu4bL7SbQ1sutPDRDTsgtAlCmzC0/ZyP H9qe3of5BzqfKLSDQ5s4tElCO8z7TxbaIe7jng7yWMYd7nzy0I4KbYrQwh/V sCPcNyK0I13J9vf+3NPRHjsytGNDGxXalKGdENrUoU0T2mmhzRjaTKEdH9pU zk50Pm1op4Q2fWgzhHaS+6YL7WRXsuO8NvNP9VjWPT+0uUKbO7SzQps1tNlC OyO0mUObJbTTvT/XZzufPbTzQpvT889x3xyhnetKdoyfj2e7wPvME9q1oS0R 2pKhXRLa/KEtENpVoS0a2mKhXRzafM4udb5gaFeEtnBoi4R2mfsWCu1yV7KL QpvX86/0WNa90PuTXef9lwrtmtAW9z1d7f25vt750qHdFNqyw/Ru3eC+ZUK7 0ZXsiijsH9oiod0yTO/gCqHdFtqKoa0U2h2hrRzaKqHdF9qaoa0V2u3Oye50 vmpo94S2emhrhHaX+1YL7W5XsidD22SYfLjXY1l3u/DhLxJesoVDeyhcrxva eqE9ENraoa0T2v3en+uHna8f2mOhbRjaRqE94r4NQnvUlexBr8G6T3l/HHp9 mCzg3D87TB5hz3Ou2PPMMFlG9rz7sOpWf2Z8Xi8Nk3EY84JzfHra+zD/ZeeY 9OowmYJVb3h/vHnNfdzTKx7LuDedY9U7w+QgDr3lPvx725XsXef48Z4rDr3v ilUfDpNTmPSRK/Z8Pkx2YMwXrrjy6TA5hUOfuTLuY8/bP7RPXBn3pedh5HfD 5Av2fD1MZmHSN6449OMwnUOM+crzGPe95+HQD66M+9bzWPcDPxPP85PXwJJf hskjrPptmDzCnn+GyQv8+NU52e/OMemvYTII2/5wH4b96Ur2t3PW+tfrnRna z96fvYdFMguTokgVh/7zWLJOpD5M6kUy63zn2IZ33Ug5WT9SjlVxpIoZSaSK K2mkik9FJJtwaBDJDizJI7lGVkbK8amJ5BHOVZH68KyOVMmmj3SWeMfbSGNZ dzybwvkYM5JNODR6JE/xbLRI+3M9VqQcn8aN9L3I/LEj9eHZOJEq2RiR1mDd 8SPtg1sjI9mBDRNHsgmHRkSyA0smiuQa2SSRcnyaLJJHODc8Uh+eTRqpkk0Y yT7mTx5pLOtOEGl/slGR9sehoUjucE9TRNqf6ykj5fg0bfj5iWFycapIfXg2 daT6eGjTRcr5rGeI9Hlj0mqRzgzv+0yR/MKtmSNVrJojkjtYMmekij2zhZ9f HCa3Zo9UGTdLpHkYNmukyri5Is3Dp/kjuYM380QyFMPmjVSxaqFIBmHP3JHm MW6BSPMwbMFIlXHzRZrHujNGej6eh+8o1ng/tEUjnXPcWjySWdizbCSn8Gax SDnZEpFyTFo6klnYtmSkPjxbKlIlWyZSzlrLRVoPh/iOZH/2XiGSX7i1YqSK Q8tHGku2UqQ+zFslkl+4tXqkPytsWDlSTrZqpPxHf9Z8b/BdskaksRh2bKR3 i3dnw0h+4c06kczCp7UjGcf1epGcwrB1I+Vcbx3JCGxYP1KOYdu4LwttrUgm stZGkfbBqo0jVTzbLJJZmLRBpDW4py0i+YVPmzvneqtITrH3ls653jSSiay1 rffHpL0iuYABO0SyCYd2dMWh7SO5RraT+3Brl0ge4dzO7mu9Nhbi3Z6RbGKP 7bwna+0WySas2iOSNYzb2/eCQ7t6bcbtG8kszNvHOde7ew3m7+ccqzaJ9Pnx zPu7Dz8OcMWYQyLZhENHRbIDSw6O5BrZoc7x6YhIHuHcYe7Ds8NdyQ6KZB/z j/RY1j0lkuO4clyk9wuHjonkKe/c0d6f6+Od49PJkWxi/omhTRPJs5NcyU71 2pzp0yM5hU8XRfKCc39+JF9w4qxI7uDTmZE84vqcSE7h2dnOuT7QnxnPdq5z nDvD+zD/PPexxwXeB7cu9v54dqH7uKdL3IdVl0VyCs8ud8WkNSOdS87JaX4+ nu1Sz2POlZHswK2rXPHpalcMuzaSU5h0cyR3sOQa52TXOceqGyM5hXnXuw/b bnAluzeSHdzjTR7LuvdEMojs9khO4dCtkVzDs1u8P9d3OMewuyN93zD/Tvfh 1l2uZLd5Dda9z/tjydORvMCDByOZhUkPuWLVA5H8InvYff/3KdI7xGf8WCT7 MOkR59hzv/dh/uPOserJSOcNY57x/vj0lPu4pyc8lnHPOsenFyJZiYvPuQ/D nncle9E5br3kiiUvu+LTq5H8wq3XXLHq7UjW4MQ7rnjzZiS/MOYtV8a97nl4 9oYr4971PDz7KJJHePN+JENx6wNXfPo0kjWcm/c8j3Efex4mfeLKuA89j3Vf 8TPxPJ95DVz5IpJNuPVVJJtw6IdIdmDJl87JvnaOT99F8gjnvnEfnn3rSva9 c9b60evxffi592fvnyP5hU+/hnZCJJN+8liy39yHT39E8gv/Ho30HvFu/e6c 7E/nvH9Ld/TM7LlMR5Xn/jeSNVjFP9TCL3yKO7IGV/5zThZ1lONZryOb8K/T UR+GdTuqZG1HdmBGv6OxrNt05AtZ3pFZ2JN2ZCu2JR3tz3XRUY5ndUd//2d+ 2VEftlUdVbKsozVYd9DR/pg0UUcuYMAYHdmEQ2N2VHFo9I5cIxuroz7c+ifS dwCf17gdeYc3Y3eUY9VoHe3D/PE6yvFpgo58wa2JO9ofeybsqI97Gr+jsYyb pKMctybryERMGt5RHxZO2lElm7yjHEtGdFQxaYqOKm6N7MgsfBrVUcWhaTty BG+m66hizNQdmYVJ03RUGTdlR/N476bqqDJu+o7m4eUsHVmDQzN25Bc+zdRR xaTZO3IHb2boaB7jZu1oHj7N1lFl3MwdzWPdoY6eieeZo6M1ON9zdWQWVs3T kTt4s1BH1mDG3B3lZPN2lOPWAh25hmfzddSHYfN3VMkW7ChnrYU7Wg+r5uxo f/ZetCOzsGexjiq2LdLRWLLFO+rDrSU7Mgvb/o70XcF7tkRHOdlSHeWc4e/D z0eFdnRoy3Z0jvHprvDzqqGtFtoKHTmFSVzjDpYs35FxZCt2lGPVKh05hXkr ddSHbSt3VMk27OgMYAb7MJZ1N+jovsnW7sgpHFoz/PxLJM9W72h/nFunoxzD 1u/oO5L563bUh1vrdVTJ1upoDdbdqKP9MWn7jlzAgE07sgmHNnPFoU06co1s c/fh1rkdvTf8uW3VkXd4s4VzrNq4o32Yv7VzfOJfGOALbu3g/bFnO/dxT9t4 LON2dI5bu3RkIibt5D4s3NmVbFfnWLKbKybt7opbe3ZkFj7t5YpD+3fkCN4c 4Iox+3ZkFibt58q4wVD4nT/UvdlnSGP2Ce1Az8PLwzqyBocO7sgvfDrEFZOO 7MgdvDnI8xh3uOfh0xGujDvU81h3Dz8Tz3OU1+B8H9ORWVh1XEfu4M0pHVmD Gcc6JzveOW6d1JFreHaC+zDsRFeyk52z1qleD6uO9v7sfXpHZmHPGa7YdprH kp3pPtw6uyOzsG3Ljt4j3q2znJOd45z37wfvx7Mu19E55nxe0JFTGHZRR05h 0hUduYMlFzonu9g5Vl3WkVOYd4n7sO1SV7KbOrKDPS/3WNa9saPfD8iu6cgp HLqqI9fw7Ervz/W1zjHsho5+z2D+de7Dretdya72Gqx7s/fHpAc7cgEDbuvI Jhy63RWHbu3INbI73Idb53fkPp/X3R15hzd3OseqW7wP8+8NbY2OfLq/I19w 6yHvjz0PuI97us9jGfewc9x6rCMTMekR92Hho65kjzvHkidcMelJV9x6uiOz 8OkZVxx6sSNH8OYlV4x5viOzMOkFV8Y963m8d8+5Mu5lz8PLNzqyBode7cgv fHrNFZPe7sgdvHnF8xj3pufh01uujHvd81j3KT8Tz/OO1+B8v9eRWVj1QUfe 4MxnHVmDGe87Jxt9SGZ9GNonHbmGZ2MMya+PQhtzSP0fh/apc9b63Oth1bve n72/7Mgs7PnKFdu+8Fiyr92HW992ZBa2ndfRdwXv2TfOyb5zjls4yu+A/F74 Y0dnGp8u6YUzGNoCof3SkVOY9FdH7mDJzx0ZR/arc6z6oyOnMO8392Hb765k /a7OAGb86bGs2+vqvsn+68gpHPqnI9fw7G/vzzX/Qpscw7pdfUcyP+qqD7c6 XVWyf70G68Zd7Y9Jo3flAgZkXdmEQ3lXFYfSrlwjK7rq+79bXb03/LnVXXmH N2VXOVYlXe3D/KarHJ8GXfmCW2N0tT/2jNZVH/fUdjWWcWN2lePWOF2ZiElj ddWHhWN3VcmqrvbnnsbtaiyujN+VTbg1UVc2Yc+IrnzBkgm7soxs4q5yfl+b rCuPMGaSrvowbNLw8z0dZRN0tTbzJ+9qLOtO25UpWDKqK5twaKgrT/Fsiq72 53rKrnJ8mqYrm5g/VVd9eDZ1V5VsvK6ej2ebrqt9ON9zd+UF536mrtzBmzm6 sgYzZuzKMrKZu8pxa7auXMOzWbrqw7BZu6pkM3RlIvNn72os607f1f5k83S1 P57N1ZVl3NOcXe3P9bxd5bi1QFeu8W7N11Ufhs3fVSWbNZzPF7i/0Bbq6h3E rUW6sgm3FuvKJPxZpitr8GPRrnKysYZk0uKhb9whGbdU+HnsIVm2RPh5nCGZ tWT4ebWuvPiJz3xIay4d+lbt6vcDshW6sgl7luvKMgxbtqv9uV6xqxy3Vunq 7wnMX6mrPqxauatKtnxXa7Du6l3tj0ObdGUB536trjzCnrW7qtizZleWka3T VR9WLdzVZ8bntX5XxmHMul3l+LRGV/swf4OuckzaqCtTsGpT7483G3fVxz1t 2NVYxm3mHKu27MpBHNrcffi3hSvZVs7xY2tXHNrGFau268opTNreFXt26coO jNnVFVd26sopHNrZlXE7eB5m7OjKuN08DyP37soX7NmjK7MwaU9XHNqvq3OI Mbt7HuP28Twc2teVcXt5Hutu62fiefb3GlhyYFceYdXBXXmEPUd15QV+HOSc 7NDQhndl0hFdGYRth7kPww53JTvSOWsd7fVGhnaA92fvY7syC5OOc8WhYzyW 7Hj3YdKJXZk1rXNsw7sTnJOd5ByrTnbFjFNcceVUV3w6oyubcOi8ruzAktO7 co3sTOf4dE5XHuHcWe7Ds7Ndye7p6izxjp/rsax7eVemcD4u6somHLqgK0/x 7Hzvz/XFzvHpsq6+F5l/ifvw7FJXsgu9Bute4X1w69au7MCGa7oyCX8mHpIj N4V2dVeukV3rHJcmHJJxN4Q2/pAMu44/wyH5dH1oV3VlH/MnGpJHN4Z2pfcn u83749BjI3U/t4T28EgZdHNotzvHp7u6sg8X73Afnt3pSna3cz7re/15Y9LH XZ0Z3vf7u/ILtx5wxapHu3IHSx5zxZ6HQ1uvK7cecWXcg56HYQ+5Mu5xz8On Z7pyB2+e7MpQDHvKFaue78og7HnC8xj3rOdh2HOujHva81j3Pj8fz/OC18Ct l7o657j1SldmYc9bXTmFNy87J3vVOSa90ZVZ2Paa+/DsdVeyN52z1tteD4de 9P7s/W5XfuHWe6449I7Hkr3vPsz7sCu/cOsT/1lhwwfOyT5yvp8/a743+C75 1GMx7LmRem8mCN/b33flF9581ZVZ+PRlaIf4+puunMKwr51z/WdXRmDDt84x 7C/3nRba512ZiJc/eB+s+tEVz37pyixM+s5rcE+/deUXPv3qnOs/unKKvX93 zvXPXZnIWn97f0zKenIBA/7ryiYc4n+ASsWhf7tyjSzqqQ+3uj15hHOdnvrO 9dpYiHdpTzaxxz/ek7X6PdmEVUlP1jAu7+lecKjX09qMK3syC/OKnnKu457W YH7VU45VP/nz45nrnvrwo+mpYszoPdmEP7uGP/fJh2TIaD25RvZg6H9gpFza OdRJh+TbjuHnSYbk2E7h5+FDMmrQk33M3yX0TzYkiybtyXFceXGkDJow9D09 UpaNH34eMSRbxws/Tz1KNk0Ufh7ek03Mn7infjybpKdKNllPa3OmR/TkFD5N 35MXnPtpevIFJ0b25A4+DfXkEddT9uQUno3qKee67ekz49mm6inHuSl62of5 U/fUxx7T9rQPbs3Q0/54Nl1PfdzTjD31YdXMPTmFZ7P0VDHps67OJedk8p6e j2ebqad5zJmtJztwa/aeKj7N0VPFsLl6cgqT+Dsz7mDJnD3lZHP3lGPVfD05 hXnz9NSHbfP2VMmW6skO7pG/izOWdZfsySCyRXpyCocW6sk1PFuwp/25XrSn HMOW6On7hvmL9dSHW4v3VMkW7mkN1l26p/2xZM2evMCD5XsyC5NW6Kli1XI9 +UW2Yk99+HR4T+8Qn/Eqtg+TVuopx55lw89fdDV/1Z5yrFq9p/OGMWv1tD8+ rdFTH/e0Wk9jGbd2Tzk+rdeTlbi4Tk99GLZuT5Vs/Z5y3Nqgp4olG/ZU8Wnj nvzCrU16qli1ZU/W4MRWrnizeU9+YcwWrozb1PPwbDNXxm3teXi2Q08e4c22 PRmKW9u54tPOPVnDudnG8xi3o+dh0k6ujNve81h3o56eiefZxWvgym492YRb YwcfxgrtvODHnqGNHJIhuzsfI7RxQz5OaBeEfPfQpuCfxYf+8UPfeKFdFPqy UJ8M9ZLQ9ghtaEj+7BV+HjWk78FdvT97Xz9SJh3IORgpjw7iGcI6N4TrKcOc t0fKpoNDO7Qnv/Bv5Z7eI96t6Uap/5DQDnPO+/dmT8/Mnm+58txH9WQNVh3T k1/4dFJP1uDK0c7JjnWOZyf0ZBP+Hec+DDveleycnuzAjBM9lnXP7skXstN6 Mgt7TunJVmw72ftzfbpzPDurp7//M/8M92Hbma5kp3oN1j3X+2PSVT25gAEX 9GQTDl3oikPn9+Qa2UXuw60je/oO4PO6tCfv8OZi51h1nvdh/mXO8emKnnzB rau9P/Zc6T7u6XKPZdw1znHr+p5MxKRr3YeF17mS3RjaMj1ZcpMrJt3silu3 9mQWPt3mikN39+QI3tzjijF39mQWJt3lyrjbPY/37g5Xxt3reXj5UE/W4ND9 PfmFTw+4YtKjPbmDN/d5HuMe9jx8esSVcQ96Huve4mfieR7zGpzvJ3oyC6ue 6skdvHmhJ2sw40nnZE87x63nenINz55xH4Y960r2vHPWetHrYdXj3p+9X+7J LOx5xRXbXvJYslfdh1uv92QWth3R03cF79lrzsnecM4Z3rcfvAltvNDe7ukc 49Nk4exPGtpNwYn3wvWeoe3F/YbrqYIfB4Sf3w1tD2fvO987tOFh3iShXR3G ThjqBKFdjkOhThTaleHn73o6A5hRh75XQt+1oX3r+ya7Y6Ts+YLPJvw8zZAc 2zr8PPWQfPuypzEY9k1P35HM/8p9uPW1K9noYa+7wvxpw/zvvT8m/dOTCxjw U0824dDPrjj0Y0+ukf3ivv+71dd7w5/b7z15hze/OseqH7wP8/9wjk9/9eQL bv3r/bHnb/dxT396LOP+c45bnb5MxCT+j87ow8Kor0rW7SvHkl5fFZP6fVXc SvoyC5/SvioOVX05gjd1XxVjir7MwqSyr8q4rK95/HuPvK/KuKaveXg5Rl/W 4NCgL7/wabS+KiaN05c7eNP2NY9xY4Wfb+jJp7H7qowbva95rBv39Uw8D+81 a3C+x+/LLKyasC938GayvqzBjAn6yskm6ivHreF9uYZnE/fVh2GT9FXJJu0r Z63J+1oPqzhX7M/eU/RlFvYM9VWxbURfY8lG9tWHW1P2ZRa2/eb3iHdrVF85 2VR95bx//HNc/r0T/z7pnZ7OMedzur6cwrAZ+nIKk2bryx0smb6vnGzGvnKs mqUvpzBvpr76sG3mvirZAraDPWftayzrzt/X7wdkc/XlFA7N0ZdreDZ7X/tz PXdfOYbN19fvGcyfp68+3Jq3r0o2Z19rsO6Cfe2PScv15QIGLNKXTR+Etmhf 9cPQFu7LNbLF+ur7KLRp+3Kfz2tEsGLy0G4JXizeV/5xaAv1tQ/zh0I+RWi3 hTEzjpJVy4R8+b72x55l++rnnmYOY2bi743887C+ctxauS8TMWnFvvqwcKW+ KtkqfeVYsmpfFZNW66vi1hp9mYVPa/ZVcWi9vhzBm/X7qhizTl9mYdK6fVXG rdXXPN67tfuqjNugr3l4uWlf1uDQRn35hU8b91UxaYu+3MGbDfuax7jNPA+f Nndl3CZ9zWPd1ft6Jp5nS6/B+d66L7Owatu+3MGbnfuyBjO2cU62nXPc2rEv 1/Bse/dh2A6uZDs5Z61dvB5WbeX92Xu3vszCnt1dsW1XjyXbM7Qx+3Jr777M wrZp+vqu4D3byznZPs5xa7++7MCt/V3x6QBXDDuoL6cw6Yi+3MGSA52THewc qw7ryynMO8R92HaoK9lJfZ0BzDjcY1n3RN832TF9OYVDR/XlGp4d6f25PtY5 hp3Q13ck849zH24d70p2tNdg3ZO9PyZd0JcLGHBaXzbh0OmuOHRqX66RneE+ 3Hqur/eGP7ez+/IOb850jlWneB/mn+Mcn87ryxfcutD7Y8/57uOezvVYxl3k HLcu7ctETLrYfVh4iSvZWd6fe7rMY3Hlir5swq2r+7IJe27syxUsuaovy8iu cb5EaNeHtlRoS4d2rfuWDO06V7IrvTbzb/BY1r2rL1Ow5Na+bMKhm/vyFM9u 8v5c3+Ycn+7syybm3+4+PLvDlexyPx/Pdrf34Xw/0ZcXnPv7+3IHbx7tyxrM uK8vy8gecI5bD/flGp496D4Me8iV7N6+TGT+Ix7Luvd4f7InvT+ePd6XZdzT Y96f66ec49azfbnGu/W0+zDsGVeySWPtwf7P9/UO4taLfdmEWy/3ZRMOvdmX NfjxknOyV5zj0+t92YRzr7oPz15zJfukLy9w4g2PZd2P+zKF7L2+bMKet/uy DMPe8v5cv+8ctz7q6+8JzP/AfVj1oSvZu6Ht4XU/9f449FNfFnDuv+jLI+z5 0hV7Pu/LMrKv3IdVL/gz4/P6ti/jMOZr5/j0mfdh/nfOMemHvkzBqp+9P978 6D7u6XuPZdwvzrHq974cxKFf3Yd/v7mS/eEcP/50xaG/XLHqn76cwqR/XbGn G8sOjOnFqrgSxXIKhzqxKuP+8zzM4D8oQWVcP9Y8jMxj+YI9SSyzMCmNVXGo inUOMSaONY9xRax5OFTGqozLYs1j3b/9TDxPHWsNLGljeYRVo8XyCHvGieUF fgxi5WSjx8oxaaxYBmHbGLH6MGzMWJVs7Fg5a40ba71bQmti7c/e48cyC5Mm iFVxaLxYY8kmjNWHSRPHMusur4VteDdRrJxsklg5Vg2PVTnPk8U605j0SPh5 /dA2CG3qWF7gx1Asj3BoilhmcT0qllk4NDJWzvWssd51bJgyVo5/s8Xqw4MR sXxkrWli7YOd08aqGDZDLI9waKpYa3BPM8Uyi+/DGWPlXM8Syyb2njlWzvX0 sbxjrdlj7Y9Vi8Y6/5z7uWIZhD1zx6r4NGcss8jmidWHQ/PFMg5j5o3Vx/VO sd4n/jwXieUOe8wRa0/WWjD8/E5fxiwcyy/GLRbrXvBp/lhr49kSsbzDwsVj 5VwvFGsN5i8ZK8eq6WJ9fjzzUrH6cGXpWBWflo9lE/asGssXLFkulmVkK8TK vwlt5VgeYcyKsfowbKVYlWzZWCYyf5VYY1l3vVimYMmasWzCodVjeYpnq8Xa n+u1YuX4tG4sm5i/dqw+PFsnViXjnWVtzvSGsZzCp21iecG53zKWLzixSSx3 8GnjWB5xvVksp/BsU+dcLxPrM+PZNneOcxvF2of5W7iPPbbyPri1rffHs63d xz1t5z6s2iGWU3i2oyvv0OSxziXnhDPJ8/Fs23te6T8Hvjf4LtnZ793/DYv1 fvNO7RvLGvzYI5ZNmLR7LL+43iuWX/i0p3OuD49lBPeyt3MsPMJ9nOPdYlnJ Wvt5Hwzb3xXDDorlEVbt4zW4p0Ni2YRJBzvn+rBYv3Ow96HOuT4wln2sdaT3 x6TTYlmADcfE8gifjnXFoaNjWUZ2nPtw5YRY3uHQ8e7jehd/lnh/aiyP2OMo 78laJ8UyizN3SixrGHe67wWHTvTajDszllMYeYZzrk/2Gsw/yzleHuDPj2c+ 230Ydo4rrlwQyyx8ujyWC7hyfizXyC50jlWXhrZALIcuch+eXeyKPefFso/5 l3ks694QyxHOxNWx3i9MujKWd7xzV3h/rq9xjmHXx/KI+de6D7eucyW70Wtj yc2xPMKq+2LZgQ13x/ICP26L5REO3RrLLK7viGUWDt3unOtz/ZnxbHc6x79b vA/z73Ife9zjfdYI7X7vj0P3uo97esB9mPRQLLMw72FXfNo11nvEObnJz8ez Peh5zDkrD3/uoc0W2qOxzjyePR7LGqx6MpZf+PR8LGtw5QnnZE85x7NnY9mE f0+7D8OecSV7M9a7zj0+57Gs+0YsU8hejmUW9rwYy1Zse8H7c/2Kczx7PdZ3 IfNfdR+2veZK9pLXYN23vD+WfB7LCzx4N5ZZmPSeK1a9E8svsvfd93+fEr1D fMYfxbIPkz5wjj1vex/mf+wcqz6Ndd4w5gvvj0+fuY97+sRjGfelc3z6JpaV uPiV+zDsa1eyb53j1neuWPK9Kz79GMsv3PrJFat+j2UNTvzhije/xvILY35z ZdzPnodnv7gy7k/Pw7P/YnmEN3/HMhS3/nHFp04iazg3f3ke4/iPwDEPk6JE lXH/eh7r/uBn4nm6idbAlX4im3ArSWQTDtWJ7MCSOFFOlibK8alM5BHO5eHn S2J5ViSqZFWinLWaROvxfdhLtD97DxL5hU+jJaqY1CYaSzZ6oj58GjORX/j3 od8j3q0xEuVkYyXKef82T/TM7LmFK889XiJrsGqCRH7h06SJrMGV8RPlZBMm yvFskkQ24d9EifowbOJElWzq8PNjscwYnmgs606VyBSyKRKZhT2TJ7IV2yZL tD/XQ4lyPJsy0d8NmD8yUR+2jUpUyUYkWoN1p0m0PybNmcgFDJg+kU04NEOi ikPTJXKNbMZEfbg1bqLvAD6vWRJ5hzczJcqxatpE+zB/1kQ5Ps2eyBfcmivR /tgzR6I+7mm2RGMZN3eiHLfmS2QiJs2TqA8L501UyeZPlGPJAokqJi2YqOLW wonMwqdFElUcWjKRI3izVKKKMYsnMguTlkhUGbdoonm8d4slqoxbOtE8vFwh kTU4tGwiv/BpuUQVk1ZO5A7eLJNoHuNWTDQPn1ZKVBm3fKJ5rLtQomfieVZJ tAbne7VEZmHVGoncwZv1ElmDGasnysnWTJTj1jqJXMOztRL1YdjaiSrZuoly 1lo/0XpYtWqi/dl7w0RmYc9GiSq2bZBoLNnGifpwa9NEZmHbOIm+K3jPNkmU k23mnDPM9zx/R+HvLVv6HOPT66HtFNrOoW0bWpbIJK5xB0u2TmQchm3nHKt2 TOQU5m3vPmzbwZVs30RnYDzvU3vdfXzfZLsncgqHdk3kGp7t4v253sM5hu2d 6DuS+Xu6D7f2ciXbzWuw7n7eH5OOTuQCBhyYyCYcOsgVhw5I5BrZwe7DrTsT vTf8uR2WyDu8OcQ5Vu3vfZh/uHN8OjKRL7h1jPfHnqPcxz0d4bGMO9Y5bp2Q yERMOs59WHi8K9mJzrHkJFdMOtkVt05NZBY+neaKQ2cncgRvznHFmDMTmYVJ Z7ky7nTPmzm0M1wZd67n4eVFiazBofMT+YVPF7hi0qWJ3MGb8zyPcRd7Hj5d 4sq4Cz2PdU/xM/E8l3kNzvcViczCqqsSuYM3NySyBjOudE52tXPcui6Ra3h2 jfsw7FpXsuuds9aNXg+rLvf+7H1zIrOw5xZXbLvJY8ludR9u3Z7ILGw7NNF7 xLt1m3OyO5zz/vH9x+/U/D69VaJzzPm8J5FTGHZfIqcw6ZFE7mDJvc7J7neO VQ8lcgrzHnAftj3oSvZcIjvY82GPZd1nE/1+QPZEIqdw6LFEruHZo96f6yed Y9gziX7PYP5T7sOtp13JHvcarPu898ekdxO5gAEvJ7IJh15xxaGXErlG9qr7 cOvuRO7zeb2RyDu8ec05Vr0Y2jae/6ZzfHo7kS+49Z73x5533Mc9veWxjHvf OW59lMhETPrAfVj4oSvZx86x5BNXTPrUFbc+T2QWPn3hikPfJnIEb75zxZiv E5mFSd+4Mu5Lz+O9+8qVcd97Hl7+ksgaHPoxkV/49JMrJv2eyB28+cHzGPer 5+HTb66M+9nzWPczPxPP84fX4Hz/lcgsrPonkTt4001lDWb87ZzsX+e4FaVy Dc/+cx+G8R95ppJ1UuWs1Uu1Hlb96f3ZO05lFvYkqSq29VONJUtT9eFWnsos bLsr0XcF71mWKicrUuW4Vaaq+FGlqhhWp6pYNXYqa/BjtFQ2YdIglV9cj5HK L3waPVXO9fBU7zo2jJkqx8JJU/XhQZvKStYaJ9U+GDZuqophE6TyCKvGSrUG 9zRRKpv4bpwwVc71JKmen70nTpVzPX4q+1hrslT7Y9X0qc4/536KVAZhz1Cq ik8jUplFNjJVHw5Nmco4jBmVqo/rdVO9T/x5TpfKHfaYPNWerDV1KqcwZtpU fjFuhlT3gk9TpVqbcTOl8g4LZ0yVcz1NqjWYP3OqHKvGS/X58cyzhp9fSOTK bKkqPs2VyibsWSCVL1gyZyrLyOZOlfP72nypPMKYeVL1Ydi8qSrZHKlMZP78 qcay7pKpTMGSRVLZhEMLpfIUzxZMtT/Xi6bK8WmJVDYxf7FUfXi2eKpKtlSq tTnTy6RyCp9WT+UF536VVL7gxPKp3MGn5VJ5xPWKqZzCsxVS5VzPnuoz49lW SpXj3LKp9mH+yqn62GPVVPvg1hqp9sez1VL1cU9rpurDqrVTOYVn66SqvEMr ZmF/9gtt6VTPx7OtlWoecxZO9fnxma6X6r3DsFNSvd+8U1uksgY/Nk5lEyZt lMovrjdN5Rc+bZIq53qnVC40oW3mHAt3dh/neMNUVrLWlt4Hw7ZyxbBtU3mE VZt7De5p+1Q2YdJ2zrneMZVN7L2Dc663SWUfa+3i/THpwFQWYMPuqTzCpz1c cWi3VJaR7ek+XNk7lXc4tJf7uF4/1WeJ9wek8og9dvWerLVvKrM4c/unsoZx B/lecGgfr824Q1I5hZEHO+d6P6/B/EOd4+XW/vx45sPch2GHu+LK0anMwqcT U7mAK0elco3sGOdYdXwqX3DoWPfh2XGuZEemso/5J3gs656dyhHOxKmp3i9M OjmVd7xzJ3l/rk9zjmFnpfKI+ae7D7fODG0WZ+d4bSw5L5VHWHVlKjuw4bJU XuDHhak8wqELUpnF9cWpzMKhi5xzfYQ/M57tEuf4d773Yf6l7mOPy70P5+wq 749DV7iPe7rafZh0bSqzMO86V3zaINV7xDk518/Hs13jecxZKdNZ/y606z2P c39jKtfw5pZUfuHTXamswZWbU1lGdqtzPLsjlU34d5v7MOx2V7I3Up1nztOd Hsu6D6cyhXNwXyqzsOeeVLZi293en+v7nePZQ6m+C5n/gPuw7UFXsnu9Bus+ 4n34nF5Mdc4x44lUZmHSc6l8wZXHU/lF9qRzDHsmlS+Y95T7cOtpV7LHUpnF /Gc9lnUf9f5kL3l/THoh1Tnknp73/ly/7BzDXktlFl6+4j7cetWV7HXnfNZv +vPGkijTueLdfzuVUxj2jiuGfZjKEbz5yBUz3k9lFoZ94Mq4dz0P595zZdzH nodVX6QyCJM+TWUcjn7mimFfp3IHbz7xPMZ96XlY9ZUr4z73PNZ9y8/H83zj NTh/vN/4gk8/pPILn35L5Rd+fO+c7EfnWPVLKr8w6Sf34dbPrmS/Omet370e Pn3r/dn7z1TfkRj2lytW/eGxZH+7D6v+S+UUhnUy/Vlxjv8N7Qxn/D9yIefP 8oZUZ5dz2800Fs9mz/Ru8e6UmSzDmCSTZVgVZ7KM6yyTZViVZsq5HivTHtiQ Z8pxa+xMfTeF1s/kGmtVmfbBrTpTxdRBJr9wqMi0Bvc0eibLMGy0TDnXY2ay ib3HyJRz3WbykbXGybQ/Jo3I5AIGjJ/JJhyaIFPFofEyuUY2YaY+3Jo4k0c4 N1Gmvjv9bFiId5Nnsok9xs20J2sNz2QTVk2WyRrGTZHpXnBokkxrM25kJrMw byhTzvWkmdZg/qhMOVY1mT4/nnnKTH34MVWmijHTZbIJh2bJZAeWTJvJNbLp M+X4NFMmj3Buhkx9eDZjpko2TSb7mD9zprGsO28mx3FljkzvFw7NlslT3rlZ M+3P9ZyZcnyaJ5NNzJ8rUx+ezZ2pks2XaW3O9AKZnMKnpTN5wblfIpMvOLFw JnfwaaFMHnG9aCan8GyRTDnXU2f6zHi2xTLlOLdgpn2Yv3imPvZYMtM+uLVM pv3xbKlMfdzTspn6sGr5TE7h2QqZKib1Mp1Lzsn8mZ6PZ1su0zzmnJmHPz// O+aVM/mFT9OG6yf4Mw5tnUzW4MfqmWzCpNUy+cX1mpn8wqc1MuVcb57JCO5l rUw5Fm7hPs7xqpmsZK11M+2DYetlqhi2USaPsGrtTGtwT5tksonvmY0z5Vxv lsky9t7UOdcbhvZPqrW29P6YtFsmC7Bhm0we4dO2rji0dSbLyLZzH67skMk7 HNrefVxfnOnd4rPfNZNH7LGV92StnTKZxZnbJZM1jNvd94JDO3ptxu2ZySmM 3MM51zt7Debv5Rwv18/0+eH93u7DsH1cceWATGbh02GZXMCV/TO5Rnagc6w6 JJMvOHSQ+/DsYFey/TLZx/xDPZZ1j8/kCGfiqExmYdIRmbzD1MO9P9dHO8ew 4zJ5xPxj3Idbx7qSneC1seSkTB5h1bmZ7MCGszJ5gR+nZvIIh07JZBbXp2cy C4dOc871vv7MeLYznOPfyd6H+We6jz3O9j58N57n/XHoHPdxT+e7D5MuzGQW 5l3kyjv0W2gn+plO9PPxbBd4HnOO9OfHZ3pJpvfu/55ler95p67L5AuWXJnJ Kdy6IpNrXF+dySlMuso513dkMmKV0K5xjot3uo9zfHkmE1nreu+Doze44tnN mQzCrWu9Bvd0aya/+GcDtzjn+vZMf39g79ucc31TJgdZ6y7vj0m4hQXYcG8m j/DpPlccuieTZWT3uw9XHszkHQ494D6uL/VnidmPZ/KIPe72nqz1cCazOHOP ZbKGcU/6XnDoIa/NuKczOYWRTznn+tHQNvD8Z5zj5Y3+/HjmZ92HYc+54spL mczCpzcyuYArL2Zyjexl51j1WiZfcOgV9+HZq65kL2Syj/mveyzrfpjJEc7E O5neL0x6K5N3vHNven+u33WOYR9k8oj577kPt953JfvIa2PJJ5k8wqrvM9mB Dd9k8gI/Ps/kEQ59lsksrr/MZBYOfeGc6+f9mfFsXznHv0+9D/O/dh97fOt9 OGc/eH8c+s593NOP7sOknzOZhXm/uOLTZZneI87Jx34+nu0nz2MO54nvYb4X f/U8zj3/XIp/hs0/X45y+YIlf2dyCrf+yuQa1/9mcgqT/nHOdZHrneZe/nOO i2WuPs7xn5lMZK1Orn1wtJur4lmcyyDc4v+BI2twT2kuv/gOTHLlXOe5bGLv LFfOdT+Xg6xV5dofk8bLZQE2tLk8wqdBropDTS7LyEbL1YcrY+TyDodGz9XH 9eK53i0++3FzecQeda49WWusXGZx5sbJZQ3jxs91Lzg0Zq61GTdhLqcwcoJc Oddj51qD+RPlyvGyl+vz45knztWHYZPkqrgyeS6z8GmqXC7gymS5XCMbkSvH qpG5fMGhKXL14dlQrko2aS77mD9l+PmRTOvOnMsRzsR0uczCpGlyeYepU+fa n+vpc+UYNlMuj5g/Q64+3JoxVyXjd0zWxhL+t4x4hFUL5rIDG+bL5QV+zJnL IxyaI5dZXM+dyywcmitXzvXwXJ8ZzzZPrhz/Zs+1D/PnzdXHHvPn2ofvxoVy 7Y9DC+Tq454WztWHSYvmMgvzFstVeYf+yPTdzznhd2iej2dbJNc85vye6Xub cUvkeu/wbL9c7zfv1Eq5fMGSZXM5hVvL5HKN6+VzOYVJy+XKuV4n1x7cywq5 clxcN1cf53jpXCay1sq59sHRVXJVPFs9l0G4tWKuNbinNXP5hUNr5Mq5XjvX 7yXsvVaunOvVcjnIWuvl2h+Tts5lATZsmMsjfNooV8WhDXJZRrZxrj5c2TSX dzi0Sa4+rpfM9Vli9la5PGKP9XPtyVqb5zKLM7dlLmsYt43vBYc289qM2y6X Uxi5rXOut/AazN/eOV6umuvz45l3cB+G7eiKK7vmMguf9s7lAq7skss1st2c Y9WeuXzBod3dh2d7uJLtnMs+5u/lsax7SC5HOBP7+/3CpH1zecc7t4/35/oA 5xh2cC6PmH+g+3DrIFeyQ702lhyeyyOsOjmXHdhwQi4v8OOoXB7h0JG5zOL6 2NBG5XLoaOcYtpM/M57tOOf4d4T3Yf7x7mOPE70Pf2c9xfvj0Enu455OdR8m nZ7LLMw7wxWflsr1HnFODvPz8Wyned7/5yT63xjyvzs8O5dlGLPVILxToSWh nZfLL3y6JJc1uHJuLsvIzneOZxflsgn/LnAfhl3oSnZdrnede7zYY1n32lym kF2RyyzsuSyXrdh2qffn+krneHZNru9C5l/lPmy72pXscq/Butd7fyy5J5cX eHBTLrMw6WZXrLoxl19kt7gPn77K9Q7xGd+eyz5MutU59tzgfZh/h3OsuivX ecOYe70/Pt3tPu7pTo9l3H3O8enBXFbi4v3uw7AHXMlu8/7c00Mei2GP5DIF nx7PZRY+PZvLBVx5LJdrZE84x6qnc/mCQ0+6D8+eciV71Gsz/xmPZd3XcjnC mXgxl1mY9Hwu7zD1Oe/P9UvOMezVXB4x/2X34dYrrmQP+/l4tte9D658kssO bHg7l0049GEuO7DkrVyukb3jHJ/ez+URzr3rPjx7z5XszVz2Mf8Dj2XdN7w/ 2afeH4c+zvV9yT195P25/sw5Pn2Zyz7erc/dh2dfuJK9X4T9Q9s7tK9zvYMY 9m0uX/Dp+1xmYdJvuXzBku+ck/0Y2jG5DPsll0eY95P7cOtnV7KokBfnhPar x7Iu/w/P+b/xIPsrl1N480cuT/Hsd+/P9d/OMey/XP/8jvn/uA/P/nUl+9Nr sG6n0P441BSygHPfL+QR9sSFKvb0CllGlhTqw6pv/JnxeeWFjMOYtFCOT91C +zC/KJRjUlXIFKxqC+2PN3WhPu6pLDSWcYNCOVaNUchBHBqtUB/+jV6oko1Z KMePsQpVHBq7UMWqcQs5hUnjFarYM3EhOzBmkkIVVyYs5BQOTVSoMm78QvMw Y4JClXHDC83DyCkK+YI9kxUyC5MmL1RxaFShc4gxkxaax7ihQvNwaGShyrgR heax7jiFnonnmbLQGlgydSGPsGraQh5hz8yFvMCPaQrlZNMVyjFpxkIGYdv0 hfowbIZClWymQjlrzVJovRdCm6rQ/uw9WyGzMGn2QhWHZi00lmyOQn2YNFch s17zWtiGd3MWysnmLpRj1TyFKmbMW6jiynyFKj4tWMgmHFq8kB1YskAh18gW KpTj06KFPMK5hQv14dkihSrZZoXOEu/4YoXGsu4KNoXzsXQhm3BoyUKe4tkS hfbneplCOT4tX+h7kfnLFurDs+UKVbKlCq3BuisW2ge31i9kBzasVsgmHFqn kB1Ysmr4+Ydc2eqFcnxaq5BHOLdGoT48W7NQJVu5kH24uHahsay7UqH9yTYo tD8OrVfIHe5p3UL7c71hoRyfNilkHy5uVKgPzzYuVMk2dc5nvbk/b0w6ttCZ 4X3fspBfuLWVK1ZtX8gdLNnBFXu2DS0r5NZ2rozb2vMwbBtXxu3oefi0WyF3 8GbnQoZi2C6uWLVnIYOwZyfPY9zunodhe7gyblfPY90t/Hw8z15eA7f2KXTO cWu/QmZhzyGFnMKbfZ2T7e8ckw4qZBa2HeA+PDvQlexg56x1qNfDob29P3sf Xsgv3DrCFYcO81iyI92HeUcX8gu3jvOfFTYc5ZzsGOej/FnzvcF3yfEei2GP Fnq3eHfOKOQX3pxcyCx8OqmQcVyfWsgpDDvFOdcXFTICG05zjmEXu2/+0E4s ZCJrnel9sOosVzw7t5BZmHS61+Cezi/kFz6d55zrCws5xd4XOOf6nEImstYl 3h+TbizkAgZcXsgmHLrCFYcuK+Qa2ZXuw62rC3mEc1e5bzGvjYV4d0Mhm9jj Uu/JWtcWsgmrri9kDeNu8r3g0DVem3G3FDIL8252zvV1XoP5tzrHqrP9+fHM t7kPP253xZh7CtmEQw8VsgNL7i7kGtm9zvHpgUIe4dx97sOz+13J7ipkH/Mf 9FjWfbqQ47jyWKH3C4ceKeQp79zD3p/rx53j01OFbGL+E+7DsyddyZ7x2pzp 5wo5hU9vFvKCc/9aIV9w4sVC7uDTC4U84vrlQk7h2UvOub4ztFX8bK84x7nn vQ/zX3Ufe7zufXDrLe+PZ2+4j3t6231Y9W4hp/DsPVdMOqHQueScPOvn49ne 8TzmfFDIDtz60BWfPnLFsE8KOYVJXxVyB0s+dk72qXOs+qKQU5j3mfuw7XNX sl8K2cE9fumxrPtzIYPIvivkFA59U8g1PPva+3P9vXMM+6nQ9w3zf3Afbv3o Svat12DdX70/lnRLeYEHfxQyC5P+dMWq3wv5RfaX+/7vU6l3iM/430L2YdLf zrHnN+/D/P+cY1VU6rxhTK/U/vjUKdXHPQ0rNZZx/VI5PqWlrMTFuFQfhiWl KllWKsetvFTFkqJUxaeqlF+4VZeqWDV6KWtwYoxSFW8GpfzCmNFKVcY1pebh WVuqMm7MUvPwbLxSHuHN2KUMxa1xSlV8mij8fEehczNWqXmMG7/UPEyaoFTF pHFLzWPdstQz8TwTl1oDV4aXsgm3JitlEw6NKmUHlkxaKiebvFSOT0OlPMK5 EaX68GyKUpVsZKmctaYstR7fh5OU2p+9py7lFz5NU6pi0lSlxpJNW6oPn6Yv 5Rf+/eP3iHdrulI52Qylct6/g0s9M3se4spzz1LKGqyarZRf+DRPKWtwZdZS OdnspXI8m6uUTfg3R6k+DJuzVCVbrJQdmDF3qbGsu2gpX8gWKGUW9sxXylZs m7fU/lwvWCrHs0VK/f2f+QuV6sO2hUtVsvlLrcG6i5faH5NWKeUCBixVyiYc WrpUxaElS7lGtkypPtyaudR3AJ/X8qW8w5tlS+VYtUSpfZi/Qqkcn1Yq5Qtu rVpqf+xZuVQf97RiqbGMW61UjltrljIRk1Yv1YeFa5SqZGuVyrFk7VIVk9Yp VXFrvVJm4dP6pSoObVLKEbzZ1BVjNiplFiZtXKoyboNS83jvNixVGbeZ5+Hl 1qWswaEtSvmFT1u6YtJ2pdzBm809j3HbeB4+bevKuK08j3XXLfVMPM/2XoPz vWMps7Bq51Lu4M2epazBjJ2ck+3iHLd2L+Uanu3qPgzbzZVsD+estZfXw6od vD9771PKLOzZ1xXb9vZYsv3ch1sHhjZhKdtmKvVdwXu2v3M8O8g5Z3ioCq6E +lBoh5Y6x/j0U2jHhnZcaEeUcmqEr3EHSw4vZRzZkc6x6phSTmHeUe7DtqNd yc4odQZm8T6jvO7pvm+yk0o5hUMnlHINz473/lyf7BzDTiv1Hcn8U9yHW6e6 kp3oNVj3TO+PSZeVcgEDzillEw6d64pDZ5dyjew89+HWK6XeG/7cLizlHd6c 7xyrzvI+zL/IOT5dUsoX3Lrc+2PPpe7jni72WMZd4Ry3ri5lIiZd6T4svMqV 7BrnWHKtKyZd54pbN5QyC59udMWh20o5gje3u2LMLaXMwqRbXRl3k+ctF9rN roy7w/Pw8t5S1uDQXaX8wqe7XTHpgVLu4M2dnse4+zwPn+53Zdw9nse61/uZ eJ4HvQbn++FSZmHVo6XcwZunS1mDGY84J3vMOW49Wco1PHvcfRj2hCvZU85Z 6xmvh1UPeX/2fq6UWdjzvCu2PeuxZC+4D7deKmUWtl1Q6j3i3XrROdnLznn/ Rlbaj2c9rNQ55ny+XsopDHuzlFOY9H4pd7DkDedkbznHqndLOYV5b7sP295x JfuqlB3s+Z7Hsu6XpX4/IPu4lFM49GEp1/DsA+/P9aehHVDKsC9K/Z7B/M/c h1ufu5J95DVY92vvj0l/lHIBA74rZRMOfe+KQ9+Wco3sB/fh1mul3Ofz+rmU d3jzo3Os+sb7MP8X5/j0WylfcOtP7489v7uPe/rVYxn3l3Pc+reUiZj0t/uw 8B9Xsv+cY8mwShWTokoVt7qVzMKnXqWKQ1klR/Amr1QxJqlkFiallSrj+pXm 8d7FlSrjikrz8LKtZA0OVZX8wqe6UsWk0Su5gzdlpXmMG1Sah0+jVaqMayrN Y91OpWfiecaotAbne6xKZmHVOJXcwZuJKlmDGWNXysnGrZTj1gSVXMOz8Sr1 Ydj4lSrZhJVy1pq40npYNWal/dl7eCWzsGfSShXbJqk0lmyySn24NaKSWdj2 aqnvCt6zySvlZFNUynELO/kdkN8LR1U60/j0Th3OXWh7hDZ1JacwacZK7mDJ VJWMI5umUo5V01dyCvOmrdSHbdNVqmRzVzoDmDFDpbGsO1el+yabtZJTODRz JdfwbKZK+3M9W6Ucw+as9B3J/Nkr9eHWHJUq2SyV1mDdeSrtj0lLVXIBA+av ZBMOLVCp4tB8lVwjW7BS3//dqvTe8Oe2SCXv8GahSjlWzVtpH+YvWinHp8Ur +YJbS1faH3uWDD9/UuqeFqs0lnHLVMpxa/lKJmLSspX6sHC5SpVs4Ur7c08r VBqLKytVsgm3Vq1kE/asXckXLFmlkmVkq1XK+X1tzUoeYczqlfowbI1KlWzl Smszf61KY1l3k0qmYMn6lWzCoXUreYpn61Tan+sNKuX4tHElm5i/YaU+PNuo UiVbsdLz8Wybeh/O906VvODcb1nJHbzZvpI1mLFFJcvItnKOW9tWcg3PtnYf hm3jSrZ5JROZv53Hsu5m3p9sZ++PZztWsox72sH7c72Lc9zavZJrvFu7ug/D dnMl2yaczzS0LLQ9/Q7i1t6VbMKtfSvZhEMHV7IGP/ZxTrafc3w6sJJNOLe/ +/DsAFeyYyt5MWVoB3ks6x5T6fcDssMr2YQ9h1ayDMMO8f5cH+Ect46u9PcE 5h/pPqw6ypXsMK/Busd5fxw6u5IFnPsTK3mEPSe5Ys8JlSwjO9l9WLWXPzM+ r9MqGYcxpzjHp+O9D/NPd45JZ1YyBavO8f54c5b7uKczPJZx5zrHqgsqOYhD 57kP/853JbvQOX5c5IpDF7ti1aWVnMKky1yx5+pKdmDMtaEtUcmVKys5hUNX uTLucs/DjCtcGXed52HkzZV8wZ4bKpmFSTe64tBtlc4hxlzveYy7xfNw6FZX xt3keax7iZ+J57nda2DJnZU8wqq7K3mEPQ9W8gI/7nJOdo9zTLq/kkHYdq/7 MOw+V7IHnLPWQ15vvdDu8P7s/UglszDpUVccethjyR5zHyY9UcmsTZxjG949 7pzsSedY9ZQrZjztiivPuOLT85VswqFXK9mBJc9Vco3sBef49HIlj3DuRffh 2UuuZD9XOku84694LOu+V8kUzseblWzCodcreYpnr3l/rt9yjk/vVvpeZP7b 7sOzd1zJ3vAarPu+98GtbyrZgQ0fV7IJh76sZAeWfFTJNbJPnOPT55U8wrlP 3Ydnn7mSfVjJPuZ/4bGs+4H3J/vW++PQ15Xc4Z6+8v5cf+ccn36sZB8ufu8+ PPvBlewn53zWv/jzxqQJap0Z3vffKvmFW7+7YtU/ldzBkn9dseev0E6t5Nbf roz7w/Mw7E9Xxv3nefjUq+UO3kS1DMWwTq2KVUktg7BnWK15jOvXmodhca3K uG6teaz7q5+P5+E7ijVwK691znGrrGUW9oxeyym8KWrlZFWtHJPaWmZhW12r D8+aWpVstPDzNZXWGqPWejjEdyT7s/dYtfzCrbFrVRwas9ZYsnFq9WHeeLX8 wq0Ja/1ZYcO4tXKy8Wvlt/mz5nuD75KJao3FsJVqvVu8O0O1/MKbSWuZhU/D axnH9eS1nMKwyWrlXM9QywhsGFErx7AZa/U9G9oktUxkrZG19sGqUbUqnk1d yyxMmqLWGtzTtLX8wqdpauVcT1/LKfaerlbO9VS1TGStmWrtj0nz13IBA2at ZRMOzVar4tAstVwjm71WH27NWcsjnJujVt8rfjYsxLv5atnEHjPX2pO15q5l E1bNW8saxi1Q615waK5aazNuoVpmYd6CtXKu56m1BvMXrpVj1ZS1Pj+eeZFa ffixaK2KMUvWsgmHlq9lB5YsUcs1sqVq5fi0bC2PcG7pWn14tkytSrZ4LfuY v1ytsay7Ri3HcWXlWu8XDq1Yy1PeuRVq7c/1KrVyfFq9lk3MX7VWH56tVquS rVlrbc702rWcwqfNannBud+4li84sV4td/Bp3Voecb1BLafwbP1aOdeL1frM eLYNa+U4t06tfZi/Ua0+9tik1j64tbn3x7NN3cc9beE+rNqqllN4trUrJk1c 61xyTtaq9Xw825aex5xt/fs1bm3nik/bu2LYjrWcwiT+zow7WLKDc7KdnGPV brWcwryd3Ydtu4Y2cHZQLTu4x909lnUPrGUQ2T61nMKhvWq5hmd7en+u93WO YQfU+r5h/n7uw639Xcn29hqse7D3x5ITanmBB4fVMguTDnfFqkNr+UV2hPvw 6b5a7xCf8dG17MOkI51jzyHeh/nHOMeq42qdN4w50fvj0/Hu456O9VjGneQc n06tZSUunuw+DDvFlew057h1uiuWnOGKT2fV8gu3znbFqgtqWYMTF7rizXm1 /MKY810Zd47n4dm5roy7yPPw7PJaHuHNJbUMxa1LXfHpqlrWcG4u9jzGXeF5 mHSlK+Mu8zzWPdPPxPNc7TVw5dpaNuHW9bVswqFba9mBJdc5J7vBOT7dXMsj nLvRfXh2kyvZLc5Z6zavx/fhNd6fve+o5Rc+3emKSbd7LNld7sOne2r5hX9H 1XqPeLfudk52r3Pev0GjZ2bP0RpVnvvBWtZg1cO1/MKnJ2tZgysPOSd7xDme PV7LJvx71H0Y9pgr2cu17MCMJzyWdV+q5QvZs7XMwp6na9mKbU95f66fc45n L9b6+z/zn3cftr3gSvaM12DdV7w/Jn1UywUMeL2WTTj0Zmi71HLotVqukb3l Ptx6oNZ3AJ/Xu7W8w5u3nWPVq96H+e85x6cPavmCWx97f+z50H3c0/sey7hP nOPW57VMxKRP3YeFn7mSfeEcS750xaSvXHHrm1pm4dO3rjj0Uy1H8OZnV4z5 oZZZmPSjK+O+8zzeu+9dGfeL5+Hln7WswaHfavmFT7+7YtI/tdzBm189j3F/ eR4+/e3KuD88j3W/9jPxPP96Dc73sEZmYVWnkTt4kzayBjOiRjlZt1GOW3Ej 1/Cs16gPw/qNKlnSKGetrNF6WPWf92fvopFZ2FM2qtiWNxpLVjXqw62mkVnY dn+t7wres7pRTtY2yjnDt4Sflw9thdBGb3SO8Wn/8PP4oU0Q2liNnMIkrnEH S8ZsZBzZ2I1yrBqvkVOYN06jPmwbt1Elm6LRGcAM9mEs645odN9kkzRyCocm auQank3YaH+uhzfKMWzyRt+RzJ+0UR9uTdaokk3caA3WHWq0PybN3MgFDJiy kU04NFWjikOjGrlGNnWjvv+71ei94c9tukbe4c00jXKsGtloH+ZP3yjHpxkb +YJbszTaH3tmatTHPc3QaCzjZm2U49YcjUzEpNka9WHh7I0q2ZyNciyZq1HF pLkbVdyar5FZ+DR/o4pDizRyBG8WbVQxZqFGZmHSwo0q4xZoNI9/77Fgo8q4 xRrNw8ulG1mDQ0s08guflmxUMWm5Ru7gzeKN5jFumUbz8GnZRpVxSzWax7rz hp/fqPU8vNeswflesZFZWLVyI3fwZs1G1mDGSo1yslUa5bi1eiPX8GzVRn0Y tlqjSrZGo5y11mq0HlZxrtifvddpZBb2rNuoYtvajcaSrdeoD7c2aGQWtk3b 6D3i3Vq/UU62YaOc949/jsu/d+LfJ43R6BxzPjdt5BSGbd7IKUzatpE7WLKZ c7ItnGPV1o2cwrwt3YdtW7mS7W472HMbj2Xd3Rr9fkC2YyOncGj7Rq7h2Xbe n+udnGPYro1+z2D+zu7DrV1cyXbwGqy7h/fHpEMbuYABezeyCYf2ccWhvRq5 Rrav+3Brk0bu83kd0Mg7vNnPOVbt6X2Yf6BzfDq4kS+4dZj3x55D3Mc9HeSx jDvcOW4d1chETDrCfVh4pCvZ0c6x5BhXTDrWFbeOb2QWPp3gikOnNnIEb05z xZiTG5mFSae4Mu5Ez+O9O8mVcad7Hl6e08gaHDqzkV/4dJYrJp3fyB28OcPz GHeu5+HTea6MO9vzWPc4PxPPc2Fo8zQ63xc3MgurLm3kDt5c3cgazLjEOdll znHrykau4dnl7sOwK1zJrnLOWtd4Pay6yPuz93WNzMKe612x7VqPJbvBfbh1 UyOzsG3jRt8VvGc3Oie72Tlu3drIDty6zRWfbnfFsDsbOYVJ9zdyB0vucE52 l3OsureRU5h3t/uw7R5XsicbnQHMuM9jWfcJ3zfZw42cwqEHG7mGZw94f64f cY5hjzf6jmT+o+7DrcdcyR7yGqz7lPfHpNcbuYABzzayCYeec8WhZxq5Rva8 +/7vVqv3hj+3lxp5hzcvOMeqp70P8192jk+vNvIFt97w/tjzmvu4p1c8lnFv OsetdxqZiElvuQ8L33Yle9H7c0/veiyuvN/IJtz6qJFN2PNFI1+w5MNGlpF9 7Jzf1z5r5BHGfOI+DPvUlewDr838zz2WdX9sZAqWfNPIJhz6qpGnePal9+f6 W+f49EMjm5j/nfvw7HtXsvf8fDzbT96H8z2slRec+98auYM3/zSyBjN+bWQZ 2e/OceuvRq7h2R/uw7A/Xcl+aWQi8//2WNb92fuTRa32x7P/GlnGPf3r/bnu tMpxKw4/X9Do3eq26sOwXquKeWu02oP901bvIG7lrWzCrbKVTTg0Witr8KNo lZNVrXJ8alvZhHN1qz48a1pVsglaeYETg1ZjWXf8VqaQjdXKJuwZo5VlGDZ6 q/25HrtVjlvjtfp7AvPHadWHVeO2qmRjtlqDdSdstT8OTdnKAs79JK08wp7h rSr2TNzKMrJJW/VhVdbqM+PzGtHKOIyZrFWOTxO12of5U7TKMWlkK1OwaqpW ++PNqFZ93NNQq7GMm7pVjlXTtXIQh6Zp1Yd/07aqZNO3yvFjhlYVh2ZsVbFq 5lZOYdIsrSr2zNnKDoyZq1XFldlbOYVDc7SqjJu11TzMmK1VZdzcreZh5AKt fMGeeVuZhUnztao4tHCrc4gx87Sax7gFW83DoYVaVcbN32oe687U6pl4nkVa rYEli7XyCKuWaOUR9izXygv8WLxVTrZkqxyTlmllELYt1aoPw5ZuVcmWbZWz 1vKt1vs6tEVb7c/eK7YyC5NWalVxaIVWY8lWbtWHSau2MutHr4VteLdKq5xs tVY5Vq3eqnKe12x1pjHp7/DzaaGdHtpGrbzAj3VbeYRD67Qyi+v1W5mFQ+u1 yrnettW7jg0btMrxbzv34cHarXxkrY1b7YOdm7SqGLZ5K49waMNWa3BPW7Uy i+/DLUPr+3qbVjax99bOud6slXestb33x6p9Wp1/zv1OrQzCnp1d8WnHVmaR 7eI+HNqtlXEYs6v7uL6y1fvEn+ferdxhjx28J2vt0copjNmrlV+M29f3gk+7 e23G7d/KOyzczznXe3oN5h/gHKs29efHMx/oPlw5yBWfDmtlE/Yc08oXLDm0 lWVkhzufPLSjWnmEMUe4D8OOdCU7pJWJzD/aY1n31FamYMkJrWzCoeNaeYpn x3p/rk90jk+ntLKJ+Se5D89OdiU7zWtzps9o5RQ+XdzKC879Ba18wYmzW7mD T2e18ojrc1s5hWfnOOf6YH9mPNt5znHuTO/D/PPdxx4Xeh/cusT749lF7uOe LnUfVl3eyik8u8KVd2itVueSc3K6n49nu8zzFvKfA98bfJdc1eq9+79hrd5v 3qlbWlmDH9e3sgmTrmvlF9c3tvILn25wzvV9rYzgXm5yjoX3u49zfG0rK1nr Vu+DYbe5YtidrTzCqpu9Bvd0dyubMOku51zf2+p3Dva+xznXd7Syj7Ue8P6Y 9FwrC7Dh4VYe4dMjrjj0UCvLyB51H6483so7HHrMfVxf7c8S758NbQvv8aD3 ZK0nW5nFmXu6lTW49bzvBYee8NqMe7GVUxj5gnOun/IazH/JOV7e7s+PZ37Z fRj2iiuuvNHKLHx6r5ULuPJ6K9fI3nSOVe+08gWH3nIfnr3tSvZaK/uY/67H su7nrRzhTHzU6v3CpA9aecc797735/pj5xj2WSuPmP+J+3DrU1eyL7w2lnzV yiOs+rWVHdjwUysv8OPbVh7h0DetzOL6+1Zm4dB3zrl+1Z8Zz/aDc/z72vsw /0f3scfP3uf40H7z/jj0i/u4p9/dh0l/tjIL8/5yxadrWr1HnJMv/Xw82x+e xxz+Wzj8t7v4b3L90+rM49l/razBqmggv/CJ/7YX1uDKsIFyss5AOZ71B7IJ /7oD9WFYb6BKNhjoXece+W+GMZZ124FMISsGMgt7soFsxbZ0oP25LgfK8awZ 6LuQ+dVAfdhWD1TJ8oHWYN3RBtofSyYeyAs8GHMgszBprIEqVo0xkF9kYw/U 93+fBnqH+IzHG8g+TBpnoBx7Rh9oH+aPP1COVRMOdN4wZpKB9seniQbq454m GGgs44YPlOPT5ANZiYuTDtSHYZMNVMlGDJTj1hQDVSwZGqji06iB/MKtKQeq WDXdQNbgxPQDVbyZZiC/MGbagSrjphpoHp5NPVBl3Izh52daeTbbQB7hzcwD GYpbswxU8WnOgazh3Mw00DzGzT7QPEyaY6DKuFkHmse6Iwd6Jp5nroHWwJV5 BrIJt+YbyCYcWmQgO7Bk3oFysvkHyvFpoYE8wrkFBurDswUHqmQLD5Sz1qID rcf34dwD7c/eiw/kFz4tMVDFpMUGGku25EB9+LT0QH7h37gDvUe8W0sNlJMt M1DO+3f+QM/Mnhe48twrDGQNVq00kF/4tMZA1uDKigPlZCsPlOPZagPZhH+r DNSHYasOVMk2Cj//28qM1Qcay7obDmQK2ToDmYU9aw1kK7atOdD+XK87UI5n Gwz0dwPmrzdQH7atP1AlW3ugNVh344H2x6QdBnIBAzYbyCYc2twVhzYdyDWy LdyHW8sP9B3A57W1/1uGeLOlc6zaZKB9mL+Nc3zabiBfcGtH748927uPe9rW Yxm3k3Pc2nUgEzFpZ/dh4S6uZLs5x5LdXTFpD1fc2msgs/Bpb1ccOmAgR/Dm QFeM2W8gszBpf1fG7eN5vHf7ujLuIM/Dy8MHsgaHDhnIL3w61BWTjhrIHbw5 2PMYd4Tn4dORrow7zPNYd08/E89ztNfgfB87kFlYdfxA7uDNaQNZgxnHOSc7 wTlunTyQa3h2ovsw7CRXslNDm8Frne71sOoY78/eZw5kFvac5YptZ3gs2dnu w61zBzIL25Yb6LuC9+wc52TnOecM8z3P31H4e8uFA51jfGpGC99joV4V2iUD ObWAr3EHSy4eyDiyS51j1RUDOYV5l7kP2y53JbtloDOAGVd6LOve7Psmu24g p3DomoFcw7OrvT/X1zvHsJsG+o5k/g3uw60bXcmu9Rqse6v3x6SHBnIBA+4Y yCYcutMVh24fyDWyu9yHWz8M9N7w53bvQN7hzd3Oseo278P8+5zj0wMD+YJb D3t/7HnQfdzT/R7LuEec49bjA5mISY+6DwsfcyV7wjmWPOmKSU+54tYzA5mF T8+64tBLAzmCNy+7YswLA5mFSS+6Mu45z+O/z/q8K+Ne8Ty8fHMga3DotYH8 wqfXXTHpnYHcwZtXPY9xb3kePr3tyrg3PI91n/Yz8Tzveg3O9/sDmYVVHw7k Dt58PpA1mPGBc7KPnOPWpwO5hmcfuw/DPnEl+8w5a33h9bDqPe/P3l8NZBb2 fO2KbV96LNk3/yPqnqMnudvt7ycTO1Poqi53d5LvTGzbtm3esW3btm3btm3b yWSSnHpn77XOH7Wurmt/UNVT9eqZ3L/nOe7h1vfDZRa23TtczxHP1nfOyX5w zvPH7x9/p+bv0xcP13vM+/nLcDmFYb8Nl1OY9PdwuYMlvzon+905Vv01XE5h 3h/uYduo9jjV2XiB7GDP0R7LuuMG+vsB2ZiBnMKhf4fLNTz7x/tzPixQjmHj BPp7BvPHCtTDrbEDVbIxAq3BuuMH2h+T4kAuYMBEgWzCoYkDVRyaMJBrZJME 6uHWz8PlPt/X5IG8w5tJA+VYNUGgfZg/PFCOT2EgX3CrE2h/7IkC9bimINBY xiWBctzKApmISWmgHhZ2A1WyPFCOJUWgiklloIpbdSCz8KkJVHFoykCO4M1U gSrGDAKZhUlTBKqM6wWax3PXD1QZNxRoHl5OG8gaHBoZyC98mjpQxaQZArmD NyMCzWPcdIHm4dP0gSrjpgk0j3WrQPfE/cwYaA3e75kDmYVVswZyB2/mDmQN ZswSKCebLVCOW3MGcg3PZg/Uw7A5AlWyuQLlrDVPoPWwaqZA+7P3fIHMwp75 A1VsmzfQWLIFAvVwa6FAZmHbT8P1W8FztmCgnGzhQDluLRKo4seigSqGLRao YtXygazBj6UC2YRJSwbyi/NlAvmFT0sHyjlfM9Czjg3LBsqxcK1APTxYIpCV rLVCoH0wbMVAFcNWCeQRVi0XaA2uabVANvHbuGqgnPM1At0/e68eKOd85UD2 sdbagfbHqi0Dvf+89+u3x5/DZc8GgSo+rRvILHzaMFAPhzYOZBzGbBSox/mp gZ4n/jy3COQOe6wTaE/W2jSQUxizeSC/GLeVrwWfNgm0NuO2CeQdFm7tnPPN Aq3B/P85x6qVAn1/3PO27uHKdq74tFMgm7Bnj0C+YMmOgSwj29k5f1/bLZBH GLOLexi2qyvZDoFMZP7uHsu6BwYyBUv2CWQTDu0VyFM829P7c76vc3w6IJBN zN/PPTzb35XsIK/NO31IIKfw6fhAXvDeHxPIF5w4PJA7+HRYII84PzKQU3h2 hHPOt/d3xr0d5RznDvU+zD/aPfY41vvg1gneH8+Oc49rOtE9rDo5kFN4door z9BRYbtXe0zVHgf7/ri3kzyPOXv7++M7PS3Qc/efYYGeb56pCwJZgx9nB7IJ k84K5Bfn5wbyC5/Occ75VYFcWLw9znOOhVe7x3t8ZiArWetC74NhF7li2KWB PMKq870G13R5IJsw6TLnnF8ZyCb2vsI555cEso+1rvH+mHRnIAuw4fpAHuHT Da44dF0gy8hudA9Xbg7kHQ7d5B7np/u7xPs7AnnEHtd6T9a6NZBZvHO3B7KG cXf5WnDoFq/NuHsCOYWRdzvn/Davwfx7nePlxf7+uOf73MOw+11x5ZFAZuHT U4FcwJWHA7lG9qhzrHoikC849Jh7ePa4K9lD7bGe5z/psaz7ciBHeCeeC/R8 YdIzgbzjmXva+3P+vHMMeymQR8x/wT3cetGV7BWvjSWvBfIIqz4MZAc2vBfI C/x4M5BHOPRGILM4fzuQWTj0lnPOH/B3huvvOMe/170P8991jz3e9z68Zx95 fxz6wD2u6WP3MOnTQGZh3meu+HRGoOeI9+RV3x/39onnMedov+tD7fG55/He fxnINbz5JpBf+PRTIGtw5etAlpF96xzPfghkE/595x6Gfe9KNnmo95n36UeP Zd2/ApnCe/BbILOw55dAtmLbz96f89+d49moQL+FzP/DPWz705XsV6/BuqO9 D9/TBKHec8wYI5RZmDRuKF9w5d9AfpGNGSrHsLFD+YJ5w0L1cGusUJXsn0Bm MX+cUGNZ92/vTzZhqP0xafxQ7yHXNF6o/TmfKFSOYZOGMgsvJw7Vw61JQlWy yULlfNfDQ33fWDJnqPeKZz8M5RSGRaEqhnVDOYI3WaiKGUkoszAsDVUZF4ea h3OdUJVxeah5WNWEMgiTylDG4WgVqmLYIJQ7eFOEmse4Xqh5WNUPVRlXh5rH ukGo++N+pgi1Bu8fzze+4NPIUH7h0wyh/MKPEaFysqlD5Vg1XSi/MGmaUD3c mjZUJZs+VM5aM4ZaD594tx4MtPfMoX4jMWyWUBWrZgo1lmzWUD2smj2UUxg2 V6g/K97j2ULlZHOEyvmz/CLQu8t7O3eosXi2fahni2dnkVCWYcz8oSzDqvlC Wcb5gqEsw6oFQuWcLxdqD2xYKFSOW8uH6n3VHvOGco21Fg21D24tFqpi6pKh /MKhhUOtwTUtHcoyDFsqVM75sraJvZcJlXO+RCgfWWuFUPtj0rqhXMCAlUPZ hEOrhKo4tFIo18hWDdXDrdVDeYRzq4Xq/eh7w0K8WyeUTeyxYqg9WWvNUDZh 1dqhrGHceqGuBYfWCLU24zYIZRbmrR8q53ytUGswf8NQOVYtHur74543CtXD j41DVYzZPJRNOPS/UHZgyWahXCPbwjk+bR3KI5zb0j0828qVbNNQ9jF/G49l 3V1DOY4rO/j5wqHtQnnKM7et9+d8R+f4tEsom5i/k3t4trMr2W5em3d6j1BO 4dPBobzgvT8glC84sXcod/Bpr1Aecb5vKKfwbB/nnG8S6jvj3vZzjnN7eh/m 7+8eexzofXDrEO+PZwe5xzUd6h5WHR7KKTw7whWT5gn1XvKe7O77494O8zzm vBi1f37tsW17HBPKL3zarD0foz3GbI9TQ1mDHyeEsgmTjg/lF+cnhfILn050 zvn5oYzgWk52joUXuMd7fFwoK1nrNO+DYae7YthZoTzCqlO8Btd0Tiib+J05 2znn54WyjL3Pdc75maHsY60LvT8mXRfKAmy4JJRH+HSpKw5dHMoyssvcw5Ur QnmHQ5e7x/nboZ4tvvtrQ3nEHhd5T9a6KpRZvHPXhLKGcdf7WnDoSq/NuBtD OYWRNzjn/GqvwfybnOPlGf7+uOeb3cOwW1xx5Y5QZuHTfaFcwJXbQ7lGdqdz rLonlC84dJd7eHa3K9ltoexj/r0ey7qPh3KEd+KhUGZh0gOhvMPU+70/5w87 x7DHQnnE/Efcw61HXcme8NpY8lQoj7Dq1VB2YMNLobzAj2dDeYRDz4Qyi/Pn Q5mFQ8855/xWf2fc2wvO8e9p78P8F91jj5e9D7+Nr3l/HHrFPa7pdfcw6c1Q ZmHeW648Q9O37+GTvqcnfX/c2xuex5wH/f3xnb4T6rn7z7NIzzfP1GehfMGS D0M5hVsfhHKN849DOYVJHznn/MdQRhzbHp84x8Wf3OM9fj+Uiaz1uffB0S9c 8ezrUAbh1qdeg2v6rj2ODPXfBr5xjmc/hPr3A3t/75zzr0I5yFo/e39Mwi0s wIbfQnmET7+74tCvoSwj+8M9XBkVyjsc+tM9zt/1d4nZ/4byiD1+8Z6sNTqU Wbxz/4SyhnEYyrXg0F9em3FjRXIKI4dFyjn/22swf+xIOV5+6e+Pex4nUg/D xo1UcWXCSGbh0+SRXMCVCSK5RjZRpByrJo3kCw5NHKmHZ5NEqmTjR7KP+ZNF Gsu63UiO8E5EkZ4vTAoiecczNzzS/pzHkXIMSyN5xPxOpB5uJZEqWRZpbSwp InmEVUOR7MCGKSJ5gR91JI9wqIpkFue9SGbhUBMp53y8SN8Z99aPlONfGWkf 5g8i9dhjykj78J6NiLQ/Dk0Vqcc1jYzUw6RpIpmFedNGqvj0np8j3pM80v1x b1NHmscc3id+h/ldnC7SPN57/rsU/w2b/748ZyRfsGSWSE7h1syRXON8tkhO YdKskXLOF470THMts0fKcXGRSD3e45kimchac0XaB0fnjlTxbL5IBuHWHJHW 4JoWiOQXv4HzR8o5XyiSTey9YKSc83kjOchai0baH5NWbj9/G8qGJSJ5hE9L Rqo4tHgky8iWitTDlWUieYdDS0fqcb5/pGeL737FSB7hzWKR9mSt5SKZxTu3 QiRrGLdKpGvBoWUjrc241SI5hZGrRso5Xz7SGsxfPVKOl/NE+v645zUi9TBs zUgVV9aNZBY+bRzJBVxZJ5JrZOtFyrFqw0i+4ND6kXp4tkGkSrZ2JPuYv1Gk say7TSRHeCc299/7MGnTSN5h6iaR9ud8C+cYtnUkj5i/pXu4tZXrOP47Jmtj yXaRPMKqPSPZgQ27RfICP3aM5BEO7RDJLM53jmQWDu3knPO1In1n3NsuzvFv e+/D/F3dY4/dvQ+/jXt5fxzawz2uaW/3MGnfSGZh3n6uPEMzRvrt5z3Z1vfH ve3jecyZIdLvNuMO8HP3n2eRnm+eqaMi+YIlh0ZyCrcOieQa54dHcgqTDnPO +Sneg2s5wjkunuoe7/HBkUxkraO9D44e44pnx0cyCLeO9Bpc04mR/MKhE5xz fnKkv5ew90nOOT8ukoOsdZr3x6SLI1mADWdG8gifznLFoTMiWUZ2tnu4cm4k 73DoHPc4P9DfJWZfFMkj9jjde7LW+ZHM4p27MJI1jLvE14JD53ltxl0WySmM vNQ55xd4DeZf7hwvj/X3xz1f4R6GXemKK9dGMgufbo7kAq5cE8k1suucY9WN kXzBoevdw7MbXMmujmQf82/yWNa9N5IjvBN3RHq+MOm29lgp0jN3i/fHvzud Y9g9kTxi/l3u4dbdrmT3eW0seSCSR1j1dCQ7sOGJSF7gx8ORPMKhhyKZxfmj kczCoUecc36VvzPu7THn+Peg92H+4+6xx5Peh3+zPuP9cegp97imZ93DpOcj mYV5L7ji00GRniPek/t9f9zbc57HnOmHtc99e5zUHjO0xyk+fyWSNVj1WiS/ 8OmdSNbgyqvOyV53jmdvRbIJ/95wD8PedCX7LNKzzjW+7bGs+2kkU8g+iGQW 9rwXyVZse9f7c/6hczz7JNJvIfM/cg/bPnYle99rsO7n3h9LfonkBR58Fcks TPraFau+jOQX2Tfu/edTrGeI7/j7SPZh0rfOsecL78P8H5xj1U+R3jeM+dX7 49PP7nFNP3os435zjk9/RrISF393D8P+cCX7zvtzTaM8FsNGRzIFn/6NZBY+ jRPLBVz5J5JrZGPEyrFqrFi+4NCYsXp4NixWJfvbazN/7FhjWXfSWI7wTkwQ yyxMGi+Wd5g6bqz9OZ8wVo5hk8TyiPkTxerh1sSxKtlfvj/ubbJY++BKGcsO bAhj2YRDWfv51kiWBLFcI4ti5fiUxPII5+JYPTzrxKpkw2PZx/w01lhMmjzW /mRVrP1xqIj1e8k15bH257yOleNTP5Z9PFtNrB6e9WJVsqTT7s9+7TFFrGcQ w6aK5Qs+jYhlFiZNH8sXLBmKlZONjJVj2LSxPMK8qWP1cGuaWJVszvbzy5Gc mC7WWNado/38UqRs5lhO4c2MsTzFsxli7c/5LLFyDJs91n+/Y/6ssXp4Nlus SjZTrDVYd65Y++PQ4rEs4L2fN5ZH2DNfrIo988SyjGz+WD2smjLWd8b3tVAs 4zBmgVg5Ps0dax/mLxwrx6RFY5mCVUvE2h9vFovV45oWiTWWcUvGyrFqmVgO 4tBSsXr4t3SsSrZsrBw/lotVcWj5WBWrVozlFCatFKtiz+qx7MCYNWJVXFk1 llM4tFqsyriVY83DjFViVcatGWseRq4XyxfsmXOkPFq77a0T6zMObRjrPcSY 2UbKtbXa3vqx5uHQBrEq49aNNY91V4h1T9zPRrHWwJJNYnmEVZvF8gh7tonl BX5sGisn29w5Jm0VyyBs28I9DNvSlWxr56z1P683fntsHGt/9t4ullmYtL0r Dm3rsWQ7uIdJO8Uya1Ln2IZ3Ozon29k5Vu3iihm7uuLKbq74tGcsm3DogFh2 YMkesVwj28s5Pu3XHt1Yzu3tHp7t44pV58V6l3jG9/dY1j0ylim8H4fEsgmH DorlKZ4d6P05P9Q5Ph0R63eR+Ye5h2eHu5Id7DVY9yjvg1unx7IDG46LZRMO nRLLDiw5NpZrZMc7x6eTYnmEcye4h2cnupIdE8s+5p/ssax7tPcnO8P749Bp sdzhmk71/pyf6RyfzollHy6e5R6ene1Kdq5zvuvz/X1j0qOx3hme9wtj+YVb F7li1eWx3MGSK1yx59L2WDCWW5e5Mu5iz8OwS1wZd6Xn4dN1sdzBm6tjGYph 17hi1Y2xDMKeqzyPcdd7Hobd4Mq4az2PdS/w/XE/N3kN3Lol1nuOW7fFMgt7 lhxq/xyG5M2tzslud45Jd8UyC9vucA/P7nQlW6JdY/EhmTdH68/9I9o/syH9 Ri7vve+P/9+tB1xx6L4R6t/XHg+6h3kPx/ILtx7znxU2POSc7BHnG/q75neD 35LHPRbD/o71bPHsvBDLL7x5OpZZ+PRULOM4fzaWUxj2jHPO34plBDY85xzD 3nZv9/Z4MpaJrPWi98Gql1zx7NVYZmHS816Da3o9ll/49Jpzzt+M5RR7v+Gc 81dimcha73h/TPoqlgsY8H4sm3DoA1ccei+Wa2Qftce+sdz6JJZHOPexe/t7 bSzEuy9j2cQe73pP1voslk1Y9UUsaxj3ta8Fhz712oz7NpZZmPeNc84/9xrM /845Vr3s7497/t49/PjBFWN+iWUTDo2KZQeW/BzLNbJfnePTH7E8wrnf3MOz 313JfoplH/P/9FjWHasjx3Hln1jPFw6NjuUpz9xf3p/zf53j07CObGL+GB31 8GzMjirZ2B2tzTs9bkdO4dPwjrzgvZ+0I19wYoKO3MGn8TvyiPOJOnIKzybs KOf8R39n3NvEHeU4N15H+zB/ko567DFZR/vgVtDR/ng2eUc9rinsqIdVcUdO 4Vmno4pJT8R6L3lPxuno/ri3qKN5zEk7sgO3uh1VfMo6qhhWdOQUJi09JD/6 bS/vKCcrO8qx6ojWmaXacTO1R9VRD9s+aPvvt8fd7edpO7KDazyq7X3bjp25 PabpyCCyqTpyCoem6Mg1PBt0dA2cD3WUY9jUHf3eMH9ERz3cGtlRJZuyozVY d7qO9seSuTvyAg9m7MgsTJqpo4pVM3TkF9nMHfX+86mjZ4jveLaO7MOkWTrK sWf6jvZh/uwd5Vg1Z0fvG8bM09H++DRXRz2uaY6OxjJu3o5yfFqgIytxcb6O ehg2f0eVbMGOctxaqKOKJQt3VPFp0Y78wq3F288fxrJqmY6swYllO6p4s1RH fmHM0h1Vxi3R0Tw8W7KjyrjlOpqHZyt35BHerNCRobi1YkcVn1bryBrem+U7 mse4VTqah0mrdlQZt1JH81h3kY7uiftZvaM1cGXNjmzCrbU7sgmHNuzIDixZ q6OcbJ2OcnxavyOPcG7djnp4tl5HlWyDjnLW2qij9fg9XKOj/dl7k478wqdN O6qYtHFHY8k266iHT1t05Bf+zdrRc8Sztblzsi2d8/zd3dE9s+c9rtz3/zqy Bqu268gvfNqlI2twZVvnZNs7x7OdOrIJ/3ZwD8N2dCXbryM7MGNnj2XdfTvy hWyPjszCnt06shXbdvX+nO/pHM/26ejf/8zfyz1s29uVbHevwbr7e39MOqYj FzDgoI5swqGDXev2OLAj18gOca9pj206+g3g+zq8I+fw5lDnvfY4wPsw/wjn +HRUR77g1rHeH3uOdo9rOtJjGXecc9w6sSMTMel497DwBFeyk5xjycmumHSK K26d1pFZ+HS6Kw6d05EjeHOuK8ac1ZFZmHS2K+PO8DyeuzNdGXee5+HlxR1Z g0MXdOQXPl3oikmXdeQO3pzveYy7xPPw6VJXxl3keax7qu+J+7nca/B+X9Ue i3Vk1TUduYM3N3VkDWZc7ZzsWue4dUNHruHZde5h2PWuZDc6Z62bvR5WXeH9 8fLWjszCnttcse0WjyW73T3curMjs7Bt645+K3jO7nBOdpdz3uH1k9aVto5q j3s7eo/xaeq2/2hbH2uPBzpyal2f4w6W3N+RcWQPOseqRzpyCvMecg/bHnYl e6GjdwAzHvVY1n3e1032VEdO4dATHbmGZ497f86fdo5hz3X0G8n8Z9zDrWdd yZ70Gqz7ovfHpPc6cgEDXunIJhx61RWHXu7INbLX3MOtiRM9N/y5vdmRd3jz unOsesn7MP8t5/j0Tke+4Nb73h973nWPa3rbYxn3gXPc+rgjEzHpQ/ew8CNX sk+cY8mnrpj0mStufdGRWfj0pSsOfdeRI3jzvSvGfNORWZj0rSvjvvK8w9rj a1fG/eB5ePlrR9bg0E8d+YVPP7ti0h8duYM3P3oe437zPHz63ZVxv3ge637u e+J+/vQavN9/dWQWVv3dkTt4M1YiazBjtHOyf5zj1piJXMOzf93DsDESVbJh iXLWGjvRelg1yvuz97iJzMKe8RJVbBsn0Viy8RP1cGvCRGZh2xsdPUc8WxMk yskmSpTz/G2QaD/u9b6O3mPez8kTOYVhQSKnMClN5A6WDE+Uk4WJcqzqJHIK 86JEPWyLE1WyfiI72DNJNJZ1e4n+fkBWJHIKh7JEruFZN9H+nJeJcgxrEv09 g/lVoh5u1YkqWZ5oDdYdJNofk2ZM5AIGTJXIJhwaSlRxaMpErpGNSNTDrckS uc/3NU0i7/BmZKIcq6ZItA/zp02U49P0iXzBrZkS7Y89MyTqcU3TJRrLuJkT 5bg1WyITMWmWRD0snDVRJZs9UY4lcySqmDRnoopbcycyC5/mSVRxaMFEjuDN QokqxsyfyCxMWiBRZdy8iebx3M2XqDJu4UTz8HKJRNbg0KKJ/MKnxRJVTFo6 kTt4s0iieYxbMtE8fFoqUWXc4onmse5cie6J+1km0Rq838slMgurVkjkDt6s lsgazFg+UU62YqIct1ZJ5BqerZSoh2ErJ6pkqybKWWv1ROth1bKJ9mfvNROZ hT1rJarYtkaisWRrJ+rh1rqJzMK2SdvPV3b0nK2TKCdbL1GOW9jJ3wH5e+GG id5pfIq67TuYtu9ee2ySyClM2iqRO1iycSLjyDZNlGPVFomcwrzNEvWwbXNX sl0SvQOYsaXHsu7Oia6bbNtETuHQNolcw7OtvT/n2znHsJ3aYxLP39493NrB ld/P/3kN1t3V+2PSQYlcwIA9EtmEQ3u64tDuiVwj28s93Loh0XPDn9u+ibzD m72dY9Vu3of5+znHpwMS+YJbB3t/7DnQPa5pf49l3CHOcevwRCZi0qHuYeFh rmT7eH+u6QiPxZWjEtmEW8cmsgl7Tk7kC5Yck8gysuOc8/e1ExN5hDHHu4dh J7iSHe21mX+Sx7LuOYlMwZLTE9mEQ6cm8hTPTvH+nJ/hHJ/OTmQT8890D8/O ciU70vfHvZ3rfXi/r0rkBe/9hYncwZvLE1mDGRcksozsIue4dWki1/DsYvcw 7BJXsvMTmcj8yzyWdc/z/mRXe388uzKRZVzTFd6f82uc49b1iVzj2brWPQy7 zpXs0vb9XLA9FmqPGxM9g7h1cyKbcOvWRDbh0N2JrMGPW5yT3eYcn+5MZBPO 3e4ent3hSvZoIi82ao+7PJZ1H0n09wOy+xPZhD33JrIMw+7x/pw/4By3Hk70 7wTmP+geVj3kSnaf12Ddx7w/Dr2cyALe+ycTeYQ9T7lizxOJLCN72j2susnf Gd/Xc4mMw5hnnOPT496H+c87x6QXE5mCVa94f7x5yT2u6QWPZdxr7bFjIqve TOQgDr3uHv694Ur2lnP8eNsVh95xxar3EjmFSe+7Ys8niezAmE9dceWjRE7h 0MeujPvA8zDjQ1fGfeZ5GPl1Il+w54tEZmHSl6449F2i9xBjPvc8xn3jeTj0 rSvjvvI81n3X98T9fO81sOTHRB5h1c+JPMKePxN5gR8/OSf7xTkm/Z7IIGz7 1T0M+82V7A/nrDXK653WHj94f/YencgsTPrbFYf+8liyf9zDpDFSmXWOc2zD u3+dk42ZKseqYakqZoyVquLK2KkqPo2XyiYcmiSVHVgybirXyMZPlePTRKk8 wrkJUvXwbMJUlWyaVO8Sz/jEqcaybsem8H4MT2UTDk2WylM8mzTV/pwHqXJ8 ilP9LjI/TNXDsyhVJZs81Rqsm6TaB7emSGUHNuSpbMKhXio7sCRL5RpZkSrH pzqVRzhXpurhWZWqknVT2cf8JtVY1k1T7U82Zar9cWiQyh2uqZ9qf86nSpXj 08hU9uHiUKoeno1IVcmmTpXzXU+b6vvGpFVSvTM879On8gu3ZkhVsWrWVO5g yWypKvbM3H5+NpFbs6SqjJsx1TwMmylVZdzsqebh07yp3MGbOVMZimFzt59f TWTVAqkMwp45Us1j3Hyp5mHY/Kkq4+ZJNY91p0t1f9wPv1GsgVsLp3rPcWvR VGZhz9KpnMKbRVLlZIulyjFpyVRmYdviqXp4tkSqSrZUqpy1lkm1Hg7xG8n+ 7L1cKr9wa/lUFYeWTTWWbIVUPcxbKZVfuLVqqj8rbFgxVU62cqr8O3/X/G7w W7JaqrEYdlSqZ4tnZ/1UfuHNWqnMwqc1UxnH+TqpnMKwtVPlnG+ZyghsWDdV jmFbuTdOe6yRykTW2iDVPli1YaqKZ5ukMguT1ku1Bte0WSq/8GnTVDnnW6Ry ir03d875xqlMZK2tvT8m7Z7KBQzYNpVNOLSdKw79L5VrZNu7h1s7pvII53Zw b2KvjYV4t1sqm9hjG+/JWjunsgmrdk1lDeP28LXg0E5em3F7pTIL8/Z0zvku XoP5ezvHqo1SfX/c8z7u4ce+rhhzYCqbcOjwVHZgyQGpXCM7yDk+HZrKI5w7 2D08O8SVbP9U9jH/MI9l3RNSOY4rR/v5wqEjU3nKM3eE9+f8GOf4dHwqm5h/ rHt4dpwr2Ylem3f65FRO4dP5qbzgvT87lS84cVoqd/Dp1FQecX5GKqfw7HTn nO/n74x7O9M5zp3ifZh/lnvscY73wa0LvD+endcec/maLnQPqy5O5RSeXeKK Saunei95T07y/XFvF3kecy5LZQduXe6KT1e4YthVqZzCJP7NjDtYcqVzsqud Y9V1qZzCvGvcw7ZrXcnuSmUH13i9x7LunakMIrsllVM4dFMq1/DsRu/P+a3O MeyOVL83zL/NPdy63ZXsZq/Bund7fyx5IpUXeHBfKrMw6X5XrLo3lV9kD7iH T7+leob4jh9OZR8mPegce+7xPsx/xDlWPZbqfcOYJ70/Pj3uHtf0qMcy7inn +PRsKitx8Wn3MOwZV7LnnOPW865Y8oIrPr2Uyi/cetkVq95IZQ1OvOmKN6+l 8gtjXndl3Cueh2evujLuLc/Ds/dTeYQ376QyFLfedcWnj1JZw3vztucx7gPP w6QPXRn3nuex7ou+J+7nY6+BK5+msgm3Pk9lEw59m8oOLPnMOdkXzvHp61Qe 4dyX7uHZV65k3zhnre+8Hr+Hn3h/9v4hlV/49KMrJn3vsWQ/uYdPv6TyC/8e SvUc8Wz97JzsV+c8f0t2dc/suVRXlfv+M5U1WPVXKr/waVg75txUroxyTjba OZ79m8om/PvbPQz7x5Vs4q7swIwxuhqLYRN15QvZuF2ZhT1jd2Urto3V1f6c j9dVjmcTdvXvf+aP31UP2yboqpKN09UarDtJV/tjUtaVCxgweVc24dDwrioO TdaVa2RBVz3c+iPVbwDfV9yVd3gTdpVj1aRd7cP8Tlc5PqVd+YJbeVf7Y0+3 qx7XlHQ1lnFFVzlu1V2ZiEllVz0srLqqZE1XOZb0uqqY1O+q4tYUXZmFT1N2 VXFo6q4cwZtpuqoYM6IrszBpZFeVcVN1NY/nbqiryrhpu5qHlzN1ZQ0OTd+V X/g0Q1cVk2btyh28ma6reYybuat5+DRLV5VxM3Y1j3UHXd0T9zNbV2vwfs/R lVlYNVdX7uDNAl1ZgxlzdpWTzd1VjlvzdeUans3TVQ/D5u2qks3fVc5aC3a1 HlbN3tX+7L1wV2ZhzyJdVWxbqKuxZIt21cOtxbsyC9t+T/VbwXO2WFc52RJd 5bzD37SfD2+PI9pj6a7eY3y6vf28cnus0h7LdeUUJnGOO1iybFfGkS3fVY5V K3XlFOat0FUP21bsqpKt19U7gBnsw1jWXber6yZboyuncGi1rlzDs1W72p/z NbvKMWydrn4jmb9WVz3cWrurSrZ6V2uw7vpd7Y9J/+vKBQzYqCubcGjjrioO bdiVa2SbdNX7z62unhv+3Lboyju82bSrHKs26Gof5m/pHJ+27soX3NrW+2PP Nu5xTVt5LOO2c45bO3ZlIiZt7x4W7uBKtpNzLNnZFZN2ccWt3boyC592d8Wh fbpyBG/2dcWYvboyC5P2dmXcHp7H/+6xpyvj9vM8vDy4K2tw6ICu/MKnA10x 6bCu3MGb/T2PcYd4Hj4d6sq4gzyPdXf1PXE/h3sN3u8juzILq47uyh28ObEr azDjKOdkxzjHreO7cg3PjnUPw45zJTvBOWud5PWw6gjvz96ndGUW9pzqim0n eyzZae7h1hldmYVtm7fHmF09W6c7JzvTOc8f/x2X/92J/z1pma7eY97Pc7ty CsPO78opTLq0K3ew5DznZBc4x6qLu3IK8y50D9suciW7vis72PMSj2Xd67r6 +wHZlV05hUOXd+Uanl3m/Tm/yjmGXdvV3zOYf7V7uHWNK9kVXoN1b/D+mHRv Vy5gwM1d2YRDt7ji0E1duUZ2q3u4dU5X7vN93dGVd3hzm3OsutH7MP9O5/h0 d1e+4NZ93h977nGPa7rLYxl3v3PceqgrEzHpAfew8EFXsoedY8kjrpj0qCtu Pd6VWfj0hCsOPdeVI3jzvCvGPNOVWZj0rCvjnmqPzbp67p52ZdwLnoeXr3Zl DQ691JVf+PSyKya90ZU7ePOi5zHuNc/Dp9ddGfeK57HuY74n7udNr8H7/XZX ZmHVu125gzcfd2UNZrzjnOw957j1YVeu4dn77mHYB65kHzlnrU+8Hla95f3Z +7OuzMKez12x7VOPJfvCPdz6qiuzsO3srn4reM6+dE72tXPc+rYrO3DrO1d8 +t4Vw37syilM+r0rd7DkB+dkPznHql+7cgrzfnYP235xJRsz0zuAGb95LOuO kem6yf7qyikc+rMr1/DsD+/P+WjnGPZvV7+RzP/bPdz6x5VslNdg3WGZ9sek yTK5gAHjZLIJh8bNVHFo7EyukY2XqfefW5meG/7cJszkHd6MnynHqrEy7cP8 iTLl+DRJJl9wa/JM+2PPpJl6XNPEmcYybnimHLeiTCZiUpCph4Vhpko2Qab9 uaY401hcSTLZhFtZJpuwp8nkC5Z0M1lGlmfK+ftalckjjCky9TCszFTJ0kxr M7/ONJZ1R2YyBUumyGQTDvUzeYpnvUz7cz5lphyfRmSyiflTZerh2VCmStbJ dH/c29SZ9uH9njOTF7z3M2RyB29my2QNZkzffn6yq2zGTDluzZLJNTybKVMP w2bOVMmmzWQiFs6aaSzrTpNpf7K5Mu2PZ3Nksoxrmj3T/pzPnSnHrfkyucaz NU+mHobNm6mSnZBpD/ZfINMziFsLZbIJtxbJZBMOLZXJGvxYOFNOtmimHJ+W yGQTzi2WqYdni2eqZKtk8gInlsw0lnVXzmQK2XKZbMKeZTJZhmFLZ9qf8+Uz 5bi1UqZ/JzB/hUw9rFoxUyVbNtMarLtqpv1xaKNMFvDer5HJI+xZM1PFntUz WUa2VqYeVi2Y6Tvj+1o3k3EYs3amHJ9Wy7QP89fLlGPSBplMwaqNM+2PNxtm 6nFN62cay7hNMuVYtXkmB3Fo00w9/NssUyXbwjl+bOmKQ1u5YtU2mZzCpP+5 Ys+OmezAmJ1ccWX7TE7h0A6ujNvW8zBjO1fG7ex5GLlHJl+wZ9dMZmHSbq44 tHem9xBjdvE8xu3peTi0lyvjdvc81t3a98T97OM1sGS/TB5h1QGZPMKewzJ5 gR/7Oyc70DkmHZLJIGw7yD0MO9iV7FDnrHW41xu0x77en72PzGQWJh3likNH eCzZ0e5h0rGZzBrpHNvw7hjnZMc5x6rjXXmfT2qP6TKZNEveGtPW59vj7Exe 4MdpmTzCoVMzmcX5GZnMwqHTnXN+aaZnHRvOdI5/l7mHB6dk8pG1zvE+2Hmu K4ZdkMkjHDrLa3BNF2Uyi9/DC51zfkkmm9j7Yuecn5/JO9a63Ptj1S2Z3n/e +6syGYQ9V7vi05WZzCK7xj0cui6TcRhzrXucf5jpeeLP8+ZM7rDHFd6TtW7I 5BTG3JTJL8bd6mvBp+u9NuNuz+QdFt7mnPMbvQbz73COVef5++Oe73QPV+5y xaf7MtmEPY9k8gVL7s1kGdn9ztdpj4cyeYQxD7iHYQ+6kt2TyUTmP+yxrPts JlOw5IlMNuHQY5k8xbNHvT/nTzrHp2cy2cT8p9zDs6ddyZ7z2rzTL2RyCp/e zuQF7/0bmXzBiZczuYNPL2XyiPNXMzmFZ6845/xuf2fc22vOce5F78P8191j jze9D2694/3x7C33uKZ33cOq9zM5hWcfuPIMnZzpveQ9ed73x72953l7+c+B 3w1+Sz7K9Nz9Z1iu55tn6ptM1uDH55lswqTPMvnF+ZeZ/MKnL5xz/nsmI7iW r5xj4R/u8R5/mslK1vrW+2DYd64Y9mMmj7Dqa6/BNf2cySZM+sk557+1x4ne +xfn/B3kh0z2sdaf3h+Txs1lATaMzuQRPv3tikN/ZbKM7B/3cGWMXN7h0L/u cf6xv0u8HyeXR+wxynuy1rBcZvHOjZ3LGsaNl+tacGjMXGszboJcTmHk+Lly zsfKtQbzJ8yV4+X3/v6454ly9TBs4lwVVybPZRY+dXK5gCuT5XKNbHiuHKui XL7gUJCrh2dhrko2aS77mB/nGsu6dS5HeCeyXM8XJqW5vOOZS3Ltz3meK8ew KpdHzC9y9XCrzFXJmlxrY0k/l0dYNV0uO7Bh6lxe4MeUuTzCoSlymcX5UC6z cGiqXDnnk+T6zri3Ebly/Bvk2of5I3P12GOaXPs83h7T59ofh6bN1eOaZsjV w6SZcpmFeTPnqvj0iZ8j3pNervvj3mbMNY85E9Tts1C1f/btMWuudx7PZs9l DVbNmcsvfJo/lzW4MkeunGyuXDmezZvLJvybO1cPw+bJVcmWzPWsc43z5RrL ukvkMoVs4VxmYc+CuWzFtgVy7c/5IrlyPFs8128h8xfN1cO2xXJVsoVyrcG6 S+XaH0tWz+UFHiybyyxMWi5XxaplcvlFtnyu3n8+5XqG+I5XymUfJq2QK8ee pXPtw/yVc+VYtWqu9w1j1si1Pz6tlqvHNa2Sayzj1syV49O6uazExbXbz79m MmydXJVsvVw5bq2fq2LJBrkqPm2Uyy/c2jhXxaotclmDE1u64s1mufzCmM1d GbdJrnl4tmmuyritPA/PtsvlEd5sk8tQ3PqfKz7tmMsa3putPY9x23seJu3g yrhtPY91N8x1T9zPTl4DV3bJZRNu7ZbLJhzaJ5cdWLKrc7LdnePTXrk8wrk9 3MOzPV3J9nbOWvt6PX4Pd/b+7L1/Lr/w6QBXTNrPY8kOdA+fDs7lF/6tmOs5 4tk6yDnZIc55/l7Pdc/s+YYr931ELmuw6qhcfuHTCbmswZUjnZMd7RzPjstl E/4d4x6GHetKdlZ7zJbLjOM9lnXPzGUK2Sm5zMKek3LZim0nen/OT3WOZ2fk +rcB809zD9tOdyU72Wuw7tneH5OuyOUCBpyXyyYcOt8Vh87N5RrZBe7h1uG5 fgP4vi7O5R3eXOgcq87xPsy/xDk+XZbLF9y60vtjz+XucU2XeizjrnKOW9fm MhGTrnYPC69xJbvOOZZc74pJN7ji1k25zMKnm11x6I5cjuDNna4Yc1suszDp dlfG3eJ5PHe3ujLuLs/DywdyWYND9+TyC5/ua4+1cpn0cC538OZuz2Pcg56H Tw+5Mu5+z2PdG31P3M8jXoP3+7FcZmHVE7ncwZvnclmDGY87J3vSOW49k8s1 PHvKPQx72pXsWees9bzXw6pHvT97v5jLLOx5yRXbXvBYspfdw61Xc5mFbYfl +q3gOXvFOdlrznmH+Z3n3yj8u+XNXO8xPi1etL9jbf2oPd7J5dQePscdLHk7 l3Fk7zrHqg9yOYV577mHbe+7kn2T6x3AjA89lnW/9nWTfZbLKRz6JJdrePax 9+f8c+cY9lWu30jmf+Eebn3pSvap12Ddb70/Jo3K5QIG/JDLJhz60RWHvs/l GtlP7v3nVqHnhj+3X3N5hzc/O8eq77wP839zjk9/5PIFt/7y/tjzp3tc0+8e y7jRznHr31wmYtLf7mHhP65kYxTKsWTMQhWThhWquDV2IbPwaZxCFYcmLOQI 3kxUqGLM+IXMwqQJClXGjVto3kXtMV6hyriJC83Dy+GFrMGhSQv5hU+TFaqY FBVyB28mKTSPcUGhefgUFqqMm7zQPNYdq9A9cT9xoTV4v5NCZmFVt5A7eFMX sgYz0kI5WVYox62ykGt4lhfqYVhRqJJVhXLW+nSEnGraXqfQ/uw9KGQW9kxR qGJbv/18b65sykI93BoqZBa2/eLniGdrqkI52YhCOc8fv3/8nZq/T7+V6z3m /Zy2kFMYNn0hpzBp1kLuYMl0hXKyGQrlWDVzIacwb8ZCPWybqVAlm7+QHew5 S6GxrDtfob8fkM1ZyCkcmr2Qa3g2W6H9OZ+rUI5h8xb6ewbz5y7Uw615ClWy OQqtwboLFNofk5Yt5AIGLFzIJhxapFDFoYUKuUa2aKEebk1TyH2+ryUKeYc3 ixXKsWrBQvswf8lCOT4tXcgX3Fqu0P7Ys0yhHte0VKGxjFu+UI5bKxUyEZNW KNTDwhULVbKVC+VYskqhikmrFqq4tXohs/BpjUIVh9Yt5AjerFeoYszahczC pHUKVcatWWgez91ahSrj1i80Dy83KWQNDm1YyC982qhQxaTNC7mDNxsUmse4 TQvNw6fNClXGbVxoHuuuVuieuJ8tvAbv91aFzMKqbQq5gzc7FrIGM7Z2TvY/ 57i1fSHX8Gxb9zBsO1eyHZyz1k5eD6u29P7svUshs7BnV1ds29ljyXZzD7f2 KGQWtk1d6LeC52x352R7OsetvVzxY29XDNvHFasOa49eIT8OKGQTJu1fyC/O P24t+miEfDrQOZ6dUOhZx4bvhtpndEgWnugeHuxXyErWOtz7YNgRrhh2dCGP sOrzdp9j22PZdq1jC9nEb+Mxzjk/3vfP3sc55/yoQvax1kneH6vOL/T+896f Wsgg7DnNFZ9OKWQW2enu4dCZhYzDmDPc4/yZQs8Tf57nFXKHPU72nqx1diGn MObcQn4x7gJfCz6d5bUZd1Eh77DwQuecn+M1mH+xc6w60t8f93yJe7hyqSs+ XVnIJuy5vpAvWHJFIcvIrnLO39euLeQRxlztHoZd40p2eSETmX+dx7LuHYVM wZKbC9mEQzcW8hTPbvD+nN/iHJ9uL2QT8291D89ucyW702vzTt9dyCl8eqyQ F7z3DxfyBSfuK+QOPt1byCPOHyjkFJ7d75zzy/ydcW8POse5e7wP8x9yjz0e 8T649bj3x7NH3eOannAPq54q5BSePe3KM/Rg2e7VHuu1x12+P+7tSc9jzk3+ /vhOny303P1nWKnnm2fq9ULW4MdLhWzCpBcL+cX5K4X8wqeXnXP+YSEX9m2P V51j4Ufu8R6/UMhK1nrD+2DYm64Y9k4hj7DqNa/BNb1XyCZMetc55x8Usom9 33fO+duF7GOtj70/Jv1YyAJs+KE1Yvn2OIh+W1doj4Pbz9+3dbkhWfV1a8nx 7bFie/51Ie9w6Kv2ONTnz/m7xPsfCnnEHl+2874YIRe/LWQW79z3haxh3E++ Fhz6xmsz7pdCTmHkz845/85rMP9X53j5lr8/7vk39zDsd1dc+auQWfg0ZikX cGVUIdfIRjvHqn8L+YJDf7uHZ/+4kv1ZyD7mj1FqLOtOWMoR3olxSj1fmDRW Ke945oaV2p/zcUvlGDZBKY+YP16pHm6NX6qSTVRqbSyZpJRHWJWWsgMb4lJe 4MfkpTzCoclKmcV5UMosHBpeKuf8D39n3FtYKse/SUvtw/yoVI89OqX24T3r ltofh5JSPa4pK9XDpKKUWZhXlqr49LyfI96TiUvdH/eWl5rHnIf8rq/fHlWp ebz3TSnX8GZQyi98GlnKGlzpl7KMbIpSOZ4NlbIJ/6Ys1cOwqUpVsm/bZ/mb EXqfRpQay7ozlzKF92C6UmZhzzSlbMW2qUvtz/n0pXI8m6nUbyHzZyjVw7YZ S1WyaUutwbqzlNqH72nBUu85ZsxRyixMmq+UL7gyeym/yOYslWPYPKV8wby5 SvVwa+5SlWy2UmYxf95SY1l31lL7ky1Uan9MWqDUe8g1zV9qf84XLpVj2GKl zMLLRUr1cGvRUpVs8VI5dv7UurNSe3zSft6+1HvFs/9L21ulPT5r+7+2ddX2 +Lz9vFIpR/Bm5VIVM1YoZRaGrViqMu6H9s/zxPZYDQvb/peFxq1Sah5WrVnK IExarZRxOLp6qYph65RyB29WLTWPcWuVmodVa5eqjFuj1DzW/bnde+X2+LTQ 7xhr8P7xfOMLPm1Yyi982ryUX/ixQamcbKNSOVZtWsovTNq4VA+3NilVyTYr lbPWFl5vLL9b7M/eW5X6jcSwrV2xakuPJdvGPazatpRTGLaD/6x4j//nnGw7 5/xZ1qXeXd7bHT0Wzy4r9Wzx7OxVyjKM2bWUZVi1SynLON+9lGVYtZtzzg/x Htiwh3PcOtS9XnvsXMo11trb++DWPq6Yun8pv3BoT6/BNR1YyjIMO8A55weX som9D3LO+X6lfGStw7w/Jp1cygUMOLKUTTh0lCsOHVHKNbKj3cOtY0t5hHPH uDfCa2Mh3p1Uyib2ONx7stbxpWzCqhNLWcO4U3wtOHSc12bcaaXMwrxTnXN+ gtdg/unOsWpff3/c8xnu4ceZrhhzbimbcOjiUnZgyTmlXCM7zzk+XVjKI5w7 3z08u8CV7OxS9jH/Io9l3flGtnl7fNe+85eXer5w6NJSnvLMXeL9Ob/COT5d XcqmJdrjSvfw7CpXsnnatZdq67XtcX17LN0ey7TH3aW84L2/o5QvOHFzKXfw 6ab2WM7nt5ZyCs9ucc75Wf7OuLfbnOPcDd5n2fa43T32uNP74NY93h/P7nKP a7rXPay6v5RTePaAKybtVOq95D25rtQ9cm/3eR5zxq/bP79K/xvzw6X8wqdz 2vM52mPO9nimlDX48XgpmzDpsVJ+cf5kKb/w6QnnnL9Wygiu5SnnWPi6e7zH j5aykrWe9T4Y9pwrhr1YyiOsetprcE0vl7KJ35mXnHP+ainL2PsV55y/UMo+ 1nrD+2PSp6UswIa3S3mET++44tBbpSwje9c9XHm/lHc49J57nAeVnim++09K ecQeb3pP1vqwlFm8cx+XsoZxn/lacOgDr824L0o5hZGfO+f8I6/B/C+d4+Xz /v6456/cw7CvXXHl+1Jm4dOvpVzAle9KuUb2g3Os+rmULzj0o3t49pMr2bel 7GP+Lx7Luv+UcoR34s9SZmHS76W8w9TfvD/no5xj2N+lPGL+X+7h1mhXsn+9 NpaMWckjrJq4kh3YMEElL/Bj7Eoe4dBYlczifNxKZuHQOJVyzr/xd8a9jVcp x79hlfZh/viVeuwxYaV9+G2cpNL+ODRRpR7XNGmlHiZNXsmsa9pjeKXKM7RZ +3mMSvdE5f64t8kqzWPOH/7++E7DSs/df55Ver55pqpKvmBJt5JTuJVWco3z vJJTmJRVyjkfYSMeaY+iUo6LIyv1eI+TSiayVl1pHxxtKlU8G1QyCLfKSmtw TVNW8ov/NjBFpZzzoUr/fmDvqSrlnPcrOchaU1faH5NwCwuwYbpKHuHT9JUq Dk1byTKyGSr1cGUme4dDM1bqcR5V+i4xe/ZKHrHHNJX2ZK1ZKpnFOzdbJWsY h6FcCw7NXGltxs1dySmMnKtSzvmsldZg/jyVcrzsVfr+uOd5K/UwbL5KFVcW qmQWPi1RyQVcWbCSa2QLV8qxarFKvuDQIpV6eLZopUq2QCX7mL94pbGsu2Il R3gnlqn0fGHSUpW845lbstL+nC9bKcewFSp5xPzlKvVwa/lKlWylSmtjySqV PMKq9SvZgQ3rVPICP1av5BEOrVbJLM7XrGQWDq1RKed8/krfGfe2VqUc/1at tA/z167UY491K+3De7ZBpf1xaL1KPa5pw0o9TNq4klmYt0mlik+d9vONpd6T lSvdH/e2UaV5zOF94neY38VNK83jvee/S/HfsPnvy9tX8gVLtq7kFG5tVck1 zv9XySlM2sY553u1R1zpWrZ1jot7u8d7vGUlE1lrB++Dozu64tkulQzCre28 Bte0WyW/+A3c1Tnne1Syifdpd+ec71zJQdbax/tj0pGVLMCG/St5hE8HuOLQ fpUsIzvQPVw5uJJ3OHSQe5zfVunZ4rs/opJH7LGv92StQyuZxTt3eCVrGHeU rwWHDvHajDumklMYebRzzg/zGsw/1jle7uTvj3s+zj0MO94VV06uZBY+nVnJ BVw5qZJrZKc4x6rTK/mCQ6e6h2enuZKdWMk+5p/hsax7USVHeCfOrWQWJp1d yTtMPcv7c36ecwy7sJJHzD/fPdy6wJXsYq+NJfy/ZcQjrLqhkh3YcG0lL/Dj ikoe4dDllczi/KpKZuHQlc45P8HfGfd2tXP8u8z7MP8a99jjOu/Db+ON3h+H rnePa7rJPUy6pZJZmHerK8/QFpV++3lPLvH9cW83ex5zNq/0u8242ys9d/95 Vun55pl6sJIvWHJPJadw6+5KrnF+XyWnMOle55w/7T24lvud4+Iz7vEe31XJ RNZ6yPvg6MOuePZYJYNw6wGvwTU9UckvHHrcOedPVfp7CXs/6ZzzRys5yFrP en9MequSBdjwQiWP8OlFVxx6vpJlZC+5hyuvVPIOh152j/M7/F1i9puVPGKP 57wna71WySzeuTcqWcO4t30tOPSq12bce+2xZyUj33GOW697Dea/7xwvH/H3 xz1/4B6GfeiKK59WMgufvq7kAq58Usk1ss+cY9WXlXzBoc/dw7MvXMk+rmQf 87/yWNb9pZIjvBPfV3q+MOnbSt7xzH3j/Tn/wTmG/VzJI+b/6B5u/eRK9qvX xpLfK3mEVcNq2YEN/1byAj9GVfIIh/6sZBbnoyuZhUN/Oef8I39n3NvfzvHv D+/D/H/cY48xau3Dv1nHqrU/Do1Zq8c1jV2rh0nj1jIL88arVfHpzkrPEe/J b74/7m2cWvOYw/8dU/5vqPN/H37CWpZhzJtTts9Ue+zaHpPU8gufwlrW4MrE tSwjm7RWjmfDa9mEf5PV6mHY5LUqWVnrWecag1pjWbeoZQpZUsss7Ilr2Ypt Ua39OU9r5XiW1/otZH63Vg/bslqVrFNrDdatau2PJdPU8gIPerXMwqR+rYpV TS2/yAa1ev/5VOsZ4jueqpZ9mDRFrRx76lr7MH+oVo5VI2u9bxgzba398Wnq Wj2uaUStsYybrlaOTzPWshIXp6/Vw7AZalWyKWvtzzXNVGsshs1SyxR8mr2W Wfg0by0XcGW2Wq6RzVErx6q5a/mCQ3PW6uHZXLUq2ay11mb+PLXGsu7itRzh nViwllmYNH8t7zB1vlr7c75w+/ndSoYtVssj5i9Sq4dbi9aqZDPXuj/ubYla ++DKqrXswIZlatmEQyvVsgNLlq7lGtmytXJ8WqGWRzi3XK0eni1fq5ItVcs+ 5q9YayzrLllrf7LVau2PQ6vU+r3kmlautT/nq9fK8WmtWvbxbK1Rq4dna9aq ZMs37TVwfe2xTq1nEMPWq+ULPm1QyyxM2qyWL1iyfq2cbMNaOYZtUssjzNuo Vg+3Nq5Vybav5cVE7bFprbGsu12t/288yLaq5RTebFHLUzzb3PtzvrVzDNu2 1n+/Y/427uHZ/1zJtvQarLuD98ehfWtZwHu/cy2PsGcXV+zZqZZlZLu6h1Xr 1vrO+L72qGUcxuzmHJ929D7M39M5Ju1dyxSs2s/7480+7nFNe3ks4/Z3jlUH 1XIQhw5wD/8OdCU72Dl+HOKKQ4e6YtXhtZzCpCNcsefYWnZgzHGuuHJ0Ladw 6BhXxh3peZhxlCvjjvc8jDylli/Yc2ItszDpJFccOr3We4gxJ3ge4071PBw6 zZVxJ3se6x7me+J+zvAaWHJWLY+w6pxaHmHPRbW8wI+znZOd6xyTLqhlELad 5x6Gne9KdqFz1rrY6y3QHmd6f/a+rD0WqmXS5a44dInH4tkV7mHSVbXMWtw5 tuHdlc7JrnaOVde4Ysa1rrhynSs+3VjLJhy6vZYdWHJDLdfIbnKOT7fW8gjn bnYPz25xJXu11rvEM36bx7LuA7VM4f24u5ZNOHRnLU/x7A7vz/k9zvHp/lq/ i8y/1z08u8+V7C6vwboPeh/ceq6WHdjwaC2bcOjpWnZgySO1XCN7zDk+PVnL I5x73D08e8KV7OFa9jH/KY9l3Ye8P9nz3h+Hnq3lDtf0jPfn/AXn+PRyLftw 8UX38OwlV7JXnPNdv+bvG5NG13pneN7fqOUXbr3pilXv1XIHS953xZ532mP3 Wm6968q4tzwPw952ZdwHnodPn9ZyB28+qmUohn3silVf1DIIez70PMZ95nkY 9rkr4z7xPNZ93ffH/XzpNXDr61rvOW59W8ss7Pm5llN4841zsu+cY9KPtczC tu/dw7MfXMl+cs5av3g9HPrK+7P3b7X8wq3fXXHoV48l+8M9zBtVyy/c+tt/ Vtjwp3Oyv5yf7u+a3w1+S/7xWAybtdGzxbMzXiO/8GZYI7PwacxGxnE+diOn MGysRjnnQSMjsGGcRjmGhY1617fHGI1MZK3xG+2DVRO2ny+t5dkkjczCpHEb rcE1TdbIL3yatFHO+fBGTrH35I1yziduZCJrRY32x6ReIxcwIGlkEw6ljSoO dRq5RtZt1MOtvJFHOJc16t3me8NCvGsa2cQecaM9WatsZBNW1Y2sYVy/0bXg UNFobcZN0cgszBs0yjmvGq3B/Ckb5Vg1UaPvj3ueqlEPP4YaVYyZppFNODRT IzuwZOpGrpFN2yjHpxkaeYRz0zXq4dn0jSrZyEb2MX/GRmNZd+5GjuPKbI2e LxyapZGnPHMzN9qf89kb5fg0VyObmD9Hox6ezdmoks3TaG3e6fkaOYVPSzby gvd+sUa+4MSCjdzBpwUaecT5wo2cwrOFGuWcj2j0nXFvizTKcW7+Rvswf9FG PfZYvNE+uLVUo/3xbIlGPa5p6UY9rFq2kVN4tlyjikn/1noveU/mbXR/3Nsy jeYxZ4VGduDWio0qPq3UqGLYKo2cwqS1GrmDJSs3yslWbZRj1RqNnMK81Rr1 sG31RpVsk0Z2cI1rNhrLuhs3MohsvUZO4dA6jVzDs7Ub7c/5+o1yDNuo0e8N 8zdo1MOtDRtVsnUbrcG6mzbaH0t2auQFHmzRyCxM2tIVqzZv5BfZVu7951Oj Z4jv+H+N7MOkrZ1jz2aN9mH+du0xQSOrdmj0vmHMzt4fn3Z0j2va3mMZt4tz fNq9kZW4uKt7GLabK9keznFrT1cs2csVn/Zp5Bdu7euKVQc1sqZqj4Nd8eaA Rn5hzIGujNvP8/Bsf1fGHeJ5eHZkI4/w5rBGhuLW4a74dEwja3hvDvU8xh3l eZh0tCvjjvA81t3b98T9HOs1cOX4Rjbh1omNbMKh0xvZgSUnOCc7yTk+ndrI I5w72T08O8WV7DTnrHWG1+P38Djvz95nNfILn852xaQzPZbsHPfw6bxGfuHf No2eI56tc52Tne+c5+8n3zN7/uzKfV/cyBqsurSRXwu1x9WNrMGVS5yTXeYc z65sZBP+Xe4ehl3hSnZrIzsw4yqPZd1bGvlCdn0js7Dn2ka2Yts13p/zG5zj 2c2N/v3P/Bvdw7abXMmu8xqse5v3x6SHG7mAAXc2sgmH7nLFoTsauUZ2t3u4 dVGj3wC+r/saeYc39zjHqtu9D/Pvd45PDzbyBbce8f7Y85B7XNMDHsu4R51v 1B5PNDIRkx5zDwsfdyV70jmWPOWKSU+74tazjczCp+dcceiVRo7gzauuGPNS e2zbyKSXXRn3vOfx3L3gim2veR5evt3IGhx6o5Ff+PSmKya918gdvHnd8xj3 jufh07uujHvL81j3Gd8T9/O+1+D9/rCRWVj1cSN38ObLRtZgxkfOyT5xjluf N3INzz5178D2+MyV7AvnrPWV18OqD7w/e3/TyCzs+dYV2772WLLv3MOtHxqZ hW0XNvqt4Dn73jnZj855h0/tta60x0zt8Uuj9xifNmrPR7f17/b4vZFTJ/sc d7Dkt0bGkf3hHKv+auQU5v3pHraNciUbr6d3ADNGeyzrjtvTdZON2ZNTOPRv I9fw7B/vz/mwnnIMG6en30jmj9VTD7fG7qmSjdHTGqw7fk/7Y1LckwsYMFFP NuHQxD1VHJqwJ9fIJump959bPT03/LlN3pN3eDNpTzlWTdDTPswf3lOOT7+O kFlh2+v0tD/2zD9S1xO1vaCnsTiU9JTjVtaTiZiU9tTDwm5PlSzvKceSoqeK SWVPFbfqnszCp6anikNT9uTIg+0xVU8VYwY9mYVJU/RUGdfrad697dHvqTJu qKd5eDltT9bg0Mie/MKnqXuqmDRDT+7gzYie5jFuup7m4dP0PVXGTdPTPNat eron7ofnmjV4v2fuySysmrUnd/Bmnp6swYxZesrJZm8/v9jIrbl6cg3P5uip h2Fz9lTJ5u4pZ615e1oPq3iv2J+95+/JLOxZoKeKbfP1NJZswZ56uLVwT2Zh 22Q9PUc8Wwv1lJMt0lPO83ea32Pu9ddG7zHv5xI9OYVhS/XkFCat0JM7WLJk TznZ0j3lWLVcT05h3jI99bBt2Z4q2Vq2gz2X72ks667Z098PyFbpySkcWqkn 1/BsxZ7253zVnnIMW6Onv2cwf7Weeri1ek+VbOWe1mDdtX3PmLRFTy5gwHo9 2YRD6/dUcWjdnlwj26CnHm4t3pP7fF8b9+Qd3mzYU45V6/S0D/M36SnHp83a z/iCW1t6f+zZ3D2uadOexjJuK+e49b+eTMSkrd3Dwm1cybZ1jiXbuWLS9q64 tWNPZuHTT60tP46QQ3+09ff2WHuo/fMYIVf2oN+erzkkk/5s61pD8ua3tq4+ pOfu97auMSTb9uxpLl7u15M1OLR3T37h0z6umHRgT+7gzV6ex7j9PQ+fDnBl 3L6ex7o7+J64n4O8Bu/3IT2ZhVWH9eQO3hzTkzWYcahzssOd49ZRPbmGZ0e4 h2FHupId7Zy1jvV6WHWw92fv43syC3tOcMW24zyW7ET3cOvknszCtsV6+q3g OTvJOdkpznELO/k7IH8vPL2ndxqflhm072C/fffa4+yenMKkC3tyB0vOao/Z nJ3jHKvO78kpzDvXPWw7z5Xs6p7eAcy4wGNZ9ypfN9mlPTmFQxf35BqeXeT9 Ob/MOYZd2dNvJPMvdw+3rnAlu8RrsO413h+T7uzJBQy4viebcOgGVxy6rifX yG50D7c+7+m54c/tlp68w5ubnGPVtd6H+bc6x6fbe/IFt+7y/thzh3tc020e y7i7nePWfT2ZiEn3uIeF97qS3ez9uab7PRZXHuzJJtx6pCebsOepnnzBkod7 sozsUef8fe2JnjzCmMfcw7DHXcke8trMf9JjWXd0+36vNyRLnuvJJhx6pidP 8exp78/5887x6a923rpDMmlUa8ufI+TZqLa3zpDcesD3x7393fbWH9L7/WFP XvDej9nO27jt79J+fq8nazBjjLa/Udvfuf38T/v57/bYpD1/pz3fvSfHRre9 3dr6Vnu83dNnsn/bcRu2x07t53c9lnX/aXsbDMnLj7w/nn3Qk2Vc0/ven/OP nePWZz25xrP1iXsY9qkr2Tvt+7l7e+zRHl/09Azi1lc92YRb3/RkEw791JM1 +PG1c7JvnePTDz3ZhHPfuYdn37uSje7JizPa40ePZd2/evr7AdlvPdmEPb/0 ZBmG/ez9Of/dOW6N6unfCcz/wz2s+tOV7Fevwbr/tMeZPTk0UV8W8N6P2ZdH 2DOsr4o9Y9gysrH66mHVl/7O+L7G7cs4jBm7rxyf/vU+zB+vrxyTJujLFKya uK/98WbCvnpc0/h9jWXcJH3lWDV5Xw7i0KR99fBvsr4q2fC+cvwI+qo4FPZV sSruyylM6vRVsSfvyw6MKfqquNLtyykcyvqqjEv6mocZaV+VcWVf8zCy35cv 2FP3ZRYmNX1VHJqyr/cQY6q+5jFu0Nc8HJqir8q4Xl/zWDfq6564n6n6WgNL RvTlEVZN3ZdH2DNG+++Xf0fIj5F95WTT9JVj0vR9GYRt0/bVw7Dp+qpkM/SV Y8+wdr1N23f22fbzUF/7s/fYbX/zIZk0Tvt5i/bzCzxL7efNhuTZuO3nLdvP L/Ln3n7euv38ck9rYRvejdf2t2r7L/H8tJ+3aT+/wjODZ+3nV3me28/btp9f Y9/2Hsdqj+3a8/nb63mzJ38W7csOLJmv/fxGT9kC/f/3aeG+PMK5Bfvq4dlC fVWyTfp6l3jGF+lrLOsuZ1N4P5bsyyYcWrwvT/Fssb7253ypvnJ8Wrav30Xm L91XD8+W6auSLdHXGqy7fF/74NY6fdmBDSv3ZRMOrdmXHViyUl+uka3SV45P q/flEc6t2lcPz1brq5Kt2Jd9zF+jr7Gsu0Jf+5Ot29f+OLR2X+5wTWv1tT/n 6/WV49OGfdmHi+v31cOzDfqqZBu3n//u6bvetK/vG5OO6uud4XnfvC+/cGsL V6z6X1/uYMm2rtizdXuM05db27gybkvPw7CtXBm3nefh0859uYM3O/RlKIbt 6IpVu/VlEPZs73mM28XzMGxXV8bt5Hmsu1lf98f97O41cGvPvt5z3Nq7L7Ow 58C+nMKbvZyT7eMck/bvyyxs29c9PNvPlewA56x1kNfDoT28P3sf0pdfuHWo Kw4d7LFkh7mHeUf05RduHe0/K2w43DnZkc6n9HfN7wa/Jcd4LIY92NezxbMz efuO79y+0zO1n0/oyyx8Or4v4zifpB2zw5AMm7j9vP2Q3Dq/PeZuj3n4rtv+ jkMy7AL35m2P4/oykbWGt2N2acfMzJ9D+3nX9vMsfMft5z3az7Pz59l+3qn9 PCPff1vnbOs5/Bm0/T3b8znaz+e1x1ze+9y+xnAetWN2b8fM1n6+0Ptj0nV9 uYABl/RlEw5d6opDF/flGtll7uHWFX15hHOXu8f5sJGyjj2u7csm9rjIe7LW VX3ZhFXX9GUN4673teDQlV6bcTf2ZRbm3eCc86u9BvNvco5VIX8PbO931vbz ze7hxy2uGHNHXzbh0H192YElt/flGtmdzvHpnr48wrm73MOzu13JbuvLPubf 67Gs+0RfjuPKQ36+cOiBvjzlmbvf+3P+sHN8erwvm5j/iHt49lh7bOTsSa/N O/10X07h02t9ecF7/3JfvuDEc325g0/P9uUR5y/05RSePe+c81v9nXFvLzrH uWe8D/Nfco89XvE+uPW698ezV93jmt5wD6ve6sspPHvbFZOO7eu95D15yvfH vb3pecx5ty87cOs9V3x63xXDPuzLKUzi38y4gyUfOCf7yDlWfdqXU5j3sXvY 9okr2Y992cE1fuaxrPtDXwaRfd2XUzj0ZV+u4dkX3p/zb5xj2Pd9/d4w/1v3 cOs7V7KvvAbrJu1zvveQLPm3Pc5qj7PbI2v7+7X9E7nWtu7fHie1n7ttf98h eXYgxrTHye3n6Qd6hviOy3bMwW3/tPZz3n6etf18Svs5bT/vMyT/qvbzIe3n 07mOtp7Z1r/bY4yB9self/rqc011O/7QdtwZ7ecxB8rxaeyBrMTFYQP1MGys gSrZOAPluDXuQBVLxhuo4tMEA/mFWxMOVLFqsoGswYnJB6p4M8lAfmHMpANV xk000Dw8m3igyrjhA83Ds85AHuFNOJChuBUNVPGpO5A1vDfBQPMYlww0D5PS gSrj4oHmse74A90T95MNtAauFAPZhFvVQDbh0BQD2YEl5UA5WT1Qjk/9gTzC uWagHp71Bqpkg4Fy1ppyoPX4PcwH2p+9hwbyC59GDFQxaaqBxpJN3X5+tC+f ph3IL/wr2mfgoPYZOLX9PM1AOdl0A+U8f/sPdM/seYAr9z3TQNZg1SwD+YVP cw1kDa7MPFBONutAOZ7NMZBN+DfbQD0Mm32gSrbIQHZgxpwDjWXdhQfyhWy+ gczCnnkGshXb5h5of87nHyjHs4UG+vc/8xcYqIdtCw5UyeYdaA3WXXSg/TFp pYFcwIAlBrIJh5YcqOLQ4gO5RrbUQD3cmnGg3wC+r2UH8g5vlh4ox6rFBtqH +csNlOPTCgP5glsrD7Q/9qw4UI9rWn6gsYxr2j/Tw4fk1tFtPao9fuK5avtH DMnCfvv5yCF7yd9B2uPn9vOx/L2G/w7dfj6Ov7+0x688z/z/o6z9/DvPYfv5 hPbzH+3njdp9R/flzMYDVYzZoP08qq1/tceGA1XGTfV/LJ11vFRVF4aZblAx ULC4M3NBCcEAFUUREQMbREEElBZJSQsDAUUUEEFFMbDF7u5ObOzu7vzW873v H+9vnZV7n3PPfmYEvfK7gKL3j7he2KiaQZE/skF98HJkg1gDh4Y1iF/wabgt TBrTIO7Am6Ma1EfdKPfBp9G21I1wH3MbYg9dY+1fo+doz+B8H9MgZsGq8Q3i DryZ0iDWwIxxzpOb4DzcmtwgrsGziY7BsEm25I51nllTPQ9WjfX6rD29QcyC PTNsYds015Kb6RjcOr5BzIJtHRv0WcF7dpzz5E5wnjPcUA2ehH0gNMvnGD59 G5obmhc6tUGc2sw+3IElpzSIceROcx5WzWkQp2DebMdg2+m25M5t0Bno5HWq nrvY+ya3oEGcgkNnNohr8OwMr49/tvMwbFGDPiPpP8cxuLXQltxZobaeu8Tr w6TLGsQFGLCsQWyCQ+fbwqGlDeIauQscg1svNei94ed2UYN4B28udB5Wned1 6L/Yefh0SYP4Arcu9/qw51LH2NMK11K30nm4dVWDmAiTrnAMFl5pS+5q52HJ NbYw6VpbuHV9g5gFn1bZwqFbGsQReNMYZ2RRoxhzU4OYBZNutqXuBvfx9x43 2lLXJnoXN4qX54fdkb+v4pnw/YXfKcazDbs9v1OMn1vUX8jfb/GziutzG8W5 LeK6G3+/xc88ri/g78P4eYXdIdQ3rq/zPXE/7aNmecQPi+sHQwNCA0MPhw5v EGeebBBrYMZDzpN7xHm49XiDuAbPHnUMhj1mS+4J55n1lOfBqosatS7n65kG MQv2PGsL2552LbnnHINbLzSIWbBtud8j3q3nnSf3ovO8f/w5Mn/vxN+Zn9yg c8z5fKVBnIJhrzWIUzDp7QZxB5a86jy5152HVW81iFMw7w3HYNubtuQ+bRA7 WHONa5n7SYO+H5B7v0GcgkPvNohr8Owdr4//gfMw7OMGfc+g/0PH4NZHtuTe 8wzmfub1YdIvDeICDPiyQWyCQ1/ZwqEvGsQ1cl87BrdWN4j7PK/vGsQ7ePON 87Dqc69D//fOw6efGsQXuPWr14c9PzvGnn4MzXfdb87DrT8bxESY9LtjsPAP W3J/OQ9L/raFSf/Ywq3/GsQs+NSkKguHMlVxBN5kq7IwJlUVs2BSuipLXaKq Pt67ZFWWulxVffCyXBVr4FChKn7Bp2JVFiY1q4o78CZfVR91lar64FPTqix1 par6mPuv74n7WauqGZzvdapiFqxatyruwJuV/Nlu6Pa4bl5VnlyH4MDFjeLW ZWEvDd0a1x0jvqJRDNsqri9pFPMuD7tT6La47hTx7nF9R1yvXdX6rL01v8ss 4nfF9TZxfVVc3x3XneP6iri+M663jeur4/qeuN48eu8Ne1/o5QZ9VvCeXdOo +GaRb11Vns/jalXMgFu1qix8qldlYVibqjgFkzpUxR1Y0lhVnlzbqvKwql1V nIJ5W1QVg21bVmXJda3qDMCM9lXVMrdLVfsm17kqTsGhrariGjzrWNX6+FtX lYdh21X1GUn/NlXF4Na2VVlynaqawdztq1ofJvWqigswoFtVbIJDO1Vl4dCO VXGN3M5Vxf7PrareG35uu1bFO3jTvao8rNqhqnXo71FVHj71rIovcGuPqtaH PbtXFWNPu1VVS13vqvJwa++qmAiT9qwqBgv3qsqS26Wq9dnTPlXVwpV9q2IT 3DqgKjbBnv5V8QWW7F8Vy8gdWFWe72v94vqHBjHmoKpiMOzgqiys2q+q2fQf UlUtc4dUxRRYMrAqNsGhw6riKTw7tKr18Q+vKg+fBlfFJvoHVRWDZ0dUZcn1 qer+uLehVa3D+R5XFS8498Or4g68Oboq1sCMYVWxjNwI5+HW6Kq4Bs9GOgbD RtmSO6oqJtI/xrXMPbKq9cmN9/rw7JiqWMaexnp9/AnOw63JVXGNd2uiYzBs ki25J70G628XHLi2UdzqGtfXN4pbN4a9IbR+XO8c8dviulVcbx/Xq+J6vbi+ KewuoQ3iulvEb4nrjeJ6h7jeNa5bxPWOcX1zXG8Y1/Oq4gWc2Cnit0a8ZVzP rYop5E4NbVoVc04ObRzaJHR7o65nhU5zHm7NqeqfE+if7RisOt2W3Cmewdwz vD4cWloVCzj3Z1XFI9izwBb2zK+KZeTOdgxWdYn9X9coli+qinEw5hzn4dOZ Xof+xc7DpCVVMQVWLfP68OY8x9jTua6l7nznYdXyqjgIhy5wDP5daEvuIufh x8W2cGiFLay6tCpOwaTLbGHPVVWxA8ZcbQtXrqiKU3DoSlvqLncfzFhpS901 7oORN1TFF9hzXVXMgknX28Khm6s6hzDmWvdRd6P74NBNttStch9zL/E9cT+3 eAYsua0qHsGqO6riEey5vypewI/bnSd3p/Mw6d6qGATb7g71rYph99iSu895 Zj3geQNCt3p91n6oKmbBpIdt4dCDriX3iGMw6bGqmDXEedgG7x51ntzjzsOq J2w5z09VdaZh0uhaMCaUDb1cFS/gx3NV8QgOPVsVs/BfqIpZcOh55/F3i/f8 nnjPp8X1i87Dv578/3QiPj2un6mKj8xa7XVg5yu2MOz1qngEh17yDPa0S8y5 s1Gfh93j+o5GMaxHXN8d11Pjete4viuup8T1a1Xxjlm7R/y+iM+I66+qOv+c +94RfzDix/P8w54Q9kPep4g/EP5xcf1RVfETQ5+ETqqKLR87ht+ipveJn+eX VXGHNXrFnPtjzsy4/qwqTsGYL6riF3Vfey/w6VPPpu7bqngHC79xHv9zz6D/ O+dh1at+ftzz947BlR9s4dMvVbEJ9vxVFV9gyc9VsYzcr84vDP1RFY9gzG+O wbDfbcn9VBUT6f/TtcxN18QUWPJfVWyCQ/9UxVN49rfXx29SUx4+pWpiE/2J mmLwLFmTJcc7y2zOdK4mTsGndWriBee+WU18gRPFmrgDnwo18Qi/XBOn4Fmp pjz+j35m3Fulpjycy9e0Dv1Na4qxxlo1rQO3mte0Pjxbu6YYe1q3phisWr8m TsGzDWqyvENPV3UuOSecSe6Pe1uvpr6b/HPgc4PPkg1reu/+z7Ca3m/eqWpN rIEfm9bEJpi0SVzfVZW/eU38gk+b1ZTH71ATI9hL65rysLBjTTHOcauaWAkL azWtA8PqNVkY1rYmHsGqhppmsKcta2ITTNqipjx++5q+c7B2u5ry+G1qYh+z tqppfZi0T5yvx+J8vRnXW9fEI/i0TU0WDnWuiWXktq0pBle6mHdwaLuaYvgb 1fQs4f3eMf/RmP9GXHeqaU1mbV8Tszhze0XNI43iVp+4fjyu34rrrjXNpm6/ iD/Jvz8Y1/vG9RNxvSau94zrhxvFqv3j+qm4fieuG2t6ftzzARF/OuLv8tzD vhd2t8jvUROr4FOfmrgAV3rF9QdV5XrXlIdVe9fEFzi0Z00xeLZXTZbc7nH9 flX9+9RUy9x+NXGEM3FATe8XTNqvJt7xzu1b0/r4B9aUh2F9a+IR/QfVFINb B9dkyR1S02xYcmhNPIJVR9XEDtgwpCZewI+BNfEIDg2oiVn4g2piFhw6vKY8 fs+anhv3dkRNefh3WE3r0D+4phhrDK1pnX9Dw2paHw4dWVOMPQ13DCaNrIlZ MG+ULXxqWdN7xDnpX9P9cW8j3EcPvwuH393F7+Qa489heDa2JtbAqnE18Qs+ 8bu9YA1cOcZ5cuOdh2eTamIT/JvgGAybaEvuxJredfY42bXMPaEmppCbXhOz YM/UmtgK26Z4ffwZzsOz42v6LKR/pmOw7ThbctM8g7kneX1YclZNvIAHp9bE LJh0mi2sOqUmfpGb7Rh8uremd4hnPLcm9sGk052HPSeHNnb/POdh1Zk1nTcY s8Drw6f5jrGnM1xL3dnOw6dFNbESLp7jGAxbaEtusfNw61xbWLLEFj4trYlf cGuZLaw6OM7+8/y5cFz3jesX+HPnuD6Qf8+xUYw5KK6faxSTzncfPLvAFs71 i5oXo6ZbXK8M7RLalecV8Zf586a4PjSuV8d197i+qibGcG4OifhL/FlSXF/h vh6hK22pe6VRMy8Pned74n6u9gy4cm1NbIJb19fEJjh0S03sgCXXOU9ulfPw 6aaaeATnbnAMnt1oS+5m55l1q+fxeXiN12ft22viF3y6wxYm3eZacnc6Bp/u rolf8G9OTe8R79ZdzpO7x3nev6Z13TNrNqvLct8P1MQaWPVQTfyCT0/UxBq4 8qDz5B52Hp49VhOb4N8jjsGwR23JvRQ6uiZmPO5a5r5YE1PIPVMTs2DPUzWx FbY96fXxn3Uenr1Q0z8b0P+cY7DteVtyT3sGc1/2+jDpvZq4AANerYlNcOg1 Wzj0Sk1cI/e6Y3Dr/po+A3heb9XEO3jzhvOwarXXoX+N8/DpnZr4Arfe9/qw 513H2NPbrqXuA+fh1sc1MREmfegYLPzIltynoVk1seQzW5j0uS3c+rImZsGn r2zh0Pc1cQTe/GALY76tiVkw6Ttb6r52H+/dN7bU/eg+ePlbTayBQz/XxC/4 9IstTPqzJu7Am5/cR93v7oNPf9hS96v7mPuF74n7+cszON//1MQsWDUg+PBa o3jzdthLwmbi3T8s4q82ikkD4/r1uL4wro+I67fi+uK4Pjyu34jr5XE9KK7f jOuL4npwXK+J6xVxna1r5qWhv70+a+cjfllNzCnUZWFbrq5acsW6YnCrXBez YNt9NX1W8J6V6sqTq9SV5wzzOc8/o/DPLWvVdY7h0/Fx3SK0Yah5XZyCSfhw B5asUxfjyK1bVx5WbVAXp2DeenXFYNv6dVlyDXWdAZjBOtQyt3Vd+ya3cV2c gkMt6+IaPNuorvXxN6krD8M2r+szkv5N64rBrc3qsuRa1TWDudW61odJneri AgxorItNcKhNXRYO1eviGrm2dcX+z6263ht+bu3q4h282aKuPKyq1bUO/e3r ysOnjnXxBW51rmt92LNVXTH21KGuWuq2risPt7ari4kwaZu6YrBw27osuS51 5WFJ17osTNq+Lgu3dqyLWfCpW10WDu1aF0fgTY+6LIzpXhezYNIudVnqdqqr j9/PunNdlrrd6uqDl73rYg0c2r0ufsGnXnVZmLRPXdyBNz3r6qNur7j+pCY+ 7V2XpW6PuvqYu0Nd98T99KlrBud7v7qYBasOqIs78OaQulgDM/avK0/uwLry cKtvXVyDZwfVFYNhB9dlyfWrK8+s/nXNg1X71rU+ax9WF7Ngz4C6LGw7tK5a cgPrisGtQXUxC7ZtWdd7xLt1eF15ckfUlef94/OP79R8n167rnPM+TwyOPNe cOa/uB4W1x/EdSLyY+riDiw5KuLvR7wJzzJsMuzw0KhQui7WjagrngqNtCV3 bF3sYM3RrmXu5Lq+H5AbVxen4NDYurgGz472+vjjnYdhk+r6nkH/BMfg1kRb csd4BnOneH2YdEpdXIAB0+tiExyaYQuHptXFNXIzHYNbQ+M5vBv3/288qxPq 4h28Oc55WDXV69B/ovPwaVZdfIFbp3p92HOyY+zpJNdSd5rzcGtOXUyESbMd g4Wn25Kb6zwsmWcLk86whVvz62IWfDrLFg4tqosj8GaxLYw5py5mwaSFttQt cB/v3dm21J3rPnh5fl2sgUPn1cUv+LTUFiYtr4s78GaJ+6i7wH3w6UJb6pa5 j7ln+p64n4s8g/O9oi5mwapL6+IOvLmqLtbAjEucJ3eZ83Drirq4Bs8udwyG rbQld6XzzLra82DVxV6fta+ti1mw5zpb2HaNa8l91ChmrQrdWBezYNuQeMfe adT3ixvqqiF3k/Nw62Zb+HGLLQy71RZW3VcXa+DHnXWxCSbdURe/8O+ui1/w 6S7n8T+P9Y8M+0ToHudh4ZN1xY8K3V4XK5l1v9eBYQ/YwrCH6+IRrLrXM9jT iLjHTxr12fiI87BqVMQ/i/jQuB4Z15/G9ZC4fqgu9jHrKa8/LPRaXeefc/9s XQyCPc/Zwqdn6mIVuecdg0Mv1sU4GPOCY/ipRr1P/DxfrYs7rPG012TWy3Vx Csa8Uhe/qHvde4FPL3k2dW/WxTtY+Ibz+Ks9g/63nIdVD/r5cc9rHIMrb9vC p/frYhPs+bQuvsCS9+piGbkPnOf72sd18QjGfOgYDPvIlty7dTGR/k9cy9zv 6mIKLPmyLjbBoc/r4ik8+8zr43/lPHz6ti420f+1Y/DsG1ty33s2Z/rHujgF n/6pixec+z/r4guc+KUu7sCnn+viEf5vdXEKnv3qPP47fmbc2+/Ow7mfvA79 fzjGGn95Hbj1r9eHZ387xp7+cwxWJRrFKXiWbJTlHfosPjL3ScT5Df3g++Pe mjSqj54v/Px4pulGvXcwbIsoWxA6K9S0UayBH4VGsQkm5RvFL/xSo/gFn4qN yuPno39s6OhQuVF5WFgI/xjnco1iJbOaNWodGDY6zuAXjWJYKupGhkaEKo2a wZ4y4Y8OjQqlbanLec0xoawtdUnPGB4qhsZ5HxuEjgvNZH5oYmgC9x6aZL/s 2PhQs9Bk59YOTQkdG1rLllymUc8S3q/v2TNCJc9g7eahaaGpofWcnx5qETre e1rHedbYKHRi6ITQhrbUres+ZrUMneS63WIPPULD4pr/pegs5/jfCJ1sn//0 cXboNL0aTc4MndHk/79S8P+xU/WfDjY53XXx0dBkXmiu/tXoJnOcqzqGv6n7 TtHXtv/Po2er0LmhxaEtQ2f7PWvrd21+k///p///t+yjXegc13V036JQ+9BC 5zo4ht8ptMRrbB1aGjovtHPostCloR1DK0IXh7YLXRA6P7St7bJQ19Dy0IWh LrbUbeJ74tltH7rIddu4j/V28Gxy3UKXeL3uocu9j528F3K7hFY61yN0ZegK fnahq+xnG/UecU46+564z11dS//noT4JnfmecX21+3uFrg1dE9oztCp0fWi/ 0K2hW0K9HbsutFfoBtf1Cd0cuim0d+hG5/ZxDJ/zszr0cmhfz6Onf+i+0L2h g0J3hu4IHRC6PXRbaH9b9nFw6C7XHeK+e0J9Q3c7188x/AM9j1mHhu73epzv Z0PPhA4PPRx6KNQznuETYY8MDXTswdCg0COuGxJ6PPRY6IjQo84Ndgx/gPse CA1topn0HOYY+4BBz3kfw72Xp5voHGKfaiJWPe86WPVS6MUm4tQLzo1xDH+s nzF1sOMVP3fe9T9DfzQRn14LvdpEzHrdPvx4O7SmiRjxjn1Y9VbozSbiyxr7 cO0N9092Hh/GvOt+2PNR6MMmYtv7ofeaiFkf2Icvn4Y+aSK2ved+2PSx+09y Hv94z6N/vO+D++S8feZZcOWLJnrf4dFXoS+biBc/hL5vIm596TrY9LXrYNB3 oW+biFPfODfXMfwzPIM6OPSj557iNdkHzPo59FMTsekX+2c5Rg9s+tU5+PR7 6LcmOrd/+We20DHqFvtnSN3uTXReOcOc9b/dw7vSOc53p4SYkgmbTohNTcL+ 10QMw/7bRGxKRjyREMOw1DG7WdimCXEqlVAdnFgrodwyz/iniTiVTWg9uJVL yIc7xbCFhJjHXpgFs8phSwnxCUsd98OalYTYhKUO9jEjnxCD1k5oH5z5TcJu nBB31g3bPCHurJeQD6eIrZMQk9ZPKAeHWoTdICEeYcnt0URrcK+whtmtEuIf M1gbJm0UdsOEGEO+ZULc2TShPcEs8qwBqzYPu1lCfMJSB5voYxZsap1QHZ8B 3CvPEV40JJSDH9WEfLjTJmxjQszoGLZDQpwiVk+IR20TqoND7cJumRCrtkgo B5uI4cM8+moJMYh57RPiSNewXRLiztYJvWfwi3dtq4QYhmUf8GibhOpgEn3b JcSqbRPKwSli+Jzh7RNaAx7tGHaHhM55r7C7J8SF3cL2SIg3O4fdKSHuYLsl xKddwnZPiFNY6h5sonvi2cG1XROqg1/0sR7MYjY5ONQzofXgzR4J7eP9JtoL OdjUO6EcfNor7J4JMYjv1PhLfT44n7CKe+I+YRm19K/2/ydq3Lri0b4JfU4/ zM82vpDWk+LFIeH3S4hBB4Y9ICE2YfdPiEcHhz0oIVZhqWPtIWEHJ8StvgnV sa+hCeVgHzP2S4hP/RNaD2YdmpAPhwaGHZAQ79gLs2DSoLCHJ8QmLHXwiDWP SIhlWOpgGTMOS4gfRya0DxgwPjQuIQ4NDw1LiDsj7Ddx7KiEODLSObgzOjQq IcaMco5nfVFoeUJ8YfYxCfGPGazNGTs6NCYhxpAfmxB3JnhPWedZAz5NCk1M iE8TXZd3H7Pg42TXwXfulecIs451Do5MsQ+PZoSmJ8SDk0InJsQvYtMSYtNM 18GVE0LHJ8St45xr4Rh+c/dNTYgvJ7qHMzA3NCchBp0aOiUhzp0cmpUQz2Z5 H7DqNNc1uO/0hDg127nWjuFzzuZ5DTh0ZuiMhFiwNHReQpw4N7Q4Ie4sCJ2V EI+w8xPizsLQOQnx6WzXreN74tnBp0Wua+M+1uvo2eTg0xKvB3eWeR+dvRdy MOh852DVhaELEuLRcvvcw/eh7xJi5Bm+z+1cS/8mfpY8R876xQm9f7xDr4Ze SYgdV4euSohPl4cuS4hT2EsTYtAVoZUJcWql62DDLaGbE2LVla7j3N7q3E6e cUlCrLrG68Gva+3DnlWh6xNi3FWeBbduDN2QEL9ucF0fr3lTQv/8cJPrenvG dQnx4zbvAwbAr4cS4tCdoTsS4s5d9g907PaEOHK3c3Dn3tA9CTHmHudg9Ao/ 04Ge/WBC/Lvda3PG7g/dlxBjyD+QEHce8Z76O88a8Omx0KMJ8elR1x3mPmbB x8ddt4fvlecIs55wDo48aR8ePRt6JiEevBx6KSF+EXs6ITY95zq48mLohYS4 9bxzox3DH+a+pxLiy0vu4QysCb2VEINeS+g9g3O8a6sT4tlq7wNWve66Y933 ZkKcesO5yY7hc87e9hpw6N3QOwmx4IvQ5wlx4tPQJwlx54PQ+wnxCPteQtz5 KPRhQnz60HVH+Z54dvDpY9fNcB/rneTZ5DhXn3k9uPOl93GK90IOBn3lHKz6 JvR1Qjz61j6f+ZwP3qdpvifu83TX/r+/ic4VZ45z/p37b6vrz7D582XY8Vfo z4Q49Wvol4Q49XPop4QY9Hvot4Q49ZvrWDsTn+3ppFj1h+vYVzap3Fme8WNC rPrb68Gvf+zDHv7g6r+EGPenZ8GtZMQTSfELSx3nhzVTSbEJSx38Ysa/CfEj l9Q+YMC6YZsnxaFi2EJS3Ckl5cMmYvmkOFJOKgd3moatJMUYLDme9a5hd0mK L8xeJyn+MYO1OWNrhW2WFGPIr50Ud9ZLak+wjDxrwKcNwq6fFJ+w1HFe6WMW fGyRVN0y3yvPEWZtmFQOjmyUlA+PNgm7cVI8qIZtSIpfxFolxaZNk6qDK63D bp4UtzZLKgdriOHDPPpaJsUX5tHDGWgftl1SDGqT1Pc/OMd3wFpSPMOyD1jV Nqk6uEPflklxaoukcrCJGD7nrENSa8ChrcJ2TIoFO4bdISlOdA3bJSnubB22 c1I8wnZKijvbht0mKT5hqYPB3BPPDj5tl1QdjKOP9WAQs8nBp+2TWg/udEtq H/CLvZCDQTsllYNV3cPunBSPeHfw5/t8/JAQI7kn7hOGUUv/mc5/77PeI6n3 j3doemhaUuzYJ+zeSfFpj7C9kuIUdvekGLRn2N5JcQpLHbP7he2bFKv2SqqO fR2SVA4WMqNnUqzqk9R68GvfpHzYc0DY/ZNiHHthFtw5KOyBSfELSx33w5oH J8UnLHXwixn7JcWP/kntAwYMDw1LikMDww5IijuHJ+XDJmKHJcWRQUnl4M7g sEckxRgsORi9W1LPtIlnH5UUB5lxaFJnbGjYIUkxhvyRSXFnhPcEy8izBnwa FRqZFJ9Guo7zSh+z4ONo18F67pXnCLPGOAdHjrYPj8aHxiXFgymhY5PiF7Fj kmLTBNfBlcmhSUlxa6JzTR3DL7hvbFJ8OdY9nIETQyckxaAZfs+a+12bmhTP pnofsGqm6zZ03/Hss1FxeLUO/71LUozinJ3kNeDQyaFZSbFgfujMpDgxLzQ3 Ke6cFjo1KR5hT0mKO6eHZifFp9muy/ueeHbwaY7rNnEf61U9mxx8OsPrwZ2z vI9G74UcDFrgHKw6J3R2UjxaaJ/PfM4H71Mr3xP3uaVr6b+0ZZzp0M4txZRz Q4v5OWwc/Aq9vLF4tDR0XlIcuSi0PCmGEVuSFLeWuQ4mXRi6IClmne/cdo6d 7z1dFboyKWYtd08Px65IijWXhi5JimUrQhcnxbOLvQ+YdJnrdnXfyqRYdrlz uziG383zmMWzudr74PzfHrotKQZdF7o2KSZdb7+XY9ckxaNVzvFMPwl9nBSD bgrdmBRrbnDd7u5jPdh0s+s4Z7eGbkmKQ3d4H/t7L+T2dZ4eeHSn6+DgPaG7 k2LVXc71dQx/b++FfcCse90DSx4I3Z8Ujx4OPZQUD54MPZEUv4g9mBSbHnEd XHk89FhS3HrUucGO4Q9wH2sM9Tx6OAMvhV5MikHPhp5JinNPh55KimdPeR+w 6jnXjXHfC0lx6nnnRjuGf6jv6b6kztzLXg8WvBd6NynuvBZ6NSlmvB1akxSn iL2SFI9edx0ceiv0ZlKsesO5yY7hj3Pf6qQYtMY9xzjGPmDP+97HdO/lnaQY 9o73AZM+cN16waiPkuJS80bF4di6cf1hUlybnIo9hN5I6Xx/mtS7CFc+D32W FIO+DH2RFDu+D32XFLe+cB2s+sp1cOjb0DdJcepr5+Y4hg8n/gz9kRSnvnPP Ysd+T4ovP4d+SopfP4Z+SIphP3gfcOgX1y1y329J8etX5xY6hn+W5zEL7vzl fXDO8/EMcimx5t/QP0mx5j/7Sx37OykO8Rfd5E72c+LZwZRUxJMp8SiRUt15 7mM92JNOqQ6WZMNmUuJLIaV9wCP2Qg7WkKcHDhVTqoM7lbDllLhVSikH/4jh w4umKdXBj2Yp+XBorZR8GLRO2LVTYk3zlHyY0SLsBilxZMOUfLizftj1UmIK eXwYsW5K/TCDPD4c2iilfriyadhNUmJQq7AtU+LOxin5nL+GsK1TYhl5+uHO Zin1cz7Jb54Sp5hHP5zlPrg32FFNaRYcqoetpcSaNmEbU+JEh7DtU2ITMepg UNuU6mBPu7BbpsSnLVLKwSNi+LCGGdTBoY4pzYVhrMk+YFCnsFulxJ3OKfnw ixg9MGjrlHKwatuw26T0nYw6ZsMqYtTBpu1SqoMRXVLyYUbXlHy4sn1KPtzp FnbHlJjRI+yuKXGK2A4p8WinlOrg0C5hu6fEqp1TysEmYvi804PDHpESg5hH z4b8e2spnQvY0yuud0+JXz3D7pYSw7DsAybtkVJdi+jdMyUWrd+oOCzbIK57 p/RZCeOYx6yNIr53SucQFhwa1/1T4s7+YfdLiRn9wvZNiVPE9k2JRwekVAeH Dg57UEqsOjClHGwihg/z6OuTEoOYRw8cJLZPStw5LKV9wBv2ckhK3MGyD3g0 IKU6mDco7OEpsWpgSjl4RgwfTvGMqYMlQ1J67rzfc0Knp8SpI8MOTYlNR6Xk w45RoZEpsWS0fTg1gvcrJR6NtA+zhqXUn3AeHx6NcT98GR8alxKzxoaOTolN x9iHNZNCE1Pi2dHuh08T3F9xHr/oefTDWu6D+4RTkz2L8z0ldGxKrJkWmpoS X04IHZ8Sv6a6DgZNdx2sOi40MyU+zXBufcfwW3gGdXDnRM9dy2uyDzg1K3RS Stw52X5Lx+iBSac4B6dmh05LiQVz/TODZae6rrV/htTxfTbpZw8/5rmHd+WB 0P0p8WVRaGFKPDorND8lZmHPTIlPZ4cWpMSpBa6DBctDF6bErHNcBycucq7R M85IiU2LvR6sOtc+DFoaOi8l/i30LHh0fmhZSqxa5rouXvOClDh1ges6e8aS lBh0sffBub8udG1K3Lk0dElK3LnMfjfHVqTEpMudg0NXhFamxKOVzvEdbQff ay/PviYl/q3w2jDpqtCVKTGG/NUpsed676mH86zRMvizKiXewa1VruvpPma1 4ne/pMSpTr5XnuPGEb8xJW5sEtc3pcQRuHN76LaUmHFv6J7QE/yOl5R4BY/u cB0cujt0V0qsutO5gx3Df5TfJ5MS+/p5Hj1w5DHyKXHnwZTeM/jFu3ZfSgy7 z/uARw+57gj3PZISqx52bpBj+Jzhx70GPHqS+0jpnK8OvZwSF14MvZASb54J PZ0Sd7BPpcSn50LPpsSpZ123Kb/TKyUuw7XnXXeU+1hvtGeTg0MveT1484r3 MdZ7IQebXnUOPr0eei0lBr1hn+8KnA/O51DfE/c5wbX0w4y3UvqeDY/W2IdP b9uHQe+G3kmJHR+HPkqJWe+4Dja95zr49GHog5S49b5zxzn2vvf0XejblPj1 kXvmOvZNStz5PPRZSvz6NPRJSgz7xPuAWV+GvkiJWfR9nRKnvnLudMfwT/a8 T/1svvc+OP//hP5OiUE/hX5MiUk/25/v2A8p8egX53imW6aDYWkx6PfQbymx 5lfXnek+1oNNf7iOc/ZX6M+UOPSv93Ge90LuXOfpgUf/uQ4OJmPNRFqs4l9c JQfDiOHDqVRadbAjnZYPSzJp+XAqFzabFpvyaflwoRK2nBYnmqblw5RS2GJa jCGPD78KafXDM/L48KlZWv0PxRlvnhZr4NTacb1WWjxaJy1/UtS05vdQpcU/ 8vQ/HPHN+F1VcT0xrjfnd1KlxTNm0g9ruQ/ubXLUNPC7quJ6SlzX+J1Ucf1C XLdMiz8wo3Vcbx56NuIbpcWrl+O6VVpcgkObxfWmoXZtg4lpMQs2EdskLe4w gzqY1JDW3GNjTpXfi5UWj2phq2kxqJ6WD8uI0QOPGtPKwa22Yduk9dn1m98n uEWMOpjFe0fd07FWnT/7i+tpcd3I78NJizEdwrZPi0dbhe2YFke2C7ttWgwj Rh3c6pRWHUzaJuzWaTGrc1o5OEUMH0bsErZ7WsxiHj1whNjOabFmh7Dbp8Wy rmG7pMUzLPuASTumVQeP6NspLZZ1SysH24jhwz7mMQsG7ZrWPjjz+4XdNy3u 9Ay7W1rc2T0tH04R65EWk3qllYPFPKd2afFlz7C902LTHmnVwTz6WA8O7ZVW HVzZJ+zeabFm/7T2AZvYS5+0uEOeHph0QFp1MOjgsAelxbAD08rBQmL4sKNv WnWwpF9aPkw6JC0fHh0atn9a3DksLR9+HBF2UFpMGZyWD4MODzswLb6Qx+c9 G5BWP+8deXyYNCStfhgzPDQsLR4dGXZoWgw6Ki0fvowKjUyLa+Tph0cj3J9y Hr+J59EPc7kP7o3zPNqzYNPRoTFp8eWY0Ni0GDE5NCktBo11HRwa5zr4NTE0 IS1mjXeu7Bh+U8+gDvYc67lZr8k+YM3U0JS02DPN/tqO0XNxG8XhVYvgxmXh z0jrc5j3i8+M9SN+Cf8vlrjeKK5X8v9miOt7Q5tngieh6RFrw++0itjpvDe8 X6GbIn5jaFZa7Jjj/MyIbRH1J8X1m/z+/LQYBZ9mh04Lvc3/ryEtfnWMdU9N i128+wtD56TFr9Pd086xs9PizpmhM9Li17zQ3LQYNtf7gE/zXbel+xakxamz nNvCMfy65zELBi3yPjjzK3iWaXFnSejctLhznv2tHFucFpOWOsfP6YXQ82nx 5YLQ+WmxaZnrOrqP9eDQha6DKxeFlqfFmku8jx28F3JdnacHJl3qOhi0MnR5 Wgy7zLnujuHDjitcB0uutA+TrrIPj64JXZ0Wd661Dz9uDN2QFlNu5l1Ii0Gr QtenxZcb7MOt69zf23l8mHSL+2HMnaE70uLRbaFb02LQ7fbhyz2hu9Pi2q3u h0d3ub+v8/gHeh79PX0f3Bvn+V7Pgk33h+5Liy8Phh5IixGPhx5Li0EPuA4O PeQ6+PVo6JG0mPWwc4Mcwx/sGdTBnic8t7/XZB+w5qnQk2mx52n7RzpGD5x6 xjlY9Vzo2bQ+63ineJ9GOEYdnHredazTOqPzPCPOXds4myemxaeXQy+lxaBX QqvTYsdboTfTYtZq18GmV10Hn94IvZ4Wt15zbqJj+JvFuV4V632UFr/edM8m Eb8u4h+mxZ13Q++kxa+3Q2vSYtga7wNmvee6VtF7Df99dVqcet+5q9ro+v/f PTyPWa9GfMu434/TOvM/hn7g3iPeIeKf8R7wu/5Cn8f10WHbR/zTtDj1ZeiL tDjOc3oxLb58kxYHYdNXrhsTve2i95O0OPSt6+DK96Hv0mLNT97Hmd4LuXnO 0wOTfnYdDPot9GtaDPvFuXMcw4cdv7sOlvxhHyb9aR8e/R36Ky3u/GMffiTj vUhkxJRURj4M4j9K+y8tvpDH5z371/28d//Zh0npjPphTCFsPiMeZcNmMmJQ LiMfvpTDljLiGnn64VExo354RB4fZjGP/iW+D+6N81zJaBZsaha2aUZ8WTvs WhkxokXYDTJiEDHq4NA6GdXBr/XDrpcRs5pnlINh62bkwylmUAd7NsxoLlxh TfYBa1qG3Sgj9rTKyIdfxOiBUxtnlINVm4bdJKPPdt4vPjPgFzHq4BSfw9Tx z6kwFKbCo4aMzvaEbJy50KtZMagesVpG7GgXdsuMmEWsmhGbGjOqg09bhG2b EbfaZJSDWcTwefe3C7ttRvxiHj3sl9g2GXFnq7AdM+JXh7DtM2IYln3Ap04Z 1XGf9G2dEac6Z5SDW8Tw4R3zmAWDumS0D858z7C7ZcSdHcJunxF3dszIh1PE umbEpG4Z5fg5TeSZZcSX7mF3zohNO2VUB/PoYz04tEtGdXClR9hdM+LN7hnt AzaxF3Jwhzw9cKpXRnW3BB96Z8Qi2LdHRjn4SBwfRrIX9tE6WHdb9OzJzymu 747rvTNizX5h982IHX3DHpwRp4j1yYhJ+2dUB1MOCntgRsw6IKMcbCKGv3XM 7xzaJyMOMY8e2DEo7OEZcefQsP0z4tchYftlxDAs+4BHh2VUB4PoG5gRqwZk lINTxPCrseYdcV97ZXSej8hoPc750ZyJjPhyZNihGTFiVGhkRgwiNiQjDh2V UR38GhEanhGzhmWUSziGD/voG5wRs0a6B64QYx/wZqz3kfVeRmfEqtHeB5w6 xnVlv1PjM2LWOOdKjuEn43yOCA3PihmT/C7CpGNDkzPiztTQlIx4cULo+Iw4 NcV18Gia62DScaGZGfFrRmh6RpyaaR9OzAmdnhGzjndPa8dmZ8Sak0OzMmLW SaETM+LWid4HTDrFdZu777SM2HSqc5s5ht/K85gFd+Z6H5zzJaFzM2LNmaEz MmLNfPt1x+ZlxKGznGvm58SzgynnhM7OiEcLXFdzH+vBnoWugyWLQ4sy4st5 3sdW3gu5Ds7TA4eWug7uXBA6PyNuLXNuW8fw4cWFroMfy+3DoYvsw6AVoYsz Ys0l9mHGFaGVGXHkSvtw5/LQZRkxZaV9GHGp+3d2Hh8OXeV+uHJ96LqMGHRN 6OqMuHOtfZhyY+iGjFh2tfvhzir37+U8/h6eR/8Ovg/uDXbc5Flw6JbQzRmx 5rbQrRlx4p7Q3Rmx6VbXwaDbXQd77grdmRGf7nDuIMfw+3oGdXDoXs/t4zXZ Bwy6P3RfRtx5wH5/x+iBQQ86B6seDj2U0Xev/p490DHqYNMjroMRj9qHGY/Z hyuP24c7T4WezIgZL4Sez4hTxJ7IiEdPuw4OPRd6NiNWPePcCMfweae/DX2T EYOedw/n4Y3Q6xlxZ3Xo5Yz49VLoxYwY9qL3AY9ecd1E972WEatedW6CY/hj PY9ZnL83vR4s+Cz0aUbceTf0TkbM+Dj0UUaceju0JiMevec6OPRh6IOMWPW+ c8c5hj/FfW9lxKCP3HOsY+wD7nzufczyXj7JiDufeB/w6AvXwbyvQ19lxKov nZvtGP4cP2PqYMl3fu683+sFv9fNilM/hL7PiE0/2ocdv4V+zYglv9uHU7+E fs6IR7/ah1k/uX+B8/jw6A/3w5d/Q/9kxKy/Qn9mxKa/7cOaBL8oIiue/el+ +PSf+2ETefylnkf/Gb4P7hNO8VnFLM53OmwqK9Zkw2ay4ks5bCkrfhGjDgbl sqqDVcWwhaz4lM8qB7+I4cM4ZlAHdypZzYUprMk+4FQzPjOz4s5aWfmwihg9 MGntrHJwqnnYdbJiwfpZ/cxgGTHq4Bk/Q+q29M+GZw8/Nsiqh3elT9h9suLL ZmE3zYpHLcNulBWzsBtmxaeNw7bKilNY6mDBFmHbZsWsTbKqgxNbZpWDhcxo kRWbNs9qPVjVOisfBtXCVrPiH3thFjxqDFvPilVY6uARa7bJilNY6uAdMxqy YlC7rPbBmd8+bNesuNMxbIesuLNVVj6cItY+KyZ1yioHh7YO2zkrHmHJ8R2N NbhXWMPsLlnxjxmsDZO2DbtNVowhv11W3Nkhqz3BLPKsAau6hd0xKz5hqYNN 9DELNu2UVR3c5155jvBi56xy8KN7Vj7c6Rl2t6yYsVfYPbPiFLEeWfFo96zq 4FDvsHtkxapeWeVgEzF8OEjfrlkxiHn0wJGDwh6YFXf2zeo9g1+8a3tnxTAs +4BH+2VVB5PoOyArVu2fVQ5OEcPnDB+c1RrwqF/Yvlmd8yFhB2fFhUFhD8+K N4eG7Z8Vd7CHZMWnAWEPy4pTWOrg8S5ZPTu4NjCrOvhFH+vBLGaTg0NHZLUe vBma1T5gFnshB5uOzCoHn4aFjsqKQcPt812B88H5hFXcE/cJy6ilH2aMzOp7 NjwaZR8+jbYPg44OjcmKHROz+mforGPUwaaxroNP40PjsuLWMc4VHTvGezou NDMrfk1wz/qOzciKO1NCx2bFr8mhSVkxbJL3AZ+mum49903PilPTnFvXMfy1 PI9ZPJvjvQ/O/7zQ3KwYdFLoxKyYNMv+Ro6dkBWPTnaOZ3pX6M6sGHRa6NSs WHOK6zZ0H+vBptmu45zNCZ2eFYfO8D6q3gu51s7TA4/OdB0cXBA6KytWzXeu rWP4cOps18GOc+zDkoX24dTi0KKs2HSufbhwfmhZVpy4wD5MWRo6LyvGLLMP v5a4v7Pz+PDpQvfDl0tCK7Li1EWh5Vnx6GL7nJPLQ5dlxb/l7odBl7p/Z+fx d/Q8+jv4Prg3OHJFaGVWTLoqdGVW3LkmdHVWzLgxdENWnLradfDoWtfBoVWh 67Ni1XXO9XYMfy/PoA4m3eS5Pbwm+4BHt4RuzopBt9rv4xg98Og25+DWHaHb s/rs4p3ifTrAMepg1p2uY41SLs5ZTmuWc/JhzL2he7Li0f2h+7LiyKOhR7Ji 2H2ug1sPuA4mPRx6KCtmPejcQMfwYcTzoeeyYtYj7hnp2LNZsebJ0BNZsezx 0GNZ8ewx7wMmPeW6Ee57JiuWPe3ccMfwh3oes2DQC94HZ/7t0JqsuPNy6KWs uLPa/tGOvZgVk15xrp+f091Z8eX1rP6sEDa96rox7mM9OPSG6+DKW6E3s2LN O97HFO+F3GTn6YFJ77oOBn0Qej8rhr3n3EzH8GHHh66DJR/Zh0kf24dHn4Y+ yYo7n9mHH1+HvsqKKd/Yh0Ffhr7Iii9f2ec9+9z9pzqPD5O+dT+M+Sn0Y1Y8 +j70XVYM+sE+fPk19EtWXPvO/fDoZ/ef7Tz+fM+j/yTfB/fGef7Ns2DTH6Hf s+LLX6E/s2JEgl8ClxOD/nQdHPrbdfDrv9C/WTHrH+eWOYYPp5hBHexJ5jR3 kddkH7AmHbFUTuzJ5OTDL2L0wKlsTjlYlQ+by+lzmPeLzwz4RYw6OMXZLYT2 DK0KXZ8Tjyo5nef1QjNC03Ni0Fphm+XEjvWdh1nEmubEprVzqoNP64ZtnhO3 1skpB7OI4fPubxZ205z4xTx62C+xTXLizkZhN8yJXy3CbpATw7DsAz61zKmO +6Rv45w41SqnHNwihg/vmMcsGLR5TvvgzHcI2z4n7lTDNuTEnVpOPpwi1jon JtVzyvFzGhh2QE58aRu2TU5sasypDubRx3pwaIuc6uBKu7Bb5sSajjntAzax F3Jwhzw9MGmrnOpg0NZhO+fEsE455WAhMXzYsU1OdbBk25x8mLRdTj486hq2 S07c2T4nH37sHHannJjSPScfBnULu2NOfCGPD7d2yKkflpHHh0m75NQPY3YP 2zMnHvUIu2tODNotJx++9A67R05cI08/POqVUz88Io8Ps5hHP8zlPrg3zjPv N7Ng095h98qJL33C7pMTIw4Ke2BODCJGHRzaN6c6+HVA2P1zYtZ+OeVgGDF8 OMUM6mDPwTnNhSusyT5gTb+wfXNizyE5+fCLGD1wqn9OOVh1WNhDc/qs453i fYJfxKiDU7x31PH34fx5Ln+uzPcLziXnGT4dEXZQTgwaEnZwTuwYERqeE7OI UQebhuZUB5+GhY7KiVtH5pSDWcSO9BoTQxNy4tdw95QdG58Td8aERufEr1Gh kTkxbKT3AZ+Odl3JfeNy4tQxobE5cWuc/YznMYt7neR9cOZPCp2YE3emhI7N iTtT7a/l2OScmDTNOTjOczo8J77MzImDsGm665q5j/Xg0HGugysnhI7PiTWz vI+NvBdyLZynByad7DoYdFro1JwYdopzmzqGDztmuw6WnG4fJs2xD4/mhebm xJ0z7MOPs0MLcmLKOfZh0Fmh+TnxZYF93rMz3d/GeXyYtND9MOa80JKceLQ4 tCgnBp1rH76cH1qWE9cWuR8eLXX/Ns7jd/I8+qu+D+6N83yBZ8Gm5aELc+LL xaGLcmLEytDlOTHoItfBoRWug1+XhS7NiVmXOLeTY/jdPYM62HOF53bxmuwD 1lwVujIn9lxtv4dj9MCpa5yDVdeFrs3ps533i8+MXo5RB6eudx3MuCGnz2Z4 dKN9+HSTfRh0S+jmnNhxV+jOnJh1s+tg062ug093hG7PiVu3OXeAY/i8+4+E Hs6JX3e653DHHsqJO/eF7s2JX/eE7s6JYXd7H/DpftcNdN+DOXPKuQGO4R/i ecyCQY96H5z5l0Mv5cSdJ0KP58SdJ+0PceyxnJj0lHP8nPglwf/lxJdnQ8/k xKanXTfYfawHh55zHVx5IfR8TqxZ7X3AphedG+U8PTDpFdfBoNdDr+XEsFed m+AY/nDvhX3AkTfcA5PeCr2ZE2veCb2dEzs+Cn2YE6eIrcmJSe+6DqZ8EHo/ J2a959xMx/CnuI81jvc8emDH16GvcuLOZ6FPc+LXJ6GPc2LYx94HPPrcdbPd 92VOrPrCudMcw5/se+I+Oc/feD3O+Z+hP3Liyw+h73NixG+hX3NiELHvcuLQ j66DX7+Efs6JWT85t8Ax/Hnu+zYnZv3qnrmOsQ9485f3sdh7+T0nVv3ufcCp v10Hg3in/s2JWf84t8yxfzz7oHj3DsyLGYm83kWYlAqbzIs7mbDpvHhRClvM i1PEqINH2bzqYFIhbD4vVuXyysEpYvhwYb2w6+bFLObRAzuINc+LNc3CNs2L WZWw5by4hWUfMGmtvOpgEH3r5MWmtfPKwSpi+DCOecyCO+vntQ/OeUPY1nmx ZsOwLfJizUZ5+bCJ2AZ5cahlXjnYzXPi2cGUTcJunBePWuVVB+foYz3Ys2le dbBk87Cb5cWXal77gEfshRysIU8PHKrlVQd32oRtzItb9bxy8I8YPrxom1cd /NgiLx8ObZmXD4Pah22XF2s65OXDjK3Dds6LI9vk5cOdTmG3yosp5PFhRMe8 +mEGeXyYuF3YbfPiyo5hd8iLQV3DdsmLO9vn5XP+dg67U14sI08/3OmWVz/n kzw+nGIe/XCW++DeYEf3vGbBoV3D7pIXa3YL2yMvTuwZtndebCJGHQzqmVcd 7NkjbK+8+LR7Xjl4RAwf1jCDOji0V15zYRhrsg8YtE/YvfPiTp+8fPhFjB4Y tG9eOVi1f9j98vruRR2zYRUx6mDTAXnVwQjOMT4sOTivs3126JfQz3lx4vCw A/PiTv+wh+TFI2y/vLhzWNhD8+ITljre8RGh4XnxaUBedZz/kc7BO2b0zYtP g/JaD2YdkZcPd4aGHZIXs9gLs2DVUWGPzItPWOoSXnNYXmzCUgfLmDE4Lw6N 8j4451NCx+bFmqNDY/Jiz1j7WcdG58WdY5yDKeND4/Ji0jjn+PldHrosL6Yw e3JevBvttWHKxNCEvHhEflJe7JnqPZWdZw04Nz00LS9uTXNdU/cxCzbNcB1M 5155jnBkpnNw5Tj7sOak0Il5sWN26LS8OEXshLyYNMt1MOXU0Cl5Metk5zZx DH9D9x2fF4dOcw/sWBA6Ky/uzAvNzYtfc0Kn58Ww070PeHSG69q6b35erDrT uTaO4XOGz/Ya8Ghh6Jy8zvlFoeV5ceGC0Pl58ebc0OK8uINdlBefzgstyYtT S1zXwvfEs4NrS13XwX2st61nL8uLQxd6PXhzsffR1XshB5tWOAefLg1dkheD LrPPdwTOB+ezne+J++zmWvr5Pruxf1bwY2Ve7x/v0JrQW3nx4obQqrwYdE3o 6rzYhL0qLx5dF7o2L1Zd6zrWvot18uLW9a5jX3c7t5tnXJkXn270ejDrJvtw 6NbQLXnxbpVnwaDbQ7flxabbXHeQ17wjL1bd4bp9PePmvPhxj/cBA54MPZEX h+4P3ZcXdx6w39+xe/PiyIPOwZ2HQw/lxZiHnIPvV/iZDvXsx/Pi371emzP2 aOiRvBhD/rG8uPOU9zTIedaAT8+Ens6LT0+7brD7mAUfn3VdH98rzxFmPecc HHnePjx6OfRSXjx4I/R6Xvwi9mJebFrtOrjyWujVvLj1inPjHcMf474X8uLL 6+7hDHwQej8vBr2d13sG53jX3syLZ296H7DqHdfNdN97eXHqXedmOIbPOfvQ a8Chj0Mf5cWC70Lf5sWJr0Nf5cWdz0Kf5sUj7Cd5ceeL0Od58elz1432PfHs 4NOXrjvJfaw327PJwadvvB7c+d77mOu9kINBPzgHq34K/ZgXj362z/cFzgfv 0wm+J+5zvmvpH16On3no6bLO+q95fR7DmN9Dv+XFoz9Df+TFkQT/c5iCGPaH 6+DWX66DSf+F/s2LWX87t8yxf7ynUswoFsQs5tHDe0+sUBBrMmHTBbEsFTZZ EM+w7AMmZQuqg0H05QtiWa6gHGwjhg/7mMcsnk25oH1w/jcM26IgBjUL27Qg Jq1VkA+3iFUK4tHaBeV4pnuE7VUQg9YN27wg1qxTUB2soo/1YNN6BdVxzjYI u35BHNqooH3AG/ZCjnNInh541LKgOji4SdiNC2JVq4JyMIwYPpzatKA62LFZ QT4s2bwgH041hG1dEJuqBflwoW3YNgVxYouCfJjSGLZeEGPI48OvWkH98Iw8 PnzasqB++LJV2I4Fcap92HYF8ahDQT7nZOuwnQviH3n6YVCngvphEHl8eMY8 +mEt98G9cea2KWgWTNou7LYFcadr2C4FMWPnsDsVxCli1MGj7Quqg0Pdwu5Y EKt2KCgHm4jhwx1mUAeTuhc0F56xJvuAR7uG3aUgBvUoyIdlxOiBR7sVlINb u4ftWdBnF+8U7xPcIkYdzOK9291rLAst9X2ebx/G7BV2z4J4tE/YvQviyIFh DyiIYcSog1t9CqqDSfuH3a8gZu1bUA5OEcOHEQPDDiiIWcyjB5YQO6wg1vQL 27cglh0c9qCCeIZlHzDpkILqYBB9hxbEsv4F5WAbMXzYxzxmwaDDC9oHZ35M aHRB3Bkc9oiCuDM07JCCOEVsUEFMOrKgHCzmOfUuiC/DQ8MKYtNRBdXBPPpY Dw6NcB1cGRUaWRBrjvY+Mt4LuZTz9MCksa6DQeND4wpi2DHOFR3Dhx0TXAdL JtqHSZPsw6NjQ5ML4s4U+/BjZmhGQUw5zj4Mmh6aVhBfZtjnPZvq/ubO48Ok 490PY04OzSqIRyeGTiiIQSfZhy+nhU4tiGsnuB8eneL+TZ3Hb+V59DfzfXBv nOfZngWb5oROL4gv80JzC2LE2aEFBTForuvg0Bmug19nheYXxKwznWvjGP4W nkEd7DnHc1t7TfYBaxaFFhbEnsX22ztGD5w61zlYdV5oSUGfw7xffGZ0cow6 OLXUdfwZCp/3c8ytCwo6z5eF8sV4v4pi0EWh5QWx43Lnuzp2YUFsuth18OnS 0CUFcWuFc90cw+fdXxW6viB+Xeae3o5dVxB3rgpdWRC/rgitLIhhK70P+HS1 6/Zw37UFceoa53o5ht/D85gFg27wPjjz94buKYg7N4duKog7t9jfx7EbC2LS rc7xc/oq9GVBfLkjdHtBbLrNdXu7j/Xg0J2ugyt3h+4qiDX3eR/9vBdyBztP D0y633Uw6KHQgwUx7AHnBjiGDzsedh0secQ+THrUPjx6IvR4Qdx50j78eC70 bEFMed4+DHom9HRBfHnWPtx6yv3DnMeHSS+4H8a8ElpdEI9eCr1YEINetg9f Xg+9VhDXXnQ/PHrV/ROcxz/G8+gf4vt4rKDz/IZnwaa3Qm8WxJe3Q2sKYsSH oQ8KYtAa18Ghd1wHv94PvVcQs951boZj+Md5BnWw5yPPnew12Qes+ST0cUHs +dT+iY7RA6c+cw5WfRH6vKDPOt4p3qdTHKMOTn3puoX+Hv2rv19wLjnP8Onb 0DcFMej70HcFsePX0C8FMes718GmH1wHn34O/VQQt3507izHfvQa/E8U/yuI X7+4B44Q+7cg7vwZ+qMgfv0e+q0ghv3mfcCnv1y3zH3/FMSpv51b6hj+Ys/7 3feaKGofnPmmYStFcScdNlUUdzJF+XCKWLIoJmWLys3xc/q6IL4UiuIgbIKF 1ME8+lgPDhWLqoMr5bCloljTrKh9wCb2Qg7ukKcHJq1VVB0Mah52naIYtnZR OVhIDB92rFtUHSxZrygfJq1flA+PWoTdoCjubFiUDz82CbtxUUzZtCgfBrUK 27IovpDH5z3bqKh+3jvy+DBps6L6YUwtbLUoHrUOu3lRDGooyocvbcI2FsU1 8vTDo3pR/fCIPD7MYh79MJf74N44z1uEbVsUm9qF3bIovnQI274oRmwTduui GESMOjjUsag6+NU5bKeimLVVUTkYRgwfTjGDOtizbVFz4Qprsg9Y0yXsdkWx p2tRPvwiRg+c2r6oHKzaMewORX22837xmQG/iFEHp7oVVQcvdirKhx87F+XD pu5F+fCid9g9imLQbmF7FMUm7K5F8Wj3sD2LYhWWOt7xA8MeUBS3ehVVx/k/ qKgc7GPGLkXxac+i1oNZexXlw6E+YfcpinfshVkwab+w+xbFJix13Ddr7l/U /WOpg2XM2LsoDh1c1D4450PCDi6KNYeE7VcUe/oX5cMjYn2L4s6hReVgyoCw hxXFJOyh/vktCJ1VFFOYfURRvGMGa8OUw8MOLIpH5AcVxZ6hRe0JbpFnDTh3 VNgji+IWljr4RB+zYNOwourgO/fKc4Qjw52DKyPsw5oxodFFsWNCaHxRnCI2 qigmHe06mDIudExRzBrrXMEx/LT7RhbFofHugR0zQtOL4s6xoclF8WtSaGJR DJvofcCjKa5b133TimLVVOeaO4bPGZ7pNeDR8aHjijrnc0KnF8WF00KnFsWb k0InFsUd7AlF8enk0KyiODXLdSnfE88Orp3iug3dx3qbejY5ODTb68Gbud5H a++FHGya5xx8OjN0RlEM4t2Zz1qlmBc6uSRWHef7rLuW/mZ+ljxH+HF2Ue8f 79DjoceK4sX5oWVFMejc0OKi2IRdVBSPzgstKYpVS1wHDy4PXVYUt5a6jnO7 0rkOnrGwKD5d4PVg1oX24dDFoYuK4t0yz4JBl4RWFMWmFa7b2WteWhSbLnXd 9p6xvCh+XOF9wIBbQjcXxaGrQ1cVxZ1r7O/m2JVFceRa5+DO9aHrimLMdc7B 93P8TPt49k1F8e9Kr80ZuyG0qijGkL+xKO7c6j3t6TxrwKfbQ7cVxafbXLe3 +5gFH+9wXVffK88RZt3pHBy5yz48ui90b1E8eCT0cFH8InZPUWy633Vw5aHQ g0Vx6wHnBjiG3899dxfFl4fdwxl4NvRMUQx6oqj3DM7xrj1aFM8e9T5g1ZOu G+6+p4vi1FPODXMMn3P2nNeAQy+Eni+KBW+F3iyKE6+HXiuKOy+HXiqKR9gX i+LOK6HVRfFptev6+p54dvDpVdeNcR/rTfBscpyrN7we3FnjfUz2XsjBoLed g1Xvht4pikfv2ef7AueD92mU74n7nOZa+jeNc36qzzzn/H33w5cPQx8UxaNP Qh8XxZGvQl8WxTBiHxXFrU9dB5O+CH1eFLM+c+4Ux/A5P8VYs1ASs750D+/9 L6Gfi2LNd6Fvi2LZN6Gvi+LZ194HTPredQvc91NRLPsx9ENRbPvJ/lzP+8bP 5Vevx/lOxV6SJTHoz9AfRXGE/7H5f0Vxi9jvRbHqL9fBlX9D/xTFqb+dW+oY /iL3/VYUp/5zz0LH2AcMSpe0D84fe0mUdA6x7ANWZUqqg1X5sLmSOJUtKQe3 iOHDSp4xdbCjVNJz513vFHarkvhUCVsuiVlNS/LhR/Ow65TEiHVL8mHV2mHX Kokv5PHhWrOS+mEZeXwYs15J/bBno7AblsS2DcKuXxKzWpTkw5eNw7YqiW3k 6YdNLUvqh0fk8WEZ8+iHkdwH98l54/OMWXBls5Led3jUOuzmJfGiTdjGkrhF jDrY1FBSHQyqh62VxKlqSTm4RQwfVjGDOjjUtqS5nHvWZB8wa8uwW5TEpnYl +TCMGD2wqX1JOfjUMWyHks5t55J+ZjCLGHWwjZ8hdXxWc145w5z1rUvq4V0Z FRpZElO6hd2xJDZ1CbtdSQzDblsSm7YP27UkhmGpY3avsLuXxKkdSqqDE3uU lINnzNimJE7tVNJ6cGvnkny4s2vYXUpiHnthFszaLWyPkviEpY77Yc2eJbEJ Sx3sY0b3khjUu6R9cOb7he1bEnf2DrtXSdzZpyQfThHbsyQm9SkpB4f2C7tv STzCkuM7F2t8aNYcHLGDSuIfM1gbJh0Qdv+SGEP+wJK4c0hJe4JZ5FkDVh0a tn9JfMJSB5voYxZsOqykOj4DuFeeI7wYUFIOfgwsyYc7g8MeURIzhoeGlcQp YoNK4tGQkurg0FFhjyyJVUNLysEmYvgwj77DS2IQ8+iBI+NCx5TEndF+z1J+ 10aUxLAR3gc8GuO6gvvGlsSqo53LO4bPGR7vNeDRxNCEks758aHjSuLCjND0 knhzbGhySdzBTiqJT1NDU0ri1BTXwWPuiWcH16a5rqn7WG9dzyYHh2Z6PXhz gvexgfdCDjad6Bx8mhU6qSQGnWyfz3vOB+ez7HviPlu6lv5h/rvlp8ri0Wkl fU7/wc8wYoeXxYuzQvNLYtDc0JyS2IQ9vSQenRGaVxKr5rmOtZeGziuJW2e6 jn0tc661Z8wuiU8LvB7MOts+HFoUWlgS7+Z7Fkw6N7S4JDYtdl1nr7mkJJYt cV17zzinJH6c733AgCtDV5TEoeWhC0vizkX2uzh2QUkcudg5uHNJaEVJjFnh HM/61dArJfGF2StL4t8FXpszdlno0pIYQ/7ykrhzlfe0k/OsAZ+uCV1dEp+u dl139zELPl7runa+V54jzLrOOThyvX14dFPoxpJ4cEfo9pL4ReyGkth0s+vg ym2hW0vi1i3O7ecY/l7uW1USX253D2fgodCDJTHo3tA9JTH07tBdJfHsTu8D Vt3nugHue6AkTt3v3GGO4XPOHvYacOjR0CMlseCF0PMlceLZ0DMlceeJ0OMl 8Qj7WEnceSr0ZEl8etJ1e/qeeHbw6WnXDXYf6w33bHLw6TmvB3de9D5GeS/k YNBLzsGq1aGXS+LRK/a5hzZxFhvLYuQjvs+xrqW/n58lz5Gz/lpJ7x/vUDn6 SmWx4/3QeyXxaU3orZI4hX2zJAa9E3q7JE697TrY8GXoi5JY9a7rOLdfOTfZ M94oiVUfeD349aF92PNJ6OOSGPeeZ8Gtz0KflsSvT113qtf8vKR/fvjcdSd6 xkcl8eNr7wMGwK/fS+LQd6FvS+LO9/bnOvZNSRz5wTm481Pox5IY86NzMPp1 P9NFnv1bSfz7xmtzxn4J/VwSY8j/WhJ3/vSeFjjPGvDp79BfJfHpL9ed4z5m wcd/XHeC75XnCLP+dQ6O/GcfHqXi55wsiweFsPmy+EUsURab0mXVwZVc2GxZ 3MqUlYM1xPBhHn1NyuIL8+jhDKwTdu2yGFQp6z2Dc7xrxbJ4hmUfsKppWXVw h761yuJUs7JysIkYPueseVlrwKH1wq5bFgs25/OqLF5sEnbjsrjTIuwGZfEI u35Z3Nko7IZl8QlLHQzmnnh28KllWXUwjj7Wg0GtyspxrjYtaz2407qsfXDm 2As5GNRQVg5W1cJWy+JRvSyfz/w3/D7BSO6J+4Rh1NLPPx9wrjhznHPOPf38 PRt/PsWfXcGOzhHrVBaf2odtVxansFuWxaCOYTuUxSksdazdLeyOZbFqq7Lq 2NdOZeVgITO2KItVW5e1Hvzapiwf9nQJu11ZjGMvzIJb24ftWha/sNRxflhz h7LYhKUOfjFj27L4sXNZ+4ABe4fdqywO7Rp2l7K406MsHzYR614WR3YrKwd3 dg/bsyzGYHfzs54WmloWX5i9Z1n8YwZrc8b2CNurLMaQ710Wd/Ypa0+wjDxr wKd9w/Ypi09Y6jiv9DELPu5XVh2s5155jjBr/7JycOSAsnx41DfswWXxYEDY w8riF7GDymJTv7Lq4MqhYfuXxa1DysrBGmL4MI++A8viC/MO9Rk4KuyRZTHo iLK+/8E5vgMOLItnWPYBqwaXVQd36BtaFqeGlJWDTcTwOWd812QNODSirH+3 ERZMDE0oixPjQseUxZ3RoVFl8Qg7sizuHB0aUxafxrgOBnNPPDv4NNZ1Kfex XsGzycGn8V4P7kzyPsreCzkYNNk5WDUldGxZPJpqn898zkfbshg53Pe5lmvp 5zsBeT6/OevT/f7xDt0YuqEsdpwaOqUsPp0QOr4sTmGPK4tBJ4VOLItTJ7qO 2WeF5pfFwZNDs8ra1wLnNvCMmWWx6jSvB79m24c9c0NzymLcKZ4Fd84IzSuL X/Nc18ZrnlkWn850XYNnnF4WP872PmDA8tCFZXFoUWhhWdxZbL+9Y+eUxZFz nYM754WWlMWYJc7B6Bl+pl08+4Ky+HeO1+aMLQstLYsx5M8vizsXeU9bO88a 8GlF6OKy+HSx67Z1H7Pg4yWua+175TnCrEudgyOX2YdHV4auKIsH14euK4tf xFaWxaarXAdXrg1dUxa3rnZud8fwd3Hf5WXx5Tr3cAZuD91WFoNuKus9g3O8 a6vK4tkq7wNW3ey6/d13a1mcusW5/RzD55zd4TXg0F2hO8tiwaOhR8rixEOh B8vizr2he8riEfbusrhzf+i+svh0n+u6+554dvDpAdf1dR/rDfBscvDpYa8H dx7zPgZ5L+Rg0OPOwaonQ0+UxaOn7POZz/ngfTrI98R9DnUt/fx70Pw7Ovw7 OzDl2bL+/ewuzePdC13QXDx6IfR8WRx5NfRKWQwj9lxZ3HrRdTBpdejlspj1 knNjHXvJe3ov9G5ZzHrFPdMde6cs1rwZeqMslr0eeq0snr3mfcCkt1w3zX1v l8WyNc5NdQx/kue97mfzvvfB+f829E1ZDPoo9GFZTPrY/vGOfVAWjz4NfeJn 2qoSPKuIQV+EPi+LNZ+57jj3sR5s+tJ1nLOvQ1+VxaHvvI853gu52c7TA4++ dx0c/Cn0Y1ms+sG5+Y7hn+K9sA+Y9bN7YMmvoV/K4tEfod/L4sF/oX/L4hex 38pi05+ugyv/hP4ui1t/OXeeY/gL3ccayzyPHs5APp5TriIGpcImK+JcImyT iniGZR+wKl1RHdyhL1sRpzIV5WATMfyzfU/cJ2euUNF6sGD9sOtVxJ1K2HJF zGgedp2KOEWsVBGPmlZUB4fWDrtWRaxqVlEONhHDh3n0FStiEPPogWfE2Afc 2aCifcAv9rJuRQzDsg941KKiOnjEO7VRRazasKIcPCOGfy37ahp7aKrzvXFF 7yJc2TTsJhUxaPOwm1XEjsaw9Yq4RYw6WNW6ojo4VAtbrYhTDRXlYBMxfDjR KexWFXGKefTADmIdK+LLlmG3qIhfbcO2qYhhWPYBh9pVVMef29HXoSJ+ta8o B8+I4cM75jEL7nSuaB+c8+5hd66INduG3aYi1mxXkQ+biG1dEYe6VJSDvzwn nh1M2SHs9hXxqGtFdXCOPtaDPTtWVAdLdgrbrSK+7FLRPuAReyEHa8jTA4d2 ragO7vQMu1tF3OpRUQ7+EcOHF7tXVAc/elXkw6E9KvJh0F5h96yINXtX5MOM /cPuVxFHDqjIhzv7hu1TEVPI48OIfSrqhxnk8eHQgRX1w5VDwvariEEHhz2o Iu70rcjn/B0W9tCKWEaefrjTv6J+zid5fDjFPPrhbO+K7g12DKhoFhw6POzA ilhzRNhBFXFiWOioithEjDoYNLiiOthzZNihFfFpSEU5eEQMH9Ywgzo4NNxz YRhrsg8YNDI0oiLujLKfdIweGDTaOVh1dGhMRd/Jkp6ddYw62DTWdTDiGPsw Y5x9uDLePtyZFJpYETOmh6ZVxCliEyri0WTXwaGpoSkVsepY59Z2DJ93+rzQ kooYNM09nIeTQ7Mq4s7xoeMq4tfM0IyKGDbD+4BHJ7iulftO+h8L5x2+9fiG YSJZ33fvlSIlREkSEVGRljKyEklWoaSikqY0VKLsvcleP3vvTfbO3rLX7z6P 6/rjOu7u+TzP5/085/uW49AkVk11ruoYftHzmMX9m+71YMFZoYVN4s7s0Kwm MWN+aF6TOEVsZpN4NMd1cOjM0NwmseoM59o4hr+R+2Y0iUHz3NPSMfYBdxZ5 H+29lwVN4s4C7wMeLXYdzFsaOrtJrFri3FaO4Xf0M6YOlizzc+f9fjD0QJM4 dV5oeZPYdL592HFJ6OImseRS+3DqotCFTeLRxfZh1gXu7+o8Pjy6zP3w5erQ VU1i1hWhy5vEpivtw5rrQtc2iWeXux8+XeP+3ZzH38Xz6O/sc3BOOHW9Z8Gp m0I3Nok1N4dWNIkvd4buaBK/VrgOBt3iOlh1e+i2JvHpVuf6O4Y/0DOogzt3 eS5MucH7gFP3hO5uEnfutT/YMXpg0v+cg1P3h+5rEgse8me2n2PUDfVnSB2/ Z7f3s4cfD7uHd+XX0C9N4sszoaebxKPHQ481iVnYR5vEpydDTzSJU0+4Dha8 Fnq1Scx6ynVw4nXnDvGMR5rEpme9Hqx6zj4MejH0QpP497RnwaOXQy81iVUv uW6013ylSZx6xXVHecbzTWLQG94Hd/6T0MdN4s5boTebxJ237Y91bGWTmPSO c3DovdC7TeLRu85t6DU462TP/qhJ/FvptWHSB6H3m8QY8h82iTufek8TnWcN WPVZaFWT+LTKdae4j1mw6XPXjfJZeY7w4gvn4MeX9uHOt6FvmsSMn0M/NYlT xL5uEo++cx0c+jH0Q5NY9b1zZzqGP8t9XzWJQT+5B478HfqrSdz5rUnvGfzi XVvdJIat9j7g0e+uO8d9fzaJVX84t9QxfO7wP14DHv0X+rdJ93z9+O25XkJc aBF2nYR40yzsmglxB7tGQnxaO+xaCXEKS91Mn4lnB9eaJ1QHv+hjPZjFbHJw aN2E1oM3GyS0D5jFXsjBpg0TysGnRNimhBjE72V8fitwP7ify30mzgnLqKUf TmXCphPiUTYhHz7lEvJhUCFsPiF21MJWE2IWMepgUzGhOvhUCVtOiFulhHIw ixg+e9o0bJuE+MU8euAIsU0S4s5GYVsmxK9G2HpCDMOyD/jUKqE6mEXfxglx qnVCObhFDB/eMY9ZPJu2Ce2D+9857DYJMah92M0SYtLmCflwi1i7hHi0RUI5 nulhYYcnxKCtwnZIiDVbJlQHq+hjPdi0dUJ13LNOYTsmxKFtE9oHvGEv5LiH 5OmBR10SqoOD24ftmhCrtksoB8OI4cOpbgnVwY4dEvJhyY4J+XBqp7DdE2LT zgn5cGG3sD0T4sTuCfkwZdewuyTEGPL48KtHQv3wjDw+fOqVUD986Rt2z4Q4 1Sds74R4tEdCPvekf9h+CfGPPP0waK+E+mEQeXx4xjz6YS3n4GzcuQEJzYJJ g8IOTIg7g8PunRAzhobdPyFOEaMOHg1JqA4O7Rd234RYtU9COdhEDB/uMIM6 mHRAQnPhGWuyD3h0UNgDE2LQwQn5sIwYPfDokIRycOvQsMMS+u7ineJ9glvE qINZvHeHeo3bQ7f5nHfYhzFHhEYkxKMjQyMT4shxoWMTYthI18GtUa6DSceE jk6IWUc519wxfBgxIXRyQsw61j0Zx8YnxJoTQscnxLIxodEJ8Wy09wGTTnRd 2n0nJcSysc7BtnH2N/A8ZsGgid4Hd35WaGZC3Dk1dEpC3Jlsv+DYpISYNMU5 WMxzOjwhvkwLnZYQm6a6Lu8+1oNDp7sOrswITU+INbO9j428F3IN5+mBSXNc B4PODM1NiGFnONfGMXzYMc91sGS+fZi0wD48Oiu0MCHuLLIPP84JLU2IKefa h0Fnh5YkxJel9nnPFru/g/P4MGmZ+2HMhaELEuLReaHlCTHofPvw5ZLQxQlx bbn74dFF7u/mPP52nkd/e5+Ds3GfL/Us2HR56LKE+HJl6IqEGHF96LqEGHSF 6+DQVa6DX9eGrkmIWVc719Mx/N09gzrYc4Pndvea7APW3BS6MSH2rLDfxzF6 4NTNzsGqW0O3JPQ9zPvFd8ZejlEHp25z3c+h/ZPBk6R4dGdC9/mB0MYRa50U g+4J3Z0QOx50frBjdyXEpntdB5/uD92XELf+59x+juHz7j8deiohfj3gnsMd ezIh7jwaeiQhfj0ceighhj3kfcCnx1x3mPueSIhTjzs33DH8gz2PWTDoGe+D O78y9EZC3Hk+9FxC3HnB/pGOPZsQk150js9pnXhOzZPiyyuhlxNi00uuG+k+ 1oNDr7oOrrweei0h1rzpfZzgvZAb4zw9cOrt0FsJMei90LsJMewd5052DB92 vO86WPKBfZj0oX149HHoo4S484l9+PFF6POEmPKlfRj0WWhVQnz53D7c+tT9 pzmPD5O+cj+M+T70XUI8+ib0dUIM+tY+fPkp9GNCXPva/fDoB/fPcx7/DM+j /1Sfg7Nxn3/2LNj0S2h1Qnz5LfRrQoz4J/R3Qgz61XVw6HfXwa+/Qn8mxKw/ nFvqGP65nkEd7PnXcxd6TfYBa9aId+S/hNizZlI+/PrPPXCqWVI5WLV22LWS +q7jneJ9gl/EqINTvHfUsc7QpO4zvy+4l9xn+LRexNZNikEbhF0/KXakw6aS YhYx6mDThknVwadk2ERS3GpKKgeziOGzRjVsJSl+MY8eOEKsnBR38mFzSfEr GzaTFMOw7AM+FZKq4/cEfaWkOFVMKge3iOHDO+Yxi7PWktoHd36zsO2S4k7L sI2kuLNRUj6cIlZPikmtksrBcZ5Ti6T4sklSHIRNsJA6mEcf68GhNknVwZW2 YTdNijXtk9oHbGIv5OAOeXpg0uZJ1cGgDmG3TIphWySVg4XE8GHHVknVwZKt k/JhUsekfHi0TdhOSXGnc1I+/Ng+bNekmNItKR8GbRe2S1J8IY/Pe7ZtUv28 d+TxYdIOSfXDmF3C9kiKRzuF7Z4Ug3ZOyocvu4XtmRTXdkyqHx7tmlQ/PCKP D7OYRz/M5Rycjfu8e1KzYFPvsL2S4sseYfskxYgBYfsnxSBi1MGhPZOqg1/9 wu6VFLP6JpWDYcTw4RQzqIM9A5OaC1dYk33Amr3DDkqKPYOT8uEXMXrg1JCk crBq37D7JPXdzvvFdwb8IkYdnOJ7mDr+ngpDp5pHByR1t69JxZ1Lxx1Mi0EH R+ygpNhxeNjDkmIWsQOTYtMhSdXBp+FhD02KW8OSysEsYvi8+8eFjk2KX8wb 7vtA7JikuHNkaGRS/DoiNCIphmHZB3wa5bp13Hd0Upw6yrnmjuGv6XnMgkGj vQ/u/CmhSUlx54TQ8Ulx50T7Gzg2JikmjXWOz+m60LVJ8WV86KSk2DTOdeu7 j/Xg0MmugysTQxOSYs2p3kfeeyGXdZ4emDTZdTDotNDUpBg2xbmKY/gp74V9 wJFp7oFJ00OnJ8WaWaGZSbFjXujMpDhFbEZSTJrtOpgyN3RGUsya49wmjuG3 dB9rbOp59MCOpaGzk+LOWaGFSfFrQWh+Ugyb733Ao0Wu28p9S5Ji1WLnOjiG X/eZOCf3+Ryvxz2/InR5Unw5L7Q8KUZcEro4KQYRW5YUh853Hfy6KHRhUsy6 wLmujuFv475zk2LWxe7p5Bj7gDdXeh87eS+XJcUy7KVJceoq18Eg3qlrkmLW 1c71dAx/+7inF4UuTIkZ1yf1LsKkG0M3JMWdFaGbkuLFHaHbk+LUTa6DRze7 DibdFro1KVbd4lw/x/DhxIOhB5Ji1u3uGerY/Umx5p7Q3Ukx667QnUlx607v Aybd67r93XdfUmz6n3P7OYY/2POYBXce8j6458+HnkuKNY+GHkmKNY/ZP9ix h5Pi0OPO9fZz4tnBlKdCTybFoydcd5D7WA/2PO06WPJs6Jmk+PKC93Gk90Lu COfpgUMvug7uvBJ6OSluveTcsY7hw4tXXQc/XrMPh163D4NWht5IijVv2ocZ 74XeTYoj79uHO++E3k6KKe/ahxFvuf8k5/Hh0Afuhyufhj5JikEfhT5Mijsf 2+f+fR76LCmWfeh+uLPK/dOcx5/iefSf4HNwNtjxhWfBoa9CXybFmm9CXyfF iZ9CPybFpq9dB4O+dR3s+SH0fVJ8+s65uY7hz/MM6uDQz547w2uyDxj0S2h1 Utz51f5Cx+iBQb85B6v+CP2e1G+vhZ69xDHqYNOfroMRf9mHGX/bhyv/2Ic7 a8Rd/y8pZrSIP6+TEqeI/ZsUj9ZMqQ4OrR12rZRY1SylHGwihs873SbsJikx iHnNU7oPqbDJlLizQdj1U+LXemHXTYlhWPYBjzZMqQ4G0ZdIiVVNKeXgGTF8 GMc8ZnH/0imtBwsaYespcScfNpcSM6phKylxilg2JR4VUqqDQ+WwpZRYVUwp B5uI4cM8+jIpMYh59MBBYuwD7rRMaR/whr3UUuIOln3Ao41SqoN5G4dtnRKr WqWUg2fE8OEUz5g6WLJpSs+d93uvsH1T4lS7sG1TYtNmKfmwo0PYLVNiyVYp +XBqi7Cbp8Qj8vgwq31K/TCMPD482jqlfviybdjOKTGrU9iOKbFpm5R8WNM1 7HYp8Yw8/fCpS0r9sIk8PvxiHv2wlnNwTjjFdxWzuN87hO2WEmu6h90xJb70 DLtrSvwiRh0M2imlOli1S9geKfFp55Ry8IsYPoxjBnVwZ7eU5sIU1mQfcKpX 2N1T4k7vlHxYRYwemNQnpRyc2jPsHimxoF9KnxksI0YdPOMzpI7fs3w2T5gf /VPq4V2ZEZqeEl/2C7tvSjzaO+yglJiFHZgSn4aEHZwSp7DUwYLhYQ9NiVn7 pFQHJw5LKQcLmTEgJTbtn9J6sGpoSj4MOijsgSnxj70wCx4dEvbglFiFpQ4e seawlDiFpQ7eMeOAlBh0eEr74M6fEDo+Je6MDB2REneOtL+GYyNSYtIo5+DQ MaGjU+IR9qiUfqP9ayZu4NljUuIfM1gbJh0XOjYlxpAfnRJ3TvSeWjjPGrBq XGhsSnwa67r13Mcs2HSS6+A+Z+U5wovxzsGPk+3DnVNCk1JixrTQaSlxitjE lHh0quvg0NTQlJRYNdm5smP4OfdNSIlBp7kHjswNnZESd2am9J7BL96101Ni 2OneBzya5bpN3DcnJVbNdm5jx/C5w2d6DXg0PzQvpXu+LHRuSlxYGjo7Jd6c FVqYEnewC1Li0+LQopQ4tch1WZ+JZwfXlrhuM/ex3laeTQ4OneP14M1y76OT 90IONp3nHHy6IHR+Sgy60D6/Fbgf3M+2PhPn7OJa+mHGxSn9zoZHl9iHT5fa h0GXhy5LiR3XpvR36O6OUQebrnAdfLo6dFVK3LrSuV0cu9J7ui10a0r8usY9 /Ry7JSXu3Bi6ISV+XR+6LiWGXed9wKebXLeX+25OiVMrnOvrGH5vz2MWz+Z2 74P7/3DooZQYdFfozpSYdLf9QY7dkRKP7nGOZ/pD6PuUGHRf6H8pseZe1w10 H+vBpvtdxz17MPRAShx6xPs40HshN9R5euDRo66Dg0+EHk+JVY85d6hj+HDq SdfBjqfsw5Kn7cOpZ0PPpMSm5+zDhVdCL6fEiVftw5SXQi+mxJiX7cOvF0LP p8SzF+3Dp9fcD1/eCr2ZEqfeCL2eEo9W2ueevBt6JyX+ve5+GPS2+8c7jz/W 8+g/wufgbNy59zwLJn0Qej8l7nwU+jAlZnwe+iwlTn3oOnj0sevg0KrQpymx 6hPnpjqGP80zqINJX3juRK/JPuDRV6EvU2LQ1/ZnOEYPPPrGObj1XejblL67 eKd4n+Y4Rh3M+t51rLFrOu5ZWmv2TMuHMT+HfkqJR7+EVqfEkb9Cf6bEsNWu g1u/ug4m/RH6PSVm/ebcEsfwYUTzWGfttJj1p3vgCLG10mLNf6F/U2LZP6G/ U+LZ394HTFojrTp4RF+ztFi2Zlo52EYMf7nnMQsGrZPWPrjz2bCZtLizXth1 0+LO+mn5cIpYi7SYtEFaufl+Tj+mxJdEWv9WCJv490LqYB59rAeHkmnVwZV0 2FRarMmltQ/YxF7IwR3y9MCkfFp1MKgUtpgWwwpp5WAhMXzYUU6rDpZU0vJh UjUtHx7Vw9bS4k4jLR9+bBy2dVpM2SQtHwa1CrtRWnwhj8971jKtft478vgw qU1a/TCmfdjN0uJR27CbpsWgdmn58GXLsFukxTXy9MOjzdPqh0fk8WEW8+iH uZyDs3GfO6Q1CzZtHXartPiyTdhOaTFi+7Bd02IQsY5pcahzWnXwa7uwXdJi 1rZp5WAYMXw4xQzqYE+3tObCFdZkH7Bmx7A7pMWe7mn58IsYPXBqp7RysKpH 2J3T+h7m/eI7A34Row5OcXepOy20KvRpWjzaLa37vBfvB+9OWgzqHbZXWuzo 5zzMIrZ7Wmzqk1YdfOobds+0uLVHWjmYRQyfd3+/sPumxS/m0cN+ie2TFncG hR2YFr8GhO2fFsOw7AM+7Z1WHeekb0hanBqcVg5uEcOHd8xjFgzaP619cOeP CI1IizsHhj0gLe4clJYPp4gNTYtJB6eV43NaElqcFl8ODTssLTYdklYdzKOP 9eDQ8LTq4MrhYQ9LizUjvQ/YxF7IwR3y9MCkI10Hg44OHZUWw0Y5t7Zj+LDj GNfBkmPtw6Tj7MOjMaHRaXHnePvw46TQuLSYMt4+DBobOjEtvoyzD7dOcH+T 8/gw6WT3w5hTQ6ekxaOJoQlpMWiSffgyNTQlLa5NcD88muz+svP4Bc+jfz2f g7Nxn0/zLNh0emhaWnyZEZqeFiPmhs5Ii0HTXQeHZroOfs0JzU6LWbOca+0Y /iaeQR3sOdNza16TfcCa+aF5abFngf22jtEDpxY6B6sWhc5K67uOd4r3aXPH qINTi13Hfw/n33P5d2V+X3Avuc/w6dzQOWkxaHloWVrsuDh0UVrMWuY62HSe 6+DThaEL0uLW+c5t59j5XuPa0DVp8esi9/R07Oq0uHN56LK0+HVp6JK0GHaJ 9wGfrnDdru67Ki1OXencLo7hd/c8ZnHW67wP7vxdoTvT4s6NoRvS4s5N9ns7 dn1aTFrhXEc/p6Vp8eXWtDgIm252XS/3sR4cus11cOWO0O1pseZu72OQ90Ju gPP0wKR7XAeD7gv9Ly2G3evcvo7hw477XQdLHrAPkx60D48eDj2UFncesQ8/ ngw9kRZTnrIPgx4PPZYWX56wz3v2qPuHOY8Pk552P4x5IfR8Wjx6NvRMWgx6 zj58eTn0Ulpce8b98OhF9x/jPP4oz6P/QJ+Ds3GfX/Es2PRa6NW0+PJG6PW0 GPFu6J20GPS66+DQStfBr7dDb6XFrDedG+cY/njPoA72vOe5o70m+4A1H4Te T4s9H9qf6Bg9cOoj52DVJ6GP0/puPzut74zJjlEHpz51Hcz4LK3vZnj0uX34 9IV9GPRV6Mu02PFD6Pu0mPWl62DT166DT9+Fvk2LW984N8cxfN79v0J/psWv 792z1LE/0uLO6tDPafHrp9CPaTHsR+8DPv3iOs75e+i3tDnl3GLH8Bd4HrNg 0N/eB3d+vUx8X2XEnf9C/6bFnTUy8pc79k9aTFozoxyf03Zhu2TEl7XDrpUR m5plVLfMfawHh5pnVAdXWoRdJyPWrJ/RPmATeyEHd8jTA5M2yKgOBiXCNmXE sA0zysFCYvgwkr2wDziSzKgHJqXDpjJiTS5sNiN2VMKWM+IUsUxGTMpnVAdT SmGLGTGrkFEONhHDh330sQYcYh49sGPjsK0z4k4jbD0jftXCVjNiGJZ9wKOW GdXBIPpaZcSqjTLKwSli+PCSM3FO7vMmGa3HPe8YduuM+NIubNuMGNEh7JYZ MYjYphlxaLOM6uDXFmE3z4hZ7TPKwTBi+LCPvjYZMYt59MAVYuwD3nTKaB8w i71slRGrsOwDTm2TUR0M4p3aNiNmdc4oB8OIdfZ6c0NnZMSMrhm9izCpW9jt M+LOjmF3yIgXu4bdJSNOEaMOHnXPqA4m9Qi7c0as2imjHJwihg8X9grbNyNm MY8e2EFsz4xY0yvs7hkxa7ewPTPiFpZ9wKTeGdXBIPr2yIhNfTLKwSpi+DCO ecyCO/0y2gf3/ICwQzNizcCwAzJizaCMfNhErH9GHNo7oxzs5jnx7GDKPmGH ZMSjwRnVwTn6WA/27JtRHSzZP+x+GfHlwIz2AY/YCzlYQ54eOHRQRnVw59Cw wzLi3SFhD86If8Tw4cXwjOrgx2EZ+XDo8Ix8GHREaERGrBlpH2YcEzo6I44c ax/uHBUalRFTjrYPI450/1rO48Oh49wPV04MnZARg8aERmfEnePtc/9OCo3L iGWj3Q93xro/6Tz+hp5HP5zlHJwNdoz3LDg0IXRyRqyZFJqYESdOC03NiE0T XQeDTnEd7JkSmpwRn051ruQYfsUzqIND0zw34zXZBwyaHjo9I+7MsF93jB4Y NNM5WDU7NCuj3151z27lGHWwaY7rYMQZ9mHJmRnd7adCW2aDJ1lx4uzQkoy4 szC0ICMeYednxJ1FobMy4tNZruMdvyh0YUZ8Wuw67v/FzrXzjHkZ8Wmp14NZ 59iHO8tDyzJi1hLPglXnh87LiE/nua6r17wgIzZd4LptPOPcjDh0iffBPb8x dENGrLk8dFlG7LnCfnfHLs2IO1c6B1OuDl2VEZOuco7P753Q2xkxhdnXZ8S7 S702TLk2dE1GPCJ/XUbsucl76uk8a8C5m0MrMuLWCtft7j5mwaZbXNfJZ+U5 wpFbnYMrt9mHNXeF7syIHfeH7suIU8TuyIhJd7sOpvwvdG9GzLrHuX0cwx/o vtsz4tB97oEdT4aeyIg7j4QezohfD4YeyIhhD3gf8OhR1w133+MZseox5w51 DJ87/JTXgEfPhJ7O6J6/HnotIy68Eno5I948H3ouI+5gn82ITy+GXsiIUy+4 boDPxLODay+5bqT7WO9YzyYHh171evDmDe9jjPdCDjatdA4+vRV6MyMGvW2f 3wjcD+7nCJ+Jc451Lf38nh3izwp+vJvR+8c7lIl7nM6KF5+FVmXEoI9CH2bE JuwHGfHok9DHGbHqY9ex9g+skxG3PnUd+/rRuUme8X5GfPrc68GsL+zDoa9D X2XEu1WeBYO+DX2TEZu+cd1cr/ldRqz6znUzPePLjPjxk/cBA/4L/ZsRh34J rc6IO7/aX+jYzxlx5Dfn4M4fod8zYszvzsH39/xMl3v2Pxnx72evzR37K/Rn Rowh/3dG3Fkjqz0tdZ414FOziK+ZFZ+w1J3rPmbBx7Wyqpvhs/IcYdbaWeXg SPOsfHi0Xth1s+JBMmwiK34Ra5EVm9bPqg6uNIXdMCtubZBVDtYQw4d59K2T FV+YRw93oBS2mBWDslm9Z3COdy2VFc+w7ANW5bKqgzv0FbLiVD6rHGwihs89 K2e1Bhyqhq1kxYK2YTfNihMbh22dFXcaYetZ8Qhby4o7G4VtmRWfsNTBYM7E s4NPrbKqg3H0sR4MYjY5+LRJVuvBnXZZ7QN+sZc2WTFos6xysGrzsO2z4hHf pfgTfT94n2AkZ+KcMIxa+vn/AvL/xOH/zcNd75DV9zGM2Zrv5Kx41Clsx6w4 0jWr/9cXDCNGHdzaJqs6mNQl7LZZMatzVjk4RQyfPe0adpesmMU8enjvifXI ijU7ht0hK5Z1C7t9VjzDsg+Y1D2rOhhE385ZsWynrHKwjRg+7GMes3g2PbPa B/d/YNgBWTGoV9jds2JS76x8uEVst6x41CerHM90SmhyVgzqG3bPrFizR1Z1 sIo+1oNNe2VVxz3rH7ZfVhwalNU+4A17Icc9JE8PPNo7qzo4uE/YIVmxanBW ORhGDB9O7ZtVHezYLysfluyflQ+nDgg7NCs2HZiVDxcODTssK04Mz8qHKYeE PTgrxpDHh18HZdUPz8jjw6fDsuqHL0eGRmbFqRFhD8+KR0dk5XNPjg4dlRX/ yNMPg0a5f23n8df0PPphLefgbNy5YzwLJh0XOjYr7owJjc6KGSeFxmXFqdGu g0fHuw4OjQ2dmBWrTnCuyTH8pGdQB5PGe24Lr8k+4NGE0MlZMWii/Yxj9MCj Sc7BrVNDp2T13cU7xftUcIw6mDXZdazxUuhFr/myfRgzLXRaVjyaHjo9K47M DZ2RFcNOdx3cmuE6mDQ7NCsrZs10rpVj+DDi7NCSrJg1xz0dHFucFWsWhOZn xbJ5oTOz4tmZ3gdMWui6Ld23KCuWneXcFo7ht/M8ZsGgpd4Hd/6y0KVZcWdZ 6NysuLPcfifHzsmKSec5V/VzmpoVXy7M6v9pCJvOd11H97EeHLrIdXDlktDF WbHmcu9jR++FXDfn6YFJV7gOBl0duiorhl3p3C6O4cOOa1wHS661D5Ousw+P bghdnxV3brQPP24N3ZIVU26zD4NuDq3Iii+32Oc9u8n9ezqPD5Nudz+MuSd0 d1Y8ujN0R1YMuss+fLkv9L+suHaH++HRve7f13n8wZ5Hfy+fg7Nxn+/3LNj0 YOiBrPjycOihrBjxZOiJrBj0kOvg0COug1+Phx7LilmPOjfMMfzhnkEd7HnK c4d6TfYBa54JPZ0Ve561P8IxeuDUc87BqhdCz2f1Pcz7xXfGKMeog1Mvuo5/ Q3koo98C8OiVrO7z26Gdc/F+5cSg10OvZcWOd5wf49irWbHpDdfBp7dCb2bF rZXOjXUMn3d/VejTrPj1tnumOvZJVtz5IPR+Vvx6L/RuVgx71/uATx+6bor7 Ps6KUx85N9kx/ImexywY9Jn3wZ1fHfo5K+58GfoiK+58ZX+6Y59nxaSvneNz ah3PqVVOfPk+9F1WbPrGdae7j/Xg0A+ugys/hX7MijW/eB8LvBdy85ynByb9 6joY9Efo96wY9ptzSxzDhx1/ug6W/GUfJv1tHx79G/onK+78Zx9+rB1nWisn pjTPyYdBzcKumRNfyOPDrTVy6odl5PFh0jo59cOYDcKunxOP1g3bIicGrZeT D18SYZty4hp5+uHRhjn1wyPy+DCLefQv8zk4G/c5mdMs2JQOm8qJL9mwmZwY UQ5byolBxKiDQ7mc6uBXMWwhJ2blc8rBMGL4cIoZ1MGeSk5z4Qprsg9YUwtb zYk99Zx8+EWMHjjVyCkHqzYK2zKn707eqW+z4hcx6uAU7x11/F2d70i+D/l9 wb3kPsOnNpHfJCcGtQ27aU7s2DLsFjkxixh1sKldTnXwafOw7XPi1mY55WAW MXzW2C5sl5z4xTx64AixbXPiTsewW+fEr63CdsiJYVj2AZ865VTH7wn6OufE qW1yysEtYvjwjnnM4qxdc9oHd373sLvlxJ0dwnbLiTs75uTDKWLb58Sk7jnl 4DjPaeOc+NIjJw7CJlhIHcyjj/Xg0C451cGVnmF3zYk1vXLaB2xiL+TgDnl6 YFLvnOpg0J5h98iJYX1yysFCYviwo29OdbBkr5x8mNQvJx8eDQjbPyfuDMzJ hx/7ht0nJ6bsl5MPg4aEHZwTX8jj857tHXZQTu8deXyYtH9O/TDm4LAH5cSj A8IOzYlBB+bkw5dDww7LiWvk6YdHh+TUD4/I48Ms5tEPczkHZ+M+D89pFmw6 POxhOfHliNCInBhxTOjonBhEjDo4NNJ18Ouo0KicmHWkc2s5ht/cM6iDPcd6 LlxhTfYBa0aHjsuJPWPsr+sYPXDqeOdg1YmhE3L6buf94jtjQ8eog1NjXQcv xtmHHyfZh03j7cOLqaEpOTFoUmhiTmzCTsiJR6eGTsmJVae4jnf8jNCcnLg1 2XXc/7nOZT3j5Jz4dJrXg1nT7MOhGaHpOfFuimfBpFmhmTmxaabrNvaas33+ 2a5reMbpOXHoTO+De74sdG5OrFkQmp8Texbab+fYvJy4c5ZzMGVxaFFOTFrk HJ/fE6HHc2IKs8/JiXfzvDZMOTu0JCcekV+aE3uWe08dnGcNOHd+6LycuHWe 67Z2H7Ng0wWuq/usPEc4cqFzcOUi+7DmstClObHjmtDVOXGK2CU5Mely18GU q0JX5sSsK5zr4Rj+Du67OCcOXe0e2HFL6OacuHND6Pqc+HVd6NqcGHat9wGP bnRdX/etyIlVNzm3p2P43OFbvQY8uj10W073/KHQgzlx4f7QfTnx5u7QXTlx B3tnTny6N3RPTpy6x3XdfCaeHVz7n+sGue+OnJh1n3Nw6AGvB28e9j4O8F7I waZHnINPj4UezYlBj9vfJx/rhO7Ji1W3+ZyHuJb+Xn6WPEf48WRO7x/v0D+h v3Pixcuhl3Ji0HOhZ3NiE/aZnHj0Quj5nFj1vOvgwTuht3Pi1ouu496+69wR nvF0Tnx6xevBrFftw6E3Qq/nxLuXPAsGvRlamRObVrruJK/5Vk5sest1x3vG aznx4z3vAwZ8FfoyJw59GPogJ+58ZH+SY+/nxJGPnYM7n4Y+yYkxnzgH35/y M53h2V/kxL/3vTZ37LPQqpwYQ/7znLjztfd0mvOsAZ++DX2TE5++cd3p7mMW fPzOdWN8Vp4jzPreOTjyg314tDr0c048+DP0R078IvZTTmz6xXVw5ffQbzlx 61fnFjuGP999P+bElz/cwx1YK97HZnkx6N+c3jM4x7v2V048+8v7gFX/uQ7u 0LdmXpxaI68cbCKGzz1bO6814NA6YZvnxYJ02FRenEiEbcqLO+uFXTcvHmFb 5MWdDcKunxefsNTN85l4dvBpw7zqYBx9rAeDmE2Oe5XMaz24k8lrH9w59kIO BmXzysGqfNhcXjwq5OXze+Fpv08wkjNxThhGLf292uq+75vXPS/m1Q9fKmHL efGoHraWF0c2Dts6L4YRq+bFrUZedTCpVdiN8mJWy7xycIoYPvdnl7A98mIW 8+jhvd8i7OZ5saZt2E3zYlmbsJvkxTMs+4BJ7fKqg0H0tc+LZZvllYNtxPBh H/OYxXPZMq/1uN/dwm6fF4M6ht06L45sF7ZLXtwitlVerOqUVx1c2TZs57w4 tU1eOVhDDB9W0dchL04xjx4+H2LsAwbtkNc+uH/spWte9xDLPmDVjnnVwaqd w+6UF6e655WDW8TwYSXPmDrYsWtez513fVToyLz4tFvYnnkxa/e8fPixZ9g9 8mJE37x8WNUnbO+8+EIeH671yqsflpHHhzF75dUPewaFHZgX2/qH7ZcXswbk 5cOXIWEH58U28vTDpr3z6odH5PFhGfPoh5Gcg3Ny3/g+YxZc2c/v+babxXdz XlyCF8Piz4fkxS3i1HWNmqF5MQoGHRx/PigvTh0Y9oC8uEUMH1Yxgzo4dGhe c7n3rMk+YNZhYYfnxabD8/JhGDF6YNOIvHLwaWToiLzu7VH+zNZwjLpm/gyp 47u6lNcd5q4f7R7elUtCF+fFlLGhE/Ni0+jQcXkxDHtsXmw6PjQmL4aNcR0s mBKanBenTnAdnJjqXAvPOCYvTo3zenDrJPtwZ0Lo5LyYd6JnwaxJoYl58Wmi 6zjPqaFT8mLTKa7LeMb4vBh0mvfBnZ8fmpcXd6aHTs+LOzPs1x2blheTZjoH h2aHZuXFo1nO8Zur6rO29ewz8+LfNK8Nk84IzcmLMeTn5sWdBd7Txs6zBqw6 K7QwLz4tdF0b9zELNi1yXdpn5TnCi8XOwY8l9uHOuaFz8mLGhaEL8uIUsaV5 8WiZ6+DQ+aHz8mLVcue2dQx/a/ednReDLnAPHLkqdGVe3Lk0r/cMfvGuXZQX wy7yPuDRZa7r4b4r8mLV5c7t7Bg+d/hqrwGPrg1dk9c9vz10W15cuCV0c168 uSF0fV7cwV6XF59uCt2YF6dudN1WPhPPDq6tcN3u7mO9vp5NDg7d6vXgzR3e R3/vhRxsutM5+HR36K68GHSPfb7vuR/cz54+E+fc27X0X1CI+1+Mux6a1S7O Ft/TW4W2jvjS0NkF8eLx0GN5Meih0IN5sQn7QF48eiT0cF6seth1rP1i6IW8 uPWo69jXS849GOs+ELo/Lz494fVg1pP24dAzoafz4t1jngWTngs9mxebnnXd UV7z+bxY9rzrRnjGU3nx42XvAwa8H3ovLw69Fno1L+68bn+0Y6/kxZE3nIM7 b4ZW5sWYlc7xrDeM57dBQXxh9rt58e8Vr80dezv0Vl6MIf9OXtz5wHsa5zxr wMSPQx/lxacPXTfefcyCj5+47nCflecIsz51Do6ssg+Pvgx9kRcPvg99lxe/ iH2eF5u+ch1c+Tb0TV7c+tq52Y7hn+6+z/Liy3fu4Q78HvotLwb9HPopL879 GPohL5794H3AqtWuW+y+X/Pi1C/OLXIMn3v2h9eAQ3+F/syLBevE59C8IE6s FbZZQdz5N/RPXjzC/p0Xd9aI/H958ek/103zmXh28GnNgurOdR/rwSBmk4NP axe0HtxpUdA+4Bd7IQeD1i0oB6vWD7teQTzi3cHnDMPCHlIQI//0OWEYtfTP 97PkOXLXmwp6/3iHeobdtSB2FMMWCuJTJmy6IE5hUwUxKBc2WxCnsNTtEVzo FNqoIFblC6r7NmJ7hloVxEJmJAtiVamg9eBXuSAf9tTCVgtiHHthFtxqhK0X xC8sdR8GGzrG/Jbx5w/aqYa/S8AvZlQKYtDGYVsXxAD4tVVBHNo0bJuCuNO2 IB82EdukII60KygHd9qH3awgxmDJwehEQc8UvjC7Q0H8YwZrc8e2CLt5QYwh v2VB3OlY0J5gGXnWgE/bhO1UEJ+w1HFf6WMWfOxcUB2s56w8R5i1bUE5ONKl IB8edQu7fUE86BF254L4RaxrQWzaoaA6uLJT2O4FcWvHgnKwhhg+zKNvu4L4 wjx6uAN78l4UxKDdCnrP4Bzv2i4F8QzLPmBWr7C7F8Qd+voUxKneBeVgEzF8 7lnfgtaAQ/3C7lUQC/YPu19BnNgn7JCCuDMw7ICCeITtXxB39g47qCA+YamD wZyJZwefBhdUB+PoYz0YxGxy3Kt9C1oP7gwtaB/cOfZCDgYdUFAOVh0U9sCC eHRwQT7f+dwP3icYyZk4Jwyjlv7Z8Z734Xu4re45955+/jsb/z7Fv13BjqNC owri04iwhxfEKexhBTFoZOiIgjiFHeG1x4ZOLIhVR7qOfY1zDhYyY3hBrDra 68GvY+zDntGh4wpi3CjPglvHh8YUxK8xrmvymicUxKYTXLeuZxxbED9O8j5g wOmhaQVxaELo5IK4M9F+xrHxBXFkknNw59TQKQUx5hTneNY3h1YUxBdmn1YQ /8Z7be7YlNDkghhDfmpB7JnuPZWcZw2YODM0oyBOzXBdxX3Mgo+zXNfCZ+U5 wqzZzsGROfbh0bzQmQXxYHFoUUH8Ija3IDbNdx1cOSu0sCBuLXCuvWP4bdx3 RkF8WeQe7sD5ofMKYtA5Bf3+g3P8BlxSEM+WeB+w6lzXbeu+5QVxaplznR3D 555d4DXg0EWhCwtiwXWhawvixFWhKwvizqWhSwriEfbigrhzeeiygvh0mes2 8Zl4dvDpCtd1cx/r9fBscvDpaq8Hd673PuDXNc7BoBucg1U3hW4siEcr7POd z/04tCBGXuhz9nEt/fwmIM/3N3f9loLeP96hz0OfFcSO/4XuLYhPd4buKIhT 2NsLYtDdobsK4tRdrmP246HHCmLVPa5jX084N8AzbiuIVfd5Pfh1v33Y81Do wYIYd69nwZ1HQg8XxK+HXTfMaz5aEJ8edd0BnvFAQfx40vuAAa+FXi2IQ8+E ni6IO8/aH+HYUwVx5Dnn4M4LoecLYszzzsHoW/1MR3v2KwXx7ymvzR17KfRi QYwh/3JB3HndezraedaATytDbxTEpzdcd6z7mAUf33TdUJ+V5wiz3nIOjrxt Hx69H3qvIB58GvqkIH4Re7cgNn3gOrjyceijgrj1oXOnOoZ/svveKYgvn7iH O/Bt6JuCGPRFQe8ZnONdW1UQz1Z5H7DqS9fNdt/XBXHqK+dmOYbPPfvOa8Ch H0LfF8SCv0J/FsSJ30O/FcSdn0M/FcQj7I8FceeX0OqC+LTadeN9Jp4dfPrV dfPcx3qLPZscfPrD68Gdv72Ppd4LORj0j3Ow6r/QvwXxiL/74vOdz/3gfZrr M3HO5a6lv+dm8Tsn1KcenGwWZw4tbSbGrB1z1iqKR+uEbV4URzYMu0FRDCNG HdxqUVQdTFo/7HpFMWvdonJwihg+eyqGLRTFLObRw3tPLF8Ua9JhU0WxLBk2 URRbsU1FMSlTVB0Moi9XFMuyReVgGzF82Mc8ZvFsSkXtg/vfJuwmRTGoGrZS FJNqRflwi1i5KB7Vi8rxTAeH3bsoBm0UtmVRrGkUVQer6GM92NSqqDru2cZh WxfFoU2L2ge8YS/kuIfk6YFHbYuqg4Ptw25WFKvaFZWDYcTwYR57YR8wa/Oi emDJlmG3KIpHW4fdqigedAm7bVH8ItahKDZ1LKoOrnQOu01R3OpUVA7WEMOH efSxBnxhHj3cgZ3D7lQUg7qF3b4oznUNu11RPMOyD1i1Q1F1cIe+7kVxasei crCJGD585EyckzvXo6j1YEG/sHsVxZ3dwvYsihl7ht2jKE4R27UoHu1eVB0c 6hO2d1Gs6lVUDjYRw4d59O1SFIOYRw88I8Y+4E7/ovYBv9hL36IYhmUf8GhA UXXwiHdqUFGsGlhUDp4Rw/+EdUqxj5Lu95Ci3kW4sm/YfYpi0P5h9yuKHYeE PbgobhGjDlYNLaoODh0U9sCiOHVAUTnYRAwfLowKHVkUp5hHTzPHRhbFl8PC Di+KX4eGHVYUw7DsAw4dXlTdmu47oih+jSgqt4Zj+PCOecyCO0d5H9zzk0Pj i2LNsaFjimLNcfbXcezoojg02jn4y3Pi2cGUE0MnFMWjMa5r7j7Wgz1jXQdL TgqNK4ovE7yPtPdCLuk8PXBoouvgzqmhU4ri1iTnCo7hw4vJroMfU+zDoan2 YdC00GlFseZ0+zBjdmhWURyZYx/uzAzNKIops+zDiOnub+k8Phw6w/1wZUFo flEMOjM0tyjuzLPP/VsUOqsols11P9xZ6P7Nncdv53n0V30OzgY7FnsWHDo7 tKQo1pwTWloUJy4InV8Um5a6Dgad6zrYc15oeVF8WuZcZ8fwu3gGdXDoQs/t 4DXZBwy6OHRRUdy5xP72jtEDgy51DlZdHrqsqN9k23t2d8eog01XuA5GXGkf ZlxlH65cbR/uXBe6tihm3BxaURSniF1TFI+udx0cuil0Y1GsusG5Po7h806/ EHq+KAatcA/34Z7Q3UVx5/bQbUXx69bQLUUx7BbvAx7d4brB7rurKFbd6dze juH39zxmcf/u9Xqw4MnQE0Vx54HQ/UUx47HQo0Vxith9RfHoQdfBoUdCDxfF qoecO8gx/P3c97+iGPSoe/Z1jH3Anae8j+Hey+NFcedx7wMePe06mPdc6Nmi WPWMcyMdwx/lZ0wdLHnRz533+9fQL0Vx6uXQS0Wx6RX7sOPN0MqiWPKWfTj1 Ruj1oni00j7MetX9MOw1+/DobffDlw9C7xfFrHdD7xTFpvfsw5qPQx8VxbN3 3A+fPnT/qc7jT/Q8+o/xOTgnnPrEs7jfq0KfFsWaz0OfFcWXb0PfFMWvz1wH g75wHaz6OvRVUXz60rmZjuHP9gzq4M53njvVa7IPOPVD6PuiuPOj/bmO0QOT fnIOTq0O/VwUC37zZ7bAMerO8mdIHb9nj/ezhx+/u4d3Zcv4rt6iJL6sGXaN knj0d+ivopiF/bMoPv0b+qcoTv3jOliwQfStXxKz/nMdnNiwpNxSz/ijKDY1 K2k9WLVWST4MWids85L4x16YBY/WjT+3KIlVWOrgEWuuVxKnsNTBO2asXRKD mkraB3e+ErZcEndSYZMlcSddkg+niCVKYlKmpBwcyoXNlsQjLDl+o13js8Ia ZpdK4h8zWBsmFcLmS2IM+WJJ3KmWtCeYRZ41YFU9bK0kPmGpg030MQs2NUqq g/uclecIL1qWlIMfG5Xkw51Nwm5cEjPah92sJE4Ra10Sj9qUVAeH2oVtWxKr Ni0pB5uI4cM8+lqVxCDm0QNHtgnbqSTudCjpPYNfvGubl8QwLPuAR1uVVAeT 6OtYEqu2LikHp4jhc4c7l7QGPOoSdtuS7vmuYXcpiQs7h92pJB51C7t9Sdzp Gna7kvi0Y9gdSuIUljp4zJl4dnCte0l18Is+1oNZzCYHh3qUtB686VnSPmAW eyEHm3YrKQefeoXdvSQG8XsZ/2zfD+4nrOJMnBOWUUs/zNijpN/Z8GjPknz4 1LckHwb1C7tXSewYHHbvkphFjDrY1L+kOvg0KOzAkrg1oKQczCKGz54ODntQ SfxiHj1whNiBJXFnv7D7lsSvfcIOKYlhWPYBn/YvqQ5m0XdASZwaWlIObhHD h3fMYxbP5pCS9sH9PyZ0dEkMGh720JKYdFhJPtwiNqwkHh1eUo5nujy0rCQG jQwdURJrRpRUB6voYz3YdKTruGdHhUaVxKFjvY/m3gu5tZynBx4d5zo4eHxo TEmsGu3c+o7hw6kTXAc7TrQPS8bah1MnhcaVxKbx9uHCKaFJJXHiVPswZWJo QkmMmWQffp3s/qzz+PBpsvvhy+mhaSVxampoSkk8Os0+92RmaEZJ/Jvifhg0 3f0tnceveR79SZ+Ds3HnZnkWTJoTml0Sd+aGziiJGWeFFpbEqTNcB4/OdB0c WhCaXxKr5jnXzjH89p5BHUxa5LmtvSb7gEdLQotLYtDZ9rd0jB54tNQ5uHVu 6JySvrt4p3ifOjpGHcxa5jrW+Dr0ldf8xj6MuSB0fkk8ujh0UUkcuTJ0RUks I3ZhSdy6xHUw6fLQZSUx61LnujuGDyNWhG4qiVlXuGcPx24siTXXhq4piWVX h64qiWdXeR8w6TrX9XHfDSWx7HrnejuG39PzmAWDbvY+uPP3h+4riTu3hW4t iTu32+/n2C0lMekO57r4OZ1XEl/uDt1VEpvudN1e7mM9OHSP6+DK/0L3lsSa B7yP/bwXcvs4Tw9MetB1MOiR0MMlMewh5w5yDB92POo6WPKYfZj0uH149GTo iZK485R9+PF86LmSmPKCfRj0bOiZkvjynH3es6fdf4Tz+DDpRffDmNdCr5bE o5dDL5XEoFfsw5eVoTdK4tpL7odHr7v/BOfxR3se/cN9Ds7GfX7Ts2DT26G3 SuLLu6F3SmLEx6GPSmLQO66DQ++5Dn59GPqgJGa979wkx/BP9QzqYM8nnjvO a7IPWLMq9GlJ7PnM/lTH6IFTnzsHq74MfVHS9zDvF98Z0x2jDk595br25eBJ aEFZPPq2pPv8S+iAiA0ti0E/hL4viR2/Oj/Xse9KYtOProNPq0M/l8Stn5xb 4Bg+7/4aMfu/kvj1i3vYL7F/S+LOn6E/SuLX76HfSmLYb94HfPrLdcvd909J nPrbuWWO4Z/tecyCQc1iD2uWdeeTYRNlcad52LXL4s46ZflwithaZTGpRVk5 PqfuYXcsiy/rh12vLDatW1YdzKOP9eDQBmXVwZWmsBuWxZpUWfuATeyFHNwh Tw9MSpdVB4NyYbNlMSxTVg4WEsOHHfmy6mBJoSwfJhXL8uFROWypLO5UyvLh R8uwjbKYslFZPgyqh62VxRfy+HCrWlY/LCOPD5NaldUPYzYN26YsHm0ctnVZ DNqkLB++bBa2XVlcI08/PGpbVj88Io8Ps5hHP8zlHJztcb/fzIJNW4TdvCy+ dAi7ZVmM6Bx2m7IYRIw6OLRVWXXwq1PYjmUxa+uycjCMGD6cYgZ1sGfbsubC FdZkH7Bmu7BdymJP17J8+EWMHji1fVk5WLVD2G5lfdfxTvE+wS9i1MEp3rsd fLazfJ/P8L3kPsOnHhHbuSwG7Rp2l7LY0Sds77KYRYw62NSzrDr41Cvs7mVx a7eycjCLGD5r7B12UFn8Yh49cITYwLK4s1fYvmXxa8+we5TFMCz7gE/9yqrj 9wR9A8riVP+ycnCLGD68Yx6zOOvgsvbBnT807LCyuLNv2H3K4s5+ZflwitiQ spi0f1k5OM5z2qksvhxYFgdhEyykDubRx3pw6KCy6uDKIWEPLos1w8vaB2xi L+TgDnl6YNJhZdXBoJGhI8pi2OFl5WDhiLJ82HGk62DJKPsw6Sj78OiY0NFl cedY+/DjhNDxZTHlRPswaExodFl8Od4+79lx7l/PeXyYNNb9MGZC6OSyeHRS aFxZDBpvH76cEppUFtfGuR8eTXR/3nn8jOfR39zn4Gzc51M9CzZNCU0uiy+n haaWxYhZoZllMWiq6+DQNNfBrxmh6WUx63TnGo7hb+QZ1MGe2Z5b8prsA9ac EZpTFnvm2t/YMXrg1JnOwar5oXllfbfzfvGd0dYx6uDUAtfx91QYeqe5tais u/1BJe5cNe5gVQw6O7SkLHacF1peFrOILS6LTUtdB5+Whc4ti1vnONfJMXze /StCl5fFr+Xu2cmxy8rizkWhC8vi1wWh88ti2PneB3y62HXd3XdpWZy6xLkd HcPv6nnMgkFXeh/c+VtDt5TFnWtCV5fFnWvt7+rYVWUx6Trn+Jw+Cn1YFl9u DN1QFpuud90u7mM9OHST6+DKzaEVZbHmNu9jL++F3J7O0wOTbncdDLordGdZ DLvDuUGO4ff2XtgHHLnbPTDp3tA9ZbHm/tB9ZbHj0dAjZXGK2P/KYtIDroMp D4ceKotZDzp3oGP4+7qPNQ72PHpgx/Oh58rizpOhJ8ri1+Ohx8pi2GPeBzx6 ynVHuu/Zsvj1TOjpsjj1rP0hPhPn5D6/4PW45++E3i6LL6+EXi6LEW+GVpbF IGIvlcWhV10Hv94IvV4Ws15z7njH8I9x34tlMWule452jH3Am3e9j5O8l7fK YtVb3geces91MIh36oOymPW+c5Mcwz8+7unrodcqYsbHZb2LMOnT0Cdlceez 0KqyePFN6OuyOLXKdfDoc9fBpK9CX5bFqi+cm+EYPpz4NfRLWcz62j1nOba6 LNb8EPq+LGZ9F/q2LG59633ApB9dt9B9P5fFpp+cW+AY/lzPYxbc+c374J6v Hc9grYpY82foj7JY85f9sx37vSwO/e3cFD8nnh1M+S/0b1k8+sd1S9zHerBn jYrqYEmz+POaFfGleUX7gEfshRysIU8PHFqnojq4s17YdSviVouKcvCPGD68 WL+iOvixQUU+HNqwIh8GJcI2VcSaZEU+zMiFzVbEkXxFPtzJhE1XxBTy+DAi VVE/zCCPD4cKFfXDlWrYSkUMKoUtVsSdckU+968Rtl4Ry8jTD3dqFfVzP8nj wynm0Q9nOQdngx0tK5oFh1qF3agi1mwctnVFnNgsbLuK2ESMOhi0SUV1sKdt 2E0r4lObinLwiBg+rGEGdXCofUVzYRhrsg8YtEXYzSviToewW1bEL2L0wKCt KsrBqo5ht67otxd1zIZVxKiDTZ0qqoMR21Tkw4zOFflwZduKfLjTNex2FTFj p7DdK+IUsS4V8Wj7iurg0I5hd6iIVd0qysEmYvi80weFPbAiBjGPHu5D77C9 KuLOrmF3qYhfPcLuXBHDsOwDHvWsqA4G0bd7RazaraIcPCOGD+OYxyzuX5+K 1oMF+4QdUhF39grbtyJm7B12UEWcIrZnRTzqV1EdHBoYdkBFrOpfUQ42EcOH efTtURGDmEcPHCTGPuDOvhXtA96wl8EVcQfLPuDRfhXVwbwDwg6tiFX7V5SD Z8Tw4RTPmDpYcnBFz533e3ro9Io4NSzsIRWx6dCKfNhxRGhERSwZaR9OHR72 sIp4RB4fZg2vqB+GkceHR0e6H74cGzqmImYdFRpVEZuOtg9rxoRGV8SzUe6H T8e5fz3n8dfxPPphLefgnHDqeM/ifp8YOqEi1owLja2IL5NCEyvi11jXwaCT XAerJoROrohP453LOIaf8wzq4M4pnruh12QfcGpy6NSKuDPFftExemDSVOfg 1LTQaRWxYIY/s6pj1NX9GVK33N8h/5gfM93Du/K/0L0V8WVBaH5FPDojNKci ZmFnV8SnM0NzK+LUXNfBguWhZRUxa57r4MR5zrX2jFkVsWmh14NVZ9mHQWeH llTEv/meBY/OCS2tiFVLXbeN1zy3Ik6d67oOnrG4Igad731w568JXV0Rdy4K XVgRdy6239WxCypi0iXOwaHLQpdWxKNLneM3WhefdVfPvqoi/l3gtWHSFaHL K2IM+Ssr4s613tNOzrMGrLo+dF1FfLrOdT3cxyzYdIPrtvRZF1XEixudgx83 2Yc7t4ZuqYgZd4fuqohTxG6uiEe3uQ4O3Rm6oyJW3e7cQMfw+7pvRUUMuss9 cOTh0EMVcee+it4z+MW7dk9FDLvH+4BH97vuQPc9WBGrHnDuAMfwucOPeA14 9Fjo0Yru+YuhFyriwnOhZyvizZOhJyriDvbxivj0dOipijj1lOv29Jl4dnDt Gdcd6j7WG+nZ5ODQ814P3rzkfRzlvZCDTS87B59eDb1SEYNes89vBe4H9/MQ n4lzHuda+mHGGxX9zoZHK+3Dpzftw6C3Q29VxI4PK/o79DjHqINN77gOPr0f eq8ibr3r3ATH3vWevgp9WRG/PnDPDMe+qIg7n4Y+qYhfH4c+qohhH3kf8GmV 66a77/OKOPWZc6c7hj/F8z72s/na++D+/xH6vSIGfRf6tiImfW9/jmPfVMSj H5zjmbatBs+qYtDPoZ8qYs2PrpvtPtaDTatdxz37LfRrRRz60/tY4r2QW+T8 LxXx6C/XwcF/Q/9UxKq/nVvmGD6c+s91sGONqnxYsmZVPpxaK2yzqti0dlU+ XFgv7LpVcWL9qnyY0iLsOlUxhjw+/GpeVT88I48Pnzaoqh++pMImq+JUU9gN q+JRoiqfe5INm6mKf+Tph0HpqvphEHl8eMY8+mEt5+Bs3LlcVbNgUiFsviru lMIWq2JGI2y9Kk4Row4elauqg0O1sNWqWFWpKgebiOHDHWZQB5NaVjUXnrEm +4BHrcJuVBWDWlflwzJi9MCjjavKwa02YTep6rvrJ79PcIsYdTCL966N15gY muBzTrIPY9qH3awqHm0RdvOqONIpbMeqGEaMOri1ZVV1MGlr/p2sKmZ1qCoH p4jhw4gdw+5QFbOYRw8cIdatKtZ0CbttVSzrHHabqniGZR8wabuq6uARfdtX xbKuVeVgGzF82Mc8ZsGg7lXtgzu/Z9g9quJOj7A7V8WdXary4RSxnapi0q5V 5WAxz6ldVXzZvap/K4RN/HshdTCPPtaDQ72qqoMrfcL2roo1favaB2xiL+Tg Dnl6YNJeVdXBoAFh+1fFsH5V5WAhMXzYMbCqOlgyqCofJu1dlQ+PhoQdXBV3 9qnKhx8Hhj2gKqYcVJUPg/YPu19VfCE/tKr3bN+q+nnvyOPDpIOr6ocxh4Ud XhWPhoU9pCoGHVqVD1+OCI2oimvk6YdHh1fVD4/I48Ms5tEPczkHZ+M+j/Qs 2DQqdGRVfDk6dFRVjDg+NKYqBh3lOjh0jOvg1+jQcVUx61jn1nUMf33PoA72 nOC5zbwm+4A1Y0MnVsWecfabHKMHTp3kHKw6OTS+qu9h3i++M9KOUQenJrju rlCtFo+vJh6dUtV9ns77wbtTFYOmhCZXxY4ZzpccO7UqNk11HXw6PTStKm6d 5lzNMXze/QWh+VXxa7p72jk2ryruzAnNropfs0Izq2LYTO8DPp3hurbuO7Mq Ts11blPH8Ft7HrNg0ELvgzt/Qej8qrizOLSoKu4ssb+FY2dVxaSzneNzejb0 TFV8OTd0TlVsWuq6zd3HenBomevgynmh5VWx5kLvo4v3Qq6z8/TApItcB4Mu DV1SFcMudm4Hx/Bhx2WugyWX24dJV9iHR1eFrqyKO1fbhx83hK6viik32odB 14WurYov19uHW9e4fzfn8WHSTe6HMbeFbq2KRzeHVlTFoFvsw5c7Q3dUxbUV 7odHt7t/oPP4/TyP/h4+B2fjPt/lWbDpntDdVfHlf6F7q2LEI6GHq2LQva6D Q/e5Dn49FHqwKmY9ELq/KoY9aP8gz6AO9jzquYO9JvuANY+HHquKPU/YH+YY PXDqSedg1dOhp6r6ruOd4n063DHq4NQzruO/h/Pvufy7Mr8vuJfcZ/j0Quj5 qhj0UujFqtjxRuj1qpj1outg08uug0+vhV6tiluvODfasVe8xoehD6ri1+vu meTY+1Vx5+3QW1Xx683QyqoYttL7gE/vuG6i+96rilPvOjfBMfxxnvemz/qR 98Gd/y70bVXc+TT0SVXcWWV/imMfV8Wkz5wb5ef0XFV8+bIqDsKmz1032X2s B4e+ch1c+Sb0dVWs+d77mOO9kJvlPD0w6QfXwaCfQz9VxbAfnZvvGD7sWO06 WPKLfZj0q3149Hvot6q484d9+PFv6J+qmPKffRj0d+ivqvjyj33esz/df47z +DBpjZr6YUzz+PPaNfGoWdg1a2LQWjX58GXdsC1q4hp5+uHROjX1wyPy+DCL efQv9jk4G/d5vZpmwaYNwq5fE1+awm5YEyOyYTM1MYgYdXAoUVMd/EqHTdXE rGRNORhGDB9OMYM62JOraS5cYU32AWsKYfM1sadYkw+/iNEDp0o15WBVJWy5 pu923i++M+AXMergFN/D1MGMek3fzfCoUZMPn1rW5MOg1mFb1cSOdmHbhla1 Uw3sgk0b11QHnzYN26Ymbm1SUw5mEcPn3e8UtmNN/GIePeyX2NY1cWeLsJvX xK/2YTeriWFY9gGftqypjnPSt1VNnOpQUw5uEcOHd8xjFgzapqZ9cOd7hN25 Ju50CbttTdzZriYfThHrXBOTutaU43MaHTquJr7sELZbTWzavqY6mEcf68Gh HWuqgys7he1eE2t2qWkfsIm9kIM75OmBSbvWVAeDdg+7W00M61lTDhYSw4eR 7IV9wJFeNfXApD5he9fEmr5h96yJHYPCDqyJU8T2qIlJe9VUB1MGhO1fE7P6 1ZSDTcTwYR99rAGHmEcP7Dgg7NCauLNP2CE18Wtw2L1rYhiWfcCjfWuqg0H0 7V8Tq/arKQeniOHDS87EObnPB9a0Hvd8VOjImvgyLOwhNTHiiNCImhhE7OCa OHRoTXXw6/Cwh9XErOE15WAYMXzYR99BNTGLefTAFWLsA94c5X00815G1sSq kd4HnDradev6nTq2JmYd41wLx47xeg+HHqqJGWP8LsKkE0LH18SdsaETa+LF xNCEmjh1ouvg0TjXwaSTQ+NrYtVJzqUdw/807v4nob5txawJ7vk4YtNqYgis mRw6tSZmnRKaVBO3JnkfMGmK62AQvafVxKapzlUdwy96HrO+i7X3Ck2v6Z4v Di2qiTVzQrNrYs0Z9ls7NqsmDs11bgM/J54dTJkfmlcTj850XSv3zayJPQtc B0vOCi2siS9LvI8tvBdy7Z2nBw6d7Tq4c27onJq4tdS5jo7hw4tlroMfy+3D ofPsw6ALQufXxJoL7cOMy0KX1sSRy+3DnUtCF9fElEvtw4iL3N/NeXw4dIX7 4cq1oWtqYtBVoStr4s7V9rl/N4Sur4llV7of7lzn/l7O4/f0PPq7+BycDXbc 6FlwaEXopppYc0vo5po4cVfozprYdLPrYNCtroM9d4Rur4lPtzk3wDH8QZ5B HRy623P38JrsAwbdG7qnJu78z/4Qx+iBQfc5B6seCN1f02+vIZ69v2PUwaYH XQcjHrIPSx6p6W7/FxpRD57UxYlnQ8/UxJ0nQo/XxCPsYzVx56nQkzXx6UnX 8Y6/HnqtJj497Tru/xvODfOMR2vi03NeD2Y9bx/uvBR6sSZmPeNZsOqV0Ms1 8ell143xmq/WxKZXXXe0Z7xQE4dWeh9fwJaa7juseTv0Vk3secf+OMferIk7 7zoHU94PvVcTk95zjs8vE88vXRdTmP9xTbx702vDlA9DH9TEI/Ifhb6K/XwZ 6tdW3PrAa/wQ/oDQZ3y+YfuHVtXEp48868eIDQx9XhPTX/BzhCNfhb6siStf 24c134e+q4kdv4RW18QpYt/WxKQfXAdTfg79VBOzfnRuvmP4c9z3TU0cWu0e 2PFv6J+auPNH6Pea+PVb6NeaGPar9wGP/nTdMvf9XROr/nLuXMfwucP/eQ14 tGY8+zXquucbht2gLi6sF3bdunizdti16uIOtlldfFonbPO6OIWlbrbPxLOD ay3qqoNf9LEezGI2OTi0fl3rwZumuvYBs9gLOdiUqCsHn1Jhk3UxiHcHn98I 3A/uJ6ziTJwTllFLf1t/HnxW8CNb1/v3U7wLe7fV/xcIXtTD1upiUClssS42 YQt18agStlwXq7DUsXbbsJvWxa1qXXXsq11dOdjHjHxdfGrUtR7MalmXD4da h21VF+/YC7Ng0CZhN66LTVjq4BFrtqmLVVjqYBkzNqqLH5vVtQ8Y0CXstnVx aIuwm9fFnS3r8mETsfZ1caRDXTm4s3XYrepiDJYcfM/V9UzhC7M718U/ZrA2 d6wT/++luhhDfpu6uLNdXXuCZeRZAz5tH7ZrXXzCUsd9pY9Z8LFbXXXwnbPy HGHWDnXl4MiOdfnwqEfYneviQa+wu9fFL2I71cWmXeqqgyu7he1ZF7d2rSsH a4jhwzz6utfFF+bRwx0YGHZA6Od4vwaH9og/fxvcGhR/7h1//qad9gDXVkds CP8/1rq4Q1//0C8R2yfUty42EetX1z0bVNcacGhw2L3rYsEhYQ+uixMHhj2g Lu7sG3afuniEHVIXd/YPu19dfMJSB4M5E88OPg2tqw7G0cd6MIjZ5ODTQXWt B3eG1bUP+MVeyMGgQ+vKwarDwg6vi0d8l+Lze4H7wfsEIzkT54Rh1NL/+kbx 2baKz72V7voRdX0fw5gjQyPr4tFRoVF1cWRMaHRdDBvlOrh1tOtg0nGhY+ti 1jHOtXDsGO9pYmhCXcwa7Z6sYyfXxZqxoRPrYtkJoePr4tnx3gdMGue6jPvG 18Wyk5xLO4bf5HnM4tlM8j64/7NDs+pi0OTQqXUxaYr9omOn1MWjqc7xTO8M 3VEXg04PTauLNae5ruA+1oNN013HPZsZmlEXh+Z4H628F3ItnacHHp3hOjg4 L3RmXaya69ymjuHDqfmugx0L7MOShfbh1KLQWXWxabF9uHBu6Jy6OLHMPkxZ Gjq7LsacYx9+LXH/Vs7jw6fl7ocvF4UurItT54fOq4tHF9jnnlwauqQu/p3n fhh0sft3cB6/q+fRv7nPwdm4c5d5Fky6InR5Xdy5KnRl6LvgxvV1MaSHY9TB o6tdB4euC11bF6uucW43x/Bhz/Wu23Gz2F/ohrp4drn3AY9WhG6qi0E329/D sRvr4tGtoVvq4tbtodvq+u7ineJ96u8YdTDrDtexRotG3LmG1ly3IR/G3BO6 uy4e/S90b10ceTj0UF0Mu9d1cOs+18GkB0MP1MWs+50b6hg+jHg29ExdzHrI PUc49nRdrHk89FhdLHs09EhdPHvE+4BJT7huhPueqotlTzp3uGP4wzyPWTDo Oe+DO/9W6M26uPNi6IW6uPOS/aMce74uJr3s3GA/p7vq4stroVfrYtMrrhvl PtaDQ6+7Dq6sDL1RF2ve9j7Gei/kTnCeHpj0jutg0Puh9+pi2LvOTXAMH3Z8 4DpY8qF9mPSRfXj0SejjurjzqX348WXoi7qY8pV9GPR56LO6+PKFfd6zVe6f 5jw+TPra/TDmh9D3dfHo29A3dTHoO/vw5efQT3Vx7Rv3w6Mf3T/fefy5nkf/ ZJ+Ds3GfV3sWbPo19EtdfPk99FtdjPg39E9dDPrNdXDoD9fBr79Df9XFrD+d O8cx/GWeQR3s+c9zz/Ka7APWrBl3a42G2NOsIR9+EaMHTq3VUA5WNQ+7dkPf w7xffGfAL2LUwSnuLnVL/PcVfgvAo/Uaus/p0PjQSQ0xaMOwGzTEjozzMIvY +g2xqamhOviUCptsiFuJhnIwixg+7349bK0hfjGPHvZLrNoQd4phCw3xKxc2 2xDDsOwDPpUaquOc9FUa4lS5oRzcIoYP75iXb4hBjYb2wZ3fPGz7hrjTKuxG DXGndUM+nCLWsiEmbdxQjs9paNj9G+LLpmHbNMSmTRqqg3n0sR4cattQHVzZ LGy7hlizRUP7gE3shRzcIU8PTNqyoToYtHXYrRpiWIeGcrCQGD7s6NhQHSzp 1JAPk7ZpyIdH24bt3BB3ujTkw48dwnZriCk7NuTDoO3Ddm2IL+Tx4dZ2DfXD MvL4MKl7Q/0wZtewuzTEo53D7tQQg3o05MOX3cPu1hDXyNMPj3o21A+PyOPD LObRD3M5B2fjPvdqaBZs6hO2d0N82TPsHg0xYmDYAQ0xiBh1cKhvQ3Xwq3/Y fg0xa6+GcjCMGD6cYgZ1sGdQQ3PhCmuyD1gzOOzeDbFnSEM+/CJGD5zap6Ec rNov7L4NfdfxTvE+wS9i1MEp3jvq+Ls635F8H/L7gnvJfYZPB4U9sCEGHRL2 4IbYMSLs4Q0xixh1sGlYQ3Xw6bCwwxvi1qGN/zd11mFXFO8bJ17sVlAEzsbZ s+95VezuFru7AxtUQCWURkGUUjCwuxUURcQWuxFFTBDB7s7f8/nd93vx/eO5 ZuaJmdk5O5+zc3Z2j2wwC90xbqN7SLeK+EV9xCxh3ekVcefkkJMq4teJIV0r Yhgp/YBPp9hvccedVhGnTrVtMesot3J91MWxnuF+MOfPDzmvIu70CDmrIu70 dHkZ686siEm9bIPjjNNhFfHl3Io4CJvOtt/SjqM9ONTbfnClX0jfiljT3/1Y 1X3B1tb2PhUxaYD9YNDgkEEVMWygbR2toww7htgPlgx1GSYNcxkeXRhyQUXc Ge4y/Lgk5OKKmDLKZRg0MuSiivhyscucZyMcX7OdMkwa7XgYc1nIpRXxaGzI mIoYNM5l+HJ5yISKuDbG8fBovOPXs53y2q6P+MzHwbExn69wXbDpqpArK+LL 1SETK2LEjSE3VMSgifaDQ9fYD35dH3JdRcy61rbNraO8pevAD/bc5Ho3dJv0 A9bcEnJzRey51eVtrCMGTt1mG6y6I+T2ir7bOb/4ztjBOvzg1J32gxd3uQw/ 7nYZNt3jMrx4KGRKRQyaFHJ/RWwiva8iHj0QMrkiVk22H+f4kyFPVMStB+3H /H/Ktt1cx70V8elhtwezproMhx4NmVYR76a4Lpj0WMj0itg03X6Huc3HffyP 2+9A1/FIRRx62v1gnr8e8lpFrJkR8mxF7HnO5aOte6Yi7jxvG0x5MeSFipj0 gm18fv+E/F0RU6j71Yp494zbhikvh7xUEY+wv1IRe95wn7raThtw7q2QNyvi 1pv2O8lx1AWbZtrvAB8r4whH3rYNrsxyGda8FzK7InZ8EvJxRZxC925FTJpj P5jyUciHFTHrfdtg0wcu93DcOxVx6GPHwI4vQj6viDvzQz6tiF/zQuZWxLC5 7gc8+sx+Qxy3sCJWLbBtsHWUmcNfug149HXIVxXN899Cfq2ICz+H/FQRb74L +bYi7pB+UxGffgj5viJOfW+/s3xMjB1c+9F+wx1He6NcNzY49Ivbgze/ux9j 3RdssOkP2+DTXyF/VsSgv12+OIl2Qr5PxKqvfJzj7Ut8f48l4wg//q3o/OMc 2jDiNkjEiyUiXTwRg1pH2ioRm0hbJuJRm0gbErGKFD94sFKkKybi1mKJ/Ji3 KyeywT7qaJGIT0smag9mLZWoDIeWjXSZRLyjL9QFg5aPdLlEbCLFDwbR5gqJ 2ESKHyyjjqUT8WOVRP2AAVmkaSIOrRppu0TcWS1RGTaha5uII+0T2eBOh0hX T8QYUmzw/T+PKXyh7iQR/6iDtpljnSLtmIgx2CuJuJMn6hMsw04b8KmItJqI T6T4MV+Joy74WEvkB985VsYRZpWJbHCkMVEZHq0Z6RqJeLBepOsm4he6pkRs WiuRH1xZJ9K1E3GrcyIbrEFHGeYRV0/EF+ojhjmweaSbJWLQRonOMzjHubZ+ Ip6R0g9YtXEiP7hD3KaJOLVJIhtsQkeZebZFojbg0FaRbpmIBbtG2iURJ3aO dKdE3Nk20m0S8Yh060Tc2SHS7RMxi3S7RAzmmBg7+LRjIj8YRxztwSDqxsa8 2iVRe3Bnt0T9YM7RF2wwaPdENli1Z6R7JOLRXonKXC8wPzifYCTHxHHCMHyJ vyTkx0Rznnm+d6J4+LJvpPsk4tEBke6fiCOHRXpoIoah2y8Rtw5M5AeTDon0 4ETMOiiRDU6ho8z86R1ybiJmUR8xnPfHR3pcItYcFemRiVh2RKSHJ+IZKf2A SUcn8oNBxB2biGXHJLLBNnSUYR/1HeFxOSFRe8zvs0LOTMSgk0NOSsSR7iHd EnEL3YmJWHWK/eDK6SGnJeLUqbYtZh3llo7rmohT3RzTwjr6AYN6uB9Luy9n JJqHZ7gfsKqn/WDVOSFnJ+JUL9tWsI7ySh5j/GBHH4875/p1Idcm4lO/kL6J mHWey/BjUMjARIwY7DKsGhDSPxFfBroM1853fHvbKcOYIY6HPcNDLkzEtmEh QxMx6wKX4cvIkIsSsW2o42HTCMfXbKecuz7i2/o4OE7m28WuC66MSnS+w6Mx IaMT8WJCyPhE3BptP9g01n4w6LKQSxNxapxta1tHeV3XgR8cutz11t0m/YBZ V4ZckYhNV7m8gXXEwKaJtsGna0KuTjRvr/dntol1+G3mzxA/vquZr8xh5voN juFceTfknURMuSvkzkRsujXklkQMuznkpkRsuj3ktkQMu81+1D0l5MFEnLrD fnDiIdu2dh03JuLU3W4Pbt3jMty5P+S+RMy703XBrMkhkxLxaZL99nabDyRi 0wP228113JuIQQ+7H8z5Z0OeScSdaSGPJOLOoy4fYN3UREyabhscejzksUQ8 esw2rrn287Ee5bqfTsS/qW4bJj0Z8kQixmB/KhF3ZrhPh9lOG7Dq+ZDnEvHp Ofsd4Tjqgk0v2G9XHyvjCC9etA1+vOQy3Hkt5NVEzHg7ZGYiTqF7JRGPXrcf HHor5M1ErHrDttOto3yS415OxKCZjoEjH4Z8kIg7sxOdZ/CLc21WIobNcj/g 0Xv2O9dx7ydi1RzbzrGOMnP4I7cBjz4J+TjRPP8q5MtEXPg8ZGEi3nwaMi8R d0jnJuLTZyHzE3Fqvv1O9DExdnBtgf3OcxztDXbd2ODQF24P3nztfgxzX7DB pm9sg0/fhXybiEHfu8z3PfOD+dnXx8RxjrAv8W+nure8aSYe/ZToe/qk0L8S 8nIqXvwd8lciBv0W8msiNpH+kohHf4T8nohVv9uPtheLOtqk4taf9qNfi6ey jXEdPyfi0z9uD2b96zIcahm+LVLx7i/XBZNah65VKjaR4gePaLMhFctI8YNl 1PFfIn4skaofMKBdpG1TcWiZSJdOxZ1lU5VhE7qlUnFkuVQ2uLNCpMunYgwp NsZ6h0i3T8UX6l4lFQepY8lUc2ylSFdMxRjsK6fizqqp+gTLsNMGfGof6Wqp +ESKH/OVOOqCj6un8oPv/3kcYVaHVDY40jFVGR6lkSapeFBGWkvFL3SVVGzK UvnBlSLSaipu5alssAYdZZhHXKdUfKE+YpgD60S6dioGrRFpUyrO1SNtTMUz UvoBq9ZM5Qd3iOucilNrpbLBJnSUmWfrpmoDDq0f6XqpWLBVpFum4sTmnPep uLNRpBum4hHpBqm4s0mkG6fiEyl+MJhjYuzg06ap/GAccbQHg6gbG3zaIlV7 cGfrVP2AX/QFGwzaJpUNVm0X6bapeMS5s52PYULI+FSMpMxxwjB8iYf7jCXj yFzfMdX5xznUL6RvKnbsFemeqfi0a6RdUnGKdJdUDNo90t1ScYoUP9hwSKQH p2LVHqn8mLeHprLBQurYORWr9k7VHvzaJ1UZ9uwf6X6pGEdfqAtuHRjpAan4 RYofPKLNg1KtH0jxg1/UsW8qfhyWqh8wAH6dmIpDR0Z6RCruHJWqDJvQHZ6K I0enssGdYyM9JhVjSLHB6J1SjWlL1901Ff+og7aZY8dHelxIC9tPSMWdk90n WIadNuDTqSGnpOLTKfZjvhJHXfDxNPvBeo6VcYRZp9sGR7qHdEvFox4hZ6Xi Qe+Qc1PxC92ZqdjU035w5ZyQs1Nxq5dtK1hHeWnHnZGKL+c6hjkwKGRgKgad l+o8g3Oca31S8ayP+wGrzrdfB8cNSMWp/ratbh1l5tlgtwGHhoYMScWC0SGj UnHi4pCRqbhzYcgFqXhEOiwVd0aEDE/Fp+H2W8rHxNjBp4vslzqO9krXjY15 dYnbgztj3I8m9wUbDBprG6y6NGRcKh5d5jLf+cwPzqeKj4nj7Gxf4kf7+/An 82y847nPxu9T/HYFO64PuS4VnyaGXJWKU6RXpmLQNSFXp+LU1faj7TtD7kjF qmvtR7/usm1D13FFKlbd4Pbg140uw55bQm5OxbjrXBfcui3k1lT8utV+O7rN 21Ox6Xb7beM6bkrFj7vdDxjwSMjUVBy6L+TeVNy53+VdrbsnFUcm2QZ3HgiZ nIoxk21jrBeGLEjFF+p+OBX/7nHbzLEpIQ+mYgz2h1JxZ5r7tLfttAGfpoc8 mopPj9pvX8dRF3x8zH5b+1gZR5j1uG1w5AmX4dEzIU+n4sGLIS+k4he6p1Kx 6Vn7wZXnQ55Lxa0Zth1rHeUjHPdkKr684BjmwMyQt1Ix6NVU139wjmvAl1Lx 7CX3A1a9Zr9ujnszFadetw02veEy8+xttwGH3km1txEWzA35JBUnPgr5MBV3 3guZnYpHpO+m4s77IXNS8WmO/Q73MTF28OkD+/VwHO31dt3Y4NPHbg/uzHM/ +rkv2GDQp7bBqs9C5qfi0QKX+c5nflyeipGzfJwD7Ev8+rbz/c1c/zzV+cc5 VInr7k6Z2PFjyA+p+PRNyNepOEX6VSoGfRfybSpOfWs/6v475K9UrPrefvTr H9sucB1fpmLVT24Pfv3sMuz5LeTXVIz7wXXBnT9Cfk/Fr9/tN8Ft/pmKT3/a b6zr+CUVP/51P2DA0nGsS2XiUEv2tGbiTqtMZdiE7r9UHGmdyQZ32kTakIkx pNhg9BceU/hC3Utm4t9/bps5tnjoFsvEGOxLZOLOMpn6dEMqO23Ap+UiXTYT n0jxY74SR13wcflMfmN8rIwjzFohkw2OrJipDI/aRrpKJh50iHT1kK2b4ns6 E8dgU7tMfnClfaSrZeLWqplssAYd5V/q8X2ciX3whfqIYQ4UkVYzMSjJdJ7B Oc61jpl4Rko/YFWayQ/uEJdn4lSWyQab0FFmntUytQGHGiMtM7Fg/UjXy8SJ dSJdOxN31oi0KROPSOuZuLNWpGtm4hMpfjCY42Ls4FPnTH4wjjjag0HUjQ0+ rZupPbizQaZ+wC/6gg0GbZjJBqs2iXTjTDxi7Ut5mOcH59NTqY6J44Rr+G6U 6b/T+T9U/tcUpmyRaX/2xo0xh0MOqYpHW4duq0wc2THSHTIxDN2Wmbi1TSY/ mLR9pNtlYta2mWxwCh1l+rRXpHtmYhb1EcN5j26PTKzpEukumVi2c6Q7ZeIZ Kf2ASbtm8oNBxO2eiWW7ZbLBNnSUYR/1URdjs3emfjD/j4j08EwM2i/SfTMx af9MZbiFbp9MPDogk40xvShkRCYGHRzpQZlYc2AmP1hFHO3BpkMy+THPDov0 0EwcOjJTP+ANfcHGPMRODDw6KpMfHDw20mMyseroTDYYho4yzKMv9ANmHZcp BpacEOnxmXh0UsiJmXjQLeT0TPxC1zUTm062H1w5LeTUTNw6xbY21lFu4Tja WNz1EfN7nFOHhpydiUFnhZyZiXNnhHTPxLPu7scPdfnArN84H0N6MYah/zHk oCj/GnJwSM9MfOSYOM4/QndYyDmZWDA0ZEgm7vQL6ZuJGYNCBmbiFLo+mXh0 nv3g0ICQ/plYdb5t7a2jvIrjemdi0EDH/BZ9/Dnk3EzcGeZ+VNyXwZkYNtj9 gEcX2K/wOTU8E6sutK1qHeXV82gnpH+u+T0y07kIVy4JuTgTg0aHjMrEjvEh l2Xi1ij7waox9oNDl4aMy8SpsbZ1to4ynLg+5LpMnLrMMZtbd20mvlwVcmUm fl0eMiETwya4H3Boov02c9w1mfh1tW2bWkcZ3l3huuDODe4H8/zekHsysebm kJsyseYWl7e27sZMHLrVtkaPE2MHU+4IuT0Tj26z31aOoz3Yc6f9YMndIXdl 4st97kcX9wXbzrYTA4futx/ceSBkciZuTbJtT+sow4sH7Qc/prgMhx5yGQZN DXk4E2secRlmPB7yWCaOPOEy3Jke8mgmpjzmMoyY5viDbKcMh550PFyZEfJs JgY9HfJUJu484zLz74WQ5zOx7CnHw53nHH+c7ZSPdn3E7+fj4Nhgx4uuCw69 HPJSJta8GvJKyF8xv48MeSsTm16xHwx6zX5/xfz7M+TwRvHpddv+qCsPl/4M 2xEhb0b+70iPCpmZiWEvuR//hu6YkFmR/y/SY0Peifw/kR4d8nbkW0Sdx0X+ XfSR/zvkvUzXZHAOxrUM3fHhMzsTm94PmZOJER+4DEc+dBmufOQy3Jkb8kkm ZiwMWZCJU+g+zsSjefaDQ5+FzM/Eqk9tG2AdZc7pxYIfbXIxaIFjmA/fh3yX iTtfhXyZiV9fhHyeiWGfux/w6Gv7XeS4bzOx6hvbRlhHeZjroy7m3w9uDxb8 x3hn4s4vIT9nYsZffFaZOIXup0w8+tV+cOiPkN8zseo32y61jvIox/2YiUF/ OuYS6+gH3GmRqx9Xui//ZOLO3+4HPGqZyw/mNUTaOherWuWywTN0lOEUY4wf LFk817hzfneOdK1cnFoy0iVysWmpXGXYsXyky+ViyQq5ynBq2UiXycUj7JRh 1tK54mEYdsrwaMVc8fClXaRtczFr5UhXysWmVXKVYU37SFfLxTPsxMOnVXPF wybslOEX9REPazkOjhNO8V1FXczvjpF2yMWaSqSdcvGliLSai1/o8INBSS4/ WJVHmuXiU5rLBr/QUYZx1IEf3Knlqhem0Cb9gFONfGfm4k49VxlWoSMGJjXl ssGpNSNdIxcL1s71mcEydPjBMz5D/Lie5bNh7OHHOrliOFe6hpzAZxwcOC04 sAnnTeRPjPz6nCuR7xr59ZiTkT858hty3kT+pMhvkIsF20e6HedQ6E8J/Ua5 OLFDLlvLWIu1CDkhbEuGz+mRbso5Eflukd8sF4O2inRLPqfQnxr6jXPxaJtI t87FL1L84BFtbpuLU6T4tY52WvEcWi4G7ZirH8z5fSPdJxd3dol051zc6ZKr DKfQ7ZSLSbvmssGh3SPdLRePSLFxjUYbH5k11L13Lv5RB23DpD0j3SMXY7Dv lYs7++XqE8zCThuw6oBI98/FJ1L8YBNx1AWbDszlt3SMVfcYq81z8eKgXDb4 cXCuMtw5PNLDcrHjuEiPzcUpdIfm4tERufzg0NGRHpWLVUfmssEmdJRhHnGH 5GLQMbli4MhpIafm4s6JPs/gF+fa8bkYRko/4NFJ9mvjuFNysepk2xqso8wc Pt1twKPuId1yzfM+Ib1zceGckLNz8easkDNzcYf0jFx86hnSIxenetgPHnNM jB1c62W/pRxHeyu4bmxw6Fy3B2/6uh8ruy/YYFM/2+DT+SHn5WJQf5f/q2tu vmxWdfNxrmpf4mHGwFzX2fBokMvwabDLMGhoyJBc7LgoZEQuZg2xH2waZj/4 NDzkwlzcusC23DrKy0XfesQ5dmkufo1wzLKsiUI/Lhd3RoVckotfF4eMzMWw ke4HfBptv2Ui9syIHZuLU2NsO6NRefhVd33UtXz49wzbZbnm/40hNzD+oT8n 9Jcz5qxvIn8F50Dkz478BM6NyPeO/JUe0zdD3sjFoGtCruazC58+4XMVn2/k e0V+fC42XWs/mHJ9yHW5OHST+7Gl+4Jtc9uJgUc32w8O3hZyay5W3WLbdtZR hlO32w923OEyLLnTZTh1d8hdudh0j8twYXLIpFyceMBlmHJ/yH25GDPJZfh1 r+N3s50yfHrQ8fDlkZCpuTj1UMiUXDx62GXmyfSQR3Pxb4rjYdA0xx9kO+X9 XR/xO/s4ODbm3GOuCyY9EfJ4Lu48FfJkLma8EPJ8Lk49aT949LT94NpzITNy seoZ22DTsy4f5zrwg0kvut5D3Sb9gEcvh7yUi0GvuNzVOmLg0au2wa3XQ14L aRfnT984fybm4tZr9oNZb9iPNvJqzLmq2qxWVYYxb4fMzMWjd0Jm5eLIByHv 52LYLPvBrXftB5PmhLyXi1mzbetlHWUYsSDks1zMet8xA62bn4s1n4R8nItl H4V8mItnH7ofMGmu/QY47tNcLJtnW3/rKPd1fdQFgxa6H6vFWJ0fY/VTLu58 GfJFLu585fJQ6z7PxaSvbevucXorF1++C/k2F5u+sd8Qx9EeHPrefv2izR9y 8aV99KF/lH+O/KqRPy/yP+bizg+OWT30A0L/S+Q7RH5w5H9n3LgO4rcfxpbr o5DfIt8xfIZE/o/Id4r80Mj/GflK5IdF/q9cPPo35J9c3PnPZfjREOdC66qY 0qaqMgxqFWnLqviCnTLnWYuq4mEZdsowabGq4mHM0pEuVRWPloh08aoYtGRV ZfiyXKTLVsU17MTDo2WqiodH2CnDLOojPonjuiCO6+9c83n5quqCTStGukJV fFk50pWqYkT7SFerikHo8INDq1TlB79WjbRdVcxqW5UNhqGjDKeoAz/Ys3pV 9cIV2qQfsKZjpB2qYk+nqsrwCx0xcKpSlQ1WpRxTVd/DnF98Z8AvdPjBKeYu fseGPBcyoyoeFVXN584h40LGVsWgxkjLqtixtu0wC12tKjbVq/KDT2tFumZV LFsj0qaqmIWOMuf+ppFuUhW/qI8Y+otu46q4s36k61XFr3UjXacqhpHSD/i0 QVV+HCdxG1XFqQ2rssEtdJThHfVRFwzarKp+MOd3jnSnqrizZaRbVMWdraoq wyl0m1fFpK2rsvE59QrpWRVftot026rYtE1VfjCPONqDQ9tX5QdXdox0h6pY s0tV/YBN9AUb3MFODEzqUpUfDNo90t2qYtiuVdlgITrKsGOPqvxgyZ5VlWHS XlWV4dE+ke5dFXf2raqcx7y4iPfvRH4ka6OQgzhvQj+cd/pEPov8CN7dUxW3 9qsq/sJG5WHaxY26F3Iw50r4j+V3osiPYi3Fb9mcc6EfzW/NVfHlmEiPrur+ ySa+h1KGzzh+q6qKR9iPCilCPyb0h1fFXI6DY2M+c35TF2w6PtLjquJL15AT qmLEaSGnVsUgdPjBoRPtB79OCTm5KmadZFtr6yi3cR34wZ7TXS98pE36AWu6 h3Srij1nuLyEdcTAqTNtg1U9Qs6q6ruOc4rzaRnr8FvO510PH9vzVc1nri+Y l8xn+HRuyDlVMahPSO+q2DEgpH9VzOptP9jU137w6fyQ86riVj/bVrWun9sY ETK8Kn71d0zVugur4s6QkMFV8WtQyMCqGDbQ/YBPQ+2XO+6Cqjg1zLbMOsqd XB91cawXuR/M+StCLq+KO6NCLqmKO6NdhlMXh4ysikljbFvR43R2VXy5tCoO wqax9isdR3tw6DL7wZUJIeOrYs2V7sf67gu2dW0nBiZdZT8YdE3I1VUxbKJt m1hHGXZcaz9Ycp3LMOl6l+HRjSE3VMWdm1yGH7eH3FYVU+5wGQbdGnJLVXy5 zWXOs5sdv63tlGHSnY6HMfeF3FsVj+4OuasqBt3jMnyZHDKpKq7d5Xh4dL/j 97Cd8q6uj/gtfRwcG/P5AdfVGPP9spjvD/L5Rn5C5B/ic4z81ZGfHvl65MdH fgpjz+80IQ8zppFuGTKNz4bfHkKm8hlEukXII5wnETsx8o/yuUf+msg/xmfc qD7AF1jzZMgTVbHsKZc7h/+14fd4VZx62jZY9WzIM1V9t3N+8Z1xlHX4wakZ 9hvh68FvzK0Xqprb7Wox50L61sSgl0Neqoodb4a8URWz0L1YFZtesR98ej3k taq49aptp1hHmXP//ZA5VfHrDcecbd17VXFnVsjbVfFrZshbVTHsLfcDPr1j v16Om10Vp961rad1lM9wfdQFgz5wP5jzX4R8XhV3Pg75qCrufOJyH+s+rIpJ c21bNz6LG+OzWLUQX+aHfFoVm+bZr7fjaA8OfWY/uLIwZEFVrPnS/RjivmAb ZDsxMOkr+8Ggb0O+qYphX9s23DrK/d0X+gFHvnMMnPox5IeqWPNLyM9VseOv kD+r4hS6n6pi0q/2gyl/hPxeFbN+s+1S6yiPchxtjHd9xMCOhhin1oW481/I v1Xx65+Qv6ti2N/uBzxqUcgPBhHXqhCrWhaywSl0lOHl9z5O5nObQu0xz1eK dMVCfFky0iUKMWL5SJcrxCB0ixfi0FKF/ODXspEuU4hZSxeywTB0lGEfcYsV Yhb1EQNX0NEPeLNyoX7ALPqyQiFWkdIPOLVKIb914ry6Ic6rdpG/rlF62LV2 6K+Pclv6QL9iji4dclPotgpZjf5Huk3I6pFfP/xvi3zHQryoRpqHrBf6W0Pf IfIbRP72yHcqxLUs0jRkw9DfEfpK5DeK/J2RTwpxonOkaxViFvURAzvQrVmI NY2RloWYVYu0KMQyUvoBk+qF/LieIG6NQmxqKmSDVegowzjqoy64s3ahfjDP t4h080KsWS/SdQuxZv1CZdiEbp1CHNqgkO3mOKatQ9oXYsrGHGshHm1YyA/O EUd7sGeTQn6wZLNINy3Ely0L9QMe0RdssAY7MXBoq0J+cGfbSLcpxK2tC9ng HzrK8GK7Qn7wY/tCZTi0Q6EyDNop0h0LsWbnQmWYsXukuxXiyB6FynBn10i7 FGIKdsowYpdC8TADO2U4tGeheLiyX6T7FmLQ3pHuVYg7+xQqw5SDIj2wEMuw Ew939i8Uz/w8oFAZTlEf8XCW4+DYYMfBheqCQ4dGekgh1hwe6WGFOHFspMcU YhM6/GDQEYX8YM/RkR5ViE9HFrLBI3SUYQ114AeHjitULwyjTfoBg06I9PhC 3OlaqAy/0BEDg060DVadHHJSoWuvf824VtbhB5tOsR+MONVlmHGay3DldJfh zhkh3Qsx4+yQXoU4ha5bIR6daT841DOkRyFWnWXbstZR5py+NGRcIQb1cswW Md8fiHlxfuQ3jfy9ke8d+Y0jfzd7dSJ/V6P6AMs2C/19Ue4T+c0jPzny50X+ /ki3Dekb+UmRbhfSL/KbhM89kT838ltG/sHI9y/EgotDRhbizpCQwYWYMSJk eCFOoRtUiEdD7QeHLgy5oBC/htmWWUd562jroWhrYCEGDXfMVqGfEvoBhbhz iftRui8XFeLORe4HPBplP5g3NmRMIVaNtm1N6yh39hjjB0su87hzfj8aMq0Q pyaEjC/Epstdhh1Xh0wsxJJrXIZTV3F+FeLRRJdh1hWO39B2yvDoWsfDl5tC bizErOtDrivEphtchjW3htxSiGfXOR4+3ez4bW2nvJXrI35dHwfHCaduc13M 7ztCbi/EmrtC7izEl0mcL4X4daf9YNDd9oNV94XcW4hP99i2q3WUd3cd+MGd ya53B7dJP+DUgyEPFOLOFJf3so4YmPSQbXBqasjDhVgw3Z/Zftbhd6A/w0cK Xc9u5LGHH485hnPlx5AfCvHluZAZhXj0VMiThZhF+kQhPj0T8nQhTj1tP1jw RsjrhZj1rP3gxJu2HeY6Hi/EpufdHqx6wWUY9HLIS4X4N8N1waNXQ14pxKpX 7Heq23ytEKdes19X1/FiIQa95X7sFHPq8ZhTHxXizqyQtwtx5x2Xz7BuZiEm vWvbNhE7lb03jHGj9HBpCbfBse4YPo+F7cNC/JvptrcL/bTQz+Fzj/z0yH8Q +Z0j/0TkP478tpF/JPLvRb5L5J+K/NzI7xL5JyP/SeS3j/yjkX+/EJs+DZlX iPsvehzhxXzbYMpnLsOdL0I+L8SM70K+LcQpdAsL8ehL+8Ghb0K+LsSqr2y7 0DrKgx23oBCDvnUMHPk95LdC3Pmp0HkGvzjXvi/EsO/dD3j0s/3GOe7XQqz6 xbax1lFmDv/hNuDRXyF/Fprni8W1Z5uauNA60lY18ebfkH8KcYf070J8ahH2 /wpx6j/7DfIxMXZwrWVNfpc7jvZgFnVjg0MNNbUHbxavqR8wi75gg01L1GSD T0tFumRNDOJ6mTLXCswP5ud4HxPHCcvwJR5mLFvTdTY8Wq6mMnxavqYyDFox 0hVqYseqNa2hYRY6/GDTSjX5wae2ka5SE7dWrskGs9BRpk95pFlN/KI+YuAI urQm7nSIdPWa+NU+0tVqYhgp/YBPHWvyg1nEJTVxqhJpp5q4hY4yvKM+6mJs qjX1g/m/bqTr1MSgMtJaTUxqrKkMt9AVNfGoXpONMT0q0iNrYtCaka5RE2ua avKDVcTRHmxaqyY/5tnakXauiUPr1dQPeENfsDEPsRMDj9avyQ8ObhTphjWx aoOabDAMHWU4tXFNfrBjk5rKsGTTmspP89tOTbzaNZjwDL/pRHmvyL/AWivy e0f+Ra51Ir9H5J9jPRb5PSP/PGuMyO8W+Wf5DSjyu0d+Br8TRX6fyL/EtVFN fNkl0p1r4tSOke5QE492qqnMPNkt0l1D9o3YlyN2+5oY1KWmeBiEnTJcoz7i YS3HwrEx53avqS6YtCd9r4k7e3N8NTHjwEgPqIlT6PCDR/vU5AeH9o90v5pY tW9NNtiEjjLcoQ78YNJBNdULz2iTfsCjQyI9uCYGHVpTGZahIwYeHVaTDW4d EenhNX13cU5xPsEtdPjBLM67I9zG/SH3+TgnuQxjjo30mJp4dHykx9XEkVNC Tq6JYejwg1sn1OQHk04KObEmZnWtydbSOsowomdIj5qYdbJjlrXurJpY0y3k 9JpYdlrIqTXx7FT3AyZ1t98yjjuzJpadYdvS1lFe3PVRFwzq5X4w5weHDKqJ O+eGnFMTd3q7vKJ1Z9fEpD62wWLG6eia+HJeTb8Vwqa+9lvBcbQHh863H1wZ ENK/JtYMcT9g00Db2ttODEwaaj8YdGHIBTUxbJhtmXWUYcdw+8GSES7DpItc hkcXh4ysiTuXuAw/xoWMrYkpl7oMg8aEjK6JL2Nd5jwb5fg1bKcMky5zPIy5 MuSKmng0IWR8TQy63OVX2AdRE2fWtZ14eHSV4+HRRJc3cH3Elz4Ojm2/4MCr UdfVkT+A/dKRvzbyB0X+zchfXxMjbgu5NeTA0L8R+usif3Dk34r8DTXx65aQ m0MOCf3M0N8Y+UMj/3bkb6qJU7faDzbd7nr3D5/XwueamlhzZ8gdNbHnLpd3 tI4YOHW3bbDq3pB7avoe5vziO6OLdfjBqfvs9x3HWUabpXg0uab5PI3zJnSV UgyaEvJgTex41Pa9rXugJjY9ZD/49EjI1Jq49bBt+1tHmXN/RsizNfFrmmOO tu6ZmrjzRMjjNfHrsZDpNTFsuvsBn56031GOe7omTj1l25HWUT7U9VEXDHrO /WDOzwx5qybuvBjyQk3cecnl4617viYmvWzbkex5j8+rZSm+vBbyak1sesV+ xzmO9uDQ6/aDK2+GvFETa952P7q5L9hOs50YmDTLfjBodsi7NTHsHdt6WEcZ drxnP1gyx2WY9L7L8OjDkA9q4s5HLsOPT0Pm1cSU+S7DoLkhn9TEl3kuw62P Hd/PdsrwcUHIZzUx5quQL2vi0echC2ti0Bcuw5dvQ76piWsLHQ+Pvnb8cNsp D3N9xJ/r4+DYmM/fuS7Y9EPI9zXx5aeQH2tixB8hv9fEoB/tB4d+th/8+i3k 15qY9YttY62jfKnrwA/2/Ol6R7pN+gFr/g75qyb2/OPyBOuImdUoPbw6PM6r d6P8X03fdZxTnE+Hhf6d0P8b+SMiPzvyLUrdD+f3XH5X5vqCecl8PiZ8Pgif hlIMWjzSxUqxY9lIlynFLHRtSrFpiVJ+8GnpSJcqxbIlS9lgFjrKtLFqpO1K 8Yv6iIEj6NqW4s6Kka5Qil/LR7pcKYaR0g/4tFIpP64niFulFKdWLmWDW+go wzvqoy6OdbVS/WDO1yItSnGnQ6Srl+JOx1JlOIWufSkmdSplOzrG6v0Yq9al +JKW4iBsgoX4wTziaA8OZaX84Eo10rwUa8pS/YBN9AUb3MFODExqLOUHg9aI tKkUw+qlbLAQHWXYsWYpP1iyVqkyTOpcqgyP1ol07VLcWbdUGX5sFOmGpZiy cakyDNog0vVL8QU7Zc6z9UrFc95hpwyTNikVD2O2jHSLUjzaLNJNSzFo81Jl +LJNpFuX4hp24uHRVqXi4RF2yjCL+oiHuRwHx8Z83rZUXbBp+0i3K8WXHSPd oRQjdo90t1IMQocfHNqplB/86hLpLqWYtXMpGwxDRxlOUceupdizR6l64Qpt 0g9Ys1eke5Ziz96lyvALHTFwap9SNli1X6T7hhwV59icOMdaleIXOvzgFN/D +MGMA0t9N8Ojg0qV4dPBpcow6NBIDynFjqOpuxSz0OEHmw4r5Qefjoz0iFLc OryUDWahowwjTgk5uRS/qI+Y1tadFHJc9P/j6P9xfBaRHlMu4hp5+nF8+HwS tuNLHSdxJ4acEPq5oT8h8l0jPy/yXSN/bOQ/ivyxpRh0qvvBnD835JxS3OkW cnop7nR3eXHrTivFpDNs43O6JeTmUnzpEXJWKTadab/FHEd7cKin/eDK2SG9 SrGmt/uxovuCbXnbiYFJfewHg84L6VeKYX1ta2cd5WXcF/oBR853DEwaENK/ FGsGhwwqxY7hIReW4hS6gaWYNMR+MOWCkGGlmDXUttQ6yh0cRxu56yMGdowN GVOKOxeHjCzFr4tCRpRi2Aj3Ax5dYr81HTe6FKtG2baGdZTb+5g4TubzOLfH PL8u5NpSfJkQMr4UI64OmViKQeguK8Why+0Hv64KubIUs66wbUPrKK/juEtL MWuiY9a2jn7Am+vdj83cl2tKseoa9wNO3WA/GMQ5dVMpZt1o29bW3ei6fw/5 rRQzbi11LsKk20NuK8WdO0PuKMWLSSH3l+LUHfaDR3fZDybdF3JvKVbdbduZ MXfmx9z5tFFceDRkWilm3e+YA617pBRrpoQ8WIpZD4RMLsWtye4HTHrIfgc4 bmopNj1s2/7WUd7b9VEX3JnufjDPXwx5oRRrngh5vBRrnnT5UOseK8Whp2zb 3uPE2H0Wx/ZMKbbAo6ftd4jjaO+kGIcF4fds5E+J/OeRf64UX15yP453X54P OTl8FobPjFJsetl+cOe1kFdLcesV2062jjK8eN1+8OMNl+HQmy7DoJkhb5Vi zdsuw4z3QmaX4sgcl+HOuyHvlGLKbJdhxCzHn2U7ZTj0vuPhyichH5di0Ich H5TizkcuM/8+DZlXimUfOB7uzHX8+bZT7uv6iO/m4+DYYMd81wWHFvD5lGLN 5yELS3Hi25BvSrFpof1g0Bf2gz1fh3xVik9f2naBdZSHuw784NB3rneg26Qf MOiHkO9LcedHl0daRwwM+sk2WPVLyM+lrr1Guu7R1uEHm361H4z4zWVY8kep uc07YngfA++QgROtWAM2ijv/hPxdikekf5Xizn8h/5bi07/24xxfJuKWbhSf WjTKj/m/bKNsE1zHn6X41LpR7cGshkaV4c7ikS7WKGbRF+qCVUtGukSj+ESK H/OKNpdqFJtI8YNl1NGmURxarlH9mN8qvsPgTKSrhazIfq1I+zl/XqRfRLp8 o7jUPsorNcq3f8jK3AdvJb+VnF+xKVgS83At19vW7cA76qHtAVFepVF1DLQP ul1aqz9dIp3r+ue1UnnVyO8a6WetlKfOea6HdhZwDI2yw3SOtcEx6HeLdGHY 2jfKd/cod7B+r5BK5PdsLf3qkd8j0nvtc19r2TpZj3RslO99zt8f6eetFEs7 A+rynxT6xWNMbo5yDvPqsqWR3ztsSaPaH1hXHyZHvk34X2+fITwz4thBdfll nBPhc6Pzz/GbeUg18i/y23tIwWccPvdFvinyr/E7WEg98kMjrUW6ekN8Vq2V nxLpUuF/R9jKKL/MM3HOM0btfbzD6opvjPJt9qGtpSP2LuuXifw9buttfisL WSPyb/LbmvszmedlrF8h/B+M/JqRn80a2efPeM8P5ucS4XOrj/Edx+LP9Szf I3x/vM91eEjn0K/HZx+Stgt28ZxOyPpRfoznhkLWifwhbZUeHOmT9lk3yhs3 KcXOczvsgecZn7mOpW72xKNn//wq4T899Gu7PdrJ2um5R57x4TlHnu3hGR+e /UnaqQ582dPP3n725/MsE3meIaK8sduhbfLYL3M91M2zQ+zhp4/s02K/Fnvb 2GvLnlv21vL8APtseUbgAOt5dmCq9ey5Rdh/y77cg5wnbqU4rqkeT/b4Uj97 ejlm2uV5AWLY08t+XfbYsdeuvfuwjeMOtg91sx+UfS/s36Ov+LDXjnqJZV9x X/uwH+ZXjyHjR/3sk6GOfs6zl+brSHcMOb6FPs9d/JmOjL53D9khys+3kM8L kU4L2870ua10O1l/sPUHRdo1yttH/sQW0u1i/wVR3x6RTzrqvOIcm95W50sX nzOcY12sfzxkN867SC8O/e7M6Y46P9Dn7VQX+kqkY1z/0MiPqut/5vkfef5X fn/n28bn8l1d/+VMnfzv/OCOsvG/8wtczz5uizI+/O884/FVo45tnH0+76h4 YgdFOr+j6v7UfeA/ytHxv6v0gf9l3aFJenTUe4Dbpc4D3Rb/2Up+j0g/Cv2H niO0wXEN7Ki6iMWX9wLyThzezXNpXd/FvBMJ4f1IvDdpfF3vUOL9S5fV9U4U 3nnCu8nQ82433lXGO5rQ8X4S3qHEu0nqTdKj+7UuPb68D4X3ovAuFN7ZRJ28 76mH9by/ifez8J4W3qlCe7xrBV1354nj/Si8d4V3pPAuFd6pQt0zrUd3lvXN 71Khzu4+Xt7HQpu8H4H3JPDOhDWa9D6W2T724z0OyHEeH2zoec8BrOhvJvCO GN7DwDtkEN6jwPtlLndbvOOFdzTgw3sbEN7hQPuMLe9teCOT0B/eNYPgQ930 Dx/e28AxnuoxQU7x54KNPO9kQPDhfRGMxWkeT8rkea4a4T0PPD/9/5+Hx5Bn u3nGm+e+eQ8Fz4Dz/gqem+Y9Bjxj3dk+PANOPLHYOd7u/nzHOhYmT6jr2fB1 c5XPMlcp89w6z9XzLDfPdPM8+Dr2WdscJna8xw0fxvJSx2Kn36f7c2dMz/Y4 M27neJwZn3P9WXPsfT0+l9uHZ9KvsA/PfWLr8z/j2dvjf6XzPA96lX14vnOi 6+T5zgnuA3XzfCrPsvJdw/PzPLvK8/WjrOf51h+t53sH4Xnbnz1uJ/h4x1hP HWN97qHjO4X91XzPsMeaPPsTeRaWZ1+buc6zr7/5eId6nDewzzh/1w3y54Jt iMccGexx/t35P3xcPBPHs7d/2J/n1fjO47k5vgMZqwv+Z2yHeUz+dB94Bu5v +/AMGXURy/O/CM/X8XwIz9iRp+6/XA9xtEEf+A6lb2N8jDzPx7N8zd/5Iz3+ +F30P3qe2eM7kzk8wGPFtcYljYuuBS725/Kj6/3BPjzXx/cz7Y12LM/L0Aee leE7G/3h/g4fZVYwVjwbSH95doZn/Xg+hhj0zc/9jfM484wiz+TwPM4DzvPd zfOHPB+EnfHhOSB0U5x/yNcgVzQuuga5wp8LzxLxvFDz9cvlHtv9baO+h5x/ 2LE8O8S5xvUHzw1N9/ULzxo1X5tc5bHl2K/x+Gzh2AN9PcOzS1xrTXee/fuH uE4+iwd9XBzHY66H5wYQnjli/z7PIvBMAs8gcI3C8y9cs/B8FXqeU+AZKp5T QMc1EM8y4EsMenSMJ/rJbpd6HnB6k+s83O0e5usm9us3XwPe3Ljoeuomfy7o ef6Bay7G/VaP4TifY8zdbezDGHNNhg9zl/UH65QHWmtMb/eYc7+K33i5v8We ZJ6JYN8xe6DZC80eZj6XO/xZMLY8K4GO/dHsk8aXGPTsTV7J+hV9fTfJ47Oy 61zJ14bouQZk7zV7sNlfTXvsnUa3ivPEMab3+XMh9n6Pcx/r+zq93/m2rpM6 GNPJHnP2XLL3kr2R7P9mHzj7HxmrBz22q1tPXH/r2QvJngP2HrCvAA4+5LFF 2F9NHee5LeoeaB/2ALLHk72esz227M9k/M52f9ib3ss+7AV9zz5zPD6P+rNA pnnM5zjPHs737fOBx2S6x/AD59lHirCn9CNfez/usWL/FftC5/p4n3L/2aPF ntJPPFb4cHwfOfZjH+8T/hznOnaex5n9YBw3e7LYZ8a+MsrsMWMfLPvD2CfG XjLK+LAPjT1kxGJnHGZ43IgnFntfH0sfj8Nz/kwZh+c9bhz7Cx4f+vqyj539 aviwtw3Bh70h2F76n7F60eOJjTx7QxB82G+CUCf7RDgG+kDd7Gdh7wv7VTh2 9q6wJ21T69kPc7X17CdB2FvC+TXA59JAHy966tjC5x66FXwtzW9dnIfMZeYu fXjT40Y/3vLYsreGe9jcv77ePtxbvsE+3H/mGN/+nzGZ6WO50XnuP3Pez3E/ b7I/95/ZY8FeC+4pcVzcH5/oceCeOO3/4z7Am//sw/1x6nrvf8ZhtscNG3nq /tf1EEcb9IF7X9jmuh6OhfvpHB/3y8hzzwo/7h2jow/cG/vbx/KG/bm/BQO5 d8a9MnzQYXvf8522P3b/ae8T9+cE94Hfs4+3Hh114d98r22ej+XEuu4JcL+g q/X8zs19BPS7Op3vPP3hd/aj/RsJeX5LR/hdfYbbWug+nxX1f9mo3/wQ8vxm x2/u/PbOb+zco8DG74EzHPuc+/+5x4G1JWvMVi20lv22UWtcfhf5pnHR2pc8 62LWnd83av14RfThjLrW9KwRv2tctK4lP8hrZepkbXusj4Vj3dv1sJZlXfuD fVin/tioNSzr0V8atT5lHY2+Syf5/NSo9Szr0Z8bF625f3If9re+ec1KPaxb m9/hy1psb7dL/cwz3vnby2tT8s3z71fPQfS8U/hsr1l55y/r0y19jjF3D7XP il7L4rOS16m897N5PUq+m/O8V5R1GOs83vXZw2tQ3vX5tvO8J/QMr0d5N+gs 5/E502s+3tn3utfB+JxlPe/1Y81ypOuZ6bZ4f+i7XpuS7+l1J+8EZL1wjPvz jtemvDeQNVFX+7zq9SXtsj460T6veY3Lu0cZz5PdB9amrPl4L9hYrzV5D2Dz WpN883qU9wy+6XUq7y5sXnfybsFNnUfPsXBNzTs4fvD6kvflveN2qWcjr1N5 F2HzWhOfzb2+pD+d7UP9/7/2b9S7z5rXr+THOZZ6ZtmH96ax3jnOx8v6vof1 63h9yXvNLvO6k3eWTfAakXeWXWn9Ch7zs+2zvteUvO/sCut5D1rzWnMlj3lP x453nSv7s2adx3uXRnt9yfuqJnrdyXvQrnJ+FY9PX/ts4nUksT95fcn7kprX l+RHuX7eqdT8GwbvTvrF67DEfWZ9xruQ/vKar0N90W+i5H/3mq9jfdEakfwf Pi7GbV378H6lP339u7rPn6HWT/B6ruLxYZ3Hu1dYiwxzf/72uhD9d1538k6W 753n/GF9wW/0/FbftkHHxTGOcSz+rH36eAw5b1mX8U4Wru35PufZPL7TWX/w boUpXpPV6ovWl+SP8LqtrC9az5E/0usV3o/wuNdqvMfhQa8hOrst6uF9Lqwd x7utfb1u410PD3k9xDsaDvZ6iHr28ZqJd0A0r5nIT3e7vMeheY1F/jGvy6jn Ua+NeH67rdcQPF89zWsgnvee7DzvFFjV6yT0XMPfaP0DXtPw/Hbzb8/kua4e 7fFkLXy766+4Htqd5N8qeCZ8qtc3PPv9iNcuPOOdeD2ET0evUXjm8xyvXTby sdzm2E5er+DDmmWCx5A1LHqe82xer5Bf2WuQzTwOrBt4/nN1r0XQ9/GaiOdI z/M6g+dRm9co6FdzHv35juU51VXsT539vT7gebA5XmdsXV+0FtmqvmhNQ36A 1xY8ezbbsTwn1rz+QN/LefTveW2xnceHtcX2Pl7WATxXNtfX/jx71s/rDJ5b +9B5nk/r7et0npf7yPkdPQ73+Lh6ez2BT1+3RewH1lN/81qEZ9g+8TqjS33R umQXjydrCJ5jaV4r8FxK83qC/Ls+l5gjrL+n+bje97qEWNYi7X1vrl2DYnmm pXm9wjMwW3kNsafHnzXBPj7256xvXmfwLM02XkPsXV+0LtnL7b5g/ba+3mS/ 43X2p87tfO1/oPWsG9gTv6nXH/vWF61dyG9vH/asX+PYA+qL1hPoN3Me/bVe l1Dn1b5mOdDjxnU6+1m55mWtcLCPnetx9rxe5fUE+ub1BHvrb/T64ND6ovXE IR6Tmdbf5NiDPLazXOe/7gP6670mOKK+aG3BHtzmtQX5/+zDnu+WXh8cVV+0 tjjS4/Ce9c1rCMa5eX3AflzWCNzn7QWjGrwOqC9aH5BnDfH/1/j1Rdf+J3h8 /v96v75oHXC8+/b/a4v6ojXBcT7G/1831LUO4PqXvS9cj19Z1/4h1gpc77OH 5llfm5/ieuY5tqWv3092Pxfa5znXSewxXg8d4/G8qq51wql13as9LWRQg+69 nh4yuEHX7lzDc2+N/QDoFzTofmK3yC9s0D057kWxVuDeEPohoZ9Yl75lDMvV ddVzQuSv8XHdU+p+Me1+1qB+0B/WJNc6v0Kjjh9/1kPcT+9R1/cv9817em5y 35zPi9+1uLeOD/frueeOD/fiZ3j+wj3uQZ8d+dUatI4YW9e9Le6t96nrfjr3 ws+1D/fVz6kvurfeG+Y06J46Pu0jf1Fd951ZB3Fvvbf17B1gnwD7CrjPfo71 3FvvG/kBDbqfTr5Dg+6jc098YIPuxdOf/pG/oK571ty7XNM+fF4Xul3uUQ63 D3nu1/cL6dig/QcDPCbc/7zA9bAHYZD1PZznGgcZ6HHj98LBzpMOcT63njF/ zjzk+4Lj5vjZP1BxPdTPGA71sQ+1D3n6S3+439vT9VM3x8SxNd+PvdDH1eh6 +Iy4ZzvcevZI9PO4USf69VzPCPtwPo70Ocm6cnRd90zx4fNjXTu/rnuxrD2/ rOu+6Xzfd0XPOpS18CV13dtl7XuRP3fWnvizxmR9wb031im0xf1U1pJf1XVP d6jrGeM6v6/Lh/7wPxHEsibi/2W4p9jD6zLyPb3e5D4iayjer869HK6H2W9y XcgqDZpzzD3uizc06f7Zu66HPOsg5taVno/4X+F5ytiO8JgwF6/yfOTam7ZY jzCezHN+I6Ae5ja/WfRuUB/6NCiW+cxvEJyH17tvfK/e4LmMH/m+Ddr3wtx8 MM6Zf+s6RtbUq3ovDf7Xtgtmr6r/i2I/zk3mAHtklgu/e+ual7f5HGO/yS11 8byD9/CQZw/Krc73a5DPeZHOC7k78p9GuqT3q8AB9sHc4/nIOXqz22Wvze2O /aRB+bkN2kdzZ12sOMf9gSucw3dZjx8+tEndd7v+xPtwyHfyfh78M+/JgRtw gP028xu0F+c+65fzfiHmAsdwr33WDn3nkPvr2rczqS6GsE8HHcxnv9BLPt4u bWJ+R37XNqrvXtc/yfFruP0HXH/V+38+c1v4dWpQ/JTI79ZGe8qm2Oc810Mf 2Cf0kPVw9Q6PZ8370PjeYQ/Lw86vx96ekEfq2ovAvh2+jxq914X8drZ/0aC9 PY8yvxrkO80+u7dRfo822h8z9X/qx39og/jwpOf45qHfLOTxurjEHhHYtaH3 DlE/ftjZM/KEY+EY6RP/Uw/5Q9vqu+GpuvagkT7tOcL+r+fr+t5hXxjfc/AW O/vPmrlO/n77POu5s09r5dmbxrgzbhwruhmu5xm3RSxzYYZje7ktdLT/gvX7 tlaZujmPX3DfmK8v+ty+xecPnx2sgl/8rrZyg46t+bhedJ2wmjGEz8zZl33u fVbXHh1+b3y9rv1mHTwHX3X+lbryfBfwPcn3d7P9Nes5Z2f5/JzaWnU93Fp7 z2Z5juD/iutkHtEW35ukb1rP3re3fD6jf90+yzfJhh77TOv5Lnrbc2Sm8+gf aS0/+sL5/477wJ6aD3y+MRfe9Xwkne05whx91/nTrMeXvXLv1XXdlTQoX2nQ 58B4Mp/SBtWPfZbbhR+dHU8s13dc/6HD90PrqW+O+4PuI+tXblKZPs9xLD7d 7MO87OsxZFy55vi4rn1blXbKs4fuk7r25K3n71i+g/lt+HzriWNP1TzG2b8b f1qXbpD1g51+6jxxnzj2U9eJ/vNIv6jrO32hz7G0o9LPnJ/eQflHO+h7fqH1 nzp+vv3R8x0+0PoB3g9F/QO954priD19jcl3PN/vd8W15reRv7uT6vw68vO8 14vrA64X0H0Tskv47NxJZfIf+7gYN/Z24UMdox3LdQV7yr61Pz7fOT/OfeCa dyvvPeM3c/ZJ8/92yzrl/+x6eA81eezMGeYI+0y/8HExDmc5Bn++v/ku5ruU uJ+s57dlfsfu7v1av9f1+zf/s0l5Jespr+zfxvm/OvZ6/W4f9E1N+i8rrge2 bZIPenT/Ws//fVIP/93J3i/+W+s073cizzUV/8H1l/O/uT/N9bO3jP/Kusw+ /DbP79W0wb4sBPuc5t/t62pnvPuAL9fSrFXgM//rwX/fcG3G7+fk2bvF77/Y 0KNraZ81m7RXrJWv6Vr6f3O41uDahfHl2o3rOX7Ppi7q4X9DKLf2f9+Q4sP1 3vXuD9dO2Kib/6zgGox1FNcwPZ3n2p8+tHYs3wWsh7neYfz+9LjdbD3XTvCf NRXfF1z/s0aCOTCQ6/ImX2dxLcX3wx324XoGPrAWgtswnDVP8/UR+f7mGLGr +RoJf65DuC5gXbrA1ySwuJP5xjXQQF8TLuv8TPvA5NMdCz9hKWvR5usp8p+Z Y6x14SHXAvBuqM/x1Txu7Zp0bdrW1xVcZ3AN8Kjza3v+cY+KucZ9KvL7ekyW 8HFxvUxdfczYlR17g/XUz+dIW9e5/fbuww0u9/V1NXp0jPXq/oxIOzjPvOK/ IPlvt6k+xoU+LvyYv8yvbZrkx/VsxyZdq3LNskmTrlvSJl2PDvD1csWf153O z/M1MNeyzbrEPlyPlE26JiGWurhWnWb9Ql9Xc+1L+3zutIUv15t5k64r+by4 7kR3r+sZ4PoLnxtTnG++/uSasllXsw/1Vf25036j+8B3LtfMfJ8y7+ED9/VI 4UXz/b6683CiyQxp5bk82/fR1vCcutPjyfm/lq/JO/n6lnbpO/NvTXMA+1ru A/m17b+Gfagzi/I6TfqeZy7gQ9+ntVYs1x1cL+MzzGOS+3jRretzm+vlde3D NfH6kd+zjfbSb+TPffsmXVtj4/PaoEm+nP8bWofPBp4LpBv+z7zg2pp2fllF df68iq6pN3f9tMU5xjUz6cbWb+Q8e7N/jZhNm1QH19rEH9ZW6abOk27mWM5b 6seX790tIn9PJ/VjO/eNc51znv9Q3bJJ35HM2R2bVCbP/03z39J8zzCv8fnW Y7aex5A6tnY92Iilza09p/iuId3W+fU9nqxT+D7a1vMO3fbuG78t7OA+0Hfy 3OPmPOrkc2lH67fw2G/vz4j2d7T+/wCHfJzf "]]}]}, {}, {}, {}, {}}}, VertexColors -> CompressedData[" 1:eJxsvXk8Vd37/x8NpEGSIZUkZWyUhLTTICFJJKWSMTQgCRFJCZEoGSMJCQmF ypBEaEBIOOeYUlRICEnf8/59XOvy+O37/ud6PJ+de9tn77XXeu219jlniekp PQvOSZMmbZOeNGkyu7442TljVsZmpUnj/wG/ilb+aLhVnwIPXDtPsfaFoCPx wLnpfp9vGV0mHrjvi63L27AQ4oFrrs95vlnsNvHAhfaN3S817hEPHO1uvOS9 UQrxwLFpX4OK+DKIB74aWbIwX+0J8cD3Xzy0vZ38lHjgTvODo05KBcQDz9tn GOX14wXxwCJFnYHTNhUTDxxRwvm4wbuEeOD1PNU2vTmviQdu+qo4WlhVTjzw v/jgutOlb4gHfjq6deqkkHfEA//mDhCSEKokHjjpaqWqcDl64Pfrlo7tM6ki HrhUqOuxVT164IdlJxOOrKkmHji35HIVywY9MI8rxyfeS+iBYwTsZEI90QMf CTxUFXAYPfDSjhP7XMXQA8cbds5Xfo37CbxMaSDytyF64JRkYwmRajwOwK1e yYrrldADZ0W3eowufk88cOorfn+rjLfEA0ebMHnlV+H5Am64/cDhbSSeX2Cr B/HiZ/9iewBOevIxZ6VRKZ6vcf5uXrg5NvMV8cADC9YWCPFhOwSOznHodzpT hPszzhfW86itbC8kHngs7eJU+8J84oEPsY4ela9/Rjzw1R/C7QX8uXh9jTMj TKl0lxNed8BGBwSdlDiziAf+IZ7VxZf7iHhg6l7jsK7iQ+KBN38T5tmu/4B4 4LbeF2eFXycSD/zoVGpkfVA88cDWxQE7Hj64QzywSo93Bb8M9kvACRYlleev hxMP3J985d0x75vEA1Mp+bXDQ9dx/8fZWXTm6I+yAOKB12h3zBo4d4V4YDN5 VSmtXxeJBy4zsbgTusCTeMI/eF8YFLkQD5zWeyTyiin228BJ635eYX49he1t nG16V3AYpB0jHnjqtTP+Uz+ZEg/s7eFVM8fcmHjg8xu+L10yx4B44PfmvvHn 8nSw/xnnS86bdxybpk488Ek9VZNz3zcRD3y7cUokr6IC8cA64iobsg/IEQ9c JH9iy/aj4sQDF07hYuWNCuK4M863GNf+FF6eQTywbsPb1083/NsEHlh1r4Is h2cv8cDzOUTybeJZxAOfU/DTW7mmnHjgWyURkrZF6cQDe8Yksnbs9CEe+FZ0 SkyPUrUqef04C7LKubYJOJPXAzNYujFz51wjHtjmsPVHa8lQ4oH/nZT2/bY8 jHjgxd+UO46uxdcDx+8S3abSfJ144BGJ15Ic4b7EA+c7eagr63gSD7zMTmz9 C00H4oGHk1527k4+SjxwooLx9a3rtIkHXpvq53h/9xrigWXuVURJ2s4kHrhX Wq9g6HEdOZ7AddIK7s7+LsQDH3S+0HC8elQWPLBTW1vMRcUtJF8Ba7+ihmrP Yr4CHrxt+ohnwnUK7NBeqBP6GvMVcOVROUmK/wbxwG+Wfn/ENzWGeOBLnm6z fLgT8PoaZ4nr+kzNi6nEA1sOhImc/ob5CrgyqHrFQods/LvjHFn0tPvJtufE A3spt+nHJ+G4AzwyvcXGb8tL4oHP6qRccO7A8Q6YL4En760fjpvA50yYy6Yv ryAeeJrqH93+NByvgWvWm06znI3jPrDVUk3uTHnMD8CS/tFH72/FHAK8YGhA 8q/yB+KBF4XeWtcgWEM8sMmBeUt/1KAHPvWkVdP6dC3xwH2n4u7P+IkeWLRa qEJkVx3xwFsj0qvMfNADf7T7XrsuFj2w/d2ENv0w9MCuylc7h+3QAyt+yxl6 LoseOPiP7YaActxPYCF1/v47u9EDG4e9lDqeh8cBePrvnj6fCccN2NNIZX3a ITzOwG2/51cm3MTzAqzfLB2p8gLPI3C3yhZ3uTY878CRYa4Hd45i3gOu7Gy5 byqNeRtYRVZa/rQe5j3gFr50zd5zmPeAGQP9m77fx3YLnKPycxlvM94vAD/e JmMcvATbP3BbiuqlTfZ4vQAHG7KqbavwPgX4idgO3Snb8LoDFgtw/ch7M494 4IsrxL8vfYP3R8ALN0+NLViZQzyw71Prf+l5j4kH3nb56kdpl0zigXUi8kcr TTDvAeer7WpO/JJGPHCu6CbOn0cx7wEfnbZwufGKJOKBPbVMz21Ux/tH4OyS GAGXpDjigSV8otWSd8divzfOBl8Ha4+djCIeeNsu4fzCrDB8X+M8M6UusuUY 5kDgn+e/DltfCCYeOOzVumzTrmvEAz9Kei73yskf8+o45ySmtiy55YPtZJw7 8uckB6l4Ew+8r25DxxqDC8QD85dlDLmmuBMPfMPcqmaeOeZG4MEXH58ufnoG x6NxLvsk5P8i3AHz5zjH5hup+zdjngS+l6PKz3XAlnhg8T9msz29rIgnnDVy f95mc8yx46yYfC9vhdtR7H/GuU+vtdBM/TD2k+P8suVJlb3GAeKBo7L5pl1s 2Uc88JbVHz/UDO0lHvjk8P0GE5c9mD/HOYjDQfV1HOZYYMeSJ4ntbZrEAzMU xHtlondgPzDO4uGnGX252/A4jPO3qQrp26W3EA+8qDhboPAphePLOMt/Yyb6 haoQD7xgl4LgyxpFHKeAXwv2HD+2Do/zON8wGLUW11iD7WGcRa3O5gk0Yq4G DjEvWJF+X5J44KBtNvyBQ5i3gX+LKsn6BC4iHti8K6pj2irM4cAv3G6IB6fz Eg/sXfkm42b6VpKvgNPmrt3n4on5CtgxR0Yw0wPzFXCwE2+dLydeX8Cv9e56 6BzCfAXcJ2hh0RiF+Qr4ip/wlbVBmK+ADYdUhJabYP8G/OS81uw9IdhPArvv iPRSNsf+FljRv6A6NgT7beBXctVWblew/weusFfl1rHA+QHgC5P3+HAb4jwD sN/fEWk5fRy/gPu33ncQ3Ys5CviOYKi79DIcT4GHGtqGlcJw/AUWdtC/t20M x2tgpdE5r2bvxXEf+ML32NKHwZgfgK/MPCQTm4s5BHjIV1GopPgj/t1xTlC+ ds7jUT3xwB/lm47fd/+EuWic6942FsdLNhAP7J+a/MswDT1wSfJKkZV8jcQD y52Kvs6vix5Y5uZ6ATtb9MBBjN+VoubogU14quPMVdADB8p6t7X34f4AV4o8 nnPzKnrgnLqNmQ950ANbv53SmHAKjwOwhOnLS4L5eNyAV2Seo7KH8DgDj92+ uHWPOHrgeJbewXRVPF/A6QF/UsN24fkFfrbKMOm5PrYHYMk2/gVZBpgDgcdi qDv9etiugFPUOfdX6GA7BLYIkfpiqIXtFlhrm1o8303Me8DLPlpMWRuFeQ84 KUy3a+FDvF6Aq/ebdp+uxLwHLOnveOsUJ153wEUrU3e1qmPeA04sqXm4MQbz HvARV/OZITNxfg94+NWvwrvXMO8BH9et93u+B+f3gBtdTPfXpuP8HnDx24Ey 0404vwf88qK9TMkvnN8D/uh5+fmkOpzfA9YrPcIsasH7R+DWXH1/VwHMgcC1 ubYiRUzsJ4H/1og78DZiDgSOqm9VKl1wH8fxcZaS7ZyfHoX9MPD8ZwYzPY1w PhA48uqVsu+7MB8Cr9DKb809g/kQ+JzyaWXf8GjigX0jHPQW3I7APDzO3dYu aRd+3iIeWMLS+cuZq5gbgR/Nl/+24BiumwDbd7gYc53HeUXgC9Wv0tyCME8C B5V/6z/tdRX7k3G+cOqJZHmpL75+nJef8I1ca4jjIHBwqeOR9VKXcHwc52L+ n5dl5HF+EjhYoHrHMnvMn8AlZ6e8b8/2wH5ynL9n/8yf3eRGPPDpETuRnm2u xAOfN5U+VNV5lnhgJxvldN6XmFeB/W6/mjxWdhrHtXG23Jx+om7Innjg8tXe 5QmadsQDH+c+PMvD6QReR+M8bL2zXD3QBq+7cXbYWzq/tw7zLfA37nlburUs MNeN87bUil0FnTi/Cuy+3XPK+1QTzAPj/GQewyJT7hDmh3F+FjB/UvQ2I+w/ x3lpU6yhaRzOxwKPTDI5Nbhdj3jgwYdt1VXC20m+ArbfKjrWcATzFfDkxI1z euwxXwFb6DgGWUzHdgW8eFvSHllnzFfADpYpxzy/Yr4Cvv97zak4Fl7XwIEB GwS5erDfAJ7LLxB/nwv7JeBrS2VefpqH/RvwXROxDd3XsZ8E/jxFK0poA/a3 wD/jj74o2o39NnCzjfyJAz7Y/wN//eV5610tzlMBGwZM9ipcg/MPwBLaQy0f NHD8Ag7ubJUeHcDxDnidRcW++EgcN4H5NxwOV1HA8RdYL/Vzn2U+jtfAz84e +8Qnj3kAWCs2f6v7NcwPwF++LXqjXYn5BPhjUlzC9b4mHBfG+WCJkPKHXwzi gaeJz1ERqGYSDyyfe0Ol0Z9FPHCWva12HQu99fkeiROjLKp/St6xc/boAyYJ SMn0sqiUzV+OzJNGf+ym3mPRryzqSdjGS7LT0Bd4OeeqtrMoJ2Orr01c6NV5 eppPsP1c/8VRLDn0ok+vx/ixt9Nemrgj6DT6vz5ahyzYf5dno17m6Cf0HMa3 8kv+sKg+ccdJc+LQA1/rsX49aTJ64KsFgjNstPD4AI9Wiqz9647HE1iXZZHm Fo3HH3jfCo176Sl4voDTTPRPG0/It8Bf5z2UUriH7QHYSpt7/qcQzIfAd/2O BL12w3YF/EtD9PERU2yHwL632XcH6pgDgQO0556QkMP2DGzfWdG0ch7mQODt l5lmoZPwugBW6Hoe/64P8x6we+OMVfL1eN0Bd3DcGp7TiPc7wBevtfaO9OD1 C2w79Z3DQWHMgcC+o53LNQywHwDWnp3S6pOI837A+6tTZoXzYn8CnHp5llFO AOZAYPdL+ne+LMF+CXi12826/grMgcCa4nWhHEL4nANwvv+/mBmFOG8PrBc4 Y9rz6zgfCOzD2RoQ7If3p8BaW35Ffk7CfAi84kyc5fcu7IeBfRZwKL7Wwftf 4MYA8Yyr1ZgPgR+LdcjscEwnHrhbvZaDxxz7f+DD81pkMvjxuRFglacBxYW/ MDcCzzWbfNF/Es4rAvtUHP3hux7HHeA4Jy2hA8GYJ4ENY9dKFs+5i/35OMvd 9Xr/PA3XnYH7Dqs1W1pjzgQuy6yVkXLD9WhghU6LK376OD8JPOXljln6hpg/ gQOysydv9sR5S8JN8gVmFaHEA6vb/1osp4C5FFhJ897rA08xlwKvMLsuNnk/ znMCz2zOXuczA/MqsOA1QS7pe5hXgXf+226vtg/Xx4Hr8j+mv1mO86LA3HxS D4v4MccCRz25veKWCOYN4GCm3um1ShNy7DjvPlwX1XkCcyyw9m+Fc07ZmGOB d5rZ9XXPw/V34LKfweFnZ+D8KvC8NYpji/gxxwIfa0jTlDM4TfIVMPeSy+8O z8d8BSy+xnRriwrmK2Bj2TeOes24Pgjsa6kpv8kS8xVwk7zg8NRvmK+Aq+8H T7YYwnYO7Psx9qrQGnweA9h0/6zyAA28roGbNJUS51/EfAVs/2id5VZV7H+A DV4dTFr/GPsx4M4FNznWj2F/CKyxW+TQJ/sy4oH5vqQHvuTCfhu4Sv1BW+BB 7P+Bp0lwPT6oguMFcNDSqz9DRHHcAf60y7LNeRKOX8D2s6yU9jbheAccZtad 6Z2K4ybw3tw1muGncPwFVjPpsTIUxXEcOOOvf9e7xzjuA29k1tqHv8WccHPP n6OWIywqrY7hLHwKX98gpODh+IFFMaeIdjuvwe2/DLzeIp3OojLEGSvmCmFO WG3kt6QsiEU1+/0TeLkE99O/boOjzxkWpcNZtKlHD3PCdAcd46uHWZSz/+1z 5x/g+/0pOxD5U4udr6ZuCWTKoi8oXWrxUpVF2cmZfZ1Wg/lh5hu34knrWJQu X8+u83fRbzG8qha1kp3HZscvNg1Hr56yMs1tBYsqrJjOeyoLve2VRaLnV7Oo OSurf/P8Qn/6gNA/B0UWtXYSf9juvbg/nRvKdi7bwqKmHDBuFviAvvRc2EtD XRYlV6QZymGH7/eAT+jO0qMsKrkyiitAEo8Pv67mIjkn9vERKQma9xv99HIf OZUAFiUmKFXY0ojHucJQVScxgUWtO6bQofBhQh527zwpXsSiNqq5de1twPPY 9Ug96TA773LLRm337Z6QJ0NiNvOOsSjpJ8W/y/rw9cDi94WXyL3B7QN7h5UM TI7F/QFWfhnxJMQO9x+YI91/2wCFxwF4wEmbEpqDxw04VPa5wLNWvC6Ao/me Dp6eMH8LrLtVJTDhJuZA4Pr+e86+zng9Av/pNDFYboY5EHiq3+KjB/fhdQ18 wjzBk6GH91PAM9Nc7ikbYf8APBzK253zAecDge3qUvYL8mA/A/w9rY6rxQDz IbCywOwQhWzsr4C5cp2f/FuB+RD4pj1jy6SnmA+BubgdmdUHsD8Elj9udukX L87zA38WPfn8Zf2E+9ZxPt2VaXstC9cLgB/IBx24Hoe5ETh5KyOoeyv228CR vi1qFWa4HgGcPqfh1kAczisCpzL3Ksb/w3EBeG78xacznTFPAucLpIgd48Hn TICvu+iGDWbhujOwjnzmI04nHI+APQ17uNq1MGcCb1229xSHAs5PAuuo+WdX r5qwTj3ORrNyeFuVMX8C19xzlo+4j/kTuC+B28F/CPMn8BrKefcyE5zPBL5T 1J+9mIm5FDhlV7rvITvMpcBfupMrvs/D5x6BZWclJU8rx3VwYBW1ui28gZhX gaP/MpRuHsG8CtyY6y+zRxXnRYF3Kq1pkViOORa45qKipch8zLHA77WdE15N eK4S+GTjWNP9dZhjgZt1C+d81MEcCxw0S22ljzPmWGCn2IML1z3CHAucnKa2 5GTSDpKvgHk+XKofTsd1XuD0ENu5R1pwnhD45VSjOzb+mK+Afz4d3vtNBvMV sMPOTwfX358wfzXOt+9eMnNlYL4C3rROuzBTGvMVsDpzttddQ2zPwPrSnjwa 6XgdAUu0S5RJh+J1ChxmFvrV6R/2A8C+wQrqO09hPwPcdUhEppQf72eBxT6f /uT6Gfs94AWM9ytlurH/BM49x3zQ8nvC8+Hj3Ofwq9B6xoTnmsY55nVD4jIJ HC+AF855wmWpiuML8HfPUjsXPRyngN9tGeh6fhjHO+Cmx+9VUw7huAk8ZdJK i9kT8pXDwqnuyo0satOsH0n+DBwfuT7/ja1jj9dxJR63whfj3/3kY9a/k52L HN+rRj08j/vpIW/M91udRTkc0VZt/4vvK5Ln+1uFhexc9M8lpz0Gx8HLbaa7 9AaYVLujUly3JR4f/95OzavVTEpq/8CtignrYg+3LIgRzGJSm6vMp7+3wXEw Q34Gh1AEk3K6fJy37j4e/8jcJxwJ3kxK/0ut8s656LPmn6Den2ZSRQ8WKYvF 4/jY5H397XUrJjVTjF/uy2H0HGKcb5qPMCmN7etOvFJDn8F1QyremEndqCpK vKSF/uOIjXfuISZ1Jdq/67YrenPNC+sHTJnUYc4tVza9Rf94oYv50uNMijNp 9gU9NdxPg7zXMtNdmFTW86NKN2rQr77r9tbCl/13X83YFuKNx+F24aJvv6KY VJ0wY3qhDh63BJWXD2wymVTr+b2iTqvxOCvUfu84/4ZJee39IThNEs9LX+Yp lfYv7P0J3v0ifxWeR4fbrgI6U1lU0guNyIEdmDPvNLnE2EmwqKDoOKfZJyas L1taRXJsZ7/+mYOSVxTmqMHGD+K5luwcq8qZ0f4B25VtV7K2ni+Lqk/SPdc5 B9tzgtbhHP8UFjV7nl+/1R5st8qcT8ckK1nUSV57vcMh2M6zOaSnd/9iUWXt ejIzZdED35JiVFz6htsHTs3neXr9IbZ/4JmrrH/7OON+ApdzBfbf3IHvC7jY qeRewSI8DsBz02ZwtfzB4wm83S185GErHn9g51MGp/Kr8XwBn+bdm+f2Bs8v sFaPiNTGSmwPwLvuMs6uYWL7Aea5YxR1dhDbIXCcUMeuufPRAw8Iv4jr3Y79 HrCPUokYaxhzI3BPmlF8zjnsP4HnGnua/JiD68vAy15Zb+/IwX4YWLFRPnrY AfMk8GaBhCcnN2GeBP60+Bl1QQTXnYEDQgp0zadh/w+cvni9zHYOzJnAf4U/ Ju3iwZwJ7DfcfjpBDOcngT/HZHU5b52QP8f5S19GXa895k/gxGjLL6oPMH8C jwa3/JFm4LgGrDmpKsLUCddrgGcWbEpOFsNcCrxSpM3hVgPmUuA+aZex93E4 zwn8ds2/A7OdcZwFnpXJmS5mhHkV+ESVkUzXNsyrwAGyBi/MlHFeFFjbTu5j 1AbMscD9lzc8frYJx33g2jKvtr8TcizwYoG9B3KOYI4FXv03z9/QBXMscJZu 6ZYjYZhjgaUv/U2uccYcAjx2Y9Fu/XJ8Phw47yQ1dKJcg+QrYM09NnIjMpiv gG+LXbuQZYn5Cjh6riiXAy/mK+AkSaNw3XKcbwRO86gMVZTGfAVc8uuXKXcI 5ivgUOe3zlMmPFcAXHtUtPizIh5n4BSrI4I3Y/C8A7dVXYt9FoPtEDh3sdTz 5cLY/oHFvV/NLbuL1xdwiuwsywUn8LoG/hD4vTrzBPYbwHqRr5du3I39D/Dj ZuXZn85h/wYstD7UKDhnwnPX47zj5RFjfg4cp4DXyRysYOpivw28XOuf+qG7 2P8DO+kcPvP9F447hPcviOcrQt9e6Rib0sTOVy53DCQv4nau1Wieq4hiUcee TjV8vhf/7pN5i5bfPcyimApeXlwbcD/3HNzh+UCcRWn/OufBsQ7Hhe97f3oY dDKpGrfa6P1a2P+f+Hmvfjp7fHdTExexvID9vNm7yeWSnkzqpLPxsMQn7Ld7 e7MWTGGPo3OqOTcbJOPxf12drPl1GTsvqQi5bpmw7pMXs6+L7x+DkggXkL3i jf3w7d0aKhlNDOpqVa/Zs+PY39q66//+kc+gKqvPlFy7j/2q+19xPcY9BpXU Xi7QqIL96o+IZtmr1xnUwoUMvqil2K6U5V45jFxgUK83S+hNMcF+VfKL8sOF ZxmU+VPuUu8e7FfTj+Q+brJjb79BzaPpPfoff+udRU6xx/uNb3ZIj6FX2lg8 kGLPoLRDw3KHnXD7qmoj68ycGdSVyUk7TNbj/gzb6xpNvcjO1TNyWqdtmPB5 2EVbsw3Y+8/96tabLWfx/eaOfuvmu8ugxKRMN0r14HVhWHZgcn82gxp6VOge HYHjV2CWn03mewbVPnCLOuGI18sr/Rd807oYVHpjUpXhWRw3hbcX6d2ZxqS0 Px5cuPQ2nsdjSV/rlNnncTCp4UaN/YT7lGMsC9/tTEqQwXHd4Q5eX/v9DG5v Z+feOJE+fY9GbD9Wi+/fkvFjUts+vXhzfxG2t2++AscHU5lUBL8sV6EFXneW QU4PbNi53bXY2C7jEbZbj8Ll2dq/mZR67uQdof8w/0gMtXFZsu8L+i4/2Ze4 C/PSgrrfh73VWFRr0aapOyPwevlrs7TdhZ0bncp7X0xrxzxmuntszSJ/FiUl ePxLiDTmugMqEXo7H7Io4dqXYhXWeJ123NNJY1SzqGCezWapdzEfeu272Z03 wKKUbHQcYiasmwPLjW7YUj2G2wfOuzD5pmcTXu/ASdqayWIvcT+BVxtLJM3I xPcFrMU13OSRgscBeGyF+PS7D7F/AG59vCDR+zkeT+DiSgsZsQ94/IGT6sJX HvmF5wu4fMO56wsWoQdOcud0XKKL5x34UNq5xWuuYj8MfC6q6s2kKmw/wPfV OXdtEkUP3OLvHhx0GtshcNOyugXhldhugUO7Hm8eWIceOPJXe/H5zRM+zzLO Ud9Yk8Uk8LoAPhtj6/KXH3Mp8IPUU5bqvHh9AX91epYlKzDhOZZxPpQW6Ngi UT7hOPwfm106tCFWFftJYAtLZb2Ew3i9Ax/lZA1s8MH+E9j3R4XavScT5ivG OYzTao3ad+xngK9J27ocl0QP3PDWYvd1K+yvgE+MHF+4LAX7N+ABhQyR+/3Y HwIHvhVlJG9GD6z0oaig+NqEfnWceZxvULdbMN8CJ8a9UfyuMCH3jvNP/g9v P6g5kXwFbM9vI/7BH5/XAj7yfo+rbSV+LgN43WDp9uv2uO4JnCn7s33yTsxX wK1TqZmLHXC+DrhX68zu6aKYr4BtDz4IC9DHfAUct4dZaPQD8yowK3GRx2MD zFfAqotWRMsfwXwFLGrAvWgqJ54X4MV7ha5Y3sb2APxjhaC7sie2Q2Al16rp inHY/oGruDRFZT3wugMOS/zY/LMEr2vgv0uF35RIYH8CvONmadWzGxPy1Tg/ drvbkTQX+z3gM/M55DZEYP8JLPbPc8qsCc8LnWn7uTDlD4vKiZ9yLF0LX385 tjScP5NFSZwJz9tchP3nw+xnBV02LKpJ9fX1rWq4P4nO8XIZS1lUnUr6Ksm3 E9ZZHjV8/cJgUllpHKPrJswjxd1Z2DY1gknFy5mc816IxyfPyc3Dcz+TSl94 0ov5HvuNqmvim1/NZ4+/6zv/zIjF6/3rs7EAJSaDuqFqlDMrHa9HRszDBKUE BpWSsDwxeSpeR5Xff2UKOTAoz5aLqu+08D7OTb+bd8EWBrVZdV3PgDTeZy0T PZ7jIcigggz/zQlNwfsdvT9U35meJirdVYs37BHOq1dKJS0Uf8v2Bw/7zDXH eexe26TMqIdNlNiT1besvuK8bveD7R59oU1U4VRNdT9ffE7gjVr6d4n/5drD zT0j5/G5Sp7mpAAZRxz/4L+V7ZMSJa7T/YsOkQOXE+l++zvL0IEHdH+B44u9 VAzdF/IVC/deYPvYJY075+Lzqz9nz3z4zbmJ8uQXt+vLxO8ZqOfItXjuw36/ lwX6h2/g/PnjLVxW38ObKJMr+bbqO/D4vB7J3r2efXxic4546fLieoRoyaHP eqXs7bzvy9EJxPvHk8vP/BluaaJy3AW0Bj9iP9BzZO3OtrEmijtsmiPn6gmf K8xrW1G6iH0ezd98sH6FzyMZdew1PbKJQfXeWBuoUYr9pIza4lArE/brRQrO LlDD/kFC7uRQNDuXtvvcECqqwPZ2lWvkwctE9nZq/mbPNMNxp8Y/eXn0GwY1 b+Pc6pmTcVw7Xe7g3veT3d6U386ZnzRh3vu5SfQ1ISYl0+Y745gkjr9L9HhP b1Nl5zqD+3NmTZjn5P7xieOzKZPiHmW8u1GO4/7rgD3Hd15hUk5cVbZ5Qpgr aib59uxi58mvJgHW1iZ4nbZU1VVXVzGpdr5pz27fxf5Hz/DBrucDTKq36VrA pWbMPwtGeS36hFkUd9FQjaUg5qh9PvpFJiosqrdtcWLyNuw37Jr3ew8as6ji 4/8c6mywvxKcWTozwZ1FuX2bIep/BdudjMjpcvNo9nbOPuC7GI390tXIQQ7Z 5+z7tZ6DakH3MWcuGzt38xe7X9vX3Lc6IgX7t7CXV988G2RR87pejZkZoQc+ sPDn2UPHcDvAZwZbfRQ8J/Sf43xUOsX8xYR1beAVi9IZZWX4voAzS+sHZv7B 4wCsUpxqSa1DD6yjuXLm7DN4PIFbf7xVWpyH/S2w4/KDw/wz0QPvXf95ne9R PF/AjYbdb4Tz8PwCD57dH3VAFD3wuzYf28/e2E6AT8xaW7O7d8J98ThLjmwQ WmOCHvje9srPS2qw/wce3jssmqeFHvhYvqxXbAm2Z+CkbwWGJ7ahB26MP8lb VozXBfBV/v6aQzvQA/OcuSPSWIHXF3DrFev5g3smfG/PONcePuNfk4G5FziO I9ju10sc94FTc/e91J1xluQrYPf33w72fsTPewJrlr5Vnb8U8xXwtw3PAwWz 8XO4wB6OysG1D/C5OGCrqi2Hff3x8yPAKuplj/9cxHVb4K1XxVOf3sD5N+Di i93yhW7YrwL/6Zozdq4e+1Vg2w2zTh9vxPlS4Jab5dP7C3H8Bea1qqgzNsN8 BbxKKj7+2h7MV8D/+MzMrHzwOAMb37YRmuSJ5xe4a7pYMasB2xXwArXFL1bt wXYOHJDGND3PwusIuCfvRxy/F17XwOe7WjNH1mG/AeyQMmTwawb2M5Gr/i1r bWdR6ZwXf03ejv2GdWnUWNtNFjXz/pG22654vX/+FHbyojqL2hx+yExpwn39 zf4fWyn2fb22L9eynT/wfblGOxiFJjEpXZ04JcUJ3y+xbNkn8WkH2bnrhZF5 wmwcXxJeOm2azsukbjy0OBTQiPdBx9dZ8wu+YlBXrHpl+GvxfNmmm3pFuzMo 503rwo2n4ri5UvR72nQlBsX9yMgsqA7nhzOe6HY8/83OA0sGTj3Ux+cBpnon J815yva+QUkOR/D5xtAdGR/1Pel5w1ngn0HiLAbN86f58/ypovvtQw4H31xk 0v12lYO+4iyaV+S/P/9tKt0nvZl3/uHcZprnXtNfELaN7nMfqiilH6d7o7XT 9gv5073nppFnHLF0rznqlpX5gO5ZCjOiPNPo3it9YH5ZEt2Xtd3cOxxB918M swR8LtG9WeqesZ5jdP9u4b607O10/3Bhy3TLhXQv0yQpMqORfjy1J1113Hqa 7iNK1LT8Oen+paPZlgFf+nl8fllWKJCH7h/FCV06cIneHizEPpw2+MNuV+mC R/mvbSX/fo53tQbDge3/8S79MIo53G5h+hvBW+zc3m9+7nItttudz5+8aHjG 9uIJ/qHbMX9uWRt5/HdzE9V8Z/qNmmac558lpVSxaRqD+lp17VyPKK77qLeO JlyWZd93VAszHxvifejFdM/IJF0GNVMoZfuyCetZ5q+F5nqdYVD9Rrl3ZD/g fEJbXoJ8fziDEs5KKZlyAK9fDp7l1W15DGr1MW0Nrjq8P3JMF9NSamFQEqKD vKXbcb4lSNnevHkyk6p3vHxtbhL2q+en2Uq8XsakxK/nNvx2x3HwjMXlhFZ1 JiUV/cNIOxb7ma8rrv6QsGL3MzvlDZ4/xXE5TkI86/JlJpWcaCs27y32V9p5 7hs577Fz7I9FixU+Yk5waelYfKOISW20N+Of92nCOuz2cFEVFpOabUo5Zldj f8hR7dz7e4RJVQ7dfqcw4XPZQhsGBN8KsCiv/NPyWanYn0evMU3PX8Wijmvd yTK/hv2tlOuAdrUGizq2ouantzXmsaMHfF/NPsqiPNnjpPFG7P/73q2d5+bM zquO8+I3cmO/5dmbsnLpNRa1MHLub7e36MU0g1pn3WNR73otdrldxXYqr7gt U/0pi2rtEb98ezu260SR4Nz6dywqOOxhstYwessV+d7vW1nUSa9tn7sTJ6y/ R3H9Xc/Ot+dbONx50tADS8le+reGGz2wiVsLS9gStw9MZRQP6pbifgJ3eJ4K OiGLHjgpWVF1SjC+X2C9yGURqSN43IAlt13hm2aBHrjGUyQkrRKPP/DzTqGt u1TRAwssapddax1M8hVwoUxlcxA/5ivguQFdHfJm+HlM4ITVlruoz3jfDZx3 p1E54jd+vgDYaWSu7UZ3fK4MOP/m2WVh5dhvAJu/dT9in4DP6QFv/O34SGPC 918BL9SWPuMw8ftwxvlDiCPr4ELMV8D1a87q3jPCfgP477NUmZlDeH8KfOJu 71mBL9g/AAvozfqWsxT7AeDy0e6/8w3wegd+Uq5ZMu0ZXtfAy1TNFsxWw+sU eDhaJXZHO16PwAcCfATc72B7AN48EnRkzRlsn8ARRvJahvHoB6Yf5D7Cvu+7 Kh4qOfshbkdDbIWT8iV2u9fZVMQ7YT7fINNZ5zO7H2jtFJsXnoT9TLNemmj9 JyZlvNxy5mgM9mOPxdxfB7BzxfOjjfaS8pj/FX7/Xe21gt1/Fm7yspPH49kT Vt61up5BRYl9eG+xE+cNuOe0NPN7s8cF4YrlZSM4LnTprOaOW8Og5qS80R46 hONL7kevRTot7OtqHtc3vj+Y82/OXH3mUgg9L7nZ/eGSEqSPg+8MXz7buI4+ bo79zJuRvpU+/jpIO+65t4Q+vg+GcnKOhdG9alaPzEmuFprP+JleHnqc7vfs nyS08jXdswdk93/zW2l+2S/HI9+O0v2VXXe9OmLoPjVzvc7wB7qP0Kt8vWmM 7n857bZuE22j+ZyPF/OXrqd7LxulQc1tdK/celfr0U66D9gkYPFUne4Tb8Yn fVCh+76Rv4EO0nRvspr7z9w5dD8obhWl0Et/X/qp0qaHy+neYoMcJ/9/HLfZ Jd1hn07SvcjJKnNF5f84bmfbbj/koPv6Y5kORa/o59dAmSHw/TLdDxs6/Lu7 ne6zZ5duMuak+7WSWb2eefR2qLSgr+rsWbpfVsb4HrOa7m+fP/Yirpre/mOD 1T2f/sd10by8cfqCx/TryKz1rpymJN231ZcWFETQr8f8koU/PvP+x31NzIKQ +T5N1GbBDO8/7/Hza/lPv6ybHdhE6X5iTnLcgPOlTizHKI6HTdTq/nTLuzuT iZc9U/Rk0/smSop/8sDaYJyvvlLYtetpdxMldnLkhVQbPhdkXu/xxpZ9nxXG K9RYJ4j9UnOTzrxd7PFdbGp+V6YcjjvvZfL1D2gwqDdWU+rU5uI61HpxpZbr 5gzKJNY5SGrC88AhmdO4+z0Y1Oifz3brGJhjDdo+dHqxj48cV1vJ/RScB4iZ La23JYudY/NbV389gfOonJK9QYpvGZS5+flRqyU4P3Dw7FID68/sHKJyOCq7 FOdXmR0Pr7BG2du58Fre5Sje/8Ys9V9xl59JFR/ZrmjSg+Nd8Z0BlXxp9n20 /P0goQnf27yl89MFFYqdhxO/RB0YQD9l1fqLy/WZlOD+3YodKTg+coa5HvQ/ xqSOd/ZFy5rgOCKV9CrGyY29nRlr98Tw4riZtqhTbeAak+KcqyaQM2E8fZCy 1HHeXSY1WHhu+Ic55uQNPh4BLex2eMxjgUXuhOecI2TKu61fM6l1Y/Olg9PR ixss/vq0gX2/307d6t6L47LlfK6Ylu9Myskn/PaWQfQ1nisGusaYlM4nr+BV 67VJvgI+0s/xK3mLLnk98DGusZHeG7guAHx0X77iTA7MV8APJC/k/V2N+QrY n9P++EedSOKB+4oYEUG/8XMEwC2WzxkPr+PnHYB7wvamam3CfAVsXBv5wuUw ru8AFzTvFAyRwfUg4JZTrEsaE77/EFi6u4M7xBTzFbBH/7ni+h2YB4CvXSm+ v8AD2yHwnwMeTXWc2H6AZVdcdRc+ju0BuCEwoEV7GM8v8MGglPj5SZhzgAd3 Hdv74QzmImDvd1cFvI5gvwUstjnRS/g2+opHn8xS61nUhpbLN1wv43a69pjv zPFkUfolobMOHMK/+0Onf1HVchalU/ynJXI57uf3Jv1Eywr2feJ9qQuaHfh+ 87Wcar+dZFKr9aMNhdTw+HA27L5Tx/e/9b6URNlM7B+mTE5g3mb3D85y/Waa srhe8ygoYGqeIbsfy309XGSG85buB7KHkv6w+1WLdam/XPBzH+cy7r2tj/2P dTSJh6Kf59P7Z8/dySsyztD7+akCooGbS+njRUfBG74Ll+njTr2B4d0icfq4 1ndRZuhZNt2HXLulULuNPs5G1R1/caWM7rlz5wmab6fnhLfGHHrcOXTfxQz1 klnSTvN+g3wpIZ50X/J60XWxOrpPz25RfbHkM3287lBk+trQvVP8vLfG+XTf bmUWnzi5g+bFA021c5Xp3oAZPzRgRvdVTQtn1XrQ/Y38t53MQLqveyCTmHyd 7nsVH75pvEL3wqE3eMTO0H3R17wxOUO63y/OPzN/1X/s54YAzeB/9ONwO0Lx pk0p3ZdMtn7KdYXu2xYd/3tVg+63/7n5XVyQ7hVmK4Qdaqafx72ehw5mJtK9 +7zgGaHH6X6lg7qFwyq6fyMYFvywl97eek/9KU9Lp/un74x4Kk7RvXPsN8b+ lXTf/u73toTv/5FL1129O5JM93knlV+FWtO9s0/Hjywpupd6UDh45Sv9ejwX GHpm832671d5+Z3Tlu4n/Rbn7FtB97ciQp5J99H7hzOTHxYUZtO9f3RI+Ovz dL949pOxXTvoXuoAQ8CIj+5jF4i5N+bS+6utVjnpQvp0350ynf/IT3q/p1Z/ bvrd63T/eNWZyHf/cb8p9b16qKSB3q9+74z+a3uR7lNE/maEraR7k+ELb5c2 0fvt2t4xqWZ/tl9tUeFniN+T4DNnakjV+SbKU0PKy1YQ76PraicPdV9n52Hx 3/GJ0TifIyZ92CMhvokK0hSszXHBvJFpa7V4WjZ7HHE8VPDjGj6foKHdsnph GTufDx1Zde0mrqMtCjyl97uhiTKxfPTUdAfm8P7p2toJ35uoGXIDZatfY74C 1j3VM/tRFX7vK3DCFr3zB5zx+2+BuX4oWInxehEPvMe4xMPEOIh44K7Mwgsh XDgOAn9Taak9OOF7RYCV0+9qqxzG+wtg1/vJ4bPP4fsCtl452/XMKfw8ArCv sMz+N7Nx/Qh4h59OCrUC8xVw9TS1Ryfu4/0C8K2OrlCPc3hfAHx0ppO/VRzO bwMn3No6VSUQczuw1qXlfg9+YT4Hvt8iGcftibkFeF/bHoeLazDnAL/PaLgy OhVzEXBSWKnbtD/YfoH15281F5zwOfpKzm9unK0sKkOo6rBhMW7nsopQ9y0f FtXnJxMyfH7Cur/sEq8AGRbllM1peHoZ7mdknEHWdna+OiDzMvP4swmfMzpQ eEnKhn2/o31w+0lfPD4mWvzBcVxM6rV+qoavH+bYJ95b5krEMyipDYl6LlMw Dy+65125eDODqixd+remFdv5v97nfDz/ux7j+q/f9sXvrzNeH+xs6Ey/Ti0u lP/61Uq/rnl462Ztsqb3P34GrZ/2OtL7MZ3ZqjuLVtH71aKIBhHRDroXKxeq SQil9/NBiSGH7m/+j1zkIXjmQhvdC/YLdEacp493x/7YRTjw0cdZBl/Ihpz/ yDnRWpba+p70PLD8e8eSNvkvNN/gLeE++xPdFyXajEWe+krzuhG7g4//pvvu spWh5+w6af7Jqtk5jAa63/ioILxgfRfN621Opsy96b7k83T9pcV0//Ts3R1W g3QvoNe2/8GCbzQvxyvj57KO7uf9fnDtmBrdJ1u+ej5/K93fGJs6tF6Z7oPP uz23k6R7I8UpK91m0L2l3oXtfF/o+2/5VGx+51O6/5tWv/W5D91bN9w4qaZD 9wyN9FFZXrrfaRrfJFNBPy/KmVLuX7zoPm7QomOKIt0PZu8fFP1Kbw+iRbMK ykL/w7tMmXp9K93nVOc0/u6mt0MH3sWHncPp3tnxsefFrXTPTHg64vmD3v5d dOZse3+L7neGGt57uYXuL8t2GCZ306+vWU+0M0si6V5EZejx2C66n6Sq9OO1 MN03n/6zr6Sdfr3PibzImJVB9yeLHO0e/cd9k2a6IZWvS/cfzCMHNorTPUPw 7O81A/T+J0xFPia6jO4VzFxd3WLofjTE1qfUie5XCW2yd9xN9xEyB96c+Y/5 Z8/4hj3PptD9RSUXkbUt9H71S/7P+uJ8ul/r1stvHE33pz3jjzDd6D5/Lt+t 1YfontG5QWD9Jrqv5lHprlzcSp0MTNqxT3UXyVfAj4e8om/N3UX+P+Av30Le Pc3B8QvYN7xW7QE/fk8X8Ps7S6ee/xOI4/44V2WcMRRIw++RAF4ycil8lgh+ 3wXwqw8iR0348flh4ILVtvNuJODnKIGDJk//Me0Yzt8Cj3AMD/hV4fwt8LHD xe5MB5wnAS4p2rV2yQdcnwKWn5RyvMkXnysAXr3E+OeHUJxfBa5NET6pPDzh ubhx/rfvi2mdIeYrYIelArZCTTifCZy9Z9P3eVdwHR/YL3eS6voDuP4LrFNy 0iRUF3MEsN/QcpGRUMwRFgHBqfr9LGre3207+g5jHlm8UCL0VRiLmtuRJjaL B58HUCk+doZDmUXVXRZhbovEfCVcpzJqXM+k8o/fPvVWAN9Xk7vmdnlHJvV8 quOehSOYrxSUhsQ+z2JSGisXHVaY8Lk8o/592vX3GNQxLUneVE/MwyeEXtx0 2sig7M5yzI1fiPOZSUu4+uSq6TkqLc3YWSmS7iP+Lvhrrk6///oY9dygt+c/ nsOZMXBmdgU9X5UsWPMuPJKeoyrKY/YWH6Nfd13lV58VrKH3DxVPbgqX/kc/ 5qryw1Msi97vxfbMl754lt4Pn7iUVct1gd7/x075Ia/iQR9fbmdOVTC2p49f cXKqz4r20cdHO+4nR5pX0sdfZf8lXzYP0/2Ug9cs/R7Tc4JJrsACd7Pv9H5v ktJQH+cPej6x4e5jhtB96+Abbm3Bbno+3Ne60NiP7mvusK6r99K96a2br/dp 9NBzy7bIs13BdJ9hLNN1qrKHMqjVeP9uy3JS/+9feykD++OzwqROk0r8CkZv 32cPUol/cepzWNRFUsFP6lP97PXUG+u4T/6ustP+7EVSyXY+RdgvHfMglWyn 8n6dyh9HrLAdV4tD1X/2k0pe///7T+futZNbv9KPg242f9VAHt0vnFZ9d3Mg 3dutFVGsMKJ7c/lrDxSX0L2X0mUJ8c//cX493gqLJdB9UE58YYE53e+TsIrx WUL3cz1WSA420duV5vWLjhdu0f2ugtVit/bQ/cxHk5dFzaD7qusBH7+/ordz Gb7CH02edG/SYHcjeyPdi4s1BRUM06+jiFfGx1fl0D2PSkaSkjPdT52z5w/3 f+T84SOmgYV/6dfvc89N6m4v6T69ypBnjz/dh+3PmLPLgO5Nd8rKOi+h+0vc QwI1PfR+ZkS6o8S4kO4vD07J4w6h+zcVbrplVnS/YdSO038T3ed5Mt4oCP3H 6184OKT+pPeHmzvPv6t6S/eaT/9KeDyg+3f3fjgE+n2lalZVHR6+4ELyFXC1 2Yusm7u0yP8HXHyj23XWT/ydJmCe/ax9xnPxeWDgnd7UIfU1E76vdZxzfU7u 3a2Bv3cA/KhuWa7KfFwfBy6MfeFTko3fYwas9Xpvyk8/fN4G+Lh+9Jf9Ovg8 J/CJ9+tvVLri5wqB57ROtTyhg89zAq9MZdYNfMZ1cOCLqeU/gl1xPQuYe/q8 G14WuK4NHKpyvjs3AdepgYd0Mk1rbk/4HZxx7k2dcThiHuYr4J0F59saMnGd F7jeaOifyznMP4QDH7jw20zIF+O8dbBJ9Y875gjg0XIN0xeamMdK47/xDGew KD3zXXeM+nD7tyS/81XtZVHMfydN1M/h/iQmH328+SeTauV5ZbfpK+arUYdh qZv+TEqifnSJuTMeB8OjbRziS5nUHCtOff9+PJ59IQvvbM5hULGGvkdX3cLn FvynV/vu1mJQQf2H7wzy4edJd45W3Hv0H/PJlyZ73ku9RPdNdwL2ZGjQ81WD JI9cwTR6jlo1oytqded/rAPmuEjVltPzlfwdjW11/7F+obfAa8rRK/QcJSJe /TnRlJ6jXg48827fQM9RV0/9WdVoTs9RzbdKdatC6TmqeqHSh+CC/8hRRy9q KjLp/cxy5skF337S+8PBn04Vvf/Rz2+RvjI9boA+LnAzuk7atdPHnQ2LJYY+ v6KPd1kuZevvhfdQydpLwnc3+JD6f//KzgNKBUP6dndIBe8pqai/bVoKqeBr 5X9rbWrKIBW8zVnrDOVt2aSCLzzhu8t54zNSwXftsLjRV5JPKvhJCc39838V Yh33AiYN4fE6RaSCj+29caLh7EtSwcv8PJmZbldMKnm9RPTPnSqvSAXfvCxd vOfTK1LJ+x2aM8K9u4RU8H5RJTrzo0tIBV/uezsvq6SEVPA377lfd3tXQio5 boOqY8LZJaSS/YlalCN/sYRUsp1H9j0OCiWkgt9cK/jEsfIVqWQ7IZzV5fte kQpe847t2GB5MankvE9Xi7RaVUwqOS9Oi8ocL7/ECn93IKD7UHURqeDF/prF 7RAoIhW8woLmAaU9L0glx039jfDiK4WkgjeYvSrO+2wBqeTvah84f7sxj1Ti jaUq46jnpJL2w58zapXwlFRyfsu/vro4N5dUchxkr6RpXc4mlWw/cXNW7eQn pJL9bNXeO3w1i1Ry3PhrXusuzcQK7ZPx2lf59SNSyf4oS31ucEsnlWy/mTNE xTuNVLKfNS677NekkEpeb672Zj9nMqlk+0LiXwJ/J5JKfMffxN18CaSS7Q8+ 8nfdHU8q2b779urQR3GkkvervbTx4/o7WMd98kix4NbnMaQS//i063ztaFLJ dspU7T/Oj8Q67p+m6Iw4V+P8FTClsdzG1Gcn6f+AFb0fybovx98JAs674ltS sPA88cA87ZpeG03we++BBbNW5jo04vfzAzM2GHD08OH3rwKvMVoQr78Hv7cB 2M0tmfdpNq4TAbsGx24ZlcTnc4DD3DX2feXD596BP1q37G6PxnUoYKHUS3FF X3DdEHh2BlOgSh/nW4BzrhpsEhfC57KA101e2Ke9Cp87Au4IulOV+w7XDYGF j0bui1mNz2UBa7/YVPrtOc4XAWcNNoX2OeD6HfCuLNm7xXtwvQ/4y9A/v1X7 MV8AmxhP0d1yDv3j5Q9c39WwKON7ofN2yuB23D59/OzixKKaFedPYT7B+bTR s6mBe+axqPatB/coLcV86M+19daNNCZ1ZRPnxvcTvr9Iw7j07ZXtTGpIdvLX ME08boE7S7e7fmJQOaEnby29gMf/CHcB46kNO/+9yp+eJ4Lnl8t6Zsad4SbK MzXU+91B/N2ED/lp5/0u0/PVpAudpdd+0tcHpaarV+4to89fDSsGym6opuer j6ENBfGF//E81QO7hWIP6fnq5ujsdw1R9Hy1Y7BsOZfvfzzfon4sI/oCPV8V LcxPTWuk5ys5FT+ZgVX0HPXWJ8HpiDs9R70OLOTvKqLnqC7FS2F3/v1Hjtp4 7nD8WnpeGrw/9nvpQXpe4lStsrF0Zucla8atzxuuk/p//8ruD78ZzD7/LYlU 8JNWV96ftj4L67i3iT7LxXP1GangC5etF8hTfkEq2f4a7neHnYtJBS/j5GXj dL6UVPAGB919OrTLSQW/mdPkXXvbG1LBCxyyHxrY+p5U8K71XjH9TypJBV+b 65Vo/aiKVPDLfA7bTgmuJhX8gVwH06tGH0gFv5r7iWQbdw2pZPvfG2057tSQ SvZzw+XmX+K1pJLj4MZSMHSrJRV8W8vfmNTsWlLBj65dve16Ry2p4DVVO6/U Ta8jFfxanyPHDcTrSAVf2rb07ZfVdaSS4xyv8c5qfR2p4AMfLzZKk68jlexn 33Dedek6UsHP/17g2C5cRyr4Lrknf09z1pFK2slU9VauL7WkkuPTtaHWpLSW VPADy51/KsbXkgrebbKA4KbztaSC/7RP9PCCfbWkgrfz3nD0j1AtqaQ9yDh5 T6+vIRV8xLKL8q63akgl+19e0cVrWEMqeb3FUaHzQjWkgk//sW+G9acPpJL3 KyTLbRn9gVTwk/YHGf/53+8UQB33j1fPCIld8YFU0t5mzHqYP1JNKtlPD3On 9IpqUsGLHON7VRRbTSr4BpOiznWu1aSCP9PtPF1pfzWp4CuduX37latJBW/g aHTOU7yaVOI/XOXvml1NKngTdS0R+UnVpIIvdMq20BusIhW87os7e9f9rCIV /PZaw7jffZivgJMbMg98f4m/ow08b8kL18OHjhEPzPR987V4Hv6+JLDpyoCv IQH4+0HAsqKMiB+2+Llj4ORVF3o38uL3YgFL7Tc+u+wzfq4QmKXe//RRA64T Aec520ytGcbnsoC3HV3MUo/G57KAB96ZzTzThN9bC9yZltlZxsB1Q2DGr7ke ixbjc1nAmol9vA8ycd0Q+NNM1Y3+UbhuCOwv4/zRoQHXDYGndvhZ1a2f8Psa 4xyQ7n6Q58GE32sbZ9eYUzN9d2LOAbau79Ut58N1Q+CxvJG73JMxXwDr724p LGjDfHEu86VN0yiLkrItVKqa8D2lSyLu3jgey/Y72hxSNuG81kOXxO0NFItK eyVwkfcJ5sDV8UGzDRuZ1NpmXtP+Gfi+OoUNJRecZlLfj1xzWHQJ1w0X/OZa Y8HFpAqPe4gF5+BxDrc2/uwSxqA0ZOeaTD2F85C6Gg5Zd5czqM1vGluWi+L6 Mu/Pg3vWZtDz1edDwjUjmvR8dXbJzJaQFfR8NXdq92Hl//geg+ev88PmeNHz VdoNB0k/V3q+Miguy2g5Tc9XBmvmXNQ9Qc9Xm7uWmJ44Sc9XN3XarA+30POV YGBEypguPV/tPyaVuPY5PV+dH1s79GUJPUe1eG0zF7pAn4+K0A/JLqmn56ui 650ePFI9lMH75jMdF/xJ/b9/Zd/3xWtWa8Qkkwp+ko9Ocm39E6zjvlbe5Z3x 5EJSid8sknjSpphU8J42+j1PY16TCl7mVrr1oztvSCX+I2eKv2IlqeBdbfVd L06uJhW88jAf39msD6SCfxwntUpds5ZU8MOCFo7HNetIBa8gPMvxx7qPpIK3 Mv5VkDarnlTwo8nhd0Zr6kkFf1P808YN/p9IJa8v1G+uXd1AKvjiW3fUDpY0 kAo+3ufCg0PajaSC5zLWlPB82UgqeLFPysH2ck2kgvcXFWjr8mkiFfzKEwyV 1LomUsEXHp2v4DmfQSr49Q+PSq7ewyAV/KdQP/+r5xmkgh/8I2xvGccgFbzR kxWzruUxSAX/fKOvWV0lg1TwGZPKeHgYDFKJj/KZ2d/KIBW8bXJEi1Ebg1Tw Tjnb/f4wGaSSdj6n9UVwHQPruG+SXbWrupxBKvjAn5SpxXMGqeD78ouleh4w SAXv/XbnHp4IBqng9e61vdDwYZAK3jPl4T55Rwap5P3aeGftPMogFbzEsIwc 524GqeDnq3umlKkySCXn0eLri8krGaSCD+W9dodHjEEqeJfSqdSqeQxSyXFg fLXJ5WGQCr65f/fwF/Z4BRV8WsW37t5/TaSC11GsyuRgM1TwDq95tSgOBqmk Xb3UDSyZxiCVvK9r9cdTeBmkgh9+b7JibAGDVPDqJo8kptTh+iCw6a5Vkiem qWMuGudjG3oFtoRbEg/c+XmRwDo+/H1D4JvfNZ7dzsP5BOBfm9QXnP6Lz/kD q/lsUbUcwc8VAtcvql7uexafewe+efrrvYFhfC4LOHbjdFHe1/hcFnDPr/mf 3MTxuSzgObGepw7w4XNZwAXFn29qheO6IXDUsq5CJRauGwKr386Mkd+C61zA Ff2BUnN+4/wMcNIOlfbfYzivBZzxYvCC8YoJv6syzl3vPn80uTTh+7LGOXjr yIkALlynA75QZcN8lInzWsDqM6yGLX1xPgp4ys9etVlXcP4KeK1pwdJ1E35n ZJNJ00bxShY1e0snt91k3A5nhn+7lAOLOuzze8eva5j3wvsUQ8d4WZTISJHO tiHc//3/bDLf3WdScnPTRcQ34bzWAcNLHeUUk/raXbFjail+jqBXsXhApppB xW5oObGkFnMv93ORy3Ls/mDDQ/nh+H2Yq0f8ud/N/cG+niQfv/n3wAzblVT9 huVO9Nz1xfx8HP9/PJeVNa0vdJ8IPV+F/9w/66gAPV8dd+xY4cxPz1etR8qe f+an56u5ek7XewTo+Wrt3dpv9f/xvOvQwtNzZP/jc3NqnZkcVZz0fMXt5L7E wZuer8SXPTQf4qTnK+2VKYv13en5am7qygH3Pnq+Eqtipjgf7aGSOU/7HZIJ J/X//pWdZ4wXn1Df+YhU8AbSS1xlOJ6TCt7m6XbL2etfkkq2Y+ZivHnLa1LB d6UoOd0Tf0sq+DkWIhUXuipJBS/2c794tuwHUsHbvTjKIaFfSyr4tBxJC0Zm Hang3xmtlfvCUU8q+JOJ+yyPs+87oIKP17f8p2XdQCp4l4z4CnevRlLB68RM jebzayIV/NwXDLmVngxSwTvE7WPxWjBJBS/rscqSS4lFKnitypMazuz7J6jg W1caJH8zbCYVvOizpxdq7jeTCj4oJOUL1d9MKvjZGXlb3RVbSAUfavhZt+V0 C6ng158K0Xh1v4VU8JFdT4/OC2+hvjEqH/V8Qy/9Z7BDZHUL5RJ9wrWLaiWe o8Zo6c2aZircV1RT3Bc9NffaR79LzZTVz1+5h16jT/U6PIVzSzPF+LurzHwM vRHXoO+k6c1Ubsid6/9k24ifYv9Xf0Emi1qrtI5vYA/6b2l3GZYW/3suNX8W jz36J4qqn/4tZ1HfFl7gneSHvkPgSuPMQSY1o3jU8UY0+sBJc/sKK5lU6T/Z GI8U9CXqp1wOPWZSWu4fFByz0Ts0NmfLxzEppSTqomjBhO3Pu0Ul3GRv/3BQ x9Ji9H19sgtkAtmvn3rloHgp+lm520t3+DGplZ3pgumv0b+9EjwayR4H0lYF rztYht5lwHlXvQ+TiraJcr0/wZ/49DPi5WUmdZL3uJRwOfror9PMlb2ZVODG vx8XVEzYn6vWv1Z6sPfn6Clbsbfo7Q55nrzvxKRiG/5N861EHyspXVZqzb7/ 9u0RSK9FL/Vi6508QyYlMV/Y6EsT+tSCr1Nq2ONJt/b0sbMd6JVODC2zXsKk Ft2JyovrQz/p2um/Pf/7XNjIFI5Yjnbi602rm3veMaht95xnxvKj1/i7e8YU dq5tf5uyskIK/bPy2KRQKo7kK+DwZ988L+zZhuPjOBtx7A2ZyTAnHjjwRIR2 goAz8cAjKrtH2n7h97oD107pdpgRgt/bACziluUi0RVOPLCdZ5cA30yclwA2 zl+vGSmCn6MEzo+d43hADp/LAm7n0Pi9IQHXlYAZtq+iMrfguiHwsdUXW73t cN0QmO9VcqhgBK5bAc/ziQpreo3zLcB5Bm5VB9QxJwC73awI5JuH8zbA0RzB YRHzMW8AR3F9UdfXw/kf4DU6pz+cy8J5LeDbB1KtpDdjzgFWuP5HcvsAzjsB d99YvefSB8wdwJmakx4cb8B5HWAHV6nEJ4P4+uwaI++4+yzq5M5d3RWxuP3s b4f2vtBkUR3r7ZR6J3wv/fxpvZ1JX5iUtuD8LU7e+L7eG3Z0nfdk56uNgakV FzB/zkobZp4UYHvby9cGsnF91k58rWByAvt+5krBnoDDOA9JNUuds1rHzmN7 kkt7H+L31oqrLdjflk/PV+WPlPdZLabPa8k3KoSazPyPzxVaSPzxv0DPXQN3 PD5LX6Dnrn2f1+laetNzl0/8+4RbfvTcJe5vfZM3hJ67xvoNYv8V0nNXeX6E qNke+vNX4Xv4p3G10nOXet4M/UZ7+vqg8/5fs6r/Y31QImHxohY/er7KuLdJ bMrcHmpS9HDCK59grP/ff73UTTHGr0bvdFLBG0zP3xC25jmp4MUq1t+LqXxJ KniZ9pBVDyzLSAV/poQp+/3jO1LJ9o2FL76fU00q8Ssq996JrSEVvJvrXwXd i3Wkgt8sdPHBfpF6UsEXfirYeuzOJ1LBP/71W3y6cCOp4Cd5S81mujdhHffh fyqoOPZ9A1TwLmezuKUFWaSCH/wuHLtSoplUsj+xkVtjs5pJBZ9buGvNmY0t pIK3brQLe/mshVTw8rEjb9c/baZmZNoEKt/GvCFVudpCWItFSfBf/njtHI5H 5tOD7o/uZFAOq0LE32ng+PKu18995FQjtUPpZsSxaZ/RK6kFvHv2idqxW/tG cxb6rzcMWAJy9VT87zmzivU7iLdL+BW7p6COiu2dsjylA/3o1re9XadrqXft qTEqtl+It4y5G7Neo4aaEZBvtKgN/c5LbxnOyh8ot1uu/4+tM4+m6n37sAyR SgpRmZJKKokSUZsiJaRC0qRSaBAhQypKkSREKBVFppJMyZAh80zIfIgQQhpM qbf39+3et7Ue/fNZ18dZp9Ohsy/38+y9G5h3ddN9zCL+su7tVZSr57vWJy+x XzdXczjespLas+oiSzLbZ7qPK0z0nBZfQb3hczH6sxt7o+Gyez84Kyjlim2H NvhhL9qdFWQyUEYZPaIchCuwl7m3pyGnv5Q6uD1t43mWHrqXqmc32M9dSuWw ByzuX4O99uwSKXedEkq8yOKdhj729xab7iuPLqbm57n0K9lizyGia/tauJiS MRLrtr6LvZys5tbesCLqp8S+jIfR2DvU6TpIby6itM31Eg5mYn9fN9XxTEch FePWEK9Thb0y14Frz/wKqcx7KZ/mfsTeMJDNccauQqrfIUBr7SD2588d9Po0 u5AS1ElxlJ+Y9Px2KQdflRdQMQkNeyNn9OL399p4E6dPAWUSV/p+gg97KQUW vuQ9BVTO8pLxcDHsI/YyHMLnFFDz0hQS5kpjX9WoKjGYl08psWfkBG3GPo53 tK7yQj7VNH6/+ok29holtqkJQvmU+6ZF1jZG2Iu3NAmsSMmjRhU2Sh22xv5n bWZdp0YeJcdhFfLIHfsnrw/meYqgXwEbX3eI3hq+hf4cBW54OO/R3JU4BwDe POByl2npBboHXmq/fKGiLF7XHVg9doXaijV43Qbg1aJbQg0+4r534IeipmpP w3BfFnB984h4gTLuywK2tbm8RaAMr0cKrNb1aLb+KrxeFrCS2+Fr3ja4bggs uPqPQL46Hq+BhQ+ffle7F+cnwDpzGfrlmni+IXDtd7GteV441wKmDJg5L066 zhvwHK5Lm8yZcB84cJJZHp85P861gM+nDzU36uNcCLhZ/lFB1VtcpwNWCmfL vLgL51rAVqaWctUcOI8C/r1JaM/znknrif/413uTEMNJ14GPajGSquxgUPe3 z7Eur8fnuSYu/GDsJoOKunn7l6XzpPv8GqfkvZdkUHI8f57JsuDrnK6o52Kb 30IJVuQGbzDCf69Si7bUdKMW6qDkiHyYLK63GjIHPQ773kxVv5ypy3sc3/8J fqHFztebKaMyTSftUPz+1pU81yic97e3yj64Yimexxq7P+tDfBDpXbbXg8t/ RE1x/ZbbFMfJB6R3pXJTwiunON/wWvCa/r2lpHfFns+auDfF9TxnOnu57msm vevuVUuTb59J7zo1R8fxogY519rGp8XM1k5613XRzI4mR3KuNWQnofdnPulX zk0zrpvGknOtUMvsffO3k/uvPF/Fc3M2D1A1eibejzue0fnfV//6QJlXPv+H 13RC7zdw7WIEezad0LsbqGiMzCigE/r1q38kLx4opRP6ipiw4Yn6Sjqhj62x DiuMqqaTfn6xiDan17V0Qu9k88q69VIdndDvv7CDi1mugU7ouU7cHVdkNNIJ vfHOsz1jds10Qn/h++fN2cwMOqEvEZFeNH9zK53QP7NL67MeaqUT+jcV948c fdRGJ/SbH/Rnmfm2UmXXwtfapaEv6dxbMtNOrIVqfff1qNyk398vXTKyebOt kSorpVg/z0f/GbpYdma3Xx2l8KB143PJSf7zIIK/aPZf//FMW/FyNfqMI1dj qdPL91TZ3cZWGVH0lluhS9gj7Supe+IG0jeZ0TcEs870P6oto/KpHjOeGuzH bMQepEwvpsq0V/GqBOBxuTuhRGiDc/7f4+fTu56aeFxjPZ/z68zWHCpw1/nS a0PYJ7EKL7qqkUVdOGGUH+feR/cF9jESbcvSKQXD1O1JfF/onsm8gX2R3N/f u3/IXZH2xd5OJUhXJC2eCl+VHlU4vZ/uDSz93fYZv6T0N+ZWSZljryx64VSi WAT1i9/BlbsYe6deXtnDYSFUsGFY7GLhAezzu0SupPlTrA+Yzsw3ndTftl01 d8KdMnfe/OtJJPZME3MYKu8tqSrNskKH9kl9dUC18QJ7ZMjsgVNORT5kn3dV X+X1Q7J3qwtofPiU6J1SNghXZ4eTfYJaTYxRNPk8TZd3ZnrEEL3y3Yyhty9i yf53m6v84Cvy+U09tOfzx5PPb3ZNQGxlAvn44ceFT9Ylko8PEO/Yr5hE9vPy Pjlve030maJxx0sPJpOP79auPunyhuhFT1avOW+URPsVzVdWPzg5QwU/L//x z7xNZtLXj9I98Oh6PmU/FWu6B85+3u3dcwmviwW87lvKPJdwPK8QWOPXgUyh Ttz3DvxaZ3z50tu4LwtYJHQje+U53JcFHCs4k+2nPV4vC3iMOa/x62tcNwT+ LjYeyR0z6X7c/7hzyPGGsTju8wFeevleXIoIntcG7LqYz2lnFc61gLuOFrH5 NeJcC/iy2qUXT1fjXAvYQT8pbXUR+gPwi+fSPK8m3f8IWHHaz1UbvqOHAHdt z10pI4dzLeC0D9vTwh7jHAlYuVWjtEAa507Az62KeaM/oy8Bh+qe3iVbhOtp wNMXd6p/XI19NIvcvfUlDKrI9JUy2x/cD7YriUc52pJB1QVuH66MxDmb++py i5Z5DEqySklj3hp8/Ytv2t379LKFqjCXmUi/g/O9M+/vyjdtb6HO1Iu7/QjE dVizo/tGPzY3UxLzhjo2VOD3xVoo2UPkXDPVnTMh7eqO88zS+z2hab+aKOUd vk+48nFdOy5NuPrzFPvkRblymS5MI9cTNY7/4kn9OsW8i0f/wa2fpHd585oI bR0lvWtjsXCEAxPpV6bfzm98MpP0qzNijiziC8m51hNF/9Vn75HeteJhWcsV WXKulfv7rE1FFeldlQd90k2tSO+qWcBVoMNLzrXyDuec80rop6J8w8TlS1zo /O+rg5Tk7BVpbd9i6IRe74pc7NbNaXRCH+VivCrgXA6d0BdZdnpURBXRCb3G tGlcr05W0Ak9m6W5I9up93TSj9/Pxx3DVksn9JwhVs2qQx/ohP78Y6GGiKp6 OqE3qfH8yfaskU7oi5fl7n5wuplO6PWf7R5JFWPQCf1z2/WpJida6YQ+u9xM OHJtG53Qq11jpQT2tFET99aYvBFHj5rp5R+YM9xC3Rs9eKcjCD3qwUZ/61br RuqntherFSt6FNPGL9lji/56pGDIzvUH0KME1MKO7PtSTeVoiCtzh6BH5cV9 TuL4XEntvP7k2q8a9CgpviCWdqEyKmecp4RtDH2JteCL/+30AirQsoJXYzb6 z5CaqY147Dsq6NbuxJE56D9eejtkq7rTqfO2akd3M6PnGFt/lQiZm0gdtHbm e9qBvc71gffiMZGUvoLJD43X6DPB9yZ8Wap9qVqbbYLxDpM85F6FfeFDd/K4 HFG56chM0gcyP7uMS2ROcTzVn3j3Ki+L6IOlKJZZSnnk8ydvmRGnVkT0TN2+ boafS4m+govx88y9CqKX5j6gM2tmFdFzC+QwXPTeE73OND2pSrtq8vHfgkK7 bWuI3sjPJzlVr5Z8nm13T0rzfSD/XQydn8JvyJ7pcsXMXap15Puz6z2LzRuy 91LSub9mUT35/tdy1rOdIXumkYqdJ2LIntva0Ta4g+ylVZy8vnA3EH2sjevZ E+vJXrT4chyzLtnrlKhJh5iTfXnewlFR/bu0XwHHO2nJBw9tpj8vgZNGJyhG /RG6B147pLJX7SzelxC4qsRwfn4NXrcBmKMxRqycFc8rBPb9uG3awDDeDxp4 y6oMZqs23JcFPGxtUXIoCtcNgaUdvkQ+kcV1Q+DTtp3J8/wn3Sf6H0slbRC9 OIBzLWBN6fHOEE68DjzwKstEgYIQnGsBu3X2OWQcxLkWMNv+XzNmrsS5CnDY CMu+wk041wJ+8WPrmff30BOAH4mV61VvwPUy4KNfMg+JeaNvAMu27FKLj8Z1 N2ATC7VDon3oLcDysruCSveg5wBzcNZcm2CgdwEnXO3bVT7pPjPACfE/tTaZ o18A/1wW9bjDC+dAt33S5+akMCjfTfYaPZPuq7X64DaOhUcZlIz5bnUdIXw9 m2fNKFdhYVBP9kW+TYvGeZ1Jws4mrZC/v4crHB35w4fvQ7ivo66eYgs14vhW aUUKeixXWcBc68pmStmx6DjFit7VNX0ipOh4M9VqsjwrcwH+PMgLqGy+PNRE OZn1iQcycJ+hy/UPicmXSO9667tSbYsY6V1VzrYnzrOTftUgqRlyg4X0q8vz BC91s5JzreCIRK1FM0nvipv2IerBFPu4ijyceVuXkN4V4ba84kAY6V1m0eUh LlNc15HLwftjWgfpXZd83LiF3Ejv2uHqdCllFeldEqEfnkVU/j3uze9IDr18 G/N/f/76VXLUtcV5sXRCX7P4UkRzQTqd0BcZetWfNsilE3rOxC/9V1OL6YQ+ 2HoOhzhbJZ3QKx/gupgkWk0n9D92NE+b4V1LJ/RPTYNO3/KqoxP6qtPnMldc b6AT+oPqBwr/nG2iE/puh0cpChotdELv+vDmbfdZrXRCf945LHuwr5VO6Avr UoOZ8trohN6rSrbysiODMlLrVSs1mbRf5UdB4VmPRkq88uN29nFc11uw13jw Zs4H6qCdpcKay+hXOy702DxYWk05PuRg/TGIfrX/cQH3xtgKqmn/jtFFe9Gj VMuumj8oLKL2W1y55hCKcyd3l2oDEdccSiOOI3W0A/0q2V3cdI1MOuVq8KvR l3fSvIjj4bubv19Ry688fWwgi77UGr70VlDBQ8rE5rrjMZVJvtRqeXEoBs9T pb+/FRHLPwuQcwyj+1/P1u7JJnqnn1f7+DwKiV5H/654nRDpORa3vjBly5A+ Y/TwtXH7dNJPgm88i78URHpFrHJ+2bcf5PF6UGAvXy5fM/n4B5yX3H63kK9/ 8blPVvtbiT7Tu9a+dGEb0XNvHKh5lUP2og+L/VwMPhI9U/2y+VEfyN6gPsv7 +tZ2ok9+mXXY9iHZB2vO0mrsJHuJwQ3L2Bd3kK9TVmXXDi2yV2btuNV1huzr PixtF3Keon9uGCp0i+wHL8ffmuVB9hbzZdlYr5P9yO10D25bsh873e4p9hPv PwispNKw/+igIv25CHyfKTdEKv8g3QMn+F8ffByJ980Bjop0Wf3UDq/bAJx9 kGU8y86N7oH3LTGoLF2A+96B1+gXFEjuxH1ZwE3G6faeQ7huCDzx+eIZrt+4 3wY4m+f51TVVeL4h8I+UdRXmSrgvGti38tfjjgmcawHXb2LvXiWDcy3gBF6P 7PJm3K8FHJhzbqX3VTyOA3+MsQ0X0ce5FrBuZ7j3ldN4HiKwi8mxpXY5uJ4I LH60/UX4MVxPBD7LwlSSsQTnWsANKwu3iW5EPwHWE/q6e9wa1+mAtyhZvU+p Rs8B9thZnRu1H70IuDB7nfvwpPMTgVmuRBs8f4/eBcx1ImKl9gZ8vLDqz+Ly WAa17pD1BlkhfH7fgNef7xowKI+S573HWnD+ljJfs23rrxYq5eQTueMX8d81 0q/h2/+ghRI83D2a+RnnfhvZdCXDN7RQpqYssw76o3dtfiIodL28mfKY9XWX xzT8fsU56W4K/X/vsrqTKaGH3rXoF0us+Pe/x0mJewHKOnh93bIGvg5J5ymu a+r1xfPEbNK7NljcsVn2jZx3aRk/YxyY4v4aJ99WPX46SPrYfflbUmPfSB+7 0J56uXuc9DHBBOntX9lJ7xrtTk1/aUd618HmGt/XvKR3tfJf3+mSMMX5iYtk BzftI72rO7BmI8cvcp0xO+LJa5Ynf4+fAmPX3/Jcxfzfn0EqKrff4FJrDJ3Q 6y3gzzH2SaMTesl0R+EfFTl0Qr/+aZz+t53FdEI/pjQcZdxYQSf0Xh4/1XjZ q+mE3q+m9jy3Ry2d0GsInds9M7COTujP33lsbxXUQCf0oUcsmPb7NdEJfZC2 yMP6qy10Qr+IJ6OGW6aVTujFBmxc5QTb6IS+Y35Y0IKNbVSH6MurvRvweKh6 INHRaXkLFce1e5rs4KR9v2z1rJxMDZTQ2kh/v0CcaynvSpCa86eGcuLpvXFX Fv1qwxFW4ydLqygXq7UzM9JxfiUzyzh/9+cS6mBRsmXahkn7cJJupiTW51KC Nh2zt4SgX1nrq1vOUXxLeUapcQmM4fxKOd+Uiev0K6o1WUJWYAv6lVHMupgu bj+K86Ol6Wr7Setovxa+SDTBdWjIzPWK3c5xb4k+2GxB6A3nAqI3eiDwZqE7 6VGxD8M2Bd8k5z8W3gE3XJVJX7K4m71kY2wj0Tspzli/t4H0ouR97+21Wkkv ipVX5XWWIX0moHlFaZkx6Sd2qZff6tiRx/3tGosuSJl/Inq3D/5p99U7iV7Z LMmskq2L6AXK8nfwRZE9tzEPf8z6bqKP6G+62RlJ9ka58s6cHJ/J52G7sO3E 7in6MOc+ypXsCw6rlTCiyD5YNlr4ejrZW7y5n2CWSfZOb0ZKMhLIfsT9DMer B2TvxWrpcOgC2ZuVn2uOqLel/Qq4b83VtjVcCvTnH3BO//kld6r30z2wWh8V /2sAr+sObPpuTXroiYt0D+yXvdXkGtsNugfuNeg1O6GF+7KA114zicgsuUf3 wAW6xpabfXHdEPjbhuBv9xvxfENglgK9nafF8XxD4JNFz0pmSOF+eGDzkvQT 7Uy4fgQsFP+993A17ucBPnk2+kMHH861gHNP1tSnFuJ5iMDTw7em/7bH8xCB I5INX6tr4v5t4NDkhuOeh9AHgD0yD11zfYnricDCXr133m1FrwCenqX5qOY2 ehcw7wmxiU1B6CfA02RtVJ+UoncBC5SUllmI4X4qYFnT1D0T99GLgAsUpPdd meRRwEHCChncI+gXwJ19xz33LsHHy+0NdPaPYVBvE/kYVQvx+dfyvtit89e7 Nl+9mB/fj95Vdjx5lOfv73VbSrhmH3mM/y5x2U9C/Y9bKOuVO48ZrcZ514ML 5Vv7N7VQrRnFH0tlcH74m9HftryumSrhGzp+qwC9qzV6kVmceTNVsDpyQZki evhgb5V65LRmKljLreNVBJ7HMR7U27nSm/SuvcLq3Gffkfu7Qvau6dJ8THrX N7Yd6Xffkd61kD+Lf3H6FPdH22ku25NKetfBma8WuGSQ3vVgyMvvUj45B8v5 Gf3eeN4U9w0MXW5hGEnu7/KxjOV+pUp6V+zoXc6QdnJffZvzJZtD10nv4lqq Kcm3gtzf1b+Nu+Rb6d/j6rV3d1bLhGP+789fv5qezK7/NplO6N0vRk/s6sum E/pWefMPwRaFdEIvGruKp7S7nE7oK9YPZBZIvKcT+h5t+0G2vx4CCf0b3yLz q7x1dEIf2CB4L2txA53QNwUkaJYsbaIT+mD/nkNJIi10Qp+01zd3F3srndCv 5BPd0jDSSif0E+O3P4RfbqMemnnu5ZmGx+1LR8U3n7jRQpWFiXdtmnT+18+L gh0mMg3U6bLlMy2u4/F5kZ1//HvmWupn+YrkuTJ4vBVaK3jy10gl5SlygPNB OR5X3WrObl2wqoSKUxTy8D00aV+33mLemUk5VE7qkWP+jehd32dKnxsTS6XK fqsf0NqBc62K3IPOUn+iqKQ7/QyLZ+hdTMobVrE4GVFM7FuLSobQuzILFNQ3 KpPzK1Et1XPDQrlEH+y+KPg2cznZv7HREVhO+pWoWtHtOifSrwZjr0euutNE Pr7a8aH9CtKj6t47HAnuJOdIg/Ffel9cIT1K4CV3wsEfpEcxPXTb7rid9KWA yJBdA/akF3HcHr0Q6T6FFzl0Gb+4SPpDxPEXLzi1e4i++9DaikbmXqJ3ex69 SfUB2Ts9OHLOXKCPfHyg4Gz3i2TfLdO7rCiX7O04B68dH5nieXrkOG5NmodC xrpny1gvIvvWl70Ju7jIXsezZIlGP/n8BZ6rctzTyF6+zXD+4pPBtF8B27A9 CZuhLUd/ngFLqPaF87Huo3tg4cSUDXLxeN1RYKM5AbNbrfG8QmAZYRG9sed4 P2hg1wrWpboSuC8LOOTn8iAdU7xeFvCm4sZ5807guiHw3jd8xepleB14YOlV v3POeOF+eOAjnO1sA9NwPzywxwffBzV8ONcClnq5ZHDVLTyeArMzlQduOYHn IQJvPKK+norA+7wAmxstiuF9juuJwBN5TsPnlCbt0/7HKXMNFnKy43oicPWT kd6Q2egDwCn3HxjX78bzE4EFe664ytSgdwH38gQsuVGC3gXMcjIlcVc5+gnw si/2GZe+oXcBh16z+eSsgN4FPEutWzYpBL0I2OfweMKBVegXwOeu5gkE1qNf AK+z33z7hj4+3m52Wa16AoPS7741wGuMz38x5+FCayMGFcdc6aOyC+dvvOfD TpRxMChxV6s3hgK4TrrfeNDsyIsWqq8nTLIsA73r3Ll5hrLaLVRE+7qnez1w fnhTrW5sf28zZbpY9Li8AX6/nlitiu10+dvzfo6pKsT15aKyRpfBhc1UZkbS E8FKnLtarPuyyucF6V0H02ZdV1QjvcsgiS/4Ii/pXQMSHbc/2pLe9al5E+vG Ke5L+/JY4NXe46R3zXl8st3/KOld532KG+uPk961IEej7q01OQdbej3r6QgL 6V1n66VPLggg52CfbvXrnZImvcvFV+2dVAk5B+Py9vgSeopcfyxKMWqfPnOA 0lO84X7W24/O/77617tSf1ZusIqjE3pl/fXMJy5n0Am9e4uTXBqVRyf0ft6f lk9PLqET+sRTQx8tfSrphH6w8+LBwKxqOqF3ZJeIOTnrA53QKyxsucojUk8n 9E1ZTYUdKxrphF7piPbszyub6YR+p9+glLw4g07obWfwrR9za6UTei6rn8FL HdropN8fPb3H5Yp/HzfQ37mfZdL5++uNQiyYmqgYIauMxyV4nN+mzcK6OvoD tdOh2FjXDY/zrrsHuI/Yv6eMGQqj9ZPmHPM0fFY01JVRv9I/SoZU4/H8vpah gvTMfCpmyWLPFcZ4fM48p274hT+DClY50jytA49vfddelEqlxFJy9SHCBXvR uzLXTadGmd0o9z1yL1fET/KuM9blo4vx5wAyuCnLKmdTDtEbcdbNuVxZRvQ6 Zzbdjzkxxb4m9XW27nzk/p9g9tZCMztyvW/ENdN2Vz7pXa2NbEaGz8n5VUUx S2niadKvdKQkhBrZSL/anrds3YGLpF/pHLmX0VRC+pXbh63mC8dJvxoM2Cvc Np30peTcJdO5vpK90ba4Ro8U0kMCNvD81jMmfWb7cvXQMwNk333hMm/zwX6i j1D27kx5QfaiAZK6Iu1kLzHUGLD8N9lzi7IYf/tD9spOSw4//Uz2FW853+1L I3tP3uP7/EW+0X4F3NR0cVfbK1n6cwvY7+BO2bx9unQPzL26N2vbYxO6B368 h1X9aoQN3QNLKWWt/GKB6ynAgrfcvnS04PVIgeNCR/NzRHDdEDj0BWf5RkM8 /wtY+4CT2auXj+keOKS9y/uaAO6HB+7LFs24MYz7tYDj+Q++VLqE+7WAx8N4 n383wHUiYLe9c0rryvD6WsALXU6K7QjF9UTgQ+d2Hlo5aT0R+NzwnbKnm3FO Alwib5K4OAeP48Dv7B6olzmhdwFvPDn90+4L6F3AKikvXis+Q+8CnnCPdfzD gV4BrHObZ6FdM3oXcG5vj/LiSvQu4LWzi02udqB3ASt0yvnNEUDvAvbIFJ0t cWbSOuM/Hjt+jYOvDb0DOHGQy4HDFv0COKGERaijEn3khlt+568sBiWt+CEn dhSfX6yHP5THkkFtrDXktmPC13NwfIvwFUEGteWAOJtFJ3rXwYAuPbWcFspw wq+zJxrfhwD57+bnTFuoCoOg7JeT7uutahj/bsaMFsprzu/lrjE4hzzd8efb kmd/X98Qo/joKPr2cUvdwQqqmTKKXygyshE9/72/OdPyWtK7/C2F7Tvukj27 aHgisy65/mjm+d6Pm5v0Lq4nnK1142Sf23W/bNYX0sf6KnsLDNpJH0vK+7rl eAvpY8INTMylzaSPVd2kbEWWk3Mw7bTksDuvSB971XhlIl6ZnIMJBh3IaX1P +tipq9L3jU+Rc7CW6y4yN1nIOdg9TxkB30cDVJTy8CPb50/p/O+rg5RensxX /tQkOqGvWXLqvE9ZFp3Qc1Y8G1yqWEAn9JlmvTsVg8vohN7B/Y3niUtVdEKf 38JoTL5ZQyf0MUou17sffqAT+tG0PpYn0fV0Qi/uuXnft1eNdEIfdPnSvq8v m+mE3v54dWJyKINO6HeaJtu+/nvch4S+TFEgIOR1G53QF3f6bV27g0HN58x5 tccRfUz/U1BLak0DFc3pqbxIFedgHsMc/d+v1lJSFcc2Vv5GLziw8ukGqz1V 1IXUt58ro/H4f2ZR41LDWyVUrxG7j6sGzlE29s4v7U/NoTxPjdeaNUxaf9zw 8CLP+RSKi3fT7N+GeNx2OqMwJMkTQRm5tlt9mHR+HxPv4jmL+W4iw+NjV854 XpBC9KJWN+ZsDyHXGZnWVZ1Y/rSSfJ4fp6npkeS+LCffHzplR8n1xGCbiGPb SxlE7yYysCH1BznvinhQnbO9hZx3xd5JTb8WTK4PKucfEUxTmmK9z8nm9v54 0rtEGwzH61nJ+VUyzwqOirWkX5kWpzu0bST9Sue6ypNcUdKjApT94rd2kL1A 65cla2+QPuN0KYXFgn2AfN+Ovzv4xZTs644p3nscPcXj7dXaXCrIXnS3XGxI HdkP5gdt/JND9g3Ss9L2aezayPTvD7DGdNvwSMW19OcQcMGXK1+eVO6me+Ca ACv5a0l4XSxg+ejLqS+ZregemFPlT7nUM9yXBTy4cu8rnixcNwQ2neMz3v75 Dt0Dy//S75W7gOcbAjMfbvfu+oZzLeDekmuxlW9xrgU8jzdx+MZcnGsBi9zl Hm0dxfMQgbuZw1srqFi6B+55O3RGSQ/XE4ElGze3TGTieiLwYG7CSNkNvK4p cJWkkrluFJ6fCPyLX7Tcwx+9C3gWd4XAtlm4jwt41TTh4vEE9C5gzqKFa5Tv oncBD3RUv7sTgZ4AfJuSrNf+ifMu4HTZXT7tb9E3gH0CSyLnBaN3AafPObZL 8TF6F3DqJrW179NwvgRcf9ilddMo7qsHPrX7V0SxLvoFcJhK7PnkcvQLYM4D zLtr/LDXD9A7nP2BQXV05EWXNuJ5kRHhoztl3RmUr3M8nzwz/r3fv/K8EFNg UEXZs/TWzcD1x/kyVjN8O1ooh/0V6uODeB7BtiNhcbc9Wqi69j6JDCt8334f ffBBYG0LpXngw+WgAlznNW1Q9VOpaqZiOzPVHrXh97dyVisLv0UzVSeQtJDP Cb3ddihdOZqzmVIeCzz+VRJ/zoM1KGueJ6R3HQ1o36x6hJyDSbY2cNUsIOdg r0W4bnedI72r+92HeH0D0ru+sShFD6iR3iW5+NkFY3nSu+RLYx4dXUN6F1/P idOekuQcLDMklDvy7hT7wVb+ttXmJ+dguiIZ050fkz6WfTzdL3glOQfTlqz1 Zk8lfcyBJebBTC3SxyoCM6R/t/71MTuJoppj4XT+99W/3jXQ6L7kSDKd0PPl 5PHFX8+mE3qNhWX1CnUFdNL9M4EUVfFyOunnkRH7YB9fRSf0+UIyS5Wf1dAJ fVTxRx7j+A900s9DLdx5L6WeTugX6L6z/ZLSSCf04XuNs6/HN9MJ/a8T7OnO Txl00s/DyfuULbeVTuibnV3XSMa30Qm9ljfPxuKTDCrG5/DVixaTr68VGMb6 9/ej82tWiP9ej14QYxax/UBULeX6JO0l1wD62KWJ3CxzxyqqrDT20/QH6AUL q/bqu7SVUFIz0vp3KqAXhKYcm7CZm0vZh+8p1S6c5GPfEiKd5qdSXNrVqR4a eJwXXfw7vkg1khriZ7K9M3lu0bnAz/uEM/K/dHpaYrFumDzfMFNX9RWT9hQ+ tnulSeB10sd0vm4VDAuY4jw+d63tZkem8LFkheTj9aSPBWdvsRVnIedgohyv NKd9I31M3u3JJ/000seMOpMuaR4hfczgEl+PaBPpY3XPz55aIUv6GLc842SF 8RTrhvYNQr6WpI9ZcLOpsRmS3uWUIx6cKzzFfEmDyftGJtkHzJv9lF2Z9KLM D0/4+B6Rvby2hsmNRrKXsPXtUBole4G8mVUHAtXp+RWw8vFnI1ENq+nPFWDF wn6lw13adA8s9MZBYcs4XrcB+HTr3Y7b1y3oHvgW/+3vplF4Hhbw5lvcl6wr cd0Q2OOU8rQ97/F8Q2Crm4c3XkzFuRbNAdMiTp/BuRZwptGCXZWcONcC3h/0 I8B9D+7XAhaI7nn9PhTvKw2cEnS32/4azhmAF3jYnqsZQ+8CLln4s2vLNFxP BP4xfO+MuwGuHwGnF97hXsKK+7iALw59MjjPjvu4gOXYLVU74vC4DMzq+d5E ai56F/Bh0+zn4sHoXcB/GrlCtx5F7wJWOHNF44ceehewwhKTr55X0B+AwyLO eYWfQ+8C7tYSSV2tiN4F7GdQo8wQQ+8CVpv5tUpmOXoX8KhQyeU729F/gP1F x0N3uqIvAV8sYB6Obke/ADaWu35V6An6RVKsupP3DwZl/EV/39AMfHyV3Bf/ 3GgGpVG726dgL87ByvlnXA09zKA4bj24HX0FX6fVnGvOa7gY1M/hrsS02zgH k89boHUqpYXS3ZG7cd1lfH++2I+KHTjeQvUZPd77btIcrDpkrJ5zRgvVZHf5 k8Ec/H5JLNEedIluplpPGe7YfQM9POP7Yf8PGs2UxaK9N/Mu48+hwPyENJ6u Jspp80u/V/p4Pq/ulZA5Wk6kj1XKlly52EL62OJ7Unt8vUgfU/1ydSznGelj tk06rRbupI+JvA1ZN9OK9DHdF0qimkakjw28nfWuczfpYwJXThrfVCd9zPp6 eU1IEuljmzRrHj9ZS/rY3JFId/5XpI95DXY+PbOO9DG7Tvccjil8zGN1pIC2 KuljEqzeL++XD1CSDcoK3jlhdP731b/HhcShra5ar+mE/kfoxOZHTVl0Qs8k WabKwl2A+a9fX/JGaPPmMjqhT3mXGqQpU0Un9H4T4iellWvopJ8/a14Ij+YH zH+9p0L1lqCd9XRC7xqQqzis2kgn9PtdPx7YsaGZTujNR044pi1m0An9ilMt EpnOrXRCr7iW6/6ns210Qs95ymbU27iV8pn75PTbj+gL1mVnDI4dbaKqeMwj 68Jw3ayPY8l41vw6yvzX12mah9DHotdaqXb1vKf0Rdh2WnCgF8g9bWVNe1tO /bRTkAl/Nmm9MpbdRro3n4ppMk48uAG9oFbr0/aGQ5lUrT7bLfZJ62C+ejKK R2XiKE5vXocVUpPOf3x04IPnuBfFLsgasuvupOOz1AseneOxyJDuKhll4e+I PnjBrQXnb5PrlYNnTXPmW0yxT0zEjp9l1xTXPdjdOpTwkVyvbH3Zd24nHzkf 4xA+w7yEh/Qxt0J7m4Iecr2yVf8nm2IQuV4pwRE933s56WOxpvnbhj2m2Jcu kGb1smSKudmdHxFzukhPU65lZnJuIj3N4GqS1eUXU8zNdEoi7hqSPhZ7/27M gQ6yNzg0J+XKTtKvdhpk9DV35tB+BXzyhNPLAO8V9OcE8FH7C7olVzToHnhX 8ayESMZhugd2D3tw/8rJM3QPHFhwtfX3V7weKbBK3RuNoHm4bgjswM191PYP Xo8I2KI0sP3SKi+6Bx7UVc2xFcS5FrBhqEzuq6b7dA/cOHz+sUQ67ocBVinn e63ujOuJNAdqje/LwvVE4C/ic6zHr+H9poElY0u9u0xwHxewd+nivDg99C5g XgNVx2BP9C7ggSun3nVO2j8PrN6x59KLfjzOAkfcP+nH5oneBZz0pL3MqQLX GYHlj5js2KSMx3HgEwKrFj5pwXkL8I1s5dzpL3BfPbA724azr57j+YzAlTxr L58awPVHYC6uilD1Jzj/AQ46fPah1Tn0E2C5c5VWJ/bhHAlYWFuJccMQ1/uA T7zJ2idrj14ELCNWveZ1PPoF8Barm/HanOgRwKfOFMU2XMU5mMT709ef1TCo 3yLjytHf0OuYRKOWNHgwqD7phKRFkzzQo+T6k05lBlWX8XpsgxO+/t18Gbql X1sojfTecpFJ5xeIN+VkeT9uoTJrLpizB+H7dip7MOn/z+OPuGey0IIJ3/+E 5hL90q/N1LrAgJeiPujV38Vll+279/dzU9Oc4pl0n82oEwL8HX+Pe5lmp9OY 9PD3Bep9rde1/1+XtCsU9p4lM+n7VW6jfp70Mb5gnR9VM8l1Sf62uZ4hcaSP +W4Lm9P5ivSx5b95Ui3vkD52nD/Q8LUl6WNXR8re2RiQPtZ4skfaZCvpYwZt gSYqMqSPsUoyrznpQfpY29u7DkwT5HplstfnGNbzpI/FXd6a3dtDrlfqM7+O WWFC+pidt1X76k5y/xhHd3T6cZMBKsqfhfvotod0/vfVv14U47uA1SKeTugl HWeZWHln0An9qY+Ze63rcumEXm/Tz7QXHcV0Ql9Taad/7kcFndD3fO8PpL6/ pxP69cX2FdYnaumEvmzakY/nDtbRCX3c8+stXNoNdEJfPGdxq5NCE53QNxVV po0ItdAJvc+C3Tkvxhh0Qm9unadk3tVKJ/RZDCn7qOQ2KrBTuSqqCn3BgsPh yMTf34eCfz14dv/upOuDxbd81MlvoH66KIcxduD8pu68Scm3B7WUKtummMrv 6Auf1TSTbTyrKCX+i58r7k7az5+7ND5YuZSKm+mzZdsy9AKNO/OLSsJyKff5 fh+eRqMXhGa72HE+SqPSRPYbnliCx/+IkRnrkseeU5JaJce5b086zvvufSLw 9iwlns7/Zl33pPMoE3okQ16S+/mDtzrMUv5F7ueX3ix/bYVGBfl4+w/9hdrk dbEy2R+5/+QkryOhvC/lZPUl8rxIg5ofgwf2kp5WsSV/xHsL6Wle+kfuG88i 52bBLzpPZcdO4WnP8x+9XEN6muluUW21m1Psz+f+ERabTnqaW8wqDplS0tM4 dM0EBZNJTwuurX9fdZn0NGW/IpusbU20XwGrKnW3Rz5eSv+/B35xf2+CtgXe lxBYS078fPsqQ7oHzmCb8zZqEd4PGljdaQu1ywnXDYELn4yPLeO6RPfAJX/O /+y1xOvAA3N+K75h5I9zLeDz6ddnbmXHuRawcqPmZ+NhPA8R2PTL9vtfw4Po Hvjq04Hdlj64ngg8uKAyd8kmvP4DcNOVG++FDfH8ROALNbOzrAbQu4AfRq0c DnBG7wLmPFA+55UWehfwrUqmIqYj6F3Aem6h1peTcZ0RmKNdzITvEHoX8LNz J0Iql6N3AVO5hZ4OO9C7gAUMa3Z+9MV9RMD3X78zN5yJ3gV8aJtKyfIY3AcO fLlUrNvpMl6/C1hLr29N3qT7DwJnucyMWFOLcx5g57CoxolJ92EE7k+0PR2u jXMw4PgfZ4v8pXG+BKztxG4htQr9B/iXYMestyroS8AssbzvblniXAf48jSN 42Wp6BHA5pylu/Yw8PH3hc70ObxjUMKWj/TfHsHnFx08efGUI4NauOSzqHku +mEnS5v3URkGNTTydM1pbvSxj5FSm49+aqH6laWiK5TxfVioXOJyxq+Fupxq 1Fesj+/n8ZGAc25bWqjgFJl+hTD8vvgHWC9K62umnnvmFa42Qx+rUF6Qw+3b TCWXB406fUcf87CdWeYt30zFnh+dd/8E/jxfNHQs02xoopwuv5G7MYzz6qjW ca/d9qSPrfcuElv0kZyPmfiENtc5kD5Wc336zreepI/FPXtcWGlM+lhpZN9a S4r0MRcr7qvHhEkf69wR6WoyjfQxMT7W35u6yd6OdUGr6lzSx7IUZuu9sSF9 7MJ5DsMHLVPcd3vo+DXLnaSPvQnUepaeSs7NDHdorZ+QIn3M4PqDp5Ghf4+3 HBqVZfJnMP/3568vST7prN0dSSf0ThxCqkoXkumEno/p4/O7Ytl0Qn8qPiL8 BkcBndBzbmWzfdJTSif0YcUalertlXRCLz1c8G2spJpO6PO58+S+dtXSCb2C 5wpZrso6OqFX9W2JZEpsoBP6XhZuk+l3m+iEPmKC2djoVAud0DfJ2LxeIdRK J/T9Xjkneae10Qn9zG3iv01d26iV4x9N5o1hf7VulfhwQQsV2JQi/vAl+kLr /WXTzgU1UMo/9EumH0BfcOzZvDrfvZYqU9TSjR1HX5i9Nkjhol8VJfXme/c0 b/SFqkzb5V0XSymlZ86HTy9EL+Cc9Ypzxsw8qkj6gr+xP3qB3YUw5cTEdGq5 9QDjLDse/718LGVTk15S9tfPbuI+Nek68zl1IsmGLtR+jdK45reT5jHx8dZj R6fY/z/Od/SrBLn/X1llW3TefXKexuRWJTqqQs7TjBbd6BL5OsV1LaziXnbv J+dpyXl7kvLTyf3/FUtc1NKjyHVPi4oFyx9akfO0illPmFQFSE+T5tO48iRg iv3/zpsL0r6T/iaxY/2HyFWkp7V2uIZ2+1rQfgWcITFxqJ9dDL3oH7cbCu+U TsP75gBTF3MPSHzUw+PyP34ssYj9sBTuywIWM+mPuGCAn8PAcXM3nLU8hucb Al81qrs1XwrnWsCaceOrK+VwrgX8ZmvbrYojnnQPbKlVU95/GK9fCmzMkHg4 UxbXE4GtHI7M/Zb0kO6BPSufL04bQ+8Ctto6a807R/QuYH+RoOpZJuhdwBEW lwUFM/A4Bfy90sV7oxp6F3BV2bFbml24vwuYz8p5unMB7u8C/rOoU+9OL+6r B37DEK5Zthf31QOf5ZfQ+OmE5zMCv7B1slO6hNeRAD4rs98z6jEel4HNkrfs cPyMczDgOW1xm9sP4PojcK6PnBvbCM5hgD+dSDL79RbnYMBf6iztP9ehPwCf lXfWzjbFORjwkbS13y7NwTkY8LQYpwtuk6878Y8Zit2sqk/Rx4CfD2zYwOGN PgY8S+vq8cX+6EvAuspzv5YnokcAm1QfjlX/gh4B7Pj5U75ONj5e/dyeZpVM BsXB/fp1qwE+/x2rRunwiwwqVPJo8aFa9LGfPo67tq77+7xJDRElG9HHzj85 mz6/p4UaqYq0UrmBPhYV5vJ6ycMWSjVow7bWZHw/7etilc21Wijeyo7NqWH4 fZkjsULq11gzNeK0w3UiAn2bK1NKpiasmfJalrzJdAR93kVI7ROzdjNlULRr 4KAyng9yckN2qde3JipYesby0Rg8L3ha6v0THvdIH2uwGOEtP0j6WF+YP3Nc Bzk3i04z85+uSPrYJg5LPzUO0seWt+043FVP9iVdJo5vXpKetiXsbvz1m6Sn Selp8M8zIX2M6czrpYu3k3MzpW8K0kwBpKe9mLbH8scQ6Wk7tvmEje8m52ac ywaWPU0gPa3C2FHYbiE5N6ud++M98zXS07Zk9DAXfOmnomJ/amv53KDzv6/+ /z4u/WV7nJ7TCX3mcElgZvwbOunH235eaumbTSf0nGIK0ZFaBXRCb7Rj5I0J Sxmd0OusfLfwXX0lndBLaqadHHhRTSf0NtvlEtbn1tIJ/dACtyNRwXV0Qi9O vZgwtm2gE/qfvfL2cdub6IS+gJ1b8yNPC53Q+xisnatex6ATetsCjZsPilrp pF/P0dVm08Pa6IR+RaeYoAxbK2XfFis4cw162rFVFZn23xqpeld7zfJK9IXu h9Vqh398oEJvq/KHn0Jf6PRl4refW03NPBz4jnkUfeH02TXrFu+ooGrP7hXe 74hznZxjJVnyioVU/fVN9cu/T9qf5nA2SEk0m7LvSmr9dgTnNyM3s8+JuCZR JkunR+zIQH9rNXznKfvwCcVVM+dM+txJnrZ2q4Xc+QDkf6n8ga/AkjWN6Ft5 Urh87KbYnxayPdRgA7k/bfDV8jmLv5JzNtFUJdtHplNcj11ymdm3IHLOFisV opmwjZyzxQqlbEkSJOdsER4TtjsqSH8znJbvOtPFlfYr4OfKbvpHA4XwOPKP FY/ddf9djNd1B/4uksgaxrwHfeAf3w+r0okNMaJ7YD6GWsqKMbyeA/DEtLNa q5fhfXaAk3ip6d1nHeke+Jr8eZaLirhfC3gv59pUSxk8DxHYYMf6smn8uJ4I zL8/1uCgKH7OA3NL8YklvUXvAv52Os4+ZBy9C5ituWSW6SB6F3BY/KWy6Uro XcBJjsK1QZ9wnRHYLMZsQHQI12uAzy8trN4Wj/tqgL1Wb/7TvwS9C3jlseoe l1LcFw18f/rrtc5xeB0JYAP/MJl9NTivAJb1Wi1sJY/7voCXJRSPLjqHczDg W0NLX182xjkYsHiT1tCNS3hcBn645dKsPal4PVXg39VWV74L47wF2EbIJsUu EvcpAUtyBY41H8D9YMCh58Pv3FqEczDghBDWt6yP0MeAWwu5q3PXo48Bs/2Y uVymHX0MeLd34qXQZ+hjwNxOq+3NndDHgC0dLv35YIG+BKw27BohbIceARyV JyZlc2/SfR7/8c+91SITsugXH/vOKLWXMCjRnLsfBbvw+Yv5Un9Z32JQ25jr VjdexdfTG5X98qw6g+qpK2aWY8fXP6GTJVjKxKDe9rq8k7fG92HklpOr7+sW qmXj2ke/CvH9bD2wOS3v9N/XMby0Zfdc9OEaXa+FpkItVKtWjXSXEc45LXZK PL5c0kyZynU92nINvT129bG+ufbNlHSG3QX+Ifz5DDW8tnvlkmZKdKAmUmwW /p6Sk+FbUVNE+tiHudIsp+3IXvu3R0hAH+lpp9b9OFttRs7NJGItjvVOcb0L I6ZoLwmK9DGnPV7zbTlJH7NzleuLqCf7w20n0zyek562h7Nj+MtV0tPcxFmS 1xmRnqbgVBVKRZOeli53IvDyGOlpcbMlv3tpkZ6Wcv216LxQ0tOiMqxrAifI eVqf8Br9tP2kp7n7HUjlTO6nmOpk3mziMcX835+/XtS7wEjgXjid0PPlH2Ie aUyiE3q/3qGikuFMOqHvEbQ+yO2cRyf0Nv6XGuvZS+iEXiNE3Ucwt4JO+vVc sRYXvvaeTuhFf4wuzh6ooRP6BanqX++mf6AT+vVxH2/ru9bTCX2w6IanJzUb 6aSf3zUzT2xWM53Q39Nd9qM3t4VO6F03aU6/q9RKJ/T5s9oXB81roxN6t1A5 9yHHNsrIkX2lJTPOdTrVLhVXfmuhZnaUttk9Ql941ifT28LSSN2qFq55thbn bKaZ4XKHV/71N80lPVap6G8+S9qH755+T42Kh5kdVsS5jkvree0zt8qpBe8T 9Xti0d8uJO/f/sGmgEqy1n0bsgjnbE1dWtP8A7Iodvn0P7yTrndVnTzhaNmb SPW8XzC7sQz9bdBn7orHSk+o8GSDUO/5k/wtPebPzun+yP9S+S7PhCN7KtG3 1mTwarzKJ3qdkyaWl+LJddLBe9Lrdu8m/U3Z/eEzyVfkfrau+O7Q446vaL8C ZjcqENNt4af/3wAXuWzodGiRp3vgPdtstdJFtegeeGmFzybLAVw3BNb06Vg3 p/UE3QPLJlYOHT2Icy3gEp/cN8FCtnQPXBNw7OOB3Vfw8/wfZ3/J0ph2C9cT gU/dE7EwUXOne+Deh+ML+63Qu4BfjqXc2a+C3gUcI6bVpn4XvQv4ZcC8Oqnz 6F3Ay0XSh3dboXcBf8l63hntiPu7gB/qOqe71eO+emD26iWxup54/XngA/OP Ml19jNdHBd5qNSr8jgPnBsBSTUsTTltPun7XP059o2P/nRfXH4GPqp/W8+3D ORhwUwtL9qUJvM4AcFXdae9+cZyDAbcli7j1fkYfAx5e6qXxrgx9DHh2k0/s pWr0MWDJV/NGFv1CHwMW2F/73n8b+hgw42KvzccE9DFgvR69e+3q6GPAPIn7 FZWY0B+AU98WWb45hz4GfKNg7cKSIZwLARdb6S6tuIk+Blwm3rZ94Xr0GeDx puErw99xHgV8/k+/x/NC3D8GnKX6ydFm0v4x4O8/kldfj0PvAq7QmpAYl0eP WNd3m7X9M4Na5r7drI8LvWOxs7jE3ucMal3NpwmFcvx7P4e15h04w6BUdfep Ntjj64w7nFA2voJB+WpofS3jwrnZDo6lFrKfWqiNuxPNl3ri+7Ok4q0E66MW aigkQ2Z4GOdmHj8ySix0WyiPYX3h6gD8fs0/3n3nEsdfT9M5OGjEj993tQuG s6VTmiknpQAXnjP4c6Ws5KB9x+xv78FqOGMN/jx3sbypeDr/b7+hofWRGZ4v bNGr6G6bRfpYXRtr/S0vsm/XXNgR/5P0NKmJc/lbT5Ce9jsoumPiLOlpL7+H Ce9cTXoap1JWwfEprs9/46b0WpHXpKc5vPhVuNuZ9LQ7d/PlS7WnWN/86W9m JEJ6mraIXkmACulpswLkdCqukp7W7WNi/TqfXPfkkJqR+GMO6WmHd1iqrzlA etr+TE0dtkhyzmYw6ic0f5T0N4GDEsYTGgOU3jTt+V5Fd+n876t/fSlWOG3l ypd0Qu83+tPlzKYUOqE3srvXcNwqm07o189dHi+cn08n9HxXQxZJCZTSCb3h hfn2p2Uq6YS+Yb6dZUzNezqhD/x8IUqIr5ZO6OdVH1KwrfxAJ/StMxeEcLrX 0wl9HD+r0bbNjXRCb3LnQtj9L010Qq8QEvjG3r+FTuiLTS+ufS7USif0K9sf i+/ra6UTep1KM8mLr9vopJ/Hhueq9zCDms+aG+Ajh/5WzTXW3r6siZo39sBy czrOe6Qzgm5fP11HiWplrTZWRH/7HSC44n5eNWVyMEvsTizO31wOsK5XUKik ZCKMXXYJor95aC1MbnArpnamj4VvvIzzt6IFLK9NqnIoTqkSld6aSdetvanc PhCSRpXdsg+aNmmf28ideYvuz4qlTN7yFy05MWmf21sXg5fKd6jg9I6yiQeT 9rklyeVSbDjPhdT1TW5KX69E+xWwKrtfu3XLPPrnGthF1/vL0li8LhbwnXtp Jc/51ekeeNWz4TNnj+G6IfCL2cYr1YzxfEPgX3yqrhtm41wL+OTbmJtDk+5v CBzQnHCzk8me7oFnqBTFO5/B86SAWVSt/+zkuE73wGeVAo31j6J3AVNCbIfe bkHvAo7IqTK7kIXrjMCKAp6buRP86R54HsfmG72LcX8X8KkM8adbb+K+emCL kQ8iGdvwfEbgSy82eKpo4XEB2NMncV1MMP5eD2wx6i41qIrrj8Bq4c0Lfz3C ORhwvdJ0yeZ89DFgAf+YdD4RnIMBR/n1XH38DI9fwB3jW+acN8L9YMDSz/xv OmvjuiTw63O/nx5WQB8DzhRwXevahcdN4H3hISLRcehjwDEPrW4kPUAfAz6n Ei/i9RSPy8BfrI9cFijG9UrgrJKRLSt48PgOzMWarOnriPMZ4MpBceu5LpP2 7f/jZ4Z7Lms0oqcBz/q8c5GOKvoGcERea6BtBs6LgPNWVelza6G3AM8IL99z /At6GjD3J83CuOBJc7N/rK73qEDBBOdawInVZcUrVdAXgP8cDdNPkEJfAN7G H3V6RgX6m8oLlwGFFgbVIxU6/VsK+sjekh+ev58wKNaZTPzD3uhp+gWWirf/ ekiD2FDwbD30NAbLx7mflv79+wyzj8qz4r+3fUvm1ukdLdSv08sFr026Dr/8 fR+RocctlHt9WwvLcnyfa7PfCUTvb6EszJa4J63H/X68vIVl6+a2UEaPbh4x +4k/D5vDXHl885qpdf0XBz28cJ5WZNEzWGbfTOnEd5ttn4E/z/wlD170STZT wUyDqWJa+P/LWrCm4kd9E5WZbs2IrMJ9C7km8ku/T3F/8Mv8AU8FLElPU/Hv +9pbQq579kUUblwpQHqaaKPMPs9Sst8T5sp55QbpaQbWI74NW0hPM7AyyrnI THqa7Gl7JsVcsp/jYLO/3530t/OaEwFme0l/26MXVTPvGulvFWn3j+56Tfrb 6InxW839pL8t/KQVYr6C9Lf+4KoNr06S/vZmVP7Q7mekv71tVMkf6SL9jXWW BPuulX/9LXdZ17nft+j876uDlN5B3qrS/dF0Qu+UuNaltuU1ndC3npVZvXdG Fp3QK3u8/Bktlkcn9JnLKvd9UyimE3r3lbOvVi2roBP6E9qrPwjFVNEJPdvZ evYFMjV0Qp823DnfqruWTugPvl9cU3unjk7oPa882X9NtoFO6P0idumPVTXS Cf2b6C1rM8420wm96pK+fftYGHRCP/MF5/awHa10Qu+6RPqpN1cbndDryFZN GMS2UZlPxU331GM/R+SqUV8kg8pf9ud8iB56nbSFakM0WxMl+p5/jlsRel2V m1vud+s6yv7XMf5HG9DrkphfXMsaqaZ6f38xvhKEXiej09E3zaeSevM8lL1k BOd1Y8eXP1h/rYQqS/Z2kNCcdB22Ha+jJLfep/0K2HGNOUviqtn0zx1wm5xq qqyjFN0Dx0qc1bTsUqF74HmnKsdu3tdBr/jH7+0EQhJnHqB74M3aja9m7sD9 WsBrl61cXJaO5yECj+3YKKB5A/fJA3d+k74b9RK9C9ht9cPz+nboXcBi181r a17ivAu4YFPV9vc3cZ0ROHoGi6zwPLweF3DwZ9lw0yjcVw/8cb876/I1uK8e 2NmZv+iBEJ7PCLzrvEyZnCPe9wf462vp6KwInIMBCzTy3Jm3B+dgwI+fpAee 2oRzMGAfq4e6a8zxul7A1PYZXqVdeLwA9jX3K2ysRR8DNnNoevCqDX0M2Pln /8iS+ehjwCEsR47126CPAc+QmzuvmBmPX8C/b3xts3yL8zFg/iaGpH8UrlcC jygGadkYo48BN2ckMN+ajT4GHKrmznO4EvePAZcVhSakxuL+MeCyHkWtM89x nQtYbb9RpUwuzs2AQyITFpSMo6cBq/ctUujXwbkZsIDPye6nH9HTgMs8Q15l rMK5GbCNoereBa7oG8DTZq3vHfuKnga8vuf2tciz6C3AKzTt0ozH0NOAM5cw LpwMQE8DdpfUcvqojp4GnDhLW3n6pOtaAE/jeGEy0oi+AKz0fu7h5RT626uw 5wE+PQxKauOjJOXt+DxsPScbX8X99bG4krYt1KTzDhqa3cvsGNS6HSv+iIvj 66TKfaK6lBhUjFbBrs6f+O/lWbpr6cTvFmq+7Fcrz9f4/jAf+P1+TsZfT/tD ha4+ie+zsSC7y+JLLVRBRsOnJmb8vshoC0ysU2ihvNYknHdchPvTxvYdma79 rZniaJvlNjobf36GJIROW0b/9bdYwc7AZvw9orPizu/Qo83UIJvD0Tg+/H/x 9euyxwN8zVSmyNbpAvtx/4B81aj8/oK/nnbHqkiZG+f81JkL+T1TrIdyZ8ms l7xP+luMtNzN5Z2kv0lZ32ZcESQ9zUJMf3RzIdnfn/Ho5jp70t/UzjSOqKwi /e3Bs3WR2z5OcZ20rk3TRB+Q/ubL8LaL1Cf9zatvy7M0XtLfnOpYd4nwkf42 w3LMf7EC6W+8pl+T1huR/iafPVLP706unyqXBA45J5Fex2s43LDyE+l1MWdX XirmI/1N+lfmL97t5HU8dHnFP6ZcHKCYFvWNF8y+h/m/P4OUpOpL/8FDMXRC X5Nz+hGjOZlO6PW2KDQUb8uiE3rl6vcHcoXy6IT+x/0MjztDRXRCL5o+ENj0 rpxO+vm1timu2V5FJ/Q6AbofjkdX0wm99tzENTPta+mEXqrwduvymXV0Qv9r rmD1UGA9nXR/W8mUaWkjndAHa7Dc6IxuopN+fKdQu5JUC53QH3x5XOVhNINO 6D2SltdWerfSCX1nD7fhsEYbndCn/1r9W1GujXrIHLGORRHXYcWjF7ez3blH +xXwzBbmsd2/2ejvPzCn6FL5fJbldA988GxMmtc8vB80sM6tdrOL4jvoHljJ +KHpO2e8DjzwDcZnzWNleJ0H4BeJP08ON+B6IvCaIfVLZ9PwvofA6vZjz9zv TTo/8R/7xkXuqF+O3gXc87XMaHEorjMCJ6dq//jlifu7gHlZvK9uq8bfT4GV v60SKYz2oHvgkt3C86vm4H3ogF+cCgxeJITrj8DKaeIqc67hHAz41olwA351 vJ4kcFqQu2OyOV7XC1i0ZiQo/w/6GPC+L/qNz66gjwG/eSoY0KSAPgY8eOPm 871r0ceAw6OtiyZM0ceAD8mysn22RB8Dbgx9HX9iD/oYsDuncYDVPlyvBI5+ fDTO+yru2wd+M2O18+Ya3J8DnD9/ztJhHdw/BszS+sFObhjnZsA7HS7PSzHG 4x2wqZtCrXcHehqw5YuqN/UX0dOA3cbGWtVW4twMuJ1ZhHHjGx5ngXmmm8ju qEFPA966Mj17XSV6GvCuo0t1+rrQ04DvSid/m7UQPQ34ZNnOgvkJ6APANs5C S899xjkPcJpeyq+9q9HTgGNSSyrYnNBDgIX2CH7LbMN1T+B6p17l9D3oacBv OXgYq9/jnApYbc3CYeXjONcCDjH2sBFhQV8AVlQtL+yLQ18A1vBLD887j54G nO0Xt04xHT1C5nsD25ImBmW311aFvRmfP+hwdU/+MwYVlMM45NOHrydNe73j o3MMKi1biL2uF1//2tEXCs/kGBR32NObDQ3ob89Ngo0Z4y1UX+LsNU/f4Pvm YbaRbedffxNI2GW6xQ39rVNz6UCPUwul/53xrXzbpPM1PN7lZim3UJnZcn9q etDf+iu//6n63UyxXqc8rCVw/vamyaBXLLWZ0oxP1q7bhvO3+i2cL5Nsmqnt 6ywGGzzw95d9G4u0fKWaqe4qyvvILvx/unaRf3j2p7+/59/X/a27Hz9/6uPC HXY8IP1NPVP0j9AvslcuXzq/Wob0t+DiWa5J58j1U6b1Scqa+0l/2/Iosit0 guyXSkRZFIeSXidxOtY8VJv0t2g9+bp542T/iddx7kgk6XXdAjwjsgdIr2Nt GxwI5SK9LuLiV8p7nOwfOvBuSuEivU6uQFL6jvgU90k/+jOjRmmK+xSccGnc vY/0us7dn+tyrUivE5X29RvyJud17guEAvxfkb7ncdxS1qqK9D25q5uit3wf oPT2rfJfeiaEzv++Okj5yUk+My99RSf0p1Z3ZjB1ptAJvdOq/PCy31l0Qs/J v0lg5s08OqHXM8/gfcRdTCf0otOSFlr4ltMJfUX1kEzijCo6odcJES9S3FZN J/Q+u2PXfVtUSyf0QXpGRkG+H+iEPr9qiZ4iZz2d0O/X3u5h69hAJ/SF7sY/ k7IO034F/EWhfyGbEBP+f//HdYPd5uUfReke+JCWJ9uuDlw3BE73uVnH74Tn GwKzBdwVbJfH65QCL1G5wfU8VZ/ugT3mcDs8X4b75IHVvE24Q6edxM/nfzyd 8pNN5UDvAh6P7XroHI3rjMClxt3s2i64vwvY8ESjzT4hvF4E8OXPJjwN2Xg+ I/D43SQVx5O4/ggcliETFOiMczDgyxKbLa0F8TxHYKFvTO/fPUYfA+ao+MmV bY8+Btyo7vbjWTB+HgK7y6U//SWAPgbs/e5b9PEunI8BfzVhjdnuNmk+9o+P uql9f1aC65XAAQmPNitsxfVK4IzFDwOt+vH3buCGh7cuVFTg/jFg58RUj/I+ vA8RsLiz2D4HMTyPEjh1m8r29i/oacDHhXbldNajpwEXb9siXNiFnga80XeP eJkA7isD9r9ue1beHD0NWO1hVsj2z+hpwGMLPx9+pIaeBrzpXXNEeBR6GvDQ jZJDB8TR04Alshat2ROP8zTgOfJ8PYsN0NOAT15rmHOIBz0NOMlx9LTPJ1z3 BM7+1RCpWY7Ha2DmXzs+z63EdTRg6T+6e473or8Bi5SY6B6eg54GbJjdMlC4 Hv0B+Nk+B/1V/8fWnYfl2G5/AydDg5RkKCUpEUqISqmb0qAQpYkQmYWEUoYS kaKSoTRSqahQpjQQZSqKRjQRSkUKJUN69/H+7u+1Ond7/+P4rOM5nu2Jur/X uc5rrU2U32DffbFiGZcoh8ALxfOGxf2k/AY/T3WMH2lJ+Q1WrBkkppdF+Qcu 6KPgPFud8hJsdbEhVD2dzsFgj8qXBTwzym+wWeOm03s+U16AQxuHbxBfS3kh y/+pQ3JLLc9jrMZJ03j690ySf54xLruWN7UuOGDqG/r/fZarsm6AXy1v3PTy tXe76fzNVW/GoEVWtTwVK+XojhH03/VspW77P7lansP299vfjaFcdy5sm6h0 Qw3vxi7bouOj6OtZaTi+JjKlhid2eFeIqCD9uWh/E40OdKnhtfpM0WrPpz9f mbSnqm0za3iHh7z2/LKF/p6cmWw5/NHPat5iN51Bi9ro7+HQ2FcBQ9OreS8c HLW3L6dc93Wj3qFK12peYs3Lm1us6PvowpqJx8fPqOaFPhVbN/4efV/vv3vm x6+vVTyHsO/CyqX0nGjGa0+3v9w7v/0Ta3M5ltS7ftFgW9S4573P62oU9H6P /tE77131rjaf8D/2Rr1Nqj3wKLF3/WbwGJdyg/9xX+76rye8d73rOy+K1DV6 9c51+64P/ZCh0DvXHRpS9TjkUe+654wxjmudeue9qeGrdvX7H+d4+3Q+29u0 9a5/89Dzvd7W+3zvjXTldb0fvXPgaYMc3uPO3jlwbqOO9aju3jlQQ9N2QH/B 3nnvb9AiO/MhvfOeT32T26NRvfNe2OvHWdPH9857mz+blttP/8rr47spdscR T/r1//+vlXfZImjopZw47lfUrRJulTY+SeN+5f75xs/THaZmcr+ifmbm2lF7 8u9zv6Lu9f7Jqk2/H3K/cv/+RRv6jZ2Qz/2KevBZmQLLiJ1cvoJ1UoVkO990 6KEOi51/s17vL917h9Xb/YMDzFS4Opwfnqjiskybq8PlV6y22gQYcnV4u7zj 9PzZ1E+E1XLXrm8YRXul4RVflTffPrKKch3fObdDfoeWUJ8R1jyQJeJbTPe7 4KWLEyemNdF5Oyy2ivdO4Re9zwh3O0ytETtP52DwibAdN+2aae8PPCQm7nXC Tm+uDn+e/zxlyQvKY/DIgArTmcGUx+CRM8PvD86h/dew3qqzc9ZMpTwGHy9N v3U7m+6JwaffJ65L8Kd+JXxqtNXBj5HnuDpcs1lWZlYn3R+DW9e6OOma0/0x OOVmTsF80xiuDp/XXbxPdzudm8HZEXNbRuVQToMTntY7NunRvTLYIL9u1J0v lNPgpzHXt4QWUk6D10l83V7YRs/p8BLP/dHbQiinwZ8f7XqqZUc5DZ6WlCEx S4tyGnyy6u2MvTPpPA1+nNjcJWxB5wbw4dnL01sCqO8Jt6xJiZr6heYbwNe6 nig03aL8Bu/cKOT9RYg+1+BFQ11Uxm6l/AarfUmI7/uB8htsNehdk9A2+tyE hVyNpa70mG8GnysOGLsum/Ib/PFUm0fUIfpchp2a8x4/Wkn5Dd4pW37UyJw+ 3+GC0Y51OZfpPAcOqX5e25xOuQ4+en21+ZJiyg9wovnKAJmflOtgKasKGZcJ lN/g0dskd7g7Um6B+x8//8YiiXIdvK9Mz0K2m/IPLL8nz651JeU6eKHM6IqP +ZSvYC1F3zZxA8oFcIzerNb9jykXwC6KBz/mJVCuC7/iaDG9o5b3pGLr+lQR +ufNt4adW/Cklmc98FnsvNWUR270cToveK6WJ6X2qJ9XEv0+x+jFBThurOXl nym229RI/13qP34Lr9ao5fnp1f4VkaGvg8oZP62+/Wp5CwKUK3fOoa/n2YP9 cw0La3jp2WH+t+3o6795c3T51NAanl9YtH3LevpzPLg+a/xDhxreVFW3nM0v 6H6jtzevZYByDe/Dtewm+0w61739ILS140s1r6roQkSfQPp765zn4RGRVs3r b8/7lGxG3xdJG2ev+bO7mpcj813G532PeW7T3wtKa1XzbH3ffLHpR+9f15uW Lv3TWcWb4/s5dtdXeq50WTcpMzH9P19HjSrJLzNoruP+YVdnKLv1zns+01b5 1qzvnfdCZZ+0f9/dO+91ml5rcDjW+3zv5VndC16Le+e97Wmz9trU9K6fXL9q 4NhtvfPet6S6ZU+6e9d/Gnona576H/fx2hUtbZV75714J7nSofd61239J39e ZPM/5pOE/j33vbV3/drenZJTE3rnwD3hY2c4neydA63jFqQs2t87B9aP/aJ1 ZXPvHLhMvrnIwa53DpSuuHxXZ37v88DxzioZktq986FKaEp71uTe+fBBSYbW ILne+dC6M7L95ZAWXuTjQOPPa7Zz+QoOm3VRfZLOVy5fwWIS58UHbxpCeYPv 2Lq234VrFLk6/LZc7Gr8MJr/DLuGfJuUFKXL1eE4rzU6WTY0vxRWbNWt1ik3 5+pwvNWi2fI5dH8ePqF4cWrnI3vKOXz3XRm+wj9gDVeH/bRslS46035qOH60 3IsaaToHgx9+l9m2//kOrg4bObimXvemfdbwo0tbxaJuUh6D387taA/fTnkM zpbf4KFWTedj8FQzpQM/iuieGHy9Q13DcLgvV4cH/9vydXsazV+FZcKdXzck 0/0xeMTog+VjB9D9MTh38UppuY10bga/fjXZykqgRx+B7wY7k2O55ZTTYLFL nco7P1FOgy0VpwzRG005DR68TGxd3090ngafutN/i0w5/dyDY8y3DpnYSHMw 4Msjr9wtUKDzNDh7dfztxMPU94QbM8Y6bRxCfU/469Z9BTcf03uacMce60dy 1vQ8DifX7kovr6X8Bm+fOCzn9UHKb3B9amX0v9mU3+DItMgdMkMpv8GZrSqz B/S4twYH/E07EjiY8hsc9zmt0X8m5Te44M73wrW6lN9g3xEhh0V6zN+Affe+ iZO5Rp9fsFX0i9rffSi/wdJyt/KF1lD/FHaUPBcbW0Kfj/CKrLBhE6wp18HW ml86mhsp18FyX68NNwmkXAcXZZa3njCiXMd5kqqX6BDKdXDECoe9gq6U6+B+ o+0Ntm2lPADbZDUPtd9GuQ5O6tw0sXUP5Qo4qa5kq3GPfUlwwRxfi31JPd4z 5XtYy/U78SWU9+DJUd5vKgdQ/oEtrk2eMEWfzsHgxg/f1FN8e7wHynf2mxnR 615T3oPrZ4T8dphBuQD+prLr5sVzlAvg8Q3rfz7poFzwKeFc3a9/tbzZ74Nk m/fRP586syKlq7SWZ6qxXCmvk/KI0vMbDVWXannFcicblm2m388D2yiL0P21 vM86fql3XtJ/V+LADMlpi2t5Mdf3WrdMoa/DlBijG4lja3nDZH9oiXjT100n /6FC3281vODl2y0VCujrn/nl6/XZ92t4zjWteuYi9Od1W8pZcWVgDW9g3inN FB79ubvkrDu90b6GZzKsv156OeXAKx8un1z1nxy41NPv179R9PdQUrB6sPH3 at7svKed+xZQP9c2YYKjYnY1r/VoUPHRLfQc1K1YZPHLp5oXFLXoQmcrfZ+e H7q3f+HCat7b85+y9vU4h39uxxuQMKya59ynz7P3rvTzSjvA0cjvTRVPfktK 2tdb9HP47uJPMgeie+fAHBOx2Lv/45xwR5FCmlRU73xo+7zVt/J073wY9THi T0NA73zo4D4pR8yodw7c1Bg3WvVR7/pm50KfbOPeObBAIvJZSn7vumJEwbTm /9EXPiKQsHFNae/66dh557uX9c6Hc4bKHr9S17ve6vXPadmW3vnwvPe6US0/ eteV/zpvsDz9kXf7Au/D2OUbuXwFB4Y9EU7Z/oHLV3C6pXr00oN0Lwtel9DZ 19JZmqvDG+uT7/R9QPe14FuF/Vr376N+Ily9XDOsfTvlLrjbfa7Zij503gWH DxlzSiRrAVeHU41/W5YIWdL3Nd/9ZCff/nzaln5O8t2WpJmTOJLOweD+uy/t TLV05OrwdCGRg9kplMdgV7eGTZPi6R4+XOgie7dsHOUxuMArZX6GBZ2Pwc3H 0nZEvKd+JSy3I/vW6Zq99DnCd6KqwON9SnRvH6747DVWLZTOzWDn3aPLTczo 3AyWDnCxK9SnnAZX3I+yfutNOQ1Oksh6mCHe454/30YbXra/dqXzNPiwyMEL kUF0ngbnv9wxwamC9hnBjsork04vpDkY8MGuUQN3tPd4L4DvMxd2D173kuZj wP7Lz35q2UH5DdYacXZ94kg6Z4ObZkb6jq6k/AbPc1FSC8qm/AY3jXsla5hD 99bgrY819x76QOdvcOeQ/ctOT6b5ZvAMxSKVB2fp/A1eP9ZLLvkUnb/BkokH hiz5SrkOjrEdcrp9JT2Pw7E3C+v03lOug/W1I/e+3Ec/t+GHwgtLF6tQroOv WcULr/pGfVX4mdivExFFdD4AH1xgW56QR31VePydiwNHF9N7CvBtKdNC0789 3iflO3vJR9GlspTr4NWil8p39tg7AEeW6ba0HaK8B+e43xo+7BnlPXhP3P26 0Qr0OQgP/VobvPgI5T34vmZ6bVMn5T34/ae4EmUP+pyFFwafiTIQobwHV7Y6 bNlxiT6vYXux4rBvkynvwcnS4xc3iNDnPuw7YVd9chvV4X+Cbeds3lIOhC9c rr77q5xyBXxAIP1KbBnlEHjknsG3HKsoB8I7Xf8JGDVTnoE3hnufXipA+Qf2 6N43KWQs5SXY/cNVDcn5lAPhI41RhQV7KHfBguHbou5fo1wA138sqvrW2iMf 8j3Gb8Cc5bPo8x9+m98ySNSV6m+3WPZNbq3l5Uc1bV0wmnKEertFyYr8Wp7W IcGGHVn0/2vvlSQ9MbaWF/rispS/Jf0+X90/vEt8by3PW0V3/qU6+u+NvMor Gmrxn5x5ynPD20309Zk7v8xhpnItb7rXLlHjRvp6Pm8TTXbvquEdvle6t8OB vv6Rm4951r38T91NKFbkJf05eoUntbtcrOFtFI4aETOL/tyLXUx3TdlTw8vw mSVWE0Z/r+4Z85KlTGt4w4zasvMa6e9nX7NHoTNlanih14M+XQ6k88OLN9IO HGuu5h0eaxWQM4G+X6oOujZLZVbzxilWJNj3eL+7IqPr+qdj1bxXyUGylWr0 ff115YrvXTbVvJwd8otnzaWfJ6KzrYVXKv0nN86dsWewSI/5QnLJoWLfqnhB +iKeg13p53BI8xKf4XereDma5elDEmkOwPBNW77tOdY7N4Ymx5yob+hdH6AY vXHCvd550qDirVBCaO88GdQ2w2z+rt55svX81vOdym95nvu6f3rNXsPlK/jZ zQ2S07e+5vIVfLvk1esd+b+5Onzxy8eYZZni9PXn28YiSdE2meaUwrc7F60J WalMPz/5Lo/oM8x8G513wW/c1pwWs6I+I6zXN1cuVJjud8GiCed5AV9oXgT8 NfFVXr82uvcF5+wbtuhfCOUxOEXTtvaHI+Ux+OCAwqKy5hX0ecH3rsh53z+M ofMx+PMfg+126XQ/H178ZPi14U82cXV4ps1hQwPbbVwdtvizLlf9DuU0eK6h osu0IMpp8Cm5jn+atyinwae0P+qdnEo5DW7+/OpNWn+65w+n/am5JxdB52nw A9M3P/d/ovv/cJGM2G/nzUe4Ovxy3ZTQAUrU94QHmVxtspeh9wLgVUKvwy4v pvwGWx6NEhu1lvIbfDJkUUuCPuU3OHXN1UlphpTf4LCHZUHft9H5G3xPb+Yf 1Rx67oMzMi88mahD52/wi60/zG6+o/ts8Jub2qOK31Cugyu0Qt022FOugyWO X+1zrINyHXznwaAr4y/TzxN48pQ7pdP2UK6D3fVTn0asplwHjxeY5b1sA/VV 4eQPdtNW+tHzL2zRHlgXVkDndbDFtmbfviMo18H+5yLl51nTz0O4/zdRo8EJ lPdgoTBZ2VIhes8Ufpu9K0asR96Dsz5M2TetL+U9eNW+2zevhtLPZ3h93+5j v/Up78Hb5oyYcLAP5T34uJmFy7WXdG4Aq38QWe++nD4X4MUTrjba2NL5Hpzz MGxY/CrKgXDYNsmw0zvocwe+c+jLDosAyoFwGu9AhugtyoGwSlluWMsnOveD 7U+VjRs7gXIgnOJ2RavAmXIgHFC3doPEI/rchOc71ZUPn0DvU8ACEmrjO0/1 uKfH94oRjhZlonQeCIeem1j43oQ+x+Etxj6aOyUoB8LvZE4pKr6lOhxRFLzw 7w3KCfDf/NV1A4IoV8Cbjt7cbbiD8iEcuvzLz7u2lE/g5+I+ybuMeuQZvp03 Thu7QZv6ofDg0KtKZ2ZQLoJHGS/O+zODchTMO2mkc1aHciNs0P2gY4UJ5THY W7HO33Q5ff7DBRKuN5bsos9/eIRbqtmGU/T5DyecyTDbn06f/7CLXKn6Plmq 37Y95pZeX8v7G7rn39lm+vdfzlzzviKvljd+98oH9Tfo9zO2dNVRi5haXmFL p9jBHrnXyfLRk0metbypVlEW+zXov/daiIS+4/Janu96hYofLfR1Wzso+ME/ jVre2Zyt2QIx9HWWyPm6sM/QWl6iuURnrjn9uZgpBcls+VzD89tSNs+mk/58 xUtqzug/quFdkTFUqg6nvw9vdrnb+UXX8DyeapS7adPfn7ZfejOM/pMzz3os NTIrpb+f3kb64zwW1/Ccfy0Y+buYnneOpJ+3nqRcw4sIMLm28Qc9N3k0zx6/ vLuad8Ps/Bv1wfT9JaW7cpREeTXvraBi7ceSXbQfh299tYQd9fnPuRwFD78r nlG8lfqG8DeVaR8uxAhw/364ea+J2wkXCfq85vvCAJW85amyXB1OeDY9fnwG 7T2Ei6QCHFYPU6PPa76v7zLJyVs8k6vD2up6T5LMZ3N1eM3qlVueWFIeg8c6 KIR46FIegwVn7Nsk85POx+BRSdOOf3y6hL6P+J5688v1wlPUr4R3bZbLff7e jnIX355Gv9Lq8uh9Sdgxf0jcvLGU0+Bh0+aE28+gnAaXDnv579sFug8A69R8 0vV0pvM0ODnl1ODllnTfDH7Cm38m7yLd/4fF3iwdJqlOfU9YTXrg8D//KL/B hnvOLVk0mPIb/LikUfHPauqHwv2E1rf69KH8BpvHe4hb/qTzN1hxb9KPwyPp /A0OPbNzm4kjvdcJF3g0h5ZXUa6Dzx8da7vrCOU6WOKMzpMdayjXwc8f3Hl5 ehblOlivW8Dcq5r6qnDNFCn76VHUV4XLDaYa1O+j+29wxfFazUoPOq+Dzfpc aLM8R+d18L772XPPvqa8ByeHXo1rmk33hOHU4YENC+so78Fl1xbI/NGivAfL m8sUKMZS3oMVVkdobh9LeQ/2Mvj54PANukcHux3ySBm0gvqzsHPA0ReXZag/ C/+tqrMRaqMcCEeeP+T+tJpyIByV0T05uI5yIPys49VWgT6UA+ENxfbiq2Uo B8I3jv1Wv2FAORB+XOhfNd+dzv3gDa3dl7ZlUT6EG7+n39w6mOYtwH4XUjYF OVE+hHf1XWsr94byIaxi8mrYCmvKh3BTwVqRoHfU/4VDBucs7dxL+RA+PkNy QdNQyodwaVqd07WvVIedjvJUtpRSboTrB4ldn3mfciM8p+Xg+Ym3KDfCo4pM fq7s8b4GLGsoPuhzOuVGuGC807aPjyg3wm8F9d6tqKZzErip+ghv/V/Kk/C/ nJfOg8f12PvAd+i1KbYOS+nzEZ4w80XephOUJ+FHodaO04soT8LPF5VezZGm PAkfcTfbdVyDPq/h5YJvvaI+UB3OnV+1YEQI5Um4tHSe27eFlAfg+YFDN08V pvwA/0sqsXr2hOrwLKVC1fvHKYfAmdqJcUJWlDPh5zPCJ4aP7ZEz+d6waUb9 9m9Uh69PT8za97jHXle+12lnGN06TzkKTlfSKxM/QPkT9rFSd967ivIYnCVx oKJxHuU3+PvQOYdNp1DegxV+vbzsL0P5ED5dulI3TJTyJ1yyR+Hr6r6UM+Gx daZaz39RHV6z79BFbRGq708vm5L6oZZ3eqxg2PMe9x7nNzzONH9SyzP3VHsr LKTJ5StYIypWJ0snh8tRsKBpP+/mce+4OmzoK1fhu+wHV4ffmVREtEj2o+cR vu3kM72qNtJ5F7xA4sHdrCK6Pw+ve2cX/kx0LP158f3OIqRf8ybqP8JrnJ1i dBUoj8G64g8y3FRncHV40ONf5VciZ3F1+HDKif4nO3hcHbZ8+kdUMMGAq8M7 Pib4RVVTToOPLM97p5ZEOQ3WvyDvOkuMchocEry5avkYml8B5zoa3/seSPf8 4TaXj9H6G2ieGDzGqVm0Ipn6nrDX+WRzoxmU32Dly7EfDV/SewGw5MEb9+NS qR8KRy6aYJP7mt4XgD8H6d6asIjO3+DKoCj/u8J0/gZbaATGzx9J8zTgYy8e iatZUK6DfX91Gf7OolwHzw992GG8zIP+nvM94XWZz0MVeg8UVg0sNQiVob4q vNfxysjJdynvcTb8bHPMk87r4NqpCibKqynvwfVdX34dWkt5D677GdYk5095 D34uFhB2sJz6sHDhx+Ny2ib0nilsUuFR9sWZ5t/C7695iXoWUw6ETTJHXI+a T+d7cGpzx1nZCsqBcNnDj2L5eykHwl6tg9LctSgHwh6NV0W7B1MOhMXmbrCY 0kXvscIir14NrhpI537wetfhG1qGUw6Eb/2T3eStQffx4Ot7Kl+dWkf5ENbW GS9wvEc+hPXrXQ+VtNJ7FrDssDtjinvM74VN/ywObMmgc0LYWHfb4gAtOieE Hw6+5zr8MeVGuNkt1KN+PfWF4X12lwTXSFFfGBZesqigvpJyI5yft+jCp1fU L4bX/JXP031OeRI+LDvmpFwB5Un4Z3XFhpvFlCfh1cVWkyd/oDwJd/tMmJjQ TXkSXuMW0MdcifIkHKtZd8zIivIkLDdj5t2rgZQnYV6ZSfTlUrpPCFtl1Yyx Gkd5Eg4W3C1acIDOIeGVwXt/KH2gnAn7ygj56U2iPAlriShHf2ugOlz2WWmt VhLlTDjc2zpj5C7KmbDUL9GpIfqUM+Hd6uo/M0dQzoSvSJtXHWulOjwm9I9u vxeUP+Hh1ZX9J96k/AkraYlH/I6m/Am/Kp/ctDuI8ie8d+sj05AjdN4CF0cf 97XzplwKRz35WXGzx3sr8N19kcWxfpRL4YPvFHZKh1Auhf0uVkgM6tEHh1Ok ulZvyaG8Crc+qrl9ZhvlUvhP8xbzyG6qwyuU+1oZnKK8Cn/XPfxy/0TKq3Bi e/GvuQ+oDoeZB6kdXkF5FQ6xtRDQ+kN1WMN82rTF4ZRjYZvoC5azFfpy+Qoe /lJi0n2Va3ROxffgh9ZzQ6RfcnV4Z9+Doi4WdF8LVn0etGa9xHeuDjcdX58z aGs3V4f91ibZGr4WpK8/353jCnnqUnQOBp+2nJD+zpPyGCzaJzi+2ngMV4cP D+g/canZOPo5w/cDffGTJ/MncnX48iqLBQkyU7k6fKT/xi7NUro/Bs/oW5Up JkP7g2DROean3v+l8zR4+ey4AD8DmssK1084sKDMcR59LvNteNL+zeV6ym/w 0SkXBTJKzLg6fHvpN+HD0vQ+JlxfGRmz5wjti4RFje1ch82k8zfYtOHHg6qJ 1CeFD2tVGnhvolwHV7TG93vXSedysK9Yq7DXNprbD58cPv6M7wm65wavFr0o oVVF53Xw0g8OM5asoPM6eEBrpFyS5BauDs/5t6Z9qgDlPXhIsNXN1jN0jgd/ HSsr2zCfzvFgw4SfD0/IUR8WlvGpSPMc7srVYZGJC3c6TKV95XCTc/OTSmfK gbBsx1rexVe0ZxO2l3W567aJ+rbw8yZDP7+hlAPhXDWj7JgjdO4HeyYr+TZL 0PsRsJ77hEuLblI+hI0EbOel76B8CL+/eClkhAnlQ1hStCjJbhblQ7jS/VPf nUb03iu8OFhGz8qZzgnhiK0hDb8qKTfCly1j5o8Vp3NCeMuaxqxRFpQb4Q67 vRIOFyk3wm8Gjru7WZhyIzy/38WU6weoXwzLvygVuT6A+sXwG7HUQW+jKE/C yoqemddM6VwRln0hmndOmPIkLDZLWUOsis4bYVfN64m8d5Qz4S1qiUpXaihn wqs8BAcdq6ecCZu32pwa8ItyJnwnMiDSZkSPvjPfBbvbAlP1KGfC/2JatOe5 UM6EL/t2ZOql9nh/hO/K3PUOhX8of8LXHp32lbOg80lYt2ygv+0Nyp+wgFNT SKwC5U/4vnZFxLhIyp9wa3+3Yd0nKX/Cg/anKicup/wJX7OcaxYxmfIn3FF3 /sOnvpQ/YaFN1zvP1VAdDr89ZVTGfcqlcNeB1SstkiiXwiHfVizZHE59cLhq R1CTYDDlVXhE4dODaoGUV+E7KXl574Mpr8IPt6imKEVSXoU/31B3+5FC56Lw 3R/JoQsfUo6FAw8Upqu8pxwLSysdSfQXpPuTsOLbTNVp0pRX4Ymtxc4lqVSH y8o/Xotf2CPH8q1ZpiES95nqsPuqkujcAMq38NOllef+qlO+hX1MJo8zrKI6 vFjcaWvwUcq38K+gY/GvZlK+hQdeCxYY1EB1WKe2322ZcMq98JsRqsO+WvzQ Qh029bau/5gbweUf+G+ktLiB812uDnvPfnH6xKhirg536t1OCe1D511w+wGR Oi3Rz1wdNg03CJJc1E7/v3y7nCvYqRn8j6vDU96lTFouRPft4bdZbfr9B4py dfhU7iSdvOm09wd27YiTMB9POQ3+8Dk7J6GN+phwsKKbukAZnafB6XaPNzam UX8Tvnxo/fJVcpPo5w/f4nNdMyoV6ZwNHnLkvKXuRrqHBp+yfnukO5T6ofAD 2Ud2myfT+Rv8PCTmr9AEel8AtolKsah5Ooerw+WX9wfUzKZzOdhd3CvoWSu9 XwAb3bAyk2kyoc9fvhd+XWG8SZXO62CpsG5/r3v0Hig8SLZYM6mYzvHgZsXK +AHf6F4cvHJwH4ndc2hOGnzr8eb+N3IoB8J7bXJentxNORCu8NaZ+m11jxzI t7Z05qb1eTRvDS4LtXM/60rnfnBGS46DVI+9A3CDf6HTYV2azwaH7fuZv9eK 8iH84bCVWmIwnQfCQb6zd2Z2UJ8XtoiwU9l+aDtXh4+lTZXTH03nhHDQ+ySV dwGUG+Ex13iP946k3AgnFfat/HObzg/haRsy2hfuoPNDOEXg3B+HefSeLGx9 0Pm10nTqF8NPDx1XD9Shc0VYsGKGxMnVlCfhbQ0e+kHFdN4IJ819n3iuH+VJ 2Fjx9KNV8+i8Ef5uMyV6xRnKmXBC7cauwT8pZ8Kn2r7xmjdRzoQj7kgqbW+h 90Fg/7ujzgz1oXu2cMeXG1sWTqF+NByTpT3nbBPlT1jk12DVNRmUP+Hr/mJm Q4sof8LWshZuEwro3BKullTgJb6kXApXLs0bWlBHuRTOE/075OE/yqXwi/Pv Pz1VolwKP9kZnznIlnIpnB2l/C/jDJ1zwhoiScsG1lJehaee9AgeNYPOOeEb E++sUjhDeRUW1ltsYyRAeRX2vyBTkLyX8iq8y3ZKeZYX5VV4yDV9zYb5lFfh KUdmtq+VprwKJxzulJ/3leqw5u7Ra04WUI6F5c10Gm2u0HkpHDo8Yc2FEMq3 8LdK38bdRynfwgfslv6p3E/5Fk46lLLllQflW1jlao7ttgOUb+H44SPko33p fBXOXPHJcvM5yr2w1KUBqc+vUe6FNY7oD39YSP16uPKnj6vpd8rDcFW+9pdJ 4pR7YXmztQktCdd6fH3+z6Mnj9vRZEB5GP6wTN985Huqw1umjp271YdyMnx5 /VK995MoD8Oa6WEztpdQHXZJnj1woCflZDi8X4lvuCrlZPhHt+thhVqqwwGh 7R6qDz5y+QouuvFgrni/I1yegUMvOk5PMk/g6vC+F11qrjmZXB3WPKT7ImV4 PleHVR4MdF7nW8bV4cnb/SPjVr7l6rDxuuoWXe8Grg5/kn2q1qzWytVhq2x3 0dozlNNg120phl/E/nJ1eNPaznPOVX25rw98MdBy4i27gVwdvnUyO0I6aBB9 jvPtMeuw560nNL8CPrq28I+B1jCuDhePz4yPl5fi6nCu7Ij+tscp18EbPrUI T8ml+a5wy4ifGWNP0HwMzvatiSMuj+fq8I+/LzzXylPeg93j428ldahSjuL7 hna2eLP0NPr5xvfP0nmX/LfTOR78yyravaObciD8RDdtvXgRne/B3aMC19a+ pfn/cHW+3LLTs6g/C0+3b3TL2UbnfvAV9RrFgI2UD+F9v7SLvI5TPoTF/ZSb flbReSC88NX47WvtTSkf8r3RZ3qgyWDaYw4LnVy9RPMb5Ub4n+rHoU1HKDfC 330ez9w0jXIjvE/i567fv6gvDPuoy0cNrKM8Cc+5sSm0q4nyJKyYbjbYegTl SdggvkjkxDp6LwM2kJwdrfSG+siwY6W0Zqk2nTfCAVqXol9GUM6ErdMmG5RK Us6EX8S6uSScp3NI2G6wjKXUPOo7w4m5A8La/1H+hKuvqhiI95hfB6e+0jTS uEv5E84dZG4yO4/OLWG1AycuurvQuSVst/JY8tkgyqXw9FshI2uyKJfCFwZK uKT/pL42rBF1+tGJuZRLYSdrS+eHYXTOCesImDU/7EfnnLC34eHYH/sor8L+ Z9fl3hxIeRU2fzWlr9MFOv+E8w4rv+i8RrkUdlRSk4kcQHX4vqed/tEvVIe7 lM+NSqyh81LYR6C9bPJryrfwg4tWi3Sre7z/wvf74T5NA5op38K7hMYcShGg 92Lgk48PGC8bR/kWtm29HTN1MeVbWDciQd7yCJ2vwoeTJ1vWPaLcC8cqB9z+ K0G5F9Z7Nj3i7gbKvfDVX6cH6j+hfj1sOqt4QZE05V74RrTx3R+lVIddL/S7 EHaG8jDc3kf405PllIdhpxNa445MoDwM7/3xak9FJ9Vhv5XuQTlFlJPhot8z gw2S6X0fWPv0upGrAyg/w8lqt8dKuVJ+hmdEPJJY70j5GZZ5MCXKyJryM+xl J19wfRGd98JHjx+qu7iAcjUc+fayk+RiytWwxMnIiW229J44PNGqW2T6Bsrb cLFF+JTHHpS3Ye33BZ+L5lPehquLJ2eUvqI6fDLmaO6GzZTDYX9738r9/6gO 10QWh4ycVcrlKzjk90KdVcu2cDkE3ngorU/e3+NcHS79OPWt1rwLXB1WWmI5 I0iX+oxwVrX9j9rSDK4On5+uk3poUx5Xh7Xu57amWdF9e1joksz2wxqlXB0u FFx3TOTXG64OG8fu6+jvT+dp8JPpUmse2tVzdVh7kfw04a5mrg5/tZffqWrY xtXhdNPJH01FKdfBY0791vm56hdXh3/Kn9zftYDO5eAvJXlR21op78FZSp+l GobReR3s5Djp/upwIfq+4/vF3L/rb/vTOR685OS09CFulAPh45k2PpEf6XwP LrCxHtn37HCuDt80rNP+fJzyIRzkVFMzt0iGq8OZhQ4LRq6hvi089Wbt2GUX 6TwQ3t3++MD8x5Qb4b/vjAWvSVNuhA+9yRixP5reS4WXS1R/Tl8+mavDJ3y0 dhxeQvs04dj4kTtFH1BfGE6NiH7ouJfOFWHVPRIh+6zpXh88aLde2QgrDa4O 1xa+TeraQzkTvngxcLpgHr0nC6dnnJEYpkXnkPCCplOjxSsof8Jrc1p2uS6h /AmveJOTWFZI73fANR779yaupX40fE5t7ooOSZpHB+ud9jmV3+OeIXzs1c8m 9VzahwXLvL66dt5D6l/DCXuLa4Z8pLwKix2wtn8lQX1tWOWHyh25uZRX4dzH fcc1elG/G3a22Prh4UvKsfDcQ19uGMygPjg84KmuX1si5Vh4p+sN25VTKcfC gdNuV0gV0HsrsNp6O4Or7pRvYRGdWbJXZ1O+hW2EUz/GDaN8C7es0m4bfJDO UWGPvm8aCr0p98KjLm01fx1IuReWqRcc6ZxI/Xf41sz73aXPKA/DT3yq3Ey6 KA/DxYtddwtrUx6G9cMLF1sdojwMJ9zVi9rwmt6Phs0SPwt6zKY+Pqx/d8GE vGTKyXCWypGVeydRToZVFQpSi2/S+S1cftJ+8f4Eys/wOtcmzyF7KT/Dm1pG bUq3ovwMa97JkDimSfkZjrn0p/W0PJ33wmJORVWfh/R4D4jvNaGHfkYLUa6G d8dciswUpHNgWNneaqmZGOVt+OvtrNu2spS34RcHDDY3T6P7BvC+5K5+wuaU w+EKqesCN3dSDof9+m3PaI2m82RYTCjeKLOE3kuCG53+ZfsKUg6Hbwqt+NKR SHU4KrBjzrhFlM/hj5Munxz0k+pwSvWAffGxlNvhkUMEl3+xpNwO/35tYlAh SLkdFvOO+2d3j+rwy8MmQps96Lwatphveuy3FuV8WGbvLauu31SHL79QbFqT Q/kfXjq7fOmyvXe5fAWHSduo1TWa0HxRvo8+5d1L37yZq8PltbUL++335Oqw 8zAxf8OYE1wdbuq0WLT0QCjdv+J7sXrcirdxMVwdfteeIzC66DJXhxuXbr6X tjeNq8OW2sLKD1LSuTpcoWk230mc7u3D7Ya/h0xxp1wHzzU6ZiiU8JSrw2mq OV+GpRRxdXjquHFJNotLuDp8/+WzLXoLKrg6/LhENlq7vJKrw4f0nqZ57Kdz PFjngZ/zB8f3NFef7507u2pWX6R8CCs/tp9tPb+Jq8NpA86qetu00O+f7wM6 Q/wFnCg3wmJqcxWvNtI9OnjVds9ujUs05x9e1tI5Vucq5Ul4yrUbOSf6dHF1 uMWyXk96Ce1jgl/r7ta/uoDeS4X3F7gYZe3uz9Xh5dNnrhQtovNG2D1+kdbh 5cJcHd7wcPk3eTnKn/BDh9Kqn9L0/gXM2zZzpMxEugcIC1cZWQ7pkUvhz4aW gcce0LklrDqyuv+c3BH0ucD3CsVBbT8/UV6Fl9U76HvNpLwKr3uqqZt2meaf wLd/b/PXUqJzTth1ekzuUn/KsbBT4pnERCHKsXBUoYODehTdV4TzntsO6VxA +Ra+G/s8uGs45Vt4uVxf5UW/6X4j55IVCj9/U+6Fl5n/PCEkTbkXHvXn6qb8 SZR74SSxb5Ne2dL5KvzhQtQRrRDKw/D+7E2D3erp3BWWm2qZMsaYzl3hIcpd bnfvUE6GH9T8WF+rRzkZ9vvxb7RYBfXr4SF3PJLKvOmcFn49u80oR5/yM+wY UT/YZiTlZ7jwuXdtkBf19+FlJ2tnWXpRrobNHGYnz/CnXA2Pcro+zfUCnffC A02lfGxyKW/D4r56f0a00TkwnL38oX3bJMrb8Kb97vfG7qD7A3BU88pV73rk cNisfZfbBkXK4XD9HuNRjYF03wAWvucgck6Y5u3Aov2uBScE0XkyfNR9n9qF YMrtcPj9qZPyHSm3w5ckpW/W6VBuhy/2cZ7bNYpyOyzonhEzqS+dP8OCZ2/9 cW/pUec75FdgUmcd5XzYRn+dTloN5XxYoWTigmvv6P0m2HXD18O/myn/w87F MQfPdlH+hwXMjR8c7XG+DSs+ygwr0qC53HA/s+GKW1fScwH8uH+Y8ooTdL8C dozeMCYsl54X4GrJjSIBXvS8AD8Sn73kswI9L8BnJsnvePeE6nB+vXfqOhd6 joBXtMiLO4+h5wh4xkhTzY4iqsM7xp4/9PkQPV/AyzItOwx16PkCvjHzg8aP dqrDOsPWBzZcp3sgcKzc7P7qs85z+Qr2zFlc9V1YhvschKcfnvn31pXZXB32 M3w+SWjUEq4O+7cdOvpd2oGrw+MKii0Lz1NOgy/EPL0/zHgXV4fb57w8nDZ5 P+Ufvp96TQt9IHeYq8NlowyiTd/6cXV4/31JWzfPk1wd9k3WHFaz+CxXh9XN L+1W/xXO1eHsR19e2RjTeR1sF2Dz133YRa4OW7pd2OznfInyHt+b/tweUbzx CleHZ7kOvnllAOVGeIFe4UYv9ZtcHZ5jXnboykPKk7D/isH+O/Ky6OvPd4fp MgGNCMqZcP28Cknr4blcHR78LeeKdfFDeq+B7wuV3U9VXj2hPy++Z8s/Ux2g 8oyrwxO7bzTMK6FcChtkC73Ma6T3JmB991stS6XpfBKucjD0Wba3nKvDh04V 3/81lOa2wW8sCqbtfE85Fl7vWBqh2FrD1eF6pRn1c+XonBP+UmkmP6y+jqvD KglXNzq8pPc7YNNFgnKidZR74ZN7FAqFRzVyddjBRPiT7V46L4VvHNniOECI 8jDsNvL8FcnV1B+HU9feWtpWRjkZzh14SeW6I+Vk+MCdIBnXQXTuCq+t+jbK vpDyM+x7cWSzf0onfb/w3b/vlXtTL9N8PHjQuax694fUl4c/dNVtCutD77nA hRWdS9deobwNb3qx43fUlx59fL4jCxQHhevRe8pweePwHT8vUA6HQxSXVFtK UQ6HNd7/Obo4ht6vga8srPlyYg7lc3jRPgf/5O8iXB1e9mX4mQVZlNvhKd7N KYPDxbg6LHrj6EJjEzpPhjeOL/e4tYjyPJwSNX+rwmrK8/Dd551mrzwlKd/y rax9TmVcEuV8+IX22U+L39O5NLyqfFVbgjLdR4V39uk/bsdeyv/wp1CliG+V NF8aNndYd8TZlJ4L4Ih+Ft9UHtP9B1h8RHvsBgs5ym98b46W/LjiM517w2fz ZSdfzKfnCFhBpXRVWjw9R8CCW+XbnP0UKOfwPWXF3Lhfu+n5AjYfXO3vuIme L+DShZmtuWvpni08cPB17Skb6bkDvjy34vX1nfSeO6zc3qq29ig9j8BjnZd6 LIil5xE47/CYLLfHdK8D/nuxJbHlOz2nwO3hI4NuK9N9D/i3oJtJ+Tp6foFX rquVXZBE94HhkVfDq/z30XMNfD1i0vGwCfRcA/dLsLhTWE51uK9X6VlFP3re gYPeqdYHz6XnHfhAhGHrsC6qw4bXQg6cz6J+AXzidkPpJC96PoLDcj2TEozp +QheGNN3krCkJleHP/Fe1PHqqA5fTh5RpH2TnqfgreIuZg3+9DwFd90rb4ou u8XlK7gtxVVaz71UF3V4svjQbZvvtHN1eIfZnu4njcLcz0m4WCxh0IkNUlwd DnGqzzyqNo76j3zrlbxtPpEzhavDHu77R+rIa3B1OF/H63THUT2uDg/MW2ty d908rg5XZfrULj5pSp/LfI8RPT15wbfF1L/je+CEvNW5PCv69/C9oO6Q4Qj9 ZZRz+H5bbOSQNoDyJCy5Tme1m40jV4czA9eMC5DfwNXhLT8M/B9sof4s3Pbm UH89BWeuDku/Lwp0qHTh6rDKGi3LyIbd9LnP90qZ4s3hC925OvxUPk7Iehjl WPhnY0VlwAUv6mPyHXSzb/azVm+uDq9WuVX7fq8PV4envZ12rtvIl6vDc4W2 JLtZ+9M5Id8JLzQPvbgSwNXhe699E1ZMopwMP1s8Wch//CmuDn+w2HN/96Iz 9DnO92Dny2534kIoN/Ltbr35q6BKGFeHV6kpvlZuoPc+4BELB5349Sqaq8MZ Q9KXa3hTDoelbm39PU8jlqvDJ1ZXXNEQoXwOT9661Su2O56rw15/ro5XlaLc Dm8XnnDzgFUSV4czFnrrLbiTQr8fvtuKVmpeUqA+PizQIS2WtD+Vq8PPPz5u ONlC+R+OtTC+YOx6g6vDXjZPNt8Zfot+n3zPGfVnf8Xz2/RcwHekemLR6eg7 XB3eMuFOVr0/3fOEPZdkpOWdyqbnQb79OupKJqTfo+c+vhsS7MwGdNHzBaz3 MXLqDNUH9POH7ytiQ4PkttJzB1zW75GTfjade8N3AtoiR8s94upw8BSn06pB j7k6LPBMX+6rJJ2Twz9VPZVrLtH9VXjAUQ3P3Rb0/ALPt+rwnyJWyNXh/nMS hx6spucaWPvWIdcdb19wdbgmenWdYxU978B7QzXWv6ij95jgkgWJOi3f6dwe LkmYJPVdnO7Zwjd2CgpJatLzEVw0UGy+1yY654evWXWN25LwiqvDA50zC/q2 0fMUvLZtq6qzET1PwfKhR0trE6q4Ojw9sfae23B6zoIVpn2abR9Yy9XhJ26i qyv8qL8AOywq/mC0lJ7L4Blnja1FxtFzGWyZNvqe6m+qwxXOBrsyy6lPAZve N+yfdYee4+B3t8TGa8R+5OpwRpBY4pRT9HwHO1i/WZV4jO4zw+7PzUbFHflE P/f4/r56ynF5P3oehNOCDhuMOk39EXjUU+dz/nH0nAibtBbGOWXSe23w9LVH VK+/+kJff74Tn8Wct/hLz5XwMrsoATlJeq6Eny2S+zUlierwkaiD+hZG9LwJ K0zwSt73geqw1R/5nAs+37g6PLbM++71ifR8Ci/KmRgV+4Lq8NrkYx+kVQdx +QpO97GQr+6YzeUoWHT4yMGtWSu5OrzaP3n8MysXrg6vshh+dLzhQa4Oi3cv 0XkSfJyrwz6hL53S885wdVjq1Dk1zaXRXB0ePbL4gknURa4OC3k3Ole+T+bq sErsalWDl2lcHVZetlxqo0A6V4cPGKYNGSl7l6vD0Z6WJsbhD7g6PG2d3bXC m4+4OiwS5mlts6WAq8PThLu2zlz3gv55vgv2yBtr7Cjh6nD28ri1Re/KuToc Jt4ufPreG64Oa5jc/+kvWcvV4aC1baVh399xdVjNpVl9XswHrg7bZY4e+ies gavD2+3rTmm8b+LqsN81iQfJXi1cHfZsLAu+NLuNq8PZMV0Xrm76Tv9dfJuf ztoXm095Hs6Xemf7dk0nV4ePrvPIfjfzD1eHl6za6m5g/I+rw90KkrkOz/tw 3xfwnmPFTTJhAlwddrh1esBL//70c4lvp78fA07EDeTqsG62qsu2eiGuDl/J asmLthxEn9d8h9eJ7bZvGczV4V1nnNtd7YdwdfjBLruisjcSXB3+1/By8f6d klwd7pxfcDx+wnCuDl+pEXwV1DmCfj98u6z46n6wgZ6PYJnuDOvc9lFcHW5q bwmOHzeaq8P9ymWmeu0ew9Xhj+N2viz9Ic/V4bfjVabNmatAzyl87wqcm552 XpG+DnzHTeZtq5FU4uqw296mKNfw8XS+x3dle8ZpNS1lrg63bRm7+G7TRMqZ fP81uqLz6vpkrg5XP1eunn5alavDBtbJhw4dV+Pq8NBFO9zvFU7l6nCCX4bP 5/fT6DmC76v3N2opDFTn6nDw9qkj7sycQTmN7/mFyglCO2dSvuJbOE/UaMNd ej6FX/ttbpkopcXV4fhz5cJxXrO4OrxknObsCZ3aXB0+KMhT6+dJfQ346iO1 FT7D6fkXVvH686Yzk0fPfXwb72gdYnlnDleH375Z6NQYMZf+PvBdMk6x8K2v PuU3vg2lDn+w3W/A1WFel82F7R703A2vMU2Sm+tlyNXhDUeGH2oIMOLq8HZX g3qPeGN6fuH7xu2bMyUe070a2F0rT/pu63zKLXy/cvn5JljRjKvDVwSfGEet WkDfj3xrjygP+xy3kPIw351rLq0++n0RfV/zbZo9IC1Dic4NYIXogUYryqkO fz21tiHJn/pQsFzEL7+LhhZcnfOIcWeM+1tydThyrmvRicdUh0da1q90CVzK 1eFz/45kfFlO5xiwoPTLmA4Va64Ol//2kfYWsOHq8A+/6csOVVEdNlezK2nO sOXq8KqjlvJJkXZcHe5rUd7v6mE6P4FF3i9yfL99OVeHfbta9KevsufqsLJs 4/EhqhZcvoJLvdl8BU+4OoLJV/ADUzZfwTWSbL6CpXPYfAWn27H5Cl6/is1X sOeXl0y+ggtms/kKjvdi8xX8egybr+Dmf6lMvoJlLdh8Ba9VY/MV3LqSzVdw SP1fJl/BUYvZfAX7TmLzFSxd+oPJV/Ca/my+giX12HwFJ81j8xXc/wibr2AJ RTZfwc5b2HwF973H5it46B42X8G+jmy+gn/XvWXyFeytzOYr+IQUm69gs39D mXwFz3Zg8xU87Cibr2ClfDZfwbFH2HwFW+1n8xUsGsXmK3jMNjZfwStM2XwF e99h8xXsKsvmKzgthc1X8OtJbL6Cz+Sy+QquTmPzFXzZl81XsEG3C5Ov4Ov/ JjP5Cr68hs1X8O8/eky+guVM2HwFL7nH5it44kw2X8FHRdh8BcscZ/MV3CjG 5it47kQ2X8GVq9l8BU8MYfMVfGcum6/gIdFsvoJjAtl8BTcsZfMVvNKBzVfw 8noNJl/Bjx7rMfkKDj/M5itYYzabr2BdUzZfwX+vsfkKHvFLgclXcH7zISZf wY9esPkKXiTL5is4fSmbr2A5AzZfwVJebL6Cw/7lMvkKfjSTzVdwyaPHTL6C P5aUMfkKVpFh8xU8LJTNV7CZB5uvYI2tbL6Clzuz+QpWblRk8hU8Q4rNV/Bf JTZfwZpFbL6Ckz69YPIVLJLP5iv45jI2X8EBycuYfAX3M2HzFdwmzeYr2O0C m6/gvGw2X8HZEVIeI4bu4PIVvOC/+oOw6k8Jpj8Ia85g+4Ow8594pj8I+y1j +4PwmztsfxB+uZntD8Jmymx/ED5xk+0Pwnsvsv1B+GUftj8Iyw5n+4OwRyHb H4RlH7P9QXi6DdsfhDfvZ/uDsH4t2x+E8wrZ/iCsXMb2B+G5Fmx/ELYRZvuD 8DERtj8ID6xm+4PwsXi2PwjPkGX7g7BzEdsfhP9+28z0B+EPd9j+IOz4jO0P wu36bH8Q5hmw/UHYaSXbH4TT9dn+IGwhzfYHYa8ZbH8Qvt6P7Q/CFglsfxA+ voTtD8Kf7dn+INzeyPYH4dM/xjP9QfiDBtsfhHPy2P4gfLSR7Q/Cm1+x/UE4 V5/tD8ImRmx/EFYQYvuDcKw82x+Ezw1l+4PweR22Pwg31LL9Qfh6GNsfhHUq 2P4gPKsP2x+ETX88ZPqDsJIn2x+Et45m+4PwtztsfxD2lWb7g/B+F7Y/CFfx 2P4grDSR7Q/CRZfY/iB8NZjtD8JX/Nj+IHxbl+0PwtND2f4gfNyR7Q/Cp9sH M/1BONGA7Q/CjsvZ/iD8sZLtD8LjD7P9QVgymO0PwnNGsf1B2GgL2x+Ea+ay /UH4ry/bH4Tnx7H9QVhkDdsfhF+ksv1B2OwS2x+Er3qy/UG4SZ/tD8Jut9n+ IFxkyPYH4WxHtj8In0xj+4Pw49dsfxA+tpDtD8Lnb7L9QXjiQrY/CJvos/1B +FMQ2x+EJ0uz/UE49QvbH4TlHrP9Qbgile0PwuXS7P12ODGOvd8OG+1g77fD M3js/Xb4+0f2fjvse4+93w5/CGfvt8O7NNn77fAod/Z+OzxUjL3fDltlsPfb 4Wux7P12eJY+e78dXn+Xvd8Oux1h77fDWVvY++3wqSb2fju8eht7vx3mzWTv t8P289j77XCbOXu/HZ5jwN5vhw/osPfb4SWf2PvtsMUL9n47HCHJ3m+HJ7Wx 99s532Tvt8OXnNn77bCoDXu/HXY8xt5vh/sasffb4atW7P12WF2Ovd8Onyph 77fDElHs/Xb4pwF7vx0+tZW93w7f1GHvt8OL3Nn77fDKIez9djjWnr3fDud2 JbL32/l+eJW93w6nFbP32+GSMPZ+OxzwI4W53w7LH2fvt8PBrez9dvjGC/Z+ O2z1hL3fDtvnsvfb4QNv2fvt8DFp9n477PuKvd8Oe+mz99vhfGf2fjv8qZa9 3w5P2MXeb4e7ktn77XCoHHu/HR54lr3fDqs/ZO+3wwbT2Pvt8KBp7P12WOkZ e78d1urox9xvh4+dYO+3w7ct2fvtcHPHEuZ+O2wgzN5vhwWD2fvtsMcD9n47 XK3I3m+Hddex99vhD0vZ++3w+AHs/Xa4Rp+93w4/7cfeb4eXaLL322H1JvZ+ O3x8HXu/HRZyZ++3w37n2Pvt8Jog9n47fPuXK3O/HR5vzd5vh6US2fvtsM8Z 9n47zItm77fDZW7s/XZY5TV7vx1+f4q93w77J7D32+FBV9j77XDmHfZ+Oywc yt5vh6fNZO+3w1Ni2Pvt8OT+7P12uFXHYla6cROXr+B1/zWfAd6Uzs5ngI0r 2fkM8GERdj4DvLKNnc8Ad0xh5zPAm1vY+Qzw8kXsfAZ40HR2PgMsN52dzwCf 5bHzGWAlXXY+A5ysyM5ngDXk2PkMsHY+O58Bjihg5zPA8rPY+Qzw4Cx2PgO8 0YmdzwBPvcfOZ4Cf/DnDzGeAl2uw8xngo8rsfAY4dCM7nwG+9JGdzwBPSmDn M8D3FrHzGWALLXY+A1ycx85ngLdOZuczwE5R7HwGOCKLnc8AJ1uz8xng2I3s fAZYvJydzwCf5bHzGeCIIex8BnizDDufAbaoZuczwAI57HwGuKSdnc8Ap6uw 8xlg4Rh2PgMs/4SdzwALP2bnM8BDI9j5DLD/CHY+A+yXz85ngCcasfMZ4Mft 7HwGeJIwO58BHh3BzmeAp99m5zPAVyey8xlg0bHsfAZYu4KdzwCv+8zOZ4DF Utn5DPBOdXY+A3whmJ3PALc8YeczwOOPs/MZ4NHL2PkM8IT17HwG+IoBO58B tj3IzmeAjazY+Qxw7G52PgNs+J6dzwBXfmHnM8AOO9j5DHDgDXY+AxzSfpWZ zwB3uLHzGWDFLHY+A3xPnJ3PAKf+3s7MZ4CrXNj5DLBPIDufAX71jZ3PAFdp s/MZ4IICdj4D/GUVO58BHpjPzmeAtYzY+QzwgWx2PgOcNJedzwCr/TnHzGeA Hc6w8xngBDF2PgPsIcLOZ4BllNj5DLDcO3Y+Azz1EzufAR4kwc5ngIfIsPMZ YKmb7HwGWFGNnc8Ajx7MzmeAw8LY+aLw42/sfFG4aQ87XxS2qGPni8KlZux8 UbiljJ0vCs9SYeeLwvl32PmisFocO18Uru3DzheF10Wz80Vh7ynsfFE415id LwoPsWPni8I7jNj5ovAvf3a+KDxNmp0vCqcWsfNF4Ylj2fmisO4Kdr4o7KXD zheFu46z80XhlFvsfFFYwYKdLwqv5bHzReEz69j5orDLY3a+KCyays4XhfNa 2fmicFQVO18ULi5l54vCn0TY+aLw7QPsfFHYNYadLwqvDmXni8IKO9n5onDa dna+KNz9hJ0vCrdHs/NF4fXX2fmi8Nk6dr4ovD6LnS8Kd5Wx80XhR7vZ+aLw gUnsfFH4UgA7XxTeU8zOF4UPFLPzReG4Xex8UXiiBztfFB7eys4XhTfnsvNF 4SML2fmi8M0D7HxReH0uO18UjnVm54vCfpPZ+aLwnFXsfFH4tjo7XxReLMDO F4Wl7dn5onDp39fMfFE4J46dLwqfecfOF4UbprLzReEkL3a+KPzPlJ0vCr8/ zc4X5XyfnS8KP45l54vCDTfZ+aJw/Dh2vihcMoqdLwrPCWDni8JdO9j5orBw EztfFP5wg50vCqfFsfNF4dEb2PmisOopdr4orBzJzheFw63Z+aLwpDR2vih8 dA87XxTWi2fni8Ijh7LzReHAv9uY+aJwfh92vihssYmdLwoX9Gfni8Kn/Nn5 onDWeHa+KGzymp0vCl8YxM4Xhc3L2Pmi8LT97HxR+KknO18U1p7HzheFc3ez 80VhowJ2vigskJfauPLBUG6/Mxx7md2PA2+7wO7HgUcUsvtxYMN97H4cuPsu ux8HDtvC7seBZ69m9+PA2qPY/Tiw5R12Pw78YiO7Hwf+68Dux4Fjj7P7ceAa f3Y/DvxyJrsfBz7iwO7HgUcrsPtx4IQR7H4cePRHdj8OvF6S3Y8D59qw+3Hg jT/Z/Tiw6Xl2Pw58WJPdjwMXvmD348CqFux+HNhhFrsfB3YYzu7HgXc/ZPfj wB9s2f04cLwaux8HPtLO7seBM33Y/Tjw82J2Pw781pPdjwOX+bH7ceDESex+ HNjKm92PA1sMZvfjwAPV2P04sNtVdj8O/DmN3Y8DJ55n9+PAn0XZ/Tiw3it2 Pw48aya7Hwf2ucLux4FvR7P7ceBuIXY/Dmxzj92PA1+9zO7HgeVL2P04cMUA dj8O3OrB7seBW5ex+3HgkdfZ/TjwOQF2Pw6ceY7djwPHWrD7ceAxXabMfhxY Yy67HweeHczux4GXlLL7ceBdp32MvT/QHhO4QoHdjwMX7mP348A5Sux+HHhM 9w9mPw6sGcPux4FTJNj9OPDJ/ux+HFgxl92PA19qZvfjwFdC2P048JYEdj8O PEWR3Y8Dn3rE7seBS7+z+3HgRRrsfhz4XAS7HwceF8Xux4GPdAkx+3HgV8fY /Tjww1Z2Pw58fhm7HwfO6mD348DCQex+HFh3MrsfBw4JYffjwCey2f048IOl 7H4c2P8oux8H3l7J7seBL/uz+3FgL3N2Pw4supDdjwNrvmX348B5Rex+HHhh NLsfB55px+7HgZP0r1295zOWy1dw1j52vzOcGsTud4Yltdn9zvB6bXa/M3x0 L7vfGX4Yyu53huedZvc7w0uq2f3O8IV0dr8zHJjD7neGN39j9zvDExvY/c7w yrHsfme4nzW73xmO9GT3O8OrZ7P7nTkfYvc7w3Ms2f3O8B0pdr8zbHyK3e8M Hw1n9zvD0onsfmdYRpTd7wwPusbud4Z3NbP7nWHf0+x+Z/i9FLvfGa6RZ/c7 w7eE2f3OsGgeu98ZrrFg9zvDggfY/c7wsRHsfme4/Qy73xn2bGb3O8P7fNn9 zvAId3a/M3zei93vDDcdYvc7wxYh/7Xfme97V9n9znD5W3a/M/wimd3vDEsW sPud4ROO7H5nWP1fKLPfGZ65n93vDJt4svudYYNidr8znPGB3e8MV+ux+51h C3l2vzN8cCm73xn+VcXud4aDvrD7neF/N9j9zrB8NrvfGZ7Xxu53hqtusfud 4QPf2f3O8Nlj7H5neJU0u98ZHibB7neGXy9h9zvDu4XZ/c5wRCS73xk2dmb3 O8Oi4ex+Z3j1QHa/Mzz0BLvfGZ6uxO53hh1msfud4bQIdr8z/MqK3e8MW6Ww +51hl0Psfmf4wUF2vzM81YXd7wz/NWb3O8PWQ9n9zvCeV+x+Z/iHFbvfGW7x ZPc7ww5J7H5nOEGC3e8Mx9ix+53hV3Hsfmf43kF2vzOs9Z3d7wxvecLud4Yj TNj9zrC7MrvfGZ5ly+53hlNU2f3O8AtHdr8zPOsmu98ZdrjE7neGt/Zh9zvD UX/Z/c5wfuQFy9kKfbl8Bd8qkJh0X4X6enDtA+u5IdJ0Dxke3+0l6mJB93th mYKgNesl6N4OfNF3fc6grXSvFTZwSLI1fE33S2FFhUKeuhTde4HtF09If+dJ uQje8edkfLUx9aHgFIH+E5ea0X0SuJ0nfvJkPt0Pge1XWCxIkKE+EawnsLFL s5TObeDMrspMMRk6n4HldcxPvf87m37e8q2kHRfgZ0DnMLDduAMLyhypXwN3 nbB/c7mezlvgkkkXBTJKqP8Cr7H4JnxYmvossOHryJg9R6ifArvPs3MdNpP6 JvCADz8eVE2k3AJPmllp4L2Jcgu89HN8v3edlFtgYdFWYa9tdB4Cr5Ucf8b3 BPUvYAfhixJaVXTuAY985zBjyQrKJ7DW50i5JEnqO8CLfq9pnypA5xjw30Cr m61n6BwD3jNGVrZhPuUQODLu58MTcpRDYEXvijTP4XQuARcrLdzpMJXOJWDe 1uYnlc50ng+P/7aWd/EVnT/AI6Rc7rptorwBF34y9PMbSucJ8DRVo+yYI5Q3 4CmXlXybJShXwMddJ1xadJNyBVz2z2Ze+g7KFXB2zKWQESZ0PgDfEixKspvl T7mXbxXXT313GlF+gE0DZPSsnCk/wC5bQhp+VVJ+gPWXxMwfK045Ac5a1Zg1 yoJyAtxuvVfC4SLlBLihSPHuZmHKCXBXV1zK9QOUE2Cn56Ui1wdQHoCDRVIH vY2i53G4ZIxn5jVTygPwzwLRvHPClAdg3ZnKGmJVlAdg3ZnXE3nvzveo/5/H qCYqXamhPABL7hEcdKyePvfha19sTg34RZ/7cL/wgEibEfT5Dre7tAWm6tHn OyxwvkV7ngt9vsNLfToy9VLp8x0Oz1nvUPiHPt9hw9zTvnIW9DkOx7wc6G97 gz7H4b4bm0JiFejzGs7SqIgYF3mV/tz5rhJwG9Z9kj6v4QqPVOXE5fS5DK9f MtcsYjJ9LsN+b89/+NSXPn/h4+uvd56roTr858aUURn36XMZnrNv9UqLJPr8 hTO/rliyOfwWfV7wXbYtqEkw+DZ93/EtWPD0oFpgOleHwy7n5b0PvsPVYeeN qilKkRlcHV6cqu72IyWTq8PD25JDFz7M4urwC4/CdJX32ZRP+DYbeyTRX/Ae V4cVazJVp0nn0M9DvmVaip1LUqkOXyn9eC1+4X2uDg8o0RCJ+0x1eMKKkujc gAdcHV5mUXnur3ouV4dHG00eZ1hFdfihqNPW4KN5XB1eFXAs/tXMh1wdXpwS LDCogerwgap+t2XCH3F1OHC/2lthIU0uX8EfwmN1snToHjisYNLPu3kcnUfB Zj5yFb7LfnB1eJtRRUSLJL3XA1eOyvSq2kj3h+FxYg/uZhVRXoJbauzCn4nS eRE8cXFIv+ZN9F4GvMXJKUZXgc6F4GeiDzLcVOmeDNyZ96v8SiSd/8C6l0/0 P9lB/Sn47KM/ooIJdM4Dp9Ql+EX1uJcCP7bNe6eWROc58IpoeddZYnRuA2cH bq5aPob6RPCE1cb3vgfS/Ub47PaP0fobKOfASzc2i1YkU98HVolKNjeaQecw cFpC7EfDl3QOA6seuHE/LpX6OPAFswk2ua/pvAWWPaF7a8IiyjOweGCU/11h OleB29UD4+ePpD4LrFL4SFzNgs5P4KqOLsPfWXR+Al8+87DDeBnlFvhdWZnP QxU6J/l/bJ15OFXv978lRRJKSqaMaU6UyLClSURFSSoRkgwRGYpCUqlkSCRJ krmIDJmiTJnJPJwjQ4RMERH9+v4+rb1c1373z7ruF9fp2GdY91nPs/cBNrtf uzuID+chwI6Gr1duyEFvAQ5TGTh+5zrOQ4DPbBZRXWuIfgKsNP391w1j9BNg xvHgPsG76CfA69i8g93q0U+AJ7/cE9ypiusRwOp1V+q+W6OHAG9JcGW7XoNz DOCG9BXJoQfQQ4ATv/18xN+AHgIc/6GbveQqegiwwODiJCdZnEsAj3clsP1Z gr4BfEzJVGvzDM4lgEXrG5e0LkTfAOa34zYd5EavAH7wm9/MXQa9ArjPvqXR 3wS9AlhJbg3jvRfoFcAunfY3Pg/jPAE4d+m71TUa6BXA5pOHHwxmoFcAx++0 Ouwti/4AnM363p67COcDwDF2QVe+nkN/AD6tE8N8lgf9AdhFQ7P0awv6A3Dv B83nvY3oD8BWU0L5iuXoD8AGvKt9BUvRH4BbWxpMU2rQE4BVqo5t2NCFngD8 +IbEuqg/6AnANDtvhkPi6APAPNs77uw7hj4AbLJ1e07CA/QB4LM1qs9ia9EH gDXe0VYfE8O+D7yP6TJb6TXs+8BrH1wdE+/KIXPgqlUsXkrrsb8DX2ZZ+2y0 B3PgX33ixrJx2N+B37jqZKy0w/4OvGyCTTJQBfs48Mmt0hOZK7CPA1usPNR6 Zxhz4LKAacX5VdjHgUuaW5jWpWAfBw7bzhEy9awI35f+8Z7aDX2XfYrJHPjz hUK1QM9P6P//eMnTe7dPuJeQOXBWwURDyo1S9Nh/nO70tOaFVxmZA7vQRGxX BZbj8/Yf24Q3LF0cU0HmwFrcM4bmuZVkDixfQEsLsKoic+CtfeaHnv7BHNhn zbxju/2ryRxYTMGj2mVdDXrFP87+UfNr1wfMgf00fLZ4nP5M5sC3dbQYZacx BxbU2Lr18JNaMgd+1v6O76EfF+lXwEd2RNl8LcH95MArMzkyaiyHyBz47vqt Xc/D8Twv4EknVYf7l3DuBJzBuDH/5BtcdwMWLpGKXJOB62vATtzeBobL0ZeA r11Szc0/jOtlwPySSsVxh3BeBEw/o29erI37e4HvnRYJvKKIXgScstXZjG8C vQi4Mnrrve5P6EXAW5O/J1f44/wHWNRU8GN5J+6DBQ7Y/SupIx/nPMD8xZwR e4TRf4APbVF+cmobznOAFy6rnh19jvMcYOmWXsXr1riuBCwQ77/kpDbObYD7 FQ8E5L/EuQ1wTcPR5VzS6DnAb1cs5J6eRc8Bjrj8+IjmElwPArat+iY6bYj7 JIHNF54bvsmAPgPsHXGFQ3sC5zDAA45xYx4r0WeAnf1trVSN0GeAVRz7g+pb 0WeAOz2Ede08cb0GWMhPvtjmLM5VgHfnvat+KIfeAmwxw3jItQ3nKsCxG3lO SYWitwALq0ju/uqM3gKs4EXf0XIFvQXYaTZsRPsxeguwZU72rkdNOCcBvvco IaJPAechwLZcD3o0OtBbgKcTDvJNy6KfANO28ZWKzvET4I2nQ3ZcFMa5BzCT ysQHj7foJ8C/XK+8Wnwa5xvA9XdvVcXyoYcA72vuOM4ygvMNYOLpDadPbbge AdyY9meDXwd6CDDjeKMlIwP6BnBO1SkOQz70DeCBW1PSb3ejbwAPl91tPeCE vgHsMPgnxioLfQM4eiQ9xXIJ+gbwgWevzHws0DeAuf4Y6Qo2o28Ap+1tXH5a B+cMwEqfjFl9vqBvABex5h6dvIpeAcwqzXWwbxn6A7DGmw6LxCHMgT/cJDaa 16JXAAuwsidvz0OvAL404Ba2LhW9AliqXHVCPxn9AXjFbo7FA+noD8DpYhZW 3YXoD8CZC5S+nG5DfwB+2eJJnPuN/gAcllNtvUQMPQF46+vNugZH0ROAw6Wq 8s3uoycA8z7SMZKqRE8g+WBtQu4q9AHghY7qdvdksO8Df1nQ7hrahTmwtGrr wRWB6APA0p/3OIxqYN8HfnR/2QXJRdjfgZViPx8rK8Yc2ES0YlPePez7wNWy 0REsx+rIHLhJ6sm6J8L1ZA581nTb14ujmAOHSkZnORc1kDnwEdmMfalhjWQO 7CqqVMdxrYnMgXdqS1tfPdNM5sAmHNcavu1pwfv/j29wKnuobW4lc+CnP6tj 7/K1kTnwdLW+YjAbDd/f/vEme5Ehw3l0Mge2pavJlv/CHHjb9Rsvd7JiXp5e t/lNF52wF2MOLmfF23/SU5R5qJhOOLmfM9uyh4/0K+DJJFMuKUu8jhAwx+fG JpsSvL4NsEx/d7heJs6jgI0PxYnqxuP548DLJzTPBurjeV7A/cEMyw9Z4b4j YJ3LZx+yH8PzqoCN/nwQDFqEvgRsHhFGeH9HXwJOjGzMnz+C5/MC77i6XHM2 EPf5ABds16WPGeG6GPDneRWVdf24TxhYMGTPj67Vc84b/cerpnZfPJGOXgS8 oZA7kbsYz68BjtP22LtbF+c/wOm/TD5Kv8P5D7D1btFLW31w3Qr4Dv/P2R2p 6D/AebLdSr6S6D/A9G+NzUlMuA4FrDtFey8Ygv4DXKXaPOHSi/McYBFe9inr C7hPFdjCaHPQAnH0HOCivQl9p/jQc4BtFjQFxx5GzwGevBnKzmuMngM8FqA5 GKWC8xlgfsOE9Ul7cT8ncNLHOp8fVrgeBOyrsH16Uy6uBwHHv3tevE4efQZ4 lfmYesoXnMMAy73dyVvTjD4DrL0jyMH0FPoMMJtXAsOdn+gzwLc+Ln69JhZ9 Bnh0wbvarY44VwHepPTmU4ghzlWAoxjk3PVM0VuATb+c2Krvhd4CvPbHg47g UvQW4DqL/tvzVqC3AOsFPRXao4PeAmwwzLZvSRR6C7BiED9/LQv6CfDvTLtw dmdcNwF+1bHZees89BNgoytpKQlB6CfAyn9m70ypoJ8AzyiukHBjwLkHcK+q 1qXEavQT4M4O1nNOJ9FDgAfEE74d10UPAVbMD14eeQY9BJjFkiv4oQ16CLCg +3cbLW/0EOAhxWsZbKnoIcAHP38MHuxFDwE2860TE5ZA3wB+c/m1bKk1ziuA z7cbmy4tRA8B5rnQUc8tgb4B/JJ9y5pJf/QN4C4uI606NvQN4N1B6yo6VdEr gEX23dxhuxS9Atia119UtB1zYLEKP43fb+fMH/6x1SfDjgU+6BXAdTdTLu+1 Qa8AHjjxfSJHF70CmJP9ZrzdPvQH4Nfntgqb7kR/AN71KEE8YBv6A/CmvYfz p7ehPwDLPtgn/0ge/QFYZubDz9Oq6A/A5sIdd9VOoj8A+3HYvz1ih/4AXGL3 Rt3UH/s7sL5/hrpLOvoAcJ9QrbQzP+azuncc0r/SCccnjrOP+vH2RzLPdjbk 04kcB/0PX9/i/blQe+aWVjiduDYyye7miPf/nXZh8frrdGL2eKiWiwz+vQxB S1WMTtKJC2YiDWODeNxSF/t9mJWhE94fLbMZw/E4m+QOaTAsoxPpWksnPx7C x+WFuA+f+QCNiLeq23N8Eh/f859pASqFNKJXcK942xN8Pshcdjrh9YxG5JfJ 1DvsxOeP5pTStn2ONKLD5eg+9Vp8frbvUxG7cphGuDJorJyqwTlbX3qYzvq1 NOJhgGri+TH087Z+hTUn//w9XtphzdJL8PXlqqjPu7S+jRg6zhzrbnKI9Cvg sZDiRa8u4n4q4NnD0s+OuuF+cmCvqMl52tZ4fTlg7a74d/M+4PodcH7Z/GEX Z9y/BLzlxI7g8Yu4HxvY23GX+mkG3F8NHMm+2p81C+dLwHv3TWl/ZkFfAp7H uyFt4CH6EvC7mB250StxHQ1Y0TbG9o027gsCfraQ1S37Fa6XAYdc7jFbH4nz ImAPG/6cOjH0IuAD118dyNBCLwKWvZ1kE9KJXgS85WJ26kMaehGw2UbGImfx Oetc//hAv6vwliCc/wCr2wnUq6rj/Ifke5dOVKjgfl3g2+9Dddrdcd0KWJ4j qyCDA/0HuNWkerzJHv0H+OAit+dPfdB/gJsqbSQsGtB/gMvX6Mc91MB5DnDj FO9Cm3Gc5wA/fnZ5iUk1nldCst6j3kEb9BzgweWPzkWvRM8Bzt729LZAC3oO 8Btr8S0+2eg5wGtEG/n35qLnAK8r2HH1Rhd6DvBXdhe9hxtwnQg4cHXlxg+P cJ0IeKOQq2C8P64HARtHXuM8MoSeA2x6nPPhuD76DPCBtxUdSp04hwHOk316 tXqOzwCvY9GoPbwRfQb4k3bkojOj6DPAoWy/7odUos8Aq6jp1kflo88As6S9 XChQg/s3gB1XqlWo/UafAbY93M12lB+9BZh5cUy97QH0FuDttYqDIzfQW4Dl HVO5l5ehtwC3hud1CIjgnAT44He632FP9Bbg39vT6X2T+L4KPP414vPaK/g+ DKzvExC6mxX9BDhq0MDcZs66CbDCkprg0Q34/g/8gGfN4R5W9BDgfWvsvsaP YA6ctnDk8fF27C/ASjFtOb/q58w9/jHbvPTXL+qwfwH72i9JNWpFPwHusJtl 3NePfRC46rH7w6OM2E+B82ec1wcKo4cA53ckyHAdwL4MnNITWlE6p48Diz+2 Cs1LxL4P3NdZ2To6jJ4AzHx7gfJJOfQKYNbywcVs9pgLWmjPix+mE1NhfZYH BdBbbMa1Pp8u+esVN5l7bLLw/w1xjVu17sVfr6iJ5bmrjfeT/4OHHcdVOvFz s+KBmA78ezsSiMplWnSiJuC6absZHp87B+oMtq+lE+3udmz7v+HxXDXKFu80 QyM2fqi9+tMAj3/vhTvXO6ppxLkrLC9Yq/FxrHkSN37pJY3QZAtdES6Hj7u4 rZrd5r9ekX5bjp0WjM+r5apEPI8ajZA8OJKd/w2fn7rqhUHb+WjE8Duf3tgH 6OF/3iZdu/PXw4YljnnnSuDrRdbdvp8ns43oXdcQdSoJX487MmeSe++0EbeT ffhbtuDrWvPM6R8zx9sIFlehw3K78P3kkoLOIn3xNkLo8DbHJaz4eS1OMD6I fbSVOGzAen2JPb4Pzxs4cpM7p5XIfVOfzhmN55W4mZmPOt7Bxwn+9cSG3//a Q82VhJ+dl3jfRsmt6tpZooJolDxraJv6ATs6JZ95Zhk2ubadcBF6M5xvL0H6 FTCT4kvp9fK4DghsuSyMY4kZXn8AmIk+MlVxFq8PAFxcz54QuRznUcAlD0fX x4WiRwELXDsrn3Ucr7cDvG5QsU2+Hs87A9Y9qqkglIvrccBHhV9KThbiddKA tU49OX3XG+dLwI47dMVfWqMvASvxCVbRVlni+88/rhvls3IpR18CltC3f5Ps jutowCeiLdlDU/C8KuBlyj/Hn1zE9TLgp6tNr2xpw3kR8O0D4tfGKnF/MnD9 mLTMXm70IuDjv82HLiahFwGPBlk39cSjFwHX8LnVCy/AdS5grUP6qwTP4zoX cEzDhmPHGHH+A1xwXPXOx3qc/wA/ippca9uL8x/gCyKbOZUE0H+A5U+wm8zr xf02wAXpTOZ89eg/wBoalpzrvuHrDthnxeucUhFcnwJ2NIxMi/bA9SngsXRh i/OcOM8BLjN3Lk0pwnkOcJaDTqGgDnoOcBLNLr2eju8PwIJrl+c2uaHnAJ9P bHk2q4CeA/wr8akN3zL0HOCCwY0KCxhxvwpw21SS54MluH4E7N6X9O3udpzP AKek/6gwVsT3PWBb7kAP1os4nwFWvtIcwZeIngM88rSKPsWAPgOczp9awnIW fQa4b+njFy8+4xwGuDYjeLmEDvoM8Mft33/2f0OfAXb8nsit+gB9Bvjnu/rh +/uwXwCLrt3kysaJ8xbg0FMGV5ntse8A9/Od2m1lid4CLJnZv+yUFfYv4HsT ZuuGHbHfAet/+Wy5/z56C/AF4raWcxz2TeDXA8nvIj9jnwXODHFvblmAfRm4 8vUGic0q2MeBz3SOSr+6jd4CvKJp2zOTJvQBYBnpwCmDbdhngPk32KW8fIx9 Bpjx27mJ4p/YZwSiH3f8mqUTUt0+/P3O+Pvftje8mqmlE0qyJ8XzJ7G/nSp/ 29MaQyc6hHx79C7g/ZnRDdUKcqETvEpeb95V49/1dWEG19bDdGIy5arO4GY8 Djbh+95GC9OJc4JjsqzueNxcSgpE5o3SiNHTF7VFSvH4z34fSlbIoxFT7cNK h1jx8frDYy2q/4BGBBf673hF4OOelWvy8PwpGnFvFZNSej368K+uWN8za2lE l4fXr1lefB6eZW5bsv/H3+NY8mnS+SB6SGyUhJFodhuRft+n5pY5esgRsUqt XzfbiLBYzeeTw/g6/bnsKlOFRhtx/lVvlnMPvj+s0SMWRC1vI6pWMZR12uP7 1UNvo31eza2Ea+irpKFUfB9edaSX79ozqlds38/+IieWmneXiyTxhFJ9I610 +HbLQ6pvjHeGTPd4U33D03F9Lvu+dkru1RshsKnwP/KLFTez93+h5B2cT8te lVDz7U9Kt/ZrdlBy73lR58/WUvPg8D1hf/Q6Kfm+pfz3XndQ89HrsxZ65l2U PMjNhHdwjJo/nLI21X7YTWzOv79dVmsT6VfAV9+w8E8243W5gZOfNZ9T+o37 z4GbRu/6eatvJHPgrKDojZf0cF0PeNGrY5bHvXEeBTwjaCRVooDnuwE/yjM+ 18OL+7qBOQbWXkjzxLkTcHJq4FTQZ9ynDWzmnMV6e871c4BVDkWvS+rD/UjA Y6eJLyK/cL4E/FBfksYehr4EXB1kk3KiH30JeCIsoinKFudIwDGq5a+OVOEc CfjIvQa17X64jgZsKP0kb0kunocFHKX/SPmsJM6LgHk/p6emZeO8CDijI9ok 6i7u/wF25Dvm1v0UX4/ACef5+eQm0YuAFYwvWSgeQi8CHkrOLT2ghnMh4AaF w86KF3FfMfDOkF2DvLm4bwe4If+rUZ8Szn+AW4s6eN99x3Uu4O6wZPOgCpz/ AJ/mHLpYMYLzH+Ad11yeWQWi/wCnF9h9kj2B/gNsG5OxVE4W39+Aj7S0b7u6 Hf0H+E9k/8wiLfQfYJ+dJ9MHvdF/gGUNX4VKfsf3VeC438UifanoP8Cepizu 31nQc4CFll7aKGyJ79skD0RFzutC/wEWZf3Sx2KFngOcbref5/Vi9BxgiWpv YZNs9Bzg434jV0Ln7IMFzv2WX1Soj54DfJu3/ta+Q+g5wC38Rh25seg5wA9b y+n96djvgC8lGR46UoOeAxysqe/NN4F9E3hQu4HvkgT6DPAPCy4bJyPsy8Af vcKateJw/QJ4Wa2SFv8f7O/Ab+3zTwzro88A564SaOguQX8AfiV8e4RjN/Yx 4EWKcsMuRdjHgNeIu3XnR2EfK31tpCX11298mizPvZmzD8TdMvjxwWI6sZal 7MUeQ+yfvQwWYcyP6cSyrYXzXePwfh5XivA2Ok8n6gNrTph9w7/LcmxqkaEM nQhXpv9m5cPjYBrgJTtvPp1w91nbYquMx7POjenj3oq/3vI++G7aCTz+sRee 1UsG0Yj6kGenBs/h4/jhXNaaAgMasVbKIfdCFXrLJ3dicMFfb2FKze47lYnz E4aPQcM/v7cRYnXPQxge4PM2M//KlZCkNiLIkOiNV8fXxdR5hbPTl9sIFokf fDc7cb7aKtXJvEq2jVB+2Pz9+Hyc9+5Urz06/df/JMMGXtgN4ee4IpP1mdHp f4/jxzau79twv2v98oRtax2ofiIseeY27RzVT9bzFY//uEz1E+cDiT0Gd6h+ suSR4nPXw1QPCX8jd/U4jZrnmZxZKGxF9RDeuA694j/UXGyve/wOf6qHXBkT 1dZdS/WNQnPB2mXvqbm914YBzeNU31ge+Pvxj2FqfuCKLZdkVDclZwoW3mbh +5WSt4YffKXp0kPJzwt9l319oZf6+4L9lQYnvlFy37rYHPkDfVSvs9qYwbWz n5L7PHo1nrVhgJIL1mTILhb8TsmTfj4dr+YcJGqvvZda2upA+hVwnuwg7wIB /L4S4NLvvVaVHXh9S2CLg94LDnXheh+wj++dxpWuuD8KOC3Qn79TFvdBAR8l PNnjM/G6RsAG7JxX4tfg9YiArX1MOSPm4fWFgF8rBkhnsuDcCXhBQs9Ttzjc vw1cYNTLrOmB63HA4sYtl48L4HlnwPQeU67mDzhfAr7sl7rL+Rz6EvCNHKmQ x27oS8Cf1yjZ2PHjeWHAQqMMnz8+Q18CTq34yf7BCedIwLb7b49HhuEcCfj9 tuwXv3nwvC3g2dwfcUY9uF8I2M+U6bXqbZwXAcd57h2LLMP3GeDON6FKcrvR i4C9RJ4+th3EeREwR+Jd+6oq9CLg/OTMe5UD6EXAqddFjl8RwbkQsNS+Xaqd 39GLgFX4D+V/bZpz3tM/vr1XRfDTnM99wO5+WmIVPDiXBubwcLCUtcL3YeCn T/Keq37DdS7gn6u+6YfuRf8B3vmhLToqFuc/wJU3y06fFEP/AZ56z7dFa85+ YOA/Mtx9wrrYR4Dl3Zs5TnOh/wCrX/1l7teN/gNsMt0cc7AS/Qf45NSBb0ur 0X+AvWaOahn1o/8Abyk1ParPgf0R+FQebejTdvQc4Nc6V3Q2mmGfBb529QV7 RgzOE4Al2fOXR0xgvwaOTjSKXKmN/R24u3Uxu1IW+gCw2x9hawVp9AfgeRE9 QdLp6DnAAs3VpYQ69kPgzz1mDx0HsB8Cr+/nNuUwxn7Ye/eTQfwgnRASlfFV i8TbOSFUniGWTScmO/28JZvx//3zcaPJAi868Vu63jjnD85nYpW2LdY8Rif6 dNY++7kC/64ZfcXxWUE6cdSm8+KX1eiBVcFWbKt6aESEvW7lPV48nsv2raE9 fUUjZDztAtmY8XFxHGV79uASjTjstVl2vAQfX72kT5tGttOI38ubrn83x+dJ 3QZt7sKJNkLVWX6x5gg+D0+8aPRelt5GRJsY7bx4En1mm5nSjRb7NqK3tzrF /Bi+jvrOrru3Zttfz6llN1nzHl/XRTkBY7+GWoncwh+L1tbieRnBxHj6qf+Y q+QtGbl0J46aG6hYhYqVU33GS1hpSmCM6jMzbm2HJDipfrIpjn6tMJqaM/qt vlS/m+onakm/iokv1PxtBGvHN1eqt+QkLevKEKH6STpHa1FgITV/Lb3ayNiC 6idHg8/YzV9O9RPFnQOnjo9Q82gnpdvJI1RvucbTkqw0RvWWTSq5RNEk1Vs6 euR1eP9QvaVpu+4CJmaqnwQ80DxxiJPqJyzdfQ6FvFQ/EWksypJaM0jJR/vU 6k9JDRHHPp1/YeN5naz/++kw4brTZ1lMbgRZIV//JLX2W3ESWSHnbhuQMpDM JCvkyluMeR1L8sgKOWtb8RmzqQKyQl6y33S+sEQJWSHXfV/ALvD1DulXwHtp jFNHZnGfFbAcv7hs0XzcTwX8+cLrLJ9leP1t4IY7nWZXxfD7MoA7zj49/9EN rz8A3NH67eDZCjyfDvh5ys9zE824PxyYZ3i/i2UWehTwAsepSK9HeL4/cOGb mANNEjh3AuYdqTAQjsB93cDvMzTHf3vj/m3g9/N83ffV4nlqwMkjG1d/isN9 2sCcRwRX1HCgLwHnmj0O4xNAXwIeyxDbxXEDfQm4xChKd+V+9CVglqdezulW +L4EnPh5MqToD/oSsFu/TkvkdZwjAV+M5A9qlcN9RMDqvnfitbfiOhpwWrxd ycx5nEsDc0oxLfhmg/Mi4O8v0pJNtNCLgAcWGQfZHkcvArYMNUzydUcvAnZh 2eSmVIfzImALbg7xicP4fg4cRGtwlJlALwL2dLq2LMMYvQj4+i25et8u9CLg C/E175quohcB3/w11b53A65/AXfMW033/IH9CLiKyVT6QB16EfDYuuwP26rx czrJBuKHB3pwvzGw+Jb0H2y82B+Bg8rVi1e8xfkPcIyrgPjFb+hFwO1HM35r b0L/Af6QUVa1wBX7NfC6I/w/cr+g/wA3X+9XztZC/wF+ysxF3/QZPQFYfDPv hLIR+g+wsdG9y6vnY/8E7lOp/DSQNGdfDfDD7KjCS3M+9/9jmcCkbfLZ2FdP jjUvEG2lEwuPOexibsPbL9av7SuKpBOyhfTTfgN4f/o0tzuHXqQTF/IFmBv7 8f4b/nolFylDJ+ojX9xpbkbPoZuGGdOnacTbtCVbXrzD45ZjtnOB+nsa0Z5y 6LzKbfScVRriQ32uNELzJ/1H5T58vMTvfyzIU6YRjYUyf+r60HPW1oz9qZlt IxTuEPfs1uJ603irbr9IZhtRnJau2bgPPWfVbtaE1MttRJCi9XDzPZyjPt5Z ovFwcxuR2Er4njmEr1N7vsCoD92thFDe0dmjJ/D9RzA56sqBJ1SfEXwv9Efg NzXnqhBfUStF9ZkLJWy3Ui9S5zMm21KVD56g+kzY05ieiBlq7ioRa10aQfWZ qxcSrSL+Y51o8qhs47Jpar5pufPSyRiqz2zk4ZqUPkn1md3tw0MR7FRvuXll hPCdpuZ2TssVM9ip3sJStF7ygRjVW2IMfr6vU6B6S6ORR8uR49R5y/PD3xoL bKk+07j5YcCoL9VndvIIBAW+ofrMzrM20rY1VJ9pdVWMUxkbIlx3bQwUt3hO 1v/9dJio27A+0qr8DVkh5xb5+p7hawZZIe9bUxRVMZtHVsjVliryLL5TSFbI c8+/Xx7KWUpWyA2mU3itH1aSFfLh6lGplEU1ZIXcOlSsRH5fLVkhDzmUuO0H Xz1ZIY/SNjAIedhAVshrqkSPybM2kRVy44Oq9xycm8kK+VOlI64C+01IvwK+ v8FqfsrGJeTxBj4svSdT2hm/rw04SMLyoE0PXicTWMaseupOMK73AdfY8zxP WYzXawJeqtnyZvGc62ADh4luEK7Ixn3jwO9Vd/Ic9ESPAtb5Iekfm4AeBXx2 09NLOo64DxxY6IZVfV0C7msCjlKoUf18B+dOwDEs86UFl+H+JeDxXumo87G4 fwm4RteLSWILrscBH3ZdWfJEAPdpA++ylqqQccb5ErBmmmRcXjT6EvAfGteD ZVroS8ABCdmPLyiiLwGz2T49usUKfQn46P5FPuU96EvA3ywDPrXU4/sw8EGn 1idvvqAvAX8bH5wUXYHnhQGfZTxzdvAynrcO3Ltt6bLSOfuIgN/dHPlik4Pr aMBpzfT1gbG4LxpYSj5E47IxehHwaM5bxrtL0IuAP+7x4tKvxnkRcOOniLeZ iehFwG++yWtYxKMXAQvqGlRLFaAXARtGv11VNo1eBNzfxyc3eBi9CNjB91zv iw7ss8DM3s/fvN+IfRk4/sQe7VW30IuANy/e3j81gv0d+Pi3+zdiLNEHgDep O2YZT6EXAaeJ0O3PBeFcBdhhnYZrx36cwwD7LNZUXrgI/Qe4cuEr08kW7LfA 9rVL9SUI7Le1L+OD/ProxDX50FRlVbyd9X3nWt4k0QmFt2VfVAj8f0Vb2rwq HOlEhtq6P2JieD8vVPrF9ijQiW2Hig99/Yl/LyF+SHxmlkaEbRux9U6bc3xO zn7m+Os/CvOUIzadw+McwM/sIexCI4LzmrtbGfFxOafJM7NNjkbskX57yZkP /Wez7pmFmj/aiOEuttu/luDzZ/06AXObuDZC9S3/18dt6PNC1Q9mIwzbCEf2 K4ZJ3Pi62Dy65tkQdxtxeOvuhTwncA5sX/NL9kRxK+EqYFeizIn7Ga5Z2Bf1 OVI9hy1Xavv6YOo8J2CLzB2Jr1T/Cbe9T7/OT/UZurDOL6VP/zHPWRR6Z5sT 1XMSzFsmd22k+sz0y20x+zqouddXxXlCT6ie00/zdYzRoXpOR79KZNZ/zG0c G5gOreamzmd+X5wKFJajeg6b6UjqdgOq54jlTTat9KJ6Dn/p41G3VKrnjOhO NG/opnqOu8UGl1Juqs/MTuX+Xq5K9RkhLrGOjKtDROxY/3Txkkdk/d9PhwnX rQmBw6dfkxXyC5nmofS2dLJC7qUo11y6L4+skHNXfj5ZIFBIVshTAt7fezBa QlbI+9KGHrd+rCQr5AVq++S3qNaQFfLYgKMNRnG1ZIU8gCNly2KnerKSf1fR /XaJxY1khVyZk7929HETWSHXvKdwnkG8hayQ96jO9/wa10pW8na6BToVNtPI CvnrV0a7nsbRyQp5VIpEfbVvO1khX9LHqTeh9oWskNfPbpqVl/lCDDJEb5sv 30HmT/3TW7O3K6Bf/eO7zAGddjT8Hhng99q+38UTcR0QeHdAVln8SrweAnBP 5ISF5Vncfw7szGa8Ya8xXscbuJZrz60dS3B/FDBn9us7o5a4rges3fb2zlcG 9CjgBuWSZDeLOd+r9Y+3qtj9UWfB9Tvgp/KPjXUM8bwD4GH+BadzVPD6jcB6 +TVm9nm4rwl4/UpvJc63+LkPeGahkme/MO5fAu7MEXux+w7uXwIul2pc/X4f rscB677a4b1rzvUPgTUfpGx7HYb7lIDVJr02D+9BXwLOjWzj/R2KvgTcLr9w fVsR+hIw26PX2dyr0ZeAXR72uT+LxL4AzD2twnHJAH0JmOdl4B03TZwjAW+8 OPtCXw77DvA8nltbb/WgLwHfiny+Om7O+SnAn0JsPVOf4BwJ2E45ebXPC/y8 Dzxhe+YaTymuowE/LJ1UWceFXgRcwZh+8KEz7g8BFh4Ws1vqgf0XeIGe1jW1 FpwXAev1qvMd3oNeBDxQ0P7Y4T32feD+DTU6nBroCcDrIiu1jL6jFwFLdB38 lBSGvgG8+2hosZwp+gnwi88VpRt2YR8G7jd4qfN2M/oP8FmeWPNFVdifDV55 DMnR6MRayYiFPzKwz9uXjXvPhv/9fTaGlRO+OBdyKbaRv29CJzaKjYYtOYZz oQVMHUu7xemE1ckPhrJM+Pey7c7dvbCLRnhZSvDfeIbHzTjYb/XoMxqxouUL bb4EHmfGjx954k7QiEYLUa/U7bjuuXf5p4ptS2lE+/M7Z8x+4vPB+uUtroeF bUT6yNXhez44//lt3Tdc4dRGVGX0mqkuwufzwbInrwbW/805hjNFNPD1Fctf VzXe1ErkTtvRY2pwvv3bVFZ8zJPqP7dWBL3gsaH6j/KjgZH+Mqr/nI/+tHMD D9VznjRLHfcup+bFEbdYr3tS/afAdvJhswrVcz5cMsi/ykj1nKALTgzyBdTc zunyiUEvqv80qs8EmWlT/efU0di6ZTeo/tOVGWx4KI3qP7+Np++2DVL9Z2mX xnOrdVTP+fqsZsebc1TPeTUpe/pIJHWek9S8q2iyh+o/P1nXMh/aMEQwuK/p uTh7F+v///fXB9SW15SfiCMr5LnxWz3qaWlkhVzZTGqT9qI8skLefivhZ5xI IVkhVxOpPv5DrpSskEuuW+Jes6aKrJAvOLipQeB1DVkhD7vQxLxKqo6skIv+ /LrCtreerJBnVQvX1T9oJCvkDNfCT9z4v3V2qP9y/qhDOlM1LWSFXCxWZet7 yzayQh4nPHD8+Hw6WSHfF8+q+vJAO1khzxGRfOHL/oWskMttr5nRTfxCyIWL nddqwrxSxN1gIIZO7Bf/c+n5sU4yX263pzluQSvhV72S43ZJF5n73btdMGbX SPyaOrsydMdXMjde+OpG3mQtcWnmu/H1kB4yv6XdNTDPr5owjotgLiPXTYeJ gQsST7bfKCPM03yvrD3YR+aDR0o6Jh6nkn4FLHu6WOQoDfexA7u67fh6hYbf /wLst9tBI1sIv/cWWKjCT9FmSI/MgU/6d23jaMf1PuB9KdWjhqfwcxnwZZ+C d2ECuD8KuD7gbMfJI7iuB6z+PU9t3l2cRwHfCVhtbboXPQr4xdNp3kFb9Cjg 0V8ZD07swvU74KUiGl/2++N1A4CzXy1r3HwJrw8A7LI6e+KILc6dgG/kxX+N c8a5E3CDtlv27SacOwFL1ogmHvXG/UvA7tyGDO7P8Lw24PZLvwQ/sszxpX/8 pEX8rbkdrscBz6Yfdhpbjr4ErLTP/NjDAdynBOzVNv+DywzOl4ClGs19B8XQ l4C3pq++3f8NfQlYQdxH7WMF+hKwXotfokst+hLw0cRlk3y/sT8Cr9et/xy4 D+dIwB1X+i93vEVfAl7/7dijzv04RwK+/PaEvAID9mvgZTklNu8u4nwDuKlo K2/ZKPZ9km2PilfdwXU04D+iX1R5t6MXAW9snbg+MYa+Aew8O3gv/hP6CXDJ 7m7ny8nYt4F7x9I33UzC/gzcpzmzdloWfUl74D5T5zc6cfSuqtkAO/Z5FTex tdrxdOJUffeMXCX+v6yR7YUnLehE+LHje5qd8H426b+tmF5HJ9gOaoxUsKMX 2bKIW0t304iHWilW4t54fA5U5axlCqURwS/eS01MoJdmjb8vsz5KI/KndARr g/Dx2mPU+8CFhUZsO3pq2GDlHE+211simdFGdBFBHlwW+LyyVrii+cCsjWj0 Z9JbtAWfz3xM76perGgjcvc1t4ea4eeUyH55L4c8qv/8aGdquutDzecd5O1K /kn1ot2/LxbtNqGuf7mHxHXNWFL9Z8PYS0H1TVT/8ZLPKzYapuYztyW3rk6j etFg/O9PR9yo/sPkXyRbrkn1n57xQDOD1VT/sRA8Vha0i+o/mwNlDle5U/1n oZ+pXVoR1X/YNy1KGeeg+s9ZVZv9W05S/efU+4OHF8RQ/efUZIDAil9U/2E/ udZ4Ru2v/3RorPAp8cf6//8NE7HPBLM2bEggK+TKIz89LBQzyAr5drtHzUa2 H8gK+TibRLJgURFZIU9xec63maecrJDvtFvhZC5VTVby/ix3tHld95mskK/v tY8V4K4nK+Qvak7LOVQ3kBXyC6yrnrN6NZEV8g0rmAz2KbWQFfLf9+1fBn9v JSvkxc8ev3MKpJEV8lXnr26NF2gnK+T2Hc/Ejg+0kxXyR1Vm66+mfSEr5PJO XO6+E3QilbEgyE8GPWfPsqnOzjWtRNLkExulbPScpA8h92+aNxLv1PM2Gcuj 5ziG8K8LLqwlmE7miTxIRM9J1WfaLidXTfRHGnsc4v9G5jJHedObb5cSPzOn onZeQ89hFZqfZlqTT5RsLNvVX9dP5umPlDuHnmcRt7ycQuaJfidzzpBlfMFs iYRU9soSUZNBMs8VvKmboPyAuJDVVTHzZAj901umgFgQj/yvnunKYJG6EkD6 FfBFxds6ho/xuqDAtHP+XrOlSmQOvFs4heklI36fHfDwy5rDic9xXzqwd+ve jHVTOKcCrvxjobFpDZ6vB3xkObGw13LO98L/Yw/ZS/OvyuP+KGAl1q2ZNlK4 rgdcfmB7xbyV6FHAfXqJuqeE0KOAf3Jxi6TmoEcBt5knOT2fRo8C9mstYzs/ PGd/+D9mT3apWKiA1w0AdnMWrA/pxvk/8INXZkNCo3h9JOAIsU+1+5Jx7gQc ulHpz6Aonv8CfNewts+jHOdOwM0L0ra6JeH+JeCrj15KHa/D/UvAyg82CdrK 4noc8M3k0l98c87fB64dEU+7Zoy+BGzUojHq6YK+BFy6y4VNKxP7JrBEre31 MUH0JWA9/ssZjjHYf4FFlzyeajs557z7f8x1KerBXT70JWCe50w5TKHoS8CK nzhrC7bjHAmYGFssIdWJvgTs4ZPiEhGJvgSscn2Tk5UrzpGA3Z1c/jRY4xwJ 2PDnrWhBR+zbwJkFIpsvP8K+Dcx4rHb1jPScOcd3C4XOMjqxs8C/g78Hb7+P O/O33V06YT2/cVOLO94ftrgPCZb76cTa5lJGGWa8/8JH8vjLGegEz3ePj7J2 eBxW33O99TCNRuxR2Br6+xMeT+ZTSlmF5jSi/Zc47chSnO/NHvXhPS9AI7oO 10n2GOC66hP1tc+ulbUREXI9oSo3cF5E23R2YKlTGxFd4Gi/chSfnzV6N45s EG0jDGbqYkTYcE778/3DqroSqv8sXSo53/w/1stcZ+49DxqgepG39LhlrRnV i94mWJ/td6B60dCfWJ+1BNV/Fmj5rHBgpfrPjKfMQHQTNe9sP5d1L57qRaWL uia+u1O96IPo/PRtBlQvOne9JoKIo3rR+HaTx9emqF7UzrZ+zEeDuv7V6pEm tCyC6kX5OXZ1j2eoXrRQcItO1gmq/4Q9PJnJmj5IHBvf+k6R6zxZ//fTv/2n dZUBz6MorP/yC+9PM062pJIV8oCe0ZKyiVyyQs69yu4Up1shWcnf93dpaWIu Iyvkx57t9+MvqCIr5JIudmKCNz6TFfL2H7+EPwzVkRXyinf7R/yzG8gKeVdi x32dW01khfzU6h0vzh1sISvk9TdzC0XY2shK/r72mvH+AhpZIe9QOLjQX6Gd rJCLsHUKhyz7QlbId0TKeI06fyGYrzJvsGHEdauFB1xKq3/QiNKO8i+Ooeg/ cUNS/bT5LYTOZ8G6yK3dZH77Y5SM/oYGwlhdtM82E/0nc03nhL/5ZyJV9KWZ vjzOc1S/XtK0uFtJjFan6PQlov+45pxQbbhcTLjaHs15zoeec+G7xrzAoDyi Tyb7z/KrA2Qe/3HG2aY/haivWbWkpQL9Jyx66bpnCuGEX5puhO+KOZ5j/fqP +sJAZKjuXDPOzJmUvL3s/XK1N0WUvMrQ1MYluYr6+36S244cqaPkPp5PI9e/ aaLkQV23InofWpN+BVwvPnN6kFmEfN0Ab9QVVJfMwvMBgVmdCk6u7cB1QGBd cT5m/c24nwqYOD8Yba+Lcyrg2WU7LG3O4vfhAncbNt5dsRnP1wNuSJneVC2D c3jgRI0vd6vO4Hl5wKF76ioH9XFdD3jyy9qni6XRo4BfXz2z9EcqehSwf1W8 cNYUehTwExW2LR+d0aOA2wVDatlMsS8Ad1+8xs//HtcXgK9We/ju3Ivn1wDX lp+9e7AHPQpY7pLbQrdi3AcO/IP367EH/Th3Ao6gCdat0cZ1OuCpFWvVfrri 3AlY0sHVUcEF+yBw6tYT3rHPcP8ScHGaygHnb7j/BHhXe5JS50lcjwPu8JW5 vWAS97EA9xunmv3OwX4NbNJo4/StEecewJU73DQ/nEdfAs7M3PrDhQM9Adjo lav97XL0JeAt8r1Me16gbwC3DO7YweKLfgIsf9DdSDgQfQb4BrF0pDIF+znw zc/6ifu/Yz8HvtbXXXT4A/6+0UWttl25dIJ3aVpauy7e/mvbFsmoq3SiZINh 6el6nCOt8Hc+tHsbnRBLa44u24lzJL9wy+wVfTSCvzbGdpcnzpFKXnqkiT6l Edee7tjXno7HM6QxUdlKg0bUfu5SynyJj4vM2nWbf0+1EV03DtyaiUZP3pG7 WaruZRuhujFd8fwkXl8iXmBvN6Pm37zq0NApZZyj+uz4UO7zo5UwOLhI4tdr /FwjlRlscu8R1Yt4rSeXV56iepHEy0DGpC7qOtreLLPAhfJUL6pgtgnYy0L1 ojftB/R7mqj5yR5T53cJVC8qj/BPvnmH6kUZR9VWLjOlepGneZq4sCrVi5xG 5SQZgqheNMCgZTM+SvUi571+L6ePUL1ISXxozYu3VC/6beQs6MhLnQstXDr+ mfEG1Ysu5fQxFn//60VOPzU1/DzJ+r+fDhN12TprtFzjyQq563DZ49zkd2SF XM3um7jNww9khdxLUC4uRqOYrOTt7518Zzq/gqzk7a/7yPuxqZqskF9Qyzo3 9KqWrJBL7Zd5u72gnqyQJ/HcPhMb1khWyAcVX80YOzSTFfL8PlmnJNVWskL+ eCHnwQ4uGlkhNz++den+RjpZIe8oUrvzpKSdrJCfNdxktvDlF7JC7tsjwi+1 oJ040Z7Iv3gL+o/Qlqpcpx8tRK6n08HKapz/pIfV7tUfbyA87u1ZGXUB/Sc+ kGGl09JaYvDU44+Mv3D+I2+9ZZvwgSoi1UJb8IQz+o/y+bI8WflPRK6HYpPE GM5/mq9bhigIfSCsvqa2/ziD/jPp/+Hi6luphKnYwugD79F/JC9+9JZ+Gk6w 1nJYZC+d4z/DKtYyl4KQ/9XcIu5iG6YsSu7KlsHu51hMyZWfqkbo7qim3s5r CQ7hEar/uKYpOISeb6bkQhJrzH6E0Cg5y6bnB9/u+0LJZfkzVFL5Oym5490Z hwNVXZTc7Nu+jOc0OulXwObyvZ0xz/B7AIGDnmm/1bTG638Cn5IXu9S5EdcB gctZOHJi+fA6IcDGN1SIQ664Lx04KGh6ag07Xg8B2OWl7c9+G1zvA5aYKvU0 CMTrZwLLvL+5eDcz7jMHTmo++M14AveZA3f1qwaPROH+KOCw8KEjNn7oUcC8 q6oLRBXRo4DVrnt+FtRDjwIOqV2SZzuEHgW8NXbDRJAbehTwKb1KjjcauH4H 3F/FUMJwBtc7gNVuRdhdS8f9IcCrO0RMuU9jvwNeetHkebUEzp2Ag/M/eV+Z cx1sYIsTdeodD7GfAvelfrTSm3N9JOA7e3eVSbzGuRPwvTKRXtdruB8GmHZ0 YEuhEvZ34F0ei6O31OOcBHgsIrZl5iZ6AvDhFAfzKE30JeCV45YlgZLoS8Bv rzNbb96IvgRM8Hex5exCnwEmEpZ/vDtnvwxwDIOaUUUm+hKw3uLyQ1p0/P0U AYuBKx/pBOelUJ2cM3N8bPjc1QvOdGKt2DchqwL0JSamL76GUnSCaerFFnNO 9CWG2M1Kht00gk1lc1yVMh6HncplHhYBNCIny2CgVAeP563JoIu3VWjExmyp QbmX+LhkBtnxZQ20EY6+hZ82maEnTyqvyud82EZw1oX8ch3DeWaSw+IKX9k2 osrl17JgE3w+h+s5Vxz8v+sZtr6T8ZzAz02f26d9jjhRfemKT4kIXwfVl2J9 I9oar1DnSLY3F6rneFN9ST3y2adqY6oXXYgZ2GpDUL2Ix5bT/awg1YuuHIi5 ZTqP6kWxy5lmFXupedn8Ve17llK9aJHckmPvLlO96IMNi94TGnUd7emI0Q0b daoXMT3WiMzOpM6L/FQ1ts9spnqRn8eTFzERg0SsyoHqClkLsv7vp8PEesHw r/VHYsgKOTejwB4F+3SyQj7++0u8v8gHspK/nxgd5clSTFbIU4gFDuF95WQl b+eTWvX+zmqyQn55vPjHVFktWSF/wVEoM9JTT1bI+e+vk2avbiQr5GL+tBiG lGayQl7DyGm60L+VrJA/+s1obHCBRlbINaUup60TaCcr5Kd88s8tn/eFrJAb 7hebPX/rC7FqqsN02RTmAi0bxSaKaYR3S4bY0wTsw5pP18y7GNJM7B/TKVt4 EudC674rbSryqieydmocTZxGL/KQDpG7GlBDSKWP9c7zxbnQvQIHiZ6r5YT6 Szd9c170H2/ON6yLFhcSXVvsA40DcS7kev2lckpKNqFsO0S3ZJ6z/hVhI52Z mkA89rBU5LyA61+ubE2r0/U8iEsHypPactCLciOS7aYM8boGUNt/cBuOrM2n 5EI798UVBldQ8iqPGqFfu2op+WEez57VI43U37dOSug90UbJdQu0Uouy2yl5 tIjH3uzYDkouWblK4qkt1X8SF4cz7OH5Sr3/y9Wuhwf1UHJXV6XirLFeSi6r ur0hZmMfJd/9+tIO0cwa0q+AHYxdE4J815GvY+BhW/ujZdfVyBy47SPb2xg6 XlcB2M3/SfD1c3jeH/DbBvf22RF77Gv/uLDunVrIMpxTAV9n4zR0+INzKmC9 ssedLhtxvQ84TntPvgM/ft8K8PkXUgVvWvF8PWDFiUvP1mbjPnPg/ArutP1u uD8KWDBIY/p4Hq7rAe8U47CbvoF9Bzg+ody3xxQ9Cri2TLgw6Rh6FPD943uc w7zRo4AXXL/w8Ss39jtgjU4tl1eD6FHA24PPBSzwRo8C5grvrHCtQo8CvqZv ekBRGedOwHErN/KG09CjgHPzlAsWvsL5BnAK0w7LN/E4dwI259p67cIQ9n3g gCVVEfvD55y39Y/59S2f2l7EuRNwmFW1rclx9A3gWxoKdE899BPg1PS849JO uI8I2EG4dkvanP1LwF6X7iRrzvkeT2AZy5LEZneclxCfzW9G1tGJMaFp5bgf 6Et8QrGizffoRMnWt6l8quhvL8tuhn9VphONuWlTO1zx/ltyvz9aPkIjzub0 V64OQV/a05qf5/uMRuTW21sxh8zxpQ/DqXJqNGIsyJTXmgGPf21bmU75SBvR +CQoQcgPfYlXXHrN8UdtxNojVgRXKz5/Kk14VnbtaCOs7cyzGI7herTJ53qf G/V/j8vaSkFfNvz+hSmuysv7L1F9yebZ4fGaxdQ5kkX7Uu/nSVRfUtj3kuPr G6ovlc5wZdo8oPoS48rHemk2VF/inqz4eFn3P65zeK5P0nQ31YtG2x+b7pKi zpGM1zFuOXeP6kuyOf5XGGaovrTU59trpkvUORLjtd0f+vuovhQzL+31OlPq HKnCx7Zz01eqL2n2xGUbmQ4Rx1zncxrue0rW//10mIiNfriKyTqZrJC72rOZ 2vq+JyvkYfRcbbvGArJCfmHnz6xXXaVkhXxvlaPOxfEqskJ+5cfgY2LsM1kh VyhxqrIzqScr5BUMZzounmokK+QpcTdp7JrNZIU8l1243VWulayQt3+qzpoU oJEV8ts8R/JfTdHJCvmAbaGCVU87WSHvb9/sFJv+hYjrVq6JrZlz/hfrlTMz 7HQibvpJZLA/etG7FFrH4aJmQsBD+SX9AHqRwmXTsh9P6glNJsXX1WPYnzeo Hky/7F1D6Ky4+q3KH/vw1Cfx5DDlcqKC1U9l3xrsw/b+K0rKXhYQqdwBDS/i 0IuMSz0cWUOziFbBE3omc/YFDTOzbkufiidMD5YZcd5HL2IIPhrOk2NJaGWt fLetF71IObJv/fOEFPy9f1VI8Qqb8u8CSm4gL3tjnRp1XSzRvmHwkyZ1LsS5 INTrJyt1LuR6NONcrQt1LsRTOz58Ups6F8rdVTTpq0KdC50/dibYmK2ben/i v174kEj1It24otCELVT/cT0spLn3zjdKPskx/jIxm+pFw682skiV91PyIG0z fv70AepxqG/6XHPtOyW/9XXsTLCuHelXwB9PR07GNm8iX/fAY/GDCvo9eF1Q YI6CK3Iq03g+IPD8Zv+u+zfx8yywCc/9sfOxV/D9/B9/vcPpYleN+6mAI8yV 52l9xjkVsPQd/Z1XM3FOBTw/cF60uQWu9wFHGaw6VM2K14kCznsyHuSlhefr ASvF9qV9jsB95sAzT/x7nW5gPwJ+dNfhYt0U7o8CXsr7s0dlHnoU8NmJRxZe unOuV/CPfxQ/4BRlwj4IfHqkW/cSM+6DAn670GZPVxJ6FLDD/c+mm5dinwX+ ZPohXiwMPQr4TAt7xG5DXL8D9ja/rjZ+DPc7AVuImI54X8f9TsBy0Rd9oi7i 3AnYSmN15ib5Od/H+o+X69Yp00Vw7gRczDpSIyWBcydga4Gyaw/meAvwzOrp CPVbc75f4x/XFjFOxHXivAR4/Y6b7gLh2P/LEve7+o7TCbVBneOjc64zMCDz PbAgjk5INRzxK9ZGT/u2cpF7hP5fv7r75H7cdbyf9zluuG35+35dMdmTkjXn +1AOF67SuJBBIzTVCnZuu4bHh+XKL5GTRjRio9Ez7Y/heJzHnk81sS6iEZxX r3XrcuDjpSqqOewR10Y4XtQ7cMQTvbp9TD+wQa2N0BXSvlN4DZ+H8iveZnH1 /O1bpgkBb3TwvFrH6885NFypvrRTuuz6Vdp/XKcxYLPWQx+qLw0PuE/lR1J9 ibf1cLu1F9WXPmQ/37bYlupLP+MVhA4aUH3JJ4ft49cjVF/KuHbO+M5+qi91 e1TWPU+l+tJT9bpn4VupcyTLiRivlW+ovvRr6OsLi23UOVJrt1c+SybVlwY3 xvBo7qGed39lvm9CcOUQsb5KWc43/yVZ//fTYaIuYXT3LY00skK+PnxGKbQ1 j6yQC0lU7JnPWUxWyA0+vRNQUqogK+R6HzJDDkrVkBVyyd9i5ySV68gK+fzc Zc+5DjaQFfLHsrUqIepNZCXzwAL5iT0tZIXcyrPj5IG//g4VctcJE+csYTpZ IU8zo63NdWsnK+SlkuzB3ZZfyAr5GvPLv3yN24nXnOHmOR04t3CtstA9+3/X q+eyiml8iXOL5YtFp/NWNBJ+0yPzDp7G/pwrbbunp+8z4Sq4QN2aBfszb1Q7 U1ZOJbHZUU4qKhL7c/1b5suS/UVEfYtxyqkd2IdLjnSrNp/OJVh1FtxlzsA+ vPy0lLyhVBKh5rP8yrrN6EXKmScbvKd9CC0+pueH/Oesowm/4jpslIgMv++x 631F1EdKzrD87qpL96nzImXz8/krrKnzojB+x5XzD1H3Cx0+1D76toM6Lyp+ PXBRnZvqRZP8FoyiXFQvci12ulzcR50XDR/7uUA+5D+8iDluha8E1YsYzhft m7hH9aLclVm2CWVUL+J5MB7N0UP1osQ6Rga3VqoXTbql2l57RfUi1cNl0f56 g5TcINj/9ckuar72NEfGdfUhSh4kd3Djh11juP/qHxf02kfFyG8l3yeAb/Vc /x5efYTMgUMe2creSMV9VsCyMdcyExhxHRCYkfhTuTkSv0cGOGq99huuPE8y B45k95vu/IbXmwIOm9bpl7HHORWw7elO354feB1O4NNlNxKrc3C9D/gOV8qE 51I8nwg4y4/zV/svvE4U8BHGqPYqAvsX8K6cUQuFY7g/CtitWYk2k4v7o4AV C95OVnjiuh7w8DoFq6Ox2DeBb68UqrwXiB4FfIWjimcfG3oUcDCDYOn0W+zL wOc+8W5R9kePAt7UVfvxQTT2d+BmpfVNmj/Ro4BPSB/y68xBTwBmf1wWsywM PQpYjuPsIfln6FHAsop7t37OQj8BVtb3aFf8hR4F/P7w7+jSo+gFwFPKiZfS K3GOAlx8kvFIXQDmFkHH9D800InE7sK48hb0sZyoX+rSXnTinHsytywj/r+L R7leicjRieiPbMe2LcK50xYp20UPu2jEBb2q/dPDOH8zPPMy6f49GlHbPbD2 vS0eN96zTxp4ttIIi9MN10KKcR7o2bwnYFdNG1Hbm7s39As+vkNs7fNXWrcR 6QKpvNyueJ5C8Gi2chxrGyHEHmw0sh6f5x/VCDuucKovVQV2Ku05Q/WlQHoz e90qqi8ZrWa/33OR6kuPPzYk6+hSfenpfIW4ob1UX6oUirQ3lqX6UkfZ61DD LVRfyvpmYu69nupLG59HcMb4U30pb/2sg+ZKqi9lCb5f6PaM6ktCRtkBYRuo vvRmXb0v83/4Uivj6yeLNai+tObxe8nZ9iGizmptSd3ZKLL+76fDRGxfi5fo mXSyknleIXfyzQ9khbxuZUWTXGMxWSEPeMGTsUeskqyQp0iKNDgl15CVvB1+ KXHlyDqyQl5S0sFlnNxAVsjllHjVH2U0kRVyKe2PDt8zWsgKeauW8YebyW1k hXyzCXO22ws6WSFPWrT8xYKCdrJCbud2a8v65C9khVzVn2tn6Tk60eWr737V Gvv2+cWPXzL9aiYiNq8Tm92O8ww782jVk7H1RM3zrAT2IezbVn8K8qycawjm 8sTuhU+wb7vWaet4fCkjXFmyBtXlsD9r5Zyduby0gMiK1CrX/IT9efn02xjX FZmEmkZt5j017MO5m2eTS/bEEHtWMjg8yJrTb71XBfiauCH/q8pBZdbbJt5R coNDe94waFL3FxlobjB9fJO6v2h4cDf/y6B6Ss55W0PV7EwLJfdJlUs3aqJT 8rA8FQex+dR1NFnmNwfn/aD6ksGt8G6dLOocKaw71eXgGeo6WpAzd59QK9WX VOMtL6yTpnqRzw76uSpjqhcNOzYLPLShepEQ54K9C/SoXiSULxZWIEj1Hx81 Bl/PXGp+ftmSF8zKVC+ybgjn5g6l5ms11Uw9W6g5j8PDLoVf1PxsYM3Kw9d5 djL8+wd8q/PqoS9v8DpXwNmG6tKFx/G668CeW/rz9j3D70cG3niEab97NH7f MbCJfN6G79a4Dggsdff29y4anvcHPPniV1H+apxTARfHs1bu1MM5FfBGPVez Nwk4pwLW7uzxvcGD633ABz4IvfecwPU+4BUrTyUouOD3tgAHvFweP6aL+3WB +7Q4yhsrsA8CX7hxTuRABO4zBy6wUj+9oQ33mQMvnXhQ8UJpzv6of3xQ1jRF OB/X9YB3Oz7ZX+GKHgX82mRh9xF79Chgr3ev0uQj0aOAw70Snf+w4DoUcP89 Ll7Htjnfb/uP9fv7lIXnfG87cApbqal7F3oUcGy3TAAHD67fATPmCi1Za4Fz IWB1oxss3F/QF4CXDLNfYXFALwA+VT5foKsaPSLodtHX33l0okO+IT/xF96+ TN/KCC4bOsHUoMfpyID359K0iuB1fjqx8ZTYAuuvOHeyD+o5tjefRqjNBnzt i8PjkCw7ZnXxPI0o0wv5kDBn7mSgl/xx0SIakb50VuLWa9y35tX154doZBuh +5NeavgLr2vhbnN0uIpoI1yzeFdP7sS56I9AKwaJ+v84P85G0KnLn5o7ro5K YTxKXacT8f4cwPkf3wNS9Jy1vXGaml/qCa5g+071qNDq/mLdTqpHGRSOqBjR qB5V3MTAWN5G9ahddwiH1RJUX6rITH/54A11PW59y/WZZOX/+B6xJyfz2z9T 1+Mq3CSDjS9QfUntpofUnflUX2LwluJ5+H/vpzsmQh3iX2D9///+ekue1MjK zFSyQn5B+MIlv4o8skLuVR45LC5fTFbIuU371eXDKsgKufKdd94mLjVkhZyB Rm9J/7/re0D9l/fJe9zsfdpAVsjXZw3MD49rIivkpveVjv9400JWyJtcXI6P JLSRFfLUs7Up6RF0skI+bJrukFbUTlbIz8nzBD1P+0JWyC17A3ZvPUAnrBbl v9Fyxr4t1hNCy6xrJkYXeSvz7cG+feAXy+CYez3hXHl2Z/Us+tLYxhc7bLVq iJqMnG/Vcdi3rwi2iOvdLSM0DZj9bqlh39YbXFE+mJlPDJpN15s1Y9+2UHx6 letSBmHPpbhkdk5/DnOQG13PFU3UeHbaNpTO6cMlQhzC3HeQoUZvWBRfnEHJ lS96cqg+p/qSpFSNicQLqi+1/zAnFsZQfandb/xwhSHVlxjsos+qllN9qUpw aEfmOHW+xPOkNl+VRvUlyQeZ2TfCqL5UVXiGP0vhP3zp+uX7J5KpvpTYpDfd xET1JV2udSxVW6m+xFKafeXLTqovSd7cFV4gRPWl28oBybu7qHkv/bvoVk+q L1m7ZMy3ZqZ6TqLRx1Pfz1PzxrPyj57FUfMwp71fPKqoueQRmcTnjdScszhk 5598au639HB/VKMaOb8CLmMJf7lIU4Z8HwLW2D0Qxc2E37MMLJyUsUMmGa+3 APyVI2hJux2eDwjMJrD62FQ8rgMCX6tiEj+6Fr+/GHjHT4mQw+fxPCNg1tKW ZctM8PM7sMA77tL9FTinAi7eMJtv4YNzKmD3RZ0LhuZhXwOWbnj4pI4b900B F70WHd54F9f7gB3+VDxWMcHzyoFz9PdvJ6KxnwJvNuB7vTwez9cDfl3oOnFR AT0K+NhSXV5WZvQo4DPhk/3Pl8xZ1/vHm4OfGDcdwb4P7PPt+i2pOpyrAHtz BYl6lqE/AIeYZKQcqkSPAs4acHrv8gM9CljyxuVuNzn0FmC/Pb3Sqc/Rc4BX 6U+/PbkRvQi4ya2Q53ETehRwjpPSfU8d/P1bSyrq97+lE4zf7g4tN8bb985/ ymtnQCd05lf77TqE87E1l16aVLD89a5btu/0eNCjrIyHzc68ohHR/S/XV7xH z/S4uExPWpNGWHRve6F9D/eHh+9tnDrR30bwiwr9P7bOPJ7K53//2UlZkyUk KUJSyl7TpkSFspZQREmSlL2sZakIISVkDUlRZMmSfcue7ZxDlqQsKfvSz/v7 ae7x+I3+uR7X0+k+59znvmeu+zVzz20qr49+r5wbkukDXiQwxv09rbESjf/2 1nV6jfGRQGH5+xf8DWi+34Pdw5JBr/C8NJK7xltJBa87tb3jinZeh9ed0sT6 HnxdYT2BONJeWsUreF4yv/DE44cpnpcqnpv3hp3H85JMUHVnuymel6I/qbV9 tMPrTm+9imKnafC8NNkmbc4bjtedLviP6FhKrzDfO0Tlk1QNXnd6Fnh/OM4S n7+0L8ekl555qb3bftfv6qPHSP/v31LOyZpskLvxllDIdU7tob54u4BQyKO7 3GTzQBmhkD8O6Belz64hFPKcy+Nfrwc1EAo53YCz4ZOiZkIh76UXSzNf84VQ Yvu8ZA/Oje2EQn64qKuyb1snoZAHGZ1c+12CRCjkKSFjUvIiFEIhl2Di2jPr 000o5OW2k9FbnHoIhfyvjk7UZ6VuYDEyMmBAg/rt9XImMTaruoCEwI2CqBo0 LhStQUO7PeULKHSsNtP2QXmp/dQom7FjE+giK8y070H9dtDxoG0dbXXAJf+r eEwzGhfq0zijIM1cDhQ2b3q4bVmdI+7G0TPD3AVA+YAxiaoP9dv1917VSuWk g8a2GMGK08vWLzpND2aofYDoKdnX2zJQf+hmbvd5ZhM+f9ukvehGyV58/vZ+ hjbW2w0rjcftjUi7iI/H1avstvfjwsfj0um7Ky874ONxDvcK7TXK8fnbPp10 JmdS8bqTSTVN7bsr+Hgcj5SYQCcdPh4nVrZ191lnPEdJG4cWdNXgOcrnyyFr vjl8nG4s/LRgDz2eo5JKN9Oz/MK5yZG3nfdz8HyVJMe5qGOG56hLokfjrEZx zmN/ex3JEM9XbfsfDeS8WmFcL1xce2Mvzh3GO8NFF1d4vRCN2e+/OHdz22wU +x3nqwpWf9LLw/nRz9dISe3o+c7QH5Dy6NnBokC0W9Dn/rDdHNBsQHDojw+B jPlR9BxA6MOLd+THXXQmOPRBxYcsPOnQOCD04fo/Ll88gearQ2/tYZFUWIPu +4M+9LTZ9X0h6Dky0G+Xi/4d0YnmU0F/ulxH/YoIur8Pes/KhBomKbQ+J/Rc NfkXe1eh8T7oK97++WHUjMb7oOe4mvKlb9n8c+jXm7e051aieVPQv0k4lL/o iNY9gF4x+0zW0eOo7gH9kewO04fn0LgS9HyF5zzvvUbznKEPCPgR8OkQylHQ 5xUef97yAOUo6KvNhBf2LptfDX3YrpuHXyxbxwD6lOraOhthlKOgz7TIPbUQ gXIO9IoK0np35FBegJ5bUKGAbRrlBehdhk0fnt6MXn/09BP3sDQKOPWei9LI h7Z/cN0rLU19ChjycC7PGEHjdz2m2TOci2Twp4ZlrfGydb/lZPoFRqLIQFFS /YLJdpSj3tz6fGhkLxmEFFV/rd2F8ur67pEe0TYSsOIeN/WvQHXF6ZQNl99a k0D0zpe8dUoobzP/bDz6kmopR53z6XuThJ47yRP5Y0DiEZ6jfgocZbv6Cc9R 4qd3fDseheeobLpj+cGf8BxFXl/EvSl/hflOatYyQ7kr3E/H/IbXqwDPUYbj gY9dy/EcZTiZ0mTGgded0mNFbc68xHPUruvpbG8O43WnAzPBq2N68Rxl6+56 85w3XndKEjkuzrUNrzv5HWGr+V271E+6fArYvisR6f/9GwPJ1NkMuh+zCYX8 nWPKgsbPYkIhXyVn/SXaphLpP66TJslZO/iZUMhnd48WVog1EQq56UnHMbq/ LYRCLhVSZe2xro1QyPk7+EOLNnUQCrlBeObxmi1dhELOETZ07v1GMqGQ3zod UqrB0E0o5OPrhA52THcTCnnI/IMvibd7gMjlh6c5qVC/ffuCyL6Ld8nAIl7k 294qlKNGXPj7LHZ1AIY6UWYbb1T/oHYMy2iibgVPPm/LZt+F+u31u/jN56cb gMTGs6uffkb99rMvVw/xStaAo0oC90POofqHkN6mdczvS4BJrvGFsM5ldSdW 6Wuzwrng1uLRsyeOof42sMrQXepvMnAMGKHYJCzr3+7JSdK4mYBy+kNVNePL 5nuXKhxV3I/P93ZTP3xtSgCf773Kd0P0A+rPGLf5cFOTRxTPUYWHqx60ueH3 wXWne7+UDOjCOFuzS6TjNjxHVTQ5GUcPrFCPyhz+8eoOXo8Ses2WaTiB5yu2 SB9VF1U8Xw2+jNEYdcTz1aUHM7de+uH5atrpm9krZzxfMZq9erX6JF6/UjXa Wd9JjeerttSUvYef4nzVM+Nr1jx47uKJ4F/r54zzSzI/tlaVrjCfavWYp+k0 zgeHZBn9160wnuhfvMtuA841039karDgvPBhzWa1EXz7qgGSJX55OGdiaY9z fNVF5CvoTfZ1GJwfQ89rhj7pb0mMVLkhwaHnDfMei3ppQ3DoW5O8tsc6oHlW 0G84SzNX5OBDcOgfCus31PKicUDoY3UqKsTVnxAc+kizfMeH46gOAL3xd2cr lkW0fgL0upypHjsa0frn0Hvn7K63VkZ1KugZG+aj+hZQvwn9ib0Mg5K70Hgf 9GvW3S/+vGy8D/rdJdckHnmgfhl6+zT7xI26y+af//O1/YmP7lxB621CP2l+ YYtDCaqfQJ9k0vsq8QK6Xw96EZpVNQWbUY6CPlii8oiQIsob0E/x/9Kas0M5 CnqK0o2mnGZU/4F+l3pzabIByjnQmxTv9puiQXkB+ju3U/RTm1BegP79xSSJ k8ty187Dk9Wf0ymg7ZydnIwA2n5CeNb34KUcpVib+uMCGeWo2vXHew7Nk4Gl xQtZU2f0vdaMqoWMPCWDcOPBmcLvKGdq0GmLJ8qRwdhlmjWGYSivar/gF/D+ TALyLL807lOh36vKTXtvnCkJTNsHFIrpoHFh+XmadJE/XcDtUGj4fk003j3Q wdUn7o7nKLnA4YcX1+Ljdx3XAm5u/Y3nqHVmCZSz43iOkv7YGBW7wvreFvL+ UrO/8RwFenNvD87hOao3Q1r1FwNed3oymJv/2gHPUd+7WkKy1uF1Jwdub3Wv TDxHbdogM7ZXD687uTxpUWScx3OUSdKLLJoXS/3k/Iz3R04PpP/377/rxBF9 1+40pP/4EBd3iVlQHqGQu+W6CE7UlxAKeWHMW93f6tWEQq6mPJVs1llPKORj /pMq6xiaCYVcqKXVlu1+K6GQd/Nf02J+0kYo5FwBUY43nnUQCrmysc0qg8dd hEK+/+TGyHYPMqGQf+UoaGHb1U0o5JMjN+/J8vcQCrkhd/wzXsUe4CX02uOH HMpRk2ffubiJksEVFi0qmTHUb7PQt9OuXtUByqVfhj1+gnLUd41MKdalvKjM +eNusAzqnzONac1ebGkEp27sZC7IR/1z4xqzcq3vNUC5Kvt6nhzqh2WzfHPe tZeCSbu+tQdjUH/brHf0OqvSR2CZrMLCM4v6K/mKS6tYrrwB5dliMjwHl9Wj 3u5O+8b2GIz0XL+03XHZ+Mwc36t3FgnIw9fvURp0f/sR40KWvHF33fFxPZun PB/4/OoxPhYZvzfad4U61aPwu/f24/lqLLh4s2I6Pt5nosy053THCvfZ6Tc5 nujGc5eQwuF17rvw+hUbeVttnRmeuxjzbn/UdMBz16DahltS1vj4oHRbWF7E UTyP1V9+f7mBDs9jFXXlx7iScd5txsmdtgfPaZdGu3wHXq4wj71M3n01I57f suluHbmotULdLN79J7iHcwdjlRpKMs71d6cIeufjXDonIvNyIc41c6ZrCjJx XuFvxfjmKc4v0V13OncL54Zdtxn6PqUR+Qr6N64n5KPH0Trt0PtOLQBKuzHB oXceP3BaZdnzAaGnrT2zvrwF3a8EfX9HmvBnWnQ/IPR/e45QjU6h9T+hb5Mo oL7Rg8YBof9gZ1NzLvkFwaH/4jj88oUMmk8Fff+tgWyOMDSfCvryd3JCzqOo 34R+ccfcQMzqZc+L+efTbN7xVMSgOhX0hgM/nQoM0Xgf9O/155mYJdD4EfSa 0zR6lXvReB/0RhOHrJpCUf0E+i3Cn3Wa5dD6UdBvHi48J/wI1WGg/0HSUMlI QfOuoeezUTkn9BONi0HfvkvjWe0plKOgz2Rq8VygLFsn6p9X9fip8XnZPCDo VTMmT+y1RnkBelvR5Ki+QJSjngbls5fkUMDufY5qQ5dRjgKGRxj5zlNAprXW UU0B9HlOrGH6fICGAiT1X37MS0E56lameteJGDIwUzw//ZcL7Yf3IS7aOkpk 4HD7o/K2HJSjNteFs9s1kMAz1ypTQIty1Cz9QkzVUo6SthQtKuRFx4Mqz4F9 t8eXvmf4T5EnFHTfa7j3l3fZrniO0g+RUDkojOeoJHf7i7YMeF5KFT8ec5cG z0vHOPhdB2nxvGST9O7EBmY8L92l+pL8lAuvO0Xcd1/XvRnPUUY+ovVn4/Ec xZ/yOcbrEJ6jih0ffc3rw3PU9iAfNgEfPEct3nVzzZHEx+8GY78kJDWMgOTF 3uy42w8I/d9fl/LSu2TPTWXphEKevNE1iVSRTyjkhQaB7Vf0SwmFXChzeMQj t5pQyFfbsTKK0DUQCnn9GRbn90LNhBLve4xExfSolVDIT116dsU/sI1QyO9d uVa4zbuDUMh5j56t/Hu1i1DI3zs9z/lvvQ2okNtG+j7wW9NNKOS67vHFYz+7 CYU8qy03elVZD6GQlzXKNNx2oQB1lR8qtRaoH7aeqKi8er8TMDR8VWWYQ/2w xGmzMd+SL0DX4brCjtuovz11a+jm0y3NwDGSkXZiDPWrV6Iq2BTT60GrwbGZ DadRP/Oz1sP6aWUVuGJzx9MpDuWrXV7N+hvvlQDDt4y5M30oXxX6ilzasSsf ROvPd4Ysqzek0kd+8l18A3TvxEbpyyxbrylui/+zikjgctPb5cKBZflq/Lrz eNoj5P/p/uYk0e88eP3K5Nmvq62nivHXT3v85LpfifFAvWCRNgE8d3XfH15V vKsJ40JRWWa99CvNS0/IcH2G5zG3g+V1vyfwdQ9s+E5zlXLh44lukatdfRbx nBYufK3/hgGe07KDWh1r+VaojymNtrwpwbnm8+rHXvp4rhPq2Lo++QvOL3UU PfI+hOe9sfQiI/tInBeeWHOicwDnqr/ktjJswvPh/t0HNI6dwLkJXZ//N6sV 6njtW3oF3FfIma/OxAn443yVW4b/mvs4d+OWoaP1XmH7Afn32exxnj9udMnW 4ASRr6C3ct3+1JzpANEuQs9XvveytDdahwF6wz1c+x8fQM+1gV4vdfDRkKsH waEfGM/h8EpE86ygZ50/WygwgO4HhJ5Bc050ywM0Dgh9bawiQ8M1NF8dei1+ ZrpJR3TfH/T51GWdv7LSCQ79c+G5l2xpqE4Fvf+4y10zEVSngv6la+jbnI3o /j7ot2/iclNvRP019Innq+ged6I6FfR0Kq6vYrejfh/6cZ33edur0Hgf9IdS pTnfvEV1GOipqSYl5f4se77tPx+rWiqxSxblKOivfVHNi49C9R/oWylqtRXS KEdBb3yjel3Kd3SfHfRy2lc0ZKpQjoDedtPA0a/bEc+ikQ3dU0MBypff7Kf7 i3KU4XvO/SnXKcAkQnWq4SXKUU+2f7Yhc1BAQqOyGscO9Pl3+DqE9r8mA91r uxbyA1COcm4Klu9SXcpRHSI+E09QLnU4rzfzlUQC2pzjfXL16HfxEsi+v/Ea CWiWL0jf80Pjv+SIobi8+S7gZhTygqUcrbdWmifY/H2F5/PWrC1ddYsKz1Hz F+Y5c3/h9SgzTt2n/pN4vrJcZyFwaAbPV2uqBZOcVuE5Svm3reILZjxHHRR2 oRHhW+G5ukph26+GrlCPelZHviOD56jQxas36xvxHOVtGJR/6Qaeo0J5WSo0 1+E5ys+o5Fpg5gjQ8Y4Xka/xIvR/f13KLUzb8np+pxEKuaWrbPqhfXmEQr7a y0wy/FoJoQS/PnC/PrmKUMhbVlGxvDGvJxTyQhtrFzrLJkIhFzLgYkujayUU 8u7oG6TD418IhfxklEBHUmM7oZArtDycpEvoJBTyD1tLtZ5eIREK+eEErelc YQqhkL+w35NrcbGbUMjzP18WfLmzh1DIpTxpAc+pHsAStsPigwjq92oDwp6U TJFB2oxhQN+zZfOmFMPsuu06gYRGIO0NWlTPKFYYLp7d0AZ4+WPU95xF+cr3 cLyx3nAzmFcT2c8Wg/IV89vv7xm/N4BQ7xee8y2oPtHF+YymV6AOMMxz1tDN oty1unw47EF+Bai6Xr9ObS3KV6qHL90USf8Exv213k2zovqV26ljMo2D+aDQ XuW8FjXKXRU2v8Ri2N8tXWe7c8Uumwdd7zraJJL2ErxXsJhQy0J5rNtrIYSm OQQcvXWEP8NpWR5rrXesjPRDHr5vdsNeY+Y0jK/64zUnVrjC/YBnFj69KSvC ePcuQLNGuQzfzseDTG9VqjAePRzic+Z7Lc7ZKZNWoSvU0zjOaq5hbsQ5XwnF SwfPe5q0OlINDnj9zWTyWdygPb7OVXR4UHauDp4P048Fm0tzfcFf/1VzUvAD zjXd65k1DuN5ku10E83NDyuMqwLNiB0b8Hlr3e2r2+mscC49V69+MQ3nJvYu 9tF9OA887BY4zIbn2EKHe1cv7sG5dN3tt9TaOE//rCIdY43zHL0Xf13OFBL5 CnoOb6eUQ4noOTjQ00RyPGeXMCU49GdHvIJXbUHrhUL/wUGUT0kGrbsOvVL6 NpVtOwIJDn3mxoNx+l/DCA69ntAlldh4NA4IfTRpWqRiP5qvDj3NzdsHeerQ fHXoGb49X6srieoS0NP7GHk+uonmU0H/XPIvT/lRVKeCnnTuyqfW06hOBb0w O0X383FUp4Le5Y/wobJAVKeCnkGferXzJjTeB33FWte91qvQeB/0dy+XcVlz oxwF/Y78cVKnLqrnQB8k/7yi8SMa74N+LoGu0FkDzZuCftul67LNjChHQf9p r8Cp1CFUd4LepNki5gwzyhHvyCZSDX0UMK/Kave5HW3noYjg01lfClj0fTB/ 3X3Z/YNmOWVN4hQQwfk3QYYGfU52JR0v+/KlvFRfGi1ngr7vEfJJKXoTMlCW mJaPl0H504L6WVT8HxLITmfWXmeK9v9qHoFN7t4kcKn+uNvJOPT7DtSkqlVy kICba7Hhti3o/tNig6IvGc/wHCXtHf15IhmfH2X/ADCaP8VzVCQbEJSoxnOU SfSOkdO1eI56aFu0ENqE16km3ALv6ZHwfHXN47rF7+94vpJl1XRxVsNzFC/X CWq6Xnx+lI5QYV+XC56jKh3EdP6ux3OUZheT96V0fFzP43qx3npVfH6U+ZsM ttWkUeB22uJRVF8Cof/76xjgqgss5/6SRSjkq0c9nZMYigmFfJX+AbVppgqk /3i35ET2ptFaQiHPSYufWmhvIBTy+Ba7+MrkZkIh9xRO6nHLaiUUcsebb+y6 XdsIhdzw1jEWatkOQiHnuBg8p0TpJBTyh+pXh2YdSIRCHvTn+75iagqhkH/f KL1h/b5uQiEvdMj7aTfeTSjknfURxuef9xAKeU/ESNHlkG7A65W40yEP5a7n jzczOwiTgWjJr/Oy4yh3JbmY3PxwpBOI1AHa7+tR7mJ2rrPSetwGQp92K6aK o9xlHpHEXbW2FTAH5G17vR3lLom1nbVur5uAbkhn9y4hlLu0YzczvHRsABxb 9KV9qVHuuvTRauR5ax04tX/oMmcL4h22wk9z6KuBtYbkugPhy+pgb2sE5NzL gWFXbPDD4yinTVqXzFsdKgGymra1nuOId1EJbvBQKwIM5iblb/1QfvO5kSbW szUftJ/JVX3PhXKatkUHwwbZbJA8IXtHOgRxfsVn2hvzMoDZ9vzkSnqU36Iv hPnomb0GHEqljVLWy+aDsd+yfCecBAp5nO6xLbs/caxznYxRfAywOBufvkkQ 5b3upG8b7+SFgfKnq6zWL7/v7bi9JPuCH9jvsW/+xctl8/OtWCkHmq6DDyfq Kp16l72+/kmzGa8jnuuoxyzdqoJwTuOpeyArEuNuiW3hnZGxOG+XE2wuTsS3 80WlJc0kBedzt9UL7+N5tTC2YPzjq3SM72f5ek9+7A3+esf7J9dzZ+Cfx8GT R1giE39fxujKF7vxuuX+RJE+A6X3+HaEy/rdj2Thr9/51rTWMBvf/vTJZnMv PG/3PVL2mJsNJvIV9Edyf7i5ax1G/do//2XV6eA1JLTOFfQ2VyOOJ3Ch+wSh 71fSmO397U1w6K1pR2yZg9G8X+jlnDMdRYbQPCvoLdyGuNjXoHFA6MfzZdWe 8qFxQOhlotnszkii+erQx1GpTsknoHoF9B+ulD7LOIju+4OeV9rzq5cNmk8F fXdJcuj6CFQPgf7b3WfhXRWoTgX9SR2XhjNHUJ0KeqHH1Q/Z16H7+6C3ogoK j+BF9RnoTRi+HdE+hcb7oP9x4kaTcyaq80Cvd+aVxbb9qC4E/UTgnKjKBKpT Qf88RFrLuwnlC+gvqq1KsepAOQL6KiexxPeT6PVFzQZeL15SQMexEyPV0Wj7 n36cO12kRgFH5GwUxkRQ3UyEfux70jcyqFrPe/CWF/peJL2BodtuZJC39+Gr anc0HsqTNkO25iKDZqu7ARNZaP6/q/Cu9ckJJKDqV6D1wAjl4WPdYs4Wu5f6 Me3k8rHXaD6e+IEN+r0f8RwV9kZR12IjnqOmO/aEmqzBc9TliyJz/u54jmqO udO/zR3PUYr9uzXNvfAcZRX3OSHMD89R9P6XH7MGr/B8lj860X8L8TpV5scI QVMtPEfZanHSM3zF61SC+czandfxeebH9H+vbfyL56vJ+I0CPX54nep5/D4h Wo5RkBwxk1B6L4jQ//11qb0RIv3u9EpH+o8nM36UD9+ZRyjx+mrZ+Kj/ni8A 9R8X7wvekWJeSSjkbmVkiZ9f6giF/Iwhj+dntkZCITfZXn86JrqZUMgfOi3s 0fRsJRRya27PFH2+NkIhH2kvOHQppp1QyLt+Twkz8XQSCvlRLzEWsmsXocTr 56rBi0YSoZBX2GcybltPIRRy/mGeaCmRbkIh/xr99FB0ZjehkI8Xnth5U7mH UMgTOm3CP+X2EAr5tajZWtmcbpCYYflQ8TnKY4N10hd51CkgjvPulwBnlMdI DIEv54+RAIt0sHCdKhon2Tfq5zp7rRN8U3gccYke5TRZ+QMP6nLbwQ+N4yHd mYjvDtahcEm2gVPTbGtLtFF+C4z7Ha1V0ApMftFuTR1AXOpg7djQjRZwr/9V lNIVlOvCI2OjZFWbQcmDjwYCvYibeNaSHBSbwP5wpw5qDZT3XvBy1w2qNgKD gE/dL14jTst6fCrjegPYtd2ZJpsO5T3/8ncPqTLqQeh6L5O/y+YHzf2pC51Y XQ9kG46ck3uMOF9f0TOL0TogFQWcBOuX5cbAUx0lI7XA+lieoi0Nyo1mzQz6 Bmy14ANj+KaRHYgrM9ZI+WnWANFqm09quoiH8l/S+5xSDdaXe40o2yPOyKdt nyVYDXadFx60C0a8avvxQz/iq8Bqcb2CyBTEDzdpO0nvqwIG13QyDQsRnz2Z 62LVVwnqfDsyNBsRL2E865nwuBK0h+X0s39FfCSYzoVJoxLQuoSf2DmGeN9l w8D+tZVAQSvHRX5h2fe9kWP45nMF+PCu4/RLpmXP97k917U6qAK4ZdQ2LXAh 3ipDw5V9qgK0itXMJQovy9UnKE6JrBVANl8hk10acafWw2JjZeXgJGNBybN9 y54rzTrT1nCrHAzNRzS/OIl4cpl9bqZAOUjet8HupgniOW1dPNtyygCLkqKU kR3iug2FbQNqZUCX6UbMcz/EfQWvXnWYQuOD0Osc3yF6lR49ZxD6KtkxroNP zAkOfWW/ANdudjQvBXq3n6q5z/PROAv0WvuObLixgOaxQz969+Be81k0zwp6 V4HGrb726H5A6LlvDMZPzKD7AaE3UmYSZK1A44DQ3/vN2+4ijNangn4oyu3a GXa0zif0ASX9j9WfoPv+oLfdMlSoQEH3/UHP+DwjSuYgqlNBf/HPQzG2KTRu Bf2xo0p9U4soP0DvWzTpbrgd1W2gf1/X/8Vk2XP3oNc6NHv1AQPKLdCrNliS 32SgehHhmS1mzH1RfQn6mrGxA2t90HgX9KEXCjbv1kJczaRLWbieAqwPfme0 oUHbWfPWv0/MlgKS7k0d/R2Acl3MuFzoIisFeMwWnzw8jT6/2V/LjLqXZBDI kc4nvOz5gxf1vAeqABk8G60+SleOcumsXMmE+FL/E6fQc3VTC6ofcufx3ZU8 TwLyb2Rm4nTRfQqM9xnrOIaX+rGL72r+pqC6q4ZYm/zWW3i+emd2+wXnEXy8 L4p+PFSXD89Rd37prz3PhecoXbuB7Q6ceI5qNK7M6+fEc9S01q1HoyvMm9oY 2/KjjQfPUc38N9gk7uB1KvHvGVQN1HiOmr7pusnWC69T8Wx5bTZNjeeoPVKp G7Vd8TrV6ldSE67jeL5a3UBOdTi/lK9W3fA7J/6E0P/9dQzoGG68euTYG0Ih H9q2yUmcKo9QyAtzVMxZZD8RCrmlqaPh/oMVhBLbf6VwK164llDI1S7yVbsP 1RNKbOeXvnCWRBOhkJcWnacS0W4hFPL5bNGLpIxWQiEXOrNL8htVG6GQdyXq mlvtaycU8lU65n/V/5tnCPUf//E2rtrVo5NQyFuj6CLZ/boIhTy0iCQp5UYi lPicL3QprBfJhEJed2eHOYMChVDifeutVR3mKYRCrrxDJ/mHXjehkN/OzXFv ftlNKOSTwanfwJ9uQiF3fJt/yFWuh1DI5/T6NXtu9BAKeeS1YNXSlz2EQn79 e875dU96QDu5/s3oj2XrRcxMDvBJ9wCL51edhgDKgV8aDTY/bu4G9/wE1YR9 l83nZwv44ufdDazHf384V4H4WXcjWuqD3eDH4olKs0XE19BP+q5i6gYlITGP /kqgPGlivaC9IYMC9ivuZp/QQnxDaizJ/CIFTN77uHb19WXzifbsbf+7dWn/ CrqzrvJDXJDTp3PNJBmIls7bhSybl/R0gX28sJ4MJldJRt1JRbzx0DXHc+/I wPF20x67LMR92rqzZF6QgdlL4ClYgPg4exhIeEwGCsaBA5tLEO8bldgg/pAM bOl9zgqXI774TqX8qB8ZWAylr0+vQDzIO2j+6VI/MCMdtPtsJeKq4w4n2u6R Qd+VZ04vl3Gl1l8Rn+6SwXs2KzGeZfefPuynN1P0IoPyvQtfNlQjXuh7+bfU HTJwu3DtilAt4ppn3Kxf3iKD7s6/9L71y+YNimyrLL9MBgz+o1zpLYh35h+K ydcjg1t8PAbfupb9XnmDtM3gv/tEmBbtl83zGr48veXyJjKwfvEs/8Wy+m2K /42F0TkS0J2jpYqmQtcLNsaN3aN1JBCd4LAmmhNxwVkNZtoIEhD9nCpVLYZ4 vcCujhfk10S+gj68PePMz09HiXYUes1NRU5G59DzmqEv8a0ZLFnnQnDof25/ MBj8AK0XCn21ACli+Apazwp6gx3uY8qsaJ4V9PN6hvZb+tE8K+hDjvzJedOB 7geE/pKDJV3zDOpnoec5v5FyJBKNE0EfX2e65uay57JB/zEt43slCfXj0L/8 zXFHYCOqU0HPkDjOmpKB7vuDPm7NXmX/Z2g8C3pxcYcvth1oPhX0jf1+Fq2y qJ4DvUm669nVKahOBT2IurbG9xjKM9Art41pVrGj+U7Qv8mfjWVcdn8f9M81 egoLelGdxjPjk2XXUrure6VQoSEW5ZGtEbEhVtEUoHm01zZ1H6pTZTgmqnQA Cpgv5fJkfY/G++TjAln0OsnAqZv1wh9m9L1+8eiJbrhBBodNAmwFvJfV8aYY dl5kIIPjV+8IBWWj/Rx92bDfMZwENCU5TOiuoXlxeqq2mbFbScCmrrNnqyCq c67/dVZr11s8R+Wc42meVcPrVBab1vQEb8frVH9pR4wU/fF89aHiYzibB56v okNsRf2c8HylWlL5tucGnq80drJ5al7F85XC0KYLV63xfBVysveyUQ+er9ge RqQuauL5SueSWOKuvBXmUy3umv62Cc9Xgx6Hzbjd8XyVoB2cVdaG56vWR9/v rBYbBTot3TcH3P0J/d9fx0BLglqjalQyoZDv9zmZ3NL2nlDI/XY71hnSFBIK edUBvkRryxJCITe5oj2aE1VBKOQ64emX38TUEAp5/BfqVH+5ekIh57PSdvKk aSQU8v4Zdnb7zCZCIT8TK7bjiFoLoZC7cF+0s1JrJRTydp61dsO7vxAK+apz vwvS1rYh/cdjU57EzDe3EQq52uZ2ZXn/dkIh/1Ck3d0i3UEo5EHhMQfOlnUQ Crmtj3vKueOdhEI+Yagm4vapk1DIOToUg65LdhFKfN+NXL1D97oIhZzZmqT0 qrWLUMjrLvDuceMlEQq5Qfp5UWktEqGQz4f5+d+/TSIUcv4FnuvmL0iEQu6W tX1tQD6JUMj79vqattaTCIV8hKpy9WoSiVDIv0XeW/PnK4lQyBNTInoMekmE Qv72g4rfHJlEKHGcs38tCmolEQq57PYdJxqrSIQSn2ccXLiYRyKU2E5hidho ColQyFvrjmmtXurfoUKeltBbpHqPRCjkXa9e68rYkQiFnMXKK/PY0nUqVMgf zopLUmuQCCX4UbfUyr0kQiF/Yj5YRCNFIhRyBvaAmNVCJEIhH6+gAzvWkQgl Pg9l0PLDahKhkJtMasx8W+qvoEIuVPtjZOxvF6HE8SbfkEG15KFCPlPJqg6o SIRCbl2q+bCMnkQo5IWBbVaprCRCIfdqMNm+uIFEKOQ5qSdnHRpR/Qr6TNWt lhfuHSPaUehTPN9IuG5F64hCz+njW1bAj9ZhgD68V81D2QTdJwj9nkypD7ad aB479MPyOlSj7GieFfRMBhvitLXQPCvobVySWXOy0POUoVcJij44L4rGAaE/ 5aqqO8iOxgGht7rco9EXicYBoR9J9X5R/A2NA0Jf/obM1aCNxqegt76vs0+Y G9WpoP9BzT9+fAeqU0FfFRjT8KEO1W2g/2vyVDdKGtV5oBcs2lf+Iw/lFugD J7tCx21RnQr6dZkSsSVaqL4Efc70X78d+qhOA32SIa3mQWfE87emONU1U0Bq fOi6Y+JoO97tX/odb1EAjzwvLfk9ynU0Dq8eaq1b4ofPailsRjnwEcOhsJA0 MkjfR638+Tr6vscNy2t9VJZylCTNYLga2m9Bx8pVnNpJIDzMOmyzO9r/VowF pBxLEmAs+8iUz4d+X5bLa97GzCydN5mhXnVnUb207WPabb8V5qV/c/teHvAL z1c0TEfqT1fi+WpQ7qGEfCOerxpCOwriCvF8FZhiwy/0Gs9XYfMsdR3P8Hyl Olm5lcEXz1cNRy69jXTH81Uj/8dXaZ14vtqj5Cc+sQPPVx33Em4Zu+L5qv1h IedQ8Qrrecp7h8esMD5oo+xsFLcLz1fCyYtTm8/i869k9zZYmjuMglU2pLB+ +UdI/+/fUq4Y1WG5/SMJ6T/esrP+Jb1sJqGQW0bZM6y+n0so5N1bZbnyFYsI JbYvw1hn5FCCFG7f3sPy1u1yQiGfMHS9N3C8ilDIh2hM6vp6awiFnMv4+vTE oc+EQu7X7hH15309oZD353gkXn7TQCjkaj5GV2iDGgklvm+O7YX7Bk2EQn6G 6b1oL2MzoZCLj3ReoYppJhRyJ4W73b+FWwiFXMqVskfPpYVQyBu+LkS9ymoh FHKa3dKHHw20EAq56b7vPq1MrYRCftLH2EpHuJVQ4vfq21z7TbqVUMh14lXr LGRbCYW86v1GgzSZVkIh5/gzk/9oWyuhkBsMF9j18bQSCvkeqfcLN6hbCYW8 nf7IV4ZvLYRC7vZDvsWkvIVQ4nuJOfySi2shlNhvtFzr991uIZTYz/qCRht0 Wwglft+78ufnuFsIhXyL5C0vprZmQiF/J+op4xTWTCjk0TXVQ6x6zYQSr7c4 z32bu5lQyDtGdZkvtzcRCrkNrwSjeWQToZBLnwk0nDNtIpQ4nncxB0dvbyIU cpO1a19/nG0kFPJCd7Nb6dWNhBL72ZK9tDi6kVDifU2Lv+92aiSUeN8xByYF /UZCif3mzOj7R7GRUMjjbxk4uwk3Egp5fct9ziGWRkKJ/aOqziezqpFQyMUd sy6emmwglDg+P8Wc3v2rgVDIjbNqoxIr0fwr6E+YFWU+PqFOtJfQ0z0ecVr7 6wrBobfTp+gacqB1GKBf6wXOHdmJ7hOE3vme9WkNVTSPHfqs1i0flHjRuuvQ U6KL7pVloecsQ69bcTr1lx+aZwW9snbkN/2T6H5A6CU/y4bUO6G6B/TZPXTm V0+icUDo/6aSWyf60Tgg9A6vqoaDnNA4IPSjjOtCPC6i+erQX1K6PfIhAc1X h77rZMaF5udoHBB60itmo4h1KJ9AL1xwu7cjA40DQl9qMP3X0RnVkaAnP0hx 5LRE+QL6HZNde+dcUY6AnqNa9ULRsrpOZdyP1TNvKeC22YkYg3G0/WeiP9kb TlPAmlXXTI44o8+Tmnz+3f5fZLCaudRm3yCqU1HdmBF77E8Gqm3zm8wc0H4w ON9LJbyZDC5ZUGv7/0H7cyqYP2Z/Ngmw6fue3xGG7tN8yNToq6FOAkITRjGT 7GidDfX56vg3XSs8L4bGLf6VN87bYh5ovVXFxwFbRFdLFtDjOWoH89Az6e84 78h2FGupwvOVTIzq4dZkPF+d2+BBe94Hz1ciwo39iRfwfFU/kevVJ4/nq4Rr czs6zfB8RR9ertkQis+/WiWg0BRUgOeulvOeanJkPHeZkK03/PiF5y7h8VvV YzN47rq9zYfpxQRe7zpJGrK26cPzWOBGken+UjyPCTpVysY/Wcpj5pueaHTc Q/p//5b63/0F09o2MYRCniwlp32YPpVQyN3kptT3db0llODOl98qHs4ilNjO dd8TDsq5hBKvP34xZLzsI6GQqyV1/+H9XUgo5DcvdDyJO1lMKOSrf4dc7bD/ RCjkE7+tM9JtSggltiMa+euYUimhkHeLpQuPtpcSCnnLHNsso0YZocT3iio7 yRtZRijkQg+e52eWlREK+VCS6yOXujJCCT6zd5Enq4xQyC2jBbJlPMsIhVz8 3fVR2z1lhBLv277+vV19KaHEfg6jbqzSLSUUcq74K4uTVSWEEu+79sBTix0l hBLbdxKotLv7iVDI98w8GDnXWEwowanMXhzlKiaU4Bu7JxS0iggl9rNaDc9G n0JCIX+8fscLL/sCQon9r33m9vPOfEIJbiZW/wLkEQp54YbseYuEHEKJ/dM0 WOrJ8YFQYj/s9klTv5tFKPE5X+/PbKF5TyjkOj+On565n0ko5Kv4mys0N2cg /cf3D1T4Kla8IZT4/IfE+jtc0gklfvdx6mAlrzRCie1/czxxfWcqUsjtD9To UycjhVxc+NvDqUSk8PPPLCRqsCcQSnweprf+ThpxhBL7LVClMfTNC0IJbrS5 84tsDKHE+wqXrj+UF4UUvi/phhPv8UhCifcd23v9C+9TQiF3fph0VHcvql9B bzXtERnGcYJo/6A3+xFcl5ON1mmH/tyTlgMpnGh9ReijYzbT3Z57SHDor7+9 qceVhu7bgr55xvvJWj40vgP9gya+8yacaJ4V9OHSV9aFJKB5VtCb0zAN019C 86ygz6aamfBrQPOsoFcwKnEl26JxQOgzik/s2tSE7keDnm9VqlWXLxoHhJ5j k+GvplA0Dgh9YCqPteLMsufR/POjut8utOqhHAL9ic1cV7i7UL6CPkRr3891 PqheBL3Th1V7Zc+gcUDolcusTUI1UV6CPnR6K99sKMpX5g+CXmn/oQDphcNH x41QHhHmFwktDacAkYE0obWrUb7aW3LpJpXi0v+/x0c+/BTV0/hbleYN28ig wur5tVquZfPVXdVUZOzIYIzOTot/Fo0DyitMC/WvJQNNKQGjPS9RPfDMH93j bfEkEK0uyvrKDT1X6Bp30eNbyiQQeIuKI44fjQvHb2IYl2zEc1RqmqGDwlOc P1/YsGC2wjyroWd5OmOjeP0qhnniJssK9wPWb9hZ9+Qpnq+aq6JOl1zC89Vc 1f3cgp14vup+/5infALnj5WG3YQy8dxVNMq7zdMez10R3pktDO547mqhHZZR uoPnrsEMuj2G1/Hc9Utyb26xLp678hnfG3dL4bnrkf+mb/tncG54NsDc7x2e x9594NrgaornsfhVCtPj1HgeY7zCOE4OxrnhVA3j8fV4Tnuv+5Xf0A/nZi8o j46M4Xw27HGFruoozg8/tR8Kwvmpc+JD1+pHQXLy6c91B7cS+r+//jc/1mpt uNgNQiFf5UMaG++/g/Qf1xm91h/+zJNQ4vUi+/o9cryQQi6ofOy6vSdS+L5H nl7fvHiHUOL1ysmtSnN2SOHrFS3ONc7pE0q8/v/7Jx4XYH1oEN8P+7M5Gyby cU7L0Bi7/yHOjWT45KoNcH5md0CK3CacOyneFRHux38vcbdaHqEEnHt8iCss MMO5yRaLqHubcL7ebbvoZBd+XOkHedq5h+Fct1BaKEwL53xvabY8Y8b516AH X36W4sf5bo7C4S43nNt22oRkKeN816auwIIVrmtyygytdmTjnEv5bZKCA84F 2LXmGBVxvvb8hYeFC/j52+y+74jLJ5w3Nuqt1vLH+QeDt2wndHB+W01CwmET zl8yTXM1j+LtjKDEQJlhIc4TpmjzGYNx/qfGRbPSAucXFmyo/ffhfNydVLOH G+eWxba2r37h7aHR0O26hlqce+QuiNxJwTlV4rDtQ79BICQ5USldcZzIV9C/ tBlledNwkvh/0N89eOr2GYdrBIf+3c89FkKsaJ0r6DcYlt0xMUTrMEA/nFHo HswQQXDoPyj1tJxlQ/PYoR95HXtcyQitZwW998vkJyzOy9Zd/+c1pFicbl5D 86ygv84jrl/Dgvpr6I/6nUwF29E4FPSf6Q+8ufoSzf+B/trAUOgdZzTvGnqj Nbf8LZY95xf6x2GH6JQeonEx6Pd5b/VL+Y1yCPTxPaIvGN1QboFevVfL1nMn GgeEvuRth888HRq/gz4uvNyFfg7lK+hNeA+ZrR9H+aKR+ocL9VcKqOBuMNIr QdvxUeIeCbtHAdT+4sEzt9H79kls8nggTgFnsqj1bmxBnzP8hU6mSjUZXBD/ lGGVi+pyzGcKvcUsl/LV8bMq1r5o/1xQ5wx6wUAG97Vfqfr6oXz11usgh0gc CVTIJZ5ypEXjtnzxXvUb9y99n4rNC81f0bjwql957Kv/q189+PPouS/K//qy QQ56Dni+cnKv+v37Kz4+KMPaunbf5RXWW9D52n7aDs9Xl1j2HivegeertogO PsEBnCtXcTcnhOK5Ky0x+NzL/Xi+4nBbf9O9F+eKf7i+R9zGc1fgnE2ELTue u7ZxBMtnf8T5mLr5cW03PI/d/TmwqVcGz2M7vUVcWdpxvi3JcvHpNbydyY/Q CLKawvn5KqlQZxu8fZOUZskmdeA8503BkwJZvH1u2J8MzLxwrj3ApL25BOda DrFHLSZxnn2qVz9lA97vlLKK+znuxnnJVErApQM417EozeM9hPMjf+mmZVfo 13TuuOTZiOKcX55WyoUZ51Kn3VXYv+GfXypXiPd7Ds7bX7cdyruHc+XOEOsD J3H+5lj6vAQrzoVM47rEq/HfRShTzPWbB87dpy4O0MrhvC1bf1JwED8e6D+t LagMxflaJ1q6RyuscxvdlN05NYIfhwZsG40cnuDc8uY7N89DOO9OzJl1G8aP /6sabIc/h+H8QJhe/KeDOLeVHNBLHsHPL46s4xllT3FerDT9bvEEzlP2KgxX rHA/yx27Od2yPvx8z37qSVr7FufrP9nZvHHD+Xi6HvioiXOPi08nlIVxfpfb fmrnCtd9R5VloiIrcf7V1MnJJQrnqSFX7pXfwjmJe991Ow2cq0icqbm5DefS 8R1aubQ4l1d05NvVg7erUQW/2ko+4rzXZYzTMBLn4u5xxmQXnN/gZA+TPofz 4CF5Ltl9OL/PrDRSv/ErMG/3CNohi/IV9I2/qX4nH9RE/e8//5hhcXYsxAbl hH9+j+5HuTVU6HnN0JuIuucvSKN1GKDfRX3d6stJdJ8g9MPFpIjAKZSvoHcz zyO9foTqFdBXhZ9+pb4PrWcF/cmWp0WORmjddejfdx9bHyyO+mvov16jeKs2 oHwF/fqRAcbgC6jfh97uj3NJ21E0Xwj6az4lLzfcQfOsoB86c6erlRrlDej5 t9935bFC86ygL3/4oOf4DMot0KsFpsbxJqGcA/3QiUunm26iXAT93br7XB7G KEdBL7g/0YPnOeJVb9pNX7VRwO6euyFOd9F2vmuZHct2owDdstC1Z86h9x0+ +UegYSsF6JfM9Tzdij7ncJd2ovlSvgp6KeauNoC+b676rZYf1mTAqB2px30A 7Z9VHRoxrexkICSbmiiRgcYHqWkSyM8zSUBE8o+pmgSqK6YGPqDL1yOBtuyK mWJTNP/K/kzWdNJcF9hvsvvVb0eU223fxte2ReP56rTIa8F+XjxfpWskb397 E69ryXMJPtxfvsK894Iadve7eO6a1NGLLRbG8xWfl/h0bhbOPwaE7Wk5vMJz llutinwqcS73Yd16MxW8naE5R3WKMRvnQpRQD/FNePtZOsmeGrxCO0xXKfBI qBXn81k9e4s24e1/zIAc2dcS50Nx62oNV8h1JpdM4xJp8H4q/uGF4x8Ucd5O jpueMMW5AYl/bcsK91GKFdR+Jz9coR9MFU9MfoTzx/Kvazp9cJ4fGrJa6CbO Lb/nL0rq4XxRmHPNxx0491F4oBb0F98PJ5/KPbYsx7kf7eUcBh+cmwpaLdxX xXnZ3OOfwutxXsCyJ/xcN/47fnE7dzYjEefUXEHMoVY4z7c9ctF2B861ucOD Xo/hx5uHzVxVWjrO1T4brK6+hnPGmB8kfSmcu3yeOpzwEz/+/fbcj51dYfxd 85piaehlnLP4DAxniuE8O6Vw0mcQPx+ZA0Jv7n+Jc0/lTz+pV3hO+tMpYerx 7TgXfxqcu22F51utpX1dUJiFc+HnwU8qbuP8Lcv7xRNHcV58hsRlwI7zPH4h 184PeHtleSk7nVsb53xpTJzGv/B2z6bdmSn2Ec6/Sd98Wrcb50bDjdNlHXi7 uvlH5MIVT5wPblh4Gy6F85hZ99rNK8z3YBlfFOv2X+JuZtV+eq7E3+XZ6IIb bneBaH4xjyvr0boEPi000yOPukDh5GRcYuQzgjeJGd1JiOsCmnvWt2Q7orxx 6YrFRvqspe0bnysYDkDrPs2r90jzV3YB6a/GOwIeo+v6ugfXTk11dAG3s29y LhxFdZ5EpuPHE352AbEX5AGqe+pEvoL+hXh9dyCnFvF66JvvDw3ImF4nOPSS 0uYnQD/KV9Abx3QqRkyhfAU93SzHFWVX9H2hf/HYfkt4FbpPEPrTta7G1xPQ eqHQs0zZvVH9gfIV9IPq227aSqF57NBnBttRzvKj+TzQ1+6014w3QPOsoCfl vhJfM43yFfSGsWP2XN9QvoL+j9baH9mb0fwi6F/Pjyzw6qC8Af2bKrUy+lyU r6Bn32u6geUAmtcE/XikUvTRPpRzoL/44B6XawzKRdDLzQYa71yWF6BPNpBR 14tDfJLpLKNxOwXcFw4VZXmNtqMqtP2WojcFjJzYV8z6Gr3v6QyHk/07KGD8 u9C6J0koX309lSbY1k4GmlvN18xHobpchpBrxQNPMjA833ldVAaNk0pPLUh7 bCcDt8J9HjYyaH8OhVcNSbeRwODGps8Xj6Hx2UXWnm5OLxKo567eWjmLxnm/ npRmfLGTBNhe1hyfPofm46V98RA42bOUu1gZfrDPofPu/hrpm97BK4wb2swx iK3Hz/dFvU+5yiu0J3vG85nTD+HtVcQ2O634TXi7JxhGTb0YjvOLmaPi1gx4 +/z1V3pVqBXO3fVXcUtV4PzOqr+uf3nxfsTkt53xj/M4rzoR6zEQhfOxDNmT Myusdzp4qr5i3yLOlew1LvcK4v3j6jbPj5tlcd5iqTCpdhjn97/Gqr85hvPB fVwXc47gnCU0LqlJCedn5xYe2q5w/VsuzTjHwYZz480Wz/aM4d+r8NW2C0ZV OG+Rl6TmXGG/eZSNhLdb49zfusFMThHnNx16n7+mwrnW5Qzb4tIVxp0VSVw/ 7+LcTt/2b6wKzqVZy/cZUuM8VTRzzC1/hX58w3iDvT3OEytJP6OkcR5251LR i0b8+A8LPuKWs8J50S/aybThHX4emfTGSqqJ4rynvbygIAI/H9+V8w/3s+Kc LXpDMO+9pfO99o3X3OcA4u+uOd92szzsAoHl5FV28mh+rxzF7hnV66V+tifd PPYYGh8ZtCt+v+/zUn+6mmZiVxDqN1ULh07kjCxtx2y2SKwXzT8RartTc2Ut CRTSc3e2rkftUkzXyXUnJEhAfj5/KEMS9TuB4h+1z6iSgJspbesBDnRdP7NJ oeeRGQmMPXUIFPuL+iPtDHrGP3dI4NlUv81uEhpP4e5t+u6xtH/aqHvLXqai 69PzLNtOHVy6PhXK+So9eBWNs1RuHQuUqyWBP8a35y2WrWvNb79Z53I/CZjJ GT3LKkfzW14MvPahzC9t36VCxvE8ui4+v9l/eywnGcifVZEzGUX9nWfMhNLH bWQgtfNlILcCGq+h+97urgTIYDHu27MzE4iXS8l6btUmg2kdDbmBVNQ/loU5 nfW/RAa638YjJUxQPzKcWBp1y4UMJhl3aUWxon7TRuD7gYkAMvjKeoAre1l/ ap262W5dLBlUfXSeGTZD821m79550LN0HCq7brj4gRn1X4biVSOXK8iAcZ53 W1A64n3aGwdzOsjA7CsIGzmN+mVRXoaonp9kYOT95PnBScSfuG2fGFokg+1l P9+75agR+Qp65fofZ8e+oHwF/fvy2r28m9FzBqH/JZ/3cH0WWqcdeh07xaCW FNSvQa/ccNDI1z8Sbf+fP3ik8t2cJ1oHEnrV+8KvckJQboQ+1XNEptAF1TGg LxliW3RuQ/kKenn5tTesOtFxDv2nx1VMfwrR8Qz9d/PqVkNTdNxCv00sLi5A Cx2f0E+zm5pa3EPHG/Rqzy25V7mh4wf6v0xCJZSOZfcJ/vPCBzYW7dBaNo/9 n49MI1+4TUE5B/q/+cMvOD1QLoI+YOhrxuyyXAD9pdRpnd/L1l2P2PF3y9c+ CrhL7fmbRgXlDrPyZ4u9jyngZ5Jx73MnNP+qpz3c2vMIBfA/OWeq8AZ9zkd/ hg+BKTLY6suw5djwsucDRtoahCaRAcvJFwpyMmg/CG5pF6Y/SwZiRQZmCSzo /H3+6dY+JlYyaEu7eO5BJ5rndn73Zc71pSSQaj4mztmCfi/j9Aseka4kkK28 +4khHRr/3ST4M41JgQRMXhuYBraiHJ7wXnMgb6oLCAlMXHutjfL8hGdyElvO 0ve3C0yyNUb3a3gefftF2w3PY9lcf3US1+LtvGma/+q5hhWuy6Ztz9Z44v1I sorSWV9hvD8K53zJW/sK5901626/5sD7uyM7/xSEH8b53GslhXQrnEfsotfn XmHdidJ9s7lU0Th/OO+SmZGywvOmZZmfuaXhvDF9grcyCecb+x6fnonA+V79 TK573jgvfKW1OHpphfcV0E3LUsH5OoEeJnN+nE90ifIxd+L7k5Hqvt2hGzjX Lz+g7k+N80c3TQ9O+OK/o889Ce6Hq3HuEsvtfcYbPx72b2q6oTO3dFzNc5zn DDhE/P0Iq7QqyXaJd7NubppH69jI86fXrA/rAmN9Zs53W9Bxy573vqgjtwt0 cyT4h6qg64vVu55aTXUvXUdHMIU0d6P7fVpFFar30S/171UBzqOCKA+wf51P uLuUB9iqecjv9ND9PifT3Z4m/TePkzNVZcshdN6JV3BzeNwkAVrdDzESTajf T8lPkPnzhAT2p6eW0Z5B528V09bG3nwSsDI7rsrQiq6nQLqQukIPCWjyTbKW q6D5A2cUr5t105ABz/W7ARxJqF1Vpb8iUrFlqX8M+NAx5Yr6a3DxbsLXI0v9 /tNhg+PRqJ15s/3+sIgFGTQeldHJy0H9tZWIcObdu2TQHH9FaF0taq+4812V qeOXrvt+CGzc8wX1y0d7BjaGFC/1s9dMOde1o/73sMoTQSUKGRw0AXZZjag9 rGtwGJuaXWr3pp7X7SlB82b75SbW13JRQGreDZnMV6g9v7TzQvrHpevWhGMx mWYBqL2ddJw43qhKAc8lmn95LXtOq9QZ31KW8xRQfLjynaEyav8L63atc3Gg gDzbdXHKjKjdOjmWKrU5gAIuPOGYcqlFfORY4Ne18RQgMnrxhMt9dJzSyh3O OJJDAVIjwnefq6Dj2p4v6ENbHQV0hb5OVp9BfM/2j16f/5tn4na4fyQRnTc+ zxgWZCcpQLSXynV1GuLQl0t6/93JiDj0k649FB7zZXWAf743o2RSsxx9Tuh9 Pa4FXpVAHHqVVLm9tEHo+xI+ckvEq9ll60D+85UqPuz0FxGH/owHX3BaPdr/ 0B/6wX3oxF7Eodd1D2AWOPyIyFfQ63JaCjf5nyJeD33dZy2nK/UoX0GvOFmu 8ug6Wqcd+nyJX300x9DzmqHPowNrNtqida6gX338pgaTIFqHAXqjsynhD7TR /WLQP9EiFxoMo3wFPSlR4M47HXSfIPTqAtsjZYxRuwH9Rh1GATpqVCeBXu40 t4/5c5SvoB/fvt5V0Q3lK+j3OTUwyb1A7QD0XxjUBCXuoPMd+qjEL92/ytB5 DT2/CE9N2bJ1zqE3flzekBuCzkfo811iB5I40PEAvQ8vlaT8sus/6OcX3WjX tqPj+XrvL/7UOQoIjaO9lK6OXu8RXf6EM4MCFu2e5O8vRsdPclZuwZAlBYTv rXh06AD6PFEOcZJvNy9xpfQdorWo/VF70zH4jUQG1mlU87st0feNiOHvpYsg A0NJE2cvfrR/3t1yueOmTwb1G6w9yJ9R7ioJEN5fyksGJnu+zzFHo/a5I3fx gQKZBO4rG2SvTUf1xs9RrxMUEkjAK35rYjId6hcKf/7O4LYlAUaK5946dTRe bKk9wrrh4FK/o7h7dGIbGl9mF7TKvrOeBC7p/GULTUXXswfnwPjN0aWcZqfO Gv4G3X/xQSyJX3ip/SrUNrrHYYaul9uuJGU8W7pe3p8gHWYxiPrNxhSVO+Oh S+f792NH/HxRHfjtgfSfIp5L3JIyOntbh+CjlKQH4nZ43kvsW5Uo8gjn8t/4 ztxNxHlFnXnoRMoKdXjqb9fFonB+kqOEZ8x9iatt6jzGgeYJVLOsef3DYen7 Dm6yGc/wQZ+f6sPFvHtL/BrXn5mQUII/OMhg8fPJ0nZcP145chTtn+jZLA3Z //bPK2MPTVZUn58sPdd/qnxpP38azz75EOWHw1tvzs30dAFVey71yS+oHSg2 3nWsd3Fp+0H0dtTS6DrrV17v9nIBEgg0qmm6XIpyuNTA6QvG+0ig5tGuh6rl aDx6Yf/GUAsTEtDnLrDfcAC1D5MS1tORnkvHm1cId3E1Ot7OMcymfEokgZKG haw1pqhukOifvDWyhgSm5Tka19Cg+sCRKlvX8V8kwCNXy8abhI7z37kmkQHc ZBDY48t8SRTlh99arDcO7yWD9NMv2dY6ofOl42c7Vf8FMrgwS6oLqUL54ckD LatjPmRApmu4ks+NckLiKt/RE6+WcoLxg8uXTdB5+r6htbGxgQx2sdHnPo9d dn2nl3Iib4IMdDsDHnh3o5wwPMd6cZyHAm4XTjebr0d5QPyedrGJEgVYfd2Y mHwYtRsq3fpek4YUoHzlr22r5bL5DMzlaxJcKYBliFnQ3wcdd9R8N6rMIinA 5VYKu2ckapdMn05SSeQt5YfhswcCX6L+d3rB+fHvpXatmzwuHZGK2jfrT/dr cpf6d78fpYumBohDXyzwy/7cJbQd6ElTX+/tcUPvC321eKpZ0bJ5B9D7C6aT KivR94J+pqJtYs0c2g/QPyt9ZQ52Iw59hLrUGpabaH9CLzxaq7AxH7W30BeI np3hXIM49E/k+nf7nl/2XNd/nt9gpIYnf1n/8s/LOeo/OyOIOPQLffeu9Huh 4wT6lyy7mjXG0HEFvfqcPPdOE8ShLztS37+pGbX/0G/UmRHMV0cc+scFEh7R Zeh4hv7TzwK9q4cRh34+3pq1sgSdF9BHrvvTfO4o4tBz3orh66xG5xf0Y76X eSe1EId+0OSmf/Oy5/9CX0QTZPP7E+r3oe+0BtNXq1SJfAV9uaal5Kz4aZQn /3lLoQD3TPMbBIe+jkOQwZb1Lspd/3yjqMETzSqUr6APuVMfKrctiuDQv/r9 +wJjMMpX0Fs61DrQklG+gr7xvGBJvxy6LoM+28J4/eMolK+gJzcEROdGoXwF fcFGsbytPKj9hH6bVylHZSzKV9BnSKw133AV5SvoqQN+NmZcRfsZerWnFZuV NZbVr/75rG5FlnZndFxBLyYbahCUjY5n6E99MjbkpELnEfRHxc9WkzXReQr9 afW/R84tWxcU+sCTRjd//kbtCfR9ehvi2IsR7663i07tooBChxgdUU+0nXvN as7Vzyhgaw6dXt5p9L6v1wlsjTWiAK89Hh4M8uhzHj171C3lv/rMb+c7VLvR +dt7+tcdne9kcNulJVJfHZ2Ppr/i25gyyEDkgDCfuTs6jwzqaKpE3cjgj73h jEg7Ov6/jmVuoNUiA8kG6v06yWj/5zYmqw0uXefuV+R2OjiK+rW0KN0h9r8k sC6cS8LHC+W0AA1VpbddS9fd9WOmuVboutvAVXtq+CMJ2DTcLAtYdp+j5YLw KVI8CYj0VnF1KqHr9y8R3RL3H5FAJh+J/dlmdFxtlSy1nXVfyrf7RE7RmqC8 x/JN8TW/PQk8y2Ys9xpF4wVhxh/eddmQQHrbgTtdnxFvWGhz4LtGAvKKNUe3 LSK+UblkIvU6CaiGhH+YuYW2L3RgdrepwxKnSjpqIos+T/t1TQO6pZzgwJT9 lV4eff5p/kNZOkufP7U4rOagPfq+4fM/RthjSaBwywVlsVF0XuypPEPzJ2vp 878udI2MQLnCKtPPMuMzCRj+DgNX7dD5EqNdxE4/RAK07UkNevaoXjF+uPhU DD0ZpDaf5d/8HP2OB5MGWxWXfsfkxI6Q5mXrp01aUC76Ll1Xf+ykemQbg86v nX46z1UslvIA77j2nU50/Bzc+DJM3I8Mhr4U1bwUQMdbiS+X1eRS3jjIIcFQ eBGdd/sDb6VYNpKB+CdDm7fL6rRnCrdmHZ8ig/EsmqOhf1H/tTjVy2DOTwEP vd/rJp5A/ePvlikjrwMU4FC0j+5YBDpfmi039zmaL51HlWNF9H2oX96rsbhT wJ8CBtdZfQvehvp3WaWIU8deL+WBpk9C1ZfReVoYfzKN1EgBqkz7TV/Fovxw TvfxSP4EBfhcOWkbtW1ZPeGft1qQP9i4iLYP/V8Pmsduy+a/QE85oZYs9Al9 TugvnRNJYs5A3wt6e8aZrjupaD9AL7dDmCl22XwD6Bffb0j0ylu2P//53oaL 4kJNy9qNfz7/yxMp49/o94K+T8H50QaBZeM7/3zRbWq7TZrod4f+ymvnjTvv /7+6zjyeiu+N47bUV4UUooX2SJvsS4MkbZTIEhKhzV5CSKuyRUpEWUIRoaSS ihJCyFpy77WlyFYoRfy8Xr/7zHNruP88r/fHeY17z5x5lnPOzKAfBva68a6U 7R2OH+DYTRzb189HHbg+wOtysAtL3svkkqW1cyIqcNwCe399qDYggzrw7oHW fG81jOPAe7sYnOKL8boAVoo97P5nJubnwPppDjZafHh9AQe4Pc1cIYj+EHgo Leho02K8ToGn+ZopxKiinwT+Yaukl2iO1ztwFydjQMEX/Scwe0+JekIW+g3g YU7bteqd6GeAp6447H5kGerASuXWuiG26K+Ay4aOzF2Sgv4NWEf+vmhSP/pD 4Pqy+bRkNdSBg6tfvsi/hH4VWM/9CnGzCesv4O5bpfKdsqgDb17o8D7c+iiZ XwH7VZ57/ysd8yvgtsuHBfY2YX4FbDHJOPaQP+ZXwJXZv3Z9lWSp05l8YvOH PXJJmF8BW986Z+VBw/wKeHjdttwHEli3AmvSeU/fMsT8ClhSwodHOx3zK+DZ rYvfSIRhfgUcYhX2xZVlvRvY77Ks1mYHHA/AXWaikoUzcRwC835y+eDxCcc5 sDitfJVkN15HwMUn6HebfuJ1Cjzk3Jd7kGVdGDimqP72ksXof4BX8WdNtlFF PwbMfarQ0V0P/SFwv8ZAR445+lXgeVnlqilm6IeBi0dXWvOy7Js4MneSl9JH BvF7WtcdfxqLH279E1ObyCD0C05eixDD/1vha9W/+RiDUChXjUrzxu/pts50 xk8tBsGxd5tq6x/8XUE8nW9lx+KU2qj749Zo9KvuLZbb9cbq6LNHFeO6bbB/ fHrbtwSMxcEUw4FrJfroP2M15kQLZdKJOxX7/ytnmTeLXTeVXfg6nfhy7ghf bRL2v/+TLPbEs3Qisa1GabMA6jEidkS5C50QuDtPSTwe/eebsyFvQ8biuKbY TKnP5qh/FeMobdxLJzw0Zexeq6MeNfnK8nhTOpFf8fL2ua2o5/4+dPaJGZ3I jPLvuMkyL7F9yym5AUs6cZRd48L6t6hHznXfv+gIneC9zXtKTx2/p9KzIsn/ 3OnE46f7FK9Uoz7rludb64t0Ijx/qmboWeyH07nzvvZF0YkcYdp/uTrYb+eV X909NJbfNnjtmu+6Bvt5dk1nm3cpnfDT6xLiXobnpfaBg3LrZzrRFqyb93w1 nke9mx6COpMYRFiuduTAJoynpxvcox0XMwjnqDhXXjscD49sbCPZN47l59nO iqejMF7Xfqxa+GQsD4lR4bjfWoXjamtH8ja9iwwi/faOE+38OJ7PbTV/7J/C IIYF/PptWd7rNJcje2RZBYOw5HXSMw/FcR7BLvFfdx+DaP6kJzltBerA6RK0 knNf8fjAL17wZIek4fgHnrvm4E9fN/yewIwpQf1XN+HvAi44XpDwYh72A/C8 tKmTm4awP4G3e0X8TmvG/gc+7mjg8LwSzxewA/+uZ56leH6B5XpFl6tU4HgA XhNPO76WjuMHuCXWOOr4DxyHwL6z27YLiKAO/EwkL653I/o9YDHlAnHGL8wT gM+mG8c/PoH+E/i8mY9FFz/mCcBxBQc3tj1GPwwc17Duxi9nzAeArwglZtmv x3wAeOOCp8QpUcwHgOuvvNixnxv9P/BPcTnJjewY94GlROvubOfBuA9c/LvV JVEc4z4wd2xmhxvLeivwjP77tb1OGN+Bc27afFa9i3EceObVpiEJGsY1YDWO d9ctXXE/DPDcvPXJyeI4bw/MM7fF+Vo9vscEmL7CfaQ8DteRgTPWjZrwumGc Ba7M5EgXN8Z5Y2DFKmPJDk1cFwDesNIgz0oJ7/cHbnSSqotSwH1uwP4XFB4+ XY9xH9i25HTLn604jw0cLrTL5PFe3B8CnDjyzN/QHdcjgCX1CjX2huNzn4DL ff8kV7thHgIccG2ern4x7l8CPnXL3cbliBaZXwFniZ0vMxfRJ9sDS6213NCk fBTHD5ObJEuP6jVifgVsZLNl3XobzK+AH68T+jXpK+ZXwDzJlzmtB1nWB5ls URcTILwWfxewhdH04kBt7Gfgd1sUb4ucwfMO7J0hY7NBFcch8KHXe+7IPcRx Dtwy5yq73AheR8BGuqJmH5zw+gWW+pwe9Goy+gfgWq27LUF70M8Az108+eEe ZfRjwImLAr6Fzkd/CDy63abFjQ39KnDodFvFXQ3oh4FrrbofnE1Fvw189sna LREO6P+Bwy16bA3nYxwB7vvj31HGkl8Bf6HVOEW8xXgUsHNon83vsfyqluY2 2wHbVwjLnjxaxSB8uOZ3u63F4z8JCmmSSGcQWxbSVgoIY5xaYuy34E0wgzjk Nyr4agF+T+9ahaO+Y3laGfvL9T16GKd+O+mYBpiPxUe/mye87+LvbVwxEPlt K4NYM0kjiL4C9fTCRdavVMeOs8LqC3c1xv3fJZ75bDIM4h5/z3bvW6ivMQxQ j1rFILKnx4tZRqC+NmXVPc+VY/lhyX98DpmoG1yYN997zVgcX1n5k6cPdQsT 4VFneQZhPyoQrrsLv0+VwpvNSzTG8k9j00bBKtQzToS/MtzBIEzytoSxO7Ks 7/uGbS7cxyAayqMmBy7D/hnW3TJPypVBHBApCJ71E/WeN75SyoFj/SC4PLfp I/ZzuqGqzu2xfNjEVrZNtgrPywavdvuFLxmEhZpnx656lud4ZGjdMWcwiIWS URsvduN5/3w5Wo1vZIwf5f98w/LcD+C+pNkLpErx+MCGEQUDnCzrLMBi+dez Qh3x+wPT0/01BwjsB+Dq49sIYX7sN2B7qRzBp814XQC7C2T/cHnCkrczWUBT OSjxKuYnwMkDCW4X3fB6BC7tsDBYaoX5CfB7P7F9e3bjdQ0sbZ3oQ9PDPAS4 /p57gpIx+gdg23C+7sdVmIcA0+pSjIR40M8Aq6fXTm4ywHkJ4AAh3lDZR+iv gLdku2WNrsR8A7jQmabBlo15BbDcf0fplSboD4EN7azO9fFhXgHcL2af8+o9 +lVgr68PDl/KxPwBOEUm2CQkjuV+YSYnbKQFd29Avw18wb9JvcQK8wRgH4H6 awNxmCcAWzTuko8fxbgAnJ1wJnuaG+YDwLuEU8QP8GA+ACx8Ykf4j0yM+8DP ZB5kcLhiPAL+YdQzuZUl7gPfWbrLgV0W4z5wtIb/o8rVGPeB/Xkf8zUrYdwH Vrjjtu56Eq7vAM9ImuLsP4j3hQHrq7vpLrHA+/GB8/L7H4nRcZ8DcIVu+kUz R1yvB87vTS7pnIXP/Qbm4LuTzF2M+6iBhzRqNfiCcN8gsMUoTfHqXryPD9ju qb/kTlV8HiZwj9LapsVLcV8BsOk5eRtREXz/C3Clrlvia0ncjwSsQR9pSJLB ++yA/Xbl8tfp4H3owNP41Vf5uuFzO4E/xu2ZK5OB+x+Ap6e3VL6bvZHMr4B/ a8wfqd+L+RUwLVGFv8cJ8yvgWzpHg63/w/eSAJ/SvLNzhRvmV8BWNikHfL5g fgXs/nOtQxwD8yvg9EAFock9OH6AzWcKxidNxvEMfHuR5KsPs/A6An5uIa7Q HYL5PDDfpK1RwgroB4B5E/blvdRFfwI89fA6OxNf9EvAov0+18pq0L8BewVy ns5di/O9wBu3DTZVaaO/BU5vb5YYHkD/DGxhXbI7PpLl/YNMVlQwj1CWxXgB fDH103eb5xhfgDncDnyYsQ7jEfDFmOcbvC5h/AJW6ZxXuq0C4x2wRFJcYsh3 jI/AdwuElar6MJ4CGy/kVxasxPgLHPHkivJHf5b5BCZrOR3eVstgWe/w7lls N8wg3LieHTjhhPpJNsHlkr0MYrba572zWNZBjK7qPZz/hUEsDVc5t4Ib9bTT bk9UWxnElz22Xxomoy7H09NoN6Z7+IlFMaRQ580OifYbO45O4e1NwSz7oDt9 t5pZj/1fe2W9B8Ms+9l691x7XjDEIGIXHWXjj0MdWKX3YBEbJ+rAyrlCUw9t xf4BTnonKv3HC/sTeFqj9T3PG9j/wEtXaSekp+D5ArbZp+9ieg/PL/ANwbTl sgk4HoD5tk8R+RCK+SHwbv+9wUWeOK6A0zfPf7jXEschsFq0Yvg7LZZ1Nyar bhewWyyF4xl4bkdJw6pZLM8tYfLP83SrMDa8LoBpHTnxZd8xPwH+0DB19br3 eN0Bi3Fe+8X/EfMT4GfBzb2/WdaRgc9xlznvmY3zJMCZf9qXahugHwA24Etp 9r2N+QmwTVXK9Ag+9CfA8b7TjR8H4vwGsPt5/djPC9AvAUt4Xa3tL8E8BJhz cW0YuzDmIcAegaPRU3Nxvxlw46Wp3DkhOC8BzMPVHHjZD/MN4Fcb+iI/3cF5 BmBP1zibzg70w8B1c9nli3QwrwDmu7TwfkAl5g/A3QvaJDcdxfwBeN7mGnae /ej/gUOEmiTvz8T8AVg6JzA/tw/zBOCf+znP+LNhngC88+2+rotyGHeA7dy2 CptcxnwAuD5Welk+y3MagSviT5fn3MO4D2xtod5ocxDjPrBLVo3kck+M+8Cf v1pf8NPHuA9s/nrTdH1DjPvAX5884lTzwbgPLEpf98KqBOM+sKFLn5iULL6f Dlh2W0KRSTbu5wH+zzpEnNMI71MDftb0SMZ3Kj4fANjtstBkiQS8fxPYnkPL SX03vs8FuD6vLr10Kb5HD7hh5vK0lzPx/cXAy57cXHlNFPMN4F+Nei7SirgP HPiIRW1Uux3uawUO+CV7wvURPhcdeLm14/fuWXh/E3DUwOWI41PxuRDAUTLy I/NmeqDO5DsVpfevpm8g8yvgGAHp3e4+mF8Biz+WFHpwEvMr4EOufLUXOfD3 Arfo3TqpY4b5FbCZsLX1xyjMr4Bv+82+IB2M4xw4ZFBZeKkFXl/A+d5beXeG 4vUL/HBT5Gml/egfgA/7v6iMCcV6B5gmVWnreQHrKeBBJ9UpOtYs+1KYnM65 03eKIc4nA2f8+S0hpY9+GJhHM8l5/i7058ApQmFeEkswLgDzfmz5NRaBML4z eaWzfoLmCMYXYPNh/te8uzBOAUd3xhSmXca4BvxomplkDEv9DizjJy9cwHKf C/A3pUsnTmZgnAVeLtNwJMkL4zLwirKP+fHLMI4Dd6Qm9xmyxHfg1XdXia6a gfkA8A2HGyEzd6AOHHtVTtDxMOrAXPSfFfP3ow5cxVMZt18ZdZKlzra0fsfv A7x9zkP+qwGoA2+sU3mQxsOyX5fJv95yfUx0wH4AzrB8dU7oOfYbcMaDE8Sj Qexn4OjoMxt2LkQdWLlRb0+6Kp4vYNWgodTw7Xh+gbetMbyTw7JOCvywZeac TAPMW4D9YojYfj0cV8DKmziMSnRwHAL3hi7/bLiVZf8nk3dtVI+fcRXnW4AX vbfmko7C9R3g7IgdHXPT8HoBfmxs2e1SgXkL8JyAo9ccOPC6A45fnbq9WQvz FuCgwuo0lWjMW4CVT+yfFjoN8xbggoK+3FuXMG8B5tJ775ezE+sy4M0nLI1q 0nGeBFilfOCNpQrWd8AzzjlJFvRhfgI86/T5HLZazE+AXYr20l824fwG8FC2 vr+HIOYnwKNPD4u+ZNmnCtxZu9CZ7yPOVwAfqG9WLJyDeQgwTapdJD0K/TBw So7BNB9jzDeAxYMuvOncjvMMwCe3PW9+cgzzCmAxVRelixF4/zjwtyhnvTk3 MX8AFj/ifu/UN3yfGrDSAbfPxwIwTwC+Omfd1zkHME8AXvzF3XSyN+YDwBk1 r+95BmM+ABz+9mu/y+kAUgde7Zy1rLgQ4z7wO4eLkdKGGAeB694c3Su3HOM+ MLvQt/OS6zDuA58Srty0xAnjPnDUCa7y1kcnSR341NNvz3kbPLE9k3P+OIr2 aGLcBw63ljB7134cfxeTFeyU0vleHSN14NWxrzlH3uC+IOAGjXS72kF8XhPw gPTZ4sQteP8LsM008+knXfH5z8BP7DYXawXhe42BW3YXivTW2mL+wORvU2dp dG+1xnHC5PXpJdtftFuSOvBkbR+u8lQLUgc+LEKzfiBlhvkAkzkvi7Dd0DQm deDfjBhDyzi8zwh4F5eFw4+NeD8gcI/94Brzgw5kfgWs/ZoYrDmO+RXwjpuW GTyWmF8Bb2zN1QkrwvVB4N59UsuImZhfAZ9a1JkxYxLmV8BRPp7TfafgdQ2s EKJP33IG1zeB7QfCRV1Ynn8F/Cq4cuVcZ5zXBfZ7md2dpYl1HHCkUot+/B30 q8CcPE2H/DTQPwPf1Ek55daG/hxYMpHn2Vs/jAvAgRb0Jf8txboYWFl1aEf/ Pcy7gH/IWXLb8LLs42Vy8KItUx6wPN8AmPC/sS9pA8ZH4J2DA8v+KGE8BTYM uyZTL4TxF/iGyaxFXdWoAz/Pat5y0AXjOLC0Y1zS1G+oA1tUCpeIbsd8ADju evo7K1/UgSWdOmtkYlAHLrmV2KIfjjrwO6WA9l+OqAMnfH08mLMCdeDJw4cV AovxewKf15rZH6uLOnBV+KvlR55hPwAf/9nz3Zel34B/GCvL3TPDfgbWHRSp SLyK5wW4sFEiUjkPzyOwpYqGl1QLnndg3wiPPZuHcR4GOLmjKclSAvMZ4OVS Eutc9DCfAb4rkL6l9wTmM8Avf/Sv70zCcQvsp/JtCV8jy/5DJp/cKGl6eQGO f+Abqarn1jvh9QKsb8SoPMzy/F7gYws27eDSxOsO+GiQRx3fVayDgD+sWti5 qBTnW4BV1CfFvGB53h1w1tODo+nPcB0H2Mw3oE7CHesyYOXI58MVFpi3AMds 2N54+zPmLcCHxNdzfNuHeQtw1+S5S01X4jwJ8M9tlidUtHDdBJivKFrQ/Q7m J8COF26oJ+tifgLs1/Gj5oA9zm8A2+rOfp6bifMYwMOptZFNBzAPAT7j8+XX wVM4LwHcXiTzyLID8w3gLXdzpF674jwDsF1yatOCa5hXAIvm8ScHK+Nze4DN 3iu0rTVgeZ8ak8NL7w96pOD8APA9W9vqWfvdSR34R35dtlg25gPAng3C/nkR eJ878MxXxlr+jfj+EeDaHNWZk03wvbrAGSNWvD6nMb4D73j0O2mW2n6Mg0w2 Sk14ttJzH6kDVxk251ppmaM/YfKNtqx3TtomeL0w2e3pDO4zTbtJHXiVTF1V 9SDuiwYeGk6qt3DH5ykBO092Vi2Kw/ewAI+WZN1ubdmCeTiTi5UW9kre2ETq wEdvuNC+P9HE65HJ03lk0zdKaJA68L7iR4K52QSpA8d+o9/2C1MmdeD/dskK vaqWJ3XgrlKhniMHZPA6YvJCk+GDC7XXkjrwJ7vjzwQ/SpE68OTDL1amJy1D /89k3c2HZgYNLkT/zGS1ZYorfIPmkTrwz96oNu7VQnj9Mpl+/srCy+l8pA6c Z98+dfp9NTK/Ah68oVRnuAHzK+CXs+Rr8oQwvwIuTff7dM0Y8yvg9s+H3d+G Yx0BXBDCn6MmjvOiwE+dPna/0kb/A3zNy3RBuTHOAwMn3vsS/HIGy3ONmOwb WTD3uTrWicD38tIO30xG/wz8af+eYVdFnFcHnrHbMOp0F8s+QybPfdkexL0e 57WAbxRwPKw/i/EIWI6n8lDvY4xfwI1f5Idz32G8Ax6Ov1zrUojxETh7eMMk tlCMp8A/pgQKLxZmyceYfCegQnV2MerAb2UWjey2wPgOXCjc8dD2PUvcZ3La G/vEvWsxTwB+WnD+HeMQ6sA8Huwf+M6hDhwj6CgZ5sOyb5zJ5kFm7wLNUQde 0ma320McdeB4w3YRpSL8nsBLFAcifxqiDpySbLpYtJJlnpDJzaeT5eVYnoMH nHmj+eSwGOYzwKmvZ/rb3sd8GPiGBZ1v3Wo8X8D1N+86v43E8wtsezd+4fE/ OB6Ak7PqHq8yxvkZ4M79uWoxDzCfAR6YI/1CeAaOQ+Abj537XY/h/AzwSTke 9VWtmM8As6edmeSUi/MzwBaMffvWvcf5GeCArtmtL2bi/AxwY7hi4XZXvO6A jU2EXBU5cH4GuHthZseMJ5jPAMslfPy1Qx73WwJrfZ3Ns1Ef8xngxt6847OL cB8IcJpDauT7YJxvAT6YH7gp7S6u4wAr9JwtmcmyTwM4ybqgwjskgtSBu5Iv lB04i3kLMJHyvObXIM6TAHvNnzbc9QbXR4BXb2ubPnACn2sBfGSd6vKtfSzr GkwutLCODZuD6xfAU7r48gxeYh4C/KB3b+QFlroY+LLMtwv0L5hvAFv1rmQ3 uHeA1IGnXjrmP+kDzg8Ae508Xc2/3xR/F5PPK3QuWsCP9T5w/v6L8SeeYdwH 9nBT23SAW4vUgQk9VYsTneuxP5kc+pErkk9eltSBVRcqKzwywTgLnLXOTmPj PoynwClckxnPhjFuAivTLg3lnp+K+TaT39e/LcpWGF0POrD5LtkV7D69pA58 iF30+aF4BqkD02T99FatLSZ1YK2C68sOv0wndeCEmNuMTZt9SR341dGU6B7F SlXQgb2aiydrCrqR7YHVm3dEC/BfInXg72YH6w4uCyN14Eo7iYtfl4aTOnBx h1LbPmlsD1y3fb6mcmMIqQOrLylaxh5xEf8vky+4ntRS0vEhdeDPDuJyeVuc SR34yZ1X7brJ+0gd+IiMacgGmW2kDtya4nc0SXctqQMHxpdELTs8jdSBvSX1 Xgw+rCX7E3jSClkvN393Ugfe43aq/kjl8ArQgYfrP+1IbMR5lU27esU1RmjE gdgpRisFUJ9VYRD75juNcPwsUmnfh/Wg3/Tac4zpNGKwMrN6qALrwcFS16SM kQai6KvXl09GmP8EaB3TIvqpz9UZUShd/XEx9bl8O1eVP1xylKrniPXFCaRT daloqdo/76m6t9DKNzY9VD3yZg9t4Tnq843Z83y8Re5R9dQNAiH731J1g6VR gSotVN3VfEZAew9VP5AZvVdoiPoc6WhlXqeGNdT3UGyS7f3VaDrO+yyuF9fo n6TqndeNR46HU/Xe6nDR8DtUPTvlptDZb9T3cw3c+p6XoUR9/1eESe+P0mNU fXZsibnqLaqulHQuzPPVOO8Raxqc94dOfZ/pUkWNto5F1Pelsg3XclzeQ9Ub r5u+sz/fRRxes/tm8U6crwbW/bVBdqE+1rPAV1e/XrAoF+tu4JWh/vvmzMf5 /38ZPpJ7xu+HmAn64doE53HrBOdxQ+T453FLzfjnUWuCcftrgnEbNcG4fT3B uH0+wfW4Vnz86zGZeT2Kl//tH2hM/8D/5W//4Mz0D2WDIk9WO2DdCrxhwdmb k13VyXoQ+O5A6XrJ0GrSTwLbrDbZs1nzLakDf+78cqfNGNcvgLkc5lUEVqMO 3MN70jj+HY4r4JDb5x6Y2WFeBDwr/6ympp8f+k8mG/GM1OqQ70vsJa22hI/D r9CvFD2djY17VwdVV6t+vSfjfSdFb3zQFH8vrouiK5zm5yzR7qbojwftOVaF U9uHy9w+ckuX2v79p4cFn1uouuOBXYFpBj3U32W6c1JOAlXvXhn3zvFAHWlB /xz+35xZbXWkBf3+ybA//vrvSQu6oGpG3MXM96QFfWBaWnUR9wfSgh6TullN /VQhacn+bD5wScf8DWnJ77t2pf197hK0TP0qx1GLwROlpCWP45y/veXFW9KC nrt0QNS2uoy0oCd7p66Je1pOWvL463pOfVWuIC3okw6Ufrh/roK05PdMXuMr VxSElqkb3PTsbwm5SVpS3/luaTFbImlJXeXIn5P0u6Ql9VUmv6ccTSct+X+l wqaqXL6PlqkfinXlyN+eSVry9z7ole9Mfkhasv2qhSp697JIC7qP7dtbdaaP SEv2z+MKsStPH5H27/GFH4VLW0VECep7PH8ZGHnezqHqgwqtd1NWUOORYNSZ /0wDqPra5vHj1+MJ4tflCeKXd+T/49e/en0QzW1qAlUv+iTZ++cRVU8RC57U 9oKqZ6bb2B9+RtVf920ZznpOfZ9X7RyrqMfjvH9W7t6iLb3jvN9TKXX8/ME5 fvz8YZJ9dNyQMVXvnSe2Y10QVS+bIH8w4A7nm1VH1Y/R+T5dp1P1XNXC1Af1 VF3f9vUunlKqfkblZ2KNEzVPc/OzMLN/StWTJ8jrvkyQ1zl7ZMrP0qbqPvJW +psdqLp8Z3Tf1ECqvvqKseCtWKoucGTHL950qp4g7jSilkbVqwuV/CITqbrd jicWoWFUPfHY67vTy6nP8f6eaTnpjiA1f5ARXrzbWG+c99RMkIfPNj/jU3ud qndvcNT/9pyqDz679cbjA1VveDBg/KCDqpvVy9/J66Pqfi6pO5aNk/+8fOF8 0bd5nPemhXZLGJVRdVtdyYJzedR6h/OpS9CprdTnjSdnnCv/kzfO8+oVx6+P JPtmHurVoeotoUlsZ65QdR2eVdpNBVSdTXj8+sj2urtyVx9VT/+hHL39M1WP EvbcY1ZM1QeU6n5w36QTPjNPd/HdwHm/X4q+zT4eNOLI9dKNBetw3q/dzP+e rBGNuLP9nk/5etxvUCllIhunRCOM1HOnub/E9cquogX33y+gETEtf9enDsz6 1M1vm8KzUpzfe8+p3Jk2iUbMFs6yqhvF/NP3iYNd82AD8WVRQYmvL877NT/Z 5Wjf3UCsCdm2qscQ9cUlUr/ndDUQFT9bPv55hXqAU6Dl3N4GIvjwrPWB+Xh8 PaPv5So/GwiLye0HQ3fi95ntrjVbk4NGHC3w9n+2BueHq30ls1+Y0AnujerW cxfiPHDrVdPKVBU6ccFSLjvOHefb3SdxPly3iE6ocablDHHgPPDAt2s7rXjH +v/D3/W+NLPe743+u94fLf9/vT97WkqpbhjOD6ewLf3z+SuNyNcTn8l3GPVu Y+tan3YakfLs0rEXgSzPd0qUXms/1r7alMNYdAj15ZOeuJ76RiM6xbWzdqbh /410Efc7O0QjkrfSNOx2sDx3fYqs+74lDKJ0W1QIB8vzPH8vPmNdyMMguI4u PeYSgfsWCjdyTY/spxOZt6z2WP9m2XcxsOFddzOdSN79imMKy/M866/psBXV 0AkjI+k5onKo7+0yMRJ7Syd+FKmE9vChPprL/bSpiE7E3ao3cudH/awt479v Y7r2tC5dHZbjqCvtWrJk7DhSMoKqD0+iHnr8Dff2sf9bfI7/uk0aXje6Kwyj I+oZhM6R+vTP79EfLKkaOpD/kkF0XBb3cl2O+i5+8SiJNAZxVpktO/8m+psV HQqDDdEMQjMwoH+KCuqLpfoCWq8wiOvOg3qcbKgPXJ+joRg01p/VhApXB+6n LUrouFLozyB4H2rF9g+i/unc/TOOgQzCXu5x7N4VeJzr7WtieEIZhM1V/Q83 7mJ74NFst6Jn9izPHWJyu1dTXzvL+zqAd1s/8jO5gDowp0Tc7iIa6sBRm+// tOXF/gSuSk3gbBFFHVjIfmS7LhfqwO32u1JfHMLxBpzDXSQUyvK8I2AFAXfN Djsct8AKHiHzLJ+y6Ezm4LZmzG5DHVix7N7a292oA5f+/LsuBjb4py4Gli+3 m/ntGu6rAXaKC/hPlwP34QC3pnsdnLsNdWA371X39I+hDlw7/HfdDew/qXTU bliUnIcElvIRectmgN8fWJzz7/bAYn6HCOtKnHcB/mJ+izODn1oXr9HZ+kDQ hloXLx9Yc1JGg1rnvtcM0Vvzm6obdfZeMx6k6l88s/LFb1Lr3wvJjx35FlDr 3OVlsXcaT1H1XOevXtJJdaQFXXr/8hRJsfekBV3cdvlVnfPvSQu6CkdUrz7j PWlBF2SXdnNxLSIt6MXLP+8aUSgmLegDDumrbxaWkBZ0v81DU4cWvSUt6A99 j8/7pltGWlI3szfx215OWtDrO+tHT/BVkBb0qxn5/FpWFaQF3SB3uE573TXS kv2XduTV8dw4tKBvPht7iScJLRwn7ZGHldc90oLesdaZ/cmlDNKCXjPys1TA 8wFpyfZ/ykY+Tn5IWvL4fFXVfvJZpAXdJ1U4vpHvEWnJ9h93FXy8+oi0f48L /IwMpM7OPEmtTy2dlN0GB6i6Kb+lUIkZtQ59V+wx9+Ajql5vXDVpMSe1Hnx3 tqhhrzpVz5JTNA9xpurajj5TVa5Rda76KuneNKpeFuM8oD1OHXr5+ym9jnHq VnrxcReBIWp9mvkitOXuAWq9GSQbaOxfSNWDb97uaxam1ndhcrObf2dS9baT sYury6j6W5Ont3QbqPqaui4vnnHqzR+fxRRSqqm6Ku3btsZr1DrxuujwwMkG qv5+oQ23jDC1/uJ3n59omUrV98Ss+J40Tt3H1lbN23yXqptpTVf3jKbqIa7a Gtf6qPWdu0DFuvWy1HpnlCdc/vc47xtteL1Jv+M7Vc/83iLjOY7u/Hp9V0U7 VT82U3uRyTj13eeRK597plDrpirTTdHSF6n6Eq7SiMYBqr7jbJueexu1fplb byP1cZw6KOEuj9XDceqm7rypZu/qqbqpR0IAXxad6KzSyuoww307oxH3ul4f oBGD9JUCuaq4zyFXIjuoSnusDjqTojF6CPcFNYX8uHBrJY34MlVXb9tG3Ked LPh0voYwjVhD/xZ2+yPWI6ciX9zOH6tH2EYXz6DvQV1wsvp3+bH6JVzEV63b A3UvafG6WWP1jpvKXOm10li/FBf5TJHqayBidF2//+eB8/l/+lZabRpuIOKP jrzcEY91ikD16KElW+nEtB01Wd76uF+lNcZrr+lqOuFI05tU8ADrlLh9P5Jl Z9OJx5edFDbb4n4VT1p7f84kOiFeOJz1xx7rhb4NUYnfftKIhsmtJdzFWF+M tIh6FXbTiACPlY9euqJ+/wX/hmUdNGKKkfbCemfUC1Uvp/SM1S8yZ9f47nyK evGiaJ0fXTRibuwkoaht+H+16S13p/ygEVzukt4lVZgHOk83sbogPJZvb5hh Jz2I9Ui56fxpC0fpBEfE1au1mqgb2JzeLPOVTmhO9hdamI11QZgzX1vxRzqx lBh1nWqE+hfCoLq1gk5YPmlfNGc+6ssGRUqOjtXdI/rXvJ1ZnjsaVMHPazlW j/A371CrZmn/5pWH6cWx9vmLdval7kadpnJt5NnY8Qdb+h2PETh+9UX0vSXK xuqOO093M07gddP0YdZS+8cMgmeBo90LOubz7MYbqwYTGUT4T1+LiwdQPzOH z6I2gkF4LjZ8Jy+CupVx5jruEAZRJF0nqNeL9cKR40OfPALG+lPb5klfJ+pq YRGz5ozp/HVlnjXT8TjKduusXl5iELF6w+nXZ6AOHNYf39T0EnXgwhzLeXm6 +LuAax2/6Gc8Qh04Vqt5MOk36sCZbd5ic0Sw34Cja9/f+zQTdWCNIbPzdo9x /ABr3rE/KayE+T/w+o+VKzlZnq8FvODgmwbeGtSBP22NHA1jqSOAL/+ThwMf GlKPl3qH9QJwVXWU1NYVLPv5mZys32NWwPJeVOBDSn+vu/3L8Nk2QR4iO0Ee Mp+Zh3wzCd3y/OAs8u/AHZpG/R9fhZL/B/iD0d/tgc23/93+X4ZP0ATxd9EE 87drJpi/bfw6/vxtVej487c6P1Oqv4lT85//JshnztqNP69uPsG8er/s+PmP 3LK3pl30DuJkX6OT+jHcTw5MfCh9PVcS71P7l+GzfOmQ3q4O6vupP725V5jH N857t0UEpZzGyYtmy1x9dncFVR8c/ZWY+YyqW78xUZi6k9pv5y4qOI8qfSZO ODVfF7J3Jf8OHNB+InbGM7xvDvhgk8blX4K4zw1Y5velLQKxqANrqvVO+rMK 9+0DT7WxYd8xC+t0YLXXtxfIbKLWrbndgafW8o5Tz07RaDi3eZx13tzmuSFB 1PrULaF95IcYtf1g5sOQPXnU+jRcvHCO/FyqzpMU/qfIsJq0oBtUFSm3rc0l LeimgU2cucY1pP37ePgpa9UvmvGim8h1C2WcEykgLbR33J98TiLrqQq0B95x XY4/1RSva2BvNV+J5BkB5HUMPPhPe2AHub/bA8/+53wB7zz49/f5l+Ez/e31 63Ql6jhsHdTMWPWHer3vn2A9rjw4XOzDhk8U/eAE63S//Oft1w6jts9OHX/9 TucNd1VZM7X9lIqnRVvG+b9lQeOvq4qf8OHyud1O0S9MsN76TaeXPZKng6IH TLAOW5bTf0l/L7V9WOT467MfxGqJ3wnU9hmTxl83VJ+g7nNzsjtuRWsnDAL/ v74O9v9/pY5nbeZ4Nghkrr8H/r3+/m/7ketHT3PN7yEMtJnr8tp/r8v/2150 wD55s0MPRZdkrhfXSP9//R7sRMeJcxi/fo9ruOmx6UEPseWL+3HaTPSHwCfv cuYs3Yf3CwO7F/Hqbf2A+6yAH/Jx7ck56Ebq/zJ8pCdYVzWZoC4OFTFt8LCl 6twTrOsNV1VvMFhPbe+R92KSZz1VXzvBOuBjdRMNfm1qe7Xla1umdVN1kQnm JbJUu7cN/KZe79mHx1+3XeDFxXfRhdreOMn09Ew76vE3TLDOq8kwP/31AvU4 EYfu8saGjLOOP8G6sMa81GsvQ6jHGbnCtkQiiXqcnRPMRy0pWLzdr5LqH6aY lY/E8FB1fc+zG2fwUo/zkjb+ur+s29op4RLU4+xPf1jhrDLOfo8J9gmYKj0W slKhHifn9NZV0uadBNdyt5MCjnifEXCabKmXpRDuMwTevVr1xN3A06QOrCaV LzxvB/hRlvnqO6oRxd1U3SgzWff7Gup8+I74u8rZAp8pOv/qm+VyV6nHqfho Gna4nbo/bcpytt+L6qi6Ud+r1j3W1P97IPwY/6FD1LyFTTDDY6h9nHn1orXS TTnU9jGypgbTVlPbT1lml/tnhJrnqF3PMfvtQtWDp+mprfKi5jMWLl5+f+pr SQu64mDp1+xFdaQF3d6IL6G2v4a0oAtckBPk3faBtKBz+XM9vRhPJy3on4sc 4x/8+kha0HNncS4YkfxAWtAPSfXvmB9dT1rQk2PUb6jYvyYt2Z6tdHGwdwFp QX+4bUPNgOcr0oK+5RW9zTKngrRk+xrzVONbFaQF/ZyGWc1P/irS/t2v+Ckz khc53zcW1z5dOzMS6EnaidqHZ0j9Cj871n7zFa6i8kekJfuns7U1qewRaUG/ ahgrv2l+HmknOn5uQOKJq0FUP8ZtYeCyqZiql1TOd5EapurB7NeOOSym5kVK a/Sswmqo/jD4ycXV39vGqbNi/VwPKlLzpaTOU1eyvKj685DTioqZVH2907SW B2lUv/RSQDtLPp3qh13Vb/tNbafG/bluajre8t0UvXUZ2/5AN6p+8P33Z6cO Uf2nnKaS1L2UbmJQ7LlsqAr1evy3vffF1YcSvMeJgy2frd3uUPv56ATrAhKL Ri7EzqHqahOsF8RFB+8bOElt7zfB+ksB52zzvCvUfLLfcfx1GT+b4C827FS9 lm/89ZrOuKMxMXvH2qcx173S/ln/+ufj7K7lu+r5mF9LZK6HJf69LmZgkFl5 6ogLaUGvIf6/TgYW9OQl+c8iFYJJC/qtqMgPNyJrSAv6MUfz+yryVaQF3YLW c+CNRwFpQc91W32xTCGPtBP9rikT7Ddj+zDry90g6vm6KDk0TyWTen6v24y/ r6/GjXC8uYF6Xn5rGjIYLmPnRYK5z1Xi7/2uPvH/X0cES/bb1H3J8zsiSAu6 pFb3KsU4vE8Z+Ni04UeLFfH+d+C4uutrVD/iffTADwMXjohU431qwKPKxLcL VvicHGCdKZXaexKOkDpwrgF7aIIdNQ6q0fu+2ChRdUcOTlHlNur1G2b2e/3z RQzSgt4Q/cXw3Z4G0oIe9S4jvauonrR/Hw8/sx5K17t0jPn/tDs/E5beJC20 D9bLizjNRf2eRrfSnDKWUPX/ARP4otw= "]], {}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0.5000000000000011, 0.}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(rf\\)]\\)\"", TraditionalForm], None}, { FormBox["\"\[Alpha]\"", TraditionalForm], None}}, DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None}, DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(rf\\)]\\)\"", TraditionalForm], None}, { FormBox["\"\[Alpha]\"", TraditionalForm], None}}, FrameStyle -> Directive[32, Thickness[0.0015], GrayLevel[0], FontFamily -> "Helvetica Light"], FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 500, LabelStyle -> {}, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], FormBox[ FormBox[ TemplateBox[{ FormBox[ StyleBox[ StyleBox[ PaneBox[ GraphicsBox[{ RasterBox[CompressedData[" 1:eJyFlwtMllUYxz8FzZwaEeJKuy1FSjNGqa3bsa20tLyQpkyb5WpdZopMCw0v 1coVSw0VEYeSMrVhhIl5Y8jlA0INud+/GwLhB+Y7S5dlW++5PM+7c56xzl72 /86P9zvnOZfn8j24bGXcOyEul6vS/htg//HP/bVPInJnBNbtYGZfarbBs9nJ +77onXcyFzn05f/zjffzWcZu3k4hh778XqExTiHrm8c/FSOHvhzPbYzvZkOb DiQ8O7QCOfTlPJXGvJXs4SVbS65HX0AOfTl/lWFPFcu2R2s6UI0c+tKuGsPO Gva4aHXIoS/trTfsr2el16NtCxqQQ1+uo8lYVxOLE4Y1I4e+XF+Lsd4WFljH J2pFDn257nZjH9rZKr68BA9y6Mv98Br7A30/cuib7395bsRru9p8LMEYf9jO ew9OOuFj0YY925dOvFmW6mMdhv13P/L0K2+s8JH17vvzZfvxkf0Zd3bRtZRx PrKfR75698WHBvhYibH/sfM/Sj/d7mXrjPOC9cQa5/vc5e324yX3oezY/m83 rfSS+zNrw9HOUbO85L7VvFQ09ccor9oH534uvOvi19MHelm6cZ+9HtHYEOP+ v324L2bNKQ9LNvwlmPjP58N2eoh/JWjn6/jjjdv4TnvUvI7/rq8dbz8elmT4 e0jmlOr3Qzwsz4gPcpvb2SYjnoTJjVbciT9pt5ZVPpbWbtwnl2tMxSr7oRzm NTms1+SwzyY37yu0LHWvTL5Z3WeTT7WtyZxi+oPLJa7tRsr57We/UH6naAHC Q5P/+KAjnvK/uhvcx/ZT3ivOm3JfQUbS6090EC6Odz3l5ancISk//e/ztmtf IvyH98b69yykPKtu8FMfZlG+QzgS5Zu/P3/ljthOwqV/Ur5i47bvfiqlfJm4 EF2ELxCNchkXKI8RF7SbcHENMymXcec3wpM+5o3yrlE8QlAu41oP4UU8vJ2l nEfPpRMvEy7ceTfl/FTqBgcJX9067dDw1ZTLPEL57NE9+Z/O7iW84AxvlMu8 00e4jAOUh4qNvkJ4oohjlMs4SflMEYd/7ycOUB4l8shVwoVbpFIum8UWiP1I QdX5HlTgECf1eAnv56ACHynixFFUfZx8VOBBcb9OoOrjn0EFXqTyQpGWH2De YlTg58SGlKDq9rhRgU8WB12OqttZgQo8S+XBLC0fWmymsPs8KnDpmL86qvhx lX+Pa3nYtkfE72pU4GFinTWoaKfK+0Et/1usTKy/FhXtF/GvDhU41Bt63WGf i2gNqMCfmXDP7XbMRwVuJ1s7sjeiAof6R6+DLHbtCA/UTajAWz57tNl+UPE+ iHjTjAr8EE9jc1tQgW8RCasFFfgaEVdaUYEvyRu0OG9QGyrwF2QBiQp8gqob J2j1o8XCVX0BCvymqmtAgftVPQUK3K3qOFDgOap+BAWequpWUOAi3Yb7UYGL ZS72owKXdaMfFfiutvvtEs+PCjxl+sDCtZMDqMBFmNsQQAWeKAqqACpwqDvi +fEu6iB2TrMP962gw/eq+mj83pHfhCZfQu5R+zhCJJBO5KNVHXeDf22fw+PV eXv4smK6kKerOt+t5WOLNap7mcPLg/ndyCOWF0cuL25kqXYVUN/l8DjlP2u1 vGuxbaLuqGNvvso9qQd5laiDatkM4UgOH678f5KWXy2WJvbhIovk5Xqhw8PF ei+wW9lz/s6eE0S+RcWvTi2PWmyMsL+cVfBtTuxFniHsLGW5UXyj+5BHqvir 50uLjRXzFrBkUdBdMcb/mcnfCQ6PUPlDz4sWe0C8f5BJNzJ5GpO/x64id2nN Qm7mM53nE27mG/19N+FmPtDHqSLcMuK1Pn494WFG3NTnbSE8xohHuj1ewg8b fq7bGSD8SfE79FI/9nfSeQ3/AR2i1acOn6vVmw5P1+pHh/uNewwardV3Dk/Q 6jWH6/WX9b/6H2AJiao= "], {{ Rational[-15, 2], -250}, { Rational[15, 2], 250}}], {Antialiasing -> False, AbsoluteThickness[0.1], Directive[ Opacity[0.3], GrayLevel[0]], LineBox[ NCache[{{ Rational[15, 2], -250}, { Rational[-15, 2], -250}, { Rational[-15, 2], 250}, { Rational[15, 2], 250}, { Rational[15, 2], -250}}, {{ 7.5, -250}, {-7.5, -250}, {-7.5, 250}, {7.5, 250}, { 7.5, -250}}]]}, { CapForm[None], {}}, StyleBox[{Antialiasing -> False, StyleBox[ LineBox[{{7.5, -250.}, {7.5, 250.}}], { Directive[ AbsoluteThickness[0.2], Opacity[0.3], GrayLevel[0]]}, StripOnInput -> False], StyleBox[ StyleBox[{{ StyleBox[ LineBox[{{{7.5, -250.}, Offset[{4., 0}, {7.5, -250.}]}, {{7.5, -150.}, Offset[{4., 0}, {7.5, -150.}]}, {{7.5, -50.}, Offset[{4., 0}, {7.5, -50.}]}, {{7.5, 50.}, Offset[{4., 0}, {7.5, 50.}]}, {{7.5, 150.}, Offset[{4., 0}, {7.5, 150.}]}, {{7.5, 250.}, Offset[{4., 0}, {7.5, 250.}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]]}, StripOnInput -> False], StyleBox[ LineBox[{{{7.5, -225.}, Offset[{2.5, 0.}, {7.5, -225.}]}, {{7.5, -200.}, Offset[{2.5, 0.}, {7.5, -200.}]}, {{7.5, -175.}, Offset[{2.5, 0.}, {7.5, -175.}]}, {{7.5, -125.}, Offset[{2.5, 0.}, {7.5, -125.}]}, {{7.5, -100.}, Offset[{2.5, 0.}, {7.5, -100.}]}, {{7.5, -75.}, Offset[{2.5, 0.}, {7.5, -75.}]}, {{7.5, -25.}, Offset[{2.5, 0.}, {7.5, -25.}]}, {{7.5, 0.}, Offset[{2.5, 0.}, {7.5, 0.}]}, {{7.5, 25.}, Offset[{2.5, 0.}, {7.5, 25.}]}, {{7.5, 75.}, Offset[{2.5, 0.}, {7.5, 75.}]}, {{7.5, 100.}, Offset[{2.5, 0.}, {7.5, 100.}]}, {{7.5, 125.}, Offset[{2.5, 0.}, {7.5, 125.}]}, {{7.5, 175.}, Offset[{2.5, 0.}, {7.5, 175.}]}, {{7.5, 200.}, Offset[{2.5, 0.}, {7.5, 200.}]}, {{7.5, 225.}, Offset[{2.5, 0.}, {7.5, 225.}]}}], { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}, StripOnInput -> False]}, StyleBox[ StyleBox[{{ StyleBox[{ InsetBox[ FormBox["0", TraditionalForm], Offset[{7., 0.}, {7.5, -250.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -150.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, -50.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 50.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 150.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}], InsetBox[ FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], Offset[{7., 0.}, {7.5, 250.}], ImageScaled[{0, 0.5}], Automatic, {1, 0}]}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], { Directive[ Opacity[1]], Directive[ Opacity[1]]}}, StripOnInput -> False], StyleBox[{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}, { Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]], { Directive[ Opacity[1]], Directive[ Opacity[1]]}}, StripOnInput -> False]}, {}}, {{ Directive[ Opacity[1]], Directive[ Opacity[1]]}}, StripOnInput -> False], {"GraphicsLabel"}, StripOnInput -> False]}, {"GraphicsTicks"}, StripOnInput -> False], {{ Directive[ AbsoluteThickness[0.2], GrayLevel[0.4]], Directive[ AbsoluteThickness[0.2], GrayLevel[0.4], Opacity[0.3]]}}, StripOnInput -> False]}, {"GraphicsAxes"}, StripOnInput -> False]}, PlotRangePadding -> Scaled[0.02], PlotRange -> All, Frame -> True, FrameTicks -> {{False, False}, {True, False}}, FrameStyle -> Opacity[0], FrameTicksStyle -> Opacity[0], ImageSize -> {Automatic, 500}, BaseStyle -> {}, LabelStyle -> Directive[FontFamily -> "Helvetica", FontSize -> 14]], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]}, "BarLegend", DisplayFunction -> (#& ), InterpretationFunction :> (RowBox[{"BarLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{"Black", ",", "Purple", ",", RowBox[{"Darker", "[", RowBox[{"Darker", "[", "Blue", "]"}], "]"}], ",", RowBox[{"Darker", "[", "Blue", "]"}], ",", "Blue", ",", RowBox[{"Lighter", "[", "Blue", "]"}], ",", RowBox[{"Lighter", "[", RowBox[{"Lighter", "[", "Blue", "]"}], "]"}], ",", "Cyan", ",", "White"}], "}"}], ",", "#1"}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{ "2.108361745389586`*^-97", ",", "0.9998968179756643`"}], "}"}]}], "}"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",", RowBox[{"LegendMarkerSize", "\[Rule]", "500"}], ",", RowBox[{"ScalingFunctions", "\[Rule]", RowBox[{"{", RowBox[{"Identity", ",", "Identity"}], "}"}]}], ",", RowBox[{"Charting`TickSide", "\[Rule]", "Right"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "False"}]}], "]"}]& )], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[1226]=",ExpressionUUID->"e55f4135-fe5b-415b-9f27-342ed37bfc32"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DensityPlot", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", " ", "\[Theta]\[Epsilon]exact"}], "]"}], " ", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{ RowBox[{"(", RowBox[{"t", " ", "\[Omega]\[Epsilon]exact"}], ")"}], "/", "4"}], "]"}], "2"]}], ")"}], "2"], "/.", RowBox[{"t", "->", RowBox[{ RowBox[{"Sqrt", "[", "2", "]"}], " ", "2", " ", RowBox[{"\[Pi]", "/", "\[Omega]\[CapitalDelta]"}]}]}]}], ",", RowBox[{"{", RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Epsilon]rf", ",", RowBox[{ RowBox[{"-", "2"}], "-", "10"}], ",", RowBox[{"0", "+", "10"}]}], "}"}], ",", RowBox[{"PlotPoints", "\[Rule]", RowBox[{"{", RowBox[{"100", ",", "100"}], "}"}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\<\[Alpha]\>\"", ",", "\"\<\!\(\*SubscriptBox[\(\[Epsilon]\), \(rf\)]\)\>\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"ColorFunctionScaling", "\[Rule]", "False"}], ",", RowBox[{"ColorFunction", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{"Blend", "[", RowBox[{ RowBox[{"{", RowBox[{"Black", ",", "Purple", ",", RowBox[{"Darker", "@", RowBox[{"Darker", "@", "Blue"}]}], ",", RowBox[{"Darker", "@", "Blue"}], ",", "Blue", ",", RowBox[{"Lighter", "@", "Blue"}], ",", "Cyan", ",", "White"}], "}"}], ",", "#"}], "]"}], "&"}], ")"}]}]}], "]"}]], "Input", CellLabel-> "In[1227]:=",ExpressionUUID->"ab880d17-1a5d-4829-804c-d616454724ad"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxc3A/st3td1/FL6cgfCeQIInjieIwwIpvlYrelwiqUbDoinGWxGoEux6Y2 M53OyWwNVztz89vm5szWrjZlNZy7HJPZsPqKOMkyyz/ZH/pihJJ1iFjOaXX/ rvv1eH32vu817j37cl3X+f3e78/3MeXCJ970da9/yydu2/biL9u2u7/nn9// E3/xPa//B7/wzr/1qtmX9jMe/7an/tnTf+Chz/f2H/m6r3nt+3/lh9rPPP/9 72x//d3HL/qRh64/2l/8wjd+48+95l3tP3ze78faj/3UN9z/fz/efvp5//e0 v+WP/8k3/aef/Yn2efmL/nn7Ld/zZa/85Tf/i4eef23/2Y985bP+7W/9ZPtL zn+en2p/4d3tv/t97c87H/DT7Zd/31t/5Kdf9jPtx89/3ve3X/Cxb/rb1x// l+1PPv/5/1X7O/7Rq//JX375v25/6/nzrP6mn3vN3T9R+xvOn+/ftN/6O1/6 tq96z+qvOX/en2+/6eWvu/sJ2288f/7Vf/4r7v78u/afO38fq7/8/t3vX9H+ 0+fv5xfbf+r+P/3rPrL6Vefv65faf+yX33z3T9T+o+fvb/XnPvK193+Cf99+ xfn7/JX2yx4sRPuJ8/f7H9Z+3P3jvPA/tl94/r5XP/pd54a0f/f5+//Pa79/ 9NvvT2D12855fKD97ff/3Y9/2wcems/qb77/tO9/4r+0/8Y5r9V//Vzg1Q/2 87bmd/+n/b63rv5r5zxXf/Xdv/3RD7b/6jnf1X/l/m/7e9+1+o3nvH+1/VV3 v543rv7Kc/6r33B/2n/vE//rOg/nPqz+8vv/7uf/4Oo/c+7H6te+8m7AH2q/ 5tyX1X/i7h//Y6tfde7Pf2t/wd26fO/qzz/3afUrf/MD3/ncL/rwOn/nfq3+ 3Cc/eO/JD67+nHPffq39B176od949net/uxzAKtf+u4P/8O/84d+fe3XuY+r X3Ien9Wfce7nR9qffnf7b1n9gnNfVz96t26P//f2c8/9Xf3sR+8WdvUzz33+ jfYn/eDHX/HI165+2rnfq7cvuvsF/Y/277z9bt9X/9bP3x/vj67+Py+5+wf6 n+3/fS7c6o8ed+dh9YO/n3qot+1X79394j+7fsy+tPkxP9/b/ND80PyY1x9t fmh+aH5ofmh+aH5ofsznX9v80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND86H7ED80PzQ/Nj+53/ND80PyY 81nND80PzY+5n7c1v/ih+aH5ofmh+dH5xg/ND80PzY+eh/jR+ccPzQ/ND80P zY/uR/zQ/ND80Pzo+Ysf3Z/4ofmh+aH5ofnR/Yofmh+aH5ofPe/xo/sXPzQ/ ND/6/Rk/ND80PzQ/ND80PzQ/ND80P3r/+DF7295392M8tvyYfWnzY36+t/mh +aH5Ma8/2vzQ/ND80PzQ/ND80PyYz7+2+aH5ofmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+dH9iB+aH5ofmh/d 7/ih+aH5Meezmh+aH5ofcz9va37xQ/ND80PzQ/Oj840fmh+aH5ofPQ/xo/OP H5ofmh+aH5of3Y/4ofmh+aH50fMXP7o/8UPzQ/ND80Pzo/sVPzQ/ND80P3re 40f3L35ofmh+9Pszfmh+aH5ofmh+aH5ofmh+aH70/vFj9rb943fc/XlZ/Zh9 afNjfr63+aH5ofkxrz/a/ND80PzQ/ND80PzQ/JjPv7b5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH50f2I H5ofmh+aH93v+KH5ofkx57OaH5ofmh9zP29rfvFD80PzQ/ND86PzjR+aH5of mh89D/Gj848fmh+aH5ofmh/dj/ih+aH5ofnR8xc/uj/xQ/ND80PzQ/Oj+xU/ ND80PzQ/et7jR/cvfmh+aH70+zN+aH5ofmh+aH5ofmh+aH5ofvT+8WP2tn33 3a/93vJj9qXNj/n53uaH5ofmx7z+aPND80PzQ/ND80PzQ/NjPv/a5ofmh+aH 5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofm h+aH5kf3I35ofmh+aH50v+OH5ofmx5zPan5ofmh+zP28rfnFD80PzQ/ND82P zjd+aH5ofmh+9DzEj84/fmh+aH5ofmh+dD/ih+aH5ofmR89f/Oj+xA/ND80P zQ/Nj+5X/ND80PzQ/Oh5jx/dv/ih+aH50e/P+KH5ofmh+aH5ofmh+aH5ofnR +8eP2dv2jede/776MfvS5sf8fG/zQ/ND82Nef7T5ofmh+aH5ofmh+aH5MZ9/ bfND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND 80PzQ/ND80PzQ/Oj+xE/ND80PzQ/ut/xQ/ND82POZzU/ND80P+Z+3tb84ofm h+aH5ofmR+cbPzQ/ND80P3oe4kfnHz80PzQ/ND80P7of8UPzQ/ND86PnL350 f+KH5ofmh+aH5kf3K35ofmh+aH70vMeP7l/80PzQ/Oj3Z/zQ/ND80PzQ/ND8 0PzQ/ND86P3jx+xte/C9sfyYfWnzY36+t/mh+aH5Ma8/2vzQ/ND80PzQ/ND8 0PyYz7+2+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+dH9iB+aH5ofmh/d7/ih+aH5Meezmh+aH5ofcz9v a37xQ/ND80PzQ/Oj840fmh+aH5ofPQ/n36v5ofmh+aH5ofnR/Ygfmh+aH5of PX/xo/sTPzQ/ND80PzQ/ul/xQ/ND80Pzo+c9fnT/4ofmh+ZHvz/jh+aH5ofm h+aH5ofmh+aH5kfvHz9mb9sXnL/3l9aP2Zc2P+bne5sfmh+aH/P6o80PzQ/N D80PzQ/ND82P+fxrmx+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+a H5ofmh+aH5ofmh+aH5ofmh+aH5ofmh/dj/ih+aH5ofnR/Y4fmh+aH3M+q/mh +aH5MffztuYXPzQ/ND80PzQ/Ot/4ofmh+aH50fMQPzr/+KH5ofmh+aH50f2I H5ofmh+aHz1/8aP7Ez80PzQ/ND80P7pf8UPzQ/ND86PnPX50/+KH5ofmR78/ 44fmh+aH5ofmh+aH5ofmh+ZH7x8/Zm/bZ54/x/Jj9qXNj/n53uaH5ofmx7z+ aPND80PzQ/ND80PzQ/NjPv/a5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofm h+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5kf3I35ofmh+aH50v+OH5ofm x5zPan5ofmh+zP28rfnFD80PzQ/ND82Pzjd+aH5ofmh+9DzEj84/fmh+aH5o fmh+dD/ih+aH5ofmR89f/Oj+xA/ND80PzQ/Nj+5X/ND80PzQ/Oh5jx/dv/ih +aH50e/P+KH5ofmh+aH5ofmh+aH5ofnR+8eP2dv2u85/XX7MvrT5MT/f2/zQ /ND8mNcfbX5ofmh+aH5ofmh+aH7M51/b/ND80PzQ/ND80PzQ/ND80PzQ/ND8 0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oh+xA/ND80PzY/u d/zQ/ND8mPNZzQ/ND82PuZ+3Nb/4ofmh+aH5ofnR+cYPzQ/ND82Pnof40fnH D80PzQ/ND82P7kf80PzQ/ND86PmLH92f+KH5ofmh+aH50f2KH5ofmh+aHz3v 8aP7Fz80PzQ/+v0ZPzQ/ND80PzQ/ND80PzQ/ND96//PPUw/1tn347j9Of/L3 1o/ZlzY/5ud7mx+aH5of8/qjzQ/ND80PzQ/ND80PzY/5/GubH5ofmh+aH5of mh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+a H92P+KH5ofmh+dH9jh+aH5ofcz6r+aH5ofkx9/O25hc/ND80PzQ/ND863/ih +aH5ofnR8xA/Ov/4ofmh+aH5ofnR/Ygfmh+aH5ofPX/xo/sTPzQ/ND80PzQ/ ul/xQ/ND80Pzo+c9fnT/4ofmh+ZHvz/jh+aH5ofmh+aH5ofmh+aH5kfvHz9m b9v7736Mx5Yfsy9tfszP9zY/ND80P+b1R5sfmh+aH5ofmh+aH5of8/nXNj80 PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND80PzQ/ND+6H/FD80PzQ/Oj+x0/ND80P+Z8VvND80PzY+7nbc0vfmh+aH5o fmh+dL7xQ/ND80Pzo+chfnT+8UPzQ/ND80Pzo/sRPzQ/ND80P3r+4kf3J35o fmh+aH5ofnS/4ofmh+aH5kfPe/zo/sUPzQ/Nj35/xg/ND80PzQ/ND80PzQ/N D82P3j9+zN62Hz7/+yCfVT9mX9r8mJ/vbX5ofmh+zOuPNj80PzQ/ND80PzQ/ ND/m869tfmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+ aH5ofmh+aH5ofmh+aH5ofnQ/4ofmh+aH5kf3O35ofmh+zPms5ofmh+bH3M/b ml/80PzQ/ND80PzofOOH5ofmh+ZHz0P86Pzjh+aH5ofmh+ZH9yN+aH5ofmh+ 9PzFj+5P/ND80PzQ/ND86H7FD80PzQ/Nj573+NH9ix+aH5of/f6MH5ofmh+a H5ofmh+aH5ofmh+9f/yYvW2Xu1/7veXH7EubH/Pzvc0PzQ/Nj3n90eaH5ofm h+aH5ofmh+bHfP61zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/N D80PzQ/ND80PzQ/ND80PzQ/ND80PzY/uR/zQ/ND80PzofscPzQ/Njzmf1fzQ /ND8mPt5W/OLH5ofmh+aH5ofnW/80PzQ/ND86HmIH51//ND80PzQ/ND86H7E D80PzQ/Nj56/+NH9iR+aH5ofmh+aH92v+KH5ofmh+dHzHj+6f/FD80Pzo9+f 8UPzQ/ND80PzQ/ND80PzQ/Oj948fs7ftm8+9fqJ+zL60+TE/39v80PzQ/JjX H21+aH5ofmh+aH5ofmh+zOdf2/zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzofsQPzQ/ND82P7nf80PzQ /JjzWc0PzQ/Nj7mftzW/+KH5ofmh+aH50fnGD80PzQ/Nj56H+NH5xw/ND80P zQ/Nj+5H/ND80PzQ/Oj5ix/dn/ih+aH5ofmh+dH9ih+aH5ofmh897/Gj+xc/ ND80P/r9GT80PzQ/ND80PzQ/ND80PzQ/ev/4MXvb/tK5J8uP2Zc2P+bne5sf mh+aH/P6o80PzQ/ND80PzQ/ND82P+fxrmx+aH5ofmh+aH5ofmh+aH5ofmh+a H5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh/dj/ih+aH5ofnR /Y4fmh+aH3M+q/mh+aH5MffztuYXPzQ/ND80PzQ/Ot/4ofmh+aH50fNw/r2a H5ofmh+aH5of3Y/4ofmh+aH50fMXP7o/8UPzQ/ND80Pzo/sVPzQ/ND80P3re 40f3L35ofmh+9Pszfmh+aH5ofmh+aH5ofmh+aH70/vFj9ra9+vy9f2b9mH1p 82N+vrf5ofmh+TGvP9r80PzQ/ND80PzQ/ND8mM+/tvmh+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofnR/Ygf mh+aH5of3e/4ofmh+THns5ofmh+aH3M/b2t+8UPzQ/ND80Pzo/ONH5ofmh+a Hz0P8aPzjx+aH5ofmh+aH92P+KH5ofmh+dHzFz+6P/FD80PzQ/ND86P7FT80 PzQ/ND963uNH9y9+aH5ofvT7M35ofmh+aH5ofmh+aH5ofmh+9P7xY/a2vfT8 OZYfsy9tfszP9zY/ND80P+b1R5sfmh+aH5ofmh+aH5of8/nXNj80PzQ/ND80 PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND+6H/FD80PzQ/Oj+x0/ND80P+Z8VvND80PzY+7nbc0vfmh+aH5ofmh+dL7x Q/ND80Pzo+chfnT+8UPzQ/ND80Pzo/sRPzQ/ND80P3r+4kf3J35ofmh+aH5o fnS/4ofmh+aH5kfPe/zo/sUPzQ/Nj35/xg/ND80PzQ/ND80PzQ/ND82P3j9+ zN62Z5z/uvyYfWnzY36+t/mh+aH5Ma8/2vzQ/ND80PzQ/ND80PyYz7+2+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+dH9iB+aH5ofmh/d7/ih+aH5Meezmh+aH5ofcz9va37xQ/ND80Pz Q/Oj840fmh+aH5ofPQ/xo/OPH5ofmh+aH5of3Y/4ofmh+aH50fMXP7o/8UPz Q/ND80Pzo/sVPzQ/ND80P3re40f3L35ofmh+9Pszfmh+aH5ofmh+aH5ofmh+ aH70/uefpx7qbfvFux/jscfrx+xLmx/z873ND80PzY95/dHmh+aH5ofmh+aH 5ofmx3z+tc0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND82P7kf80PzQ/ND86H7HD80PzY85n9X80PzQ/Jj7 eVvzix+aH5ofmh+aH51v/ND80PzQ/Oh5iB+df/zQ/ND80PzQ/Oh+xA/ND80P zY+ev/jR/Ykfmh+aH5ofmh/dr/ih+aH5ofnR8x4/un/xQ/ND86Pfn/FD80Pz Q/ND80PzQ/ND80Pzo/ePH7O37e+f72O9pH7MvrT5MT/f2/zQ/ND8mNcfbX5o fmh+aH5ofmh+aH7M51/b/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oh+xA/ND80PzY/ud/zQ/ND8mPNZ zQ/ND82PuZ+3Nb/4ofmh+aH5ofnR+cYPzQ/ND82Pnof40fnHD80PzQ/ND82P 7kf80PzQ/ND86PmLH92f+KH5ofmh+aH50f2KH5ofmh+aHz3v8aP7Fz80PzQ/ +v0ZPzQ/ND80PzQ/ND80PzQ/ND96//gxe9vecu7J76kfsy9tfszP9zY/ND80 P+b1R5sfmh+aH5ofmh+aH5of8/nXNj80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND+6H/FD80PzQ/Oj+x0/ ND80P+Z8VvND80PzY+7nbc0vfmh+aH5ofmh+dL7xQ/ND80Pzo+fh/Hs1PzQ/ ND80PzQ/uh/xQ/ND80Pzo+cvfnR/4ofmh+aH5ofmR/crfmh+aH5ofvS8x4/u X/zQ/ND86Pdn/ND80PzQ/ND80PzQ/ND80Pzo/ePH7G37g+fP8Vj9mH1p82N+ vrf5ofmh+TGvP9r80PzQ/ND80PzQ/ND8mM+/tvmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofnR/Ygfmh+a H5of3e/4ofmh+THns5ofmh+aH3M/b2t+8UPzQ/ND80Pzo/ONH5ofmh+aHz0P 8aPzjx+aH5ofmh+aH92P+KH5ofmh+dHzFz+6P/FD80PzQ/ND86P7FT80PzQ/ ND963uNH9y9+aH5ofvT7M35ofmh+aH5ofmh+aH5ofmh+9P7xY/a2fezufxx5 8jPqx+xLmx/z873ND80PzY95/dHmh+aH5ofmh+aH5ofmx3z+tc0PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/N D82P7kf80PzQ/ND86H7HD80PzY85n9X80PzQ/Jj7eVvzix+aH5ofmh+aH51v /ND80PzQ/Oh5iB+df/zQ/ND80PzQ/Oh+xA/ND80PzY+ev/jR/Ykfmh+aH5of mh/dr/ih+aH5ofnR8x4/un/xQ/ND86Pfn/FD80PzQ/ND80PzQ/ND80Pzo/eP H7O37d3n/z2TF9eP2Zc2P+bne5sfmh+aH/P6o80PzQ/ND80PzQ/ND82P+fxr mx+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+a H5ofmh+aH5ofmh/dj/ih+aH5ofnR/Y4fmh+aH3M+q/mh+aH5MffztuYXPzQ/ ND80PzQ/Ot/4ofmh+aH50fMQPzr/+KH5ofmh+aH50f2IH5ofmh+aHz1/8aP7 Ez80PzQ/ND80P7pf8UPzQ/ND86PnPX50/+KH5ofmR78/44fmh+aH5ofmh+aH 5ofmh+ZH7x8/Zm/b2869flH9mH1p82N+vrf5ofmh+TGvP9r80PzQ/ND80PzQ /ND8mM+/tvmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH5ofnR/Ygfmh+aH5of3e/4ofmh+THns5ofmh+aH3M/ b2t+8UPzQ/ND80Pzo/ONH5ofmh+aHz0P8aPzjx+aH5ofmh+aH92P+KH5ofmh +dHzFz+6P/FD80PzQ/ND86P7FT80PzQ/ND963uNH9y9+aH5ofvT7M35ofmh+ aH5ofmh+aH5ofmh+9P7xY/a2vfb8vX96/Zh9afNjfr63+aH5ofkxrz/a/ND8 0PzQ/ND80PzQ/JjPv7b5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH50f2IH5ofmh+aH93v+KH5ofkx57Oa H5ofmh9zP29rfvFD80PzQ/ND86PzjR+aH5ofmh89D/Gj848fmh+aH5ofmh/d j/ih+aH5ofnR8xc/uj/xQ/ND80PzQ/Oj+xU/ND80PzQ/et7jR/cvfmh+aH70 +zN+aH5ofmh+aH5ofmh+aH5ofvT+8WP2tj33/Nflx+xLmx/z873ND80PzY95 /dHmh+aH5ofmh+aH5ofmx3z+tc0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND82P7kf80PzQ/ND86H7HD80P zY85n9X80PzQ/Jj7eVvzix+aH5ofmh+aH51v/ND80PzQ/Oh5iB+df/zQ/ND8 0PzQ/Oh+xA/ND80PzY+ev/jR/Ykfmh+aH5ofmh/dr/ih+aH5ofnR8x4/un/x Q/ND86Pfn/FD80PzQ/ND80PzQ/ND80Pzo/c//zz1UG/bL5z/cfoL68fsS5sf 8/O9zQ/ND82Pef3R5ofmh+aH5ofmh+aH5sd8/rXND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Nj+5H/ND8 0PzQ/Oh+xw/ND82POZ/V/ND80PyY+3lb84sfmh+aH5ofmh+db/zQ/ND80Pzo eYgfnX/80PzQ/ND80PzofsQPzQ/ND82Pnr/40f2JH5ofmh+aH5of3a/4ofmh +aH50fMeP7p/8UPzQ/Oj35/xQ/ND80PzQ/ND80PzQ/ND86P3jx+zt+37737t 9z6tfsy+tPkxP9/b/ND80PyY1x9tfmh+aH5ofmh+aH5ofsznX9v80PzQ/ND8 0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND86H7ED80PzQ/Nj+53/ND80PyY81nND80PzY+5n7c1v/ih+aH5ofmh+dH5 xg/ND80PzY+eh/jR+ccPzQ/ND80PzY/uR/zQ/ND80Pzo+Ysf3Z/4ofmh+aH5 ofnR/Yofmh+aH5ofPe/xo/sXPzQ/ND/6/Rk/ND80PzQ/ND80PzQ/ND80P3r/ +DF729587skL6sfsS5sf8/O9zQ/ND82Pef3R5ofmh+aH5ofmh+aH5sd8/rXN D80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/Nj+5H/ND80PzQ/Oh+xw/ND82POZ/V/ND80PyY+3lb84sfmh+a H5ofmh+db/zQ/ND80PzoeTj/Xs0PzQ/ND80PzY/uR/zQ/ND80Pzo+Ysf3Z/4 ofmh+aH5ofnR/Yofmh+aH5ofPe/xo/sXPzQ/ND/6/Rk/ND80PzQ/ND80PzQ/ ND80P3r/+DF7215x/hzPrx+zL21+zM/3Nj80PzQ/5vVHmx+aH5ofmh+aH5of mh/z+dc2PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND80PzQ/ND80PzQ/ND80P7of8UPzQ/ND86P7HT80PzQ/5nxW80PzQ/Nj7udt zS9+aH5ofmh+aH50vvFD80PzQ/Oj5yF+dP7xQ/ND80PzQ/Oj+xE/ND80PzQ/ ev7iR/cnfmh+aH5ofmh+dL/ih+aH5ofmR897/Oj+xQ/ND82Pfn/GD80PzQ/N D80PzQ/ND80PzY/eP37M3rb/dfc/jjz5qfVj9qXNj/n53uaH5ofmx7z+aPND 80PzQ/ND80PzQ/NjPv/a5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH 5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5kf3I35ofmh+aH50v+OH5ofmx5zP an5ofmh+zP28rfnFD80PzQ/ND82Pzjd+aH5ofmh+9DzEj84/fmh+aH5ofmh+ dD/ih+aH5ofmR89f/Oj+xA/ND80PzQ/Nj+5X/ND80PzQ/Oh5jx/dv/ih+aH5 0e/P+KH5ofmh+aH5ofmh+aH5ofnR+8eP2dv2Y+d/H+TR+jH70ubH/Hxv80Pz Q/NjXn+0+aH5ofmh+aH5ofmh+TGff23zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND 80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80Pzo/sRPzQ/ND80P7rf 8UPzQ/Njzmc1PzQ/ND/mft7W/OKH5ofmh+aH5kfnGz80PzQ/ND96HuJH5x8/ ND80PzQ/ND+6H/FD80PzQ/Oj5y9+dH/ih+aH5ofmh+ZH9yt+aH5ofmh+9LzH j+5f/ND80Pzo92f80PzQ/ND80PzQ/ND80PzQ/Oj948fsbfuOc6+fVz9mX9r8 mJ/vbX5ofmh+zOuPNj80PzQ/ND80PzQ/ND/m869tfmh+aH5ofmh+aH5ofmh+ aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofnQ/4ofm h+aH5kf3O35ofmh+zPms5ofmh+bH3M/bml/80PzQ/ND80PzofOOH5ofmh+ZH z0P86Pzjh+aH5ofmh+ZH9yN+aH5ofmh+9PzFj+5P/ND80PzQ/ND86H7FD80P zQ/Nj573+NH9ix+aH5of/f6MH5ofmh+aH5ofmh+aH5ofmh+9f/yYvW1fcv7e P6V+zL60+TE/39v80PzQ/JjXH21+aH5ofmh+aH5ofmh+zOdf2/zQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND8 0PzofsQPzQ/ND82P7nf80PzQ/JjzWc0PzQ/Nj7mftzW/+KH5ofmh+aH50fnG D80PzQ/Nj56H+NH5xw/ND80PzQ/Nj+5H/ND80PzQ/Oj5ix/dn/ih+aH5ofmh +dH9ih+aH5ofmh897/Gj+xc/ND80P/r9GT80PzQ/ND80PzQ/ND80PzQ/ev/4 MXvbnnP+6/Jj9qXNj/n53uaH5ofmx7z+aPND80PzQ/ND80PzQ/NjPv/a5ofm h+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH 5ofmh+aH5kf3I35ofmh+aH50v+OH5ofmx5zPan5ofmh+zP28rfnFD80PzQ/N D82Pzjd+aH5ofmh+9DzEj84/fmh+aH5ofmh+dD/ih+aH5ofmR89f/Oj+xA/N D80PzQ/Nj+5X/ND80PzQ/Oh5jx/dv/ih+aH50e/P+KH5ofmh+aH5ofmh+aH5 ofnR+59/nnqot+0dd7/2e8+pH7MvbX7Mz/c2PzQ/ND/m9UebH5ofmh+aH5of mh+aH/P51zY/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND80PzQ/ND80PzQ/ND80PzQ/uh/xQ/ND80Pzo/sdPzQ/ND/mfFbzQ/ND82Pu 523NL35ofmh+aH5ofnS+8UPzQ/ND86PnIX50/vFD80PzQ/ND86P7ET80PzQ/ ND96/uJH9yd+aH5ofmh+aH50v+KH5ofmh+ZHz3v86P7FD80PzY9+f8YPzQ/N D80PzQ/ND80PzQ/Nj94/fszetnvnz/Hs+jH70ubH/Hxv80PzQ/NjXn+0+aH5 ofmh+aH5ofmh+TGff23zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80Pz Q/ND80PzQ/ND80PzQ/ND80PzQ/ND80Pzo/sRPzQ/ND80P7rf8UPzQ/Njzmc1 PzQ/ND/mft7W/OKH5ofmh+aH5kfnGz80PzQ/ND96HuJH5x8/ND80PzQ/ND+6 H/FD80PzQ/Oj5y9+dH/ih+aH5ofmh+ZH9yt+aH5ofmh+9LzHj+5f/ND80Pzo 92f80PzQ/ND80PzQ/ND80PzQ/Oj948fsbXvv+Z+nP6t+zL60+TE/39v80PzQ /JjXH21+aH5ofmh+aH5ofmh+zOdf2/zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND8 0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzofsQPzQ/ND82P7nf8 0PzQ/JjzWc0PzQ/Nj7mftzW/+KH5ofmh+aH50fnGD80PzQ/Nj56H+NH5xw/N D80PzQ/Nj+5H/ND80PzQ/Oj5ix/dn/ih+aH5ofmh+dH9ih+aH5ofmh897/Gj +xc/ND80P/r9GT80PzQ/ND80PzQ/ND80PzQ/ev/4MXvb3nD+3p9RP2Zf2vyY n+9tfmh+aH7M6482PzQ/ND80PzQ/ND80P+bzr21+aH5ofmh+aH5ofmh+aH5o fmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+dD/ih+aH 5ofmR/c7fmh+aH7M+azmh+aH5sfcz9uaX/zQ/ND80PzQ/Oh844fmh+aH5kfP Q/zo/OOH5ofmh+aH5kf3I35ofmh+aH70/MWP7k/80PzQ/ND80PzofsUPzQ/N D82Pnvf40f2LH5ofmh/9/owfmh+aH5ofmh+aH5ofmh+aH71//Ji9bbe7H+Ox p9eP2Zc2P+bne5sfmh+aH/P6o80PzQ/ND80PzQ/ND82P+fxrmx+aH5ofmh+a H5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5of mh/dj/ih+aH5ofnR/Y4fmh+aH3M+q/mh+aH5MffztuYXPzQ/ND80PzQ/Ot/4 ofmh+aH50fMQPzr/+KH5ofmh+aH50f2IH5ofmh+aHz1/8aP7Ez80PzQ/ND80 P7pf8UPzQ/ND86PnPX50/+KH5ofmR78/44fmh+aH5ofmh+aH5ofmh+ZH7x8/ Zm/b15978kj9mH1p82N+vrf5ofmh+TGvP9r80PzQ/ND80PzQ/ND8mM+/tvmh +aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofnR/Ygfmh+aH5of3e/4ofmh+THns5ofmh+aH3M/b2t+8UPzQ/ND 80Pzo/ONH5ofmh+aHz0P59+r+aH5ofmh+aH50f2IH5ofmh+aHz1/8aP7Ez80 PzQ/ND80P7pf8UPzQ/ND86PnPX50/+KH5ofmR78/44fmh+aH5ofmh+aH5ofm h+ZH7x8/Zm/b/737j9OffFr9mH1p82N+vrf5ofmh+TGvP9r80PzQ/ND80PzQ /ND8mM+/tvmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH5ofnR/Ygfmh+aH5of3e/4ofmh+THns5ofmh+aH3M/ b2t+8UPzQ/ND80Pzo/ONH5ofmh+aHz0P8aPzjx+aH5ofmh+aH92P+KH5ofmh +dHzFz+6P/FD80PzQ/ND86P7FT80PzQ/ND963uNH9y9+aH5ofvT7M35ofmh+ aH5ofmh+aH5ofmh+9P7xY/a2/d1zrz+hfsy+tPkxP9/b/ND80PyY1x9tfmh+ aH5ofmh+aH5ofsznX9v80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND8 0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND86H7ED80PzQ/Nj+53/ND80PyY81nN D80PzY+5n7c1v/ih+aH5ofmh+dH5xg/ND80PzY+eh/jR+ccPzQ/ND80PzY/u R/zQ/ND80Pzo+Ysf3Z/4ofmh+aH5ofnR/Yofmh+aH5ofPe/xo/sXPzQ/ND/6 /Rk/ND80PzQ/ND80PzQ/ND80P3r/+DF721784K/6MfvS5sf8fG/zQ/ND82Ne f7T5ofmh+aH5ofmh+aH5MZ9/bfND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND 80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oj+xE/ND80PzQ/ut/xQ/ND 82POZzU/ND80P+Z+3tb84ofmh+aH5ofmR+cbPzQ/ND80P3oe4kfnHz80PzQ/ ND80P7of8UPzQ/ND86PnL350f+KH5ofmh+aH5kf3K35ofmh+aH70vMeP7l/8 0PzQ/Oj3Z/zQ/ND80PzQ/ND80PzQ/ND86P3PP0891Nv2uvPn+O338GP2pc2P +fne5ofmh+bHvP5o80PzQ/ND80PzQ/ND82M+/9rmh+aH5ofmh+aH5ofmh+aH 5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmR/cjfmh+ aH5ofnS/44fmh+bHnM9qfmh+aH7M/byt+cUPzQ/ND80PzY/ON35ofmh+aH70 PMSPzj9+aH5ofmh+aH50P+KH5ofmh+ZHz1/86P7ED80PzQ/ND82P7lf80PzQ /ND86HmPH92/+KH5ofnR78/4ofmh+aH5ofmh+aH5ofmh+dH7x4/Z2/bW8/f+ m/Vj9qXNj/n53uaH5ofmx7z+aPND80PzQ/ND80PzQ/NjPv/a5ofmh+aH5ofm h+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH 5kf3I35ofmh+aH50v+OH5ofmx5zPan5ofmh+zP28rfnFD80PzQ/ND82Pzjd+ aH5ofmh+9DzEj84/fmh+aH5ofmh+dD/ih+aH5ofmR89f/Oj+xA/ND80PzQ/N j+5X/ND80PzQ/Oh5jx/dv/ih+aH50e/P+KH5ofmh+aH5ofmh+aH5ofnR+8eP 2dv29nNPPl4/Zl/a/Jif721+aH5ofszrjzY/ND80PzQ/ND80PzQ/5vOvbX5o fmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+ aH5ofmh+aH50P+KH5ofmh+ZH9zt+aH5ofsz5rOaH5ofmx9zP25pf/ND80PzQ /ND86Hzjh+aH5ofmR8/D+fdqfmh+aH5ofmh+dD/ih+aH5ofmR89f/Oj+xA/N D80PzQ/Nj+5X/ND80PzQ/Oh5jx/dv/ih+aH50e/P+KH5ofmh+aH5ofmh+aH5 ofnR+8eP2du2n3v90fox+9Lmx/x8b/ND80PzY15/tPmh+aH5ofmh+aH5ofkx n39t80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND 80PzQ/ND80PzQ/ND86P7ET80PzQ/ND+63/FD80PzY85nNT80PzQ/5n7e1vzi h+aH5ofmh+ZH5xs/ND80PzQ/eh7iR+cfPzQ/ND80PzQ/uh/xQ/ND80Pzo+cv fnR/4ofmh+aH5ofmR/crfmh+aH5ofvS8x4/uX/zQ/ND86Pdn/ND80PzQ/ND8 0PzQ/ND80Pzo/ePH7G1724Ofo37MvrT5MT/f2/zQ/ND8mNcfbX5ofmh+aH5o fmh+aH7M51/b/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/Oh+xA/ND80PzY/ud/zQ/ND8mPNZzQ/ND82P uZ+3Nb/4ofmh+aH5ofnR+cYPzQ/ND82Pnof40fnHD80PzQ/ND82P7kf80PzQ /ND86PmLH92f+KH5ofmh+aH50f2KH5ofmh+aHz3v8aP7Fz80PzQ/+v0ZPzQ/ ND80PzQ/ND80PzQ/ND96//gxe9ve/WBP6sfsS5sf8/O9zQ/ND82Pef3R5ofm h+aH5ofmh+aH5sd8/rXND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/N D80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Nj+5H/ND80PzQ/Oh+xw/ND82POZ/V /ND80PyY+3lb84sfmh+aH5ofmh+db/zQ/ND80PzoeXjw95p//ND80PzQ/ND8 6H7ED80PzQ/Nj56/+NH9iR+aH5ofmh+aH92v+KH5ofmh+dHzHj+6f/FD80Pz o9+f8UPzQ/ND80PzQ/ND80PzQ/Oj948fs7ftQw/OYf2YfWnzY36+t/mh+aH5 Ma8/2vzQ/ND80PzQ/ND80PyYz7+2+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+dH9iB+aH5ofmh/d7/ih +aH5Meezmh+aH5ofcz9va37xQ/ND80PzQ/Oj840fmh+aH5ofPQ/xo/OPH5of mh+aH5of3Y/4ofmh+aH50fMXP7o/8UPzQ/ND80Pzo/sVPzQ/ND80P3re40f3 L35ofmh+9Pszfmh+aH5ofmh+aH5ofmh+aH70/vFj9rb98PvO77n6MfvS5sf8 fG/zQ/ND82Nef7T5ofmh+aH5ofmh+aH5MZ9/bfND80PzQ/ND80PzQ/ND80Pz Q/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oj+xE/ND80 PzQ/ut/xQ/ND82POZzU/ND80P+Z+3tb84ofmh+aH5ofmR+cbPzQ/ND80P3oe 4kfnHz80PzQ/ND80P7of8UPzQ/ND86PnL350f+KH5ofmh+aH5kf3K35ofmh+ aH70vMeP7l/80PzQ/Oj3Z/zQ/ND80PzQ/ND80PzQ/ND86P3jx+z8efUz/yk/ Zl/a/Jif721+aH5ofszrjzY/ND80PzQ/ND80PzQ/5vOvbX5ofmh+aH5ofmh+ aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH50 P+KH5ofmh+aH5ofmh+bHnM9qfmh+aH7M/byt+cUPzQ/ND80PzY/ON35ofmh+ aH5ofnT+8UPzQ/ND80Pzo/sRPzQ/ND80PzQ/uj/xQ/ND80PzQ/Oj+xU/ND80 PzQ/ND+6f/FD80PzQ/ND80PzQ/ND80PzQ/ND80Pzo/c//zz1UG/b23/ywfdc 398dfWn3/d3x+d7u+7vpvr+b7vu74/qj3fd3031/N80P3fd3031/N933d9N9 f3c8/9ru+7vpvr+b7vu76b6/m+77u+m+v5vu+7vpvr+b7vu76b6/m+77u+m+ v5vu+7vpvr+b7vu76b6/m+77u+m+v5vu+7vpvr+b7vu76b6/m+77u+m+v5vu +7vpvr+b7vu76b6/az+8v5vu+7vpvr+b7vu79tv7u+m+v5vu+7tjPqv7/m66 7++m+/7u2M/bmp/3d9N9fzfd93fTfX833fd3zdf7u+m+v5vu+7vpvr/rPMSP zt/7u+m+v5vu+7vpvr+b7vu79sP7u+m+v5vu+7vpvr/r/Hl/1/54fzfd93fT fX833fd3031/1355fzfd93fTfX833fd3nXfv79o/7++m+/5uuu/v+v70/m66 7++m+/5uuu/vpvv+brrv76b7/m667++m+/6u+8eP2dv2+vc+OIf8mH1p82N+ vrf5ofmh+TGvP9r80PzQ/ND80PzQ/ND8mM+/tvmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofnR/Ygfmh+a H5of3e/4ofmh+THns5ofmh+aH3M/b2t+8UPzQ/ND80Pzo/ONH5ofmh+aHz0P 8aPzjx+aH5ofmh+aH92P+KH5ofmh+dHzFz+6P/FD80PzQ/ND86P7FT80PzQ/ ND963uNH9y9+aH5ofvT7M35ofmh+aH5ofmh+aH5ofmh+9P7xY/b9/583PNgT fsy+tPkxP9/b/ND80PyY1x9tfmh+aH5ofmh+aH5ofsznX9v80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND8 6H7ED80PzQ/Nj+53/ND80PyY81nND80PzY+5n7c1v/ih+aH5ofmh+dH5xg/N D80PzY+eh6948HfnHz80PzQ/ND80P7of8UPzQ/ND86PnL350f+KH5ofmh+aH 5kf3K35ofmh+aH70vMeP7l/80PzQ/Oj3Z/zQ/ND80PzQ/ND80PzQ/ND86P3j x+xte9d7H/wc/Jh9afNjfr63+aH5ofkxrz/a/ND80PzQ/ND80PzQ/JjPv7b5 ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+aH50f2IH5ofmh+aH93v+KH5ofkx57OaH5ofmh9zP29rfvFD80Pz Q/ND86PzjR+aH5ofmh89D/Gj848fmh+aH5ofmh/dj/ih+aH5ofnR8xc/uj/x Q/ND80PzQ/Oj+xU/ND80PzQ/et7jR/cvfmh+aH70+zN+aH5ofmh+aH5ofmh+ aH5ofvT+8WP2tj34Yv5o/Zh9afNjfr63+aH5ofkxrz/a/ND80PzQ/ND80PzQ /JjPv7b5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH50f2IH5ofmh+aH93v+KH5ofkx57OaH5ofmh9zP29r fvFD80PzQ/ND86PzjR+aH5ofmh89D/Gj848fmh+aH5ofmh/dj/ih+aH5ofnR 8xc/uj/xQ/ND80PzQ/Oj+xU/ND80PzQ/et7jR/cvfmh+aH70+zN+aH5ofmh+ aH5ofmh+aH5ofvT+8WP2tn3WuScfrx+zL21+zM/3Nj80PzQ/5vVHmx+aH5of mh+aH5ofmh/z+dc2PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ ND80PzQ/ND80PzQ/ND80PzQ/ND80P7of8UPzQ/ND86P7HT80PzQ/5nxW80Pz Q/Nj7udtzS9+aH5ofmh+aH50vvFD80PzQ/Oj5+H8ezU/ND80PzQ/ND+6H/FD 80PzQ/Oj5y9+dH/ih+aH5ofmh+ZH9yt+aH5ofmh+9LzHj+5f/ND80Pzo92f8 0PzQ/ND80PzQ/ND80PzQ/Oj948fsbfukB//3FOvH7EubH/Pzvc0PzQ/Nj3n9 0eaH5ofmh+aH5ofmh+bHfP61zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/N D80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzY/uR/zQ/ND80PzofscPzQ/N jzmf1fzQ/ND8mPt5W/OLH5ofmh+aH5ofnW/80PzQ/ND86HmIH51//ND80PzQ /ND86H7ED80PzQ/Nj56/+NH9iR+aH5ofmh+aH92v+KH5ofmh+dHzHj+6f/FD 80Pzo9+f8UPzQ/ND80PzQ/ND80PzQ/Oj948fs7ft18//fdZv14/ZlzY/5ud7 mx+aH5of8/qjzQ/ND80PzQ/ND80PzY/5/GubH5ofmh+aH5ofmh+aH5ofmh+a H5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH92P+KH5ofmh +dH9jh+aH5ofcz6r+aH5ofkx9/O25hc/ND80PzQ/ND863/ih+aH5ofnR8xA/ Ov/4ofmh+aH5ofnR/Ygfmh+aH5ofPX/xo/sTPzQ/ND80PzQ/ul/xQ/ND80Pz o+c9fnT/4ofmh+ZHvz/jh+aH5ofmh+aH5ofmh+aH5kfvHz9mb9vP/r/zT/2Y fWnzY36+t/mh+aH5Ma8/2vzQ/ND80PzQ/ND80PyYz7+2+aH5ofmh+aH5ofmh +aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+dH9 iB+aH5ofmh/d7/ih+aH5Meezmh+aH5ofcz9va37xQ/ND80PzQ/Oj840fmh+a H5ofPQ/xo/OPH5ofmh+aH5of3Y/4ofmh+aH50fMXP7o/8UPzQ/ND80Pzo/sV PzQ/ND80P3re40f3L35ofmh+9Pszfmh+aH5ofmh+aH5ofmh+aH70/vFj9rb9 hXOvP+HV/Jh9afNjfr63+aH5ofkxrz/a/ND80PzQ/ND80PzQ/JjPv7b5ofmh +aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5 ofmh+aH50f2IH5ofmh+aH93v+KH5ofkx57OaH5ofmh9zP29rfvFD80PzQ/ND 86PzjR+aH5ofmh89D/Gj848fmh+aH5ofmh/dj/ih+aH5ofnR8xc/uj/xQ/ND 80PzQ/Oj+xU/ND80PzQ/et7jR/cvfmh+aH70+zN+aH5ofmh+aH5ofmh+aH5o fvT+8WP2tv3Mvbtf/NPqx+xLmx/z873ND80PzY95/dHmh+aH5ofmh+aH5ofm x3z+tc0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/N D80PzQ/ND80PzQ/ND82P7kf80PzQ/ND86H7HD80PzY85n9X80PzQ/Jj7eVvz ix+aH5ofmh+aH51v/ND80PzQ/Oh5iB+df/zQ/ND80PzQ/Oh+xA/ND80PzY+e v/jR/Ykfmh+aH5ofmh/dr/ih+aH5ofnR8x4/un/xQ/ND86Pfn/FD80PzQ/ND 80PzQ/ND80Pzo/ePH7O37QvPPXmkfsy+tPkxP9/b/ND80PyY1x9tfmh+aH5o fmh+aH5ofsznX9v80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND86H7ED80PzQ/Nj+53/ND80PyY81nND80P zY+5n7c1v/ih+aH5ofmh+dH5xg/ND80PzY+eh/Pv1fzQ/ND80PzQ/Oh+xA/N D80PzY+ev/jR/Ykfmh+aH5ofmh/dr/ih+aH5ofnR8x4/un/xQ/ND86Pfn/FD 80PzQ/ND80PzQ/ND80Pzo/ePH7O37Z13P8ZjT68fsy9tfszP9zY/ND80P+b1 R5sfmh+aH5ofmh+aH5of8/nXNj80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80 PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND+6H/FD80PzQ/Oj+x0/ND80 P+Z8VvND80PzY+7nbc0vfmh+aH5ofmh+dL7xQ/ND80Pzo+chfnT+8UPzQ/ND 80Pzo/sRPzQ/ND80P3r+4kf3J35ofmh+aH5ofnS/4ofmh+aH5kfPe/zo/sUP zQ/Nj35/xg/ND80PzQ/ND80PzQ/ND82P3j9+zN62J87f+zPqx+xLmx/z873N D80PzY95/dHmh+aH5ofmh+aH5ofmx3z+tc0PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND82P7kf80PzQ/ND8 6H7HD80PzY85n9X80PzQ/Jj7eVvzix+aH5ofmh+aH51v/ND80PzQ/Oh5iB+d f/zQ/ND80PzQ/Oh+xA/ND80PzY+ev/jR/Ykfmh+aH5ofmh/dr/ih+aH5ofnR 8x4/un/xQ/ND86Pfn/FD80PzQ/ND80PzQ/ND80Pzo/ePH7O37XvecffnWfVj 9qXNj/n53uaH5ofmx7z+aPND80PzQ/ND80PzQ/NjPv/a5ofmh+aH5ofmh+aH 5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5kf3 I35ofmh+aH50v+OH5ofmx5zPan5ofmh+zP28rfnFD80PzQ/ND82Pzjd+aH5o fmh+9DzEj84/fmh+aH5ofmh+dD/ih+aH5ofmR89f/Oj+xA/ND80PzQ/Nj+5X /ND80PzQ/Oh5jx/dv/ih+aH50e/P+KH5ofmh+aH5ofmh+aH5ofnR+8eP2dv2 yPlzPLt+zL60+TE/39v80PzQ/JjXH21+aH5ofmh+aH5ofmh+zOdf2/zQ/ND8 0PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ /ND80PzofsQPzQ/ND82P7nf80PzQ/JjzWc0PzQ/Nj7mftzW/+KH5ofmh+aH5 0fnGD80PzQ/Nj56H+NH5xw/ND80PzQ/Nj+5H/ND80PzQ/Oj5ix/dn/ih+aH5 ofmh+dH9ih+aH5ofmh897/Gj+xc/ND80P/r9GT80PzQ/ND80PzQ/ND80PzQ/ ev/4MXvb/ubdr/3ec+rH7EubH/Pzvc0PzQ/Nj3n90eaH5ofmh+aH5ofmh+bH fP61zQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzY/uR/zQ/ND80PzofscPzQ/Njzmf1fzQ/ND8mPt5W/OL H5ofmh+aH5ofnW/80PzQ/ND86HmIH51//ND80PzQ/ND86H7ED80PzQ/Nj56/ +NH9iR+aH5ofmh+aH92v+KH5ofmh+dHzHj+6f/FD80Pzo9+f8UPzQ/ND80Pz Q/ND80PzQ/Oj948fs7ft187/Oshz68fsS5sf8/O9zQ/ND82Pef3R5ofmh+aH 5ofmh+aH5sd8/rXND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzQ/ND80PzQ/ND80PzQ/Nj+5H/ND80PzQ/Oh+xw/ND82POZ/V/ND8 0PyY+3lb84sfmh+aH5ofmh+db/zQ/ND80PzoeYgfnX/80PzQ/ND80PzofsQP zQ/ND82Pnr/40f2JH5ofmh+aH5of3a/4ofmh+aH50fMeP7p/8UPzQ/Oj35/x Q/ND80PzQ/ND80PzQ/ND86P3jx+zt+1zzt/7p9SP2Zc2P+bne5sfmh+aH/P6 o80PzQ/ND80PzQ/ND82P+fxrmx+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+a H5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh/dj/ih+aH5ofnR/Y4fmh+a H3M+q/mh+aH5MffztuYXPzQ/ND80PzQ/Ot/4ofmh+aH50fMQPzr/+KH5ofmh +aH50f2IH5ofmh+aHz1/8aP7Ez80PzQ/ND80P7pf8UPzQ/ND86PnPX50/+KH 5ofmR78/44fmh+aH5ofmh+aH5ofmh+ZH7x8/Zm/bV597/bz6MfvS5sf8fG/z Q/ND82Nef7T5ofmh+aH5ofmh+aH5MZ9/bfND80PzQ/ND80PzQ/ND80PzQ/ND 80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oj+xE/ND80PzQ/ ut/xQ/ND82POZzU/ND80P+Z+3tb84ofmh+aH5ofmR+cbPzQ/ND80P3oe4kfn Hz80PzQ/ND80P7of8UPzQ/ND86PnL350f+KH5ofmh+aH5kf3K35ofmh+aH70 vMeP7l/80PzQ/Oj3Z/zQ/ND80PzQ/ND80PzQ/ND86P3jx+xt+4HzP09/tH7M vrT5MT/f2/zQ/ND8mNcfbX5ofmh+aH5ofmh+aH7M51/b/ND80PzQ/ND80PzQ /ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/Oh+ xA/ND80PzY/ud/zQ/ND8mPNZzQ/ND82PuZ+3Nb/4ofmh+aH5ofnR+cYPzQ/N D82Pnof40fnHD80PzQ/ND82P7kf80PzQ/ND86PmLH92f+KH5ofmh+aH50f2K H5ofmh+aHz3v8aP7Fz80PzQ/+v0ZPzQ/ND80PzQ/ND80PzQ/ND96//gxe9t+ 6e4/DnnyU+vH7EubH/Pzvc0PzQ/Nj3n90eaH5ofmh+aH5ofmh+bHfP61zQ/N D80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80P zQ/ND80PzY/uR/zQ/ND80PzofscPzQ/Njzmf1fzQ/ND8mPt5W/OLH5ofmh+a H5ofnW/80PzQ/ND86HmIH51//ND80PzQ/ND86H7ED80PzQ/Nj56/+NH9iR+a H5ofmh+aH92v+KH5ofmh+dHzHj+6f/FD80Pzo9+f8UPzQ/ND80PzQ/ND80Pz Q/Oj948fs7fteefP8fz6MfvS5sf8fG/zQ/ND82Nef7T5ofmh+aH5ofmh+aH5 MZ9/bfND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80PzQ/ND80Pz Q/ND80PzQ/ND80PzQ/Oj+xE/ND80PzQ/ut/xQ/ND82POZzU/ND80P+Z+3tb8 4ofmh+aH5ofmR+cbPzQ/ND80P3oe4kfnHz80PzQ/ND80P7of8UPzQ/ND86Pn L350f+KH5ofmh+aH5kf3K35ofmh+aH70vMeP7l/80PzQ/Oj3Z/zQ/ND80PzQ /ND80PzQ/ND86P3jx+xt+9JzT15QP2Zf2vyYn+9tfmh+aH7M6482PzQ/ND80 PzQ/ND80P+bzr21+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5o fmh+aH5ofmh+aH5ofmh+aH5ofmh+dD/ih+aH5ofmR/c7fmh+aH7M+azmh+aH 5sfcz9uaX/zQ/ND80PzQ/Oh844fmh+aH5kfPw/n3an5ofmh+aH5ofnQ/4ofm h+aH5kfPX/zo/sQPzQ/ND80PzY/uV/zQ/ND80PzoeY8f3b/4ofmh+dHvz/ih +aH5ofmh+aH5ofmh+aH50fvHj9nb9p13v/Z7n1Y/Zl/a/Jif721+aH5ofszr jzY/ND80PzQ/ND80PzQ/5vOvbX5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5o fmh+aH5ofmh+aH5ofmh+aH5ofmh+aH5ofmh+aH50P+KH5ofmh+ZH9zt+aH5o fsz5rOaH5ofmx9zP25pf/ND80PzQ/ND86Hzjh+aH5ofmR89D/Oj844fmh+aH 5ofmR/cjfmh+aH5ofvT8xY/uT/zQ/ND/n6x7D/b0qOs8fsJkGIJcciPJZCaT 2xCyylIrlMoqco6WpRagUsKKsrprUYgWWuyym0XWcinFKS+7ii4e3dVFZxdH BRYVcbxhYg44iQjhEgghhIAwuQBRICI3A+hyvk+/Ps/298w/U+/z7V8/3d/+ dn/6eZ7ufugHph+YfiS+hn5g+oHpB6Yf6e9DPxJ/Qz8w/cD0I+Pn0A9MPzD9 wPQD0w9MPzD9wPQD04/kP/Rj5o2Na3ercfjC6MfM22H6MdtPhOkHph+Yfsy/ PxmmH5h+YPqB6QemH5h+YPoxX/9UmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHp B6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfiY+hH5h+ YPqB6Ufie+gHph+YfsztszL9wPQD0485Pk+v7Tf0A9MPTD8w/cD0I+079APT D0w/MP1Ifxj6kfYf+oHpB6YfmH5g+pH4GPqB6QemH5h+pP8N/Uj8DP3A9APT D0w/MP1IfA39wPQD0w9MP9Lfh34k/oZ+YPqB6UfGz6EfmH5g+oHpB6YfmH5g +oHpB6YfyX/ox8wbG5+q/SCrfsy8HaYfs/1EmH5g+oHpx/z7k2H6gekHph+Y fmD6gekHph/z9U+F6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+ YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqR+Bj6gekHph+YfiS+h35g +oHpx9w+K9MPTD8w/Zjj8/TafkM/MP3A9APTD0w/0r5DPzD9wPQD04/0h6Ef af+hH5h+YPqB6QemH4mPoR+YfmD6gelH+t/Qj8TP0A9MPzD9wPQD04/E19AP TD8w/cD0I/196Efib+gHph+YfmT8HPqB6QemH5h+YPqB6QemH5h+YPqR/Id+ zLyx8Zjy+0XRj5m3w/Rjtp8I0w9MPzD9mH9/Mkw/MP3A9APTD0w/MP3A9GO+ /qkw/cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MP TD8w/cD0A9MPTD8w/cD0A9MPTD8SH0M/MP3A9APTj8T30A9MPzD9mNtnZfqB 6QemH3N8nl7bb+gHph+YfmD6gelH2nfoB6YfmH5g+pH+MPQj7T/0A9MPTD8w /cD0I/Ex9APTD0w/MP1I/xv6kfgZ+oHpB6YfmH5g+pH4GvqB6QemH5h+pL8P /Uj8Df3A9APTj4yfQz8w/cD0A9MPTD8w/cD0A9MPTD+S/9CPmTc2vr/i+mD0 Y+btMP2Y7SfC9APTD0w/5t+fDNMPTD8w/cD0A9MPTD8w/ZivfypMPzD9wPQD 0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD 0w9MPzD9wPQD04/Ex9APTD8w/cD0I/E99APTD0w/5vZZmX5g+oHpxxyfp9f2 G/qB6QemH5h+YPqR9h36gekHph+YfqQ/DP1I+w/9wPQD0w9MPzD9SHwM/cD0 A9MPTD/S/4Z+JH6GfmD6gekHph+YfiS+hn5g+oHpB6Yf6e9DPxJ/Qz8w/cD0 I+Pn0A9MPzD9wPQD0w9MPzD9wPQD04/kP/Rj5o2N/137QS6Ofsy8HaYfs/1E mH5g+oHpx/z7k2H6gekHph+YfmD6gekHph/z9U+F6QemH5h+YPqB6QemH5h+ YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+ YPqR+Bj6gekHph+YfiS+h35g+oHpx9w+K9MPTD8w/Zjj8/TafkM/MP3A9APT D0w/0r5DPzD9wPQD04/0h6Efaf+hH5h+YPqB6QemH4mPoR+YfmD6gelH+t/Q j8TP0A9MPzD9wPQD04/E19APTD8w/cD0I/196Efib+gHph+YfmT8HPqB6Qem H5h+YPqB6QemH5h+YPqR/Id+zLyx8Z7d1+kvORT9mHk7TD9m+4kw/cD0A9OP +fcnw/QD0w9MPzD9wPQD0w9MP+brnwrTD0w/MP3A9APTD0w/MP3A9APTD0w/ MP3A9APTD0w/MP3A9APTD0w/MP3A9APTD0w/MP3A9APTD0w/MP3A9CPxMfQD 0w9MPzD9SHwP/cD0A9OPuX1Wph+YfmD6Mcfn6bX9hn5g+oHpB6YfmH6kfYd+ YPqB6QemH+kPQz/S/kM/MP3A9APTD0w/Eh9DPzD9wPQD04/0v6EfiZ+hH5h+ YPqB6QemH4mvoR+YfmD6gelH+vvQj8Tf0A9MPzD9yPg59APTD0w/MP3A9APT D0w/MP3A9CP5D/2YeWPj3KrH4ejHzNth+jHbT4TpB6YfmH7Mvz8Zph+YfmD6 gekHph+YfmD6MV//VJh+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB 6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH4mPoR+YfmD6gelH4nvo B6YfmH7M7bMy/cD0A9OPOT5Pr+039APTD0w/MP3A9CPtO/QD0w9MPzD9SH8Y +pH2H/qB6QemH5h+YPqR+Bj6gekHph+YfqT/Df1I/Az9wPQD0w9MPzD9SHwN /cD0A9MPTD/S34d+JP6GfmD6gelHxs+hH5h+YPqB6QemH5h+YPqB6QemH8l/ 6MfMGxtPrji5JPox83aYfsz2E2H6gekHph/z70+G6QemH5h+YPqB6QemH5h+ zNc/FaYfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g +oHpB6YfmH5g+oHpB6YfmH5g+oHpR+Jj6AemH5h+YPqR+B76gekHph9z+6xM PzD9wPRjjs/Ta/sN/cD0A9MPTD8w/Uj7Dv3A9APTD0w/0h/q/5XpB6YfmH5g +oHpR+Jj6AemH5h+YPqR/jf0I/Ez9APTD0w/MP3A9CPxNfQD0w9MPzD9SH8f +pH4G/qB6QemHxk/h35g+oHpB6YfmH5g+oHpB6YfmH4k/6EfM29sHNt1++OP RD9m3g7Tj9l+Ikw/MP3A9GP+/ckw/cD0A9MPTD8w/cD0A9OP+fqnwvQD0w9M PzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9M PzD9wPQD0w9MPzD9SHwM/cD0A9MPTD8S30M/MP3A9GNun5XpB6YfmH7M8Xl6 bb+hH5h+YPqB6QemH2nfoR+YfmD6gelH+sPQj7T/0A9MPzD9wPQD04/Ex9AP TD8w/cD0I/1v6EfiZ+gHph+YfmD6gelH4mvoB6YfmH5g+pH+PvQj8Tf0A9MP TD8yfg79wPQD0w9MPzD9wPQD0w9MPzD9SP5DP2be2LiubkcujX7MvB2mH7P9 RJh+YPqB6cf8+5Nh+oHpB6YfmH5g+oHpB6Yf8/VPhekHph+YfmD6gekHph+Y fmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+Y fmD6kfgY+oHpB6YfmH4kvod+YPqB6cfcPivTD0w/MP2Y4/P02n5DPzD9wPQD 0w9MP9K+Qz8w/cD0A9OP9IehH2n/oR+YfmD6gekHph+Jj6EfmH5g+oHpR/rf 0I/Ez9APTD8w/cD0A9OPxNfQD0w/MP3A9CP9fehH4m/oB6YfmH5k/Bz6gekH ph+YfmD6gekHph+YfmD6kfyHfsy8sfHp2g+y6sfM22H6MdtPhOkHph+Yfsy/ PxmmH5h+YPqB6QemH5h+YPoxX/9UmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHp B6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfiY+hH5h+ YPqB6Ufie+gHph+YfsztszL9wPQD0485Pk+v7Tf0A9MPTD8w/cD0I+079APT D0w/MP1Ifxj6kfYf+oHpB6YfmH5g+pH4GPqB6QemH5h+pP8N/Uj8DP3A9APT D0w/MP1IfA39wPQD0w9MP9Lfh34k/oZ+YPqB6UfGz6EfmH5g+oHpB6YfmH5g +oHpB6YfyX/ox8wbGxdWPS6Lfsy8HaYfs/1EmH5g+oHpx/z7k2H6gekHph+Y fmD6gekHph/z9U+F6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+ YPqB6QemH5h+YPqB6QemH5h+YPqB6QemH5h+YPqR+Bj6gekHph+YfiS+h35g +oHpx9w+K9MPTD8w/Zjj8/TafkM/MP3A9APTD0w/0r5DPzD9wPQD04/0h6Ef af+hH5h+YPqB6QemH4mPoR+YfmD6gelH+t/Qj8TP0A9MPzD9wPQD04/E19AP TD8w/cD0I/196Efib+gHph+YfmT8HPqB6QemH5h+YPqB6QemH5h+YPqR/Id+ zLyx8bjy+6ofM2+H6cdsPxGmH5h+YPox//5kmH5g+oHpB6YfmH5g+oHpx3z9 U2H6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+Y fmD6gekHph+YfmD6gekHph+YfiQ+hn5g+oHpB6Yfie+hH5h+YPoxt8/K9APT D0w/5vg8vbbf0A9MPzD9wPQD04+079APTD8w/cD0I/1h6Efaf+gHph+YfmD6 gelH4mPoB6YfmH5g+pH+N/Qj8TP0A9MPTD8w/cD0I/E19APTD0w/MP1Ifx/6 kfgb+oHpB6YfGT+HfmD6gekHph+YfmD6gekHph+YfiT/oR8zb2x8W8XJ5dGP mbfD9GO2nwjTD0w/MP2Yf38yTD8w/cD0A9MPTD8w/cD0Y77+qTD9wPQD0w9M PzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9M PzD9wPQD0w9MPxIfQz8w/cD0A9OPxPfQD0w/MP2Y22dl+oHpB6Yfc3yeXttv 6AemH5h+YPqB6Ufad+gHph+YfmD6kf5Q/69MPzD9wPQD0w9MPxIfQz8w/cD0 A9OP9L+hH4mfoR+YfmD6gekHph+Jr6EfmH5g+oHpR/r70I/E39APTD8w/cj4 OfQD0w9MPzD9wPQD0w9MPzD9wPQj+Q/9mHlj4wcrrlf9mHk7TD9m+4kw/cD0 A9OP+fcnw/QD0w9MPzD9wPQD0w9MP+brnwrTD0w/MP3A9APTD0w/MP3A9APT D0w/MP3A9APTD0w/MP3A9APTD0w/MP3A9APTD0w/MP3A9APTD0w/MP3A9CPx MfQD0w9MPzD9SHwP/cD0A9OPuX1Wph+YfmD6Mcfn6bX9hn5g+oHpB6YfmH6k fYd+YPqB6QemH+kPQz/S/kM/MP3A9APTD0w/Eh9DPzD9wPQD04/0v6EfiZ+h H5h+YPqB6QemH4mvoR+YfmD6gelH+vvQj8Tf0A9MPzD9yPg59APTD0w/MP3A 9APTD0w/MP3A9CP5D/2YeWPjp2o91hXRj5m3w/Rjtp8I0w9MPzD9mH9/Mkw/ MP3A9APTD0w/MP3A9GO+/qkw/cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MPTD8w /cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MPTD8w/cD0A9MPTD8SH0M/MP3A9APT j8T30A9MPzD9mNtnZfqB6QemH3N8nl7bb+gHph+YfmD6gelH2nfoB6YfmH5g +pH+MPQj7T/0A9MPTD8w/cD0I/Ex9APTD0w/MP1I/xv6kfgZ+oHpB6YfmH5g +pH4GvqB6QemH5h+pL8P/Uj8Df3A9APTj4yfQz8w/cD0A9MPTD8w/cD0A9MP TD+S/9CPmTc2fqPOM1n1Y+btMP2Y7SfC9APTD0w/5t+fDNMPTD8w/cD0A9MP TD8w/ZivfypMPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9M PzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD04/Ex9APTD8w/cD0I/E99APTD0w/ 5vZZmX5g+oHpxxyfp9f2G/qB6QemH5h+YPqR9h36gekHph+YfqQ/DP1I+w/9 wPQD0w9MPzD9SHwM/cD0A9MPTD/S/4Z+JH6GfmD6gekHph+YfiS+hn5g+oHp B6Yf6e9DPxJ/Qz8w/cD0I+Pn0A9MPzD9wPQD0w9MPzD9wPQD04/kP/Rj5o2N 63ercfjK6MfM22H6MdtPhOkHph+Yfsy/PxmmH5h+YPqB6QemH5h+YPoxX/9U mH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6YfmH5g+oHpB6Yf mH5g+oHpB6YfmH5g+oHpB6YfiY+hH5h+YPqB6Ufie+gHph+YfsztszL9wPQD 0485Pk+v7Tf0A9MPTD8w/cD0I+079APTD0w/MP1Ifxj6kfYf+oHpB6YfmH5g +pH4GPqB6QemH5h+pP8N/Uj8DP3A9APTD0w/MP1IfA39wPQD0w9MP9Lfh34k /oZ+YPqB6UfGz6EfmH5g+oHpB6YfmH5g+oHpB6YfyX/ox8wbG+/dvR15yaof M2+H6cdsPxGmH5h+YPox//5kmH5g+oHpB6YfmH5g+oHpx3z9U2H6gekHph+Y fmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+Y fmD6gekHph+YfiQ+hn5g+oHpB6Yfie+hH5h+YPoxt8/K9APTD0w/5vg8vbbf 0A9MPzD9wPQD04+079APTD8w/cD0I/1h6Efaf+gHph+YfmD6gelH4mPoB6Yf mH5g+pH+N/Qj8TP0A9MPTD8w/cD0I/E19APTD0w/MP1Ifx/6kfgb+oHpB6Yf GT+HfmD6gekHph+YfmD6gekHph+YfiT/oR8z+3c0+jHzdph+zPYTYfqB6Qem H/PvT4bpB6YfmH5g+oHpB6YfmH7M1z8Vph+YfmD6gekHph+YfmD6gekHph+Y fmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+YfmD6gekHph+Y fmD6gekHph+YfmD6MbfPyvQD0w9MPzD9SPsN/cD0A9MPTD8w/Uj7Dv3A9APT D0w/MP1I+w/9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9 wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MPzD9wPQD0w9MP5J//btvjbeKr1Ob S1w/agd/R8XNo3aeUO3zJ5tfXe1yVfhI1fuqnSXdDWH2B1T+q73zPaVfj9y5 qvz/Z5tvqvuhR+48peLtxjD779bztqOxY/aX1vuc1Y6/vuLvLzdfUPW7cqea 59rrNp9Z5bgydsz+xKrvFTuPr/j7qzD7FVXf1Y5fVOPNzuYDq76rHT+m4vFN YenvLX9cHjtmf2v5Y7XjoxWfbw7X8HDN6zdfW/65LHbM/svln9WOL654fUtY +k9WeS7deW6NZ28IS4/PrvH5rXvSv66ufyR2zP7iap9LYscPrPH8bWHx+c3V Hodjx8v4/vaw9GeXvw8n/rD0eBn/bw77/a3l30P5PfZ77Pf4mir3zXt+/+vl 34sTr9jvsd/j55W+vGPP759d+R5MPGO/x36Pn1t69M6w/B5d8XxR8sN+j/0e P7v06517fv+JiocL0x+w32O/x99bAXhLWH5L/FyQ/LD+geWH5YefWXr5rj35 /Vj57RHJD+svWH5Yfvg7Sm9Xfmrp66178l/i9fzkj/UvLD8sP/yU0udb9+T3 sIrnNT+sv2H5Yfnhbyx9f3f460vPb9uT/xLv5yV/rL9i+WH54SdUPW7bk9/L Kv7PTX5Yf8Tyw/LDj6/5xHvCj635w+178l/6xznJH+uveO5v5yR/LH/8mJqP rHx1zT/eu+d6X1r96excD7se1j+x/LH88dGaz9yxJ/87y98PT/5Y/lj/xfLD R0owV7645j/v25P/86u+D03+WP5Yf8b37zbvZz+w+XOVz1k7n/6y3Q71wfAn d+X611Yud9638sceshtQp8P37k6Hf2nl3dZ63YdXvu3gboXuCt9at0Mrv+OL vfNTX3Z3+O2707UXrXxT3f6t/KYv1uZxR+8J37jb3V6w8qma4Nyzpz6Hqr89 KPXB6oPVB6sPvms3HL7mzvDpGmdXfn+5d+U7dt3/uLvC/IH5A/MHVj+sfnin 4uJD4T//YjR++b9b+XX1wGDlP9m9/Tn/w+GTu8m/f+XXLhUO/+7jdjvkR8Kv rgnWyq/YDb/Xrvxbu8Xff2/45bvy84yVl+8g3bvHn6+s8eOB8SfmT8yfmD8x f2L+xOILiy8svjD/Y/7H/I/5H/M/5h/MP5h/8Mt2u/8XVv7VrRL08C/vttbL V97elbtPrfwLu837zX8bfkndcK/8X3dr+9GVf/oBuwP4R8PHdm+3f3HlF5d7 Vn5R/f+x8I/uFue/rfzCevyw8gt2h8sv/3j4P+w270+s/MJ63PLxPe31VTXe npn2wtoLay+svbD2wtoLay+sv2D9BesvWH/B+gvWX7B4wOIBiwcsHrB4wOIB i4de/hsq3wek/Fj5sfJj5cfKj5UfKz9Wfqz8WPmx8mPxjMUzFs9YPGPxjMUz Fs/9+k+rYWkj18euj10fuz52fez62PWx/oT1J6w/YXr2hsrnH6+nZ5ieYeMv Nv5i4y82/mLjLzb+YuMv1p+x+mP1x+qP1R+rPzaeJP0YT3r931/te3/qj9Uf qz9Wf6z+WP2x+mP1x8YzbDzDxjNsPMPGM2w8w8YzbDzDxgNsPMDGA2w8wMYD bDzAxgNsPMDGA2w8wMaD7t/7q96fiX8x/2L+xfyL+RfzL+ZfzL+YfzH/Yv7F /Iv5F/Mv5l/Mv5h/Mf9i/sX8i/kXG++w8Q4b77DxDhvvsPEO6+9Yf8f6O9bf sf6O9fekH/29l/eCf7nbr/8+5cXKi5UXKy9WXqy8WHmx8mLlTfpRXqy8v748 1095sfJi5cXKi5UXKy9WXqy8WHmTfpQX64+31v3WB9Mfsf6I9UesP2L9EeuP WH/E+iPWH7H+iPVHrD9i/RHrj1h/xPoj1h+x/oj1R6w/Yv0R649Yf8TiBYsX LF6weMHiBYsXLF6weMHiBYuXpB/xgunvpfVg913RX0x/Mf3F9BfTXywesXjE 4hGLRywesXjE4hGLRywesXjE4hGLRywesXjE4hGLRywesXjE4hGLRywesXjE 4hGLR2z++Q31QurazD+x9sfaH2t/rP2x9sfaH2t/rP2x9sfaH+sfWP/A+gfW P7D+gfUPrH8k/egfmH8/+RfFm/yL9Xesv2P9HasPVh+sPlh9sPpg9cHi9b89 vdp/U7xi8YrFKxavWLxi8YrFKxavWLxi/sT8ifkT8yfmT8yfmD8xf2Lx9pBl /NsUb9h4g4032HiDjTfYeIONN9h4g403WPth7Ye1H9Z+WPth7Ye1H9Z+WPth 7Ye1HzZe3PJzNf/YNF5g4wU2XmDjBTZeYOMF1n5Y+2Hth7Uf1n5Y+2Hth7Uf 5m/M35i/MX9j/sb8jfkb8zfWX7D+gvUXrL9g/QXrL1h/wcYfbPzBxh9sPE36 MZ5iz/9/tc5//vim5/+YXmF6hekVFn9Y/GHxh8UfFn9Y/GHxh8UTFk9YPGHx hMUTNh5g4wE2HmDjATYeYPGJxScWn1h8Yu+jXlN+/PtN76Ow9sPaD2s/rP2w 9sP8j/kf8z/W/7H+j/V/rL2w9sLe371weZ6x6f0d9v4Oe3+HvW/87uV5VvLD 8sPyw943Yu8bsfeN2PvUy5bni1uuj10fuz72PhV7n4qVB3t//NLl+euW62PX x66PvT/G3h9j5cHKg70vP3N5Xp7yYOXB3pdj78ux8mDlwd7/v6D8/cBcH7s+ tr4AWw+AlQcrD7a+4cPV/w7k+tj1sfUN2PWx62PXx9ZrPLPa6axcH7s+tl4D uz52fWz9yU3Vv74k18Ouh60/wdafYNfHro+tp3ni8j4918euj/Vf7PrY9bH8 X1Pj+sOTP9afsfyx/LH1SedUvJ2d/LH+iuWP5Y/l96Qq7znJD+uPWP5Y/tj6 rhdXfJ6b/LH+juWP5Y+tP7u26n9e8sf6L5Y/lj+W3ycrntf8sPyw/LDfP6b6 4fnpz9jvsfV9z6lyPCL9Efs9ln7R1QuSHluPeFvF74VJj/U/7PfY75fvh1+U /oT9Hku/tO/BpMfWZy7fA7w4/QVLj6Vf2uNQ0mP25fseh9JfsPTYetTF34eT HrP/QPn3ktgx++LfI4n/zreX/y7dst72Z6o+lyW+Mftv1u9XO2Z/fdX38tix eHxfXe/yLeuJ/6Hqu9ox+yOqva6IHbN/efnjisTvt1S6K8PPK3/Yj3hN1kMv +2V+Prwx/nX78terd5b9M7+S9Ji95Pr+P4xd+TpLL77Z7X/p67Wl50927ddZ evHALr46S+9+ZPbHfWH+s36cfzB/YP7o682x+mP1x9obqz9WX6x81rMrH1Y+ rHzY/iYsnrH2wMqH+RMbH7DyWU+vfFj5sPJh5cPKh5UP2z818zVZr+/62PWx 62PXx66PXR+7PtZ+s/2a7BdQHqw8WPz0/QVY/lj+9hvIH8sfyx/b34a1N7Yf Dbue/Quuh10Pux52PWz8xq6PXR/rD1h57JdQHqw8WHmw8mDl6fsvev72Y8gf L/sLXx7Wfn3/Btae2H4/7Hr2d7gedj3seriyef61YdfDroeNp9j17R9xfez6 2PWx62PzA5z5+2D7G7Hr25/i+tj1setj1+/7W7DrY9fHxjusPPa/KA9WHqy9 sf2i2P5NLH/7Z+SP5Y/lj+WPzf+w9sWuj43nWHnsz1EerDxYebDy9P092H5V 7Hr2+7gedj2sPbH9t1j7YdfD5svY9e0fcn3s+tj1setj+o/tx8WuZ7+R62HX w/YTY/t5sfzsT5Iflh/WHlj+mN5h+dvPJH8sf7zo6W+HXQ+7Xt8fhe1P7tez P8r1sOth/sfmX1h+9kvJD8sPyw/LD5sPYPnbPyV/LH/s99jv7Zfye+z3mF5i v7c/yu+x32P6i+WH6UXPz34p+WHpsfT2Q0mPjb94jtcLkh4v875Xh/2+p7df SXr8+d3Hyb+57r+wnxrbT43tp8b2U2P7qbH91Nh+amz/M7b/ue/PeHrF64N2 7Ifu+zXY7Y/u+zes77dfuu/nYLd/uu/vYLefuu/3cH3P17H3IdJjdu9H2DG7 9yXsmN37E3bM7n2G8nufgbUn1p5Ye2LtibUntj8e2x+P7Y/H9sdj++Ox+MDi o7dXb5++X+V0+f3Ajv3vff8Ku/3wfT8Lu/3xfX8Lu/3yfb8Lu/3zff+L/QX2 0/f9MOz21/f9Mez22/f9Muz23/f9M+z24/f9NOz25/f9Nepnv37fb8PufRv2 Plh6zO79MDtm976YHbN7f8yO2b1PZsfs3i+zY3bvm9kxu/fP7Jjd+2h2zO79 NDtm976aHbN7f82O2b3PZsfs3m+zY3bvuzN+DE7+43lT8h/MbnwQX8YHbHzA xgdsfMDGB0wvMH3A9AAbT7DxBBs/sPECGx96f+r9B+svff/Vv69y799x3kXf j8Xu/Iu+P4vdeRh9vxa78zH6/i1252X0/Vzszs/o+7vs73GeRt/vxe58jb7/ i915G30/GLvzN/r+MHbncfT9YuzO5+j7x9id19H3k7E7v6PvL2N3nkffb8bu fI++/yzlr3/37dmPxi6esXjG4hmLZyyesXjG4rnvT7Mfid71/Wrs9K7vX2On d30/2D/W/Hdf9K7vb2Ond32/Gzu96/vf2PXPvh+OXX/t++PY9d++X45d/+37 59j1376fjl3/Zddfe3xg/uJf/un76ezP4p++v46df/p+O3b+6fvv2Pmn78dj 55++P4+df/p+PXb+6fv32Pmr7+djN771/XU/W/PgMzK+9f1+7Ma3vv+P3fjW 9wOyG9/6/kB241vfL8hufOv7B9mNZ9j4JT1mN36xY3bjFztmN36x4+wXHONX 8h/Mzv/2x/F/3+/Izv99/yM7//f9kOz83/dHsvN/3y/Jzv99/+TFS8eMvvT9 lOz0pe+vZKcvfb8lO/9j/sbGh+5/dvdr6mM+hs3HsPkYNh/D5mPdP31/pf1z /NP3W7LzT99/yc4/fT8mO/3t+zPZ6W/fr8nOf33/Jjv/Yf7D/If5D/Mf5j9s PovNZzH9x/Qf039M/zH9x/Qf039M7zF9x/Qc0yNMjzD9wfQG0xdMTzD9wPQC 0wdsfOnt2/1tvx5/Y/7G/I35G/M35m/M35i/MX9j/sb83fd32r/H/32/J7v2 6Ps/2bVP3w/Krr36/lB27df3i7Jrz75/lF379v2k7Nq77y9l1/59vym7+UHf f8puftD3o7LTp74/lZ0+9f2fP11x9anoU9+/yk6f+n5WdvrU97eyG3/7fld2 42/f/8pu/O37YdmNv31/LLvxt++XZTf+9v2zKf/on30/LTv/8jd/Yv7D/IX5 B/MHVn+svlj9sPr0/bWPXeqR+vT9tuz80/nHlzhLflh+0suP3f2W/bH4dcu4 lvGCHbMbL9gxu/GCHbMbL9gxu/GCHbMbL9gxu/GCHbMbL9gxu/GCHbMbL9gx u/GCHbMbL9gxu/GC3XiC2aUX7+zGE3bx3/drs+sPff82u/7R93Oz6y99fze7 /tP3e7PrT33/N7v+1feDs+tvfX84u/7X94un/KO/9P3j7PZj2B9sPobND7D5 ATY/wOYH2PwAmx9g8wNsfoDND/p+83sqbu7IfKHvP2c3f+j70dnNJ/r+dHbz ib5fnd18ou9fZzef6PvZ2c0n+v52dvOJvt+d3Xyi739nN5/o++HZzSf6/nh2 84m+X57dfILd/AHr31h/xvov1l+x/on1R6z/Yf0N619Yf8L6T/If/QXb32R/ tf1N2PtA7P4Iuz/C7o+w+yPs/gjrj1h/xPoj1h+x/oj1R6w/Yv0R649Yf8T6 H9bfsP6F9Ses/2D9BesfWH/A4h+Ldyy+sXjG4heLX2y87/yaN+7G9U0Z79kx u/GeHbMb79kxu/GeHbMb79lx8h/jffIfzG5/n/3v9vdh78Ox9+FY/GPxj8U/ Fv9Y/GPxj8U/Fv9Y/GPxj61nwN6PY/OXzvbXm7/08wFqmNg66zrzFXbMbr7C jtnNV9gxu/kKu/ERs0tvvOznKbAbP/v5CuzG037eArvxtZ+/wG687ecxsBt/ +/kM7Mbjfl6D9jA+9/Mb2K3/wNZ/YPGOxTs23mPjPbafFduPjO1H7uczdP7p G6r/ZX8vO2Y3X2DH7OYL7JjdfIEds5svsGN28wV2zG6+wI7ZzRfYjb+YXXrj Mbv+yG587v2T3Xyjn9/Bbv7Rz/NgNx/p53uw63/9vA92/a+f/8Gu//XzQNj1 v34+CLv+188Lcd6F/tfPD2HX//p5Iuz6G9bfkt/ob+zW02H9D+t/uf7of1j/ w/oftl6p87ffWPPP7L9nx+zuF9gxu/sFdszufoHd/QFml958p6dnN/9hNx6w mw/181zYzY/6+S7s5kv9vBd286d+/gu7+VQ/D4bd/KqfD8NuvtXPi2HX//v5 Mez6fz9Phl3/Z9ffsf6N9Wes/2L9NfE++ifWH3t/wPZXOB/F/gJs/T22nxnb T43t505+Yz833njy7gU/ENb/sP6HrRfF5kvYfAm7X+jn5dz39OV37h/6+Tns 7if6eTrs7i/Y3V9g9xfY/QV2f4H1N6x/Yf0J6z9Yf8H6B9YfsPjv5+uon/jv 5+2wi/9+/g67+O/n8bDTO0zfpMfs9I0ds9M3dsxO39gxO31jx+z0jR2z0zd2 zE7f2DE7fWPH7PSNHbPTO3ac/IfeJf/B7PY3OO/GfgFsfwO23h4bP7DxI78f 5wlg5xUkv3FeAja+JP8xvmDjCzafxe7fsPu3lGfcv2H3bynfuH/D7t+w+zds PMLGI2w8wsYfbLyJ/8b40s9/+uMbF50w3vTzoNiNP/18KHZ638+L6nZM/6XH 7PSfHbPTf3bMTv/ZMbvxrZ9nxW686+dbsRv/+nlX7MbDfv4Vu/Gwn4fl/CHj YT8fi9142M/LYjcf6OdnsZsf9PO02M0X+vla7OYP/bwtdvOJfv4Wu/lFP4+L 3Xyjn8/Fbv7Rz+vK+U3jfqCf38XufqCf58XufqCf78Xufryf95Xyj/lQP/8r 7TP2B2L757DxExs/sfETGz+x80fy+3G+CXZ+SvIb4yk2nib/MZ5i4yk2nmL7 R7DnZdjzMux5GTbeYuNtyjvGW2y8TfnHeIuNt9h4i+0P6uedbVY9/i52bP4n PWY3/2PH7Mbnfp4au/G6n6/Gbrzu5605z8t43c9fYzd/7OexsZtP9vPZ2M0v +3lt7Oab7Oab2HwTG4+x8Rcbb7Hxtfc3bH+78tgPjfU/rP/lPLTR/7D+189L w/pb0jsPaXDOQxqc85AG629Yf8P6Gz57N/kfvj/84CrgX4ft18P2d2H9E+uf WP/E+if2fA/rX1j/wuYz2HwGm89g8xmsv8Qf47yK7Yr7z6S9sfbG2htrb6y9 sfOSYh/tjbU31t5Ye2PtjbU31t7YeXf4/NLD94e1P9b++Dk1Xv5BzufjL8xf mL8wf2HnQfXz/rDvIWPfQ8a+h4x9DxnzD+Yf7Dw+7HxAzF+YvzB/4R+p/a2v yXmC/IX5C/MX5i/s/Kt+PiH2/WjMX5i/MH9h8YT5Czs/EDs/MOUd32vGvteM fa8Z81/OY6z0r855iPyH+Q/zH+Y/7Dyvfr4i9v1tzH+Y/zD/Yf0R8x92/iF2 /iH2/Wvs+9eYP7F4xOIx9uE/5znyH+Y/zH/Y+Qz9PEjsfADMf5j/MP9h4xn2 fA07rxH7fjj2/XDMf5j/sP6M7U93/iR/Yf7C/IX5Czu/o59niZ0XgfkP8x82 3mF6gD0/wL6/jn1/HfMf5j+sPyf/4R/nZfIP5h/MP9j5H/28Tew8Dsw/mH+w 8Q2bn2Dfp8e+T4/5B/MP1j+x8w9yvufwB+YPzB+YP7Dnz/08UOx8FMw/mH+w 8QvTc/y0is+V+QfzD+YfrP/hnHdUcXhW/IH5A/MHzveyB+e8o8HOw8H8gfkD G48wfcL0HH/nv1reE2D+wfyT+o3+hdXf+afqj9Ufq38/LxU7LwOrP1Z/bDzB 9AU/q+5H1/Ncv6fmxyurP1Z/nPOkKt1DUz+sflj9sOen2PkjOOdLDVZfbHzA 9BSbv2H1xeqL9QfsPBbnwaovVl+svtjzjn6eLFZfrL5Yf8e5fxts/oXVF6sv zv3bYPVzPq36YfXD6ofVDzt/Bqsf1n+x+mF6hc2XsPpi9cX6M1Y/5+WqH1Y/ rH7Y86t+3i5WX6y+WH0xfcbmN1h9sfrinN9UenNu6oNzftNg9enn+2LnF2H1 wcYfTE+x+RpWH6w+WP/ExiOsfs4PVj+sftjzDux8J6x+WP/D9BCbT2H1w+qH 9ceUZ9QP53yw0sO1Plh9sPpg9cHqg9UH0zesflj9sPph/Q+rH3aemPOW1Q+r H1Y/7PlFP68Zqy/W37D6YfM9rH5Yf8v1R/2w+jgPWn2w+mD1weqDnY+G9Tes Ppg+Y/M1rH5Y/8Pql/KM+mHtl/OuR3xi9Xfetfpj9cfqjz2f6udlY/7A/IHp N+YPzB9YPOf6wx+YP1Ke4Q/MH5g/Ur6hH5heYv5yvjd/Yf7C/IX5Czt/EPMX 5i/MX9j8FvMX5q9cf/gL81fOKx/+wvyFjdcp3/AX5h/nmfMP5h/MH5g/sPEB my9g813MH9h4gfkDq3/OXx/1z/VHfGD1x+rrfPZ5vnGwzTcO5vzzfp47Vn+s /lj9sfpj/QerP1b/XH/EA57nJwfb9wcOtu8PHIw/MH84f54/MH9g/sDOH8XG E8wf2PwKuz/A/IP5B/MP5p+cnz/8g/kn5Rvxgvkr5R3+wvzj/P15vnOozXfW 8/Yx/2D+wfyB+QMbP7D643k+dKh97+FQ+97Dofa9h0NtPnQo9fX9APXF6os9 r+7fG8Dqj9Ufm69i91OYPzB/YPGB+QfzD+aPlGf4A8/zpcNtvnS4zZcOp/64 snv+tWHjBVZfrL7YeIHVF6svnudXh9v3Ng63720cbvOrw21+dTj19/0H9cfq j9Ufqz9Wf2z+i/kD8wfmD8wfmD8wf2D+SHmGPzB/4Hl+daTNr460+dWR1B+r P57nW0dSf+z+ExsP8DzfOtLmW0fa/OpIm18dafOrI/l+he91qC9WX6y+2PuW /r0PrP9j9cfm05g/MH9g/sDiAfMP5h8sHjB/pXzDX5h/fK+EfzD/YP7B/IOd f4/5B/MHdj+P9Q+s/lj9sfpj9cfqj8UHNh5g/vB9Fv7A/IH5A/MH5g/MH5g/ MH9g/sDiA/MP5h/MP5h/MP9g8YH5C/OP79PwD+YfzB+YPzB/YPcT/fs3mH8w /2D+wfyD+QfzD+YfzB+YPzB/+D4Pf2D+wN6v9e/5YOML5h/MP9jzFmx8wfyB +QPzB+YPzB9YvGD+mctzTb5HxB+YPzB/YN9LwfyB1R+rP1Z/LD4wf2D+wPyB +QOrP1b/uTzX5HtL6o/VH6s/Vn+s/lj9sfpj9cfqj9Ufqz9Wf6z+WDxg/pjL c02+L6X+WP2x+mP1x+qP3V/171dh4wXmD8wfmD8wf2D+wOqP1R+rv+9pqT9W f6z+2HiA1R+rP/Y8Eqs/Vn+s/lj9sfpj9cfiAfMHVn/fD1P//j2xZZ3h0a2N 8Y+df/rvpZ+/H3Y0/pOe/zC79PP3xI7Gn9LzJ2aXnn/Z5++NHY2/2fkbs0s/ f3/saNpDeu2B2aXXPj09u/Zi117YeurOfj+319XjexLH2vfNtsOzv6/O96/Y Z3+u32fD5sPSz/W9Ot+XYZ/Lu5Zv/r7Zdlh5ZvupsOvP9mPte2TbYfOZ2b5+ 78zzndl+rH1fbDssv9l+rH3/azssPTY/mtMfa9/32g77Pfb7Of2x9r2u7cbH 2veztsPuDzH/zumP5XtYfo/9Hvt9Tz9/3+p42O+x9PP3qI6H3Y9j6efvRx0P e96DpZ+/73Q8LD0Wz9jv5+83HQ+zz99TOh72fBaLP+z38/eRjof9Hks/f8/o eNjzbCz9/D2i42HvD7D08/eGjofZ5+8FHQ8br7H0vu8jPV7sJ8J+39P7no/0 mH3+Ps+JMPv8/Z0TYXbf02HH7L6Hw97Z92+w79tg36tZ9PKVe9j3auzH8H0T +y+w/RbYevj+vQ3fH7B/Adtvhu0vw/aTYfvHsP0I/XsSzsu3nwrbP4Xtl8L2 R2H7obD9T9h+J2x/E7afCdu/lPRDn7D9I84jt18E8yfmL+dB8xfmL2x/Hbaf Dts/h+2Xw/bHYfvh+nnUOS97tE8/f5rdfjnnI2s/rP2w9sPaD2s/rP2eWv3h 8zlPBms/rP2w9sPql/SjPth+QefbinfnZ+b8lcE5b2VwzlcZnPNUBuf8lME5 L2VwzkcZnPNQBue8k8E532RwzjMZnPNLBqv/iWq/v0v9sf0sznvS/jkfqtKt 5zvZj4LtR+nnIVU2W2dd5/p4mt/t8hh/nBdiPw52fWw/DlZ+bD8Otl8O2y/X z0NxXkrOZx2c81gH5/xV6Z23Otj3wZz3oH5Y/XJ+yqgfVj9svxk2X7K/3Pwm 5zOM9aHY+lls/Wz2z9fzjvX8B+XP+REjHjC9t3+T3mLz5ezXHvNPrPzZDz7W Q2LrP7H1n9nvPeqH1Q/bv9f3D9tfrD9h8Yr1J6w/YeMbNr5h4xs2vmHjGza+ YfGIxSMWj1g8Jv2IR2x+av+f+eC8/3TdP6s9sfbM/tSxPhBbD4mt/8z+09G+ WPti7Yu1L7Y/ru/ntN+T/mL6i+kvNr5j90v2z7m/wPyH+W/eH7juf7T+MPsF rZcdnPWyg7NedjB/Yf7C/IUfWuVb9zca77D7Y/vf1BerL1ZfrL7YekSsvlh9 sfpi9cXqi9UXX1jPy9f9fufW8451f5/64yVeT2Y/m/pj9cfqj61PxMqLlRfb L5b8xn4xrPzZPzjKj5f3Ta/NfjLlx8qPlR9bf4j5Gys/tt8IKx8+q/z5e9mf pXxY+bDyYesHsXjAyoft78H8ifkTK5/9UcqHlQ9bn4bFK7a/Btu/ht1f2W/k +tj1setj99NYfGH9Cdsfhl3ffh/Xn/f/vDbs+QAWH9j+Kuz+0v4Z18OuN++v eW3Y8w6s/TH/YtezX8X1sOvhPL8ZrD2x/ojNB7Dr2T/ietj1sPbCfj/vz3hl 2O8x/2PjGfY8wH4I+c/7I14ZNn/C/I2jF4Plbz+C/Of9Ca8M8y+WPzZ+YPnb HyD/eb/AK5t93c/gejjPcyoez01+8/r8V4bNH7HxBMtvXo9/Isyf2PiE87yq 4nX9PfZ7LN6x/oyNN3N+2209+PGw62Hzi9l+Kmw8wa4/p99u66+Ph10Pm//N 9nU9ufEEux7mz/n322098/Gw62PzDaw8WP/E/I/5A/M/Vj6s/8zl2W7ri4+H lRcrH+YfzD9YebD+Nee/3db7Hg+LB2w8xPyBXR/rL9j15vW0x8Pmg9j1sfbA ro+1B573Fx1MebDyzOtXj4fFB1YerDyYf7D2wcqHtQ9WXqx883rT42Hlw/QA 8w+e9/8cavt9DqU82PXn9Z7Hw+azWHmw8mD+wsqHlQfP49fhNn4dTrxgeoJd H2sfPO+vOdzGt8NtfDuc8szrH4+HlQfTD6x8WPmw8mHthZUPz+PdkTbeHUl5 MD3E8/h2JNfD8/hmPeSxtv5vu62PPB52/4DFC1Y+TO+w8mL+w8qPtSdWn7m8 x9p6ve22fvF4WHmx9sTaD2s/rDxYPM3XP9bWx2239YPHw8qDlQfzF1Y+rHxY +bD2nstzrK1X2w4rz2xf198pH9Z+WPth5cPKM+d/rK0X2w67P8TiDysvFm9Y +bDyYeXD4msuz7G2nms7rDzY9bH2w8qDtSdWPqw88/WPtfVV22HlwcqDlQe7 PnZ9LJ7m6x1r65u2w66PzW/m9Ov6LPGElQ8rH1aeOb9jbb3Rdlj8YOWb058K Kw/WXlh5sPiZ8zvW1jdth5Vntp8Kuz52fez62PWx5+3Y89DlffX5O+5vH1bp zt/xPL/z8n76vB3339j9/8uW+6Udz1+w5w/L++lzdjwvws7f+7nl/jrfw8bO 18Oe33rf63wz7H0Sdn4ddh4odv4n9v4OO98TO88TO78TO68TO58TO48TO38T O28TO18TO08TOz8TOy8Te3/he+be/2DnC2LnCWLnCWLnCWL+8T1s/unfo+/f n+/fm+/fl+/fk+/fj+/fi+/fh+/fg+/ff+/fW+/fV+/fU+/fT8fKg5UHKw9W Hqw8/fvh/Xvh/fvg/Xvg/fvf/Xvf/fve/Xve/fvd/XvdWPmx8vf0/XvS/fvR /XvR/fvQ/XvQ/fvG/XvG/fvF/XvF/fvE/XvE/Xu6/Xuu/fut/Xut/fus/Xus /fur/Xur/fuq/Xuq/fup/Xup/fuoWPz6/p76YfXD6ofVD6sfVj+sflj9sPph 9cPqh9UPa3/rCbQ/1v5Y+2Ptj7V//x6X9Qeuj/kXi2csnjH/Wh/Av5h/Mf9i /sX8i/kX8y9WP0xvvf+nt9h4iI2H+b7K8G//3kv/vgt2fcyf3v/zJ+ZPzJ/Y +ICND1lfMOIDi498n2KUHys/Vn6s/P37D9YD6E9Ye2PtjbV3P2/e+2jzF2w9 DNa+/fzyfl55P5+8n0fezx/v543388X7eeL9/PB+Xng/H7yfB97P/+7nfWPx 6v2zeO3nL+OfrfUQd4/1dGftLPfh94R/oh5grfxjtf7hQ+H/UusfVv6Rmi5b f3dg54fr/uvD4WtqvcvKz6/72ZWfV+t1PhL+wXo+sPLynGfl76vnc/eGn1Xr kVb+t/X8cOXvrvfzfxP+rrq/Wvk76nyDlZ9Wz4f/NvzU2oC+8rfU/cfKT6rz Qz4a/qbyy8rfUPG78tdV/K78xIrfj4W/pu4/VubvZb3emfE35m/M35i/MX9j /sb8jfkb8zfmb8zf3f6KirMHxI61B9YeWHtg7YG1B9YeWHtg/sb8jR9f/Wnl r6j+9PHwY6s/fXxP+b6yxo2NtC92Pex62PWw62HX6/afqXp94Xp2/ITSo5XF w+urvJ++Xjxg8YDFAxYPWDxg8YC1N9beWHtj7Y35E2tvrL2x9sbaG+t/WPtg 7YO1D9Y+mP8x/2P+x/rno2vh4YfSHlh7YO2BtQfWHlh7YO2BtQfWHlh7YO2B tQfmP8x/mP8w/2H+w/yH+Q8b/55d48kHrjf+Yf7F/Iv5F/Mv5l/Mv5h/Mf9i /sX8i/kX898TLtm9zs3xH+Y/zH+Y/zD/Ye33Q2/ZHS9enfbD+hPWn7D+hJUP Kx9WPqx8WPmw9sUZj562229v2Mx4NDjj0eCMR4MzHg3OeDQ449HgjEeDM34M zvgxOOPH4Iwfg9P/B5s/Pa/mr7dtmj9h8YzFM+YPzB+YPzB/YP7A/IH5A/MH Fq9YPGHzxxfV/OTOTfNH/JO1nnZl8YfFHxZ/WHtg7YG1B9YeWLxi8YrFKxav WHti48s31vOPezeNL1h7Ye2FtRfWXlh7Ye2FtRfWXlh7Ye2F+R/zP+Z/zP/4 52s99d2bDyx33Jf2x9ofa3+sP2D9AesPWH/A/I/5H1dz/fFfbNbjnDsftfPQ uv9a728eXPdf6/3MgVoPuvJLa/343ZuPr/nVg2LH6oPPrO83rKx++Ix63/Kh sPrif6z7uZXVH3+u7u9W5o9ud3/w2boPXO38hdml/9RuOH37ev/1ifo+5cof r+9Trvy39X3Y9f7rI/V92JXvqe/DrnxnfR92vf/6QH2feWX+vbHi64HxL1Zf LH+sv2DXw/oPdn2sP+H31XajlfUvfHt9X2Zl/Q2/u+q1sv6Hb6nPfa6sP+Kb d5M/bmX9E79193NMP7my/orfXK+XVtZ/sXhzPyZ+sPjA4gOLDyw+sPjA4gNr P6y9sPbB2gPz17J/ci3fsr9xX+53sfJi4zNWfmy8xuqDjd9Y/bDxHKsvFq9Y /bF4xfyBxSvmHyxeu939qfjF4hWLTywesfjD4g2/sb5Ptt5f31D7YT+6J/9l vD0j7YnZ3d+6Pjtmd3128Y6VB5s/YOXD5hP4DbU8ZWXzi25Xnutrf+96/35t fT9t5T+tA0j23t/L74+q3db7e/l/rv7+T9dj9/PmN+yuh813sOtj8x/s+lj5 8B/Ufp+VzY+6XflO1oKm1W6+j9ml15/dL+u/WH/F+ifWH7H+h/U3rH9h/QXr L1h/weIVi0+sv2DxisUnFo9Ye2PxhbU31r5Ye2Ltg/m/l/fbKv4+metj8Y+V B4tHrHxYPGLlxeIRKz8Wj1h9sHjE6ofFX6+f5wvqg5UfKy9WPqw82PUx/XX/ T38x/cX6wzcvE9o8z8Ds0usv7PQOs0uvP7HTP8wuvf7GTg8xu/T6Izt9xOzS 66/s9BKzS68/s9NPzC69/s5OTzG79MYDdvqK2aU3XrCbH2J26Y0n7OaL2PiC 6SU23mDzRaw/Y/NFbDzC9BMbnzD9xMYrTD+x/oWNH1h/w8YPrP9h4wfWH7Hx A+uf2PiB9Vds/MD6LzZ+YP35AT9fz0PyfBLr39j9DNbfsfs1rH9j/R/rz1h/ x/ov1j+x/of52/M4/u3P8z5S7/9viH/Z+ZOdPzG79PzLzr+YXfro53i+Fv0c HP0cLP5uqo3Lr87zIRx9HenFI7t4xPyDxSPmLyweMX9h/sTay/M17YW1FzYe YuNdf773ikP1PHjT+Mae+4Nhz/u4wezS5/5h2PO+bjC79Lm/GPa8zxvMLn3u P4Y97/sG535kcN7/Dc79yeC8Dxyc+5XBeT84OPcvg/O+cHDuZwZ7vuT5oOdL 2PMN7PnPV1S//+tN4wc2fmDjBzZ+YOMHNn5g4wc2fmDjBzZ+YPGIzQ+w+MTm A1i8YvqPxS+m91g8Y/qOxTMW71j8YvGNxSsWz1h8Yu39rOrHH8rzT6z9seeh WDxgz7swf3neyj+YP7D6Y/XF6ofVB+tvWP/C+hPWf7D6eP7qeSj2/BOLdyy+ ry4/fSzxjdmlF+/s4h2zSy/+2cU/Zpdef2DXH7D+gPUHrD9g/QFrX6w/YO2N 9Qes/bH+gMUDFq/LeQefSLxi8YrFK9a+2PNt7Hn7V5X/rtw6u9Y/rc/PvS/A yoOVBytPf37u+bx4sF5bvGDtj8VHt3seyo7FAxYvWHxg8YHFBxYfWHxg8YHF BxYf/fm389zm54cH2vPCA3n+53n7/LzwQJ4HsmN24wU7Zjd+sGN24wk7Zje+ sGN24w07ZqfX7PQZm99h87teHs+TzSew8mDzCaw82HwCKx82n8DKi90/YeXH 5q9YfbD5KjZfxear2HwVm69i81VsvorN57H5PjZ/x+Y3nk/rz1h/xvor1l/7 83rPT/UnrP9g4yk2fmLzB/sL9Besf/X02Pyi/77bsf6GzT+w/obNn/vzcucD imcsPrF4xOIPixfP68UHFg9Y+3dWPvGA2T3fFh9+j6XH0rsf8PxYfbH+i/Vf rP9i/sH6L+YvrP/25/H2c/Anu/6M9V/p+dv5i/yN+RvzH+YfLP8L6/nE5/J8 BRsfsOtj4wNWHmx8wMYD+02UDyt/T4/Fh/Tq0/Pr6fFS7fv2rHfs+UlPzz3/ peeYnmN6jo03mJ5j4w+m59h4hOk5Nj5h+o6NV9h4hI1H2PiDjT/Y+IONP9j4 g40/2PiD9U+sf2L9E+ufzsvUn7D4xeIVi08s3rD4weKlv/9gN//zvF58YPGA tT/W3lj7Yu3Z+XV1/bvTnuyYXXuyY3btyY7ZtSc7Ztee7Jhde7Jjdu2HtR/W flj7Ye2HtR/Wfv39Crv+cWv1sw/Gf1j/wPyH9Q/Mf1j/wOpnvaX6YfXD6ofV r/Nr3rib8KbUjx2z87/no/pTf16K6RlW3nLr1lnXKS82XtufpXxYfaQ3PrMr b/+9553SY+3b14f2/KTP+8vx/DbvcwfnfW5j58Xm/e6wY3b+w/yHxbv9YvSf nR6zZ3/BeH6Y+dXg7DcYnPnW4Ow/GJz51+DsRxic+dVgz188bzX/xubb/fmx /Wj8h/UXzH9Yf8HGG0xPsHj2vFQ8Y+2BtQfmf6x9sP6KxT/WHpj/MX9j/sX0 w/Mx7DxYesKO2ekLO2anN+yYnf5g+oPpDdZfsPb0/Eh7Yu2JtSfWnph+YPMD rL2x+QHW/tj8HYsHbP6OxQc2f8fiBZuvY/GD9WcsnrD5Ndbf+/M4zxs97+rP Sz1f874A66/2+7mfZnf/zK4/Y/fPWHxi8+OcJzye7y3j8tGt+X78QFt/d6Ct tzvQ1tcdaOvpDrT1c+vzKfej4g+LN6w/Yv2x2503z471B/M//QFHLwZHHwYr DxbvWHz3+Si9VJ7OXZ/0T9fDroddD+s/WH/By/kpz8566eW8x58JL+eNvjS8 nL/yP/bwEh9X7zy54v2PYv+60u8/3sPS/0CNN+t6befd4Dn+rt75ytoP/Fex /4va7/2msPkCvqv8d2fOQ7mj/HNX+Jk13qw8P1860NaTHmjrRw+09aIH2vrQ A2096IG2/vNAW+95oK3vPNDWc677VbHxFhtfsfEUGz+x8RIbHz1vNh5i4x9e Ps9wOuebOP8ay2/pj/vb+sv9yZ99Xn+5P9djn9df7s/zTnbMbvxlx+zmW+yY 3XyLfV6vuT/Pt9jn5137E4/8haXHno++o/Tq7py34vwePO+X3tf2S+/bMX+W n3gyHoonLJ6weMLiCYsnz+fEU19/K/3c/uv6Ws/75vZf19eyz+1/RmvfM1p7 ntHa74zWfme09joj/nc93Nf7en7n+p63uT52fez62PWx9nI91/e8E0vvewme bzm/AMufvsm/r7/1POze0rvTOc/F9zuw7ydg5xlg+cvvttKbuzbvr+t95vpn VHysbLyjh+ITi08sPrH4xOITi08sPj1vEp9YfGLx2Ne7yk/7Y+2PtT/W/lj7 YO2BfS+hn0eD+Vv5fG/BeS/OH8H87fkIf2P+xvyN+RvzN+Zvz2MwO/+zY3bt wY7ZtQ87Ztde7Jhd+2Hth7Uf1n5Y+2Hth7Xf2f+37sfC7OYbnheZb2DtaT2h /uZ8Hf0Nu77nP67n+RBmV3/PU7D5Jn9g/sD80Z8H9ec9WH36ej7Pa9Lfx/w2 /X1wzgMYz2PS/4c95wMMe8aDYc95AcOe8WHYc37AsGe8GPacJzDsmF18YvGI o2/jeUv0bHDOFxj55/yJYc95A8Oe8WXkn/MHhj3jzbDnPIJhz/gz7Bl/Bmsv 7ZPzCsbvo4+jfOYf3173D3dk/QuWX9b7lT/elfOAfD8F85/1T/yH+Q/zF+Yf zB9Y/bH6Y/Xz/AazP7vi6505f8h54dj9gvsp9wuYvzB/YfcL2P0Cdr+AjedY f/J8QX9i13+w/oL1D6w/YPGPxT/Wfp5HYXbtyY7ZtS87ZhdP2uP0aCfnFxlf sfEV+16v87t9z9f5zb6H6/xh3w+ez699dtY3uR/G7nex+1n8b6o8p8LuX7F4 w77PfFdd/1E7voeM2Wt4P/zF+93x/WUsPZb+1VXfq5IeS9/tv1D+uGrH95kx +zUVp4+MHbMv391Y7dj3t59Q9T2a7xVj9stqfrPaMfuZy/Oo2DH7h8tfV+5o T1zHd1173eZN5Z/VjtlfU/64InYsXrD02+Wf1Y7ZX1j+uXynPlf4z3bC0mPx 2dN/d/lvtWP2rfLfZbFj37PG0h8tf162U+F5zevD0nf7g8q/l+3oT5j93eW/ S/M9auz72N2+fJ/1SOyY/fuqfpckPrHvw2Ppl++3Hk567Pxn35tdvrf39j3p /77i41DiFTtv2/do/Z59+b7gzXt+v3wf9uL83vdqnXeO/V76pR+tLL8fr78f TLxj+fnere8VYPlJ/7zSj3fsyW/xz0WJdyw/38v1PQYsP+mfW+PfO/fk9/Dy 30X5ve/t+v4E9nvp6S+W3+K/C9N/sPx8v5deY/lJ/70VwLeEnRft+77y/7Xy 5wXpX1j+0vueCZa/9M8s/XxX2PV8P9j51Nj1Fn8/Iv0Tu570vneEzbew+Zjf P7XmU7eGXd95184zx67/ZfX38zMeYNeTXv7sT6n52cryd36287ix/Jf2Oy/j BXY+t/TfWPO7d8f+9XX/fFtY/s7jdh46lv+fVvudm/EGyw8vurWy/JznbfzB 8lva45yMJ9h54dI/vuYL74n9sfW8+/aw/J0PbrzB8v+mKufZGS/YjT/sxgvs fHLpH1PhfnvsV9d5mu8Nu/6XVruu18Out7TX2Rlf2F2f3fiCnYcuve/F4aN1 fucdSe/6d1b7PjzXw673qvL3wzI+sbs+u/EJ+z5ez//55a+HJj9sfMLVPPd9 MN8D/1i9jzod9nwOe77ufYXn7+zY83zvP7D5M35/vT9a2Xwae56Hb633Ryt7 Xo19/xz7/nlP7/m49Fh67Hvp+MZ6X7/yqZrwrez7pP374NjzMux5G/Z9Uuz7 09j3p7HvT2Pft/U83vNa7Pu22Pdtse/bYt+3xb5viz0vwr5vi33fFvu+LfZ9 W+z7ttj3bXt9PI/2vNjzZ/Hq+fPTS+/ujl38sHu/wS4+2PkLqy+W3w9VWH82 v8fiC4svLL6w+MLiC4svLL6w+MLiC4svLL6w+MLaE2tPrD2x9sTaE2vPXv97 yp93pP5Y/bH6Y/GAtRcW31j7YfXD6ofVD6sfVj+sfr08nk8pD9bfsP6GXR+7 PnZ97PqY/+57+hLn/IfFDxY/WPxg8YPFDxY/2PiEX7ErZ69d2fjveYvxHxv/ sf6G9Tesv2H9DYs3LN4w/fN9aOMJpm+YvmH6hn1v3vMg849763qf33Q/vDwP unjL/fqTl/vLLc8TLlzuh7c83/ip5f5+y/0ZZv+N5fnAlvvL9y7PH7asZ6jH 9c9/1I7nQ9j6iDNqeF35P1Z9rgrfXfldtVPT66/80zD7M6pc6/Mbz3e+s8bj G/ak/6uKyzU/zP415dZH5vfsT6/7iZX5y/OeR9f9y+s2/3v5Z+V9Vb9H5v5T +m+tAty4J/1/qvofDX+oyn806bv9uyq/ozvV3W/6s7D7R8+LvqEa5C83v3Z5 /pbnNZ4X1ePjC68b35le+RerfFfm992+v/Jf+YerfOvzIc+bvrqu+8Y96T9S 179ip7rDs/48LD0Wv5431fTgd67frNc9h6/I/SO79TLs0v9+xcfl4SurPpcn fbf/UuV3+U5Nt390J+z+0POpq+r+4M2xe17keVQt/7r89Zv/ufxzWdJj9u+p /NbnT55PHa4Guyl2z4M8n6rh/YfesPniyu/S8HJ/eiS8PN85kvVGy/3gJeHl ecrhxP9yP3Ro5/5a3/b28KeqwDeP5xkXJz6X+8+DO/dVg74jLH6W5wUX7fxN jW/vCN9T6d457vcuTPsv5b9g54M1Xt8S1l7L/c8FO3fUeH1LmH+X+j1i5x01 Ht8a5s/l/vP8nbdUh741fG6tV3zrqO95O39R+nRb+EHVAG8b92Pn7vx5Ddi3 hf+p1gu+fdT/nJ2Tu/Kx//Ywf/5J1f/s+BO/qubX791j36j3pw+Pf7Hvmbs/ Y39J+fOh8Temd+6nSv4fczr7kWv4eMbKtZzxx1euYr1q5avrfnnl397dHv2F vXb7UemZ6z+yxtM7k/5E1X9ldr+/otp35UurP65M3+V/uDrwXckPS3+w/r7y BRUfK59X/fHusPJY76Q8WHnwr9f8bGXXx/+rBvCVlQf/z+rAKysf/qWaz62s vNh5r91ufZb97Oz2s2N26a3vZbe/HbNLbz7k/th6YOntx8fsfm9/Pnb+Arae GFv/j60n7vW1fkx5sfpg5cHKi5UPO+8CKy92vgBWfmw9NFafvr8Yqx+2Phpb z4y9z+3ni2Lvd7H1ztj7Xmz9M/b+F1sPjb0Pxubrni9YL83ufTG2Xth5qdYL 43l//762nnRf29+/r60v3df29+9r6033tf39+9r6031tf/++th51X9vfv6+t T92X9X940e/1+YP7A88HjK/Wp4nv3yy//cP14huLZyx+sXjF4hOLRyz+sHjD 4guLJyx+sPs59+/Gu8dV+3425cf6I1YfrD9i9cP6I1ZfrD9i9cf6I+YPrD9i /sH6I+YvrD9i/sP6I+ZPrD9i/RHrj1h/5H/9kV1/xL9V85t7k95+HHbrO/DL a36xprc/gd36D7zct67p7V9gtz4Ev6zmH2t6+xvYrR/BnmdKb/xgN35gz4Ok N56wG0+w5zPSG1/YjS/Y8yPp7d9ht74E27+DrS/B9u9g4wu2Pwxbb4TtF8PW H2H7x7D1SNh6pN5/nQ+pv2L9E+uP/TxJzJ/Y+Iz5D/MX5h/MH1j9sfpiz4s8 j/O8CHtehI3PziM038KeJ0lv/GY3P8H8iY2HmH+x8RDzNzYeYv7HxkPM//ZT 8j+mh5j+Yde3Ps31sPEWG1+x8bTvT8TGS2x8xMZDbLzr3/NwPprnb57nme9b 32V+j83nMT3D4sXzSvNz68HM3zG734svvxdf0osvzO734guLp37+GdZe8hMv WPth8YK1J6afWPti+tnPj8PuX+0vdL+KzZe0l/mS9YTuVzG737tf9Xv3f9K7 X8Xsfu/+kP3/lH6szC69eGJ3/4jFF3b/iN3/ej4s/tjdT2LxiN1PYvGGxSMW H9j7Xtf3PMH+Tc8PMP9jzyd6+dm9z1789dlNz0eW9P8Qu+ffnoe/tfrvP21+ osp38+aVdb/xhaRnt56g83dVujO2PlMBdvPmmVWujS35s8ufXf7s1hNg6yU6 v7nGmX1bn6/x6+2bLyj/PmBLediVh1152K2nkD9mt96BHbNbL9L5a5f7ta0H lA6+ffPD5a59KT+78rMrP7v1JfLH7NaHsGP236/4uj35e37Kjn9vef6w9bAa v966+czleUDqw64+7NbbyA9Lb70MO2b/s3pf9Z7k5/kxO758eV61dVGNz2/Z vGl53pTysys/u/VH7NYfyR+z31Dv396d36sPu+fpnX+x+t+Dt66o8eemzSdW fc9K+dmVn916LPlh6d9W861bk1592OtYjMPvjt37BXa8v/rbQ7YeXfH7ps3X 1O++JOVnV35269Xkh6W/peZj70p65Wf3vuWHq/89LOufr6j6PiTlY1c+duVj t34PW1/nepj9PTV/eFfyU372rYrHN25uV/0elvJ+pPrLw1NeduVltx4I31nz vXcmvfKyv7/G71ti9/6LHf/zKu/ZKd9PVHnPTvnYrU/ye8z+4dLnd+b3ysuu vOxPqv5w41gvf07K85zqn+dkvPZ7zP7Ruv98R36vPOzeR3Y+Xv44N9f/ZNVn vT678RvTE+mVh936qxdX/c5N+aT3flZ6fFv1//O2vN98TNX33JSXnb6wKx+7 9WCLP85LeaX3/nfxx3m5/jkVz+fn+uyuz04vXA+zK5/fu97y3OD8XO9Jle8j ok9+j9npld+7Hrv3b52X+LogesKO2enLUp+1POz2V5xb5bsg+S/+vTDjP7v8 2b1/7PypiocLk/9SvguTP/u8n2Rldus/l/Kv5ZFfbVP8y9dvHqv6XJTrL/Fw UfRCfpidfvi967PLfynfweT//fX3gxnf2eXP7n0y9r538efFGY/Z5/00Fyf/ T1f51/zZ5beU9+It74+x67+n/HcoesDueux+vzx3O5TfL+U9nPFaeswuf7+X P7v1ANj7+cV/l0Qflvqt17N+RPrb6/qXbHmfj+W/tOeR5McuP3b5LeU5kvyw /K6r8l0avfB7zE5fnlLlXdMv7Xdp1r9g6yueurxvz/jMjq2Xkf79VZ/LtqzH wPJ/XLXvZRn/2eXHLr/763prflh+37asP0h+7PJjN552/sGKh8uzngdbD/PY Ks/lW9bLYPZlndcVGb/ZrR9gl/5b67pXJD/Mfkf5Y82PXXmtN5L+uVXeNT+s PtfX9a/M+I+tdzi/2m/dv3ai8r9yy/kwtd35VY/a2Rj/+nkxy1+vzv6zfp6L 38vP+idcj88ev+5vs/9N/fp6Kenlj+VnPRW2ngpbD6W89rtpL+uppLfeqYaP +/9wT3rrpeRnf5zf/07Vf90Pxy6+2a0fsV4KW/+kv1vPZHywnsn6kt9b2i9s /dJSnl/JeiTn+ViPZHywfsn6E+z39sP5fV+v9K+XeE1665Gktx7JeLa59Jes N8LGR2y9C5a//XPyt35JeuubpLdeSXrrlejDgfLHup4J+731TH5v/RJ9+ptl PMt6Jiy/bn9b+WNd34Tp+3OW8Trrl7D1Od2+rEc6kv1u9tvpL9Y/Wb/zyUV/ cj7Tsh7pcNJ3XtZXHcp6Rqw/dF7WK12c9YPL9df1Up2X9UkHd4znWDx3Xup3 UeJ3WZ+0rp/qvPjngqx/sJ7F81/s+S/2/BZ7ftvZ9wc8z+3f67X+wvN57Pk8 9nweez6PPf/Fzr+zfsT7Hux9T//egN97/9jZ+U7eR7J7/9hZ+vk8ov3tvLeV pZ/PK9rfzoNbWfr5PKP97by4laWfzzva385TX1n6+Tyk/e289ZWlt/6B3fue ztL7vfUa1kdIP5/nvrLfy8/v5/OY9rfz31f2e/n5vf387PN58fvD7PLze+9j 2cWb3+Oev997X8vufaTf4x7Pfu99LjuWn/eZ8sPSy19+3v+yY/l5Hyo/LP18 3vv6vQV2LD/vU+WHpZ/Pi1+/z8CO5Tefl7g/LP183vz6PQd2LL/5vMX9Yenn 8+rPHPPF+/acfya/F9b7rHW/kfUXzucyvnX2vQXjF7v1Fp2lt/6C3fjWWXrj HbvxrbP0xidsfMLGI2w8wsYfbPzBxgtsvMHGA2w8wfp7T9+/b6x+c/89I/2D Hfu9eLdeS3/B7NKLZ3b9AbP37yWzi3fM3r8/wS6esfjt6918X4B/nc/GX519 34G/+/eqO0tvvGY3nnaW3vjMbvzsLL3xuNvVT/tJb7zs36vA0vfvTbNrL6w9 sfbBxod+/h27+LOeD1sfpzxYebHrq6/rd7aeUPn9nh2LJ2z8sj7JfK5/v8F5 eMYLbH6EzYew+RA2vmDjCza+YOMLFt/Y+ILFp/KLF3bx2O39+8zvq/HlE2Hn 2el/7PpfZ+nFAztmN592Hpz+2Nn5bOrHjtnVh119O/f0/XsGzoczPnV2Xh// sPNPZ+n5p58/x269gPVS4sH5c+KhrxdjFw99/Ri78bCvJ2PXP62HMp/D7M6v 03/ZjT/9+7TYeIP1V6y/Y+2B+R/zP+ZvrH/zJ/+zW//o/D3rGzH/Oh+Pf7H9 qf37Duz8jfnL+X64muP/O79Pety/38Ce+Uz7Pqvz4HLe9Tg/Lt+7H3bsPDn1 Zc/52O08Pumx7yXor36Ppc/52u38PnYsP/2bPd+faef7sWO/19/Z6W/n/j0I dvrbWXrt179HzJ75WDtPkF3/8Hvc8+/nDbLrP36P2cUPFj/S456f9Yz6G7v+ 5ve45+/37Nh8oZ9X6Pf6q/3YuZ8Y9ce+P5H7i2HP/URj6XN/Mey5n2gsfe4v hj33E42l1x+x/oONH319Kbv+1Nebsusfff1p/x6H9Z3yw/LD8sPyw/oTdp6F 9tG/2PUnzG59o/Xgfq+/Sa9/YXa/d/6A3+tf0tMrzO73zivwe/1Lev0Ts/u9 /smuP2J26fUndv0Rs0uv/7Drf5hdev2Lnf5hdunpHztmt38Dm59ZL4utHzVf lt7+Dux5KLa/A3s+iu3vwJ6XYv0f69+dnfepP7Kbr3eW3vyd3fy9s/Tm8+zm 852lp8fs5nOdpTd+sBs/Okuv/7Pr/52lNx6wGw86S298YDc+dJZe/xc/mN14 gfV36TG78QHr39JjduMB1p+lx+z6P7v+3Fl6/Z9df+4svf7Prj93ll7/Z9ef O0uv/7Pr352lp7/smN36u5xHO9YL5vsm1T7vWr8nNOzWO1uv37+ng+3/wN7X YPs/sPc3nX3/xvsbdu9vOktvvbv12NaDWY9tPdbvV7/9XNZnY+uffrfabd+W /fLYeqLLKr8zt7yvw9YHvXR5/rrlfSC2PmdZf/2gLe8Xsd9j7z+X9dMP3vK+ EssPez+7rDf+ki3vW7H8sPWZWPtj7++W9cEP3fK+Drsedj1svSV2HgL2PnFZ 7/vwLe8Psetj18fWV2LnNWDrK7HrLesNz871sPWJ2PkE2PWw96fLerNztrwv xa6HrT/EzkPArv//yrrzmE+rq4DjYBnKsA2zvNu877wDw0AJTU1trWvr25gm 2ERrjE1MXP5poyZqTEi0MY1/lNQ0YGMn6ihppZVgsS0hDSI0gFNmWNp0wUax UJYBU5ay1AhYWlrQqHPu73NO7mH+mXzfc+597nN/z93PPQfn+Wx8D7syf+x7 xr5n7HnY+fCwh9ud9jCYfSHmDwJ7Hs7z5/j+9mT+OM+fF6x9Ye0Lez5m/8ce 0nn6sP9aSntBrDzY87DnYefx7Bu172GfupTtGzv/H/Zwy1kerP1i7R+n/UD8 v5LpsfSYPcKwb1vN9o71H5g9RLcnZJ/IHmJ8X2uZP9Y/YP0Nlj97QvrsE+lj +uz/2JOM72c9+w+s/8DSd3tA+bG3YT/IfgWTD/u7jZRj5cHKg5UHKw/7Qv0R e0Tybi847PP2pX2f9Po3cvlh6cfvt5n9FWa/xJ6Q/dJ4//1ZX+wD9Ufk8sPS /17wudnfYPLL4/3Oy/4J08fsr7o9H3s/5Senz58Xey32duTs7fQv7PPos7dj D4elZ2/Hfm2sg8pfmPz1J+Ty/1CUr/zRY/nzNyZ/cvaAWH3Qlz97P/lj/vDH vsvB1O/+6zF7KKw8WLw37P27v332gvztsy+UH7n+mFx7wuajWP7sBY0fmJy9 IDn2+2P67AXVNyZnH0iOfd9dPvwklxz7/rHvH7OPZS+o/WHyr8b3WPaDmD7W XrH07Aulx35/9ob6G6y/wfTZF+ovMTl7QnKsP8V+f6w/xfJjP4jZBw4706uS jV/Y+IONP1h+7AXlh+WHjYfYeMs+0HiLjefsA43nWHtg/6c/weTs/cix9TX/ M9bP2PoYz+f/29r5/rZ2fr+tnc+XPUr6412sL/FsX3ZynhezP8A9HnePt2y/ P+PFLzjjxbf4OO6728/p8WWtX9UPVj99fes+s/ZrPpu/x2K+l7/HgsnN58wX +/zOfMz3Z/7k+8O+L0zf/Ik+9r1i+uZL9DF9rL1g6c1vsPmM9t3vW2D65iv0 sf7GfEV/Zb4xz9/2p9z9Bv0fJjcfIcfzeFn3A7D+G/v9sfTuB0iPyc03yDG5 +YLxCpOz7zd+dnt/PMb7w208r/Fbf4q1FzzPFy5K+3cs/zmebMWLFR8By7/f N5jvD3w07wv4Psg9D7Pfp29+Qa482HqQvvZIbj6DlW++f/DRjM+jfOTKh5WP vvKRKx/2+2H3Q6Q3X5mfV/rK6z6E8vIfq7zkyovNp+n73smHu/7yV6u8c37F yuO+hfK4b6E85MqD1RdWX91frfyUl1x5sfkpfeWfn1+s/O5zKL/7HspPrvxY +8bKg/Uf2P0m+ZsPkv9SfE+lb77O/67yYeXjj9f7YOXFyouVFysvVh6sPOJB KQ9WHv5+lQcrD7a+kV75yJUP69+x9iO98pMrPzYeYO8jfpX3wd6Hf2Lvg70P tp6W3vhFHo+99Eiy8nT/x9Kbz5NfEhkWK7/7RcqPld99I+XHyo/VL1ZerLxY ebDy8M+sPFh5+GNWHqw8WHmw8mDtSf7KR6582HwDK6/7VcrjfpXyYP0RfeUj Vz5svtPva+G3xfdfrDzuaymP+1rK0/1L07e+Io/p+WuLPR97PjZ/w8rjPpjy uA+mPP1+GPZ8LH9s/oA9z/0wz3M/zPOw+Swe+tdk+vfH+fPVKR/5/22y8mLl xebHWPmx8mPz5/l5h/L+mvdxf837YO+DvY/03ofc+3T/3fStV8nD3dXXjr3q /hwWX2rO/1Den1N+9+eUHys/Vn7plZ9c+ft9PKy8WHmx8mLrJaz/4Y9cebDy 8E+u/Fj5sPJh5cPWd1h5sHhaWPn4Q1c+rHz8oysfVj7s+TiyXyv/6s4PsOeL /+f52PP5Y/d87PnY87HnY/Nx7PnuO3o+9nz3Hz0/70Muno/lj833sfU49nzx Cj0fez5/856PPR97PvZ87HniG3oe9jz+7D0Pex72POx52Py3M3/45sPY/Il/ fMwfvvkUNt525h/f+IuNP/zlY/7xjUeYvQj/2+xBMHsPbP3pfpP9ZPtT832/ k9v9vZPzPgVm74HZc2D5Y+URf4mcv+OMVx3l+W7GU8cZr3rB3hd7v25PHn9+ +/bPp/5if0x5sPfDGd++xcvmj1F+WH5Yflh9YfWF2bdg9itYeTB7Lftz7BHs 74mn2P0Rsu9wHs2/nnhz2Hkv/3POg7H4fdh5L39t+hPMvwx2vst/mv4Xi3eI 7R/zb2b8wMYPLH8sP2y/m/8x4yc2fmLPx56H7SfxJ2Y+hM2HsOdjz8P2W7Hf F/t9sfURf2LOJ/gP059g/QlWfqy8mP0JZp+CxfPE1h/8lVmv8R+mP8T6Q6z8 WHkxf2DyZ79Czt4Ei1+IxR/B4qFi5e3+xbDyYvYumD0K5s8LKy9WPmz9zl+Z /RD+yYw/2PiDlR8rL2Y/g9m74Nn/1858P+x9sPLxT6Z8WPkw+zL+1NjfkOuf sP4JKz9WXmy/sPsrw8Z3rPxYeTF/Yfytse8hZ3+DxRPF3g97H2z+wx+a+Q82 /+EPzfwHm/9g+73SO48hNz/C5kdY/WH1hfk3k7/xgtx4gY0XWP1h9YfVH1Y/ 7JnUD1Y//LupH6x+sPrA6gOrD+z9sPfD3g8rL39xyouVl7+4+XxrKcuLlRcr L1beTL8Yj7HxGM/+3payvOy5lBcrL/908/nacpYXW29L73yX3HoIWw9h74u9 H+Y/Tv7Ge3LzCWz8z/Iu6gerD6w++MtTH1h98I83nx+uZH1g79/96WHvj70P 9j7Y+2Dl5X9PebHy8r+nvFh5sf0z6e2XkFvvY+t97H2x98PmU9h8DptfzeU7 lPZ43hfP569reV6I7cdg7z/rX5P5qS9y9YPVB1YfWH1g/vnkb/5Hbv6JzQex +sLqZy7fobRfnM+Xqz6w+sDqY9a/JvNTH+TqA6sPrD6w+sDeH3t/7P3n5x1K +0nvx7+i98PeD3u/Wf+azM/7kXs/7PyCvv1RcvujWP9HX/2Qqw/MXyJ983Fy 6wlsfo7VJ1Z/eP5e1rM+2YOqT/af6hOrT2w/HXt/rPxY+bHyY+Vhr6o8/FMq D1YerDzY74OVD1sveZ71Brn1Erb+wN4Pex/sfdireh/+Mb0P9j7YeYr0zlPI o9ouPZKsv6avPsi9P/a+2Pti74u9D/vc2d5mM98Hex/sfaT3PuTeB1s/0ree Ibcew9Y32Pth74e9H55/v818X/bBxhvs/fkf9f7Y+2Pnndj7Y++Pvb/neX9y 74+9P1Z+9svKj5X/zsi/7H+w8mPlx8qPlR8rL1ZerLzY7zHuOZ2b5eePVfmx 8vO3qvxY+bHzdOmdp5M7T8f6e/ren9z7Yut1+taT5NbD2PoS64+kV3/k6gur H/5l1Q9WP/zHqh+sfrD6kV79kKsf7H3pe19y74u9L1Z+9uzKj5V/Oeqj7Muw 8mP2L1j5sfJj5cXKi5UXq/9Hov6rPPzjKj97fOUnV17MPoo+ex9y9j7Y+2Hv g9n3yM/6ndz+x1yeYu/jvoD3cZ/A+5B7H6x/p6+85MqLlZe+8pIr7/y8u19V PvcNlM99BeXD6pu++iZX31h5sPLM+Reb38uf/3BsfkbffBebr2Hv576F93P/ wfth70ff+5F7P2x/qPtPJre/gK2/sfYvvfoiV19zeYtPWvxjb+l93efwvvP9 jcOvut8xcjmY79/vj9BXH1h9dLn81I/81A999YPVT5fLT31g8335+36w+aX8 zJ+x+UqXy3++L3Iw64v9p99v7EOUPSVWXvdTpGePqb2PfF6X9mhY/9vvp0gv P/aW9N1HUZ5+f6Xrs2c0X9qM/vrCPI/F+nf3WXwvYx/+gmT2h96n32chlx85 ffdX6LNHVJ5+/4XcfGPExbkg7aWw+RZ/2uYL5MYnbL5FX3r2c+TY8/r9GPZy 8u/3a8ild39GevZnvvf3hWLZd2Hzc+mtZ3416uf8tD/C1nfu38iv39dhj0af PRh993Pok2uPPxO/b9ljYe1NeuXr93vYh0nf7/eQS+8+j/TstewnnBr1fSDt a7D9Fuk9r/sfl5/xSXrjDzY+SS9/9lP0+30icuXr94XYO0lPLj25/d2vxe93 XtoHYfuF0nue+0Wex55Jf35j/L7npv0Nth8rvedhz5Of9N2/Ofsk9TvuI+1P Jhff5a/HeueY/Vxsv1f+nsc/uuexRzKf8jzjEc7znkV69TvsTzaT5ed8R3r7 49h5gvw8r9/PYq8kP8+TH5af9HP5y36I/ZHxa9hr7cvxAhsvpFffw35mI1l+ zvekd56DnffIT/n4k5/vq21k+TxP+bDySa9+hv1Vsfycl0rvfAw7P5PfXB/l 3/47Y78vx0vPMz5h45P06V9gweJV0XeeiZ3f0p/99+9NHuXdm+UZ9mDrWR6s PPzv+73kh+Xn+fTF85Kf82Ls/Jv+XB9l73VZvM9ajr+eb3zExkfp/X7Dnmwt WX7pb2Khz75Bfs7bMfsC+p7f4w2M91nN8dfzjX/Y+Ce933d8f6vJ8vN8+uLF yY89A2aPQd/vPezjVpJ3xPtUeT1febHyipfg95Uflp/n0xdvT37sPzD/J/Tn +lpp9bWS8wXPN/5i46/0ft/xvS4ny8/z6fM/JD/2Npg9Dn3PEx/C+ON5xl9s /KXv9xz2iEvJH4/6WM7n0efvSH7skzD7Jfp+3/E97Wnf51KWZ7zfUo5PymN8 xsZn+n5f+WP5q09yTC4+pPzE2/S8d8X3WizeJX3fw9nx/e1Jfn2Ue0+Wd9TP njY+7cn5ADYfoK++5Y/lrzz0xQOV3zujvygWj5O+72V8j7uTx/vtzvKM99+d 45XyGN+x8Z2+eKDyx/JX3+SYXLxT+Ykv63lb0V6Lj524Hv3bD6S+7+mq+J53 Jd8a778ryzvqZ1eOL8pjfoDND+irb/lj+SsPffFv5fdT0R6KxZul73sZ3+vO 5PF+O7M84/135XijPOYP2PhOX7xb+WP5q29yTP65E93vjQ9mfuIPe94boz0U i/dL3/d0cXzP5yRfEs85J8s76mdnjvdY/698xntsvKWv/j0Pe574yuSY/PqI d/1Q5ncw2vfxfN6FY4Mg+VPhb/nh1Pd9PR68I3nUxzn5fqO+zsnyY+OH8pkv YOM1fb+H52HPE8+aHJNvxobF8cx/3BsrviY2AI7n83x/l8b7n5V8XcjPzvcZ 9ulnZ3mx8Ud5zC+w8Z2+8nke9jzzmf+N/uSM5J+I8p+Z3w85Jlff5JjceOP5 yk/ffKPLpb/hxHC57bGFff72Y+Kt43jN64rFW+8sXhP/fli8eiwePRZ/Hosv j8WTx+LHY/4OMf+GmH/3H4/3PSXZfYT7o/srOSb3PPFYPA97HuY/EX/oxOt/ uPiDsYFQzJ8i5i8Rvz+G/2L+YjH/r5i/V8y/K+bPFQ+/CU9lfBMsvgx/quLT 8JeK+UPF7nf0+Ew93lKPn9TjIfX4Rj1eUY831OMF9Xg/PV4Pvj38mTyV8TOw +yS3xfhfckx+y4nX2/N0yjH5TTH+lhyTfzbG22cyngZ2f+X62KAsOSb/dIx/ Jcfkfx/t+9mUY/Jror2XHJMPO4WSY/Krov2XHJN/LPqDb6cck/uexDPR34g3 ov1j7RH7/rD4AI9GPi8nu//zkehfSo7J/zSeV3JMzh83OSb3/fbyi3+i/Fh/ gvUnWH+C9SdYf4L1J1h/gvUnWH+C9SdYf4L1J1j7xNon1j57fBmsfWLtE2sv b4rP5fnkT4b8haM3Ph0XBlKOybUnckyuPZFjcu2JHJNrT+SYXHsix+TaEzkm 157IMbn2RI7Jxdsgx+Tib5Bjcu2HHJP7PsU38X1i3yf2feKlmK9WfJVdMZ+t eCna5/7Y6LwvWXwR7ZMck2uf5Jhce/U83zP2PWPfM/Y9Y98z9j339xNPQP/F P/6OKFfJjafkZ8b8suTGV3LjK7nyYuXt8Saw8mK/H/9efj+sf8H6F6x/wfoX rH/B+hdsvoL5m8fmk/xpm09i80msP8b6Y6w/xvpj7HvHvnds/sx/mfEMmy9j 82Vsvowfjf25x7duiPf9TjJ/3/oDckyuPyDH5BmPZyHH5BmfZyHH5BmPZyHH 5NorOSbXXskxufZKjsnFtyDH5OJXkGNy8SnIMfkTsd57fOtwzItfSj4Q4/t3 t+4OA4VvpRyTm0+TY3LnGfybO0/s9t/dPrfbF7Jvcn7Q/aOxD3I+w/7D+Qj7 BOc5mL0Nf0jOm/4inlf+fTB7t+5Px3mv/W3Mfpb/Efuzzl/tb2P2Kvxj2O90 nmm/GbOH4u/Beb/zRee5mP08/wz2f8ndjyC3f+p80X0a/hXs9znfo4/p84dg /8l5pvtD5PY7nceR829gP8d5o/tk5H4/531+X/4J7Dc6X5Oe3H6K9O7XkTv/ dt41+19YT/+Z/B14X/J5v3M9n0/f/onzRfcduz8F51fejz8F5z/O73yv5PYr pfd+5PZnpHc/lFx7dh6lfPwz2L9xHue+K/n8+6xm+8LKy5+D/UZy5SG33+M8 zX3g7h/C+Q57YP4htEfnW9oruf0/6b0Puf0p6d2HJp9/j+Xmr2I5y8Mfhfbu /Ep/QG6/TnrvS+78RXr3zcn1V85b9FfY+4/9yTrvcl6lvyG3/ya99yd3niK9 +/jkziu8D6Z/b/iTvT/19ZfOW9TPeN8633L+pD8jd54mvfKQOx+R/p9jvLs/ 5fpf5yHqY+zP1vmT8yP9H/kvx/de503ej9z5hvRfiv2ab6Tc+YHyY/p3xf7M A6mvf3f+oT7G+9V5k/Mg/S258y3plYfceYX0t8f69IGUGw+cT6iPsb9d50HO c/SH5O+I77XOf7wfufMF6W+NAfDBlDtfUH5M/6ZYzz6U+sYf5wvqY7zfzhwf nM/oP8n138qL6c/95c48n/I85Sd3niD9sOt7KOXOEzwP078u5sMPp77xx/mC +r4l8j0n+3/nMfpbcudN0isPufMa6a+N+fTDKTf+OG9QfyeFQ9cdOX44H9Hf kjv/kV7+5M4npL865uPHU278cl7g9/hI1FedHzjf0L+Sj+2Xx/L8AY/zktPz vGCkPz334+lj+mtRj0+kPnb+YL4tPZbe+lX6xxbrxj+L8m5Pfnf8d9ox/mvG +chpeX6Brb+kx9Lvj/ovfetTbP9Keiy9+G70rZex/SHpsfT89dBfjt/7idzv fzbOux7L/WhsPzaO/y57LONV+/3oY/oXRfsr/XvD/uLJ1Mf0d8f482Tqizdn v8/5i3jFmP8l60vxo8Vfe3Nk//2M/4qtN+mLv0Zu/wRbf9IXf43c/gq2HqXP 3zm5841eHvtp2H6a8tkv8nwsf2w/Q3xd+xnY92x/Qvs6M573zWT+nuyXiC+n /ulj+r4v+sqDtQf7GRvR/z2R7PyRvyjlsV7G1sv6o6H/8pb+8a/G95Ry7Px+ xOs6Kf1rvDXyOzn9g2DpsfEBs3cY8cLKH1WPR0Yuf3L2B/xZGV/Jne+TGz96 fLPxPqek/4Ye74xcecjZd/CPZT5Czp6C3Hjb46eN8p2a/gJ6PDVy9jP8a5kf 0WefQm7+0uOxjfKUP60en43c/Jbc/BGzP+Kfy/yVXPl6fLdRvvK/1eO9kVsP kLPv4r/LfJpc+Xp8uFG+M/J+cY8XR2491OPFkVvf9Phx5ObzmL0ZZt/F/5f1 WI83N97vrLxv1OPNkZsv9Phz5NZHPR4dueeP8uzI+6w9/hy5+VGPP0duPtPj zw1/P+UPq8ejI2c/gs0He3w6cvM3cvkP/yo78z52j0dHrn/q8enIzU/JvR+5 9TFmz9L9fY34brvyvl2Pb0euf+vx7cjTfnsht/84nlf+onq8O3L7IT3eHbn1 Ro93N/xz7c79zR7vjtz4gK23+IPSf3a5/Dxv+L8of01Yf9zj25HP/rGW0p+N eCZ5/2Eh17/2+Hc9/ZgXLuf9wh7vjtx6vMdHGd9P+ePp8fDIjQdYf9zj4w3/ B6vNX0n54yHXn/b4eeTyG793+XfB+l/xWmb/QRUPD+ufenw8cv4t+DOxf9zj 4ZHrj8mlH/4Qyj8J1l/1eHbks/+X8h+C9bfivczxWva1+HLlj4OcPn8Usz+S zea/pPxjdHmPfzf8eZT/Cf4W9K9YfyJ+jPvc10b+5+Z97x7vjlx/2ePf3RH1 Uffvsf7N/Xr9gfgyeCne90De7/2ReL86P/mFKG+dn/T7zO6z2v/G0ovPMt/X vSjvq5C7L+o+qvvD7qu6X4y19/E7X5jPx/qrOd7KFXlfVXmw/XTs+e6jej5W fvdX5Ucuv37f1f1R91ux3wvbD8f8SbhfKj/x2+SHjSf05U8ufyx/90flh31v PT6D+6X2s/t9VfdHI5tLjyT73t0Ppe/+J32s/bnfqf26/2n/GusP3J/Uv7hf 6X4o1r/Q13+R22/G8nffUX5Yf8g/vP7SfUf9s/uQ9pOx/tf9Rv27+4vO87Dx BdvvxRnPNd6vzvOw8cp5nPHR/UH3JXHGp43y7mv3Gfdlfs7vZv/sGxmfznmd 9uy8S//ivpv23e/fuV823wes+3DOp2b/42t5XtbPo5wfaS/uV8335+o+mPtM 83211fxenV/4Xt3Xme9fLac9qv09bH/v5Kjfp3J/j30KZs8pPZZe/PKefj2+ r9PSHhfbn8P25zD7C/tz2P6c+Hj25349fs9vJ7PPkB5L/1DM10uffS5mvyE9 lv4bUQ+lz/4Ss++QHkv/9djvLH32S9j+nPRYevt19O3XYfth0mPp7Y/Rt3+H 7d9Jj6W3n0bffh62nyc9lt7+G337e5icP3z2KPLD8hMPUXr2aJhcfuxX5Ifl J56i9OzZMLn82LvID8tPvErp2cPhPw77p0qPpRdfkj77rc+M/aG0T2Zv/61Y 75Z9Oqb/m9FfPptyTP6e6D+L7Ydj7Q1rP1h7wL5v7HvFvj/se8LqD6sPLN4m Fm8Ti7eJxfvszJ59K/rbsufXv43f+zVp/0/u98DqE6tPrP2xX/d+2Pth74e9 H1afzgv0D+yn1S+555Orb3Ltm1z7JNc+ybU3cu/jvIK9JPt19e28wnjwyNi/ PvpfsZ9Q/FzsVxQ778DPxIK22PeOH48J2rPJ4rti4wk2PmD9PVa/L8fv8NJR /Tm534NcfWPp6ft9yNU/9vtg9d/1e/yNrk+uP8Tvi/H6uTw/8X0pH3aexN6V HJOzf8XjM3g+9d3vcH6DL4v+7T+OjjiiT2V8EPav2Hkffd8PufkEZs9O3/dF zn4Ws2+n7/sjZ1+L2bvT932S6y8w+3f6vl9y/QnWv9P3fZPrbzD7ePq+f3L9 EXb+SV/7INf/Y/Mx+toPufEBm3/R177IjR/YfIu+9kdufMHmV/S1R3LjDzaf oq89kvvePxH92dNHjR9Y/4Wdr3W+LdrXk0edt//c2JBIdv7ofe6P3/2bWV6s P8H6E6z/6Oed5PqPfv5Jrr/o5XkmFi5fyPPVG8Ih2D35fHLPx2mPvNBXHnLl wWmfvNBXPnK/xzvi4OlItufOUfy3b/+89nxPLHSu39Ke6WP62jN97Zk+pq89 09ee6WP62jN97Zk+pq8909ee6WP62jN97Zk+pq8909fexU/SvqXH0mvf0ms/ L94V+lu+D+z3x35fbDzC5tfKYz6BtT/3K9irSI/ps18Rn936lz6mb/1K33qX PqZvfUvf/Ub6mL77HfT1/x8Oe4D7tvTvWP+N9Q9Y/4C1R2x/iP2B/Shy7P6L /Sj69qveEuPyv2+9O9rvkylnj+I+id+XfYPfF/t9sd8Xm/9i81+sP8D6Z+z7 wOxzvh7fy9NbMZ0/Wsz+hn2H9ii934M9BpZeeyXH5Nqr/Pye9DF97Zkck2uv 2PiLja/Y+Nnl7EeMl12fXPsmp0+uvZPTJ9f+yel3Ofb9YN8P9v1g62n5+57I 3d8it752XwW7r2K9Qt/8FpvfYvNb3w/7gI9Fe3luy/oR2297Jtrbi9mfsNfB 7HX4k2Cv87kYj/51of/Kon0Ws79k72L/lP2J/Vn2IexV2Zu8Jdr/g8nsWdiX 2P9l3+H887yxX5Hno+T2n9lnsC/5y3j+6Xk+Sa7/YW/hPFK8NOeL5Oytsf1P 9g/yw/wxYfur7Bekx877MXv8Z+J5O9Leglx+7BPY92P2BOKFsacgtx/M/sB+ r/hbzgfJ3V/A7CPos58gT39pUZ8V3wqzfxA/i30Euf1u9gLsbTF7BfGm2DOQ 5/57/N4VvwmnP7wFp3+/BbNXEE+KPQO5/NkHyJ/9gPzwHG+r4i2xD3C+4Hxf +8Hp7zHSr2R7EI9HeyCf76dVPB6sfWH+lZ3Pz/HH6nyeXH7k2h+Wn/N5+Tm/ p4/neD3rLV5Wna9j51VY+8NzvJvSd35PH8/xYyreh/N67RXP8VHqvp/z+/jz /8/LsPzoy49ceufz0mPnNVj7x3M8kIovgemP5+/P+4bO452XYudHWHvG0l8e 9Vf+5zF97Pza+b30zvedz2L67kc6X3d/0vk2ufNt7HwNa+9Y/sfjeaWP6WP6 Y9+ono89H8uPPYL0e+J3LX/k7BP0J+T6Eyz9mAcczO8Py6/L2TPwl46VHyv/ zFemv27psfRYeux8ck5/d9O/svn3PtzsJa5s9g2Hk30v2PeHpZ/tGQ4n8zfO /zZ9TB/TZ89AH9PH9Nkn0Mf0sfaKtX9sPMbaM/Y8/rg9D3seps/egT6mj+mz fyDH5OwdyDF7gu4fG0vP/kF6TM7/NDkmZ99AjsXzwuJ5YfZq2PiG5c+/tPyx /LH8Zz6U9hPqm72E/LH8sXhl2POw53V99hP0MX2c8UOjviuePc54ogumz56C PqaP6bOvoI/pY/r8F9PH9LH5AvsL8dyw/NhfyA/bD7B/Yr0rnrb7qNZv7Let /6wP8GwfvLvZD1e8VvPJLM+CvR+e4xMutXiESy0eYcUPNb/M+maPqr4XnP61 FzzHx1tu8fCWWzy85bSvEw9ztrddzviw5Oxhyef4tSstvm3Fz8RzPNfVFu+1 4lfi2b52tdnfrmY8DPNX7Q/P8Vkr3iG23hQf0XqTfI6HVvEI8RxPteIN4tk+ t+IFYvmb/8ofaw/i+83xStfT3pd8tt9dz/Ux+WzPW/EBzac9H7OXE1/PfJXc eIfneJ0VDw/P9r4Vzw7bj+SPY7b/rXh75t9z/MuKnyfe3GwfXOnNv+f1Q8W7 w/Y/xW+b7YMrXp75+by+qPhxWH1h6dnnSo+lx+YbWH7YfAObb2DPsx7wPOx5 mL2h+GCeT27/gdzzyT3PesLzsOd1ufXGHC+o1itYfy1elv6aXH7zeuJwsvko lv+8PrmyrS8OJ2sf/L/Ij1x66wvpsfn2LL87WXsQn0l7xuw56Wvf8/rmylyP eD62HsDWA5h9In82yktuPS7+02/FePSPLR7RTckjv5vT/trzxRvyPPGNPG+M G6XP3lr9SI/FJ1I/7LHVH32c8ZAW9UffenDcO7kw53vi8+DPxu9f9tFY+xl+ Cmq98IdRH2UfTV97oq890fc8/oAwe2ksvo7+S/we/dfw81v64uHo37H+VPwd /em2qI9KfyDyq3g77Kv138+M9pD6/BPhZ8f+Qdrvim9jPPuH0Z7z9yL3e5HL jz8jzD7aeC8+jfGevbT5Cf9G5h/m/+Yf/B3N8+P96X+D/bT9Pf6M5vnxZtoL i9di/sW/0Tz/rfk1e2bMn5Dvh/8b3w97Y/tZ7vvZn3Jfz3017Pt0ny3jgUT9 7Mr7Xe6LzfPX2s/FGX9lwfN8dU+bTy61+WLdn8LsyzF996Xm+PYV7xzP86+K X43n+dHeNr+p/U3sPBTP85X1HC/IsfmZ9tfjN/f9TTzPP/a19DXfcZ+IHPv9 8RzPuOLTYnL3i7D7Qvo/7PvB9N0Xot/vD2H69hf1/z+I+qx4mJ3dL6JvP8/v i8n7fh4m//3Rv6Yc+72TF+9jvPI+T0b5L8z+9c+j/iq+G/b7uu/i+9Jfe57+ 1/fMv5v3w+5n8Oem/ejvyPVP2pP+bb4PUXL9k/sY5HO8hc0cP/lXI3f/Qn9A Tr/L7Rdg/tDm+AH7sr7J9VdY/vyJ0effTH7uc2D67gvT9/uRe554Plj/6z4z fb83+RzPoJg/Mf0zfc/n70t+9D3P/RBMX3wa+r4vcs8Tjwbz5+V+OX3fH7n8 3TfB/GnZj6Hv+eKvYP6vfK/Sez59+XWW3n176ZVXvBTMf5XvXXr+Buhj+vwf 9PKKV4L5p9IepFc++vLrLD3/Dr284otg/qW0H+n5j6CP6fNn0csrvgfm30l7 kV756Muvs/T8d/Tyiq+B+XPSPqRnj0Bffp2lF7+jl1+8C8x/k/YjPX8i9OXX WXrxNKTXP4h3gdPf06K9Sf/xsJ88nvref9wHOTPLh6XH2p/8MTn/NO5/8DfT 4ym4D4Hdf0h7t3j/H8r4Cpi9NmaPjdlb8lfPnhKzl8TsqTB7KMyeEbNPxOyL MXu5fj+i34fo9x+w92HPzt4Uez/s/bD3w94Pez/s/bD3w94Ps9/F7AX7/YSu z98RfcyfNvtg/rjspysPVh4sfyx/rDzY74H9Htjvgd0/we5rdfuw7i+a/RX7 UOx7x9rr+eP3T/9Md8T3/L38ftSn9iW99ss/MfsYbL+dvyL78Vj/xJ6L/wxs /cnfkPUp1p+y/5I/tj5m32X9jPX/7MXkj63P+QOyfsez/5rtud+FZ38zZ+R+ LOa/BjvvwcZn9l/8geLZ/9BZ+XzMfuvA6B/TvgubX9D3fDz7G9qR5cf2Kz84 xovcz8Tmc+y/rO8x+yv67LMw+yr+Z3xfmH0Znv237Mz9P5zxMMf4nOXF8/nR rjxfwrP/mz2ZP5791yy186nyxzLWq3vye8XzfsRStgc8+1dZyvMlrL1g3zOe 9y+W8vl4Pn9ZyfMZPPujWcnnY+2NvvaGZ/8pq9me8Lwfsprp8ex/Zi3Lh+fz krU8T8Gz/5S1bC949jezN8uHZ38xG+28ZqP5T1nP9oJn/zIb+Xw8+1vZyPML PPuH2Zf549kfzGamx7M92P5sj9j+/53xvZV/Fay9Y+0H2x9wHiI91v6w9Fj7 XY76Pi/bF9b+nE+QY/sXzg/458C+V/vlvuduX2S/XPnsJ2P7ybkfuZCnv7MF H4n7O18a+9n3VTx2+8e+V3zKKODYj36h/GmQ+37xjWHP/5XU933ZP9be8Kdj fvDVsV99dsVDt7+s/eN4ve8fG+mvqvji9ovTH9WC/zNe8M6tN8TvVfG+7ffO +8Mbx8Y5yV2L/d6Ntt9S/ufxQzFe3r31zki/3vZLyl87/pewl//iYn+64iHz Z2F/GX8x7NP5n1hr+xsr+ftiv+/wH71yzH0t992x++7uZ7rvbn6N3d+SHkvv viZ99zmsb9w3c/8Uu//KvwA5JjffNN/jP4A+pm8+Sp9/APqYvvkqffcT6GP6 7jfQ/6OYz5Y+pu9+A333f7H6cD/SfNv9SPVB7n4GufrB6oO++xvk6gerD/ru c5CrH6w+6LMXIlc/WH3Qd7+IXP309NYP5oPuc5ifXrQot/khNj/N9dBifoqt p60XtAf3UzD7Ju1Bet8/fUyfffzgH2yxn8fz+uG1bT2wvc3vz8j5svMj80v+ GfUXzpPcP8Dms86X5vlr+Sd0fjTbA+3J8QnrD83PzCfxPN9bafYpNf/BzpPM N9iv4dnea1/KMbn5Bjme/bvty/kFNr/4+aiv/Tk/wMZH8xHzF8ze2HzA+I7N P9hPyB8bf34n8juQ9YnNH9gHyB+zD3Bewj4Asw9gT2B+5rwesw8w/8PG9+4P jr2A8RAbD0f4srIn2IzyFvMPZz5Ljsm9v/mP3wtHd/TDt430L5R/NvGA6GP6 kf4D5a+N3HiNjdf0/Z7sBcyP8d7xgQz7g4sP5vhO7nvExnf68md/IH8s/0h/ S8332CeYD2DzgUh/SZ1/sS/QPrH5XswX33sg53vkvgdsvkfffI/9gf4Mm+/F fPEDNd8zHzTfw+Z75ofWQ+aD+k/8iejA7nnV/JD9gf4Nmx9G+ovrfI49gfaJ zQ+HPe1mO8/bl/qY/j9F+rLv7fa35pO+v+5v1nn8vF5fzv7a+fu83l1r9rFl z5jn5YvfB/t9nYf7Ppx/+76cb/s+nUf7vrH36fdbnCe7/9TtrZwn61/6ebL+ y30Q573syzE5ex9yTC7+FznWftn3s/9ynmu8weTOb8kxufNcckzu/JYci+fG PxzmH+6CqM/H0z+c38P+mvEP+30OR/qzc/2LzSew+4549n9c+1t4nl/szPuE ePYvvCv3l/DsL3h37g9h9WV+or4wuf2m+T7fUspH+1lu9/OWm73xcu7v4Nnf 73LuD+H5PuFKu8+30u4Hrrb5z2redzIf8X1ivx/2+2Hp7YdIj8kfjfooOSZ/ OX6vkmO/P/b7Y+nNh6Sf91NuXsyHzs/7bVh+8fmfdFHON9g7sq80XtsvEf/P 98IezPekvclf/Dn5s39Qn+5PqG/2CuZP/E3qH53/u/8svpPzdefZ/NeLZ+S8 2vnwVsz3Hsh4Qs5/na+6Py5+j/Na56Gvj/6g4us4X3X+6T6z/sT5yUbU95kZ L43ceSi5+9oZP2dxPkr+K/H+Fa/eec3YPzjlGP8W5M57yN8a/VfFM7d+G/73 Tj72k9Gfldz5KPmPxQSi4pk7LyV/Q/x+FY/ceaJ4LxfH/KfkzhfJXxf1X3Ln jeQHYzyteOPOH8nPi/Gw5M4jyTejQZTc+ST5evy+Fa/c+SD5aoynJXdeSO68 UXxw54Mr8X28clT8XnLnb+Tbo7+r+OLOD8lPjf3zktvfIH9zfN/ln8x57++O 9fbRN8b/JbceJ/f7kfv9yP1+5H4/cr8fud+P3O9H7vcj9/uR+/3I/X7kfj9y vx+534/c70fu9yMXj5rc+S+5+M3kzoPJ/f7kfn9y+Yk/LT2WXrxq6Z1nY/q+ J/q+J/q+J3LfE7nvidz3RP4bUb4ncn/G+bl4PeqbXH2Tq29y9U2uvsnVD7n6 Jldf5OqLXP2Qqx9y9UOufsjVD7n6IVc/5K+J5WPJ7R+SnxT7N+WvxX4h+f9c fmL9WHL7g+Q/G/Plii/svP/Xov/53hZ/n+TO/8md/z8b+3P/vSXeC/8l4t84 jzbeswe1P2H8tx9gPm+9j6232dPfHuNrnY9YX7P/jOq++fY837gpxtsvJ1tf sw+1fsbXxfj7lVzPxnbutXWeYf1sPWF9bP0Q+PwdeZ5hfWt9EJ/vT9f5hfWS +crxmH/UecW9sV/6hTyPUD/mL+Ncqs4f1I/zBfXD/s/31u1z7J/yf/O20NuW 8aS6/UP3d4PneE7l3wbP8ZfKnw02/+r+ZTD7re4/Bnvf7i8Gm/90/zDY/Kn7 f8Fz/Jzy74Ln+wLlnwXP8VfKPwrWXt4V+R3I81v7e74P+3e+R/4IfjT0b839 Nmx/zPeEN+P3qP0w3xMmt5/l+7Jfpb3ZX9LesPZkP0l70r7Yu2tPV48Gn+1N e7L/o/3Y38H2b+w3a09j//Xvcj/H/VLs/EL/6Pvs90nxfJ9gI8/n+31O7Pfr 9yv7+Xq/X4jtb/T7f9jzxQuhb38xsrn0SO4f2Q8az9/bzvv35v02+zv2m+x3 ez/MP4z9bOsr60Pvi+2vux+H7Wfbf3KfwPvav8b2n633jC/ex3oTj3vvF+R+ rf0n9U0f07c/Q9/72B/Gp0T/ejDXl+4zOE+xP4zdT7N/575D2mMtfj/MfsDv 4T6E/Q77vVj8DvsjxkffM31M3/4eff23/WEsfof9FeOn8yj7w9j9M/uh7mPo /+wPY/fPnFfpH5y/2B/G7p/N+7v7c3+BPqZvv4G+/Qb7yVi8jtm+YDPjKdPH 9O2f0c/xYLH/jO1v2I/r+xvsH/C4X7DR7Bc2Mv4xfUzf+SL9HN8W+9vYforz Sf2p9jHKVyx+vfbivofxlT6mb/+SvvbEHgO73zfbU6xl/GD6mL7zWPrmE+w3 sP0h57nmV9rfKF+x+PPao/sgzrvpY/rOx+lrf+xDsHjy2qP7Is7L6WP6/C3S 117Fe8fipWi/5ofm8/QxffN7+tqrePRYPHft136aeOv0MX3xMulrr/bnsPjr 2q/7IOKj08f0xSelr72KD4/FV9d+7feJf04f0xfflL72bf8Qi4euvbv/If44 fUxf/Fb62qt45Fg8cu3XfqR44fQxffG96Wuv9jexeOPar/1M8cDpY/rig9PX Xu2PYvHEtV/7oXtjffFIxhPfiO+52H0R9z20b/urWLxx7b3r2y99T4wvxdYf 9k/Zo9i/tF+G7ZfZzxQf3Pr6vTE/LWaPb70t3rX4AfZjsf3YX4z6ezH9jdsv sl+B7VfYPxJ/2fPtB2P7wcpjfWL+xb7BeT/7Buz84MuRX63/xXOz/u/x0zB/ HuwjzW/Nf8zH3b83nzafsd7v8caw+bP5hvW8+YH1u/Hcet34qLzGD8/XX9rv Uf/W3+rffg+5/R5y+z3k9nvI7feQ2+8hf/nfTgwIJWe/Rf5SLPCeSzl7L3Lj XfefzT+28Y8/bPZk9p88H3u+9RZ/4L435wnYeYLvz36z/Ow3y8/3yf+i9Yzz aL+/9YXzbfYtvgfrCetT34f1pd/f+pF9GX+qzv/n+K3lX6r7T2UPMMc/LX9N 2PfOP5Hy8o/Cn6XzeN9n92/S7ZPUj/Y7+ye5OevL+oKcv1dsfk9f/tZv8sfy 53/EekH/wd8XNr/XnziP5E/EeSNm/8WewHqBnP8ZbH5Pf8j/INdvg/8k2fmp 9R596zf6mL71nt+D3O+Hze/py19/KH8sf/0jezRy/n6w9TZ9+Vsfyh/L334s ffbl9DF960n61pP0MX3+TehbT9LH9K0/6VtP0sf0rT+dd1sv8ReEnf9bj9G3 XqKP6Vtf0We/SR/TZy+hfZFrX93+k779DfZF/Ith+wvsFdSP/kb9zP6Ur0j7 T+sv8tl/8VrzV7aW+fMfIv/Zv/IVeX+Gvv0p+rN/5Styf8p6k3z2d7ze/JXt zfz5I5E/lr/7NvTZV9HH9O3/WY+Tz/6ON1p8443Mn72W/LH82b9qv+TaL9Z+ 6cuf/Zf8sfzFX5Y/ufyx/Onrr8j1V1h/RV//zN5M/4z1z+xZ9M/k+mesf6Yv f/5T5I/lz97FeMR/ivEIG4/eFL/feWlfTW48wsajrs9+jj6mb39feey3Kg9W Hvut9I3v9DF9+8H6E3L9CdafdH37ufQxffu54gGZjznvx86XzM/MZ4z//Ltj ++/OM+ibn9HH9M3X5v5hd7ZHbP3gvGb+npfze8PWK91/qP7V74utD2Z/9Z9q /dsnk51POF/w/ZCrf2w90v1h6g/428TWM91fpPZkvMDWS90fou83/nzpkWTz Uffp/F6+X78X9nuxJ7Uf731wt3elj+Wnv2c/j32v9gus9/8mBsRHXrXeH/ej zsz9gL6+F1/Sfay+nhef5EDs1716/S6+oPhAfb3uPpL4L319Lv/l+EFqPW69 Zf3h/k5fX0n/yk0nvoBaT/k9zL9n//278vtnL+n7Np/w/RpvfZ/Y92d88n3p v30/+kPl0d/pX7yfeIK9P7EfYT+z9wfidxiPvZ/2P+6PL+f44n21d/Er9N/e f75/szf7R++vfPxlKp/3I7d+wu6b0vf76E/Mp7Dnj/Hw2ny+/sF8BPM363zI 76N/4O8Mr4z1b84n/X76B+Mhtv7Wnv2+/wcZxyNa "], { {GrayLevel[0.8], EdgeForm[None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJxEnHW8VdXzv+85+5yzz9knURQBFfvqtQMV+xIqXuxuxUAQW1FRlFAkRAxU sLu7W7G7uxO7O/m9n+97fq/PH/OaNWutmTVr7TXP3vcSiw49aKsD821tbQNn trUl0o+s1Nb28TJtbfRtsUZb2+Oyv5D95UbSkor6R0pSSVmyqeY8qjmfaM4c SUF9+0m+VLsqfZCkNaitbY/OtrZu7W1tW2v+Nxr7WvKU/L6TnldzpkiWlCwl uUnSJRkiGd7mmEXJoZK6pCE5RFIL+7Doa0p27nL/wZKTJVqybWnJiIhRkuyu XOaRHiUZJ1lQspBkrKR32MdLeoX9k3KcX3q05Jg2t3tIxoffwpJJksUlS0hO kiwW9nba7zPa54+K8b2ku/qOkkyOuex5/8iLMz1RsohkUckJkj5hT4w+4k6I NRk7NnJZQHKZZH3JBpJLJOtK1pPMkKwoURptZ0hWCPt0yfJhT4tzUoptp4Tu kJwZfitLzpWsLtGW2s6R9A37fMmakn6S/ySzYvxfycywp0e8ZaNvVclqkrMl q4Q9K/qIe1asydilsQ/2dmrEWE5yXuTC2ldK+ksGSK6QdIZ9eZwH9kWStSXr SC4OzRldFX4DJTdIBks2kVwv2TjsCyVrhf8FsVfsqW2+s9yz0yIvzvRayYYS lUzbNZJBYV8XfcS9OtZkbG6cGWc8Jp5nT8mNkQv1cI9kW8l2krsl24R9l2Tr sG+VbCbZXHJb6C0k94bf9pLZkl0ku0oekuwc9iOS3SS7c6YqvjWGuLZukWwa cW+PeFtKHpDsKNlJcr9kh7AfjD7i3hdrMraXDu1FXaZ5dFh3RIytJA9HLqz9 fJtrnnp9rs0swf5jGbeflTwu2VMyVPJE6L0kL4Qf9fRamxkAJ/bqdPtVyWOS PcL/0dgr9usxF8bcGXlxpl/rYd2ny/eC8u6r81hNcgD70QPcW3H/Ul4vxppw 8bh4brDjxzYziNr6vs2M47581Oa65TnXNnX7Q8lPG5kvH0j+XcZ8elvyktb+ T/aRan8cfqzzRZtZACc+bzOPsL9qM0dgxs1t5ijP75821xv1N3cZc+hdyWdt Zh8s/LTN7MOeE33E/STWZOyH2Ad7W1zBF5N8qyL5MnJh7V/aXPPU689tZgr2 T3Ee2N+2mZuw8LvQnNGv4Uc9/d1mFpD3X23mEfY3beYs/l/HXrH7qVge1PP6 B95uZGa/z/1pM/tg4e9tZh/2n9FH3N9iTcZ2EFh+VYxfJPvk1CHJSfbKmXHU a5ozZ+FTKWemYBdzZg02ftQ0rMIfDS/LOfvB7EbOLIAT9Zx5hN3KmSMwY4mc 6+ohzjzn2sPO5xwPJlVzZh8szHJmH3Yt5z7iVnJek7Elc44HD5KcY8C5Zs65 sHavnGueeu2ZM1OwF8iZNdjz5sxNWNU9Z807vHfOftTTojmzAE4skjOPsOfJ mbP4d8t5r9iL5TyXfRZyzoszXThn9sHChXJmH3afnPuIu2DOazI2X865UAe7 CaLvSK+vvh91X5/UPXlNtfW0Pnb2kewrWTpnDsKGpXI+G/jUnrNmbJmcx2HJ y7wc9WJ7mmfRYT6tpPHvdPceV/yC+tZWfawleUljq+gj5Dl90DwvWTVn3sGt 5XJm2ZOSlXOOA/9Wy3kcxsxWvFe0Xk4xV8l5HP+0w5xYT30dOecFI1/V3HnF 2lfU/lH5vC67rLmdOdf9e5INcj4T7LVz5uAbkh56Kc0veVPtX5T7fZKKfAfn zAiYsXHOXMBeK2fm4l/sMGvXVF+/nNuMLZtzXuxzw5w5CM8G5cw/7I1y7iPu vUPcP1B9e+dcc9TT/Dk/T95Lm+ScC6zaNmc2wd1tcmYu9tY58wV7s5w5BSM3 z1nDj+1y9oNPu+TMCJixc85cwN4tZ17AoUNyrivqddOcWUzcLXKOB592zJmD 8GyHnDmIvVPOfcTdPuc1GTssZxZQf1vmHANG7ppzLqy9X861Sk0My7n+sfcN PmHvmTPr+f4amrOGWcPDDz4dlDMjYMaBOXMBe4+cmYv/7jnvFfvgmMuet8o5 L850ZM4chGf758xB7AOij7gjYk3GeuT83GDH1JxrjNqanDPjYNIx8YyZOzrn GsY+Ome+YB8e5wQjjwgNP44NP/g0PmdGwIxxOXMB+4SceQGHunK+O7w/h+Ss eZajIh58Oj5nDsKz43LmIPbY6CPumFiTsSmxD/Z2ZMSAkRMiF9Y+JWeOUK/T cuYO9slxHtgn5cxBeD8pNGc0Pfyop7Ny5gU8ODNn9mBPzJm5+J8Ye8U+NOc7 yz07KvLiTJ8VW94UH6qq3TekM+kVeN4djjlDcmqsCaue05zf9G7cV2d1p3yf l/277LMjF9j2ivq7yb8luShnvqwjGabvwLc0v7vY1OwwJ86TnJ/7HzN21PfV AZ161pozstPMvlRydc48gBkPDHH7Ksmn8Zx4JkuqfwnJL2L8BREPPl2WcxyY 95DGH5T8pjnX5swj2HN5jMPIB3KuYer1wojBHq6LufDvtpw5Qt3fmjNfsG/I mZXw6cbQ3LWbQnPXbg8/av2O0NTWfTlzAWbcmzObsO+PPnK6O2fGwbxr4jzY w50RA+bdE+P4Xx/5ktNdMY7/zZELDHsoZ97BvzfirsCkJ3LmCN8+j+fMF+zZ MRc+PRwaRj4SGn48GX7w+6nQfE+9kDMXYMbzObMJ+y99vzV0J+q8S3NmHMx7 NOLBp6cjBsx7LsbxfylnHsGeZ2Ic/zdjHzDjsYjBHl6OufDv7Zw5Qt2/FXOx X82ZlfDvtdCw//XQnNE74Uetvxua2vo4Zy7AjI9yZhP2gznfKc76g5wZB/Ne jPNgD+9FDJj3YYzj/0rkS07vxzj+K+d9XpzHLfE8uYuf5VwT8O/bnDkCa7/J mS/Yn+fMSvj0RWgY+WVo+PFd+MG270PD77f5eU7P6nS1f8mZTXBiTqxJ3J9y ZhzM+yriwacfIgbM+znG8e/eYd78IfkxxvGvao9XSF8p+TpisIc/c54P/3L5 /7GkR4fb/DLr75xZCZ/+CT0TX30T/iGZpXY+bz+YkeStqftK3uyADeW8OYSd 5d1HTgeJae/pLHqIV6+Je+/w7aX11xNj1h1i/vXqsG8qv78iX3L6Vd9mH8in p8Y/ifsCy+p5sw3mLZH3vaFGu+fNFFgyb96swW7kPRceNPPWsK2Vt4Zb8+Xt R93Pn7fmviyYNztgQ++8eYS9Ut61xN3qmTfv4Fa3vOPBlR55x4B/vfIex3/h vDkFhxbIexz/JfPeB/yYJ+8Y7KFP3nNhXnveTIElS+U9F3vRvPkICxfLW8Pp xfPWnNHSefvBjGXy1tT9inmzg/2skDePsGt53ynOerm8eQe3Fsr7PNhDR94x 4N/yeY/jv0je+ZLTsnmP479q3lyDczPztleTnC1ZJey18+YIrF0rb75g98ub O9j4EAM29M1bw7l18vaDbf3z5gU86MybQdgD8+YL/Ng+7zqkzo7L+1nyrFbP Ox4sXD9vDsKz9fLmIPYGefcRd92812Tsfd3x3rqzv6m9Rt4x4NOAvHNh7c3y 5gh1v2nefMEekjd3sDfKm5Xc/Y3z1rzPN8/bj1rfNm9ewINt8mYQ9oZ5sxX/ QXnvFXu7vOey5zXzzosz3SpvDsKzLfPmIPbWefcRd4u812RscN65wNFD865J 6uzgvHnE3TlG76zRkoM69V7Jmy//SvYI7mB/pPr+QOe1oM5roQ6zbRfG9f3x mcY+1NjfxBkgpkv2y5tBBckiHWbG/nkzi28rfi6cFbqvZNe8Y8JCfo6Fg/Bs zy63+fl2WPQRt0+Hubi35JDYB3vbLe8Y8Ok/5fa5cvtIuR2RN0eo+8Pz5gv2 YXEe2PxBAqyEiweF5oxGhR+1fmzevIAHx+TNIOwD8mYr/nt3uT1SskPed5Z3 y+5558WZHp03B+HZUXlzEHt09BH3yFiTsU3yfoa8l7ry1ty/MZEL9XBS3kyB JRPzZg32uLz5CA/Gh4ZtE0LDrUnhB6cnh4Zz0/NmB2w4JW8eYY/Nm7PEPTlv 3sGtEyIeXJkSMeDftBjH/7S8OQWHpsY4/pflXcPU64kRgz2cHnNh3jl5c4S6 n5U3X7Bn5M1HeH9maL4pzgoNs84NP2r9vNDU1iV5cwFmXJw3m7AvjT5yujBv xsG8U+M82MP5EQPmXRTj+J8R+ZLTBTGO/xV5Mw7m/ab35ne6n5/wZ1aSRXWn d1L/DXnXLc/8+ryZgn1d3qzBvjJiwKqrQsPLG8OPO3J73iyAE7flzSPsO/Pm CMw4Pm+O9o4z4vsL7l8d8WDSLXmzDxbenDf7sG+NPuLeFGsydk34wbZrQ5P3 HZELaz+cd81Tr7PzZgn2I9FHrSze4f6HJPfmzUTeA/eFprbuyZutjD2TNzvg xFGdZsZTkrvzZi7z7op9Y1+e913jeeykn9eOlk9Pff88njcHh0oey5uD2D/o WS2pnJaQPBo5MrafOPOWxuZX/3N5s2+4ZB/+4E+Sk7yWN3Nh1at58wX7lby5 g/2TYrQrxlKSnZXPscqnl/J5Pfzg97t5cwFmvJM3m7Dfz5sp8OPHvGuSmuuR +PnxrI7pNJNelLyVNwfh4pt5cxD77egj7huxJmM/513/8OClvOPAvPciF9b+ Im+mwIDP82YN9py8GYT9Ud4MhVsfh+Z9/mX4Ufff580O2PBd3jzC/jBv5uL/ QewV+4eYy55fjrw402/yZiJs+zpvJmJ/G33E/SrWZOyTyIWaqCauVeqskphN 3Je/82YK30F/5c0a7D/zZhD2L3FOcOLX0DDvn/DjeyqfmB2wIZeYR9iFxKyB JfvwB9qJx/eWzM3b/i3iwUX6YCJs+y9vJp4T8+gj7r+xJmNZ4n2wt98jBqxK EufC2o3E9U8d1xPzBbuW+Dyw08TchJHlxJozaib2o+7nS8wFmNE9MZuwS4k5 i38x8V6xf8r7znLP/oi8ONN5EnMQLnZLzEHseRP3EbeVeE3G9o0z44w/jefJ +2r+xLlQD5+Kt0urzh5Qe5HEfIErfRIzBbtXYobCrd6JNez8Xdz+XbX6mWIs k5gFcGLpxPzC/kNz/tKc5fgZKnG9UVs9E7OYuAsmjgeTlkrMQbi4ZGLmYbcn 7iNuR4f7l1DfBonrHx4slDgGnOvUz2obDDHD+iaudep1pQ63V+NOra/65FtO bFkhMSP5M4QVE2s4unpiP+ppncQsgBNrJ+YR9vId9l1eff9or3P4nlbMdRPP Zc8LJ86LM+2XmH2wcM3E7MNeK3EfcddIvCZjn8Vzgx07JGYQtbVdYsZxXzZO XLc8540SMwV7w8Sswe5MfE6wqn9iDS8Hx/1gnc0TswBObJaYR9hbJuYIzFgg MUd5fnslrjfqb0DieDBpSGL2wcKuxOzD3jRxH3E3SbwmY9sn3gd7G5g4Bpzb InEurL1z1Dz1ulNipmDvmPg8sLdJzE1YuG1izRntktiPehqamAXkvWdiHmFv nZiz+G+VeK/Y6ye+s9yzQYnz4kx3T8w+WLhbYvZh75G4j7i7Jl6TsZUS36ln EbWHSfbjriVmHPV6YGLOwqcDEjMFe2Ri1pTDj5pOwh8NLw8KP5h9RGIWwInD E/MI+8jEHIEZJyeuK+p1auLawx4e8WDSoYnZBwsPScw+7MOij7gHx5qMTYt4 8GBExIBzoyIX1h6XuOap17GJmYJ9fGLWYI9OzE1YdUxo3uHjw496mpyYAXBi 1Q63J0mOTsxZ/I+KvWJPibnsc//IizP9QvW6svwXU/uExOyDhf+JXQUx4kuN T4g1GTs2cqEOrkhcV9TTZYnvCkziGfP9xTdQTj8PHt1PdaQ4p8TZdHDv1N9X 664mWb3D/DhNcmbiu7Iyz0FzKsrha/men5gX8OO8xIzAbsv0jquoT3JOYt7B rRmJWUasNTrMvJmSc2Mc/38Vf8wA7UkyrMu+sySXxz7Y2+mJc4ORF8T6sOrq xLVKTVyVuP6xr4zzwL4kMQdh/6WhOaNrwg8+3ZSYETDjxsRcwL44MXPxvzDW hLsXhWbsjMiLfV6fmIPw7LrEHMS+IfqIe22sydgziWuOehoTz5P30s2RC6y6 LzGb4O69iZmLfU9ivmDfnphTMPKO0PDj/vCDT48kZgTMeDgxF7AfS8wLOPRm 4rqiXm9LzGLi3hnx4NNDiTkIzx5MzEHs2dFH3AdiTcbeTswC6u+uiAEjH41c WPuFxLVKTTyfuP6xn0vMF+wnE7Oe76+nQsOsF8MPPr2emBEw47XEXMB+IjFz 8X889or9Rsxlz3dHXpzpK4k5CM9eTsxB7Fejj7gvxZqMHRfPDXYsN0g/k0qm q/1jYsbBpI/jGTP3o8Q1jP1hYr5gvxPnBCPfDQ0/Pgk/+LSRvik2lExU+4vE XIAZ36o++3WYP7ckvju8P28NzbN8L+LBpzmJOQjPPkvMQezPo4+4n8aajP0U +4Af70cMGDlXjGqJD99o/RFdrtXfJOt0mCW/SlLV+Dya853mfJ+Yg/D+h9Cc 0e+JfamniZ1mwL+SXfTz10my++h75rvEzMV/rQ63v5W8lfjOcs8+iLw4078S s+wsyZ+JeYTdXbmsJ/91+f1ZrMnYQJ3rgCH+2fFv7es/fUutqDn/Jc4HtpUL 5gisTQvmC3a+YD7Cp6RgDTMKBWuYUSnYD7ZlBWv43SqYCzCjWTCbsLsKfk48 k3rBjIN5xYLjwadqwTFgXqPgcfznKZhHsKdW8Dj+SxZcw9RrqeAY7GHegufC v94Fc4S671UwX7DnK5iV8Gn+gjV3rUfBmru2YMF+1PpCBWtqa/GCuQAzFiuY TdhLFNxHTosUzDiY163g82APCxccA+YtWvA4/t0Lzpec+hQ8jv8CBecCw9oL 5h38W6/guwKTViiYI3z7LF8wX7CXLngufFqmYA0jOwrW8GPFgv3g90oFa76n Vi+YCzCjb8Fswub3DrwvuR+rFsw4mLdswfHg08oFx4B5qxU8jv+aBfMI9qxS 8Dj+6xe8D5ixXMEx2EO/gufCv86COULdb1DwXOy1C2Yl/FunYA371y1Yc0b9 C/aj1gcUrKmtwQVzAWZsXDCbsJcq+E5x1hsWzDiYt0bB58EeBhYcA+ZtVPA4 /msVnC85DSp4HP+ZBZ8X59Gz4OfJXRxScE3Av20L5gis3aZgvmDzF2N7qs6/ F3N+kGygOv6GM+kwM7bU3O0K9oNt2xesf5bsWjAXYMYuBbMJexOxYbDkK7Un d5pzO2l8q4JjwqfeWnOA1ujP744KnoP/lmLjwhobpP5dldsU+S8iph1acG1T u1sXHIM9ZGLmIpr/o3Lfr2CmwJJhBbMG+4Aus2mo2nsV3J4r2btgze+8hocf zBgRmro/uGB2wIaDCuYR9iHRR04HFMw7uLWp9j1kiJm6f8SAfwfGOP4bdpjZ e6o9Msbx36Tg+wLLDi+YcTBvasH3hho9pmCmwJLRBbMG+4iYCw9GhYZtR4aG W8eGH3U/JjT3ZULB7IAN4wvmEfbZBdcSd2tswbyDW0dFPLhyXMSAf+NiHP8T C+YUHDo+xvE/OfYBP46OGOxhYsyFeacUzBRYMi3mYk8qmI+wcHJoOD0lNGc0 PfxgxqmhqfuzCmYH+zmzYB5hH1bwneKszyiYd3DrhDgP9nBaxIB/M2Ic/5Mi X3I6PcbxP6dgrsG5uWGfK/lPMivsSwrmCKy9uGC+YF9UMHfWCR9iwIbzQsO5 S8MPtl1dMC/gwVUFMwj72oL5Aj8eLLj+qLPP4lnyrM6PeLDwioI5CM8uL5iD 2FdGH3EvizUZm11wzcOACyIGfLomcmHtOwrmB3U/uMPt2yU/q1Y3lr2F2jcU zEru/o2heZ/fGX7Uervq+xf5LCYOFMSEJWV3yf/6gtmK/3WxV+whHd7vA5IL Iy/O9J6COQjP7i6Yg9hbq163GmK23RVrMnZT5AJH3yq4JqmzNwrmEXfnqYI5 wu/OnyyYL9hPFP7Hm4fjnHbjPsAiyfDBejeG376SFwvmBTx4oWAGYb9cMF/g B6zi2+rcYBaa9+X+irW0zmSzDv9dVzgIz54tmIPYz0cfcZ+JNRl7M/bB3nbT 2Z4u3i6uc34pcmHtdwvmCHX/TsF8wX47zgP7tYJZCRdfD80ZvRd+1PonBfMC HnxcMIOwXy2Yrfi/EnvFfqjgO8s9O63T5/m45MOCOQjPPiiYg9gfRR9x3481 GdtCz3ZzyWZqJ9rjYjqrn3SfPo1cqIfvCmYKLPm2YNZgf1EwH+HBl6Fh21eh 4db34QenfwgN534rmB2w4deCeYT9ecGcJe7PBfMObn0d8eDKjxED/v0S4/j/ UTCn4NBPMY5/tegapl6/iRjs4c+YC/NyRXOEuucfZ8EX7L8L5iO8/yc03xT/ hoZZ+aL9qPWkaE1tVYrmAswoF80m7KzoPnIqFc04mPd7nAd7KBQdA+alRY/j /1fkS07FosfxrxfNOJi3VNEMoraWLPquYG+n57yt5Ba1uxfNFOp43qJZg90o Ogasahat4WWqu7Gs7savuhsLFc0COLFg0TzC7lM0R+6VzCmYo+PjjPj+gvut ouPBpF5FM+//WNjhdk/19S66j7i/ab0tNHab2t2K9oNt8xStyXvhonNh7Za+ eVZRnn/IbyXp7eS7rWT7DtdHh+a2F302j0gO7vI7YHH1LVF0m/PapsOMXKxo HvD9zTfTSkUzAn7UtdaJ/fTc+Dcxam8tn60ktaLvGs9jxaJZhs/yRXMQLi5X NAexVyi6j3mHdbl/WfXlMv8+7HzJH+LYSK31rtZatWhmwcJ1imYurFq7aL5g r1U0d7D7Fs1QuLV60Rp2rlu0H/weUDQXYEb/otmEPahopsCPHYquSWru+KKf H89qjaLjwacNiuYgXFy/aA5idxbdR9z1il6TsZ2Krn94sGbRMWDewKJzYe3N i2YKDNisaNZgb1o0g7A3LpqhcGtw0Zr3+RZF+1H32xXNDtiwbdE8wt6oaObi v2HRe8Xevui57Llf0XlxplsXzUTYtlXRTMTepug+4m5Z9JqMbVJ0LtTEoUXX KnV2cNFs4r4MLZopfAftWTRrsPcomkHYOxd9TnBil6I1zNuraD++p4YXzQ7Y sF/RPMLev2jWwJJnJcNi/Bnud9i7Fh0PLtIHE2HbPkUzMRfz8hF376LXZOyQ 2Ad7263oGLBqROTC2kcUXf/U8eFF8wX7sDgP7AOL5iaMPCg0ZzQq/Kj7nTrM iTGSv1QPO8peQO0DiuYs/iNjr9g7Fn1nuWe7F50XZ7qjWLiDZH71HVU0B+Fi JtatJnb8qdhHxpqMPRdnxhl3Ff08eV8dV3Q+1MPkojkCdycV/8eVczrdPkky vmiGwq0JoWHnlPCD36cWzQA4cWGn29MlpxfNEZhxedH1Rm2NK5rFxD0h4i3C cxE31tReduXvWIktYweodiV7aI8XKe7S+p6ZGmvCxSuLrn94cKB8V5fvLvwe LnJh7fOKrnnq9dyimYJ9TtGswT6zaFauLDkrNP/e6Pzwo54uLZoFcOKSonmE PaNobuJ/RuwV+7KYy553V/7nKv+llP9FRbMPFl5YNPuwL44+4l4QazI2pOjn BjseLJpB1Nb9RTOO+3Jj0XXLc76haKZgX180a7CvinOCVVeHhpc3hR/r3FE0 C+DE7UXzCPuuojkCM8YWzVGe39NF1xv1d03Eg0m3Fs0+WHhL0ezDvi36iHtz rMnYA7EP9nZtxIBzd0YurP1w0TVPvc4uminYD8V5YN9bNDdh4X2hOaNHwo96 eqpoFpD3k0XzCPueojmL/92xV+wrir6z3LPrIi/O9PGi2QcLHyuafdhPRB9x H401GTu76DvF+3DVkt6J0i9IVi6ZcdTra0VzFj69WjRTsF8pmjXY+FHTI8If DS9fDz+Y/W7RLIAT7xTNI+yq7uHaqpG/xYp9O1yjP0vm1ffAhur/T/0vRjyY 9FbR7IOFbxbNPuy3o4+4b8SajI3qMgt+kbwUMeDcLuLWzpLRnKXWGaq195R8 UTRTYMDnRbMG++OieQmrPgnNO3yAfP/l7z6ojn4omgUnS74vmkfYe3TY9yPJ upr/j+bvrr6Bau8jvbfk5ciLM/22aPbBwm+KZh72d9FH3L063P+15NPIhTqo l1xX1FO15LsCk2amesaS1SS/F81B2PBr0ecDn34LzdgfMQ5L/om7MlPyn2RW 0awqlMwL+JGUzAjs1Yr+tuKbKVcy7+DW30WzjFhzIwb8y5c8jv+/sQ5r8B8p MI5/reR9sLc/Iy8YWSx5fVjVKrlWqYlmyfWP3Sj5PLArJXMQ9mcla86oW8l+ 8KlHyYyAGfOXzAXscsnMxb9U8ppwNy1ZM/ZX5MU+u5fMQXg2b8kcxJ6v5D7i zlPymoytUnLNUU+fxfPkvbRAybnAqsVLZhPcXaxk5mIvWjJfsBcsmVMwcqGS NfxYomQ/+NRRMiNgxjIlcwF7uZJ5AYfWL7muqNfeJbOYuAuXHA8+tZfMQXi2 VMkcxF665D7iLlnymoztrprbTfK+2n1KjgEjly05F9ZeveRapSb6llz/2KuV zBfsFUtmPd9fK5WsYdYaJfvBp3VLZgTMWKdkLmCvUDJz8V++5L1ir1fyXPa8 SMl5caZrlcxBeNavZA5ir11yH3HXLHlNxubEc4MdO5VcY9TW1Z3m0A7q26Tk Z8zcwSXXMPbGJfMFuyU2bixGzBUvNuE/zFhZ30+q+66S/eDTliUzAmYc3eX2 FurbumRewKGeJd8d3p+9StY8y+EdZtIg9c0v3k7Xz0c5rZEozv4aGyEZ2WHG bK45Q0peE0buWPJe2NuGJceBkVuVnAtr71oyR6jXXUrmDvbOJZ8H9uH6RtpS ezsA/mq/1+iMlhdLdyvZj3rau2RewIO9SmYQdkF5TtC32HjJNiXvFQZvUPKd 5Z2zUcl5caZ7lswyGLNHyTzCHlpyH3F3L3lNxuAQ70Z4Nis032f7lJwLbDuo ZI7A2gNL5gv28JL5CJ9GhIYZ+4eGGQeHH2w7JDT8PrJkLsCMUSWzCXuozudG nc8KOp/DS2YczBsZ8eDToRED5h0R4/gfXTKPYM9hMY7/ySXXMPV6QMRgD6Nj LvwbXzJHqPtxJfMF+9iSWQmfxoTmrh0Xmrs2Ifyo9RNCU1tTSuYCzJhcMpuw p0YfOZ1UMuNg3lFxHuzhxIgB8ybFOP7HRL7kNDHG8T8+coFhp5TMO/g3VBza U9Jf7TNL5gjfPjNK5gv29JgLn04NDSNPCw0/zgo/+H12aL6nzi+ZCzDjvJLZ hL1fye9L7sc5JTMO5p0e8eDTzIgB886NcfwvLJlHsGdWjOPfTXdjG9VRXvV7 RsRgDxfFXPh3cIdr/WrJdpqbaO5B6rukZFbCv0tDw/7LQlNP15TsS61fG5ra Wn+Q5ks2VfumktkEJ6aVfKc46xtKZhzMuyDOgz1cFzFg3o0xjv/FkS85XR/j +M+N8+I8xsbz5C7e0Gnm3SY5osN8vU/SU0zbTfssaJ93lMxK+HRnaBh5V2j4 cWyXuXa/5IGS2/D70ZK5ADMeKZlN2LeXvC5xZ5fMOJh3d8TbVvJgxIB5D8c4 /o+XzCPY81CM4/9WybVN7e6i3A/Xfg6TPBFz4d8LJTMFljxfMmuwnyqZlfDp 6dD7Sp4JPUzyYvjBjJdCU/dvlMwO2PB6yTzCfjP6yOnVknkHtx6L82APL0cM +PdajOP/ZORLTq/EOP5Hivk7aW+Hal/vlMw4mPdTyfeGGv24ZKbAko9KZg32 uzEXHrwXGra9HxpufRJ+1P2nobkvX5XMDtjwZck8wv6v5Fribn1eMu/g1gcR D658FjHg3xcxjv83JXMKDs2Jcfx/jn3Ajw8jBnv4NubCvF9LZgos+SXmYn9f Mh9h4Q+h4fSPoTmj38IPZvwemrr/t2R2sJ9/SuYR9tsl3ynO+q+SeQe3vo7z YA9/RAz493eM4/9d5EtOf8Y4/rnUXINz+6a285J9+M/Pws4kl2v8Ckk5NV/g SpqaO9j4EAM2JKk1nFtH9VhU7Y7SPemWmhfwoJWaQdjzpuYL/FgqdR1SZ0NS P0ueVSF1PFjYSM0/eHZUh9t19TVT9xG3u1g6VPezpLWXTl3zMKCYOgZ8mid1 Lqy9UGqOUPcLpuYLdu/U3MHeW/FGa72jJQuKS/vKThU/1R4n6vvlRMkSqXkB DxZPzSDs+VKz9WZyS71X7CVTz2XPpdR5caZ3dpphi6pvb+3lLtmr6JthfJdj Lqb+YVr/WOWysvqP6TA7F1D/BqlrkjpbLzWPuDsrpebIs5IVU/MFe4XU3MFe JvU5wYaO1BrOrZza7znJGql5AQ9WT80g7H6p+QI/YBXfVvxcOCw078tlU8eD hfwcCwfhGT/XwkHsvqn7iLtK6jUZWz/1PtjbcqljwKc1U+fC2gNSc4S675+a L9idqc8De53UrISL66bWnNHA1H7U+iapeQEPBqdmEPbaqdmK/1qp94rdnvrO cs+WT50XZ7pRag7Csw1TcxB749R9xB2Uek3Gju/yO6mn+nqlbnP/ulLnQj1s m5opsGSb1KzB3jw1H+HBFqk1bNsytYZb26X2g9Pbp9ZwbtfU7IANu6TmEfZm qTlL3J1S8w5ubZU6HlzZIXUM+Ldz6nH8d0/NKTi0Y+px/A9LXcPU69apY7CH PVLPhXn7peYIdT8smIQ9NDUf4f1eqTXfFHun1jBrePhR6yNCU1vHd5gTh0h6 qKZGqn4qqt9DU/eT04GSSjBvt9TnwR72jxgwryyfMYpVVXvP1PmS08j/Py45 IjXjYN601Ayitk5OfVew7+v0cx4j2Uf53C97NdXyaL1bD1RuY7XGqIgBq44M DS+PS/93Rw7W3HGa21e+eynOVHHodsWa3WlOTJRsmpqjX8YZ8f0F94+KeDBp XGr2wcKxqdmHPT76FuYMY03Gjg4/2FbWvZ2sdSdJhimHh7X26srn1NQ1T71O T80U7NOij1o5Jc6GsSmpmch7YGpozmtyarYyNis1O+DE2akZAT8mpWYu805K vXfsw+Ou8TzOSs0yfGak5iBcPCM1B7HPjD7mnR45Msbv7/kzT/4Oxbmp2QcL V62IT2WxS3JpaubCqktS8wX74tTcwT4v/ODW+aFh52XhB7+vSc0FmHF1ajZh X5eaKfDjwdQ1Sc3NiefHs7og4sGnK1NzEC5ekZqD2FdFH3EvjzUZm526/uHB hRED5l0bubD2HamZAgNuT80a7NtSMwj7xtQMhVs3heZ9fmf4Uff3p2YHbLgv NY+wb0jNXPyvj71iPxBz2fNFkRdnek9qJsK2u1MzEfve6CPuXbEmYzdHLtTE 26lrlTp7MzWbuC9PpWYK30FPpmYN9hOpGYT9cJwTnHgkNMx7Ovz4nnoxNTtg wwupeYSdiSHjVbMHqb2q7s3zMb6K2s+lth+NeHCRPpgI255NzcT9Yt7wiPtM rMnYW7EP9vZYxIBVL0sOSM2591LXP3X8bmq+YL8T54H9empewsg3QnNG74ff aMmnqbkAMz5JzSbsEzrs+5qkl5hwuDhV1b4fSn1nuWePR16c6UkdZuFHkj76 vjpK82uaf2KXY35MXuqbqHkn8u9gyj4zzviWeJ68rz6LXKiHH1JzBO5+n5ov 2N+lZgr2fsrtCfFqzXbl02lefiX5Mfzg9++pWQAnfkvNL+w/U3MEZtTKrjdq a1/FnCYWPqh4k7rMo68lv6TmIFz8OTX7sH+NPuL+FGsy1ii7/uHBN6njwLk/ IhfWTsqueeo1XzZTsHNlswb7n9Ss5M8Q/g0NRwtl+1FPWdksgBOVsnmE/Xdq buL/V+wVu1r2XPb8beTFmaZlsw8WlspmH3Y5+EjcYtlrMnZrPDfYsVTZDKK2 liibcdyX+cuuW57zfGUzBbt72azBbpZ9TrCqVbaGlz3K9mOdhcpmAZxYsGwe YfcpmyMw4/PUHJ0gWbnseqP+upUdDyb1Kpt9sLBn2ezD7l12H3EXKHtNxpYs ex/sbZ6yY8C5hcvOhbWXKbvmqdely2YKdnvZ54G9WNnchIWLl605o46y/ain lcpmAXmvWDaPsBctm7P4L1L2XrHrZd9Z7tm8ZefFmS5fNvtg4XJlsw97hbL7 iLts2Wsy9l/cqXMk+wwRL/k/izU+s2zGUa/rls1Z+LRO2UzBXrts1mCvrvZL qVlVV/1PUq2/ovZ6ZfvB7MXEh+PEgpbGM9XXNM05WfJMpzmxoebuVHZdUa87 ll172AvxfxHItyHfzrLZBws3KJt92P3L7oNz65e9JmM7lx0PHjTlP6XDfBuu mM9q7VNkT+1yrW6huS92uu43V3t/zXlJ9trtep+VzU1YtUnZmnf4lmX7Uk/b l80COLFd2TzC3rhszuK/Udn7xd6h7Lnsc2qHz3Mt9W1TNvtg4dZlsw9727L7 iLtV2Wsy1lV2LtTB4WXXFfV0aNl3BSbxjPn+4htot7I5CBt2Kfts4NOuZWvG di97HJbsVfZdmcs9UZv/uB5W7V82L+DHiLIZgT2Xfw9Z8b+N3K9s3sGtoWWz jFj7Rgz4NzzG8d+77HVYY1iM439Y7IO97VF2XjByZKwPq44su1apiVFl1z/2 EXEe2AeXzUHYf0hozuio8INPx5XNCJgxpmwuYB9UNnPxPyDWhLsHhmZsz7Lz Yp/HlM1BeDa6bA5iHxt9xD061mTsHEnfsuvpVL2Lpku+UJzjIxdYNaVsNsHd yWUzF3tS2XzBnlA2p2DkCaHhx9Twg0+nlc0ImHFq2VzAPqNsXsChLQepJiQD 1B5fNouJe2LEg0+nlM1BeDatbA5iT48+4p4cazI2cmPdc9XUOqqpiREDRp4e ubD26R2ugwt4fqrZ02T3Y235niAOdFPfWWWznu+vs0PDrAvL9oVPl5fNCJhx WdlcwD6zbObiPyP2in1FzIUlJ0VenOklZXMQnl1cNgexL40+4l4UazI2VjlO Zw/a4+yya4zaerBsxsGkEdrLDD3f53UWN5Vdw0MkN5bNF+zXOs3FazjnLrPj Wu7MmlpfsTdT+66yGQEz7iybC9j3lM0LODQ27g7vz3GheZbXlR0TPp3WZZbd Lnm70yy8TXJH2f3EPUg5v6Ox9bT2Q7EP9nZ9xICRd0curP1o2RyhXh8pmzvY D8d5YN9fNgfh/QOhOaPHwo96eqZsXsCDp8tmEPZ9ZTMX/3tjr9hj9PP4RD2D GXoGN0RenOmTZbMMxjxRNo+wn4o+4j4eazI2N96N5waP0HyfPRu5wLbXy+YI rH2tbL5gv1g2H+HTS6FhxsuhYcYb4Qfb3gwNv98vmwsw472y2YQ9o8vPo5e4 +k7ZjIN5r0Q8+PRWxIB578Y4/h+WzSPY83aM4/9z2TVMvb4aMdjDRzEX/n1Z Nkeo+y/K5gv2J2WzEj59Gpq79llo7tpX4Uetfx2a2vqxbC7AjB/KZhP2T9FH Tt+VzTiY90GcB3v4JmLAvO9jHP+PI19y+jbG8Z8TucCwX8vmHfwbq3syXffk HN2Tf8rmCN8+f5fNF+zfYi58+j00jPwjNPz4TzKrbH7vp2+oYZJz1S5WzAWY UaiYTdj83mFE3I+zO8y5vMb/jHjwqc/G2pNym5e/G1DxHPzTinkEe7rDQfmf zzPT/A9VmxuoNv+KGOyhXPFc+NeqmB/U/QedbjfVl1XMSvhXrVhfyXPQ+rMU fyZ/FlCxH7U+T8Wa2jpE636qWP217hhxqVP6VvX/EneKs56vYsbdLClVfB7s Yd6KY8C8AxXnHPHwTcWqVJwvOXWveBz/YRWfE+fxeTxP7mLviusC/i1eMUdg 7WIV8wV7oYpZCZ8WrljDyD4Va/ixRMV+sG3JijX8XrZiLsCMjorZhL1gxWsS d+mKGQfzFqk4HnxaquIYMG+ZisfxX75iHsGe9orH8d8gapvaXbTiGOxhhYrn wr/VK2YKLOlbMWuwV6qYlfBp5Yr1c5JVKtb8zmuNiv1gxpoVa+p+vYrZARvW rZhH2OtX3EdOa1fMO7i1XMXnwR76VRwD/q1T8Tj+K1acLzmtVfE4/p90+j3T U339K2YczNux4ntDjQ6umCmwZOOKWYM9oOK58GBgxRq2DapYw61NKvaj7rsq 1tyXLStmB2zYomIeYZ/f4Xu1r2SzinkHtzasOB5cGRJ3Dv5tXvE4/ltXzCk4 tGnF4/jvVPE+4MdGFcdgD9tUPBfm7VIxU2DJzhXPxd6uYj7Cwu0r1nB6h4o1 Z7RrxX4wY7dgB3U/v5hwnvaTU1+n3hfzyT5XdmfFd4qzHqr2v2Vza6uKz4M9 7F5xDPi3V8XjcyXbVpwvOe1R8Ti8HF4x1+Dc8xXbI7hrfPeHfaoYcoHWHyAu 1JTPharxCyQHBXeq4UMM2LB/aDh32MY6S92VgfI9qmJewIMjK2YQ9iWKdbFk frWnVVyH1Nmt8Sx5ViMjHiw8omIOwrOzu9w+XDIq+oj7Rae5eJhkesU1DwMO iBjw6ejIBbadUDFHqPsJFfMFe3zF3MEepb18r7gbaS/fdfodfpzkxPCj1qdW zAt4MKViBmGPF1c3lN8Cao9Te5DaPdQ+Oeay5wMjL850UsUchGcnVcxB7MnR R9yJsSZj53SZocdLrqy4JqmzyyvmEXfn7Io5wu/Oz6qYL9hnVswd7FPjnGDD aaHh3MzwW01yQcW8gAf8G6E1w76oYr7AD1jFt9XwYBaa9+XpEQ8W8rMlHIRn /KzZN+zzoo+4s2JNxq6IfbC3MyIGfLowcmHtayrmCHV/dcV8wb4qzgP70opZ CRcvC80ZXRt+1PrNFfMCHtxUMYOwL6mYrfhfHHvFPqXiO8s9mxF5caY3VMxB eHZ9xRzEvjH6iHtdrMnY2IqfI++lcaG5f7dELtTDfRUzBZbcWzFrsO+omI/w 4M7QsO2u0HDr/vCD0w+EhnOPVswO2PBIxTzCvr1izhJ3dsW8g1t3Rzy48mDE gH8Pxzj+T1TMKTj0UIzj/3bFNUy93hMx2EMPce5C/l632i9WzBHq/oWK+YJ9 cYcZ/7TkmYrbfFM8GxpmvRR+1PrLoamtnzvNiTclR6qWf5E9WHV4fpfzeUty qPqvEIvmaOxx2XvGHl6JGDBvwmDdYzHxEv79j3K+SHof9b8a4wdL3q2YcTDv l4oZRG39HHcF+6IuP+9PJX92unY/kYxWDn/JHqLc3osYsOr90KMln8Vd4Y58 XTEL4MRXFfMI+9uKOQIzbquYo1vEGfH9BfeP0FrXaL9fa70vKmYfLPy8YvZh fxl9xJ0TazJ2kji2iXI8lnXU7uL7Ue1vIhfW/r3imqdef6uYKdh/RB+18muc DWM/VsxE3gM/hea8fqiYrYzBA76/+Wb6r2JGwI/vK2Yu876LfWO/E3eN5/Fv xSzD5++KOQgX/6qYg9j/RB/z/owcGXs2/l4Ffw8xn5l9sHBES+8+SUmSZWYu rKpk5gt2OTN3sJPMfnCrkFnDzmpmP/jdLTMXYEYrM5uw583MFPixVOaapOY2 zfz8eFbFzPHgUyMzB+FiPTMHsZuZ+4hby7wmY0tnrn94UMocA+bNkzkX1l4o M1NgwIKZWYPdOzODsOfPzFC41SOz5n2+cGY/6n6JzOyADYtn5hH2fJmZi3/3 zHvFXjLzXPacZs6LM100MxNh2yKZmYi9WOY+4vbJvCZjC2TOhZrozFyr1Nn6 mdnEfVk5M1P4DlopM2uwV8z+x54OtR+rmBPLZtYwb5XMfnxPrZmZHbBhjcw8 wj5D/LhS3LhCcq76V888fo6kb9g9xZZLNf5kxX0wEbatlpmJ2Myjj7irZl6T sQ0y74O99VKcyxTnKbV3HCT+S15T+2jV/g2q/d9U+wMy8+UDSf/M54H9X6e5 uK761svc5oymqd43V71/pHZXZi7AjE0yswn7GMWfK//N+D3hYNWQ9nyV8mjP fGe5Z5d3+DxXUF+hv1m4sdrHybcoe0v5XtrlmIPVf4rW3UJ9H8s+L86MM+6Z +XnyvhqSORfqYfvMHIG722XmC/a2mZmCvUVmhsKtLTNr2LlDZj/4vVtmFsCJ XTPzC3uPzByBGYdlrjdqa/PMLCbuVpnjwaSdM3MQLu6UmX3Yu2TuI+6Omddk 7IjM9Q8Pts4cA87tnjkX1h6Rueap1+GZmYK9X2bWYO+VmZX8Xn/vzJr/+3D/ 8KOeDsnMAjhxcGYeYQ/NzE3898y8V+xDYy573iZzXpzpgZnZBwsPyMw+7IOi j7gjY03GemV+brDjFLWXyVxbUzMzjvsyJnPd8pyPzcwU7GMyswZ7VJwTrDoy NLw8LvxY54TMLIATEzLzCHtiZo7AjM0yc5TnNytzvVF/R0U8mDQuM/tg4djM 7MMeH33EPT7WZOzk2Ad8PTpiwLkTIxfW7q06vbpD38dqn5qZKctJpsd5YE/O zE1YOCU0Z3RNh2vodMnMzCwg77Mz8wh7UmbO4n9S7BX78Mx3lns2OvLiTM/M zD5YOCMz+7DPij7inpF5Xcb2yXyn+P8D8lW9H6UvoK9qxlGvl2XmLHy6NDNT sK/ocvuSzH7UdD/yUv+tYtQtksvDD2afIQ5sKw5sxJ7V3kbtDZnf35y4XjI7 c11Rrw9lrj3ss8Sha3VeW8nnqszsGyi5MjP7sMeIP7drzZziXRFrMvZwxIMH YzUn0/jWijNB7Zba26l9Z+aap17vyMwU7Nszswb7pszchFU3h+Ydflf4UU8P ZGYBnLg/M4+wb8zMWfyv7nL7BsmDMZd9Vvqb2RdL7s3MPlh4T2b2Yd8XfcS9 O9Zk7JbIhTp4J3NdUU9vxV2BSfvWdDaSvOSxzByEDY/E2cCnR0Mz9niMw5Kn 467sK3lWMiwzq17OzAv48VJmRmAPi3USyQuZeQe3nsrMMmI9FzHg34sxjv8z sQ5rPB/j+L8d+2BvT0ReMPKVWB9WvZ+5VqmJ9zLXP/a7cR7Yb2TmIOx/MzRn 9EH4wafPMjMCZnyamQvYr2dmLv6vxppw97XQjD0ZebHPjzNzEJ59lJmD2J9E H3E/jDUZy1Vdc9TTrfE8eS/NiVxg1U+SaZm5+0Nm5sKq7zPzBfurzJyCkV+H hh8/hx98+jMzI2DGH5m5gP13Zl7AofGqkftVUzXdzS8zs5i430Q8+HR9hxn2 m2RB8fA62aep/XvmfuL+EmvCyFmq/Z1Uc9ep/W3EgJF/RS6sfYLWnU9r7qB5 k/UdMlP1f4PiHq/+u5VPqrH/MrOe76+5oWFW9/5mUklnWauaETCjWjUXsP/N zFz8/4m9Yternnu15LvIizOtVM1BeFaumoPYWdV9xL2uy/2p+m6L5wY7lq66 xqitpapmHExaoOpnzNweVdcw9vxV8wX7JO23t/azs86hV38zYx6N94w14FOf qhkBMxaumgvYi1bNCzj0edwd3p9fhOZZ3thlNs2ruQtWzUF41rtqDmIvVHUf cXtVvSZj7VXvg711rzoOjFyk6lxYe9mqOUK9dlTNHexlqj4P7CWq5iC8X7Jq zRktV7Uf9bRK1byABytXzSDsxatmLv6LVb1X7Jm6YzvqzK5Ve76q8+JMV6ya ZTBmhap5hL1S1X3EXb7qNRmDQ//3bszMIzTfZ6tWnQtsW7dqjsDadarmC/Ya VfMRPq1ZtYYZ/arWMGO9qv1g2/pVa/g9qGouwIyBVbMJe1w8J55J/6oZB/PW qjoefNqg6hgwb0DV4/hvVDWPYE9n1eP439zhWt1ZfWtXHYM9bFz1XPi3RdUc oe43r5ov2JtUzUr41FW15q4NqVpz17as2o9a36pqTW0tJFbcqLV/VXuHqtkE JxZW/00d5sl26v8xM/M2rPo82MPWVceAedtXPY7/4KrzJadtqh6HkZtWnQsM 27Vq3sG/C3VPdtc9aalv76o5wrfPXlXzBXu3qufCp92r1jByj6o1/Ninaj/4 vW9ovqdu6TIvRkoW7m827C9Zver3JffjPOWwq3Ioqm/PquPBp4fFudmSRH2T xIE+8t9N8w6smkewZ5a4eIvOahf1X6Q4e0h3U//QqmOwh4NiLvxbor9r/UjJ VMVcUvae8jkkWAn/Dg3dkEzUnMeVQw/Ne2WA6/woGNDlujpacnzVXIAZxwWb sHep+l5x1sdWzTiYd0DVZ8IeRlcdB+aNiXH8D458yemYGMf/Mu1xL+U7Qu3N qn6e3MXxURPwb0rVHIG1k6vmC/YJVbMSPp0YGkZODA0/poYfbDs5NPw+vWou wIzTqmYT9oRYk7jTq2YczDsp4sGnaRED5p0a4/jPqJpHsOeUGMf/yqprm9qd FDHYw5kxF/6dXzVTYMl5VbMG++yqWQmfZoZejXsSuq/kgvCDGReGpu4vr5od sOGyqnmEfUX0kdMlVfMObp0R58EeLooY8O/SGMf/rMiXnC6OcfzHVn1fYNnV VTMO5s2u+t5QozdVzRRYcmPVrMG+JubCg2tDw7brQsOtm8OPur8lNPflrqrZ ARvurJpH2JfqXg3VvRqu9u1V8w5uXR/x4MqtEQP+3RHj+N9bNafg0G0xjv/D sQ/4cUPEYA/3xVyY92jVTIElj8Rc7D5i4K2q652I2WE2Pyh5qOo2Z/RY+MGM x0NT9/N06V2mWn1a8kzVPBomuarqO8VZP1U17+DWPZJtYw9PRAz493SM439/ 5Luj5MkYx7+jv9n2omRNtV+S7qtv/jPFjX6y99eZTlH7BeWyqOw3qubLYZLX q+YO9l1d5gL+L1fdhnNX6rnsoxhHqP1B1byAB/d2uf2+5KOq+QI/fqm6Dqmz XjU/S57VKxEPFp6ufFZVLvsp7tWKP6zdPFylv3n2Hmel/n3VP0rt36queRjw asSATx9GLqz9ddUcoe6/qpov2F9WzR3sT6tmJXf/s9C8z78JP2r9p6p5AQ9+ rJpB2J9UzVb8P469Yv8cc9nza5EXZ/p91RyEZ99VzUHsH6KPuN/GmozNiVzg aKPmmqTOajXziLvzX9UcOUfyb9V8wf6nau5g/x7nBBv+CA3n5obfuZJizbyA B4WaGYSd1swX+AGr+Lbi50KYheZ9+WfEg4X8fAkH4Rk/18JBbH7mpI+4bTWv yVi95n2wt78iBnwq1ZwLa3ermSPUfatmvmA3az4P7KxmVsLFas2aM5qnZj9q fYGaeQEPetTMIOxKzWzFv1zzXrF/rfrOcs/+jrw40/lq5iA8614zB7Hnr7mP uPPWvCZjn8cz5L30RWjuX8+ac6Eelqj9jyWLq/1A1fbCat9dNQ/61Kxh2yI1 a7i1ZM1+cHqpmjWcW65mdsCGZWvmEfaCNXMW7i5TM+/g1qI1x4Mr7TXHgH8d NY/jv0LNnIJDS9c8jv9M1e/6qtUDVZ+L1RyDPaxY81yYt0bNHKHuH+hye3X1 TZPv62JRu/yvU40PV4zned5qj1D7BbXXrNmPWu9Xs6a2btKckZrzDs9Jcd5W nBUV599VxCv1v6v+dWpm3JuS5Ws+D/awVs0xYN6Jm+iZSJaX70o15/usZO2a x/GfM8C8G6C+nWtmELW1U813Bbur5rrlmW9SM1OwB9fMGuzZXebUQPUNqrkN L4fU7Mcd2apmFsCJLWvmEfY2NXMEZvSumaM8y1O092WV+978/q7meDBp85rZ Bws3q5l92FvU3EfcTWtek7GNavaDbRvXrMl765pzYe3daq556nXXmpmCvXvN fdTKLjWfDWM71MxE3gM71qw5r+1rZitj+8XvpWDPPjUzAn5sVzNzmbdtzfvG Xq+/3zP91bd3zSzDZ2jNHISLe9bMQey9au5j3h4158gY/INlfPsPj/VhYa4h PtXFLsnBNTMF7h5UM2uwR8RcWLV/aHg5MjQsOST84NyhoWH5UTUzAn4cWTOn sG+r+ZnxfI6omXfw74CIB6sOixjwb1SM4z+6ZjbBocNjHP9Taq5z6vjAiMEe jom5sPCEmvkCVybUzB3sMTVzE1YdF5p3+PGhuYMnhh/8mBgaBpxcM0fgxNSa 2YQ9LfrIaXLN7INhR8d5sIeTIgYsnBLj+B8b+ZLTpBjHf2zkAttOrZl38O9C 1cWmuitH8HcxxYqDpFdV/wz1v6967qux02IubDg9NJw7IzQMu02+B8t3NbXP le8g+R0i+8KaOQInLqiZTdg53ZvzpM+vWcM+GDYj4sGYgf3Nv3Ni3prhf3HN zFpX8miXfc+VDOlvZlwlOTNirCy5JOauJ7mmZqbAgCe63L5acqfyP1T5bqD2 f2LjYWp3qj1X7cPbXUfXhh8MuC40DLilZkbAj5tr5hT29LhTnPWNNfMO/l0U 58Eero8Y8O+mGMf/bJ3hxzr/tfn9WYzjn6/7LDjL8ZKFar6Lt9dcE7Dw/pqZ Akvuq5kj2HfWzE1YdVdoeHl3aPjxQPjB7AdDw/LHauYCzHi0ZpZh3xFrEvfh mnkH/+6JePDpoYgB8x6JcfyfqJlHsGd2jOP/ds21Te3eGzHYw5MxF569WDNT YMkLNbMG++ma+cifGzwTmt/rPxsajr4UfjDj5dDU/Zs1swM2vFEzj7Dfij5y eq1m3sGtx+M82MMrEQP+vR7j+D8V+ZLTqzGO/6013xdY9m7NjIN5v9R8b6jR T2pmCiz5uGbWYL8Xc+HB+6Fh2weh4dan4Ufdz5GMq/m+fFMzO2DD1zXzCPvp Ltdhm+7XlzXzDm59GPHgyucRA/59FeP4f1czp+DQFzGO/6+xD/jxUcRgD9/H XJj3e81MgSW/xVzsH2vmIyz8KTSc/jk0Z/RH+MGMP0NT91v1Nw/mSi5RHW0t +yi+gWq+U5z1Par3Ueqbqfa3cR7s4a+IcZbkXs05UnNmqf1D5EtO5/B3TVWb nYr7XM13indjUnddwrz96rYLkrZV9YwU5wr1XyDfb+U7uL/HmAsPinVr2Faq W8OtnHxHy/dKtS+X747yO0b2PHWzAzZ0q5tH2O111yF19lyXmdVUX1p3vEsl O/Q38+rqa9U9B//udXMKDv05wKxsqG/puuNR9yfpG3CiZCPFmK/uuTBvobqZ AksWrJs12D3q5iP3fYG6Ne/wnnVruLVw3X4wo0/dmrpfsm52wIYl6uYR9lJ1 97HPxermHdyat+7zYA+L1B0D/i1e9zj+89edLzktWvc4/r3qzgWeLVP3XmFe Z931Sc0tVzez4FBH3eMwYNm6NWPL1z1O3a9UN4Ngz7lqry5ZQ7Jy3X3cnVXV fr5mhvWrmxEwhrlwCj6tVvc4zFuh7thwrm/dfcxbpe54xFqzbh4Ri/WIgd2/ 7n3AjBXrjkF+a9fNLJg3sG6OUPcD6p6LvV7dHITN69etqacN6tac0aC6/aj1 DevWcGvTurkAV4bUzRHsdepeE+5uovZnNbNqrbrPgJw2qjsGLOyqexz/dev2 I6eN6x6HecOj5qin3nU/T+7i5nUzC+btUDdHYO32dfMFe6u6WQDPtq5bw6pt 6tYwYMe6/WDbTnVruHWxavNH1czmqovd6+bI35It62YucXetm1mwatu648G5 neuOAQt3q3sc/9nizxjV+n9q71L3OP6vdLnmj5BsV3cM9nCVcthd6x8nn/3r 5gh1PyLOA7ttoL+99uHudPl7Yl/JsLrbMGtk+JUlB4SuMK+/WXIYvNFaw2SP 11rpQHPkcGKIV2P5+/vUrvI/Vu1/ldtlmv+rzmdb+SSaM67d/Nmtv985e1Nz mn+8+qtqbxbvIZ7ZkXXzjvo+pe76pP6Oq5sj1O6YuvmCfVTMhWdHh4ZVo0PD gOPDjzsyNjTcmlg3F+DKiXVzBHuLuu8Oz3JC3cyCVcdEPDg3LmLAwhNiHP9J dTMIho2Pcfynxz7gx7ERgz1Mjrnw77S6uQNXTo252FPr5iC8Pzk0nJ4WmjM6 PfxgxhmhqftZdTMFfsysm0HYo+q+V5z1WXVzCq6cFOfBHmZEDNh2dozjPyXy JaczYxx/eMS7ke+zc2JN2MbPjrAJVl1WN1NgyaV1swb7grqZCA8uDA2rLgoN Py4PPzh9RWg4d13d7IAN19bNI+wv6n5+PJ+r6+Yd3Lo44sGVKyMG/LsmxvG/ sW5OwaGrYhz/h+uubWr3kojBHm6KuTDvrrqZAkvurJs12LfUzUfu+62hYdVt obl3d4cfzLgnNHX/UN3sgA0P1s0j7NnRR0731807uHWDZHDs4d6IAf8eiHH8 b458yem+GMf/9sgFnj1aN+P2kLxT972hRl/vMkeekRzQ31x5mvNU7f+j2t9Z fU+oxieoxoeq/0m1T1B7L7WfrduX76bnQsPyyfrWmCTZU74v182jAyV9G+KX 9Et1a3gHt55WzBPbzZPnI8aImDcy/J/TnJP480O1X4hx/N+NfcCPG5XzgVpz ouYVxKtJ0oeq//26mQJL3ou52Ldq/ijNn8Lv/fubzW8hXT6ftyUfhB/M+DA0 dT+nbnbAhs/q5hH2I3GnOOtP6uYd3LpWayVi7l5a56OIAf8+jXH8i8p5crtZ /XGM4796w2fBWd4Rz5O7+GXdNQHzfqybKbDkh7pZg/113XyEB9+Ehm3fhoZb P4UfnP45NJz7s252wIY/6uYR9lexJnF/q5t3cOu7iAdXfokY8O/3GMf/77o5 BYd+jXH8Gw3XNrX7fcRgD//EXJhXaJgpsCRpmDXY/9XNR1g1NzTfbm0Na7hV bNgPZpQa1tR9rWF2wIZqwzzCrjfcR06VhnkHt/6K82APacMx4F/W8Dj+/0a+ 5FRueBz/z+O+wLJWw4yDeUs3fG+o0QUaZgos6dEwa7DnUfv6unkwb8MatnVv WMOtng37Ufe9Gtbcl0UaZgds6NMwj7BXa7iWqMWFGuYd3Jqv4XhwpXfDMeDf wg2P479Yw5yCQws2PI7/Mg3v4zHJ/A3HYA+LNzwX5r2oWp6qe/4E++HvSaou hqsulmyYj7BwqYY1nG5vWHNGL8n3ZPk+qfYrak9T+ym1V22YHexnlYZ5hN1s +E5x1u92mVkrqW/Rhs+DPdyhHMZo/VMUa+WG5+C/RMP5ktOx/c3IFdW3RsO1 +IrkfLXXlPTjd6sxhr1+w/yAtRP6u70eZ6+1TuD3c+2eR4xXuevi5RTJwRrb oGE/2LZhw7yAB4MaZhD2xg3zBX7s0nCNUaM7N1yT2LdorYbO9lDFHNAwB+FZ /4Y5iD2w4T7idja8JmO7NhwPBryuc56ufN9Qe6OGc2HtrRrmCHW/ZcN8wd6i Ye5gdzXMSu7+kIY17/OtG/aj1ndsmBfwYIeGGYS9ScNsxX9ww3vF3qnhuezz DeV2qnJ7U+3tGuYgPNu2YQ5ib99wH3G3aXhNxjZtOBc4emTDNUZtHd7wvaFG +V053zt80+zRML9g0m4Nnw082L1hzdieDY/DgH0aZhC/dx8myTfMrQMa5gJc GdkwR7BfX0rvN8mhkhENMwtW7d0w14i1X8SAhfvHOP77xjqsMTzG8R8l6RZ7 G9pwXvDywFgfbo1uuOap16MbZgr2UXEe2Ic2zEQ4fVhozuiY8INV4xpmASwZ 2zA7sA9pmLP4HxRrwtqDQzO2V8N5sc/jGmYZDBvTMBOxj48+4h4bazK2WcPP kPfS5g1r7t/4yAVundwwR2Dt1Ib5gj2xYRbAs5NCw6pJoWHAtPCDbaeE7pBM 6W+WzJDcr1qbKvtM3cUTG2Yucd/W/TxDfcurPTniwbnbNX8e1eZR8nlXc2Zo zgrqP6thBsGwt9R/uvqXU/vqhmsVBkyJGOzh7JgL/6aJHydLjlfMCxpm0lqS WQ2znu+vc0LzTXFuaJh1t/KZX/mMk+/d/ZSH1l1X/Vc2zAv4cUXDjMC+KvrI 6bKGeQe3Pu5y/mdKPlD+Z7ebe5fHOP4zI19ymtlu30sl1zbMOxjzSMM1Rm09 3DCPsG+N581zvqXhGsa+uWG+YF8XMWDk9aHhx23hB5/uaZgRMOPuhrmAfV/D vIBDE+Lu8M48ITTP9YaIB5/ubJiD8OyOhjmIfVf0Eff2WJOxG8MPLt4Umrzv jVxY+/GGOUK9PtYwd7CfiD5q5dE4G8Yeapj7vAdmh+a8HmyYlYzBBVjGN9Nz DXMETjzQMH+Zd3/sG/uahu8az+PZhvmFz9MNcw3ePNUwm7CfiT7mPRk5MrZ/ /NvHtOW/H8GfSfJ3yF5omHEw7G3JEQ2z6s2G+QKD32iYO9gvN8xNuPVKaFjy TvjB748a5gLM+LBhNmF/0jBT4MdHupPn6M6drvaCTT8/ntWrEQ8mvd8wB+Hi ew1zEPuD6CPuu7EmYw+rds5W3ZynuK9FDJj3ceTC2t82zBQY8E3DrMH+umEG Yc9pmKFw6/PQ3MHvwo+6v09r9VKdTtR6PzfMo+mSzxpmLv6fxl6xP9R+Zymv 09R+PfLiTH9smImw7YeGmYj9U/QR9/tYk7EvIhfqoNV0rVJnjabZxH1pa5op fAfNbZg12P81zCDsM/ubDX9K/mq4DfNyTfvxPfVBl3mQqu8j/l6BZJr8Kk2z BpaMULsoKUmGSwph/x3x4CJ9F0pfJEmaZiI28+i7WJJvek3Gmk3vg739EzFg VbnpfFh73qbrnzqep2m+YHdr+jywa01zE0bWm9acUfem/aj7Xk1zAWb0bJpN 2NWmOYt/1vResT/WczxXz/EMtf+NvDjTHk1zEC7O3zQHsRdouo+48zW9JmP7 x5lxtl/G8+R91bvpXKiHpZrmCNxdsmm+YC/RNFOw+zTNULi1SNMadrY37Qe/ l2+aBXBiuab5hb1i0xyBGQOarjdqa+GmWUzcRZuOB5M6muYgXFymafZhL9t0 H3GXbnpNxgY1Xf/wYLGmY8C5FZrOhbX7NV3z1OuaTTMFe42mWYO9StOsfF6y atMabq3VtB/11Nk0C+DEBk3zCHvlprmJ/0pN7xW7f9Nz2fPiTefFma6n9lsN s3CdptkHC9dvuo+4aze9JmNfxXODHZ91uZ521fgZev+fLjlD9bJp03XLcx7S NFOwu5pmDfaGTZ8TrNqoaQ0vN4v7wTrbNM0COLF10zzC3q5pjsCMhZrmKM9v v6brjfrbuOl4MGnLptkHC7domn3YWzXdR9zNm16Tsc+1rzmSs/h3e03HgHPb Np0La+8RNU+97t40U7B3a/6PMdN1HqdIpvNzl/SpktP4++hN+1FPw5pmAXnv 2zSPsHdomrO/SLZveq/YA5u+s9yzTZrOizPdu2n2wcK9mmYf9j5N9xF3aNNr MrZa03fqRclLao+UHEBf04yjXg9rmrPw6dCmmYJ9SNOsqYcfNV0OfzS8PDz8 YPboplkAJwZv4vbRkmOb5gjMOLXpuqJepzdde9gHRjyYdGTT7IOFo5pmH/bC A824oyRHxJqMnRbx4MFBEQPOHRO5sPawQa7ViZzbINf/iZIlB5ovJ0iOb5qb sGpsaN7hJzXtSz1Na5oFcOLkpnmEfVzTnMV/0YFuj5GcEnPZ58GRF2c6pWn2 wcLJTbMPe2r0EXdSrMnYuMiFOri26bqinq5u+q7ApNW76RnrO+hlyYymOQgb To+zgU9nhGbszBiHJbOavit9JecSq2lWXSJZt2l+XNQ0I+DHSw3/bMk30wVN 8w5uzWyaZcQ6L2LAvwtjHP9zYh3WOD/G8b8m9sHezoq8YOSlsT6suqHpWqUm rm+6/rGvi/PAvrJpDsL+q0JzRjeGH3y6vWlGwIzbmuYC9hVNMxf/y2JNuHt5 aMbOjrzY5y1NcxCe3dw0B7FvjT7i3hRrMvZi0zVHPY2P58l76Y7IBVbNluzS NG8fkuwc9oOSncK+p2lOwch7Q8OPh8MPPj3ZNCNgxhNNcwH76aZ5AYd2XMM1 +p7k7qZZTNz7Ih58eqxpDsKzR5vmIPbj0UfcR2JNxpYb6Nr7QHJ/xNhR8lTk wtqvNl2r1MQrTdc/9stN8wX7uaZZz/fX86Fh1h0den4d5tN90pe0mxn3qn1x u5nxbNPMxf+Z2Cv2Isptjr51LtW8ByIvzvRu+V7Ybp7dpfYF7ebiPWpf1G7e 3Kn2+e1m5IR4bnynjBrkuvqdvAeZR79y/pp/TbvnPq721e1+5o+qfVW7a3pn nf9Oa5iR96v/snZzo115llZVrcs+ebB58Z1kpYHmxbeSH5rmBRy6M+4O78+7 QvMsH1DMy9vNpxc6zLKvJWXFfq7DPHypw6z5hnNS/qnGnlHfoYPMjt+4h7Kv aDcjTx3sdb/nDg9yrf4lOW6QmfKnZPQgM+gPyc9NcxDerzbQ74BfJBMHuZb+ luRa5gU8OH+Q223q+6lp5uL/Y+z1/xg80O+b9yUPK7cr283sGYPMl/9Yb5C5 9q9k1iBzba5kyiBz6p+mOfR/78aGeYTm+yzfci6wrd4yR2BtrWW+YPMzJ3yE T+WWNcyotKxhRqNlP9jWbFnD7/la5gLM6N4ym7D/7Kvnu5qehfY0T8uMg3lZ y/HgU6vlGDBv3pbH8e/RMo9gT7eWx/HvaLmGqddqyzHYwwItz4V/i7TMEeq+ T8t8we7VMivhU++WNXdtwZY1d23Rlv2o9cVa1tTW0i1zAWa0t8wm7GVa7iOn JVtmHMybv+XzYA+LtxwD5i3V8jj+PVvOl5yWaHkc/4VazgWGLdcy7+Dfiron 7+ksb+XvsLbMEb59VmmZL9jLtzwXPq3QsoaRK7as4cdqLfvB774ta76nXlPs VyVvkPPKYpnarzf9O4mLm74fa7bMOJi3Usvx4NPqLceAef1aHn9N8oZiXK98 31J7jZbH8X9f/bep/0O1V245Bnt4oJ++5TV2A2PSd/B/1Kj/AzjJ/5PD2WnO 27Jvkv242u+ofbPay+p83lX7Fv4vLd27imr/TrV/1D3M1H5EY/urXk7Q2Bdq j1B7vNpz1F625TvFWR+nvo/Vd5d8X5e+jt+Zq/9nxakqzmPqG6s5n0rfzf// rBzeUvtG8pN+QjJH889v+bw4j4Vbfp7cxQO07qrK9Tu4r3ZdMf9Ve3X11Yiv OD/JfqjdXPpF7dntZuRvaj/cbn4cId+G5s9V39FqN9XOLSvOqT2f2nW1p6nd Xe2q2tPFuh8090F+76r+edSfqv8P9T3Sbj6NUX9L/Yn6J6s9r9oVtc9Tu4fa 3dQep3Y3tYtqH9lybVO7fynOo+1m5AIan3dZc++AlpkCS0bG77ewe2lOj2XN p95q91Q7UbtDd6+32gW1Dww/mHFQaOr+iJbZARsOb5lH2KOij5wObZl3cOts 5Ty/1mgq7sERA/4dFuP499T4fMua34fEOP6/67lP1PP+inNumXEw79SW7w01 OrZlpsCS41tmDfbomAsPjgkN244NDbfGhR91Pz4092VSy+yADSe1zCPs81qu Je7WiS3zDm6NiXhwZULEgH8TYxz/KS1zCg6dEOP4nxb7gB/HRQz2MDXmwrwz WmYKLDk95mJPa5mPsPCU0HB6emjOaEb4wYwzQ1P357bMDvZzTss8wj6q5TvF Wc9smXdwa3KcB3s4K2LAv1kxjv/JkS85nR3j+F8oWUuytqTQzfZFkkTtC2L8 FdVyH92BJ3WPF5Z+gr8bzzNR+3H+znz4EGMdycWh15W8Jt9FNO8pzftM7aXU /n9EnXW8lcX3trGT2Hl2bzDgoHAOIQoiooI0GISIqISCgFKiYnd3ByoWYmAr KrYCJhYmtpggoCAWiO99/e71fr5/zGfda2bWembmmbn2s59zDrwDE6R3lH5b ulb2Pdl+6v+g9uS92lddVLcs7iX36o7It6fKZ4rdXu1vwVDp7aTflP5Segfp RfysUbqZ9Bv8THYPnTc9g+0t/87I0ZX113VaqO5d9ZnFs4r8VvJvk95sV90j zp5sM52Btdrn16q9JP2B+q/T/i9Lr+C5iecQtbVW/znSs6Q7Sd8vfaf0btI7 qSxW3AD2gvT70v2lH1Cf2erTmTOoMU5S2Uv196p+purbq/4e6Vuk20rfJ327 dAfp2TzzSNdL/6vxVDSeVRrPl018Jjlnnzcxj9g7b6uMa+J/U3Cg1uRMXWs/ xQ6Q7k+R7iA7UfXdpHeX7qSyL/cs4ngf/2ET8wIefNDEDML/uIn5Aj9gFs9W fC+EWVi+X3ZVvj1Veu7s77FwEJ7xvfbo8BdHHXnfjWvS9kXMg7l1V45uKr2V 56MYC9f+pok5wrn/uon5gv9VrAf+kiZmJVz8LCxr9G3EcdZ/amJewIMfm5hB +J82MVuJ/yTmit9aYzla69ZV4+kt3Uulr/T3TcxBePZdE3MQ/4eoI+/SuCZt /+k+VnUff9N93Eh7r6n0GumfYyychzVNzBRYsrqJWYO/oon5CA9WhoVtq8LC rd8jDk6vDQvn1jUxO2DDP03MI/xfmpiz5P2riXkHt36NfHDlj8gB//6OduL/ bWJOwaE/o534A7QuP/Hv6kj/FjmYw4boC/M2T5gjnPvNEuYLfoOE+QjvN0rY 8kyxccIWZm2RcBxnfcuE7V3MrY/mpHIvP0OQvUZltvS5um/nqNyvPtuo/92y s1XWx3owh60SzjFLZduE2+/hfsV4GdPWCbcT/6v4MxCGaZ7NdR9rdR+7y99B uoX0PjwH7K7v07Kr+X1f9T9U+jfp9dKHSP/K84f0IOnl0r9LD5b+RXpjxY6U XiN9jOzfss/puhN4dpF+Vnqy9DrpF6SXNzFHz4814vkL7v+hnEPUb4X6jZX9 Q3Yea6j8R8pfy781IPun7DOq31T1o+X/Lv8vxR4kvVL6H+mDpVdJT5L9h+/f 6t8Kjmq+fWCg9E7SvaTrpFtJ95OulW4p3UO6qfSO0ntKbyfdXHov6Yr0DtJ7 SO+WMDvgRIeEGQE/Suqzvfrsrj5zxcXtpNdrHCs1tgNV9zN/q5Ywy4hpJ72o ibl4tu7/FPXZX6V9wnX0a6OcrZVnwM5+f8/PPPm5Y6eE2QcL30vq7Ksco7J3 wsyFVXslzBf8rglzB3/3hOPgVueELezcJ+E4+N0rYS7AjJ4Jswm/T8JMgR+H JnwmOXPP6LNgvuZ8ssa5R8L54NO+CXMQLnZPmIP4PRKuI2+3hK9J2+EJn394 0CXhHDCvd8Jj4dqDEmYKDBiYMGvwD0yYQfj9E2Yo3BqQsOXzfHDCcZz7QxJm B2wYljCP8PslzFzi+yY8V/zhCfdlznsmPC7WdGjCTIRtByXMRPyDE64j75CE r0nbfgmPhTNxgnRSJaVynEoTlYTK2ISZwnPQmIRZg39kwgzCH5HwOsGJkQlb mHdUxPE8NTFhdsCGYxLmEf7khFkDS95TOTraO3e3fldlVML54OKEhJkI28Yn zMTNI26LyDsurknb8TEP5jY64RywalKMhWu3096u094eyjNdL50Z7aGn+bup WI+0yrEqjVQaq0wLyxrtoth6xQ5T7NOKe1F77wTpp6Sflz5Oeqr6NYz4KTFX /MMS3rPssyMSHhdrOk9xUxW3Qef0KZ53+A4Iy6SPVf1/0rvqum1UP5znh1gz 1nj/hO8nn1fzNIaXFXMi3+9UGtaKL2q/VHpb6VrpjDh2sfxt5I/SZ/U28s+U f4R0Q+mzpa9UaaT2ndS/e1t91shvI32y+uyqMdwk//qEOQIz7kv4vHG29tI4 X9MYTlefMerfWDnPlT5OehfFXsf6SLeXvkZ6unQH6Ruks+rbju9luvachM8/ PDhKfRJqO199rpPfNq59e8JnnvN6W8JMwZ+ZMGvwb0qYlfwMYUZYOHpHxHGe 7kmYBXBidsI8wr8xYW4Sf0PMFf/e6Mucx2tsKY3tQo1tVsLsg4V3Jcw+/Luj jrx3xjVpOyDh+wY75ifMIM7Wywkzjv3yeMLnlvv8WMJMwX80YdbgPxDrBKse DAsvn4g4rvNMwiyAE/MS5hH+cwlzBGbsoXu3UPfuVM2lY3efvXdUHop8MOmp hNkHC59MmH34T0cdeefGNWl7JebB3B6OHHDu2RgL13414TPPeV2YMFPwF8R6 4L+YMDdh4UthWaPXIo7z9HbCLIATixLmEf4LCXOW+Odjrvj3J7xn2WePxLhY 0zcTZh8sfCNh9uG/FXXkfT2uSdvNCe+pjqyD1q6Z9u8HrI90tdbndUnCnIVP nybMFPxPEmYN/uKEzzSs+iAsvPws4mD2sr76TFF5R7y6Rc9xN6sskt5N9243 nZ1puuYB0vtIz5Beqvu5t3RB4/gw8sGkGxV3g8rriv0iYfadqDJDdTepvMnv 18U1abtW+/xmPSs8xveOyAHnftJYTpP9lvsi/lymPjP5zqfr7qXrNtF1e2g8 XaXP4buV9O78nad0Z+nO0qdIv6LYyxV7u/QVutb10g/wzkr6Op5RpTupfyf1 n87+lO4ofTzvuNTnBvV5SHrP7l7Pj7lHyvm5xjEbzksvkZ4lPUqxX0rfK71A 9Z9I3yndVfV7KOdp0smkzxXnqUnSe2VO3GOev3gGWp8wB2HDP6xRwnxaF5a2 f6MdlmyU9F65RWUT6VsTZtVWSfMCfmyZNCPweX8/IX4euXnSvINbDZJmGbk2 TToH/Nsi6XbiN076Olxjs6TbiU8kPQ/mtiHGBSO3Tvr6sCqT9FnlTKSTPv/4 qaTXA79R0hyE/Y2TtqxRNuk4+FRKmhEwo5g0F/AbJs1c4rdJ+ppwd9ukLW3/ xbiYZz5pDsKzXNIcxC8kXUfemqSvSdtTPE/X+jzto3vahb/TU1056bHAqtqk 2QR3WyTNXPzmSfMFv1nSnIKR2yVt4UfLpOPgU33SjIAZdUlzAb9t0ryAQ92l v5L9WqVp0iwm7/ZJ54NPrZLmIDzbOWkO4rdOuo68OyV9Tdp6SH8T526HpHPA yDZJj4Vrp3gvVOuzkODdUa3P7jy+YwQPnmBdav3cNZfvG7V+Ltux1mzaQ/n2 SZoRX6rsnTQX8BsrZ6nWnxE1+gws1prB3ZLuy5x3THpcrGnXpDkIz/ZMmoP4 eyVdR94uSV+Xtu66d3vq3p2lcR2e9BnjbE1X/Wqd2VdV/4BYNUflK/Hqftn7 VL7gb75l71H5THqm7K0q70nfLnubymLp2WLG3SrLlXOkcvbSte5RzsOke0rf Lf2jrvOcbAvNrZL03uHzs5q05V7eqXx3qHyonMMUu69i71DMUOnu0rdJD5fu IX2X9BDpbtK3ci3l+Tvhuc1SjrtUPobtGtczam/Oc1rSHOG8jkyaO/gjkl4P /EnKuUJjfUUxx0qvkl4gPTrpOM7TuKR5AQ+OSppB+G+KgcvV/yW+K8q+wHdT XXffpPcs+2y2xnW3yqf8rVvSLIMxRybNI/yxUUfeI5K+ZoPgENzku+OtYXk+ Gx9jgW3TkuYIrD02ab7gT0yaj/BpUliYMTkszDgu4mDb8WHh9ylJcwFmnJw0 m/Af0zweVVnGvyeXNONg3pTIB59OiBww76RoJ/60pHkEe6ZHO/FXJn2GOa9T IwdzOD36wr/zk+YI5/68pPmCf2bSrIRPZ4Vlr50dlr12QcRx1i8My9m6PGku wIzLkmYT/hVRx5guSZpxMO/UWA/mcFHkgHmXRjvxZ8R4GdPF0U78OTEWGHZ1 0ryDf5/x2VlrJr0pXS+9q/QbvO+Q7iB9TfSFT9eGhZHXhW2n8hbfM9R/N+lF 0m2lO0ov5t1HrZnxvvSuteYE7x22jP3xrup3UX1n6Tk8L6i0l35b9e1U30n6 Pd7z1pppH/I8UWv2vMO7D+ndpT+X3ku6p/Tr0q2ld5H+iGeXWvPvS+l9pHtL fyG9t3Qv6U94B1Fr/n0q3aXW7F/Cc0mcp6+ku0n3kf5aurt0X+mHtB8fVPmB /6+D9zGqe1zlqthTrPVS1fdU/wHSH/AMVGumfiO9r3Q/6YFtNRbp/aQ/5hmr 1vz+VrqHdH/pn6T7St8mfW7cT/biE7r+4yq/aAz3af2+V7/XVI4XTwaIVwul j5LuLf2s9HjpPtLPSx8t3Vf6RemXlevQpNn2Slj4/XrSXIAZryXNJvwHedZT GSy9MGnGwbyJytlPOV9WzvmRA+a9Gu3Ev5k0j2DPgmgn/sukzzZnd6ry9Fee +crzVvSFfx8kzRRYsjhp1uC/nTQr4dM7YSewx8LyzuvDiIMZH4Xl3H+eNDtg w2dJ8wj/i6hjTJ8mzTu49UasB3P4OHLAvyXRTvyiGC9j+iTaiX9E9+phlZ90 v75OmnEw78/YN5zRH5NmCiz5IWnW4H8TfeHBt2Fh29KwcOuniOPc/xyW/bIq aXbAhpVJ8wj/R61vH+2rmdK/JM07uPVd5IMryyIH/FsR7cT/ljSn4NDyaCf+ r5gH/Pg+cjCH1dEX5v2TNFNgyd/RF//3pPkIC9eGhdN/hGWN1kXc9Srrw97A WmkuvTWXW1ln7c2HVW6R/irpPcVa/6dyk8oMlV9jPZjDv5HjRpUGKbffrLIm xsuYNkQ78S317LRM1+uv601Q/81VtlAZr7JZ+J3UZ436DIaP0r9JD4Kt0r9K D5TeWXq59ADp1tK/SO8HE6XX8twhfbe+K/WTv1ErPWvwcyTp/9R2n/SB0pup fueUzyHn7ICU7yX3ql7tK2ATjJNeJ30wDJX+m+cd6TuUp4f8f+Gf7J+yBzGe lM88DGir+pV8T1X9Peq/n/xNdN0RsnnZo1R/mHSN9Fjp4dIZ6THSX+hZpbe+ 420j/yvpftINpUfx/Ck7jndeKfMCHtSmzCD8JerfQ/23Ur85uu5gxWwhvVPK fZlze9Wt0tgOVJ7mqn8paZ5V1W+C6l6UbpFyHXlHq39ZbePV9q3y76f8jeXv m/KZ5Jx1S5lH7J0OKXOEd+e7pMwX/PYpcwe/LuV1gg31KVs4t2vKce+r7JEy L+BB55QZhL9nynyBH7CKZyu+Fx4dls/LNinng4WdUuYgPOuYMgfxd0+5jry7 pXxN2rqnPA/m1jblHPCpS8pj4dq9UuYI575nynzB75HyeuDvnTIr4eI+KVvW qHfKcZz1/VLmBTwYkDKD8PdKma3Ed015rvitUt6z7LN2KY+LNe2XMgfhWd+U OYjfP+U68vZJ+Zq0DdU9TegeHqF7Okw6JX2k9P4pj4XzMCxlpsCSg1NmDf6g lPkIDwanbGHbkJQt3Dok5Tg4PTxlC+dGpcwO2DAyZR7hD0yZs+Q9PGXewa2D Us4HVw5NOQf8G5FyO/FHpMwpOHRYyu3En6fPxMH6TNzAuU05B3M4MuW+G6kc o7KlylYqRweT8Ff21XmVHatyVMp6U5VxYWHWxIjbWmVS2G1UztJ1B+q6/+i6 Z0gfKP2X9DnSg6TXS58ivb/073x/SXk9mMMCMXi+yraqO019DlCfP9TnV41n lco+/O6k6vdT/WrVXyR9kPTGun9XpcwgztaVKe8V/GeVbwe1T9L9fUZ6e+mJ 0vOkt5M+RvoS5RmqPJvKv0z6YOnNpRt10POz7GT1eVI8KchvJX+ZOJCT3kn6 4pQ5AjMOTJmj3MufNb5+irtd+grlHKacW6p/WnG1sseqLSndQnqq9M/8zpL8 lvKbyDaXnaL6qxR7iGK3lv+0xtxM9mjVX6Rr7RjXvjblM895vSZlpuBfF3Wc latjbWi7PGUm8jlwRVjW67KU2bpT8IDnb56Zbk6ZEfDj0pSZS79LYt74F2ic QzTOBhrfjJRZRsyNKXMQLt6QMgfxb4o6+l0fY6RtUfxfkeNUbolrwrBbw8Kt 2SkzBe7enTJr8G9PmZuw6o6w8PLOsLDknoiDc/eGheUPpcwI+PFgypzCr9N8 zpNdpjInZd7Bv7siH6y6L3LAvweinfhHUmYTHLo/2omfn/I55xzPihzM4dHo CwvnpcwXuPJ0ytzBfzxlbsKqJ8LyGT43LHvwmYiDH8+GhQEvp8wROPFSymzC fyXqGNMLKbMPhj0c68EcnoscsPDFaCf+sRgvY3o+2ol/MsYC2xamzDv496qe ZxeqpLrpXqfMF7jyVup/vHk1+sKG18LCudfDwrC3I45nqHfC8mz1pHLPVdlE +X/RmZqsug/Io7Pzqspi6fdTZh8MeyPyjVF5N3LAwsXRDtueUb55Klso53vR TvzrqnuNvxfi3/mPHMzhOdU9q7IVc5R9SyVPH9k3VGr4f0VkX1RpKP2K7Msq jaUXyM5XSUi/I/u2SlF6jfi3WmV/MTDVT+xQmdlb/WSbqNwsvSD2FGvdUHXb qlyn+qeV4ymVzZTnN+U4Xe1LVRqrvZHKjerzgtqfV9lGfbZR3dYq16h+ldZw eHudTZ2Dp+J+shd3ln++7HKV31NmCixZkzJH8FeqXJgyq1aFhZe/hoUfayMO Zv8RFpavT5kLMGNdyizDb6vrtla5QPrvlHkH/36LfPDpz8gB8/6JduI3pMwj 2PNXtBOfSPtsc3ZXRw7m8F/0hWdbpM0UWLJ52qzB3yhtPsKqjdO2sGqTtO1M lS3TjoMZW6VtOfeN02YHbGiUNo/wm6Rdx5i2TZt3cOvfWA/msHXaOeBfw7Tb iW+Q9ngZ0zZptxOf0f1Mq9yhe5pKm3Ewb6e09w1ntJA2U2BJPm3W4KfT7gsP Mmlb2JZN28KtYtpxnPtS2pb9sl3a7IANzdLmEf6uaZ8lzmI1bd7BrZq088GV cto54F/TtNuJ3yFtTsGhStrtxO+c9jzgRy7tHMxhx7T7wrx8D3Oktepapd0X xrRIm4+wsDZtC6dbpm1Zo7q0Y2FGfdqWc98hbXYwn13S5hF+Mu09xVq3S5t3 cGv7tNeDObRJOwf8a592O/HN0x4vY2qbdjvxm6a9p25jr+psHtpe19d5aKln huk8v+jZYAvN8QjVd5O/qfRo6b2l16r/YdK7Sf8lfbh0J+l10iOkO0tvrf5H Su8r3VB6jHRP6dnaN4NkT1T+A2Wn15ohh6V9DjlnA1TfX+Ub6Q3KOVKxXXie UZ6x0r2l91c5ge9S6vOAcg6Vf7L8lPocpT595R+edj7O/UaqH6X6rqp/WP2H yZ6i/oPSZgosGZg2a/Dnqs9h6nOa+ryiZ7aXVUbIXyi7QGWU9OC042DGkLQt 53542uyADYekzSP8Q9OuY54Hp807uHWfrjVE+U7StQ5KOwf8G5Z2O/GPqc9w 9TlVfYam3U78axrLV/o8OoLvxWnPFeZNT/t8cuZGp80sODQy7XYYMCptS9sR abdz7semzSDYs2lW+ySjfaJy1P+vUxmvslnaDJucNiNgzDFpcwo+TYh2mHdk 2rnh3NFRR79xkY9ck9LmEbkmRg78E2MeMGNM5GB8U9NmFsw7OW2OcO5Pir74 x6XNQdh8fFjO0wlhWaNTIo6zfmpYuHV22lyAK2elzRH8Y+OacPeMtJkFq6bE GjCm0yIHLDwz2omfFnGM6fRoJ76Vzt1JuoeXcy7kr0h5L56bNrNg3mVpcwTW Xpo2X/AvSJsF8OzCsLDqorAw4PKIg23far98s5u5dTTPpbXmygTpc2vNifPT Zi55x6n+7Fqz6uLIB+fG8q6llRk4XvacWnNoIp+rtWbYUdJn1Zp5/TTHy3iu 57tS5GAOk1R3Ya351059TpN/JdeTPkX6CumpfEfinRZrKH0J7/wZi/ocL/9S 4qXP4Duc9FP83F/+WfKrOvu9pC+Rrkj3kL5Yuo/spbI3qf/z6r+3/Av4Lscz Sa05Oo/fPVD9OaorK7a79EV8l1O5qNafP8/y80f+3oM1iP3CPdtfdVeo7hb1 W5D2+eT8Hab663mvxjsr6euk7+S+S18pfStckr5Keqb0EOmrpW+Tnqv4A9Le I0+GhVvPpc0FuPJs2hzBPy/2DvdyXtrMglVDlfMa5bydtYocsPCZaCf+hbQZ BMOejnbiF8Y84Mcw5blWee7gnVf0hX+vpc0duPJq9MV/OW0OwvtXwsLp+WFZ o9cjDma8EZZz/27aTIEf76TNIPwBGsPlGsPNGsOitDkFV56P9WAOb0YO2PZ2 tBP/UoyXMb0V7cTDIz4beT57L64J294PC5+WpM0XuPJh2hyEAR+FhU8fh4UZ n4SFAZ9FHBz6PCzM/iIszFuaNkfgxNdpMw5WfRntcO7TyMc4voo6+n2fNptg z7dpc41c30QO/GrGe4J7/l1ch5gh+m5wB+8+tZ4r0uYLXPkpbSayx38OC5+W hWWvLQ8LP0a31XNmK3PoJtkbW5kfM2RnBQMG61q3y7+fd+iy99SaVTdL311r zv0Q84DBt/AMUWsW/hh1jOk21d+n+iulZ0rfK32F9C8xFuZw3O46Z2p7gN+1 0ufmOD0PPMX7O+2f+2WfUP0p6nM3zwjSp0nPln5E+gzpe6QflR6h/vdKPyY9 RnqO9Fzpo6QfkH5S+kG+5/AzDl33cennpWdJPyL9DO+/pR/iXQw/X5Mepdj7 5D8u/2HZebzz4T72Um75L8p/TPY52btU/6j0s9J3cs81tlnyH5L/hOwLvL9n H6n+LvkPyv9Q8x2v+c6T/xG/g6Cyvb6jfcLvEajsKL2En9urtJD+Xp8P3/Hz NvawYico9lnFfsrfcUg/L/0Zfzck/SJszJgjcKIg/UTarPqCv5dRn5fV5wfN 5UnZlzSeI7Q35jNf9Vmsa77Pd1fVlzLmGrmKGefA/yDt5wPOWCXj67B39xCT N5c/XqVFxnyBK9tlzEQYsH3GFp7tkLGFVTtmbGFAbcZxcKhlxhZm75SxhXlt MuYInGidMeNg1c4Zt8O55hnnYxytMq6jX7uM2QR76jPmGrnqMs6B3yxjdjPu thlfh5juGZ9tGLB7xqyBMR0yZiJ82jVjC592y9guVumYsWX9OmccB5P2yNjC pC4ZW1jSLWO+cL29MuYUfNoz43aY1z7jecDgrhnX0W+XjOsY0z4Zs4xce2ec A79pxrxhnvtmPCeY9CHfH2QPV13/jFkDY3plzEH41DtjC9v6ZGxhQ9+MLTwY kHEcTNovYwuTjtR+W9jKPFgk+6r22mrWXXq+9CruE/WtzLx+GedjHK+r7hX1 WcmcpV+X/p19wPcB6d+4l9ILpH+V7pkxcxn326p/TfVrpHtkPFfaRmQ83/Xc M/V5S33+5J5JL5L+S3qMxvy29N/SY6U/UNs/0iMzjvtXZVTGdoPK6Iztfyqd dC42kz9OpY30xrJjVI7IuL0Be0f53lD+taxPxnUbsY9U/6bq/2BfKXZTnv1V 2ktvIjtWpav0FrITVHpIbyV7jErD1noGVpnIXJXna763SbdSn2PFgS9buY3+ W6s0V/0k1X+k+qVixWTpT9Aq72gMCe6z9Lu852bv61lrmlj5G3XSU6RXSU/R +vwtO4h7rjw/qyyHObJTlHOJ9I8q7/EdkbOo2ImKXaG60zNmFrz5Wf776pOW virjc84ZbalxTlWez9V+RvSFVRdkzBe4cn7G3ME/K2Mmwqqzw/J5e05YzsGF EQeHLgoLP67ImCnw4/KMGYR/ZdQxpkszZhasOk0lH3O4OHLAwsuinfgzY7yM 6ZJoJ/7cGAvsuSZjNsG5+zPer+zlGRnzBa7clDF38K+NvrDqurBw7vqwcOLm iINDt4TtpHJnxkyBH3dkzCB8WDUxWM93TpgFq26IfDDm1sgBC2+PduJnZcws eDMz2omfE/OAJTdGDuZwd/SFVQ9mzBe48kD0xb8nYybC4HvDwq37wrJGD0Uc HHo4LPyYpD35p/bLgdITpf+QPkD66oz3FGt9tOp/b2VW3RXrwRweiRyw8Bj1 Wcs7D+nZMV7GNEH1a1qZeefFPWT/TVb9X6ofKD1V+h/eVUi/qHKIynCVZ1SG qByk8mzYoSrPhT1Y5fmww1ReirhDVV4Oe5jKK2Hh9usZ8wWWHNTDbFqockAP 826+yguRj3EM6mGWLeB+SB+n87UBXmbMMnIN62H9qsq6Vh7zPPaX6qep/3rV Neqi/d1B507caazyseomsZ/UZ7r6bKq6vaVPlN5curv0SdJbSveSPll6a+kE sTr7kxX7u7ixhr/ZUN3fsn+pZKS30bVO17WaSW8ivbFKUfpfta9XqZHuqJzH K2cD6QZq/0/1eenOqj9B9RtLb6H6U5WnKv2NWHSSdFk6qfqzpXeUzkn/pmew WsaQ8fnkzP2UMVNgyY8Zswb/W5VTM+bB0rCw7buwcOvniOPcLwvL3vk1Y3bA hlUZ8wh/H415S/apyoqMeQe3vo98cGV55IB/K6Od+NUZcwoO/RLtxP8QcYz7 t7gm/dZEX5i3LmOmwJJ/Yt7466MOHhzRw0xcq/JnxrzmbP0VlvXK9nP9H8wh p3VX2VLl38gBDzbOmk1wZbHuxSm6R79qDzXImn0wbJOs2+HKhoiDhRtl3U78 7zF2+P1ftBMPq3j+4rlts6y5Brduq9GeUNlDpVHWfIErDbPmDv6WWbMSNmyV tYVzW2dtYVjjrONgdpOsLcw7UWd/Z+2dR6WnS+/U2lw5MOt7yb1KZc0+GLZN 1vlgTCLrHLAwnXU7bDtZeVorz+PSyazbiR+ue3GG1m1XPv+zzsEcTlH/OtU9 Id0sa9bAmKZZMwi/KD1X9kmVUtb2KZVy1vZple2yjoNJ22dtYckQXfc0Xbed rjFQ+lTpNtIHS58uvYt086z5BbdO0nhaqe4x6R2yzgEXW2TdDs/qW3s8BdXt mHU78ZWsxwJ/OqtPp9ZmXsOOup50S5UV2j8XdtBnh/QOOr/bq/SU7qLyrdjy hvp3lV4q/SZzV3tBZW/VrVLsJYrtK/2b9OXS/aVvkR0s+6tiZkgPoi/v2hR3 vuZ4jvyRmu/1ajtQuqL6sko36TXKc5Xq95MepT43Sg+U3khjPkh2Nd9nVX+t 6g+Q30Nz/CZjljRTjqYq+8I69R9KPvXvlTVf4ErPrPv+n69rnaXx7KB+P0if Ld1c+ifpc6RbSPfOOg5+9MnawoP9s+YInNgvazbhn6r71bG1PxP6Z80+GNZA 4xnCOmk8fbPOAQsHZN1O/Le67pm67nbq1y/rduLbaU4XqP481Vezvp/sxYFZ nwn4d0jWzIAro3tYD1Pd4KxZCbeGZG3h3Gka57DWZtjwrOPg0KFZW/g9Omt2 wIZRWTMIf1DW1yTviKzZB+dOV85DWpsrh2WdAxaOzLqd+COz5hQcOjzrduLP VuzI1j67Y/n5i8pw+WOiL8ybmDVTYMkxWbMG/wzFHtra7/7PlD6stbl1lvTh 0ptLT4o4mDE5LOf++KzZARuOy5pH+CdEHbw5Nmvewa0jsl4P5jAlcsC/adFO fFL3OtHRDJ4a7cQfkPV+gWWjNa6s/JNgofbyVD6TtTfOzJopsOSMrFmDf3LW /WtUTgmbUzk1bJ75Rhzn/uyw7Jexyr221mwYw/2pNUvqtK/O0746S3VHab0P 6W5unRb54Mk5kQP+Hal+R7Q2zybI/llrDg3tblaeqzJHczlWbRvUdnrkYA7H qO4v1dVKP6w+x/Gs0VIslp4m/R/viaQnSf/D+yDpydLr+F1K6SnS66UflT4e Hij2cekTpDeWvpy/x+UZSfp0nldkd2P82gOj5Gc4N+p/MntDbeNk/6g1a+eq fjrMUP2z0qeyZ6TvkJ7IswzvnKVPZI+pfgT5WQOVDlrDC3XdC1R3snRa9/1z 6f7SV6j+Ouk+0pdLXwODpS+SvgjGSl8sfQnPe9KXSF8mfS7vIXnuY2+o7Js1 5x7Omh2w4aGseYS/IOtzyDl7IGvewa3uynmpcl6hXPdHDvj3YLQT/2jWnIJD c6Kd+IWRj3PfU3kuU56r+ByKvjDvIo3zVtUdJH2h9C2tzZgnsuYj+31uWD7D z1Ofm1qbWzNlh8o+q/Jc1vpglVeyZgdseDlrHuHPjzrm+WLWvINbj8R6MIfn IwfceynaiX88xsuYXoh24s/XeGa0Ns9ejbnCvK/iXHLmLlGf24NDFd3bckcz 4GLV39baPLtU+g7psdKzZMfLvp01d3hu4vviO1nXs2feUzk6a4Z9nDUjYMwH WXMKPr0f7TDvMuW/kzMqvTjq6Pdu5CPXR1nziFwfRg78r2MeMONy5blLecZJ f5o1s2Det1lzhHP/TfTF/zxrDk5X+SLsiSpfhmWNpvGepIfP+mzlvru1uXWY mPCAdCOdl2HSc6QbSi+Ja8Ld+/h+0tKs+iTWgDHdo/qtWpqF9/N81tIc+izi GNO9qt+6pZl3mvZnRvflS9VdoDne3NqfezPEhIekm6jfYPW5infC8g+QvlL6 aelXdK4flU2pz+3q/xifQdJ3Sj8BN6QPUv+reYfMc5r0NbxDlh4tPUrlLekR soervCH9knI+wncjxZ7E9ziVhfJnKeeTcF/1h6jvtbxnln86z4Qqr3FvVH+U yrvSh8oOV5nP+Gp8bjn3s5XnCs2zRnmOVvsElffV52rlqNE6fCt9pXRW+mvp qWqfovKR9HGy01Q+kZ4um1KfJdLXqX9O+jvp66Xz0j9IJ2rMBbjSpMYcwU/W uI4xNZK+N2tWjVHOI1XeVuwNylNQnp+kG9e4nfhJap+o8gHjlC2pzzKuq3k9 SF/NK1Nj3nG+7+GdA89U0ndJr5J+SvpO6ZXST0pna9wXntXU2MKqXI0tDJil /r+q/9PSv8nO40yrfYcacwGubF9jjuC/oPv4MGug8TSr+R+rbleeX1qbc9Ua 53lGZbsatxPfvMYMgmFNa9xO/L28G1Hs69J3SK9obUa2qHFf+Hc/72FU/6b0 U70V11Vrp7qWNeYgvL9b/urW5vRs3qu0NsPm8C5F+i3pv2UXybZV3G41Zgr8 2LXGDMJP13hPsda71JhTcGXHGq8Hc2hX4zwwrUON24mvrfF4GVP7Gre/Ezzi 85Hns441viZs61RjC5/2rjFf4ArfJz8OBnSpsYVPe9bYwoyuNbYwYJ8ax8Gh bjW2MPsfzbdVSzPvce2lBnUau/x/VV8vu1T166RbtzTn9qpxPsaxXvV1Lc3C pxW7sWJ3kf8If0eitrbSD0hvkG4jfV6N9wT3/En+7kT926v+e+2ZinQ36Uay nWR/ZW+pzwO6N7vJv057/jqd/c3UfoP09Ty3SN8kfQPvdqRvlp6h0kR6puyt Kknp2t20hrpGWnqpbFl2H+X8Qrog3VV6J/X5WH5W/rP8DYpsB9W3Uv0S1efk P6/6TWV3ZS1UV5LeW/or6aL0XtLbynaUXaXx/6j6qvzuMK3G55Mzl+PfRdCY P4X10jdJvwNzpWdIvwcHpW+WXgxb+Xsj6Q+lC9K3SX8mXeLfSJD+QroifYf0 V9LNdM3lfAboWrNU9z2fDdJN1edO+d/AU+lbpT+mv/Rd0kulj60xm2DPbNX9 zOeN9N3SP/L5Ib2t+t8ofxGclN8wYlqISU117X0138d037arM1eOrzET4d8J YWHz9LCcpxPDskaPK3b7OnPoCekdpPPSc6V3lC5In1NjjsCJM1VKKmX2lfo0 V5+i9LSYBwxuUec+Z6gcF3WM6ewa84xcZ0WOSryz4fmAM3ZuXIe9m++nZwxY oPI0fFHenaQvDCbCgIvCwrOLw8KqS8LCgHm8q1HsznCOdzjSreAl7y6kW0tf X2OOwIl61bWRvUale18xk3c0qntKtrbOnHue9zDS9dI31phNsOe6GvOMXNfW OA/+BTVmN+O+Ia5DzHzt892Up6/u4wvK2abOjLm5xkyET7eEhU+3ht1dZWZY 1q9tnXl0h8qdNdYw6a6wsOQVXWtX9euja7WX7dnSfJoV7TDvppgHDG6nPj1a mmczoo4xjdTzUge19VbbLrK9ZLur/vwa84Z5LtC1XtR8+sE7/p0AlYO6iaXq v7/q9lefz/l3AlQGqr6j9vNuKv2Yn/r0V5/+zE96gPQA6WU6413kHyD/F+k9 pQ+U7io7UHYge0b6YNnnuP86O/fp7KRUt1L975EepH6d5e8nux97R33uVX1C dfO0355WeUmfaTXyh7JHOCfSB7F3WAONsY/sg+xT9a2qPK/+t4l/B3fSPNT3 W83pG5WDNa+X1e9QlcNY/7CHc9/DjlD5kn87QWWw+n8nu1TlEOkfZL9XOVT6 J9kfVQ6XLuqaBZVr9PyyUnUrVI5U/TLZn1VGSj+l9uHK/aLKL6pbrjKa32+v cT1jWq2631TGqf5X2VUqY6Xfr/G5m6jygcoklcnci5y4yFnl3tWYL3Dlsxpz 54Rom1JjVn0cFs59EhZOfBFxcOgl7ZG96szs71ROrzE39q2zXqpS6ue1r+r6 89W/m9pOlf9p5IMxL6t+b9WfzN6T7i59mvQPNWYWvHlF9fuo/hTpv+N8c0aX RA7m8GP0hVWraswXuLKyxtzB/7nGTIRVy8Lyebs8LOdgoa7Vo84celW6p/Sl 0v1lr5b9U+Utzof8q6T/qnE9Y3pD9X1Uf4X097EezOE1/sZc9ZdJvyndV/pK 6Z9ivIzpddX3Vv3l3PcYC+xZV2M2wbnlfb1/k1rPjXPmC1zZKGfu4K+PvrDq 37BwbkNYOLFI1xpQZw69Lb1fnd/Bb50zU+5W2SpnBuHDKp6tYD0/N/j/rPov 8sGYd5Rnf+W5vcY/V6Cd+G2lZ8veo3JAnWM3V10q57k8pNIg5xzMoWHOfe9V +UPzXasyiv/vJee+D6s0lr5P9n6VJjnbOSor1PcXlQk6C7/LPqq6rNprctaP kVNnZa3KJPrIrlE5Rvqf2FOsdUH9n5Cdq7JNzuvBHHI553hcpZhz+5MqjXIe L2PK59xO/Iq4h+y/is5CWeUWnf2mOZ8LGNUiZ9bAmO1y5t/zKtvnbF9Q2SFn CxN2zNnCg9qc42BSy5ztApWdcrYLVdpIv8meVWkt/Rp7TWXnnNtfVWmecz7G 0SrnOvq1k17EHlGpl36jxrnqcs6B3yzneTDutjlfh5ghutffyO6rus458wWu dJB+t8bPBrvmbOHWbjnbxSodc7YwbI+c4+BQl5wt/NgzZwsDFmvvDdb1vpZ+ V/rAOrOqa87tcK59zvN4R2WvnOtg4S451zGm9xU7SLFfMT7pgdJfSvfIeS7f qvTKmW0wb0TO55Mzt1/OTIElA3JmDX7vnPvCgz45W9jWN2cLt/bPOY5zf0DO lr0znM8vfd6tkT5Eeoj06lgjGA/fZ2o/vaDvcQervV/O+eDKgTnngH/D1DZY sb9Jf8Q7bflrWV/pg+rMy/45xzHuD1U/VP1/lz5M7X+QQ+2jcmYKLBmZ87zx R+dcBw+G58xIuHhYzrzmbB2es2W9Ds25nTa+z/Eei5/tHZFzDngwWtfdTHac Ss+c1551/5T3+WrbRHXjc+4DTz7mnXydWbiEd7PSm0ofkvP4GdMnqh9RZ3by O638HTh/3zghcsC2TmWtS0lroHJcznxJqEzLmTv4k3JmJWyYHBbOTQkLw46P OFh9QliYd2rOHIETpwSb8N/Sc9cxGtswvgfJz+TMrqmRD8ZMjxyw8OTc/9h2 es7MgkknRjvxV+V85jmvx0YO5nBG9C2pXJAza2DM+TkzCP8slbJKReXssHyO nxMWhl0YcTDporCw5Iqc+QJLLs+ZR/hXRh1jujRnfsGt02I9mMPFkQMuXhbt xJ8Z42VMl0Q78efGWODQNTlzCubNiX3DeZ2RM2tgzE05Mwj/2ugLt64LC/Ou Dwszbo44mHSrSqecn6c+0146os4suTNnHsGbzfP6DJS9I2cLv+DWDZEP3syM HJ2jX5eI/0I5x/C9W/q2aCf+gZgHLLkxcjCHL9V/LO8EpB/KmS9w5cHoi3+v SvecOXxfWHh2f1jW6OGIgx+PhIUHE5R7PM/o0l/pWuPqzJWrc95TrPXjObMP hn2uPkfyfV/60cgBC5+Idth2VJ3Hc4/KY9FO/HeKPaHOa3le3E/24kTVHaIz MUT65ZzZAVdeypk1+N8odhLP/dKT+R4h+5zK8zlr2PVKxMGh+WHh93Hqf5jy j5GeJn2o9JHSXyvncN7RSn8rPaXOnHsh8sGVBZEDFh6r9ql1ZtjxskfJvqWy MNph51c5n23O7ouRgzksyrk/rPswZ6bAkg9yZg3+OznzDla9G5bf43gv7DEq H0UczPg4LOf+i5zZARs+z5lH+F9GHWNakjPv4NZSWKq5j5X+JHLAv8+infi3 Y7yM6dNoJ/7PXhoP94D3PzkzDub9FfuGM/pTzkyBJT/mzBr8b6MvPFgaFrZ9 FxZu/RxxnPtlYdkvv+bMDtiwKmce4W+W91niLK7ImXdw6/vIB1eWRw74tzLa iV+dM6fg0C/RTvzfMQ/48UPkYA5roi/MW5czU2DJP9EXf23OfISFf4SF03+G ZY3WRxzM+Dcs537TvNnBfDbJm0f4X+e8p1jrBnnzDm79FuvBHDZEDvi3sfrc knP87zFexvRftBP/fs57aiJrpf0wXff0LtZZ+lLprZSjcd5MgSWN8mYN/g/q c6L6zOL+Sp8kfTdjlJ0tu436Nsk7Dk4n8rZwriZvdsCGbN48wr9AsUdqT70m nc6bd3Br27xzwpNk3jngXybvduJ/0hhOqTOHUnm3E/8LvFXO16Ub5p2DOZzG 91SVudLb5f/HkmbSz+bsv6vP6zPUZ6Ti3+ffhJYeJf2zco6Wnac+2+cdBzN2 yNty7s9T33PrzIbl6n9OnVlyPvxQ7KvSLfLmHdzK5b0esHbHvHPAv9q82+HZ WH1HOl3xIxTfPO924pcp/1mqf0Z6hfSF0m9I98j7fHLm2ubNKjh0kdrflK1X XZu8NW3t8m7n3HfIm0Gw5/2C9onKRJVd81Gn0lF6cc4M2zNvRsCYznlzCj51 yrsd5rXPOzec2z3vOvrtlnc+cnXJm0fk2iPvHPg9854HzNgl7xyMb6+8mQXz eufNEc59r7z74nfLm4OwuXvelvO0b96WNeqTdxxnvW/eFm4dkDcX4Mr+eXME f++8rwl3B+TNLFjVNe81YEz98s4BC/fLu534ffKOY0z9824n/jLdl63lT1Q5 u877sKn0wLyZBfOG580RWHtI3nzBH5I3C+DZQXlbWDU0bwsDDs07DrYdlreF W0fkzQW4MjpvjuAPzpu55B2ZN7Ng1cF554Nzh+edAxaOyrud+LF5MwiGjci7 nfiT8j63nPtheedgDkdFX/g3OW9+cO4n5b0m+OPzZj3PXyu1zy/WGm0hvUr6 EuktpadEHGd9ali4NT1vLsCVE/LmCP6JUceYjgtmwaoxKhvFHI6NHLDw+Ggn flyMlzFNi3biD8x7v3DPftPYLq/z+b5apS7vc3e2SkWlqnJtnfVZKlfybon3 /NJH67y/rO99V8n/WPy5mmcOfp4dceyNc8PCrTW61nV15spFeXMETgzKe+9w Ly/Im1mw6lPlvEb9x/EzqcgBCy+MduJvVPsEtbeUPj/aib8m/z9+rNZ1x6tP mXunMd+kmKP5WVXe3IEr10Zf/N/VfyI/U5K+mXf8zFvlqrw1a3R9xMGMG8Jy 7m/Nmynw45a8GYR/cuwpPltm5M0puHKD8l9fZ47eGDlg283RTvxUjXmG+hyj Md0U7cTDIz4beT6bGdeEbbeFhU/35M0XuHJn3hyEAXeFhU+zwsKMu8PCgHsj Dg7dFxZm3x8W5j2SN0fgxIN5Mw5WzYl2ODc78jGOB6KOfo/lzSbY83DeXCPX Q5EDf0Xee4J7/mhch5gFeZ9bzv0zefMFrszNm4ns8SfDwqenwrLXng4LP56N ODj0XFj48XxYGDA/b45wvZfyZhyseiHa4dzjMQ8Y/GLU0e+JqGNMr+TNNXK9 HDnw58VYmMPCmBOsmqb7vkDnaxbvP/h9JPa66t9QOTJvBrwZFp69FRZWLQoL A/5U7Ez2vPRf/G4Pe0n69jqz/H2VT/LmCJz4MG/GwarFefeBc2v5Pag6c+6D qKPfkrzZBHs+zptr5PoocuC/lje7YfmncR1iXo250vYNf++p/JP5mW/eTIR/ X4aFzX/z+0h1Pk938V2Nd/LSSxX7D9+RFLtOdrbqz1D9PbJnyn6vsjxvjsCJ n/JmHKz6Ie8+8O2zmAcM/jHq6Pd51DGmZXlzjVw/Rw78O/J+PuCM/RLXYe92 Kni9WNe1KlfkzZPp/O6Qxncs71v4nSLpaTy/aS7rNYfj+B1C3ser7xqVP/L/ 49CfYWH2X2Fh3oa8OQIn1uXNOFj1d7TDud/zzsk4/ok6+jUomE2w59+8uUau 9ZED/36+Y2pcF0v/F9chJlnw2YYBWxbMGhizScFMhE+bFmzh02YF29tVNi/Y sn5bFRwHk7Yu2MKkbQq2sCRRMF+4XqOCOQWfti24HeZtVPA8YHDDguvot3HB dYypScEsI1fjgnPg36c53lvnz6hUwXOCSXXSr+d9/ooFswbGZAvmIHyqKdjC tlzBFjbkC7bwoFRwHEwqF2xhUqVgCw92KJgvsKRZwZyCT9WC22FeoeB8jKNp wXX0a14wp2DM9gWzjFzbFZwDP1Mwcxn3jgVfh5h0wXOlrb7gucKYlgVzEO7u VLCFVTsXbDnHrQq2nPU2BcfBpLYFW5j0r/b1Q1rbt6U7FswXzsajqntPtoPq NqjPw/Lfkd+i4HnAzv9U/4jq35WuLbiOMe1WMMPItWvBefB3L/jMwaE9CmYT nLu9YL8L66d8j/O+nf3fTverzryhjb6was+CLZzrWrCFE6fozL4mPs9VzC/8 /pvsCTobfQtmCvzoUzB78M8r+F5yH3qpLFXddyp7FZwPxqzk9200junK07vg duL7F8wsePNUnWN7qm5EweecM7p3wTlg54CC+8KqWT30DCQ7hPMhfbfK8/zM WuXpOrPqGdkTW/rz9nTN61l+rsq7p4Jj4c/Qgi38OKxgpsCPQwtmEP7hBdcx pkMKZhas6lfwejCHgwvOAQuHF9xO/H4FjxdODyu4nfgzNZ7nYL7GM6pgNsG5 Ewver+zlcQXzBa4cVTB38EcX3BdWHVGwhXNHFmzhxPiIg0MTwm6hMqVgpsCP yQUzaNtgFc9WsJ7vnDALVo2JfDDm6MgBCydFO/HHFswseHNMtBN/UswDloyN HMxhWvSFVacUzBe4cnL0xT++YCbC4BPCwq3pYVmjUyMODp0WFn6cUzBT4MfZ BTMIf2TBe4q1PrNgZsGqqbEezOH0yAELz4p24o+L8TKmM6Kd+DXa2xtrb5+i +3huXJPzcH6cCVh1WcGsgTEXFsxB+HRRWNh2cVjYcElYeHB5xMGkK8LCpKtU WhfM7811/Ze1l3ZhfaVfqDOfro52mHdp5GMc10QdPLupYD7BmM0U+5Ji20tv Kv2idDvpC2IejPuVOve/UWVOweeVc39HwXyBK7cUzEGeEW4NC7dmhu2scltY mHVnxMGhu8LCjy00hvl1ZsD9Kj3ien9ozV/j9xm05gt5x8O7fdXPiHnAzrN1 vt4Ux15V281Rx5her3Oe+1T+Up4tdY3T+V3BmAd8eqhgxsG8Vws+n5y59er/ tuLPUv8LlH8Rz2HSD0dfePBIWNj2aFi4tZWucza/kyP9juIGyT6l8nzB7IAN zxXMo4NjbWA8fH+mYM7BrTd5z1RnrjxdcJ7BKs9GO/EvFswpODQv2ol/i+dH ftdI+oW4Jv1eir4w7/WCmQJLXot5478RdfDglYJZCRcXFMxrztbCsKzX/Gin je9z/N4DP9t7M3LAg3cLZhNceTDWnnV/u2D2wbD3oh2uvBVxsPCdaCf+5Rg7 Y1oU7cTznnXLuPbigrkGtyaWVKeytcrnBfMFrnxWMHfwPyqYlbDh47Bw7pOw MOyLiIPZX4aFed8VzBE4sbRgNuE3Lfpecq++KZh9MOzTyAdjvoocsPDbaCf+ h4KZBZO+jnbit9G+ek/39TrpJZGDOfwYfeHfqoJZA2NWFswg/J8LZiXcWhaW z/PlYWHYrxEHk34LC0v+KpgvsOTPgnmEv7XG867Gc6307wXzC259H+vBHFZH Drj4h8qVEf9TjJcxrYl24n+JscChxcp9g+x6lVTR+4bzuknRrIExGxfNIPx/ C+4PrzaEhXn/hYUZmxYdB5M2K9ryPNWgs+4375T5bqDz/q548rH8q6Q/lP5B uqHm+0GdudWg6HzwZvOic8DFj9T+Ie/tudc8h8s2VPsWRbfDv3TR84AlGxWd gzk0Kro/vPpcsZ/VmSuNdd0ldeZNk6L5CI8TRVt4lizaskaXa8xfqP/5mstm mteX0hdIV4rmCJwoF80k/G2V/33e40gXVT9X9knWVrGN1HaeYreQbiJ9oXSp 6HbiGxc9Xsb0VZ1jC6rbWv1/lH8xz2RxP9mLzYo+E/CvZdHsgCu1RbMGf/ui WQm3dijawrkdi7YwbKei4+DQzkVb+N22aHbAhjZFMwh/u6KvSd66otkH55oX nQ+utCo6ByysL7qd+PZFcwoOtS66nfgeRZ9tzm6LonMwh12K7gvz9iiaKbCk c9Gswd+1aN7x7n+3oi3c6li0/UClS9FxMGPPoi3nvnvR7IAN3YrmEf6+Rdcx pr2L5h3calf0ejCHrkXngH/7FN1OfIeix8uY9iq6nfhq0fsFlvUqmnEwb2md z+UI1e1XNFNgyYCiWYPfu+i+8KBP0Ra29S3awq39i47j3B9QtGW/HFQ0O2DD kKJ5hP+9rvsd76JVN6ho3sGtfkXngysHFp0D/g0uup34YdJrC+bQwKLbiR9Z 9FzgR/+iczCHQ4ruC/NGF80UWDKq6L74CZ2JrzWev6WT0t9I/yOdkv5Wep30 EUXHwYwji7ac+wlFswM2jC+aR/g9i95TrPVRRfMObg0tej1g7ZjIAf/GRTvx w4seL8weG+3Edyp6T32osq3OZlrju0Rn8wPVT1KZrHJ80UyBJccVzRr8nzSP baPPlKI1TJsaFm6dEHFwepn6/1xnzp2mki+aCTd2tz5V5eqizyHnrLHGs4L3 RBrPsZEPrixX3aX8vZH0DN57q1wh/4yiOQWHrlPdEvH5F/W9JvJx7qdFDuZw ZvSFeRcWzRRYckHRrME/u2g+st/PCctn+Llh4dZFEQczLg7Lub+yaHbAhiuK 5hH+VVHHPC8rmndw6/RYD+ZwSeSAf5dHO/FnxXgZ06XRTvx5MRZ4dm3MFeY9 UPT55MzdUDSz4NB10Q4Drg9L243Rzrm/uWgGdYw9wnMT3xdviTr2zkyV3Ytm 2KyiGQFj7iiaU/DptmiHeTdFbjh3e9TR79bIR667iuYRue6MHPgPxjxgxozI wfhmF80smPdw0Rzh3D8UffHvK5qDsPn+sJynOWFZo0cijrP+aFi49VTRXIAr TxbNEfx74ppw94mimQWr7o41YEyPRQ5YODfaib834hjT49FO/IfF/52n8+N+ shfnFc2s/2Nenfk6X6VG5/VX+YdLP69ycNE8eyEsrHoxLAxYUHQsbFsYFm69 VTQX4MqbRXME/9mimQtjXi+aWbAqo+uu5Hd6pF+NHLDwjWgn/u2iGQTDXot2 4r9ROaXo855VnlX8npD0GtnVdebfx0VzhHP/UawHfrKzWM3zl857Wjqn+Kul /6gzrxarfBJxnPVPw8Ktdbxrkf1KJa/YvGKv428xiq5nTH/DC9VNl14U68Ec lkQOWHi72LJUbPlHfbfrpc9J6d+l/1L5s87Mezr2C/dsadG843z/U/T55Pwt K5ojnN2fi+YL/nfRF559HxZW/RAWBiyPOPbIL2Hh1uqiuQBXfiuaI/jPxN7h Xq4qmlmw6sfIB+dWRA5Y+Gu0E/970QyCYSujnfh1MQ/48VPkYA5roy/8+7do 7sCV9dEX/8+iOQjv/woLp/8OyxptiDiY8V9Yzv1mJTMFfmxaMoPwv409xVpv XDKn4MqaWA/m0KDkHLBtk5Lbif8jxsuYNiq5nXh4xGcjz2ebl3xN2LZFyRY+ NS6ZL3CF75NwEAZsU7KFT9uWbGFGw5ItDGhSchwcSpRsYXayZAvzciVzBE5k SmYcrEqV3A7nGpWcj3GkS66jX6FkNsGempK5Rq5syTnwB5W8J7jn+ZKvQ0zr ks8t5377kvkCV8olM5E9XinZwqdqyZa91rRkCz8KOmfr68yhovS/0i9Jl6Q3 SL8s3apkjnC9liWzDVb9p/ZXZFuorljyPGBwbcn19CuVXMeYdi6Za+TaqeQc +NtJP1f0HOpKnhOs6lXy+eTMbVqv523ZXVXXtmQmwoCyxtmg3jzbXuf9R533 jeUXO2sPyV7Pv1tRciz86Viy5RmqU8kWru+g2BWK3UIxe5TMOFi1e8ntcK6s nBVd7wb+JqvkOvptp/qq6meofnPFb1ZvJnUpOQeca1Myuxl3U/XfUn1uUv/6 kudKW++S5wpXupfMQvi3b8kWNvco2XKeepZsWaM+JcfBob4lW/jRr2QLAw4s mSNwYr+SGQer+pfcDue20ri+lN1HdQNKrqNft5LrGdMBJXONXPuXnAOfdzY8 H3DGBpZ8HfbubSWvF+s6vGS+wJWDSmYiDBhasoVnB5dsYdWwki0MOLTkODh0 WMkWZh9esoV5R5bMETgxqmTGwaoRJbfDuUNKzsc4RpZcR7+xJbMJ9hxRMtfI NbrkHPhDSmY34x4T1yHmxJLPNgyYFO+uYMz4kpkInyaEhU9Hh91S5ZiwrN/k iINJU8LCpKlhYcn0kvnC9Y4rmVPw6dhoh3lHxTxg8LSoo9+4qGNMJ5TMMnId HznwB5fMG+Z5UswJJl1b8j7m/J1VMmtgzKklcxA+nRYWtp0eFjacERYenB1x MOmcsDDpPJVmJfPgkpK5Akua6Wxto325o/T50Q7zzox8jKOp+mytPjtIX1Yy p2BMw3rnuZg49dlWfnPpU0pmLuO+NK5DzMkxV9oaq28jlXbSV5bMQbh7VVhY dXVYzvE1YVmj+/Qcslo8acK4dd6317Vv0XnfQTahug7qM7NkvnA2bi6ZU/Ap WW/O3aRyecwDds4ouZ5+V0QdY7q1ZJaR65bIgZ9WnlS9OdRSY8hKz9QYntTY 7lLdlmWNs2S+wJV7S+YO/s7qv6PGepv61yhub9XNUrm7ZA0f7o84ODQnLMx+ tGSmwI9HSmYQfq3yFZTrIumHSmYWrJod+WDMA5EDFj4c7cQ/XjKz4M2D0U78 qyWfc87oPZGDOTwRfWHVcyXzBa48WzJ38J8smYmw6qmwfN4+HZZz8HzEwaEX wsKPBSUzBX7ML5lB+AujjjG9XDKzYNVjsR7M4cXIAQtfiXbi58Z4GdNL0U78 vBgL7Hm9ZDbBua9L3q/s5XdL5gtceadk7uC/EX1h1Zth4dxbYeHEexEHh94P yzv4T0pmCvz4uGQG4cMqnq1gPX8vBLNg1aLIB2MWRw5Y+FG0E7+kZGbBmw+i nfhvYh6w5O3IwRw+i76wamnJfIEr30Zf/C9KZiIM/jIs3PoqLGv0XcTBoe/D wo/m2pM57ckLpJeXzCAY81rJe4q1/qlkZsGqT2M9mMMPkQMWLlM5N+I/j/Ey ph+jnfhn4h6y/1rounld90LpYr35tErlj5JZA2N+K5mD8Gl1WNi2Jixs+D0s PPgz4mDSX2FhUktdq1Rvfv9XMldgyU6qv0Pn+wbpHfX8s068qqjf2sj3f8zj 2UZ1t6vfRmVzCsZsULkxcjWtt/5X5deS58K4G5R9HWJSZZ9bzv1WZfMHnmyn 2Gb1fkZ4TFxqsJdYKb+NrruD7F267tOqf0pllvTW5f9xaJuyLfzYtmwLA5Jl c4TrNQ7GwaqGZbfDuY3LngfsbFR2Hf02KbsONifK5hq5mpSdAz9d9jzgU7Zs xsG8urLPJ2euXDZTYEmpbNbg15TdFx7kyrawLV+2hVuVsuM499WyLXtnx7LZ ARt2KJtH+A9obdbq3mW0XtuVzTu4VSg7H1xpWnYO+Ld92e3EtyibU3CoWdnt xBfLjmPczcu+Jv1qy+4L89qUzRRYUl/2vPHbll0HD3Yqm5VwsVXZvOZstS7b sl47l91O24fxHouf7bUrOwc82K1sNsGVTNlrz7p3KJt9MKxj2e1wpX3ZcbBw 17LbiW9Z9tgZ0y5ltxO/e9ksg1V7lM07+PeIzkirNtqW2+tzpWymwN1uZbMG f5+yGYTfpew4OLFn2Rbm7Vt2HJzrWzY7YEOfsnmEP0D655JZMlJ6fcln6vyy 7yv3rWvZ+eBir7KZCNt6ls1E/N5l15G3R9nXpG102ecWBuxVdg5Y1a/sscC5 oWXzBa4cVDZ38IeUzSP8VlqT5tprK7iP0i2kV0ofXHYc/NhF57dObbP5mxDt z810rndWv51Vt6PsL+qzX9lzhbut6j3fEarbu+xxsabDy+YaPDukbD7i76T+ LVX+lh5W9jVpq603Rweq7uSyzydn7sSyzy17p15jaKt+W0jvrnF2UrmP74my bVR/r/QRZa8TDDuybAv/2tX7uelolallMwV+TCmbQfjTyuYOzPhQZXK0f6Ay KfwxkW/jqINr8Gxi2XzcOvptE3mPKfu6tJ0U82BudRpP63pz69gYC9c+rWym wIBTy2YN/imxHvgnlM1K2Dw9LGt0esTBgHPLZgdsOKdsHuEfXzYfiT8u5oo/ quw9yz5rrs+UrXTf6zW+s8pmImw7s2wm4p8ddeQ9I65J20exZqzxoLLvKZ8t 58VYOA9Xls0UWHJF2RzBv7xs7uBfVDY3YdjFYWHeVREHs28omxfw4PqyuYN/ U9l8gR8PlH3eOFsXls1f8l4S+eDitWUzEf5dUzYT8a+LOvJeHdek7aGyzz88 uDRywKcbYyxc+66yzzzn9c6ymYJ/R9mswb+lbPbxN9y3hoVnsyKO83R/2SyA E/eVzSP8m8tmK/EzYq74c6Ivc74sxsWa3lM2+2Dh7LLZh39v1JH37rgmbYPL vm+w47WyGcTZWlg249gvT5V9XrnPT6ocGH6Heuu5Kg/HOsGqR1X6l83LpyOO 67xQNgvgxPNl8wj/RfGnkfZhR57zyuYo929x2eeN8/dY5INJz5bNPlj4TNns w38u6sg7L65J26sxD+bWRmxpr+vszzryPa7eDGuhs5DWGPaQ31ll93oz4PVY DxjzUj/zb77KgrI1a9RVXOqi/g/yN3dls4Bxv1c2h/DXKvZllU5831P/dhrH HH6Xu+w9yz5rq7pd1H4AOWUnyL6j0l71e8ofL/1u2fXk3Ud59lZ5SHlmxp7q rLJHRZ+Psp9QVzHjOK9fls1Z+PRF2UzB/7xs1uATx5k+NuKx8PKriIPZ35fN AjjxXdk8wv+xbI7AjHVlnyvO6z9lnz38TyMfTPq2bPbBwm/KZh/+0qgj79dx TdrWRz54sCRywLkfYixc+7eyzzzn9deymYK/qmzW4C8rm5uwanlYPsNXRxzn 6a+yWQAn/iybR/g/l81Z4n+KueL/HX2Z52cxLtZ0bdnsg4W/l80+/D+ijrxr 4pq0/RJj4Rxkde8eKfs8pSreKzDptqrus8oeKv+VzUHY8G+sDXzaEJa2BhW3 w5JNK94rt6lsLn172azatmJewI9tKmYE/hr+BkHn4gLtwa0q5h3c2qRilpFr i4pzwL+tK24nfrOKr8M1tqy4nfh0xfOAGRtVPC4Y2bDi68OqDrre3trzT0jX 6mwWNYZdVDdBZ2h8P/MgUTEHYX+yYssa7VNvJhVU17RiRsCMasVcwG9SMXOJ b1TxNeFu44otbRtXPC7mWa6Yg/CsVDEH8SsV15G3WPF1aetc8ZnjPK2I+8nn UrOKxwKrWlXMJri7c8XMxd+pYr7gd9P53lfzeVhnfF/pXbUGj/AsJNuz3nxq r/5vl82KfvXW7VTXoWJewKFeFZ8rzmtLrWdV69ldfXuovKK6Fmrvrfwd+X13 /vZY971WffqovZPq+souYmyK3VH1veX3qZgFnL/aivPAxl0qHgvX7lrxWeVM 7Fnx+cfvUjFf8DtWzHqevzpVbGHWXhXHwaceFTMCZuxbMRfwd6uYucTvWvFc 8XtW3Jc5t6z8j9ndKuYgPNunYg7id6+4jrx7V3xN2lbGfYMdoyo+Y5ytERUz DiYdWPE9pu8BFZ9h/P0r5gt+34rXCUb2q9jCj4EVx8GngytmBMwYWjEX8A+p mBdwaLuK9w6fnxP59wz7+XO1f8X54NOQijkIzwZXzEH8gyquI++giq9J28iK 58HcBlScA0YOq3gsXPvIijnCeT2iYu7gj654PfAPq5iD8P7wii1rNCbiOE9H V8wLeDChYgbhH1oxc4kfXvFc8XtXvGfZZ/tVPC7WdFzFLIMxR1XMI/zxUUfe sXHNTYJD//fZWDaPsDyfHRNjgW0nVMwRWHt8xXzBn1IxH+HT1LAw49iwMGN6 xMG2k1QyFfP7jIq5ADNOr5hJ+M9UfJ+4J3vofO2n85SXnhb54NPuqu+v+hrp /esde5rKWRXzCPbsrPPYWuexs/oerD5tVXetynGRgzmcHX3h38UqzSs+74Pq rS9SObdiVsKn88Ky17oo7wHqt730JRHHWb80LGdrgLjRVf3mihtvixvtNZ6D FLOX6obyrkh9rqiYcTDvzFgP5nBZ5IB5Q9R3MN+XpM+J8TKmy6Od+Pd7KJ/y D+RnhxVzDv49WPFegUm3VswRnn1uqZgv+DdEX/h0Y1gYeVNY+DEz4uD3bWF5 nrq7Yi7AjFkVswl/csWfl+yPOytmHMybEfng0+2RA+bdFe3E31Mxj2DPHdFO /EMxD5hxc+RgDvdGX/j3SMUc4dw/HH3x76+YlfBvTljY/0BY1ujRiOOsPxaW s/V0xVyAGU9VzCb86yreV6z13IoZB/Nmx3owh8cjB8x7MtqJvy/Gy5ieiHbi t6x6vViPPto/e2qvPK7982zFZwL+za+YI7D2lYr5gv98xayETy+EhZEvhoUf CyIOti0MC7/fqpgLMOPNitmE/1xck7yvV8w4mPdS5INPr0YOmPdGtBP/dsU8 gj2vRTvxh9b7vH6r8nLkYA7vRF/493HFTIElH1XMGvz3KmYlfHo/7ESVxWEn qXwScTDj07Cc+1ZiQkedkX14hlIZpnGczH2SHi59qvTnFfMObi2K9WAOSyIH /PtS5cSKefZujJcxfRbtxM+L/QLLvquYcTBvXJzPddwz6cNUzpdeVjFrYMz3 0Rce/BAWtv0YFm69J5505llFY99XZQTv5FW/pmJ2wIbVFfMIf4uqzxJ769eK eQe3fop8cGVkvZm3UuW3aCd+sa61p651BO+oKu5D/PqK5wI/fo4czGGQ9m0P jelp7dsNFTMFlvwbffF7qn2M8l3DPqs3m/9W6aX6o+p9tv6LOJjRoGrLud+8 anYwn82q5hH+0or3FWu9SdW8g1ujlW9UvVm7UdU54N+mVbcTf6Tar5b9U2Xj qtuJ37pqrsG5SVX726hMVNkq/GTVHIG1iar5gt+kau7gE0MO2LBt1RbOpaqO g235qnkBD3JVMwi/WDVf4Edd1eeQcza46nvJvWpYdT5YmK2ag/AsUzUH8Wuq riNvuupr0tam6jMPAxpVnQM+FaoeC9fesWqOcO53qJov+NtXzR38StWsZO9X q7Z8njevOo6z3qpqXsCDnatmEH65arYSX6p6rvitq+7LnBtXPS7WtGXVHIRn tVVzEH+nquvI26Lqa9LWtOqxwNHeVZ9JzlnPqjnE3ulYNUc+UNmtar7g71o1 d/DbVr1OsKFd1RbOdao67kOVrlXzAh7sWTWD8PeR/qJifsAqnq34XjgpLJ+X 7avOBwv5HgsH4Rnfa+Egfpeq68i7e9XXpK1X1fNgbrtUnQM+7VX1WGBbv6o5 wrnvWzVf8PtUvR74fXUGj9Z5+Eb6mHqvTw+19686jrM+sGpOwIP5/awPVF1r MbYb34+Uo7fKeMV/pbb6qvcs+6xD1eNiTYeIFf3Vb55YUafYnoqdrJg/lHOB yhTpfmqfWG9GNqv6HvK5tF3Vlv03qOqxcB4OVP8T1f8f6QP4++B6s6Ve+fsr /zT5Q3Xd/dT2DP8eiq5zHNdUn5Pqg83KN6JqDefGVM0O2HBk1TzCH6AcU+vN 3dFV8w5u7a/64+vNk4HSJ9ebf0dU3U78UVVzCg6dUu/YUdInV32GOa8nqP4v 1Q+XHhd9Yd6UqjnCuZ8cTMKfUDUf4f3RYXmmOCYszJoacZz1Y8Nytk6smgsw Y3rVbMI/KeoY0/FVMw7mjY31YA7TIgfMOyHaiR8f42VMx0U78adWzTiYd23V DOJsXVP1XsE/t+pzyz0/p2qm4J9dNWvwT4scsOr0sPDyvIhjj1xSNQvgxMVV 8wj/sqo5AjOGVM1RPjNZI56/4P4ZkQ8mXVg1+2DhBVWzD/+iqCPv+XFN2s6M ONh2VljGfWmMhWvfUPWZ57xeXzVT8G+MOs7KdbE2tF1VNRP5HLg6LOt1ZdVs pe32qtkBJ2ZWzQj4cUXVzKXf5TFv/FOq3mvcj1urZhkxN1fNQbg4o2oO4t8S dfS7KcZI2wfBMp7976yafbBwj2biVlMxS2VO1cyFVfdXzRX8M+qt72PtIw5u 3a2yd9XsfCDi4PcSPZMcpLN8Nj+jUTlTZQD7hPfEsk+ovFb1meTMrYz7x70a pPN4qvp1k364ag7CxYeq5iD+I1EH8x6Ma9L2RtXnHx60EU8GaQyDeX4UTw6S fU48uVC5D1H7CypDVXeB/GHSI9VnhMoL6vNU1QyFW0+H5fP8YPW/qN7nfSEx VTPhsnrrBSpPVs1a4udWPV/8V6Mvcx7C3x8rZl/pV1QOq5ppl9Rbv6xyiPpc Wm/ODZO+WPpQ6XkxFs7Et1WfVc7Z11Wzif3yftVM4TnovapZg/9u1QzCfzPW CU68FRbmLY44nqc+rZodsOGTqnmE/1nVrIEle2jffBztnaU/qtpfFPngInUw EbZ9WDUTp0S/qZH3g7gmbd/EPJjb25EDVi2JsXDt76s+/5zj76rmC/7SWA/8 L6vmJoz8Kixr9EPEce5/qZoLMGN51WzC/6JqzhL/ecwV//Wq9yz77J0YF2v6 c9UchIs/Vc1B/GVRR94f45q0dWnqNWONz9O9PVflIOkVMRbOw19VcwTu/lk1 X/D/qJop+L9VzVC4tTos7Pw74uD3f1WzAE5sqJpf+Bs1NUdgxhR9zk7u57P1 a9UsJu+ayAeT1lfNQbi4rmr24f8bdeT9J65J2yidp8P4NwX4968jB5xr0NRj 4dptdU4P1zk9lHOqcrnWYbbqt1afWVUzZtOmZiU/Q9isqS0cvZKfq8s2VF2q qVkAJ5JNzSP8TZqam8Rv3NRzxU83dV8YszbGxZo2aWr2wcLGTc08/ETwkbyN mvq6tH0h1g3T+M/XWOqbmkGcrdZNzTj2yzfqc5T6XM93J75P1fscl5uaNTDm T639a/x/Fmp7tZ8ZmVf7GK3h4fxbD/xblPJfqpoPM/4fU2cdZnX1ve05fY4B itiop0fGmDGQUhCRUlAUuxsEBRVBQKQUFEURwcIA7O7ubrG7FRUVxUTF4H3u 77N+l+8f61p77b3W2vHZ6z7BzNDsdo09qf2U2hurvXQjc5Tn16XoeqP+1is6 J0yqqP3IRmbgxc1ul9V3qOaZK/sx2YfwM+lqP6z25kXvg72tX3QOOHeYfC5t NsO2LLrmqdctimYKdkvR54G9SdHchIWbFq05o62KjqOeOhfNAtbdqWgeYTcV zVfi2xe9X+wtdX8O19nO1jraFb0uznSbotkHCzsUzT7sjkX3kXfroudkLFv0 nbpCcqXa3STd6SuacdRrr6I5C592LJop2D2LZg02cdQ0rCIeDS97Fx0Hs/sX zQI4sXPRPMLepWiOwIzDiq4r6vXQomsPe/ui88GkfkWzDxb2LZp92DsV3Ufe PkXPydjhReeDBz2KzgHnBhS9Fubep+iap173Lpop2HsVzRrs3YrmJqzavWjN a/i+RcdRTwcXzQI4cVDRPMIeWDRnid+16L1iH1K0L/vcoeh1caYHFM0+WLh/ 0ezDPrDoPvLuV/ScjA0qei3UwSlqr1N0HQ1RHR2l+/pkez9j3n/xHuioojkI G44o+mzg05FFa8YGxzgsGVb0XclJTlSdjuxvVp1YNC/gx8iiGYE9bw3VYfx9 /PnNZtXxkqFFs4xcW+kOH6s7fDifV4r2If6YmCcvGaHxIzQ+j59fbPa+xrOv WBeMHBXzw6pJRdcqNTGx6PrHnhDngX2k8i1QrjW5m721B81xpeyTtKfR/c2n o+VzQ7OZcX2zOTFNMqZo5sLR0TEn3D0pNGNHx7rY56bKd63ii+xdz2Iwf+dF z2KI9HXqL6l/a53DGK3hGtlXRM1RT3sU/Tx5XbpRY1XZZ0hmF80muHte0czF nlU0X7BvaTYXZ0jOLroNP+ZEHHyaWzQjYMbFRXMB+9KieQGHbi26rqjXYVrz zcrbqPY5kQ8+XVg0B+HZBUVzEPui6CPv+TEnY7cXzQLqb2bkgJGXxFqY+5qi a5WauLro+se+qmi+YM8rmvW8/5ofGmZdG3Hw6eaiGQEzbiqaC9iXF81c4i+L vWLfEr7s+dxYF2d6Q9EchGfXF81B7Bujj7zXxZyM7Vn0c4MdzxddY9TWs0Uz DibdH88Y3/uKrmHse4vmC/YdcU4w8s7Q8OOBiINPjxXNCJjxaNFcwH6iaF7A oelF3x9eN4fy8yzNfl29K/LBp4eL5iA8e6hoDmI/En3kfTDmZOy52Ad7uzty wMjHYy3M/VLRHKFeXyyaO9gvxHlgP100Bw+VPBOaM3o54qinSduLFVr3bVp3 B9XLBNnHUEtFM5f4J2Ov2LcVfWe5Z/fEujjTV4tmGYx5pWgeYY9TnY6VDFd7 YczJGBz632vjRuYRms+CtzebZ29JRvDvIXxvr/bXes8zVWsbrr73iuYjfHo/ NMz4IDTMuLvZPPtU8lnRbfh9nFhxnHI8K1YsVs4zlPM+OFTyc+KZLCqacTDv w8gHnz6PHDDvXn6+gs+i3Bneb0t/I/kixon/u+gapl7vlM8dkrFqn8B3Uc3m 3s9Fc4S6/6n4H1cebjaTlrBX+T/S7Ls2ir/NxXf3av8ScdT6r6GpreVFcwFm /Fk0m7D/ij7W9HvRjIN5x/P9vXKepvZvkQPm/RHjxI+Uz0P8+4Xay2Kc+MfU d5b0Usm/RfMO/q1Z8l2BSZmSObJAki6ZL9grwhc+NZSsYWSiZA0/siXHwe9c yZr3U6uWzAWYsUrJbMLme4eRcT9WKplxMC9Zcj74lC85B8xbueRx4luXzCPY Uyh5nPi1St4HzEiVnIM9rFayL/xbp2SOUPdrl+yL3aZkVsK/NUrWsL9tyZoz WrfkOGp9vZI1tVUsmQswY6OS2YT9T9wpznqDkhkH81qVfB7sYf2Sc8C8DUse J371ktfLmtqVPE78iJLPi/P4sehnyl2slFwT8G+TkjkCa5tK5gt2rWRWPi6p l6xhZGPJGn5sWnIcbNusZA2/tyqZCzBjy5LZhF0teU7ytpTMOJi3ccn54NPm JeeAeVuUPE78KeLNeMnrajeXPE58J/Ft7vaaW3e2fck52MM26p+h/tG6491L Zgos6VYya7D/UL4XJU8q9gXpt9XXReNdS27zndfuO6uvr5nRUXq2cj4t/z4l swM29C6ZR9iTlGdif/Pm5f5m1Y4a37rk84CpI8WrMVrXc/zsU+k/np2j3Cfx OY7vuxW7UPIM73tKvi+w7HL5PK++r9U+rOR7Q42+or4fWK/6TlGOhbK/l925 k5go3V/949T/QrOZdrLaL/KdvNqDSo6l3vcoWXNf9iuZHbBh35J5hD285Fri bu1dMu/g1kvK9530rurbM+4c/Nun5HHiDyiZU3Bor5LHiT+85H3Aj/Fa28vN 5uSBJfvCvCPVhimw5IiSfbEPLpmPsPCQkjWcPrRkzRkdFXEwY3Bo6v7YktnB fo4pmUfYo/SMxmodz+sZDS2Zd3Br/5LPgz0MiRzwb1iME39QyetlTUfHOPHH l8w1OPd22CdI3pIcF/bYkjkCa8eUzBfsk0rmzhoRQw7YMDI0nBsXcbBtUsm8 gAcTS2YQ9pSS+QI/zi+5Dqmzh+JZ8qxOjHyw8JSSOQjPxpfMQewJ0Ufek2NO xi4sueZhwKjIAZ8mx1qYe0bJHKHuzyqZL9hnlswd7Kkls5K7Py00r+dnRxy1 PrtkXsCD80pmEPZpJbOV+FNjr9hzwpc9j451cabnlsxBeDazZA5iz4o+8p4T czJ2eqwFjn7Q7Nq6jXPQnZmiO/OS7sz8kjnCd+fzSv9x5XJJ57AvinOCDaeq 1qdItlF7QcRtJ3mb77mlr+UOKP9kalj5ry+ZK/Cj9QB/Jvw/ZtHm9bKzeLVA vJigmG3VniT9hvJdWTIH4WJDN90/9b3J56mYk7FT5fu++nbm/qj9mtqd1L6u 5PUw952SXUqu94+a3b6D85f/h7IHqP2u9DuSvmr/qPdm12g97/HeSj4fSw9U /wMl8wIe3F8yg7BvLJmtsPaG2Cv2BSXfWe7Z680+z8sk95bMP3h2j2S3sO+L PvJ+0uz+uyVnxDPkdWl6aO7fg7EW6uHpkpkCS54qmTXYj5bMR3jwWGjY9nho uPVMxMHpZ0PDuZdLZgdseKlkHmE/UjJnyftCybyDW09EPrjyXOSAfy/GOPGv lMwpOPR8jBP/eck1TL0+GTnYw6vhC/PeLZkj1P07JfMF+/WS+Qjv3wjNe4o3 Q8Os9yKOWn8/NLX1aclcgBmflMwm7M+ijzV9VDLjYN7COA/28EHkgHkfxzjx r8V6WdOHMU78opIZB/P+LplB1NZfJd8V7CUl1y3P/LuSmYL9bcmswf4ycsCq r0LDy+8jjjvyS8ksgBM/l8wj7N9K5gjMeLhkju4bZ8T7L7j/deSDST+WzD5Y uLRk9mH/FH3k/SHmZGxxxMG2b0Kz7l9jLcx9umrqM93vS9XeTvV+g2ptmvo+ b3Z9JMqyxZipkrmy/yyZibwOLA/Nef1RMlsZgwe8/+Y9U65sRsCP30tmLn7L Yt/YX5R813ge2bJZRky6bA7CxVTZHMTOlN2HX7LsdTL2Vvw7JD831kfvwRZp D19IvpRco/GV5Hum9rZY9i3MJzZO532P2LhK2byEVauWreFlq7I1LPlGcbdK r6G+sxT3bbMZvl7ZbIAfS5vdXld9e5b9zHg+Z8v/+2bzb7rO8oz+ZtUM9X+n /tu5E2r/oPZdarcrm01waEmzGbmW+prLrnPquJue1+16Xl9rfIOyfWFhrWy+ wJVq2dzB3qhsbsKqYtma1/BS2Zo7WC87Dn40lq1hwGZlcwRObFo2m7A3L7uP NTWVzT4Ytn7Z58EeNi47ByzcpOxx4jcse72sqX3Z48SXy14LbNuibN7Bv75l 3xVqt1PZfIErHcvmDvaWZfvChq3K1nBu67I1DOtcdhzvobqUrXlvtX3ZHIET 3ctmE/YVam8n6RYa9sGwDmXngzFdy84BC/FjnPgdymYWTNq27HHi+5W9D/ix Tdk52EPPsn3h385lMwUG7FS2L3avslkJF3uXrWF2n7I1Z9S/7DgYMKBsDQMG lc0I+LF72ZzCbin7TnHWA8vmHfzrUfZ5sIddys4B/3Yre5z4HcteL2vatexx 4q+MM+MsK2U/T+7iXmXXBCw8qGymwJIDy+YI9j5lcxNW7Vu2hpf7la3hx8Fl x8HsQ8rWsHxw2VyAGUeVzTDsvcuek7znqtZ+Ut00qG//svPBpxmqy7Mk/7K+ ZsceKTm6bB7Bnu6qu3tVdzOVYwXfmatvvOSAsnOwh6HhC89OKJspsOT4slmD vb3yPKA8v/LzDGLRLOV7RSxarvlfk/ym/vPUt0y6NfvurTqW/x/8e5/6/2k2 E/7mu3bpsZIL1f+v7LU5m2az6iTJkDgP9nCa5potv1c11/nSf8mvrfpnas5z +pvZc9T/p/rbqL1H2fcFlk0om20w7/yy7w01OrVspsCS08pmDfbE8IUHk0LD tsmh4da0iKPuTw/NfTm7bHbAhhll8wh7Qdm1RC2eWTbv4NaUyAdXzogc8O+s GCd+ZtmcgkPTY5z4C2If8OPUyMEezg1fmHdR2UyBJReGL/Z5ZfMRFs4ODafn hOaMLo44mDE3NHU/v2x2sJ95ZfMI+5Sy7xVnfVnZvINb58R5sIdLIgf8uzzG iZ8V62VNl8Y48a/q2a4sPUJyVdl1CfMKFdtXS24smymw5IayWdM7xvCFB9eE hm3XhoZbN0UcnL45NJy7s2x2wIY7yuYRdrLFtfW85LayeQe3rot8cOWWyAH/ bo9x4u8um1Nw6NYYJ/6FsnNS99dHDvZwT/jCvEfKZgosebhs1mDfVzYfue/3 h+Y1/IHQcOvRiIMZj4Wm7nuolp9SbV6kujlP5zxLchjPXXZC+zxC7SfL5h3c uivOgz08Hjng31MxDs/ujfWypidinPgHYy3w7MXYK8z7ouz6pOYWls0sOPRS jMOAl0Mzdj4/FyAZpnZGaxwu/brkGa15d9krV/WaWnY/d+YtyXFlM+xSfgey xWxZrs9oC7X3S/i3feW7sL+Zt4PO5Fn1p+XXU+0X1c6p/WbkI1eXTnrfLv2+ 5FWN5zU+Su1FsQ+Ycbp4NZfPk/y/V7LHlM26r8rmCHX/Zfhir9piHn8q+azs NvX0eWjO6OuIo9YXh4ZbP5TNBbjyfdkcwb5M86+svOPU/q5sZsGqlVq8ng8l 30QOWLgkxom/XLGryO9ktb+NceJXqriuqKeH4nlyF38sm1kw78+yOQJr/yib L9i/lM0CePZraFj1W2gYsDziYNtfoeFWomIuwJWGijmC/XPZzCXvv2UzC1Yt i3xw7u/IAQtXxDjxqYoZBMP+iXHi16q4bqn73yMHe0hX7Av/VqmYI9T9yhWf B3a2Ytbz/itXseY9Rb5iDbNWrTiOWm9VsYZbbSvmAlxZo2KOYK9ZcR9rWr1i ZsGqZMXnwR5aV5wDFrapeJz4TMXrZU2rVTxO/NK4LzyzdSrmHfXdUnF9Un8b VcwRanfDivmCvW7FvvBsvYo1rFq/Yg0DihXHcUdKFWu41VgxF+BKvWKOYP8U d4dnWa2YWbCqXcX54Fy54hywsFbxOPHzdFdb6a4+o3al4nHit6h4H/Bjg4pz sIcdVddvqm7nK+4KSRvFvqL+LSv2hUOrt5jxm6lv84rbcLq5Ys0Z/aX3Nu8o z5XKcZWkrWJeU38v5f9A/evIvlr9a0m/rf61K75TnHWnijkFVzau+Dzg6Jot 5tk26utc8TgMW6A8q2nsObU7VuxDPDzi9ZH3Z2eJOdfw3ZeYc630uvJ/j/VU /uNKuxbXPX9v53r5bNBiPt2g9oZqf8xzl/5Euqd8elccB4f6VKxhdt+KNczb pWKOwImdK2YcrOpX8Tic27HinKxjp4r78BtYMZtgz4CKuUau/hXnwJ5e8Z3g me9a8TzEHFZx3VL3+1TMF7gyqGImcsf3qFjDpz0r1ty1vSrW8GPfiuPg0H4V a/ixf8UaBhxaMUeY76CKGQerDqh4HM7tVvE+YPCBFffht3vFfazpkIq5Rq6D K86BvXfFa2EPh1e8J1h1SsX1Sc0Nq5gvcOWoipkIAwaHhmdDQsOqo0PDgGMi Dg4dG5r3UMNDw/UTK+YInDi+YsbBqhExDueGRj7WcVz04Te6YjbBnpEVc41c J0QO7CMrZjfrHhXzEHNExXtlbELsFa6MrZiJ8G9caNh8cmjqaXxozmhixMGh SaHhx+TQMOD0ijkCJ06rmHGwakqMw7mTYh8w+NTow29M9LGmaRVzjVxTIwf2 daqj9VU/H2g/Z8Q83N234rw41/Mq/3FlRsVMhAE3Krao2Ca1e4shn4ohN/Hz NZKy+jdV/+yIg0NzQsPs80PDvEsq5gecWMHf61aeW5TjghiHc5UWr2GWpKZ2 VbKV2pdVzCbYs+YA55krqWu8g/TFkrMqZjfrvjTmIebWimsbBtyh+TZTTA+1 F2v+9mpvq3ZXvXfaTnqB5Db5NKm/m9qbSHeXvpL9qb2D9DWSaytuw6I75d/c YpbcUjFfmO/GijkFn1pazLvrOVO1GyVd1L6h4n78GnqJPVrTrZxtxSwj102R A/vMinnDPm+LPcGkFyq+x9TffRWzBsbcWTEH4dNdoWHb3aFhwz2h4cH9EQeT HggNkx4MDQ8er5gvsOSRijkFnx6KcZh3b+RjHQ9HH35PVswpGPNYxSwj16OR A/uOipnLup+IeYi5PfbK2IuxVxjzTMUchLvPhoZVz4Wmjp8PzRm9FHEw6eXQ MGlhaFjyZsV8oTZeq5hT8OmVGId5T8U+YOer0Yff09HHmt6omGXkej1yYL9d cc3BoXcrZhOc265q+z3JJxXzBa58XDF3xsUYvrDq/dBw7oPQcOLTiINDn4WG 2V9XzBT48VXFDMKuVP0seQ6LKmYWrPow8sGYzyMHLPwyxon/pmJmwZsvYpz4 v/TZ5U1JR17LIwd7+DZ8YVUf8WSJ7vzd/FySZAv5nqP+JRUzEVZ9H5rX2x9C Uwf3yH8r+Z+r9tYtZsZvkr7KuVQ5t1HfJXzX3t+MOU/vQ+5VzNt6H/JHxcyC VYvjPNjDsorzwMI/YxyGfRfrZU2/xzjxS2MtsGdFxUyCc2tVfV+5yw/w739a yxVqd20xYzIab6jaF1ZdrjVe1t+c66f1L9P6O8t3uxazJyffB5Wnm+yrZLeq miXwY1W1r6vYXq/Fn/9g18Py79FiVs3R3u+T/Q6/C8/PZPAeUP07tDh2FeVY rWpmwZvtW8y5ldS3dtX7gCX3K7aLxuarvXrVvrBq3ar5AlfWqdoXe42qmQiD 21at4daaVWvOaL2q4+DQ+lVr+FGqminwo1g1g7Df6O9z/leyYdXMglWtqz4P 9tCu6hywcKOqx4lvU/V6WdMGVY8T/2M8Q173ylXPST1Uq64JWLVJ1ayBMfWq OQifGqvWsG3jqjVsaF+1hgebVh0HkzarWsOkzavW8HvrqvkCS7aomlPwqbnq cZjXVHU+1tFSdR9+21TNKRizVdUsI9eWVefArlW9D9bdoep5iOlbdd1S992q 5gtc6Vw1B3mP0KVqDbe6Vq3fkWxbtYZZ3auOg0PbV63hR4+qNQzoUzVHmG/H qhkHq3aoehzOdax6H7CzZ9V9+HWquo819a6aa+TqVXUO7H5V7wM+7Vw142De EVXXJzW3e9VMgSW7Vc0a7P5V+8KDAVVr2LZL1RpuDao6jrrfo2rN3dm/anbA hv2q5tCyOCMYD997qW5+ld5H47tWnQ+uPKKa6qmxn9Xet2of4g+smlNwaCcx 4V8x4VH5Dqw6jnUfUPWc+C1QXcyXLGcv8s/00Bko7+OK6SedkO/F4sAT/Lyn OHCh2o+p/S7/163G/qm4pg6vWnNefVvcf6j62gzwv+vxua6/+tPqGyLZTe2C 9LGSnao+e879KeXetcXsGl61Dzx5Uv0DWszAp9mP2nm1d9aaE1pzH9m7SLLq GyoZ1GI+HSc5oWrewb+V62JUTWuSjK2aL3BlTNXcwR4ZvrDhxNBwblRoGDYu 4mD2yaFh3uSqOQInJlXNJuyHq36GPKsJVbMPho2OfDBmfOSAhRNjnPhTq2YW TDolxom/oOqap15Pihzs4bTwhX8zqmYNjDmragZhT6ualXDr9NC8np8RGoad HXEw6ZzQsGRO1XyBJbOr5hH2+dHHmmZVzS+4NSXOgz3MjBxw8bwYJ35qrJc1 nRvjxE+PtcChi6rmFMy7Ne4N9TqvatbAmMurZhD2xeELt+aGhnmXhIYZ8yMO Ji0Izfupa6vmCyy5pmoeYRd0b66SvrpqDb/g1qWRD95cETm6hd/2EX991fyC PVfGOPG3xT5gyWWRgz3cEL5w646q+QJXbg9f7Juq5iM8vjk0PLslNGd0Z8TB j7tCw4MBqp2VVDvP8XPYkj1UM3up/8Kq7xRnfW/V7INh18V5sIe7IwcsvC/G YduNsV7WdE+ME79SzWfBWZ4Zz5O7+EjVNQH/nqmaGXBlvxa3n5Y8VjUr4dbj oeHc81rz3vI7SO1nIw4OPRcafh/cYh4slLws/4NkH632ozEnedvoDA5U/2C1 s33ECtkvyPcA9e3Pv5FwLzqZWy9JXtHYoeo/Ru28Pn+tJv+X1PdF1bVN7b4o e1/5HMK6Wsy51yTvVc0UWPJu1azBPkI+I6TfkLxZdRt2vRX6eMn7EQczPghN 3X9WNTtgw6dV8wj78+hjTR9XzTu4tVBrO0TzDVP7w8gB/z6JceJflc/hLWbw RzFO/F4t5thDki+rZhzM+zvuDTW6pGqmwJLvqmYN9lfhCw++Dg3bFoeGW99H HHX/Q2juy69VswM2/FI1j7DzNdcStfhT1byDW99EPriyNHLAv59jnPhlVXMK Dv0Y48T/E/uAH99GDvbwe/jCvBVVMwWW/Bu+2H9WzUdYuDw0nP4rNGfUUHMc zEjUrKn7XM3sYD/ZmnmEvajqO8VZp2vmHdz6Lc6DPSRrzgH/MjWPE/9HrJc1 pWoeJ37lmmsRzh2v9iqSVSXH1TyGvUbNHIG1bWrmC/bqNXMHGz9ywAbi0XCu bc1xsG29mnkBD9atmUHY7WrmC/x4W/dthO7Wy2q/pfbwFtdaq5rzwcK1a+Yg PFurZg5ir1NzH3nXrHlOxt5RnuNaXPuta84Bn9aveS3MPU/vZ96Q3wd6P7OL eLiOavloPi/pPdGV/c2bwS2+70XFlWpu83o+VP1PSW/Ms1KeN/kZSuXZVXk2 VJ5jNL6G9OvqP4rv06WPlH5AMcdKvyjdrNjVal4XZ7pJzRyEZ0018w/7Wq3l mv5m2zoD3N9e4+Wa1wJHd665xqitfjXfG2oUdvBeiPdAHdT/atUselfrOZ5/ L1D7hBb3b63x99Q/ku/uZXepmUFvS7ZV+52qubVDzVyAKz1q5gg2f9eQv4vP 38TvXjOzYFXnmrlGru1qzgELt695nPiuNc/DHN1qHid+p5r3wd5ObDEjO6qv Z83zw61daq556nVAzUzB7l/zeWD3qZmJcLpvzZoz2rXmOFi1Z80sgCV71MwO 7N41c5b4HWueE9b2qlkz1qn2H793r5llMGy3mpmIPajmPvIOrHlOxio1P0Ne l6o1a1739qp5LXDrkJo5AmsPrpkv2PvVzAJ4tn/NGlYdULOGAYfWHAfbDqtZ w60hNXMBrgyumSPY+9bMXPIeWTOzYNWBNeeDc4fXnAMWHhXjxA+tmUEw7Iia x4k/peZahQEH1ZyDPQwLX/g3suaap15PCCZhH1sz63n/NTw07ylGhIZZJ0Yc 9TQqNKw6uWZewI9xNTMCe3z0saYxwTu4dXScB3sYHTng39gYJ/6YWC9rOinG iZ9YM+9gzJQW19NF3BHV1GS+l1b7jJqfN8/59JprGHtazXzBnhQ5YOT7ih2l 2A3Vnh5xNcnMmhkBM86pmQfYA8Wf9uLOeMXsXfPd4TVzn5o1z7Wo8Q+Ud7R8 /hZX3pGMg3vi2Ifq/0gce7u/c54t2Wxn7Z9/a+dnDlrMwtMkU2v/cfEG+V8v 2VTtSyTb1Fynp7W4PVdyafRRK59pnlNbzKSJ0ltIny/5RP2TZG+p9sdqT1C7 pWY2wDI+z11RM0fgxCkt5uhsyTVa/0f8nLrWPyHuGs9jQc38ImZezVyDN5fX zCbs+dGH32WxRsbe0WfGEyQj62YT8/O+7aqaGQfDbqqZL3CFz5bwET5dFxpm XB8aZtwQGq7cHHEw+5bQMO/W0HD97pp5AUvuqJlxMO+2GIdzN0Y+1nF79OF3 b808gj131cw7ct0ZObB/ksyIZ31PzEPM8zXXMAx4tGbWwJgHamYlfHowNHft odDctYdDw5LHIg4mPR4aljwRGh48VzNTmO/pmnkHt56McZh3X+wDNj8Vffjd H32s6dmaGUeuZyIH9iOxFvbwQuwJbi2quW6puddrZg2MeblmPsKDhaFh2yuh 4daroeHBGxEHk94Mzfupt0LzPuuDmpkCM96tmXdw6+0Yh3mvRT7W8U704fdR zZyCQ+/XzDhyvRc5sF+qmeOs+8OYh5gXY6+Mfa76mKqamaL2pzXzERZ+FhpO fx6aGvoiNGdU6iZb8dMUf3qLGbBY8k3tPx5crxpcJJ9PVINLamYczPs2xuHc x7EPePxd9OH3SfSxpt3EsWZxarrmuVlcuam/+cf3N7znoMbObPG9/VGybd3n xbnuKV6d22KefKm1nMV3/mq31ee7LZXzK/Wdrb7z1LdM8rXsc1rMkN01b0f5 fMPPeGrO9yXn8fMH/c3yvyXJuhkBP1bUzDaY961iZsv3Ys5F7Zlqz1F7Tot9 /pWk62YQvEnUzURyNdSdA/uXmpkO41N1z0PMWnXXNgxYpW7WwJhc3Uy8UpKv W8OnQt36aslKdWvOb9W642BSq7o1TGpdt4Yla9bNF+ZrUzen4NNqdY/DvEzd +4Cvq9fdh1+27j7W1LZulpFrjbpzYP9cM2/Y59p17wkmbVH3Pab+NqqbNTBm vbo5CJ/Wr1vDtnZ1a9iwQd0aHhTrjoNJpbo1TCrXreHBxnXzBZbU6uYUfKrU PQ7zNqw7H+uo1t2HX1PdnIIxjXWzjFz1unNgr1s3c1l3+7rnIWaduvfK2JZ1 7xXGbFY3B+Hu5nVrWNVct6aOW+rWnNFWdcfBpK3r1jCpQ90alnStmy/URqe6 OQWftql7HOZtUvc+YGfHuvvw27TuPtbUpW6Wkatz3Tmwt6u75uBQ97rZBOeu qtveXtK7br7AlV51cwebMXxhVY+6NZzboW4NJ/rUHQeH+tatYfaudTMFfuxS N4Owz6z7WfIcLmwxn/qr3bPufDDmO9Xm+Rr7Su0B9f8Ydptq/FbJ9zxTsW4J P2vAz4/WXefU6I5152APg8SK7cSK7/l3SP4trsU8WaWX9qn+peqf22I+7aG4 Petu83q7V92aOvhRfpfL73e150n/IX2Axg+T/FMzN65qcftQ9R1edx9rukL9 f0kfrL6BdZ8H3P1JOedr7E+1f1H7yhazq0n7+kH2xbIHipM/q71A7Tu1/jv6 mz1H1c0mOHdK3feVu3xs3XyBK8fUzR3sweELq4aEhnNHh4YTwyMODo0Izffx o+pmCvw4sW4GrRas4r0VrOf9F8yCVUMjH4w5LnLAwpExTvxJdTML3hwf48RP iH3AkmGRgz2MCV9YNaluvsCVieGLPa5uJsLgk0PDrfGhOaPJEQeHpoSGH2fU zRT4cXrdDMI+su47xVlPrZtZsGp0nAd7ODVywMJpMU782FgvazotxonfQ3ey h+7epXqm02NO6uGsqAlYdV7drIExZ9fNQfh0TmjYNjM0bDg3NDyYHXEwaU5o mHR+aPh9Sd18gSUX1c0p+HRBjMO8WZGPdVwYffhdVjenYMzcullGrosjB/aM 2AfrvjTmIeb6Ftf6bZKr6+YLXJlfNwd5j7AgNNy6InQ3yZWhYdY1EQeHrg0N P64LDQM2Ux39ptq5RnPeWDfjYNX1MQ7nLo99wM4bog+/edHHmn5VjquVYye1 b4occO72uvcCn+6sm3Ew78W665Oae6BupsCS++v/Meau8P0fD/qJi5LdGNPd 2EV3Y5nmvIe/RyfZm3j1D1L/7VrHco09wPfq6t9b/fup/88tfTYwHr7/Iftu vh9X383Sg6Tvpa33fr/zO41677eP2HJPizn2l/oe4ftw9iK9n/QjkvvqjmXd D7WYYU9KHm0x556WvFw3U2DJS7Fv7IXRBw+erZuVcPH5unlNbb0QmvN6LsYZ 4/0Rnx35/PZK5IAHb9bNJrhyR5w95/563eyDYW/FOFx5NeJg4RsxTvwzda+f Nb0W48Tn1tOdW1fzS96tm1kw77ctdFc2157U/2ndfIErn9TNHez362YlbPgg NJz7MDQM+yziYPbnoWHe4ro5Aie+rptN2M/rnJfqWZ0kDH1ZN/tg2EeRD8Z8 ETlg4VcxTvy3dTMLJi2KceL/qbvmqdePIwd7+C584d8vdbMGxvxcN4Owv6+b lXDrh9C8ni8NDcN+jTiY9FtoWPJX3XyBJcvr5hH239HHmv6om19w65s4D/aw LHLAxT9jnPglsV7W9HuME/9jrAUOraibUzAvq3McJhkqyTaaNTAm02gGYTc0 2hduJRqtYV6y0Rpm5BodB5Pyjda8n2rVaL7AklUbzSPsg5X2KcmTkpUbzS+4 lWp0PnhTaHQOuLhKo8eJ/1u1+ViL2bNSo8eJzynXMbGfdKNzsIdFui+fS45U /zf6PLVY7WPVXtzH/nlJO7Wf4v2VxtKyj5YMkWTibLA7ip/PyOcb+ewvVoxg 7ZJDxJuDJaPUvkM8WaLx1TX/v3GnOOtWGhspOUHSutHnAYNXkX285DjJd+3t 01pyi/I8qbm+UN+qEYffIZKn4+x+iufJXfxJfmPU15a9SCZLJknWDz1Rspbk ZMk4ydqS8WGvIzklbP5roikRz58gPzVsvhKdLjnDPyr8P3265Edx+kV+rqP9 //5MSsM0yVSJsNAwIfLypwxPi1zliJvmtxENZ0nObPjfnzj8Xxx+nSWXSy6T rBdrn+Br2DAjYvhVzDmS2ZLNQ58n0TIazpGcLWmSzAx7E8m5YWu5DedHvDDW cEHYHSWXSi6RbBN6rqRTrIWxrSUXSy5q+N9XxP9bO+eiK9lwYeTqEHH4bRxr Yd1bRRx+P2iho6XbSPSoG+ZL5kl2l9wruUeyg+RayTWSHqGvlmwrWRAx20mu CFvXs+HKsHtKrov4HSXXh72T5FbJLZJ+oW+WHNTgWnxColJouElyo6S75KrI q48IDTdErr4Rh59ekhtul9wm6R1x+A2S3Bf72T7WTq4BkjsiZk/JA5L7JXuE JmZXyV2SOyUDJXeHvVucDfZekgcjfm/JQ2EfGPt4XHJA6MckXeKMuVv7SR6V PCLZOdbOuewjeThy7R9x+O0Sa2Hd+0YcfptKZjX4bh0qeabB9YneJKE7mDA7 FkpebjBT0C9JDpM8G76/tnf7cMky/g+5BvMK9rwS8XDt1bBhwduStxrMDvSb Da6r7yTfcu66WK/w/kj57lL7ZT6vqb11f+eBfUfoYh0ueUPtTur/S+PvqN1B 7T/Vfq3B9bok8hZ1ORbyeY+/T66cf0u3aTQ7PpN8KllFD/iTBrPlX42/3+C7 /priVsj+QO3vdfk+bDCzYMTnEU+dfxE2LPhGsrjB7EB/3WBOfBtjcOoryZeS jv19JrASZiyKXFMiDr+q1v8qn0vbm4tfhl9ZsUs19lGD2fZ97Hm+JKNnmE6Y Oz9Klja45n8IvzOjD5s6/yn8YM2vkl+4J0ndE8m5Sd+V32IMZv3OM28wG/6R /N1gHi2X/Nlgtv0RfrDk55hjToz/EXdwWeS9MHL81WAe/RW5YEQ24f2cE+si F6xawbNqcJ3nNZ5LmCNoYuBfUjqRcP2kErapJ84Gm9ouJBxPra+UsA0PVpNu nTAX0K0S5mtDwnPDplXVXiVhbv4bZwHzVk44F9whDj9YzFqIh3HE4UcNbZpw 7f2s5/lxg1/vYFUb9a2eMD/Wl14vYY6g102YAWtKt02YTWslbFPzaydsw7J2 CcfDqQ0StuFBRbqcMBfQpYSZQr41EmZTUXqjhFmyTsJ5Yd6GCeeCO8Th95ja NelqwowjDj/qvLN0p4SZyNrJBefqCcc8oNp8nZ+H5EVQslnCTIHxG6vdmPB7 iPYJ2zALVmHXdW5vKDbZZE5tob4WyZF6YU6rbw3Ve1fVS0rtDqyHn3NUu2PC bNpaequEucnaOReYt2XCubr0tw8MgtOshXXDOOLw43WFZ8W9oaa7Epdwve0u vRv3THP2SLhmYQnt7XlOvewPx9ZWOyu/bWX/Iub8LOmuF8q3+XlO9e/AmWs9 D0p6JsyDnaT7JcwFdN+EXyd5htwh2NRHurfkIL14dEuYcZ9Keqm9Y8LcIQ4/ 2NNfeueEGUccfvBiUML7gYmsvXvCnBuQcAwc2VN6j4QZgyYG/u0qvUvCXB6Y sA2zOBtsGLFXwvHU+d4J2/DiQOkDEmYKev+EX0M4Y+4WHNlPet+EucnaOReY sU/CueANcfjBYtbCuuEacfhtFoybFaw6KOG54dHBCdtwZLDkqIRr/jDpQxNm wOEJ2zDiiIRtav7IhG24MyTi4dDRYcO4oWHDheMkIxJm07GSYxLm2rDwS8T8 5M3FOGOw5gTJ8QkziBzDE+ba8MjFM75JcmPCHDo+5qNeT5OcmjBHxknGJnyn R0lOTPiOjw6bu3VS2Ny1MWHDnZMjHl6MD5uaPyXsDWOeKQmzaZJkYsJsmBB+ sHNk7Ge9GGesdayFsQ0ix+SEuTY5crWNtbMm2DQ19kadzZfMS5gjZ0tmJFzz Z0hOT5gB08OGTWeGTc2fFTbcOSfi4dDMsOH4uWHDhQslFzCXGPUuPzOtGl5J MithxjXG/ORdV7X/jnxWbjJvLpZclDCDyHF+wlxDz0mY2ax3WsIcuijmK0Uf e16tyfuFJ01aw3vK37rJLL5McmnC9XN52F3ibLAfFpNXl++a4uexPXTHJFck XPNXSa5MmAs3SK7n3MSkZeLVNQmz4erwW7XJe4G9v/ZzP+wbIj630ljbRjOI HNdJHlWeR/i75wm/L6C2DkmYQzfGfJtqLx9oL22bzJG7JHcmXPO3Sm5JmAG3 hQ2bbg+bmr8jbLhzd8TDoXvChnH3hg0XHpY8lDCbHpDcnzDX7gu/XWJ+8u4R 44zBmkcljyTMIHI8mDDXHoxc/WK9NyfMoUdiPmr6NcmrCTPlWckzCfPoCcnj CfPoybDh01Nhc15Phw2Dnot4GPR82LDjhbCHxTyvJMyjlyUvJcyYF8MPdj4W +xkc44wdEGthbGjkWJgwyxZGrr6xP7gDg16PvXF/l0i+S5gp70veS5hHb0ne TJhPb4cNC94Jm/p/N2wY9EHEw6APw6b+Pwobdnwh+TxhHn0q+SRhTnwcfifG /OQdF+OMwZQvJYsSZhM5PkuYZZ9FrhGx3jcSZtWimG949LFnmPJ97Bn+LZZ8 nTCbvgmbuv027GlxNtgw6IeIh0FLw4YdP4b9Pj8TqZpYljCPfpH8nDBjfgo/ GPlV7OfsGGdsSqyFsTbK8VvCnIJlv0YuuPOn5I+EmfSXZHnoQ/RZ4eCkOZKU TiTNF3RD0mz6O3z/2NltmPWn2mtqvn8S5k4q6fjt+rsNj2DGSmoXkmYKOp/0 ufeS3lHykfa+nvJk1T5WbFlL7bXElm7Ks47a6aSZRVwuab6sIr2y5DGxbl35 rN3omtxIfRtKlotXf0p27GY2rZp0DBxZU7pt0nxBr5E0m1pLt0qaVaslbXPv V0/ahjtrJR0PL9ZO2oYXG0i3S5op6PWTZglrYQw2rSe9btKcZe2cC+xZJ+lc MIs4/GAqa2HdMI44/KjFNkmvCSaVpItJ39NO0h2T5sjG0o1J8wVdT5pN5aRj YFUlaRsuVJO24U77pOPhUFPSNrxokW5OminozZP+zAezYBhs2izpz6AwpZZ0 Xti3SdK5YBZx+MGXLaW3SJpxxOFHLXZOej/wibWTCyZtlXQMHOkq3SVpvqCJ gYUdpLdOmlPbJG1Tw5wNNtzZNul4eLFd0ja86Cm9Q9JMQfdImvecMXcLNm0v 3T1pjrJ2zgX2dEs6F8wiDj+YylpYN4wjDj9eN7h3PEtYRR0wN0zqnXRtwJQB 0v2T5lFf6T5J86lf0jYs2Clpm/rfOWkbBu2SdDwM2jVpGyYNTNqGHXtJ75k0 jwZJ754043ZL2g+uMD954RfjjMGUfaT3TppN5NgjaZahyQVrWS/7gVX4Mh9f Dq5QbfbtZpYcmjSDmvXe4BOxYIMmc+pA9R2QNLcOStqGWbAKe0QPx8Kfccq5 oeIOw1buvyW9lX9cT9WN2HB00mwaLDlKcqjYdUTSfFtfcfsmzc1EjB/JfdBa 2mlsP7XHKs+QpFkE24ZEriOUZ1jSXIJtwyXHJl1j0yRTk2bHKMmJSTMFPTLp +h8RMfDguLDh1PFhU+ejI567clLYsOAUyfik2YE+Oen3mMuD9XBqHGtPmiMn RF7u3ZjItVbE4Qd3JkomJM3FseHXKtZL/LoxztywalLEwI4zJKcnzZTTY//U //QYg4NTJJOTrqXTJKcmXVtTw94w+vCbk9Y+JH+kXf9nRi44MlNyTtKvCZz3 MUkz62zJjKQ5cm74wY+zIr59xOHXLtbCHhojDj/et8Ksp4Nn5yX9ndpzKdla y6Zpc+QSydyk+YK+OGkWnM/ak2bDBWHDrAvDhkOXRjyMuyxsuHCl5IqkOYJe EM/mE8nHSTNrvmRe0ky5KPLCvssj17YRhx8MulpyVdKMnBd+1Od9knuT5tPF kQtuXRMxMOUWyc1JswZ9U9Kcuk5ybdLcuj5smHVD2DDo1oiHHbeFDTvukdyd NF/QdyXNlXtjDE7dKbkjaV5eFecCh26PXLtGHH47xFpY94CIww/u3Bhrgk8P SO5P+r68LnktaaY8IXk8adagH0uaUw9GDNx6KOySePBw0ryAQU9GPEx6KmzY 8YLkeclYMWqM5Dm1R+u9zaaKX188qko/kzSvPhdnyrIfSZqDT0euE+RfU/+6 jWbNS5IXk2beM+EHO96I/Wwpfn6hXJUm8+nliIEjb0neTJovb0bM03rv1Cjf 9fheXWs8WfJK0rXE2byaNC/ejnjq/52w4cJHkg+T5gj6g6TZzxlzt2DW+5L3 kmbqi3EusOTdyDU64vCrN3nNsPrEiMOvo/b1lfa1WZNfT26K5wq3Pk26NmDG YsnXSbMD/VXSnPpc8lnS3PoibJi1KGy4803Ew6Fvw4YFP0qWJs0O9A9Js/az mBuufS9ZkjRHvoy8sO+7yDU94vCDOz9LfkqakUvCj1rNiC/plJn0VeSCVb9E DOz4S7I8aaag/0yac79Jfk2aU8vChlu/hw0j/o546vyfsGFBSnMmU2YHOpEy J1gLY3CqQXpF0oz8Kc4FZvwbueAXcfjNjLWwbri4Ivx4Pfk47g1sy8k3m/J9 2VB6g5TZ0Up61ZSZgl4l5frPpxwDDwop23BqpZRt6rx1yvHcj9VStmHBWtJr pswOdFtJD32+2ER3qillTq0h3SZljqyccl7u2uop54JfxOEHd9aRXjtlLhKH H7zYKOX9wCTWTi5YtW7KMRtrzlLKHIEpxZRjYN/60uulzMJ2KdvUEmeDvUh1 0F7xZbU7qC6+lN0ke3t+JyX1Hztob5zy6wBnzN2CU43S9ZQZydo5F3hXk66m zC/i8IPNrIV1w0Xi8Jut9h9xt2Dc5rwupqxnS85LmR0dpLeWdNY6v+Z3VZpc /83hCw9aUrZ79ncbXsGebVKOh2sdU7ZhwXbS26bMDnTXlOtqd+ndUuZUF+aU 7Kicm2vOLVLmXaeUc8Ev4vCDO92lu6XMReLwo14HpZz3GXGyWXnaNZpV26cc Azv6SvdJmSno3inf7x24Xynf954p23Bqx5RtGNEv5XjqfKeUbVgwUHrXlNmB 3iVlTrA/xuDUAOn+KTOStXMuMGPnlHPBL+Lwg82shXXDReLwg1+9Ul4TbNsj 5T1TY8dIhqXMnb2l90q55vdM2Q8G0IdNne+Tsh+s2V96v5Q/583+/zh0QMpj MOsg6QNTZsMR0oenzKNDpQ9JmW0Hp+wHS/ZNeQ74xThj3EFykBe+kOOwlHmE JheMODb2AxNZF7lg1VGSI1Ou8xGS4SlzZHjEwL+jJUNSrp+hYWfjbLCp7eMi nlo/Pmx4cJJkdMpcQI9Kma+DY27YdKJkZMrcZC2cBcw7IXKtFnH4pWItxLeK OPyonzkp1x6vS9xBniusGisZkzI/pkgmp8wR9KSUGTBecnLKbDolbGp+Qtiw 7NSIh1OnhQ0PzpKcmTIX0NNTZgr5xkm2Ve1/w+/3NZklEyPvFrKnpszBasSd kTJ7zpbMkCzmd93kNy3lep0vmZcyEydFLjh3TsSM76nXxZTrHZacH+fSQTk2 UO3O5Az1OTEp6d/NzIJVs9inYjeUzwU8X41nJLt0Mw8ul1yWMhfQl6bMjnkx BpsukcxNmZsz4lwG67PhRSkzsGPE4bd1k9fM606HiLs45deVMXFvqOcrJAtS rrf7JfelXKvXS65LmSPoa1NmwJURA5uuCpuavzps7sQNEc8duTFseHC75LaU uYC+NeXXyXFxh2DTLZKbU2bJNZEX5t0UuXaKOPxgz52SO1Jm3M3hBy8eiP3s EGsnF5y7K2LgyEOSB1NmzIMRA//ukdydMpfvDXtQnA02jHg44qnzR8KGF09J nkyZKegnUn4N4Yy5W3DkccljKXPzjjgXmPFo5Dow4vAbGGth3ftHHH589vsz XiNh1dMxNzx6Jmw4slDycso1/3zKny9hwAthw4gXw6bmXwob7rwS8XDo1bBh 3Gthw4V3JG+nzKY3JW+kzLXXw29IzE/e4THOGKx5T/Juygwix1spc+2tyMUz XkOfg9ukzaF3Y77uqvclqtvOTebIZ5JPU77TH0o+SPmOfxQ2d+vjsLlrn4QN dz6PeHjxRdjU/KKw++j1vZPm+TZlNn0t+SplNnwZfrDz/djP5BhnbHSshbHe yvNNyjyCa4sj18mxdtb0vfbURXMtSbnGctp3VlIQJ/KSgd1c8z9KlqbMgJ/C hk0/h71JL7ep/6Hiw28p8wcO/S5ZljLH/wgbLvwr+UeyneZfnjKj4Nqf4bcp P4egsV9SZt7yGIM1/JDpCunT9dlumuRv7pbez3ST/0aNZjbr/SFlDq2I+aZH 3/cpcySf9p7hXUo6mTb/0mnb1E8mbZt64myw4U4h7Xh4sVLaNjW/cto2XFhd erW02dRKetW02bBK2n6wM5H2fmAe44zBY9bCGAwiR+u0uYYmF+8LqK1nU+YQ d5b5Bui576hzOChtjqwvvV7aNb+W9JppM2DttG3YtE7aNjW/bto23GmXdjwc 2iBtG8ZtmLYNF6rSlbTZVJIups21jdL2gyXMT16YxzhjsKbOd2BpM4gc5bS5 hiYXzGa9bdPmEL7MR013ku6YNlM2T/s7LHjUXnrjtHnUlLYNnzZJ2+a8+K4L GwY1px0Pg1rStmHHFmnbsIN5tkmbR1tLb5U2Y7ZM2w92Nqa9H/jFOGPwmLUw BpvI0SFtlqHJxWsL+4M7MKhz2nvj/u4hPShtpvSQ3j5tHm0r3TVtPm2Xtg0L uqVtU//d07Zh0A5px8Ognmnb1P+OaduwYyfpfmnzqI9077Q50SttP7jC/OSF X4wzBlP6S++cNpvI0TdtlqHJBWtZb5e0WYUv88Fd+tgzTNkz7T3vJu4sFZu2 1z3+UbqH9MC063Z3xtOuY84GGwbtlXY8HNo7bXuHJrdhSH/VxYFpMwQe7a/2 fpIJnXUG8iuKG/3kMyBtbp4prkyX7Mta1d9dPrukzSbyHJA2y9DkekH86cVn YH4+QQw8NG2+Hcad4w6mzZGjJUPS5gt6cNpsOjxtX1h1RNo2XDgybRvuDI14 ODQsbHhxvOS4tJmCHhHnfpPkxrTZNFxybNpMOSrywr5jItdKEYcffBkpOSFt xh0bftTkNMnUtPk0OHLBpBMjBo6Ml5ycNl/Q49Jm02jJqLRZdVLY3PsxYcOd UyIeXkwIG16cJjk1baagp6TNkqkxBpsmSyalzdET4lxgz8TItUHE4bdarIV1 rx9x+FGLY2NNMOkMyelp39N5ksvT5shMyTlp8wV9dtpsmh4xsOrMsOHCWWHD nXMjHg7NChteXCi5IG2moM9P+zMfzHomWMW/H8xOmykzIi/sOy9ytUQcfvDl YslFaTNudvhRi/NjPxvH2skFk+ZGDBy5QrIgbb4siBhYeKnkkrQ5dVnYneNs sOHOlREPL64KG17cILk+baagr0ub95wxdws2XSu5Jm2OXhTnAnuujlw9Iw6/ bWItrLtHxOHH68a4eJaw6saYGybdnHZt/CK29FPN3pU2j26V3JI2n24Le1fV /u1pc2Gg2n3kf0faDLpHcnfaDLo3bJh0X9i99L7xV35HUTG7K/aBtLkE4+4P vz3Eup/l07fJ/HogxmDKY5JHJZPFqJ35fkxsGaQ8O6n9YNqsvSX2s1/4PpJ2 vb4ueS1tjjyXNoOO7qfXqrTfG/wrRg1QnifxV/8xkoVi2Hli3izJ02lz5/mI hxcvhE3Nvxj2MTHPq2mzaaHk5bTZ8FL4wcjHYz9DYpwxOPpEjA2LHK+kzbVX Ihc8eiP2A9vekryZdo19L1mSNjs+lHyQNlPQ76dd/29HDDx4J2w49W7Y1PlH Ec9d+ThsWLBI8kXa7EB/LllF74tXlgzqZk59Jvk0bY68F3m5d59ErlMiDj+4 85Xky7S5+Gn4jYr1Ej8pxpkbVn0dMbBjqeSHtJnyQ+yf+v8xxuDgN5LFadfS d5Jv066tJWFPjT78+HmHOfF9FvX/U+SCI8skv6X9mvBmPAOY9avkl7Q58nv4 wY+fI/7ciMPv1FgLezgn4vCbp3v3bEF3s2Am/RG5Diu4/5mCOZLM6PUqY76g +YUyWPC35K+02fBP2DDr37DhUCrjeBiXztiGCytJFzLmCDqf8bPpLd0rY2bl pLMZM2VF5IV9mYxzwTLi8INBq0ivnDEjicNvdz6LZFyn8Im1kwturZpxzJ6q 5TUz5gusaav2GhlzqrV0q4y5tVrGNsxaPWN7L8Xuys8U0eZ3k/n9/iazY0P1 bZAxX9DtMuYK62EMTq0vvV7GvGTtnMsy5dhNOdbJmF/E4QenWQvrhnfErZsx d9pkvKbWqolWkn26+b50Vl8nyWtiyl7KWRO79pRuzJg5x4k/5Yx5Bbeqalcy ZkQtY7uN8q0u2U85R8q/KeP3UbBjC7VbMuYLulmyuWS25LyMOYW9WcZ8qWec Fw5uKr1Jxvz6vzhYs5X0lhnzjjj8YEeXjPcDq1g/ueDT1hnHwJFtpbtmzBc0 MXBxG+kOGfOrY8Y2tcTZYMOL7TKOp/67ZWzDhR2le2bMEfQOkkE6w6rOspgx s3pIb58xU1k75wJLumecC5YRhx98ZS2sG0YS1z3Obk6cHa8n3EGeK9zqk3Ft wIxdpXfJmB3oARlzqp9034y5tVPGNszaOWMb7gzMOB4O7ZaxDQv25v5mzA70 nhmzlnzMDdf2YN8Zc6R/xnlh3+4Z54JZxOEHd/aV3idjRhKHH7V6jGRYxkxi 7eSCVftlHAM7DpM+NGOmoA/JmE0HSO+fMasOzNjm5zgOytiGEYdnHE+dH5Gx DQuGSo7OmB3oIRlzYliMwanBkqMyZiRr51xgxpEZ50pFHH4wl7Ww7kTE4cfr CQzj3sC24ZJjJcfptX2E5K2uZscoyYkZMwU9MuP6HxEx8OC4sOHU8WFT56Mj nvtxUtiwYILkFMlyft+f78kyriFqcRbnK17to/5xGXPkhMjLXRsTufZXnf+p +H2bzJ1Jkok8S8WOzZiVl+i9yVy+98mYSSMjF6yaHDGwY7rkjIyZgj49Y/ad KpmSMQtPC3v/JrepKRhxZsRT52eFvWns49yM2YGemfHrwLFxt0bqjE+QvNPV jJwY5zKxp/PAjvla+zzJORmzecr/rVs+jarrGZyhnuPBGd8t2HZ+xvWJXi75 M2N2XMp5ZMwU9NyM6/+C8IUHF4YNpy4KG/ZcFvFw7fKwYcFVkiszZgf6iozr 6n7JfRlzagH7yJgjF0deeDcvcm0XcfjBnWskV2fMxfnhR70+EHk7xNrJBauu jRjYcavkloyZgr454/t9veS6jO/7DWHDqRvDhhG3RTx1fnvYsOBeyT0ZswN9 d8acuC/G4NRdkjszZuTVcS4w447INTDi8OsZa2Hdu0QcfvDrplgTbHsw9kyN vSF5PWPuPCJ5OOOafyj89ok+bOr80fCDNU9IHpcsz+qe5HRPcr4rT8YYzHpa 8lTGbHhR8kLGPHpO8mzGbHsm/GDJYzHHYTHO2MGRg7xHRo7nM+bR85ELRrwZ +zkg1kUuWPWy5KWM6/xtyVsZc+StiIF/r0peybh+Xgv72DgbbGr7nYin1t8N +wAx4SDV7cesX+2PMmYEfF0Yc8OmDyTvZ8zNl+IsYN57kQvufBh+Q2MtxI+K OPyon78yrj1el26O5zpAn+/+5u+caB0z9BntMOn2quFDpRdnzBQYsEjyRcZs +jJsav6rsHdVnn+U5/Amc2qJ5DvmF0eO5Gc5lPMIvgvLmA8TIt/nGbNpqeSH jFnydeSFed9HLtjzY/iN1vuoXzJm1/SIw496zek+ZbNm4uLIBed+k/yacZ3/ I/k7Y478HecC43+XLMv4PcQfYcOsP8Omtv+NeGp9RdjwIKM501lzAZ3Kmh2s hTHYlJROSNbU+8G2kkO6mXn8EQ5ywR3i8JsVa2HdMI44/A5QzF/83Zkm13NB ffms660ovVHWtbqadOusOYJulTUDVso6BjatnLVNza+Stc2dWD3reO5Im6xt eLCO9NpZcwG9VtavlzzDzzJm05rqa5s1S1bNOi/MWyPrXHCHOPxgz3rS62bN OOLwgxelrPcDE1k7ueDc+lnHwJGKdDlrxqCJgX8bSLfLmssbZm3DLM4GG0ZU s46nzmtZ2/BiE+mmrJmCbp/1awhnzN2CIxtLN2bNTdbOucCMeta54A1x+MFi 1sK64Rpx+PHZD8bBJ1i1adZzw6PNsrbhSAfprbOu+Rbp5qwZsEXWNozYMmub mt8qaxvubJN1PBzqmLUN4zplbcOFbtLbZc2mrtJdsuZa56z9YAnzkxfmMc4Y rNleunvWDCLHtllzDd01nvE4ydisOYQv81Gvg6R3z5oj/aT7Sg7V3V6huz1E d3sQf4RiC7GwyXert8Z7ZX3X+mRtw52dso6HFztnbVPz/bO24QLz7MZzUs2t LTlC8wxtsg+MOEjs7ZE1f4epfxOxaoDsg9U/mN8RzppB5BjIfsSfXbPmGwxj 7awJNu2R9d6oseGSY7PmyAHS+0tG673VKMnH4uINeg91vWTvrNm0r/Q+Wdf8 flnbcOfArOPh0EFZ23D84KxtuHCk5Iis2XQYZ5k11w7J2g+WMD95YR7jjMGa wZKjsmYQOQ7Pmmtocp2q93Wb8tk3aw4dFfNN6en9/hhcGRF7hndDJUdnzb9h YVM/x4Sdj7PBhjvHRTy8OD5sav6EsOHCGMlJWbNplOTErNkwMvxg55DYT+sY Zywda2GsTeQYnTXXRkcu3hdQW5tnzaGxMR/n9Izk6aw5MkUyOeuaP0UyPmsG TAgbNk0Mm5qfFDbcOTXi4dBpYcO4qWHDhbMkZ2bNpjMkp2fNtWnh1y7mJ285 xhmDNWdLZmTNIHJMz5pr0yPX2rHek7Pm0IyYj5qeJ7k8a6acL5mTNY/OlczM mkezwoZP54XNec0OGwZdEPEw6MKwYcdFYXeOeS7LmkeXSOZmzZiLww92nhP7 6RDjjDXFWhjrFDkuzZpll0autWJ/cAcGzY+9faF6O1G13Kx7vJ/YkhJbjmsy j66UXJE1n64K+1DV/tVZc+EwtYfL95qsGXSD5PqsGXRj2NT/TWF376U7K//b s+bRrZJbsubEzeG3l9aQ1BpGNJlft8TYreLBLZI71e6mPLdl/2PZbZFru1jv AslYsWSM5POu5u6C2PP64tx6kqO6mX/3Su7Jmk33hU3t3h/2yCa3qfHx4ttD WbMIBj0ieThrdjwaNuygJp7KmkdPSB7PmjGPhR+svFtyV9b8ejzGdou1MHZw 5Hgya5Y9GbngzrNZ1x5Mel7yXOjN9Vlhs5w58qrklaz5gl6YNZteCF9Y9WLY cOGlsOHOaxEPh14PG168K3kna6ag345zb6s518iZTW9J3syaKS9HXtj3RuQ6 PuLwgy/vS97LmnFvhh81+b1kSdZ8Whi5YNIHEQNHvpB8njVf0J9lzaaPJB9m zaqPw+befxI23FkU8fDiy7DhxXeSb7NmCvqbrFmyJMZg02LJ11lz9L04F9jz VeQ6LeLwOynWwrqnRBx+1OKnsSaYtFTyQ9b3NKuzzOTMkWWS37LmC/rXrNn0 Y8TAqp/Chgs/hw13fo94OPRH2PDiX8k/WTMF/XfWn/lgFgyDTX9l/RkUpvwS eWHfn5HrwojDD77wR+ZWZM245eFHLeZy3s/MWDu5YFIi5xhYspJ0IWe+5HOO gYUp6WTOnErnbFPDnA326CbHwp+MmHGS7JVz5kUb6dVzZgp6tZx5/0PcLdjU Wn2tcuboijiXA8WfrHKNaTKziMMPprIW1g3jiFs159eNz+JZwirqgLlh0po5 1wZMaSe9vmSReDROuVvE2w3FoQ0kQ8SiiWLLOjkzgfpfT+11c2bQBjnHT+3p NjyapvYW5MiZHTXpqmSK8pRy5tKXmmu85tqy0VxhfvLeJ47eKynmzJRG6XrO bCJHJWeWocuSsU3eC9yGVfgyH/XaWbpTzhxpzplB8K9Jun3OnNokZxtubZqz DbNgFTbcack5Hl5skbNNzW+Zsw0XmKdjzmzqIL11zmzYKmc/GLlxzvuBeYwz BkdZC2MwiBzb5Mw1NLngUZec9wPbtpXumnON7SE9KGd29JTeIWemoHvkXP/b 5RwDD7rlbMOp7jnb1PmOOcdzV3rlbMOCnaV3ypkd6H45v8fkjDgzONVXfX1y 5sj2Oefl3vXOORf8Ig4/uDNAun/OXCQOPzjEeomHQ4wzN6zaJecY2LGX9J45 MwXN/qn/vXMeg4MDpXfNuZZ2l94t59rinLDhJX34XRD/psd3n9T/PjnngiMH Sh+Q82sC580zgFn7S++XM0f4Dgw/+LFvzvGwjDj84DRrYQ8wkjj8zo85+S4f Th2S83dqF+RlS5bnzZGjJUNy5gt6cM4sOFz6sJzZcETONsw6MmcbDg2NeBg3 LGy4cILkeMkhfcQ28WRik5/NzZKbJKfIHp4zv2DKUZEX9h0TufKKmyC/ETkz 6ETJyJxZSeyxOdfn6ZJpOfNpcOSCW6Mi5mHV+kOS8WqP13uikyVfdzWnTpKM zplbY8KGWWPDhkETWG/O7JgY9mLFT9batmnU65FY1EH6VPU/oXkel0zNmVVT JJNz5uXIOBc4NCly3d3DPnBs9VgL624Xcfid0dPrgUHwaTp9Od+X+ZJ5OTPl XMnMnFmDPidnTp0ZMXDrrLBhxIywYdCsiIdJ54UNOy6SXJgzX9AXcK8kyyV/ 5swp7Dk58+XsyAsHZ0euLf6/OFgzV3JxzrybE36wY0Hsp32snVzw6ZKIgSNX Sq7ImS9XRAxcvExyac78ujzsLnE22PDiqoin/q8OGy7cKLkhZ46gr8+Z/Zwx dwtmXSe5NmemXhznAkuuiVw7Rhx+HWMtrHuHiLsmzuCvOLvpeqZbNeq1MGdu 3ZJzbcCMeyR358wO9F05c+o2ya05c+v2sGHWHWHDnXsjHg7dFzYseETycM7s QD+UM2tvjbnh2oOSB3LmyJ2RF/bdH7n2jjj84M5jkkdzZuQD4beSavZU1cUb OTPprsgFqx6PGNjxvOS5nJmCfjZnzj0peSJnTj0VNtx6OmwY8ULEU+cvhg0L Xpe8ljM7XpW8IpnS5H54AacWSl7OmZGPxrnAjJci19CIw+/AWAvrHhJx+PF6 AsO4NzDubclbOd+X7yVLcmbHR5IPc2YK+oOc6/+diIEH74YNp94Lm1r/OOKn NrnNPYEFX0oW5cwO9Bc51xC1+Af+ev/zWc68giPvR95vxKtpytWx0fwi7vOc 2fO15CtJSe/FipKh3cyLH2I/o2Pt5Hq0h/1hHez4UbI0Z6YsjZhn5fOM5BvO ROv5Nmc+nx5n813OjPgp4qnzn8OeHfv4PWd2oJdxT/rova3u1mlN5tRvkl9z ZuRXcS4w45fINSvi8DtbtdZJ+16cMxd/Db9DJc/kfLdg29851yf6UL02HpI3 O1LSybyZgk7kXf//hC88+DdsOLUibNiTzjsermXytmHBytIr5c0OdCHvuipK b5Q3p/LSubw5wh+jJi+8y+adC34Rhx/cWVV6lby5SBx+1Gsp77wwibWTC1a1 yjsGdqwlvWbeTEG3zft+rybdOu/7vnreNpxqk7cNI9bOO546XydvGxZsKL1B 3uxAt8ubE+yPMTi1vvR6eTOStXMuMGPdvHPBL+Lwg82shXXDReLwg19r5L0m 2FbOe8/UWFfpLnlzpyZdzbvmK3n7wQD6sKnzet5+sKa99MZ5f87jrvwfh5ry HoNZm0pvkjcbtpTeIm8eNUtvnjfbNsvbD5Y05j0H/GKcMe4gOcgLX8jRkjeP 0OSCEdvmvR+YyLrIBau2lt4q7zrvJr1d3hxBE7Oq6mY6ta/2UaqjVrLPlN1a +izpznnXdve846n17fO2X1IdvyjpxdmJDRXJMd3M2W3U10Eyg+/C8+YU3GQt nAXM65F3rrOZRzXYU+0zmhwLl2EcsfhRP4flXXu8LnEHea6wqq90n7z5sZv0 QMlZfN+eN09gwM5q7ySZ2dNtOHWu2l00b/+8WbZ73vFwalDeNjzYV3qfvLmA 3jtvppCvX95s2kt6T9Ygls7UHro2mnl75J0L7hCHH+zZX3q/vBlHHH7U63DJ sZLXdK6vSnbJm3MH5B1DnR8hfXjeHEFzLjD+IOkD834PcXDeNsyCVdjU9pF5 x1PrR4UND46RDMubC+ihebPj2BiDTUdLhuTNTdbOucC8wZErE3H4wWnWwrpT EYcfrys8q9551/NxkhF519vpkml51+pJktF5cwQ9Km8GHB8xsOmEsKn5kWFz J8ZEPHdkbNjwYKJkQt5cQJ+S9+skz5A7BJvGS07OmyUnRl6YNy5yrRNx+MGe yZJJeTPu5PCDF2fEflaLtZMLzk2JGDhypmR63oyZHjHw7zTJqXlzeWrYpTgb bBhxVsRT5zPChhfnSWblzRT0uXm/hnDG3C04MlNyTt7cnBTnAjPOjlybRBx+ G8ZaWHf7iMOPz37PxmskrJodc8OjOWEfLZ6sLo7ManLNX5j350sYcFHYMGKu 5GLJEf3dpv7bKO48xV2WN6PnSS7Pm3Hzw4YL10iuzptNV0quyJtrC8LvSOU8 V3kuyZt5V8TYbr20RvVfmzeDyHFV3ly7KnLxjD+TfCoZ2MtzwSPq9QHJ/Xmz 5DbJrZyNmHND3nebO36T5Ma879bNYXPXbgl7YQ/Hwp85YtF2Ysbtao/tpP2o fUfeXGCe+/Jm0z2SuyUfKPZ9vvPn+ekz6wTJD2LPLK3hrrwZ+LbG3+LfC/Nm EDnuzZtr90aunWLtrAk2PRh7o8bekryZN0eelDyRd80/Ink4bwY8GjZseixs av7xsOHOUxEPh54OG44/EzZceEnyYt5sel7yXN5cezb8Doz5yXt4jDMGaxZK Xs6bQeR4IW+uvRC59on1PpQ3h16O+faOPvYMR96OPcO71ySv5s2/18Omft4I e0ScDTbceSfi4cW7YVPz74UNFz6RfJw3mz7kGebNhvfDD3a+EvsZHeOMDYu1 MDY2cnyUN9c+ily8L6C2zs+bQ5/GfJzTZgXxoGCOfCNZnHfNL5J8kTcDvgwb Nn0VNjX/ddhw59uIh0PfhQ3jloQNF36W/JQ3m5ZKfsiba9+H36kxP3mnxzhj sOZXyS95M4gcP+bNtR8j14RY7+d5c+iXmI+azml/2YKZ8nfe32HBo98ly/Lm 0R9hw6c/w+a8locNg/6V/CMZ3N9teDRE7fPFihV5s4N5MgXzKCWdlNT13me4 eLfGFmbnb7GftrIvVGyiYB4vizHYRI50wSxDk+uU2B/cgUH5gvfG/S1Llwpm ymrSrQtm0srSK0kuanIbpi0VCy6W3V0cmSI2TJb81NUMWr3geBjUpmCb+l+j YHuRmPGFZB2135Ves2AuwYm2Bft9qv5PJK0KZhg+jMGU9aXXYy/i2A6af221 54pvPdReq2DWst6CZI54tW7BTIO79LFnmFIpeM/wb0PpDQpm00YF29RtsWCb OuZssGFQteB4GFQr2IYd9YJt2EFNbFIwj9pLb1wwYxoL9oOR7QreD/xinDE4 yloYg03kaCqYZWhywZ3NC649mNQi3VywPp99F8yRjtLbFMwXdIeC2bRF+MKq LQu24cJWBdtwp1PB8XCoc8E2vOgu3a1gpqC3k1yh8++l8x9XMJu2le5aMFO2 Ljgv7OtScC6YRRx+8KWH9PYFM444/KjJPaQHFcwn1k4umLRDwTFwZCfpfgXz Bd23YDbtKN2zYFb1Ktjm3vcu2IY7OxccDy/6F2zDi92ldyuYKeiBBbOEtTAG m3aV3qVgjrJ2zgX2DCg4F8wiDj+YylpYN4wjDj9qsU/Ba4JJe0nvGXd3uOTY gjlyoPQBBfMFvX/BbNq74BhYtU/BNlzYt2Ab7hxUcDwcOrhgey1x4zLV75Fq r6n2pWofUfBnvvODYfCJ3yXi94dgyn4F54V9hxSc65Im+6wIVg2RDC6YccQd WnAtjoj9wCfWTi6YdHTEzNP96an7c5zal/e0P6yBhcMkQwvm1DFh5+NssH8W dy7XOnZU/DdixmLJCQXzYqxkTMFMQZ9UMO85Y+4WbBotGVUwZ1n7UZILxY2R BTOwTcThl4m1sO7VIu7Egl83uHc8ywU9PS/MmixG9da6Ti6YKadKpnC3tcYf JKeoPVdzTSiYabBgkmRiwfU/OWwYdFrEw6CpYcOkaWHDjhmSswrm0XTJGQUz 7vTw2yDmJ28lxhmDKedIzi6YTeQ4s2CWnRm5pmgvfbSX8QWz6uyYj3qdzzMs mCMXFMwg+DdLcm7BnDovbLg1O2yYNSdsuHNhxMOLi8Km5i8Ou0vMc3nBbLpU cknBbJgbfjByZuxnmxhnbJNYC2OdI8dlBXPtssgFjxbEfmDblZIrCq6xByUP FMyOGyTXF8wU9HUF1/9VEQMPrg77/zF11vFWVkHbtvXs7rNRsJAOG8RCAYOw MFERE0RAsDFARDoFEUEBW8RCEOxCEQEFFCxsUbEDwa7vut97vt/7/jG/uWet NfOs59lrrr3PPkcUp+6NWH3+QOTrrDwYsVgwH5tXY3bIP1Ljz5i7xzMTp+Zi D9eYI7Ojrs7dQ1Grc+RpnbizAHu0xlx8ONa1j/0q/+iY17XFqoWRI3Y8iz1T Y6Y8E/ev/n8u5sTBx7HHatxLT2JP1Li3nor4+BjTOv29g36u0/dZ6v/no5Y4 shh7qSbeS+I1ELNexBbVmCP67xdfrjE/Xoj8MyJP646LvegeTo88rds9/n5C f4tRC+tuhxVLGV+R5czlOLM5c+QN7PUa80V+VY1Z8Kpehxqz4bWIxawVEYtD qyNfjFsT8Uz6+t0a82ETvb4Reydem1ICJmH3wooj6am3asyUlVFX/Hszag3v SK9jmw4wg97H3sPWH+o1Yqb68wfs+xrzaVXUErc+iJzb2c9nNWbLn+T+ga2r Mas+wj7Evj3UWu/j97O3Tuzt4xoz6Avs8xqzY33EYsd3yqsxX+S/qTFXvo85 cepr7Ksa81J7X1tjDn0ZtYZHntYNjL1o39dHntaNhD+d2c8nNebTT9iPcV62 5VlukzBTfsN+rTFr5H+pMac2RI649XPEYsTGiMWg3yNfTPojYrHjP+zfGvNF /h/sb+wsrnlmwpxS/FeN+bIp6oqDf0ataf8nT6zZPKH/IZV591esEzu2S/h+ boi9q5b4tEXCOeJIAl+TMF/klSMuboXfMmF+bZ1wrF7Ss1EsXiQTzlf/pxKO xYUCPp8wR+RzCbP/xzhbYlaWsUzCTNXe9VzEknTCtcQy5Wmd+Kq9aN9ipPK0 Ts/g7ISf3She0y68pp/WmFvlhHtDzKiHr5swO+R3SJhTtfhKwtyqJhyLWXUS jsWdHRPOF4d2SjgWCxrgd0uYHfL1E2at6una4tqu+F0S5sj2CdcV+3ZOuJaY pTytE3ca4RsmzEjlad0v9OpsOHNUIzNJe1ctsapxwjlix574PRJmivzuCXOu Gb4pdldTa/3323Vg193EzRNmxF4J56vP9044PuUw3s8S/8sO6dZYN32/pO/B E+ZUK/y+CTNSe9dzETP2SbiW+KU8rRNztZcmCXNReVqn9xMxTOfmP7jxL3Zg wuflBPzx2K+MtU+YIeKKdLuE+/9g/EEJ86BtwrE4dUjC8cPw5xieXwf0eM7J sejDEmZBF3znhNkh3ynhHlIv9tBzg3VHJswrceTQhOtOoM5x1Dk8YX4pr2PC 3Dkaf5T6pB19gx2RMC9OTPh+xCTtXbXEqmMSzhE7TsaflDBT5JUj9h2HPzZh FnZNOFYv6dkoFiNOSThffd4t4Vgs0H2ckTA75LurXzrCQey3A8yp0xk7LWFG au96LmLGqQnXEr+Up3Vis/aifYuLytO67TlX93A2WiTMtnMS7k/5pTp7CbPj Aqx3wkyRPz/h/j831ooH5yUci1M9IxZ7+kS+uNY3YrHgYuyihNkhPyDhvhqJ jUiYU/2xCxPmSK+oK971i1rJyNM6cedS7JKEuXhhrFO/joq6W8beVUusuixy xI5B2DUJM0X+6oTP9xXY5Qmf94ERi1NXRixGDI589fm1EYsFw7FhCbND/vqE OTEi5sSpodh1CTPyknguYsaQqLVj5GldPvaifdeNPK0Tv66KPYlto+Oe76UX 7ki418SdcdjYhHt+TKxrGGOK1ecTsPHYnKa8DyXMnGVJPoemOCfYDpyZ+5mb lDCzpmA3JsyGW7DpCfPoZmxqwmy7KdaJJRPjGnvGvOZaRo3JCfNFNaYlzKNp UUuMuAu7M2Eu3hC1xKoZ2K0J9/k92N0Jc+TuyHkUnnSl92ehf6d/HmD/xxMn 6PUa7PaEe/veyFevz444x3wWe1B7hCEnkfdAwnydGddeqP/2hPE5CXPz1ngW Yt59UWsyuSey5n70/PbOFZM3b+c1Yp36Z1nCvaf3pavjdRWr5mIPJ8yPJ7DH E+aI/GMJM2A+Ni9hNj0asXp+QcRi2ZORL049FbF48AL2fMJckH8uYaao3iMJ s+lZ7JmEWbIw6op5T0etbpGndWLPi9iihBn3TKxTv76FvZkwEx+LWuLcS5Gj Pn8VW54wR5bHcxHjX8YWJ/wZYknEYtYrEau3X4t89fqKiMWDNdjqhLkg/0bC 7Hgz5sSm17FVCXNzUTwXMW9l1OobeVrXI/aifV8QeVo3h757KOH3F/XzO9jb CffbD9j3CffqR9iHCXNE/oOEGfBu5IhNayNWz78Xsc7Ex5GvM/JJxOLBeuyL hLkg/3nC75N6DXWGxKbPsHUJs+T9qCvmfRq1ro08rRN7vsK+TJhx62KdePFj 3M8VsXfVEue+jhxx5GdsQ8KM+SlyxL9vsW8S5vJ3EY+KZ6NYjNgY+erzTRGL F39ifyTMFPnfE34P0TPW2RJHfsN+TZibX8ZzebCp64gdN0ae1g2PvWjfdeHb Q6z7JeGf/cQ48Ums+iuuLR79HfGT9PLJ9PWWSff8f9i/CTNA/0N2xWLE5knH 6vstko7H8n4+BvsTJpXhQAnbmvEHOT/bJM06sSGNTiXNpgS+JmmubYffVtbO NcU3MU/zmnuWvXVjb5mkGaQayaS5Jq9aeo2PxB+ha7TztcQx9esu6J2T5kgt voLtwJrtsTx6LvssJM0lna0Supj0WSsnHYs71aTzxYs6Scfq+e2TjsUFXWen pNlUD183aTbskPS6afDzVO4lmzTzNK+56YyfxnguaQapxo5Jc01etcQw7V17 Ept2Tfre1GMH4g9ImiNN8U2S7vkG+N2SZkDDpGOxqVHSsXq+cdKxuNMs6Xxx qHnSsTjeIulYXNgbv1fSbNoDv3vSXGuZ9DqxRNdXXTFP85oTa/bF75M0g1Rj z6S5Jq9aYrb2Wz9pDmmtricea0z3LI4clPQ9i3f74Vsnzb82Scfqn/2TjtVP ejaKxZ2Dk84XL9omHavnD0k6FhcOxx+WNJva49slzYZDk14ndrZK+n7EPM1r TjzWXjQnBqlGh6S5Jq9a06O3/kmYQzqzh8dznILdmDRHjsUfk3TPd8Z3SpoB XZKOxaajko7V80cnHYs7xyWdLw51TToW445POq4HHx6BD92SZtPJ+JOS5toJ Sa8TS3R91RX7NH9i0qw5HX8aNpcapyT/l2vSqiVma78ddY651jzWnZp0T1+I 9UuaKefiz0maRz3wZyTNozOTjsWns5KO9bzOTjoWg85LOl8M6hnxovbW4sh2 cZ2+2Az66wz6q7fOP2tOR/dKmp3dk76fv+DXfPbZvZF5rL1obn5n3lOTZtRO MGNH7IKk31t0f+KOGNQ/7k3ndzQ2CmvA2t2wy5Nm0sXYRVhtO2sxbQn76cE1 L0Hfxj7PRF+qs834FUmzaCF7GJg0i9T/V2FXJs2OIdi1SfNoEHZN0py4Otbd Ts2zqHlZ0vy6JubElKHYdUmzSTUGJ82ywVErFfsdkDSrrovrJWNM9yymjIl7 Fv+GY8OSZtOIiNW3IyOuH89GsRg0NvLFoHERix3jIxY71BOTk+bRDdjEpBkz IdaJkdfH/TSNec3tFHvRXIuoMSlplk2KWuLOTUn3nph0MzY1/N86F0lzZBY2 M2m+yM9Imk3TYq1YNT1iceGWiMWd2yJfHLo9YvHiXuyepJkif3c893XYp0mz 6S7szqSZcmvUFfvuiFptI0/rxJf7sNlJM+7OWKeefAZ7Omk+zYhaYtKcyBFH 5mGPJM0X+blJs+kB7P6kWfVgxDr3D0Us7syPfPHi0YjFi6ewJ5NmyhPY40mz 5OmYE5sewxYmzdHZ8VzEngVRq2vkad1hsRft+9jI0zr14sOxp0fp42eT5pvO 6VvYm0lz5GVscdJ8kX8J2wlGLSDnuaS59gL2fNJcWBSxuLMk8sWhVyJ+lT49 m/56Db0c/WrSbJkWjBfDxKblSf8MKqa8GHXFvqVRS9x6NdbdTc+eS82VSTNu WaxTL74d93NG7F21msGTptgq9C74d5LmiRjzTuSIhauxN5Lm1JqI+8ezUbyK /Z/Hdd/V68AeeqLXJs2LT7CPk2aK/EdJ817PWWdrb667F/YB+i5yzyF3Bfo+ dC/0e3rNO/N+mTS7nkC/njSf57DmfNa8n/T7xtx4LcWqT+PaYtJnSfeGmPIN 9nXSPPoC+zxpPq2PWCz4MmL1/1cRi0HfRr4Y9F3EYtL3EYsdG7Gfk+bRT9iP STPuh1g3LK6vumNiXnNiyi/YpqTZpBobkmbZhqh1bexX9zMx1up66tdtU3xu Tpkj/yTNIPHvd+y3pDn1R8Ti1p8Ri1l/RSzu/Bv54sV/EavnN0s5Fhd0na1T ZtOW+C1SZsPmKa8TI3+N+xHzNK+5ybEXzYlBqrFVylyTVy3xaLuU70dsS+Br Uu6x+vhdU2ZHHp9LmSny2ZT7P5lyjniQSjkWp9Ipx+rzQsr5OivFlGOxoA6+ mjI75GtT/ow5NZ6ZOFVhrJwyRzIp19W5K6VcS/xSntaJOzvgt0+Zi8rTOnFI +1W+OKR5XVusqptyjtjRAL9bykyR1/2r/xumPCcO7oTfMeVe2gW/c8q9peek WLzUmNaJEbun/H2W+r9RyrXEkeb4Zim/J+h56zUQs5rim6TMEX0HpnXiR+OU 88Uy5WmdeK291EuZkcrTOn1uFbPEP7Fqj5T3cSF93w9bljZTWjPWCnsbnvSm r/fUa02PX4DeS68dug96b3Qb8vbD9kmZQfulnC8mtUk5Fu/2Tzl+hNx+5LbV d3nkHZgyr8S4A1Je91xn3oNTZp34pzWaa8v6g7FD0e+xt77UORg9rBP3wfhB 8XpfjV2F/bMX98aaQ1Lu7xPwx6fMl074jimz6TB8h5RZdXjKsTh1RMqx+vzI lGPxqHPK+eJRl5RjceSolGNxRNfpmjKbjsUfkzJvjk553Xr23y5lDotlmtfc Iu69fcqMFqdU47iUuSavWmKP9q49iUcnpnxv6rf+ej1T5kt3/Okps+kU/Mkp s6pbyrG4cGrKsVhwWsqxeHRGyvniUY+UY/HpzJRjcaQndl7KbDoHf3bKvDsr 5XVijK6vumKZ5jUnvpyP9UqZU6pxbspck1ctcVf7PSllbvWK64nBGtM9iykD 4p7Fwj7YBSkzq2/E6p9+EdfEs1EsBl0U+WLHxRGLBZdELEZciQ1MmVOXY5el zIxLY5142TvuJxfzmts69qK5YtS4ImXGXRG1dJ9LsVdSZtJVcb2zY2xJyrwY hl2fMpsGY4NSZtW1EYtTQyJWzw/FrkuZN8MjXwwaEbGYNDJicWE8Ni5llo3B RqfMuFGxbse4vuruFvOaE2smYhNSZpBqjE2ZZWOjVjX2e03KHJoQ11NP34Hd jn2kv7miT6emzLbJ2KSU+XhjxOLUlIjFrZsifhSeDCD3ZvQC9EXoaejD4EEH bHrK7NB1bkuZRzOxGdhieu2WlFkndt4Q99M65m9NmbOTYm7/qDErZZbNilq1 cX/ijhh0Z9ybzu8z2NMpM+V+bA72OPu8hH3ejf4XRl2Kvgf9H/oy9L3oo9h7 F2x2ygx6IPLFoAcjVv8/FLHY8Sg2P2UePYLNTZkTD8e6V7jf+1JmXaeY15yY slDPL2U2qca8lFk2L2qt4zW6mL3dlTKrFsT1Dmjn+xWHxZRn457Fvyd0rymz 6cmI1bdPRXxSPBvFYtBzkS8GPR+x2PFCxGKHeuLllHn0EvZiyoxZFOvEyMfi frrHvOa6xl40d2bUWJwyyxZHrX3b+Vzp/U4cWpZyf76K7cF74+5pM+V1bFXK PNLc8pT59FrEYsGKiNX/KyMWg96IfDFodcRi0pqIxY612Lsp8+ht7K2UGfdm rLsgrq+6A2Jec2LK+9h7KbNJNd5JmWXvRC315I/YDymz6r243ugY+z5lpnym 1zxlHn2EfZgynz6OWGf9k4h19j+NWAz6PPLFoPXYFymz48uIR8V1vkuZR99g X6fMmK9inRj5QdzPsJjX3MDYi+ZGRo1vU2bZt1FrUOxdexKHfop7/l5/G8kZ rkmbQT9jG1Jm0saI1ee/YJtSZs3v2G8pM+DXmJsY88pZRC8PpubZafPoj8g5 lLP0Z8pM+5rrXs6av9BPsf4K9N8pc+23qHs867ti/6KX06f/pcwfcWhzam+W 9tn8M64xLvauexODtkh7nfi0FX5L5ezNa6bfMabNo23wW6fdr9umHR/Rzlp9 PYLPUR2Jt1Mtcq8mN4nuxtgpWAr9B/eSTptj4kcJXUybQXl8DlvB/jNp80qM 1F60PzFL89m0eay9aK9ikGoU0uaUvGrpc4F6S30oBpXTvp74VIuvpM2RHfH1 0mZSHXw17f7fPu1YPb9D2rEYUDftWNzZKe18cWjntGPxa5e0Y/GjEb5h2gza DV8/bU7tmvY6cU3XV10xS/OaE1ea4BunzSDVaJA2p+RVSwzVfnU/YpDW6nrq 1QPw+6fNkT3TZpA+FzTHN0ubTS3SjvWMWqYd65mJVYrFnb3Szhcv9k47Fj/2 STsWP3SdNmkzqDW+Vdqc2jftdeJl07TvR8zSvObEY+1Fc2KQauyXNqfkVUvv IXqt9PqJQwemfW/qt5PxJ6XNkQ749mkzqS3+4LT7/5C0Y/X8oWnHYkC7tGNx 57C089Xzh6cdiwFHpB2LH0fjj0qbQZ3xndLm1JFprxPXdH3VFbM03zFtrhyL PyZtBqlGl7Q5Ja9aYqj2e1DaDNJaXU8M1pjuWbw4Je17FmuPx3dNm00npB2r n09MO1Z/69koFm+6pZ0vBp2adix2nJZ2vIHevIaePTNtRpyB7542Y05Pe514 eVza9yNOaV5z4rH2orlj6PUeafNKvJFWrRdg1yDqn4XuwZozsHPQmxXpVezc opnSB7tA5wcOnJc2l9T/vbCeafPg/IjV/70jFof6Rr4Y1C/iE9tZi9vbduC9 LW2GbAGjrtPf7euZcO/Xoi9MmysXRN3F7HkI4/3TZsrl2GW6NjV76nt87Yc6 Q1lzUbyWj2BzdYbZ/6VpM0s9PQobmTZTBmOD0ubRldjAON9XRazzfnXE6u1r IhaDro18MWhIxGLHdRHvGtcZkTaPhmHXp82YobFOjLwi7mfHmNdcMfaiuV2i xvC0WTY8alVj79qTGDQ67k3n9y7szrSZMgm7IW0ejcPGps2n8RGLBRMiVv9P jFgMmhz5YtCNEYtJUyIWO27BpqfNo5uxqWkz7qZY1yyur7p7xrzmxJQZ2K1p s0k1pqXNsmlRq2Hsd0zarLo1rtcgxnTPYsrdcc/i323YrLTZdHvE6ts7Ij4o no1iMeieyBeD7o1Y7JgdsdjxMPZQ2jy6H5uTNmPui3Vi5My4nw4xr7k2sRfN iU0PYg+kzbIHopbu82/sr7RZNTeuNzXG/kybKU9gj6fNo0ex+WnzaUHEYsHC iNX/j0UsBj0Z+WLQUxGLSU9HLHYswl5Im0fPYc+mzbhnYl3XuL7qnhLzmhNT XsJeTJtNqvF82ix7PmodFfudlzarXozrbQkHRtKzb6Lfpk+Xp82Wv+HA9Yy/ jH6F3h+GXoJeih6OfgW9HD0CvTRtBr2GvZo2g1ZELHasjHgUn4vOgRVr0ubR G9jraTNmVawTIxfH/fSJec2d1s7jYvJZ6NVpM0o8Wx21usT9iTsr2Nso/U1+ 2uf3J+zHtJnyEfYhdjl1LsPeRa/l3temzTSx4H3svbT7/4OIxaCPI18M+iRi 9f+nEYsdX2Lr0+bR59hnaXNiXawbGNdX3cExrzkx5Wvsq7TZpBpfpM2yL6LW 1jB2DPf1Ttqs+iqutxXjoxl/O22mbIh7Fv++w75Nm03fR6y+/SHiMfFsFItB P0e+GLQxYrFjU8Rih3rij7R59Bv2a9qM+SXWiZHfxP1MinnNjYi9aG5K1Pg9 bZb9HrXEnn/S7kkx6d+I/8POzXCGMubI1vitMuaL/JYZs+m/yBGrNss4Fhc2 zzgWd7bJOF8c2jbjWLxI41MZM0U+mXH/1MfvmjGbEviajJmyRcZ1xb7tMq4l ZilP68SXLD6TMeOUp3Xqy90yris+ae+qJSblMs4RR+rgqxnzRb42YzYV8YWM WVXKONa5L2ccizvbZ5wvXuyQcSxe7ILfOWOmyO+UMUt0f5oTm3bE18uYo9q7 novYUzfjWmKW8rROXNZe8hkzTnlap16sZLwnMalBxvf8Dr05ibN6YMZ93hjf KGMeNcx4nfikMcXq+yYZr3ud3HHkNtNrCbvOTftnujcYH894c8YH0dPXYC0z 5se++H0yZtBe+D2xD+j33TPmVe92ri/WiVma3wNbQ80J1GyRMYNUY++MOSWv WsPIvV7fmev1Zj9jWd80Yya1xrfKmB2H4NtmzBT5g7Ex8PBictvofJA7kdz9 0W9z3RvQB2TMiEMzzhcz2mUcixlH4o/ImB3yh2fM1v0yvrZ4dBi+Q8Z81F70 LMSv9hnXEo+Up3UD2jlX7wXimvK0Tu8bOnd6LcWgjhlfW0zqlHEsjnTFH5cx k47Cd8m4/4/OOFbPH5NxLAYcm3Es7hyfcb44dELGsfh1Ysax+HEa/tSMGXQK /uSMOXVSxuvENV1fdcUszWtOXOmOPz1jBqlGt4w5Ja9aYqj22zljBmmtrqce 7o9dmDE7zsuYQfpccCa+R8acOivjWJw6O+NYDBKrFIsRPSNffd4rYvX9+RHX xHX6ZcyjPtgFGbOtd6wTL8/I+H62jnnNicfai+a2ixp9M+ZR36glJg2I+1E/ X4xdlHGPjdV5zLhXr8KuzJgj8gMzZsAlkSM2XRqxev5y7LI4H1dHvs7LNRGL B0Ox6zLmgvyQjN/f9Lx1hsSma7HBGbPkiqgr5g2KWjtEntaJPcOw6zNm3OBY V4z9Kn/HmNe1xbnhkSOOjMfGZcyYcXH/YsCEmBMLR2IjMmbWaGxUxmwaE3H9 GNO6Ru38fbr+/mFgO9cRB8aix2A3Zvx+clG8Bu/R41Po8UnodbBoSsbMKcCB yYxPRH/AmpvQkzPm8oi4h7WM38j4DXo+e/J+1nSzzZbVmFtTsZsy5tM07Gbd H5y5jj3cpmeHn5UxZ8SCW7DpGbPh1ojFjhkRV9jPVK51O/rJNtRD35ExF+7D ZmfMEfl747X5HPssY2bdg92dMVdmRt2P2f806tyZMcvujXVi0P3YnIwZqby7 Mu7PZ7FnMmblrKglbj0QOWLKo9j8jFkjPy9jTj2EPZgxpx6OWGdubsRi0ILI FzsWRix2PI09lTFf5J/MmCvPxJw49QT2eMa8nBPPRRx6LGqdEHlad0TsRfvu Gnlapz54JPYkPj2PPRfn5W3srYyZsgR7OWPWyC/OmFMvRI64tShiMeLFiMWg VyJfTFoasdixEluRMV/kX8NexfbI8h6ZNacUL8+YLy9FXXFwWdTq9X/yxJrX sVUZ8255rBM73on76RF7Vy3x6Y3IEUfew9ZmzJd3I0dcXIOtzphfb0Y8IJ6N YvHi/chX/38QsbiwDvs0Y47If5Ix+/WMdbbErI+xjzJm6qp4LmLJh1Hr6sjT un6xF+37ysj7MJ7Bnlk/O72fzIvXVdz6IuPeEDO+x77LmB3y32bMqS+x9Rlz 66uIxayvIxZ3foh8cejHiLenT6fTU5vQI+jxjRkz5Lqop2uLaz9jGzLmyDdR V+z7KWqJWxtj3af06a3U/DVjRm6IderVBPdXkzWTvo1a61g/g/W/ZcyOzZj/ L2OmyP+bMZv+xP7ImFV/RSxO/R2xGLF51vnq8y2yjsWC7fDbYp/AzI+xbbLm hPaiOXFqa/xWWsN+bmE/v2TMjC2zrjW+ndeIYzfrd1XY7xnzUXlap/eTz+Lc iG0pxpJZn5f6+F2zZkcRX8iaKfL5rPs/nXWOeJDJOhanslnH6vNS1vk6H+Ws Y7FgB/z2WbNDvk7WPaRebJk1p6r42qw5ksu6rs5aJeta4pfytE7cqYevmzUX lad14sVuWd+PmKS9q5ZYtWPWOWJHQ3yDrJkirxyxb2f8TlmzcJesY/WSno1i MaJR1vnq88ZZx2KB7qNF1uyQb571+4Cesc6WONUM3zRrRmrvei5iRpOsa4lf ytM6sVl70b7FReVpnd4D/4mzJbbtlXV/yt+MTc2aHW3w+2XNFPnWWff/3rFW PNgn61ic2jfrWOzZP+t8ce2ArGOxoB3+0KzZIX9I1n11Mv6krDnVFn9w1hxp lXVd8e7ArGuJX8rTOnGnA7591nxU3kFZ9+spWdcVk7R31RKrDss6R+w4Ct8l a6bId876fB+BPzzr835k1rE41THrWIw4Out89fkxWcdiwYn4E7Jmh/zxWXNC 96c5caor/risGam967mIGcdmXUv8Up7Wic3ai/YtLipP68SvTlnvaWI73++m 6MuLsAHYZD7nTGXuNPQE9CR0N/QN6BvRp6LXw4wvsNOzZs2Z+B46JznOCfZ3 zmflrKznxKxz8GdnzYbe2PlZ86gndl7WbDs363Xi2hn47lnzS/Oa0xlUDdXd Mmr0yppHvaKWGHFx3I+YqH2plhjXB7sg6z6/FLska45cEjni34VYv6z7p3/E yXg2itXbl0W+ev3yiMWDa7Crs+aC/FVZc7ZvXLsjz3Bg1ozaOvaiZyHmXRG1 ypF3ZdYs7hf5O3bwGrFO/TMt697T+5LOoF5XsWowNihrfozERujZHMZ7VdY8 EQOuw4ZkzaahEavnr49YLBsV+eLU6IjFg4k6F1lzQX581kxRvWuzZtM4bCzW oINriili3pio1TjytE7smYTdkDXjxsY69es92N06E+x/WNZsFOcmR476/BZs etYcmR7PRYyfgt2Y9WeImyIWs6ZGrN6+NfLV6zMiFg/uwu7Mmgvyd2TNjrtj Tmy6DZuVNTdviOci5s2MWuLO7bGuZexF+24TeVq3SwefGb2/qJ9nY/dm3W/P Yc9m3asPYw9lzRH5B7NmwH2RIzbNiVg9f3/EOhNzI19n5JGIxYPHsIVZc0F+ Qdbvk3oNdYbEpkex+Vmz5IGoK+bNi1rHRJ7WiT1PYI9nzbj5sU68eD7u54jY u2qJc09GjjiyCHsha+68EDni39PYU1lz+ZmIT4lno1iMeDHy1ecvRSxeLMOW Zs0U+Veyfg/RM9bZEkeWYC9nzc3H47mIGYuj1tmRp3Unxl607zMjT+umx+cy 8UmsWh7XFo9ejVgcWYOtzrrnV2b97+6IAasiFiNej1g9/0bE4s6bkb+wqbV4 9Bh6pr6f17NA36W/e9f+0Lfrb+91T+hZ+k47a5asjrpPMH6bvgNHN+Ycfpg1 c55m/E79jb3uFX2H/m4/XuMqXK/F1vOZsFtr3pOz7tefsB+xq/bheZAzh5zd qHkaa+5GP8vYPfq3TXQO0Pei1+l1Rs9Gf4a+mtwlxPfrdyH4B/BfMv7LvrB7 b54jYzd05H0uaz68Qfxt1ozalvkVxF+jm3Pdj7Jm6HaMr2L8G51D9vJx1lwe R53vs2bRHqz/Lmu+XckeXmT9fY3Mpg1xb+qxFPedxAbDot+z5sk+5G7Muvcv ZHxT1iy4GP1L1oy6HP1r1r0/FP1H1vwZgf4zax6NQf+VNc/FhS24zubYdMb/ zZpRE9F/Z823q9C/Zc2UKeh/smafWLMVeVvmzCDV2AybyZr/suabmK09/5w1 h7RW1xsfY7pncSSd8z2Ld9vht82ZfzU5x+qfRM6x+knPRrG4k8k5X7zI5hyr 53M5x+JCBV/OmU1FfCFnNuRzXifmboPfOmfmaV5z4rH2ojkxSDVKOXNNXrXO j956LWsO6czqetu3wnMm8s3MkZ0Z2ynnnt9B8zkzoG7OsdhUL+dYPb9jzrG4 s0vO+eLQrjnHYlz9nGNxoQm+cc5saohvkDPXdst5nVii66uumKd5zYk1zfBN c2aQajTKmWvyqiVma791cuaQ1up6b3N+H9LvBXJmyt45/9te4lFLfIucebR7 zrH4tEfOsZ6X/g0wxWLQPjnni0H75hyLHa1yjt/iWg/qO/acmdQGv1/OjGmd 8zqxs3nO9yN+aV5z4rH2orn6e5JPrf21pqnriGl6b9H9iTvvMP4w1zoIPZk+ /ZP4Zf13TW3oa/Rj+n0q+j30PDEE/T56PnoZ+gP0o/pvq9AfohegV6E/QT+u v4E7gLPM2XiJ+B90Av0y+lf4M5LrfYVehz3J2s7s4V/WJFnzCmMrqPMRfqEY h38C30n/lhp9N5bc7xjb/EB6EVuP/hx7ijVd9PqSu5b4EeLfudYY1n9D/C42 V/9NgXqMc5viWv8wNoH5n/GL9P0mehP6RX2Pif4V/ZK+D0X/jl6sv5kjN03u f8RpdAa9Oec/i86it0TXQZfRWXQZXUDXoPPoHHpr9Dhq/kCN56lZZDzP+LaM j2f8J8ZfYLzKeInxNOO16CI6KY0v4s/ReUXXos9DP8rz6cQz6dzMHLkQ6xd8 ke+rnmR9HeZ7qifRO6B7BRcuwHoHd/pHvjg0IGLx4nLssmCK/KXY1zzzxtRZ 3chsugS7OJjSJ+qKfRdFrWzkXRJ8GYhdkTPjLo516smx2Jic+dQ3aolJV0aO OHIdNiT4In9tzmy6GrsqZ1ZdE7HO/aCIxZ2hkS9eXB+xeDEaGxVMkR+ZM0vG xJzYNAIbnjNHr4jnIvYMi1q7Rp7WlWMv2vfOkad16sXBsScxaTw2Ts+a99a7 8G1z5sgU7Mac+SI/OWc2TYgcsWpixOLCDRGLOzdFvjg0NWLxYgZ2a85Mkb8l 55/5xKxXg1XTc/4ZVEyZFHXFvpuj1r6Rp3VizCxsZs6MmxbrBnAvS/T38Dnz aXLUEptui5wdOTtL9bfxel3Qr+hv5nNm7h3Y7Tlz6s6I1cN3RbwT65exfrae LXo5+j70l5zJhsSvE69HN0CvamTe6xnrbH3MeH3GVzQyR2fGc2nN55BdGH9V n6tYsxt6ZXD59tj3B4zvyvhrjfy+cW28ll8x3ojxNxj/Bt0EvQa9HX25C/32 G729Jbou+nv0Vuh66B/RW6N3RG9Ab4PeCb1Rn0Pp6zuxZtTKMJ7Gmosn+BzW Al0fvyvWBr09vg62N7qEL2K7o7fF70zNX6hZi65gezLeDN8UOwi9s66LtUbX 0z6xfdHfci9N8W/qGTLWEDugmfv1HextbAF7PIbxoxifi26Fbo9+BH0A+jD0 PPQh6CPQ89GHoTs2M3dWYity5sWqiNXzr0d8UVznrZzZtAZbnTMb3oh1u1Ov Jda2mZm3Oub2Zmwv7NBmZpBqvJkz196MWuLRu3E/Ytt72NrosZ+xDTmz41Ps k5yZIv9xzv3/fuSIBx9ELE59GLH6fF3k66x8FrFY8LXOTs7skP8Sq/Jaldnv uTlzaj32Rc4c+Sjq6tx9HrWGRp7WiTvfYt/kzMUvYt1VsV/lD495XVus+i5y xI5N2MacmbIx7l/9/0vMiYM/YN9HL/2E/Ri9tSHiMTGmdfo7Bf1cp+8+1f+/ Ri1x5C/sz5zfE9bGayBm/YH9njNH/o514sdvkX9T5GndqNiL7uHGyNO6veJ7 fH2vL079m/N3ast4ri0bs5+CObJtnp7Lmy/yW+fNgs3xm+XNhi3yjsWsLfOO xaHt8s4X42ryjqd24nWFfRn0FPQc/ds3eb82nfGd8mZWCp/Mmylb5V1X7Evk XWt2O68R045jz1/r36LJm5XK07oBjP/NeP28+aS9q1ZXxr9hPI9+mM8V3Yl/ Jn4IfRp6A/oE/Hf6DMKaE9Hfo0vo+1lzEvEPxHPRPdAb0Y+gz0JvEtP2p8fQ f6IXMt4H/Yf+GwzG+6P/Qj/KeC/0b+jhPI+v8Fnqz2P8HMZ/IV6A7o3+HX28 WIMvsGY+4+cR/0r8APpk9I/oxvRxfXrjwGY+Lwez9iDsCHGM8U6Mt0M3QR+J bo7eDX0weg90A/Qh6H3EMXQ7dBd0M3QX9HHiK/roZmZHK2rvmzdf5PfB9sam YTfnzSnFe2H7kduI3A7kLoRvLdDHNjO//n+eWLMfvnXevFPennmzo20+7oc6 jck9vJn51CbvHHHkUPwhefNFXjni4gH4/fPm14F5x+olPRvF4kW7vPPV/+3z jsWFjvgj8+aI/BHYbnpPYQ/7NzOzDmfssLyZqr3ruYglHfKuJZYpT+vEV+1F +xYjldchnt30eHYP8pp2o/ZPjcytLnn3hphxAv74vNkh3zVvTh2NPypvbh2T dyxmHZt3LO6cmHe+OHRS3rFYcDr+tLzZIX9q3qxVPV1bXOuGPyVvjhyXd12x 7+S8a4lZytM6cecMfPe8Gak8rVO/XqS+zJtJ2rtqiVU98s4RO3phPYMp8ufl zbmz8Gfmzamz847FrXPyjsWI8yNffd47YrGgP3Zh3uyQ75c3JwbEnDjVF+uT NyO1dz0XMeOCqLVd5GmdmKu9aN/bRJ7W6f1EDNO5EeMuwS5WPmdmJa/rSF7X xzj/p+CvZPxJODYwb7ao/y+NHLHssojFqcsjbsm5O5Xcq9C7o09HX63XjPrd sCuIT8afhF3WzD2kXpyqfRD/x5kanDdHroi6e+hnPsav0bVZsxn8v1bPmho9 sKsZ25M1/7JmkO6VsVXcy+hm5uPAqHUQP4stY3yQ+IAfj09T63X0WHQKfQ65 rxJfp5/N0K+hr9fPWugV6OH6fIKeqM90rO+PnqSfIxubBbqPm9QDXKsVe5rR zO8fF8fZOprxfRifxnh3ck/HrhTHGN+L8SnoY9D7om9Bn8X8cq57Lfooxvdm fKqeE6/juXmfLbHtluhP+f907vJmxx3Y7XkzRf62vPv/1lgrHsyIWJyaGbHY c2fki2t3RSwWzMHuy5sd8rOjr57Dns2bU/di9+TNkVlRV7y7O2q1izytE3ce wO7Pm4v3xDr16/NRd//Yu2qJVQ9GjtixAHs0b6bIz4/z/TD2UN7nfW7E4tQj EYsRCyNfff5YxGLBM9jTebND/qm8OfFszIlTT2JP5M3I++O5iBmPR60TI0/r joy9aN/HR57WiV/zYk9i2wtxz+qxd7F38ubOS9iLeff8oljXPcYUq88Xxzqx 5hVsSd4/5/2X+18OLY05MWs5tgw7gJ+bVuXNCPFoBfZa3mx7NdaJJS/HNXrF vObOjRqqux91Vub/l0cro5YYsTbu56zYl2qJVauxN/Lu8/ex9/LmyHuRI/69 hb2Zd/+8HfHBHazVV+rtDyJfvf5hxJfSJ+vy5snXnXnPwD7Nm69r4tq38Blv BYz7OG9uai+v657auY4YOIM1q4g/yZvFb0b+NMZfZfyjvPtns4J7T+9L8+N1 3Y9+Hcg+PkcPoZevxW4jfpuePkTfwcKNA/CDGfuSNQeih6C/Qh+k/wZKnx3R 15M3FLuDeAR+OHYX+kb859Sai56EXod+CL0/udfg15M7jvFPGJ9DfDDjw/T5 kvHRjI/C7iGegP+UNQ+gT4Qz7Vg3E90D/THjs5u5X1PcYxJ7k7G2rMk1Nu/+ xP7Iu8+3YH7zgjkir+cixv+N/ZX3Z4h/Ihaz/o1Yvb1lwfnq9a0KjsWDBL6m YC7Ib1cwO7QXzYlN2+K3wbqy50PZ263NzLytC64l7ihP66bGXrRvMU55Wtea vMvJ+yzvfs4wli643xrgdyu4V8v4UsEckS8WzIBswTliU67gWD2fLzjWmagU nK8zUltwLB7Uw9ctmAvyO2Bt9N8Ls58v8mbT9ozVKZglhYLrinnVgmuJO8rT OrFnJ/yOBTNOeVonXjQs+H7ERO1dtcS5nQvOEUca4xsVzBh55Yh/u+J3KZjL 9QuOxSw9G8ViRJOC89XnTQuOxYs98LsXzBT5lgW/h+gZ62yJIy3wzQvmpvau 5yJmNCu4lnijPK0Ti7UX7VtcU57W6Wc/MU58Eqv2LPjaOzS2Fpee0vcvxG2I F6J3RO+jZ4jeCb2vXgt9t4JupdcIvQu6tZ67vl9C76/XXt9TqY8LZtxB+AML 5kJ7fLuC2XQIvm3BXDu44HVPUnNXcvcrmHma15xYcxi+Q8EcUo1DC+aa/CHx Gl+LDS6YX1qr6z1NzUbUPEnPFkZ9qH+3Aj0LvUb/jj36dvRb6CPVO+h30B3V X+i16E46z+iP0UfpDKPv5efAo9GDYMVs9CzxBQ4cyRltyPWW6Hsh9N2Mv4hu j769mZl7eMH3s5jxDozfqc9g7TwuRo/Vd0uM36fvFFlzOPpe9L1c933WddbZ I27MdU6OHrsEu7hgjpyFPxMbQO//xJ5eYu2l6I3ol5uZTWcw373gnu9RcCzu nF1wvjh0TsGxOH5uwbG4cAHWu2A29cJ6Fsy18wpeJ5bo+qq7ecxrTqzpi/Up mEGqcX7BXDs/as3g3m/FFjUzh/rE9Z4nbsL9nlIwRy6Nexbv+mMXFsy/ARGr fy6KOB3PRrG4c1nkixeXR6yevyJicWEQdk3BbLoKu7JgNgyMdWJnv7ifUsxr rib2ornaqHF1wVy7Ompl6ZF63MveBXNocFxPz+lVbHnBHBmJjSi454di1xXM gOsjFpuGRayeHx6xuDMq8sWh0RGLcWMiFhduwCYWzKbx2LiCuTY21u0S11fd RjGvObFmMjapYAapxoSCuTYhatWN/Q4pmEOT4no77s/7Ja9lG+5/OX53/PSC eXQTNqVgJk2N+IHW1nthD6JbsP5mPSd9D4K+Bf2afuZB34peoZ+j0DP03LjW GuL9iLdHv47eF70Svzd+ZsHsvDHuZ5W+T2F8VsE8nhJzdcldzVxr5nZAv4Fu 1djvLbo/cWcnxt/SZw3Gb9P3x/TsEuIP9T0OYw/qNWXNu8QHEddHr9VnEPRu 6PfQbdEN0O+jD0F/hG+Pf4jcj9Ed0A+jP0Efhp6LfhgmfAUTFqI/Y/xIxuej P0Ufjn4EfSifDz8gPpR4Hf4I/DzG55P7HbmPo9fjF+CPxY7fk89RrHtUZ4D9 vIM+ULVY/w3rHtN5Y/xtxg9g/DUYdTT3u5R4mr4LRz+Hno7uhH4BPVO/00O/ iJ6F7oJe3MwMehFbVDCDXopY7Fgc8XnRE8sK5tEr2JKCGfNyrFvA3h7ifDxR ML+WxNzNXOthxp9pZjapxtKCWbY0aok7r0XviUkrdY7C713kPBXNkbewNwvm i/yagtm0KtaKVa9HLC68EbG483bki0PvRCxefIh9UDBT5N/XmWfP/8HqrZub Te9hawtmyuqoK/a9G7UujzytE18+xj4qmHFrY5168mdsQ8F8WhO1xKRPIkcc +Qr7smC+yK8vmE3rdKYKZtVnEevcfx6xuPN15IsX30QsXvyE/VgwU+R/KJgl G2JObPoe+65gjn4Uz0Xs+TZqjY48rbsm9qJ9j4w8rVMvfhF7EpM2YRuVx2vf lXOaKJolf2F/FswX+T8KZtMvkSNW/RqxuPBbxOLO35Gv79z/iXg99TtRfwvq z+OsdURvjq6lR+o2NrvEJv07FP8VzJTfo67Y92/UeqS114hdX+l7EHK3Kppx /8W6Hxk/nvFk0Xz6I2p9re9EGN+a8V84Oxv0swvxJv0uHn0C+lt9n4LfljXf oY9Fb4f+Xt8Xo2vQv7J+I/FJxL+hf9F3VOjZnMl/iDfnTN6D/hv9XzPzfmOc rT8Z+4uxU1n/Jb4zfktq/s74b8SnEN9F7l/E/+jnLuxoxrZhzR+M/UHcrbHf N9bHazmH9f8ytyXXfRfObLYv+0dviy/je4mTjG9BnCT+BL0lOo1+mNyt0Fn0 1vg8/jzdM7oWfb7uGV0H3VvnA70D+oLGZkdT9tWkaB41wjfEkqypx5o+2je6 iO7Z2PzSfIOimdIc36xoNqlG46JZJq9a77PPzcmvaW5Waa2up349GH9Q0RzZ p2gGiX+741sWzak9io7FrT2LjsUssUqxuLNv0fniRauiY/V866JjcUHXObBo Nu2Pb1M0G/Yrep0Y2aLo+xHzNK85cVR70ZwYpBoHFM01edUSj9oWfT9i26H4 Q4rusW74U4pmx5H4I4pmivzhRfd/u6JzxIP2RcfiVIeiY/V5x6LzdVY6FR2L BcfijymaHfJHF/0ZU8/oteDUUYx1KZojhxVdV+euc9G1xC/laZ240xV/XNFc VJ7WiUPar/LFIc3r2mLV8UXniB2n4U8tminyun/1/+lFz4mDJ+JPKLqXTsaf VHRv6TkpFi81pnX6ewf9XKfvs9T/3YuuJY6cjT+r6PcEPW+9BmLWmfgeRXPk nKLXiR9nFJ0vlilP68Rp7UX3IEYqT+vEIf07Ospv18H/ro5YV+coPmNhjRuY Ixdi/Yrmi3zfollwPtaraK71jljMuiBiMbp/5C9ubS3WraZfjt+bPepnJXRX 9J/N/NrMx+Zhqxg/lvFfm5kpfaLuCsZfptbPjL+OPo41v+t3UugT0ZvRgyv1 e3/0pmbuz3HY2KJZ2TdqvcWak1izBevrY/3p+yGM74q+UN/Dqxf0+wLWbMPY WnQ39HboD9CnohPo3bAB4hzrG6AvQg8tmh1jsNHYQti1QL8LbG6ujI25L6mz HmvM+Br8CdT8lz03JL6YOtfreZA3T787ZOxt1pzMmq3QjbBLWDNMZ46xvuhB RfNpAja+6PNyD3Z30Uy5CZtSNGvkbyyaUxMjR9y6IWIxYlLEYtDUyBeTbo5Y 7JiJzSiaL/K3YrfobOlsFs0pxdOL5svkqCsOTotarf5PnlhzGzaraN5Nj3Vi x71xPy1j76olPt0eOeLIfdjsovkyO3LExTuxO4rm110Rt41no1i8mBP56v/7 IxYXHsHmFs0R+YeLZv/4OFti1kPYg0UzdVY8F7HkgajVMfK07sDYi/Z9ROQ9 EM9gs5Kf3S68vv14TQcXza1Hi+4NMeNp7Kmi2SH/ZNGcWogtKJpbj0UsZj0e sbjzTOSLQ89GLBa8hL1YNDvkFxXN2gVxbXHtBez5ojnyRNQV+56LWqdHntaJ Oy9ji4tm5POx7ik+29e0p7eKZtKTUUusWhI5YsdKbEXRTJF/rWhOLcVeKZpb yyIWt5ZHLEasinz1+esRP8Z1t+a6b6G3xL+JH6BrM74t8dtFc2oNtrpoRi6O 5yJmvBG1vjvMa8Sys2Mv2ne/yNM6vZ+IYTo3z1E/Tf21cV5+xjbofhjfgfFP tHd0HfTHenboLPo9vQ7oPPp97QVdRH+ge0MfC68/Vb3O1MPWoQtdONcdeT9E 59C3ob8suofUi/9gKcanM/6F9k2dMjU/RE9h7LOiuZdhzQzi9ehmnMNv8COw BONTGf+8aF5sjPtZSp1a6nyEbsH6b/Eji2bHL9imopmyKXLEvh+xH4pm4U8R j4tno1iM+DXy1ee/RTwt7uPvotkh/xf2DHtIsod3i+bUn9gfWIk9t2RPXxfN jN+j1tTI07rRsZfvi+biH7GuJ/ZqnC2xbfOS+1O+J3ZeyezYDr9tyUyR36bk /t8i1ooHW5Yci1NblRyLPTUl54triZJjsSCHz5bMDvlMyX3VAL9byZxK41Ml c2TrkuuKd8mSa4lfytM6caeAz5fMReVpnfq1Ycl1xSTtXbXEqmLJOWLHDvjt S2aKfJ2Sz3cZXyr5vFdKjsWp2pJjMaJuyfnq83olx2JBffyuJbNDfpeSOaH7 05w4tTN+p5IZqb3ruYgZO5ZcS/xSntaJzdqL9i0uKk/rxK9qyXsS2xqVfM93 tqKH9+a9pbm505SxJiX3fOOS14kBGlOsPm9W8jqxpiW+BXYpNf6lxvKyz8ru Jc+JWXvi98Be4TNLq5IZIR7tg967ZLbtVfI6saR5ydcQvzSvOZ1B1VBd8UV1 9i2ZR/KqdTf3cg77aM8+6hzuOmLjDMZPZ3xfxu9Dn4c+An0v+lz0Yejb0D3Q B6BvR5+JPgh9B/osdFv0/eie6I7oB9G90J3RO/Bzz0n4q3mvepbPKSegr9L3 cazpzprWxE8zfix+IONPoJfyLPbWz3SsOZ81R6GfY7wr/kp9Z8f4GYy3IX6S 8aPxVzR2//SK3tP7ks6gXtd67OFU1gxqbH6cxNiJJXNE/gS99jyTnVl3Juuq 6F3QZzd3z3dl/riSWXZyyfni1Cklx+LBGfjuJXNB/nSdb+rsRJ0zmptNpzF2 asksOb7kumJet5JriTvK0zqx50x8j5IZp7xu0eeXYBeXzETtXbXEubNKzlGf 98bOL5kj58dzEePPwZ9d8meIc0uOxSyx6tzo7QsiX73eJ2Lx4CJsQMlckO9f Mjsujjmx6UKsX8nc1N71XMS8vlErEXlaJ05rL9r3dpGndXV5ZqfwzK5p7H6+ TD0U/TYOGxu9eg12dckckb+qZAZcHjli0xURq+cHRqwzMSjydUYGRyweDMOu L5kL8kOl2c/p7GdwY7PpOmxIySy5MuqKeddGrXqRp3VizwhseMmMGxLrxIvx cT/l2LtqiXMjI0ccmYhNKJkxEyJH/BuNjSqZy2MibhjPRvGnrZ0rVtTlHK4j 7qnvRPbnGeNHci/novugRzT2e4iesc5Wb8aGMXZjydwcHs+lF+NDGZ+kM4Ee jp5SMotHxb7PZ/x6xieX/LPfa/Ee2VN/e8ncKOZ6oS9Ej9bvRXi216An6btx 9MXocehG6EvR49FN0ZejJ6BboAeiJ+p3k+jB6Mn6XSZ6CPpG9JPw4UDiocQ7 c+9d+Sw0TvyFFedz7VFiDmvasmYYeg/8VfgbxCj9DQDxCP3sRu4J5E7Qz4zk XkDuWPRr6N7oMc39Gq/HvtBrx/rjWT++ufv1eew5bCrx3dR+VGecvEliKvGF 6Mliqv6eCn2jmIoegJ6CvrOxufMYtrBkXjwesXr+iYi7xXWeLZlNT2NPlcyG J2Pd6+y5D3UnNjfznoq5vozdwNisxmaQajxTMteeiVo3MX+XftdQMpteiHtT j72HrS2ZI0uxV0ru+ZewF0tmwOKIxaaXI1bPL4lY3FkW+eLQ8ojF8VcjFhfe 0H2UzKaV2IqSufZarDs7rq+658e85sSaNdjqkhmkGqtK5tqqqNU99ruoZA6t juudHmO6Z3Hk/bhn8e5t7K2S+fdOxOqfdyO+NJ6NYnHng8gXLz6MWD3/UcTi wufYZyWz6VPsk5LZ8HGsEzvfjPu5OuY1NyD2ornBUWNdyVxbF7Xqc64H8FqO bWwOfRHX03Pai88me2LT9J5XMk/U819jX5XMgG8iFpu+jVg9/13E5+zJzw7k /4C+Rd8dc50f0bfq8wT6J/Qd+nyA/hU9Cz0HvRE9Az1b788ls+T7qDtTn0sY /xl9lz4ToH9H345+AP0L+jZ9/tD33yUzW/v9EruT8Yf03TZ6IfoFfe/LPT6A fgy9Gfpe9Dz0X6yZjZ6P/ht9H/pR9D/oOegF6H/RD6If13f+5D6EfkKfO9AP 67OIvgNHL0A/r++b0fPQz+j7Y/Rc9FP6nh99N3ou+g9qPiIe6ft8xu9BP4L+ k/FH9blH32EzPh/9rL7PL/u9Rfcn7jzG+CL9jqDs89sI3xB7AY5dwGekZ5h/ i599GvCzT4bxd9CN0Fn0WvTnvC/k0Gvgwxf6nZrqkduH3OfQL6L7ol9Av4Tu h36xudmxI3n1yubRDvjtsZdZcyFrFusZoHujn2pufmm+TtlM2Rm/U9lsUo26 ZbNMXrVWs7f6+vf9y2aV1up6j2tP3G+qbKY0Lvuexb/6+F3LZtNuZcfq2wZl x+pjPRvFYlCTsvPFoKZlx2JHs7JjsUM9sUfZPGqJb1E2Y5qXvU6M3KXs+xG/ NK85cVR70ZzYpBq7l80yedUSd/Yuu/fEpH3x+5Ttb8Gml82RA/EHlM0X+f3L ZlOrWCtWtS47Fhf2KzsWdw4qO18cOrjsWLzogG9fNlPk28VzH4JdWzabDsUf UjZT2pRdV+xrW3YtMUt5Wie+HI4/rGzGKU/rVul9V+8tZfNJe1ctMemIsnPE kWPwR5fNF/mjymZTR/yRZbOqU9mxzn3nsuMlzZ0r/pwHf14hPpZ4BX6p/hZI ryP6FfSJeuboZfpbGr0W+rkOfXzZHNXe9VyW6qzrvVevHXoJ+oSymaq9aN/L GF/MeNeye7FL2Xt6Q58PGD9VdTj/F3H+P2hujpzN2Fll80X+TL12zK1g/Wl6 7fQ5A306uif38iZx97K5c07Z+f+hzy07PpDPG73L5kYb9Plls2XXfXmfIHeM Pl8x3rNsRvWi5luMn1E2+84ru1Yr1vQqm13t0H3K5sweh3uNWLeMe7mYe/mo uVmpvffQ68eavmUz6lPmVnHNS/VsWX8J6z9h7G3swrLZ25+xd4n7q49YM4D4 PeLPsNfJvUzPUywifqOxeTEYG6Rny/rLuLcftRZ7lflu6iv20J/xbxlri76g bN72ZexLxlazbqX2T/x9c3NZ++knY+xrxtY09vuGzp1ey+2jD3RtMem66A0x ZRQ2smweXY8NLZtPwyIWC4ZHrP4fEbEYNDryxaAxEYtJYyMWOyZhN5TNownY +LIZNy7W7RrXV93GMa85MeVGbHLZbFKNiWWzbGLUqhf71f20iLW6nvr1Huzu sjlya9kMEv+mYjeVzambIxa3pkUsZk2PWNyZEfnixcyI1fOzIm4b17mrbDbd gd1eNhtui3Vi5JS4nwNiXnN7xF40d3DUuLNsrt0ZtcSje+N+xLb7sNll99gL 2PNls2Mu9nDZTJF/qOz+nxM54sH9EYtTD0SsPn8k8nVW5kXcn/76XZ8t0Bei f9P7XtmfMfeJZ9aX8V/02aJsjjwYdTc2dx2dv36s+VWfOdAXof/U5wx0H/Qm fUYpm0MPRf4Axv/Q5xL0xei/9P5cNjtexBaVzZRFcf/q/5diThx8Bnu67F56 Dnu2bH49H/EpMaZ1K2u5jypnATvucNcRB8SRZdjSst8TZsdrcCprlpTNrr+b e42YcgLji8vmyDmR90rZvNZentLeWPNy2ay8X8+ysfl3GczYrAX9z/h41swi XkvcEf0j7MijN+Cz+HfIGcj8NuiVrH8XDlxJvB3xWvRV6AS6E7m/6L89RndG X74viESnD+KzBrYLuga/HbYT+mqec0t8tcL7KXWuZv0OxO9LUzOF7kKdKxiv RW9N3lZYPXQJX8QaoI9izUDW1Gnh/tyI/Yx9r/9uWvvnvt+h5jXU/Lm5mfI1 9lXZrJH/smxOfYatK5tbn0csZn0RsRj0TeSLHd9GLHZswH4qmy/yP5bNlZ9j Tpz6QfvCcuw9i9VvYQ59F7XGRJ7WDYq9fFo2776PdeLO+tjTudz7prI5pfOS 4lkmK2bK39hfZbNG/k+s0oXXqGxeiVu/Yb+WzYjfIxaD/ol8MenfiMWOrai9 ZcV8kd8C2xzriZ1XMacUb1YxX/6IuuLgf1FL/Pr/eWLNNvitK+ad8rRO7EhX fD83xd5VS3zatuIccSSLz1TMF3nliIs1+O0q5lei4li9pGejWLzIVZyv/s9X HF/JmWzOa1JBD0Q3Q5crZv+mOFtiVomxYsVM1d71XMSSQsW1mrbwGjFNfNVe tG8xUnn/s24/Pzc9i6FxBvW6XsN1dye/TsXM2BW/S8XskN+5Yk7Vxe9QMdfq VRyLWTtWHIs79SvOF4d2qzj+hl4YTC/swzUG4ffCN66Yuaq3fcVca4RvWDFH dqq4rtjXoOJae7TwGvHrO2oOodZ+LcxI5WndycQb4cfBFTNJe1etQdxjG+aa o38gdzz925G4AT0xBn0Eehj+IPxn5A9Ht0V/ju7OmR9BfCjxT+TegO6M/hl9 I/oo9IniF2sPpP4JWoc+AH2S1qEP0mvEta7fn8+fjH1L7rXsvxW6IePXMX6M 9ocehj4efQC2Tt+fkduY8aGMH8fYVdxLC3ytXlPlUmc34msZPx1/SsXs6Ig/ smKmyB+BlVWH9Q115rQfdCP0sdzjMHSTFu7zThXn63x0rjgWC47DH1sxO+SP id5TL55bMaeOxh9VMUcOxx9W8VnrUnEt8Ut5WifuHI/vWjEXlad1PdnPOVi3 ipmkvauWWHVCxTlix+n40ypmivypFbPvJPyJiltYi4mDeT6nEZ9cMSO6V5yv Pj+j4lgs0H2cUzE75M/GTiFvV6xtxZw6C39mxYzU3vVcxIweFdcSv5SndWKz 9qJ9i4vK+5913N9Izk976hboze74XoxPYJ93o18LdvTHLqyYKfL9sCGsOYM1 56OvQ/dA91Zfo89EX1AxewZEvrh2UcRiwRXY5RWzQ/4ybLi+Wyb398bm1KXY JRVzpC/Wp2LeXRy1cpGndddz3bPJHVgxFy+JdSP0HTLjfzQ2k/pFrWGsP4fx Kytmx1DdR8VMkR9S8fm+Bru64vfsQRGLU4MjFiOuj3z1+bCIb+e59qL+r1z3 NnRP9C/oO9C90b+he+vnL+xc4rNa+JmIlad0cB2x4zzGN7F2ZMWM1l6u0plj zfCK+Sh+XRt7Gqnvycn5U99DteK1pKemEI9h/CL8P4yP0r9dgP4LPRo9AP03 eiz6YvS/6Anoy9CbN+H1ocYWOg+cncvxWzB2E9caiN4KfTP6F641gnXDxFhs W8ZvYfxKfY5BT0OPo+YlxP9R/2r8NoxP11lAb4meit5EneHUGSqeYNsxfqt6 gfGJjE9lbDx1LsVvxtxvjI9ifFQL9/n92Bz1EeM3MD5NzwI9Fj1B94weh75B 94wej57cwr39QOSr1x+MWDyYj82rmAvyj2C/kzua3DEtzKa52MPYr4yPZHxE CzPvoajVOfK07g/WjGHNuBZm3MOxbiJn8h7GVlT8vjQkXlexagH2aMVsfRZ7 BhvD+ttY/zT6FvxjFbNgBOO3Ej+u84CegX6iYpY9F/ni1PMRiwcvY4sr5oL8 SxUzRTUXVsymF7FF2ChqzqTmkxUz74WodUbkaZ3Y8wq2pGLGLYp16tf3sLXY aOrMos5T6Hr7eb14pz5/HVtVMUfkV2JjWX8H65fpLKHvRC9Hj0ffpc/2Fff2 G5GvXl8dsXjwLvZOxVyQf7tidqyNObHpLezNirm5JJ6LmLcmal0UeVq3I3u+ nesurZhxb8a6o+O10rlRT3+AvY89rvdMzuzP2o9+v1b5X45If1oxvz6MHLHp o4jV8x9HfBm5l2L3Um+2fsag5ueMT6MvHiLOEk9BP4jONPH75MI4Q5MZv5/x VBOz5JOoezI8uY/xBOM3suYB/RyDnomei86jJ6HnoJPorrx338Bzf7KFmfhp 1JrFmkf0fsKaLVpzPX0nrF5FT9J3y+j5+qzI/I96Tvq8if5Je9RnAvQG9Fas v1HfIYsT6Cn6Dhk9lPteBkNfQ1+HXope3sLvIe/H2Rqknx8ZX8L4DPbzMD5H 3cWM3USdKnoIa14hXsrcbayZhy8yPlA/PzK+mLgHehT6MPT16OXolejh6FfR r2tcn2ewT9BjGV/J+NtiOWOXY+/q8xL+Suw9sRF/DfYBegR+OLYOPRo/Cvsc PQ4/Flvfwlwo8PNzvtZsyuIz2ETmJ2BfsWYI/lrsoxZmn+bTtWZNCV+sNYNU I1drrsmr1hYtN9tsX+67S605pLW6nvq1Ib4Bdhev84/U3qHWZ7oWX6n1Ga/W Ov6uhbXO2B2s/564DvHd6J/QddH3oDeg69W653fC71hrLug6u9WaTbvid6k1 13au9Tqxs1zr+xH7NK858Vh70ZwYpBr1a801edW6k+v+wHW3rzWbGtX63tRj h+IPwW7htRt6MM+YtT+ztkmte/9e4o3ETYln67sUdDP0ffpORp+X9Tz1HQ56 dz1nfa+C3qPWHN8Lv2etubAfvnWt2bQvfp9ac23vWq+bo+9wyG1Ra+ZpXnNi zf74NrVmkGq0qjXX5FVLzNaeG9eaQ1qr64nHGtM9iyPtan3P4t1B+ANrzb+D ax2rf9rWOlY/6dkoFnfa1zq/eRNrceNP7Ze4A3EPGLIZ52lv4ofpqX/0HNBz 0H+hWzYxOw+o9f3cz/jfem5NzGPtRXMLGf+P8b0Yn4/+F70nejSv0Qr6603i M7nW5lxrnyZ+TtOxaXomzGcY35/xh3ieW6OP0TnQfyeo73CI66Nv1nc46FWs n6af4/Q5g/qriXOMN2TNW+gCugn6XXQJXQ9rz9ru1NwefQj6VHQz1rzPmgpj r+NT+DbMVfFt8d10jtGHoXug66LboU9H74A+FH0aeit0a/TR6g10B/QZ0fOX YBdjE9jnbez5fTEEfQv6DfQo9K3oNfq8h56Bfks8Qc9Ev4OeiL4d/SH6BvQd 6I/Rk9F3oj9tYXboOhepZxn7krF+4gD6M3Qf9R57W6HXQT3O+Bfovuhh1JlO vErvTfhv8f0Zvxf9NfpC9JbktuK+jgoGXRr39gSvVxPmxost6Proq4NHV2CX B8sGRiwWXBmx+v+qiBeQuxu51+gsoRugB6EfQzdEDw52DNd+a82jodh12OOs acSaa3VmWrqm+FI35ocEU0ZiI4JNqnF9rVl2fdTKx34vqzWrRsT1cjGme36S azXlGhNqzb8x2Ohas2lsxOrbcRE3bmmtfn5K39UQT0Q/re9w0Degn9HP5uhJ wQ71xM215tFN2BTsWX0PyZrJtWbkqLif5/Q9DOM31pqjo2Nur6gxtdYsmxq1 xJ1bovfEpBnYreE3r8KCqjlyF3Yn9jz196T+HbVm08xYK1bNilhcuC1icefu yBeH7om4FTU6c37u1x7QncSYeO5fYut174wfyfjsWjPl9qh7eBPXEQP3YU1H 4vvQL7C3/Ygf1P3ij2D8Xr1GXTiX2PN6hi1dR5zq1oZ98PnvIfRBjHdl/ULN oY9DL0C/34nnwpq5ul/8UYw/ovtlzdHoeeiD0cejH9P9ok9AP67XoiOvU625 UYfxZ/Cn6Lyxl0XMPYe+n54qM/eUnj++C7kP6JnSg/cxl2esFnuasZOx49vD ZXwnbA7zReae1DMXI8XaWnPtRWxRnNP3sLXYZ9xLd/KXoj9Fn4Z+pdZseily xLXFEZ/Y3lp8+IL1PYiX6fVBn4Vejt6ee6mDvY7ewPgU9r1KZxH/GgxdDS++ Z7wX61cw/iH6ZPTL6K/1/7RFv4r+Ed27vX/PIL6swVZj3zJ+HuOv1boX34/7 +ZjxbowvqTWb3owcceRD7INa8+WDyBEL38HerjWn3o340ng2ig9p6VzxZxFn 6VDij2rNiy+wz2vNFPnPas19PeMX9MxY34H1n9aas9r7G3qmjLdj/GP0y+jD 0OtqzWXt5S09a8bbM/6Jzjn+WF7HR2vNqvVxbTHpq+gNMeVH7Ida8+gbPcta 8+nbiMWC7yJW/38f8eEtnSsWLeG6RxD/hH4FfSR6Q63Z8Tv2G7ac8c6Mb0Iv RXdE/1xrrvwQdZcx3onxjbVmyp/YH9hrjB/F+K/oV9Fd0L/UmrVfx/1MibW6 nvo8BW+SVXNki6oZJP79g/1da079G7G49V/EYpZYpfjols4Vf1Zw3WOItyRe iT4WvVXVXNB1ElWzaTv8ttgq1hzHmq2rZuRfcT9in+a3qZqjf8ecOKQaNVVz TV61xKN01fcjxmXxmap7rBG+IfZLZ54rVkafzWehUtVsUf/nqs7p095aTPuO td9i+ar7vBZfqfqsVKuOf6EvZtJ79dAb0f3Jr1v1Z8xb45mJUzswtn3VLCni C1Xzrk7Vtfq19xpxTOzZGb1T1XxUntaJidqz8uvBgLrYjlVzbpeqc8SPJvjG VTNFXvev/m9a9Zw4WB+/a9W91AC/W9W9peekWOzWmNZdAfe20ncsZfd/s6pr iSN74Hev+r1Ez1uvgZjVEt+iao7sWfU6sa951flimfK0TszWXnQPYqXytG5m Xc5VPc5kPbNMvwtVrRl1PbZZPXPkIMYOrJov8gdUzYJW+H2rZkPrqmMxa7+q Y3Ho4Krzxbi2VcdrOJMn6XOkctEn6vNr1a/PEOxa7HXGj9dn0KqZsj++TdXs O6TqWm+w5gR9Zq2aQUfgD8e6tvQasfJtfSdM3K1qPmnvqiXeHVl1jphyLP6Y qlkjf3TVnOqE71g1tzpXHYtZXaqOxaDjqs4XO7pWHZ/ONU+BeyejT0OfjD5J 98J+umsOfYe+Z6VP7jrInNXeD8NObuk64tGp6JPIPbFqTmsv2veb1DlF79NV c+eoqvckxp2ua0Z/XoJdXDVTzlFfVs0a+bOq5lT3qnPErTOqjsWIHlXHYtC5 Vef3aGktNokdfbALquaLfG/sfGyFzqbOgL4DJ6dX1Xw5s+q67+g7ecbP09nQ 994tnSfW9MP6Yu8yfhbjPatmx6VxP2KV9q5a4tOFkSOOXI5dVjVjLosccXEA 1r9qfl0UcTqejWLx4orIV/8PjFhcGIwNqpoj8tdU/R6gZ3xq1cy6Gruqaqb2 jecillwZtWojT+sSsRftuxx5V8azWxnPTu8nOoN6XcW766ruDTFjNDaqanbI j6yaU9djQ6vm2rCIxazhEYs7YyJfHBobsVgwCbuhanbIT6yauUPj2uLaBGx8 1RwZEXXFvnFRq2nkaZ24cyM2uWpGjo91H/Ka9uI1vbdqJo2MWmLVlMgRO2Zg t1bNFPlbqmbTVOymqll1c8T6O45pEYsRs7CZVff5bRG/z3XP47p3o8/F31U1 Qz5gvCfxPVVz6k7sjqoZOTmei5hxe9QSv+6KdXvEXrTvAyNP6/R+Iobp3Ihx c7D7qj4vL2DPV82OR7C5VTNF/uGq+//+yBEPHohYnHowYvX5vMjX+Zgf8Xmw pI9YBy8+5r4uQD/G+Gfoy9GvVs2phdiCqjnyUNTVWXs0avVu6TXiWD/0adR7 smouLoh14sWiuJ+OsXfVupD1p7P+qarZ8RL2YtVMeTFyPmU/A/TzQ9Vcfg57 tupeej5iMWJx5KvPX474MvJ6UH85+lL0Gehl6I+oeT7xbPQ69MXoV9A9eSZ9 0ac2MTOWRK1LGOvO2FL0J6zvr59J0Be19BrxcR9sepwtsW1V1f0pv08dzl0d s+Nt7K2qmSL/ZtX9/3qsFQ/eiFicWh2x2PNO5Itr70YsFnyEfVg1O+Q/qLqv NmI/V82p97H3qubImqgr3q2NWldEntaJO59gH1fNxfdinfp1U9TtH3tXLbHq 08gRO77GvqqaKfJfVn2+P9Pzrvq8fx6xOPVFxGLEN5GvPv82YrFgA/ZT1eyQ /7FqTvz8/5g663Arq+dv2y0o5u7eeFA5R0Q9RwXlHAwEW7G7xUJSFAQEFERa MAABmxAwEAtsUewO7EBC7K73c38/817+/phrZtaamWc961lz7zgbjTk4tUby zfZm5MexLzBjddQaEXnE9Y+1sO5rIo84+PVVrAm2/Rz3TI810zPcPGHu/Cb5 dXv3/C8RNy7G8Onz3yMO1vwl+VOyW1J8ktyY9Fn5O+Zg1r+Sf7Y3GzbQddZP mEfrSq+TMNvWSjgOlvwR14BfzK+d8Bn8J+rCF2qslzCP0NSCEc0Tvp+JsS5q faGz3VdnesOE+3xL6S0S5gianOWKuVwxmyTcP5tJb5ows9gbfHq7RcL59PpW CftXKG/7xH9cwN5O8qVqXqa5jRJm07bS20j6tPY+wE+Yt3XCteAOecR9pdx+ its4YcaRRxz9s1vCvTc4ziDP9Vz1+ADFn1pjfpQ1X0qYI+iiZJDmz9B8RvYK 1R8sPyt7peyrZOcSZlkl4Xw4VU3Y76b6V/NeRfnDeP8j3Urj52t8oPzT5Q+R 3iFhRsG1gux8wsxrmXCtVbrWUL67lb1a9nDZOyfMOHKJo187SO+bMBNZO7W+ UfwIxbdOuM/3kN49YY6g2Rfeb+0iXZfwe4g2CfswC1bh09v1CefT6w0J+/Bg H+n2CXMB3S5hdrAW5mDT3tJ7Sa7hfZnue6eEmbdnwrXgDnnE8XrDWmoTZhx5 xH2te+mv/ETC/dwk3Zhwvx0vfVzCvXqQdKeEOYI+MGEGdEw4Bzbtl7BPz++f sM+Z6JxwPmekS8I+PDhC+vCEuYA+THKenuOVWs9pNWbToRo7JGGWHJBwXZh3 cMK14A55xMGeo6SPTJhx5BEHL05I+H5gImunFpw7OuEcOHKS9IkJMwZNDvw7 Rrprwlw+NmEfZrE3+DDi5ITz6fNTEvbhxdmSsxJmypnSZyT8GsIec7bgyOnS pyXMTdbOvsCMUxOuBW/IIw4WsxbWDdfII263YNyNwapz4trw6Nzw4cglkosl 12qPz0+4/9foDIyU3409lH2d7AvYH9mjZF+YMHe6Rz4cujR8GNcjfLhwmaRv wmzqLemVMNd6Rtwmcf2LEmZer5iDNZdL+iXMIGr0SZhrfaIWz/h+yX0Jc6hf XO8G1q7zMjJhjlwlGSy5UGdpLJ93NHeR7Nv12W6c/Itlj5c+j7+Dsw/8vTdh 7gyJfHgxNHx6flj4P2pPJinn2oTZNFxyTcJsuDriRrf2vcDQUswz971yx/B3 B9kTpUck/uPaiKj1g2Ku19wg9pf/dzzPosY9dpfkzoQ5MlFyPeeQ32/w3X7C /BonGZswm8aHT89PCB/uTIp8OHRD+HD8xvDhwi2SqQmzabLk5oS5dlPE1cX1 qbt7zDMHa6ZLpiXMIGpMSZhrU/5/La33It3T6IQ5NC2u10P3exPnrcYcuTvu Gd7dJrk1Yf7dHj79c0f4jbE3+HBnZuTDi1nh0/Ozw4cL90rmJ8ymuZJ7EmbD nIiDnTPifjrFPHPtYy3MdYka8xLm2ryoxfsC+uu8hDl0X1yPfVpL703+TZgj j0oeSbjnH5QsSJgBC8OHTQ+FT88/HD7ceSzy4dCi8GHc4vDhwjOSpxNm05OS JxLm2uMR1zWuT90TY545WPOc5NmEGUSNpxLm2lNR6/BY7wMJc+jZuB49/b7k Pckv/AZJz/SVhHm0VPJCwjx6MXz49FL4U1rbZt9+Ve40+a/K/o3f9sh+LWF2 vCF5PWF2cJ13E+bR25K3EmbMmxEHO5fE/VwS88ydFWt5PmE2UeOdhFn2TtQ6 LO4P7sCgD+Le6LefJT9J+ujc3qG1da8xjz6SfMj5aG0bTv3Ob5D4rp79Ufxt cEjxf2j8Ttmfa/xP2XfJ/iLh/v9K8mXC7FgtWZUwj1ZIvk6Yccsjrrdq3im+ 3d7a/Po65u6W/03CbBkWNVYmzLKVUatvrHdZwqz6Jq7XJ8a4Z5jyS9zz5brW bNXtyd/QpXvxmxyN/6X138N3+An3NnvzY8IM+jXyYdBv4cOO38OHHfTEPwnz 6C/2I2HG/BFxM1X7Ul1rTcL8+jPmLtN6ZmmuR43ZRI2/E2bZ31EL7qyddO/B pHWl10lanys5J2mObCK9cdJ8QW+UNJvWi1hYtX7SPlzYIGkf7myadD4c2ixp H160kN4yaaagt0h63w+RPjhpNjWXbpY0UzZMui7s2zzpWjCLPOLgy9bSWyXN OPKIoydbSleT5hNrpxZM2ibpHDiSkU4nzRd0Kmk2bSe9bdKs2j5pn3OfSNqH O9mk8+FFLmkfXlSky0kzBV1KmiWshTnYVJQuJM1R1s6+wJ580rVgFnnEwVTW wrphHHnE0YvJpNcEk2qkd0j6nHaQ3jdpjuwiXZc0X9C1SbOpVdI5sGrHpH24 sFPS/tzWzoVBf+s8z5PfJmleNEjXJ80U9B5Jf+aDVTAMNu2e9GdQmNJaemfJ P6ozX3V2TZpZ5BEHX/aS3pPXA8Xcq5i27H9r3ws9CZ9YO7Vg0t5J5/TXmX9A cb115tdqo+fEd+9Js7C9dLukObVP0j49zN7gD1Du3WLFAuU8KOmrGvslzYsu 0p2TZgr6oKR5zx5ztmBTJ+kDk+Yoa2df1tYaFqrW/kkzizziYCprYd0wjrwD kn7d4NzxLGEVfcC1YdKhSffGHfurJyVHc95U+zJ+qyh7oNb/iPx+8gfLfpT3 W7If472V9JFJM+gY6a5JM+jYpH2YdFzSPuw4RfrkpHl0ovQJSTPu+KTj1tF9 LVLdo5LmF/PMwZTTpE9Nmk3UOClplqGp9VBr38uqYBWxXI9+7SG5NGmOnJc0 g+DfmdJnJM2ps5L24dbZ4cOsc8KHO+dHPrzoFj49f0H4m8d1uifNposlFyXN hgsjDkaenvT9bBzzzMFR1sLcZlHjkqS5dknUgkc9435gW29Jr6R7bJTkuqTZ 0V9yRdJMQV+edP/3iRx40Dd8OHVZ+PT5gMjnrFwZPiwYKhmSNDvQVyX9HnOd 2DM4NVgyKGmO9Iu6nLuBUSsbecTBnaslw5Lm4qCI2zbWS34h5rk2rLomcmDH GMnopJkyOu6f/h8nGZs0B0dIhifdSyMl1ybdW9eFX40x4vjdA5/r+O6T/h8f tdbXmXxSZ2tS0q8JveIZrKvxxzV+PedB9lOyb0iaHxMifz2NP6HxiUlzenjc w+LWjoGV/MaCa/JdPpy6Oenv1LLKXa9Wa0qbI7dJbk2aL+gZSbNgKs8haTbc Ej7Mmhb+062dC482VM1n+M4/aS7MlsxKmiPomfFslku+kjzTSWP8rre1mTI9 6g4RB57VWH/1/0aq+bzsu5Nm0D2SOTwz3ieIe8+1dn8+IXk8aT7NiFpwa27k vMx7KX57w/NQ7kvyB9eYU/Ml85Lm1r3hv9DaNuzaWGt4Bb4mzY6HJAuTZsdi yaKk+YJ+LGmuPB5zcOpRySNJ83JO7Mv/OBi1jo084jrHWlh318gj7mqteanW MLDGfHpK8mScl/cl7yXNlBckzyfNGvSSpDn1dOTArWfChxHPhg+DlkY+THox fNjxuuS1pPmCfpVzJWmb0rlKmVP4LyfNl+eiLhx8KWp1+z95sOZNyRtJ8+7l iIMdH8T9nBFrpxZ8eity4MiHkmVJ82VZ5MDFdyRvJ82vd8PvGXuDDy8+inz6 /+Pw4cKXki+S5gj686TZzx5ztmDWZ5JPk2bqG7EvsOSTqDUg8ojrHmth3VdE 3iexB7ulvHfD9Uxf5PuBGnPr66R7A2Z8J/k2aXag1yTNqZWSFUlza1X4MGt1 +HDn+8iHQz+E/6qu81vyP3Zg/5o0a1fEteHaL5Kfk+bIN1EX9v0YtcZFHnGb qi9eV90/kmbkTxFHrzbT/W2eMpPWRK3NFP+G4v9Mmh3raX7dlJmCXifl7/r/ kfydNKf+DR9urZWyDyPWTzmfPt8gZf9Z8WSOePKurnGd9vYe8eEd2c103fek N2NNst/i+3PZm8h+TfbvSTNjw5RrjeT/oabxITVmLmv5i/PX2jHwkdeTr+Lc wLYtNN485fPSUroqGcP/a0M5V6tOc13rA9nbpNz/W6acAw9apOzDqa1S9scq 90PFX6Pcj6SH8/vilFmQk86mzA50JuUeohfbpMyptHQqZY5snXLdLbSGj/l+ OGV+kUcc3ClI51PmI3nJlHmxQ8r3835r14FNsKqYcg7saCVdkzJT0OTAvrJ0 KWUWVlL26SX2Bh9G7JhyPn2+U8o+LOA+dkmZHei6lF8/2GPOFpyqlW6dMiNZ O/sCM3ZOuRb8Io842MxaWDdcJI+4ybLXTvlswbbdU+5P9M2Sm1JmRzvpvVNm CnqvlPt/j4iFB/Up+3CqIWUf9rRPOR+u7ZOyDwv2k+6YMjvQTSn31QnSx6fM qUbpDilzZM+U68K7fVOuBb/IIw7uHCC9f8pcJI84+vXElOvCJNZOLVh1YMo5 sOMw6UNTZgr6kJTP90HSnVI+751T9uFUl5R9GHF4yvn0+REp+7DgWOljUmYH umvKfOH+jkuZU0dLH5UyI1k7+wIzjky5FvwijzjYzFpYN1wkjzj4dXDKa/qk te/3t+jLXpKe9IDO/+f8nVv2lrI/5W/VslvI/oy/eafc56dJn5oya86UPiPl z3mT/w+Hzkp5DmadIzlbMl49+yXfBdeYR+dLzkuZbedGHCw5PeVrrBfzzK0d Naj7Bd+Bp/7jUbeoBSN6x/3ARNZFrefEvXni3nLlrZD0Sf3HkT6RA4svlXRP uX96hN889gZ/Jdzk30XJnqR7WSV/VI15MFByZcpcQA+QbK19+5rvvmTfxPfb kitkT5Cez79p4j2r7Ptlrw7ukNc/ZRazlks4M3znzb9RS7l/Jqfce7wucQZ5 rrBqsGRQyvy4VjIiZY6gh6fMgKGSISmzaVj49PzV4cOykZEPp64LHx6Ml4xL mQvosSkzhXpXpcymMZLRKbPkmqgL80ZFrZ0ijzjYcz37kTLjRkcc/XqX5M6U mTg8asG5iZFDn0+VTEmZI1NiX2D8DTyflN9D3Bg+zLopfHr7lsin16eFDw/u kNyeMhfQt6XMjjtjDjbdKpmRMjcnxL7AvOlRa5/II65NrIV1t4s84tLxrDg3 9PNMyd2SbXRmvtXzfiLlXp0vmZcyR9BzU2bArMiBTbPDp+fnhM+ZuDfyOSP3 hQ8PHpIsTJkL6AdTfp3kGXKGYNMCyQMps+SeqAvz7o9aR0QecbDnEcnDKTPu gYjbVvfyne7lyZSZODdqwblHIweOPCN5WrKd4r9X/FMp82+xZFHKXH48/DWt bcMvGPFs5P+vz8OHFy9JXkyZKeilKb+GsMecLTjyguT5lLn5cOwLzFgStc6O POKOi7U8ljLXno84PvvBOPgEq16Oa//Q2jZcgiPvSN6W3KJ+X6h+/5nfL+h+ f5F+PWVGvCl5I+Wefyt8uPNu5MOh98KHce+HDxc+kXwsmaH6v/O5mH8P3tox 8K17XJ+60xTzG5+Ba8yazySfShJaz598jy/7VsU8rHX+0drPOKXPwcm0+fVp XI9+/UnyY8ocWSlZkfKZ/lLyRcpn/KvwOVvLw+esfR0+3FkV+fBidfj0/Dfh j4rr/JAym76TfJsyG9ZEHOz8PO5nRMwzd2Wshbnrosb3KXPt+6g1JNbOmmDT z3Fv9Fhz3XeztDnyt+SvlHv+N8mvKTPg9/Bh0x/h0/N/hg93/ol8OPRv+HB8 rbR9uLCB7PXTZtO6/E46ba6tnXbcpLg+dWEe88zBmo2kN0ybQdRYL22uoak1 Ltb7S8ocIpbrjY0x7hmObJH2PcO7TaU3SZt/m6Xt0z+bp+3TT+wNPtzZMu18 eNEibZ+e3yptHy4kpLdPm03bSm+TNhu2TjsOdm6c9v3APOaZg8eshTkYRI3t 0uYamlpTdG4X6Nz+1Noc4swmYh/PkZwt+UtzpbR5Qs9nZWfSZkAubR825dP2 6fmidIEeUI/8rfyy7JTsf2RXZKdl/yu7mjYXdpbeKW02tZKuSZtrO0i3TJsl rIG6sI955mBNrXTrtBlEjR3T5hqaWjCb9abT5hCxXG+J3uc8pPc5G9WaKXto bHfOjfxd0uZSRutcW34b9pnvk7VX68i/Q/Yi2evWmkH1aefDoIa0fdixZ9r+ XYp/XPEb1ppH7TS2d9qM2SvtONhZl/b9wC/mmYPHrIe5O1VnA9W4kfeEta4D 03ht4f7gTk5r3lhzHdI+vydKn5A2Uw6S7pQ2j/aT7pg2n/ZP24cFB6Tt0/8H pu3DoM5p58OgLmn79P/Bafuw40jpI9Lm0WHSh6bNiUPSjoMrXJ+68It55mDK 0dJHpc0mahyeNsvQ1ILXrLcpbVYRy/XgL2ONaTPlpLTvGf4dK31M2mw6Lm2f vj0+bZ8+Zm/wYdDJaefDoFPS9mHHqWn7a0dPnJU2j86QPj1txpyWdhyM7Jr2 /cAv5pmDo6yFubWixplpswxNLbhzbtq9B5POl5wX+hXJy2lzpLvkkrT5gr44 bTZ1i1hYdUH4cOHC8OHOpZEPh3qEDy8uk/RNmynoPrHvD0juT5tNvSW90mbK RVEX9vWMWi0ijzj4crmkX9qM6xVx9ORoyai0+XRx1IJJV0QOHBkiuSptvqAH p82mAZL+abPqyvA59wPDhzvDJEPT5sXV4cOL6yQj02YK+tq0WTIq5grqnc3U O8PT5mi/2JdNal3nfwxSzObyR6TN1P6x7rzGN9X4NWn34qBYE0waKxmT9jm9 S3KnZLZ6+SkxYQvlzJLdXHpyjdk0LnJg1fjw4cKE8Eu61paKv0F2WXYLmJA2 L6ZJbkmbKeipksmq/6N4O7bGbOLfFPHvh2DK9VEX9t0suSltZk2NuHv4N2Kq P7XGjJsccfTi3XE/zWpdB07NVfwzuq9tas2RWZKZafNlZuRUtObtNH9b2py6 Q3J72j18Z/hwZ3bkw4s54cOL+yT3ps0U9Py0eT8mzhZsmsdaJFvVek/gKey5 J2p1iTzinuffzOq1YNtaM25uxGXi3PEsYdX9cW2YtCDt3oApj0keTZtHCyUP ps2nh8KHBQ+HT/8/Ej4MWhT5MGhx+DDp8fBhx7OSZ9Lm0VOSJ9Nm3BMRd0xc n7onxTxzMGWJ5Lm02USNp9Nm2dNR64hYL/dzesRyPfr1fcl7aXPk1bQZBP+W Sl5Im1Mvhg+3XgofZr0cPtx5LfLhxevh0/NvhN8zrvNu2mx6W/JW2mx4M+Jg 5PNxP5fEPHNnxVqY6xE13kmba+9ELXj0QdwPbPtQsiztHvtF8nPa7PhC8nna TEF/lnb/fxQ58ODj8OHUJ+HT519GPmflq/CrOucJnanVsreXXpU2R9aLPWLP 4NRKyYq0OfJp1OXcLY9a8GtVxO2gminVWpM2F7+OuP6xXvJbKiapmG/SZtx3 km/TZsdvkl/TZsqvcf/pWo/DATj4g+T7tHvpJ8mPaffWz+GPijHi+L3DlPg+ q0bXzajW72lz5F/JP2m/JiyLZ9BKMXnF/JU2R/j3i8TNFzeWiBvZYBl5f6fN 6e/jHl5Qnz7O/+em1nxaN+N/G1motQ3vNizpzEm6lcySzTS+acZMQW+SMWvQ G0vu13WLyr+Vf4fP38X4b43WmmubZ5wPC7aSbpExO9BbZsyObaS3zriXdpBu mfFzOlT6EMlSrfkprblca5ZtobHmGbMQ3SxjrlGPOfjIGNemX1tJ10gWam0P SjbMmE9ckzXBkZx0NmO+oDMZcwedzphZ20tvlzHDEhn78CKfcT68qEpXMmYK upwxX8nbNmNeorlnGMO9kgPH2cuNMuZXSbqYMdfQhYxZRj3mYBVjXBuGJjNe Ez3WKN0h47Oyr/Q+GXOkjfQuGfMFXZcxd9C1GTNrx4z3C4btlLEPh3bNOB9e NEjXZ8wU9B4ZM2Iv6T3Dnyy5WbJ76Jsy5s7OGdeFX8ztljHX0G0zZtkekQcr GePanH3uifuBU60zrgXDuCZrouf3k+6YMVPQTRmzBs2+wMj20u0yZhl7g0/P 759xPizoIt05Y3agD8qYi+TtnTEX0dwzrwOcL84uHGUvWR8s6yR9YMYsRB+Q Mdeoxxy8YWz/2NMpsXe8lqQyfq5wjT44OGN2HCd9bMb8QB+TMUfQXdlf8aGl euVw9kj2DrKPyJg9x2ec31rjO2n8FM6SeuLldnrWtebF6Ro7LeNe6iXpyTlQ fFXzh2XMwaOkj5TUaOzEzH9MxD5B8ohqtuJzXo35yBjXpu/7SHpnzKOjM64F y7jmqZxFXauNcrvxXPfSWZV9PudWHHhOHKirNfPOkpyZ8b/hPjt8+udCyQUZ M6CH5NKMWYDunjEryTsjY0aiuefmca/kwEv2kvXBvEskF2fMPPRFGXOte8xt HGNcm/cCMIPnRy+NloyK83GdZGQ81yslAzLuW3T/jJmCviJjNvWN/YJVl4VP 3YGRDwOGSYZmzAL0kIwZcY3kakml1ixdFX1GL96YMYP6RV2Yd5VkcMbMQw/K mGtDYi4dY1y7Ju6J+4Fnl0etYlyTNdGf4yRjM+559JiMmTIm9gX2XSsZkTEL R4ZP/4yP/Lax3hsyZgF6UsZ8JW94xlwcHvfM6wDni7O7Xewl64N5EyXXZ8w8 9ISMuTYp5mpjjGvvXOtzxevjVMm6WdlZ9+fa0mtlzaPbJbdlzBL0rRkzBT0j YzaRT2/DqlvCh2d3RD4MmC2ZlTEL0DMzZsQ9kjnsz0G6pwO0Xn6jpP56o52Y UWsGTYu6MO9uyV0ZMw99Z8ZcmxlzjTHGtZ/kv2kjeSpjnk2PWgfGNVkT/fmQ ZGHGPY9+MGOmoBdkzKZ7JfMzZtV94dM/D0f+7lrr4sx/LMBelDFf50nmZszF uXHPT+ge9+A1v8bcnRHrg3mPSR7NmHnoRzLm2qKY6xpjXHvXWq+HHqB/PpQs izPygeR9nm1O7yUl5+TMguckz2bMo2ckT2fMp2fDhxlLIu5prfMtPYu9+c5I vGov/VLGnHhT8kbGbEC/LllP1zgvrgenXpO8KtlLeXP4N7+sWc94H/kvZ8yU 1yPuJTFwqRjYLvhI3isZM2JZ3A9sez7WB5veinXQA59IPs64V9EfZdz/H8W+ wL/3JO9m3D/vh08PfRr5sGG55KuMeYD+MmNukvdOxlx8O659aYzh71nrtcFq +PWF5POM+Yf+LGO+fBlz/WOMa9M/9B+9V6f9aata92fMpq9jTTDpR8kPGbMJ /X3GXEF/lzGfVktWZcyLb8KHRz9FPmz4Q/J7xjxA/5YxJ/6S/JlxPzXXWppl zTvqrcyYQ2uiLvz6VfJLxvxD/5wxX36LuTExxrXpty1Vb4us2fZt1JoY12RN 9MAGml8/615Fr5d1/6PhFIz/V/JPxu+/YBU+PbRh1vmwYXPpzbLmAXrTrFlL 3t8Zs/bvuGfYwb2Sc23sJeuDX5tobOOs+YfeKGu+UI85WMgY195Fz243PbsH Mu6lVhqryZpBO0i3lOymmEbFJGT3EfPayu/AmRer9pXeLms+tch6v+DFVln7 8CglncyaDQXpfNY8QOckF6pOMWte8Pq2Is7Q0HiG+HBo66zrwq+sdCZr/qHT WfOFeszBQsa4NrzgnrgfmLit9DZZs4nrsqYDdB87Zf/jCPaOWTMGzb4sEVve ayd+K3Z37cH+0lWN7yH7QNk7Z93/baV3zZoX6DbUUe47yu2ouIt0v03Spaxf WzhfnN3zu3htsLpeNTsrpo464sxr4sxB8hs03oXv9DW+VDU/UM1O8h+T3ZrP eWLWItmvary21kzaLes1wY99pNtnzRF0u6x51CBdnzUj9szahxF7Ze3Dsn2z zodtHbL24cEB0vtnzQX0fvEMrpIMzpptHaWbsmbP3lnXhXGNWdeCZeQRB2s6 SR+YNQvJI47+PFH6hKzZxtqpBZ8OyjqHPj9C+vCsOYI+LGsedZHunPXZOjhr n7N1SNY+vX1k1vn00lFZ+/DgeOnjsuYC+tis+cFamINtx0h3zZqdrJ19oS+P zroWLCOPODjNWlg3LCSPOM77oVmvCc6dLH1S1mekl6Rn1vw4S3Jm1hxBn5E1 j07JOgc+nZq1Dy9Oy9qH12dHPvw+J3x4cKHkgqy5gO6W9esk52KPrNl2vuS8 rDl0etZ1Ydy5UWuDyCMO1lwsuShrFp4XcTCid9wPbGPt1IJPl0QOfd5X0idr jvSJHHh3qaR71vzrEX7z2Bt8eruf5DKea61t+goeDJIMzJoL6CuzZj97zNna W/11mHL6Z83Oi2Jf9tT4IRq/PGuWkTcga053j3X3Exv3Utyhtb7/VyQvZ/1a xBnkucKnIVn3BmwdKbk2a46gR2TNo2GSoZLDa23DqY/U0+1U/4has+y6yIdt o8LfR/PHan687FfFgc+Uc0ytWTs0rn20/DFZM+4lxXyimCNrzbjRUesVjXfl daHGrJkouT5rFo6JOHr1bsldkva67lH8rSFr3k2KHNhxi2Rq1kxBT8maRzdK bsiaTzeFv7vk5vBhxLTIp8+nhw8L7pTckTU70LdnzYm7Yg5O3Sa5VbKv1nac 1jYha2bMiFr7Rh5xu8ZaWHf7yCOO15bBcW5g2yzJzKzPy5OSJ7Jmx72S+Vkz BT0v6/6fHTnwYE74cOqe8Onz+yKf83F/+LDgYclDWbMDvTDrHuJMvZQ1px6U LMiaI3OjLmftgah1ZOQRB3celTySNRcXRBy8eCrup3OsnVqw6rHIgR3PSJ7O milPRw7sWyxZlDULHw//xNgbfBjxbOTT58+Ff27cx4tZswO9NOvXAfaYswWn XpA8nzUjH4l9gRlLotbZkUfccbEW1n1m5BEHz16TvBp6d73f3y1nH902Z368 J3k3a46g38maL+i3s2bB61EDNrwRPix7P/L7iwONOnMn8hlE+gTpj7PmxeeS zyRv8XtI9d2ZtX42aV0/lTP73oy68OsjyYdZ82+Z5AP2vNbjcK13jHHtszX+ a9a9D4/eilpNWsNJmvuUMb2PGNpevcvv07WGU7g+/25CemXWrOGsfyX5Muuz vzz8/ZRzGt/D8xylf8z+xwvsH7JmKnlfZM3IL+Ke39S1zlDOwhrz8u1YH/z6 XvJd1vxDf5s1y36IuRExtiZrbn4da6KvttCeNc/5rDST3jxnfqwl/W/WHEH/ kzVf0H9LDtC9nMPfCTiHfMefNd8mS9bOOZ/+31B6g5x5gV4/Z15sLL1Rzp8D YRYM43Mhr5P4B6r+ear7R9b84nMmn2vhH3qdnFlGPeZgImNcm7PPPXE/8Ogv yZ9ZM4lrsib6fCvpFjlzBL1lznxBsy9wcDPpTXPmInuDT29vnXM+/Z+UTuTM C/T2OTOVvE1yZiSae95f93WW7uuXrHn5d6wPfm2n+W1z5h96m5xZRj3m4Apj XJvXoRXxLHldWhk+TKIPWBPsqEiXc2YKupRz/+eksznzIJ+zD6cKOfuwp5pz PlxrmbMPC3aW3ilndqB3zJmv1MvkzKlW0jU5c6SYc114t0POteAXecTBnVrp 1jlzkTziztc+NebcqzCJtVMLVtXlnEOf10vvkTNH0LAJLraR3iVn3u+as897 CliFT2835JxPL+2Zsw8P9pXeJ2cuoNvnzBHW0yFntrWT3jtnRrJ29oW+3Cvn WrCMPOJgM2th3bCQPOIGiXUH6UxcoHvty/fPOffUYRrrI/+EnJ/xwdJdcu5b dOecmYI+CF/xFyp+v5z5eABnTXJRrXNXBAOOkn1kzixAH5EzI7pKH53zax3P EJ7yPhS+vxIMOjDnujscpPOndR+sa74tLi0Xhy/RdZ7R56+nJYezVs1drLFD cmZYp5zzYRvrxYdVXJM10Z+nSp/CmpTbT7kny7681uP0yOEav0z+SZwtrWGY 1nCoxmp0zd4aP57novWs0Hp61poN5+f8/RRs4PuwsyWHKKeH5o+RfWmt7x1W dtJ4N/lNOXOE2LNy5t+Z0mfkzD/06TkzjnnmjlTuFco9LWeGwcGbg3ndYh1T 82JXQWspmCWXSrrnzBT0JTmz6YLIgVUXhg87LgofrvWIfDjXM3zY0E9yWc6M QPfN+XkskDyQM+f6SHrnzKSLoy686xW1too84uDOFTyHnLnYO+Lo29GSUTlz 7pKoBav6Rw4cGSoZkjNf0FflzKYrJQNyZtXA8Dlzg8KHF8Min56/Ony4cJ1k ZM4cQV+bMzNGxRzMGiEZnjNHL499gR/XRK1q5BGXiLWw7nLkEUcfDI41wbmx kjHM6dwdred9Za05coNkUs58QU/MmQXjIgc2jA8fZk0IHw7dGPm8h7opfLgw TXJLzhxBT5VMkayjM7R23szCn5wzU66PurDv5qjV8H/yYNAMyfScGTk54rrq PgbqPu7OmU8ToxbcujVy6PnZklk5MwU9M2cO3iG5nb2rtQ0fj1LNAfLvzLnn 50Q+PX9P+Mv4NyDq06sU94HswdKP1vg1gT3mbMG5+ZJ5OfNyeuwL/JgbtQbV OgbGwenbYt2dI29u7MG6ee8dr1FXxXOFfQ/m3BvHas3DVWuR7FP30jPmO6Gc 2fSQZGHOrHo4/KG1tmHHCP4WkDOrj1Oda+U/njMjnpM8mzMX0M/kzN2Fce3r FPtUztz7SPswjDXw/wJRnZGyn6Cu7FGyn86ZNc9LluTMR3KfzLlXl0k+kLzR SZr/J1+t+fRC5MCO1yWv5cwU9Ks5c/FFydKcv8d/KXy4+XL4MOKNyKfP3wwf FrwveS9ndqDfzZkTH8QcnHpH8nbO7FwS+wIz3opaPSKPuLNjLay7e+QRd4z2 YQjfk+fMto8kH8Z5+VnyU87s+FLyRc5MQX+ec/9/HDnw4JPw4dSn4dPnX0U+ 52N5+LDgG8nqnNmBXpVzD9GLa+XNqZWSFTlz5LOoy1n7OmoNizzi4M63kjU5 c3FFxMGLX+J+BsTaqQWrvosc2PGb5NecmfJr5MC+HyTf58zCH8MfHXuDDyN+ j3z6/I/wYQH38W/O7ED/k/PrAHvM2YJTf0v+ypmRa2JfYMafUevGyCNuZKyF dU+KPOJ4LXwl57MF29bLuz/R50nOlZyoZz1Gz3pT2aOlN8mbL/T/+hELDzbI 24dTG+btXys+n6T8scG1ZhrbPG8WbC29Vd7sQLfIu69qpHfIm1NbSm+RN0c2 yrsuvGuedy34RR5x3fXeY5yus03eXCSPOPq8Vd514SPr31jysXr8G3FvvHI+ kz2RHle/Xy+dyZstS1TzOcn2eb9mJ6UTeXMqlbf/uXK/VZ1J/O5B93oD31Fp fDLfqefNBNiBXZGcrpgpmmsp+ya+O8+bWZd08Z7AylMVc6PmCvJPk32z7LLs VnqvNUp7enIb85HcYt78Sue9Jti2Y973TI81STfmzZ3W0jvn3fM75R0HAxjD p89r846DNW2kd+E1TjKFe8r7rOya9xzM2k26bd5s2Et6z7x5RM4eebNt97zj YEld3teAX8wzxxmkBnXhCzUa8uZRQ1wfRnTM+35gIuuiFqxqJ7133n2+v/R+ eXMETQ7821d6n7z7p0PePv3E3uDT2wfknU+vH5i3Dw8OkT44by6gu+TN1/Z5 Xxs2dZY+KG9ushb2AuZ1yrsW3CGPOFjMWsiHceR1iv45P+/e43WJc8hzhVWH SR+aNz+Okz42b46gj8mbAUdKH5E3m47K26fnj87bh2XH550Pp07I24cHp0mf mjcX0KfkzRTqHZ43m06WPilvlnTNuy7MOzHvWnCHPOJgzxmc97wZRx5x9Gsf Se+8mcjaqQXnzsw7hz6/QNItb450i31ZW3K25Ky830OcEz7MOjf8HuqjC/Pu 8Z6yp/J3qrx50IuxvLmA7pE3O3rHHGy6VNI9b26ydvblY72GD2+vtbUxd3pE 3FqxFtY9Vn15puan1fp1hWfFuZnO58m8e5t+GyMZnXevDpRcmTdH0AOopxoz lHMZ54ffh4stt/KbEY3fxvf2rLeLczkbfWTfrvFBnBvFzJJ9teyZfN+eNx94 neQZcoZ2UvxdmhuSN9f6S67gHOpaP+tad2juXNW5W3qoxmfzXXje7NqR/6eP 7vOcNubF2LifRKydWudrbo5yRuTNkfGScXkzZlzkwPfrJCPz5vKo8FvF3uDD iAmRT59fHz68uFlyU95MQd+Y92tI3zhbcOQGyaS8ucn6r8mbGROjVtvII66b 1nyP1nxt3lybFHF89ns1XiNh1eS4NkyamjcTO0jukNyeN1PQt+Xd/9Mkt+TN g+nhw4sZ4cOeOyMfrt0VPiy4RzInb3agZ0se0RpX5P1c4NQsnnPeHLk16sK7 u6PWAZFHHNyZJ5mbNxdnRhy9+pTkybyZdFvUglXzIwd2PCRZmDdT0A/mfb7v k9yb93m/P3zO2QPhw4iHI58+fyR8WPCE5PG82YFenDcnnow5OLVI8ljejJwb +wIzHo1ax0cecQfHWlj3sZFHHGd/QawJtj0jeZpY7eeyvM8N7HhRsjRvpqBf yLv/n40cePBc+HBqSfiw56XIh90vhz9JvXKhztZ8XecLMWSkGHKB/P78Poq/ vRfU57Jfy5tZcOT5qAvvXola/RQzV/Gv582ddyRv583FVyPuQn1Wuo/vfmrM pBeiFqx6N3Iu1rUf4Dt82TdqbRfx36GrNfvel7yXNws/CJ9eWhY+jPhU8kne ff5Z+JeoxkOqsVz2Sv5NrhiysNavA+wxZ2sB9583s5ofrNf4vBkLMz6PWiv4 HbXinq0xm9+LdcPFLyJuufZwtPawdxu/Lj0Yz/VS+Y/C3bzZ8aPkh7yZgv6e 86H51XlzoKfiF/P9v+xesh+XvSZv9vwU+XDt5/BhwZ+SP/JmB/p39la5jyl3 Vd6c+k3ya94c+U7ybd68+yVqTYg84uDO35K/8ubirxFHr26hc9G8YD5+H7Vg 1T+RM12ygebXL5gp6PUKZtNa0v/mzaq1C/bhFN914cOIDQvOp883KtiHBc34 PqxgdqA3K5gTrIU5OLWp9CYFM/Kv2BeYsXHBteAXecTB5n9j3XCRPOK6a98e 1r59nTfbWmhsy4LPS430DgWzIyG9fcFMQW9XcP9vVXAOPNi6YB9ObVOwT58n C87nfKQK9mFBQTpfMDvQOckV6q/dCu5DOJWVnSmYI9sWXJezli64Fvwijzi4 U5IuFsxF8oiDF60Kvh+YxNqpBavKBefAjp2kdyyYKWhynpBdla4UzMKWBfv0 EnuDDyN2LjifPm9dsA8L2krvWjA70G0Kfh1gjzlbcGoX6bqCGcna2ReYUVtw LfhFHnGwmbWwbrhIHnE76f3AVHGkj57nnvJvkUyVNISeIvlQe7tMckRnxRyo 15jCf3zBbk9Nzb/QxXlwba+C660SE/4QT57RWblS8wcU/uMF9v6SbxTzl2KW 1Lq3TtbYSQX3GPrEgtm3d8F14dd+0h3ZH9V8id8wFcwy6jG3s+5rmu6rbxv3 +ikF14VH7QquNZDPhrrmgQX3+VHSRxbMEfQRkv7Kf0Uxh7O30l0KPvP9NL6U vwcU3NtHF5xP/58gfXzBvEAfx17uq72p12s4z0Zrm6G1XdbGzOD+yIGX7CXr g1/HSh9TMP/QXQtmGfWYgyuMce3LVetF/kYQvdRX0qfg89Jb0qvgz2S8l5ka DDpdY6cV3P+nFrxH8IAxfHr+jILjYM85krML5tR5knML5sHFkosK5gL6QvZT Z2WN5OytzKYLJN0K5hc1ziqYeedHrY0ij7h1ozbX2yDyiGsR98T9wKQzC14f nLok1kF/Xi7pV3DPoy8rmCmXxb7Awp6SHgX3Uq/w6e8rIh8GDJYMKpgF6IEF M5S8SwtmZPe49uYxhr9W3B/rg1lXSgYUzDJ0/4IZNDDmto8xrv2SnuGhBb8e XaFn+rL8wwrm1FWxJvhxnWRkwRxBX1swA66WDCuYTdeET88PDx+WjYp8ODU6 fHhwvWRCwVxAjy+YKdQbWjCbxknGFsySEVEX5o2JWq0jjzjYM0kysWDGjY04 enSWZGbBTLw2asG5GyKH/pwumVZwz6Nh01X8v0m1JzfJXq33EuP1XmIAfz/g NwQan1xw/8yIfPrp1vDhxd2SuwrmBfrOgnkxM+a+FYvWVc23as3NibEvb9S6 DrwbxN/q+I6e56H13Fjwa8/ayhuouTc1973qvCu9tMa99Izk6YJ7DP0Ue6rY j/kOVvZH0vcV/OzpYex7JT+ozvqq+57mByv+fel7CubRAskDBbPhUckjBfMA /XDBnFgkeazg17ohcYby8Tz/56vmB6o5t2B+PSRZWDD/0A8WzJeHY+6IGOPa y5Q3r2AmDlGdD/n7QcFseizWRH8ukTxXMEfQzxbcG8/H3Gkxxh7B+yclTxTM 66fCPzHGHi+YYTAITsCFVyQvF8xQ5hcXzN3Fcf/v1Pq88XpzXsS+VDBfXpQs LZhJ6BcKZs9LMXdWjLFWfns4Jf4eCZNejWvDrNfChyXvS94rmCnodwtm05uc o4J58Vb48OLt8OHaB5EP55aFDxs+k3xaMCPQn8TzyBbFqqI59zHnqGAOvRN1 4d2HUevyyCMO7nwh+bxgLn4UcfTtr5JfCubcu1ELVn0ZOXDkG8nqgvmCXlUw m5ZLvir4nH0dPudsRfjwYk3k0/Pfhg8Xfpb8VDBH0D8WzIxfYg5m/SD5vmCO fh77Aj++i1qjIo+4QbEW1j0y8ojj7K+MNcG53yW/cU3+Dah6bTnfv+g8fya9 lvb2W3FmgsaHtTEL/ogc2PBn+DDrr/B5z7SO8tYu+j3UukX7A/T57gvVfElM +Fx6w6KZMkoMOV/2BkUzC72+ZKjG/y6YL7BvvaJrwbINI76FPottUjSLYCR5 xNXqPcYcvccYrjUPU51PdL1/CubdZprfVLJSY1sV3fsjFLdCfouiOdhMenPJ NV1sw8fhsr9STHP51yp+leytZY+UvZrv7YtmQ1o6VTQj0MmiXxN+i7M1SvHf Kn576mqN18j/ks9ykm2L5h5cIy9RNKdZC+u+TrFrFLed7NFaz4+yuxX9GrUq niusyhXdG7CjpXS1aH6gK0WzqSCdL5pVxaJ9eFEq2oc9OxSdD7NrivbhQa10 66K5gN65aO5Sj2vDuZ2kdyyaQ+Wi68K4VkXXgn3kEQdrdpGuK5qF5BFHr3aU biqabaydWvCpTdE5sGNP6YaimYKuL5pNbaV3LZpNuxXtw6rdi/ZhxF5F59Pn exftw4JG6Q5FswO9b9GcYC3Mwal9pNsXzU7Wzr7AjHZF14Jf5BEHd1kL64aL 5BHH6wwM49zAtv2l9yv6vJwkfWLR7DhYukvRTEF3Lrr/Dyg6Bx4cWLQPpzoV 7dPnhxSdz/k4tGgfFhwtfVTR7EAfGb1HP55XNKeOkD68aI4cVHRdztphRdeC X+QRB3eOke5aNBfJIw5enFz0/cAk1k4tWHVs0Tmw41TpU4pmCpoc2He89HFF s/CEon16ib3Bv1a9cFrRvBgp+zv1xelFs4D7OLdodqDPKfp1gD3mbMGpsyVn Fc1I1s6+/CDuTRL3Rrcxv86JONjMWlj3GM39oGudKft1je9R9Nn6RSzdWLk/ 8V5NMevX6dxpfByfeTTWgxjpS4vmS514NV8sGKv513iPJ7moaE5dIrmY86Ca m6nmb8obr7jf+d5L45Nk/8v36rInyv5Hdr+i+2osa5Rcr/G/+B6/aI50j7oT +Hyo8d7sHd/ZF80xuDNA0p/novE+RbOSfh0XdWHSpVELVl0ZObDjasmwopmC Hhrne5BkYNHnfXD4cOqq8GHENZFPnw8PHxaMlowqmh3o64rmxJiYg1MjOQtF s5W1X1E0M0ZErR0ij7hUrIV1VyOPOPg1JNYE28bHPdNjsyQzi+bORPa16J6f EHF1MYZPn0+KOFhzk+RGzklJ56Ssc1L2Wbk55mDWFMnkotlwq2RG0TyaJrml aLZNjThYckNcY8+YZ26PqEHddlFjetE8mh61YMTsuJ+2sS5qwarbJbcV3ef3 SOYUzZE5kQP/7pLcWXT/3B3+frE3+PT23Min1+eFDw8WSB4omgvo+4vm6x1x bdh0n+Teorl5W+wFzJsftQ6NPOIaYy3kHxx5xNE/b7DfRb8uDY3nCqsWSh4s mh9PSB4vmiPoxUUz4BHJw0Wz6dHw6fnHwodlT0Y+nHoqfDjyguR59hV2qPeX FM0U6j0kGaf+XkvjzxbNkkVRF+Y9HbXuEw9uUP7adWbPi5KlkrHKfaZo3k3R /Gaa/6hoJi6OWnDupcihz9+SvFk0R96MfZmgOi8XzfrrZa+rOq/I/l2c2Vyc WU/+pC7OpcdvkL2Bxt4umiMfSpZJJmsNm2j8A9mb1nkcjry6r85lvV7riubm 0tiXv1S/mepvqNiNJe8XzR84/XKsexfxcIHu/+Y2fl15MM4N/fyp5JOi++03 ya9F9+rXkuVFcwT9VdEM+CxyYNPn4dPzX4TPmVgR+ZyRleHDg+8k3xbNBfSa ol8nH4ozBJu+kawumiVfRl2YtypqDY884mDPD5Lvi2bc6oiDF7/H/QyKtVML zv0YOXDkT8kfRTPmj8iBfz9Lfiqay7+EPy72Bh9G/BX59Pnf4cOLdcWjdUpm CnptyVTt++Z6Nh8XzZG1NPZv0dz8PvYFZvwTteANecSNjrWwbrj2b8Tx2Q/G wSdYtV7J14ZH65fsw5HNpTcruec3Kvm/uwMDNi7ZhxGblOzT85uW7MOdZiXn w6HmJfswbouSfbiwrfQ2JbNpK+kWJXNty5LjYAnXpy7MY545WLO99HYlM4ga W5fMNTS1eMZHSB9eMoeI5Xq3aD+baz9blcyRvHSu5DOdkk6WfMbTJfucrUzJ PmctW7IPdwol58OLYsk+PV8q2W+m69SUzAjYVJVdKZkN5ZLjYGei5PuBecwz B49ZC3MwaAfpliVzDU0tGMbaWdNC9eg03dsWde6x/TW2H/uo/p6h8a3q3PO1 GmtdMgPqSvZh0y4l+/R8m5L9v/S+62bl38rvBSTbqMZuJXN8D+ndee4aT2h8 b/ZXuqFkTsG1+pLjWtS5JkyBecQwl9J4+5K5849YtJWutb3GblfN7aT3LJnd rHdnzoPGkxpvJ3u67C1l71QyRw4o+Z7v1nhW4x04e7JzshtL7p+O0k0lM4u9 wYc7B5acDy86lezT8weV7MOFw6QPLZlNB0t3KZkNnUuOu0vXSuta+5TMPOaZ y2hs35L5DIOocUjJXENTi/cF9NYGJXOIM8v1Wip3Ssn7BUeOlz6u5J4/Wvqo khnQtWQfNh1Tsk/PH1uyD3dOKDkfDp1Ysg/jTirZhwtnSJ9eMptOlT6lZK6d XHIcLOH61IV5zDMHa86SnFkyg6hxWslcQ1MLZrPeI0vmELFcj57uI+ldMlMu LPm/7QWPzpWcUzKPzgsfPp0fPvvVLXwYdFHkw6CLw4cdl4S/ZVynV8k86iG5 tGTGdI842Hl23M/mMc/cOrEW5raIGj1LZlnPqMVrC/cHd2BQ37g3zu94ybiS mTJQcmXJPLpc0q9kPl0RPizoHz79PyB8GDQo8mHQ4PDp/6vChx3DJdeUzKNh kqElc2JIxCXj+tTNxzxzMOVayYiS2USNq0tm2dVRa5tY72Uls2pEXG/rGOOe YcqEuOdZ6ouCzvEo2Y+KUbPlF+XPkS5Jjym5t9mbsSUz6PrIh0ETwy/X2YYj sIO+mMx6DtbrX8lcGrWX1qS4N2vMyJFxP4t03Xt0varm8pLrSubyHlHj5pJZ hr6JM7CfeKu4t1Tna7132kvvnaZpfG+Nra/PCtO5R9l3lswT+IJ9h6RVnedh 1Dxdc0f5M2TvJH1ryXy4T+N18u8qmUMzJXeXzIt5krklMwV9T+z7KsnKktk0 RzJbMl91dlad20pm36yo1SnyiIMv9xJbMuNmRxw9+YzkaeZVpzXcLZlJ90UO HHlE8nDJfEE/VDKbHpDcXzKrFoTPuX8wfLjzaOTDi8fChxdPSZ4smSnoJ0pm ydMxB5selywumaPzY19gz6KodWLkEXdorIV1Hx95xNGLC2NNMOk5ybMln9OP JB+WzJGXJS+VzBf0iyWzaUnkwKrnw4cLL4QPd16JfDj0avjw4m3JWyUzBf1m yZ/5YBYMg01vlPwZFKYsjbqw77WodXHkEQdf3pW8UzLjXo84evHjuJ9zYu3U gknvRQ4c+VTyScl8+SRyYOEHkvdL5tSy8PvG3uDDnc8iH158Hj68WCH5umSm oJeXzHv2mLMFm76SfFkyR9+JfYE9X0StwZFHXK9YC+seGHnE8brxUDxLWLUy rg2TVpfcG0+pxx/QOd61zjxaI/mmZD59Gz4s+C78XRT3fcksWKC8tvJ/KplB v0h+LplJv4bfRp+DntU1HlTsTfr89XvJXIJxv0Xc/Zprozo/lMyv32MOpvwr +Ueyjtiytd7n7K64m/mtiPQfJbP2m7ifNzX+Bt+5l9yvW4o5W0geVv12it9A 9lTN18teW/Z6qrmNajbI31XrXKJ1LuS3VJK9NLaeYtpLb1g2gx7R+D7yN5L/ qOx9+fxXNhe4TvOy2bS59GaSDprfpGy+wci1yr6fx5TbqLlN5U/p4nF4CoOo 0axsrqGpBY9alH0/sG1r6a3K7rGdpHcsmx0p6WTZTEEnyu7/bcrOgQfblu3D qe3K9unzdNn5nJVM2T4sKEkXy2YHuiB5XPs0V/dQU2dO5TWWK5sj25ddl3OX LbsW/CKPOLhTkS6XzUXyiINDrJd8OMQ814ZV1bJzYEdr6Z3LZgqa+6f/a8ue g4M7SLcsu5daSdeU3VvsEz68ZIw4fu/A5zq++6T/68quBUd2k25b9msC+80z gFm7SrcpmyN8B0Yc/Nil7HxYRh5xcJq1cA8wkjziYFN92d+jwbk9pRtYT0Vz ktcr5kgHje1bNl/Q+5TNgr3KzoENe5ftw6x2ZftwqLHsfBjXVLYPFzpJH1g2 R9AHxLMZKhlSNrP2l96vbKa0L7su7OtYdi1YRh5xMKiz9EFlM5I84qbrbO+v M3Jy2Xxi7dSCW13KzoEpR0kfWTZr0EeUzalDpA8um1uHlu3DrMPK9ptU++iy ebRI57Gj/K5ls+Mk6RPL5gv6BMm0Lh7/PTh1vOzjyuYla2dfXtDZXqxa+9WZ X+QRB6dZC+uGd+QdWzZ3Di97TY8r70DlnVr2eekr6cMZ0HgXvgOTvaGYs72Y 07nOnDpdY6eVzbgzyvZhxJll+wcr7tyyWfSU6hwi/zzOs+wjZV/MfklfVDZr zuB7eukLOf+KOVz+BdxbnWvCmkNln182D+HXRREPay6VdKdHlHuY4rqVzY7L 4n6e0PhBGj+rbD71iBw4crmkX9l86Rc5cLGXpGfZ/OodfovYG3x4cUXk0//9 w4cLV0kGl80R9CDWrT3cVnt4QJ2ZNVByZdnMZe2XlM2SAVErHXnENY+1sO5k 5BH3qu7rTNV7vezXE84gzxVuDSu7N2DGKMl1ZbMDPbJsTl0jubpsbg0PH2aN CB/ujI58ODQmfFgwUXJ92exATyibtVfHteHaeMm4sjlybdSFfWOjVm3kEQd3 bpBMKpuR4yKOXp0lmVk2k0ZGLVh1Y+TAjumSaWUzBX1L2Zy7WXJT2cyaHD4M mxI+jJgR+fT5reHDgrsld5XNDvSdZXNiZszBqTskt5fNyEmxLzDjtqjVGHnE 7RZrYd37Rh5xvJ7AMM4NbJsjmS1Zqud7vJ7v02Wz437JfWUzBX1v2f1/T+TA g7nhw6l54dPnD0Q+52NB+LDgMcmjkhfFkCW6Xle+j5Y+XfpVjR8l/VDZzIIj 86MuZ+3BqLW+cp9TztF15s5iyaKyubgw4uDFs5JnymbSvVELVj0eObBjieS5 spnyXOQco7pPlM3B53WdY+U/KXtDXXeGeuoFjZ1Q51x4sbF67US+49Znupc1 dxr3pPFTpV8umyMHxB5ztk7W+ItlM+u4WDv70lbvr17VNV5UjZckpyjupbLZ /ESsu0UHnT99ZlxaNtfelLwheUuyp14PGyoeQ9dXzI9lkg/K5gj6/bL5gn6v bBa8FbVgw9vhw7IPI5/+/1zyWdm8QH9aNi++lHxRdm/9Lvmt7B5D/1o2+96J uvDrE8nHZfMP/VHZLPs05i6LMa5Nr/8RdeHRu1Hryrgma6LPv5WsKZsj6G/K 5gt6ddln/WvJ8rLP/orw6e3vIp/+/0Xyc9m8QP9UNlPJ+6psRn4V9zwu7o+c nrGXrA9+/Sj5oWz+ob8vm2U/xdzIGOPacHNlrIle2krPrUXF52VL6S0q/qzG ex9YAoP+lvxVdv//GXs0Kcbw6fl/Ig72rKMaa1fMqfWk162YB5tIb1wxF9Ab VfwbVd7r8RsK2LShxjaomF/UWKti5q1fcS24Qx5xU8uuzfVgHHnEwQvuifuB Sf/G+uDUphWvg/7cVnqbinsevXXFTEGzL7CwuXSzinuJvcGnv7erOP8s9U2m Yo7AgrTsVMUMJW/zihm5WcXXhrWM4cNr7o/1wayk7ETFLENvXzGDqMccXGSM a/M6tCqe5dVx7vA3Uk+/pn4+W+va/mC9LlbM2Dc0/obGz68zA0oaL1bMpnLF /q1dbNP7sKyV7JqKObVjxf5bqnGxatTJvki6tmI+wBTqFSQz9tJ7HM0tE6Nu U81zZVc0fkcX14F9b6rOhRpvLf8d2d35bp29Ukw3vg+vuEf3l96PM6Ca5/E3 QdV8V/GX8hmx4v7cW3qvinseDZt68B1/xe+93lN8T/m7V8wvWLVHxf3TruJ8 +ql9xT6c6CjdVDEb0I0V84K1MAenOkjvy3VV/xLV36Vizu1TcS2YQh5xvN6w nrYVc5E84mDKgdIHVNxLp0qfUnGPoU+u+LkeJn1oxc8bfUjFPYw+uGI+daq4 Frw4qGKfc3F4xfmw4RjprhXzAH10xZw4TvpY9kvn5HXdzzl1fu3keeYr5lDn iuvCr6Okj6yYf+gjKuYL9ZiDhYxxbXjWpeJ8OMh68WET12RN9OcZ0qdXzBH0 adEbZ1Y8B28YY4/g/UnSJ1bMa/YJH0YydkLFDJsaTIIL50vOq5ihzB9fMXfR 3D+vMzwHztx6EXtuxXw5R3J2xUxCn1Uxe86NubVijLW+V9V5k/Sq+jPhLbEO mHWBpFvFHOnJOa2YRxdX/FkTRlwSPozoHj7MuDR8ONQr8mFc7/BhXp/w4UR/ yRUVs62f5LKKudY34prF9am7dcwzB2uulAyomDXUuLxi3l0etXjGD0kWVsyq AXG9TfbTez69b7mizky5RnI119K5el/nqjffR8v+QHafOp+toZIhFZ+1YeHD oeGR37fONgy5XRy4jN8EiAMzxYrL+e69Yk6Nklwn2U3vbd7VNZa1MTsHxv28 o/i3JSPZL+UNqpjdd2tsdOU/xo2OWsVYO2v6kH+jqJxxFffYHMnsiplys+Qm rqP56yvmwMeKH8R3/bI/kT2Y3z7Ivkr6hoo5AIMmRz5MmhI+76emhg8jbpPc WjGnpkumVcy4WyLuU9Uforo3Vsy/aTEHd+5gzyrmETVmVMy4GVHrI37rr9wJ FTPp9rjeAI2Nr5jvcOSeuGfYd7fkropZODN8emZW+AfE3uDDi7mRT//PC5/+ nx8+nHhQsqBitt0vua9iTtwbcXD0zrifQ2KeuaZYC3OHR40HKubdA1GL9xr0 1oUVs2phXI99Wl89ul7VzHhC8njFPHpU8kjFfHosfBixKHyYsTh8uPNk5MOh p8KH30+HDxtekDxfMduekzxbMcueibgT4vrUPS3mmYMvL0qWVswXaiypmIlL olbXWO/DFfNpaVyPnv5I8mHFTHmz4u+zYOErkpcr5tGr4cOn18Jnv14PHwa9 Ffkw6O3wYcc74feN6yyrmEfvS96rmDHvRhy8fCnup2fMM3derIW5PlHjg4pZ 9kHUOjruD+7AoI/j3j5W/34kObqz6qnvP9eZvrrOPPpM8mnFfPo8fFjwRfhD FfdlxSyAQSskX1fMoJXh0/+rwocd30u+k8zRNa9R/jcVc2J1xG2pNXzG78Q1 N7uLx+EYTPlR8gPX1/wIzX8re9P9xEoxc3idWct6P6mYZT/E9S6PMe55D/Ht E11jBf/WRPor6ev42yTfkVXMqOUaGy3/V+5H9hjZv7GPWs97kj9lj9fYXxXz aKViJvAdWMXsoCfWrZpHa0uvVTXj/pX8I7m2zvcCK+EX88xVdB9fqtbIOrOJ GutUzTI0teDOBlX3HkzaSHrDqvWFkguq5khz6WZV8wW9edVs2jhiYdUmVftw YdOqfbizRdX5cGjLqn14sZ30tlUzBb0NvvZwltb9TRuzaWuNbVU1Uzarui7s a1F1LZhFHnHwJSG9fdWMI484enIn6R2r5hNrpxZMSladA0eK0oWq+YLOV82m tHSqalZlqvY599mqfbhTqjofXpSr9uFFK+maqpmC3qFqlrAW5mBTS+lq1Rxl 7ewL7KlUXQtmkUccTGUtrBvGkUccvZirek0wqbX0zlWf0/2kO1bNkd2k21bN F/SuVbOptuocWFVXtQ8Xdqnahzu7V50Ph/ao2ocX7aT3rpop6L2q8XmyYobB pj011lA1U9pUXRf21VddC2aRRxx82Ue6fdWMI484enH/qu8HPrF2asGkfavO gSMHSh9QNV/Q5MDCRukOVXOqqWqfHmZv8K9Xn3SqmkHb6Byu0hmcqLG56tHD qv8xBfvQqnnPHnO2YNMh0gdXzVHWzr58qjqrVWdSnZlFHnEwlbWwbhhHXpeq Xzc4dzzLebruDco7XPYa/kYo+0j2jv9uDN+BVc2jrtJHS+7tYhtO3Sf7ZsUc I3+23qdNlv2J3qd9pzq3yD5B49OkT6yaRd9rfLr8k6pmx5nSZ0h+5HdafG9P Xdkz+JsFz0Pc+0r39q3GbtXYKVVzDKacLTmrajZR4/SqWYY+rWpes96jqmYV sVyPfu0r6VM1Ry6qmkHw7zzJuVVz6vzw4Va38GHWBeHDnYsjH15cEj493z38 FnGd3lWzic8IPapmw6URByPPiftpFvPMrRtrYW7LqMHniy1CUwseXRb3A9su l/SrusfGS8ZVzY7BkkFVMwU9sOr+vyJy4EH/8OHUgPDp86sin7MyJHxYMEIy vGp2oK+p+j3mhrFncOpqybCqOXJl1OXcDY1apcgjDu6MlFxbNReHRVwq1kt+ Nea5Nqy6LnJgx/WSCVUzZULcP/0/Mebg4GjJqKp7aaxkTNW9NS78HWOMOL5b 4n3S+cGSSVELjkyW3Fz1a0K/eAYw6ybJjVVzZErEwY8bIn/3yCOuJtbCPbSN POLg0NTIh1O3hA+3poUPR+6S3Fk1X9B3VM2CGZLpVbPh1vBh1m3hw6G7Ix/G zQwfLsyXzGPf9Nr4s3ru7jo/m9WSVdSvVx6/t6kzU26PurBvVtSq5d+sKPeO OjPoPsm9VTNydsTRn89KnqmaT3dELbh1f+QsEFvm8fdt2Q/Ifrhq7qzupLVI ZvP9ka71i641J5i1UPKg5NvddC8a+1Qs+lXz98l+TOOLpJ+qmiN/aPxRvnuX /afsxfxtQvan/Fs/ybGdzct7Y18e4Hu0qnk4V9f9XTkPw9tOXjO8/k1jCzS2 uGruPBRrgk9LJM/FeflY8lHVTHlF8nLVrEG/VDWnno8cuPVC+DBiafgw6NXI h0mvhQ873pG8XTVf0G9JjtGaT9HzK7c0p96UvFE1X16MunDw9ah1SeQRB2v4 juPdqnn3RsTBjk/ifs6NtVMLPr0fOXDkM/a1ar58GjlwcZnkg6r59WH4l8Xe 4MOLzyOf/v8ifLiwUrKiao6gv66a/c/F2YJZyyVfVc3Ud2NfYMmXUeuqyCOu d6yFdQ+KPOKGNei1SPtWaenXk4fjucKtb6ruDZjxs+SnqtmB/rFqTn0rWVM1 t74LH2Z9Hz7c+SXy4dCv4cOCvyV/Vc0O9J9Vs3ZNXBuu/SH5vWqO/BB1Yd9v UWti5BEHd/6V/FM1I3+PuNM6iAW6xy1bmkk/Ri1YtVZL58COjWRv2NJMQW/Q 0pxaR3rtlubUui3tw6n1WtqHERu3dD59vklL+4+rV5q3/I8d2M0kLfT5qG9b 3WONObW5xjZraUb+E/sCMzZt6VrwizziYC5rYd1wkTzieD1ZFedmb/XCgbrf Fhof0KTnKjsru5uedRfZ28q+SHtysOxtZJ+p8QNkbyX7XI0fFPbZDba3lt2k mof8/9wG524nu6fsHpKk7H7KPULjCdlDNHZi9OMByj1c9vayO7T3GqjZQ/GH Rp3uir+kwbm9GlwnJfvyJseQe7Byj4l7OV8x5zV4/Z00flTEX6Oax8nOkav5 fg22D2rvfUjL7tvg+IzszhrvGnZ/jV8hycu+VnWOr7c9voN7pCT7Ks0PbrB9 eoPPFfs8sMHxReoo/sh678mVDV5Pgf5q7z0hpk+DY1jPERo/IWJ4DVy/pc/W cRo/NXrzd73/nCj7GNam3NNl18iermudKXsH7l3jV0uqnJMOjsEe1OQ6LWWf rJpnRe51Dc5tJXus7DGSnWV/qGudq/GdZJ+n+Etl7yH7DNnnyN5R9tuKOSNq nqLxs6POkCbb5I5XvXGS1vRdg69L7ijFdJddL3uExoc3eP3ztOZu9Y5/SPZF stvInqT5iQ22z+K/r6bxWtnXNzi+TvY5Gr8w7BFNtneV/ZXWeXHYT3XwdXeX nThQZ+pA2zdx9uIeRzb5urvRt4o/r957cqNibpC05bypfx/v4JgJDY5hPYs6 uA4xVzd5nbvIXqLxHnG/K2UPlN2RPW/y+J6yb27wPjfQp7qXnmEfomu90sEx kxXTS+N7s/+7qud3FHN2EPc13zfGL9Q9vSe/nexPpa/Q+L5wrMEx+7Cfuu5E SXuekfQ4yV6ylym+X73Hr9dY73rXuVH2DU2u85328/Koc6vGBsjeT/brHRxP nc86eLwDnNR1r5S9P6zQ2lZ3cPy0Jtdpkt1V97i8g+2pDV4z+/ONxq6K3NsV f5vkAJ5Lk8cPkv2zYobJ7sQ9anyypFH2j1rnUI0fyN42+b5Yz3eKH1LvOndr /K4m537Zwesk984mPyNyH5X9iORYOKZ1LujgZzqtwXU6y75C97VOozgle65i h9fb/lOxI2R3oU8bvM6DZf+itV0b9owGxxwme13VGB32prLHyj6SfVbMyLDn qP7sJte8v8l1jpBd0BrykkNkz9f4PMnh9LvWvFGjYwZpfnPZR8neQHpMvWOe UezTkpNlr9Xoa1HntgbHHM3Z1vwE2cfJ3lYxk+q9Jws1/qCkq+wtNX59ve2H m7x+eDWUXmt07u0Njjle9h0NrnOS7NO0zlMlJ8rOKHZKjKdl3yz7BNkLmrw/ rD+h8ZuizlNNZiO5zRq9Ttb8uMYXNzm3r9bwawefmeeanHuK7D0Uf4/s8+l9 xewg/3TZLzZ5DdjDNV5sdPydDV7PqbJLGpse9l0anyr7DNk1Gr897DHKrZN/ NudNMTPqbf/WweeE8/Nqk+ucJft52Uskp8l+WfolyZmyR6tO60bH7CI9U/Hn yN5J9h31jnlPse9KusmuNvpa1HlLY29KzpX9QZNzL5C9p2Lm1jv+nSav+TyY ABcbbc9scH32Z6LG92507iyNz9L4hbJnN7jOJbBCMY2KuVh2vtF7wrnaV/a9 si+CFbrWa01efzuNz486Hzf5WZDbttH1WfOHGl/W5Fw++/G+jNfIJsU8ENf9 VPOf8Loi+2vp5ZJeMFPrOVBxl9I7DV5DD1ih8YMabX+p2C8kPeGtxh6qd+7K JtfvTb8r/rBG27fK7ir7MtmrFbNK0lf2Paq/QPF9ZHfW/MJ61zxc9qMxfozs RbL7yV7T5BjqHKXxx+pdJ9FR/SKZBE8avB7i5+i65yvuKtmnSj+l8QGyf2hy /SvoKcWc2Gh7XoNr9pd9ksaeDPuXJq/hSs6k4k9vtD1f8Ys1PlD2302O51pn af4Z2YM4D4o/s9Ex3ynmWzjOeZb+tckxxze6DuPnyn5W9mB4qPk/mmz/JP1j k9d/b4PvZQgM0X1vIRkr+74G514j+wLVWSp7qOx1NL+2ZJjsizX+Yr3t9Tp6 nVdzL1pnj0bnbqDx9SXDZffU2Mv1tvvJfl32SHir+edlXyt7Y9kbSUawh6rT vdE1+0i/Uu/xy2W/Kfs6ONzgtVHnfsVf1ug6/+r+/mnymh9o8DqJ79boa3G/ Q2W/W+/7bd7Raxst+0HVGdhoe0GDrzsG3mp8cKPtrTp6/eNkP6LxqxttP9jg tY2XvV1H158IxzT/oewJsq+R/UHEbK6YzSSjqK/ctyJmQKNtxkfK/kj29bK3 UezWHW1/3uT+pb+mNfN1pkvP0/uTVa10Lllbg3Nvlv0Z38fSQ4pJdfQabpS/ WOsf02j74Qav8ybZT2h8QqNzM4pPSybDfI3f0Gj7neZ6nyH9rnQPyVTZlza3 TJHdXfpxxY9rdM23Yvxt6Rs19rmuNY2zEXWo8XbUofY+zbzm9tK9mv8XO1v3 WNxFPST/Ua35Njik8T6SGbJ7S9+s+l/W289p7be29PxkjS+vtz9A/u3S/aUX t7L9mewrJXfE/ODmvs4g6byueafsL2Q/0coxnzf39aa39BoHNncMNW7Stb6o 99wsrbmg/LuiFprYRdqfUY1mzlXyZ7b0Nan/YKznsQbXuQcWqc4LmpsV+z47 9mqvLWzvvYX3dU7Mt9vCee2lFzd4T+aGj95H+hZdf6XG75X/jGKelsznDDR4 r+ZFXWpSb4riv47xabJXyb5Pdivtc01H15mq8RX1rlPt6PVyf61l79zR8c+3 8v0u1/htiv+23vfMM31A+hOep8a/qbfPM1oQz/pWja+pt9+/rWst5HmE7qx1 XtnWe/UQ/S771eiLf/U+cLnsh2V/GfNdFL9U131Bcj/PSPEvRsx0XWt1vcfX 2Vv3pfFHuB/FvBz2NbJfl/2Y7Da6v10ki2Cv6v2p3O9gkZ7dDjoDT8Dw5tbf St+r8coujh/VSaySLIbDGq/uYvt7xT0ZeQs0XrOL/Ydk/6XrPiN7t47WPypm b61za31O+Tz8p6V/kB6n2mMlj4f/VNReqDp/tnLcbdqLZ6Vvl35Q47+3ctz4 tt7fV+Gtxlvu4jqvNfj8PMeZa/BzWSr7aZ3tu7R3L8h+vcHnZInsO7awvlP6 zQbv7fOcPcXPbHTu+w0+Dy/Sb7I/h8Wcf83/pPGXZd8j++d6j8+W/aPsl2S/ 2uCzxz3M0vgPUecTjX8fudzbc7GWDzX+XeSyJtZy1xY+G6/FWSpoP3fU/S7j uajmH4p/s6VZiz5EMfM0/mu9czhfr8e5mq/x3+r/H1HXHR5l9XTpVSQhyW4K vZMtsLDvhmzKppBAIPTeREG6oqg/G/aGiihIEQtIRxQFpHew0JuAiEgXC72D KMh3znfGhz/uM+fOO3fu3Pq+JOGM6hODms8fOZ9Yh5n49p6GEgf/jbFeB6D/ BDb/Jgvn5+jbht9XHwW11j/V0x7cC9ka/icFtXb7Ua8EP408sokHDgL/DFwR 2O+RzWzYlwE+DPw1/N9sKl9ToS8G/UGOH7gc8BHgOmjrDch+OvQloP8FuCr0 TQ3PhL6UR/PTAHpfQG3LAt8D/VHgFOBKwCd4V6YgTtgcB56PGK431b56HPqG 0B/jHQKfRSz+4dD7A/JTHn6iPGqbBByymMsB3+tR2/2puje4955C20BA/T4D 3Digc9EO9pVh/wfwCOibQH+Scw59PPS/8W6BPhgQbgV9IvS/846GPhRQ27Op 2nt/cp6jJaMgK6GcAY6BvJCqvXoa9XOp2sOngF+EHycgn2xDXXS02pwFjoW8 lKr5OWPP6IO+sxGPy6OYr6Rq77HNDpzNAdBfA94MnBrQ/XMjVWt9Hngj9CkB 4Zup2s8XgDdB3zQgfBv6W9Bf4l0N/X0e4TvQ34b+MnCpML7xwuprG2z6wuYK 8Fbg+z2yuZaq/X8OuChs/20qm4047ytzpN8O+wdhfxW4OGzuNBXm2bjOey5K +/cG8Ergb7E3hqBevD7uX/gowjHU036nXAObXU1kwzY8E39BroJ+N/QPWZ17 5x/ItdCvhp+iqar/ju+lfyFfwDyvCGosrC9E29oB3fPLgpqT2/V0dm9Cro7S mbgFvI7vFIxxd45swmh3h2sOn2ugK5Yqux/gc5i1XxXUHNJuTVBzUgRj/D6o mEsA34d1zwxo7HvQNhKQfl1Q614UeAPwIOBiwD1hnxEQ7gacHpDNY7Cp6MfU NcC6BxVDSeh/hM8c2JQG3tlEfrgG+4CzoS8F/b1hxc+fg+2FPiugtveENYds 2xl9pQUUf7mw1ohta+E9VbOZvtuioC8OfVnoA4jhvBf9AL+PczEG/VYALp0q WR/zdgB9vQ19OdRjuffwrDzwz9C/4xEuA929kA1gPx5+3veo/gLiaY54ojlG 9PWmRzhUCXcOpAO5J6if70WhXgp+7oGsBz9lgSsCJwMfQ1/5Adm8DJ8tgCsB /wL9OI/swhhfKr+bgQ9C/65Hvn4KKs4Y4EfTZe8GPg6bz4FdHEtQ9rHAI2HT MiD8S1BzEgd8AvbzrO3jsJkAHM/1QnxJkDsgf4PNQugTObeVpG8MeRL6BdAn oP5QuuaT8f8K/Vfm5xnoP7S2rwEXBBTzk8AfWNu3gVsFFE8GxpqOUgW4DXT1 udcqaW6rA6dA7o0W3gMZH5ZtEPofUK8KvDta9aq2FvtQr1Ff7dieuCnjx9mJ xXrURj0LfUaaCTeFz1rQdwbejza1uM7R6q9affXDes368v0r/FRKlV0a/NaB TK+kPmiTCnk6qLlqYDFVs/3yW1DrVRf1s0HNczLwR5iTtgHZv5euNaoH3Dog 2RVt/wxqnjlHf2DO2wXU9jz0X0Pvsb78Nj8foPiAJ0GeQMxRqdpXp9C2A9p6 gQ9EK/6f+P6Bvn1AfhLCmmu2Lwwo3i7wcwl9Lfao7RnYdw5o3g4HdV64Dz+0 c/ER5AX060a/TeprzprY/PBZI+CPbd4CttYfG/6kktYqyDMBfBF+4q1+BTgJ OAU4s5JkRiW1b2TzzHrI1oX9NbY9wLpj63YZfhJTZXcVuDJwU+BLwAmpsiuA XQ5ki0qKiX4mQ2bRL3AEshn7A86F/Attq6NtOurZqIfry/Y69FVTVc9BPc2e 34S+Rqra56GeWV/+2F82cHPIW7CpDZss1OuGpZ8H/T852rcRi6Opzcff0NdM lS+2Z7t8yGvQV0lV3KxHrM9Jtme4bi1Rcm3cpWJwJnmPQrZEv/nAC6FvXUm4 kDGGZf8VcCvORX35aBYWng/cBqV5fbVrHRb+mmcE78qWwMVjtLbEU6jHvuqE fdWJd2hY+6fA+surr37aco7qy/dfLRBDM9nQVyvIEpDtwrJZBBtvWGNvyzkJ y8+CSlr/QuCpnIOw1qidjZm2ZSDrh7XfWqNeMkaSc5Mc1p5pY3ZsVxayEfTV oG/PvRjWWnAs5fGsI+Q9kJlh7asv0W851DvYc+47xv9pJfmiDz4PhrVPOtrY Ci2WxmHtN7a/kaN+ubfCYe2ZLrwLYvHOgmwCeQFz2x1z2537MKz1Iz4LfZeA 7NPD2mddgc9B3zUgnBfWuvYAvgh9j4DwFeDewL25HmGtMXEfyPqIYRDXLKw9 1It7Nazxd+O5Cms9egJfhp9eAdlc5Xcj8H08j8A9A7L5FzjRK5/ngbsF5KcT fHRE6cMYsBdao/QD/gs298K+L+OHrhnK/cDX+Z0ZEG4BXXOUB4BvQh/lVduu 8NcF5UHg3pD1MJaBwLdg44LNAODbwPFe6f8BjgXuD9w+rP3H+P+GvpJXfnpy blPV9hr0fQKKuTv0dVLV9gb093gVzwPQN+DvLIHdDvYn9P8DLhIUHgJ8B/aV vbJJTpVuLfbPVLxHhgKv4z2DM9IeY3yId30TfcPw2+nLdM3Pwzyr6Rr7MOCK jsY4HHgS/r35AcojwDGt8M1QIJuiiKG6V30sSNcYaXO2UP5exP78GLYfoTyK egVH80O8CPYPBDSWexyNl7FFO5rPx4CXwqYvbJ4ETnDUF/FM+JuB8jhwnKOx PwE8C7o/8d3/G8oJ9P0UdMchf8C3XHuv6j8BdwV+Fngu7D8rEJ4GObVA/c6G fAbyV7SdAjy5QPPA+tP15ftH+OnslV2Moz3JePZC39Eru2q5eH+m6uy1wty3 bKZ9WBHz1h02I4C/47+7gV+iH+gfAH6R9yP6XIjyPOcE+t5e4SX8+y6UF4Bj oe9nbTfx5wDALwM3wjl/DbIh5GPYP68CjwOOgn1P2DyH+nDoX4F8H/pK0Pfx ymcccH/zw/Zs64cMoLxuvllnWx9kIuyfgf27qG9ADA0t/ifDsp8Am+qYBz// bgB1J1aSd1IV6D38PavdTSMhG0NWhd6bqnoI9betnQt9DfeqngD8FPBo4DqY /5Dh+sBNLZ4g5DuQKWj7eFhzMj5W9VHmOx5+/md27JuxcKxu6B/3ym4e5vuL Aq1XEvQjoH+Pa+porT9mH8A5wOOAq8LmZeD3OXfQpwOPAa4M/fOGA9BnAo/l PoH+VWsbhr4Z8HjgXOCWwB8A14TNW8ATeU4Ry1cFWsca0I+EfgJwFeAXzWd1 4NfNTxb8tLC2ecCFwJOAM4DzrW2tfNxLuRpLEPosi38H92eq7OvApj5/Zw/c 2tH+J94FmwBsPgQucHTWPmJssK+dK9zW0bmbDNwAusapwl5gB3gqcGdH+5zY Axy2ee7oaN9+CryNeyxVc9Le0TmaQnv4CabKpjn0bb2KJxn6Jqmy4fcZv8v4 /dXV0Z6fxn0Mm1Cq8AWs/SzIi5A9HZ2vGTwLsGmaKtzb0RmZCXwkXXIx7Eej zAZ+J1btiS9Bvosyp76eb4H958BjgC+jfAZ8JVZ2tKHuHYthFOR7ZkMfPLNf AI+NVZu5wFdj5YuYtp3jcBcAd4nTM/Z1DfIBR/t5MerPhHXu5gNfx7N5kDcg nwjrnHxpdcq/IJ8K6zx/hfrNWLX7G3JEWOd0gdUp/4G8jbII+F/IF8M6+1+j /nxY9+FCi+kL659tqLtl99U8u5f6ODrvi+wZfdA3Y/ovFvbBMd2BPI653QB8 D8ZeDGU5cHHI/o7uiqWoF4mTLAo50NHdtczqlGw3xNE5XWHtKUtADnV0vlbW 19laAzkD/ZbEs1XApeJkx+fUDXZ0VzAO3ge0mRar87oWeGas2qwGLh2nO4B4 eqzGs8Ti5TP2VQayn6P7is945r6B/Ay2ZfFsHXC5OJ2P9cCzoT+WLlw+TueY 8zMH+pPpalsB+vOofwt8DrJ9nHAHyE4oG+trT3E/f2/ng+W7+mrHmDgW9s82 1HeM013FeGbZ3t5oZ4rP6Ie+/ThTKfwbC9v3m+y8TOR3gg/xoN4ddtsge9h+ 3mLnpWuccLc47aWtdhZY32rtuIe32x5je+Kecdo/O2yPr0Ccu4Gjoe+FspPn O052tKGO7bfZnuWe22nnYhXa/gBcCTYngXcB/y9Ovoij4nQON9dXvKfwbfC7 9fc35v8o8EHgRzHeb4F/5D2De/s08B7gdZB7IWO5dtCftfoZ7nP7eVdj6AcH 1PZx+Pke+v3ATaAfEhC+hX5dmM+fuQZo+wtsDgD/DPkT5CNcC9j/aeP5C/aV fHq2xmKJ4Tyg7WGv/PydojU6YOux2dYwHX7ifRpXS+AWwH/wXDXFOwn4CM9a hubrEHAmbCr7hJ9xND+HgSPQV/UJv+BoTo7yHPLvQQLCLzmak2M8/5C/Qm5F nGX49yD8HQHPJP+mIyCb5xyNkTG84uhnhrQpin5OQm5D2zz0m4n6Cd41Xskt 0GdAnwj9L6jnA2f51N+/mJMTXunPApeF/k/gFrBpBvwbcDWMtyTw78AF0Ocb rgl9aZufVtC3tLajEFt54FPAhdAXGq4H+1T+3ovvANhEQX8G+F3ge4FPAzeH fY6NpzVwG9NXRtviFs94R+tLP21g0878NIBNOFXnzgOcxt/JAQ+FzQTMYfUG mM8Mrctl6FOAL0FmuPCOd7TuF1AP4Vynpwp/4mjeLgKnZahdJuzLZWg/XEG9 LurXIetAtkVfg6C/xvjhpyP8xKDfD/FeuArdm7BpkiF/6cCRDPmIuNSe7WpD 1kO5Yb5ZZ9takLn8+0H4LAKfUxztPY6hPfp9yKc2mbBpxp/n8/6CTYpPOA36 bP5OgucLupuQ9eEznX/DmKr6HH634NktxgR9XqpwDnAL4DvAXzraP8TzHa0X 4/nC0d77F/p2PL8+zctcfkMC3wbO5t9Upsom4FMsHGsW9PmpspkBewfP/gZu Bn1L6IvCf3f8+6MC5GuwX+FoX5VE/VnIEpCToF/kaH8WQ/3JfMmJ0C9xdJaL o/6ctfsQ+lWO9lgp1F9GvSzkS5Ad+A0MfRn26+jfNbznX4KuNHQfw2ZEvvx9 APyC+fjIpT3OdinAr3CvmO81jvYq2zfHuFqnajzLHJ0djmFMWPa/w74FbNrw Z/qo98bYezUTzoO+FX/+b3NxD+SrkPn8O81U1SfCzwSUisAF/Jv2VOFC4A7A lYDXO1oj4oWOzjvnea2jPRwNPD+sOfmNZySsfRyFeiv+vWeqbNg3Y+FYW0Lf LlU2GcC5qVrHbxztT56FqWHtw1jgldC5Ia+g7fSw9mEc6kt9kpegnxmWHxfq y32Sl6H/LKy9EY96P6zX9z7hp/K19gnAD2RovSszhzVstgAnAj8IvMknm9lh nRfG8Vy+1vX/bTK0rlWAB8B+G3AS8H0Z2nPEi30ax0XEMxA2YwPqKwc27+FZ XeBHgV8HrgE8GDbjYFMVeEiG9lg1YujHB4Qfhv5Vn+6rh6CfGFDbx6EfCX1N 2kD/QUC4Cf92CbgOcBg2o2BTGzgE/BZwLeBBsH8/oLE0hP2kgPQDM7SnGU8m 8Gif/AT4d1IB+XkZ+o8DGstrwJ/wZ/rkxG6B7yD++wS4HfQfoq0HeDTwp/zZ PnAL4HHQ1wceCTw5INwKeAL0DbjngacG1PYY5tELeRTyV5SGwCcg26CfTlgj P8+5o+8B3u3f8JucZ8KNf1fDz5SAfOa65aeZW+3Z7jjkPP4bBKWR1X3WZxu0 /cCnmNvy/7Ckqu92/FvjVNmvRLsgzxB8Lg/rrLG+Kqyz7AC3h31X4ABwB/4d N3Bj7uewziznalFY55z6SpAlUvV7vY1h+WgN/xvCenc05dgQ21if5nxdWGc5 BXg41rSCXzZrwrorQnzH+fW8LfwsCOsMB8wvn7dx6/dfn3qwP6K1h/m70Asu /a6Q+nPQ/4x5XoNnmbxL0ddCzG0G8OQMncM04Cegnx8Q3uvoPKfzDEL/dUBt D0G/DvoI19LROc0B/rcQ9wBkL8SzNR7/XgLeBhnbCutagHcC6v+DnwUB+VwP 3boC+TnGb06f2p90dJZzgY8Ab/Cp7RfwWwg5D3I/9Kt8ir+3W7b3Qc5GaQ48 x609Q5zj1rNmwH0g/3R09vOsTnm/W3urhe21OYY/g/wcpZX1z31EnO/WPmI8 zd3ayy1t33L8ORYX93OB7du5btnQ3++O7q5m1gdt+Jyx5gNnQ/6N89iPPztG vQf8d4fsiPk8hbZlsSfac+/Brh3vLbf2QRvbF+cLhb92a/+0tX1CO7ZbAnmG 33V41gH1LYhzM0pn4GvodxjPJ/C76H8+9kfRNOx5tOkI3TK3/La1/umLPvic v4dnu47AlzlHvPMhzzna22y/LayxLMdYSvsVP/d253jZd4HcwZ/rA68A3mq4 U7yedQXuCnkVbboBX3GrTtzNbHo2kL8VhldCbkG5r4H25gDD/SE3hXVWW1u9 N+SDkLcwD/+0UP/038ti22w29Pf/fTfQWFeazSrIPRF8u6HdG6jPsjXl3twJ 3f2cK/aL8iDwRsgqCVhr4KoJmp8HOM/Q/2C4coLmpK/N2+Gw2noSFE//BvK3 Af3uwrNBqM/Euu0HHthAOvabBHsvygBgH+Re88n+94Xlh8//xbhvo/wYVgyD rS3HzLbs8xL0j/GeSdDY+9l6HTT7l6A/Avww8HsJipk4OUHPhgC/DNkAZShw fcg/wsKjLZ5hNka2Jx4DeRL64cC/Ah8w/ALwqATF8zbkdxGN/VHUi+COudNC tsWAi6Ic5T0NWRzlRFjzMMTmeTbm7Rjqj6A+0O4x7pff+fMo4ItcC/g/h/qL nPeI7J/iWUbbM/z5VAON5QnId2D/p+FLwIeA/2djLIP+SxfIF+N4GvrjCZrb EcDngS8CPwvcIRHriL6u8WfZqP8N+Qxke+jjWsnnZdjnJcpPPuQFa3suQfE/ Z+vFOtuehYxHWzfKXHwnlUIsJVFO832VKPtOkDdRf4n3DHC7ROG2kJ9nKJ7n ea4iGvsLwG/g3piXoTPAOF9uoHb/GF4C/CWe3+HPwVG/B32WR/kX9d9snrme l/n7Ahv7ZZsTxsU5ecXGvjRRNssgy8FHWZSreH7bbPj8F+CHGmivJWKsCSjz MN6TiKEj7rbleHYv2lVAKYP6Xy3xLoUuIQl7BPWRvEvhp4Rhd5Lm5E3egdAv gJ+yePY26vsiGtco4Cj4q0i/eOZGGQ3dM2ibCF0CSlXoKiOWJJT5nP80+YyH zQT+DTL8locuLkltYyF/jiiO91D/KaK7+R3OBWJuh3Imonl+y9arEvqJRomC XSxkDEoc8LGIfI+D3Qj4HQP5HGRr+ChEOYTnS9B/NGzG4tnTeDYe8ilIV5rw IeBZiHMN7CpD93tE9h/g2SngGOBJwCeA7+X/QeV8ZQi/C+xiLAWam3hKlMQ0 zcMYm+cVsI9HfQLqhyOa5/eB10FfDfhD4NqYv1r8zsAcXojI/mPu74hi/Qh4 LuLcgDY1UK8K2yooy2F/KaLYJ3OfRfR/WR9Ohg1iqYJSF8++Q7v6kFO4D/h/ PVD3oX4jIn9Tob8aUTyf8h5BuySUWqgvgP1G2CcDV4euGko94L9hXxtyGuyr I5ZqKKsRTx08r43SGM++yZDNJ7Cpiec1UNbBpkSW+p8D/Q7YNAGeDXwnojhn ct+j3+14FkC9WJb6nwV9PY4JxUG9M9a5E0ppPG8AXX2UNOjrop86KBvRV03o aqD4oV8Hnz/AZ1Pg2xHNzXT43AVdCPgz4PJZ6vNz3gnQNwSeAVwmS3gucAZw a+AVwFPgc1mG9kqFLI1lHu9V/t8T6JtxvaBP51zyfEHXHPhL4Jgs9fsV8Pew 349nWajXgD4TciH0HsSejJKPug/Si9IKuGGWfC+GTVfMQReUStDVy5KPRdyf WRrrfI6Ff5+Vpb6TMTcNUHZjfo5naCxLYLMdNodQb4F6d9h255xBXx+29VC2 wr5xlp4v5R0N3B54JXAK4gqhdEa9CdcfpR3wa5myWQYbB7ogSgfUf+L/YeL/ aQcuzNI9topzi+fpKPehngYZRukNfBZx9YFcC5vTwD2BVwM35NqiFKL+M3yO zFTcXbLkew1sAnjeCKUt6qmQTVF6AO/J0Lp8AZu+WfK5HrgEfDwLvA04F7Y5 KINRfxw2/SC/hf4Y+nozU/UInmeiPAh8Hj77Q27gXZMl/B3w77AfBfuhqBfA tgXKcN7HWdJtgs23sHk1U2vfnGuOMgx4YJbG/g1s8qBrhvIQzy/6egRyI+8K /r8x/t9p3k38P/W4B76HfhbaPgndduBstMtCGch7J0ttt/Du5VqhPI96W8g2 KM9x32fJ31bYtIKuJcrTqLfmfKM8w3uN/68/VXnbF2Rp3nYCvwH5KsoPwB25 5iivo+7FPvKgHMReuoGYJ2XK7rE0xbwZ9tegnwj9S9x/WZK7oT8P/fuZGs/L aep3VwN9k/D9+C7ej53RTyeUN/H8H9hvRfu3+A5A6Q37/TwveN4F5R3uc8hu KKN5T2XKhrm6enKPoLwHffE8nHM8Gwd8Df7GcP/CpiT0n0I/gXMF+UmauNxL ZEv3M/DENLU7ADw5U22Zw6s3fPdCmcR7Dfr7UsWH/AB096N8DH0fngOUj7gH IG/h+QF8Ek7hfZ8m+wVcjxR8dwD35x5E+ZzxpMknuVXnkEvBcH3E1gf4CHA/ 2PZFmcO7C2PJwrMveH/B/oFU8X11yBYm3858PGuFvk6yL8RxAnIA/3wG9tn8 vznkz87WPJAvmrbfNJLdk7nql3oH9s1g/yvwQp5/i/+zNMV5FLgNdH/w3Fgf 163PTfB3Brgi8Onm2OOo/4l6VeBVmcLt0fY05CmUJWmSj8D+Xoxxbaa1z1P9 LHCnFHGSEF9AuYgSC/snUc7zHENGwzYqT7wl9Ef/5aHf3Eg2lYD92NfnMZ+X rA19PV1E/ohjimg8HFcJ4K2NZMu+lmfq2SDgLTberZCXIa+guIC3w/4q143z UER4s8lrhhelaW5voJ4Gn/mGV2Sqj7+AUws1D/8A1+QckvMI+Bt7vh1+uqao X/YfKtTc0uZCgXTPwqZ/trhT/kZ9aZrmmvggzsjbwHsbaN8OKFBfa4rh3YZv k7XFNLYiyRrrFvi+zXZFNG//NtDcHzT8SxHN4x2bV19RtfVDrkjTGIuingE/ BYY3ZYrbpQRweqHGWJz/hypT4yyWLL/0eQhyh+kawedu4JLATYHjsOaxefJD GZMnP+cwb2ebK+59RWS/t4h4Y+4FDqHtGvR7A2Mvi/rWTI2zdLK4WygzYXMR PsoAH2bKZ+yfawWqc2zlkjXWsYbfh1yVpjGWR71Csvr6CPr98H0P8HjgLODV abKJzxMfTingnZkaJ+0ymSfH9OvS5It+OD5iB3h9pnheeO/8kKl5qYhn3/D9 hlKZa5mmvmKAE9H2CGyigJPyVI/m/83KFGdNtI2hUrLGlJMpP2z7U6bGEAt8 wuRfsPkWz93ARbBnqsBfZRQX6n+3UtxxwNfM5/Wiev5otvTVgKuixAMfgs9f MuXrYKb4gOiHc8B409E2Uqj4af+LjfUT6P1YozOZGu8M1BMhp0P+mSlcupj6 TrJYuhcT7gH5a6bGUwX1syZ7FROfUFXgf4vKjueC7cgDVA34QeA82Lczu+p5 Gk8C/39gmuaFdscyxUlEPbmIqkMORdtTmYqP9TR8G4ZbagznMhVHLeh7w3dn nglcRrXg+zb0dZPFV0Q5GH6ume36YoqlNnBfxgv7m5mq185T+3rAVzLFi0Rc DN/YyXxeHPOTKV+sb+e3FUoLnlnElY5yFc9q5slvHbsj6ifrzghi/ovCVwPU 6/I5ige4RnHZ1IQMcs+ivAd8KVOcSvRTL09tvMC34ecWSiPgO5niIWrIvQTd TRQfcKmIpA9+8go1J37Uy0XULlhc/QWsf8bCvpOB74VNE+A3gd+1mBhPGnxX wLPGqOcUat4Y/+vm5w3I4hHNF9v/kykeKMYcwdxktrTxo6/6eYqndESxhoDb Yf2yuW6QbuhSudfgs2JEMbG+KU22Y6EvH9F4UpLFEUU5Cfq3UMIW/1nD5yD9 6LMK7DOSxUFFORH62/i++jBTd/3mNPWRjmctCjXeppzHPHFMpSWLX4rPr6Ft XEQcVZmot4WPbmZDmcN9BJtMzJvL/LQqFI4AB+CzEUpusmTtiNrERzT+rGTt ryybG44h2+akckRcV2zbplDjasa5A64B3DxZHFf5kA+UEF8W95UHbatFxGmV h3rDPM0L48/C+gwpkJ9iLbBWLdQ+u7l8RsyG7frAZ3Ke1pJ7Lxc2ydbvLjsT i2FTCj5KohRavQByCWSnQo23JepN4KNxnnAwT/VWnPOI2q0tIW6t1tbvjjSd edb3ALfjnJXEmhYqhrY8F4jzvWzZ1o2I24s+G0TE/9XG2rSHTIDcnaa46as5 xtLE/LS3mDn/jLu9jSMTz3sAP4+2IcTr5OkO6oDSkfdcSfGnEa+GvT+i8XRK Fr8XZU3YpOSpfRfuh4i4/IjLYs7KoHS1+HpYvAWILQy7bsni3OLz5JKaP/a9 Cn31KFT8tKlWUnrGc4D/TuD+Bd6bprljnZyLPc2mKN5HkzBv+/jty29zlEG8 YzOF+wD/nCZfxCkRcZb14p5B28nZ4hVLjYgXrDfPfkTzdT/3v8nj6KsNcD/g M8AVMNZ7WqgeaG73KHAY40pF6csYCjX2+7inEfMDkK+hbU7E+NRQT4dtGsqD yWrXNE92reCzubUl5xmfv4O2GXlq0x/1wojiGwzcF/0ftbF3NV1eKdxFiPFe lAGo318onwO5T+C/o2FysPH5Ffh/HN/jXwUQdwPFMgT6P0uKU+0h3hmlNNcP 2BqQY20o5CnYlMR8zskWl1thKbVtDdk2orlj+7yIOOAYP58PNRv+rp998nfo /QoV27Bk/X/tVA/mMgr9RcTv9hj0pfizWPR1nHsCY+mDZ4/wHoto/I9yvCbn lhK33OPAnYFzMK7sPNXLlcY3L2R5yM7NhWfDpjz874X/c/xOwvxVQvkf75M8 8dEN5x2SJ19PJIsrjs9Xo20v+BmMvp/iHoiIr402LfPE4/ZysuIeYn4eiCjW p3mH54nz67lkcb+N4DkqLdtngBfCfx6eN8tTPT9P9WeBB0XEW/ecjed5G19Z jGVltnjpHuNdCv1w6B+JiGPuJZ4pxDwc9ReAc3AXZbfUnA4zP49ADkV9iLUf YvFWgL4ZbHNbasz9I+LIe9bavJIsH+SaGw18FLiQ9yXK68niyaN8Fvo9Zr8X Mp/3dkvF1BexPcN7kHslT+3fAH4qIh494v6weRn1tziHaNe8pdqQa2Ul74CK 8vtmsvp5PKK5eA31yljbJJSRwKEyskmBfIV3As8l8Ok0PT+OtmfSVH+XcZuP H6HfjzLKcNs88ei9h/qObHHo0Z7jfgfyCGxyygjnmhxtmPx4bHcKNgMKNa4x vKvzxNE3Dngy7N6HnFJGvILcU9Vh/xZ/Fm3PR0QUH8cwCPPzpvkJW1uOi2WU 6V6NaMxsT94Wzht5XVzwH9dCe3FkRJyA44E7IZ6OKJO4Fk0l58DPw+hrKMoE 1N+OKKaJHBv2YQ7KQ3jWOU/tP+QdEhFXIPGDZeGf61lWdsRFgAcXKn76pO+P Ie+U0fg/sPFWgO/D2eIL7FdWNvRHX5OBB5QVr+BHvBNg35vcbyhzUC9aVn6K QXbNEz/gFNTvhc9L2eL224Jn06DbWlZ+P01WP5sMb7a+plq/5PqbDvxYWT2b kSzbHnniCZyNuq9ckSKzIP3lFEvPPOm9qM+058UsfsboKSc/fM442JZxjY2I x3CK1WdaPLy/nrI9E4Wx3MoWF+Ca8kWKLIJuLeQHEfH9fcF7IE/8fcTk9/sM 8qeyimOu9TvG8NhyKvOSpbtq+BpkN/idD9y9vOrEfE4eoxXJ4jKKRjyVcsQz yvF/buN9H+VL808uxK+Ap5aTrwXAPcwnba5D9kR9senHmh/6uIGy0GzIx7QE +NGKGjPt10H2zRMP4NeofxQRP+DX5muRxb/P2v5ocqnhT20sBwwvTxaP0/iI uBe5r8jntCxZvFCMY4HND7mg6Ge4cT6xLbmM2C9j5pgmW1vyQm22fcW1JbfS KuCD0P/tiJPhXLI4mdYm3+V2Ij5hvFC0/48bajXwLxXFA0X8lNmTY4j8QksN nzCupm+S73I7EZMDajDmbBDKDut3g9mT12CN+aF+fbJ4op4LyoZ4Vo44Z75N lk/akDNqfhNxCtHnLPNDfiryR30H/JtxRG1OFm8SeXE2AbfEt8FlRxxT3zOe HHHdEJMvayPk7xXFw8S25GIaERRvEvXXHPEd/Qn8VRPhbSivBIVPkdsqKD4l 2lx0xIfF+F8wP4ynP7/j8tSWvFmM+WXrd6vZMH7GQ54rjnOn+Sev1EHgrChx Ne1COQP9a0HZnAYeWVH6N0zuNj25l35AOQvctbm+Y4aZbo/54R7aa/uWXFn7 k8VrFSYPUbI4tFKjZEPdG0H5Z1vuy322D98KyudZ8/Nj8t3nP5of8mhxLIeg f7Oi4mDs5ND6KVk8WuTL+gX4cEXxZRFnG0/XAdvb5Oj6OVk8XeTj+tn2LTm7 DgHnRIlTi/iI7dujtvfInUWcFyUOMfbLbwDyWR0BbmacXvvt/JLL6zBwbpT4 tmhDDi7yhzGeTOPIos1R6BfniNuK5+6qI0427kVyeB2zs0BuLfIokUOJnFon bf+Qo+tE8l2erhO2N/7j8OJ+/sHakkOJnF2/J4vvqIhxcBGT1+tP2wPkATtu +5lcS3+YzfigfLIvcnb9bvuNXF5s+//cTdjzp4HbRonz6w/rd1mO8dUkaywn TU++r9O2N8jZdR74nHF5EbeHzYSg+KHok7wxZ4HbRYkf7Kztn1uOuL8uoL4k R3w7xOQGu5wsfjBybRF35NhD4t1iPP864ge7lCz+plM2FvKGXQTuALw0R1w9 tBlp8dCGPGC0OW9calyv/Chxil1NFs/YPeirfEgcTOQB+wv6LrC5J12cPzdQ LxYSp9k14OU54u0hJkfZdcjOUeIUY1vyjZWC/ZigOLDKAL8fFKdVvxR8lwTF Y8U9dNz2APnM/k4Whxk5yOiTfGV9Yf+B+SkNP2Ot7aO4ex7hzxOTxWnGtl3h ZwDsPw1qLCVC4k9j/CubiGuL9qubiP+qKMrT8PFUnnB/tJ0clN0T/DcTyh3g VU3kj/he+KwQUvuBsJ8WFF7bRLxYJVFeQrsX84TJBcd57oTYotCuYki8Wg+i 7cc2J8/BdgR/5g/9IOhnBGVTDrZlQ4pnTRPpaDPAvs34/VUJz6ND6nsw2s4K Cg8FnhsUt1csnseExAU2BPo5QeE30edIlLLA65vIlvgd6EahlAfe0ES8XsTv QucOqT4ReAJKReBvmoiPqwLKx/y3b4psXLCNC8nvWNiOyZPNJP6MOSRur09g /3CK2o/jz9FDwuQ683q0D79tIlv2VRz1BMhikDEecd/1495rIs6xaHLZhIT7 8p43LjLafMrv3Dy1yzTevAehL4oSB1wkSjxbxP2BWxg/2IAo9ef23LV1WdvJ /HdjiuLLNZ4utv0Y/XyUp3jYLt708Vanz++bKAbGQ74xjmtglPj36nrsbsQ9 XMWj90UJlCSbA/KZEQ8yXWVr+3KK8CDjvavqEfcdefmIc4yTr5pHHHjk4qsJ /HmUuNSqe/S+IF8fbXKNI5AxzDLOPNqQN4+ce7WAv4gSH2ANj95B5AMkngvc 2rjUGBu5/thXvq1hos0DeeHqAc+PEndfbeAWUeIArAP8ZZS4AYkLosQHyPn5 yt4dbNvKePnqAy+I0nuBmHc4ufg8Ht1R5MFLBv7a+PoaAC80bkCOpXmU7ljq +U4h3yDjmWf3If2Qo4xcgPTDO3ZdE52n0h7x/HHfkruMXHAdLH5ykJGbjLxh FYyjjzbkLCMmXxk5/RqaDbkBibtFiTMw4BHXGbnyiLtz/xuXIO3Jj+d4xEVG fr8mwD2ixDXW2NpGGWcg+yJnIG3Ih5Zg3HrE/3GrEbuMV5BtyUno8+iOJTcg ++oZJb6+CPB3jCEk7sSwRzyBKZC9uFeNP5CxLQ0Kr48S1yJ/3rUBeG2O+MHY ljyEabxXosRPSHwf8Poc8YBlesQ9mAH5LfRVQuItTPeI0y1kfa3L0f81oJ4c hinWb7WQeAvpp6z56RMl7kSfzQ85Bjmu+3mO4Oce/i27R9yGuXa3kMMwG/j7 KHEVEj8AXCskbsMcjiFHvGbEdULiQmzGuHPEX0ZM3sI8yE1o2yAk3sIWnNMc 8ZHle8TzmWf3GDkVGcNG4HohcR7ShtyGBZBbosQZ2NzuKHIhEm/mt2WO+M6y GDdwuVT1VSMk3kXqyVXYGnIbzz5sysOmpUccia0gt0aJI7GVnV9fSNyJnB9y Lba2894wJM7DNuwbfiqkCpP7kOeCHIedYN8OuBFwh3TxLbb1iJuxwO7MQEgc jLTzhMTfyHjIr9jezia5GImjjDexo+cuL2Mnj3gWR8P33qB438iF2NXuAXIk Eruixa/Yye4icix29oibkdyGne1uWZYnTsVuHBf//j1HmDyKPSEXR4mPkTg+ WhyGz3APAjcJiXexh0e8iF0g46LFx9gd2A28BfrtObLZCrwTuJdHHLO0WcS7 KygOwMrR4nvsYvcY+Rt7AydEi6fxAeAk4Dcw9pVB8Rt+GRSfIWNbbpj25HLs w3s5WtyMbLuM93NQXIXUk3OyP3AV4LVB8RYyBvIG9re7kVyR/YCXAzsh8VIy /pGIYbX5WmBtGRt5JhnzkijxQ/Yzn+SQZDxLo8RPONDmkJyJj3vEr/hdUNyP 1YAXGaYN79WBdsd+HRS3IWP+xjBtyA85FLh6tO7JoXaXbg6KI7EG9EsM0+Y1 rPurebrnyeX4sNmQf3KwxbA4KP5GYt6lD9v9yXvpEbtXN5oNfZL78XGbB74j Btv9Q47KR4FrQb8de2AP6k94xC1JSb5KnofhdnbIWfmY6ckt+ZitF7kZ/wf8 UrR4I/9nc7sTPvfD59Me8UQ+bTbrbV9xrsgh+RTwy9Hi3mT8NaPF9fikzT/5 J58ye3JcPmp37w7435cju69s33GPkaOSZ+GVaHFVPmv+yUv5vM0JeS9HAL8a LT7METaf5MJ8ztruhv+DOapnhsSN+QLXBfpDOcLkq3wR8nXY54bEafkK6ntg cwQ2L3nEV/mirSM5NhnDa8DZIXFd0oY8ma9y/0aL9/JlmwfyZBK/wT3A/z+R o/HsBT6Wo74K4GdXUFyQ5HEa6dH/QTuO5/di37/mUa6Z1yHfjBZPJnFt4OZo u93uK/6/ObatA30L6HcExQk1Fd+f76YIk3dylEc8lquxT3cGxflILs23IN+O Fp/nq7avyKtJfV3gvJC4QBkPOTbpZxT00+D/vRT5GQN5wMZCns7RHnF1fgj9 r0HxSJKHcyzku9CPAz4UFJdlS/jfHRTf5VjoDxom/+d7kKOjxafJtuTeHIY9 8HC6OArX8vcgIXFfHmoiOd4jvlze8/wOnM6fu6eIZ5McoPRJXtAJ0B0Jys/w dL3v2PaJdL3XJvJ88t+SxtHZCv38YDHP4O+YUtTf4Sbiw6T9UeBczNVHwM+m 671G3C4k/cfAM9F2UoraHGmiuZmEsp6/Kwmp/lS6viuoP5am32ny93q/NxE/ JP2Qf3QK5Jlo8Ytyzt/hexM+8vBsMuq/YS/FpcruuXS9Uz9hDCnifqTNOvTb OqR4Pk5RW9pcbY53XnP9/VjXkHhTpzLWROxjP+whe4bECzrTI87SGbY3yIk6 Dfh8tPhOp9ke6x4SV+p07m2chTM5akuO01mQF2Fzf0icop95xEU5x/bA/0Li tNzI84K259B2Ns8g8Kkc+SQ/6iybB3KTsu2laHGrzgW+DNw7JD5Vtp2O8V4I ak7Jccr4L0SLl3Wu7VXynX7JPR4tflTiq8Cz+fuaFHGAkov1C8gr0eJiJX4P uB/6Oh4U1+ensD1leBrwuaA4Q/vD5qThAcAdQornQcgTQXGPnsf4XKmaE3K3 zoe8Bv9T4eeM2RwNKhaOl9yttBnLdzfW91hQPKQD4bNzSGtPXtN1NhZysi7z 3OVJJSb35iz4vxyUPblal3ju8rMS77a2yz13+VmJyddK7tNVNufkHCUm7yi5 Fc95xIlIjtWVHvF60udSj3hP6WeFRzyftcyGvK23c8Stt9qjtrQhj+vQkDhn 13sUP/2Q65V8q2s84lwlL+sG4O7Ad3LEAUj7wSFxs64F/jdHnH7E5Gbl/JDD lvyuG2zOHw6J3/Ubj3hWv4fsCZuiueL3+453ULrO2CKPOF2/hbyOthPTxcHK +IvkilORfoaHxAHLtuSGXWN7idywbNujkrgoOW+zgKfw75NtTYvliiuQ54Jc rds84mQl3mrz+UxIPLGbPeISpFxvnLJbPOINbWRtQ4a3e8ThSt7XXR7xeZLz daet11Mh8c9u8ohLdYetl998Bo3/dbvtjcbWdrJxwO72iBszYG0/Mc7Unz3i TfVb/B8azyvt04yrdZ9HPKnkeiWeYRyxP3jEC0s+2D08Z8YpS5xhvKk/8v4z PlfiLON8PeC5y/tKPMc4XRnPZ5XEyfkT8OxK4q7lnISND3a/rQs5yWhDXjJy zzKeqcYRS5ts493lnrkRLd7Wgx5xt5Iz9XebZ/KJHvGIU5T4sEc8suSJ/QX4 c+OCJc43XtlDwF8Y5yvbFhg+6hGnK3leT3jE+0p83CMeVnKlnrU5IZfqMY94 WclNS5/NjQuWflqaDdsuMC7YXz3igG1mbefbWP7wiMM12+KfZzyvtCfXK7lR //SIA7WV2XM/kPvzJPDiStqnv9leJTcs56eYcab+aXNLfMojDlXyvHIs5HAl T+wZ2xvk0eU8z60krtfTwNMtfs4J+WzJDXvK9gx5YNmW3LF8fzIe8tSSL5Zt yRlL7uK95ofcruc94nf9Fmcz0RHHJfmoL1m/5MIlrmBcr+dtL5Hv9YJHnLHk hr1ge29aurhzL6N+AGMvkStMTtdrttbkeiWuiLYjQ+JWLUI+ypD4nK96xDN7 0SOuWvI8XwG+F/hn+CyVK5uD/Ls14Ose8c1esT12lH/zkyuf5L+9aGeBXLI3 gKNixEP7D3Al4EP8ezDmmkL9xZD4Zv8C/gX6crnC5Hq9CRkdIx7af2x/vhoS n+0tj3hi70DGwuYI2kYxn5NH3LN3bO+Rb/a27bfnQ+K8ZfyH+bdeufLzekjc tmxLrtobtg/Jecu2MTHizr1pZ428tUUx1rgY8c1WAE4CPgafsfBZzCteXNrw HL0VEs8t9eTOLQ7pgv1x2LtgX8IrjrG9XvGMkQu3JLAbNqND4sUt5RWHbVnI hBhx25b2av+fgJ/4XNmQh5b+edbIN0ub+Bjx5dInuZF/hX0i7MuQbzEkTlpi 8uhyLMtgMyokjl/GNjYk7txywHPxPbMyRRyyx/HNUMwRJt9peXLuoe042Bd1 xPH6GexXpAiTa7ciZOUYce0SL4f9F7BZnSI+2ZPwWcIxjDgr56pfcupGQ1aJ EX8v52EJx8LfezjisSWnLm1WVBKnLuNJhP3n8L8qRTbkxa0B+QL0L4fEJ8x9 SJ7eGHL9oe1E6Es74qUlp7GbPH2VxAMcB1wtRvzAxKugn8Dfnzjiz13HcVhb chcnQNaA/ST+LsYRdy35epO84uxdw7l0xJO7HjjWEbfsWsZrPskJTD9rKon7 l21rxogTuApwLeAP+PsZa0tu23qQr8WIr5jxV48Rby/tyQ9Mvt6aXnH2khO4 hs3VN+g33hHX8Echcf5WA/6Yv+Oz+4q8wTVtz5MfuBbwS8adWxf41RjxCdcB rhojjt+6Nm/kBK5t67gBfblsTsgnXMv2BjmE2fYV4A/5+x+Lh7zEbPtyjLiX Y8w/+YHrA78eI15X8sA2jRXPrgflTIy4h4nfiBGHcH1bF/IHNzA9+ZYb2Nye yRMfsdcrTmIf5MgY+aDf05wr478lHo84S9o6Uuc3PXmPk60t+Xrp52yMntPu VIx0AdOTy9hvY7kEfJF/f+wVH3KyrTXtG9u4PgmJC5fjLR4Upv15tDvHv7cG LhbUnBAvTxcmJ25dR/apvHNge4U/l0R9SkhcrGHoSwaFU73iPa5ne6mBI95d 2nxvnMaMp0RQevq5AX/X89T2aIpi5hgnh2TDfslhz/cjeey9jvpKg/5vtLvJ v/dFvUg+9j1whHPmiF83HTa3obuFkoF66aD4dYmnhoRpUyYoblu2nRYSzoDe cYQzgcsFxcGbizIDNtND4vYtTj40lGzOt2P+YV82qOfUb8W40hy1LwXbkvny swX6po7sFsNfNeNEmwU8MyT7XSnirW2Nsp2/C3DE2zsHz2eHxNW7DfpMR/ge +C6P0pw4KFviitDdi1IAXCEoDmHiL+Dj85DqcXgem6++7g2KE7gVyg74b+bI piyel0HJA64EGZ0vm/JB9U/9TtjnO2r/JXzPCwnPhfwspJg4rja0x1wthK6y Iz5fcmV3YMzQ7wZu4Wj85OtuB5kfKx5tYnJur8S+WpEufmHybrMtOblX89+M 6eJi3oe2hY4weZu7QP4Gm3V4vjZdnMXk7u4E2QL+9wC3dOSTfODUn4T9Acbg iLOYnOH0UwD7/RyLIz/zMZavQop5PXyvSZc9ecY5XnKPH2RfNt4FsE1yxFn8 M8dumLzcPTj/seL9Jv4jRrzfvYALY8X7Tfwn9F/DTxVHXMnkDL8fsk2s+Lfv szvkF8ZsNuQb7wbZMlZc37RpHSseaep/5zcY7Ls54kReBP9VDX8a0vniGSRX +f12j0Uc8diSw/YY2t7niBOZPOR97ewvQdvqjjiUj8Cml+GlIfGMPwicRK44 lAFecSNTkt+YcqBh8nYP8Yq7m3zkg7x3OchpQx7yZfBZw2J4xWzIIUwO8qFe 8ZDTz2DvXV5zYvKik0edMbc1e/ZFnnNygz8B/EmsOMwfAf4wVrzkD3nvcpU/ DPxBrHjeicllTu73YcCTYsVXzrb/cZg/CvxRrLjFiclD3tcRP/PHseIef8xw TUccyOz3DRsL+cnvNz39kEed8UwErmV+qOe7j354tx/G/PewO4d86RwX3xHk JCY3MTmHybn9tFd3OPnVnwSeHCtOdWLez/UccSlzTgYYpk2yIy5l4kGGp8SK L/1Z7iO+fx3xKhOTE3mEYXKkP2t7jHzyT1tbnyMbYnKbv+AVfzK505/z6j4n pzrxVOAHHXEjMzZyNj9v+tqm53ySa/0Vr3ibydP8ovkkZ/tLNg/kcifmuyDk aH5oQ252to0Apzria6Y9OZtfNZ/kWn8DOBs43RFPNPXkY3/Nzgv51TkWvjvI wU59FnATR/EwZvK60w/5k8n9/Lq1JdfySNOTH/5N4BzgdSHxEZOL+I8W4mR/ xysu9FGQzWCT44iXmW3JzUxMjugaueJVf9sr/vZ37K4mf/to4M9jxdk+hnd8 rLjc37P7k+v4lVc82eSEf9fuc/LM019urHjyR9t9Tg55tp0XK272scBfxYp/ nm2/iBX3+cde8UXXzBUHPcdAHvixdo+Rm32C3XvkkSb+OlYc8u/bXUpu+XG8 d2PF9z7O7lJyuU/kPRcrLveJdvY/5Lnxit/6vNX/44Onnnzs5Mie5NVz8s9z TvheIAf8B17xwI+ytm/Hipee8cyPVZ1t34oV5/x44IWx4on/xCvua/Klz7F7 g9ztn3rv8rsTk+N6jtmPNjzZe5dLnvhdazvVe5dnfardpeRyn2F3Kfndiflv zFJBu+e94l+f7hU/Nn1O8YrjmX6mecWHTa746XZ/kk9+pt2x88yGdy/52j/z irN9rvkhRz3542d5xRlPbve5XvG4k+/9M7vryCU/2ytuePLGz7Y7ljzxnB/y wZPTfq7ddeSA/9wr3nTyuH/pFZc7Od7n2b002/YV+fXJCf+F3RXkkmf85PYm v/rndleQJ55tyQ1PrvtZdseSe51tyc1ObluuI9+n5Hv/0u4rcsh/Zfcb74ev veJxJ4f8fDvjvH8WeO/yxy+we4Z4oVfc8Gus7Qy7BxZ573KuL7I7gZzuS73i dee5XuIVDzxtFnvFzb7afE43m8V2D5ADfplXHPLrzQ+54tebn9l2lzJmcttv MHty7NcLiod8vVe84bx/yBO+N1286uRBJ9f5CruX9qUrR8NK1GsHZU+8P105 IFYD1wmKc5x4fUiYPg+miyuefdUNiht9rVfc5LQhR/oP6cr1sBz1A+nK6UCb WkHFQP2pdLWN41hCwmz7TUhjof5QunI9fOMVr/lOr/jb/8Q79AlHHOsbYf99 SLh+UPzttP8Oum9Dqv8O++GO8FnM40bIM7w/44TbxYkvf4v3Lgc/MXn0me/j TZv/TYzDK27+o+nKOfGdV3fRJvPNtptNR379rXZ3sY9N1vaPFMXLtt+ZzX98 /Nu84uQnp/4ur3j0t9jYefa3mp73D7n8t3vv5prY4b3Lc7/De5fLf7vdaTzn ++x80c9ur/j5ya+/x+6ZYY7m3xUnnv4f7J7ZYT8HIw//NmvLO227tSVP/0aL n++LbdaWfP/MM8NvMOaaIac/Y7gPcoAL58yHOwDyRLryRhywZz9C9olT3oT9 do4aYC0GBVSn/AlyGPTJQXHoH7BCTC598uYTPwrsDYoz/xDKppC496n/LV05 GA5ynCnicqdfT1A21P9lfPuPwb4+3o/18uXninH4D4d+OcrfwCs4/yHZU38a Pp91xKfPXATHvcpHsCWkvAP0ectyEDwO7IdvH8oxr/jsKZ+AfmtIddrcMa57 6unzV6/yHfCM/264mHH7/6f/1e4BD3wnoxyxeE6aH19QMRyxO+Q3uyuYK4H4 yTjFctzsmafgD+CngL9GuQq8KE75Ec4APwN8Bm2fd8T1z3wKpyCfjlPuhFN2 3rdhXA85yivAfApn7Oxvh/5hR3kFzsHPy4aZW+ECpJtjh80jjvIHMPfoOchn oT8L+xfNJ3M6nLP9nAWbJ7FvLnqVr4F+RkB/Hvavmp8/EcMf6Yp5T0g5HS7a /faH3YE8y9e8uj/uaYo54M/5UW+D+hXI1pALDXNu2tr88Pkia7s4TnfBdbt/ FhteArkM5aZXe4r3wl92F7HcsDtkX0i5JS5ZG+qXQu4PKd/EZbtHbtrdstT8 0PeCCL4TLQ9EZ9u3tG1Lfj3LB+AElcvhX84t9Lcg+8MmGFQ+hltWiJmX4b88 Dcz7wDZ3DDM3AzFzOqTkk4AH3wLcnz7lQdgOnJih3A/EoaAw7YL58jUgTnXq 6SeDcQIPps+g/NBfOF9yUJzO4T9ouxKyiuVc2MF1wFpXAN4DnMufqwAPBa5u uSF2cp+QjxJ4CHBqULkhSlkpbTbhoHJMsH0e7A+EVL8M/285wuyL+SDuYR4O PP85pHwSzWFfDvIh+GkaVL8cT1pQz8tZvaTFzDuOPh7mnoLPdxzZdbExcg15 Z3FctL3D/+/gWL4H7OVon+463m8Vgffa3UjMe/I8bM6l6+67AZv3HeHL0F1K V46Km/x7GUeYOUdiIH9k/3h+LV085v/w72Ic5SNhjhLa8A5kHhPGsI/7FPoL 6bJhjhI379s45WGJ89l9mCK8n2eFf0fkaB5v8/+YOOrrEO/wkPTMXZIE+TP3 Hv//haMcGMwVkgB5IE65Toh5dx1Bu6dsfpjrhG15Tx6D/mlHuSi+whkp0lSY eU+q+XTXtSGvvqPcG8yNUoVrG6f8IxwL72fmN6Ged+Zh+HzS4mHuFfr5Bfr5 8F+0qfzUsvwju+KUV6UGxxennB2dbH6a4t8pmfwbesacqdwrNYFToM9IFWaO lVqQh+OUV4WY9zDzsNQBPhKnO42Y9+RvIeVnqcv8AYihAXm58S4Ow2cWeXjI pw4cSZXNryHlcGEMf4R0l9ImFm2SIeMgT4V0H9KXO0P3Y33gbpi3IOT3djfS fgHkdEc5PBqgbTyKn7G4dE96fbo/XS5ht0v3pM+n56wTsx3vt4Y+3YVsT5wI 2QH9NgL+FvrGPvXFXCHM1xEwnB0UbmT9eXyKkXXqmdeDY6OeseQE5Yf+OudL fhenvhk/Y8wNKvcHx8ycL9l2v810pE+Gn55oGwLeCP2ZkPKbUM+8JU1RvMCz Hek9wM2CwmzDXCfDIEe7dP+mAm/muy+k9rT/zBGmHz5PQ/G5ZEf/m6xdutl8 7gjThvl3MoD9LulSTX86pPi5XrzbacN7/l6s8zxHeVNed5RLpaFL+W8iPt3b rznKt0KfFWH/ldWZK4fz0wj6BdaWmLl7crkGLuXuybX7cLGj3CiNXcrjk2f4 DUe5P9iW76NMi/lr09MPcwZFLLaR5od65gCiH97tzGfEM8hvFeZOas59A5s3 HeVeYV/M9dMK+Ic45Qwq4Fq7lDOIeDf0bzvKh8K2yw3TZrSjnC/EKw07LuUJ as31BR7nKMcK8WpHuV2ImW+INnx/MSdRK2s7xmyIG+UqR1F7n3IMtfXpzmeO IWLmc1lqY2FszOPSzvRdUHoAd3Upt09nn/L7MFdFB5/u/GCu8hJ19CnfECXv auYb4n2V5lJOn8529zKvTxef8hMxbxEx7+orcerrcpxyB3XzKX8QcxN19Sk/ EXOQcRx8dzBXUVe7bxvnKk8SY+Jd093uLt6N3eyOZR6o5navXkXp6VOfnzrK C8McRqVQ+gCXhOyG0ou+IEug9AYuDjnQ8CCX7O7z6flgazuEc4hyv0/+hhge ynhQ+vG+tTukr92XLA8Ax7jklz7p7ynTP+1S3psHgUe6dO/0szv2afND3/3z FTPHx7xKtK/p0vpxvBzTOhvvWy7lXxpgY79mmHmZmO9poNkw1xEx8zgx/9Fg 4LddyslEzFxOUx3l3KE98zE9DPyO3atD7c7cYDZvW1z9bSzM8USbURYP9Yz9 W0e5daifZphtmc+J/nlXM6fSMLt/+P96+X8J+P8ImHfpMejHupQr6hG7S5lD 6lHg91zKCfWo3Y3MCTUceIxL+Z4es7uCeZ0eB37fpfxQj9t9xXxMT9pdwdxV /+PZcimf1BPA41zKDzXc7lLmk3rC7hnmbHrK7g3mgaKfCS7lKvqf3VcFGXrP jvcp1xPtme9pkOW1YZ4m5ngaYWecOZae8SlXFHNIPWP3CfXM6cNcTn0svw9t mCfqOcN9LZcQ80Yx19PzPuV74j3wkuH+ljOImPmenrf7h3minjb/bPuC+WHu p6ftPmHOqBftPilt+GOLYYTZ0+Zl02dlKH/Yu6hfCynH0GToOwaVP+gV7u+Q 8CfQD7O8QrRpaPnRXkN9uOUnmgJ9IEO5z95AvXNQ+YaIv8Z3V0xT5RMKZiiH 2ZvA10OyYdtOQfmhzycsV9GnPFNB5SR6m2eeHMQh+ekSlKQfn+VuY8xNM5Sb jfZDLUcS4+8eVE4ljjc9Q/nY3uFZDSpvEfFD8H8zpPpixBzXVPhh6P8Oqf0S 6F1NhXMz9B04BvgR/nstpHxFS8lr11R5d3oEJWkzFDZ/hTSeYcD/hPRsEexj m0rfMygf76PkZ+j7k5j5pZgfh7mrlsE+vqns7gsqN80KlLYZ+qacBLwcNglN lSepMEPflhOBeweVq4h4OP+tF1I9qalyMLHtY/wbg5DqK+Gnsj1bjr4/YV9c L5SPgTu6VD4C7sBzAfvEpvK51PTLXGozmf4gO5sf+lhmfuj7UfR7O6SYu5g9 bZlzaTbwSeD3M/Tzq6327vjUp3t3leHVLv1sayrwg5CbDW9x6Z0y3aefgY3L EN5m74IZPj1n/jb29SLkdpSZwDtcsqPNdrvnp1iMg82GPlaanrGwzSzgnS69 m4hp2yuo8fHOYT9zbFzMA8ZcSsyjxFxsXwD/6VI+t898ygFHPNen/G7lDTNv GnO6fQ78h0s54diWud2YJ24e8CmXcsARv+5Sjrb5Pr2PmN/tK+AzLuWM+xL4 tEt54OiT+dmYD476N1zK+7bAp3cQ87XRz1mX8rvRD981ZS1m5n1jrjfanzM9 x8s5TrXxkreNuQ6/trEzvxvxKJuTRWbD/G7EfN8xt9sS3938bsSjXXdzv9Ge uQd5JvgOYo62ZTz73GsZsmFb5rNbCHzepbxwy+x8Md8c9XwPTrF8VZddd3PI se0+R+eRuec68psoQ+eQ+/m87f37g8pdtZZ7JUO5C4mr4Xz85Mi+U4ZyF64G 7hNUzizi4vg3dbEUta8B+8OOcN+gcld9w7slQ/kciV/IVP64HcAl0a5EinJZ FYUskiK/3TKUh3E9cE34POrIphbwcUd+HwhKR5tTLRB3rnxWh81BR36YL+87 yJsu5cXbDPwPcB3Y/OYon1YZ9Pmdo3xdtckdbpi58zZC/u1SLjy25XutHOw3 OspTxVx42yFv81zjPqnXVDm0mFOPer7LmJtvq0/v1tJoWypF8deF7R/mpzx0 mxy1ZV4/xsxvAObjY9tbLuXsYzz//96Hfifwvy7luTsIXMKN84B56IZ52OVT zjva8B1dIUV58ahnbr7dkHegPwP7HrD/wac8ho/Y3mOevj3AReAzOkU5+/b6 lKdvP2Qxt/L97fPpPXsWfnrlyob5/uif727mJKVNUbfy/dEn33HnYH8f7H9E PSZFeUuJmdePY5kKm4opyiHI2OJSlB/wJ54ZtH0QbX8BTkhRjj9i5gE84NO7 2J2ivIE/86zCvm+uMPP9HeK+cysPIPE02F+GzSDYHEW9SoryDBKfh/7+XPXL /INHIEu5laOQ88DvgaQU5RA87FM+RNpMdyl3IeMpDvtL8DMgVzZl+fsd23vM OXgMsrRb+e+IZ7iUN/Ak8CyXchGe4D51K88g8UyX8hP+am2XFWAO81Vn7sHf zP5iofDDbuUN/B24nFt5C08Z5rM/gIe5lR+QNrNdymPIGMq6lW/wD8Mf5iuX 4Wmf8iH+CTnHpXyIxOVhcwXjHYLxHje/7OsRyGQ+A/ZAJrp1/yRBLuEeAl4M Ge8WTnDrbjrn03PWidmO7+ALdoexPXFlt97dF316vsmlvjZCVuEaAFd1y442 1DEf4xmLme9E2tAHY6X+UcgGKJd9ip2+iL+39/VVn/rhO/uaTzrmiyzqxxrC viHKX9A3cut9TMz3s9ctex/7xdqtKND3wmPkqES57tN7+aZP7dieOOBWvsZb vrv5IomZd69aivJXcs6Z7/Efn/Lujc/QN8QNn3JF/u1T3j2/2fyXL/K2T7ko fWbDfJGrEdcq7q0M5YukDfP6MV/kv8At3MoNWcx/N18kx873O/NFUs9vA+aL vAP7ArfyRRaBvqVb+SKJ+Z3AfJG04buYf0/A3/Hxd5LMFVncr/x9w4LKjVfS rz3E+edcMl9kCb++B5gTkrn9mNeP+SLZlt8VzNfKdvx+YL5Ixs/vGeaKLGH2 +7B2f+To/0K2NT/MwcdcfP+fk49707H8gMC1UoTbAz8SVP7BMig1U4Rpf9qx vIRu5bK8x688gPyuIOa3xHnHcgRCv9swbcai+IDfh3wMbe81mw8zlN+2HOq7 HOUQZDzkl6UNvyuYvzLKr28A5hesYD6ZXzIRuAfv8KDip5/aKeLFjfYrF2Uc ZBe3ckrG+vX9wDyYlUzPPJjE/N5gbswY4M48K4Vqu8qtfJou4G5u5clMMMxc mfHA17jH3NKvcauN2y8deXqjzCdzdNLPVZdybrJtd+ivY70ezVXMzNvJtl25 7hjjlHzFxDybSZA97ezX8+vOYK7Jqn6935knk5j5MJlzk/Y3XMq7Wdmv3JXM 6Un8l0v5Kav57+bNJP7H7q5awG7IZ1FqAo+AzI7H3APnxOteqeHX3cJ8mFX8 yonJfJvV/cq56ba2Lrfuvdp++ea3E234PfCijeUlt3KD0g+/c54z++ch30Gp Dzza7jHi+m49qwP8gltzUdeve/UFwy/aXd3Ar3ajDb8LOQbF67e9aZhnkDlJ ua+u2/3msTM6wuaEcbGe7Jfv98xmjL0LGA/H+q7Z8PlRlE7AR9zKkRpr68v7 yA/sdyuHZGO/8khOQwkAT3frzmzo1x08zvB4yAw+A053Kw8q2+YYbuJXjlPm Iw35lZOU2PHrLuU5ZL/0x9ykQb/u0qnmk/23MD+5ZsO2zGHK/KgpfuVLbWFt meP0MEqWjTHT4meMhWbf3O6fNLuL2hpmjtGr2P8PYf839SsvairPgVs5TlPt zmTbdL9ynDJHarrdS8xHGrE7oaPhZbZvGc8zbuUvzfQrh2krmxO+a5grNcOv HKfMYZpp9w9zAjMWvheYRzXjv3uvue4x7heOM9uvteU8trb7jXsuz/bkcZRm wCfc2jc5do6OGj5mezjX9tUJa/ur7fl84FG2xwps3zLfagu/cpIyBp5Hzj3z uzb36/kx88n+p2XIz0Xbky3sHHG/trT9yTrbss/rNpYbdo6a2Rm8YvbMy1oM 578NcHHIT93CU9x61or3oe2xQjtf1wxftz3W1q92bE9cAjILpYNfdwzHQ3zI zh3nmevJ89De9udlm5Mrdl7a+eW7ZLxsSsWr71Z2NtkHbfic+yrsV55b3mU8 m7mWr/UNv3K2foe799sCzV8H1Lv6lZ+Xc9vZ1p1tiJvFa6672JpOz1BO326M Cff38FzpmEu2l1/5Zol72jrOYt5Vnv145cjtYetIv/SZB7k+ojy+3f2yYVvm q+Xc9rZ1YT5btmVuXMY20O7qC27Ff96tHLq07x6vvKcP+JUHtbhhri2f3Qfc A7Ioc6QCF4lX3lxi5tHlfPa1PTDQ8CDImSj9/RpTtmGubY6NMdvW+kHgSLzy +vaydeTa9LP9MMNs6I/75j7bV4PMZnC8Yr3frxhn23jnxCt/7+N+xcu1G8zz G6/5HGRrPcfwZ5BLzIZ5e4dADvUrPy/zJaY0RHxVlNN4qO0B5it+yK+cxcwH /Ajw6njlIh7mV75c2jzsV87cjua3g9k8bGvU3fww52838/NfLuJhtr4cyxN+ 5eZlfuEhFhv7exR4TbxyHf/Pr9zH95l9f1uvx4D7xSt/MPFmk48b7mNtuRc4 t0/afuD6PWPzXzqhSJGngcskyNdw4L6QpVB/yq/n3S0ejmOb+dlu+4FtuZ4b re0mW1+2nW7nbqRfuYD725oOsDV91vYS8xu/YGv0vF84EfblUEYAl0/QOj4H vBgyPkE4IUFtX/Qrx/EDhjmHzMf8CnC1BK3jK7Z23Bsj7Dwyf/LLfuVQ/q9v 9kM/L/mVU7if2XCt6etV4OoJavuSrW9Z1EfbHDLv8vMW//d49hrwd/HKz/ym Xzma+9ucbLJ5e90vW+a6JWaeZco3DA+wtlxT7oO3bM+wv3dsjYagjOL+TlCh /iFIP8rbwA0TtK8YP+eDOaTph89LW1uuOXM5M2bm2+Vav217j31xz5S1dXnX MHMPfmj2zDs91tZljF/4eeCHzX5YgtbuPWA319bwc5DT85X3+n3Uv40oHzYx 80xPgHwlQWs6wdaLfXP/MBbmrB7vV27q//pmP8wdPQ74xQTliB5va8o80xP9 ylPMtuNs/3AsH/mVS5F5psdY/JyTD4DrJSgP9sd+5bV+2OyT7fkkv3JGMw82 cX3DnB/mjB5mbXkWOP+f2H7gOn1qa7cTZQrwLtNzX3H+dqBM9ut5PYu/boLy atPPWFt3tuVeYC7mDyyeIdZ2cIK+zfh+5L8ld1m/u22NptqemcG7AeUY8A8o 04D32HpNB34W8ojhowlaP7bhc+bonmlrOiNfOblnob4xotzexCfx7DPI3xKU c3yOrRFzes8GPpGgPNYzLAbmCaeeucKZF3uuX/m1XzY/XHfmFJ9jvr9nfzzj iVpr2r8FGUT9a2AnUTm3v7R1Ye7xL/zKr/244VGG5/mVN/wJw5xP5kb/yvYJ 83YTX7G1m+/XWnHevra5bcw808BNIAOJsqGOcX1uY+FaLLD1ZTzUM3a2WehX 7PS10PbGExb/JVuLRcCHra/1fvXD/OTL/Morzrzai4FzEyWXGGbO8CW2jjPz lQd9qV95yNmWOc2Zt325rQtzkxM3T1R+8lV+5SRfwfvVr1zhZ61+BnJLRHnW 6ZN5x1eYDfOBr7axP2N+mBOcmH7ogzExVo7vWbNnPvHsRI03B3KCjXdionK1 r7X1Yu5z4s425+uAG0GON8x2nNsNthYTDZNXinP9ja0X++B+Yp/knvoW+MNE 2dFmko1ljV/5zR2zoY/nTM99NRP174BnWfzEWYm6E6fZGWcO9e9t3zL3+Bm/ 8odz3rbyzEJujyhf+ya/8rRvhvwM+p0R5bZnnWu0xdadOdDZdpH52GaYeeC3 2ZowB/tOm1vmeN/hV5532mz3Kxf5XPP5udlst3Vk7vZdwMsTlbOdfpYa3mFr +lm+8s0z5k5mz7nai3j3oBxA/Z9E8XrdsrX4wdbopuG/bc732Fr/bZjtOLf7 gGdwzycJl0nSXP/o1/P5GeqnfJLy1e+3tWDOeNqUTVJ/u/3aI9TtN/1fpv// WBDvLpSfUP8C4/oyQ5i56zfanpwL/c+2Ll/lK8f8737lnz/sV2505oM/aOvL /PS/AC9MVL55YleS5CHDb1pbrh3xEb9yzb9lmGvUG/XjwPclKdZjfsV+G/vq qK0pY6BP9pmQJH1iktqcAO6TpLk9buPtlSQ/9M34GPOCRM37CVuXe5I03gqQ +zE3+yIaL9fgpF9rwpz0xA+Z7jfDFQqEafs15ukP4GHABzjHEdXnYQ7/tLUb 3UDn4pkk5bM/5Vd++0eSZPNokvbQr7Y3Ys0mJkljo/5+83Paf/f5afOzMF95 7s+iHo3YzkGOSFLe+Gr498I/lXHuUb8I/bfm86LNOfPen7P15Xyd92v+1hve kKS+L9k8f2v4O64DxnoY5SrXBjEsyRAOob9K6NeBvIz6FZRdtl4XbF2GJunZ EMjClrKh7jj8HUO5xvmOyGaX9XvHr3FsMD/E89HvdZv/xcArEMPf3KOYh5s2 P5zzG8BPQp6JCP9iur8Mn4T+RERto7Cf/4F8Nkl9/GvzUBvjuQ1cp7IK9XUh a6Hc8uv5onzll2f8R5Lk56jFzLac1z1JinmvzTPbroMc30DxMN6dKEUwhzt4 juC3PPBbkKcR4yn+XwLUl6KvNRnCgcqybwzZFvPZpqXmbxWe18J4iuJZHGQJ yB+StDbEXKvzsDuLUhr1ZfC5LkN4t31f8bugJOqlUDJhvyRffouhfjBJz36G bNdSNtRdhL8LKGVQr5cmG7blfN3TUPP3J89cRH4SYVMW8jDa1sOzCg1l+5bZ v11Z81uuoeZ7pOE3bS04P3z+trUdVVlzca/NTVX4jwYOAl9Bn5dQoqwP7iv2 mYQ9U9HmcEOGYs8CvhmRn4nAKzH2bzLUNruyYs6xfiqaDdeRe+8QxjKpsvr9 sLIKz8VHkBvhwwU8A9jPXHHA0ypLxhquViCcAbyKv79GmzjU/+Iejqj9cujd FufMysKzIM+hJAKftzlMsLliiW+o+bvOsxuRzzOmP1tZbZKAL9h8JtreO2t+ 6DvDYk2vrLlOsjUqnoX1RKmN+r/wfTuiO6gj9kaHlprLTRhHY4y5CvRr81Wv CnyL5y8izLmq3lDzd8vwbcipKDWAP4XcnqF+SlWBDnNVs6Gel86STQnoJ6Be GXi8tatp+r9MfxOyKOzvoN9aqG9APFszhDneOjY3HHNd05VB+8bApSHTMI4G wL2ryBcxfberIvv2VTSf9WzeWCfuUEW2yda2doEwfVRCPD7ggdAXryJcDPIX xPhzRPf8OsTptbud61Tf1vo76Hcgfg/btJbN/WjbCXPvbyh/peC/RJZsGAfb drR+/Nbv9/CzC34aNtRYmkC2hRxqY38IMj5L+sXAP8C2EfBg4G/QNmDrMqSK MNvdA/vyWbL7APbtU/V7Pc5J0Pqpguch4PVV1F8d0y9BcXjnVdHzFLNJyFJb Pu9lz3pCloO+TJbi72Bt2Q9/V8nfOfJn/psR5x7E0RTPbgBXZM7xRjgPaBeD kg79Fuj3ZQh/W4h/wzQvUiQVeAB8hSH7Q9bKEt4KvJ9/Ewi8HdgNvStL9SeZ NxY4i3NXqLkjHlkV70XIN6pqjiINNWf0l2Y+NyKGTJvbnWazC9IDH9nACWi7 o4ps+HwruWoshi4t5Yfxcu5ybK44jnzgb4Br8ryg5KH+SKHWIJft4edwhvCO fNWb8c6sqrb1ILegfXPgzZCHYNsSuCH0dXkHoBSg3gCyXpaeHYRNIc5MC975 WVo/jsFbVX58kLvyZVdgY2PMiZDdMZZuLTXf1VGqZikejrmwoeYgCF1jlK6o hyDbQj6Ptt4szRfrgaqybwzpRmkN7IJ81vCIquqvnfX/vOEXIAPcUygdUd+L OI9mCL+K+XyNe7Ua3ps4y7sKNHc9EW+Pllr7WmjfnndQVbVrh3nowLsV9U68 P6tqH7S3fbEb/rvZfD4D/w58tLE56mxzxrF0B24EOa6q7Mfb8y4oY4H9BcJs tw8+j2dofsZb2wlVNeYeDTUHHGdvm7ds9NkL+HhV9dHK5u85xJOFZz1Rz09T /HWgP2J+jkKmZGkN2L5DmmJiPL0xH71aajylWmvelmDedvL/9GVoH+Zl6Vyc YZ/AfYGvAo+pKvweZGOMq4/NVRg2rdDH/ajvgf4HlF8zZNvP2gYLhOnjBsoA 3tVVNQ/E4+ws9rF+28Jff+D3q2ptHrC12o84T8L3g6hfryob+qOvgbzDISM8 91myKcj6P6bOM0yKqonCYFZQgoiKktPC7gLTO9ODsGGWtIRVUUygIiomREUQ VEARFURUxPCZM+YcwCwqijnnAOaACRExi37n5RTP+GOePl1Tt27q7pm+VXWu 23Ks8EY7285K6Vykz+Ex/v0KHuvxOj9FY7ub8JE8J/XdET2t+2fgv9p4fMf1 9HjvHuUGagw/0/lRMV/vqp1fqd4JPX0cBSe28GDpDypYvrPKHK3jLm3djsPi usAWdgbpeKDmasxQz8kf0Wba8m0bl/2mjevjmqH+n/WZKLxaxxtV/iThm3Qs 1bOluz6z1L9dZWtPtWcy12lb6++t48Gq56ChnvMVavNo6UyK8Z0S4z2qrfG+ Ou6vz4nCo9u6TSfG+O+j8nvpc1qcnxBz/d4g2z0uzo8P2/u1tQ72sDWV66Ct 60CH7w9Ru8YO9dzsok99wXbWcv/o+LeOIwqejxlcl+rnfsInC//DPRO6B7Y1 PkjH/jE+/ehLlLulrcf9lJjT99Xmb6vcl966hk+N+Xqm3s8drqsDVXamjve2 9fUxNebolrBza1t/f2rojGnrNtOWXeI7rgXawXVFu5iPWTE/9+v4gD5fttM7 h87nCC9u67kEjxQe29f6j0S52YErhxjvHeN5Zk/P4eLAj+v4pD5nCy+J8T87 5uIj9X2l+n5xnJ8Vc/G9ZGcIP9rW53PjengidLD3lD7nCD/d1nWgw/dHaKwO K9jmvjqOLNgWYzGvp8dmYr3H9HydT9DxPB23bOfr+Nyevq7HFYwbSX6YrotD h3q+l6nNP1W57PJBPr+A+5z7WJ820p9S8Dm4eojlD8vm86r3HI3phdGOc+I6 HMszsGA76FH2obbuG21eyvWp7/fv67Jz2UtX5/OFP1D9l8RYYft64W1Vb3t9 LhXuoGO7dtZBxrwgfyzG87KYo0767nKe8zo2ke0tC/7vxDhfEXNHe64M2bEF j901PK9V73Thq4S7trNOiY4d29k+tifXe0zR6dLONtH9RO2fq/9mqzSm4wvu 19X6blo792V6O8/35TG/2+j8WuEWOq5RmaM1Jjfo/IR6jzt4NbYkv45n1iCf LxCerO8nFYw/H+TyNwqfKNnxBeNZsnsL13c7j90tMW4nRL0nxtje3NPjOjPG 4FjhqVx7qvcmnZ8eOth7W9fAW0N83fRQO8v1uYD/aEN8382UzuiCnxHnRd23 8ozRcVq9x/YunZ+l8zt1PLudx/D2mK8zA89t5zG9I8b4f6pjbpQ9qeAxvptn hD73cf1K5/yCz8HUd5vwHB3Plfwe4bfb2e4dUf+XcGdpvn6t8lhQlrE5XfpH qO8LeQ4VPC6U/45nio7ft/M1cWfM+/8K1v2Y9nOP6vOgzr8iD6jKeDP9ni7S 8ZN2HiOeU6dwLReMeV4xjg8Jnyb8dTvjFTp+q8+jUf8ZgRnXOdEeZJw/EnM0 YIjHhD5x/nDM4Tehgz2uxUVxba4InW/iOr817jX6uVj4hyj7QrTnrILHbInO L1ebr9b5kzFnj/f0HP4QeGU7j/UT8f0K4oc15n+o/PyC5+YpnjcFj+Mzwhfq OFHjvzTuN+aRdn1DHpDKPR12sfmjji/purqyzna+HWQ9ys6s9/g+K7zHMP3m DfM1Ut/efdlZx5PrfV3R/r+4Dvpan+9e1HGX9h6vF2N8Lpfupfo8p/MrdDxW +s8LD5LtgfpcW+d5einGmfLgXXXcTZ9XhXdv7/a/GmN7ZozznBi3V+Iae1Vt u7rOY8L5y3ENDG9vHex9N8jtfi7qQIfvD9AzfvRQ//c9vd5z9Jq+WyB7Nwfe QPNwktr/Vk+P3xs69lbZK9obX6lj38F6fxCuEb5ROjfU+fyHQS7/tvD1PIcK xrT3HR370Ue4OKTzvs7v0vfv6ng7dtpb5yYd/63ynNKGwe2tU9fe4/iB8FDh el3P7/3n+/fCzvNch8KTOsiW8A0F10UbP6ev7T0WH8XY3KXPh8J3t/f8Luvp a+HuwPe093wtj/m/L8oujLn7OMZ2YeBFOjZQ3Z8JN9TxFtW/Vn35lHuy3uP8 ifCd7d0X6r9ZbVsU8vpoz7D2HmvsMPbv0199Nql2m2jPvTo+VHC/NlNdd8rO Ep6DfKfj3fp8zbjoeILm9EvhRws+biH9ufWeg690vgqOkWrj+ySbLv0VwkN0 /Q7W5/Y6t/WbaDt1fx/js7VsfSvcQsfmHayD7KdBtvt1jO+30V/G8IdoP2W+ E96mg219F7rD1dcvuI7a+zvqatnBff0i+nt/wePxk8631flKHbfr4Dn4MeaI c/D2Op5T73FmfD6U/Q/02aza87S6p+dtbOBDdHxD+ner37/ofI368TO/qcLz 6z3uP0ebfoj6+f6ZkFM37aGvjxU87th5hN+OvrbzLn6xIb4+mnTwdbuVjsv0 2bGX2qjjFH3+lPx4vpf9Rmrv7zp/UnYeLxgzN3/o2Ew6kzsYU46x/Svm4vjA J3TweP4d88X4/BvtP1GftcJTO1gPHWRbRxuY25ahg40L6n29NejlMv/w29HB tv6JsaG9Z6q/v8V31DU92rN5L7fz90Few9pI52/IXkMdn+vgOdigl+fkucDP 63hRvceZ9a7ndJzd12WZq411PEo6r3cwfkPHYbp+h+qzSN//SZ6sPpvqu0vr /bzYRPheffd69IXv3w/5U4W4RoRfFp6lujYTfkn4hYLtLNccLhvi++eD6Bdz t1NHjYFwHx0/1vmWwp908Fg16uWxXR74ow4en8Yxlh8Fptwz+mwlvFTHbh2N u+t4hJ7lhw91u1/l3pP8FcrqvKlwmXQeUL+W67xJL487baCeNwsea/Q+Vts/ GuI1RMo0k6y8o8e6WcwF/dmil6/NpKPrqujo6wQ583mk2jJuqMfuU9n7RJ9m 1Z6DbXp5TnIdjVMd3+ng8XmbtkvvXI3ttjpfO8jn21GfbH1QMK5WmR10rOno cW4l/H4Hz+v2wu8JX6Zy5+CT0HllR8urqEs25kjeIuYGO9jgu1ZhG7vcd4WO /rQWrtVxXCf9VggfqeNR6t/4oR7Tc/RdO8nndfR8tenl+aQMuF/Me9uY30fU zm9Urj1jXvA8dRDupE9nfS6W/sqCz8GNVF8/4cY6ztd5R+HzOtouNvvr+G3Y 4Hvmg7LMz2cFj32XmMuOcT3cpE9P4Zs7+hqi/VxTPxWse6nwtXwnfF1Hj0v3 GMM10ukqfFVHH0sCjxpi3CfGsDTG87rAC3S8QZ8ewjdG+3vE2A6I9tAXzstj /PcZ4jGpiLkoi3m/PnSw1yfawX22IHT4/ku182x8G9HPXjreEu2p7OX+MY7Z GLe/pV8hvKaj5zLTy3P7U+DVOh6jOT96qOdvTZT9Rccr6j1nOZ1fXe8x6s01 LbxU850Xvqbg/7av8zsrfJ7alkq+RN//pfNE+B+4zmptZ3XB80HZhtJpwLq9 8L+DrEfZjTu5L5vo+F3B1wF9+I3fmYL1+a5Kx007eXyqYk531rOwXp9n6zwW fWmjjht1MsY241gdc0d58GY6bqFPbS9fm1xLtTGnA2OcmU/OCzFHtH3DWo8J 5zUxR5t3sg72/uB3TJ8+UQc6fI+sW7SNeeReoE7mo38vz88Gst9K1/kgnR+r +Zkw1GP6vOSbqt4BPE8KnuOB2K/1cR/Z37DO5et0voHkF/U1Zt4G6/g3YyK8 rewP0/lYlRmi4yE6julknQN1vK7ec0cbGoZOg04e33rhDTvZxuWyP1Tnk9TG iUM9Lnt2cl/20nETnW9U67om6/vjhroPjMnwmMfD9dlZ+IhOnt9dYr6OCMyz atN4XvH9kVF2fCeP6W4xxuMDH6XjQ/rsIfxwJz9rRsT88tk95uiwTu4L9R8d 8mM6uW7aw7WzV9ihT8eEnQk6XqO+b6/Pnjpvof7speOjkr+mz0H8LnTyOI7q 5XH9kv9++uygMqN1vrfk+zOGtcZLhD/X958N8dw/HWWXdvLc7BtzxZiMjjbv qut9F31erfMzmmc7v2VjZGO/mNNrZetKzdE+Ot+x1nael7yJ8GWS7x/je0CM P9/vFzqNpXOJdEbq/KWo9+VO/qD/Sif382DhN2IMD47xZ6zG9rIMvTHCr3by 58BeHqejYqzGx9whZ26b8uzpa7/eG2HnTR23qfVYH8a9VOvrnnFnHg6NuW4f 37fr7PNDevlauF46O4bekdEe+t26s3Xa6HhDvefjcK4P9o2sM25U5/MjhNvq +9b6jBduVev5HCfcqdbHEtm5ud5jfaTOG6tc18DM01E6vqB6e3Q27tnZY3u0 8IsxPsfG2PbSd8cIZzpbDx1kW9bZ7viYj2NifhjTiTHOlJkgnHS2rQmh+6vO 5/FM7ezvqKtCx9vq3c5pOm8dYzVFOKfvJumYdvYcHBdzzTk439ljN7mXx/JG lWsTZTvUej6OFy6N4+nSeU91vav2T9X5CfqcqM/czh5vzjt3dpvoS1bHHrWW o0Pdk+L+6lzrccfOgr6200U6M6M9p+rYRDY7VbtfzYUrpT9H+EJ9N0PH/8XY ntTLc3J+4As6e6xPjjm6IPCFMW6nxLxka40vijbPjDFnfE6P8dtiZ7VF+BLh XK11Lu7s8jNiTunnqTEXtHtWL/eDMqcJX9rZtk6LMekuOyX6TI/vqOsyHZvW uc/It65zn88Uvllj0EGf2cJltZ6PM4R3iuMKlb2z3mPN+PTS8ea+LstczdXx LOn82Nl4lY79pXNOL19TX+uZ89UQj/V8nZ8l+bk6fhl9+UrHmlrL1wi3i+uE 9mQkv6mvbd0i2W3CZwv3663/l9y/MR9ct8zPKD3zRuqzt8p9qDZ/pPadH3M5 P+bo98B/6Li3dPca5rn6mGelPufFuF0Q8/J34LWdPY4Xxvd9aj1GF+t8SBfV oePQLtZD5x/mutbzen70Ex36fU+9r7dLdH6r+lWiz0VcozEXF8V9eG4vt3dw 1FPfxW28Ntq/Hb/X+lyh8280xiv0Ka32HFzWy3MyoovxHjourPdYX84Y6lio ddkBtZ6zK7nOpJPAm1DncbxGsv27uB1XR7v4XBXz+zm/+9GXUV0s31fHbmrH rZqvS6Ot10Rf+A47+3XxfJwbc7hPrfs1WvI9hHfX5x6d36TPDfrc2cVzsUD4 Lx0P6GI8Jsb8+l7+nnPwgTqWxdjeyHWrY7Wum1u5n4Wretv28frfMWWo+3Ab 15k+d3dxnTfH3A6Nc/CQWs8HejvXerzv4JmvcchU28b2wj2rXRf9ua6X21uj Ou8Uvr2Xr03kf6rNd+t4rz6PSGcHyROVvUvnD2gedqv194Xe1gFXVPuc8WGe 7tNxpMo+1sV4sY7lec1/TnOu8/v1eVCfx7t43O+POeKzKOaN+ujHA8IP9LIc /e+HuM2LQveBsP9g2H2ii6/B3eK6GlnruXxYeIPB+t/KvGzYoMFT0lss/LSO n9T7/qUs4/JojNOSwOjepT4+JvxkF8/l4zHXTwdequPt+jwhfJuOrYm74P+R zj/rJlvUr7+m/TVOT/ay3phowwFRDnmTrrpPVW64xmsp95iOT0VZ7IAPFf5H +HXhD4Xvk/4uedf1g+p9TcfJkvfQs+RF4ROFe0tnhHSe1flKlX2O524D4+e5 7oR/DIx8kfT3zrt8H+F9hF/iHiPWXccXpNOZ36lq1/ewjg/p84rwfX2tQzvb SqcNa+Y6b69j39BZqONuecsfE75fZV4V7iidDnXGO0m+l3ReEP43+ks7l0j3 I9rSUHUKvxHt6apyVSrzps4P15y/pWNeOi9K9gJr4zrfuLvlb0r/acmeCn04 S67PmJOgl8btHZ5JKruF9N8VPl/4kb7GPYS7Eceisu/pvKf0j1B91TovlbyW NXbJ39Dx9cDNZeeDaDP7fWP/I7WhQXe3H5uL+1qHut5TuXf1+ZBnhfR76POx 8HLJlvERnqQ6l+u4iS6OVt2Nr1PZHbp7fEZJ/oV0P6922UTtPI53MNaauTZV 3yf0XfgH9Jgjlf2Me0plK6Q/Rfp1+q5c9feL9nyr4zf6fCqckc6xPK91XsEz p852+gy1HdrAfcP9x/1UIvtfCHfQPZhKN6vPlzqvlv6KkPeWbAht5HlU5+Nz stNHeKjkX+t8bZ2Pr0pexXXF+g7zS4xzjXFWbTuFdzqV2Un1/iDZ97LfWN83 0uc7nW9G/LI+39KX7m7DbOnkVPZUld1ZZVPh04V3FW4m3SbEUvIMVJ3Vdca/ 47esdl/6RF1z6IvKXsi7k74bIN3++qzm+Swb2xHrjB3pr9Jx+Ea6dgLTzrzK ns1vj8p2lO5LfV12sHR+5h6S/pDAlN1N+NeQD+bdmvVznQ/ScU/ZWMO9LTvP yc5KrpvBlo2Ufj+u2zq3Z3jY2W5j/WZJ/7W+tlM51HPHtdFT8h7EE2NTdjbS vbP3JtIh1pQ4eMmHMo+sjwvnJH+zr/FI2f9Tx+myPyowde0i3f3Vzr8ZE+nX 1BgPl3y05GuF9xA+SLiB6muiev+RbJ7KbjnY388WrpfOsDq3oY/GcIHG8ACV 6St8g/DBwkNke5na8690duf3os54c9n5nee5xmRn6dTXuK6dVPYilR3JO4Pa vLFkjTbVuOr7T2RnA53vKxsjWXMRHin5PjXGVSp7j8oeorK1Q132Jo3VaOnu p88mOj9YugfWGB+l45H6bC58kuraTMdjVFe17NzHeyO/D/p+V30a6ruWavOm Ot4nm/vwP6nO7TlQxwPqbKf/UNuhzafK5hZwiAkPHGqM/bGMrT6NdF6jup5W XUfwjiX7jSWbLp05KrulcH4zXV9DjbFzmModos9WtFntmlZjPFf6TRg/6Z8V +G3pF2T/ed43ZX8G96LGsKm+G8e7rD7NhM+WfK4+Wwufp7LNdbxSds4PjM3O asNRddbpJ5stdGy4uf7Lq9xpNbZzcXfLKXuL8A7Y20L/NYW3YR/nzY1bCh8i fGVg7FwtvC37uQtfE3hs4O2Enxe+NjBlFwhvL1wm+9cHpiy4FXugSn5DYMre Jdya66WR/p9F29C5XXhH4V+E7whMmy+PNtOGKfpt7JLq90HnE3hOVepSFb5H Om3Yo1n69wm3FV4s+wsDjxK+Sf8z2sFZ1kT/iXLGXwifmNVvQOCfc8ZfCk+V vEPgZ7sbfyX8pnBH4T5N9bsa+B3Je6htc1Wmk85HC/8rW12EewqfJXln4f2F 1+aMewmfnbVORvgc4a7Cd8f4MA4HSN4wtXyicAfhHsJjhDcULhGuED5XZbtx /QtvnBrvUKqfWh0PVzvbapxKhZ8Q3jE1flK4g+RlgdukxkuEu0heHrhdavyU 8FEa8+6VbsPdMeaM7dGS95C8p86PUxs6pcbHSJ5Uer4Syedl3eb9hP/KeaxO EC5JPY8H6jhMx5+aafwl767zhL7zf1t2KrgnJS9LjSdJPlDyrPDJkvdIjY+T fKjkOeFTJO+VGk+WfFfJU+GruV/yxrfCXQ/nlOpNUuOWwv/qmumDbeGs5L3h eBK+Xfo7BU5T4+2E86n1ZwjflrU+dhqU6Fkc8rNU5wDp1ep8L7WlkjZKvlNq PFN4pORVgfukxqcK7yd5deC+qfFpwlPUrwP0XY3Oz5T9mtQ4K/y82lHguSTc LzXO8R8z6zZcJryb5P2FU/7/St6PZ5HwoNQ4L7xr6PRO3Rfa/FvW+7CzR/yx /N5Uer5u0NheoTIDhd+SziAdv5P+Xqnx98LvwF0feJ/U+AfhGbIxOPCo1Hil 8KmSDwm8X2r8o/AsyYcGHp0arxKeU+lrCTxO8p2F926ue1j11gvvKXx4aryX cNcS64BLhHcJ/eNZS2fOdD4+tXwf9kmXnT2Ft1Tfj5Z8V+GRkl+ueocHnpga jxLeSTZWqcxuOr9ZeEpq3Ef4Z8l3F75J43Zr3niw2jAi473Xvyg13lV4jXT3 EG6seqemxrSht8qNSD3m01O3bSvJf816/3rwyakx89WtxG2mL5NV76Qa/w6e knpOm0rn1NR7nTdjT2rZn6PzfXX+h2yODPnpqXFz4b7S+VPfjdL5vcKzU+Mq 4b+z3s9+Ic/J1Lia52HWe8bXCjfIec/4+3lWpN7DfhHPydQ6lTw3sm5DjfA/ WevcU+m9utmP+wHJ56fen77AczhrDJf/yRlzEj8o+fmp67pD/f4p732J2APt kIz3SmO/bPbwnrO192M8OFPc7xHMPo0nVHu/tLE6fwW++kxxDzEwe5mBD8t4 37D+0p2cc13sicM+Yexx83bowDfIXuH0hb2/1+8lxr45CyvdHuQ/ys6bqfd/ 6ic8MWf8TLSfPZvY3+nIjPcMYT+TEzLm52cvpmMy3pOEvZ7GZ7wHFPioTHGv p6PCDvjojPcP+T3K7h54Qqa4HxSYvZw21vv+Z6n3gGHvpokZ73eEzrEZ7xv1 W9hkr6g/Q84eT5uq7Bep93E5Rv9xNquynb/CDnsJrYk2s8fKVI1/4yrrr4n+ so9VafSXfVKmS2frKu8Hs4Xsr0iNB2jc3k29H8w9uga27G1M2RMzxX1dTowx BE/NeF8X9ic5KWMuffZUmZYp7v0yNdo2TfU2qfIeNuWhw14wm6uer1LL2Qdm eqa4NwuY/WF2CvvPxb4QXLfsDfF71vcj9yb7KszIeG8F9n84JVPcqwG8UeCZ meJeEOCNA5+aKe4FAWZvCPZ2OC1T3MMB3CLw6ZnifhGnx7UEN/kZGfOTw18+ O1PkKQePCIzOek70ORlznJ5UbS71WRnzlyOHwxyO8HMz5h+FI/zMjPnDwXMz Rf7yuXEvw1l+VsYcqNcGPiTw2Rnzn18X+NDA52SKPOXgwwLPyxS5zOfFeE7Q dfhczpzRN0TbGE945udnzEsJfzYYDu0ro83wue4bcwT/eon62jhvO92Et8qb E7lMuEXeHMSD+F3OmXe4u+RN88Z1/C7nzINcKnnzvPEQHV/OmZu4XPKWeeOh Or6SMwfxTI3z9CpzCveSTqu8OYt7CG+Xt85g1rpybsMM3veqrDOjypyucA4n 0t8xb67hU6RzYpVxVvI2edtvl7f+Oj5h/nvk3Mezqsz5C99v+7y5g+EHhpcX Ofy3s6rMHYx8TpU5f+H7hff3qij7ZfALI3+VdbVYj5pXZS5d7LCutSCuQ/h6 r8uY3xFO32sz5niEAxP9xttaBzkcv6dWuW20f2XY2SEwduADxjf4VmJfIX6/ txP7ieDuvSGubbh1b86Yjxe+3hszRe5hMDy+4JsyRR5Z8LNR9paMuQrh5b0l ru1JdebnvTVjjtk7Ms7NhNP3trieH6sx3y46a6INcGHCoYsOXJSv58yzCo8r nL63Z4rcwGB4K+HeeyFj/j3yQKkL3lq4OR/ImCvxw5w5VeFT7Zo3Byu8rG/n zN8KhocVDGfmezlzpILhW6UsHKrwjN6XKfJ0guEfpa77Y+7gE12UMZ8hOgsz 5l3snHdf9gwd5PCUvpFze5B3DjsnB14U1wBcrfesb3/0i7mGN/HpqAtu0Udi DOEffShT5Ad9KOYU/HCmyCf6cMwpZR/NFDl0H405BT+WCZ5FzeMTwrdva37Q xTFHPUKnR9h8JOaiR+jAWwlH5pMZc0nC2fl4psgtCr422vxgxhyq8GJSF9yY JSE/J/q7NGMOS7gtl8RcgJ/KFDkpn4ox7x/jA2/iwCjL2MJV+UzGfJV1geGl hHvy+RgfOCyfy5g7EZ1nM+ZLrI2+TA2dZ6NttdEeOBuHhJ2fAz8XcwH32KqM OcOGxnULp+I5IYd7B/7IVzLmmYTP8qVMkS/zpZgLuDBfzhS5LcFwXVL21UyR n/LVGFt4Ll/LmBcRLsk3M+YphJPy9UyR4xMdeDF3jTbAkTgidOBWhN/xrYy5 BrHzRqbIOwuG85A2vxjX0l5RF/MCL+PyjPnu4N57L2P+PXgi345xAL+TKXJD guFjhA/y3Yx5+w6MshsEfj9T5IZ8P8aEupZFf+F3/DBjjkB0PsiYgxDeTfoC b+XBIae/cEXSHjgGDwk7NwTGDrySw6KPtO2w6Fe/4LT7NmNeO3gKPw078D5+ nClyP4J3Dw7GTzJFfkfw3sFf+FmmyKcIPjh4FD/PmA8PDryv4lqC+/CLjPkO 4UT8PMbkmGjDo8GDiM6mwVf3dcacddj5MlPkUATDsQdv5Ucxp1OjLsbhsJDf FJyC32XMuQfX4IqMeQvhKvwmU+Q+BD8c3IeMD/yFs6IsfIPwCn6fKXIBguEV 5L74MdoDL+DKjLnl0PkhY87AadGXG4MjEPkLwdFIe+DhOzvsjA+8MsZhTFxX cHvC//dTxnxxcHt0SsxXAafdmoz58eDuW50pcgGCWwcH3s8Zc7VdHLhrcN39 kily6YHHBf41Y/40uOv+yJhjDF6W3zJFHr5fo7/w9dGG+SFH57Xgo/szY845 uLt+zxT588BwvMBJtmFi7rEFURf8eI+H/H/BCfdPxjxj8Nj9lTGXHdx0f2eK 3HLgecEttzZjvrJ7ouyrwQn3b6bIb/dvtBP+sw0S86HB59YwMTcY3GkNEnNV wZlHX2YE1xryj4JLj/bApwePGXb2CO437HwWfHVrY5zp70aJubngi2qWmJsI TrWNkyJfGrgiONI2SdzmbYfpWkvMMQYv2qaJubmWhA4ca6vivxN7IsBDhv7A 4BLbPDGfGBxdWyRFzrAtYpyXhs3a4AxrFO0EN06K3GONo53woWHzgeCEo19J cIxtmZiranu1eavE3FefRn//CH6sJol5vT4MDG8WPF1NkyLnFnhR8Gw1T4r8 W+A/g1tr68Q8UfAztUzMnwTHVYvEXFifh85fwVdG2+A622GYdeDEgpeLdsJF hp1tkiI3FRgupflxD8KZuSrqGh3cVNtGG+Bb2iExPxB8S9sl5onaVs/z7ZMi PxN4avAwtUrMI/RPlH0y+J92TIpcQTtGv+D+aZuYs2h72WyTmFcJHqbWiXmE 1oZNeJ7gZEIOtxN8Re2irtbDbKc2OJmwA0fT1kPcZviitgh9+Hvg0emWmNum eTx/csGT1CEpciB1iDa3lp2OSZGLCAwPUlvV2zkp8gaBC8ED1CUx1w0cOdT1 R/AAdU2KfEJdkiI3Vfv/yNH5IdrTPsYffqCSpMgnBIavZlXMF/xe7dWe7on5 fuACySfmrOii9vdgToNTpzTaBi5Lipw6ZVEvuDwx7wv8N5SFJwcemp5JkcMG DIdPs4JjQJPEXDKZxBwpcNv0SsxvUxI2aXM25MODi6UiMWfLadW2sST4ZjLR ts7R5uHB0YI+nCVwGnWPeYHXhP7CpwIfSi4pcp/koj3dNQ5pUuRfSaOubhq3 3kmRnwMM9wt4p8R8HfCeVCbm9ICPpE9i7pP60IE75YQ689RkE/OgoAMvyI4F c7Ug71Ewl0pfvqszLwl4eNinzfCXVCXm5YAHBQz3CRwh1Yl5QnpJXpMUOUvA PQMXkiI3SSH6BadIbWLeC7hDaqNtJ9eZi6SfzncqmHMEDOdI/6TIS9E/+p6q 3kGJeSQqC+YNGZCYL2Qg108b83OA4fqA2wN9OEBmqJ7Tq60PX0hdYg6JoQVz fOycmBtjcFLk6gDD3QGnwpDEvArkjw6JvpxaZ76PoTofUDAPCBg+j2FJkYdj WPQFvo36xJwNcHKA4eGYXe364Z8ZXjC/xq6JeTV2Scy9AK8GGH6OM6r9PbwN h0VfGHPy8g9KnL8/v855+wcn5sbYLSnybYDh1QDvnhQ5M3aPvsMtMSIpcl2A 4b6A62KPxDwKcGnsEWNyZp35MvbU+Z4F82iA4cPYKynyWOwVYwKXw8jE+f7w x+wdfYeLYp+kyC0BHhWcEOjDFQF3yPDEfBHIRyXmD4DzYExi3gN4F/ZNivwK 4DHB/bBfYs6HdXwP0Zez68y5sD96hcjV5/mocR6dmG/h0II5GjgvwF2TFHkX wPAzXBJtaN/OvCO0E34SOBIOTIocDAdG36+I+SJf/uzoC3PUZ4jHZKHw0QXz JjCP5DeflDjvdmLBHA1jE/MWHJI4tx0eAjA8Cv2ED02KXAuHRl/OUr8OS5xT P60QvAaJ+QwOT4ocCYdHX8h9PyIp8geAyT2/qM4cBOMT8weMS8xLAD4yKfIZ HBl9nFEwTwH6t4c++e+X1Jlz4KjEufuToq7LJJ8n+dE6n10wBwEYXoFjEnML LApMHwervxOSIk/AhOgj+NikmNMPJvefvP+JSZFLADw7MG0gr5x8+snRTvLR j0uKefzgMwOjs1L4tIL5EejLnQXnHs/hGVRnHgzmi1z/4xPnlZ9XcM4/5+dJ fkLiPPGLC87/5/x81jYT531fWXCOPefk609Ninn5YPLxwdOSYp79tOgjefDT k2KuPJgcenJwZyTOs341rjH6eH2dc+NP1vl1BedxgcmDnxHtv6LOfAdTuJfq nA9/ivBtBed+z6bdsj8zKea4z4w+7gIfTlLMBT81+gg+LSnmpoPJBycf/fSk mP99evSdfPRZSTEHfVb08ZY655bThnMK5migneSRn6Hj+jz1M6Lvt3E9V3u+ yMGnHwXJy4b4t4/flIv0/ZmJc43JC5+bOC+YHOhzEuf+kv89N/pFzvdZSTHP G0x+N/jsxHnEK6MsudLgeUkxb3te9GtxwXnU5yXO256fOC/4rjrnvZ+bOEf8 7BifBwvOD0dObu75iXOsL6m2jaMiz3t+jMOTsnGlvrsrcR42+nAIvFpw3u/l iXOaL0qc10yO9YVJMT/7whgHcqz/lxTzp/8XfafsxUkxB/riGKuFdc49vkTn l1a7nvci1/nS6OPSgvOQ0dldfbkgcZ53w9B5LtpzQcwLec+XRR/3GGL8euRt 0/6pkaN8ReJcWHKhbkmcf/lQnXOGr0mcf3xl6IOvSop5zFdFX8hFvjpxLunb BecVU5a84muTYj7xtdFOcn+vj/Y8XOd83QWJ84mvS5zvSU4zNsl7Ji8ZOfnN 5BbfkDhvmNxi7JBP/F7B+b3YaRRt/ihyi9EnT3SL6O/xkadLf8kDIz/4pqSY Bwx+P/KDb06KOcE3x1hR9takmIN7a9RFHu1tifNHHyf/QP26U+efFpzre3vi vOHbYqz2UvtvTJyj/Fidc4PRoT03xjVAzu4dMYYdApOv+kXB+b3Y/7rgfFeu 24UFczdwf5J3e3fiPFzyYu9Jirmz4ELge5Nibu69cQ2Qj3tfUsydBQ+IXNiF ifMvyYVdGP19us65rIt4bhacjwq+WmPwYOL8R/Jl74/2XyX5A4nzK38uON+V 8z8LzgWlTEXok2tLrupDiXMM/y04n/PxxPmvDyfFPFfwdZG3+khSzCV9JPoO fjQp5p4+Gn0nh/WxpJhvDb4pckwXJ85rJK90cfT9xTrnl9IG8jifTJz3uZ/m 9ImkmBv6RPSRfFB0yDEkv5a+XBN51XdHm0er7JLEeZbkUz6VOMeQPMtnEucI 7hLyjSO/8+mkmN8J3jTw0sQ5giOibKPIy3w2cZ4feaXPRr+2qnXu4guJcyuf T5xf+XKd8zafS5wnujTGs1Gt8wmRk3P5YvT3lTrnT2KHvEzskLtJHic65Ggu 0PcvJfbTkUu6JK4N8hpfjTavy5tMnH9HfuRrifPYDgj5EZH7+Er0/cAo+1rk KSInp29VxNLj4x4bdsivnNLfvkLy11rWOk/yjcS5jq8nxTxIMLl6b9Q5HxKd ZrXOBaUPO9Q6p/FN4bekc0O18eux3sWa0jHhiyTfEF8we+WyTy45ee8nznsj 1/Cd6C/43aSYawh+JXIc30uc73ZclGVMyNv7IHEOHHmIH0SbyclbHn28iTj9 xPlo79Q55/DDxPmC78VYdax1/iFycuw+Suw/PWiI7ZBH1qXWOYTYIl/kr8R5 JyeH/vq8pa8T5y6Rs/ZZtI0cvk8S5/GdGrgi8vM+TYo5eWDy9j6ocw7e5zov r3UOHngsecGJc7jmRV3kXZFL92XiXDry7b6I/pJr+HHifENy6dBZE+35OMa5 otY5dV/pfFmdc+rA5OHR/q+iXysS52rdUe2cqV+4zuucq/a9cO9a57Z9kzg3 7tukmPf2bfSRXLfvEudO9a11vhxlv6hzztgPPK9rnScGJidsVfTxdsl+TJzT RE7bysR5bOTHfRftJKdtZYwPeWM/Jc4zuyrskNs0qNa5bdhKhzrHjzZfE/rk tc2P/jKnQ2ud30V/yS37OSnmk4HJLyMPbE3ifDTyy9ZEH++sdn7Xrzrftda5 YeBayX5LnJtFTsafifMyyJ36PdpJztZv0V/6sjpxPtSi0Hk8csiQky+2b63z rP7Q+dd1zocEb5TqHa5Cz7+mzqP6M+w82M/yByVfoWfCv5L3a6zfEcnXCheE l/c3XtZI/ymI8+f3QvIv+xvXCi+QvIHsbLGlfoN3Mr5R8r1lp6FwI8nvITdB +B3h31V2A+HGwqv6W+cm6Q/r5zZQ9tbB1pkgneMk31j4XeG/pL+h8JbCh/Qz Plb47mrndP2t8psMcF0TJX9Ex630GaU+Xi/9zYXrhA8ZKD3h05tojnTcVJ9v hI8YaDxL+C4dN9PnW+FVOZclTvsG2dlCeLDsrM4ZE6d9nMpuKfyL8EP0T599 pHOj9BsJDxHefID7MkltW5OznFjuOyrcnhXCD1fYzkjpTxhoO2uaOL/tr7j2 Thjofv3axDHVOwhvKP05kjcX/lPyx3Rsqs9+kp8y0Ph3yRfr2Eyf/SU/faDx H5I/oePW+hwg+dkDjf+S/EkdW+gzRvKnddxWn4OFL5LONsJrpXPeQOv8TTsr 3IbR0llSYZ0DhZfquJ0+Y4Uvl35L4X+k/1SF8UGST5e8ifBvkl890HX9K/xo heX7Suc+jeeOwvcJb6u+by/cMHAr4UOFtw+8QWDG5zDhP3Muu6vwQtlpLbxQ +O+c8XDhDXS/tBMeIXy/dNoK3y+8SLiN8CLhbUrdlwbC/+Qs3y3ktOcQ4Qf6 2c4Dwg1S29ld+NXuvq5mM0fS6SDcqZl+Q3TN7yl8/Na6L6XfucLx7Yul01G4 s3Rap8bExj8ueSfhLpK3TY2JjX9S8i7CJZJ3TI2fZi4k7yrcTfKlwt2Fy4S7 ErMv/Ix0OqfWWSr8RD+3oat0nupnne7CzwiXCpcLdyOuX/hZro1+xqWSH0/8 e+iUpq7rOeksr7D8PMmfV397Ck8T7kmcv/AL0nlOdsqFe0qeSY1fRC79HsJT Jc+lLkus+wuS9xKeLvxA1pi49+OIzY8+fqhjos+5wi9KPyN8knB56r48L/sP ZS3fXvJn+7k9PYSXVdjOfOFjK22HPlakbg+x9B/pmNPnfOGvdOzHNSz8sY6p PhcIT680pl9TdJ3kKxx7/wp71PIcEH5ZuDfPE+GXBlvnc+E+ZXpuqH19W6j/ pdYnDn+6cJ8Kx96/Jv2+wl8LV6fGxOGfUGqbxMbXEs/Pc0/4DelX8dwT7p8a zxJ+dbBtfiU8tdL9YhzelLya56HwpxqfmgrHz++Rur/08RMdCxWOn387azxH +Esda3leCQ9PjRmrL2WnP/ddc/1epMaUZc/xAdxTkr8rXCe8h/C+xJJXON5+ ZGodYvIHpm7bbOodbJ3dpf9G1u08Q/L9ifOvcEz+O4ONR0hnh9T3IHkoY1LX RXz+lyo7uMJ5Hw30u1Mv/Jj0jyDOv8Ix+f+o/UOFHxE+MjUmPv9fyYcJPyp8 bOqyxN43lJ2dhRcLT06NicM/iZj8CsfDv6e27Sp8rPAG0t9F+HHpHJXaJrHx J6aW7ys8g5j9CsfPvz/YdiYKT0tthzj8tf3c5oel/8Fg60+S/Dxi4blfhM9I /fzZWniZdEYITxY+LTUmrn655HsITxGelRoTY/+x5HsJnyB8ZmrcQvgTyfcW PlH488Gua7rwOcTwc+8In5VaZxvhD6Wzu/Bxwp8Ots5U4Zmp5cQYn0tsP/e+ 8GeDjacJr+zn+SKH4gvJ9+Uel3wrzePhwgNa+B46oML30U/6fdlP+C3pbEi8 v/BOkq8ZaPy25BsRyy/cR/I/B7rsu5JvIvkY4UrJ1w40fg/5IP02Cn8ovJl0 DhKuls6mwgcKVwn/NtA235FOg0GWvy+8ufBY4WXgrO3USH/DQbbzAddD1m3u LfkWWesXhBvn3N/tpbPNIPf3E+HG0jlUuJ90mgwy/kjyLSU/TLi/5M0HGX8s eUfJj2BOyReoNL5TOp0kH8e1IXlX4aOYO+H3pHOk8N3SeafSOncJN5LOIdzz wp2z1mkh/caDLF+uuj6Q/njhe6TTJWu8jXSWVdr+vZKXSH40cy35x5XG90n+ mfAxwo3II5DOBOEJwl9WGjcm3l7yY7mPhEsGGW9JzLzkE7lH0BlkvBVx8pJP 4r4g7n2QcRPhrOTHCb8g/E+Z8aHCecmPF35ZuIHetScLHyacSj5F+CXhDcqN DxfeqNz6RwjnstZ/Ubi38AnCr1AXcfXCS4V3kvxE4VeFNys3PlK4j+RThV8T 3qLceLxwX8mnCb/OOJcbHyVckHw68yv8Tmo8TbhW8pOES1rqN63c+GnJ+2Xd hm6RU3CK8LPkiUg+Q7i75Gm58TOSD8hap1TyTcrdl3GS71Ol3wTh84nhl86F wr9hU8+0U7k2hL9MjZfTX8lP41qV/OvU+CP6K/npXKuSf5Ma05fdZXOW8BWS l1cZ9xYeIfls4SuFe1YZ7yS8h+RnCF8lnKky7iO8t+Rzha8Vzko+h+eD8F6S nyl8DW2uMq4UrqyyfpVwXm2byT0ovI/0zxK+jrqkc57wfOGRkp8tvEC4f5Vx jfAoyc8Rvl54UJUxdvaVfJ7wDcJDqowZq/0kP1f4RuH6KmPGan/J5wvfJLxr lTFjNTrrNqwR/jx1O5dp3A6Q/HzhX+hjlfF5wmOynq9fhQtV7ku18J5Zj8nV tLnK83hBS78n8e70ov7P3txH7/bCF0p+tPQvEh6+rfcJAn8v+TGSXyy8m+SX Vhn/QC6D5JcI7y75k32MVzLXeoZfKnyg5FvmjddK/q3klwkfJHmTvPE/xNVL fqXwIZI3I+Zf+F/Jv5f8CuGxkm+dN25AHHje+g2JvR9s/YOJqxe+ins8Yvuv r3D8/4+SX809Tqx43nhD4VWSX8M9LrxD3ngj4Z8kv5b7Xbh13nhj4dWSX8c9 Itw2b0wuw8+SL+AeF/683JiY/weGuA3jIzfhxopi3sEN3OORjwBen5uAztHE k+fdF9bcxub9Xso76UFZz9fvxPar3puFHyRePW9MHP6vkt8i/BDj1sOY2PXH 1J5bhR+OWHowcfVP6zq4Tfjmrs5XBvNu+4zktwvf0tX5ymBylnnf5b33Nslf 6G7M++9vxOoLPyr5S919jfFuzjsT7+QvS/ZKd2Pezb/rbn3e6Rifm4SPIY+A 2H7hx2TnIPXrAdopnaP0+3uv8OKuzn0G8+62SnbuE368q3OlwbyvrZZ8ofAT XZ37DObdcI3ki4Sf7OrcZzBrLL9Kfr/wkq7OfQbvKfnv3d2Gp7o614N2khvy p+QP8uyV/OC88d5N/d7PfC3t6txk+sL7abesf/vI0WOdgPWCtd29HsB6x7/d /U7Pe/7G+u9/aN5y1kB4h+ZduqHkh+WNeadmbYD1gg0lPyLvsqwP8B7P+/ym ko/LG/Nef0WN3+15r+e9nzWCRqVeM2AdYXPhw/O2yfrDkXnLWVu4ssbv/Lzv szaAnS2lf3mN7bDOwHsD7xJNS7w2gH4T6YzV5yXhHZs5j/nZCr8D8i7O+sLW +r5FqTHrDHsLP8PzpKvzp8G8r+0r+XPCq7o6TxrMO+P+kj8v/BNzEXWtEZ6t 9r8g3Eo6o0OH90TWJ1gTaSbZAaXWWS395qWWs05yhsq+KLyD9A8sNf5ZOiNL 3f4fhQ8Rfln4F+FzhD8Qbqy+HyX8uvAfkh8u/IpwG9k5QvhV4d8kHxe4reRH Cr/GfS350VG2veSVev6/wXOpxLnYYN4Byad+u8LvRwfpv9NbPIukU5D+m1w/ wuPDZrtmztdGznviOcLvVPj9bmyl7Wxa4lxy7PAudli0+Ve159BK629GTmr0 t7V0zsu7v2cLj5POezzfpHNtjfFcyc+S/vtcY5LPzxuf1czv4rzbN5H8uhpj 3vF5X+e9/cJSv3PzHn6Z8PU1XoNg/WFBjXV4rz9c9b7LdVvi9Ql0LpL+NTWW nymdS/N+z+e9lXdi8CWlzlXHPu+/5JFz3fIOe0je9ybreDfKzqdcG4yb6vqM 61Z1XZU3/lny+ZJ/znUo+dV54zWSny/5F1xvkl+TN/6lmd+hea9uxVjljXm/ 5l2cNYjL1bbr8sasRZygOf1GuKzE+d9fV/jdc5LkK4RLS5wDDua9krxv9PcT Pia1fnfp/CS73/KsK3E+9aoKvzP+LPl3POtKnOcN5n32F8m/F96rxHneYN5V f5P8B+G9S5zbDeb97g/JVwrvU+K8UjDvnn9J/iPjWeLcbjDvntdVug2jSpzH vbrC75LXS/4TfSlxnjiYd9IbK62zX4nz1OkL78gHpZ6jloyDdH4W3l/4VuE1 wqOFl+u34zfhA0ucD46c99DbpfMLz7cS53qDeaf+QPq/8kzDZo3LtpL8Y8l/ Fz5I8ltqjHeQ/DGV/Yt7XLiZ3jX+5Dkmnc+k/wfPkxLniWOTd71bayzfUXix 5H/zHBDeusx2DpH+bTW201rybcqsc6jk2wqvFT6sxPns9Jf38SXCDfQb01F4 e+n8I/nh0mkr3JB3OeEn8pa3l86Twv8KdxBuXeay46SzQ5nlRwi/PtjrTitY S8zbTqet/T7NO/lO0k3L/B7OO3i2zO+6vOfyvguuKPN7OTo54cfzbn872eld 5nd13tN5twbnJTsZu/ofcG0L+yLxM8KjyTs37+RVZX6H5l26v3B1Wchb+J2b d/gayQplxrzL817O+3mtZC/kXZZ3cN5ree8dKPmLeWPef1/Jew2C9Qfes3n3 HlLmd3Hez+uEn8/bJu/7L+Ut5539feEmwkNb+J0eO8Ok/3Lednh/5/2Vd9pl ku9TZv1pGvPJwtsJXyGd5dLfWngXxlPyZrz7SefDvHE94yZ5c979JF+WN95Z 8md0bbfgHU/yj/LGu0r+nOTbCM+U/Lio62zhY4VbCl8mnU/y1hkuPErypryL SmdC6MwV/iBv+TDpTJJ8W+HL6Vfgs6TzVKXbP0N4iuTb8+5U4jUD1g4Wx1y3 5p1H8hOFWwlfJTtThXfg3UnyaYGvlny68I68O0k+I8pynZwi3IZ3JMlnBr5O 8jOE2wvfIPwwPgLeabkfWdvn3Un4pLB5jXROK7N8gfCZwh2EbxR+NLWd/0l/ VpntXC/5CdHmeZIvTq1/kfDx0d8rpfN4mfvLOglrLazLPCzZI2XGrM+w1sKa y6OSPVZmzNoLayqs3Twh2ZNlxqzhsKbCOsuSMq+RsG7yQXA8rPuvKZ2v8tZh HYY1IdaJHizz/1B04IR4qMxy1o7eL4t1mW28HgN+r8zv6Ly3b9ZN115ZrNFI Z7z+D+/GXPN+BzeP8Jvq+8dlsS4jna+Fewi/Lvl3eePjJf9G8p7Cb0j+Q95l T5T8ZY1hRvgtyVfmjadKvrbMazqs57wtnQraL53XhBPht4W/z9vmCduY1wI5 ayb/lnnthnUb1oGw83eZ+TqwM30brxvR5o/KvMaDPutGd0qnWvh9OCXKvb7D 2g5rQqwlsVa0Ybkxa0qso7A2xLrRxuXGrBGx3sMaEGtCq/PGrAWx3sMaEGtC G1a5rmXqyz/SqRR+F/6NvHVYI2JdirUq1q7WVlrnA+k3LLec9at/pV/F3LHG VWX8Ib+DZbGOJvmnGrca4eWS/8hat/A3JV4fYs2INS04LliHYt2GdSbWnnpJ nik3Zg2KNSfWnliLypW7LGtNrC2xxsSaU77cmLWmfsJ12BGuER4k/LnqrRIe KPyZcEW5bbKWtVVvy3sID5B8sHBGeIcq2/lC+k16207Pll4no82reAZUWf9L 6dxV4/5+oL7Ul7u/Oel3Yv9c4a+lM7jcuIJ1CdbthVdIPrTcOCv5T6z/C38r +S7lxqnkP7O2L/yd5EfGffGb8OHCuwqfKZ3h5dbJC7dnr13hr6RzWOj8Ijyo 3PJEOuOEh/O8FT4i8K8lXlPkOmTdbma5703W037Vb+asrN/BWfdiLWwO3Bvl Xl9jbY31M9bUTpdsVrkxa2usFbFmNFuye2tcljU01szWrbVJfl+NMWtu99d4 LYx1MNbGWC+bV+71J9bUzoaro9w2WYNaWGM562wP1Hi9jLUy1s+wM1+6i2ps hzW3Gaw5C7fq5rU09M+XTmfN9VjhP6XTrrfXxVgTY/2MNbWLpPNQjTFra6yl saYGr0bb3sasrbFmxtrZYsnb9zZmDY11MtY9n2CNdpDr2l5t6Njb6y+svXTo bR3WRVnPY43vwnKvzaCzRPjBGstZ9+sk/YOF/2Ddr8p4u25ew6P9j0q/S2/3 9y/pNOmhezTr9ZxHZOdQnleSH6yyhwnvqLKHCh8u3Lqb+T2OyHrdDD4Q5Kyt wROCPutvlWX2f+D7GK+y44TbquwxwkcKt+tm/hAwa2sTqxz31V7yI6psv43w ZOGjhDt0M+8HmPU01gtZQ4TjAV4R7LNeN6bK7d+hm/cAR4c1xs17eG2RdcUr 4OYR7iOdRj28tsi6YmPhY4V7S75l4BGSbxXjs1M3czZQljWuq+HvEe7bzZwN YNa44Ic4PmuOiO56Nk4RrpJOifBkxqSb1zVpD3ujwzOBHH4J1jVpzxaSl+Vt p7qb+R6wA+cDa9XcX6dyvUvnhOy6EIMGS7qbE5A4kyeFpws/0NVrbnACss7G 2hqYdTbW3KZlvc72fOBbuxqfFPJPAz8o+WfCJ/PsauI1t5lZr8Uhn8E1H2VP Dn1iYWgD8TAvhA5lvxI+Nev1OuSnRNkvAmOTtUH6cnPIqeth4e+7m5OQNa5v hWfzDJR+Q/02nSb8iHRWSH561ut+rwRG/lp3P6+QvxZlHw39M4R3aep1wjNC DscfvIiPRb1nCn+vsm8Iz4l6X4q+0Lbfc5ajT72nRR9pJ3ZYe3wj7Kyz2c1z 16yreRXpF+uNW6kvlwi/09V8iHAksk7I2iNci6w3wqsIZr2RtUf4CVlvhKMQ zHoja4zzs15X/CMw64qsMZ6X9TpnV70vXyg8jPgWyc/Pei3xr9BhvZE1TNrA uuWfocPaIzEy/4t+dZGdC4Rfk/7n3Y2HNjVHJFyRj4f8wtBZ2d1y1lTLVfbS sLlA77AXCb8tnTLJL4520v6LQ75p6vFBTjsvjbHaTPLLwk6zSuN3Jf9HOlcK vye8hXSuyHp9uyfriYGZd/ryVlePw+VRdpPU7WEMM6W2w1pNi0rbwWZj6VwV 8m0rjd+XvEL6V2e9prqVdK4J3KrS+APp5KRzbdbrqxsERt5U+teFvHWl8Yes T0pnQdbrpRsFRt5c+teHvF2l8TLWLaVzQ9brtJsJ3yS8XPIW0r8x5B0rjZH3 DR3Wb1tK5+bAm4QdbHattPyjrl7PvCvrNc8thG8J+V6l5qaEl5I1VTDrq6y1 wi/ZMtZmwT/GOifclKzTstYKZt2VNdg7sl53HR2YdVfWYO/Men11TODVsR57 T9ZrvwdF21hHZU317qzXV8cGZs22KtrMmvM01mOzXiMdF3jDEq+p3pv1+iRr lfdlvb46LjDrq6y1Loyy4wOzvspa66Ks10WPDsw6LbEk92cdT9K71Pjvru7j A9FfYpTAa7s65ujB//T3YeF/uho/FHJ0Hgr5xNBpFePwSOBDY3x+CR3kcIWe KLwk+oX+oyFnrB6LcZsUGE7QycKLY5zHBm4Qa7aPh3zvSuOGvJ9K/kTWa7mH Bm4YY/tkyEdVGm9Q4rXue0N+eLQNOWP+VLRz/0pj5mhStHmHuE4ejHFjLpbG vJwv/FHWa3cnseYf8zI+MOvezNGzIa9KjVnfnoEvIOt18qMDbxx24CllnRx+ 0uf/ow9PKWvgcJWCWTOfWWqeUta957C+nfV68mn4EbJeY58dmDXwWaHD+vkZ rJNnvc4Mtyl2WEufG3LWwwenjqlC/2zW/LNeD2dt/LWs18PnBcZ3gB/h9azX 1ecH3lLyutRxUbSH2CgwfhZ8Lm+Gfdr5ZsjRgS/1u1jffivkQ2Tn3azX5ylL 25qFHXhUWQOHP/WdkJ8ZbUZ/rMp+m/X69phKzyNzRL/eE96adyXpvB/9ml1p 3ELyG/CPRL/mBUY+TPofhvzMSuNtJL9JOsuEz4lxWBbyo6WzPOQHpMZcP7fE tTRP8tuFP8l6rR47H2cdD3Zr4PX66LC2f5vwp1mv559W6fGhL3eGnLX9g1lv D527Jf8s67V91vM/z9q/cGmpMWv7dwl/kfWa/z2BkdOGL6M9xD2Bu5QYwydL HBQ8sl+F/DHpfx313h4YftkFMeaMMzq0Da7Zx4W/iTm6MzDyO6LNyBvE7yC/ iegzp3C40q/vAk9Qf1dm7V84RPj76MsVlcb4FJ7CF5C1/+KewMiXsuaftf/i 3sCloQ9vLf4LdOCqxWdxnOz/lLWPAx7bVaF/aLQB+4eFDjZXlZq7Ft7ahcKr o+wteePfpdOSdUv9/zu2xBy4P4dOwzLzxOJrwJcBDyb+C3wf63h4S+wTgesW Pwi+j3W8tyX2icBTjB8EH8c6Ds0S+z7gscXfgY9jHadtiXlp13HVCq8tNd8s Phd8InDb4gfBl7GOh7fE/LbrOG9L7K+hPfg4/i21Hfwg8NWu460tsf9lHW9y iTlt1/HfCrdRH7fIeT2/Mev/Ofs+Ni4zhy2+D3hs1/HZSr4p6/85+z7gsV3H nSt5I9bzc/Z9bBUY38eWrPnn7PvAZ7FJzr6P5qzn5+z7aBo6+D42jzbg+2gS OjuGX2PTnH0fLYiVzdn30Swwvg84eddx85Z4TqkLP8iGZZa3DP9Fo5x9H61Y 88/Z94EfZPOc/R07Bj4ifByMD76PdlEW/8gFqWPyaCdxeeDxkndmfT6uJfBW 0d8Lpb9ltHO76At+mU5llk8osb+G9uDv+F9qO22iv1uFTpe4VhmHi6TTLPCT cT9y33VlnT/sbBd4ospeLP2tQ44OeJLkJcItou+tAiO/RPrbhPzrgcbHSd6N tf0Ykx0DI79U+tuGfJHu/e2Fp0jeHd9BjHmbwJMlvzy1DvJndD+2ytlndG+l 7aDDmLcKOwexPp+zb2Ik6/w5+0HwieyYsw9l38D4IPBHtM7Z77B/YHwi+Efa 5OwTOSAwPhH8I21z9okcGBh/xBjW8HP2rRwcGF8JPo6OOftBDom24Ss5Bl+A 8KUt7CsB4wfZK9o8pIXnsVnMy6Swgx8En06nnP0s+AW65uwHwXfWOWd/2XGB keMr6ZKzTy0NjBx/WUnIpwTG74APolvOfjT8JmU5x8riT+keOr1DB3xctOGK sIMOfgrslOfsfwGX5ux/6RMY+33C/nq/THngidFHfED44zI5rzXRnh45+2um h/y8wD3/o9MrZ//OSYHRrwwdMLG6rF/1LbPPKMnZ34ePL5ez3wecDTn2K3L2 6VSHPvXOCPl5Yb9HjNUpYQdf4clhB5vb12o8+npfSPxKacjRz+fsPzpduG/O /sSHdP33ydnHdKrkvXP2D/YLfEGU3Sln/9SAKLtevzJn3xM2a3L2MQ0Srs7Z 98S1uh86wo+orqqQnxY2sT8r7GBzdpTFp3mL9AuBb4qytLndIF2/XPP8T4v2 0+bHQh9/1lDZGSB8Mf9vA+PHHCxcGzrU1S9nX9uZgZHfITsDQ/+lSuNLJN9V OoO5p/gPGXigdB6udHvAd6lsXc5+2DNiTOjvWcKDQv5KpXWwMyfagx+2PnSo 6zbZ6R/y3SQfGv29QHiveG6cK7yL8GDhThqTnblHpPMo/P/CgyTvMMj4csnn Sb9euE7yPaMs+k9If9ewc57ku8dzbL7wbtxf/D5Wab6FP+V3XPLh3IPCI8Im 9l8LO8jvTl2W58w9wiP+Y3N4yPePvlzD/8BKt78u2oD+1dHfvYWvFb4vNa6P Z+weoXOv5HvGM/b8MmNsXii8TzxLDwiMnf8J7xvX5KLUmOfqOTHOjBs6o0I+ MsaEcVgo/ZH/eT6jc12J690j2kC9I0PeGX9Gzj7BFyo9p1yTD8jO/jn/jvDs PTCe4TyrxwjfJ53P9Xs0Ome/Ns928PUl1jkgnu23RNmF/FcXPiieaTy3D4ln Js/zscKLpHNRmeu9PvQPDvnNYfO++C04KGzeFmWxc7vwofHsnRxlqWul8DE5 +0BvifZfFm1A/37J7xQeJ/xQiZ+Z4+L5ic3DhB/gvhM+PJ7nJwZ+IJ6BR8az 8a7AD5fYv3x01PtDYHzN30V78M/itz0qZx/rbTEmtAc/7/icfbvfhw6+4BOj PfTx29B5I8Ztv5ivVzR3E3L24a7QnE4XniI7qzRfxwlvJ/y6dCbl7PP9UWWP zdmv/VTgt6PNE+PaWFrmsuv12SsBX/D2xLrn7BttRWx/zr7RV1Pfj/RxO+L/ c/arshfCxLDPXguTw+a2URb/7Feyf6LwZOFtouw7whtXuS8fSf+ZaP+6nIjU +vheV6jsSaHTttz4+LA5NXR2IC8gZx90m8DIX5Sdk0N/8yrjj0s8/jOFPxHu WG5Mv56OcWZOXxI+JeZxxxgT/M7tyREI+ZZV1sFO63K3h3lhHmdEXfwHOCKu Ma7b0+KZdjz+POENu+kexReYs98WH+7snH2y+HxPz9m3WwiMLxi/8Kyc/bmD oix+0oHCc3L2jX6g9p+Vsw8d/+zcnH21zfHDCX8vvLnwmSHvFzbxFw8OO/h8 66IsPt9hwmfn7GcfEmWx/5uuyYu4L4Rro/34rxuFPn5zfMHzc/YLDwuMfxlf 8zmhs0xtnhf2VwVGf6Xsn8d9Ifnq1Bg/chfi9qMvqyuN35TObtFH2rOz8AU5 +6BXxphQ166Snx/6w0MHm0OiPfiym4YOcuycG20oqXJ/fyixL/464T+E/8IP wr0gnd0lvzhwi8Dod6+yzkrh5az/x73Aezzv86wHlFVZ/mOJ77XLA+8pfJXw T4GvjPv0I3wEca+NkPzSsLlHueWrSowvD51PUttZf49fGTrEJyzIOa6gZdih nfjor87Z/34MuQM5xzAcHfp/ltj/fm3OvvjxgfHvHx3jg81clEWfmIcbws6x wjfnvMfHBGLIhf8usd//mpxjA9C/UfgvyQ+N9sxp6fbcEPI+UbY0YgMoSzzA hCiL/ATh++N63irmlGusUviWaMMk4TuE/y3xfXdH3IPo3Cq8VvJq4duEyyWf GPgf3h2E74x7sxAYO5OF7xFu2M33+D1xj0wMm9hB5+6Q04bbo17uzbvCZr/Q aRB27g2bx4UO8pOEH41rvjrs0DaeFffFc4ZnwgMxDoNjTHgW8VxaGM+QQYE3 6GadRSE/IcpuJPmJ+PLjfuEef+Q/9/XDwhtLZ1rINwn9h0I+Jdq/vj0Phs1p URY7U6LNtKE+ylJXn7hmuE64fx+L/rLnB3uIEANwt+RPCDfv5uvhibiWTgr9 Tbv52l4c19JdgZvhvxZ+Mq7ncYGxs1T46ZzjE4hnAP8e1/AtcW3cK/xUznFf tOHxqJf7Ysl/7hF0tpadZ4WX5hxHcU/oIH+p3Pt6EJ9weNihbc8IP5NzjMcr 5d7HhHgG9v9An5iH5yR/Nud4iRcDE2PwQrnHh3gJ9juhLHELr5V73xNiJN4p 954m5Newxwn7nhDnsEtcV8wj+5ewjwlxEU9H+4nfYK8U7BA78Va5yxIv8Xy0 mXiVN8pdlviHO+L38cES749CvcROEFfwas5xDg9L/03h1RH78VrOsQ3EObDH BnEgxDmAiZFo2sP7UhDz0CXvssQwtJD8rZz3kcHmWyF/RPjdnGMeRujZ+07o NO/hPTaIkSBeApvEThD/8HaUJc7hvSjbsoftED/TLW87yMkJ+iXnOAHagD6x E0+p3k+Fa6WzneTLhGsCf5Bz3M5j5cbVYZ+9QPaJmI0PQ95K8uU5x+c8Xm6M nY2J7Q/5jj1cF9fqk9L5WLgQZT8K3JAchGj/Dj2sQwxPacipC/kn0eZN88bo bJh3+2nzZsT/R13s383e3I92adBgC+L247rlPvpcuB8c4cT/x/XTuodxf8nb wOcf+mDKDpC8LZz5cW1zXX0dcmJmvhXeLfA3OcfSNCL+P/S5174M+9hBPlC4 Cj5/rrfA6+yobGXYwSZt+zza2Sj00WFsP4u+ZKO/n0ZMzg9xDVcHHtHNuWgr 47rlel6Hu3mfTDhZiD8hFgX8VHdzsbCP5hcRDwPHCrExyOFqWdrdZX8Kfer6 PuolLmV1lG20Xt7N8p+jLHwtP4fNxnF/EUeEnLrYk5Pcn1apc4KIByEPjZgQ 4lOIq1sR8SnkuRGLQu4aeH0sye+hT74XZYlPYR9PuEt2jdgM8A/dHVvC3p0/ dveenvCYED8Dl8lfgeeETewT9/JXlIWzBO6SnwJjZ7co+3fYPCPaTDvZG/Sf 0CFGg1gNYjTgOIEz5Zfu3jMUrhPiWOA7Af8cOuwZOiLiWxqGHP4h9gzdI+Jb Ngw77B+6UcjPi7qICSFmhr1Ef4uyGwWmLvY2pd7SUuvsGTEq/0YfifUg5mN9 vMwmoUOcD8+cFyP+hViTvSP3bZvUMRKNUseCEAdCzMnmqXPuOBJ3QpwJMSNg vicvr1HoEzNCWXxl5OhtmTpWhJgQMLl4xIAQF0LcBzl6TVLHh/D9VqFPeWyS 30eMCXJsEL/RLHWuH+WaRtmN4pycPnIJN492kuuHPvEkl0V/iYshxoP+krtH /uDWaTG2BLxpHFuEnLgS8GZRrmWMFfEjYOyRD7ht6hgM8vi4L8j720rfbZc6 769xqXUaRT+aR9vIK0SHfEBiXpDT16b6bJ86H5D8QTB5iOwfC5cHcRdw5LCn LDw55HPtkjrnC44cuHKqS71/LHhJlEW/T6n3m20dZbEDriw1Fw77zsLJQ9l2 YQd+HXh2+pV6z1kwfDvscwrfCvED6HQIOW1oE/Wyd237sMn+tegUSr1Pbaew Sb3tQ76OkyY1Tw7tbBNtY09buHvg7WHPU3h54ORh/1r2sR1Uav4e9imG54e9 b8EDSr1ncdeQw99D2cGl5uxhr1t4e9jTFq4ceHLY45a9boeWBg+QcH3ol4Yc DqFO0R72Xu0eNtEvCzvodI42sJduadRFO7tGm9kzt2f0l/1m2XcW/hvijtgT d59Sc/CAiTtifNDfpdS8QeyxC3cQ++z2CjmxSRWhT1nwqFLHJrFv7n6ljs8B E6vDbxP/r4gdRQfuIWKZ2Lc3E/bhIsqGHJwLO+y7y/67x0W92agLbh72yoWf h3ZiZ3ipeXrYyxauHuJWyNskLoI9ddGH7wfuH/blhf+HvXnBcPzA2cP4wAVE fidl18ewEO9C7AqxLYXA7MXLnrwnl3p/4h4xj7StOuTwD9F+eIqeDTvYJJer Jq5t9t2lzXAasedvdfSLa6kkrkNyRql3RpTlvjil1Hv7wt0zO2Js+oWcvYDh JCLGBl4i8Kml5vgZEPpgyp5e6hgV9gU+I+JnBoWc+AviVM6OWBtiaIhvIQan LvSJ4RkQ9t8IOfEvxJsQgzIv4lawQ+zK2+vtlLpt/aKdr4U+cRTsd8u+t1eU OpaD5w+5ouSr1qfOUf1fqTE5quSr7pw6F/XiUmPyT8kzZY9jYkLY5xhMHit7 Hw8POfmt1HVB6LBvMrmfxJMMD0zsD/ExxMaQH7pb6H8YcuJiWE/Z/T9lwcRL sIfvHqFP2T1Tx04QZ8Le2MSfEOfDfsnXlJqTCQwvEzEV6F9Zam4n9lomLog4 IvBVpd5LeWToUxZ8Xan3UmZP5etLzdUEhruJ+Lod4lmNDpxQK6MNe4d9+J9G hRy873/swAN1Y9Q7KuqibXtH+9mref+oCy4o9m+GD4qYIHJEiflhD2f6fnOp c0aREwdETNAB/9EZE2WxMyb0l4cO8UQL8t6T+sJmjg8iNoj4HOJiiJUhFoYx 3yPGkPgaYqfujrk6NOZoRZQlTueLKIuvn76Mjv5+FmWJ22Hfc/6z8X+M+Tks 5pRYNu49rme4rOC0eqLU+0uD946YIvaofrTUe1PDhwUXFvxS4MWl5qliX2q4 qig7PuyQQ0wu8fp4HzBxPvA8wQm1SZm5sti7Gr4s2jAu6mVf6KPCJhidJaVe D5wQNqn3qJATD8Ne1KujneOibeQ+Hxv22f8aHi7iiIgJIn6IeCJ4uSaGHH3w 06WOPyJfmpgidCj7TKm5uNg7mxgkMPxcz5V6H+0TQw4XF+0hDofYIvKxiSNa Fe3HJjFLU8ImudfoPFvqMTk22oD8+NR52eRqT4o2Yx/OrzWl3pMaPi9ihIjt gSOMWCNikNhv+9dS84SxJzexScQsTY+y6JwUcnjCKPt7qfm32IebGCdik+AF I06J+CX25P6z1DER+OHwwaE/M+TUdVLUS3tOCZvwip0aduASY9/u5mFzZtQF Jxl9aVDm9pwcfaEN6P9d6limOaED9xi4RdiEp+yfUtuZHWNCfNTskLMP+Jmh T1nwBmWOg2KP743KfH2CW8ZYTYt5ZK9w+MuIAaMvp0V74DObG3LwWWGHvchn RR+J6ZobdY2MccNv+XNch1wbcJux5zhxVsQRsT84MUXwqMHdtkWZ9xM/N3TQ B29WZh32HF8fi3V+6BM/dUHYIc6IOCFihIgnIq6I2ChipebF/Uj8EfFJxBkR 6zU/7DcOO8SFbRJliUciRolYIuKINo6yxDWRc31t6pgK9lU/L9q2degTW0Su 9xWp41iI/SEGiBgfYouINyKeiHgrYomII9o2MHFDxLdQltxw8sSvTB3fQrzH NanjQ4jTuDp17AexHMjJAScW5arUeejNYkyIjSLWBTvkkpOrvq5sC8d/0R5i n8g3pywxLez/fk5cJ+SPX5c6DoQ4BWIXiCMgJoLYCOI1rk+N18d1oF8bxwVR ltgQMN+Tq35j6lgLYjnA5JsTW0FMBjEUN6fGxGbgk8c3j4+d/PSbQ04O+/VR LzZuCpvry5OTTpzGralz1YnvQIc6yUO/M3W8xPo+9A9dYiOIi+D7u0KH2AzO dy5z/vvtqeM3GAvwsDjeEXLiLyhLOeKhiFcgJqFN9IUYA+IIiC0gToFYHa6r mohNIKaBGATy62+N9uwWdogXaB1liQfA50+b6euOUZZYCPgJLksdb0Y8F7EI xBvAPcZe7eSxEhdDjA6xMeR5kwd+asQvoE98Dbnv96eOEyD+i9gC/NR9oiz6 xOw8HHaIcyFWhlgXcsTJFScWhlzpZ1PnZTMXxOucHvEC2CQGgTzyh0NOnA5l iW8hhmVx2KyJssjJ9X4udf418US0n5gf8s7RJ/4FP/6S1Dnj5NqDyT0n3/zx 1Lnn5KE/kTr3nHxzMLnn5Js/ldpHjG8dTI45vmt82PjVl6bG+LLJE6eP5IyT k7405IUYk9lh4+mwub7802XOSac95J7jl0aHOsmFfzJ1/js5y/R3Wfjzyf3G /06+9gupc8zhUng+dV4zuedg8rg/K7POJxGPgM8bvzb/GfjvxP/cU0KOz5xc c/LPiSMgd5zc8h8j9oH4AHzoxAIQr0A8ALEM+OCPj/a/khbjJrBDHAWxCa+F /qlhBz85eef05acy++2x822M8+tRL7nMcP+tFu6fNyaGAfmbgYlPAK8Km2+l zmdH59245o/PGGMH/zC+c3zX76fG+Lj7wS+UOnaCXPX3Qz452sOYk3f8Xur8 9/XlyVtvUeWytAGfOzrkuU/J+L7rWm4OBOYUzgf8kh+m5jsk7gB/Lb5aYiKI jSDegRgK/Mf4eS8LjK+YmAv8wfh5r4qyxC8Qm0BOO3ERcBN+kZqfEP48ePQ6 ldvfjg+e+iepbZ8JdwgfMjbxFZMjjp118Q7VLgv/3rRq8x6ut/lZyBlP/O74 1adF+9e3Af0u5X7+wIHYTXhA3ph5maw2fBU606vNnwh3IhyKX8e4kV//bVr0 L4PJzScf/Ye0GKcAJs7hnGgPMQDk4H+f2i98XMZjwjiQ4/9dat80fkZ04Iyk 3q+iDfij0SF/H44C5ou4BfLm4QtYFysh+V+p87WJIyAHnlgC4heIYyCmgDgI Yh3wQc8LPCz80j+FnJx4yhKzANfEmtT57OSk/5Y6f5xc8l9T56fTlmXRHnLY f0mdz04u/k9RLznv2CEnl5x3ypLnTl7876lz28nbpSx58eeVuy/koV8Q7acv Z5Vbn/z3C/T5O3UeOnnrYPLfz9H5H6lz3sl//zN1nvu55cbkxZPDvjZ1zvv/ yo3JGcf/1SDvHHBy1cH4p4gr+THmkdz2f1Pns59Z7jEhr5/c839S55hfWm6d S8qds097yNO/uNw65MU3iv9mxGZTT8OoC98XmLbgK8Ovhg9tg7z9Xvi88H2B 8b+RO79R3n439MDky5M7v0ne/jJ8f+Alcdw05PhI8ZPh88KnhC8NXxl+NnSe Cnsbh/2nQwdfGz5efF34ufCh4Vdb71sG47fCj9k1b+7Dr6IufGhwRrbI21c7 KG8OSnzK+NMbC78snYF5c1bij4a3Evxqubkqtwp9MGVfLzf3ZNO8fcr4mpuG HK5KOCvfDtw8b19wXd4cl+iviL68GHaQv1nuehtHGwbnbYey+J2bhw5+8K2i bfipW6yvS7h93jyU+Jq3w69Zbi7Jlvmivxv8ruRD8+aaRI7OtqE/o9pcmeT1 w5cJ/rDcHJmt8ubJnFltfky4MZHDoblcOpdkrIM+ZbcLO6dUW4eycGe2yZs/ 81Lp7xhl4drcMWwyX9tEO5FT18fCQ/KWM49wDnTI2weKTXg5Py03B2e7vHk4 L88YI4ePk/GBFxT/KWXJ9yf3v2Pevk58iGDy/fGr419vHjyanfP2ueOLh3MT /+ZlGfeFtuH3RN6sh+ttG318O+xUBl9B59B5PO4xOCjg4+S6xRd/T189w5jH br438U+3DL86fnd87u8EbhE++e4hh5Oge+jjV4ezAL82vAVgfO/4b8vz9lnj G8RHiM+NfHf8kfgf8Wniv8R3+WG0ATv4MJHjk8RPiO8Q3yC549jBz4gfEjv4 OeFRKIl2kh+PPv4+1ldYZyE3i3Vi1q9Y0yWvHT8iPkT8hGD8h6yH45th7Zp1 aDBrz+Rcsh7N2jLryuB+sebKeitrrbybUxfrOazJsTbKWu/w0GH9lRx91tdY WxsROqydst6GHD8n60asPa3PUQOz1kScRUnML/lbrBewVkAMyOC4f8lV4j2T d0zWRVjrYf2DvC7WMljHYA0DzBoDuVysU7AWwbspZXm/J2eLtQPWDVgzAPN+ z39D/iMSo8p/VP7P8V+OXC7e23lnZz0Dm6yR8B6PnDUG/o/wv4T/ifzfww7/ LflPhx3+Y5JzRptZh3k39PkPw7oI/WVthmcV/eWZRNwNz1memTwvwTwjiZ3h OcgzkGcemGcbcTRD4r7m/gbzrCJeZmg8o+6r9n2xobr1hcZ6mPBn3fzcQodn HvFBPMd5ft5TbZ2GDfwsR86z86le+h8T99e91cYbSGdXHXcJ+xw5/1o6V9fo f4TwS7o2nlXZEcLfSb5H3hg370LZGc5zQ3hpL+MV0tmd6yXk6FJmPc/EHlH2 fpXdR3is8Isqu7fwau5lHSfn7eN7QfK9hH8iPqqXbX4TduAc+UH4524uy7QP G6ox0WekzhdVuyxyOBvg1cUvjw3a9y0xTjtZd3kTxxTsH/cyPLv7x738gnRG CX/SxMd9A3ccYDy9ifl3R+eLPvzRcb/j24dXF9893LoHxn0Nty7t+SN4ecfE vfZSL4/Jmm7m7j0gnjPEGoyJ58P0aMe0Jo5NOCDuX2Iw9otnFFwU8PMSG7Ci t97lhGuamkMXLl188eTCwreLvx7uXjiX13NOgPG/wwkKNyhxAnBCUBZ/PVy5 cObit4crF85cfOhwNsC9i28dnh+e8/yPgrMBrl588XBXYJN4A3gjsIMPHb5e yuKjr9FnfN7+dPh9KYs/fUFT9+X6puYJpv0Nwi+P/sfwq2i+JvCcDN0JoY8f /yjmTjr98X/n7d9vGvhTycsr9e4adibmjdf5wTXOx+XtI56UN8bvDf8x40xs SabS32EfLgfGhFgCbGALnznlJoWd2mgP8QD40idGXcS8MI/8HuUqfS/QNo7c G/jDp+p4Yt4+6D7SOZ5ngnROyBvjx+TI+Xq/+gkhpxzl1/u6p4adAbIzTfgL 2TlJx5Pz9rXiA5+etx+c47TANZW29XlXy/gOf/suks8Q/qqrbWALn/iQSuMv u9qfPyXucXy5J4fOaTrOYdxLfTwtnj/4w0/J2399lZ5LM4UPJ76o1Phr2RxR 6ecVOM24LH7q1br+Txe+lWugmXGTZuZpgO8Yrga4kOFNhseC72eFDnXOiHq/ 38ny25paxnf46uFIxg58FXBdYAeOC/za8Bfju8anDB8xv93k3V+Ut18V3gK4 ifHzwjcMxp+LnxZ9fFvwE8NTvN73C+Z3/2rpzcubh2FOYLgL4BiApxj/KVzF YPzCT/fy8/2rbuYkhpsYXzNcyHAr8//hWp2fm7fvmDx7dPARX6Dj+XnzD8wN neYl9l1TFt/0/5k67/gqquaNU0RQROmoICAtyU0vkNzklgSSmwRQ7O21d0VF BUWxgdg7ooBdUcEuzd6wl1exoFJUFBUVe+/l93zfZ/j4+2M/++zcmTlzzp7d u3tmZ+bSQvOQt4E9MvhqicGfXW1/8czoOzkKrgw6eQZmCF8hvHm+91dW/5sn A0x+A/ZXBMZ/h18PXx45B+ZU+5sZfMXkOOYZBp8/48+zE/kJyInMc1Gj+nlN tf3ds0OWnAb/y7tc7eci8i7MjP6SOxlZfOO3Zi2LD5RnKfyh+DpZ82btmzVw ch6T+xi/J3kPrqt2TgNyJ5NDeUM+AzD+U3Ink0MZfyhxz8jiDyVHMrmSN+QY AOM/vUX7W6u9jkf7+GUXFzp3MjmU8Y2T/wCd+E/xA0LHZ7q55vC8atdFQge6 yBtwZcqYvhCjTN5b1pPx/d0aPNdprBcwbt39/HpHtf2G+MXnVzvnBj4+8jJv 8A2Cef5ED3kK8A92lQ13cv8RfVZ349mxvyswuu/lXoGPr1ZzSPgh0beqNU8l vsvu7ss47XsnzbNL0OYHfZb6dU+180vw+z2hB920gV+yTQ/3q20Px6aT1xjf EP4ucjTzLErOZvJHb/DFgXkmJE8z+Zo3+PTAPNOSn5g8xRv8cmCegcnBTC5m nmm3LZIt1c4zgJ+KXMw8r+LLgodnXXI/YwPPxuRphofn3kGSfbjauQjwlZFn GR8ZuZbBPN/maawWVvu8bRZtEddPXxdGf8mvTC7m/+WN0PaI8DH5juV/tNq+ sO6BJ+Q7TzPjg3+N2H1k8ceR25gcxxti9MH/i9kf7hzNrL2QX5n8y/jFyMdM Xmb8aJtHX47Od7w+dHxVg8MeciaQpxk9+M6I0UcPPjXWPz+vdnwWfhDmLT64 9dWmE0/2PPNUW7WuzWe0f1bbsZK9KWVMPg3mPHH7ReJf3sMyb2j/dZNloZHz mNzHG2Kawfik8FmQBxnfDXmUyaeM74lcy+Rcxu80oqd1YgM+FOj4sIgnJj8y viTyKKOnJXwi6MH/NaGH7cZm8ijDjw+IuNu3qx1v+4b2r1c75nR7/fZqtX1Y r1UbE1PMnuMN8cevBR055DfEB78RenZiLIRP0nl5q9ptEe9LnO6b1Y6xZb88 MPmeyR89NuT4jbheYpGh419Dx1th8y5Fxifn+xzQx849nFtghfAU0bvqvH4s 3K2Xcz+TAxo/GrG/K6vtayOHNLmnN8TXgvGLkaeZfM3414gPRhZ/HLmiyRm9 IZYXzDcAFTp+v9p5D8gbTf5o/GLkciYnNf5uYnPRiT+OmF3o+NqIqSV/NL6z u7LW82UPx3qiBz8afcLm3cPXBj++MGgroi/0dV30d632H2q7TPS+OeOiaIuY 3tn4a5KWuYvzmLLs3T2d/5g8yBviRMH4p7gm1sf18qn2n1XbN3VwuY/xT9EG bRf29O/QiUW9NOjYsy6usdfy7Z/6LHh2KPJ8mpzvnMfkPibWk7Ua8pCy7kqs JDmOeU8nbzH5izfEVoLxVZEXmfzIG2I6wfih8E+R43iD/wfMOzs2EDeLX4k1 ZHIHs05OvmHyDuOf6az2v6u2nwifFzbgk2LtADp+op+0/7Ha8YDkHkZP5/A1 oAffELmHyVOMX6ZLsfnx6RBX91e1fTe/af9rtWMVt2ANn3Ms/b9UGxOfyJ7j DfGIvwQdOeQ3xHT+Fnp+1Pn9nTmksf2z2m0Rz0cM4h/Vjklk/3tg7KI/+H2g 8VvP8EH8FH1Ex58bbE4Zr5L+bsW2Y0W+4wvpL76nLdPqa43HivhCci7jw9qN 9fwax+ruLty2xjmHF+haaCf8Ti/H8EL/Pt++K/iJeVyiOfya8PNddD2K3j74 O6utjWocb9uhxhjfE3uO8WV1TFs/ccSbC29c47jdjjXG+K3Yc4wvaGDo/yHf +aGxH/8XPqKOwb+J9p1q7A9amHV/P+hlH9EmQSfXMnmiN/j6wKwLMY+YZ/nS 2VX7LiHLGhMYXxh5ncnvTAzfoawHka+2t2MKyelMPCCxffAQJ9g9bXuILybf MzzEIELDHvxp7UNPu95uh7b3LHZcNdcgvlp+7x5trdZvPWrsD8Jf01t4mN4L 3sWvWWMfyoWBh4i+RrhXjf07FwceKvqHwn1q7A+aEThP9I+Ft6yx3+ds2de3 xj4afEBbMQ4F9ivBky/8QdiAT+2T4MG/M1z7ftpuC5/O1sIJ8X8WeINviL4M Fv3hrNuCnxzG5E3GV0K+YfIm4+t5Xr9tI/xC7PsHvrHY+ODezpfM/YoYMtaT kWUdg3zJ5E3eEI8Fxl9D/BD5jvHFkAuZvMn4dMiXTN5k/EX4quhLYYFjsKDj Gzo47Diot3MkowffEHFd6MEHtE+xzx3nmTgn+oUvCb9BRY19B/hGyIPM2uPA Ep2HGscD4msBEw9FXmTyI2/w/4BZMyTPMfmUN/hzwKxVks+YvMasVZLzmNzH s8P3Qt5k1i3xz8DDei85mLGB9UZyKsPDuuhJmsOlcY7wwxTXeG2TXMtg1jyJ 9yIfNH4u/Ce0hQ+F/NDQ8WedLj2VMffwt5TV2LdyiujlMVcZj/IYE/Yc42+p qrEsvgn2HG/wY1QFvVr7Gm0LhD8bq+c24Xv6+LwxFz8vdpul0e7j5PdOmg8a v+ELujd0oefhWuMxws/XWv9Y9A9s0yYp/Kn2Y7Y1Hqv9qkH63xJerX16sP6H hFPa3xj4Ju0PHyIa17L2/w38svbNDZIRvnuYro0yY+q9Uw8+wzUlPKbB+F7x 7Nrimu93sXbbYHy/6Lu3uCb7Q6LvKnp9jf0mv0Q9eOLgdmswpi783g3mf1J4 txbzLyhzjXNqnS8VPkw8L2f0nMOY1ul5UPtDNW32Ff2BjI8Xid6k/STRD0oa n8A6s+g54ZeEDxT/kxkfPyB6s/Zv8BqXZ7xc+EHRW4RXCh8q/hcyPn64zu2X tNXcFn05a+U6PkRtjdZ+hOiHBa4W3jjh31PC+zS4L13VToXO+75cpxtpzpF/ VnhgB40FPizOkfgnJI3nCh8tvD3XpvDx0rMu4+Ol4h/HXG2neZAx3li4v9rd QfhA4RPE/23Gx1uqrR21P0L0yaJ/n/Hx8dK/E/c60f/MGL8g/Jz078o1wOK+ bN5Z+FXRTxT/LtyLRD9dek6O4zOEN8la5nDRxnKNyOZtyKUrfKn4LxHP2fpt b+6d5NLl+hV9uug9sz6uk/17aP+D6GeL3jfr4xdlz55c46IPzBr/iQ2ssQvv ofHMyxrvKfyS+P8jvJ/wxdKTn/XxtGj/UdHHi35U2Lqd2t2He6/ol4lelvXx sjqfr2dEnyZ696z782ydx2SZxuRK0UdkfS6P1hw+mfnYSfc70WtE31/H/5H+ A7Q/S+f6KuZ/1sdvSc+B2p8t+qis8TnCeeQCFr5I+HrxN2Z9vEL8B2t/sei5 rPElwhepH4cIrxeeK/5L47iImmra77qx/mtF35H8+Jw/cgHTb9Hnib5X1se3 Ce+dtczqOvN+J51ryOklvJv4HxHPieKZoOPj1K8jtV8o+t2iH5z18YfiH884 iH5o1nix8EeiH8X1JLxI/Idlffyx6Edr37ujrlnRj8n6eJ3ox2g/QPRjs8YD hSvz3P4U4cM15scxhsKfiv9Y4VOET8oanyr8WZ15zhLeN+u+7C4bxkjPWcKn baLn/jqfq3z1t0b0icKfiX9q1ni9cFL0ScKjdH5fkp3nZH18lK6dE7RvFP2o FuMm4S+l80TGWTidZ7y98EyN22Th+cJvSs/FWR9/Lf6TOA+iX5o1vl34G9FP Ed5Mds4e5TmGnox0Ton51hB4sfAa6bwsa5n1kj1e+/dl/3fCpwp3kZ5bqVHL vUH4Q/GfJtxH+LpRxotD5+mcF9GbAsMzUviMwLnA6Ple+qcyL4QvzxofLzxJ YzKN8yJ8Q9IY2a8abMOpws8Kn561reicHvyjA8PTHOcLPLHFfdlc+MT47ztB +xbikLm2RP9R9pwj/PYmPtfnC38gfGXW9BXCJ0nPuUG/MWmM/l9lz3nCa4XH hSx4rPAFgXcI/KHwXMleHPRf1O5F3M821X+o8IXCtcJ3j7JO5ttf0j8r698W in5J6Dm1xXqaxD+1xXpSwoerrTuF3+ms55uR5s+Jvo/os4U7iH6LbLg86DuK flngXQM3C/8qe2YI3yA8J2t8o/Dm0jlT+E7hB0cZN4fsFcJ3CP9e57Y2Ult7 iX6l8F2i7xk8yDIml4b9uwUP9F2Cjj091NZVansW12Ge9+2lc1qL7aets4Xn CG8h+kHiuVX4FeFtJHut8BHCS2XnVWED9lwd/PsF7ir8H+FrAj87yrKM1R/q y3XChwsfmGeMzhfFc6NwN+HzZcMNwpOE9xXP9cGzf+jsFrZBP1L4EOGbmIfC g0daD3h+0nqwYauRtrlr6Lkp9N+adH8ZqyOiv8tEv0g23Bx9vy1pjA0F0nNL 8CwbZYwNB0t2XtCPDPyq8KXSM194lfBhot/BPV74DcneJnyi8O1J82DzAeKZ G/iyFvPAf2jQ4X9LsrcLTxYuH2nM/Dwq9IOPjnn7rvD3mvMzs74+71Bbd4Wd 1ZK9W7hyM9k3yvjVsP8e4QrRJwSGZ7zwvYGPDVwlPEt2LhDOCt+ZNN5gw8Kg Hx+4XniU2l0iPEd4ouiLhBuEr5KexcKzhe9KGtPW2lHmp61jgr8+bLgv+L8U zyPCVwkfJ/r9oX9yYOjXSv8DwrcI3500Rs8k8TwofKvwyYHnCZ8g/FDgKYHn C98oPQ8L/yl8T9KYtnYcaRv+Ej5N/I8J/x02PBr8pwaG56TgAZ8YfUHPzBaf o4po93HhTbvovkwubOHOXaz/KeEDhKcGfTPheZJdGvQFSWP07yPbnhQ+UPTp IQs+XfjpwGcFPkj4POHnhI8Xnib8rPCxwrdL/zPCE4R/HGWd9HFh0nRsWyT8 fOg8M/QcJ3xu6AHf3WKe54THy7YXarymdEb0Fz0XCf9X+IWw7cXgP0f45aBf GHRk2zXq+UD4YOGzQxb6USNNh59volmPYm3q4tDzouhLWryuVbi5rlnRlwmv EH2x+vJK2Lygxfgt4fOD523hf0bZfsbtMtFfFV4pfEFg9DwSvkVyuU+RPa+L XrS5+/hGtHuJ8FvCxcKXBx2eU8S/POhdGo2xGfvfDJ4rQrZE+AHZ+bZwnfD9 SWNseEB4VfDPEP9K4ZTwg+JfEXhm6KStbo2m05cHJbs66I+0WM9lwrNCT1r4 M/H8InwvuUFGmn+G6HeL5yPugVvo/i28Rnim6OeL513hy4V7NRqXRF/eC9mr A8PzuNp9X3iu8Jw844zwE6J/IPyT8I3R1kq19YjsWRuyDyfNMyP6+E7Yv7TF PD8LXxV0eLaRPR+GnU+2GP8ifGXYj86bhD+Ofv2l/7XvhFvU96eT/o6Hb3iW Cq/jfiiea9XfT5h7W/jbJ/BJwjdLz6fBwzcwyPI9zPOSXR/4uTzjBuG3RP9S uFH4ReEvhEcKvyD8efA8lbRO2no+z3R4Voj+lXAT+UlCzyji6EMPeG6ebV4t 2VeCn7YeT7q/0Ncm3d9W0V8V/kY4x3eYgZv5xlJj8m3gNUljxufdpL/z4BsP vt8A853G+6L/EPhT4Z+F7xH+WvhH4bv5PirPPHcJLxP96+jLh8EDfVXQsedb 4Z9CzyeB0dO/VueY/3X83dEW87ZQ9H5Bb5/S84roi0X/WbRfhRcKfy78W+Bf Ay8S/kL498B/Ji27hG9EWasP/HfS+D7oausf4QeFNxbP38L38x2a8F/B83vo xIY2tabD01m4jX4bpPtJx5T1PCB6u1rrAa8PmxcIdwp+apH0Ft5EuFC4h/BG wsO6uZZMO+HBwlvUGg8RHiL97QN3qzUeKlwkeoeQ7VVrnCdcJvrGgdMpt5Xo 5m9NOgoXdHMdEXjyhTeRbNvoS1XKPNC7BB17+NakU+ipSRmj58e459DHkaJv Gv2qFH+fpP3p5GvgWwq+ozhBPJ2Fi4XHCm8W+KTAJXyXItwlMN8nIMv3Eh/q +t0i6e8Z0o3Gr0Zb3YVrRf9IPN0C98v39xN8O3FK6Czt5m8nuoaeoeLpIbxC 9MGhJyl6faP1vC16c9hcJPzxSPPXief46C/01ujv9aKfRv3cpL+p+LjQeAfh C1P+9mKX+L4CzLcWVZLdMmRHB75BeGuN/1aBt4nrYi5x+uLZWvgm4TH55rlR eAi+2Oh731rz3Bj6e4bNBaL3DT39AqOnOK7HW4QHCPcPPCst27lP4V8QfVvh 20QfFHi+cGnw3yo8UHhA4PLA84QHCw8K2erAtwvvJTyUZzjh2Sljvjk5QvQy 9PcUTXiI8B2ibys8MHQOER4ceuqC507hvYWHCT9CHoDgQfZ17vkt1lsZerD/ KrWbF/wHi14ofKXaPUg4IfyE6NeJJ1/4UeH9a40fE75e9ILAU0J2lmQPES4K fLhwadI1gqcKlySdR/o12bOuxb+dLnqx9nNEn5Oy/YzJqaFntuiHhSw8+9ba Zuw5NGThObDW9jwu+pHC5Yx5T8ewpYWzve0DxxeO7/tN2bB8tPnG15qOf/wo 4crgeUv2VAnfK3xf0s9OPMsdI57hQZ8gPEJ4gfA04WTSNUzfkWy18CLRV6XM s5BvMFLWf4/wsbXmgb4iZZ3oeU+4RnhxT+cNrwk9jWn3pV76j661beg5U7hW uEb0ZurkCjfg6wsM/3A9K5bpuE7HZ4k/xfUiekXauE64l3A2ZEcHHil8s/hH Cl8sfE7gi4QrpbMk7bbPFr0h6byX5aJfGmPRW7/Xh56bggfZ6bW2JSm8XfCM Er4h5bnHeTxXPKOi3VsDXyK8O/VthS/Hryd6k/ClwjumjS8TvkD0XOBd08Yz hC8SvSVk90wbz8RfKXpr4MuFxwp/Krw3NXC5LoT/kzbPFfg9a20DOi+pNQ/0 mcLbCX8m/IDwmNAzI/AnwvOFG8Pmh6It+O8R3k24uY+uO+Ed4/7zuPD2wp8L zxEeF3hp4C+Er631/Qo8J23Zr4SvF32nwFenjb8Wfkb0XaOt24V3EW4SvkF4 5+B5NPqyvrdzRUH/RviKsAf6HaEnJ9mnQw/42ehLi/CNand34dY+9tXgs+mu //yjWbcXfm+g/kt1Lf6ie8JeOr6v1v4y+PGZgUcL/6jf9+TaFD5ec2xiyJ+u /d7adxqk+7vwfsLFQ/WfyzoJa/o6Pi/GnPkzSfTLRd8nad/cntHWRNZIQ9eN ITdMem5lrVj4AuFLQm72YNlVYnt33lL3uGi3RDyTWScJmY0Surcm//U7gfFD 9WqyPwlf0kmsgYj/AB3/qXE+MMbntTKPFb4txg06Pq/8lJ+deBbCB3VI6N88 YX8MvphFtR5zxv+NjP1V+Krwf8DTM8+yh4YN4MOCflfYsscw6zw06NSfrtP9 9EW9w2al8wjR0229PzIw+seHDb0Txr15l8rY/3JN8BwV9G2a7PfC54Wv6+ig 4xM7Jmkf2VYJ4z7oKbPPDH8ZPBOCnpP+Y4UPame/Fr6urfJMOy7oQxPG0Ac1 mQdfWItkJ9IH4b1aLHOw8H9aTB8vvL14pnDe2+v/R3omCW+d57ZOCD1FCeO+ ouc12X+G7wyf2YlBx480OWlfUmnCuF+eeU4K/uEJY/xpnbL2uxWFnpODvoPs OVX4R9H3brFtc9p7f0rYmUkYD8hzPyZFH3fI2mf0eQf7jcD4iEZRP1d4oHB5 k/1t+Nrws50edHxxZyTtm2tKGG+bZ56pwT8mYTxI9Kom++HwweGLmxb0nWX/ mcL7i75vi/EBG3k/Pejw40PEdwo+K/TsnDCGXpo1z2Mb2Xd3TtL+u31aPD4/ yc7dEqYPzQt/WtI+tf3wBWBPB+/Poy/CE1qNh9Ev2Xm+cIHo+7cYJzp4f0HQ j281zs+zT+/CpH18ByaMC0SvbbLfbn2M+UVBx8bT4jwekrBtiTzzXBL84xPG nKM9MrYVO49q9VgNFn1/0S8T/r6D13RZ22XtFtqMoJ/QalzMOIj/cuHtN5ad LcbjNvZ+ZtBPajUuybMP7YqkfYKTEsalefb1XZm0729KwrhM9EOlf5bwI6If wtq+8JYdTZsd9FMTxhXiPzxjnj4dvb8q8MEtlnlU/Ke0ml6VZ78Q/ht8N+dI z9Xc3/LsT7omaf/XxQlj/Hj46K5N2md3eqtxKs8+t+uS9sFdlTDO5tnXdH3S vrPrE8aNefZ94dPCnzUtMP4r/EL4hPAHnRu24YPC73RT0j6p+Qnj7fLsq8Rm fJesBfJ8ybPlAS0+Zz/ofN0p/puFd86zPwd/D/6UywPjq8Hfgi8BP8KcwPhG 8NvMS9p3syhhjO8IPwb+CfwRNwTGL4FPA38DvoabA+PrmBtzCb8A6+uss7O+ jp+BNX3W8+8KzPr9ncHDOjzr9Kyns5Z+cYwP/qLFQT821mhZ62Sdk3Vx1scn xto5a9ysSz8ceHKshd+b9Np4m0rjKbGezboza85LA58W69OsEbOu+0zgqbHe zHoxa8XPB2atF/8bY44v75Ww7bxY0+UbRNZ1XwvMGuqisJn1/G4J/w/2yvO7 AueUtVLWQVkPZY12K71fP5T0uiXrnayNsi66KvDMWE9l3ZM1z9WBN6xNsp7I OuEHga+OdUHWHFkbXJnwehlrZffpt0eZk1t4rREe1kFZO8WGm8Q/pNE8xCqy 9vZEyK6QnseE74m1RjDrjayxsdb2ctAfD553El4HZA1wVcJrkaxDopO1yHtj rfHJpNcb4QEvEH11wuuGrBmyBvl00Im5fCbozyWNicFkPZI1yoXR7nNB5/dn g59xeCLaRf+zwU+7S8MG6OhhnRPZ54IHO58KG1i/pF+L8rxmyRroi4FZx1yS 5zhL4j/f38LHL8V4sv9v0N9LGPP7moTXN1nbZI0TzLl6P+G1RdYVaff1GE/G nLXOB/K8vgjP/XnWiQ2snX6QMA9rj6ynvpH0uitxjcQ6bljHfS36Cw9ruIt5 Bit0W6zXvpswfWTY9nbYCT9rtS9E39+MdgcUGjMmAws9PvCDkX1J9G0Lvf7b FDpXBH2Q6KtjLoFXhf30cWXw9y90X14IPdD/m+d2l4cNjM/q/ye7KngGF3qu sg6MftZ/Wft9Na5HfBOsDb8XPPCDX5HskEKvHbNuDM+aoMPDejFrxawHvx90 1qQ/CH5kwctEH1roNWvWq+FZG3R4WDtm3Riej4VfFf1vPXt/FPzrksbUpmf/ cdCpX78u6Kw9fxg64VkXerDty7CTtedPgo4sa9ysS7P2DKbGfV6h/SisRbOu CX5d9PxCr+eyzsmaLvgN0QsKvR7NWjTr0ODloicKvR7NWjTrx2Dq1O9U6PV0 1sCJj8Q21tSx/6sYhx0LjdfHuH0S/KzTvxvzBP6vgwed3wh/nue+sJ7+Bc+W hV5/vyf6/u3/4/ku6PB8F/z094fo+y6Fxl+Kvmuh13kXRB9/if5C/0n4q5D9 MfiR/T70MFY/hSx15H+NMYH+c8hSd/7n0AlGP3XnaevXwNj/TYwD9eVZ318S On9Luh496/3QqUFPbXrW7lm3h/5HYOh/BA/n5feQ3bPF72+ZtvYP/BX6We9n 3Z869eB/kvYLUMv+78DYAz817pH9OzD6f4v+7ldoPfeHLHrQmdK75U3abhxm nrbi+SHPPoR2gTtov3Gt/RQda338UFf7HNrX2tdwQKHxj+I/qNC+DfjByFI7 nvrsHUMWX8SmtfZHsMaPD+CPPMe6EQvHejY8+C1+z3NbG4V+2u8YOicUWhbf AXXSOwc+utCy6B+v9/Seta5p3ill+QfDBvipsY6vA5/HhvrpYPwdB+EXqHXN dOqt45MYHDZ3CTr+kK7Bf1jKmPrsrA3gX6HGOjXKwfhK8JP0DAxP91qvIRyQ 8phgD3XbuwX9iJR50EO7m0UfabdbtIX9m4dt6O8V/V1R6DVr1qu3rHVMJn6H 4nwfV3V37mh8QvhN8NWAt9DvffEp1Np/QRwnssi9VmjfAH6B5YX2DbCez1o+ a/rV4hnHmpW2Rd3tB8AfMEL02kbrXNbNfgP0DBf9jULL4gt4s9D+OXxwrxda Fj8C6+X0JSX+bcJ++oLfAP5kvn0C+AbSwisLjVljxz+AX6FW9LcL7SfAR4B/ AFwn+qpC+wn+519IGmeIPeFcabtL9IZGY9b5Lyz0OOPneqfQfgLW+fGTMCY1 kl1daD8BPgL8A/DUE6NXaHvwceAfgCeb7zHbXttC0Q9J+ZwyJxnb/Bgf+lsU 40Nb+Cy3F8/nhfavbDgX4O3yzZMI+heFlh0n+peF9rvcEuNQFmPCWOFT2UE8 6wvd7nbBXxJ02kpEu9hTHDq/KrQser4utA9mXugsibaoXV5b63rl2FMYfcEG +HeM84i/Z+d811IfHucFnRWspYr+TaH9KPNjblQGnXM3IviRBVO7nHHGH7Oh fnoyzhfnpTYwPDVxvuhLWdhDrfPqoINrQg/tVkQfabc62sIXx33sutBfF/1t 0tYsfK/oGc55zKv6Wh/f3d3zKxVzjHruYOqnUws+HfxgZDfUdq8PWeq2jxK+ p7vpI2td57055hbzit8bgoe20qGf9utDJ7+PDJ2NOm4M/lHxG/TWWvdlgfDI kMe2XK356ePNmsMtta4FD29L0LGzqdZ15Kk7nws6crmgU1O+NfQj2xp6Rms/ ttY169sWGS+MsaqLcYNnTMhi76gYh1zIQ781ZZ69o39N0Uf0jQ6dzMOqmGPz U742qV+PHwxf2qJ816zfSXixeG4Xz461rgVP/fdxcQ9k7MeFbIu2HYLOfqfg x1e7c+jBP0ss/YPdTdtV23759vvh/6N2/J1qa5ego2OHkIUXmSXCHYt8DEbf 7v9P5y7Bj7/ugFr7ENGxY9h2T8r8B+Ojlp7/1LquPb5B8MOhc4/gwXe6Z639 p92KjA8RvVeRfaL4N5HdO/RQd36/6Av9AuNP3KrIfcQeePYNOu3sFvrxPe4T OsHwUNeedvcIHtrdJ+jYv1fYjH76e0S+fXf48KgpvE2Rfa74W/sW2Zf5eIzP gcGPTwyeI4WPKrKfFR9rrd4XyrVtvI39pdDPzbdfFP/oefn2++JXptYzOXDx y+KTPabIvlX8quOL7APG/8scg36++I8ush58rNuOsh580/hu0UN9YeoR4xPF H4ofGD3n5Nu3ii+W2tPUVsZXin8TPyf81E2mRjM+V/yt+EXB1D6mLjPjg38T 3ymy1FOm3jF+U3ymZ+l4ovBM4d30/3h8YGpV49PFn7ur6McJX44veJTtwS+M 3xU91E2enm9ZePADI0td6TPzLTujp/Nv4t/Ft8t82yvmGO1PinZP1P4kbBb9 liJjxhOeE+gjz3j55ruip38/MXgYt5MDIwu+N9/nFF/4AuF5Rcaci5uLrBM9 8JwS8wF9k4N+a5F987MCn/L/9JzGGOa73SnRFvU68bnib0X/5OjL/CL76Zkn ZaPsb8bXjH+XMfky7ktnBA/8Z8Q9ilrP3K/w++MnRpZaqBWj7APG/3t0sf3K +IXxD+NL/jXffmbo1FfFR43f+puY26fFOOBDRg+1SscXWxYfNDynRx+rRlkW fzdjNjHGh/qh+AXxCeLnxHfbpcB+Xfy71M2kRicYPy/+Q/ipN0pdUXzP+HDx OYOpR0ntTnzM+JfxLYOpAcpY4RPvVOA8rpfGGM4t8vxhblADFF8yfmRqSuLD xn9NfU/80/im8TPDQ93PJfxea58yfml4qAF6V7F9tPhn8Xujh9qUtxfbDw3/ ETnNNa7T3vblwr+5ZO8otv8bnzV+afBmot9Z7PHBTz271rLn9vZ+Vuj5UW1c FXT80viqtyiw3555Re1X+GcHffdG279O/HcXWw90MLL4uPGZY3Nn8kMWWxb9 PIPx/8hz2jW1bpc6nuyvDh7qb+L//iro8HUNPfjL8ZXjM7826NQAxe+Ozx0/ ObLU/aQuJ35xfOL4wMHU6Fws+lzhXoFv+n9z+MaYh/jh0UntTmqDQu9Z4Ll9 c8iC5/4/2ZuC5+5y+/ix875i83Nt/iV8l3BZgeck3xP0EX6g2N9JMJ8Zc3Dv 4JkXdHjmBT9z6baYb9QzBVPb9I9ifxPA9wB31rqtj3rbz4+/v7TAfn54SuL8 3hK2/VlsHr4BwOZbwoa7a63rY67BnDE6Lyu3/VxHfxebD579Gx0TSzzsP6Iv jHnCNwX3RN834ZwFP7/fGzzsFwQdzG/lBdaPXxyfOL7xRUHn+wK+OagQblPi 64prhLm5OHQiuyD4sWfx/+O/X7gy6OjhWwJklwQP5wub+daC+Xx/6GcM7o6+ EPtLf4n55bp7MK7BtiXGVeJpV+LvRT6La/OhoHPveiTo8ICHi96+xN9wrI/r 8Ym4pqA/JjwiZB8Nftp6INrlnvBYyGLzA9FH6I+H7EYlxujk2rkmrkHotFVN Dkadx3XM7a10XOLvThgHarw+WevvSoq1PSXcKPoBjcbMvREl/qaEucTcQ3aM eJeW+/sSziPzATxW9F21vSD8nejP1TqOmvGkb88FZt6iczR9D/p2oh+sdl+s tY7mEuv5to/jsNGzXXz/8mTcB/j9xeB5Rfs3tB1Y4D3HD22p5wPp/K/wA8Kv 1Ro/KHy09L9MW8Iv1RrvJdkjRV8mfL/ohzUaI3u48KvCW2sMp5W4DfSjD70H SHZFrXn6iufmtPXuIp6pJeahXdp5Kdpdpf3r2vqJ/4hGY2SZJ0vj3B3JN//B c4LwB8IfCM8scXvwHyO+N4WLhE+jZq7wVsJPZY2x+WjJvi182la2EdnDJXer 7FwpfLroH9UanyF8rPjfEU4ITxBeHfQrSmw39qyttU5ksR36EdK5Xvt3udeJ fnaJ9RQIzy+xnqnC4xttc6HwcY3mv1j4yAL3dxvhL2vd37XCE8WzJnTeU2J8 qfBl1MkVPlX42awxfZxXYvuwDRvBx0r3fPX3w9A5u8TXxYVbud/0/zjxfF1r ng9FP1jH78U4/F5uHsbh+EbTsf9BauYiLzy50RjZk4U/Ef6G/krPp3ENblWh Te8LU/pqDsvmz+Oc3lxi/L7wlEbzMyanCH/GPGcMc8bfca5F/0J41NZt2vxc a9y4tW2nDydxP6mI/oi/p/Bmarez2r1d4/BV8P9Z7nPG2D5Q4nFnfH6tNU+T eM5QW9+gdyufE3gmS/+5ov8mvHhrn0P0nCD6VNG/Fd5R9CXS+aPwyK09Hj9w vsRzvLbvQue0RmPG6kzh74V3Ev9/s5alj2eJ/pPwPOFOFbYP29qpT78I37a1 7YV+RoHHg3E5Xfj2Etv/lfS3qbOe+eK/M21Z8J+1tpl2l2Uty/hML7A9Owuf LPy78A5bu98dpOs88oRI/1/cN0S/oNH4PuHzGs3POJwv/IfwEuGOdcbwPCvZ v4VvFX4ta0wfOVdt43zdkzbetK+fnXi+4nlpedb9wf5lJe4D9l+ktv4R3qSv +wrP2QXuK+N1jvCmdeZB5wzxb6zjPn09Bug5UzwvSWd70RdJZ9cK243N1wT/ luK/THgj4d7CW9QZo2dNiceH/tJXZM+XzrdE7yTcSTwL1a/OxKL3DVuI3S2w 3G8xVt2FNwmezStsP+f6raz10MeVWcvSl0sbbTNzcmajZY8SvV2F5x7XUc86 t3tMX48rY30Rz/Oyp2tcm6uls0v0a7b0bC58cl9fu5sHz1cl7jP9/aPEsqcI X8s3/MKvCvetM36tr9uk7Zlq63611SPoa7PuJ31k/NB5aYFth345//WlelYV fkM8W1ZYD/ZvU2c9rwu/U2Kbewk/mDY/9G6S7S88vJ9tpw+zpPNibX2IgRfP R1lj+jhX9m8p/K7woDrj94Qfls6tA29SarxG+POs+0lfHk+7rSq1NVT7foEZ A3hmq80bpb+38DvifzRtnkrxDKwznXbpE32bI/7+Fcb0Zb5kBwhnxP9t1jLw /y1chH7RvxceHDrblhpX9LNu+K/mGUbtbiucFb2wzrhe+E7pH8L49LO+IaHz J+nMi3Y7lBqn+3lOfRLz6mnpHBb8Ayo8dozV4AqPBeMwt8A8c4TLtM/XNref xwCe6wo83shew7tSo3luEs+vsqEgbH5BbRUL/97PNmLrTeKvqjP9D9GfFU8i 9A+tcD/pI30F3yj+hxrNc3M/+7UOTtm31UN9LIGnn9vH1lsK3P6AsKFa+1Jt HbbRvTrtdTBwm3rLYnP7estiA3LI38C11mjZjcR/aKOf2XhG2kbtVoj+Wz/7 0/HHUwM9q/0IbYeL/7FG48OE05xnbfsKl1S4//SdMQDPV1ub1dtWbKNN8O0F tpf1uzuEk4FZx9tB/HsI/9Rf4zbGvx0p+jL1cXi09ZpwTdhTXmoeZDeXbJ3w PsIj68xzhPAI2dYk/JTwT2OtZz/hJ9WXlPBS4bf4Dl/4v9u4f/T5HtnWrd79 pF36Cr6L+z/xBcJPit5aZ9mXhfNkc4PwK8IrxNPIPO7vdkZpW8C7Z53pQ/vb Rmy9l/Nbavv3lmym1Hqwf1C9ZWmLfSpwQ8jCQ/8y0cdVfPMf+nfTfkdtX/a3 jdi6WG3VVBhj8y6l5h8mnrt5BxB+SfT8emPGJFNhu9GJ7eAlvAtrv522y0V/ tdF4hvDHpf42ne/SW4THcm2I/g5xB8Ilwh8IjxE+T7iy3jzQ+X17bfdL//6l 5jlf9F2FdxK+rL9/h69U+EPpGRc2vCkbdhb+UThTb37sWUNMk/C5wnX1xrT7 RqPH54v+nnc7x9zLVbhv6PyUb/iFxw0wL2P6cIHHm3FfKHyCbNtV+GfxZyts H7YxHuh5iPNeb1nOxSGltnmm8Lq0ZWmX7+8Zt1f4f6j3PGSeYxf2PVJgW/bW 9hi4wngH2XaA9nuyCU+Q/r0YR+Hd642x/wu1tQ9zQPiXscZLhM8T//4hWzjG +DHh9Wnr3EN4jcZqP2wQfofc/sKLhCdKdl/h3YUPrTPPowMsh01PyM696s2D np+kc7zwmQP13lhnPdhzaL2PwftVWBd6jtT+EG0DxP+VZA8S7i18eJ1xH+Gz ZcPBnJcBbh/Zp9TuN+I/LGRPqbcu8BLxHyF8ykDrhv5MgfWh9+kCj8EBMSbz S61noPh/SFt2ykDbjs1LxX9ohWWxh3Oye5yXuZI9Svhk0SdpP5nrizmj/QRt n4i+vtF4HX2pNz/6F5c6VoQ4EeI9wM9K9li1dazw9IEeS/DzBeYhNuQF4dn1 xmvEc7fwacK3bmue40PnrdJ/jPA04V/Vr+PCni8azYMe7MXukZJ9sdQ85GRr n9HzS+g8r956OKfX1btv6Hle/CdzrYpnXan55wn/qbZO5H4kfEqd8WjhaRVu j7bm1VsWnu9kzxThu4TbZtyXW4Q/k85The/Z1mMwPsYEfeh9mfeGtO1vEM8Z ddZzt3CHjGXBjD02vyj+Myssiz2H13teMeeX1Fse/i2anIuNmBSuWWJnXpXs 4/XGmwxyO/AvE72j2poq3FX0s+qMuwlvIvp04aOEz60zPlr4N/X3HOHXC0w7 J3iIv5lR5xiczSR7NjYMsg3T6ny/nVnhNtDfqcw85AtCz7mhk/bheY21tSbr fFv450broS9dpP88eCTbQ/gi4Tq1e4H2F2pbznuNxv984YniWVZvjD2bZ8y3 QrigzLLk6Osq+sXClcJt1e5lwtcLfyLZS0P/FXWm3zDY/SXu6E21dXWF7Wd8 Pqq3nirx9CmzbK1wzzLb/Lp4hpZZlrHCXuxZKfoP9Y6BmiP6dbTPvWKI+LSf qe3PaPfyGJOeGdP/EP33etuHbVdpf6W29pLtUO9nJ54J4Z0V/EsrrBedW0rP 1dybxL+nbJsjvP8Q88OzssD9Rv8K4d4Z8+wnno2brBMe2qTtVawdVhhjwxFl 7ss7ovfKmK+d6KNFv0b4kCHu7w3B07fB+GnRb9L+Wu5LwnuUmY8x4ffrgqdz s2PDiAsjPuzG0HOy+G/mflJg+s3B07XB7dLfLs2OTyM2bZ8yjwO5Gd+scNu0 SwwZPO/y/tVke14c4v1NQScWjOuuG9/hV/i8ck5p95aw4eMKx6BdqLY6S89t wu+znlThWDXi1GgLvEb0ARqr+cIzhjpu7fbgHyz6HcJfD3VeR+LU9hzm+DDi xD4oMP+t0W6T+nun8E/iv7jMOi8XToSeb4S3bLYs8WXUGyLPIzkeh2Ys++NQ 52EkPyNxcOjHfuLvyP8IP/WJXpHsYuFfCkxfHHqog7SgzrWKqF+0MPi3C7wu ZMkXSa5IckQuCT3E6JEv8nf63mxMvB5xedizUvg+7e/XdkwbjwNjQq7L6ox/ g/5qmXnQQ52le+tca2mPFvNMEB7W4POVp369If6H4NG7xpAm5xwkRqxvk/NF Egf3lvQ/yvXZ1vzkqSRHJbkqHw5Z8CNBJz4OWeIRkHuccyF6D769F/65rXNJ kl+SGDrm8K0xzqvU1hN1juNbUWadnSW3usx60DGwybLkpUTfU6GzS8KyV7V1 vBt9IVZuqybbgQ1ryszfL+E8kuSgJA4u0WRMLsoBxBEIU4CK/TPa/uE71VZj fh8rO5/nXin+VMJ4RnvnfyQvJLFpxKmByQ/JuX4ozntpk3NNEsu2NuM+/NLW Ol4IncS7wUMMXWPGdmBDp9Hmoc0PG/381F//uTuK57/C49RWS8J4B+Ed+D5f eAm5KGX/K3XOQ0n+STAxa5c2OAflMxHLBia2C7nXtC0W/acyY/RVNzmPITkM j5HON+uce3JPbW8Ib9nBOQ7hIfZtl4x1oWe3jHn6iGdOg3NTErP2m/Qvr/tX x/LgIR6KfIL1ec5p+Wbwz29wvkjiwlZqv0rbKZHH8u06x9ld1+BclmDi78DE yv0nYxn4/yiz7H5qN93kfJTkoiQnJZiYOPJVvhdtvcO9kHuUePbO+BhM/B19 IXZvdNb0D0Q/rtX2kGtzUqv1kC/znzLrOZx2s7bn1A6Od6NfxMoN1rn+QviS hOPdyHdJTNz76NY2Sva0KzeeQEyn9K+tc75M8mSCiY8b1eScmOTDJA8mmBi6 XJNzYpIP8+EG57UkLoz8l+TEJD6O/JjwEFt3V4NtQGdLk3nImTm6ybkvyXtJ 3s5PQs+UVmPyaO6Wtd2NGzsGjbaIpzsgYzp9GdfkXJbksSSejpySxNYdKZ7P 6bN0HtFivLaj918EnZyXyNaJ/zS1+1Wd81+S9xJMnB35Kr+tc2zdrk3Od0mu y+UNzokJD/k76cuIPMfoQSdeb7sm20N839RW6yFej9yX3wT+Xuf05Tpff+81 eN7SVu+U5rK2VXnOw0iuRmLxpkvPD3XOJUnOOjDxet81OKckmDg+cKt4zhH/ zyFLXkcw8WJ/NjgXJLj7SOdPJP6OnIvkYSSOj/gyeLYX3qfJNpArcr8m85Cn 8cAm5yskVyG5E38LPee3GpNDkVyb5N8kJpFYP9rag1ieSuf94Rv+I6XnH+Zb nmNYyIv0tMZk00rnjWqJmBTws6J3rvR6FzEmnyYsux35i4TbpIzXB34k4g7I VfQV14Xaahd0fm8bmDyL9IXYw+lVpqNvk0rbQ9xNv0rrWRz60bM9MQ5N7iP5 RYkvoF/fEOspPd2Eiwv9TT3f1v8i+oBK5zMi1oA4AvAP/E9VOlfRAxE7AP6J mFrp3yTl+muFKWNqus0UfdOU68oV8e298MPCleTDSbnOWmnKPNRx27bSNvBt /5wm81CvDbnNtb0dsQObpRyDcGOTMTYTW0Hepe+ES6It+PtXmk6cxXzxdxde kWeeLRjbru5/18BlgeFh3y0wdGQfFU8psQCBKwKvFE9Voa8Nrovb1FavoPN7 z8BzqtwXxuPaKtPRN6/J9mBzeeh5LPT3Cnx9la87fqetLYUf7+q6aKNTrgE3 nO/whZ8QfQTf3geuFN4q+EcEXp3n/daBa0L2nTzvtwk8QPuB2t4VLiz3MZhY A/JD5Qot2194Keelyjppc26V9WBXdaFl4blL/d029NzZZFnaom5fIubPHU22 f3W0C/+TzCXhocJPCd/dZPxenumDArMfHHhelXGS74u1DQvZ4nLjNXnGBcJP i35PkzH0dKHtgT640jkjiOm4pcpjUh368oKfeBB4UoVub1DYfFuVeWh/UKVz chFvwrXCNUM73RmjlOsklqR8bXBdUPuwJPCQSuft2hCHAs4Uuh5jcYzbpiFL Xcehlc7nRYxDRcrXHtcddQ0rAvNs9XI8a1EvkdqK1Es8LnSih1xf6Kkv9G/I UldxWKVzfpHv6+iQxc57m9wX6iQij/3UWyQ3GPwjC50DjFxgjcJ5lcbkBKP2 IrUYqRvJNiLl2oXUVhwROpsYX+GDunrckkFfoHZTKddJ7FloDE8ixvn9kK1L uT5j5xiThtBRG3qo11gXeo4Jexgr6jzCg47/5VRDhhiLSl8L5Ddr1nFG+GDp Xyh7GlKu8wgtGzqp5QiGl60+5bqQ1HSsD/6CSudEI66HPGHgFr6pZ1yEDxH/ lnx7H5i6kNSV5PfewYMecEPYA60x6IlK5yYj/xi1J5tSrheJPJi6kz2jL9i8 qMltwUMtyB2EDxPP1sJjhA8Ne1qCh31rYGpRgscUeuN+RQ3KxU2W5d5VWOmc buRzI5cbeGyh60uOS7nW5HYp17yEf7tCH2MD+dXoy+hC27Nd8IwJe7ANfvRQ X5KakuiBtqTJfUE/Od7IH7e96I+Ivq9w+3zNBdmwq/BU2fZgk3GbfNfA3Cnl upnUxtw59JwZeJz0nKBtt5BNlRu3JS5JeE/hdsKTC42nief2Jt/b+R95SHiP 4L9PeJeUc9ChY/ego3OPkH1S95m9Utb3RJV5aJ/6i8iWdXM7e0W7D0vnfwKf Ip79hKeLJ1PuvoOpqQl9I/GcLJ69hc/s5v0+MT5PVxnzO7J7B/2RRvu68KOh Y//QQ53NA1OO+Suq9JiTr4/4OeLozih03W3i9/BjPltlWWwk5g/ZjWMM/xP2 vFRlWeivZlz/orSt4+0OirZe4r1S2yqdvhXUtUz9G6sHJhaPmC1it4gXJI7w 0JRjuKgZCia+cFmV4/qI6SO274jQM1X7o1Ku1/lokzE1Q18UvkC4F7ZVOaaR +L5XqhxzSLvEFx4ZOokvhIe4Q2pzHp1yDsWVleaBzjUyOa4XYhYPC9vgPSbl epqVlc4zyDVOnOBxwlcUugbohJTre84MTMzgY7Lz2KBzzzk++B8XfWLKdVSf ICdPyjVGue7IyTgLnSnTqe9Ju5OCfmnYhD2XpKyHOqRVlZbF/veqbDN9Reek sPmilO2hhunwSud5ZJ6sEP/0lGuocs2Sn/Fq7hWVxqVxD4F/juhLZfPJKdct nZky3jrf18SpwY8smGulRfPqjDiP1H4Ff9XNdRIXpFyf8Uly+6RcBxYbpoRt 1MMkhyP5G5vLzYMsc4H5gT5yOsJDPc9npecs4R7RxynRl6fJ+RM23Kzjs4W/ IVdkufnB9P9M4a+DfmboYT898Ohyy/bM9/6cwOcxj2JOjin3ca84L5Nj3JA9 V/jbbh6DqWHPqirrwa5bCy0LD+M2Lex5vsmytFWgcVtI2z08r5iH/K/RLtfF d908L5gf1OxdW2XMPCHPJbkvbxP9gyrPCeYD8wJ8O9e12ro05fzM5GoG5+W7 PuzlqX/r1l4e87O50jrJpflhlecudOrlXhz6/1dHN2xgXsNDfV3mzszQST3Z y4JODBR5Hp8qdP3Zi6Mv1Hq9IuW6rsRPkZ/x8ULX1QUT0wQPdWGpLTu23LVU ye1JDVXwo5yLSuea3BAzBV4q+pey/1rhJ4WvSRknOKeVtofYqw2/7Sn8cZXt Z/7/V+N2tXABMW3l5kH22rCHGrXjys2D7DtVnjOcc+KqyF/5TKHj1+5IOQ6O +L+5KccAUvOT2p/f859c6byExGQRhwV+TvSXZcONKcdtUfsVWWIK/6hy/CEx g8T0zUs51o+YP2L/iC/8uMnXY7+oD3tL0MfnW+fS7o5ZvDl0/lllWfT8VeWY QGL6iE28Jdqibix9IS5wl3LbT81MYgfhJ2aR2Ls7g+efKmPi+KhFe1vKsYN/ VzmekDEhJu/2oBPPd1fwU2cWTJwfdWbvTbkm7EdNxtScHVvpcSaebqPhjusj Xo96tfPCnrXivzvl+rbE/MGzRcQv3hZ9pAYuPNR+ZV6RL5U4uwPKfW2eIPpa 7T/StlK8S7S/T9uJoh9Y7mMwvIuCv89wY67vz2XD4qBvNdyyCdEf0P7+kKVe 6kMp10KtEn5QuDLqfj4tvH+ReZGhPiy2ofPcHraB387r4TqxyFLjFX0Ph05q yz4QbZVJ/hnhz3vYjiWhp3W4+anBSo3Vx1Oui7pTYOqrUkv1kZTrsbJ/NOU6 rWOGG+8cvE8E/3bDjdFXqu0p4TPy3Z+nwgb2TwcdnieF1/ewHfSBOp6PMWdT rtnaO2ce+HcIe7Bh3HDzUNuUuq6PBX+fnPs7Nd88r6Ucw/cs11nQD4zjL3p4 fJ4NOjVY4eF36qm+kHJt1jPx/aX1v9bHdVShHyyeO/TbiynH9DVRk1f4AtG3 kQ3/TTmekbjGlwJT7/X5aHfUcNOJoeyXsx7qnBITiR7iK8lti575Ec9IvVVi G7fMWQ+2kY/3lZTjEI+odE5Y4hypywr/g9I/QPyvphw7Sa5a8O09HZvI+BCf iP43gh/Z5SnXhCW+8u2U4zGJMyWP7cNFjn1cFjpp982g98/ZHux/qMh60Hlk pWXR0zzcshcWWeebYfNT/Fdxn+nl88o5pSbv+ErntF0QsZbkw11KTGelMfls 4VnJfZUY0ErnyV0Y8Z6rgk7u23eDH1nwU8SbCr+fci3aNSnjxSG7Mtq9Jd+/ LQ4bVod+ZN8L+gb5JcLDNA4fCHfu5Xbfi7bWcx1oW55vO1dHX56M+w78jMG6 GIdPUj7u0su/fxg8EyqNuUcdW+n7FfxgZFeLflyl5ZH9ItruJXwq9XNTrpP7 RNCxh+NPhV8XXppv+zcNez4JnfyOLPV8aXNttLsufoPOuWbOPEq/tH0R7Y7W mPyccr3XGdTkTbkW7VcpY+rDlubM/6Z4moS/FH5V9KFp48/yXSv2m5Rr1PYM TI3aK6iZm3Id2+9SxstjDq8Ie7aI36B3ibZp9x399q3wsb3+lacWLfQfQn9r zjxg2vwlbNjQhxXB+2Pw9BL9V+HjxTNruPmxt4e2n1Kumds7MGPyXpHH57he xr8Gnf1vgfuI/0/hieKZQx3elHVQv5h5xXkeIzt/53zlu60fQie1dtHTK9r8 I2ygVi82w/t+kWWxmdhk/h957oL+Z+hk/1fgj0Vvy/dA4h+rdv8W/R3++6Tr n5TpHxYZQ2ffJm28Xc6y7wr3FX874RN6WWe7oDNXOwhvU+xto7Tr/PJ7++Ch ri46aTNTZTr6qBG8cdr1f5FDD3V7B4YecEfhwcKf8r+cMz81halxu0XaNXCp L7xp2jV8Bwh3SrteMPWAwdQLZr9J4NOHG8NLjenOQaeOMHjbYm+bpV3DZXCx 26IW8FTxdwke6gfDQ31h6up2DJuhdQk6tYg7RlvUHaYmMfqoYb158IzL2X7G jXa6Rr/aM6bC65gn2vfU9m2R83yT73tIsWtndw9+6v+ChxZ7Q4baxG+MsCy0 Myud+5u83+T8Bg8TfQfZsFXaebmpb9wn7TrF0yud15uc3tQ27hE2kMMbep5k G7RtLfxyL8tSE5p6x9Q+BlMbelqlbSY/OXV/aatR+Mzh7u/g6Gv/6G+z5knf tHUzDv1C/z45Y3hGhcwrordUWRZaB20Dgr5vzvgT8e8nPCjm0kDOYdCbin28 TPxtoy8f51vPwOCB1jfozMlBwd9aZT3o4Dr6O6795pi33BsZ59YYc/Kl56Ud D37BcN83uWdy7wQ3R+6BYWnH2nPPBJOTgHj6/LRj6rlfgXcU/QD1qyDoxL4X pR07z/0nIbxTsfO3w0MM/v4524B+4unhIaaemP3isI0c8oVpx9EfmDOGZ7T6 OyTsvHq429pZ+EjxjBC+obfj98tDFp3kjT+z2PH7pWHDOZXGZ5GHoNL56uEH I3sO8fqVzllfFzorgl6p/XBt5wWuCp5v830MJu6+ONqFF3oq2i0JG86v9G/Q aasqdHLehsQ8mZx2v6hTfJF4RglfJp4p2Jt2feFqxiz0oBN8ATH9wknhdG/z JIPO/a4u6Om0caa396mgcy/L/j86fBeFzlTg8TnbQM3uCyvNAz9y9YFPY592 feSjcsbU8saW6mirIW0Z6iZQf706+nJxpesQ1IdO+C5Ru0dLz8i0a39PTRtT K5x6BaNCD7gxxuoY8TelXct7etqYmuDnaN+Sdr3vSypdz4BrhPtbLtqlX/XR LvZAv7zY56Ih2pqQs55bQrY5eNDJdXdFsa/B0YGp8XxqjMlxkt0+7dri3NOo TzBLPMeKPibteuXnp42pUQ7P2LTvhxelLUv9ce5n49K+fxLnvpPwD5EvgloF DxW7/vUE4TeFL9V+h7Rrf19aaZ20e1ml9XCPnFFpWfJCoG/n0Hl8zrLzI0cE dQuI5Ud2u7Dh7eHmp145OS6oo/A4eR0qjclZgf5dhB8lD0SlayfMiDwSuwad vBZ7BD+y4KXFzkFBjYSnip1PAExugWeKbc+Vkadir7RzWWDHTjEOV1S6HgN0 8F6hh3Z3if7S7p7RFvbvFrZRD32ftNs5XPsjtPVX30/lPsi4iedQ1uGFX+I6 1bav8Gzmas64b4F/2y/4p+Us20/0l0U/UPgq0ZcJHyJ8Nf9T4jlYeBvxpKr8 fMWzHvXTD0pbbkro7Bv2HBg6Ty+2LDrRd2jo4feDgod66/TltdCxf+ihfjr8 2HK2bDhSeIDo04qNr+GaEv2wGIfXYlygTw0M/Q3mn/C1vS07PvRM5/oUHljg eQm+rrfP4T4xr+A5OmRPjzHBfnQcFXrOzZkHPbR7WIwb9eLheSPm2G4xD2ln QvCfzfUW7V4oPROFB4n+tujHCV/f2zzgbQu8Pz4w9eLB8K7kmSzt/6BzA6OH /QmBe9S49jz3c+qynxiYWvbwoAPZidEux/BQd3618Mlp13nnP2Fy+t/fJ4ee 83PuC7aVRlvIfcD/t3DHPr73nBb3H+7fU4KnZ43r1vOfUh743WJvyFC/PhOy 0HqJ5/TQUxl4jejXsL4dbZ2R9j2a+zO/cUxd+6vK3Rfagv+M4Dk57IE+I2c9 0EeGHnRcW+6+cA/nXs49nf5xT+K+9pnwLMmem/a9nXsz9/oPuf+IflbIogfc qY9/OzvwdeWW3UT4Y54DAn8ifKHwpsLXsyYfmPsn93buydynuV8jh56zwwb4 0cM9fHbOsmD0cR/nHn5eyEI/O2xG9oZy88GzffBjy42iXya8mWyYkTbmft6v xseFIXuxcOc+5r8k6JfEWIEZr0uC5+Uq+/Xw5aEPPZ8zbtpfoe2l3h776TGG c+M36FfnzPOLaDdxvQm/2NvH8PyXZ++c7aEvj2bNg+xblY7HxJ9YUuL1tNI+ riF+UMY1AsjjQV0ZcmLMZp2f8S9x3pvZaefSmVVp3KnEPNSn+Spy7Fwd/F21 XSP8nejdha8X/l74Gtl2nXBdgeNoH0k7rnYivoO05WhrTui/v9h6avleu9iy 6ETfDaGH368NHuL0b0s71h57rgrbJlWZH1v+bHFODXKDHDfKmNwa5JChtk2N eHLabhL+RuPzRNaY3CBHNeoZRPiwAueCAJMXYqNW54MgL8TNOWPyHpzaaHtO 5B4lPE94QvTl+rB/bs65M06PfAjzQnbPsIf8M21azUOejRvEPzftejWdWp1/ gfwJg9Sv+5hPzHm1dbfwWQWO078r7Tj36aLfwf2lwLH8YOL9b8s5fwGY2Hlk iX+/M+d8Af/LFZBzjD1x5cSSLwhMPODatOMKiX+/N+08A+c0Wic5Ey5ptB7y BlzeaNkLhD9VHxalHae/ssSy8BDfTV+IAX+hxPajh5h3+IlVv77Rce/Esy/K GcNPTPritGPqF+Ychw/u3mpMLPxP5MYJWWLDwcSDb9nquHTi2ZfkjIm5viXn cWZe3UTOf+ErxXNlo8cE+xfnHCf/Pz115kF2VqPtuUQ8PVvNQ8z+mznHeTJu 1EuaG/Pwvpzj2LkuHsg5tpz4aOKdnwjcvrRNm8fSjn8n1htMPPj9OcfMg29v tCzx6Z3E/2Tgu0V/Rvh64f6tjjMnTvzWRreLTmLAn0o79nzrVuskdp5Yb/QQ 9/1wzrLwPJJzfDhx2Xc0WvZa8ee1Os6ZuOkhLbb/KuEFjeYndpvY6hfTjrMe UGpM7Dlx5M+lHUs+VLLPp/+N5wYTl7RYel6Cp8Cx2GDisvnW45W0Y5wfbjSe J55ncrYH+hDpejntOHRi0p8J+5/MOf4cPcR0w0Msdu9S24PN9zeaB9nBLb6P kRuAOOtX045vfTXn2GDif1/IOb6aGGdind8I/GzOsd/wP9FoTCx5mXS9Hvjp RssSo52ntt5MO6b5lZzjsYdEHPTbacc+L2v09XifeJ5tdBw4cd/EZaOT2Gpi oNFDHHS61LLwNAmvTDum+8WcZeF5udF9WST60kbbf2eB46bhHxoxzu+mHSP8 YqMx/IWtjt8mpjgh+1en/42fXh3jM0rH7wkPFi6rN6Zfxa2OqSYue3nOmBjn YS0e59t47hX9feGdpOP5Ro8J9qcrHCNNfDSx0e+H7LKc7Rka9DUh+3jOeRCY V+WtvjaJ127f5Hg54uZK1O4nacciV7c6zpk46LP1+0dpx0H/PNb4K+Hl5PAR frDA8crIErO8IucYbPBq8Xwu/Kh4VjU6PpmYaGJPf0w7/pQ448/SjjUmbhqd xFavaLQeYrdX5iwLz6qc46KJOy5tsSwxzR/lHKuMzrdzth89da3mJ/66odUx xsQar8kZE19MDPKXaccvv5dz3DIxyx80GhMvfL7G4VvGR/Sp9cbHCo9qdYwx Mcgf5oyniF7V4j4Ss7tW9O/Tji0mBvnzsP9yHX8n3GugY4i/D9n3Gm3P4/y3 1psHe9aK/jXXl+ifNLq/xEETX0uc7ZvS95nov4j+nOgXifaz8HLJXlJv/OZA x8/CQ8zvpeL5Tbh6Wz//UE+UZ6HXS02vEf3LRsflEl+8VvS/uAeK/kXOscHE /Naov3+kHUP8Sc7xyegnJviP4Pk8Zz3E9s7MWM81wl83Wg/xvG9Jvl30pbXV eoiVbiPa3yH7Vc7xzMQy0/d2gW+pNx888LYJPfObPT7EII9ptSwx3d+Sk4fv 1YS/yznul5jf7ySzsXCbQdbzj7Z6yY5rdRwyccrvjvVv0IkdRg+xxldkLPuP 8NQKy2LD1znLwtO22TGfxHsSj/V1zMPZonXSdpDa3bnVMcPE/P6cMyZW95dG xyET8/uJ9G4qvIXoS+uNsf/XnOOBiQXetdWYOGJicInp7VGmuVhhTGzvjznr JGa5vX7bAv3CP4neOeO44d9zjhMmRnhFvXnQP0z83YSHS89fjeZ5g2c/7ftm HItKnHHnsL9J86R7xnHA7ZsdN0vMbIcmjwmxtH/lHMNMfPHurcbEL/+T8/2K WN19Wi1LjO1Y6eyTcexsTtvWwvtKZw89/28l/AgxrQ2m09Z+rY7vJSb3mozt JzaZ+Ff0EAPbodmyDw9xvHL3sGejZsvC81Oj5wwx451E7yfcf6imjfZ52mbJ loNaHbNK7GrXZmNiVwc2mH/AUO+3CdnVFcYnSra/9gO1nSn6hxXG54h+SKvj XYl77dFsTNxr2zLPn4M1zt2abccnom/ebF3oKVa72wpPH2ob4flUuEL0IWEb vNtGW70km8/YDjOtf8iuq3AcLDGwxMsWhA3FGfOPGWbdw8KGLyqMGZO6BrdN u72bLXuV6F9XOP6W2NvRDdaFnh9FLxKeJ54jyzyvntH43y1cKLyzeE4ps/2X hT2J0IktRWE/MbvYfJHod2Ysu5Poixr9/8izGfzF0VZa78IlXLPiuVfHFRm3 mRG9LHhKM8Z3CN+tfbm2e2mrzPh27evFXyn8qOjfDDdeKHqD6FUZx+QSa0tc 7nrhfdX34cKHtTE/PEuIP87Yhvul55ky8xAvvFt1mzZJ4V7iH9BsPcT27iD6 COFN2zhGklhK4jF3Fr2Ge4Xov2oujcq4luV3whnuX+I5UDbUcW9s4/qeqYxj nA9tMOb73uWMUcbxvEc2WPZ/dTYbXHdzQ81NcMeI5R2ZcezqKvqfcb3OlYxR xnG7e/D9P3O4jWNwoRNHvKzM9hD7/E6Z9RDbO77BeqjXeViD7eGb5OMb3C9i YKldSB1KYmAni96ccX3JP9TfJuY09TAbjKm/OanBdTrB1NgEE8N7YoNrcCJL nUrwQNE/kT2tGdfNnNrgWF9ics8QHi1cKXx6g3moj/l3q23YUvyflpmHmOKN 9K60HfYITxP/mNDTdrQx9TSJ6yW+t0/EENPWCOqFNphOf0c2O76XeBPqbFIT tFo8HaVnHPcx4bMbjKnneFaDxwdMrAqy9cTfiX+njGOTL24wpt7lJcK7ZlzL srHZ8brE6l7U4HqZ8ExvcF+o70mtTOg56TyzwfZA/7HMeqizSbwveoiF5Hoq jeurpdnzltjevrpeThO+rbfrWlLzcndqPDa43iS1Jqk5Cd5F9K6yf8+MY4pn NxhTB3N0s2N6iecljhZMHPHYZsfoEp/bQ7L7ZRzPS2zuPhnH54LhIf53VoNt QOefZeaBfnOD61xSy3Ku8L4Z1zD9q8yYeppXir572HxLg9uCf4DaPSLjONZb G1z/kvUrYl6JfSX+t025rs/A0MHEyfYe7fUu6m9SHxPZo8SzleiHZBzDu6jB mLqW1K+knuUp4uknnsMyjttd2OC6mPBQ45G+HJpwfUvoJwjv1Gx7iMNd3GA9 1MFc0mA94C6j3Ufqnz7b4H4Re5sZoWsp47iHbYWPzjgubZD4x2dcB/OlBmPq YL4ofFRg6mOCiXEm5umYjOOeBo8wLo24qwkZx08R63N8xrE/eeI5NuM4p6Ej zFMW8XDYQAwa8U/wEA9FjM7EjON0CsR/XObfuCUw8U3EFBNvfK7sKRzhtogx eqbBdPp7je5pk4Wv6Cb7xDMp45hCYmVOyDhepnyE8YiIBWF8iA35VLInca/g uyyN+ckZfx+yR7ExdeM/leypGX/jwDcYp2T8vQffckzJ+DuQ4hHuC3FIH40w fVLENWIPsUJ8H4EevrtYN8J6+FblWLV7uvCfve0vOCNjnwI5KxZlnKfi0VZ/ y8h67cRmY75p3Kra/HNizX5qxj6IvtXGrOVX6P99esbrAOTpApMbjZxM52Sc l2m7CmPeB98QvoU5qevpjGa/o/J+ip9hWsa+htf1n36W8APwt5qH/GTkuTo3 4zxR5Ac7K2RPks4ZGb/jbFNtPfha9xX9vIzfAWc1+51qeeRxujDj/EWXNfv9 kHfDD3LGN5DjSrIXBF6Xs+wCckSJfnHgycKX0V/e3XJ+H3sq3r2g8/5FDfFL Ms4NNa7C9vMezfsceninu7bZsrzHkRcLm8lt9WmjZclDxTsr9vDeerL0XJ7x Oxd5bK7LOE8OtcWvzDgn0g+NxuQ3I0cT/ORZuqXZ72+8u61oNeZ98XzpnJXx 8zA5i8DkNSKXz1UZ5375vdGYdwSe67jP36PnmRnCczJ+r7m92e9RvEPd2+z3 ooMiJxI85BTiXebqjJ/b32k1D+9tD0jP9RmvaaxqtR7eWR9u9rM+/A+K54aM 3zXI5wM/OX/+kW3XZpy/iNrrYPIOtWny+LxV4Dw9yJLDZzu9d9wovCvP3eK5 WXi1eNa1+v2HvEHksmJekSOL3Dw3ZfxO9EfO9vMuxnsGenhPWdZsWXjWttpm 8iRt3GxZ8v0cVuG5x7s/+XZol5w8vEdwXfBO8ZF4bsv4GZ768rdmnL/lHfLq ZP59vwDzPP+u6PMzzo3DczuyPJ/3VLu3Z+KZuc6YnDnUgr8r4xw7Hzf7eZpn 6S+l546Mn/OpL49OcvvwXA2d53mei3lW/olcy03WQ36e9a3Ww3P78grbTM4i nrfh57n6Vx0/KHx45M9ZnPGz8Key4V7hJ8XzWJnxw9qPkuwC4a55zm+zkOtL 9O1Dtn08Jy8Rfk70HQPzzNyv2W3xHM5z6f3YHM/b9wn/V/zZGj+X80y+e9B5 Duc5HfrPFc7580DGz64PZ4zRie6HAkPjN55zn8eWjPP5kJvnsYyf5x/NGJOz 56HgR/Yz6X2E6yJ4Hgn+L0R/XHii8BMZ40mRR+jJjJ/bn8kY85w/sMT3+VeK zb8043xCtPlo6IT2ROg5MOljcDtq4wq/3MbtwPNH2IXsb8IDm81DW+yfDkxf 6fNG1L+NvrcXPjhpOuOAjdjKOwe64Hs9ZJ8NnqeDB53Uy2Atq0OJ4xFfyPid 5ftWxyjyPrIsxpE5xfGLXL9tzIvMW2XO78TxxvH7S5l/331oj34PafZv0Mlr RFwk7zLDRH8l4/eRWVnn4CDnxmvYrq1a9C0SPq4R7hAY+mYJy5a19X5Z6OG9 CVnkqOH8ZsbvWcszxtR25r2JHEy8H32g/fsZ52X6QfvvM35/4Z0LnbSD3PLQ g+43woYxNaZ3Fc9hSdNpH33o3SrhvhILir6VGbfL+9p4vmPPOC8TOZrAvSPf Ese9hN/WfkXw804H7il6QuP2TsbvdLS9RvhG4Xe1fy/oPUP+CuH8ZmP0YNua 6O+ysI1x+63V8rw3ofvd0HNU0jrfLfv3t2vbuh/0B7tKpf9L4f+0cx6oL4T3 audcTB8zvmXePhLehjxLGWPec49JeqywB961Qf8oZMHktvo04/fBzzPGG7fz u+VnzFXhb6R/y6zfy/pkjb9o73dqdGLXOu0/4dxwf6vxMe+25KCCzrsh+3WB v864L/SrqNl2Y8/W0S42fCRdXwkPTngMvgr+Dcd7t7O92L1WvOsDI/tNxm3A /63232kbKrkdanw8hNwtrZbZ0Nf1Ibsm5u2WiX/H9Ne2bv+b0Pl1YGxENzp5 Z68b7d8GSW5rjdNWMVYr4pwyT45LWgb+X+m3tieE10nXz8IJyf6UMYY+Kenr h2sHvT8KPy6cHm3ZAtF+0/53bYXCfwR+XjwnJH0M3ki2dNC2vszXIjrzEtbx Y7Q1JHQ9187t/xp09P0Wen4JOvZW69xtnPXaQkWz7d7AT7tFCec3a5P1OgNr DuBXxTNZtv2TcQ63YeR5EX5F+O+MMXT61lb8g9rbdvowuL370F64kvdB8vZk vAbCegj4BclmR5u/IvHvmC5tZ5l2og+RnuHNxuhk3z4wcm0Dc/9YFfeTHuSB z3ptpKv23bR9qTaT0rNp1ust5GrbJOu1lM2yxtBZK2Gsitt73zHGjfURZKtC Zxdt57a33eBzhJPCmwufJ7xjjc8fY7bhmvwS+0dbJ+3QJm1/Ids6iN4563Y6 Bx17aLNz4C2iL7R7ss5LJ+pesPbW7Hahk8utR/SdMQB/LZ7danzM2g46ugZ/ l8A1ovfSvmfWay/ZZtvMdcH10Tsw44gdG/q6RehpH/OWc0H/OsW4nZK0XnSi G5xJuD10fi767jX+LZ3wXPs75tUROh4j+tpYVyEP2v/ym3HNC/8u2dOkv1/W a1N9s8ajQjd2ZxPec51zj+yftewfkRNvYNbrV9+VGf8p+iBoWa+PJbQvBEtP UWDWsrYMnYwJOgdknZ8P3Rw3Cp+RNJ22BgQdjA50kQMPe/uG/dhKu9tL/1TJ DhPeQ3ho1ngMzxJZH49O2M7B2X/zhA0Om1k3yxPeU7g54T4sYs1NOguyXn+j HeT5fXBgZLEtEX3co8a2jUw4D2F+1rn+0JEfethzvL3oe9W4XdbrRoatu2/k 3H01WeesO082VGe9rkX+/r+y/o6C9bhi4cc3cl7AorChqdl01hLZlwQu174s 6xyD7DneTTqGc41mvR7IvjLwS61ui7oB5CSsyHrdD32lofOcpPWgk/ONbG/J 7lPjNnYV7dcyyz4rnmTW/WJ9b/PR1rVLyNH2HglvtcJTxHNB0jLwIwfeR7/v J/0jss55yJ7x2Vu4LmvZDeuQ5PVj/bA+a0x+P3hHxHjSJv3fkPtwePT97KT7 +EuZdaayzlOIbo73TThnYSraSgUdvF2zr0HWNpl3Q2JO7iWZTNhArsJRWa9b soYJPkf0C8mZk3V+RezFbtZBs4GRbeJayTqnInY0C6+J/Iq5rNdXW7VvyXrd lTyKO2ad83CDrv0Tbqch2ro4ab3oRDf4EPH8XWadl4h+UI1/O1j0GeLfKev1 1QNqrOeAhNtsjna592yX9doq29jsv/ensTE+5F9sDX54Rwd9bMiCx2m/Q9br vZcmjduWuy1kyePYHP09LGG7dgzbsIt+Hij69lnrQs9RcfyFcJ/RpkMb12w6 PNw/hsa5Iyfkvlmv914hG/bJOhcla8XkVST3455ZY9aNyQe5a9Zrudi0M3YI 75I1hr6z2to9+P+j/V5Zr0vvkbUu6ND47fiEzxnz57QO3mdjPtDOLqGzfbnl j01Y9x6hZ7fQye8bfmsSfaNy92v3jW0Xeo7h3aTGbZPHci/Zub/wbeI5kOsp 8G7NxvOFDxf/3sITE94zPpOET0pY9nbxHKD9Qf9PD3jjcvPuHeM5M+n+Mg6c Q87l0QnbRT/JtYncgaEHefTSzsjRpk+ONg8Inr/i/7Ek4T3/l6XChzCXs86l icwRwp076t7KGn7Wa/Udpf9Q4cUbO/8nmPV8fj8seI7KWnYzye6jMTkyMPSj tW0iHY2jfXw677DCFwjPSvi38cJnJJwXFJ3leT5GT5eO1nFU6JzA+cnaF8Dv 44N+NXl1ss75iQ7sOzXh3KHwk//zLB0fzzkVz/7NxscKX5W0XnROE8+xwgM7 OgcpeHieeScGf+dyY/RNEM+Jwmcn3P6JYQN7js8RfZL2J2QtNz7GBJuhTQqd E4MHjL3YM1WyudHmmZ7w2B3Hbx2dv/SkrH06Z2OLtppOujbot7Y3xbO52jtF +IKE5U8WXt7Rv58cPAdpHKYEbhnt385PeI8udFyq46nC6zs61+kZWfsgrkx6 DjF/yJV6etZ+FtpD51sd3f5poZ/fke1a7jamYX8n004PndOiL5eFjlNCFtq0 6OP0rPsMPitwN+mcIZkzsaGT99ODh9/A/H4u5yRrv8+kGmNytDIXzxe+TvQj mo2vFd6s3ON8akfbdJ7wNaJPrPGY1OZZB3qv0O8XZs2D7KHNtgMbrk2ah3a7 SHZh1vGknNvj4rxflLU8sldL16XCtwtfJ9lLss4Ny+/w9Sj3NXRR8PP7xcFD zlhkyQc7g7HMOgfsFfQ165yu5FC9POu8r+dFu1eqzeuTloF/co11zkk4xyx6 Rol/bsKyx29ifeidn/DvyF6fcP6967LOi4gO7LtK9JuS5scGcsPOyTqn6z0J 4xs3db7ZK7POMTs763Uu1rjIWwveSfSr0Zd1bthZNcZ75zmf4bVZ5yB9qtJ4 c/IyVdqersJPCl/DNUh+phr3YV7COtC7KOHcjPCQB/W2hO1ZIZvnJc3zv5y0 WZ8Dxp/ccTdk7Wt7RPiOrPPbkJtobtY5uN6pNCZ31/TgJwcdOc1uZN6Ifkm1 MfnH3hX9Zs5LofMagcnfdZ3wvKzzJq2tNL6j0LHGzKvJ5fYP3ircVO78Yzdh 6/8xdd7hVVVNFw+9d2nSEQxJCImEkp4bbklyA/aCvfeK2FCx9waIitgBCwqK vfcCKHZRKRZs2MAuioh+6/eu4fH7Yz97nbVnZs/e59yTcmf2SOZjztsRnlXg 84KQ4TvEe4TvYg+7+swlZDh36y/JLxDuOlxrGBt2xP/BmTnsYZw9srDGZ4w8 Pdby/bT2PyVzN/sv/smxxpyNs7HE+9NZfMmonJx7hY/azvnR4DP1uWjG/9hr /L1k08DkwXNe3y01PqOvRrqLhPuL/7bE/u+8nXPq72P/xTcptQy55E+Mtc+c t5NTahly58mBerDGeaOfq/+yxrXYvgj81wj9bJDMozXOqdxrlPEM2e8h/pEa 53LuIf4hPkuRuwQmt3Rv8Y9x3wsdb/Akzy551ZzHXuO8RXL0nhJeRv4UMec1 zo9Yor9BPqxxjbyJknmYz7lkekv38Rrnae4zyvha8fuOss1Zwr1KPS85m00b XKeTfArypLBDvmrf8If4B3I3nlfbk1q1Db4mbwIOTE7Hkw3Ok9lQ6P4Znr3t XA/2+ZB5Qf1LNa5/+mLgq0dYFh3ya3JLvV6+/yU3hPVSP3TPUd7PaYXWezHs HJeyXXI6/qk3T14JNVVfCBlyfZ4J+2+pf6cm6jk2uL4j+R1L1L9a47qfSwM/ Kt9aNvia3BP2aTH7NsJ+LQ7fyJd5rcY1Mal3+UaNcxzgXq/5rx4oNSzJwziq 1L9fTcl3z8/K0/Odt7IkfGjb4Fqb5JhgY1nYWRY2l8jOhSnPQU7H27GuD/le JWU75LO80mB/qL9JzUnqU5Ijslj8uzWuO0luC5i8lStT3iPyR7D3duwV4++F zHL1H9S4zuP7gdeOcC7MWyHPnG/GPrBPr8Resa9LY43ovR92rknZLjkgHRvM k9tCHs3ykKEm9bM1zuXZM/CYUufL8Fkgv+ZL+fGR8NHCK3lP1LheJDUcVwa+ PmVMDgvjq4L/pMa6x0RuzseByZdZU+M8HbhPg2fOFTHvhKz1yRvq3GCb5Krc nLIOOTKfhO5vI1xDkhqT5NDAfRI2v61x7UZycFaF/+tGeP7Pwoev1X9V41qW v4wwflN4XsrvKfJueD/xnuJ91aPBmFwbcoLWhu7tKWNyVe5MeW7yU8jl+TZ8 oD4k/pArw7zfqDUVvjVln8jBgfs6bK4NGTA5RJ+HDztkLUN+x3r139e41uSr 8u2PGtc9JC8G/L9aiuJ/rHG9RfKAwNSUXKf+h9ClduS6wPNTxuTmUE+SOpTk 61B38le1zsJ9G3xNTg15QL/VuHYkdUq5j+RR7T7K7/xLCz3P+rC/UPZ/rnGO D7lCYHKLsP1LYHz8KfzcKWtd8nTWh8+tiqz3a8h3JPaC+9LX6/4z1r6pxjz1 LqnNCE/eDPUuN6h1L7LvG8L/gQ0eIxeJmpPU3SQH6C/1f4cdZH8P+UUp65OD 88cI34tVfTwv8v2L3G8K3QdStkXM6i5Z8+QQkd/0V8jw+xe/ky3I9//G8IH/ xVGfamnC8d7kIjVNOD/oX56FhOtRkjfENfiRlDE5QYznhMyyBuvekefalc0S zj1qob6lWoHw0AZfk6M0VP02CdcrfJrY+4TzpwY32Ca5TthrFv5gA13yVgbJ VivG+jmvqnnwuVp7Z+GyItvAv22E2yQsT93M12W/XcL1K8l7ApMD9ax8aJ1w LlLbhHWQ3y1rTA4ONTCpi0neEnrtQ7cDMfAJn7vbMXBpketV4g95WHAdQ6Z5 7Ak+k8PVIfi8BsuQc0SeV+vw4cWUZYiJwhf8Kyqy7S5hf4yu+wk/J7yV+u5q leL2yPqaXKpCXXcVPixkwNQDJZ+rW+BuoQsml6pHwnlbo6TbW/hh4T7qewUe JvsNwpOKLNsz5F9O2Rb5Vm80eIxamSVF1n2on+1tHXaol4gueVoDEl4L9T3x ZavwZ9RIy9eSoyb7/RPOgSLXrH/IYxv/EkXu+yb+0+sbcw1MeA7k+wUmN2tQ wjU7t9TrBJMrRu1Q9pnYNGLSBoVMbezJI/1sA7spcUtTliEXrG/4w7z9Q4Z5 qSeZTTiWrXXcU+41OWtD4nORl3AtT3LT3tQe5iZcA3TbhD8/yOyZNSbXjJ6x BuHXUtYlN40eW1nxBeqHc//6650f172Fl6U8L/KF6vNDZkjYZK7csIM/p9ZZ F5kRCeuA2Xd0ewrvQ66g8NT+zt3LDd29s5bfXuNF6rdLOA+uOPAuRfZxRNgk /64oZN5IGZMrRy7eyIRz695OGZPLVqp+tNqZ/T0H+Azh0+vsD3wJz4XaHtRu Hen52A+4krA5MmTAheEPskUNliH3sLzI77FXta5xGhub8LpTPFNqa6RbmXDt UvLy3s9IJ+H4w7KEfcWffbPGexe5Zwx7JQ3WJXaRHlupka6RWqN2COtr8DX5 d+Tk8XkkjvF97UlVwrl7Y8Mmc5WHHfzBBrrUWmXuhPCn/Z3vXBX8/lmv5eio 6VoeunCJWOO4hNe8JnhwVn4eQz1c4c/6ux8XMoyBGd9PLS38nfi6hDF1XTM8 14HrAp8Qz9TYWAtcXchUxZ7gM/GcmeAPzFqGfMapdfYDHz5IWYY4Up674njG 2L9s7OFZzJNwPOcEnlm1k2Tn4KyvyTc8iH0R/rW/OTB1bMlhHB94fOiCqRm7 Q8I5iefKn53ZrwE5Obuq3ynw/jxHavMHWHbHkF+Rsi1iPvOyHqOGLfcG3eQA 29sl7FB7Fl1iRS/RXPuGTXyZsMWfkZY/m2eywXVnydOcmDAmf/PQrP07q8j9 bon/9HaLuZBF53zJ7B4Y3T15rhPO2dwr8MVFtsUa7xpgbq+QwQ/WkB4QdXGD r2qwDLmQzLlrzPteg2WoV0uc8O4x74wir/du4cPVH5lwPdADEt5f9oHx/bbg kcboHZ61zHThc9UOFH5AMteqvy7h+NuDE+appfup7stBCccG50v3UOFriixz iNrMIvcHhzy28YM5Dwz+6sgJPShkqPGLHfJDDwo78NMkd5Rw24H294DwH9nD Qh6/jxZuJ5ljE5YHswdHxD7UNBiTQ3pE7M8s6R2fsG77ge6PCd0TEx6Dhzsu eHJmDw+bzMN8txS5vi7+EDf9acY6xD8fG7oHi/8iZV3ycI8LXWwSnzw1Pncf pXxPydu9XM/wCeHD+w3OiSWX9uSEMbmxxFpPEr4t1oLfW7gTQxdZdOZJZnJg dE9Rf1rCubpTAvcf6DknhS55mqcGT3z15NC9tsj6/YS/SlmGuFz6KSGPvVMC kzt8fsIx4F+mbIfcYeoVn55wHujZCb+D2IcvM94TYsWpe3xGwvG/yJ4R8uw7 76vjBrpHd1GRe2wdI/lz1Z+XcOz3A0W+njTQfsDDsf/nxFynhf93Fnn+s8Of GXXWxU5B1n5Qb5k1nRP80fHMcN+pvXxBwnnNf47Xcyz8vvB3WvvFCef2EksP Jnf7uJGWp+bzRQnXV0Y33WBMHPulCdcwRr6uwZh856+1V5cnHD9PbDyYWH2e Ce5lh4Hel8uE3x1oe8zBnNjA7uMavyJhGXTpuX6hyD5eGvOyjukJx95fEHbw E9krud8jnXM9I+EY/+FZy79UZO6q0MXPq8LnWXW2Cz89dMEPauxq4Y+EZ9f5 fcS7iJrP1yRcG/q8eK7Y/10b9e7hOSyyL1fEWuCuDnkwuq8UeZ+uDBm4mSHz doN/PnKGwMbxnvdT8YVZvw8Xi79e/Q0J533fGPirgR6fFX4+GnJfDvT49SED RmepxmcHhi8r1TOdcN3qdKNx4yD9/aa1P51wbgL1n29OOI+BfPbZoUu965sS zj2nvznwHJ7HhPMjRmQ9Rn1sctDvTjiXYX3KdsiJIP/itpAnj5zccnLTf5TM vITzx+cmbBeZWwO/XeSesbNGWhZdctLJobgj4Vx45OazX4PM3RX8PQnz+DOh wXW1yU/n+WOOMeJ/SVmHPPQ7Q3elxtdl7DO5GHB3hs3bwh/8XJDwHNh/TP0j CedZ7NTguuPketyXMCanfn7Irylyj/5FI71nC8IOsuhcIn5hYHQXqX8g4Tz1 BwNTE5x8688TzsUgd/7+4Kk3vjB0Pyyy/gLh31KWIa+E/sGQx96iwOTcPxpr 2eIHNcypGf5Qwnn3jye8ZmR+yVienBHqfj+ccP4Ksg+HPGtmf/4Z5B7dn4rc Y2ua5J9U/5Tab+KfSPj6V56TjPfof7knCY9R7/uB8P/rIs//ePjzVOgiU5S1 H9RL/yLsthJ/30jv27aRVzIvnqu/xvtz0VYyHzf4LABy9l9IGHMmQLFsPiP8 e5Frnj+bcM4N3LPxmUIWnT8l81xgdF9U/7JajuZ9JTD5OMz5TOiSd/5S8OT+ PBe67Bf6BwlfP9Iy5KnTvxLy2HsxMHXJ3+K5kuyfKdvhDAT2dLHw0YN9nsBr CdcxX6b+1cD8T2tJwv/XWhyY8wzoGWtOXGrKuuQfvZ6wPrrMydycUbCd9uqN hOuxb0qZRx6910P+5fCfNb0adloWu377G2GHeReHP8tCt1Wxa7Y/Ffc6q/fb 28IrhY/WvKsTPhvhNtl9jz0UfjdhvEQy5aWWp0Y89+Md5hBenjBG5v2Er8FH Zo07EaPe4LMbyDlakTDmDIdPeU7VCrZxPfYPgn+oznMvCfvYxa+/M5YhL4l+ Rci/FzLIs46P1HoV/7eGpYO9RyuFPxhsnz4Wzte8q0L+w8gXWxX4n5Qx5z8w vjr4NQnr4vPj8vOTwGtiLQvl57FZXw8q9j15K+4LY6x5cLH3AP/njfQ1doZv YxtrwiZzrox5Gf80+C8Trm3Pe4ycxO7kvsrGVrXG5HOt1fjXaos0vneDr8kj gwNzpsSeDbZD3hk9dvmsfxW6yJTI7nfC04WfrjOeJvyI5L5PeLx5Wp/vhPPa yOkD37KN3xlfhp/sxbfCVwlX6Fn6RrhSeF3CPDbzis3fJvyH+g1h54oK+4Q/ zP99yM/gf/vCs4R/TBiPkY0fEr4eXWz76xP/+bs+dJ/VWn5OOM8uV3K/Cd8s /Iv6X4M/Pmv9kcXWWxe6+PVb+LYo9gvfR2atP7bYtn8JO1dX2CY5gpvGe2y2 +CHh63XC1/H/8FqfMZKjvkmtzxSZXOHfZ8gTZV//iHl/i/0pLXYPXyb8vNb1 Z8I5ldfwP/mE8w5ZwyZ8It9Q/T+sU/g5jW0WTmv8wAL5UO46sFz/zTp5BrSu jcLlxdbbFLqMbw7M+F8x70t1HoNnHayrrtj6f8b9nZS1rVSxcxub1/pcmhbq mwVmbeAmQ2wnJ/anaewPuFXaupyp0lZ9K/Lbh9guePchfg7Q/Wsbz8n6t6z7 3/ATvzaG//jQUq2R/c/6mjNemgePb/QtAvOs/RDP4U/x7IFf0z60Dn861vos GM6BaSW+fa3zNNvV2m9kTs4ak9dJz9hS/m5tsC45mPTYeo1zdNR3UXudv+sb fE0eKDptWLvkR8lmJ+F9i821i7nahx38wQa6nC2zvX4udBVeJnxDhXXht1bf p9b5oddXWB/dylLLHz7E754e8f7pFpj3E3mmXJM3/Xqd31PIbHlnPS28B3lQ wi8I96o1fnGI8zGZe8v5K1uHD7dW2B/Gke+tdmSx/e0SPsP1Cju3VPgajF/d woeeIXMEMfzq+6q9Kr6tnqthtT4/Z/8y48I4M4czdMhj3abWmLzXfvShS25s v8DHFBt/JDvvaO2DQv494SG1zo0dXGtb8HBDg+f+8fxMHOK+Tdw75ukf9smr Rf/UYtseHHYGhk3Gt4wNHOr1oXt0rBdb+Pj3eM89TDJ56vPVziTev9bXnHMz LHj2IT948NEhNzx0c4NnHdvGWjYU+feVE/WzbHitzwMi//f2CsuQBzw6a53T ZW/vYvu6dIjP/0Ge3OKCWuuje3Gxry+IvGN4uPfrzCMzr8zfRRIbdprGRoi/ VHxRrfFlcQZRidpa2fi6wdfkHSNTjLzw/Apj5O8S3q7WZxZtF7rgc/i8CV8r XKp+rNp1wmO1rjHCV/P7ldoewvtsq/eP9ny08KyhnhtbVxZbb1ToMj5mi51a 2/2W/6sUewy+Rn2t2o3F9mVk+DMm5JGpUl9Z67OSLik2Xi88S7hM+Juh7str nX9NPjWY8epa66NbGfh68TepJWqdQ02ONphzmcaFP+DLi+3fr8J7NHoNM4pt A7vrR1q2JuRX1tkPfOB8puqYl3ObOL8Jv5hnXMhvr36HWuc7p9Vn1H4U7pD2 Nb6tls1krfPHby423jDUfSr4VOiCOX+pTni+ZBtqfSYU+eOczwQmf5wzdThb Z1fJ1tdaDpnSrG0xz2d1HoP/n06tz2Vi78YL77Str5EZLzwh1kI+O76kwx/W OD547vFOvAe2dQ74jsL3FXv96HNOFDa2D/lTs8YLxe9Sa92J4g8kNyEw50Tt Jvxgsbldg6+Nfb4p5kT//mLnxTfW+uypB0KHs6R2CV04zriaED7sGrrYJL+M fSOHi+erIu71XrX+XOwrmT3V7x14r8AbRzqvfqLwftu63zNkGAMzPo4Ye+Gn ip2Dv6/wC8JTtA8HCHfRrwIH1hqfLDwnbGIHmdP4X3zMuVfwnHfF2Vjk06+r 8/gp0k2X2hZ2HguZw3N8LhTnQ40nP6DRdp4o9jlSnG9FHjxnWXGmFXnedWqH Cr8n3X0lv4/awXFNvzzH44cEtzR0yfvm3CnOnyL/m3OwOA+L/OlfG3weFrnk 7wVPnnVWY0fUOs+aPcD/LrnOp8YOOcvYOTLkXwifyW1fXmzdbrk+Q2z3Wp8P doD83V/tmFrnJnLWFfmqB6odL3wQ51nVGm+WzblNLDtP/XHqj601hx1wdRPn aZ8Q8mdkjf9p4pzlybXO1f242LhnrvNMp9Y6t5TztziHi1xk7DFH91zznFdF DvJXIQPe3OCzt8hf/qvBMuRlHyx/DlI7TdcTSm0HPzmvi3O7yCc+Xf2UWuec bqyz7KtNfc7WKbEPOVlj8pTrYn/I48Q+uoc0dY+t3vLzzFqvZWvhwxp9fXRT 54zzXJE//rfmOkP47ab2B//JKd45fMIfbJwZe/JT+IwMNg9ttD7PG8/V8Tk+ D4yzw8hh5awmzmMid6Nl1udnkU/K2Vpg8i7JM0WeHFLOCeMMMvJDm2WNvwt5 zuTakot5fug2qc/JuYj7K3ykfDii0dfHqz9ObUatzwnjvDDyBbHP2WTkm8Jz dtiW3MwLA2PnYuHr8S1rGXJUW9fb3uLmzlU9N/xE9hK1Abk+Y4xzxMg9JN/w 8lrnOR4jm0erXarrFvXu92ru8ctCpn3WuuR6Yoczy8hrfEM/E6fXOs/vWD1X 02qdz0jOHzz5gOTQca4ZeYL4gk/kipL/eGX4g51pIU9u6SUhwxlm6O5Taj/x 53fxM9VfXetcwg+ke0ut89LIT5wZPPuMzIHN3cNvk+tzszjXjLw/8v+uDXy2 xg4ap3vTweeZcQYZ+YZgzjgjF/NE2ZykdoOuT9B6r691viE5ibNCvlPW9skZ XF5hGXLrumZtkzxI8tFmB48M+MDIq2Mt5N/hJ76R43gTn4la5wZ21D26VXia 8Mny5aRGXx8UcsiwJzeHnckNxuRLzlF/W63z+NAF5wt3z/psNfL8OC8NTN4c 62XewS18vhpnrh2qedrXew8ubmEb2B2W67w8ZMibQw9/ts11TuKcmLdP1p87 cs64nzxnA3Od53V7zHua5j1V7e5a54TNr3VeGGewUXtgS14amByxj7Xeu0Km a731JgovUH9PrfPaPpPMvbWOR56iPVlY63y6XlmfB0cuIfl9C0L+lAbbJO8M f7DzawvbQZd8nzPEn652X8yDbqHW0ks+PMZz1cq+4T+5cd3rLftwS+dnPRjv H95FYHK/sLmId0NL9/erjch13hmYHDTOgeNsOHK1+meNyVE7WPYf5fPeyvlj 4P7kHMnm1Eb7BPdI8MRj3xtrwSZnzJErdl4ry5zfynMuinnJyXo45uU54X6R V4r9x4Wfbumz6Dij7X95TOLPUXu61rlgT9U6LwzZJ9RG5jq/DEyu2Vrt1ZMh 06feelOFn+X9Uev8I/LQng/fvlZ7TvibVn427ojngbywZ0P+zAbbJI8Mf7DT q5VtPBd2LhB/vtoLMQ+6ozTPoKzXQv4TvuE/uW5nZi17UeRzvRLrZe1g8sCw +WI8A/QvqY2RzUmlxheKn5q1rcW8z5LuvxM/JOuz+cgR46w+MDlT7NPjsVdL 1C9VK+VnaL3Xc0Erc4yRp0Z+1tLAzPni/5t3SWB+NvK71195novzAbfkhL0W 896v9qbwA+rfUP+6Wlr44kbjz1q5Z4zzAzlL8I2QITfsLeHxwkfVG08Qvoyf OfyPXtfrtbfv1TpvC/6d2Ifrkh7fobX13gw779ZaZvvW1l1e6zytU0o9Bs84 uELzXyD+J56lNnrPN3gu8tR+ku7Htc7zWql+Razxes37Pp9p4Q/Vf1DrHLSz s8asi56xStnv3sa6PdRX5doWdo6rN35Q+HT58BGfo9buVwe+Uuu9Qm1VrXPE lsc+3JQ093DMe1bWPqGHfnWudVfH/pDv9mH4eV6D10X+HDlu39U6T+1M4c+E OwpPl+40tU/5bGTdd2rj8TX/T2ZN7MNU6X4uXKt5zwrcUzIz+Tmr9oWuv1Zb q3ZC8F+G/7cnPd67je0xR0J2vqq1TK82zqn7OnTPLvUYPOPgcbnOrfsk7tfy Np7r/Ta+j/Dk561T/73a6eLna95vhCe38R58G/twbtaYNdIzlpL9T9pY91P1 6Vzbws7J9cZnCF+ndf0YawFfq/aDrs/T3OvVZ6R3Yr3XMkky5wd/ZszLXuMT z+OP8UwuTNrGWW18n5dhp7XHkavjGdPvJj3UJgrP1py/xbp+1dp/qf0vhw9M XiEy16v9yvui3v2KNtb7Xa0h1zmGYHL6/lC/IdZ+Ez/31Tbqekq9x9Zwj9pa JtXWer+FbjbXMuhu4l2i9rnwpbL/J/db+JLAjZK9UM/nz7XOobw/6Xm+kMxV kmmmNe4omVuJT1D7R2OXldouNjdovX/X+v9dlzQYk5sIzzlg5Eeel7VelWRy ZO9fPqdtbfPf2IepWldTjaXbum8yzutiHJ3tc70Pf8V9uaLUPHbg8Ge8ZHbI tT6689vazt1tfV9+jnsxLdaVEX+HbHYWrmfedvq5LdxMfUv1LdTqxM9tNGZP 6Bnbiee/1BgZ8j9bC98ifHa98a3C52e9/ja67qDWPvyBbxv+P5X0+Jy21msV dtqNswz5p7vmWh9dclTbBc84eBeNPyY7zWMtHdp5ro7t7P+cRo+x1i5qu0v+ GtnpKLwg9uF2tU66fi7p/t62lkVnofC1pb4Gb9R+dh3nnNPLG4zJl53f6M8G awHfpbbVOMt3G+e82PPqvZZ72jq/tVvYmRn+7JbrzxZ2Woh/OWkbLYVnlXoM /kS1nsKT1bfW3wkNwm3U91Xfh3WKXyrdrYW7Cu/J74KxJxfVG3cSni2bvYX3 0viCRuuydnps7S1+oPoBakdJ/g3Z7C98NP7ITqVwTXv9Xi87/YSPFH9D2Ows fGOp7eDPfbJ/b6P1sYfd/Xi2Q3df4TuE84TfbGd/7mn0Gm4ptTw+vCMfhgif KvyAxu9v9PWHuh6kfoX6/WVrcOzPZfXGJwlvq36o2imhOzT250rJDBN+Q/ig XOPXhW8Pfw4OLjd41jIg7gs2sHugZIrbW2a79p5zUPgwt9QyzHub8DbCB0h+ hdaSL/y2+CN1PSZ0DxUeEWup1HWhcJX64eoL1N4S/3CjMfeCnrFDeKdlrbtS fLH6osCPSf5RtZE8f/JhO/Wr2/l3p4sa/a6fUW+dVeLvLLVN5mJu7FSrvzt0 D9dco9SXqH0kmcNyrctc19R7LSPb25fCWAs+IH8aeyg7Y9GXzL2Bj+I5LLVd bGJjdOzJte2Nr1P/pOw8oVaq6zVJ96PFz1WrEJ7X3s9mRfjMXj3U6L0uUytn 3zTXR0nvx8ftzDE2SvKLSn0Nxl/8OSLX85bF/ZoT9/Fk4WNyPR9zbR6p/RI+ VtyDkkkI14p/hr8/1Kp1/WXS/bj2Hq/5fzI14c84uFjvX+2NN6k/Ptdj8Bn1 abXZwo9orqTw9cI31FtmVnvbY47jpPdwyJyQaz30Jwl/L39SwjdI/nn58Fyj rx8o9VoSwadjn3dUv0P4M1n6WeHbhVvpHVQ3zu+kE8XXx724OGuMDLINgW+p 9/Udwv9q3xr5nErv8VLjO8U/Iby98F3t3U8I/BJ/16iN1/WjpV4L+/Bj0tz8 9p6zLnxAD/2Tc63LdVL8/h28lgPUz6n32v4Wf5fwPnyuxe+ifleeW+kubvQ1 e/WU5t2Jd5H4pwNvbm+ZV9R21vUzpdb9R/zu6ncb53f1qxpfqjZR189KZg/1 7Tr43cy7nXf17fXWaSv+16Tt/Ss7x3awHf5H1KTEuqfLh73U76nWXvyUXOsy F/PvEj78kfScHcKHPWOvXuR/+MIHiX8h8FT+X827QW0/XT9X6jmw/7La3sKv qD8z13vFHtLvHZjv/fhuj+/B/knaxiEd/P+tA8P/U3K95zxL+6Ondpa4dztY 5r0O5hg7WPilUl+D8R1/zgg/94/9uTTrOY7vYP2DhZerv3a4fJIfc4fp88w7 TO1E8S1Sen8JTxY+h/8The6CeuMThJtpnw8VPpe/Ixut27GDe2ydJ36pfDta +ALh+6R7lPBiyazmf4nCMzrq54nakcL56l8ptc1Jkllcajv4c36uddnb1/if o/CFwR0ZfGf5fLLwyg72581Gr2FZyC8VX6o5TuC9pn7SOGP2ob10jxV+Tfh4 7oPaq8LvNhofKnxxrnWQvzxr/L7wm7J/kvCH7FuJ8aWSfV+6yxvt0yW6nhzy r8aeLOlg7sTgH6z39Qcx7zuN9glfkSnvaF/w76KwfwrvB8lP1/V5whWSeYf/ wwtfIe4R2ZwiXNDRsqeqXcb9KjVe0cHjp8X+vxu6w4Xf439ewldKfirPoNpV /Ixu9DV79btk7hO+r7N+L9MenilcJN2rOtrmNPXLw05hR9tAd4TwOerPjnVh 88NG6z9R77VUir881/7h2y0dLX+r+l6a63zhauHV0lvV6Osrs7bLPmDj3MDo gG9TfyHPo1pV6F4Qz8zTmvdi4enir841xn/26ZTYK7iLgn+/1OthLdjA7gzp /drRMr+pn5Zrf/63xlLLMG9ugX6mCr/N57TU95Tn7SPhS4WvEX8V61GbI/lP xF8hPBMsnz9Wu0zXfVPur+no8ctDpkUn67ZUPytsYedqfFT7Hd+Izw/8ccx7 tfBE6UwT3rOT57o87ulnjbYzV3h2rnVZ4w25tosduGnBfyWbNwqv7mQb+Het ZGdkLb9BMntr7DrhfdRfP874D/F76XrmOI/fyN8nIT8za4zMS7pfs4T/FP6y 0Zh9+FLz3iC8SrpP5RvP4edRvv2Zy+8twrN5HnK9TvaEOW/KtR/Y/6LUMis7 ec6Z4cPXjZZh3lXxHpvJ/0j4P7/wR5J/Tdfzhefrc/Gx5rpN+CFx30nmVuFx 4leJv1n4fvHflBonxK8Wf4vwA/weUmrdpPhP+J5A+GHxbTgnR/gx4R8kM084 I5ltC/x5fEv8evFzhdPivy21zVrhdaW2kxJek2/dRyXfVjbvEH5J3Kf51n1E /LVZr+VuyX+Ub/8fFP9TqeXrxXfoonHhjpzVM84Y+Z8lc6dwQ2fbuCv2pH0X Y/TGpkJH/Kys8T3Cv0n3XuF7hYcWGL+pedfGPs8THiJ+ofAbwj+Wek/qJL+N +AXCr/N5LLXMQvHtSuzPK1rHL6WWWSB+Q6k/j4uEO5Xl5HzOZ0s/EzsKfyb8 PWcNSeYh7qNk+pYYL5f9jeIfZE/ED9O89wu/w/9dSo3vF99P8g8Lr9e8A4Uf E/5VeLNkHmX/JTNI/ON8jsTnCr/IcyJ7LeXDC8LD5EOerh8Qflf2/5buI9wj 6fYvMf5RugNKbPNn4U2lnvdhybQqs8082fmz1HYeEP9Pqf0h9nKwdJ8R/lv2 m0j+aeFtJH9CgfEm8afp+gnhKerX81kS3kq4aZl1hwi34Jx84VzhoSXG1QWW fSLk/y31eh/nuS3xGhOSyS/wfr7H/RX/nHCluGactSI8VLrNy8xvK7xNifly ySyp9xzdxb/N50DtTOF9NPam8Bld/PsLv//w+0yedF/ms6PxYcIv8bkQbl1m nC/5NmWWKRBuJ7xYuFC4PWf1C48Qnq3n9jXh04UnFhizP8Xx+x6xW3CvBl9Q YjtZyRYKLxXeXvjjLpb5RP3wEtsfL75DmWWKOF8r67WwrnzJvMJnUDKvq18W PnzX6PVPFd6ca4z8mi7ek8+62MYbsSefdjFm/F2eX7XPhU+R3eXCXwjXddU9 YS71N2Y9H7r4yrzY2Cv8wIe2ZfZtuPCtWdvFzkkFxtjH9nvBZ7p6XuY5XjJP Cf8l33PKjAdLZk7WOl8KZyW3UrhR/apxxmvFz+O7AOGvhFeo/zBwQ1dj9M4s sA7yd2WNvxYer7GPhSeo/2Sc8TfiTyuwTeY9S/ijkD+9wHNgH2518HdnfY3u gqxtfdvFviLDPN8yrraT8B1Z28GfNexlyHfR2r/gM6h3Ued4L5VI/rwCyyFz b9b4O+GaEr+vLtB419Atl3w34S/5bMrOi2n5KLyj+BRn7/AOEV6UNY8/3SX/ VcicU2D/WctWYaeiq2XXhgz7hc/bq0+WWPcW6b2c9jqx+b6ufxcukw99Zec3 4Xnil0pmvfAu2OH8HN4JXc2tC/6BrO3sLPw9aw38SNZyuwr3ks2fhG8VfrvA eJTm6s2598K3dfU9fD/uI88xmOcim7LNx4Tfku6P7LN0e0j3B+HdxPcsM3+L cH2J+fmSXZy2T/jzUNYYn98p8LyjZae/dDcI34EPBcbl4j8U/oP9FO5X5v25 XTJ9OHtfeK7w8gLvValk3iswP3aYf+f5Qu1aXa8S/5f6avFbS/cX4TnSfbfA eIz4upSft0fFD5LMRvwXHij8p/BdwisKjCslv7LAMlXCA8rs552SqRAurtIz Vigfxnv+jfwuLflNwjWSb9T+/Cv8vLghkv9beIF0G8RvFn5a/NAy4yfZf/H/ CD8rPrfMuk+LHy8+R3+fvsj7ucz4GfE/ac+b8V1gNz1zkmnKd7SSmSDcRPhl 4W3LbPMpyeeVmX9W+DHdo+bCk7q5x84JwvlltvOcZJZVao+E79pK78W05ZD5 V7gD3/8JPyU7rYUnC78pvmXYfCJrfGI3j7cKvCFt/KFwW/7PH7ob08YrhN9O ewy+Y9JznSz8t/h2wiuFn8la5qRunqdFzNs+aRn4X9PmPxB+Lusx7LyTNkbm rbT9w7d3054Pmb7q+6idKbxcfFfhU4WbZvS7kfBq4ffEdxY+RfilrDEyyHYJ /ErW16cJb6W+W+DWGeOPhV+VTA/h07u57642Rfj9tHWQb5GxzY+El2TNI9NR fE/hT4U/SFsfvl3Gdj7pZr86hZ+9kpZnrheyXi/8Vhmv9zPhrdX3VjtDuEvG eI3wyrTH4N/IGrM/H6W9X+C3ssZThY8Zrs+z8EX6LBwvPFD4UuHhesb6C8/S c1VQZpnrhD9M2z98O3a4ZS6W/LKseeYt5Ox94eslf9xw40sk81GBP18J4RFl nmu2ZMYLZ/ietYc+C+qHqt0j/qhy/SwVvlw2hqjfRu1u8bkZ447d9S5LeQw+ P2PdTuJ3SdkWdlZkjRcIj+QcfuF7hXflTJ7g6XMDf5C1TXQLM+Y7y2aJdPOF 7xM/fbjt3Ky1rMpafyGfwUr7PF94xnDL38J69R4qES7TGseW+X9ZD0pmpmSG C98mmdFlxveLv0Z8ofAc8WPKjB8Qf534IuF54kvLjB9iT2S/mP+ny35ezFWu 8Wnaw+2CP6/cMjvpfXi17BQI3zrMusiUSX5UmflFsnm+5Efyv8tC2xwZ/h9Z 7nfOZdgQP4q5xE+WXK3wP7J5nt5vpcJDCv0OHh0yu+p6jPCPkqksM64Qf67k xyZdM7G6zLq14s8XXya8rfiaMuNx4scJVwpfKXysxiqE/5TNCyRfzr0UV1Vm mwnJJMrMJ4WTwlXCVwkfV2g7G6VbW2Y7V/TwuvCZnyHHF1r+L+yXe727iKsr 83qvlvwk/BP+WzLpMuPp4k8UnxDeLD5TZjxD/Enixwn/K76+zHim+JPFJ4Vz yBco9OeivXBWMinhayXTUGaZa4RPYL+EN8nOKYWWaSL5VJn5aZJpFE4Lfy18 T6FxO8ksZA3CHYTvFa7nMyU8hc+32pFN9axIt1F4vXTvLzTuIpntyyz/nfj7 xDfwuRO/Q5nx9+IfED9euKv4ncuMfxC/m/AOwnU9tS+FxkWcN6L+WLXHxP8t fnvhEeIXCWf5DAo/KDxBuJvwrmWWyUh+d+EdheuFdymzzI+a6yJ9fvcSPqin 645hZ534f2VnJ+HtZGd39bupHSCZj/RZ3lW4UThnhPwWHpnnszTB2Z4e3yXw yz2t+0pP12bbPeww554x7xrZnBh4cU/zS3paZ4+kuX8K7X+x5vokazsHir8g Y13wHmX2mfM84fYI/r6e9meR+n3U7612sPAPsnMY91F4rfB+wocKX5YxPqSn /UB+qfpLMtZH98usMTIHqN8/dF/tafya+u/4X73w4cJXZowPE96mzL9f3dPV 3IHBM+e+YfOKjO1iE1vILOvpdrDw6+q/yVoG3SOYJ9aCr9jBl6tk55DwYXrG csi80dPyb/b0HhyqdkRP2wUzPi3jMfifstY9SvgobAQu1TNwjPBC4c69cnKO 5vlX/3nW95i9+iVrnaN72peDwx/mxs5bPW3j6LCzLms55r06Y13m2j/lZ4vn an2jde4V7tPLn4u+6ufqvTRJeFfh37L+zDwumRPUHx8YOXA/9TdlPAY/J2Nd ziWm7ii1S/cuc/4smPNAyDWjJiX5aNTYpNbmvmWuNUr90X34+yBrm0/09HkF 8JwzQA7gKXxmh7o+JHb2K3NuL3bI8901Pud8xpePtDx5f5cTPy18hfoz4v3T oqnrT1LPklyceyuMqWvZP+33VHPJHNHUmPcVuQ9nhC42wNRuGyb5M/m8N9N7 Pe25cjXXWeqn8hkXf20zy1zXzLUxqZF5QJm5qcHfXWGeuplw6FPHinyAs8IO ts+JtRDzfa7wsBaOFb0y6VjT89VfkHQtFeJfwT+3sB7y1OupkJ/nCf8kfteW xruprxV/Ifsv3K+VMbG4U9QuYe/Up9LG3YUnlPk9/20PxwdfLPxk2Ds/bGLj orBDjwzxv5epv1StRytzF4XuBaGLz5eEDPMS+3tZyBOnelXSMaX0Vwam55q4 U2KEL086hpY43iuSjj2GAxOrS3958IPL/Pfj3V29j9OSjuGdrn5G0rGi58b+ s+dw02PPt8TIEsva2Nq6xIIS4zojZFgH/lPnYlroIsP3xXyHzHfER9fbDvGl 1HSYmXSMKLGms5KOHb1W/TVJx6kSU3ptYDgwMZ7EpV4X8lNKrUtMJjGaxI8S h3lCvTHxkzeovzHp+EliRbkmXpTx2SF/fL1tEs95boN54iQn1Tse9OGII8UO MaX0NwQmhuuJpGPJiBtFnvhS4hLvSDqG8Fb1tyUda7mLnrFbhNvJh+PbGJ8Q /a2Bbwvcvo19nZN0rOuUwKdHPzcwcZ7MRdwm3Lyk4yjnhQw28Ovm8I040nnB E18KT5znKfW2RYwlcaO3h03iO28Lf4j9vDPp+M8HsZd0DBvxm/ckHYvI+F1J 13cg5pJ4UOI/T603nhwxoncHvyBp3TMibnNBYDgwcY6L1N+XdDwkcZv3Jh3D SfzmwsAXNNgmMZan15snhhA99IkZJI6Sa+IGiY3EDvGExOvi86SIn1wUc8Hd GfzDsd7yto6ffCDp2EjiJ8HECu6d9r6USebmtsbsD/GRD4cuNsDEEhK3+EjS 8X7E9T2edJwh3KNJxwPSc03MJDGb98e8xDc+GvxZ9eaJXTy/3raIDyQW8LGw SQzSp0nHKRGDx1zEB8J9EjyxhM8kHY/Bc/1k0jUyiFskfpFYxAvqjedETOPT wT+btC7xfsQcPhsYDkxc3mGy+4Lw4e0cf/h80nGGW+IRwZc12CYxtxfXmydO 7yX1L8ZnrVnYIZaTuD7sEL9HzCQ+E5P5Qsgz1+vql6kdIbxE/eKkYwKJNyTu kDjDS+qNiXOjfyV4YvbAxO8R77ckdLEBJv6OuD1iEIn9ey3mInaO+LdXk46X u7zeMsTgER/5UqwF7tXQxV946oksC1vYOSBtzFpY3xOxRmIRX491EV+3MukY NuK13k46DvCqescyEjtH/2bSsYXE+4GJoyN2762k49bo0SUuj1hDYhCJ5SMG Dkws4tWyuTzp2Lat1N4T7tbO4++GPDbeCh/ml5rHBjF17ycdY4be8rBJ/17Y JG7yjfAT/v2Q+d++Jh23SBwd6yW2jVjKD5OOafwgaUyMITFwK2JPrq03Jp6N +L5VScewrU4aEwdIrODqwMTf8bkg9uz6esfPEauGLDLEwRH/yHzE7BFbhwyx fMz/QfhDjNzHScek/c9GyBD3xDNEzCTz8Dkk3q2bfqftmnJcBzFpXyQdd3pj veP/iEmj/yzpmD3i3MDEthED+HnSMWD06BKbtiUOj7g7Ys7AxOPdSsx80rFh n8qPtbwL2nn8q5DHxufhwz8jzWODGLZvko4xQ+/rsEm/NmwSJ/ZL0jFm8N+E DNzPwfN7wrqkf1cgru+7pGP5vk0aEzNFfB5xe8S8za03JiaN2Lr1Scd9/ZA0 Jr6OmLofAhPvxlzEaN1R75g5YsCQRYbYMeINmY+4LOLpkCHujvm/DX+IPfsp 6fgrxn8KGXxZF74xD2sjRoz4qH+TjmWaX++YNuK16H9LOj6NuLbfk44No9+Q dE4kPddtIz4NeeLEzudcspTPUSeujfg24tPo/wzctMSY2K17NMdG4bvbO+5u Q9iE+yvpuLiF9cbEd9FvCh79PwITi/dr+ExsGDLEgG3mHiYdN9hELUe+5XQw xxixXcTBEQ9HDBt7ASYujv7f4JukrHto2OAamUX1xvDNOGM/5VgtvuPlenno Ng15YvGYe0ssGTzxVMT7bQ4/iUPDDnFu9M0Cb4mv5TNFbBlxclvi5VpuwVp7 m5TjrDrrupVwJ/WtU8YnBcc18XUP1RvDE8vWNuV4p3Yp48URM9YuMLFgHVOO KXq03rFrxGIhiwwxU9hrE/aJIUPm1YhV65RyjBnxXR1SjulivEPINC/xWohh Q7ZjyBNfRdxVVcSJdYv3z5P1jr1bGTF4XVKOlfqw1JiYKGLBeF8RN0WPLjFW xHsRN0YM1TP1xsQa9VDfU+26XMdtcU3sFuPdQx6/8I8YK+Km4IkvIt6uc/hA zBV2iCWj7xGYtbWI/SE+inURS7at+qFqF3TS81Dv+KprIp5r65TjmvqkjIkT I46xT2A4MLFR6PVLORbr81JjYou2kt3+rF99b7VBwr3UD1Q/QO20Tu77B94S 44Wd/iFzaugNJt4u5NGfF7ExA0P3Cf1N1zvl9SGLztROXmvvuI+slTWfL37v sTk52wjfnms8RHiN+KfLjOEHdrLOAPW5octetSzxNRgOvCDXsUz5KccLDVOf p/axZE7v5OspnWx3cPjGOPwnncxtE2uEzw/dgrCDDPFIBYHhCmKuM3Q9POV5 6AtDpijwp53cj/h/dsDEaBGvVfT/ZIqCv1TXxcKXqN8uZbw+OK7XCZcEXh8y I4MfrX4Uz4/wD/mW2yIDflb2p3eyzLTo0flV+Ji07SAzJnjsVPAsq73VxRxj r/B7WoFjqoinIpYKvEz80ZIrFT5KfVnK+K3guH6zi2OeyoKnLw++Z7kx48d0 8dzYY37w28KT1aqFT1Tfb5jH3g6ZqrBJbBWY8fYl9pm1HKPrnVL+7uzXRuOz ujleoUb4wy7uE2ofRFwEeEh8/1Wb8vfL25Yb14pPqh+n1kR2Du1mfJj6hhiD /6nRuGk3xzIQD/Gw7GRSxo9EjEQ6+IaUv0fnO/Q2wy23RQZ8wDB/x14XPH19 YPyvjrWsTps/UPKdZGeHlGMekG8InniEbMw1PmX8WMQqNAb/Sdr4IMl3GG65 LTLjgyeGYkLwzDMh5qLfPvg1aeODh9nHmthnZHYInnuyY9wjvisFf873rcPt M/6sSHuv2Iev6/09It8hLtd9OVr4UP1OcuVwf4/I94B8fwi+UfJXDfd3h1u+ NwTfJH6O+N2ErxY/qdx4gfi54ncXnin+xHLjheLnF+rvUeGveugzVW7cVvMO 0vVE4YHq91S/V8rf0cBxfUEPc+ALe/h7nL0CD6ZOXso2GJ8Y/D4p8xcJH8x+ q93P/+RTHrsoZPb9fzbBHeO7of3+n8x+wfP9CP+z3vKdCLhEfBPxB6T8HcqT 5cajxI8WfyDPqPgXy40bxM+r0u87wrsJb9XLvnVXPyHPvuLnhkbjB3p6HfuE n3fK5qnc397+zpb7eAPfR8v+oeyRbBwjmcN4lmTzjXLjvcSfLf5wnivxb5Yb HyD+LPFHpFwLj7p4RwSP/JHCfcS/U258oPhzxB/FO0f8e+XGB4m/eISfpYLe rs13bMq19qi5d0zg26uMqes3Y4RlqPt2R5Vr9VGnj5qA7A//t6dG33Ehf7va ySnXhlslmeOFj5T8DeJPEM4Xv7rc+Bjxs8VPEr5S/EflxvA3ij8x/Py43PjY sDNZ+Crxn5Qbw1Ob7qSUayDeWWVMjb+jR3jP2U9q850cMndVuRYjdRipA3hK yM8cYZ/P7u2fX/z842fZl+W+p5Mk/5XwacKThb8RPkP4JL4ble4U4R+lu7bc GJl7xZ8ea/y63Bh5auidmXJdwvlVxtQrfERtasq1Ap8SPkd4p61dD/CskKFe 4dTQXTjCPvwk+3dXWYa6gc+IPzf8+VHyZwufLv7pEcY/9HZdO+rbUc/up3LP hcwbur5M+BHNu6DKdQqpUfiLZM4TPiPPdQzPT7m+4T1VxtQ0XKx2Qco1BKlt eGHwCyVzUdhZEJi6hZvULhU+N+a9JNa7TPhi4YeEfy73Wph3Y7n5c2It+LOz ZF4fYTsPC/9VbjvYpKbhBeHn5nKv67w817ablXKNv/s4Vz/lOoQfyM4VKdcr pHYh+IKQobYidRWpkQimVuPHatPCz2YVxhdL5iPx01OuS/gVz1bK9QFbSmaG 8CV5rmk4PeQXhQ/YxyYyPSX/QJVrK1JX8X7hq1Ou1Uh9RTA1Fu+lfkH4Q93D mcFT+/Hy8P/hKtdNpGYiNq9NuS4iNQqvi314qMqYeoXfj/D+UPuPWovXB78x q79/1Wbr+sw+7qf2cV3Cm1Kun3iD+hvVeomfHtfIUgfymvAfOzeEzIPhD2v8 dYTtvBV7hR1sPFrlZ5U6jI8J3xKY55/P4xV6nh+vcl1DahpS2xBMfcY/1W5L /VdzEHxNnmsqzkm5ruITVcbUhN2oNjflOoDULpwbMk9WuUYj9Rmpizgv5J+u ci1G6jBSd5FajNRbfEb8HcE/HZjag89WWYZajS05fz/lun7UXsQO9RmpbwhP /cGtdH1fynX0qJFIrURqEb5APYKUayY+H5gajNQzvCflOokvVhlTP7GT2oKU 6/1R+29ByLxU5fqI1EakvuHCkKfe4L0p1yV8ucqY2oWLhe9Puf4gtf/uC5lX qlybEJ76hItCHt/mh5+Pxr2jRuUrYYe6gtQhpE4htQupbfdwyjX+XpXMgynX LlwamJp+OQk9ryHzWpUxtfyWVbkGIfUHqUP4SPCvi380+MfVP4Gu9qFVPz1P wq37WRcZ6v4NLrIP1Fzbhv+ZZyzXQvM+mXKNQvjHw842jcbYYz3Yp9bhG1WW p74h/j8Qa3m7yjUFqSdIjb+nwmbrhHnq971Z5dqH1D0cwfOU+q8eH5iag9QK fDrs8/+ljfG/pnek+1zY75BwjUBqDo7luUm5xlxH8c+nXE/w7ZCnpt+7VeaR zy+yb9QffK/Kdvj/GDX1XgjdffX3yG/6/XWsfq/cT/j3tOMnqe9HnT/qDH4o 3SUp12r7QPiVlGv/vR+Y+m/IULePmn3UwgNTL29llWvmUS9vUMKYunvDhF9N uSbdR5J5PfVfPTvq21ErDx4ZatutCB+wPyRkkF9T5bpxDwdPrTtq5K2uMkaG uiHfplw7ZnXMRX25r6tcJ4waYRXSfSflWmyfiX8z5fpxu6u9lXLdMeqmgakN 93mV69JRk+6CautSu21/yb+bcm0y6pS9GzapX0bNNmq6Hay2POX6XNRney/l +m5FCa+FGnlfVplHnnp0b8a8X1XZDnXfqEG2PHRHJuwPPmcSXhf11A5PuA4T tZ++k+6qlGt4fVvlemPUGhufMKb22cVay8rgkQFTp+s89jTlGlXUsQJTR+z7 Ktdwon7T+irXyqJO1jrhj1OuBUZ9p49iXuqIrQrdvRKWoebXJZp3TehSc+qT 4C8qMqb+FPfrw5TrgB2U8FzU3rqo2jz38dcq11ui1tIPwp/F2q9T+zzl2kzU eAJTG+vHKu8PNaqo0YQudaN+r3Kdpy01nsDUSPpD/Dcp1w+6UPzXKdcqulw+ rA159oG1UD8KO/DUPjoiYX+Y95KE7fBMEj+DHeoTPcgZ4PoMruNnZZGf26/k c8e0+ZNyXLuGGjbU0/lL9r8H57lOEJhaPzNkc13wyICpJXK1+B9Srn3zd5Ux 9WqaVbvmDfVuWlS79gx1Z5oL/5Ry3Zl5CctQHwfd9WHnzoRlqF9zL+e7p1xf hpovPwe/osiYGi4XJ1wXij28I+G5sN+x2nU7qMFxvfAfwm/luRYMtWGopXKd +N9TrhHTKjB1SNoIbwj5NqF7PuemV7u+CLVFqDECpu4JtT6o+UGNEfBfMW8H yW8UfifPcUqshToz1NKFp7YI8/4WPrwWdtCdXW07/6tpUuU1LgkZ1kVNEM4q b5P2ufE3V3OorWsadKt2DQzqX6xKGFNT4wvOzE+5ZgQxVGBqRgzTWJO0axNQ AwJMvYmtJNOUd7jwrcIt0q4TAd9MeGaF6zggQ+2GtQn7gO4tIYNuD+GWwivy XAeBmhPUO+hebYxN7tfmlOt4dI+5qC0wO3j2ZEC1z3bnXHfO86d+AOf8c/59 69iHedXGnKu/T7H3h7PWOf8cXc5F30Yy7YQ/zfPZ4GDOCX+22p8NPhecU805 1JxBzVnO7QNT64G1UBOBGDB4zqzuVW1/qGXA5w0734cudjhjmxouPFfU/eH8 3s5pn2n8hfgk8+brM1Sn/SU3Iz/GQ+a0UTk5XdM+7xcevD7Pct2ERzfRc9po 3TFN3HcPfGiZcXPJ9iROnlwL4R5pX1dK5rAGX3+YYzt/ZW23ool5ZJ7mHH7y KPJ99jF2VuS47xk4V2PbCG+r/sNiy18t3RPlw2DhoeKPJW6ffAPhrdX3UZsj mWcqjLuIP0L+9E3/d5YwmDOEe+U7xo74uk3yc1PW179r3wakPT4o7bmWSOZ5 2Rwo3Dvf8sgQg9cl5u6cb25g8J9Um8efjdW2hZ2hYXdIvn3pF/5srvZ635TM EP2eWSw8sbnem5p3SNr7UaA2VDi/mT7L8nPbtLlTtA+5wsOF/24Mvpnx31nr 8HvRy/E70oh8xwsSK7hJdvLS5jY3GhPjR58fGHu5YXOaWoHwVep/Cfxr9MMD Y2dz1nOwpiGxrsKQwQY91xX5Xut2sd5+WvsI4U3N3BcFfrXCuFryydAZp/6s MuvCZdVGCj8lOznjta9ZXzcRzml0XGSJ2ii1pyXTvN7X6HGmcGH4hm5JyDAf flSp3y3fNoirPLfMdhrz/RnqHJ+p3XU9Jm1Z+rFpx+ldQXy+8EHiD1QrFf5G fFPN1azR14yVpT0OD/5WMofkO1aSOMlm4ps3+vpQ8ZVpj1err1F7oKXeX9qr qhhHHhniGLFXHjbhqoLnrNiE8ATp3t/StrAzIfB49e9UeC2sLxFzMX6urhvS jmOcku+4TGIym2veVo2O5eR9NE795HzzYGIs6ZOBW4hv3Wj90yWXTtsePJh4 y6/kQ73wmfludWnHcDKeCRn8wr9JGv+ywjz2mBtfiClFDzvEW3LWa11gnpMx cb84K5R1Ec/JOYW7px1X9q1sThC+SPYuVGsU/kQyLaXbttHXjI1Pexwe/GnE Um6f/u+8TzAxk/Q7BOZc0Z3ZF+E71XYUvkv9ugrLTAvbE8JmMmTGqb8+3zGL xCtiY6f0f+M7hZ1vZCeb9n2DQ25m3MNsrJe17hHrbSX/d007npB+t8A/VhjP lu4t+dYhZvKXCuvCEXc4Me1zKEvbGhNr11o2OzU6/o4zGfdK/ye7Z8gwb/tG r2ev4JFhPvxgrXfm2wbye4Yc3F1q+wRmLjCxfPT7Bl6gsf3S/50RCCZGi37/ wH9WGCNLjBdxXcR0tZHNro2+fpDPc9rj8GDiu+gPCrypwhjZQZ30O3ja39/y Xe2hwsvyzR2S9ve2hwW+sJP7Q4NvVeKxLfzB/w8fFnb4DvPYtL+jPAJ/eR47 uT8i5N/IN4anPzJ47IMZP0+/JxzFZ5PYoQrjteIvEH+08FPim1YafyP+8lH+ fpR5+Y4UvE78ceqPT/u7xQdL7Bvfu87o5DG+a2Uc/DvfNYev7NN1aucJX6v+ /LTxX538feUJwptlp4PwpNDFzqTgr9b1iWnPMzltvCG4ySF/cuANIXNS8NgE /ys7HUsst0Xm5OBn6vqUtOdB5jThJgXmTg35KYH/6OT+tOA7lXgMflLsz+8h MyXsnK3+HLU/xZ+h/vTA9GeE7tTAW2TODB774Gay07nEcltkpgbPnp4lfE0n zwXeGNzZIX9u4I2xtyfEfcQmvrWQnS4lltsYds4N/prwdWas65TwjXt4fsjf oP4mtS4F5i4IHpvgVuTOC18Y9x2ZC4OfpeuL0n5GLk4bbwru4pC/NPCmkLkk eGyC28hOtxLLIXOl+svV/ha+Xu2ytOeBuyz4y0JmU/BX/D/7l/4/m/DthHuN 0R4IH9DZ8lcG31P8VcL7i29Tadxe/GzZmpb2/NPTxpuDmx4+XB14c8jMCH6r EuMOstO9xHJbZK4O/ho+T8G3rbRvHcXf0MljzM84+J+weWXYv1mf8fnCK3J9 H86P/WSu64Q7yU4P4Vmhi51ZwffWeq8XPpCzXyqNO4u/UXKz056f5wH87xYu 7NwU+N+QuTF45roxnp+eJZZDppuubxHO0Vw34Xfa88DdHDz9LSFPf2vgWbE/ 2McmPPZma+13Cn9AjJb8v024QPxc9XPUnuDsmlzjJzv/NwY/s8H4/Vz38wJf N8oY2TvU3x78nMDYmTXKY/Bw4OEF9vG6uI+dKu1bIfsp+buEP5R810rjIvEt xtjnP/Tu+r3CPwf5Odm90vd0O55V4buFS4QHCS8ULhOeI5v3CK+SzT6VxqPF zxO/QHi1+P6VxmPF3yX+XuGPxQ+tNK4Qf7f4+4Q/EZ8Q/4Dwl8JjhRcJJyWT V2mZKvZklH34iHibkPmc3/eEHxT+SrhS+H7htOQrAn+R63x8zgL4jZiUmKtO +GXZfEq42TCff/No2ufANErmIeFGyewg/LDw17KzY+AJBT4f5pG0z355LG1d zrcZu52vwXBgzp7ZW7pPYl/4ec37hHATzfus8OM8h+TMxloaJLNbpfmThbPh z1riIUfZTlPJT6y0nVMls2ul/dlReL9Kr+uMAp/DwVked/LzSPxzfA6Fjxd+ RvgqzhEKPFP8eD0bz/KuIXao0vha8duLf573i/gplcazxV81NifnBT538idV 4rNFdopzSDjT5DbJnFVpmVuFJ4yxD9O7+EwSZDirZIXW9QqfL9k5V/Iv8VmS /LSxxl2JcRL/tPBlBT53hLnmCr85yvylnPci/Cr7P8xnfnAOyO2SWSV+ifBW 4i+uNL5DfKbE+8PZIJdVWvcu8Wsk/5rwL7I5rdJ4YYHPnODsiV8KfMbF62mf TfG95JcJ55E3Xem1zONdWmn+BeF0if3hTJJXxtoO51fcVmk7S3neSvyscnbE jiU+D4KzIG4d5c/jSj0DO5X4TIrJcWYF+E/p7lzisyROinMnwH+J36XEZ0mc HOdXgP/mmSnxmRGnxJkM4H949kp8xsSWsyPAOcT1lPgMiNPi3AbOR2gpfo8S n/UwJc6LADcXP7HEMpyfkDPacUjEIHFWBHaaDndcEnyriJP6NO34KM5y4HyH 1hHPtSp0N5QYE+fVZLRjtojLIm5rdfB7lfgMiDPj3Axw24iH+jjk/ygxJk6q 6WjHbDEvcVuf/D/+M+GtZefPEvtGPFez0Y7NIv6K+Kw1we9ZYp85F4IzPLh3 G7Sf91baTkfJbJTM52nHl41Q+0r4om62+YVwH+FFlcadNd5c/JfCfcXfX2nc VfwwtbXCF4q/o8H4pGHuvw7cS7rfcd+HeZ5vYq7uoy2zxcZXYefbkEH3Uc31 vfAl3cwxlif5HqONkXmo0vbzh/s5Xid8fDfHpn0e+7Ne/Y9qJcM9zvV73Xy+ C+fFLO/m8fWBl+pz8UPI71PiMXjGfwhdvisklr6a76PTtsOZM5yv8ltgOMZG h52fA8P/HDb5bvGXkMf+uuD5jhFbfM/IeS2/hsziCv8frCjfHHL/+15ypN6D dfodYaDPjOHsGM6T+TPt82XA9H+ETb7HBJdJd/8SyyGzKW1dzpyh/yt4ZMAV kj9AeLNw1XCfK/N3yMNvCsxcf4Z97GwKXWT/CV3w5pCH45pzbLbm3BW14Vvp c1LiMXjOe2mlluSZzPjcGc6c4eydnIxlkAfXSOYg4SYZn8mDTJPg0WsWPDLg WvEHl9guNg8p8VycLUPfIjC6zUOeM3j+Dd84h6ZF6DIPPPax2TJ8ZrxlyHD2 TNPwgTNvWod9zpzpnvHZMpxX0z7j83Dwp41wWnYOFW4bPHptg+dsm3bBI4Nu nfjDhDtkfO4N4x2C55yczmoNgTuFDGfhdAyMbLvAyMJzrk63jM/Bwc/DSzwG z1ydwia+tYl1cV5Ol5DB39bh5xElXu+E4cbdwiay4MbhPoNnq+CRAxNnOkDv gR7CZ+sz/kKl8X6cqSO+p/A54ntn/DzxLC2RTC/OTZDMy5WWOWC45+oavg0a bZlzh3ldXcMHbGCrUHZe7Wa8VP0UydQKH91daw85ZOASwdfL5gDh2bL5qubt m7FsSnw/4VnDfK4UmDNeMuL7C18v/q1K614x3LGWAzOOt2wYbQxPrOw2GcfH EjM7OOO4WeJpB4U85+Rgc8vZPvDE2U6QnSEZx9jStgndxtG2g43Px9rn6XGG D/LE364Z7vN6OKtnkvZhGPda3PHC2/LciF9TafzBcJ8hxFlCHcTnZYw5U+jE El+D4fLCDmcL5W/hk56rU8gX8ExKZnjGMvDT0Anf4ApCl5hh+IVxZtHw0J1c Yowua+wT94V5RgR/qmQqhI8UPkl4JDLC32tdRcLf8z7RdbFwE/XbZYwPC47r Q4NH929+dnO2UcZ6ozLGhwuPVT9G7QjhkzXX6OAZHxU2R4ZN8OjgkSnNWB/d 5t1tp1nYR+4f7sto+7x8mMfHhi77wHq5n+UZr7dpod5XGivL2B58WewDfXnM VREYvqVaZcZ6VRnjo4KrCpma+FwcFTLV2C90XxX8KSVeD/ZPK/HYUbE/8DmF tlETn69WYbdlPD/D4hlDhs9hS8nfqXYS74oe+nmj3//Twm9JJql+nNox3d0n w2YqMPzpJb4Gr6u0bhvZa6PrjHBr9XUZ42OFf5JMg3AXyZwh3frgGa8LO9jG ZutCj9eFzAbpZoW7if8x7KwY5nHk2oo/UHK7Ch+g/veQXymZndXvwvMnmZb6 /WR74f7Cp+q+jxdeLZl/Ko17ij9N/AQ+a+KbVBn3Ft9ceAfhVbLfNvDAQp/1 tGPGZzpNLfFcL3f3vDsF7l1lmTzJnyL7jdgZZl+R2V/9X5Xmuxfaxs6hu1Pg l4TPGG3/VwrvlvF6X+nuc7EOzPiMrN0zHoM/q8TX4IPU9sh4n/ZUP1FtcXf3 ewRGD/mRha5Xm1vnOrNnl1gHmYPV9srY3t4Z4yXB7R0ye4R95j1HuvuEDOPg MbJ/kdayr/BXwyyL/VGFXtNusfa+VZapFT9AeD/2WXi2dA8S/kG6g8XvL5wW f634A4TXDfN5YmDOGZs12vuzfpjP1EKXs7N6jdc9VzuY+Xu436uH+cOEf5cP h6g/VO034RlxPV39xaPtz9phHj8k5C8ZbX++Fr9Poe1g+/Cwg0zr+FzxGWX8 8ODJKTgi4xyHcvl5tPDlheaODP7acuNDxP+hz+xRwreKH1NlfKn4jeKPEZ4j vrrK+Erxf4k/Vniu+M3CJwjfIZwmzl94BueBVVlmmvCfY+zDbZLZNMYy84T/ EZ4kfKdwveSPF54p+b/HGN/ew/7hN7kgjVWe61pxU9Sfzmcqz++ek9W+kMyO kjlReHah30eThc9S/3ngL6I/KfCCcuvyDmsqW6dkfC4Z9sHX9XA/JeZ6Rffl tMDwp4b89lVey6xCj58aMv+OsT93SWZx+I1NxpF7udD3k3vHfT5klNeF7LGy ebHwu7zrWIfa1nnGZ4adqYHhF4/2NRhuathB7+zgDx1lvFT8EsmfI9yHGCHh 84X7Cx+oec8Vfo1cmSrLIL80bM3SvEtHW6YvcUclPtuL87sOkfx5wq9L9tXR xv3yrHdG6B5e5bnelEyzWA9rubHE53ZxDtVR5A4Ivy2ZG0p89tlBcRYZ+B3x r4/2/gzM8/le6L4n/g3xlwoPEn9ClfHyQp+/xVldHwq/KZnLea6IayrxOWKH xFlkrOWtQp/xBf++8LLR9mcAcVMltsN5X5OrbOcDydxS4rPDOOOLs8LAK8Xf WuKzvThH67YSn9V1RJzlBf5YMnNKfObXkXE+GPhT8T04z0d4W817bpXxGvFz S+K8rTjjC/yZ+J6SnymcS1xolfHnvNPUX5PxuV4XE6sv/KX4L2IMvs9442OE e5VaZpjs9OY8H+G8PJ//hZ23OXutyvxa2egv3VuEn+T8NPIFhL8RP114tnB7 ztfSz4IbhP8Qf02V8T3b6fnW3t4oXMHeVhl3HpGTM7/EZ35tORMM3GWE57k5 4zO7OBcM3F99txiDv5X3TcZnjD1X4+uJI8yByT/i/LDbAm9dap/z85wL8FDG 8f/E9j/MPerj/Ka5fA4jpwlM7hJ5Q/PY/97ODwKTE0Ruzu3Cqa2dXwMmB6dH o34+q92h6922dr+7+mexFRwy4J97u78rMHlDYGSXqt0jPD9ybeZnnC8Dd3fw K0cY3y3cq9FjZ+c5B2tOrJ0ckAXCbfs41+OBjPM17lW/UK2d+G9GGLcXXhFj 8Fs3Gl+U5xyT+4SPjdwTMPka96tfpHac+A0jjI8X/jrG4Ps2Gl+R51wSfDi9 j+8RfpJX9wgx/Dx7fZwLACb/6LG4X+/0ca4NayGf5Z7Yk7u2dv4F95GcC2K5 3xQe2t+5FY9knDdBzsWjwqP6Os8CTC7Gc8KPCdf0dT4CmByKJ3g21RLiexYZ 1wq3jjH4/o3GN+Y5n+JJ3oF9nTcBJleiB3NnnAtAXsNTGec+wD0dPPkD4NuF BzZ67LY851YgP1f8EvICWGNfx/+/nHFs//Pqn1PbJH54kfHfwgNiDH5wo/Hc POdEvCDcIvIawORBvKT+RbWW4rcrMiZnYUiMwQ9pNN6Sv4AP+4mvlsxi3lfC bxG3zzuwn3MHwOQsLMlY5sh+zndgLeR0EOO9MuP47afifpX0da7BUuEXIr8A TN7BcuL2hZf1cywcmDyCZepfU3tdfGOR8RvCVTEGP6zReJH8z6sXJ5zU+MdV xkP6u38jMHkHYHIN3uHZZC39nXfAM0auwSrht4RH9Hf8P5gcgYlFli8WXxzr Z+3ZsIWd/8WcZxxLX5zQmoV3Fv60yniXwO8JX9Lf+QjvBU8ewXLeUf2dLwAm Pv9CvYffFz5AuDxhTO4AMf8f8N7r7zh/MPH/a8OHHQbo51Cj/bxH+/ON+BW8 VwdEPH/GMfzfxf16SHx+o9fyUJ7PieTn4Gq9/1erX8XzPcAx+qsDEzP/ifCA gXpWG80/R34B5/ywFsn+XGXcY6D7jwP/GLrE21+qNX4qfKvwMQnjg0c6Pv/z jGPsTyIenmde+DLi/0Oe+Hlszgw78D9VOZb+i4zj8H8JO6cPNP4sbDbIzxz9 vVNarHdTyJ8nmds01zrhs+TD5cTtC58ifKXsfyV8v3SvCLyhynH+a3l/DnQs N5h49emS+YbPofC0wBs1Plbzfiv8sviZ1Z7rnSLH3n+XcUz+P1WWqR3kub6M eeG+C35qwvwxIx1j/33Gcf6bAjcM8rxfhw9NhdfzeRe/kXcP797B2i/1P/N+ G+x4/h8yjrG/hjh/4c+E704YX6S5quuts7bI8e3oEm8/i1wAbAk/mjCeJvl2 xN5nHEv/q/rf8FlzJep9/av4ttW2iQ+LE+aRISZ/Q+g+n7CdP4oct48dYq2b h8/3DvJcyJ802HkKrJccBOLPWS9x9X9gj8//YMfwg4nVT9Z7X1oKr0wYsz8f Ercv3E38DdXG87SuG8lBEN6KWnXq/1XbtI3j8zdnHJP/QcIyyI+r99zNxHcN mQrJd6o2jz85tbaFnfp649HFjsnHPnH4zWr93DYdot+DivzZfGaA4+qb1Dn2 vlG6TYUzwltXG+8/xH2zwMTtg4l170msvvBhQxzrDib2fon8biH8pPje1ca7 ie8gH1oKTxSeU238mmSPICZfeOhQ3Tti+IN/R621cH/xfauND5PsIP0uWtho nbnVlt9T/Pbyv22d7ZEX0LnOsf1w7Yixlp3bKoyPFL8D5/wIHy2cW2tcONR9 h8BzK4yPkcwq+dNR+Dzx/auNTxG/o+x0Ej5DeEi18Yyh7jsHrpT9rsI/CH8u O12E1woPrja+SLo71Vvmklhj2/CZ+9Yk7h3j3cLOSNncSvgKye8q3Z7CNwrf XW1+reb5Xq27cHZb/eyrNr5OMguEewjPZt5a607c1n2vwAsrjG+SzGjJ9xM+ XO6MFO4j/KhkioR7C98nnBc212vO7YiZF14kfrH0+wt/w+/e4vviW57t9Q2b 9Fy/LNmnqi1/XI7zMlgvuRjfqx+stlG6Y8UPqLPtV6rNvyv5QeoHqi0Trqj2 NRgO/KbkX6z29Z95/j8T/2/i/07Y2CbsvCGZbdlz4rKFhwqvzHE/JPBjFZZ/ SzZfrTa/Oc++Dwj/+d/YtvH/McbRf1vy4/T3yB68O0a6fsWG+G7xA9kZJpn2 nPGjvoC5JJ8Qnyc8s4nHwSuKPY7cjeJXVxt3km6h+uFqf4j/vNp4K2K3qz0G P0J9sdreTbW31b4GI4vMatmvrfYc2P+02DJ9ZWeD+u24H8LrJFPE/cu3vaKw 06i/yyYIH5BvjjFsZCVfLlzSTO8m9aPZd+HfxY8E59t2idpzTc2Bv+A9rH4U 6yeuvsa6+fnmxoSd0YG/4rMvmTLmJi5a9kvZl2buxwb+rdrzMVfLGvOF+Z5z ZPD4WxY+M47+WnKkajw38zKO3NfiS8TXCfdsoc+EcLXw95KpUl+pdrFwxxrj EnIC6jwGXxn4W+67+prQ7VljXJZve4ngm+k5SgrXEZMsmVrhHZpbFpl1svNv nXVKJZNTb5mafOul1B6S/E7ah3HCPxZ7fFzY6VBj//Atv8Y6yP9TZ35kvtda H+stlExaeDx5FrKZEX6muTnwb+S41VtnB+LNq637O/dLfIPwRPHlNcZnyOY+ khkvvEky7STTKLxfvsezIbNrtdfyi2T2rja/sdhzpsMH9LDzqeTranwN5n8X k+v8/4rt6/zcrhF/Yp35EZxbL/mdhJMt9c7Hd7XvJLN9jfHBxKFXewweDry5 2Ho7h+6B1cb/8t5Wvwv3QPxE9bur3dXSHGM58mePGl8fKfud623rcOGDqi2D bhfxewgfJ35b8kT083G3uKa/s6XXxNr+1rz713iu44l55zOqdkIr/Rzls6s2 v6XH8ampfGi2nceQR3fPkEF2r8B7hS6yW8mffYRPlfyRNcbtZX+S8P4xF9x+ wdPvGxj/94h9OKrG/Gn55iYG37Peds7K9zj6LTXvvtVe4//uXY3XdbZkcmXz WPazje6T+kPU2kl+a9k5SPh8yUypMV7eyuMHBz69xvgCyfST/KHClwqfW2Nc 2lr3Q/1hgY/iXqnd1NocYx0113k1vr4s3/McEvYPDRl0j6izPrqX1Pga3L/e eHq+18Q9ayObl9Z4rhn53o8DY2+HZnXvY72svVbPw9F15o4J/qZ84ybCA+q9 P9fyTmi03HXkXPB/e+HV+vk4pdp4suYdNt6fDT4XG/T33iThwp7+v/EJPGM9 7Bdr6SL5s6rNz9jOc+DLv1rX4w22gw1spv6vqfMOk6pouviSQQQkSZIMAouy y6jAsro7M4DM3DuYEyhmMYE5oaiYxYRgQvQ1oihGRIyYFUXMmJVgwIBizgp+ 5+cpnv3+uE+drq6q7r5p5nZ3VaW2tX+t76djJHui6Ak6ntW38+1cfx1z9L99 oP4nnyyc0//ZTMZyyCALrhK/v8Z1knBWuDxr3LGb6SmBTw68tWwMlPxknhPJ byE8hXtaeIh0T+WZF94ma5kp3ax3ctg5bbRl4J8hejr3YTfzqKvOWO+0kBmo 8Z5PX2Uzm3VbyO+YMX+s/p+fLXoWz3h328NuPuOYAGcKf9vN3/tgvvG3VJ+n Ch8pm7tkrTuxwryzw85ZgRPJX8h8Ac+w+GOwK7xTd9NzAueybnsfyZ5bYf7O 3d3fM6LP9Pe86DP16B8r2Z2zbpt2K9W3C9AR/1C1dSVt6Pt3muiFOu6QzPis 8ZkVptTtLtlLRC/m/SD5wbJzEc9Che1NC13+E/HfiP9Ix2QtP6PCFP3xsc/r 0tHe6zWnwrij8JFZ28Q+POSuVP1Wamu68A3CU7LGR/ew7CUhv0/W/aAP1F8e MjNpn3tYeFDJ450bcxEzg089+OA4H1fEOXm0wvhc4W3Uh6uE70M3a7ysh+nV gWeLXjvaeTGmS+Ya4fkx54AM3/vMddA35klmjbbM25I/K+t+3FRhHnWTYu5i VshsX+Hn6jk9X1dl3daDFaa0TWyBk3XcIDxMz+aNkrlOeGhP0+sDM7cAPilk /xfyUMrPyeZNojdyn4v/boXxCOHt9W64RXhJhenN3MPin5KxDvJvVdhWVU/r wV8s3h3qz63C14k/OWN9dD+ssJ1UeEjBfX1GvKqC5d8Q/lPH3cJt9K1dr8bv n6mysUz824RvlW6Fru/o1GXqeE9RDx/M+2o72byD50X8hVnjf3ua3hn4ntFu q7XaWiSZecKrY14FGeZS6NecGMtdoy1DThPmheAzBwWPOmILEGfgrpAhFsTs uE+mZdwebTFH8Zjw1r11L4g/n3tA/GfVh3u5Z3qZ3heYeRvw9JC9P+ShlH9V n3Ma7wPCZfq/8WbW+EXJdFJ5ofAHvcx7MPjQBYEbVdrWUcJvZc2vxxyFzvFD wk0rTbHzfi/Xoz9L/aktuK8/VDhWwkMhU0w93q8qPA/DeJljeVT0ER0DNfYV WeNNZP/h0a6D/0jgmyS/vew/LtxTMl9njadL5gnRRYGJpfDUaOeRgUfd3dJd k3W5l3RHFtxGq0rbeCJ0l2fNp90fhZ8U3rzS9p4Mm1DKxGp4RvRpnhnx/8ga D6g0pY74D6PV1rPCGfH/zhr/LPnneeYC/5M13qrS9c8H/7nAC2VnsegLOv5h rqnSeJ3ww1EHHx54KN96aneJ8EjhEnNDwg376HxK/iXhBsJjUuPhfBfkLL9n H/NeDJmloi8Hf0fJvyE8vtKyS4P/cuCnZPtV0Vd0PC5+u5zxHpK/qcZ18OGB X8p4Puo1zkUfzymBmYOindfB4k+qNF7ax7Ek3gj+m6JvcWRMKXfvq/sjZ3yo 9ObUuA5+05z7Okr8BTpWC4/b3DEjvhjtnEHkJHp7tHMbLRttvEz174q+o+Mc 8QfmjE+WjdtrXAcfHvgjyb8v+t5o5wC6qNL4EuGPow4+PPCpzHHxXOr4Uvyq nPEFMaf0Mc91X/OQ+yxj3kfBH5EzvrTSlDrmoP7re4xlhd6Hy4X/FC5J/jPh XTTeVaIrdPzFnFul8d/Cu+j+WSk8Q7zKkjEyQxLrgJEFz5TMp6Kf6Ehls5Az vkb8eTWugw8P/K36tmvBfZjF3F3O/Tyi0rzPo2/MlYHXxvVZHdeI/uyUejx3 1PiccN62Klnuf8S6qPX3Nt/a9zGvPtpzPvrLXfaVsP4Cl00MPCno14HXBEb2 hUqXwfDAzKctqvG8GHNizF+BmY/aT2P5VvjEMs9JgU8S/l7/t78Xnlzmeai1 o12/uMZxRogdQpwQMLFBfhht+RVltrE2bMKjbnmZ506YD2J+5l0dP4Y89eCm snOayj9xj4n+PNp4ZfB+DvlfSsYrQ+aX4GMT3Ex2VtY4rgcxPYjRASaOx3c1 7gPzUcS4IKYGMTR+r/Gc0YCYIwIzL/RXjWWIufFjjIW2mA9gfuHvmKPjej2j a/0n9xrvivqe9wEzR7S+xnE3iLlBnA0w/gWn6fz/w7Wo77kn8Bv1TdcFn3ki MPUNaz2fkom5IDDzP5vUeu5mWMz5gJnPqcdcvY5/GniuhnuMeZvzc66Dv325 8Trh5onl4Z2S83gYS69azx8xd9RaMs2YRxDuW+uYGsTTIH4GmPgY06TbSHhs Q8/vgMc1NG0cfOZ3wNQPrPVcz44xRwRmnmcG8XmEX2jo9sCLG5o2Cz7nl34u UT+3rvXc0F4x5wNmbqe61tdr35jLYizM/xD7iN8+fhNnM7cv/vmNTFsELtR6 PoW5FOZo4DOHc6PkWwpfJpkJ5cbTG5m2Cj5zMOj+N4dT6/mXo2KOAsycCfMb zIMwL9FGtC3ntrHepTmXwe0S26SdE8vN30v80/DnFH5Q+MBa22EupXNiO8ge lPW6KWum9+Ysv6Cx5wmYL+C7m9gQnYSH9NN7ptbzJmfEXAGYOYSHpdtRuEcT nYuCcU/hE2o9P3JOzFeAmTNZJPkufBtL5txat8W8RA/1bTO+8cp9IHN6E/dr 0+gbvM1Ct2tiPmNlDoS5FeZJptQaM8dCXzpF3y6u9TwF8wfDsv4+59v8S/F7 C9cTPg1ZHe83M+2p4z3hC4rGO+g8rJB8r4LjkbLfAF32h6wVv0/BcTXZEwJu EvsN+hW8x6CZ2t284PiKf0u+r3DXCu9dwSb7VdinAZ+9DcwzMAfB3EK7rO3c M8B7JLDDvoifc+4r/eyStTzzFczHMN62g/2tzXj59u8rmXLhQuw9ALPfYMus 5y+Yu2CeAcycw4is5wWOjHkAMN/+o8UfJHy0+Ptl/V3NNzXr/hUFr/WzNwAZ 9id0z3rPBPslxmQtc3yF90vAHxnf43zn882+W9aY732+l7HPNzhr+ty3rL/z vPFMXtDI3858b/N9eop0txa+rcLr7GDW5c/I+nuYb2G+f8F8216S9fcb3258 w4H5xrwi67Xz52MdHMxa+Wzxhwm/GGvfYNbBh3PO+L3u6e8svgP5nvq4h+s+ 6uF6cFYy24Y8+Oas5flm5Btw2+CzTss6LuvF87L+DuQbkO8+MN9087NeI2d9 nDVtMOvjD2f9PcO3DN80YL65HsvGWnisj4NZ134+6+8uvrn4tgLzTfRi1n1o EN81fHvwLbM06zVs1q9Zuwaz3v121jJ8mzA+xsL37KSsrxHzIR8JjxLuIJlV WX8X8U30W9b7JIbFdw18vn2+zfo7JBPfF2C+Kb7Pet2aNWvWOtFlPXp91t8P I+N/Ppj/9vyHH1Pw//ZGenZK3M/8Jua8hr19rK1jk7Vv1q/hj461YNaJWf/d KGc7u8daNnZYv+6YswzryN1yXidmjZj1d8bLGj3/Q/lv+rX6MCDnNWDWf7fL +T8l/ydZ/4XPGjTrtqzvso45NGdd/tNW5MxnzZd1QtYLl8X/T+zwn3NczmuF j4pfq/8kuwv/lvFaLeu+rM/mcsas/+6Qs8zdlV7Lpv+sX2elu4fwfOFdc8b3 C7+Wc67H+U3Lyg4W3ot3gi7FJOGxwjX19L+tSr9nwt31/rwgZzxL/ysOr7JM e/Eniz9O+GD9Xh9TZdxJ/IvEHy/8q+SnVBn3EH+a8P7C/YVvyhmX6z3QKO+8 euTUu078/YR7iT9FeG+uhezPFN5X+AD9T7igyjKby87lwgcIbyl8dpVlegu/ mXMuTPJgHl9lO53Fv0/8A4V3bOxcnxMKjps0SzKH8N7u53yeBxXqYkyByQX6 iI6DhRc1dowpdMmb+mzOv6P8hnJejyg4HtSaap0v4cvKHTMKPuee3KOHFZxj dF7O/f+5kX/7sMNv9ys5634imzOr3OdB4r+Ys+554l9d5f5kxH9X/InCo5o6 5yM5IMnPSL5N8m6Su/OjnDH5N08cZvlt+zm/56SC835+kDMm5+aqnHN8kt+T PJ5g8nVOkfzxPKfCX+eMWzZzHq05Bee9IpfjcQXHoSKH51Fh8/Oc832S65PY XMiQ6/JbHScUnI+SHJrIkCvzAnKbFpybkr5hh/yi5Kw8MeTJMzm54DySv+cs D/4+51yb5NkkxyaYPKG/5Hx+jg95dMlX+VfO+SzJZUkeyNMLzvlYX/fnlMDk VuW+Iqcqv+H8/+A/xlnD3H/ygZIPEzvku7x0mHXJickY6TM5PP/NWZf/LXvk fd7IUfZEzvdhxybOM8lzQb7LFqo7u1CXNxJMzkfiX51ZcH7UjXRM5ZqKf8kw 412lu0neuSrJU0mOSjD5KDuKf36hLj8emHyL5DzEJnG0ZsnOeQXnlJxJvuCC c2W2zzs/JbkpsXNe6JJDklyS5IgkZyUy5Jckl9+MgvP9MZazov/d884HSS7I W8mxW3DOQXI1kseRfI43ij+t4PyPvfLG5Dok5+FFgfvnrbshL+GlgcmHeLnw BOkOksx04Q/Er8ybT3/If0juRvIzdsm7/+TBxCZ2yD04d5h1ydVIzkr6TJ7K gXnrkvOR+4R7hlyjW+Wdu5Eci4nw/wrOkUdeRPIjkkuxKm9MnkRyLyJPrsa7 2fNfcF7FIXljcobezx7+gvMhbps3JldgXvjagnPnLRhmTH5D7qtb43mszTu3 InkVyYF4Zdgk3+A1YYeciciQPxGbswvO10dbyFRHDsAbYiz0DTvkbxyVd95E ciaOyTvfIXkJGTvy5A98WH27vuA8iYW88ZyNneuQ83N8P+cuRJdch4+RD7fg vIRlW3ks5BAkDyC5CcljyHXkviLP5E46bi44DyG5BGfHOYGPHXIg7pq3LjkN yUFHn8nnSD7Bm0OGe4z7ilydY/POZUgew9Hqw3sFx2YhRx+5BskVuF/emJyD 5CtEntyFT6v/txeco3CfvDF58Z4X/86C8w8emDc+OnICkiOQfH+H5o2J3/6u 5B8uOEcbOfTuKjiPHvn35oZNchHOE54qmYPzliF33xE67ik45x38eaE7NW+b 1S3dN+yQ04/8d/eGPLnhHig4b93xqpsf+Ki88wUeEjkBweT+e1X9vL/gvIHI o0uevZPyzs9Hbr7T8863R669ycILC85rR+48+OTRg/9gwXnxXhzm/pPfkHx8 2CEnIPnvFoYMY6TP5P17Y5h1yd93bN79eSfy6D0ifHk/5/Z6nj7wn0Eyjxac Hw+MzLaRO+/RwOfmnZ+P3HwXCD9ecK46vjEv1HFHufPWLQr+xXnn4SMH3yfk zOV+U1uXif+k8C2Rgw8Zcu2RZw/75PhbOcwy5JujLWySN+9yHU8J/yrdVcOM yZF3R95jIU/ZB8PcN3ICki/vGeHr+jl/2Qu8byXTa6AxuczIiUd+PnLqXSOZ 5wLPCvyH2tpD8ouF1/I85o2JlfSK8BLuc+GKrYzHEaMs73Z/l+4g8V8qOJ7S zLzPw28tHWfpxbDzct4yp7Z2H+gPuQJpCxniPBETiedutzbOq8h9eKH685r4 L/N8SXe4+K9jR229K/5rwquJ7yT+K9x74r+VN/6MfG3iv8q7Rfz389b9gpxs 4r+BTfFrhJfxPAqvkMxbwl9L5g3hpcKnE79I+E3hr4Tfztvm58If5m3nS+Ht trLu1IGOufR2wXGWtt3KumcMdJyf5QXH9qnayv0/ZaDjMiFPjCZiGb1fcKwh 4g6Bf4rYSu8UHKeI+EjvFhxDiXhKYGIlEZvog4JjahFfC0ycIuIOfVxwrCHi DoH/ilhD9OefiFP0UcExi1blfU7WtHZcow8LjplDXCNkiGVE3CT6Q6wn4uog Q+yjyq18vfYZ6PhFKwqOWYQ/4JqCffSIyfNpwXGKiE30ScHxiIhltFKYuEbE OAIT14hYRqsKjk1EjCN0iedDTKHPCo5H9DBxc3iHt9O9qv/Mq4Wf7l9WNngr X8d1/Rx36POC87IR7wibxEcirhF2iE300BbWndvOsSbIzUZetr23si4xi/A3 ZCz4NhJPif43jHgUyBODAp/Hbwr2i8RHEoz/I3nKvio4Nxk+mF8Lv4rv9ghj /DHxbfy2YL9IfCTBB4d/4vcF+yTinwjGV5HYUJxn4kThz/hdwf6SlVU+J8/0 t//j2oL9IvGpRAafR3Kl0R/ypuE7iQw+kn3z/m9Gfm38H38o2AcEfxAwvpAT hX8RvqeDfRt/Ktj/EV9IMH6Ot4r/c8F+jvg8gvFbxE/wV553tXvUCGN8Bu8U /7eCfQZ7Eiun4JyH4zSW3wvOp4ZfITL4DI6tch+GDXKeNWR266jnS/ivgnO4 kbfwj0LkLhxoTG5D8gFtqnd7h2rn7KMtcimS061B0fnC1nFeC86V9jL5q4R3 72j6T8E54/BzA1P/znDrdOrkPGvowiPX2L8F51N7f7gxecfIZVZfba0c7qOe 8JROri8rWp68c4yF3HP4MMLHxrhB0Z8B1sMO+c7Iy1YvMDnd1kX/Px3ucZGr jjxQmwi30NjXit9EeFRn3dfCjehPJ+cmA5N3DNo4MLnMwGtCr2nROcjwlwRj 7xcdzYTzstlcdOOi81KRR2yjouvJHYYMuboeHmRb2IG3UfCbslefNro4V1fz sLN+uPFtne2/2bDo8ZEDi7bWx1gbxnVcK93WRefDIpdWy2LYJneGcPsuzoEF JjcWdJPAm1Rb97Qupm3CDn6XYOrJIdW+6LxRbUXbFZ2XqmPGZTB5wRgLubra V5v/VhfzWgafexE7p3SxTyt2kMXv+MeCfY2p3zTa2ld12wrv2d3+j52Fu4nX QbRj0bmr8KMEdxa/m/rTqehcVMiBtyGfETH5hTObOW8UmFxR0M0C95NMd+Ht JLO5cFfsbOb8U8j0Dnudw37vjGXIM4Vej6LzRuFH2a1YZ6NbyHSOfq/o4hxY 3UO+v+iAonMPZYi3L/znZs7Z1LPonFDQXoHLssaDqu1/Sd4m/DHJbYQueZeg fQM3yhpjm3xJ/aOtzUX7FSMfU8ZlMHmyGAvnY5tq8/fr6vbox01qq7radvbp ar9O7CDbKeMxcl1aZj0uZHfXMUT4t272B9xSOCW2mejAonMh4Z8I3l78GtnZ ougcRsiBp0m3JDxIeMtuzkMEJgcQtCLwTpLJCF/AvkThSu7Pbs4ZhEwp7G0Z 9mszliFvEXpbFZ2fCP/EwcU6G4NDZvvo9+bdnNsoE/JDMuYzFsY6tOicROQ2 2rronETQbQKT5wi8C3HiM9ZBHj9HdDln43QME96hu/MNgTfkGKoWHk+8c+kO LzrfEPVVIUP+JsbC+dgzaz72aI9+XN7NetWhiy3KD3Z3jiGeO/INkZNou6Kf xQv1e3Q0113fC1nRXNF5gg6tdrlHD/2Gcv2EH+vuHENg8vtAa4t1OYbQRW8C PmNF5ycaKTqq6PxBCypcBs8lhrnwzL72lxwhfHjkD8ImbVLGzmnqw8Rq604W PorzK3xWD9ePiLbwAdxReApx1jPuP2MhxxDy5CE6hXj1PEc9pZ8xJh/QhawL FG37GPELRee1Obba+Mselk1DHh89MPZobwfhe2Xz7IwxeYWgOwYuiY4pOk/Q eVmfE8Y0udp1hZ7OMYTM5Bjf6OgzeYVKoUtfitG3z8Xfqeg8RE+TV6boXDaz WfcqOr8Pfoi7Cp9XbdmdQ/6erPHp4l8h+V2Kzh90YXXo9jLdPexcKv5ePEvh J7in8CXVjinBe574EpT3EH/b3m4Pmyf2sq8idi6MenTJAYS9sUXn/bk94zr4 s6o9lv372Mau0bfPspanL/gAji/WyY6PsZMzaFzRuX6gewcmBxB4uuSfVVv7 Fp0TZ3a18aF9nK/nAOHrxNu/aEzuntPj3LF/ckPdIZLvW+kx0H9s7Bc2ye+z f+jSHv0Y3tv+icjQJv62XEfur+UZPwvkD4IeFJj8NuS/IX/N55I5uOjcQPOq jb/va3pI8PFTA1NflWhMwn8PsI1Dw84HNc5hQ/6a/vpdOJL7UvjZhnreeI4a Oo8MMuTB2aBP/p0jipbZVzKvqY2JRa9r/Ju6bj/xR5YbI4P/I2PhWf83cVs7 qH6FyicWvT7Cu+eYot8/05nnL9r2EPL2cv3YP5IaI/NOtXVYZ5mVsy68YZI/ Vrif+PVT4/HsDRE+QXiS8HGixwf/vWqXWfc5p8pjoW8XVZmPDLxJwd+51na2 kPz/craDjRlVHgv25zK3X/T4lgufLfyj8FHSPZVnh3lU5vaFP+W+EP/konOL NE6Njyt33SlFr600S607VfwvxT+t6PWg74TPKHqtpLlkThe+stzveN7tvOcf U1tTita7oso2sX9tle1g8/xa65KzA3tnhh3qp4QMepND9/oqyyGzLGd5+tJS fThH+BbxZ9YaF1jXUN25Ra/7tJDMVO5/+qD/h2cFhp4dmPNFmTUd5gQeTRw/ 9c4RtoP936s9z8UaB+f+pDj/V6nd87mf+3mfBTLMg6F3XuhukloG/vRa96eW udacZegveTL5D0Y8jH9ynk+jzSZ6h+ym/jTQf6RLeA/pWNvKlPJ3wn9J7qKi 1xcWjTC+t9z04sDTQ/e70L0s7FwuOiP4UMrfC9+PHtexreXRf4r5xrxt0iY5 MC4L/sVh66KwMzNs/hBtg2eLXsd5b2s5+j8tZJB/mnk80at1rJbMNYGntnXM eWLQE1f+Ku4F7hu+QwN/Lnx0f+sg36JkfJZwq5Lbpt1j+hvD77uF+7OBd23w 6ceMOA99JDOraNt3hcwXbR3Hnv4Q0552ZoXuUf3dP/rG+bs+ziHjuCP6eZxk bhI+R3i+6I06vhI+ljmI6GfrkjEym6sPNxRd37Zk3XPF7yf+zUXbIybyHN41 wu0lc2vRsZEPYR9q0bEgHoTq+Lqtbd8Q9rF3c9hE/9bAxE8mRvMJwbsl+PNi LKtD98aw80XIE5d5N/XnTuFT+1v2zhj73KKvGRiZuYHhgSdLfo8t3Ab20Z0X djj/9+g4TXivLYy/iLFcH+cNmbtDlz7PifPAdbsr+Ni/O+xcGf35rK3t3RU2 OWfvxHlrXvI1nRrX9L6Q2Ud2FsS1Gyf8gPDp/Y3vj+uOPHhKf5+n+cGHLgh5 zuuDYWeO/ts8XHT8KngP6Tgjxntf2KHdhcFfEDbRfSjscH2JaftQ4EW19jf7 LWwuDPkn9Z38DM9vB9t4IPqGXxry+ITiH7pI+Cri8RSNiXN1p+oeDZvQxwLT Fnim5OdpLE8U6+JXgYmj9RTPuo5xwp0HGdcO0P+BovsDnzJyYzs4dhfnZGLo Phn8HiWXkac9+rFkU7XTwTKMj/vi3rhej5Xcxt4dHLvltaLjtxDnaXHRsZ5e Vf9fKDoG1c2y+Zzw95J/e7Axsbagzwd+q9a670fMpxeLjvVEzKGXi4479Ltk lhQdD4kYL9xb7fXf/nvxXyo6rhKxvLBJm+/V2g5xpIiHhC4xkYg/tLToGETE XkKX+Ev9sh4L8XWIg0X/iYVVP2t54hhtp/fA60XH2CHmD7i3vt2aS+aVouP0 EB/o1aJjBG2aNSaGELJvhC6xesDYGCu8rFgX5wZMTJtsXEuuy5uibxUdk2dd rc8J8ZlGZVwHHz8+ZD7bzjF46A9xeCgjs1b9vGuw7z/uPeLb8GxyLofot7WJ fh+/0//f98X7oOgYLI1rXC7Tt8CZ+A8UHTdm3XbG1/c0fS/4+Bmhi97lkv+w 6NgsHzPWouOozMy4DCYGxZdFx73AJ+gjrmONfZGwSTuUsXNwL8dsQbdVL8cw WSH8ei/XfxRtfSf7XxUdm+KCjPvPWG7JWJ6YKkuEPy06lgixSsD79nHclZVF 254jmVVFx1ppXWO8TW/Lfha6xCQBY2M1+/uLjqfBeMCX9zX9Mvifi64uOt7I 01mfE8a0NOM6+PiPINMlxrcy+kwZmef7uC+fRN8G1ni8u+L3UU//g4RvF91Z 5TXCO23u+q/jnOCPAEbvwZBZKPqN6LeBZ+kemya8p36X7600n/1gH+tWWFv0 vn18AX7Q8dMAU8r4Bfyo8nfCp5TZ9jdhs3fJfGSga0NmaaX1J4dfAHbY58++ /1+FcxrLSYntMKYK3as/Cr8jvd9Ff9ORl0zfkuXBP4n+HDKH54xra1z/S9jk HKE7t559A34P3T9F/9LxMeOtcRmMPnabSHaw+vBH8F+qcX/If/p0yXZGyM7I 0O0g/suhS38mVll3U53bncRvqrFtW26fMq4p99pq/AKEu4n/tfC/XG/pFgL3 EP95/Xf8R3hVpem6wCfkjLcP2bLEuifljLExVbiBcEm4fmK8ptI62OpeXlc3 hO8X4fXid2Q9Xf2vJ35X4Sa1lkF3G52Thlwn4a1Ty8DfS7othXfDFyC1Hfqz g/iNxB9a7nPQLN4/L1W7DKa+cdg8O2eMXptav6/IGXpuzrqcyx7M+Qv3VN/O Uz9bCPcRvoQ9/MK7SmZYav7vlfZpwLfhR+Fmte5/N8kPTW0HPvUbb8C17hP9 wRZ1+EQcm/M9MzLG2irss9eePfcN9d69mn37wuNq7CsB/kMyV+Ysz3nKsFYi 3Jf9PKkxMtuL31a4XPzhqfF69tYKbypcT/anVxkPlEwm9f3D/YCPQPuQ39A2 PhP717gO34Fbc5aBtyP7/MMmvgXtQpdxdImx4GPROvqGbMeQn8D8vHCl+jA/ Z/kJsrmv+J2EK8TfLjXGDnXYxR+hJrVuE/EPq/H+fvb2H1Fj3wB8Amol053r IZlBtT7XnOcFaqtbYr2Da9ynieX2D+gaNk+pte5Q9eG2nPt8cLTTLWQ2/D+r 6GA/gx7RFrRnYPbVEx8BZ6qs+tNLeBPxJ8pW78T7M7+pNoYP7RP4qNBtG3jz xHESLqo1hr8jc/WJ/fjxg++f2BeemAT9EsclWJKzTdrcJGs+MQwOYW9/4pwk +NRjh/gAxazt4KNPnIrRwsua2E8deXzV/2SOOrFv5fXs7U/s64xf9RaJfasv zxqfHD7TWyb2j746a3xK+ARXJPaTXZA1nhZ+vpWJfXvxzaQtfDZfxXcgsa/t E1nLzAh/9oGJfd7xwUUGv91Ts+YTA+AnfFiSOv9RMH6j+GfTf3y98bPcOrG/ J7FHcoljgOBjNyyxn11fnc9tEvs1sjcb/0B8A1cFZp82eGhiP8GROevic/lU jefsmG9jrg78j/Dnkts2se/YcN5Vif3LiJVEeVx92c7ZJvY/rTQfGfzOtksc W4gDO0/Wt58adrCBzyV9PjXa2S7aapXzePExbTTY48X3p0a0NrGPGP5iYOIP 7ax7OJvUzf+BmQ9ELx+6+BCBOX/EYxkh3Fz3zyjR7RP7+OAfNDJxfdPBlsFX iDZou1cD80YG/6tK8+nPRoNtCzvEeAEfLftn1Pr5qupnfyLaov4ujW1iYn+B RDTl3mtl359C4nu8vcpF4XatLAOeHLwk5L8YZt2xQ3XtpVMSPrKL/i8MMsbH B/+gHYVX1/rYQfi1Lq4fEzLoJ2Ef/yD42GvMPH9inyD0sIOfUdeMy2CeRfqM v9I3tZb/sIv9dMYK9+ZZrPD8FX5Df0pmF+GrNtP1zhjjQwTdNTC+RWBk0ds9 dPE/AjMf1kbHHsITuuq3J3Fb+AThZ7Rn4vrqCsvgc0S/do6xwNsz+Pg9wafv QzO2hR36DV4i+y0Ge5yMsVz8ccId9D0ygec4sd9QVvx9hVd2sy/S3olliZey j/Bp4ucyxvhtQccHLmasi48SdL/A+C6Bsb0Dc/WJfY72Fz0gse/SqKzLa7rZ LwybtFnKmH90+CsdxH2W9YGdn7vZBwo7o2JM9Bn/KeoPiraGZ1y3Q/hJMd59 RA8WPSSxfxO+TmDinVDHeZnbXThjzPkhBsJhwov1vXNjxhj/GujhgfH957ko 13fKbZI5IrF/Df44yGBj52h7RHfHnETmXdaMMuafEb45RyZ19UeGHWxPSupi FxwlfJnaeoc9sYn3quF3c2ziOAHHJMb44DyYsTz+O9CjA+PXA8YecSaP47nQ N84zGeMkfG1OTOzff0JijN8N+wOvEL4iX1e3R5+6tn/qbRvHhx1iS54QunxP 8F3Bdw1+QMjQ/lc6pnI+9fv+ZMZ26D+yJ4f8Mey3Zwzs8U+M19ez3/QpPDtl ppN16JSU7Z8zpv4Z5vYT+1wsDnx+E/tcnCn8jugZiTH+FyujP/hELI06+Pi/ 0ye+ibBxetjcoL99U/vy0Gdk8fVAhjY39PvA+va5OCvxuC8RvTTxPt5zsZd4 fzv7oc8NvJ71kcR+Ac3yxtttZHpO8Nkbj+6WoqPxCxBu2qKs7ELeAYn3J7Of +MLAz+f8/4r/euzlviCxHj4I2KSdYthhj/cBobtMusewv1q4qqXrLwgZ9iQz ljPz7gf9325j7yFGnn28M9hvn3gf7PTAY1t5r+/FiW2jz3m5saX39V4S5wfZ 6aHLflowNq7WMTPxntUrAu/dytfwrLiOl4vOSLx/lT3bnBPGRH+oG9fKe1yR mRH9vTj6fEXIoMv34alx79HOFdHuXPbSC7do7f261wjfGbyrEu/vZa8vGFnq rqZvkj93qDH7e5eIP0t4hfhLA7O3Fnpt4FfFv154VeDZiffxshcXmSVh+5qw uTRkVra23v8S77llD/B1SV39dWFnQ7/p8+vRFvIfsAdeOG3jd8/N8f5ZJv4N ifflQm8MzH5d8Jt5y6BTaON9tujC4z12i3BR/PcCs++XPb23JeZxzOF90sb1 t4YM+4cZC+eAPcPwsfdm9Gd0G+th54vo/5zAH8VYvoy9vnMT17PndoHwGtF5 oncl3jO8Mspfh+4dPOOyvzww+4ehdwZmvzG61KN7t/AOkr9X9L7E+4G/yrsM XpX1e57fE/bo3pNYj/3J2Pyvv0Nth727X4TuwrBzv/BDbVx/T8gsjz6PaeN9 yLSL3pqQZ7/xPbL5YOK92d/mjR9pY7ow+OxPnp+4HWQeSLwnGbog8JrgPyzc OvVcFut37P3GDnqsTT6SOG4q535unP+H0Eu8L7pJyLC3mZyV1JELkr3TyMCj 7/Oj/41CBl30Hg1d7DyWOJ/jwmr7SP41wPucn0icN5L6xxPvbWafMxg96hYl ztXYPPAJgZ9MnAOxRWD2XUOfCkyuw2eTuryHTyfeE84+bWQ22HsibLYIGXIj ovdc4j3V7Cd/JqmrfybsjGXvdOL9ya2jLeTJOfhK4ryBi0VfTLz/mXyLzyfe aw19ITB7sMHYQAad5bF3Gl145Fh8KanLkwhmLzf7tJcm5nG8nDifIPVLQob9 4YyFc8A+cPjYax39IU8ietg5Lfr/cuD20R/63yXGxf7tz3WvfpA4tx37uN9I vJcbmdcS50ncaaQx+8ChrwdmfzgYWfIDvpnU7aEGs7f82f56ZyXOp0b+vncS 59QbLLllievhI8O+cfIY0gf2pMNbFnz03k2ccxDe28FnzzkYe+xLfzXxuPtG W8gz1ldjvIz1wxgvOQHfS5z3EPp+YPIhgrGBDDqbRB5AdOHtyt5+3ju6Z4YO M2aPOvvSVwjvPsLHcu6PDq7/OGTIn8hYGDf72+HvGn2mH+QNRA877G/fM+yA 2QPCnpLl1eZz3y7u4L0f8NmHMJ79+Yn3wHNvf8K9K7x3YPbYQz8NzN578NjQ +zx02UsPRg+bq7kXxf+S91bi/fDsgf8icf1+IXNItIWtlzqY90XwD2DfPvdo 4C/Dzn6BX478RKsSj4+997RF/Y+iPyXeD38Ie++5rrHPf01iewfhRyD8SsiA 2XsP/TbwoaHL3mDod4HZMwxGj/w/P0Zb34v+kHh/PrqUX+vgthgL/gWHBx8Z eGv+Hx87r0fOI+wcGtdtVbxz2OfPuJBljxJ7lV6tjn37wkfjByD6S+I9/+z/ B08a4bpfk7ocQWD2+ZMT6Pekzg8AzD7/aXpf/yHcUd/mp0r3b+FG+v88m/38 wteO9IFMpy6291vYhPdn6G6j++wf4YEN9F4jzy/PuHgty42H1KvrN33uNspt TR7hfsPfTP2ZKlym+7Z/Ix3k8+U55fmSnfXCixrq+2qU8S7l3qPF+WFP1Daj rHvmCO/FYp8We7TYqwV+W+ewmrg9wmdzblXXQPjrRt5DxT4t9ln1HeWxbF3u fVvw35Xu6SPcn4zGeM4I2/lRusNG2c4R5fbv4L7iXmBvFfuo2KfEPDlz38wt s3+KfVRfyOb5kmsi/FjjsrLcKOPzxJumoynz4Pr2GTnK+ELxLpWtjYRXip+O Mr6k3Huf2HfFPij2DrH/if1Fu0pmY+EbRnhfFTJrq70Xiz6wn+rGEZbZWP/h Fwi3Eh6+kfcisUfqh9g/BmZPFOvI5FUixxL7qmjrZ/aep+azvtx7C90Hqfe8 sL+JfU6/VXuPEP9d+N/C/xfwn+IvVbtthA9r7v0U6LKnossg/V6mdevGYNbo aZv2yPFEXilyR5Er6sQBLoP3HuWxPDDC+abg/9TJe6joD3uummZshz6Tcwo7 yO4/yv15Wbot2fOfeg9A39T5YFiDhtc5+OwTAJMvilxPXVLne+rOHv7Ua/Hw yPnEHoB2GZfBX5Z0D6b2lSOfEvLkVGIdn1xK8PpKvnvqtX725IPJi8S+AmzS JvsByJNEfbnke6beY0DuIzD5j7DdLfpDXxkD+a2o7xXy/+03S72XgDV3xkuO Inh9gs9+AzD5kKqqfV44J8iByXmUE79f6j0D5B0Ck3sI2j/4+0tmYOq9AeQF GpA6NxD7DZBBj/0S9I1xDMtYhr0Zz0afyMfEng3y7mywUR4y7GHkGfyk2vk9 aIscH+xJINcOPGKpVaZemyV/Bnk0Tqn0Gu6gtG7tF8x6LmuvrNey7snaK7qs sbJexhoq66eshYJH1HjNkLXDtMbrlawXfhJrmqxpsZ7FWis2a2KNFP6oGq/d sQY5JtY3scP6I+uN2Bkt/uRK95m8GKwnIs9aHutOrD8dWuM1N94/Y2u8bsha IGt/rAeCd6nxmh3riKw9sZYI3rPG62isz7FexhodeL8arzexVscaGWtVtMV6 E7HVibV+UrnX7pA5qMZrmuzJ+G8NdLBlWLNgzRP+jjVeQ2Mt7ZAar7WBWVPj um0R9wnzKqyZsW71qO6HUuo1l3zqON2sPTG/zjrWkbLTfrBjfbO2RYxt8HWS aTfYOsizboUusb+fGOyY28TxJu42eMtBjmNLPNvPmF9NHXuXtZgbsi6D0ccm 8cOJoQufOLrEry2kjpfLPnnssH+bNR3sIMv6F31mTe2ijOVZb2J9j/EeXuPY n4yXeKFvEAso9foRMV/BxI+FpmldPFjwwtAbE+eKtSow9tqo3R1SryV1i7UT 1k1YYyKuKPE9OZAhzif9Kkbf4O0YuqyRwWesxH8kDuTN4v+UMWbtiXUY7I8q d7yoXVLHg9o1NSam1PKSy8Sngu4WmLhV4Jmil8vu7qljZu6RGl8lvHXOZfDK kjExhaB7BibWEBjZh1jLF356cz0bqfE+whvrdtlbuLnoJyXXEWsIOi4wMYjA e4ruk1r+mDKXx4YdeNQRO4gYgwdyb9c3b3zwiS8EPkj0I5X35b0kul9qXFvP lDJxhybmjOFD9w8+sYnA1NdTGwdwz9d3mwdEu1DKxCM6BIp8yBwUfGIWgelv 0/qWaVLf/dsnxki8vpOFf2lkekrq+DzYnJA6HhGxicDEfdxG/5kO5ZyLHpYa Xxs8ysRNIk7jYcGHHh58YiuBqZ+p8hFcR9EjU+PfgkeZeErEYzwy+JNEj0od E4mYSxNT16+POuJAUg8+sKFjMB4VmHEfEmOBd3TYIS7TialjIj6l8jHCT4oe mxr3bmRKmRhNxFo8NvjQ44JPHCcw9S9K//jU8R5PSI0HNjKlTAwo2jsh+NAT g8/5PSSu4+Uqn5Q6NiPX5aS4RtCT4xoRJ4qxzIjzNDHOG3GWuI5c2xk8Z6lj EJ0qOlnHTo1NKRMbiviKpwYfelrwiR8Fpn6sylNSx288PTV+IniUiRNFrMXT gw89I/jEkgJTP1X0rNQxf8Bn6ujUxHRq8BeFHHxiBCEPb2FjyxE38kkdZ0db 00Qv1PFNE/POSR2firUMcK8mpucGnxhWYOrPUPm81LEcz0+NPw0eZWJSsa5x fvChFwSfuFVg6i9o4j6wVkI8rouE38iZR/+IzUV5WvQTelHw6dvZ0c8bRP+n 4wP97nzbyNfpG9GLRS9JHc/qw5zxTk1NLw0+Ma/A1I9W+bLU6yzTU+O7gkd5 XqzdTA8+9PLgEwsLTP3OTX0P0Rb3EXih8EM6rgz8Wc51C0PmirjfiH8Fpv6q 1PKdGVcTj4fzAI864lb9KbnruCeamXd18IltBf6O//sqX5N6/WtWanxC8CgT 54qYk7OCD702+MTCAlPfReXZ0R/anB3tQikTF4tze3GMHd71wSd2Fpj+ntjM 14u2votxYpPfNn7z+B2knutK/CvojYFvFr0ldSw4YmTBZ/1qqso3RX+QAX8e vJtDnjhy6DYUXa3yrSEzJzUu6rtvrujttLGR+beljotF/ZzA6N8cuq3y5qPb Lm99dGs2sh3W0YivhR1kh+rH9XnhIRu7HnliZPVhzly4bXPHmLqLcyKaqO7O sD8vNb43eJSJQ4XcvODfquPu6MM9qXGT5qaUiaN1X+q2iM9AfK17hbvlfdwT 8vTrjugbvHtDl7he8NtFf++LPt+3kfG90c+7om/IzI+23tLxpPCb2NGxEDui C0Qf0DGxuSll4mWV540nhsyDwX8ote7ksEGZOFqZvDH8YcKPRluTdDwSdqh/ OOSJzYVN2iEeF3xsEHfrsdQ20MMOMbigj4TNptHXJsF/LGSIfcF4uZ5PpR4v 1/px0UWp42vV5I1XNDd9IvjE4AJTjx76xMsaGbawA306+M+KPpc6jhb4GR0j N3asLWTQO7W52+acrGpumZXR7uPRh1Le+uhS/2zYJE4X9ql/IfV9e93Gft54 Jnnf7hJ18KGLU8fOIo4WmPpRKr8Y9l9Kje8MHmViZ+2VN74zZJYEn/haYOqv V/nlaGtpalzWQveayq8KzxPdN+86+NBXUsfdIgYXmPrXUsu3amEbS0MGHnXE 1DpRcm8Ln9jCvNeDT9wt8ATR+iq/IVxP9M3UeELwKBP/alLeeELIvBV8YmSB qW+t8jLhTVq4zWXRLpQycbHeE32XvobMO8EndhaY/h7awjK0NSHGyRi5bi/E daEeWy+HzfcDfyj6UeoYVsTggj9F9CSVP4j+IAP+MHgfhjzxr9A9h3Os8sfR z+WpcWVLvTta6b7jeWll/orU8a+oXx4Y/Q/D/kV589H9TN8gq1LHxQJ/WrIt 4mhhB9lL85ahHegnIc8Y3ov+ED/qc+GrRAer7tOwv1r2PtexWuXPUvOvamm5 zwJD0b0y9D4LzFwU807MTe3TyjbGt/K6NvNan7R2vKwvU+8joK0vUsfOogxG D/pl8IkDRv8ZE/pf0afWniv7ouTyhvVF1hZpZ03qObSvqdfxjcrfiK5hj75w 647mtRE9knna4CEPJg4PdG3gCW2td6hofqT+T6TmYRNMPJy1wj+ljnsD/lbH j6nrfwgZ4vxgkzaJpQMfe8TM+Tn1ehoHdj5t6wMb+J3ho7RJyb5X1P8cbTE/ /U/q+Xbm139PPcd+oOz8Ktxe4/q+ZEzcG+hvgYmHA0b2Wun8ITxL9J/A64L+ GZjcAbTFvDi8v1L7a/8VMtigre90/KLyU9Wug08/4G3a0fP9f6deXyBPAZh1 AHIr0H/WDcgXsC713D/+dxuV7AM4ROV6Jc/x4x++PvV+Tui/gdnnCcYnnPj8 ZSWvFbAmgC5rClUq1y/VzdmDmf9nfr1RyfPtedYISp6P3xa5ktcNWHPAJmsQ zP3DZ/6fOfjGJc/JjxplOyNjLh87zO3TJ/qKP3tplOXTWN9gvKwpXB3jZd57 H+b8S3Vz2GDm5A9QuVmpbn4azJw5es1Dl/lzMOcPmxuX7NvYsmR/17PDfxY/ WOqvDRl8VHej36VYNyhZBj7rA/BZI+CebBl2rg2MDx05aoeUnKcDn1naoh7e NsHHn7Fdqc7PFF9W7OH/2KZk38NbAuNPCm0beNAW1sVnE9o+ML6cYPQmsDYh fBBz+aIdeAba6391e5dntLdfKjZpk3r4v4n/hp6NTsJvdjC/Y+hiq0PI8CzS Z3xafxT9oWQdfHx6lTw//LNo15L9GTuLdinZPxFfRTBricj8pGMzHd06mnbv aL1uoYtfJJh1PHwWu5fst4iPEW3hr4SPI76O1D8TMvjW0QZtMyZ4PYJPnztH f5gzJqcy88bEAAcz/31jvHMYI+30jnGxh5z8Lszt4S9ADkXmU/E36lPyHDi0 b2DmxsH4JpEDghyWu8f8K7rMx+JPSo7DDfOsYOZd2edPLkDy5w0QLS95zz+U Mrn5mD/GJnPIJ1WYT/yfO4S3KDlWDPIDQxdb5aH7S/QZf6ktS5Ynrxzz/IyX c8ycJeNl3hIZ8tWxb589/GBy0ZHHjHxmG+aGwczrZkQHl5zD6IZK49/6mlLH /vyt47l4s8z79smRQx4djkzo0q8to114W4UubW8ZfX6jzLawMynwxDLb5tkj D87xKg8VPk70MNHDS84ZsbXGP5x+1LM+GHvvhvx7QYcFrgp8fMhWh+62gbFR K1qj4ybxtwvcUO/8NXrHFXn2G9TV3Sj6ZI3tYpO81duGnQb1LYMuNrBLjhva QYa8PGMa2uYODd0v7OCzsFg6WeEXREeIjuR6qN3KBi6Dqc9xbwnnA6P3Z43L 4FGh+6rwuhqXweT/LQif38B0dGAoZXLTMM7tSx73ihr3n3FjDzvkx9k+dJEZ EH2iP+eH7nkN3C/6Q14exprEeHcX3UPHpo3MS0vOqZSGDDbJs5wG/ktHiftB dAfRMSXziNXJfyf+r3WtdR182tix5HO8p45daI+cyKI7RR/mh8wDouMb2v6+ wdsp+LSDTdYU4KG/IS/zzmFnzxjLA2FjTNihzV11PN7Q9ciRN4ecy3uGPPW7 lZyX54E4L/SrfSNjzg/HXiXzJgc+VXS5jr2FVzRyGUz9btEu4yZv9biw81j0 if5gY2zYgSJDLp4+tdZHd1zIoPtq3Iuv1Hc7+0S74wNjZz/R/UvOv0PdviX3 MdfYOB90v8D7B0aW8gEly94W+PagBwY+WPQQHdc1Ne+gknP0HBQy2CAH9P5h k/zOBwWf3L4ThIdKd3ZT28LO0MBDmnocjIfcQxOiLeq7sh9e+KmuZWULdBzB tRNdr7pDS857Cz0s8OGBsU/O38MDb9rNuh2CHhl4YmBs085R0RbHJOEnRTtm LYcM/aJ/5OhBDz75Za6LfjC+SWEHX/he3VwGw6MNcr600/v3mJJ99rfRe38K 50H0eNET0Bd/Ug+XjwrZY0P+uMDz9Xt0QNZl8Imhu5Fkjsi6DD5J+BThrj1M Tw5MTvDxcf9MRa7kWGTYxia5kLCHHXKUnBS6yNCnySX3sWvobtbD7dHnZj0s S3vknXkz5N8SPUP09MBTAjP2i7Kug38a/YqxQymTp2aDDvamZM1Hhv86//0H 6mh72CF/zSzJnCX8eQ+fI87j/aJnik4tOV4ZFBny1yBH3Wc9zJsaupOjP7Q/ uqdl0CVnwRXs32riMZxd8vWEnsP90NP5W8+NMcIDk9eGuvOErxVdF3h90PMD XxAY2TuyLoPhgcl9c5fKFwrPE23Zy7hV0GmBD9BxMc+q6H2yc1HJetSDyZVD e8isC3pJyF8UdpC/NPjIPis7V4QMPOrIrdNE5cuEG4seEfjIoNMDXx4Y2Uez LoPhgcnFg90ZJff9hcCLg84MfEVgZK8UvarkGAjwqCN3z5FRR19eC4wMeWMv jbFsltP5FX6pj/4zlYzJU4O9q0vO9XOcdK7h2RN9J/C7QWcFvjYwskuyLoPh gckNdHVvXUP6Kvpn4L+CXhf4+sDIfpd1GXwjz6KO//WOQ/h60bI+xvWC3hD4 l6x1kL06zg/ng3r45BVizLdz/4uO13FTyfEfoDcHviUwfSvLuQyGByZP0DOS u1X4adE+fY37Bp0T+LbAyHbIuQyGByZP0OKs+0o/B/Z137YIOjfwHYHpO/2g r5xLzhnnivxHyN1Zso0GY3S/lhwvFN68kuNR3BUY2X45l8HwwOQhmqby3cIX in4beG3QewLfGxjZQTmXwfDA5CRC7r6SbdwvOr/k3EbwKOO7ND8wstvmXAb/ rOMB4Z/6OobFfSG/x+bm77m5v+MeLTn2zoOiC0rWq825DIYHJrcROgtLtvFY 4MeDPhT44cDI7pxzGQwPTM6jf3mGdDwSbUOfFm2pc95Cx+Mly9A39uBBHwvM 3jwwfX8g+oz910VfKzlX9fS4jlwvbC4qOa8l9IlSXbwKMLEm6kmmTMeTJcez gN5Rz9+bTwUPmadCHvp0YOyAkeWeqa/jmZJzdUOfF32u5HsJHrnbnxfepXvw SvZJ/y+/d8g0ko2GYyy3WMcLJeuVxbkZWc8y8IlLs1T0lZJ9zMn/vjjkm0im sY4XS86zDu0kuoTnIHjIgImVCqUOf3bysC8JmdaS2UTHyyXn9oYO7+k2lwYP GfA7PXxeF8X5IR/4KyHTTDJNdbwa1wk6sqfHQZ/x0+e3jt+8ISHPNV3Zw/nE Xw89clO/VXJ+6naSaavjjShDj+7l+jf/nwx4I+EOwpvqWFZy7mToetF3RN8O 3vui75Wcq5d8yu8EH11kru1te7SBPz48ZPCdRw99/MrRf1f4UtHO0u00xuX/ 8qvGfQgfnf6SWVXyHiD2/Py3R6nkPUvk4v1A+B/Rj0Q/LJnXfIzxNX1NqcO/ fv121mUvE3R5qW6PExjbj1e6PdoiLzB7mGbEXifK7Hf6LzdxnAfmYlaEDO1u NMZ9Yh8TdtjXxN4n7PxnY7T7Qz/Zo/RJyDJHy/ztAx08D88cPfP4rDOw3sA6 AmsK4JWxfsB6AXP1yIH/FF7fz/Pzp8ecPfiM1qZfBj/p7zl55saZj2eu/t4O nsNH5quwtzrsDxlmGebk0fsmdJmrZ+5+g42vQ2Zl9PvWlp6/R6eB5Gf1M5+x MFbmrJkPZ66deXvi8kGZxz8j5tvB1O8wwDob5tLR5Zyt3tJzgBNj7hA8qYP/ wzLHx7xe+0Ge62NOj/ofQ/77WJ+gj52Dj41J/d2P//oQdtDFFuXHO/g55l7l /cn76teSfxN5LnkeiV/B8/tbye8i4mX9Fs8y75PfS363EJP593i38J74I94V 07PGvLuw+Wc871dljbHPs/ZXPL+LssYbnru/43ncRr816+L+53n6J54p8kr/ E88jz8i6eF5yA/wbxG/Kj1nb4fnltwj+Ph38DuY9y7j4DeI3iXrewbyLR8Rv BZh3MrTemLrfiHrxm7JFhX8X9ovfBPD+XU0bBJ9z2yB+Ow6ocNu0y28A+Ltu fpfzvuZ8cs4bxW/EuRWug887Hrywu8fxb4yRmOZcu6q4Lk3id4F3MO/kVT18 fprHcw2P9y/XguvSLN7bZ1f62b8m3kngWcJTNPyNxzjXNL/h4FXBo8z90yp+ R7ju3Fct4/eMo0XIY6952IfXMnTRax26YGy9y7dtD+Nje/h3aZPgc4+1jt+s hRUeD2MZonul/RjHIuN3ow3t9fJvAvzZvc2jjvsN2i4w92G7+K3haBu618b3 G99Z7eP3hXuSdz3v/AH8juh/Z8cxjj9GfYeQ4fdn02iX+7lD/DbN7el+EK+7 Y/x2cD9DO4ZN7vPO8Zvyf3snAeI= "]]]}, {}, {}, {}, {}}, VertexColors->CompressedData[" 1:eJx03Xk4Ve/3P/6oiERJUhqEJESJUtRBkSlJJSmiDKkQUlFKlKRSIZGSkFCK FIqUqRCZp5ShpJQ5hcbv57pe57lXb36/88++Huscxxn22Xvtda997zk7nIxt OEeNGjV97ahRo0f9/98EB4RVbtiuYg338zk//PfkRTBxePpKd4+lzSVMHH5T nzbWTLOYibf8/plwb3Qja9SwW3qQUMny6R9ZonOk+NfMfcUs/7u3hyUmKbJk 18Vk1uB3976b4V+Y+PiY2jvVm18zxvLbgZd/4gPfj4jn+PRlVNwoGxG/ML8h SKi8gtV0R7euxnz489GtaVuSy9cVn1h3J7XeXR9Zwdz/ermxwWWfRpbD2OCX HBZ5TBwuaj8R7aPvzsRhkehKhyOT7Zk4vL5wzIqt8sZMHC6K4/g7rtCBnodt Ay719fOuXGLi8ICfaWUdZyQTh3s/BO32iwhh4nCSjVXts02HmTjsWTZXL8h0 GhOH5R10FdW5TZg4vK0o69imnO1MHN4RF9+35d4SJg7732ldpy28nInDi0Ul gwXKrJk4/EOriTeMiz4HmNfKQPuMjRUThxU2fTu3QlSFicO3rHdIHF8xgYnD aqunv/IOV2fi8OqyXY2HtrCYOHy+MUr2XIIwE4cl/kzepdM5jonDtWMuPXl2 jD4HOOtEamjm+hVMHBZO4wn2uCLPxGGXkBez37n+Wok441Uqom9ndzJxOHmt SqzjwYnM88DrEj4+MOTgYeJwWI7O9+8Hm5nngWeIDKz+oPWUicPL2rYUZE1s Z+Kw828ZUe+VrUwcrvplfGpALoeJw0vWf/60ZsCSicPufM1iW/O2MXF4KX/T 3vMJD5k4HPxSoS3oySsmDoebCn7Qyc9i4vB9Q917J2NimDjsJVF02/H1ZyYO 39qa0XKh+Q8Th6029cz8ovaDicNrHoWNWvmlgonDMSJTBdRvlTFxWHtF7PoG i99MHNaMeKf7LJaT+b7g3H397vLFn5jHw257c2J/SD9m4rDfhNfOKub0PHD8 LDMzz2mCTBzmmzSBq3r1eCYOh8sk3y8Qpe8XrtrvNGWhM71feOwvXwdjI/q/ sNfoi/qbrnMxcXiN3cB+u8Qu+tzYlpnqsPSw4D0mDtvnT/7c0PWXicOBZgs0 5cMEmOeHV2m/jfedQb9TuKQ3S61j7wfmeeC6vy3B146kM3E4bruCTqpyPxOH OaWqvl3ZRusD/HjUlWevxr1n4vBo3xXvmr3PM3F4cNz2cK0O+l3DS0Vey2zr ovUQ3hfUOySiPsTE4QPXYn9/vt3IxOGB7IYXkRt9VyAOa0burLmxlNZP+PEZ LuXyB/X0+tn+bdwZd9Q1j4nDhU8nBGVtNWLiMNcLl7EfUwqYOKy5dbD18ecG +r9s8/que2K5nOKwZMGugqGyEiYOv3jw1KXD6T4Th78lirsMqfgycfiZq9Oa sWM0mDj8V93Pc8aKJ8znA2/SXcSarTIki/hwD78VnQi5NHepBmu4p394oeN4 JpzyKLaH6gsf+4q/ZOJw+DW3g79flzNxW73wHQkOI/Mrd/eDMbc0PrDkRbTc jns/Z5b/3dvDMp34MmPpriesz6oTJvXd/MTEN+rYNM7PrRqRL9WufZkw/+e7 EfHsTqU+ZfPaEfFrRg715VqFrPubdSdPNR+el9FNd4yiSNfbDlZP9tTPdzal U34S58VVOestS+F7eXj6xjImDnd/Url16gzlM3DY9egdFfmbmDhs+0aybvW0 XfS5sT3DW2aNOtdqJg4nnZce6/rkLOVFbBdVLzZ9q0j5MKz5w2S5ncJV2j6z LR1TU+NfcZqJwwM61U0vqrZQnsa2UsyplasWUF4Ed6g1CivPoTwHftjMZ1jY s4GJwwtl1+lvOvyAWZ/huaMtTqZIbmQeD+9NVR/sENrNxOG9HJzGU7QoX4XV zod3ZQrR5ww7cfhaJqTRfgS+av1Cdhe3DBOHDTxDjqh8p98F/GBwvHzAdsqX YIeq6OOr93xn3hccL3fS+2/6dNp/sa1xMXtZXfhSJg4nvDLat9uI8kM45GLb oatnJJk4/L6GR5Tbm/Z3sJP88rRwr69MHL4xZO1aKUj7Tfj5nZr8hW2j6HiK 7SMlztXakbS9hQ92jtp7dmIGE4fFXybxmEyl7SHcL7DWhVuTtodwgEXNkz9j LzBxuHTbzIwTcVZMHJZ7mHPc7d5ZJg4PPc8R3N1ZzMRhBV9R1+PdtH+Bs34+ +njFu5SJw8e/T7Ke4xPKxOHlPqbBt127mTh8ZbWE9owvo5nPDc4UuqEiI01x ePwYz9yCBNqPw2NU5Z6eMqf9ODzotfv36Jc/aT/L9hjuikmCE7iZ54dPqO1Z PK5+gHk83GXodvLloAsTh7v5tDwDOWm/DH+p1zZJkaLfC+x7Su9T0D2Kw3lv ll29KED5PxwdenRpgspLZj8Fe5b0XK2WodcJV1xScbW5QPkPnF5iKZ89mdZP uP3Zw+2HVSlvh1dxOCfOqKD8E245JqOdnknHF7DLtXT3rTspH4Nd9VsqDMMo f4NFokdP5dyXzcRhBY/SJvWU17S+sT3z0rrRuur0fuGy4KkXr+fS7xQOvuPc vJWH1me4IeLc4ItnuUwcNpkQIBiY3sfEYaExhUu2GtD3Am9/5NkeJ0r/Fza1 /f26P5TyZHhW9tb5qrN3MXH4euqUZUZ3KV+CU7WXK5t10+8L3sblLpxfnsLE 4dkRksLNT92YOMx3aue6/Df0/cI+2+1//p1fycThCwvf1AZtozg8yFEsMlu0 iH5HbJ9vrp5qUE3bMXjjSvufL6/eZuLw4IoLlRtcr9DzDPPw2wcPF/efh1ay hrtqQtxU/cuhTBzOdqkJmRpYwMTh76Zte6c5VzPxcw+aPRMrR+ZXkuEGU0Q4 WllJs57pui95wiz/u7eHVR+39lUafz4rWLZeJObQByY+jUdg4tzWYsZYHvYa Uq970zIy73qYPmOJ9psRcc4jVkWlLZmsUTfsJpx9QfmbxYmqiurom8zyf/+O bsHnbCMX1TWxrnF6tek71DH3wztkJ/yNv3+b6jZsr9NLfVUcR+sh3LY/z3GU iTPzePhL1slkk3UitH1je0ey0piDg570/Gx3pQkv+6gdxsRh1v5zllt1rjNx WLk1fO7D+iAmDo+dKMzVYu9Gx5tsp1VU83hd+Ma8fvhC6MDYpLbNzONh3qLW kqdOllRfYrvr5cyt7+OpbgP3qpy+xzeF6jZwlt36pTJClL/B0z6eyDlnsoeJ w9Pfc8vYRe6k4wK2Jwrfq04p1mLisE8PZ6LJdKqfwAGzajsnhikzj4ddygqT Kgqp3gV3mjq5NFfLMXH4wPrg4tzqWDp+ZHvRR6X4R9wSzONhjVEee/4eofwN lp2sqqKht5iJw963A4OUJogycTj46y0tCwNa3+A/tzrLZX/RdhXOMvkbPd1h DH3ObEtb7J7w9y5977BCmtdn6ZJntB9h+0aWuPGFPKozwI23uI8uK6b9AszN ybdrtxBtn+D7j92OpHpT3gXnvrb0eTJ0meo2bP+Yuv660ZhrTBxW3CEgO1WZ 9nfwoGS6zExrqlPBPDrjRGd7Uj4Gfy9pH2PCs5mJw5tm3xf+kkl5F6wasrN0 VivlP4zHH9JnVfDSdoXtzCW3Ct7No/wc9lcRlU5T/c3kJ/CcAp/X79/T9wL3 ZnkJKXRR/gAfUlg//W8K5Xuw82OhqP7ZtD+CA85tnee4vo3yXrbPaEh39slQ HgKX7fr8yvEg1XVh7WqbntpDlM/D20IbphTeoTwcPugd2tWvQ58/nGQc5z3o R+snHHWR8/rOnfQ5w51P5SNK39H3As/WFD1fOz2a9uNsR15q3m91lfIQeL+6 iXp+PD/z/PBGNwGzufX0PcI/lfV+nFhFeQ4s8r7j9PzVGykfY1twrYqN3iHK t2HvtO82llH0/cLlfyeETz5J6y28Q2jZtl+5lA/AUumlKg/rKV+CF3J7+P4Y T9sBuHfH4tsFfINMHLZcEPyk2onqaXBKso7NpOMvmTh8yYMlKnBCm4nDq2o2 FjR+oPoqLKUV2VKQTtsT2P/wZ9lZQVFMHP45yvbF4jl0vACfcBZ5vdaT6tvw WcNeD7Opz5k4HKVSsU0pupCJww9//17mF/GCicM/+n508EZTvW64h99Wdwde sv9AdQlYwXbOsT/vaRwK3m30+XjRgudMHP7NzxmQ30L5RgKHy+NTyk0j8hO7 MjnZNznvWBZ3nPPl6+KZ5X/39rAkDdS8G+tesrrqW7IuTKa61Eyhqw/rTlIe huW6faLpqiuaR8QXdLpPCnRtGhHvWVYXcKomhpUzKMmvYNPJxH+6zVhuuPM5 s/zfv6Nb9nauTi3p9yyldFtrS4+3zP3iTy3DVqU3sVZ6ZluYvclg4jBr/oIh Vwca/4Lvf+6RfjpvHxOHy4RXh5n6UB0Jrom2sS6xofwB5r3W8ihyWSDlM2yr sHpLZAaorgULPONXs5a5wsThbzV6Nc/3+TJx+Mp+vR3PplJ9CVZa+nG0qj/l S/CS0SZfo3dSXgSL+Ct1j82ncUZYMLHn/In+sUwcVu9cmt12UY+Jw7uc9IbU uG2ZODxwc//Gj7ZU14Llfxn8yinbysTh3IVJy6JdFJk4PNNduJ7rPo1fwCxZ oTl3b9PvBX7+iatRIESN6j9sC+ptTnWaOYfeF9s8K8KO7b1KdSH46ParLad+ zGUeD/OPMbT5MET5Fay0dCAk6+6Cfz7//9x0tmH/q+eTmDjsLL1fKGzyLdqf si02+kuRCF8vE4cNFwkcUZaj/Q6stVxRQquKxgfhT8d9ExwCkpg4fFVKbU/5 1BAmDutHqFy6PPciE4c5jx1+Fzqd8i54mnFtgMZLytNg08trWBE7Uum4m+3M 21GD37Io74J919bU27e/Y+KwfyD/jg4JGveBpY8teHGs+gvlmWzvvcj7Plr8 KhOHzxpUhSgr0X4Qrr19bEOrEu2XYZHdQdf50+j7gitk/X3Xr6G8Ao4xEQrk qqH8Gebf4jdF+AzVbeC+VZ/ldV0p74Lb7hZf2s/LR8d3bIeOunQ5N4XyBPix Wcd2fj8af4GTlLtXtTX/k/+wnbfC9W/7EOVdsA4vD98mgSlMHL6i8fzs5a80 TgofMrd+fqdUjYnDjUc+7+02orwUPqoeMX3ZVaqDwRUiLk9yP3DQ58n29hcp Oi2FlGfCisZVUYNx/+TnbAeNt2rXeEzvF1ZS+BRmzUf5J3xBcTyv1xbavsH2 tw3tk9dQ/RkO362RvbU0nInDVnLVkSKPPjJx2Jbv0/vex/T7hbn00jL5f9G4 P7xU/+GCg5pHmDicZKK6SXlpDROHe1VyLJJaeyjvYnuDMc/O45coT4O/iRSk LK+l1wlrOQ8+Xa1PdSTYwyQgN3vKPiYOq3ELPl6kep2Jwz4SOb8ks+PouJjt K73j7h2uPEfrD9ubE++l37Ck/BZOn2qkf5WLnh8eUpoxbb8ZreewRmph4LXp mUx8uIffagePZE+9Q+MU8O9xug+uOlB9A/Z+tW6UVX8uHS+zfaXmZ88J2TdM PNPIOZ8/aGR+tV34QZeaX8uIeEBz0Zto327W55LfU9r9ylly1mOqFnRR/clr hyjfFoGdLLXCj2tb6ruZ+Ia00SLTNEbWqdbPd1zbfHRk3nUt6gP/rLw7I+LS SScLirgqmeX/3k+3hAOPc+z5P7LKPk4pFjpM46E/bl1Yx7mzkRWorXBEMYzq e3Bm0CE1yTYa14On5USKRHhQnQduq3OJ+HLPkbZ7bE+av/RTHe8sJg7LOOx9 fm3FSSYOG3eVaswVoHFe+HmtwolI1X/669j2imjOktGnPA1+omzVHr7NlYnD TZN/T3Fzou0wvKq1aOfoLsqj4J+qU32drSnvgudWKH7tydZm4jBPX4CU6yja /sPPvzwzK/9BdTP4weoJj/4o0ngrXGM/sSHwrg3lpWwrNPxNe6tD/W9wzdoY mbuJtF+Axx3NzVZ2nc3E4RehixbuEaX8Clb6lbjHuo/qUfCgbUmNvthkJg7H fwj+wydCx92wypPac9qKUpQns91+d+WnrlcLmTi8tKuQW86EHg/7Xon12Xeb jvdhk1/z/sQsOkHjC2xnb04rtE+j/TV86MVb7/i1tD2Hr3Ekb/1SQvsjWIBb JWV6O+VLsLre1tqXB7czcTjrmBxnbzv1pcCmd5YdKJCncUY4v+SHnNjft0wc Dn117UuWJo1TwDEJ5tnuo05SfsJ2zIXtyUYBVLeBl1VOfHalmcbp4AVXj411 eUjjPrDkkk2r8nzpuB7O2nF61MIcqs/AIheuHO4/QvkPXDrNQWZPFOUhsOI+ zkieK9RfB0+c9JHfyorWH3hWTrhHm2c+je+w/Vy9at1XFcoT4BW9plWf2un5 4fOdxhel4ujxsM9HwVcbNak+AAtvnr/ukRStJ/Bm+TmyAtU0zgiXF9l2fG2i /k/4AM/sadf/6SeE5y06a5MURvtxOGlOgHPcW1pPYI/How/4KFF+BXeVTptZ +p1+F/DZq7c8Zj6j7xd+No/H1dA1konDm+V3rOSt7aD9ONszRfdIH+2l54ej 3y4aG1lB2zd4Y6yW0dwqGg+FYxYmvbgWVkfrJ9saFxJSoj0Tab/PtqXRz443 zZS/wY7mk+1vpVL+Dxuc/VrcyEH5Fdxz85rDPPf5TBwe85f7SekNykvhK7si W0Uf0vPDXbx7pQ49pv462E7mffS51fQ64dIXHRc8LKmvEpaxOKl9tZXqWnDB tESHOYa5TL0XzvTdrm532pmOs9huONhdscCK+hDg5qbfU6+OoroxPHvZM4eE MfZU/xzm4bcNXSXGvflKrOH+1OR0fcPCi0wcVhQftdOrNZt+12xztfH9EF1L +VTBrfPnZneMzK/OqG83PW7cPCKeN/as3VbrTpbC14t33hlWM8v/7u1hXdDa J2MoEccyHEheHvKzg4l7VEybYzN5ZJ/VxSMy/tH/H/mV1inneSryhSPiSy0C illXyliBq97ber1sHHY/3WpF8s0zuDtYZb8qpd5G3GXuX8DvHxnb+IY1xjXe 7lR2JROHl8fm64hsv8nE4e2rFkx06qbtJ1zi327P8WI/E4drmv39xi6mviz4 daSly8FxNM4IV7hHmTdsDKbjNba3fedYfraI8ivYoktvJccQjQvD85S2+W84 Qvkb/Ej15DFXBep3gmvmeCcu6aa8AhaO3jhPpJbySTjXc5mXjQvVl+Bn8wpW TTwmy8RhBclrdsEr6bgA/rZ/rW+XHj0/fFb21s8f/XZMHF4t0Vyt70z5HhxQ 6dueeoPyPXjXpYN/F+ZQ3Qae2VG6O2OjNG0/2T6xPuq+wSeqd8E2vvV6m6oX MXH4mjd/KvdL2n/B/A5SmV8KqW4P71i8VqJUj/qy4F8tv6Kq/1BfGdz+da2v zWExysfYnvJHNfy8IG3P4aeKbi9kBWm7BJ+pPPq2t5HyGVhA9NdBs5QWyqPY DrypMqS3kurocNSjGV0t9xypPs+2WU+UnM6qDUwc3lWkf2bQk/rt4fTIsYp7 i6l/GC49HP/eZiEdd8PNJ6499rpH9Sv4a+ztH+8C6DgaVtuQbx8TR+M48E2j 3zMdt9H+Grbjt5k9Noj6uuEgntaEsWspH4BPqmqqOT5+wsRhSZa1/7ontD7A uu3C+dtypzJxuJK791XdPOorgAXmFW5Q5Kf6CVzbLDZRUOcO83/he/w3pqtU 0fgU/MXzT6xyMOU5cP+X2WcvuFAcPh12cXecGD0PLL9ARvbpfapzwpPSdFwD w+l1wu7P+bffrKH3BffN94oy5aB8DL58bq5GxkzKZ+DY/sCL3fY07gOHKaXk WbnS9wu/l+3kCBlFnz8cfYL71doyisNxxYoHnm6hcTS4NPPSpHvCXrQesh1V fu726MdU/4Fv1JQUDKlQ/Q12fe7y8+FDysPhb+nin1/fp/wfDk9+9O7GNxof hPs2TkveE099C/D3ZYNvfBQo/4e7WBOC5t6k3wusHvU2/2ox5bFw3i/RRe+4 JzFxmJd1PtWxlepXsG9BqcuYgH/qyWxfqI7rVkqi4x24mV/ZSt2StjPwxNPP uvwD6f3CJqHHz8dU0O8Llrm0/mD2UjrPBf56YYr41GR/2g6wzbWl+vvy6L1U Dxzm4beFi1ckr5Gj8RF4clCMQ71RABOHV5auMbIfesrEYWdbVw+HxzReNtzM 85/cfblKa2Rf1jc1NcOJy76wqv68TDZdU84s/7u3hyXG8Sy3KzSdlf5XYF1e fTsTt0yIrLvTP/I8QZvC6lbT0yPHB6NqLlXlqw2vT/1f/IdW+uUveax7nG8l lPyp70vngEVT47RwZvm/f0e3u2FRb/YnNbOGDDd+OXmY3jfcVPPX+lRVGhOH Fx9L/7lnLO3fYd7Dn2Rbmilfgif2359V30B5AnzY1Gft5Q10Hij8KnxdLVeR HxOHLaQ0nm61p7oWPLt4s1Wt/TUmDrOWsPrkBijfhsU3GK7IvkF5IGzXHGB+ frEQ7V/Yvuyw5oLiK6oXwRsjuVlb5uyg4zW29ZKnbjnQtp6JwyIGdjlGOrSf gj+Lc2n2jtVlHg+rFVyOvNRIzw8f4Njg1TybxhlhMW+JmxPHUL4Hm948NJFV RvkS7Coy9V3yfqozwxtmSblzmdD4HbyM06LfRpX62OEnfgsb6hwon4S77prs 6Vem42i4fKHxDbXvtF2FB3kK8jz5aFwSNuOoE6hIonwMVrlSNc09jfbX8JLN Cl+289P4C1zaqbFqQ8RB2l+wveyQl0ESB/Xlwps4Hk/XF6M+BzjW50aTu2EQ 7e/Y7hqzZkz/Gup3hc+bBH08Jkv5GDwwsc7ZNKqcicNFLTvvr91G9VU46+k2 jXEsGoeCb36YcrWvhvZ3cMKnUbeGMuk8RPhkV6ikdyXlmbCzwvEtfr2UX8Gc YwdWXNGn8UHY5kip+q8A+h7hMW8njbKoDaP6ANuNS3UtrKso34bTM580ah+n uiu86bRW7so8qnvDiUmvhxZF0O8ULpDt+Snyh/JSWPjHhL7aKqonwBOaOq+Z tVA+Axd0avZPKKA6LZzX80kyUIg+B9joxbvgBDuqf8LWjp0VP6sp/4Evn1Lk 0B5F46owK93/6tYH1JcIB7qVrNxlSZ8PvLvhhHbQIepjh9sMPYxG76I+QHiX X7X7az+qE8L7OPT7b72lPjd45r4w0WgpysPhZt0V0bv3/5Pns/1hq0+WZAjl vfDqmz2TpUUpX4VT/ScMHLWnfgaYR/OacM4VisMneEysxT1p/YFbLc8vKKim ehScsjj08G89HyYO878xE8xvoj4H+IhHnvmuObVMHC6us04scaHjLDj0wecX 65q3UJ2Z7e31d6Umd1G/FsynzSuja13NxGGL05UvtePp9wibxAz+zailfj9Y UPGwe4UqPQ9sOMZum/N4Ws/hV5Uls44KUh14uIff9r3RuRiRrMAabunvKmbX YvyZOKykZfi17UAmE4dlltglFX15zcThiROW7fh8lPbLRhF3I1su0Dgibs9l hiZZcbez1omYbDMWLWKW/93bwxIN79/dK5LLcrl/Uu+UaxsTny6Ynj69OJcx lst8Vtm9SB05buhWveuoc/TIepeOhdWLV9Meshzj5hmeffSZiec8crs93Suf Wf7v39HNhOexRL98K8vudb/C04Aaqhf9PBu0+2sjKzS83XfjIepbg6Mso9O+ bjjHxOGMM2FDXwbNmTjs9Utrz+uT1H8OL/m6ufjjJdqPw0F+HX0ZS+nxsHLg hz3786muBZ/SbRaMlaC6Fqy0MfrW41Sqa8FZmVHTil5Qvxb8Pmdjdcp5ev2w rKHDtEePxZk4HLT5wLGeUHo83DUhM+HceqpHwWlrRAquW1I+CVc+tbw4tZG2 b3Br7ldelTjK6+COlNgpic+onw2O1Payu+lLcbhew17p+ynqQ4O7131dozGT fkfw57l1+oocVO+CnS2Gtk67Q/388Az36AXHB6meDFtrzrqduIL6suDHs35b 38uk8QjY/n2dktYSOi8Mbuf02CK2g85nhB3VYs7tGUP7X3j630UZd0ypLgGX Vc7dZXucjtNhg/7CjrnvaJwR5pUpWiR6l+oVcM0uHe5Jey8xcbjt+GMv2Q/B tF9j+12vVfbqyclMHI5d43H1yGU6XoYfm693iXOl8RRY2PJ2roQq5TPwEfsW +b8qlCfADx218/M+Ur4E325zvD4qlPaP8PN++27RLDrvCb4TJ2mzZQbtZ2Hn 5bP8PtrQ5wyfmlVxhSOF6hVwkm/vNs4SqtfB2n6N0fnhb5g4/NZtYPuG0ZSH wKerJ3fvS6B6Jpxp+8551FiKw26frGTWNtN4Flwx1LT9YT2ND8KiYr9TF16k /BaeLN4zMWYBvR5Y/PB93ktllI/BrS+XGG+YT58/HPz4otWsjzROBGvLWUgp 5lD+AO//fT/8xxoaL4CD1xy+Kr5kBhOHxxtHC4fcptcDb1Pbvd2niI47YJ+L jfu5ywyYOJwU5vF1aSflq7CN5qGVqZW0PsB+6vJK3P20fsLm90/IXJCl/BPW DkjbcqmJ+oXgWcX6CaG19PnDW0xd1NKX03YSNktPt/0bT3H4itniMos5dHwH 28s43TpbRPM2wJ1a7Z32Eh5MHH7msFRvmRT1STIWGJrPNYbWH3jensgU0Sg6 rxb2d3wTsu4hHd/BF9rFsrdI0bgtHH/MQFqihM73hG0HWGpTFlIeBYufEOoo caA6GHxIxPS3xpoqJj7cw2/SLmbNKmfoeBke8zHmw++Np5g4bHDm0cmVKx8x cbgj5aaD/Zq6f/ZT/3nh4Na4+Cs0vwFHAOeVJ2Ij61rn0s7cmVHRxpoQkMKz Sy+bWf537//lV6Z33GY4FbH6KufnOxdQ3/sKWz7JTw4RjLGccJ/PW+ty3Yh4 dHnxxnWf60fEF4YIRRosvsiKSP2j/LKji4kXvObrKOeoZJb/+3d0q3RrOzyx +xNro/bF7jxFGj99mamobWn7lrUyZMO3Wc00jxYcpdquryxyi/Irtu+YmD1R aKX+PTg/j0MwoOgg83jYPmgrv3gq5QNwVE9V4upVa+n52ZYuMj8rseif+RnY jv2munjeDep7h+v9F11p7KJ5HuC190cpnH9O/VqwzYUDbudtaB4wWDXj03PR hzRuCC+1PbHeZ/IaJg7fPLxbLXs/1fdgvuyXyVHiZkwcPnOI9fZKHvUjweEn 78VxzqPxO9hqnO0QazT1ccEZzfOTRm+izxP24x4XEpNP+R78I3dvzcmF65g4 3PrtxaMQQ8on4Qn79AfmHqd5cmCDa0WKZuKUJ8M3S7d+uHqLxhPhJpNxZolP aT8IF6RvO7pqJR3vw2OknV9V/HMeNzwtT7n1UAT1w8DeU50qHilSfQPm8x3k 7vxnHBP2De0uDkinuj38gDN9rsbkU0wcLtE57RLSu5+Jw5vvm6Qo36C6Fvz5 40c5wUVUB4M1v8RIDqb/M28P22Je5gsmnqO+eni/SO/kbxnUZwK/irGd8S2b xklhZfsaG/GdlP/AWWlHHk+TpTg8euMCXzlH2j/C3NvlZK8a0+cAK7IEDGIc aX8NRx7apntOh/IQWFBLUyciiPb7sL3mwbNb4mh/DUvIr/2dxHGaeX64X0wr aMNkejwsJObYLs83k4nDgvrzTz/lpfon3LDsqfdeC3o8zKlru/P4NXp++El3 hIbp/OPM64E5VMI9VKPo8fDR2PclGvy0HsJrHTPsN4jRegsrrY/6Hc5J+RWs 82TmBxdBytvh1vyl/TcG6f/Csy7adDfrU10Xbl2zTtfvANXHYP6J4dsP59D3 BT8+mFxYyKK6KGysGt422oP6f2AH2w8cMxrouAne3rOpfqkj1V3hGrVteabt tP7A+im/47y30noOx8a82Re/kM5zgR8/lItfK/PP8Rrbp2cIyvto0rxb8KzB QcU/V+j3Au867bNSyJleD/zhziyuYy20fYCvzXrXzp1GeResrRjCap5rTHkj 21ZcFzoy/95g4vCJ2fHzv+ZSfgXXtdQXvjU7xMThHd//Lu/0tmPisEuTwIBz IJ23Aq+eca5EgZ+O74Z7+O2P17YL6q/nsYabW6p0svbWE0wc3jX9220hg1Qm Dsfxd0q7lND8DPDEUktuSyGq2xwfv9Cl+PbI/ErR88mZzvpW1uzAN3f7dZKY 5X/39rCqpiZ7rJpXzjItu8brnvyWiYe6C7frv4hivVr41lv4Fp0PuEv+eP8f lZHjgHOePOd7rThyntIps73muqQ9GhFP/Rx2aqxlGStYprinnzV8vJFuYkaP vlyS7hoRfzbwLljoVBNLsTlho5IgvW+45Y3ua22/x0wcDu/7emppDY0PwgkP Rim71VDfO7zVukPjYiXVqWDO81oiyTtpHgA4+uCkmeE1NK4HPzbuPSqUQOc1 wJy3FXh5BGjcEHZ4bJSzdxnNCwHLNduqFK+m+ic8+63Ugy9W1H8O/zXgbpbk oPN54a73vLYBs6m/CxaOO84fcpvyLrjn5+1tvRY07xZc53n2AfcJ2j7DZerq dzTNqI8L/rk+1un3Sjp/E9YMHpdwdDKNM8IuRw27w5y3MXF4YEv6kT3COkwc frjKzJJzkMYp4E97LUySbtD2ClYxfzTJPXE+E4cnBq3V/MhH+Rg8MFHhuNhX qlPBt8xid7+ZRHUPeOh93z43Z+pzgNfVCvsGW1M9B3YVknLXZ1F/CLzl+bha 4Wu0XYU1z3mcP7aR+sxhZ1PeFqc5u5k4/NoiomDeHFsmDp82yxiVnkt1IfhJ 5zrfXkmqI8G37Ke52Syk9wVPUKk08rOiPhy4zLzILKmNjqPhxj1v8qWL6XuB zWISD+zcQusVnLP/+4XCGOoXgsdZya55/4DO94cVXIai78hRfy8cqq0yb68o jWvArY+8pHTNqY4Ed52dbT5Lif4vvONzqHvaCcpD4ObSsT/0WqiuAjcM9ttp nqTjcniGh5xPWD/lD7Bt38Cy2Mu0nYHrw37N+X6Y6q6w8sqDB5SOUt8UbOz7 RKnRlM7fhIun7jtdYE99O7COl7AfXwStn3DVIa7NObX0vcDvpb0+X55G+TBs IrCYY2I8fQ6w3tWK/f7uND8SvNZSoXyROx1fwHM6Fdve/pOPwbMFk4ztFOn3 CBv3h/31bqTXAy9oPrKmooTyMfir5FJBluE//YFsC56VfG/ERb9rWDBWVX9z J40nwuamsTdrA+g4C/a+VVOiu5LyMdjo24oX9sLHaNyW7W/fbb/cLKDzE2Fx 7qGDM0bT/4UtvgsJLRai40p4xVv9PRf/0PcOZ6QfjU03oT4QOHJ7FY92HPUD wKoXhC/UvaA6OXziG6dMWwj1v8FLtR4khjkrM3H4XoHGobSm20x/O9yhPDns tb/XYsSHe/hthv1JMf1gOh6BvSJnm4xOPs7EYbt7C5T6r6Ywcfhi2SWuQk/q 64ZnTBEOHzpcSvtZjq9vzy0a2X/V/yLlveGO9yPi7/puKA7e6WYZZ1VFzzaq Zpb/3dvDqqjP3fM2JJV1lkfgpo4ZjevFT5aV51w7so+9+qNnvlHEyLrWpiQ5 9TzHohFxs85auxPmeawNPELFK8qpLyvo5AHNw2/TmeX//h3dfsnfPFK67z2L d73fywAVGjdcfln2R017I+uX14T1ersKmTi8a8/WncWVlymPZVuiZQq38nrq b4dXqXItfXCK5mOH/+pKiixooToMrFHwRjZ0Hu334bNu1nyfj9B4H2yzyqCn 7yGND8IPTBqf//KhuhY8VvrOlBxvGn+ElRtEg6ZL0XoFuy87F3R/POVFsKHJ pNEr7CivgKvrVk9ua6D+KFi3ZFzOJyuqL8HjhKbOjj2oT/s1tn8d/p1TP5b2 v/AvQx7hD3I0zxV8VvKrU/h5yrtg8Rv7jwr883/hY1a/5uQKmDJxeLX95iGJ hTS+Cd/RTJ95V5e2t3CPtAZX5ybqD4FvGNTnrZ5D+y/Ywm3BxLm6dNwEV3Hn CHt9pvERWO2ThL/8Sdo+w+eVCgV+ctJ+Fp5oX3XcsY/qA/AJkcmVMX//md+S 7aPrq7cs/acfFf6TYxtfvpuOQ+GNdWumfLWl88fh/nVV2bs30nEofDQ6v+zi ceobgbfnr0hV3Uznr8Gy/LdTh7TpdcJWKxZUTZGh9QH+sUB+++wJVGeDi7/0 v+ORpXFYuPiHUVJmIH3O8JNDdXPKPajeCJvPrkpo/En1EPioWULbs+fU7w2v X3ImyJ6Xzt+H1bdPWMSjS/UNWFK4SSpOmPb78PPpq77NSqP/C+vnHXSTMKc8 EDb2bjS/w6LPGd4U/zbDqY72j7DuYk1u+3n0/LDOqUmvG+bR+gmrblZ3v1hP 6zN8Q1ntTOwuOh6BQ6utBb5n0fg7vKO/w2ZpDI2jwVKfv1c1fabxVri+t0PW eTnlY7Dfqb13JTjoug8wn9rEu30SNF8HPGvFifF5CjQOBfu9lPn26ACNu8FZ PXsNfC/TegJvN0nW7L1CeTLcb/ZpAWfZP+cRsJ05q7t+xWdan2F9d1PxiN80 nyfs61Xw9AYP1XthlXOJ02J20PuCi72nRz9upjjct+Sq0a04ysfgPtlc3YWF ND8V3PVExMy7kc6rhWebzVMVqaM8Cs4+wf3oXBr9fmHRX0qbh5woDpd9CNxx V4rOW4RXLppur2BOeSB8IEh6mXw6jQPCn66rO36aRX1V8LqOtgETvjQmPtzD b2McDLuu3KM+WHhDu14ff+RRJg5f1T+/f+OCZCYOR4kqRQqY0nwFsIlD9Pe/ K6qYOI9W/dKA5JH5lbGX1+q9XSPnbZB8VC6soNHJcjh/MnJDQxmz/O/eHtaD BfI74k/nsKTaPxnKZlBflmP86aq88BTGWErvrOtJ1a8eEde+4x+8Y3X5iPih nUoTDcMesMQ/9h2+U0/5m33Kzbfavq+Y5f/+Hd3G2qlO0xb7xJL88tGlQfEJ c3/2xqex9hpvWelFnjdTj1LdD86+ocn6okCfM2zpGFfAP536f+AnRwTrAjup HgWLNSbvi4qm8UR4ikXS9JxuOq8BVpfa+jyJh+bjgk9H7Q5v5qU+Orjz0JVz e5ZQnzzsM698ixUvjTPC023V3AdyzzNxOOtnbYO3BNXfYBVf7tLyCOpHgnuK X/EWz9SkOhXb+bIFYhc06Ho9sK3EViWLAaovwR6ejsE52pTnwJpClT92q9B+ H76S1rwkJJL+L/whulzmiSXlUbDtUpbehLHUVwbfm5J49Ow++h7hlN0/fezL 6bo8sOSci3Vv1GieRvjA1WLLhYtouwpvuW4eMl2S9uPw2FA+7xU/6PcO84Ya L/O7TnUJeEfvD24LX6qrwHd75VQnfaF5+GHd7+u1hfzo8XDC+FGd8eK0fYNN i0WPq2nQ8Sbcwrq1ZdO9m0wcjplwM8DLnfrM4a+FshEHeKg/Fo6t2dm0P4W2 /zBHSLv1ChblRfC1Vb0Pzi785/xNtkt6TacdzKN5wOA6pdUl4dHUzw+3eXvY fl5C47PwBeM5d26spToS/CdzrGzBSxpHhgNHc3/oUqB8Az7wLTmuvILqIXBF XuoGMVHKe+GSgG2T9nyg+bLgOmsx2fBNlD/ARRsHWMEzqB8PPpHt0GzuR31K 8JtLYrsk3KiOBI/re7PuRy+Nz8K7tggm/v4n34DFhRS8v06l9RNumnrleIAF HWfBuXPKfHaMpnlI4O2uRSX3RP85L5vtrvsaQrEv6HuB/X7NUo0ZR31r8CPl MSJe+6lOCzuliY/Ov/vP9SDYnu0hJDafk36n8MvsxLlLTlJ+Av9MvfvBei71 TcFVPLozlVpoPA5+16W47rUl/V+4uf6W67g9lH/CR9MCQr5Pod81vOhkyzoz Tjpeg/vTnfzu/NPvDctPT4/bU0Z9knD7RIf151jUxw4f5RYbG/uBfu9wwfEh sTdplJ/D2j97PM7o0nl8sPkNH8VF52k7AFdctN4nM0B5EZySn392gx3VsWH3 88GPtJrouAl+3tepUFVGcThLY4rr20zajsHjNn9899CHnn+4h9+MG69eXqRN vyP4cMyV3VXWHkwc/ha7aDnrayIThxcYNc1Zl/aKicNHM3zt43ypL4s/+tH4 XbIj521IaZqxycpr5LwN9jtMwlUKP7NiPSOi9hkVMMv/7u1hBWuLyck7FLFS 33S37yqkvqykLgVlEfNLLGGOxCPyCdRPZVxS/NLGZOT5hntrlu50yKoYERdb 0H25/GkwS37C8TbOB/Q8hl3ukcmulaydEnxPr4oM7+eiG+cP/V36NztHxHXX THjXrNv8f9uHnOV/6ijffDZaMVmlqYn1OuGayNTnOUwc5jxpZDHUQ/NowdxP A6Psd1IfEdxY2xyYUER5MhwmcWD8/X+uLwO3LHC3Tqqm/iV40dDXnE98VHeC baRuWCva0zy0sLx+llmcN+VdMPdFjdXCd+n6QbDwde9nkm+p3w/mfdIjdewz jSfC7if4X239Scfp8Mn+8e05LQbM4+HK3nX2maOpvgS3q/IlC0hQPQoObtP0 KahVZeKwrMxEj7D3VOeB2479Dt/TSnkXvCDVrjFbnOYBg7lEs3iuqNH/hfsW /Xm75xCdLwl33w87Ku5Jrwee2n4n48dzOg8L3re8703RNTquh51eLzW4doi2 w/C6GYUHVsnS/hqWsQndl8VD+wtYtWah695O+hzgpX1bP3QFO1C9nW3OO8uv F2fTeUOwTI/pdkmleCYO5+3sevT8LOVdcFFZ7IGhC3R+EPx0zypHrrG0nYMz Jk2YJapF52XDat9u71yylMab4ECu+jzPf67zAs9Xv7XvBjflIXCj8pDw1SQa p4N3XIp8qbeGxknhKNFKp/E7qP8K1hMOD3VaTnUqOE7v7I8GQ8o34N1OSnKq 9jT/BswVZzGYPkh1IbhgrA1/SwbVr2AV3QpWbgblG3BCe4jR/TWUD8BW+5QP bjWnvAXe4zW74eR2ep3wjrC504w1KB+DpyQJvhIvpn51eOwLP0MRW7pOHFyc W9rLWUt1J3imVKdbHj+NS8InXbKjigLo84FN8liXrX0oH4N1P2i8Txuk9wWn bxyoO7+MPge4OX3Sm0+7qf4DJ5gb1T66Q3kj/CFnaWnSaqo7wUU24aF34ul9 waoZj98mnqDxSnhboadz1VRrJs44wM3wji6NJ8JlN+uHpHLo9wu/OZfrfEWC +vfgdSa3Dxs30+uE+e3O9764Te8LXug/9ovuUaoXwTablN55DlHeCLuay0h/ O0/z58Ozzj8Yn3+LxuXhJIfjPPL5VEeC8/qveD1wovm+4Fx5jey5sj3MuB78 KHzlXUUuejwcsMascZwb/V/4Wprixf3/XD8UVqiapzpj3D/XPxrm4bdlmUGz w4tpHBxuMLR6LnTzABOHXTkV3jr/imficH8Zt8ceAbouIeypOi+rJ5jOF+SX OLA7P2JkfiV39pfkKaWRda13R/xGd+l8YoW6ljtId2Yyy//u7WG9e1RVGutR zlI7a2J5n5f6sgwO5z4tfXafJT9HYGLxOrpO9PQYzS7rhJHnGy43rXCKrRhZ v1piZ1I1MyNpRNzqusqD0b6FLKOk93P/qNF1DBvGlrSF3U9llv/7d3T747Qv O2VhK+tsQ+JgrSddx1DO/4Zok3YjK7WuKzLbmOqBsP/MaokP3AlMHC74OY5D 3IKucwR7OYYbnK2g+hX88+HhrtJMGk+Ekw1mm/zeQ/kJ7L9W6VZ+D+Un8OZo tfofn6lPHhaTFyvV/k3jm/CXLeHKu9dSXQs+vzHrrOMS6vuCxadO91NKo7wO jjwpIL8/lOpRMC9PaptWIOUV8JHDdVJZU+n8QVh6UsivQEmqd8GaX56ler2j vi/4odaDyx8D6Lo58J6fRwr3p9L2EOb/JaHtvYauYwh7uO+fF6VE46Hw8UkS p5740f+F0+8qyb3up/MU4OhD0x90naF5HuCtv4USrrtRPgDrJQzx5N6l/QK8 Zc1SpTuetB2GF3w1TeYxoeNfeHYKB69wBu0fYf/oBRqW5U3M88MHZZ9Z7z1M 8y3A89/ctrNZRucbwvLjVo32n0bHs3BDckQSbxuNM8JqoXcWT06mOh4cdity +5Tx1GcOx1S6empNovEIeJzV7ayQjU50fMq2c5SDrv1m6ieB7Z7LBuzPpv0R bHt03wDHE8pj4YMqjWnjBGl+b9hTTMXS7TAdR8NJvKzCsrmUN8JL5NsNSnPp +eED4/582fuH6jxwv4BKIIczHTfBmvdNOTPv0+Nh9esJ52bLUr4B1zkLT072 of0OvCbT9LutOdXN4IdSjx+v76T9C+yd+vtDejrV6+A9LI3fO1ZSPgZriS13 kltO/edw/njlnHtrqZ8ZHlM+9s+D+bQ+wx1fI5Xl1CkfgyNYXaKvKygfg+uP LRPic6N8FfYR8c92E6b3BdfpbG7XNKO8Gv5gHm7eMZrq4fCFX7a1G4foc4PP JA3cW3ue8i64XjJw27J0qhPC15uVC/9k0Pgs/JznROOUFXepPsP2Ih/B3jdN 9DuFBcIOVS7bRJ8zLBZWXhTYSccR8OfG2eqxzjSODL+85Xg+4xzNCwFPT6pc 1B9Gv1NYcIn0Np5mej1wzfOJp0oCaXwTPln1d9pKmxYmj4LXm81SkG0IoHFz tp8/U48+doHmdYezlcZqnThIfZ6wpqTv9qC+dTR+wbaKh5eb3C86Phru4bf8 EkGttHf0O4ITYkbFzzSh+brhhPjTF8c6xVKc7ZB+9fMGqS+YOPzrSZPw5TDK p+BDnQvdjq++wcQNRn8/IHdv5LwNfj4r9Y/lfWA19r2znlYZySz/u7eHNfmM e+qPK1XMEvF7Yc/8BeufseanXH98IOgjEzcPENhmGnWNMZbnHkSldW0tGRFP /TF1mVNl9oj4q9wvr6QePWFNENAySL1I1zHMkOMK2Cbwiln+79/R7WB34u7o E+0j4mUCT8cv8njD4u29/+6THX0esMwtuTlDj2j+Mbghe2XtGl+q/zBO2Rgn nk3n2cH5dTznJHq86Htn2/AMxxWXay5MHF58XKM025K2/7CwZsInrce0nsCN S9IOXjtygY7r2R4qNRSu/k59XPCEqkwpJX2Kw5LrLHn2TqPngad5z/eb5UX1 VTh0lY9MyAEjJg4H5XlrykbQ/gjWu7458HAN5Tlw8c/lR90saVwPDlesmvnO jh4Pd2/rMWd50ngrvGv5nTaFUjr+hd80rS8zi6L53uGeys3uPdl0HiLMt7Qw ZFM31bXg2Q84wjP8ab4vWHq8V+w2bTpPE+Y1mpNv1UH5AOylezUy0NabeZ1w 8JoFypwRlJ/Amk7fZ3Bl0PEs7K2X6fdy6z/XTWM7wDg93Psn5XXw/SnLeL8q UZ8GPKWIkyu8iq4nCw9mr95e+IjOp4YNNNdN8qmg/wsf+HPfX/c9je/AkbNa XpZk0n4BtjHVVzifRe8L3hyRbWt8meZ5gJ23JBj5hFP/Ofx9XyJXrTHtj2C5 CYKrB9Qpf4DnTQ359l6Yzr+DpV4sdudWpzwZvuobIj9PkOpvcD5/t1b1E6q/ wfsX76jIn0P5DCyW57Jg61g6LxV+9Xrvch01uh4THO2dpqV6ic43h4+0/l1V lUL9S7B30MsSqVk0Lglnz2mR3/aDXif8xsRepuAy9WvBh2NvqmgbU14EF+RP bzVbRJ8bfMg2aYk+5z/XW2T7utvF9PEP6XwK+Oi7Vmf3IsoHYHUFW3mvU1SX g1P21WaqtVJeCh+c4jjU6U7nKcNtA2F912RonAiOvONQ7NJMrxO2K+lb0DyH +nrgRjffm6xVVDeGdb4+rHu4hc6/gM99tu/9HkTPD+v+0PL+WUx5Diz93Ndk Vyflz7BS/57QU1x0nhxcbrHFQ+Y7zccOP3ZpPyGbQHkazPGqtNBtNuWHsHEa J19EDNVvYR0H8wR9ExrHhC/dnN8urkX9+fBZnRM3VpXQ8RfsstP0g18SbTfg vaURF1tsHzFxuHaFeN+KITq+g0W6VgspO9H15Yd7+C1zJ++UXncaz4VjL4+P LXGgPhw4RnnumMJV0Uwc3vQ42XBHfB4Th4WTZcNyuChPgFUez1mWK/GMiRfF fu1fv3nkeYXjuwYOjusb2fcecnDJip22XaybE3Ii5juVMsv/7v2/vKi3bwHX lEKW5Cmu9iNuVF8adyg+30IihjWqXG9e8GE637CmaS5Lvz+HMZbik8tf64wa Pu9VD0t6nHFhXsdt1q+sals7b5pPXqfv5uDW0EqWk+gDfp3S4X30dMuQmXdK b2H3iPgKg5ceL1a8YzmkS44RdqK+rEr7Lcv2VzaybgSPNRivRecLwC3Kgl77 jOOYOHzU8Oom2fk0bgVLW7wO5PekuhbsXySvcr2V8i74k8X9zmYd6pOH9Z84 umW1LWPicNiK0Gdt6seYOCzcM2dR7iuazwE+OsY683A25VdwQbzJg0RuGk+E 9ys3Tho39QztL9henxwufc2K+tBg6S5Nrde/qM8KXvm0q313CJ3fAdvr6bZ0 dFAeBX98tjiVW5n66mGTtZesXt+i/Ade/M7Q2OYp7b9gneQUkUmjqM8B3ny3 RsFpJdXH4IWVWnpFhXQ+AlzUfm3mhgaqN8JarnXivGZ0PWt4qmFGw73x1M8G R345G6DAReMFcGKfj/kPQdrOw90ftQaDC2k7D3/aMql1mxn1ncJyh5uuiRhR Pwa8QaXF/fcL2o7Br0WXWscY0/zJ8BaxBItPv+i6FbClSu8O1nH6PGH9TdeW Cq6m/Q7s/LDlr049vV+4ylJdc50A5T9wy1aX8WMEqN8YbjPNT4zUoH4t2GX2 zfCDjXS9Xdj/77xRS+bT+VOwQA1/0x9/qofAex8PrFz/hPIKeKt5k4rmF+qv g8N5RML/vqHxYnjZy9cZ9u9ovguYt0Knfp4p1UngXY3dAmMEKE+AJbecdDi2 l9YfuGHgzO7Qj7TewiplSh1J92ieN7hi9XuHd040Xglf5dwQ55RJ/TnwytVd ThOcqc4D71XJCNFsps8NFr6ytsN3Mn1ucGNK+h4+Drq+FfzLU8n2oTXl4fDq H1bKAcdonBo+N/9PreQ/1+WEJ6zPipxVQvkh/IS1YtMpRaqDwR8dr5sfSKbP GbYTv7BKnYvyYVjygflCowI6PoLbrvC5mfjQOB2cFcMfutOC+qbg0/Hyax+M psfDdcmdto7Z9DnDVawxOX0pdPwCV59z3HZWjuqrsJyC5RmN2XQ9LFj+U5Lc 5tN0XABvmeXf8eMQzacHq9VGnJSQpd8LvD/fM+CoK+VdcF3oXI6P//SNwN3x o7OKC+h9wT/ClCNNBWhcFf4d4TzVv5DmqYB3ZU7r/ZhI4+nDPfxmw5/aHcZD 9WqYUzRx1vz8PUwcZs0vH7zuGsnEYT/lKeeyPtC8T7CqmeL6vBTqv4KbD69x 33uYxhPjB30ORQ2OzK/uxt8/173m3Yh4HZ9BaEDiF5azYbLJz8n5zPK/e3tY K+9FP7HkKWeduJF+YmUnjRvW8aQtcdmfzvJfYezy/h3NA99l71PwtzFqRB7F OUquXMpsZN71jP+GsODOcyz/AT2nj0J0PcTE5eIKgzOLWAnvHD+N7qV+sEOH dvjnn8hmlv/7fHQLK0wrGd/YxpJeHKHueO8+fZ46KyJiv79hzRcZ39WWS/O4 wl4cAgVqHlTXgnVnpdpb3aY8BO798kE95DPVeeBM8abz+0NpPA7eFj7O2n/S ESYOa+3q0C79Rvt3ON597ywFY+r3hl/X+YhKm9G8H/A0IdvL5gM0Pghf2HIs r6yExhlhoSWLe+e9ocfDa9W+2eUtoDoevDJrNrehMx0vwL05bWLTDlFfExwc t+T886203YOt3iaIrUymcUa4Vj/43bNqer/wsZO1Xcb/1NPgCxkOj6syqN4F 7/Kc/Wf5uA9M/gDzf5jcY72O6gbwlcOBEmJfafwRNlqRpHONn67vA9d9MhSw mEuPh2tFVtlFb6Y8EJbOMVK+nEd5CGz9YvWoKQ3U1wpHzpzhs0ibzmeHgy1r LxifoONiWKZ2e+3khTRPNWzwaNNQG28C1aPY7tQYuhB3ja7HAbcez37Nd+8h E4fPNDwUyImn60HDdktvX588hvIu2PJF855zZymPgl13iO9zraQ8HPaxdF6w N4P6eeDb7p7514qpXgFf1voZ9kCNxlXhCWOC/Pa3XmZeJ+xb0nd9uR7lS/D+ /W9fPrr0Tz2KbaU+nsvZH2m9haN0jCsiWZRvwKqTj4jw99Dzw5Fhjsd4jL4y 6yEs+0ivskOS9u/wAfs7zTINtH7CaUE/Kyu+Ux0V3rVy15FVUTSuDdsHHwyM aKD1EJ53NfNY2lX6POGIzMmft5yi+jAso368uuEmXTcTVhHWzZ7iSXU2mNfo UPODI1Sngv3fXl7raUB5LMwV2f82z48+B7i1rPZv5SU6joDnz3W56/WO8hB4 zoBZ3YKHNP4OX3PdI5WpR98vbClc9Er0Ha1v8Ni2VWq7ptH6CT/ckDJnA/c/ 47Ns24bcOH64mOpa8Kpwnt3BT+l3DV/a9ClDZz71TcHrHnwV/ZpF43pwg22V 8tZk+vzh5pIpJdFT/5mvnu25DR+nqlpTHxSsunFX+WI1DiYOn7/6qePBV+rL gk8tHhw//p/zlOFfowaf8NVTvgTn68wT91tCdTBYomLyqS5dGm+FH3nzCxYl Up453MNvNQaG6WmddPwCX7z/UKHNhK7DAh95XXZbtJv6luEFZ2/vVi/LYuJw /sACJbkbVIeBFTZ94cuVpPkcii3izhsGjuy/+pAe+dQoZmTf+03Oj273P35i zbAMW3/b8gGz/O/eHpYC63OUUm4Vs0T8wCnNq4Yb8lhamY3JpjU030Lc/ovz dQ7fYO0tL/kRUkZ1LW2h8MtVD+h5sfwTEnuuJ/fCiHinVV1W18pnLN7SoEi/ ZhqXDPz97pLn83Jm+b9/R7eMm0bNMU0dI+J/l+We5Vvbwhqc+lkjMo3meTin Grft20AjS/rsvAHFMdTHBX/LCF14//gdJg4/UwrUNnOg8S/4itZTdc7NND4I jzN/rXrykQ8Th++r+lec46Lz/uCamM+KXNF0vAZbPrkuVrmVrkcDW8y3MFQ5 RnkR7KYtV/JIhuZ5gKcPqMa8caO6FvzaKzzs4Xc6zxE2FGtKibagvA62qjsS fExnL+VLbK9O2RjI9891meFPOxL2eRTR+VxwqPj6BV2O/4xLsu1pe36V3yrq b4cPWIztOjOfxgHhZ4mzpsX0UX0AvhvFc9dpBm234dFJp7+/U6V6Cxy6a4bi 5t00rxd8Y06cZuEqOj8Rzv8uvsIrneqQ8OWKV284M2i/CRet5pKZ8IH2C3C5 d8SrC//MZw7/1XlVcVJpKhOHlTYcvOGuHUjjDmxXHc57ZveS5j+ELx5q2/NC iz4HuI23aEaFJvW/wYrle+Od7tG4Nvx+kbfxoeN03RPYvffX/LdD9Dyw68d2 3rVaNL4Mn1XhWyIdTPkMLPf31O3L/4y7was2Tf+tX0fz/MMua+qiVW7S/hQW rGpRKLCjcRb4vJt7oHTmP/sXtq0/q0QlClE+DF9SPBj+/jT9HuFDJ3qs9R7R /Gnwmt/Vqs+3034clim6eN39NR2Pw3JqzquuNdH8SPDuL65/1dTo8XCOyRaJ JEs5Jg5L8edc1FSmvAsuUvz7OXwJHQfB1spO52bZUN0MXm+bfp6rhn6nsKf6 sfX+FpRXwHMvJqxMc6Y+JVhvo+FWPk6qa8EiXp9XNDynOhW8L1otQ/Q51cfg FxKnp/1YTX048Ba75MHAQ3QeKyy+WyLfP4rGMWG/0jC7xMdUn4GlIi0mO86g eiDsbX3Ocr7YP31ubO+fHpnX4Ef5NmyWzL3qhBG9fph77ccpZvE0zgUnf2bF fLtK5znCG97eKhzoonnd4Xo7GQmBjp1MHFbfdm7JXX+apx1+ZRzwTX85jS/D nUFGg67PaR4MuOidd/CXM5QHwk9rd02L/qPOxGEz53KzuY/pOA7WTLb99OYQ nY8Dt6q8ujOF+5/rBw3z8Ntm1Udt207TuCecuG1W1NdjNB4EVyyKHzx6keoJ cA/nNoc/W2ieTJhzi9rQp1c0bzksPCpnfYw61bUSE954REqM7HuvMZBekSA0 Mu8qLeuusZ3eNiIudiMnfPTDbpbRk18O3yaVMkv2q2L5zWt05TEqYal1TNT+ ubmFib+ada2qqTWVZZBex1ugTfMwjOrXFO+ce5i1sP+A/q4gqlNl2U6JH6sT RI9jLyd2h5x9uTiFpbb69YwJi6mv/pDhq9n6p8pZ/Dt3PrPvpev2WLl9OPJS KYVZ/u/z0S28fe8XiXsfWB291lfv2T9k7t+ZrPp7PO9bloXfesHujw2Un7At NKN88cEtdB4ifORy4nfD7ZSfwDVXOp7mf6PtAOzqE3t/2jQa74NXahT1rzan vAtWSPk9JomH5kGFjeNP7/Mop+uKwn3PHL30IunxcGzx9rZJ3+j6ibBphPDH 6zFUv4IjB1urCvopH4NzcixeidhSHxesPFPlXvxRbyYOazsUxWZI7WbicHNp 4gOuXspbYOc5Vh5XJlMfCNxq99fg7Us9Jg5PCVTw8NtJ44/wwHVWxANn6mOH j5zqqBuTR/8Xrrzh+GruPdr/wpU2SRHj9f+5ThDbtZWOIXJS1McLe4uKvYss pX4beEV6eHHpesoT4Djf55vr/5m3Fo5J2d4x8w0dr8HrC/+Y/4yg8/7ghfzj 3vuHHGDisIjvnQiuKa7U58D2gethL+ak0byCsPvJqVZaenQcCadJ7puiGkrj d/CiMUJp43QpDt+9vXNSw27qJ4EjK25d4k6m88ThsKOVG6fy0f4XLiu6vn7a btq/wwu0lgaYFtLnDKdMEHf77k55Bcw3LnSKwRzKH+Arb65/dDSmfAk+PvPD aN16el/wD+kdntdlaN57+KHu2YGWDPq9wyW33oa23qH1BJbeojL6/ARaH+CP 7q1Df+ro8fDMw2KzX8+gvBTevSN8w+d+GieCCy0ro0TNaX8EL5mbarI+l/JY +G5EiXeiA/0u4AlvN8WmVlN/I7zGz7pBZz8dR8Divht+G1ylvBc+xHlB4JYy 5S1wW/oxkb/dNJ8DPIkV/mRDCZ1fA3NKaUh+3031LljnK69IbivVl2C+3e+n PN9J/xfe5uogZKJM6xssPEbsQC031ZFgqVfRR/RHUb0XPhV//2aHFG0f4AJe ngNz/unHhuXs/6rmbKT6Iez1NN+vdZDi8E++ladzG6gODG9x9ttu95vybXjP GRvN8bupngwLvHkavE6CxjHh2IvN0lK+1E8FLzzdGSTvTcdl8KCWS7OCDm1P 4OVKRrIcHJJMHN6csX/MC5fTTP0WHvzVYBVyoIOZT3S4h9/ub348/uIL2j7D 9ZIbBc8vpPPF4M1ZrUnS2bRfgztF93IoWtG87rApV5GZgRrVVeDqxiKF3+Np PDBH5Me9v7ebWGLW44q97On8OFnXas6k0pF970beBrURQyP7stbZxPzIy+tg RV7XkRTpzmWW/93bw5Ke/H5P66VK1r36ZdJLq6g/aoya53jX8FzWHysND21F mkdL5NvGk0ohCSwLq01OyxKpz0qd4/KjUqGTrO9rFntv2Ux5l4pqe4SpQRzr Sp14x/7v9PjlQudYZ7+9YL13W9a8bGwrE5esPj3jeXYxs0R8+PviGS994nT7 lxFxv++/XuStbWEl3VHaMzuE5hkzeD220jSjkWXJM1n4lC/lt7DD7+MGGzUf MHG4KMVbJimPziuEj7Osah460nl2cN+ugjGFNyi/gt3Curk1vtI4I+z2/9i6 73iu/vd/4ElWKVJIoUEhJUqleUJDJasSmaE0FCkNpUhRkZC2lVE0ZIUi2Tuz yK6MpDKiQdLv87u9Xa+Hm9fXP+d2v7i9vMZ5nXOd63k9n+eOMPfo4N2ID/mE fqLgfiv0G5PHLt5jKxo07D7XQ351bc5NrXrkXWQ3eWHlsBvo7yJrnongS9+L /ZYcEd3h+kYD9zEnHwzuXnHOBM+ffPmN4EBrJ9a1IDt80ttX2b8Kr2vI938n bSi8hH5O8qfQqHeyz9APRtZQyAqqE0UdjBy45M+/QzJYH5Uc5fP4bYwG7jdN tk4yN1swatj9tYdszXT8TFfD+n5kb4XaMrX7OA+S1Rqa5H8qIk8g89+NbGmM R35F/vj04gy/YByfyUGOIqWZHuh/IE9YmtWW+A79XeRZWgpNrnFYP5NsXMcZ sfY25vuQmxNMdyhoDLuuHPKZvTqeW51wfU02SioZpfgE9TfykfZPTX29w+pU Q56rvNBzVh3Oj+QNWl/e8Y5Hvxn5nEr9yfN/kQeS/dY/zHMXxuOTk67qT9Y6 ivl95CWiCXcz61G3ITun968v24f1b8mCLWGqa4rx92QlteMD3XuQP5An+5xe b3IGr4tc66Ie0mCI+0qTu6w3NESNQ32MvPKa+KB7BvIr8ot3R2crX8c4ODnq 2cSontV4veSTrsdn+z7BeBz5+Co1qXlv0SdDntloHpjcgXEfcn+ieeBvYYz3 kffHn7NeWI38lly86PP2paLIx8j7C3zzLg+bh0LmnPU4+NRD5L3kRI59yxz6 Ufcjzwu8GzZwA+Ow5Cs7V+xyNEN/F1klfZ/gzBjsV+Q8xl75aSbmTZDz1e1m 5CzE50L+6hZRusoLx1VySh6HhOdf9DWRH3BvTLw2FXUbcmdv52EpFawzTP70 xFC1Kwx9UOQFniai6sPWSSZH2SvOCu7H8YGcWJMyW2QA3wuyVuCd1lwuHMfI e6SKdF7sxesiH7/kmf62B9cXZDOrJ3Gp2zBPh3xfeJS2rxfeZ/KuGIFTq24N W2d4yP2XEo8lSiGvHumRP97++3x156LeSBa2UFovHo95Z+TIFL/FWw6jDkDm 31gQ21+PfiGy3FpOc+lS9FmRx47VuXrICXUp8lcbUbO2MeiTXz+55+kZL/a+ rPorYbO7Jdj7su41d8/Ymf6ZuSRmlH7CIJq1/e+3XUyS7+Z7US/KWFuKDwgv dHQtKWJG/2hVW30LdS0N7e78jIhkRuGx65YSYfRr8X5qSB1TEc7MkJLeG7QO 44nm/Et+NteGM0dXL9vluhbxGR9v1qZcS2O6Jij7zkzAuOHHoHch4lffMCvT tF7kfKhkxVVUFf/3WUaythQf+XoDtQ/oLvvYwgRvc7VZdxnzMavGCV6Qjq5j focWGKzuRF2QHJ30Yrv2yTxWnLzlvtu12WnhrDi5V7NdVGYX1sMkdxyIqsrv R/5D1n4oa78g7QIrTg56MDgv4Rj658njD79WXBmFfJ58ahU312kj1LfJcTMz nvBW4f+SP2u1Xy20wzgj+c8bgX8LZ2HckKxy+YVD2TvEyasjBO+1r8Q6Y+Rw IZUexXw8f3I5R+3E4tXoVyTf0t47/VgN1tsnpwrFveP4g74g8mt3870THqOO Qe59u8B6bgL628m3knd8yMnAfRvJH3cuKwgzwHmWvGqtV23dOpy/yAd7V6eH rUI+QF5w6KnCmgTMMyLXTEw+/3Ut8hPyviA/z8LRiJPn2Tnu+LgZx2HymQU9 jo81UMcgL696GFluh/vgkMdUHlWxeoS+evLUlysFcg3RN0LeED1vw+xmzNcm C9y8ovLOFvPoyS9NJM/y78LxnCz79+vPWb9xviY7J/vyzfFDnkl+UpuyymkZ 6hLk8ZJZs49Pwv8lJ5v8MXab1MCKkxXMtgrwL0J9gMzY/gvXOITzO/nOlMa8 8wXD+vGGLGq5umg5J+Y7kBvXDMgwppj/Qu7ee+NWxT2Mj5M3DWqVH9mE8SPy nIvfK6wasf+QVznayRdGoh5FfrX61ww3a+QhZH1tyQsyNsjHyJMnm37VfYc4 uX0w0mT7S9S1yB3q/Q+UqlEnIZcUz2jckoX7y5Cd48YdXfgR8zTJBbsHju4p QN5I/pPxOFP7EupmZFP+e/JL7iMfIyfYvgww34frIPK3zsAutxt4XeSbC3PK MjJx3CPXpwdXxp3C+0lOqLSQ9UjBer/k9uflA8GLsU4m2SZ0zLc2FdRVyA/e 3m8/lo95lORzTw7KH6nB35O3nPxVcUelk/X4ZLdDv2x7pmG8j+ztPMPunzrG tclj24L8p69DnkNu/rK0ykB32H29h7zpFJ/CHCHkq2QBbq363+/xOZL3+7t5 35FAPkZu6byj3jtsni/5W/jrurffUYcnW4wtnvswDtfLIz3yxyvO75dhOo6f ZK55q97G1GMdHnLBlfeym+TRL01WeZBjetD7Kc5TQ7ZXXnbwTTDWbSD3WWa6 PTBFnza58tnca3N2o97VmDomecZa9vHBM4kX/kzfxN6XlV3Wvut5DPu44XKp WDnmVwejXeHv8+x7Lmv732+7mOujBg6Fnatg3gzyzErsR13ruKG+6I0tOcza im29ytWoOy2My+JUfJvAKFdM+Be3CeOJsszh8+0Toxjxd4efZqxC/argmeVh /4DnjJfQg6Zbt5CnLU0VrPqb9ZppDj4+2UUCed2jvDlKN5PyWVuKj3xd72aU Cogrs/dr+d6xjoxa8JGJ/3o7kqv3Nev36tv6bXKnNTBVc9w/OIVWIR8bstw3 l2P7DTCvk2wa2rp90XiMC5PzFFWMQ/dg3IdcMcbEfbEB1k8g/5nwmNvlMe6/ Q17eICHHU4V1UMkXAh7EXlJCnxg538hnVtNHHH/I1U3+obyS6GMn9+dJW8p9 Q/8VWSXCoa49DvUr8ofFR5nEFbiOIF+K7ovSsMN9FcmWvznmj/FE3kUe8FkS nBx/kBUnL5YKzi4axDggeS9fhU7ysPVhyEelLr0y/47zEbn3YvatJ4moY5A3 xa07KcGN+hh5nXt4TVcVxkfI5S2bpl4vQX8such+SXPIz2H3fxmyZFVS6NL3 6FchVx7/2eA+G8dJcuwDiTOvjyFO7lxZvPZbLPoryGOMJ5e6L8W66ORnyk5z LR/gOpSsy22yYNZkHA/JAwf+daqZ43xEjt2SslPqOvpvyePqzfWETNJYcbJD ynGdH4fx+ORXGuac/AHYD8mS6ms1ytejr4ns97hk8qUuxMljCuPX+/IiTyMv jE+ynDoJ4zjkt5y3hVb1IZ8hz3P/7CNmg/yH/Pf74UenviAfII/P37zXIRr5 P/nfrofy0/yx7gd5pd9e83W8yPPJ4sbfyxILsR+SkyzsEw25UTcjK+8pvnnD Fudxctxr43SfSKyDQZ663PuOwR2sf0ue7xCwaaUt5ieSc2NlvdX3oU5F5naf ZyQ+bB0w8vQwN93ivcifyVsXGYmGnMD+Rl6525TrqiLmq5K58qRf+4/GuB65 8HS3v44inie5o2Dd6H02+FzI6e2io3qTkY+Rt1qJ8hX24u/JcsJRB5eMwrgt +Vjckrv2Vtg/yf+0rdPMHiA/IZ82D3XaXIw8n7y/vC9UsgJ9HeTrds5HYw8j fyP/UPoj8e0yvu/kxPKp44KskI+Rrzx2uOHPjb5Kcvg6B/0tzrjvM3lVkfyr zVm4LwBZy1ldKvE96tjku/+eVO7bhHFbsqhq/4zfKehjJ/t9yTfik8D8UHK9 8HQbrWvIM0d65I/aBWub88qou5KFgq6E5GRhvjn5TG3w1Z61OD+Ss40ilJct wLgeWXXqmXDe1kxWnFyZdmvb8dvo0yaf7ms7e3I/4pY5em8tOtnzq5rjIS7r uNjrWh72VmdXKjazxc9u0ey6l/OFKUxOmx5qnsja/vfbLuaNz/cLRj5lrC3F eXVLdM3/ljCnd0yp0uZ4z4qP9j909Bj3/15XbF521mmMJ3oZFR578iWREZfb EjKZC3mXcYmMw6SKJEaOP2HWikLkV9sz1gvkhOYwlYHGv8WjkL+pa6kesdn7 hrWluMbGyHqHBU9YW4qPfL0migbW8rqf2OI/mXz7HxcbmJqgpPylL9D/djAl JGyWUiPTkuGiHVyDdU3Jv+9s5fdzxfgvOdN525grJRinI8eeS3/iJ4XjAPn8 /VF5st/Qx0XmO/du8SAv6k7k+/vl7EXHI+8iX60xPrKjCnkXWe3qxd85p9GH SQ7xs53Ul4VxPfKmk3yTGR+MA7K8bOk33qvIo8iD/IYyLX9R1yKf/XBz/9Qg vA/koy5b0n32Iu8iD55883nZfuSBZBPlOVapS3BdQxZr//Al3xLHSbJgqp1s 67D1mshzXqwsT12M62KyVOfJyVbHcdwmb194QjNoA+oh5J/ZFT/OrMD4IDnk jF2QaR7Oj+TnO8b++1KJ8QXygsuWChI3sE4g2bTk2kb+ZRgfIRcfuL/rsTjq V2SNwvTqdQtRbydHW/t5LHqNcQdy8+pytcw2nDfJx3Wllq1uxPtJNji3bXCq KvpGyHfcB5f2tiHvJatzSsU8m4H8kJxf6TT3ptiw8ZohGxu5qeR1oR5C5s6d m3mpGvMayDsXc6RtC8PnQu5JfDg9IhJ5GtnjvkqgyBzU38iaf9+IqPruYz1P 8qHlYaL3czAuQ9ZU4AhbPhv1K3JL3eWuBXtRByPXHNDe+mkQ84jJuvIOjnkz tZD3DvmTsEjmpB3I08hfr35efUgS4+zkk0emjco6h/2QvDbX642XK+b1k+eI OWzMOI3PizzB10VtYCb2B7I5V5F5lzXyQPK6s/t+eg1bX4XsaX35quhWzPsg WyTYn+37jLoleTRHmPjKS+jrIx9Sk7QQ+Ir5bmTH9O4FjqfwuZCzn56r1uvH /kP2ODml9vQ27D9ku5rAe8dX4zhMtk+y1XN0wX5FNjh2u/DFsPyTvHbBwg0+ T3H9RY564+xh8hz7G3m+3FyNG7sxLk++UZSTUnEEfe9ktZvvHxwYtv4eOW/n opOH8tBPRfbh3Hqa2xzzlMn/+OVNMpswj5isEGV7u+VZICtO7moYnCGkrcqK k8839JvJ+V5lxckW8x78kJ2PdcBGeuSPD0/ZbrVifO7kzVau5dfD8H0hO/JM Gr1LDP3A5PArnvcj3TGuRO6SXvN91R3UQ8iatvP1ditg/iBZSqf8kSof+q0M Z19asOZqI9N85vXuGY+es+Jbnq2bri3Lnl+tnXT5mt9s9nHDSI9rg1+d29ji r6bFObyI7mTMVs/3SR+by9oOPVvGS6RR2Fj1LWtL8VfJaZsezipiZoQE1Tzs QN2pM9vA0co9g+ENqMjYkoK8a8KSLWbO0qmMU+y8tsZjWI90UHvU9awbmQzH u7PPApTx9y9cpJa/GVfGeA4keexow/oS60+MWbc9Ip+1pfjI1xXIrdGz7AL7 fXmcFvLuMK9tYibXZDjWfEC+tGGy4o8zk+uZjAVZidPfYzyx76nWFoeBRsal 0agp+yvGeckRgYI/mkyiWXHymc4Ifq3bWM+BHK7N2We1DP1FZDnxfKtX+5Hn kG/feBObq4i8izxXaInW+WH3xyR3rXnMY+C5C/vbkHs+PkhXsH7F2s/J8Zk3 f0hcw9+TmWbl5Nvr0YdGPsudMm3bJ4x7kl84Tggwk8A69uR7ewzD9rjgeoQs W602670o8i7yBgf+l6e6Me5JznD/WSHgi/XqyVPX71G4vhnjieSrY2oGLoxC nkM+VuN9Ku06jv/k8zp7/Q/o4HxNlnrHZRibgnle5GexPrb5LzHOSB5otjfY YY28i2yhLsSv0YjxO/IE36TJLXKm6L8acuj23caW43B8I9cfjTp+SwvrzZCX 7I4xuBuHcQFyDtcCV7kvqAuRTT91tbqZ4rxJDjpe+U86E+cd8rSgyWNt36Ie QrbT/nfedyPGp8gX2wV2re/B+uHkY/fE+q4dwXpE5NIama7Cp8jHyLfGnnw1 sxznffLasI4Hc0yRJ5Ojujzlx3oiPyH/zhxlNVYM51nyntRTg6c+IW8hV4n6 mfCOxnwBcsy+ORMq3YfNFxvyCZ+xux6EoT5DjhVzyf/th/FH8ieF2XschVG/ JSe2rBI6sAbX9eTuXzOTmXXD1pMZcuyH3lpjXeRpZP93D8P/zMP4ODnWc8Ls omjk1WQFubikn/bYr8hGf3INx3VhPJe8Rz5RNowD47Zk069cHzJOIf8hT/Q3 e9q9C98v8mgeNWttP9SlyaHJOkfmTUB+RRYMi5zWq4T6D1k8uOiJ5mas30t2 K1OctWcvvhdkewe/iGk/hs1XHfLRaTf0f47H50jWOrp2+3RlXK+R027M7fBZ gTjZQl7pxyID7LfkVF3VOdP9MS+DfOPIUqnYYNRdydtCLT9nSOB7QV736dLG gfWoS5MZhZCW2mP4vMiKKjVPTm7H/RrILUX583X2oV5Kzo6LHLjVi+smss7Y 6mXP7yF/G+mRP94JWlujz6BOTi5xbbuk+RHr55BXHrXJ3SzjxIqTBZue3JS6 hP4fsvWKgWCTQ8msONlcsy88WRzjgOREjt+BhdmoV5GDfQIzKt1xfg//UjJ2 ax97fmXXK/3OQ4p93ND0iGRK84oWtrh90aRf7rpfGdUY/TPvF8Wztv/9tovp vW53KONWMWtL8a93RK4WaVcwMgXlH/aY4/6DDe+kJbv+FDDe17518ZzD+leD N+RfuNpmMS7K7bNW52FdCO2PYxWvbMli3nn1Wy+rRnyqQZn5W4sipmfrTe3r xcjfUqv874pcqmBtKT5pz5sHU+QSWFuKj3y9KZ1fpvAksq8br/SlM+679wdG M6s+6LMa3mffxdnpZ37UM3/vquXeF8f8RHKRwK87G7tyWHGyn31kvG0G7qNE fjojx2PqUqz3Tg58fLm2wBzrGJDVTLwE5SKRd5Gn6T1a0aqCvItczDlLRVsZ eQt5cNSHzceCsS4E+Wb8KI/D3vj+kvlnz1697ibWuSJfijn1at9PrF9Bjpum dyO1Ef+XXLRU3PNMKsYlyTk2Fz4OVGFeAFlpysGsLH/kjeTAUqflTCf+L7nI oWSpSBvyQ7LprHKb+V74/pI/bJJLeLkAx22yaeG8N2IuGBcgxy66Xdm8DXUh 8uPO0cmzrmNdCPKjjJtj+K6ifkjmj1rFIZ6MegI55oJOcs4/rJ9M/inf9WpH Ke4nQm75tIhD8J8zjodDFhSu+3TAAPcBI9c4cgx+u4z+CvLkMi8ejfk4zpNb 9SMtLyUhDyHHrl/9SSUXfU1k3pqCMRzeGF8jlzgMJvUYI68gBygUFDe+x+OT m+PN5c6o4XxHjq258EU/AuMmZFdF/oTFR5HHko86tR+43498mPz9Ha/Do2vo CyKPFeOeGLMVz5N8/kli9+PPGO8j7/zgx+kyvJ42ZH7OFyGVpzB/lvwurLDU KhjX9+QLeYeLVj7Gfkg+kXIlpv053h/y6KP3ipWy0GdITgrzMr5Zg7yL/H6p S+qYGnx/yTs4bX+GKCN/IysbfVn46wLGQ8nlgXrndayQr5KvNetlj3uLvIgs zx2UX/gEfePkGTZrbZ1fYzyR/GHGrEKFEPSBk3ka39p3a6PORv61+PnrleOQ D5Nvm0UlPUrB35PjlisYRS1BfYmcdG3d7XuK+D6S5b/Utv4+qoTnP2ROpvjj AiXk2+RuAwvt7Un4vpPdYySer1DE8yG3NjWem7kT3zvyxbGqPCu2Iy8lG5b/ yJMURZzM92DCOTk/PA55Rt1A2RU+1NnI16bZbag4gutBslW33JG1sRh3Jivu fnzzziMc98hz+/hnjLmM/tKRHvkzZaLGrt7N6Bcl/yzdyblJHN87ctoCPcZg Ddb9JhsqBMz1X++P92HIcw6cm/ntAOok5A7GmpHLLmDFySaFJzk+86Avizxn aQpHXRTmx7Ud/314Sur/8rD6l02forCOxO+7CxvmHGOfb1gg1W40dwz7fEP5 Vf5aTBV7XcszTmG84tRO5uctZ55xT9JZ2/9+28X4bvsQ/uxkGWtL8RyJF4ba V8uZI1kemrs+1LDiKjIbIlrlihgrm7pH/F+QLwUs+GoYZ5rHLGzj23q/FOvM B/6S6fecU8gojvl67rkN8rTxU65NXDuhgmkuqa473oS8bmBa6sHfgwWsLcVH vq6tH/l3BR9lXzc+eNYu2VZX9r61LaMCRk/3bmSOahr2nNJDvXH8V75pljcb mIWvFib/KEMfF/npzM1OgXyYp0Cu35dVc9MO91ciW/26dX7lRYyXkc83+ezg 3IDxMrLUvaZLvUnIZ8g1/puOuP9GvYjcs+0CV9RZ5GnkZ3LSWXGqWBeCvEK+ iqP3B85HZE6N34f9vTFuQl6y5LcHpyzyN/KOcR9lJ57G94UsfGzu6ZIGjJOS z5b59Ec643WRr8+svHH6Jupp5Pytp1f0lCLvIksWlsiscLRixclfHWtq/e/i fEQWjPP+cToQ4wLkd307+U9JoI+C7HumPPmzJ44b5Md1aeOe22CeNfm9+69P +u64rmT5EWdfw3hcJ5Jv5OaUT29D/Y2sJZy7rkEB40Fkl3jhtAcOiJNn/Fhu fygA8xPJgmPvbfpkiro9+fIFxyOvFyBPINeojnKwXIy8guw9rV/acw3yK7Ju xDkF452oz5CVd3/qj/uD95/8osfQRO0e1kMjW67gHFjzG3kyuXDeurVSZshD yGd0+A3mbkfeQn4ZpLTdRR95LHnPG+2BrLk475D/xN/1ONAyrH97yEFrpibl SqKvjxyd9G6Nw1WMG5KPN2hcdehDXkq2S1Qp803BeBY5V3j/8rfh6F8iu2x4 uyKyFvepJN+qcT66oxqfF9l5YNDd8QLqe2T1fnndbDHkUeSxpvvTF+1G3kXu yxxjH2mLdVTIM9onfNeURP5GtopOSBbVwrgPWTsrYIyTBM6n5OOLRfv8M1BH Jc9aJSJ+tQnnd/I7IU+/UxGoA5N5pN5z61ahD4osqxm5lycKfYNk5/E51Rsl 8fhk7ROvliZ8RZzc9Sx9wv4XmC9AnqJWx3XPHOP15Muny6fvTkIfFDnvoV99 hirqPWQ7/sXqdx2xzidZLNIlZ/U0rEdBtnBqsZOagLyR3PHI63lYCvIl8tKt l9eU70J9jJydN3/AZgbyQPL66w76X/lwvUOeH7lRri8H8ZEe+bPIQWuGlhiu W8nOuW+yrprh/EIO4KvedMoQx3NyTH74eEdPrKdEfpQ/dtRBScwrJPuHrv/X 2JfNipN522KfzkrDeqTkybZxqSslUD8x4K99xe3QyHgaXBOrlsa68TcWXNS4 s5u9rmW7KWHvrXL2upb7ez6ng9rsda1jNZFmAxe+MHkfOi7EpASytv/99n95 kX9YWzhXDmtL8dJ9BTVWG8tZW4ovWlBaObGvnLl1z0yvbjzyrozd62wKDUqY 6VvqN97Ziv6u4iTuKcHdr5nboQM9C3iQjy3nDtjl4VnGePZkr/zcinW03nl9 UzG5Xc7aUpz3pOKizE2vWFuKj3y9Vkmv9Aqvs/fJay9XitDfz97PNvV+mEB0 Vx0zbTVjMH8q8qtWbp5bbaMbGSORHxyzv+FzJB+qOrLocSbW4yLrKeps29yO 8WWy5++s2VFd2N/IQmczW1fLYr0Cssz6gS9WE1FfJY/vqshTFkLeRR5zsahy 7RuMd5MD+5aHPuXGfXbI1uUTnCT/4XhL9m7ka3m0AvMByZvN9O46xOM4TN7k Gf266jXmG5JbhXd/vPkF67WS71iVGfaIn2TFyc+ePHod2Y77sJP7Hp/+/m8m xhnJa654GJxpRt7Fcna3/wwBzA8le2bXqYYUYZyFnBq/dyv3JJzHyZPif1af 2of5gOT9weLnkx5gPUDynBOhz/z24nhL3rtFcNvrYryf5Beb0gUdPqM+QO6M WxGl/Qp1ALLNMbUVtUU4X5CPz54o5j562H2Wh8z7zWvfSxv0wZJT/RNW85zF +BH5uNq3R8ZBOD6TOV5e1xlTgfeNHFSz8bajK/Zb8uEJomPM7uH9Jx94H9s2 SsiQFSevFJmZMLAEcfLT3AOViWV4HPICoYUXE/qwDhs5rWmfaiknxpfJc86K jU7bgOtysvitZP7ECuTVZD71PBmtW6jnkEX3mZydfg/nEfJmEZ2Wo5bIx8j2 fXm/o1egTkXWdfIvPSKEvI48UNYfKr8Z1zvkmHxPlag+rP9Jjn/S+OwuP+7H RF5baZaWWoP9hDwz0GK67W/k1eRvLmOVOJrx/MlGEqcuR4QjTyYf17Qq2HkF xwHy0/mjpRlbxMmfBvm8Cq7iccj5d7bVp6ji/SFf2Ly4mPs33mdyS/R+vj3T MC5JFk7qi1H7h/yELB17TChVBtcp5CwHy8vlcuiPIj/s4I7mDENeR35wRaf/ 4zvUu8iiuvsv7BPDOi1kb+4tp7UccR1HHmSW/V3oi3W9yEK70grcmtHPSW5z uPwkOQXripDXv+RxcDDE+hLkFIuA9glNWF+L3CCq/dl22P0ZyVcFZQOWvkU/ +0iP/Dlq9vTHwFLkw+SBvLTCL/3Yr8hhUVEPZEKw3jV5Qte8igXZmOdOVjvr I9n1FeuHk2836v0ILEFeRA73ERHb3In+anKpdPdVxwGMG5L3e/45v+8ixhmd NA4/H6fB3g+ve2DZyVwT9rxL507I6ild7P1aTxR+y5m9Ye8Pb7T1NOLV+sac tB/L2SAYzdr+99suZtBx/qk6v1zWluLRK++lv2srY20pnlGyLf6I9RvmtLn+ zSlKVaz4yqMiLw9KlDMXRSsuSGfXsuLvxZ45dVqWM2uKro+ZqYJ435fkpB0V b1hbiq9fesNjpmkha0tx9Spn66S4cNaW4iNfr/rn2rNyi9vZ4m32Lhb8M5qY 912Da1u+ox7lo/sj2Cyzjjm3+oKR1OpqVrySkR9byDQyZW2mOveVkXeRBfVq TaMakXeRA19L8WzqfoA8Z8jWKksHw/egnkPm7M/mXDlsXWiy+Ua98etmIA8h N45+kfGOC+N3ZMVtU4qNAzB+R9bN3zJt81bkOeR1xX484m9QRyVPKQ2xEn2P 61Pyl+8FKqvycH9Y8hiZFueb13GfHXJzwjxnrk3ozyfP9byUMS0BdT9yya9i 9/oWxMleYzVzvEKQ15GFpwRuKDpmgePtkNef8TPYlYF8kuzvtGK7Uh/WgScb leeMmSuFfIO8v908dacIjp/kheLFt4zXX2TFyfuLRcTszVCvIKfp2I3um47j OblEKz5tXx/6ncjttfmRhWF4PmThw1/GzFXCfkLW6qtcGKaNvhHy3P7NJfVm GI8gp4e+6LB8hTyErC9avn/edrwusundjXkyw+4zTj4ofEB+eSnmdZLby4Tv fnJDHYxstmlFV9Qu7Cfk9asl9kcOW7eQbBym1/eLE58vWUyl8bb3AP6efCfD UHB5JdbnIZ9vKY9YzYU6D3kgljPm8PvVOF8MWUdWYMFUK9QTyMInPxSUCaE+ SU6r+d8xajfqAWTvL8pmY6vx/pDPzLmXpLEW9UPy7W8Ln4ryIg8hv+jUlpGe jb8nj7M9/ih7P+pd5LXVb0ry5iFvJEutaExsuT3s/ilD7pDXmhejjPMy+dTL VUYfSrD/kGPHL7z5eSbGH8nOLgrH3ZPx/MmPNqh1W0djvgCZ/1xW0I9K1EXJ xq9Pm51UQJy8r3D7gm/hyPPJjW45Fb9mIm8kJ9SfSpBuQ/5GTosaVaBxG8c3 cmahcZlrAz5H8qFYrWXJZ/F9IacYO789ool5muTUm9IKFlLo/ydL1iQUFk3D PF/yQ5eeWt1W3GeT/FR88LD3TQNWnCxSmHFhwv4/rHVEyUrNn05wnzdnxcmj jfhfhawXVqb4SI/8Oe+h394Ri3m+5ClbJx65XY7xAvL+rCXigYIYByE3dJmr dd3Hug1kse4cpbt5OP+StT5U8O45mYLj2JCdL6QI88hiPQGyf/Ktuhv3cb4m T529sUe5B/UTA1/pj1zTGpltkk4Ht8Ti8fdId5yqWsWeX4VEdOsP3mCva4k8 ULdodWKv2+y67KkqfIa9fyl/4WfHvRs6mIG+xy/uZsWytv/9totxmT5+9Z2Y HNaW4gtNHyhlOpaythTXSn5jGN9ZwdpSvG/d7/a5694y448KzH3ogH7777p7 b+60fMPaUnzRtJaofstS1pbiCXErHz7hy2BtKT7ydZWsH7f4yAz28cSmqeMu ztZlH1c9mWC0fOLSj0zXQItUWjTWL20/e6W5bUw9c2FtleuNX/gcBaTvT9iz rZEZ1A3e7X8eeRd5sZ7lpTsbMc5I5l5VVPQlG3k7WXmLT5ZiJOpUZLclEedu OA+7j9uQl35UVx5rgHXayZ+E9bbqGGOcjizaLGccK4K8i9wfsUr2cRTqZuRP SeElB+Ns8ThDviscbXZyOvIWsk2tgPKzPswHJP+xnm9mrIrrHfJv6SkpmcPG T8mRgXPWtP9FXxb5SR7f6iOfUb8i7150V2ZNOc6/5CmWkWen8uN+1mSlJVEO fZdxnCdb/isPENPAeZAskCok93fBsPsXD/nj+umbX8hhPhG5bYOrveh6nH/J 7yT7RG4moI+XfHmVTc61mejXIntEPHCeVoLxSnJUjOVYo0fIu8gaMklZl23Q x04++Mn3q7kHzoPkOVfnzs+qRZ8SWU6g+uS1cpyPyIZnRu28+BDHVfLJt/fV JA1RfyNfCbR5vlEBfWVk/6f9AZ9C0ZdCbrs9c1PmOYwnku23P1kbeQf9jeTv Iar5JzWwn5DV2n+nCzViHWCy4gF3t+ho3DeNvLdbPrVaCecFcvTaf37e9Xh8 cszNfZHV3MgPyYphh7XXz8H4Hbl4++ELuS/xvpFjlHzOP+7DuBLZdKp5prIf +p/Jvn82eLz+iXoO+ecs36Tew/h8yY2J1cuX6qBuRj69TcX0y07EyV2vp2r4 6CHPJMdUdkYV+yEPIc9aeGRZwhjMVyV3Ss2fMD0C65OQBe68lkgag+MD+XT2 g6j47cjfyDO7HgfN5cf3kSzisFrTahOeP8t2u3te2GC+APlv1cqIBd9R/yTf maR0/cwLxMkHpdefcdbD45AVrxb8yw9AfkueWLnP/rwzvkdk9Svf/WI34/mT w3ty56+vQl89eTlP8IfcKMzrJKuIRFlUbkFfFnnJio87bT9ifJncn3Hsq/Fn 1DPJ8dfvGbzciLr3SI/8OTAnbtuYENTzyUx3aNipfbi+Jv/hvX1GIwfXO+QT z/qbrZdiXhW5zHuL8dJo9L2ThbiM9cfYoC+L/P1Zy/WY7Vgvi8xVG3e2pQX9 V2TPsSfWbE9DvcpFf/yaU3WNjPf4RR/eVpTg/Zkw0c52CXtdK2+04MU9d9n7 tTZtydA1//OBLf7iyEyeDdfYxxO5BDcPShqz13nyrM9PrLjYwUyXFRdbeSia tf3vt10M/47j4qoBmawtxRfEJBtNUi5ibSkumNdm2FBaytpSXNXQX3d0aBlr S/HNnCFV0rNLWVuK5xhMa1GtyGVtKR7YsLF66r1Y1pbiI1+X01a7d0uWsM9P nHleO/d6HXsfl/Uf2cCSex+Y85wcJtcUk1i/HzhhrFwoUc/UGGQ43T2GvOty fN36iesbmaVh4m8F87BeB3nqqKNdd8ZhPyGvU8zNLnfHeDS5Ocj6L/dTrN9O /mJx7IubzQ5WnBwv7+zODOK6j/zv8fyNwRyog5G1ViQKNJxBPkY+lWUvOXMe +qzI0VMnWxXOxzgg2fnuzHP3JJH/kAOPvTIc9wzHJbKQ09Q1RUeRn5CtdR7K 153E+Yj88DjvNB9DHA/JzVHitSvuIt8j+1w47PKGC+NN5KUcf+bpnUZ+RdbX avbyHdYXTfaQW7YnWwvHf3LNrvpLwmdR1yK3nd1XviIX43Rk+VWNkzwF0E9L br3W0JHigfMU+biikEaEJNYVJKd7hz7cMRZ5CznRyThhfAP6xMi1NQJSW+XR V0z+vnP8xROTMQ5IPjRt1eDDx8hzyCteex/YUoT+HPL7o6OcxzciTk7R9lb3 3oPHIWvdq/YPnIRxPXJTtVwGvwPqY2Q/3iOT5wqgT578wunKy7pT2E/IIQcV //loob5BLuXVfjFuIvJtsubnQdX2AOy3ZL3rRXof1+H6hdyx+9m9D3xYF47c 3yYvqrUG4yPkiV/KHjxYthfn3yGLXxgdJyOG6wJy97wPpd/fIZ8kzynkcy9/ iveT5UxHl+PjkXeRH9cXXr3UivtRkp1jUqL0nbBeLrn7xf3iZ3+xn5C5OIVE pIf175EXfdG7b7IV+w95Tdnxguf8iJP3TrX2SJDG45ClD6luN+nDPFbywdDO A/dO4PtC7uaSuLs2vpL1/MmTPPYMJr5CXyJ5++d/K9MF8P0ij+U6P/dVBvIZ 8vFmi4lTj2Hclrw1JN9k4zfkseQ7MacWv742bF3cIefnXtvs1Y6+NfJlfo9L T6WRH5LnvpZr3ncTf0/2n/KKyzYQj08WWvBAKO0cjlfkR4cZw68NyJPJgQFe oyw/4rpppNl+9mxY9CgNfQ5kbd8d2++1o75H/iL2LWv2TIz7k9fkn3ZfzIvz C/mbZGyBCB/uB00unxwYm2Uaw4qTjSq01rYYY5yIPGN5dM2NZIwDkktWH5q7 WBJ9WWQBJStjCR6s7+Rd9GzOSolGRqE1+dTCHjy+9+DB9o1n2etaDZOv+2dw sd8PscVxuUVbDft4YliwUraoFnte4WZkfrLThT3v0tU4oas3u4Pp07p6wkAk lLX977ddDNeZiw2VE1+ythRP+HFj7YGEbNaW4idkdqrk9OSzthQXXbzKo+Bp AWtL8dHv6vh1lXNZW4qrR/44ZBrykrWl+GBVHZ/FSxfWluIjX5e08MtO2yvs 9/EpTfr71iGNPS8tkjc9FK71gcl7GWUrLZLI+n3ivSUF34XrGYNnyy9fbkd9 8pZijJXA1EbGOGan39cOfL7k5syQ7yWrMP+RvKnjaMHfeuR15MwJHA2RfMj/ yfdtL7/fp4BxQHLQa6nCq524zzvZ9JfG8dYtGB8ke4f/EPQQR387OeEz96qN HzC+SWbSxN4M+ODvyWUHJG9wvcP5iGz53iDXdArOd+Q36TOWbazG8Zm8PL+H 6/Nh9M+QNaYo71y5Bv0qZH3dozuEo3E8J4u5zDYJOYzjCvn2np6rnLU4rpJ1 OgSO3bfEeYfs1LPowPJj6NMgu/SuG8O4Ik4uvvTkybdYPA5551eDTP7JyDfI H1d1qfS44/hJTlBYnNqkgDh5xS9P/UmqeP5kZ4O0zSZ7UO8iHzLm8PVRQn8F uaTYscsyCPUosuOgf8OK+3g/yfapb5sC/g3rOxqypS1Hd+8R9OeQOw1N2v6s Rf5ArpAz4+p5h3omWTem6oneIozrkUVu1i2Mmoa8nfxgsWOj20HUx8ja5/b9 7JDF+YKsJuFw6FUR1sEg+zu8MI4zRj5DbuHt0lpYjvoV2TRy5zI3deRp5COW 91armGFcmyxVvSx9vyDGwcncNpGJ1VmIk43WpKmKHUE9mVzlfWHUaDfkgWTF Em+9lN/4XpNFBHqjS3Zi/JRs+3OS0IlNGM8l+ytMiXEXQB2GvInDz61vHeq6 5PjLzec0X6WgT2zILwe5D476gryOHHzAsDZ8Pebzku8cLOPVbcT4Jrmts1j/ 5m/UT8iWnps93rbg78nrp4koLfRCfzjZbX61btke1G/Ikl7cvwqXIy8lX59n zvNs43xWnPziyNvZjWL4e/Kz2ZkN6RWY/0vmaMu367fD6yXf15cI/5yJ4wPZ 78HcY2f+oh+AfLD5heqRQtQVyV93rb+cUoP5F+RH3POuNAyb/zvSI3+OTBLM iKzE50i+35hi2pyA4y15YF7dJLfz+L6Tv/+SND1bgfMCeezZssfXtXC/XfLj G4vly2yxHil50k1rCV0zjOuRx5/ZJXRjE+Ybkn/d0RHTi8G4EvnlncYYkQPI j5QmPtA82tnIjNuVElQbj/vxHXnm5tp4oYHRMfiuzJkax4ofPXcife4ge11L /SpnjNVK9vHE8pntQqdWsM9PXO51q6lFjz3vehZ4uEyQgz3v4le/wiU/j70u 9PUa7/T9JZ3MfLmmrzp7oljb/37bxWzeWTJup3Iya0txxyhj8a9f01hbigtG O7z7K5zO2lI8IeN2gBZHMmtLcctVMxNfut1nbSk+8nn2Xg3oG72pgy3e+pnj pzU/++utNj7BN5qLPe/Sixcw3CfzgRk1feY6hWTUo+rW3JjX/7OOsYtYPeaA Fz73imrGvrOygUlK1apQfI98m7xTQ1ZK/Djyc/KnA/UfZDuxPhu518i6ss0T 44/kg1Fj34kNu88O+f7ycEsbc4yDkPMbpGdXaaJuQ05Q5+nyeIfzCPm5u+XM S0pYv4Lc2hHiF/EV/fbkAon3VkvTcR4h79MR8EwPweOTBfsVn5ytw/eXHH9u m0n6U5z3yZXbM5uU2tEXQZ6TfXFX+1Zc55KdFE5r/pJDfwXZa8tKoVHeOA6T 74ma/GiTw/ow5IIQm57kYhxvye1Tdzgfe47jP1nU6S9vQxPyJXI2z4bHMgPo Eybnpk9vNJRC3ZJs+2dxpuA65KvklADXy/Of4nxKPhi9f9OFvchnyAema0pe vIE6Ibml0f3Hml14n8lX16gadv0b1jc75CCZLl2jo5j/RY4t0XctXYR8knw7 z2Np+xic38mmtYfE5i3B6yUfNep+6iWJdXrJDvMbD4jON2XFyV4+TaFR/3B9 TZYs2SprNAr7FVnyTeDihR9RNyA/rbKLSj+FeYtkT/n9iveWYD0icjB/V8iN YX2M5O7I9uebCvF6yea9dY+PncLrIq8Ul84qDME4Jnny9M/XOt1x/ULmN7vq d2U85omQvx8uXtRWjDjZRNffUpwDcfKNN64Li6rw+OSw4tTekkmoy5HXhRs9 Mi/A8YR8bfyl0o4afI7k/RYCoVvdUP8kazVZjzU+inoR+eCvWYGX/FHvIp+3 fd4Xrol8hswrpHvmZg7qXeQNW+1dxXyxzic54KI3V7Qh+sbJPYufDMhtRH2Y vP+7YlGDNPrWyF/MjEbpaKO+TVbi9/Art/zIipMfnNWa4jAB17/kY7m79DT3 7ce6c0PWEjpccHEl5teQvUpSa9SjcN1EPqf7WtTfEa9rpEf+lGlwSSg8xX2L yKkd0xRCu7EuEPlfFI/zzNc4bpC9Fgy6Ku3CfkXe1GNtJttxBfn5kLl8TbcM PA9lxclvNp+Nfuj4jBUnNz3X+OuzHH04ZLkPQfNPDOC8SU5s9rLj/IvxJrLc RG65pQtw/r32eNRM7uONjPT+WZd95ItZ8dGvlx+ol/xf3qVT4hAli+epb+vW 3/KMPe/StDA4lOPEnnc18SlyCs1hz7umVYnnVcaw5xUH9vCq3W1j72viXfWe 82Uke13ogYrQ5e3d7PmY3TXXP59edDIVN4u3bLgdxNr+99suZhJf7sEThg9Z W4ofiow+4podydpS/EiIr7HXyVusLcVH/l8ZzdPHPoxi79eSW3jNJUidfX7i hyMbTN96s7/egNJahXUn2Pvf8k76tsUJfmDaJr5W00vE+lrcQmUnl7yuY4Q1 17UfSET+fJTXxFbWrYG5ZbEtOGEv8m3yZut/gq2DWHeCbGEZ8tW4Cet6kXnX z9Lan41xbfLYogmWM0+E4DpiyAESf5S3dKN/nhytoRCnI4DzEbn0j9RohSDU DciVRjpOEq4435G/GQhu/imH627ywY/8AjwuuN4n/1T/GPbtFPpqyB+j198b HIf8gbxebceL8BbUVchcqbO5RFIwnkLO3tbe5/IQeQJZKFzIo5XzFMYxhzzF 6urmr1+fYH73kF1+r5Idt7QE9ashq+xzNEk5jvEO8sJ3GZ5yC3G9Sc6d5zKo r4zjFTnpYPjLRB3kCWSFnEU5xn2oV5CfPDxRcaUD7zP5+t7HfL9eoh5Cnlz3 ZaqjM/Je8p/nU7ZMWor1QMhTeBbUug6ir4l8aeehjoB3uK86Wbk4boa/9LB1 Hobcb7fknX03+lLIujWalj+Xo8+WrP6o+WD1fPSlkL1eHMzZ3IS6FvnXxYqn S9MxXky+EBBr8vX78PtY/efmxW0/07yRJ5BHJy3fGrAHcfLp7Fk7+4bdD4uc ccMmN1sc/5c8tuf5rRtReJ7kDQljxO+VIA8nG0pP/zFJSpH1PpCzas/udb6D 6yDyhSCrMUebUH8j22rMzvbuQZ5D/nyKEX0ogP2HnPFFaopOLOankPvja1X/ 5GF/IDvo68cLlWL/ITuHLLnS/w9xslmn0S3viYiTJ/3sdjS8gfFWspGD/708 fuR15AkfdxXtXILnTw5e0/hnhho+F3Jz2oXDEltxfUHWbP20p7ANeS953uXp v6X08HmR58/4tdngL+YXkE9oqeZdj0deTT6e/5ipVMLnRVZxudX/3AfrvpLF z32ez6uK+ZLk3+G1+Yvvoi+X/Cri59WWdPRtko0j5AvleHC/m5Ee+SPmIB30 RhTHN/JFy7Y38VLIY8mVG+50cY7GuCf5b087v0MlPi9y1WBwv/st9GWR74cu 49MoxnpZ5DSfJ6NkXuM+huRoIz/m2IFUnI+GvHTWdlv1P/msONk7O74layX6 tch29y9c2bYY44HkcIsk/tkOGG/6OfZ3s4NcIzOg6xa75QrqZk2Gaxqtv9Qz zt+quq+LBeD5dz8pOxfOnncFXwvj9dJiz7tSVqcKJoSxjzM2GRqmKGSy5xVB j7cIVK9jn8945PC3M+kR7P32y/f9bt8bxJ6PLT//4++L2ez52JXGNSvTF7HX nW7wnNjxKZk9flL01Ef5R+zxgtaOmrNf2B+/LpjPbute9vzqa49XZ81k9rrW m1+CP3q/s9f91s3SCn5VxZ6v/tDmPN3x+X/vs++Lmn2JgazfG/zc7GoRUcec OCBtq5aBfjzh1z3HHRY3ML7d05mjlfjczmX7tPPfb2S0ZymeTe/HuCS5dtc3 p7+SyMPJ/QqMhqAo5sOS66SKF2kNYH17sv/0X6e3f8O4OXnBiX6v6giMs5Pf pDTlFjPIx8jPapwOrZFAvyu56UyOua42jm/krIdBy37tRn2GvNXDuHLPGBw/ yRvun/ZdMQbjUOSPiZI+8j/Rv0q2u1HbvFF42LpGQ44y8vJ0fom8iBw/Vft0 2iL0q5PnvDoaNSiBdSnJHv3nta9IzmTFyRP3NvrLm2HeN/kG5+ztUx7hPEv+ 2esiUj4fxzEy1xbBdzMt8XrJgitvGx3JRD2QvEPTN9dhB85rZIdLjwXD/dGn R36epP1DVwD3NSArHr7k9cIXfXpkQ0mTxJsK2B/IYUI3BfgXYh1a8u/TPZyV DhjXJge4TGw/JoK6KFmv8arkjkAct8l3Vi4UeboP+Sf5WptE4Gk11KPIVpOu HPF1xHqnZDOHvK6ukzivkaO44gPf6qPeSP7t16qcKIT9nMyb9e2ZjjP2W3Ks yZqQvaXoByZfDjfR3ngY+Rt5IOfg7HkLkK+SXSZodThmIV8iF0zqGCt2Ht8j 8oNeV/F7K5APkDPr3gpwjcPrJc9f8nZrRwfG5cleM1Snmb7EuBVZdeJVaaEG zOMj94g1+VtXIc8kp6S7NYaE4HWRHV9eF79Sif2WLBkWc2XTsPM1eWXgns1Z h3BdRlZcN84t4QLyNLJM77Iw1VWIkxWMeq+HNuJ6hDxXc0rW5Tz8X3J5etV4 Z13UFcnvVxcb+GQh3yNvb4816d2Oz5esW7GwdNQGXIeSo4Q3aLba4vqRrDFR qbR2Oj538q3nXEp6q/E+k+ck38le/hDj7CM98ie0UuOtOCfWAyHzPykoyNuH 4zb595oEgQgj7Ffk0lszhb/vwOslK3R5nOC2w3GAfGGDs8R2d4wbkuf7am3y +Yn5huT1muLM0c2oG5BNdB1UZIxwf0PyibXqUnlPcR4k9+6pNam4gn5p8tZ/ b/2ap6G+QY4Mn8L73ADn2Z8/vB/V8jUyxqN7jxicR97FtUzlRFt7PWMeqJ6s +DyCFa/nl22NymfPu+YM1Fgn27H3d6kvahZ6m87eVx9xbM3Np7fY84pgWcXg /YvZ62C3bl9xj13Eno9t6vVX5/rIXi8apfbs7sT57HmO/qddkz5NYM/TrEQU ndKd2OMJHdJxYjbs8ckXRBwVCtgfX3ZUqhXnJfb8MFX5gKx3IPvzn35LTdJO iv31NmSJqFlwsr8/v2R5jptd/V/eVVjqULMB96f+1fzNeu7dOmZJwcCjH2bo 1/Ixb2qY9queUZH+LLfWHvVPxjer8Pq6RuZqLVdkVhfqn+S1V0Tf6f5B3Yz8 SuJb3qhW9OGTQ8OUM1YNu68BuS/uSI7/4CNWnLyzVG/DzO23WHHyUjer3MFh 65GSJ9ZY6N+6gvMR+f4HtajTvrheI9s7Vio2/MH1IPm0aEqwpz/Op+TuOHX+ nhvIT8idTrukTdRwfCBfH7RxSV6POgm5+mfjp4tuGAckSzwLms4rg7o72Vpj WpZTNOrq5C+xq3YKtKMfg6y90z46RR5/Txaxr1xqYIh1dcjRt65oLjXnYf09 2f/cN6lJ3eizILfuXXPuQzTyAfKVxtn2HKtwXiPbqraGuWegzk9et1nlpf4v 3A+dfJRzq3K4DtZnI+/bP15j3lPMkyVnaT1NjPqE+zSRnbwceMTtMb+b7Bbu 7JA+DnHyy8ffpN2ycT9Nsva3p8q6/1CPJXd+Kkw108N+SA5fGRYr8QF5JvlO 98vgJE6cl8nBe/4EJUzAfaDI36w76nr2Yn8j2/lM+5jigfFo8qL4sskn5mL+ IPlfp1NDcSX668huxXVlqzeizkmWspBxs5yJ8yy5Xfz4yTuB6B8jb44ptH92 B3kp+YX7nY69s3AeJyffuxumOQ37D9lLxTuo+i3qxuQnG1MdNg27HxY5JPdq ts5FzIMjM+0iPrEOmIdLLlvgnDlzAPUTctu1oif3X2C+A3nBTpPW6FPoGydL XLDVnHQV81zINzMcVOScUdcit7aJW3qp4bhE/jBFb1H1ROTJ5KWDCnZcf5BX kLmtcjtkzJF3kfX5PLzv6ON7RzYU++iXOIA4uXqHalTnYdTzyd0/d6V9KkWc PLNjfVWKPPLAkR75c2H71Xab6jurR/r0S76MGZJYx4986IC0plYp6nXkCcLO ZXtuY/8hX1giXbq8CX0j5Iab0U3eJ3GfXLKafEw174xgVpxl3Wi/gXTUtchL ZPZ0F3GgX4ssbVBtZuSH8R3yZcUXSl+bMZ5I3mP3xGBVCvIo8uQ25QHD28iD yPun5bi4vsHfyxa4v/UXbWQG/05wWVCF9SUedm/Qmj+1gTH22T35nyz6q+M7 8rWuS7D31W/kMX/t5Mkel8s4mbT/InsdrOrL7YmhEux1MMbOUDLhLHu+4fi/ jF77EXt9bNN9m4xlmex5y+1bigZTq9nrSBrxkUkd19jzH0a9UWLHN/b4w6uP fzrVscfPeRZe+anPHud4e7T76v/Rt/Ziay6PyC/256/OXx4Rep399V55IPal toE9X2082Ku2M7WR6WotXyf1F+O/i9V/m1cn1TETpFIfi6SjLurcYnZK4H09 szN3v9CWefjczcKcJL+OaWSUBHT6/WSG9fsNeQxfd2GCL/J58p5t4r5zypH/ k1/fKd7Yeg/XC+TgfJu+jzzo/ydfmyATLbgP+Ty5cNXZhP0xWO+XXHC6Q+Gs L9axJ6du7LqbtAvHH3L8BZPcqcPyJXLrhqS4U8L5rOMD2T74sJ2kBdZbJjvN 2z4o+Br9V+Sp247HLOHBPEHybOOwaZqHkXeRfQxluu+pIk8jj3+7oKyuAs+T LKH/fcOyWRjfIcdV1nJ/5cD8OPKX1wLpG9djfQDyN+U1vlOXIM8knywL6dG0 x3gu2YXv1esuddTlyHZ9OzK3tKKeRvbM9xilGoPzFPm8qVjwuS84j5BzS8Yq 3ZVBPYocZcdj0tmC61my2pP87nMCyMfIvc/Waq1+iuMwOe5HU8JodfQZkg3+ CuyOsME8XLJVwcVJjDeul8kXq48o372COJmvaLpb/bDHITsUzBw1xQj/l+xZ Vmm6VhV9JmSLCzJSojK4TxZ54vPxoXpC2M/JaUp58ivnDLv/yJBP5+w4+WUp 8j2yUoyAe3Io6rpk+5eCC6uOoX5LTu/WniWhiL4m8qzmIhu+MtyngCyktPvq g5eYB0HeHxq2iV8Y67CRCwMnH5t3CvNWyBNiR/d0F2P/JF/i2yg0lhN5Kfnq YzmPgIP4e7KCvmchXxQen2zQETKVIxHjzuT8UmHPqq34PpJV4n8vy6zHfQ/J EY67TX4mYb4zWXL2/BYVX8znJYttPNHR5ot17cha+/8Kyj/FfBNy8JFntwKS 8b6RnyrqHDRpxfUR2aKg6pngBtRRydyjKl79rsU4Jtns2Hup8Vk4Poz0yJ8O 8/RKH2ef1SMtte3droSJ6CsjZ3VYC7dYDBunHrKu1MXFhfPQR0q+oXvr0pQy 1BvJGvPEP26Zg3WEyOcY3qio7uusONk1MbLnUCvW9yb/2OTRf/4O+tLJu+6m zBARRN8yWVloirnL0TxWnDxj/HTHh05Y15R87k/rkupEnE/JL34d/bQnAes9 kKfOG71rVgHqHgYzl8kYajcyQZdKw+cLo77hGrDo/MyjDUwvj0Jp1Wf0lT30 Gh2x5G49k3alXWviDvQX7TO9vOp9IXsdzNRyubkSH/u6E4rGH1ItTf6Pdb3G jdJLusSebyi/5VZ1dWPP03rtbkqM12PPW/Ic7FaM/8IeT479IdiizZ7/PNSx iJt1hj3+Uv/kG1N79vjHlK2LXWTZ4692azM2/uz/97KXlxJnIfvzX3vWvdMm jv31hmxy277LgP39mfxKbvvJc/WM7JTkl/IWqJc+SpMd/C74v7y37FRG+Yoi VnyubXuZHmcDwz94e9pAAfKo5eITOcX7G5iMihCDFJVh98teVM1X97mRkZ8w 68TGPxiPJo9O9Xx8bhb2E3LB+coS7Vbst+T9D4r3anFhPydH9vLpB4vie0FW rAu1s3gexoqTe6TGrVwwiPMdeedxL8+lp1GXINdFHrFoiMX1HVlojP5pn2oc z8nLhB8dKo1AnYHsKqBU1mH2gHWcIe90atw0QyyUFSe/kXGI//93Q6M4uVCH o6DiFcZZyH9jYxNvp+M4Sf6wN8v+ZhDqEmReh9RF+dNwHU2WePDZyJ4Lr5d8 RHFWs8AV9E2Rm1RFjRtycV1L3s0XdHt64rB1xobcoTsYMu8V6iFk5fbXBQbu yA/JHIlF8a1Cw+ZPDTkh5OvHgjV4n8nvTyosHH0Y9RnycyHjiVorkVeTB96m Z+o8x3UxOUhyccGq9chbyPZhmnLTGNTNyGuCzDjuZ3uz4uRLTOnYgCfIu8hL 9Dw6e3tRZyb3XV/osVrzDr5HQ+bSqA1RcsE4O7nWQYUrzBVx8rnzT+f/tsLj kIViNgZE6qE+TD5946mLzRWcj8iaU9Z+Tzf1ZcXJEUItrekSXqw4WSTiwsqu JOSB5PZ922IOdeD9JNuM1peK/4FxXvJnudFyucPu/05W4Poa/eo29kMy7xWV p9IWyA/Jb6Xtq1WG3YeRvCLX1yYgH3Uq8rUlwt5l7civyKtUmsdGbUKeQw72 sIm0FEJ9jNw3yc2rwQ/9SuTeTRGB3evQP09+8DA0uDg/Fv3qQy7WOvd0A48r K06+YSHjrlulzIqTH+cclm2P4sA6G0M+J+zy0fjiKPSrD7l046lJ3tMTWeuL knn3nBZZEGXEWk90pEf+JDUVBB2Z5LZ6pDfXHnhb5of7QZA3TtXW041GHZLc 6Wt0UfYTjqtk94ky8eHNqO+RXy59YuRaf4IVJ8/8/EyptBjXU2RzPp+CFRLo dyJPuv7Mde0hzEMkm8e8eqw5iD558obsF44nudAnQ26IZG6n5OD8RT6waqlH wlTkXeTCXT9elnnhfEoWvi3YoXYdeRA5hKP3dg4P6lLWXkvfuT9qZN49vMK9 1BWP07i5x2vW9wYm4mzJlg8iqLPt9e83ObSigdGoiNF5/xX1DaEPfG2yV+oZ 5VVfmm4qYr2L2Q3TVMZ8Zc/HPtwIjaosYI//LrBd9CqNPU+Lv596aftC9jyk oVVkWVA1e3z9k6kOi7ez5zMJL89nK4Sxx7MbVNVMs9njVRG+JrKJ7PGndjd3 Xz/OHo+6Z6AYOoY9XtIxnSk1Zn+eE4Q39oT+Y3+9Wp+3ySY31DFd9x2nzA3B vMXQ8wUbNH7WMetjfVLqOnBfpxlTeDsSIusZg82qzcI52E/UVHmydhxoYIyt 1Sob3yKPOj0uVmexciMz4YrPe51G5F3eGlW6pgONjI38XGtza+TnZMnlsjcO qaEPn1y59cByqzKMb5JFjF/qpPVjHRKy6/ZvBckLUUclBwdyu38yx3xJ8ra1 2VJWzfjekdeOf3BefR7Glch7j49LL09GXYW8p5JnfOI3jIOQlSJmnHe/jn4V 8mPFWvcmU/TzkKf2FmnmJKP+Qw4OWD3diQvX0WROWaeJj/zRp0o+IBMvds50 EOv+DTmu2Uv/cSKuc8nZ60rP9ofg+ZMH+7+J3fyGfIlcsf3Y88Na6Fsmb1ea dflAOPIW8j+p4qMvSnE8JG+Y7FttnolxQ/KT0D7ZwzyIk2f/2Lk/OgbjcWR5 F95bZ8xxXia/9nioW6SOPJBs8/nmaSsJjO+Qg72nv+/8jfMsmT9FMHW3aCfr /STX6G4/3iqG/JA8k0t9b7cB6nLkgAmbW5+F4f0hlzVGX9vngjyErBj6ROhG NfI6sltW9WWTHaiDkWsu6wo4hSFfIosOiEjEO91mxckhqWtMku+iT5hs7Hjg 8sbX6PMkr/bM4N7WH8SKky+oLZ5UPxHjMuSVIarHWs3w9+Qut6Y729/ie0dW X/XITyIeeSOZV3hRvesCPH9yBsfboJMnUMcmL+D7zOX2HNdTZC6lknC9yXjf yKrdWq2Xh9UPySujnn17VYNxZHLdR7G5HBzouybv+xP3ZmU8PkfypWuBndcr sT4zeV1K98OMYevkkOcVMPfbtmD9QPJb9T36ZQK4nxo56dm/JWfC8H0kq220 bOv+hnkH5Az1I8JzCnA9RZ4sweFtMgnf95Ee+TM5pG3d+QLH1SMdWbSt4QGD eh1ZhWfeasvpw+bvDFnZJikp4SDGhclbDU3szkmgX5S8QdpV7sA/vF7yrcPS L79Iod+AvLd3puIrT1wvkFdy/JlmKoj1i8hWA5dnOZbifEFeXfj5jNUD1CXI wWOf+HRkog5Anmppnr7Na9g6lkMWTuQN17s3rF96yGvSPidv24u+evL1yQ7b Mm1w3iSrrBCuiY3HeZ5cY7H/VtlX9Plc7ijfKOrZyMwp83TXC0M+9nRRz4bS Hw3MvC1HjR3u4Px+TNWi7MyeBoY3dVy2QhPGuewzN5j3fqhnVm5M+7D2EvJM hULdMwoH6pnSqtH60/2x7vrH1LnK+mPqmTU7zY9MnY/3WXr5HdXqKPY8bVvn 3xS/y+xxDo6M4CZN9nHP2Ryj1upmsscHAriaR39jj4sE6p3hzmeP/8pnPNT0 2ePlvK7vn16rYwTvNpyI7cLxzVzHx3H0/56/4NKFrglf8XpFdqdvusZdzxhv dQo4y4v8ZO9Pt37Gvp6xyC6y96lC353i7duTL3bWMz1zr+l8MELd6WPhvJsD pxoYQS5Tt93PUP9c8ejWc5nJjUzhua46FR0833T/rZf94hoZLUEFg8mciJM9 DtzNUjqBxyFvXljmmKuG/0vOPHHy7N9ZyLvICf0Wt5YJIT8nO1+V3qow+jkr Ts57opCV1PuEFSfXnre92RqA8wLZfmCe98ldyLvIS52lreRWog+czKnCsUvr 77D7ZQ9ZpvFf8dlQ9CGQNWfoiFvI43qcPD8saU3LFozvkNfM3JoetxjHW/K9 huedeisQJxdcdE3iP4V59OSilrkeTDSOo2QbMcnr9XKYx0cO65hd3v4F60GR 5zzaL5S3dth9/YZcHPxij8wn1JfIuSZpiSJ/8X/J+ZJtvytDkC+R0zQsp+Tu Rt5Fjg9JcemVwXmNLKtmWJLGj34qsqlkSeLAIZwfyVnp9XkyEoiT55kV2N6b i/EIMtPdEsxbgb59srqdvumTJIzTkTeKyY7WuITzAnlu1p+7PmPRv00urHtw XZAH1/Xkp6rSp1srPuF+KENeEdzh//9Y+/NorPrvD/xHCAlJ0ZxIs0pRVE4p SQmVzCEaFGnOUElKSWmQVBIalWaUUkKGoiJTKFyUSjIUiiZ979+H57W98P6u 9V3r1z9nPfZ9L11d1+WcfV6vffbWWkL9MWCV8Q3RI85Q3RQckfll6xBxej2w tE61Y85pep/h2cMDnVVG0vsJR/v43LMKot8L+Gj1yUsjDlI+A+9Nnjl7uQLl gfCp21NV/GfROhss4+VvKf+e1uXgFTJ5WbsqKT+EHTJzXfMWUH4I+54wzIvq Tb/XcFaGWQ9zY4rDTYuzBy5QoDg8qWHiuAE+9PNh1WlczcHblDfCNT17XV8R Ra8TntqspN0QSvkkLBU2oGnKPvr3wnpSQUqhmynPhENnffkw0IXeN/jb25/L zrrRein8dcG1FwcCKC+F+/QRe7HpPn0uHd3xj+WlN1bWMuu1O1rBWMxKaVcm PTfdZjm5OeOfD6W6QVgv4kVaVCitz8OXYqcN8OhN5w343rSfY1yd6LwBCzfv 26yfTHkpvGfcAD2zXVQ/AJ95enfOjgZaZ4Z/DRcZtL6W8gF41Jk52y6cpbwL lly7Q1dhL6138X3I1eRaPD23CEsW6b01F6B1DNj3gtyok0F0XYMXf7mn+2gX 5T9ws5lXdWy7uTCwvrNeWcVDysdgywujXzZ0o3wM3jNR2eduCl2XX1ta1Psk 8rhlIgUzz8XTz7Hb9Nvt+0Ie98BxiP5uIcrTLvT45J7/vpT745M6bUAkXa// 5RveubG3lHv9Lr8w5yDlkyM31M1Zr1bKed6o8L2ZQvnGBXF79+21JVzgWl7/ EinKS8UW6jbce1DCvR4s3st3M+2H5s6rF7gYWMJtiLRz+fCD8pnAV4r7PHeV cCFGL6KbTlN80rbFPBOPEm6k6vq41+2ea7iu/1Klv08J9y7P+KSpFn0uuiPH e9wK++/vVRU43zSR1idHfpwq//6/PG3+7NHzh86g/T7VoVssVv73fhaZb/Gy ukrrh8k69vkxC0q5+APfdZWjaB2puD61u/D5Uu7FppSwlnGU/yRJXpw/UITH BQ1p+WHRk/Jk726H3+ls5nGBft49TabR+pVMXMiz4VU8Lup7xU53e8pP4dGV fUO9v9DPh6XFvtdJ7KHXAwfkGstrhVB9F9zwgBt0o5zqEuGjomsaz/Sl+wvY 29ntNK+I8k++zzadHiBJdV9wQFqNpJoQna/gb7MdjUT3U10QvMI1YNIKP6pj gVctUFCa+YSen4L/TpTycZhJ5wd4400f7yFStI4BTz0Y+fGqOZ0fYJMUkeo6 FTpvw3bzp051zaHrBaxwZ1mtcAXl57CHv0mNwE6Kw9+z3/WqfEbXEViixFdd qZzO83BjH7EWezlaT4AnqMtdEl/rR/l8myesfKwqXd7uecM2K7es3HpRhvpF wOanBD1z71N/frj3l3MKD7tT/T9cJv3UpeUf1TnD9rVWisazaB8T9vj+4FbD caoDgfNFs9LmhdJ6GrxReOqpOnF6/XDgkZ6HMz7R/TW8zD4kP1Oc8jq4TOiO vn4MxeGYY6t3XftIeQ48zepL9dMs+vlwQHX4Yhcfej3wU40rSesX07oirKcV eOhaFd0vwB+TZb7WG9F+K3x73RTBACl6/+E5Z531WhzpeVs448mQszpuV6j/ W5sv7FCJaPGhzwW2n+783vgP5fmwfaRWoeIDus7Ccba603800fcE1p1h98Ai kvJeOPdiyR7FRnp/4JQQLz3NqfQ+w98kTQYdX0HrWvDr0FLJ27a0PwX7nFUw Ve9B+8iw9uunE04mUv4JO+Q1myktot8XuPCs7Y/MJPp9hx+FKQsp96d8Ca7S kv8j7UDnK3h+VJFzziX6PYX3zwh26vOF8reO7vhH1nvluHTJ5dodrbU/ybE5 heYnwgtWxQ0SMKI+YPBSw8KRQrHU3xUOmG+VFy5D/c3g6R9fre1+k+ofYKfC pR8+X6TnN+H42XG/dB7SOiFcdOfAIv3p9DnCRyrjehkKUl4JD32oOkW9hc6H sL+a/r+4Oqp3gl/GOIsW59A+Eaxj8SzGXyWOH4d/97PYFOxO60Jw3fKSjGVH 6boGN+WMyTzO0fUdfhrV6GGvRvkYHJilufPhWlofg1uKljcOu0PXX9hJ2bRW oeYNvZ9tnpcw+n2xKOVp8NakgjQ9ebru2xuuc1L+yOP2HQqbJ+dF1/15cb3E toTwOI3dU2PSdejnc3qicknWPO5xcoSziBPtixUXh9ctHcnjmrcu/PFFgF5n WmzWlP4CPG7ngWTukDjle/fHqGWerSjljD7MbbDbT/lndIT7lBGvSzm/6vwd rz0o/vrvpV1P8ko5je2HRye+o/jtnqEzDMtKucvOjX2uP6KfH3+v5cPe5lLO +ZLP/h4i9Drvra7XExzE45p6eD8YE0t5aaSpXsKM//LSTOtLAoIvKV/6FbN6 6WFfHrfORMXyhTa9n1+rb8b0zeRxq/at/mD6l+KwdFrGtKoG+jnwhpzLRzbE 0OuBd1XWi1xeRP8uOEU+PHFDOX1P4B/zNPQ/NdP3Cl6dXzXe0YO+h3Dj/Ujx 8J2UX8GOfYTnz11H671wVQ+h5wKG9JwjfHjOe4+6JMpb4LTKsJz6KFrfgGst SzbdkqE6EDhVSDdSYz1dL+AZUcaRR0/QOgzc9/BBkwk1dP6Ej1traJ3IpHoz WHJO4ZX61fS8DByVMuHhpQF0nwUb9JOwUFek33f47pvwNW6WdP8Fv7VSHy/y iN5PuPKi6ZRfF+n8ADcEKN1aXkZxuOyu8b7wrRSHF+ZnD411o58Pay73jjzX k14P7DxP6kXmXnr9sKhZ4ZbqUPp8YVsh14C54XTegweOOJVxxJfWM2HlPu+v CW+h577hGsEPFs1z6HwLv5O5ammiQ58XLLTwX3TIIrr+wsdKHj3Ma/d8Ijw/ TEbDoN26KKw18kK3fl8oD4QlnMflndlG+Qy8Of3NsZO1VAcI3/R9JZL5kNZR Ye1kRdncF/R8BMy9TPG6nUd/Lyyx5LdUrDHVycBmD/1tM/MpH4P1pj+Z+/wk 7dvCK5Zk3XM4QnFY99wunfwm+jmwx6GGsQM0KL+CT2XOd/+wh9aB4S1vH47n htN+E2x/61LhMR16/gJ2d5RL959E9VpwivEVO8NP9L7Be6d6anzZLM+Pw9af 9mppudB+Gfw8oEIz5xDNl4SvzBW//PsY1SnB5k2R4yz129Xht/m87iyrEl+q Y4czDdNrzI9TfTqc0TTIdGNPqgeAX6jsyZ4sTZ9vR3f8E/xCIXzW7kXaHV33 /v2tPG3qPwMPffXHP1qc+i3DnjvmDF/pRM9BwL43R939M1OVH4erhxu9OBtJ 96ewrt4RzdMi1KcCVtrtL5O8lu6PYJNEd1EleVqnhYtm/XYo5dF6F6y1oce6 R/G0zwjniMllKQnQ/SZcbmHHU7Smunq4mBPZ0lf5Jj8OV4f1Cjdyp/t9mGc9 YJP7ezq/wY+2KwXtGUrnT1i5m/Gea5q0DgNfnri1+7/LtN8HRzTqG10yoPUK 2M9fSMTRh66/8J9dv2yzebTuAd9N8dQ/okx5CGwlKLF942y67sPxnP/JrHGU X8FGfuKbpAsof4BNyn66f59M62yw+vvRoU84ykPggQMnK4yspzg8JPZj+kB9 ygNhv+ZvQ8/Npjhccsegt+c7+jmw9eWUARIjKQ6PVogO/CNPrxOe6ZabZhJL /y54YsakVFNJeh/gUNvyupDB9L7BfcfZF2g2Ub4EzxGZbPY+nD4X+Kpzvsag kfQ5wsFGSYa3NOh5VdjK/lfg5z60XgeL5Q7LMW63PwiLlXm+PH2ZnsOFDY+u t7UTpu8zXLWqyP38MLofgRcdj9Fp3krr9vDMCJ0DCfspv4KVV75O+3ed8is4 LXn1jRmlFId/zBuh+HQ03S/Dzx+OfSBSTnkd/OZ3s4FuM9Vnwpknep2XyqY8 Cl5utm6wz9kEfhw2/FB7amO730fYau7OhwWfaf0WHr/ws8orQ1r/hOeMs/23 R7zd59vmFxp3Mnfso+8DvPvcjP021+h+BF6YkumwyYHyf9hQtbo5NJy+h/C/ XrzoHCv63sIlN+49Lg+kODzlX/z1j4soDl8dn+k+M5R+PnxGX2+00QF6PXD2 qb1rZIfT9x++GDjW6PleOs/Ajqnl9f9lTpTPt3ngI9vaIcW0rg4H7vS6YfKD 3md48ZM/w+9MoPMhrPn04d0fwfR5wWWP1TYGT6f1djgj/Yb6NkVab4c9kzxn BRvTeRu+JCvnWHM6nh+Hhd71E5k6lvbf4aPD17gKLKbvIZztOK3/NkHKb+Gf tmOvxVnTdQce0WxgZxNEv4+w7iqXUKFAun7B9iP8ip21qB8yHFps7lDDo309 OHFenK+1Fv1ew3fm7jSxsqQ8GfaNcRu5dQCtL8FbrWMv7LShdSrY6Yzl7HBZ yqvhMu3e2ZWStH4Cbwwbe3LDAToPwF4FUbqH19H9F3zu5a2v3RdQfRfsa2ov bq1H65OwmGTEM+MEqiOFHw9cuPvAUlr36+iOf/qvDH28ff9M7Y6WMcsY8ckw nB+HPx4dFViWTnX+cN2+FJsN2jQXCVbeXHPQ5gs95wI3yqdXl+TRfQQ81DNr d9BEyidhne79rG4/obwLlvOoFkiLpvo0+LtZYlVlCq1Lwx/S3FIflNL6MKyg WHF70TGq34PVJJ1Gvpal7w881vylQcRp2keAs3tIpzo9p+8zPGdaUbxNH7rv g3mPx9ifzaffI/jN54Bb0o/peXw4ySN95lk1+v2FzyR8q7tyiH7f4ZbHjads r9D5Ab7ZT9Iso5DOJ7Bg4taC+WK0vwk/8whXtR1K5yv4SH+3vxY+dH6Df9Xv PSRTRPkAvKHpypxEQbq+wJ7lBw+NbqI4fHi16OLQKDrfwoG3U5Llx9P1CO4r o/hMf027vKXNCaEO30/YUhwe99r7anMvisPTpLa01O6mvxceNle90Krd/iDs 4SxgvCGCzv+wud+SzcGr6H2Am1eEn2+qpv1WuPqh8v6seFp3guX7LIzOWkR5 Nby5pubZvni67sNjIr3SeyjQvircd9qqS3++Ux4F58SqTy8RpnUMWN3Mdr2P Gq3zwKZCgouOfWw316DNh2MMBcyW0roxvMpC1eylLK0/wGNSug3yekr9G+ED wQt3rv5I98uwjvu7hRKNdP6ELRSFL38/R+v0sJewQuGhO3TdgbsdNv517Qxd 12CDxhbTSUtpXQguEMvyS2ykdT94eM3TccMC6fcCHrVms6mJL31P4FEfr0oN HkL5Buy0MN5tYyOtD8OG1tO3npSj/F98h9uoVek8buLMEbJH+1M+E6i0bXDB NB532avk6rJ2fZXDHfzibe+Ucn5ZOSKR4+n7pnbv4GHjcaVcSm5TcG67dXUX jdHO96JKuMoVg8YOOkXnGdFsgWjNOSXcyIoTRSdkqF+u1q7To4QrirlEl8AL 3rJ0Pf2bOUzx/1f3KNDhj1rgWcufnzrHq13nbbgV3rl+cs/P65sb5Do/h7KC 963EVa9zXNddIejy9M5xnaIqwdm/Ov/8uKKfAaL7O8d3l527rF1VzJVpxigM fEb3BZPCE/2s9xRzXze/qes+jdZFHaL9N959UMwVmukdOLCRzucbnkTvqP3v czzaMmyithb1u1td7D5v5aQS7vrg0ixPRfo93b55yc4Lm0u4FImDJ3veos9l x4P9RitiSri4X9XPQ9To/Hx317vaoMYSTieue/KFEPp8h/5xcLGZVMrpfP5s 6f+Vzj/KV1JipDeUcluWe/cJ/U3fz6/ZDkKqkaVcoNnpT8HVdD4sfOV9cFV5 KSfjenJYZRLl+WZ5MgEH+/A4tYUt9eLb6Xv4edn7JUfm8ri8sK+rXRUoPz+w 51CPXVt43JSFJwPXn6HPv2pZ41jPMB531NY2OFuEPjfv2Xcbk57yuAepxyqb LOh+uU9J3GL/Gh43J6XJbs1KisPPNMw1HdTp58Cjsy50r5Rtd7/c5nLTmG8f ftHrhHf+zF1rW0X3EbDW8ieK3qX07+3ojn9MEr4Lu3Qfq93R5W5Jb0JuH+TH 4ddi72YEOtB8T9j/9c5BJyOpHyD8Zaq1+O1n1A8HVl1r3RL+jZ7rhHfsU7sZ kk/1h7DsRTn1J1bUbw3+lmTZzS603Zz0Nm88/9Kifiqtl8LDzl/wXV5L68lw b9721G+5tA4G1xsbGKbrUp4MT9l16VTP1ZSPwbna5fLVR2j/F16VsGy1WCHd X8PNDTFLfYzoPgI+OuzkoSFbIvhxeNVukwWOiylPg6NyhmVeqabnB2HZ24Nb +rnSdQT+YLfS8KEG3U/BJkZVXyr60HkV3ljwjPej3f4RPD4juUZhNZ0fYM/1 xS2nplJeB4+QrJ9ZXEH5ABzw7W1Gsw3le3BQkEDqpDO0DgPbTp7e3/kI5Ruw rNV6V5dJdH8KXzJ+GDFxN8VhW5GDDn+2UBwe8+y7rmtPisPnJVfevbmA/l64 doJ5P/FJ9Drh9IjEePV0Ok/CFqH7lyr0pfcBnuqQNTNGidaX4C/dqiP7tdD7 Dwesnnc3chV9XvCClieHUi/Tc4LwXaMt7jPKqG8DXC03WZ23he6LYa0rMyLs E+l+Ad6bv2nCzBb6PsMav/TkAxbQ8+mwQobjC5FeVNcB6/kUc/NDaR0bvq7p YB37gJ47g2/5x3v3ek6/p3D06NfmEzbQ9R0Wft1TXv015YGwgotIylhh+n2B F142dFg3n9aZ4XX7QjxavtD3HN6dEHWyVyl9H+Dt61vynVvovgM+nl4ZsuEc Xb9gfVWnUdHZdD6HHZdNGPPJo911ZLa2osY3HhcaOW3KsMV0Xn+0l3vZTYfH ifqIfh+XSnn+Nb2K1Fv7S7k/ofOrd7+i3y+v6E8tbikl3AulY0UT5tH3YcOy 058rfnXOf1qEUq+reXfOQ0xmvxEe2UUfGPmTQ58P/N75ed55LZ/GrdzTub/K 7ujlIUlCnfvvaesKrf3zq3MfvOLTMx8+be7cJ3nw/W0uiS879zEOE5cY321b 5/kRyuJi3NfazvMm+t8XUR8zpY57fK5AaseFPfxj63/9ygnHXcwUW36Bf0T8 78/PcQd+3eQfEZ887+5fmW/R/CPi1x6fHBgxIpZ/RFwsU21/yswH/CPiq+SO bXlpE8c/Iv61boOG36U4/hHxfbsfTRHWjOMfEfeyfZV2YPoD/hHxfgujjIqz Y/lHxBVnVT86oHCPf0T88fNo0/XjYvhHxPOmDb9nPzqKf0Tcepvt9D/Db/OP iO/MP/X896rr/CPiNouerTqfeoV/RHyJ20B91d2X+EfEH5y02XPw+nn+EfEt EX+yQk3C+Uf+56W0fOJswbP8I+LzesxJ67kymH/k/71R+oovMk/xj4h3/P7g z/UeK3W6n5DT7mjvdZoh3a22UF+INvNkzT5vPXKdH4eljK8Kr7iTy4/DOTVv 9kjY0P4pPH/h/D2H71EfafjJI63dx01p7ifs4x4sPySI9nNh+d6+51eoUJ80 +JlOr9n6n+n+F86OD2oyG0jrYPD1OS/Frr+nfAyeq1MgZ1FJ639wN9kdQjWr 6XoBe1zNvqMZQPfpsPGxSYPHPqL9Stj0++a/KxfR9Qh+ecNUWTearhfw5Nw9 a8YI0n06PKJ//IJzPWk9Df7s6n3J9QPlb/Dxp2H9xI5RvQQsN9pknpM77afA L/ULZ833o+svLBtwPyVrKV2nYLNkWTduOZ234Ze3R9kJW1C+BxePit0/Q5XW 62DV/MPbRuVQngDv/Dr0TKwGXQfhllmBP3sb0X0i/NjV8PgIGVq3ge02NOiK b6Q4/GPIeRNrJ4rDwVEX55z5TT8fth0/QtpIkeJwcL+49Ek8ymPh6ofr4w2m 0b8L1ghIXVWlTetI8MwBz0Uu/aD3Ez7ab/Nsw030/sOptm9l7x+gPByuljwu HyJGdemwhIrOrkHH281PbLOx4L/92km0LwCHBpfb7GrXBxJewtn1f1tH68Pw vlnfxsnI0nN5sLPhRCVtN+pnCJ8T+9691xCq24SXTdqhdmlRu/m5bS6vsAud sYzq22Exp6DqRcr0+uGBtzbn9Y2k7z/sd3KTdfpdej/ha7fiXbSy6HOEnxv+ vChYTuvG8J+g4X208ymfgZV0AkNzsmi9C56o2G3zfmdaT4Af/ws1ymg3pwm2 GbhvX0O7+3GY5/G0z892z+kenFsyeGo0j1t6v2GJ2Sj6OTUT3lWfFOZx5qqh bxt9KQ/MvlU4ecC8Uu7F65G8YVWUT/bIXSmZ7lnCDa10+nI/kM4zDhfWNHy5 2jkfe+8q+PWGZOf5FO92TjA/btI570q6kbvUeXznvOug1ECfu7Kd864r1UWl Li869yUOnWA9peJy5/zKZtiYsoEeNdzIhGtNVVm7+MfW//pfHnLTWNPSL5Z/ RHyYWZ+v74an8Y+IrxpSMUZT9BX/iPgio/CAhOg8/hFxMfsB4XOCsrnaaekJ 23KL+fHHD+IaP0s/5xQvnBfp4faOH485+8jJOyyZU7mjmKE94SM/3hjQK1Qg 4QE3+8z2Qu7oZ/r5jiuSTGZf4wQ2564+cbKaH08c+S/qZd/9XJyoY4C+Xh39 e7ddSJxxgvI8HAPG+a9/+y+1U3yFvFD8qUmvOsW/zhXuGXE0r1PcYbhrjMGo wk7xSUl/ZnXv9bZTfEDsJFFZ65JO8TWnXb9+GMzrFD8U0S/mvUZZp/i/7suf TbzZOV53LyrtcUvn+DuBt9lLJ5Z3iltYXk/pZdg5/vKqnu18685xgf/x53TP WeWOMc0zOjp6mlOR/xZzfl4EN4ZGfPioSv1I4bQBI38UJ8Ty47Dh4hXLDKbQ fiIsHfYz86MG9WeGvyaIhr3/Qv0D4aNLNkx969+HriNtfmH/4kmh8nB+HD7g dvB8nuokfhz+texVP70lVOcGP9zy+cJOU3rOEZbI+pkz1IDq8GHfOUIxC2Vp zhEc/u5YYf+91DcDDj0+eOS5N3R9ge0FDM8YD6d+L/Dc9Gk26XvoPh1eLHAt cGNP2h+BSwbdzXVzp+do4N6hezM199LzR3DCsX8CobK0Dw4P2G2pba9CeR18 qnbCxZcbaZ8U7rG+W0ngB8r34Kyicc2/XKieDd6bPSp28A6qd4XPrfEuPDGZ ru/wwR4Db9bn0voDvMmsUaXYgNZV4FLdEXo9Aui6CX9SkT32MojWA+HzizwM /Ywo34BjLm6eOzeK4vDqgRnpirEUhzWMGg++NKc4nHTSy6khkP5eeOq7PIlj zvQ64W0f9hXpVNC+A1zUfXe5pzC9D/BGx0rdhCJ6P2Gvp6NjNT/T886wUsW/ sXdz6XkZOHWF/crUi1SXCNusuS35pl2fK3jyxKC0ufn0PYSHOzt/6nGd6hbg gC0GqqL76PcF/tRb0uy+Ms2JhpUzBD/FqlMfZvhC/4OWPx5TvS784uJtYbMH 2+k80Oa5sVsrTd9QXQc8MEPA31iHvrfwmbBzqw/U0vsMb1sy76WNKeWrsMGV IUdS9lN9Ghy9dUfvyxGUb8O9nwYI9JOlvAVWS9pv4C1B+Ri8oZ/I7QdPab8Y Xl8a+drrKu37wN8uZhg2WdD6GGxfrHhfxo3Wu2CvCw17vNvty8ApQT1fTflL eVOizAdfq0geN1jcol/zUcrTjlWIHxsgw+OmfNwxTPg+vZ47ZT0Dnq4p5VRM YzOmV9P67ZbxEjszYks4O9uJSpwO3S8c2O57Ma6LdbOvfUNfbnfqvG5WvM/8 uJ5Z53WzN4kTm9eJd+4zPHOMda8H6Z3zt5JHjxxc73bO3+aOkPe9trnz+tiI 5UlGzzU7z/+yXjWL90GolrP5sGb6ghmn+ce2fwXX7NtTv3bhI/4R8f5rBtXo fn/GPyKesWia7aaEbP4R8SX294tH5eRyltOOzL1uRflLxbQRrtZvX3JS9s4p i2Tp+u8/vFDywcEUTqvmuLtS3Ad+/I/drqcZ+2O5JyOGGvYcXMWP347RLMrc E8LdW+Esmzyllh9feW+heIH8fb5x7Psj6caeNZ3zrnOey7fse1bUKe5rf0h6 pVTn/ET6j+zI0DsVneJip6S2v3v5qVPc8f3+zb4rqjrFY6/Uu410q+4UL1ze LO0mWdsp/iZ08g9FlbpOccFeaQEhGZ3j/+/Hzn/spW4+vlaeP6OjH38df1rt hjo//4Fb4rxrv+5y4cfhxz4tG3YOOkH/f5vXip4YtvxFND8Ol23t3bf3nxf8 OOz2+8g+k9JyfhyOXVLY8+Ea6vsKz9gz5vCqYZSPwZG2Su6Dt1CfGVjHbsku yff03AH81efVOWVdmmsAlx8TOLG2gJ5HgBsOnFlprzSdH4dXWfWoiDSkftGw 3QrRKds3GPDjcKPw5KKi5fTcLmzcpzos4in1Y4GlnAbn/06m/tLwj9sbD9+z prwOXnJ/mah2DM3ZhHUSLprorKR9Uji1uHda7xd0fYQXLDNZnLGP1uvgITdr E7UO0HUNNlt24dS9J/Q8L/xudLRJT2la34DffmpMFptF+7Bweh//qWmOtO4H F7aYeWtuo7pH2H9nS/855pRPwvPnfV8z8y/lCXBgWGL/C0tonxf+mDJf6NZ8 WleEi6/4u0zJpTg8X3riPOcyisNjF8SNvuZIcXifmZaP8Sr6e+Ef97p93VNI rxM+N3mryu9kWp+BW7pLu96aRH2h4Rxlo6bdmvR+wu+8ey15Xkvrq/CWBb7a Vz9TPg8P7TVivksVfR/ggHp1132+9L2Cl4X4mEjF0HNJcFXBG9kBy2l/H/58 K8Gz+8W+/Dis0jxWvfyEAj8OX5CYuSz8K9VrweuFY7bO2EDPVcFLhugp77tK 31uYd29et5V/6P2B1+7//qRvGt13wMFp5juntFs3hoMMh0xYdZ/6wMBxV3Zn po2hfBuOdTKaePAP1bPB9kYaPxdepjwNbsjctjBrMK3TwsM/VEkrT6f9Ylj6 2jhj03LaX4bvvRO+GyRK+9dwr7crXv2NovwNNh48McG7Xd04vNm+d9jkElpn gxX8bqp0k6G8Cx6xJatb6VHa94Tzj5geVllOeR285opBmY0n5VO5RcvU797n caN5E71P9aT8sJJnqbdKi8cdsXVfoLSQ6s28Z+/Kmh5dykWq5fnF7aB1Qp0h y6NslUq5fd1lfN6m0ftTPFBaTfJgCTf99OhFY/9SXZmHrMfRoKrO+V7BnQ8i WuM753u3xPuvfVDdeb3uos8sRWP7Lvoeeysvk3/TOQ80Lr6xc6R157kVi5fH mx4b33mftOzaqHn3D3TOA0NmjBg+4Evndbx90edkrxh33g+dV51/Y3xsHVdu tX7Rpre3+cfW//qV86w4EmNamcQ/It6Uv9LCmnvOPyK+YYr24zdqOfwj4u8E Pkdbd8vjpreMOzX3ZwE/fiWw56Og1VncdfWf5yYb0DrT0TdNU+oGPeXuywqv ENtI+deVW0q3dq55zPWVmxIYvrKSH2+W0uwRXniTG1Z6quWLcrt1PM3sX6pO W7n+D+XmLImkvKl+plDyiUj69+Bo/nxAxvBP2Z3inLSf850xbzrFO76f+DNt QfPAxJkRMzp6XGXxEE6yO837bvOW3PeTi7SoHh4e4WA+6YzXKn4cXhuavvjD MB/Kr9rsP3nCvSahMKrXarP26SXdJ42hfAzOFNt0+td7mlMJD1482kQpMo/m FrW5/njg2v417/hxWEhp2fYZerRuBjv2U9+wKYDmLcJ7RaQblz0W5r9/8F53 oUNfRtM8NThutPvRde2uF/CDylxTjzrqXwGPX7NksXMtrb/Bx2bXjDrlSPf1 cMzTqB6n5tO6HPx84ePwNZnU3xXeHLUxfakRR+fDNverX2+7wIn68sGVNUs/ xkbRdRAeu2zZkjx3yg9hnaA1S/3f0nP0cPPoPcq+NyhvhIMncyENEVQvByf/ eaJ47RHlk3Da5Mxn5m9o3iv8ydKLu1xN/QbhYxvsm+e70HPQsKDlqgN7ntG6 B/yxNmRUdBP1kYZnnCl6q1tL+8Ww8SjLo+9CKY+FW3hhBSJ/KQ6f0R52/Ha7 ODx15bkLI09RHB6oGNs7PY3+XtjnhObz0v30OuHmvb9dD5fSvxdeXavYzyuC 3h/Yw3d7i3wt7Y/D2lK/LxokUL9ueHbRjox9lvT5woc+DdPLUKL6KDhH8H71 0vGalNe1eVX5wR2Llam/Opz3Xs3CM5vum+D31te46SXf+XFYO+Mnz09yDL3O NmvVjbc6cZLua2D1AQ+fOUvR9w12rVtmLVhK7ye8vf75OoOhdN8BPwu7tkV2 DT1nBA+8KTjn2FFax4Ov1OaVDFtC+T+sry8t88uU8jfY4VVt3rW19FwALJIa lt+yq938lzYbeNemRFpQXgfv3eaf9PMorevCEhea7nzaQvv+8C4jLSlzCcor 4Gd6G08VcbS+BPfM3Nbr+jvav4aVnzWnbftFeSCc9rZaNOUwPY8JLw2VeeW6 hNbxYIOnay0lhlNdIpxcU+G1k6P8EM5J3FwmeJnqveEUo7hRB62o3hv+3KKo 6XCH1tlgufDZhmLtnqeGlysluN+bQs85ws+d50hqP6LnFOD1v2ruaK6jemk4 7twWZ4kF7eaptVmo7LT82EiKX/Mb91H4DY+72Dcwad8m+jmyH8cmennyOG+L 0MyVUvT3hsQUGvUYzONSRt4SXe9JeebPoY8FYu+XclLzLy49kkx5slnW9+Gh hv/9vbohW5viqW5QKiBJ7j2vhHs8d6moQ7v+IdmPhMfcdi75L99uli3YTnX7 Kyv2JU75Xswl/skUFMmn/XqTO5pCMe6d89K/Zd2j5hl1fu7A/fijKm5c53XI 2cY/T03X7JyXXj35JKFmfue81GfB8f5nlnden4wXmSvtvaNzvjrdoaXlZHzn dcuDMVcdBdZ33nde1WvZc0mlz53iS+2eGW4q7JzH4s/3HFP5GdbLZ3S0T+DK wKsaSfw4LC1inienQ/uJsIK739m6vKHUj7TNGjbysdpXOH4cnqOyp09fHTN+ HFb9cvxMxEtnfhwuDIv6dXvLLn4cVl82UTN6whF+HHbb3iu98mIIrYO1eafT +bC596hvG/z0/KfSr9Nj+HF4dukw+2WxCfw4vE/sq0VC9VN+HC4Zl7FCZ2s2 Pw739/Sb/yO+kJ7TbLPN52MOi+VovQ72GjXx3MHu1H8YVj3E6+m6opbenzbf C/774vlVuk7Bkrlq2a9+N9PcijaPH6d8106dnveEp/juvVSnSuuB8ESN4edT tbrz4/BDf/3fEnE0fxNWDF8dm7+I+nXAx55cdTnYSP3/YZ0C1w+f42j/F1Ys LmgOPUnrGPBp+V0fZngM4Mfh+Lixfy2NBvPj8OHni7NXeVFdHxzXR/6V1EN6 zgJWLXObfTRjGD8Of8lKCV15jvpyw7cP9Ts7SI3yBzjPX0vq73qKw7OD9sU9 NqI4/H1XWdrGZ/Tz4bK36W7b8uj1wDZunyJPbaLXD1cmX7X0N6R8Hg4QuOec +rs/Pw4HXzKtMJej+wI4RUTSelcufY6w3rikGQF96fsAZ8k8HrM2jO5TYKP1 y29knKB5W3CE+cthm33v0nyxNu9onjPKpu99mi/f5uxVc7LCptD3H670ChH8 u4ReDxz7J1dE1KwfPw4HnQ8d/GM4zVGF5TR+5thK0f0L/Nrt/oBNs6geDLbx XJCcaEH1+fCOxsXZYn9pnQ0WErvjo+9C9QawzigB1+KRVvT9b3PD7wtVBrco f4Zzh/2qTDlH63WwhkhS2NX91MceNk/IWq6fQNdBeKLOdeOPOdSvFW4Muf5K 8QitZ8Iq86wfBQvR+iccKRVxfL8SPWcHb0r/+Cgsmtaf4fWSInWbHtE6M/ws LGX4S70j7fLYVu9OeTsufzztX8NX9nwOkutOeSl8Trpg2mNV6g8JWy7q/7fm GuWrsOnKSzJxe6iuDF5iXMadKKE8Fn6sZ69yagzt48M5/VaMMLxJ+/7wu286 nyUc6TlWuH8PJ18xK+p3DV8eK5dmf4DWOWERufx+BzyoPhB+kjE9qsGI8mG4 z64M+WRdqneFGy4p7LttTfWu8NgsV33LE1RnCDcsMD056yvtd8N1xQ/3PFtH /dbgI9eOSSrsp/VVuP+VhgXPKyl/gzUKRn371a5fNPywYVDPY2X0nBSsomCp tWIb7TvDs20GKU8ZRHk4/Pl86Nj7eZRPwhIW0ybvDqH8HG4Ol9kjv4X63sD6 Qhqvv1hS3t7RHf9MD1q4Rdzh2fSOHiylr7ti/Eh+HgUfWKQi/bMH5WOwTG6k XEzkfn4c7pWxTuDHnMv8OFz6pcLZyzaRH4dPm0bscVmQR/VgbR46eeqnp+M/ 8uOwUta61ydEf/DjcFbu2ke2s4TpPN/mmVe/qK/26sWPw8l+bzcLxw7kx2G7 gpfl3/xU+HF4dP2V2RoSE/lxOFO/qXp/9VRaZ2tztP4PM6OYWVTP1uap8d2z L++ex4/DM2Rvlu88ZsyPwxqv35Zb1C6lfLXNaROXR39ytab6tzb37Rlx6sRw e34cTo+XPP86gdYbYbH4NJ9IWcpvYYORDcP9ZDby4/DSDREThLbQcxDw/J1z i8JU3fhx2Fi+8YbqlB38OHw0pHT3L86LH4cbu61wnLDdm+r92nzjwyor56S9 /DgccrLCaZnwfn4c9hrRmKg/6QDlq22ePXCQ6IJp9Jws/HWA9vg73f35cbhl 0POnR70P0/54m12zRN7tPkF5PnwiZQo3v89Rfhx+cMd1a0JfisM7zPWUJPzp 58CHZ06+mjCd/l642npk8FuNQ/w47JwX+XuvJ/174Zw304wWDqN5o3Bh4vsd Tdr0PsOB30X7SIjQ5wUryp15JWW7mR+HZxy96/LUm75X8OMBB0ZorVxM9QNt /vp9xpI1u4bR+9xmQVv5a7/fKvPj8LrttkaRyy35cfjQnXrDT770PYTDy/sM ebKT/r3w3wVrJhbEBvLj8DGTEQU9J53jx+FwZV/PHuci6ee0WfXuzX3rTtN6 Ozy07qNacPJD6hPYZosH+tN5ven5a7jKu1p2RGA6Pw5f7bbs7LYXr2hOWZud D2r5FNzMp8+3zVrDyy6dPfaW+kK3uVlqidK3BXQfB7/cbNjyYDPlvXDhEYmq NSb0PDi8vkWvLkOQ1v/hlUo7N0kb0P0dnPDp+A/ZPtSPGq5bMaVg55rf1M+n zfJHagfMHkPzIuEHqd0/fWsU4sfh3w2nU8oUaE4lLPNM0s80VJwfh5MvtCg8 OdST1sHa3Ecy4F/Bd7qPgP+KiO+3XU797WG/uBm/0iXpfgSuz31Q/+E33Q/C Gb2uqrqqUZ8iuMrJpcf4GLoPgqtsgxYtfkL3TXCyTbLB5Vy6/4K154Ytvi9N cznhHU8KNvV2o7oXOPfAGD9lKVoHhkcml2Wr59K+CSwhcGiK+grqGw/HnMkQ WdZEz53BHp9+ztx2ge5T4EdiSbkZjtQfAPb6IB/mq0dzP2HbuQcPJXC0Hg5P DpBJsF1Ez8XAldfCPk3ZQfdB8IfMW08aEmgfBy6+nra8pxQ9Hwdflh/u3n0e 9U2Fn9usENjn324eUwd3/DPLjc2v4G+185j8Ct40nc2v4F3RbH4Ff7/G5lew dz6bX8GG09j8Cj7Yl82v4JY7bH4FD3zA5ldwVACbX8FHHdj8Cp4ax+ZXcF4x m1/BBqPY/AreocbmV3DtWTa/gjX/3GDyK3jBAza/ghsl2fwKvtt4mcmv4OPh bH4Fdz/F5lfwSFk2v4LXLmXzK3jdMja/ggW/NTD5FZy4j82v4D7VDkx+Betk sPkV7OXO5lfwK1E2v4IFmwcy+RXs/n0Gk1/B0t8zmPwKnniJza9g/dtsfgVf DGHzK1hHlc2v4PD+bH4F79Jk8yt4eTSbX8E9H7H5FXzmCptfwTE5bH4FK/8K ZvIrOGATm1/BGsJsfgWfz2LzK9hvHptfwSmmbH4FB55k8yt4wRM2v4LjxrP5 FayszeZXsLUgm1/BcmfZ/Ar2yGDzKzgrnM2vYGc7Nr+ClWqtmfwKPrKeza/g PwJsfgUXNi1m8iv4gxmbX8FX17H5FfzvM5tfwT/F2fwKHp/B5lew7Cw2v4KF Pdj8Ci69zuZX8MoCNr+CQy+z+RXstZPNr+AxP44x+RWsVS3G5Ffwj7NsfgWL RrP5FexSc4XJr+ArOmx+BU/QZ/Mr+NMcNr+CP4xi8yu45DybX8HNq9n8Cq4O YfMr2LHqIJNfwUqb2fwK/prF5ldwaU0ik1/BP5+y+RUspMLmV7Daeja/gl/7 sPkVLHOZza/g50FsfgVrCrD5Feyjy+ZTHd3xz6CX7P4gnOzP7g/CKj/NmP1B uGYjuz8IfzRi9wfhfwPY/UF4cim7Pwh7BLD7g7CEMbs/CJu7sPuD8Hk7dn8Q DjzN7g/Cy16x+4Nw95Y6Zn8QFlNh9wdhpc3s/iAcWc7uD8J2Q9j9QTjOk90f hIUC2P1BuP8zdn8QDhzC7g/CH3ax+4Ow0Fh2fxA+vpvdH4RlTrP7g7BWHLs/ CJe+ZPcH4bRsdn8Qzu3B7g/CFTfY/UHYJ4XdH4SnSrH7g/CQQnZ/ED76lN0f hEfsZfcHYUcfdn8QTvFn9wdhA1d2fxD+l8vuD8KlG9j9QVgqlt0fhFd8v8vs D8K2Iez+IHyqpQezPwgPVGb3B+Ehwuz+IHx0Jbs/CJeZsfuD8LGv7P4gnGPB 7g/CU1zZ/UH4YwO7Pwjrnmb3B2EDVXZ/EDZbx+4PwnFb2f1BWKGS3R+ET/67 zewPwqcGs/uDsOp3dn8Q5vVj9wfhM78Smf1BeM19dn8QDtZk9wfhGwHs/iD8 Zha7PwgLd2f3B+GyRHZ/EJ4vxO4PwtHH2f1BeFA8uz8Ix29n9wdhx27s/iAs rsfuD8Jm5uz+IHxGn90fhIfOZPcHYaNe7P4gvKqS3R+E0wXY/UF4sCK7PwgH 92T3B+GoZHZ/EF7qyu4PwvZn2f1BuDqV3R+E62ax+4Pwj2x2fxC+dIndH4Tv nGP3B+FFr9j9QXhxNbs/CI+XYfcH4fil7P4gnHma3R+E7Y3Y/UH4cRC7Pwiv aFJn9gM7uuOfPXPZ+nZ4ZDlb3w5/ymTr2+FX1mx9O9znNFvfDvuNZevbYblA tr4dluvG1rfDOwzY+na48TBb3w4/H8zWt8PzZdn6dvjrPymmvh3W2MjWt8N3 lNn6dnhSGVvfDhs6sPXtsMR0tr4dLn7C1rfDa/TY+nbYM5Ktb4cH17D17XD0 J7a+HZYxZevb4U/H2Pp2+Pdwtr4d/qTK1rfDm36w9e3wrXFsfTtcs5itb4dH O7P17fC2pWx9OyxVxda3w4OD2Pp2eLwyW98On33D1rfDNppsfTtsbsfWt8NG A9n6djjvKFvfDg/bzda3w58/svXtcD9vtr4dzhRn69vhfflsfTvc+I6tb4eL /sQy9e3w2WK2vh3eW8rWt8Pzrdj6djgwja1vh4dVsfXtcJocW98Oz/zC1rfD s+rY+nb4XTBb3w4rRrL17bBcFVvfDr/SZevb4R0v2Pp2OCaRrW+H13uy9e3w qU1sfTv8KYytb4fVDNj6dthgDlvfDtens/Xt8MBktr4dLstn69vhbmfY+nbY Lpmtb4c3fmbr2+EfD9n6dlh3PlvfDqf/Zuvb4ZshbH07fG4IW98ORziy9e1w 6Xe2vh1ODWHr22HXD2x9+9yDrfXtmway9e2xbfXtObZsfbvx3db69sPj2fr2 OMXW+nbLRWx9u8qr1vr2LSZsfXtVW327sRlb3x4f31rf7jaLrW+3/dBa3y5g lM3Ut1tHdV3ffrm46/r2Sce6rm8vXth1ffuoE13Xt9fP67q+Xbxb1/XtMrZd 17dr3O66vr1Gsuv69idW/+/17V4SbH8GWKia7c8Aq91l+zPAFbvZ/gzwAiG2 PwN8eAPbnwHu38z2Z4CHGrP9GeDwXWx/BtjQmu3PAB+1ZPszwM672f4MMHeY 7c8AZ+1l+zPAN83Y/gywui3bnwG2FWT7M8BBMmx/BljFke3PAE+6wfZngN2j 2f4M8KxHbH8GeGoR258BHmPB9meALa6y/RngZDO2PwMcP4LtzwC7VLD9GWAx WbY/A5z5i+3PAC9wZ/szwEWz2f4M8Mdgtj8D/CeB7c/A90W2PwOcIMH2Z4B1 5rL9GeCaxWx/Brg4iu3PAF+cwPZngM8Ks/0Z4KeKbH8G+JQX258BDtNj+zPA vaTY/gzwgjq2PwO8+jTbnwF2z2H7M8DxkWx/Briinu3PAB8SY/szwI2CbH8G WGEw258BDo5h+zPA0/ey/Rng+U/Y/gzw9gVsfwY47BLbnwEe6sj2Z4B/GbD9 GWDpF2x/Btj1PdufAf54he3PAKuUsf0Z4IYCtj8DfGYg258BdrJj+zPA6fvZ /gyw30a2PwP8/hDbnwE+d43tz6D6prU/Q/w7tj+DYVlrf4ajDmx/hoa2/gwu 09j+DAlt/RmkerH9GVYMau3P8OIG259BsnfX/Rmsb3Xdn6FX9677M8zY23V/ BvPdXfdnyHjTdX+GSpuu+zPYX+26P0O3aV33Z/h4u+v+DKGfW/szpOu29mXA sfW/fuU2FbX2ZcAR8ZaM1r4MOCLePLG1LwOOiBuItvZncGxg+zOohbX2Z1g9 ge3PUFjR2p8hsCfbn+F8cmt/BgVptj+DuUZrfwaNIrY/g5dZzv/1Zzh/j+3P MGxE1/0ZJid03Z9BXvj/W3+GejG2vyicNYXtLwqvCWH7i8IaCmx/UfibIdtf FL4fwvYXhSXj2f6i8CFjtr8oHGvL9heFk7ay/UXhQCu2vygstpHtLwoPfMH2 F4XnzGT7i8KBPLa/KBxwhO0vCp/4u5DpLwrfSWX7i8L9WyKZ/qJwU3+2vygc EMz2F4Ujj7D9ReEbnmx/UTjnC9tfFI51YvuLwkKv2f6isF8W218Utl/N9heF B4iz/UXhLBO2vyg8fjbbXxSeoMz2F4XfG7L9ReGf59j+onBmP7a/KHzCgO0v ChueYPuLwiU8tr8o7PCe7S8KF4iw/UXhVavY/qJwTgrbXxSOLGf7i8KjHdj+ ovDYVWx/UTh+PNtfFG5wZPuLwtab2P6i8P3SHkx/UfjRI7a/KLxRnu0vCqee Y/uLwnYxbH9RuOEp218UNg1l+4vCNovY/qJwymW2vyj8cjPbXxS+m8r2F4VP JrD9RWFneba/KDylhO0vCu+6wPYXhRPesP1F4aBzbH9R+OMptr/o37b+opd7 sP1Fi9r6iwp+ZvuLCpS39hc1tGb7iz5v6y/61ZntL1r1P/qLLu3TdX/Rfz5d 9xetS+i6v6jB6K77ixo97Lq/6IPhXfcX3WPbdX/R+BWt/UVLb7f2FcWx9b9+ 5aK3t/YVxRFxV/vWvqI4In7UsLWvKI6Ie6xs7S/aQ53tL1o/q7W/aHdbtr+o 05jW/qLzq9j+om+cWvuLSgxn+4valbb2F+1vz/YXHRfcdX/RwLqu+4v2dO+6 v6isXdf9RQt/dt1f1Cio6/6i38u77i8aFtF1f1G5/9Ff1Pp/9Bd9KPP/n/6i qeLsfBxYzomdjwMHSrPzcWC/hex8HDj6CzsfB5adz87HgdPi2Pk48AJXdj4O LN2LnY8Dj+XY+ThwShw7HweW12Hn48C3tdn5OLC2NDsfBz4Wwc7HgaMOs/Nx 4Jpv7Hwc+Oo1dj4O7P6KnY8Df+7LzseB67ay83Hg0ansfBzYYwQ7HwdOmcvO x4GdjrLzcWDPJHY+Dpx7k52PA0eNYOfjwF9z2Pk4sEEtOx8HjuTY+TiwzVZ2 Pg4s4sLOx4ETBrHzceB9t9n5OLDBOHY+Dhwlz87HgSfGsfNx4ANH2fk48Nd+ 7HwcuL8COx8HTlvGzseB+0mw83HgVCV2Pg48qaWFmY8Dq59i5+PAYTPY+Tjw Im12Pg4cvJCdjwO/687Ox4G91Nj5OPDK9+x8HPj4GnY+Dhx5g52PA+8IYufj wDNusvNx4KKF7Hwc+P4Jdj4OHD6TnY8Daw5l5+PA51rY+TiwyAB2Pg5svIOd jxPTNh+n5QE7H2fgxNb5OCMnsPNxhG+3zseRfMvOx5nXNh/ntoQzMx/n3P+Y j1Owrev5OJb/Yz7O1P8xH6elZ9fzcYq/dD0fJ2981/NxghXb5uM4tc3HcWLn 4whGts7FwRHxSUtb5+LgiHjE4Na5ODginmrYOhcHR8QN2+bj2HeYj/OmbT5O 7w7zcfq2zcfZ2mE+zsCjrfNxfnaYj3PfrnU+TlWH+The3Vrn41R0Z+fjiPp2 PR+nfmrX83G2Dep6Pk7kwq7n46SO7Xo+zoz0rufjuCd0PR9nwPmu5+MIXu96 Ps52ya7n45g+7Ho+zkqRrufj5Nt0PR+n183/b/NxAh+x853hF1vZ+c5wpig7 3xkOzWXnO8NrNdj5zrClIzvfGbbey853hq+eY+c7wzsS2PnO8OJwdr4zvDWc ne8M+xaz853h7kbsfGfYaQc73xmums7Od4YzH7HznWHzena+M7xpKDvfGX7t yc53hgdms/OdYYOb7HxnuNCGne8MNxuw851hpdfsfGc44xk73xmWdmHnO8OH Jdj5zvD7Ona+Myx0gp3vDF9SY+c7w6st2PnOsJIRO98Zju/GzneGw9PY+c7w uB7sfGc4YTw73xnedpmd7wyrn2XnO8OX7Nn5znDvDvOd4dGO7HxnWO0vO98Z 3mLIzneGLXuz853h2svsfGd4cR473xmW+cnOd4Z9n7HznWHDvex8Z7j/VHa+ M/ztEDvfGZboMN8ZHpvPzneG16xj5zvDlpfY+c5wtg873xkOf8zOd4brXNj5 zvDXZ+x8Z/j4OHa+M9zHhp3vbN4239n+GjvfOadtvnNMh/nOCW3znYeFs/Od j7bNdzZWYec7e/+P+c5l/2O+88L/Md9Z5X/Md7b7H/Od7/2P+c5R/2O+877g ruc7//of851vSnQ933mVRNfznU8/aJ3vfLVn4f/Ndcax9b9+5a4Wtc51xhFx /4FV/zfXGUfEt1i1znXGEfFRua1znXFEXKqida4zjoiLjm2d64wj4lfENv7f XGccEXc80zrXGUfEwz1a5zrjiPiiNa1znXFE3Mamda4zjohf/Nw61xlHxE9b ts51xhFxixOtc51x5L/+Pqf/b64zjogPDmid64wj4pkPWuc648h/PUWtc51x RLxfVetcZxwR732jda4zjog3BLbOdcYRcTHt+f831xlHxDt+f/Bni0Po4+37 2/Vjb/PZpRkjPhmG8+Pwv8OjAsvSab8Pfr0nxWaDNj2PBh/cUHPQ5gs9lwoP 7JteXZI3mfKBNpdtz9odNFGfH4e/Cvezuv2E1p3g167VAmnRayjfaPOfpYlV lSnb+HHYINUt9UEp3V/DZwdX3F50jPIleI2E08jXsrQvBmcsfWkQcZru42A1 CelUp+d0PYJlNYvibfpQXgS7xo+xP5tPdYPw0MqAW9KPaT0HvuiWPvOsGl1P 4ZWPv9VdOUT30XBwfOMp2yuU58D9FCTNMgrpfAvPe7y1YL4Y1YvC1W7hqrZD 6b4bPtHP7a+FD11H4O/f9h6SKaL9Atj4x5U5iYJ0nw57lB08NLqJ4rDbKtHF oVFUXwHb3EpJlh9P1ylYVlrxmf4aisMZZx2+n7ClODw53/tqcy+KwyY9t7TU 7qa/F1bRVS+0iqLXCVc6CRhviKDrGnzFf8nm4FX0PsDrHMLPN1VT/S0s9FB5 f1Y87QfBcnILo7MW0XUcdqmuebYvnvI02POqV3oPBcoHYE2tVZf+fKd1ObhX rPr0EmFaN4NlTW3X+6hRvRC8WVBw0bGPlLfAedGGAmZLqU4b7mahavZSltZ1 4dkp3QZ5PaV6Krj3yYU7V3+k9Wc43e3dQolG2peEo4cKX/5+jtZ14UnCCoWH 7tBzW/ANf+Nf187QfQc8trHFdNJSymPhG2JZfomNlCfD9dVPxw0LpN8LWGXN ZlMT33bfkzbP/nhVavAQqk+GkxfGu21spLwGLrCavvWkHO3f/d7uNmpVOo9b xY2QPdqf8qudStsGF0zjcYG7Sq4um95uXoyDX7ztnVLO90WOSOR4+r51v3fw sPG4Uu5+VlNw7lH6d6lrjHa+F1XCFVoOGjvoFJ1nEl4JRGvOKeHcCk4UnZCh OiWe5+lRwhXFnJ1a4AVvWcpvAzKHKd463jlPGxp01vLnp87x0R7zNtwK75y/ /fx9fXODXOe66EHvvpW46nWO6+xQCLo8vXPcpbhKcPavzj+/f8nPANH9neOi Fecua1cVc4lTohUGPqPnIg3DEv2s9/z3+ie8qes+jfbxN0b5b7z7oJibp653 4MBGOp97JEXvqP3vc7z9ZthEbS1a33Z86z5v5aQS7p1kaZanYrvf001Ldl7Y XMKlNPud7HmLPpcd9/cbrYgp4UIqq5+HqNH5OdrzXW1QYwk370r35Ash9PkO /e3gYjOplLMs+2zp/5XOPyoRKTHSG0q5K+befUJ/0/fzxysHIdXIUi7D8PSn 4Go6H5ZkeR9cVV7KbXA5OawyidY/7XNlAg724XEX57TUi2+n7+EP6/dLjszl cetOfl3tqkD1+cHeh3rs2sLj3sw5Gbj+DH3+f6wbx3qG8ThzM9vg7Hb71Kd0 7jYmPeVxYfHHKpss6P5CtThusX8Nj5v3osluzUqKw0na5poO6vRz+C640L2y 3XovHG4T8+3DL3qdsIpg3lrbKrrfgZ85PlH0LqV/b0d3/LPwuUL4rN2LtDs6 8N37W3nad2hdq81DM//4R4tXUp15mydunzN8pRM9xw0Puz7q7p+Zqvw4PErZ 6MXZSLpvhefqHtE8LUJ5FCy+y18mea0TPw4vf+wuqiRP97PwyJm/HUp5tB8H 57n0WPconupM4OuicllKAlQvBC82t+MpWlO+BMfPENnSV5nu9+HTob3Cjdyp HgOebDVgk/t7ui+Gb3soBe0ZSnkRXCBovOeaJl034bETtnb/d5mus/DXen2j SwZ0noePHRIScfSh3y/4l+cv2+x2z8vAR5I99Y8o0/MysIqAxPaNs+m6AK/V 9j+ZNY6+h/DQA+KbpAvoewt/K/3p/n0yfc/hd+WjQ59w9HsB8/pPVhhZT3H4 xd2P6QP16fcLNmj6NvTcbIrD3rcNenu+o58DD7yUMkBiJMVhP4XowD/y9Drh ba65aSax9O+Cl6RPSjWVpPcBPmNTXhcymN432GSsfYFmE53H4CDhyWbvw+lz gQc752sMGkmfI1xomGR4S4OeI4YDlv8K/NyH1tNgv5xhOcaytD4Gz+F5vjx9 mfIu+MWR9bZ2wvR9hmesKnI/P4zyFlj+eIxO81baj4PnRegcSNhP1yn404rX af+uL+LHYeXU1TdmlFIc/jJvhOLT0bSeDAs+GvtApJzW02DhP80Gus203w0P Dep1Xiqb8iu4j/m6wT5n6Xk3uOpD7amN7X4fYRu9nQ8LPtM6J/xl4WeVV4Z0 3wEbqdr+2yNOny88euqdzB376PsAT7gwY7/NNbquwWvTMh02OdB5HX48obo5 NJy+h/AbOV50jhV9b+Eed+49Lg+kOHxX6PH1j4soDjtNynSfGUo/Hw5dqDfa 6AC9HrguZO8a2eH0/Ydfnxpr9HwvnWfgM+nl9Y8eUn4Iz0+0rR1STPcv8MXd XjdM2tXhwyoZf4bfmUDnQzgy8+HdH8H0ecFlqWobg6fT/SZs++qG+jZFuj+F jz71nBVsTOdt+PUgOcea05SXwuOq+4lMHUv7BfAj1TWuAovpewhLbZzWf5sg 5WlwjsvYa3HWdN2Bt4kstLMJot9HeMIml1ChQLp+wRUT/YqdtWjfBJ5YZ+5Q wwul63ibtSzifK216PcaNl+608TKktYf4PNJbiO3DqB8GxZzjL2w04bqfuHq W5azw2WpThIevqh3dqUkPccEn7k19uSGA3QegE9+iNI9vI7uv+B9H2997b5g Jz8Oyzvbi1vr0XPB8P7BEc+ME6iOFK6ftnD3gaVUL9TRHf889lo5Ll1yuXZH 99qX5NicksiPw6kr4gYJGFG/OFjGoHCkUCz1H4B3z7PKC5ehOgr4fsWrtd1v Ut04HP966YfPFx0pb2mzkE7cL52H7vw4PPr2gUX60+n9h6d+iutlKEj30fC/ B6pT1FuoHhj+MEH/X1wdfT/hmGhn0eIc+p7Dj8yexfirUL4EC/az2BTsTr93 cIpdScaydveJsFf2mMzjHK1XwPV3Gj3s1eh6Codmau58uJbOP/D7wuWNw+7Q eRieqWRaq1BD50P4b/zo98WilFfAb54UpOnJU37iZ7jOSfkjj3vnHzZPzovu O1zieoltCeFx4d5TY9J16Oev1hOVS7LmcUNTI5xFnOi82q0kvG7pSB633XXh jy8C9Dq/xWZN6S/A45r8krlD4nS+fTdGLfNsRSl37uPcBrv9dN0pinCfMuJ1 KTe4Nn/Haw+Kd2u5tOtJXilnuuPw6MR3FM/uGTrDsKyUy3Zq7HP9Ef38S/da PuxtLuVcLvvs7yFCrzN3db2e4CAelyfp/WBMLF0vnpjqJcxYyOMuL7skIPiy 3Vywu6uXHvblcaZLVSxfaNP7KV5zM6ZvJo8777P6g+lfisO2qRnTqhro58AN 2ZePbIih1wPLVNaLXF5E/y54jXx44oZy+p7ANvM09D810/cKHplfNd7Rg76H cMH9SPHwdvu/sHof4flz19G6FtxPUui5gOE1fhz2m/Peoy6J8hw4uDIspz6K 8it4m1XJplsylEfBqd10IzXWU18IWCraOPLoCTp/wg5HDppMqKHzPPxqmYbW iUxaZ4A15xZeqV9N63KwVdqEh5cG0PUOvjVAwkJdkX7f4dyS8DVultT/B361 TH28yKPEdn9vq9UjTKf8avf8Oxx0QunW8jKKw6n3jfeFb6U4bFeYPTTWjX4+ fHm1d+S5nvR64EJDqReZe+n1w3OWFW6pDqXPF54g5howN5zOe/ChiacyjvjS Ojy8cvD7a8JbqJ4NfiL+waJ5Dp1v4RuDrlqa6NDnBT+y+xcdsoius/D3L/9l WYtp/RM+GyWjYTCd6j1g76UXuvX7Ys6Pwz6x4/LObKN9E1hyVN6xk7UR/Osa XGT4SiTzIdX9wpEnFGVzXyygPK3N1VEpXrfz6O+Fw3R/S8UaUx8VeNQtf9vM fKpjgSeoPZn7/CQ9Dws3L8i653CE4nDvkF06+U30c+DTBxrGDtCg50FgmZfz 3T/soed84VvFD8dzw6neBp5w91LhMR1aT4ZD1sul+0+iPpzwCpsrdoaf6H2D xWw9Nb5slqf8qs1Xzvtoabm84b//cL1WhWbOIarfhgvFxS//PkZ9AGCjkshx lvr0vD88bNIsqxJfeq4N7qaRXmN+nPbLYK/KQaYbey6m63KbZeT2ZE+Wps+3 ozv+2XThjZW1zHrtTjYUs1LalcmPw2myc8Y/HyrC/3nwqksv0qJCx/LjcNPd aQM8etNzefA+rZ9jXJ3oc4dv/ti3WT+Z+t3B/ccO0DPbRetRsF3a3Tk7Gqje Ca5XFhm0vpaem4ZPnJ6z7cJZ6ucG5zvu0FXYS+dV2MHP1eRaPJ2v4J8Fem/N Beh+Fh51Xm7UySBav4V3VN3TfbSLroOwkJlXdexeum7C05z0yioe0vUdHnN+ 9MuGbnS9hp+qKfvcTaH1ll+WFvU+iTzuuWjBzHPx9HN8N/12+/5fnqC6doj+ biHKN170+OSe/76U892fOm1AJN0njnlteOfG3lJO5mN+Yc5BWn823VA3Z71a KXfodoXvzRS6H8wSt3ffXlvCZazj9S+RovtBjYW6DfcelHCmw8R7+W6m+0Fh /XqBi4ElXMANO5cPP2idPOmV4j7PXSXcxUUvoptOU9x422KeiUcJ5zh+fdzr dv3oHuu/VOnvU8JZvzY+aapFn4vlyPEet8JKuMoJAuebJtJ6ztyPU+Xfp5dw Ibqj5w+dQXmI8dAtFiv/ez9LLbZ4WV2l++IyHfv8mAWl3GW/77rK7fYHf9Sn dhc+X8rt25wS1jKO8sbXkhfnDxThcZOHtvyw6El5VGC3w+90NvM40YPePU2m UR47KC7k2fAqHufxvWKnuz3lsbBEZd9Q7y/082FRse91Envo9cDnco3ltULo /h1WiuMG3Sin/Ap+Lbqm8Uxful7DVc5up3lFtH4F3zjbdHqAJNXJw+ef1kiq CdHzibCsrqOR6H5Pykvb7OYWMGmF3zx+HD6xQEFp5hNa34bLJ0n5OMyk8wNc ctvHe4gU1bfDLv6RH6+a0/kB/v1UpLpOhfJA2MNo6lTXHNr3h6fHLKsVrqA8 AVY4ZlIjsJPicETRu16Vz2g9HD5d4auuVE59L+HfA8Va7OXofh+2mCV3SXwt Pf8Lz3V7rCpdTv1P4BUKq7ZelKH7afhjjKBn7n3qAwNbLT2v8LA79SeH15Wn ubT8o37d8IR8K0XjWXQ9gWsrHtxqOE77C3Dz38y0eaFUpwHP/zPlVJ04vX5Y 91DPwxmfqH4DVrULyc8Up+ejYRmhO/r6MRSHJwSs3nXtI61vwAXWX6qfZtHP hw9+C1/s4kOvB46afiVp/WJa34DXzww8dK2K8jr4R6bM13ojynPgQs8pggFS 9P7D754467U4Ur4H37+udFbHjfpgw7JmKhEtPvS5wIKjnN8b/6H7EXhAiFah 4gO6zsKTF+pO/9FE3xN4kZrdA4tIqpOEL58q2aPYSO8PPDLIS09zKr3PsJyo yaDjK9r1f2tz+clSydu2lD/D/YMVTNV70LoWnJvzdMLJRHqOBpbLbjZTWkS/ L3BUsO2PzCT6fYezQpSFlPtTPg/3nSr/R9qBzlfwhVtFzjmX6PcU7jEt2KnP F6pD6OiOf6TCK3X3Znhod/TK5yalERzlk7C86FhthyHUfxu+t/b+/XvrqL8l LG6+bIP3IMqHYY9he0Y5/XOh81ibgzYox39Rou8/bNegOCHhEO3rwUsFfg+w kaE8Ci7+5TfM4xXlUbBixmfPFRF0vwZnid84VptM1xdYwt4uyeQw5Qnwvbti lxafo3wDXpvw+aGJI60vwSd7bzVJdqY8B5bS6vMmKobyJXjgirWnsqvpunyz Nkdf/hCPO5RzaP/ii+3W1Sc16L36XspFGW6x3hpM+dv5WfbZnqtKOa2kHqmq 72k/MSxZz66x/L88xyCxfM4Bui+2fL7IU9WphBtZKmQ6JISup9IJoyebCpdw Qx3tNvcf1+591gqeVXSzcx3Fvdq/jwL9OsdNBZ6EvzfoXOcw+r9b5kXJneP/ D1v3Hc/V/z6OP5soQvYoIzQUSZQctKxsUpmRVCqRhBQpkggZDWRHCUUoKiu7 zIzsRJKZUiS+79/t5TqXn+fHP+d2v+jZc5znOde5HtfjcR5H032hHqGMa0Yb XKavpIzvqSQC1Ewo4xqMPj3/Xx+IVULXxefjeB701Atxp/7f88/cIeuTM4yv d/OxIs079J3EqJFn9BVGzOuuTPnOEE6dhFdZjVNIC+aTKvfucd4Y6yS0N9zR 6z2Ceelw9cbIWY8uYiudhe+xF5gXKT+5+1KCs5touDreoaCHz7c4yvBmWFY3 cZFN2pSTBuPgwVMPSmUu4uOAY2Xr3cvV8P8F33Rzu/JPBPN8sM7fo3cVF40P gh8HixlKU+P4Bfh0hnRp3k+sV4C7fM9GDkRjHgKOmNsY7GaN6zmAN18Vs5Va VGcA/1akstb5J0/GwTW98x+uJOD1L9hDXE/g6Aa87gYzP85T6T+A65aDJ8UN i7K2OZFxsOaXl2MGOzEOvhjmk8figfMcwbzj6wOITDxPge9LCIV3SuF5DdzP v65h6Duuww+OO3eSvWIPrssHtvB/ZSfxFa9DwWzGhblc//D/BffzDv5pjsd5 lODVe2x4yo9hvwT4b2yB908JrPuBj6oeqi1kwfMjOFuoNnf2DOYtYI2SzgoJ QYyDk6yrzsatx/okOOt3fyxjI56XwdtdTSye5uF5HOyyTpJa3R/PC2COtr8P Qpbjerng9KlH4WwMuE4y2Heb+KWBRrz/BfjAhdGoHYY4fwrcwD2ZJfEA1xsE /yz47iLMhM8HXCs/bN9wD99ncKpQmMM6SXw/waGXr+ccicDvBbh7MDJJIgDz B/D0W5Xd1jw4/gK2fqqwLlAVz/tgJc/Aw9x9OH4HXrOyqfbKIK7TAn5V0+ja pIXjgODLYTpNzznwew22rDrIbKqHcTCHYb2AFg/GwW8nZTbxX8fHB8spESMB mXjdAd7KuirN9jk+T3D/tKjyZAxeB4Gp4/h/b/fF1ws+zRYhGuOM+Q74x+7v /QJn8H0Du3dNm0dfxPwKfFnnSY1/KOZj4HZuxhqnPPxclnrpj/3nqofOHHh/ LrDop1Mf68PwfhbgKh5dA/1MrMuBK0KO3JD8ivs5OJBNIjvpC9ZFwSflnx7x 6cTrAnDC1xcydR8wvwX3MIRU7RTEzwVcc+eFz54z2F8BNst8m6Y9h/UosEfp K3c3OswrwDUpxL2CMqxvgN8obQ/I4cO8Bdxn9et1fRDmOWC2u2yjauGYX4Ar qH/eK2PA8+aNoO2tfk+6Cfa0QPrtPvg41NqTQSI/ughm79oDvVxYP7kdNWN+ ZmcXwdn8TK9nGM+PO3qZBiUDOwmF3d/7IrfgfCjdLn4F2uH/q780Ib25ijKu WXV269tCyr5Qw+Q3/saylPOD/Ae4FB+2Ucbb0vhcthlTzhuyf33tnXQiZfx+ l6qaxTvKuF9KqLlkLmX8nGPksXBXyrhjnOmWBFrKePCoMFFnRvk80zg1JhPm KV8v/TcjyfyuDoIxxZ1nfTyOjzy+VrVffaqD4HweUtAxivUxQR7G0ZzUTmKr luqX1WW4nyirMpQePNVF9NqpNXd/xPG+M8zP9bbJdRNRt0J69LqxfuWj3qJv MdtNsG1cf9zqOObh4Fc7JCPOqGGdCrzJ+NQO23rMo8DrzV/rFc5gfgiWOzhS lS+L8wrBAnH0fl+t8HoEfGP/O1HbL/i9A8ewPbq2e9G6WOBT7sxFDfnYtwB2 /8SwIncE6+3gm+lrrvmFc2IeuOBH29v9+izwvnLg1H812mX5eJ818NcnysKe dLg+PJhH3XPVkyi8nx248nMW71WLOfL4Bjb8GGSSlov3QQPHEHVXZuLx+YNt fo/wRo5g/gN+ZHDh5TkdPC+DnbaI3DyVhOvdgTeLfTj/qg6Ph2AOrtA2qxI8 j4NzkqclzzFgHGw0ffhk5jOsF4GHrzPevWyF+RiYOfyxfs1uHG8CN/yOvGQr iOv5g6fShXvG/uD4Czi7nvXNMe4xvE/lgq0UjF0HeHEeKNh0Ws1+whTXzwcv p9caeJGI7w84+FPmnRPemB+CDaOfske0Yd0SfL+o7ab5QcxbwHw39Fk9E/F8 CC6Y5hLM9sTzMvhTgYp5/gM874M13U7d1HiP+QP4X0AxvdEM5hvgcrVtHJ2r 8PoOfC1B9cKAJf49uOpG333jj/i9AycTT8IEszHfAJdwb+302YzPH5xO+/Gh 20XME8CyLN/ofF9i/Qe8Uq42yYAT3zcw32+dgZuqOP8L/CzrxcjbT1inAlMP 8q6nosI8HLxmWXaTUjZ+jmCRqJix8GbsjwKvLJ14XCyNfUHgLfVE8uABrGOD hTXtTOpZ8boJ3F04L385Eb+P4ChDm8GJEZwfB+7Sdl69rgrXsQTriVMFm3Pg 932pl/5wWRU1h3jheqFgfcNW65xVE2QcnDlyfHX/UbxvF/jr2hvbqjfq4vFt wSp6d/156rFuDD66QeDzgXV4vQO+qcyYnj6B+z/YNyd18swA9umB+TQDZq7d x/nF4Kz7BWu42LAeBVZdxWPlfR7zKLAni7D7Y088P4KfzgzIt+Vi3QD8cur8 V7scPD+D92yithapwvOj21pFiUO63QRvQF3SptVYZ3gavfXa2vNdxM/l0nUt 33C8rCmIOkX+QSfRc29IZ9VB7AcLs7i5q6eaMi9KPbrDSoaJMk9oOdL7xub/ mDddsnyZQZ4/ZR7S0USv6uNLuS5fumOk4AoDyvnUTi6OO1d8p4wXP//F1q9L uf6wsd7RLJHLlPHLJm5NFk6U8eQCw23ekpRx32O6hEMU5f9rERQkQ1NN+fxl r/iNOWRRvt67mr7G1qaU74/iWyljt6udhBdX/usNR7HOGVsoOfeD7X/xWo/i hp04nrj67FC9AU0Xse3fPf7ZKsyTRQRW0QjMdBFZDfGmBQqYR7VvbWPq+NZN rGUVuajxF/MuMP3bW2lXRXA/AQf4NtfqDuB+C65P+WCvQ4f7OTh1iskklhu/ F+DWrgTHoy+xHwksKsGstHkOj7fgYvegW9svYd8L+EaG89Gu53j8Ab9jNrkU 0obXWWCHNU/O1KVg3QY8tEOmftQS+17APGbdmmt4E8g42F7IJVtGGdcfBttq UFU1vsX+BPChzOe594rwfgpg7+OlTpEPsf8TPHz+zdZKfrw/Algo5dsRJzp8 veCvsiJfWAOP43Fvwcl7uc26yjFvATOsfHhPOBePx+BLR+biN77FcTfw2en3 VaZ+mJ+AR4drsgfYcV42OPz88OcqFXyfwS7HpGWpz2F9DOzHZLZKRwnHs8Cx tUUlei8xzwE38W2r2rUPz49g81htKX4C8xzwwWhLquR3OO4D/r6rbnn0UxzH AYvrB4z9/In1BHBQuGyAsjbWK8Cm6u3xMt6Yb4D/XlCgS/RZNP674N2+GZv+ 2OLjgF2zNKJTDbC+AZa/l+HtEIjnI/BW/j0/iixwPAXszdM/UCSI65OA459e VxrPw/ssgEfPGD07M4rvJ5iR2UQ0+xfmFWBuGWqp8gnMk8FX2YYz397D/RBc H62QIXYU673gji1ObQpy2PcI9moJdYiuxH4q8Dmt1cH1Q5hXg230vyxP18R1 lsAPih1SbdhZyDi4SdM3qCsM78MCPpyeEjOxF9clAN/ckxj7ofI5rqu54JPx Phn7GXzIOPhZ4iY//RY5Mg7uNLOTHEqnIuPgF1Vun81uLCPjYAUBW45g4Vxy 3XWwq8x902ZufTmIL/XSH3aj20MObfeVl3pDAVPxGiG8Hx/46kkxbZ06rNuD ezm86u3uHSTj4IfbxOp29OH3FBwWkdkX7IZ1KnDU+mdtjGswzwen6maGzRZh PypYaJ3dRA0VznsC7zvYZnkkDPtMwN83v5IZ/rJoXs+CU84+Nd1VgHkUmP+r 3Oyhe3h+BMcLlHn7NOHfa1X5fYzi7ibSlrF6b27B+Vx1E/t1NvF1EXqRxzjn JbFu0DVaqRMuSDmeFUFv9d7zFmW8qcgt7+QNynwg4Pu9VQmClHlF99lDQjlX KPMQvmX6jbpPKPOW1iSHYsUSyvVnWO9uMeVro1x/JisrNW/0DuX6fn1q3YIH Ryjj+26nTXl2UMaVb1UHTplQxouazk/cNqD8f5MMyxm4flM+/70sDSkJ4ZSv N+ER7/f2Lsr8asOZn2qH33T/L99o2Cv6D9cZ4Nn9x6otr4O4uOZNGlcRjqua 9Vt6sPZ0El/fnWQ/sBE/d/lET6Fh2m4imk1vJkwC9xOw4fKJ6pxQzLvA700E Qtc1YH8UODbqg8ZAHNYnwc41DtOfGXC9DvBWdolMthPYBwWWU7uSc/IZXreC LbxHpa+E4vEcvF9//EGeNZ5nwVGR5uV8ajvw+7jg6Zq8LI/VleTxAdwUeM5R 6Ciudwf2EzWeY3uP9+sEx+m7PpNn+EY+DtjfNJFf+xze3wE8ZCoxEaeKdSow Y/Pm+o5GfJ5gLtMf+xVFMD8BP/rUTj9Mhf3JYNEm1iKNfdjvCmZVUgnlk1+0 jvGCLb/GT2o7rSfj4J+ub9+P767D+58ueEX3wZIDA1h/Awu9Clim+gz7h8Eb THljr37HOg/Yv3q5zAMJrBOCu04xmI/1Y58b+MvjyomrrNi/CmbN3qOjnIHH YbDAr74c6t1YxwCr/WM9luKAeTi4t+oGBxGM+RI465Oz3INAjIML3gv7di56 HHBUzdplPIvWrQUbNTdb7FlUPwHz3JQQ5ZbAvAUc8HpFggE77udgJ8WKDUrr cFwSHNpw0O37dhxfBtsVs/rlJ2B+Am5tYJNtuYB9g2AWXj0RwS14nzUwx/x7 B6b6CnJ/ADesOHb70Wucdw+e8kvUZFmN9y8AqwVzXtjogevxgq+nUU9OfMD9 EzxOp8G+nAavd8AGT6QCok/j34NzDt6qZkrHxwfXTsTzUeVifgUua119q8UQ v4/gwvd/FEs6V5BxsFDVMfOpvDbyfQA71WzsVwjFfiTwW4mLo4OhzOTjgDeZ /WPbkIF5Hfie1Yu70fn4voFXi+udNh/AujS4sqTlBdt+7HsH6/5pePunHa/L wExnekRXlOLxYamX/jR+VP8oQJOovNTb0qqqKk7gdSK4jshhTTmCxzGw+N21 q38cxHFA8J/RgIv0jvh9B7/a5yVo7IffO7BGiI5myBTOQwE7awkQ57WwngCO 1XNRkFjU5ww+sXu3aEUGnr/AhF27eWMgnu/AR+c+hn3hx/MjuCSZh/GlKZ5P uaaCn7Qz/e+8TPvT2fQa9uFIKipcHBzqJLwe787f8hLPd4wrJAfSKynrTpf/ fjqe70i5vvGw7Bf2j0WU+YDOBZXIjLuU+YOi5JbYk9so8yK6e4F+z7dS5i2R k1G76T5TrssXrvriwapNlOvyFQxYc3xdSXk/iKHVWzyLPCnjBqNiWbwOlPEP 17jcpasoH39m/rUtjT/lfTPT5U5JBsdQPv9Nd9WEHEUpX+9cKZfaURrK92er FIOr5e0eIjirzuXTfrwufv9l5Pj6Bx2ERfnsk1+WOL5mb9XXxf+7k0gR+Sa1 xwnrkByhpdXhe7sJvk661NJx7IsD3wzibtX/i3Un8C/hkYplA9i/B659JFe8 6wyuhwNWyHMui5rDeXlgnY8G+9ca4/U1+PdN2/I5L6wvgTUHj5rcDTxCxsFx /LvTL4XifRPA6cebt3T9xbo02Jy9IPZWFB6HwX8zd7NMRuBxG5x2yVrMfFE+ Bh6Yc/DO34fHYfD+P91fb/hiHgV+/PKhMKMErlcMbtHiL/XMxH5s8JaCXYdZ h7CeA1a0c8os2IB/D7YubN5ueqibfHzwvEeg9nYrBvLvwW0XRkQ5JvD4DL5j o3K1NxPHDcGf2sWdqHZhvgpeSwwk+hVj/QHcq67w2uQ3jveBw6kN5ZL0sB8V vO7kCvWNGZgvgYV0M3LTv2IdCZx724VBwAnHc8Gxj7xcipgxDo7NGBHzfYfj PuDQ8Qw5/XnsLwKbf69+Y7lofh/4u1ric8FeHK8ED/59HZtHg/kM2Nfl78Oc lXg/d/Aat9GOSXvc38D6BfyfCwKwXgc+frGe8+J6nIcF5uv07PrQjP1+YLaS jnplDazvgbnMJXxt1mKdExzE6+p2PwbrjWCJzGqnF/exjwtceOP+qL0I1h/A FokPErX5cf8BCxHBD9s+4nra4CPGb1w0tbDPGSw1cPud3g3s2wEP3OIOee5S Su7nYKH5KyVrZ7G+BK7zrXma/Ar758EVeuYDmR5Y1wLfdzurzXEbrwvAYQUu ClJeOL4M/vxZwCZIDY9LYDYug61tq7BuDH7+V9qR7i/mFeAu6/JRCSu87gAn MAQE3zfB7x2Yn+dzWO4sxsE0B1XTx85hXRrsNmVd+LUO42Cq0X0tBRuwLr3U S3+mnMUeNnE/VV5qo6ODTdmi+P6DefffH6ehxv0czDA5xOLSjOsqgGnmYmf8 7uI4LPhevCKT+gcc1wZfD366TOI91qnAaYfDiAuncB4f2HKt8dndf7HOAB4r ze4vXbTOHjg46Xqg0TasD4GTbfJYxF1wvIad+c8XF6luwsjI9/mBQMyjaA+r dB///r9/T9M6Ec6L4+M1E0/rryZR5lEH7iQyBulQ1p0clN+w5SRS1p18Dh0q kC6hrM+Ipx1gbdtLmW9MOI5cLkqhzE9i7f8M2T+kzHPUfX79eyVOuV7x8m4V paKtoxRxNYaLB7/mU8bXc3t83vCEMn5jYPTTle+Uj18Zy+RoaE+5fjLtz6Cx T5yUeRfrH7ZfP39Q1q9uiujEvm2hzKP09GgujX7rIRzPv/p0Ihf7IsSmtHyO pnQQl4+LnVUrxvkIHTWTri7buojHY8LE+Wb83LTfhQyxJHcTM6JbrhQtui8J OMl2xPOfEObtYDoZQp2NG/v6wIHrPmzVmcX1GMFV4r8vGY/g+AU4x3MmqC0F z1Pgysq+8g8EHofBbxM8z6gI4nUQONy5zEpfF9ftBJ9Ofqj4+xge38DB/mbN drR4nQ72Sr4UupMW56eAnV4KhWyYwut38Ozd9i8aq3E+FPiaZdAtr9c4Lwbs KKx7qXAr1nnAROX59DlBXH8P3Kt4QzdQaC0ZB6uYdEdtsPxDxsFZf8WMeZ5g vQjcMO7N1bAJj2Pg7xpsrWtt8PWCaXbcO+Jcgsdn8Emt0HKXg9i3D26/kcaW FIV5BXgyT/eXPuslMg52cvIPehWKfeDgRGHz3Ehp3B/AXFyRrCyyeN0Kpvae pGl2WbSOzYK7rq8ausCF9S5w98BtoYMxeNwG71GX5co4gXkCeOuUYMwlNcy3 wbR6gc6h7tgvB27Tqxgfd8P+OnDJ36yYjyZYNwBL3x6Qy2XH/Ry89+3ICz0v 3G/BNmYq8fZ1eF4GxyaZ62qcw/MyOL/ytPjGzdgnD55i1xl1L8X8BxwlOLqc 9xp+j8DHaa8JxO3E6whwzN+PrHTM+HrBeu1NhqOjfeT+Cb5Pq8pv8RrHtcGF dLfF2Ltw/iy4lL0v6ngL5nvgHy99u+Pj8XWBK1+GCwQ2434L5ox7Fqi56HwN Xhdlp1V6Bvt5wGx7mH1zrmM+DBb/qZiougvj4M4jP8MTuvH+72DHAzylNyvw /wVHlLSs8NLHPAU8oPLBNKQU8yhw0PBz85/G+PmC61tk65btx/ucggX59msP nMV1NcGRq2Xq2oXxcwfXvaaTMVDG9xms8vb+ux2PcVx1qZf+rFanE5TOyFZe 6tkRfumECbzuA1c9ZfBa+x7zfHCn9JyPjDVel4F3/jhuKTmKdV2wXojFgdmX OC4DFte6kvnYHfvSwSov1f+F7MA+JXBaz8NNF2dxvA882RfkSPMP6w/gtez0 Uts3L5qXl7ZsLb1rN3HJQeRmyAY8b4q+33GqU6iLuHu41iVdEp+nx1nfmf4X lHnUnLXpmTJPyjzKj2kLDfs6ynwgvlmgovnZ/3FfrWOMag8GKetL15V6aF6n UuZLrArsN40nKPMZujs+f7++GiM6r304sP/eQ3L732/HCWWa8tMXDz0mtxA3 TMx09nmXSm4hzhETahbkdpfcQnzp/yulfelC77Ixiriq7B3vh7sp86u15/db fAymfL1Dde3Sey9S5pky7qGDWWy9RB3VezWDXOxPe7+q3k3+fQchrLl36FQu 1pGUGM3PSvp2EQ62RrE59lgvBH+zn2cbmMO+cXDTsfhhsz4cXwbv1BDROfkO 66jge7UrbdZexPX6wPxif+UOTOD1Pvi6iXSWHiueR8DfWkWppR/ieBNYxVDP U9AHjxvgL8ZsWlNSeBwDH+9lYWXwxuMk2HHP58QRD7wuAzNm7YubY8bjDzh4 78FXSf14HQ32eSdOx1WA92UGM1kMTXs/piLj4MPqHAEDNB7YX7Fgd/3bWsPD eH0HfjiyS5J5ey0ZBxseczcvcMU8DSzZXHxLShbzOnDmeu85Ezk8XoFnHZJe 5+ph/gDmLdtaZjaNx3Ow95OLjYGj+D6DL55MY/r9Gue5g3M7v/O5e2HeBfZ6 w3OAYzv22YIbmTe3+8xh/ww41ObMaHQrnjfBKh+z1kSJ4bxF8Hkv+VanCRzH AUfrHrCZ2lGP9+NY8OHIL6fbNmFdEfzn2ekyrT4cHwG7XWvM2F6E5x2w2f3n 5sM/MD8HX942OFUYjOdB8Je8HYbRdhgHO1SKHJ6WwccB5z1wKH8nsGi9xAVv nn15NyIdnyfYqYZWIK4W82pwu/GmXxyiW8j3AcxacsXe6z7Wb8Eld2xpz/fh +DKYWlX8XfAknpfBPa4E92NW3H/A/IOiPHrPsY8arPK8XfVvBe4P4Apjk2z2 Otx/wDfi5QNn5jEOZhw/cjd4FcbBp/9MuB+KwPwHrHwxKq6CBfMcMF+/dc1h eXz+4Nh93X/XqOHnArYru35O0BDrVOBLY1/tqgcxLwXnhAj/ETXAzwtctOG3 luk/zFfBmw6qVoRnYz8S+OfHNKJZBj8vMGvY3ZmXIUL4OS6YLfjbJkZVzHvB QS/bK7c9wHo++FnO1O3+IpwXA+Z9taFaigH7x5Z66U88O1txanOB8lI7dRVY fMnhx/1zwfs2dnD4XsPzAljot5DFlUYc1wYfvlyfFq6D44DgqvBtG+rP4rw/ MF/EcUF9S+ynAut4WrNHaGIdCWxxX4/X4Nmi+6QsOPRB9zOuU3g+1Vj1SPv8 WDex5mjBw/ZsPP+GvvD16b7eRfwx+yFH8wb7gcOvXixaP0eZR/0Monlmq0SZ R11eO8TusZMyj8oOvNvX/3/0Ee2POVfPRkVZt/FTC6TbsJEyXzp0h1H4ZO0Y sUmkb1jPLp3c/vfbcaLMuJb5sFw+uYX4rqdmAsPDheQW4h3pLq3/VheRW4j/ LboXrUOVT24hfkJ5be5r32RyC/Glz3N9cPQ0tSZlXct0iGrqOAvl61Uyv8hE TUeZZ5Znsx46IdFL2HOt3Sudj/P4HqpEbJyZ6iBUkpVpTwXh5x7eRjiNNXcR GYU6jVt6MH8G92hIigq4LlrPasF0Zzp7JcewPxw8ZXW8efAWzqcDb85a3sor gv0hYK+9STYOVni+AFO9EhNv0cbjAFhSmWE8oBWvK8FV123W+stgnQHsPBof ljKMfYzgAKEe2+1FeFwF3zZgvVUUj48PvvJvy9MrHfj9BZ+8aWRelIHz1sGW LiV9MkN/yeMDWDz+hvWQ4SgZB8tLXtL+LYXjNeCv+5TYlwVj/xVYnsP816AU 3g8CzBbrMJn/AccNwZW8B70uvMTzJvjUpX+MXX1YDwF/YdyfJjGL827AK0qE uw+J4vkRzDS3rYRtL9ZJwGFxPjc3ZWD+CWZ4cVLzuj2eX8BsktpCNyIWjTct eNWw3y8Va3yfweVWqofG5zEvBfdRj+sfOc9ExsG9pSY+dVtxnAisUhywfYgW z2vgd61neDfK4+sFZx6eyAgSwvMmeFS6+xT3JsznwTNhfQnp85iXgm81Gkoe WYb7FZiqI2ab7Gesd4HdvzmmF3msIeNgq0cntsTJt5KfOzhtbiw+ogfPs+B1 MUMvNavx9YLbhjvSLnjg6wLf5xErrY7HOglYWeDbnTE/XJcDvN/idljgCqwb gKmdPmwd/IBx8EaDKBsBKoyDdVp8ZGta8PHBGxve/KzlwDwHXJVy5IlVFR5P wKs4/etGP+HnCGY5zZpg6KtNxsGiP44vNzuP63uDlZhEY/yjsE8MLB36cjpJ G8etwPZm+pcjy7D/HNz//pwPb2g+GQdPHQumyzyE4/vgK+uezkppTJFxsPC3 LTVdYrhuObjH7MgyPV2cZwdWXhkQ1mDzmYyDzwfp8LisLMP7/S346O2jBton TpJx8PygY9UNpRd4v78FD2S/+bQ7vQXHVRd8fOd77ih3fF1LvfRH8dj+rU8K 8X7N4LshB43jhkTI9xksxDtSKr4Wv1/gzIpLftsYsY4NZhV6XsXFhOMgYCXO mOelFrieAPhzg86efjOcVw5OVMz8FJG/6D4ICxZVPrN+mxCeT0nL2poJMuB4 35OaF+uUBLsJ+8F8D9lJfPzMudNDGlco+8l3cIZHFdNR9keFu+84OviJclxv W6zMO24dyjyK6oiV25g3ZV7Rtf+ivoH4KHFG4/ZFU64Ecvvfb8cJG9cbXc2r XpNbiO/6FbHnVM47cgvxnesOK5RNVpJbiKvI7QqoyqgitxA/3NLBoi9XTm4h 7pH664xF/GtyC/FvvR1MR197k1uIL31dYatfj50NpKyzGb3899GlkDKP2rPR 4kySTi/Rk51+VowL+7cvxslX/VjdSUhn7bh5cwjH6Q5veWbLytdNbMs6HDY8 ip8vOLEs/kftLuynAmdPnK/614nzC8D27FRdqUy4rhdY3e1mz4lF84LBEpzi 1bfH8PsL3jWh7jpwAK/7wMwJv9gCBPC6A8zxjX6XRq8HGQdLFPE2zYbg34Of nxGKoGvF4zNYtd+03IIH8wEw+/s1ihpt2KcKlv89SfftHI5TgDUY5A4rqeD1 FPim1vmDqzMxHwC7XBI3jz+nRMbB/2wmb9O0Y38LmG+E9UKyjTheNy04c2Lr qR0XfpHPByzyey8t4YNxsFbA06cjz/FxwNOjpiUsnJhvgNlVxhUm/TDvAvfJ bHvTJ41xsNncLRMOVXz+4GdHC7XM7bCfFnwigSo0RAaPw+AHhe7jNg+xbxl8 6HdU185kfD/Bqa8+9kXPL7p//YL3naGa+Om86Hp2wcqHzQf/7sFxTPDzDZZ0 k62Y74F1s1ueGmzFcQxwVnSHbDo/1hPAP/a7d/uexjoquGPFyalRSTxfgC8x u5x5W4PrfYF9HF6ZZZlh/Qf8l3pcR7YB+5fAh5IPK/ruxusCsJx1nLKCJdZj wXGtikUn2fD6AqzjkJrbVopxsIlaoSqvM9YbwUN3ri+j9sX6JLigIdig4A9+ r8H5q39m1h7GfBusTMXJflET8z0w+y6eZ36sirgfLlhYMMx3ei8vGQd/0O+/ qv0W6x7g6/X0p5d9x/v8gqOOHGpP2of9h+DTdvWM+t14PQJOGP5gEvlHioyD fW9pBXzsx78HjwpzycgG4f1ZwIOKbfr1dnjdBNaKof9dvQOvj8DOxEGGFxqb yDjYxeqjeDcv/j04n72kq6gR8z1wZHul44wjvl7wcV3BpG8leHwA08Suv3D5 H47Dgp/0vFJ1rsa8HSxlse9mwSesh4M30GwM7OrBPsylXvpjL55lRBtfpbzU puMJiR4n8P0Hn2C8d1m9DMe7wTXZM1+Ob8c+K7Bq8AGz7Zl4/gJb0ZqZ0Drg OAtY90V/+DNj7AcGX/mUdaW/H/upwNrMF1WMF63bFGmyQsWjo5tIYd3a+7ER +224WVc5npX/P+4HSs12w+4BZZ3ql3axvtVfyj5zOee1DPvvUOYJvqxac0Jm lHmU/vFrqxpvjBJXxAV4lc5kktv/fjtOXDN2FVCNLiG3EC9Pzz/CIVdDbiF+ pXzwUFddHbmFeJpplD51Qj25hfhamvgWMfE6cgvxOVP+ftXGcnIL8d4ejTa+ uOfkFuJLX9ecoWOrvDxlna3smm55eAdlnjn8VzKmNq6XGJ9eZn5nC+Y5eRfN 5KoFO4lnJsWeDy7geK52dse+Vfu6ifEkgY9sFTgfAexLfX78PjPuJ+B1W8vf NfhhvQu8POn4P/oMnK8E9jp/4buvA14Pgneu9fIj5nD8BXwvdZNGLBX21YAf 7Mhl7bqM1xdghXdOQms3Yl8N+JEAp231Jly/Bbz64dqrcUJ4fgG/vvz2EPML PA+CB7v5VGrO43wccMz+xxs63LBPFVxyjpE/5BDWVcAGaQLtOx/g+tJg0Wvn vJvocFwGPD4/s9HgEva1gm11vgSFfsO8BfxuvaLdOx2s44HjbTv9V1/B61Nw zLUTDTvLcV4h+CbRzXGLFccHwQfvd40WBPCQcXCSMrt6itBKMg5WeJ3w+OBy nK8EVjtulrOiC6+vwbONrKKGG/C4De4xWXHjIifmseC9fLvmHqdhXgH+9D74 1IEarDOAnVyXea3oxjiYzih4d7AdPg6Y6nFbVAwH5pNgoVGpYhYXLjIO9qx3 4lzP2kO+LnCtc+DrDg/cT8DOx7bMh+jg/ErwHI3uK+ZVmM+Dxb/OqQ5F434L ZgurMfi8F/MW8Cq7F3G9THi9APYc2sCto4LjWeC2kfpHjxSxzgM+eIM6S4IX 17sAC2/trfvRivknOLuJya8hA99PsHKru7frChzvBgcz1tz2H8DzPpj9ckG6 iSfmOWDhjOQPL/7hfgIO/7eKS2wb5tVgxkGDZHND3H/AvvWuVS9ZMA4WFjwe kCOGjwN2d1E1Np/GehR4R8bYqbiL+H0BC6gJPtiTjfUo8OhBu7nct1iXBke3 zSsVseL3C6w147P+bfEGvN5Z8MOuo6v4LuB1Cpg9utJcYwTraeBjGR7b3t/B Oif4YNkdraAh7KsH1zMH+GeIYf8kmP+91JcTkfj34Gmet3RnY/DxwW2bH7EX XsXjFbjCmTg03KVMxsGysUHLbD7jdeVSL/35d9NkaPQ5jsuD7xmscr7XgN87 8KsSeYEYNqyvgleOW6mNJ+M8FLDreJnMgwqcDwiO6GlktHPDcUBw6bWC1QyS uL4BeOrV3Y6I5EX36V5wr7jGpNwk1jfOhIp9puPvJrJFPE8feI6Pf11s1KNl F2WdyjZlwmQugnK8rzx599EBT8r+n37/W6qrL1P2kx+R/eZuv3+UmP6V9upB 6XNy+99vx4lGwRXK95+VkVuI1x55JFPiXkduIX7nVdOh7LFGcgtxg31/htbv /UiYObOuf+zykYy/0rePPGzTRG4hvo+/P33Gpo7cQvx5ttLjp0zF5BbiS1/X vv3M25zXUPZTXeNnviGuT9k3NZ1zZMeq7Z+JG5P9ooWZuC76oyuBXwZpOwkL tRafiN/4OdaLJq+0M/pfPmwYeyxq0X2CwDZGNv73NbDvDvxKtabm+zscvwNv MQop3ZKK86rAhUEpVyO8cJwdTN++W265KR7/wbc5DQz1zDBfAi//ImX2nAvX bQMXPd4lmZaO6+OBY18n1Z7Owutl8G3+TEs3YcxnwLvnWOVeTGO/Oviq2SZL M1U8roIt1/AUlOzHegX4cNQ6laF/OL4A5ipnUnb+hudBcK7sAwmVBjxPgWeP pl7hY8HzKXhcPt1l+uai/GrBBlSN0bzqeJ0OflXILvVvM16ng6e1hbVeSWF+ CH6m6+PEvQ/nPYED109zReZgPzz4G7ND2Z21cWQcHBH3yIu/FvsowFnpNsuP PMF6FPiPeF7pTYetZBz8+GvosFUAnhfA7sHrN5W24/EZLM7Z5nanAY+74K8+ yw7feIzHVfCavmQ1oUNY7wL/1HN4qSGNeSA4IG4m+msC1pfA/+6s1Sy5ivkD mMfg6Z7U+5hvgBPiVCvd1HE/AWd/+1PE3o19euCyU36+mZnYJwbeOLnhTZsM nhfA8vvnw4I78fHBy6NPpLbRY/0KTPv0nO6+dTjfHSxvde56+Wt838D5ZiHX 0qbx/nTgtFnLErkwnD8I5hvdH/B+CvMocKZAaN7Pc/j5go/ktO3YrofncXCv kYLF98MYB/M18KmHGOB5GTzRPpb+IQzrJGBeNWfFHFrMW8DX7mxaKZxSQ74u sL/Pe8E8Wjw+gENePkrPNsbrF7DxYNrD9Sz4fQRfPKesbauJzx+84/SxyVcO OG8F7NqslLL5B16XgT05ZMIvv8I4+KT4vsteBvg44D/BVfOV0Yv6+ha8vfWE 0zUv/B6BM0N+hD3XwucPvvu7fNO+FuwzBGuvjO0tT8d8DywqkH60+QD2GYKJ vZ8Pn/2M8y7BXtUXhs2+rSbjYNeEONPXGlivW+qlP2UWGb9mt2N9G2xQUVj9 fQaP5+C3T9MfScTj9QX46tjGxs3vsC8F7HQ5RGh8GM+DYNFug18xtTjfCqwS wsWrNYbrfILFxCZuu89i/QmsG/j32okbOG4YqX7uJbP6/7He5klFt3JzyvyK 6X68Ms845XifvPQfKcsmyvl6587eOsKoM0LsObucpostk9z+99txItRtk0dH WDm5hbjrzrii1sF6cgvxnXVG2c7Hmwh/S5NIHpkWMl5/nuv1acEGwpyr8brY u3YyzsP3wnPMpoGoqw6nXauAcbbh/LyDjU3kFuICChEBay2qyS3ERbu9judl JZFbiC99vSPf2q9IbaOsy5129j7KsqaPYOuc29P/A/NnTf1fsZYlHcQBpetH RJUX3Q+I2LC8mugm/Ics9JLlMI8CSxu1W6R347gtmK1BlEFz4hEZB4vt3j6X ZIfja+CNH97RKFlhHRjstddgxd41WHcCc1K/Km6lw/5zcJURzwezaMyjwF3V B/i1DHHcEDzWEMYg0ITjCODTHfG23Iv6RsDMXVUKuyqwPgz+sabfKzIczzvg gKyNXnSa2B8L/nHTv5g/B8dBwFq/P/h19mMc/GG5dllQPI6zgB/zxOyvuYD5 FWmvMFPrYswDwVxXdxrLTBOYpy1Ys7mMdr0o5i3gveNWbw5zYZ0KLCr/4a7Z vht4n4gFH8vl4nWyvIb351qwvJYj9bTwFxzfXPA1rezCE9O4Tg6Ypb0ytToR nw/4ybnvtOtlcD8B2/9rlk3UxfVzwG/mtWo7LfH8BT759NWozVvsNwPz6jee 3GiMrwusGqhRIRGD9SXwyIpTG3bU4XkETLxf/eCrL443geXVd46nW+N+Au7c JXgydQuOL4CbEg2mf9Pg5wv2VOy+FzyLfw8OLjvEtqMZx7/ARd8aUpTpcJwR 3PGW5tm5HswrwGwqrJv5bPnw+7vgN0y9VfXsmD+Dz9X+7xh1DPtSwIlf5CyX t+H7A5YUi8tT34Pna/D5EdkMbkYcbwW/ntCVEBNfVAde8C4X1yfvTmJ/NVjo S1NtxUYcLwOHW3Tn9t/7ST5/sAm9zsZncthHBI7J3HWktxb3H/AYrWzkt7WY 14G1PaVd/fLx+YNr9qhNHM/E6xpwhHfpw1/NWG8Ht72/ZOkmjXHwwHvjzSNJ WJ8ET/uXNf5ei/MWwV/6PHLEBvF6AcydvaxK/R4e38BOjWb1Pl34OYIZC3QU 86/g9wV845zXR2dt7PMEWzwRkz4q2kvGwaG/c6pr+AvJODiicrJdf+AOGQeP Ds6dC440xbrcgrNlyq+vPPmXXEcUvPJ0yUX6a1ZkHBz8aNL/cs7sVogv9dKf 4PM6a3R4u5SX+n5ZU+ltS3w/wYxMbZoeh3D9eTBfZdIK91u4niF4a+XyZaeF cLwGvCJh33z3NN5nBHzt6/MMkUI8/4I/nc16oySIfVZnWNrf0rt0E4WH7/C2 iWGe9mLzDfX7x/6P+9xp5tjfbaCsUyn3MHme1qUc72P7lGo5e/070fhx9Pqz ghhy+99vx4kDDxIHk+jKyC3EV5+o+mSr0UBuIX5Vuq551XQD8Tfe0qBjxScy /sZur0O1aS0Rp92pcd+wh4zLvaTniZ14T9glzE5uZugl48z00dYBt+qJb5Pv lL4NdJDx3bdHFMzvNZBbiD+4tGVrieZbcgvxpa+X4+Vbg+pwyvl9bTtkUkxO /h/z+B4lsmaOdxBfdhKmm/iwfviInuHuIHU3sYrnF5X4CH6O4Mg2561pJZhH ga3l9Iy0hnB9fvDnZe/E08dxfwNzO5QMKEvi8QF8S232u+0qrCOBE8caK+TY sa4FpvGvad7ThOsLgY1mdyRk0GM/Ofh220pPoflFdacFjxJM/U92Yl8KeNrU 4IFLNvbPgFluZL5veY95DvgHx7HPkd9x3BAcb1N/aFIA8zpw4NMn71OHMG8E X3166cf8WuyzBScFBZhe/oL1KzBr+UTUGlYcBwRHVHWoxtfgOAXYs8DekJ4D 8wRwV+NUm8cJ7DcAm4YJXMt7VETGwa/PJbwIs8f+UnCqFpvR+w/4foIdNIvY XL7husfgmeyd6bpvsf4DTnRT29leg9eh4JrNq3j9qPG6E2xAf/vEawcclwTP e+UoM1zB+4WB53aOPDF7iPkb+EZuuB5tI75v4J4WjXvuPrjfghNWcNNaxuH7 D67reT64jB37XcFcPGtzZuUxDr5edao5tx4fB2zCI3sjZxrrDODrIydU62hw nBHsHsxLXbgfz4Ngaft8ltxG7N8DCyhUSOjcxTwELG9jfkU4Ds8j4Eecev3n bfA8Dv4xXfEncyfmFeD3V6LqnNmx3gI2bJ1J2KCF41Bg5o5bCunT2E8IvuLY 8+IBC673CP5VYln45hPuJ+Dh8KPCZ/9gnQFs57lchuoLPn9wNa/HzZQknE8B LtKyrTociMcBsKQ0tRhxFuPgEqrlQVW38XHAsTFGnQWq+P6Axw22faD/g+8z +HHBSSY7fqzXgX3fTT9Tm8f5dOCETxfY30iMkO8PeHPM0ZsNUlfJOJihjT6T JhGvd8DK1/RmPrdi/yRY7MDJ6yd4cR0VcAf9gUs67nj9BTbRVPwnG4rr1IFP eRRW+X7JIuNgow03n+YX3CPjYOknDC4uh5pwv12wr2H00Mo+7E8H263Q/Xa2 BvNk8MblktHbP+I8lKVe+uPJpm79Uwu/L+CLdYdpNAVwHBO8ZrMBYaqC/bdg v03R66P24XpW4MiTV9eOnMI+K7ABcZyQeofzAcEtVW5U3xg+kXHwn+0FVB3p 2H817/rnHM+bLmKZ+Zu+r+lYN+CMku1ad4Gyn8pXdOjIelrK+X2vlaJ0iBbK cS6+LOkVW/jGCLFILwbmp0Xk9r/fjhOJhr1JL9zqyS3Ejwm9OqR7u4GQLwnQ tu7FPKpFYn/KgFQNwenQ8YTlO+ZLa7YMH8qyqCDGvzIZJtf1kfHS3xIzt9ZV E0K0w1dfOnwm4+Xcd1btWdlIONa1dbj2tZFxbcE3p//MVZFbiC99XYOfWaxj z1OO99mKWksO+FD2TZ2miqYWDu4mZDUPTXoY4DoG778z8dtEdhHURbL5v+ox vwJ3iGp5xjDhuB74y+nST5GOWO8C/5y7e03pBtZbwK0tIQdpFo1/gd0e9vn/ zMPxO3BTlKaz3x/Mo8AKJtfp0q/ges7gHZvFSrNUcX402EiphernLzxegc8p /DkXFYzHc3CYzJ8AGkkcHwE3Mn6WXHUJvy9g4/PrL9V2YV8WeEN9yEzqovVC wStEmiMuRWK9DvzN6NLOyTrMP8Fr3tdK7HTHPArc4PmpPeoBXs+CWfOCf12K wfEXsAXTERYPQTzugZnPNuR/u4XHDXBhayHzSwccjwNbXv/91cQP+5rA1U9p prtW4LrW4OSqsgbhQaxvgK/yle/tksbjP3j07erCRy4YB39fs9PpTHQuGQer /IzV/GqBfSZgdU935/ebcbwA/L8rcRebRf0zYBO+GbFbKlgPAbc8uiptdhjr TuAfx77OZP3F9x+88vchc7U4PJ+CHxE0syp/cLwP/EBu7x5RS+yrBc9asZiu N8a8F+zPI2PsbfIS18Nf8Ooa3dnS9TiPDzye8SDgVD8+PpiP4MsrF8I8Byz7 slXF5TbmG+CSHvXbLtPY9wKWf61QH1qA/cPgN+Ind3xM4ibjYOu8xp2p7VjP BNuWeZ0/2IafF9js55yf+3WsR4Hppzbov+PF8UfwY7OTRVuPYV0O/KmE1in1 LF5Pgbd/X/lDWwjzIrBCdk4+tw720YFdKqJpPQXxfAomlLino4qx/gO+r80l cLsP8z1wj9atMI8UHG8Ca9H20Ou3YJ4DPkOk2jOk4/xT8DxjWZuGED4++ITr 2+05wxgH33lZtPLkK7weAZ880EEXZ/WP/H/ByyMahI/lNZJxcKNjWGexKl5P gXvm5HY/cMdxXvDxh95lyvx4PwjwtGu/o+hKzA/Bo8lBLxMLsF4Krta5qdJg jf35YO7yTbMOa/D6CKwW5mIyzIT1N3BEiobUdBnGl3rpD2eOjmHmZZwfDd7m M+iv/Rm/1+Dzzg7lWhJYHwAnf34aKeqPfezgqh2zseaL1qkGc2pPJ+UL4Lge eDPVn5jqdzi+B3a8E1Pc7Ifzwt5+r11uOP1/zPv7KdYaIEpZp+J1Fir4spOy TsVQw/HbT3+YmEs3udyzNZvc/vfbcWJ/mOOZ4rsfyC3ESx5w3a7RbSTcKxp6 7awwz1FqExMa/1tFHL0zMs5wFfOi4sgNr3zOlhLCckMiyhX9ZDzk8/ItgQdK ibygmeOKbRhvPVhv9fHo//Ixo0jd8A+Yj+1tjXrA5d9IbiH+5GTTIx6pHHIL 8aWv13P8Ow9DLmX/2JvvY1k/gnuJoLedD7+p4fusu+1d0eVfnUR9tFp5sgDW D8Hr2X/f1xjHdaLANRdSs88W4/pU4FLJsgC+7bj+ANgu7mZ7lRX2h4DzjwSx SaViXgTWNniyc0AB74sBlqMTUdCVw/wEPEfXq3UhFvMfMHXDsoBzwbjOG5hP SFx5byQeP8HJ6R5vT0xhPgM25zOIeNO9aP3qBXNsF7h1+Q2OP4KrHa5/nm3B 8UewFu/p0tIoXDcSvKbBcwcxhv8vmOFi7XauQexvAQdLNDhsCsLvL3jnQamc 15vx/AsWj93YxOuNdWzwTul7zV+M8HgLPj9MnS8SjvN3wO+KImmZbmM/LfhV 5i4qgXy8HgRz+Onll83jeR/cITf+9mAd9lOBL7DJUbHNe5Fx8Axdx9dTptin BGY+TzU3chPnH4G9PwQxqG/C8RpwvnGqjX8e5hXgqH3KXxXKMU8Au7dX0VIF Y34FVr84lzdphudTML1c1YfuRfONwJ8LrKQuq+FxGnz/7/XvJinYlw4OEWLJ 2XYe1/MEx7sMnUqewXFP8PRHRpcnd/B6ATzJQ7/qmSE+T/CajNyJtEXzFMAa A2E03omYZ4KlOV7FN3tgngPO5ayps43FdWLB1nnnapTScD8Eb3wR+GzoJb4/ YGPHuA8ypVi3AQcnBJlFfsJ8FTy73fsN7Sf8/oIf0p6dil903z2wgOV32d/X Me8C9yYbXNOzxfE7sNmYwTvmj1ivA3tKPqysfor1VbCU/J6zXu8/knHwP26R aul4rLuCVds/Ok3o4nkfPCj38r0SM/bPgyWs0/OeFODfgxVUpI+ky2MeAhZN 3Hsvbgt+H8F7eHoG/pyXIePg8I0fPm+WwXoUWF3/qK5xHn7fwTJPBV/u3ILP B5zQ03117WH83oFzGVUZdhpjPyF4tP5XhRA3xsE/H628KhW2aP2rBSd2ztYH MmGfFdhD0HF/ozNeR4CP/pJy3vMc8zGw0Ym0yPtP8LgHnptlWUN7E+u6S730 R4Ch/pjaB7yOAwfb+DSEJ2IeDmZm4KC25sXxFLBQ4K3kVD8c3wGHiqn82HUf 1xcCfz2zyeCYNNZDwMV6DU9UmbD+dErcf7PK7W7C8er7Y2uevMTz74u9wrqS lPkVI8fNO2HilP1UegF35oa9KOtU5vxZLq8yx4iHSptCipaXk9v/fvu/PGd1 92oz1Y/kFuK/8ws1H4vUELTxDz89HsX8J7bM1N3Wr5jIjGosPlAwQMYtth+w 9BJ7Q0g93zjYfWEQH193WXhpRAnB2XrlRbQc/r2St+iOJuZ64sa/vICDg51k vMWNdq9xSiW5hfjS16XJoD6peJ1yfh/zVsaDVu19hH1dsfunXqwrUnNu+XWZ s5Oo2FSaK9yD61IUZegccJntJng/H+l7N4x5F1goju1XnzmuTw7OmU5h0bmH 61SDGfbRTNsq4vEQnMJXafv2JOZR4N6IpuflWzCPAjOtlte5Fot5CPjM3jQG 01uYb4BjnicXSR9/i/PRFjzzJvKX4B38e9K9cvn39mG9CCxDV8Bv9BXnyYKV 3FdGWwrifUnAbXaHEu28sZ4GHm9TE+nhxnwMvMqV5bXHovu3gt1uTTWyhuJ9 Q8BhOnbS4YvulwEu1/g0e30Z1n/APPXBHoXh2GcO7tC2jzqlh+MI4LAWukPP C/B8DfbOCjlb+RqPV+B/X51MDx7H8z5YXZOdRb0br7vBCR/yOPulLHA8YsFX 9h0zs2G+jeM4C35zNt31rg6O04G3WD8zfZCF9zsD/6Pd7CP1HdcNAPt9HR/w tcC6AdjcrXlerATzB3BfHOfysx+x7x08bTx/LVQD522Bt8ywWu+bxH4wcP0f nuk7zuHk8wevaZAYr87APB88SOv2dm0D9oOBu+JHH62zwPoMeOOPWxuW38J8 ABxYvsx2OS/mLeD5dx5zHl/xfA0mZMPMGanxfAqu2LduZbPfHBkH3/Bdbv0o UZp8HPAFLu/KP2GYv4EfbBS3c1+N9T1wRv8u9lMqmP+A2abX5hN78bgBtun/ 2W6mj33U4H/dj5P+bsTxWfDliJXiNZmYx4J/GGTlTTnhfgXe2Vt+iHkc667g 5DW5kolUuI4lOGKQrrfYA/MBME2UZcaENX6/wFzL1Y7rhmGeBnYu0XPeuBLz T/DFslT+nzJj5PMBf3SveaqthfM+wGxFW0Ts7PF7AeZ2DEvh/4XvAziaK8Jk agV+jmA65z3GwnLYTw5Oi1g/GrIT42D9TTK/tprifgtuMFJdJxyFeRF43G27 6PNYrC+B01JsvhUL4vcCbDfmrzG7D+cvgPsU4vvbL+DnBQ7a++mpm/FXMg5u 6qzcpHcC11sDF5amzt79iXV1sKVQm+LLOKy/LfXSn8hrxx2uyeH6o+CnMYHx ZaW4n4NnPsXentyD5wuw0JEUOcXNuF4ouJX3chLjAN4fEOxYeNfI9R7Ouwdv nBm84nYS4xfKDD4eHaPsV3dyjffeS0eZXxk72V5R2kLZL8RzQHs8ruw7MZlX KJxglUtu//vtOEEd8uP6kZB6cgtxHoNafat/tcRPE54WXSrsj6qIPXP+An0J EZVR8a700qK8yLz6wtPvucQzyQPxnHRDZPxHrYQLR2MeQcuSI7Kz+hsZ7y/a x1qWUEasfGj2RyD9Cxln0FV1drBvIrcQjzZI7XTZ/JTcQnzp610rY3p8gz5l fz6LaqXTrxtdRHN0XuX2V7h+lFxBfKKITDexp9RbN/YTzi8AV0UbsoT5YD4G tvYzog2sxfuUgcVPFT0NE8XjOdgpYVmF5Mii+4AsWOVq67Y5RsyjwBdPSzlx r8A8Ctz92cz5YAuuHwj2OXfjT9klvJ4CNwWd5Zguxf5wsLsrEycRgnkdOH/7 9hHG2zfJOPgpyyGJ/n94P1zwls+RJ/ke4vsAvnL1QFGIPeZR4FaPpm+KJ3E8 FPxCYZ3tG3kcDwWr/Oz9XmmDx0Mw1VNHyYE3OJ8InJ2j1PBmGx73wLYjbpy2 rnheBhfJXtR+uB/zCvDWisZfl3fi+RecfM3xoUUF5lHgXyeXz39vxrwOvNHD RlowAvslSNfc0WBRzMTj04LvH0+2ThMoxrrNggsri9r2yuJ4BJjOPixg63u8 3gRbqTSolQzidTR4wlBUUbkb309w6A2jOT5VnM8FToyc2/5zEK/3wRVNIs9e rMHjMNikznN9JC+eF8A/D/oqVIzj+RccX7a+xL8Nx8vAv+SpCo0W1YvAom8e C6ek4vkaPJqpEMO1DusV4HaLFi7V0BPk8wQPbkrkTi7D8ziYSYoqcYc4joOD XT/dHN9sj+OAYMZTuoZf5/B6HPx4o4t7xVrsxwYP8XCVcBzEvAhcHfFN+YwQ 5ofgIE/+ZaVXcT8EH/gd1BTkg+PCYLv58xrFlxb1zyzY9Za32uxa3B/A3lQ1 VuPHMR8AO185MRX0FvNwcO6pm7e5DXGeGvjNW6cr09/w+gVcK54ooOSPdQzw VXGho6zD2L8NHs+Z2OzugZ8LWDz1apvBDO4/YDlXnvZLRrj/gMvaYuJclfE4 DD7+8qyBuzfuV2D3i/eqX53DPgHwm62y+0MysC4E/tzuFWD+Evc38Kod69Uj jmEeDt4wWFbQ6IzzhcEtsz2PTtlhfxf43uatbmcqHpFx8Mdxg0v0VriuKTiU cYN5SR/mO2DH3LP3+l/EkHGw7a75Ney6qmQcbJAxYykVitd3YHPBR78kN2E9 dqmX/ow9D/t9qAj3Q/ClDbs+PuvE4zx4TWCPpOYGXIcB7JRcZnE6GO8bCJ7b qni6KRbXKQJ72ZT4PrLAPivw7Zz1d9Ydw3HDyTe0+Wv2UOZXGrnX/wprUo4D WtYPWb98RtlH1C7yXIr4PUqwN0SFvPhRTm7/++048XvZ7JnEq40E2xyDSO5M Kxk/ediEO+JAGVHdYPRTrg3zn+U5pTRbPuYQlxtWzmdpYh6lp3Lu2tCqdGKq 5VxG8a5hMu7wwuZcVPRLIon9Ud/du5hfsbxma/lX+p5wj3Pl9BbEOti66nUy kXmV5BbiS1/X9bV1rAJy/8d9Zx4cT03f/JlQGbyXSvcT17ugMZpxKOfvIlwk /Xo9E7BvCjw26n3hpCnWG8GXUwaMt67A+yODX3ApmiXYdZL7DziFytxvmyne r5Y0axq9dxrm5+C+HkEphhbMo8AjSY+e+y+6XwbYZF+ISN9nPD+CX/dEJTAK Yd4C5i0Xs5EawXE6MOcjl46hrCAyDm7cdp7I3RlMxsGHn02nqzti3gVOnKba RHtr0X3iFvwjXD42PxvX+QGzbYh9VzOH1+/gY+sb9fLv4fcRbMrv/9bqB17n goX83t19movjOGCqrL1ugvTYJwPm8E/6NN6C87DAat80+cJr8fgJVrks/yV+ ahr7lBb88X5ewvaedDy+LbjQaarLTxz7tcCbkwQvv7+AcXDhrg97Rp4vuk5c sLYZZ53fdpyfDnaR91xv8wjnGYGtmcw3i3BinwlY7Nz8mJoVXueC15sXHBYN x74IcE6RlQG7Oc5LAmdlu+r9OoePD57fZ0XDEo37IZh+9x71hn2Y/4B9Mmo5 /ccX3Vdowe612ftCGbHOBr5fmGfDx4H5M/hxx132XdO4rg441/1bCK8D1gHA P0fPPfH4judZsHe5lr1LJo5vgtmOPt7AH4XjZWChCHurvYyYF4HnLX7U51bj fghmOe2Ue4ge8xawj9uHyIizmJ+D+yPNikJSsZ4Att8cfN/0Po7jgG85Rmsq ncV6C/jKc8ng3Sew3ghuuLHxiMCi/AFsmuqr/8Ee8y7wDu0j3PEXcX8Dc8lb 0N3eguN9YLHXYu+jqLF/DDzrMhGltwWfJziwYi/1CYdFdcUFOwxxL/uZj9dB 4PFj3EzVPxf1xS14mDv9tPwyzAPBiXnyD5xscf8EvzA/Xmj5CNerAWv5JXhq fcA+AfBl3+kEocZkMg7WtPU6//wc9n2Bpzf9FRy5id93cHwDH/NDW6y/gT9n ukRE0eM4OJjBzMXkgFcO9s8vuCp8w1ut0ggyDiacdovm9mDfF1jm19PmE5o4 bwUss3NmzZ8CnAcKjumvPMIkOIvjHQvuZRd20LmD/exLvfSn9cGJUP31eD0I trKW2SeQjfNzwVoFYdsOnMPzDjhZver5TCfOEwQ/201jJVaH40rgMCa922c8 MW8C3zjDbTlIi33R5pyTGZeDKOtUyYGJ4hOClOOAKl8m1hwu+kYc5zpSdNE0 k9z+99txgjlUKy79VT25hbg9t6y7T20Nof1zQE35LuY5DuYTlcUp+URSis+B 2tWYFyl863pD25hEfBIRs3+4d4SM86yQn/rSnkRYKCta++zBuHdvZHvBnUJC hVUudG3OVzK+8WFrvMDtJiKlSOdVWW8zGb+jtUV5xj+V3EJ86eu11julr/i5 n8hU83HYexP73yKZ2a6LZXYQZUlVpspjON4H7nr1yljXrYKMgwtTfe+IF+I4 L5j+8BC3hDXOSwJ/sE9vqZzB8Szw8seSTpsLcRwN3JwytzHnAuYh4CCX91uU 0nGeOLhDkp7u0hE8PoCvCRU/ZWzB/xdMf2DodrUj1sHAp5pY52UX3dcGTNx8 5VLfinGwQipb3JAS1qnA0xwKk1sq8fmDf9C1r/qgjPMBwd4m9sIXPi06fy24 r+B5K9VfnB8HVrxqZb8yDcf7wI5Nm4+vz8HzGrg5/2BvWTH2pYDDzBWrEk1x fAQsox7U3rEXx/XAO1iIosRdeL4G09lkSKvkYL4HzliZf214D/YdgM1iwm5V U2McXHTW/eBnLVyPESwkM+mepo7zDcGi7Y9TGxyxfgWW/XRewfYJ9tWDj1Uq sZYfwvFH8A3NjfvFvwSRcbBhcKBC61kcRwA/OCJ0hcUar8fBq/4NT4n8wfMv +N7rUKZ1YZgXgR17C3Z5KmIdA+yyqVTclQP/X/CnrX/NfDnwvAZuNTJkZdmK 41DgdQ7zSepnsP4ATufurrhWhX1i4AAb5ZodNFh3Ar9Wm5UgLHD8DlxwOuJu YxzWr8C2LLoNzpqYv4Gds3802nbj/gPuPuW4oToV81twlOLvNb7H8XoBzKkj dF3CAeuuYM7VFsP6rYviC56leWxu/BrHZ8EnjGceybRhPzb4JJdI94FSR+zH XnBULPN52c84jgZusZg9b1eF9SKwWmFaia4/5jngCua4DfLJ2OcGPnrudbTV CcyXwF9+xIz7RuDrArsrlNUXl+BxDyxfG9uc5YHvJ3idgI1kQAHeRxis+6hh NnYb5j9gtRjakUEFzAvA7xqThy5UYt4LXp1xeoPzJ/x7sOD13433FTBfAitG /D47yZ9HxsFHbNY4zu9+R8bBzt0Po4T3Yj4GfjuwvcVUn5r8f8HFrkzS69gx PwQfpdHp/NODnyPY9YFv8H1BXGcYLDJ+f/dPA+zPBEs/et/x8QdeT4FtWT6s f5zFsGj///976Y/BwVfMIeX4voHPiRmx3160jgq48/WXTMkiXAcbfILfgUrW GsePwCz0VYe1lbAeBbbtrtr8jxnzpgaemYz5J93E3ZOMNV4ncJxRzfkjdWYt 5XxA4avaLTHTlPMBp2wTZ0pLh4m1MepiPGMl5Pa/344TxRx9p76ENxIerYqS 25uwTpWj5Mns/KCESLJWdd8ni+N9eb+NrstFPCaWWxufVXyK9SgVxsiXtZzX iTf7t149dHCMjKfs+BZjqp1CpLWKDJ+fwr8X4Qgkbv0qJ85eUOxRpMM6mEKL v0BZUQ25hfjS11XKLHnN/xvlfWfofs+Wlx7oJVIfy50SjsD5lRyf6BpN87uI 1OUcXH6+eL9F8NC8t7aRGq7/CQ4suLo+sxT7jsAq26ybX5zB+8yCVewraCvj sE8b7HJ/jEF1EsfdwCserqanjsV1C8FuIrlsJ21x/wf3ytid5X6IeRS4NmRd pE4njseBR9evlkuMCCXjYLPLKUxF9rjfgmuejfo0qWP9ClwZN7Hzqjk+f3BQ K9vswBiOM4LNJg1ONM/guAZ4U2/e/mp//P6B38Smt0q+wPoSOHlT6cMObuwz AUdt/zt/RgLn9YMPhad9fKaOx23wl7dWlpuXYZ4ALmQdnSpSq8Z60YL9Jdvr 1ZJxPALM1tG3YWoLjsuAb91P7e/OxrwCzJ55Y01YLI7TgU9e4qorCcB52eDW HaWDua04vw8saSrd55P1gIyDjcRpU/bcsyPj4NUZFgel1fG6FWxqq3fL0BPH KcAlubXLtjzFPBD85/vXvumf+D6AH2+XvSXSgX3IYPZD31sZV+B5Aaws1Ol2 7R/mG+AU4nGF32p8fPD1QBNOnfNYVwE3rc55UNKJeTKYtnhmX/0JrBeBlQYT VVU+4N+DhzRcZyfssI4EVrh/aZ/5ZXxdYP13avFdh3CeO/ij5f6udGYc9wT/ P7buPB6q9/0feFFEolS2VrTSIqlUakSklKSStEmWKFTaKC20SFGpVJRECanQ QrQRhSwlIiEkbYhWKvX7Ph5vr3n58Jt/5vG8hzFmzpxzneu67vsYH+77d38K 4xB4Q9HGwVonGD/AG+N7XP06lf8vvNl7y2D/K4z/4ShTPdURBexjgeMTrYKT 6mrYP9/iz7FWwY29GQ/DRrGe9povmdeCl2h+WDhBnnERvO+Jf7pPKMfhZ4Oi Q7ZFMb6FB3RxmLjpF+NGWOtK0IU/AYwH4FFnJq90X8H6OLzqukN35VhuV3C9 9gataw8ZD8DX9dYNfKTJzwVe4hPxdIof96uw+vOO/Q41sw8ffjN0ZvwxJdb3 4YMln9eranN9A9g/ZPG0+gs8b4LjvJfJ68/kdgVvWqehEvKL+wd4SvGdwXJ/ +L2ABecCqx935n4Mzh2SZZq4mv8XrOd7KLngayfGDy1WWXPl+r0FzEPChUod 5vr78X2GuyTIbJtyqlo4DkeeiN8cr1oiHG/rtjepyberlx5gPAwLlvYP/bqT 6x7AJmMiG3ccZZ0IdhRZ6vR3caJwHI620Gl6n8PjOxzTIWXeBV32/9yLKnEP UW1/vb9Ns4dNierVvj7o9vTzCzul9nXAlJCUINGbnwW1SX+cvvfIFd7/92i9 IGpYmauEabbg8qfuhr8XMU/lqXw2/3XVLUFIfJFkuiHrfbvE9FVqB28TVH/d bLz6GOOoe3a9IzsbHRMa9961AYeejL0uCJ5e3Lfb2E/C8Zg5OQOM9z8ThNis euDQwHWrzN3fbn+idV14/7/Px5vjx7WfVK+9Fez6YHPmmsNN4eNDYyc3d5Us FUj6zJP9/I7z++C8fs/GblnM9abgkqArP0xWcL0y+PP6mvtp37n9wyN2h8cp KrJvCv42LfPb9GWMr+B/8c2dYiS47gF8vtPBde7PmGeG6xOdd80K4c/DgZkr qnt8ZxwFJ56Ve3fuAuMl+HJjVX76N15PHF7+cHmOgh3zrnBMf+1rkTs4XwP2 WZ8ZnjSE67rD+4uv3BBr4HkrbC2z0j2wJ+dPwX42/2aXPuG6Q3DE0dHu3qs4 7xv+cV4QfGM964aw28Gaok6p/Luw1BXnnMHXeH4E/7KMCe5qzLoSbJXrHDBi CI+D8FfFgZUhuTzuwPoJQVm581h3gLfvf7To5apW15tr8aybK2r6lfC8Dz71 7O+y38GsI8P2Kl3e+ARsFo7Dalujg8V6u7J+1+JDQacfK8czboHd98ivNJjF fmy4ftC63pNPcX8L54j3iu8yk+NwzO1VPV45sk8Gnh5w6YR47EXOq2px/ubn C+SlOH8crn58bp6iI+NSWHn6BD+LDL7PsK20yqYfbsxbwnslT/WerczjOKxd ee6dsxn7hOFAtbeiM1/y/4LHfFnpcU4tg3WQFvfSO/SzIonfd/jUhdJTVdHc TuCZi7VFD3fj9gDHe1Q1/S1qNf+rxQleAwcU9+VxE9YJC5r/8RvzlnCl2fPQ Pst4PILv979lPu8h81Tw1DPZnlec+L2Ai0sWht8qYFwE+/rYvDLayPo4fPnQ /ObZZxh/wgFSR2QujWO9D3as3qnw7zOPq3Dt4KC787NZh4I1lKcN+uHIeAPW apBUeFjFPCdcsuZN70er+HdhC3enXubjuL3B9aoDNxeKc50o+Mu5sO3GHbLZ t9/i0pC4izVDuH+AVcUkNitXcnuAT9j9m5yygHlUeO/9NO+qRo7D+jJTDzx8 xT5GuP8W7xX2zcwrwm5HbPW6OnJdFzji3f3jc1W5PhW8MaJ82JB9OcJx2Dyy 9tgoT/ZrwZXrN5SPNuL+BNZ4bareseMg4Tg8XGZ3p8cbDgjXF4X1HrkrrjyW JVxPtK3b3jbONkmIr+X+EFaNuzm62pzXQYD/vnx6uc9nXq8ZPn/wsqPu03vC cdj550itEee5ziScsPCT1MNBnD/4annEYRP/9nHUrYSQ+6YX2vdZzRJ5tynu 3XtBj+Wn5122uiG8/+/RekHs1I+hWg/zhfcY3+Ctd8ZkfqrgcVJZrMULrofQ xebocKNt5wW7nmf/CnjKul5Zj6CT+Tf4vLjfERjuW//wSLvxBquie3VTHwi8 c4+FeJezDrj3b+UJj0fPhPf/+3u8WYWbll943b6fyn3Sw0NScyoEynIfp4XE s/9/8eSIpd9/lglm+Q79qdmJeUL41v1TGnG7uX4+fF7f39DSiX1NsJT+fV2R RVwHAB6xrHjy3tuMo2DJqT55vmJcDxM+dfujplgY9//w5IRzA58v4ToJ8Mqh y020d7KuB6cZjMi+rcZ4CVb4OflCySbGh/Dm3UGnb/5gvQ/+pvz6ethy9l/B F0u2H99pxOsRwAvvLvCX+sL6COxvEbXOPZPHTfj1wHkj65yZd4LH2R3W99bn uhPwDavOdQeHc70jWDGuv+KFL+xThe8kSlx16cv+BDg9/MCPyslcJwHeYdtX c5Ejjzuw78AIvQx9rrsOm/1UmbIrodV1bVpslJ9TIpLEPl549QwxtW5vmf+B ow4E5xw5xevaw4InWXl7teTZF9HiCaZbzrsZ+gvHYfPtqQ/sn7TaT7a4y9bq NY8N+D7AuVKZffP0eJ04WLdobaTLNZ6HwjNWeppt3X1EOA6bfvwzvLSJzwNn vfkgOceAcQJsMkFq/LDjPO7Dvv/2Xz7ZmXEI7Gqh1GxcxOM4vMe4KEz7IutB cFppxeh0e8bP8JOZbv7D7rDOAptVaYde6cU8BhyisSXozQF+H2GdvfU2s26z Hww+1+HF5EcrmIeBlxcePedWzOMjvPfyBv2zr3cKXw/cscT1n44Ofx6eNm+x akyr6yzAx6VSjuqNazUftsWbxv77GDSeeTm4YoKLb39bxp9w45qEw2Iv+D2F w2bvnOeznHEF7No3amr8evYTwn1mmSyREmE8A0/c/nHKq0dcvxTODNNJ6vOI 9VP44dADir+mM26Br2+MbfTfyv5GuOGTcppPqKNwHF52/7T9lUT288CfApf3 dO7LeAxOsPa1Gj6Q2xW8VSkk9ZU3z49gyxvi+ntM+frh96bveltGct4QPOiH 4ML3M8wPw5u/XMr4Wcc+dviAtLqqTM0q4Ticbug7/qoP64lwl9l+340nsT8T nnbctNH1Edcrhu1rPY9/OhjG87UWf7JerRj2V1c4DjcsfmY5ODGK73OLA8Lt 3pdsZR4PNtHMie4tzjx5W7e9net26/NpCW7/8BqlK/2Hp7GfBP4x7FnjOdcQ nl+3eOK43r733nIddbhssea81OvMU8EqHjPc1m5jX1Zio9fW0Mb2fVY7IuN8 P89o32flLTX7lN+VT4LOc2LNf/dME97/92i9IO1a2F0riWeCTSEJe6bWcn2D qK7x4zdsTBDITTHb8KaS/VT37L3S/5WFtouX3P+qPxti2fb6fP933+28nOwq X8Gpn7Nc3vViXstrosroxn6ZgqlvnN+LNnD9qxPu1j5pe5KF9//7fLxpZMZn dy2rFvxRD9Z1vsZ+toVGU4LDf5QIzil2rat+yHkB8NBOMuk67veF47Cf6i2H lZc5HwHWfftWN+Aj4wF4rsrrwxtPsS4GG53tYuPTg+stwCobagxzv3PeELx9 w9r+o814/Q644YVXn2GWjHPgRT3tTi77yXwUvHHxztSn2cyXwnvGj20YWsKf h59M+W6fOpJxGrz7wQBxk/Xse4fzs6sHKm5tVX9pcc3Z8YcfLeFxE778Kmrg 1FiuqwOnGx+vfFDA/xcO31dYZ7a5Vb2vxU/vOyXmJ7FuIrRcp7+TurwVnjfB xWU9623mMs6Bn7n5qw78yn4b+KBOjNFZaa5/Bet/MJFZPpg/Dysq6duHLWI8 AJ9MMx13MpXHa3h3/vQOvV+x3wm2l+rrNcaQ83rg8OWFR8z25AnH4fS8FYU9 NaK5X23xv7sLm6olud+D9xk1HYk4y/NxONsvuVjqGucNwXk5N2VSItnnBt/W unyuZyeeL8O6aeVrfA/xvBs+a62yzvU5+/9hU+v1I9cmMQ6BT+70SDubxfN6 +PCc36dv6LCfBB4Y6O+9seqk8HXCLmlfzk2axboS/GBD6ZPbJ3jchBO/SJxM fsftFjY0NssLEfB4Cjv0264gXc/nh6OvrtgpYfpVuB3C5+NmPa8ZxDwM3Mc2 ulztFbdP+KT/7+d5P3ieAi8TrN6uH8o4Cs4J2OIf/IrbIbzu4p2d8Wf4fsLf XvT8uHj/J+H7Bt8btrvg1UXOX4Cn9piZ3NuD9SZYZO7W8hvbWU+En5adnOMx m/VKWO3Ct9JUb74PcNfKwn/PTzD+h8fIbri6q5LnHfCDBsuikTd5ngIbrV8z 5M4sfr5wTu/MnD6V3N5g63f6OqsVuX3CkyyuK88XZ34MPnr2/O5tWYwz4Xlx Eo7H7/N7DTsPfp9kNJxxC2wU/rXP13vMm8GnVuWPWxLL9x+2zO2dHSbP9wEe 9/ad/GSbR8JxWN3c9tlYnY6sY7Z4h9/7mhtfeX4BDxzV2LWrFedjwg2/ft6V esk6MixqOFTFezzXNYXnPO25v24m+97h97ulZTOvME/e1m1vZqskeze4MS6F XU52Dc924vEInjNucKcM/TDhOCyZGGtiHcm+dDguRv10ihj7p+A9ScoTH6py nlpJ+Ndv8xa1j6/Kan9u6fKlfZ+V5ZbxU1bZ1QlWS6UED3fJFd7/92i9oOjL l5FivTMEx/eJfdi+ieuir94embZc9YJg49NZQ49vY54qsHywwPhb+ziquuez YqMOae3GvcXMMlJrLgs07hfY2Xuyz2pPw8XGJaeeC372vSFtlFvU5vd4W6g+ dP8sjfbrqN+c/cT98ZRKQd2tQZ3kXFpd79hh8cSNz8sEhwI6z+5qkCsch6u0 ZXetM4sQjsP7Lc8sVB/O/lV4+dJif2kPrisOKz4ZpX2uiv3b8FrruNpyI9aL YbNrzpvuVbfKe7R40qRTD6p1WU+EdT4rj3mYw/4o2LCTzZ1tyae4/2/xpCjz G1fEmaeCv40v69FFnnEjHHc9aNjZlbyuDbz7m55B8R/2O8FuN+s+OAZwvwTf NJpZUVPD+h1c8WDsLfFxvN4xfNzkxMriS1zPBF5XbWJm22p+N3zkwHWFHh04 /wg2inox2mUqz8fhac8MZmVmsL8ddv9wtt/8V4xv4REbi1QkLdnPDL+am/Tq Wlfmx2Dfz4f8RosxjoJru+9Z9kuW/VHwnwqDxuMZ7DOHxS16VC21ZD8DXL/t 9VkFUx534EvjK9yaH/N6JbCs6gSbC2Y+7GtqcaPhpeXv/zQLj/twF80Ga8Fu vp/w+vlnJ8hOZxwFp96o+Gf0kv8vfHWlrt5cGeYD4YzlG7p2kmHcBcuuSLsS Mo31OHiT1cWgLWWX2cfe4uzvQzuMH86+F/hFnvTrvz48DsKXEn9OnXeXcRG8 dcVrbb1PPO7DzrIKQf9KGC/BJuNfJTlU8rps8Kx0o5dDLVrVc1scVfxZppMM 4zTY1mKv08613H7gzMaDjqfecbuFQ/O1amKucd4cbDj7jVOlC/MtcOWA+REu d5gPgPuOq3Pptp79e7CqVlKAXjnfN/jG6Tk1+3ryfYOt4hPWSHVkfgY22qdl d9OGeSq4YIT1OL+d7I+CXZX+Fg4awfll8DzjeyH9s5nXgntPnbJwvybzh7Cz y7llm2P5PsN+g47o64oxvoKfJyzTME1nXAd/jZbaZO7FOhosbi59atVyrrcG nwgeNeeGKH8eVrpWa+eczPcZtpjWKeXLdcYRsP5x56WHRjBegiettjo4bUCg cBzumh8zYtEB1oXhml4+Nb+2cp0N+PHz4L2q6vy+wGMfevjtcGXfFxx8anDH d7+Z34PtLovey0rn/wU3Bo0LsZBhXx+cGrpe3ieD8Ri864Fiw7srXCetrdve DLNlDeJb1VvhZRc6RPYz5zrbsHnkgaOdXXh9E9jkm+7h2be4DgN86u5ruZOn 2VcFa3zR2LR7Oue7LRP9sXnEtfZ97PO9phrvTH0r2FFXaaP4PER4/9+j9YIj Pm63fgXmC+8xPj3wgY/syweCsrhziZuPsU63zFxmqUXo2Xbx0tHrofF1S7Lb jev9lp/o8rxtvqleoJv8KWfI7buCGBmD2beOcr3QbaPE/JbK5Ajv//f3eOta f8UxbE/7ddQju9/vOsa9RLDsS1zle3u+H3BM5AjlptvMU8F2j6YWztjHvA38 8/KCCJVkzgOFY4okfFXrGUfB0307Bm44y/ogfPfhtNxkK9ZZ4EWCqPcGidxO 4MZx8VvObme/ExyQayJX8INxFOycf2eIljHH4aq5VhJrFfk88JM9w7377+L6 D3DyDC+1gFb5Itjilqeeeqvr6sIuZxf5b3vBOAp+9HvSjk1WrJ/CnbTy+1Xa 8+fh+Svrlwk8mI+CVylFV4/O5fk1PObVvKeWrfpm4TfPFrnVJ7NuCH8anxGw 8DPjN1j6ZsegJB/Oo4evd9sVvtSQeQM4b4Fy2soa7p/hWV+DQvxbrT8Dn9Ab OU4kmH2hsLHzj75iSTz/hXWN73g/WcL9MJxgnhDk+ZvrH8J1yhMlv2ptEI7D w5NExILyVwvHYfk701dk3GbfBVwimNvDK49/Fx77N85n5hseN+EXAyueZN9h fyx8YKnx6MOt1hODm68m25md5LoB8IUZUaZeQa+E4/DutVfEClvNS4JHSMlO /6nL+A02Vwz4/kaO/Xtw95yxbuK6rdaHbLFrVMCoobI8TsHPO3w2KLjL4z6s r2Gdl6bM4zWs/nDDyCWt6pjwoVdrJxnpsE8MHrAv3mDyCeap4OyP//TzrzMv BK+69yR7SH/Wd+DvPStGLf3F1wl/NHNQSz/J+AR2Cb+obWjGeAmOzVCqshzD 9w2e7xwz3liEnyN8b+iRhK43WXeD97ysWu+WyXlz8PkRdqN27WdeC05xKbyj U8Xrs8Mlcs5NtW6Ml2Cl5tNfzqox/waH3nDK2lDO1wl3b/4yslyZ5zXwCMd9 FwX6PK+BvepvFt1czPMI+MxHh4Yfx/j8cPpfA8/fra6vB/d8vs98dS3zzLB9 4ZpT+8W4zhNcabbYXe0H+xXhSJcPe9SjWNeG67JyMzYN4Hwf2CxBRCr4Avvu 4Oh1y6KMzRlHwfKRwz+oGDDvBGvN2XNeP5v5KzjdyeKtdwz3G/DgkuCjFXa8 fgS8d6bKlylNPO+Dw0UMeo1zOcQ8fBu3vVUlHRsQlMX4H95vsvJRr4u8bizc X2R06fo/vO4JHPBU3H2NDOt9cPHkoffqjzNOUFDd7JgW3L6P/dPBP4P2a7Xv v4rY7i1aZ/ResG39M6dhtXeE9/89Wi8YlpifG+7+TBBz0NwqTpJ1QKttD+/n PogTDFOW6Z41l33mmZF6dTZRnE+IexGLPJfwvLZ9UfUCaUfz/H5JMe3GZwZr 3xDdlyEoiXkz+K8O82NPJLKrT8fdEt7/7+/xtmTduuTrGlWCTsVXGgs92DfV wed8n9eGZYJTL+tCks24zif8e0CB6ltxzq+E98lIdFRZzuvXw6pOQbMP5TFP BWvEb6vLvcN5gvDZBQPMm9cwHwIrzdK6lFbP+aRw9Hmdl78+ct1y+OTIgbmG zazrwZ0tg8Y5zgkUjsPaC+8dch7Peh+8UUHJWyue9Uq41kdm1MZTXM8cLn91 s9rAn/2lcJhb0ZB78qzrwZXdA/74D+K8SPhEzYNbuyq5/htsMOvGyXd+PE+H z3zYnrHxFvt2YNcmVUPPGazHwc5bNw4N1WKcBnv3UN1/15t/F/53TWtE8Tf2 vcP625Ru1B1knQXO6dw76twmHpfhz4FNEg+vMs6Bh+lP0Ir24HrjcPYXi1gJ c9YvYNUbHSXlkljngg9dGjnN6hnrBXCC0QObtds2Mb5q8ejCy/a2E3ldObi/ qL6ojyL3b7BCXHCMZDX3n/Dx09Fje8byeAELokJW9O7K+BC+WOzqYdCD6znD 6SlR9wIWuHA/3OJlZ51mOixi/AZbpan7bUxmvAo77Vz3s+NdxvPwjill8V1k 2Y8BW4/Uttq0jecv8MLmqRlPBzM/AH8c/mF27kM+P5wt9vfT2r887sPDu2v7 d2y17hNcdsNC5E4cfx4uvxDlO0Cd591wo7dcz1gvHn/hyhiLH3bLmB+AzVQT E+fV8vgCu99qfpuQ0Gr9gRZX6E1rtp7K+BOWGjrJZcSkVvM4WiyVp5VybU6I 8O/C69I7/70xnNszvK0hZNwIXcZpsKagrk9xHvvz4Wu7J/aS2sS8E3y5n0/y Jjn+X/D4BYs+6Fly/Q14yPCgZTWivN4THPvNrnBBE983ePPVn9fmHGZeEQ4c 4r90YgLjE/hU9biMv0msZ8HeU/eU9Z7CvjK4wkW2oeQ1v6ew1ImtzycubPU+ tzg44Fmmfy3PF+AfZQN0w9fzPAWWiXI+nOTLeBXudPP5mG+t1veDpfSGLZUo 5+uBF77ovj/bn+sSw9V/fytOta0Q5rHhWL3+o9VfcT0W2DNRN2znEV/hOLxA p7PBni2t5iO3OLxm74pjX+YyjmqxksOuTSP+7Gd+r43b3opKz5wcY9hqfZUW K14IdMy3YX4Avhg+ZpLg6xXhOJw197Xy3Pgc4ThclrTPIWIf+68Uw253Xa3e Pr469brvwpW72vexj7c2D9LO+CjI3R4cus40XXj/36P1Ap0ZA0eMcsoUWJd8 /rA6g/1O9d9Hj1NYdkIQ2uHK9lFRdcLx8dlZT2zNnwqN++UvJqxyupfXbnyX 2ueTz+4fF1h0210tcoPPc7fWLSTW9blgzyCp+2cUXrb5Pd62/DJebXyx/XVq zs3oVlk+s1xwamDKpL9FjCvPiWrGar9+LRCJPqsg/4jz/uDhB0yXN9VzXSa4 7rZ/qMOqRTwvaHFjYbl/VCbX7YQ1hmzuGmfAdQZgs8FuNjEF3A/DT39+TXkv xTgHfjT4vI2mwwnhOCxpfM8ywpPzIOCDR6dNl7vKeh9sHOL5YFAp82+w+YP6 ITs/ruZ5fYsXX5TOWdIqDwxrNXT9kFLB+BD2aZjrcEeU8SEsNkUqVkZ1sXAc lvqk55VeyL4sOLdHd/fTb3j+CK/waA5aU8U6LFx3w74sWYX97fAzpXsSgTr8 u/Bxzb+la7a2qjO2uOLm6R0qHnw98LqG6KRfj1gPgt+P+FKSeZZxJtyzaMLs s1t5XIZf9MnYrK/O9RthT7tT6+5J8DgFmxRruK6t5fsAS19d8rbuuJNwHO5/ adK5rGT2i8KzPlmsGKQVybxZixNs624/OsS6DLznefjmpiOchwhvd9F3FuvM OASOU+7Wv4/BXeE4fO7D5VXjJzD/A1uLvkz1kGFeBTbUvbTuvDjjVfi8dpPc mRged+CgoJAns2bwOAvHp+a5dLXm/hge0CPolMsknr/DE2Ye+vXKhPkTeLaL 1ojJDowH4DeRyxsTGhkPwH6SttIVSazHwf93Xil4mMT6BpxQHGAaN4N5V3i5 07gtS5Yx7oK1dg14tXcFXydseWawotk0xktw3U3ZHJUsxufwWUNvEwW7fcK/ C1cn5TaIFDLegGUG1W5KlWa8BM/YkBya6cf3B+76SHDSxov9S3Dkh2lv4hv5 f8Gxtj+LDk/k+wD/Ce9R8t6R5ymw/2LTwtvRzBfB5ikTcmOmMw6H164OOhUd yf8LVk5OLL2yh+dr8OSeHuvz5W2E4/DbfZtMomeyzgWXn3/ZNCSF3194rO/D 9YGqrI/Dkxdd3mZWztcJqzsebnh8mf8X3P9Y508zd7DOCD9z0Kr0aIoTjsNe BmrDvh9mHxcc7n2ja9ol9l/BS5x3S4xKa7VeVoub/wbuuuFyhfnkFhdYCpIH q9cL4y5Y+tDUq5pi/Hm4TmBZ1mUT/y6sfkPz6MZPPI+ANZ8Ondy3C69z2tZt b5lrTeoCr/F7Ab95P+uLdKvru8GbjA9vXDAyVjgOb+ujFSJjwXwLfNMp7Me/ KVyXqZfBywl+se3zVGN27Zq+VngdP94qE57JjZ5WK+h+eG/I/FdPhff/PVov yBo1yjryQIog8P17E/Ukrlv1N+JAfmpQ2/UO6gX9rYvqbxkXtBu3jvY5bj29 ff7K1Fqru8npG4K1775si37JdRsablwsNdyXI7z/39/jzct+sqLhwPeC9Lfv NrzSvMvzjgX3wx2mlQr2PvG4eGsH+6xgqTA9wafRfJ/hM5si0qWVuM4n7L9N tsi/ln1HsO7r2HWhYcxfwYftYpRSPrOeBSsPWvIoRoJ9d3DBecegcknOy4PD tgb6rhnPOAquHvps8UpJ5qlgL3sdt58PDwvH4cvNha88VTkPEVbzFc99Fsx+ D7ggI0cyq9X16OGXaukDj0xjPgq2GbREa/lP5rvg3zudj6cYsi8LPn0j75ej Ns834T83yscHhPDvwo9Cn6ndtWJ/OyyYIJjVrTPrjPB6uSs7Dq3j5whrO//2 cnjG+X2wvdrRohId7ifhDceyrDTG8HwQVg1eFqA0iP05cM1JKc8pv/h9h4+d NpvofY55Kvjpj1/iy/dxfUJ49psRk3t84nqG8Jav8wx7efPn4VNdO9RGqrD/ Cq7P7rNbZxrjKDht2qXFC69xPQS4Tvai3y63e9wftnh4/xHBmyUWs57Y4opn q15vvP6C5+ktljzxwWaKgPO24O3TG24c0mA/FVz63UJxSyrjLnj2jOnZQWGt 1plv8QR3d7uP4xm3wGtNlaPPz2G/K+x9p7N6+hPmc+BdncTf1o3mPDh4TFNs xLM8xsNwc/at+QP7MB8Cf3Fd2mPNW9bp4LgVA9WDFjJuhJ/O/yk43pfn3fC5 h07ly7wZL8GVQQNXq25iXgVWNSyd+6uB62zDJWayV5o383gNq8mO9vwqz+0T 9pQP3O23nHk2eJrqUy9rUcZL8JUtmdnX+jBegs1SpvUKf8zPBf75rv/kC124 3gJ8Y0wnhV0bWV+GteJVRNOu8nOEj3j0GjhchN9T2DX7yuDxexmnwbWnr761 Gcw4BN7ccWY/rQrOy4NFajXnFlvx78KXXl5y7bKG503w6wS/gB+9+b2Gtx6s mGspwrobHJPm4h09mX2MsGR9fMSap+zjgt0lneb5CtgPDzuKDewc/pbfd/ju nqaBJfHsr4NTpRrcD85kvhpWP+ylOeYw9wPw9kM269R+Mv6Ba1PSDs2353kW fMP3+G2D18wPw6ZfakfnP+U4PEuvt2vpnVbr0rdY0eJd5U0vPn9bt71lrt47 0Pg4+3vh6SEDzEVjma+AR18bqfXtzHXhOGz99IRYhgfXW4D/9JYLatrGfmzt jl9Lfce0j6+eP77+xsS6fR979Jfzmo3RnwX1d/PDBpgWCO//e7Re8Kf44ZrS gFsCPQmZi0aWjH9sZdRHicxpe12ZesHjdx5ppsFt+87rBQdiR+imOme2G19Y U2i/Z1mq4IVEr6wpz7ieQ5j3Zr1tpQnC+//9Pd4WjL64PXfdG0HZXO8nftpc V0HxpPqvFx/KBCae3ebNWp0hHId/OC1ZlfWc9TV4eXFv8XHzuB44PH6y2IQb +1nvg4fPHqQwsoJ96bBVcon6qaHsl4aHbrSR+rid16+Bq/Rm13+5yf4oOM+8 7NEfrzPCcfjSsOjeKZ5cVwFeV9LnmNIQblfwLx3fY3FdWS+DK+b0EJ1iz/0q vKdwes/qV+wzh0Ozu6S8X8k8FXxXTn5A+BauzwmrnWxOedmZ3y/YZ7aE3NsR XL8R1lb96hJ0mHknuPv5jTtkWv1d2NT6j/JDGcZd8NA1i5pUNRjXwZkzEvpd bbUuH9yr/zSx2oXcH8K9jF+mTlfm8Rcetnlk98EzmceA70ikyO36yOMOPOWz qs+ovcxHwcXqGTK/RbiuIKxvl7/b+QuP43CofM/nF/4x3oPN5xcsntBqXg8s 9tgu8pkj41g47uWM3l/ttjPv1OIr2vnJjgu2Csdh23NpT4/u5n4blk2bcmvy olbrf7b4gczlW02GfJ3wC72R+b3VuD3AxdUjVwzotpHvQ4v3VX+rlFBnnAYf bjKNuePP9xkO2Fqk/MydcS9cpZwfVfabfUfwhRVR1Q8eMa8Fi247eMxBkuuv wj6Luo2RmMm8LhzQ6/WQCLlW6zi1OKOP/vf+8fy78LaMLZtUl7HuAx87VrYs WsD3GXYNKU1yKWJ9Cr4yWk/cYSifHw7b16P41VBun/B2C123oy+5PcPBE3UO hq9m/AAHVNnI/LjHPC3cu7zGdsIF5hVgteof+a8/Ml8En2qoUV8/if1j8JSD a6+qdmT8CX+e0f3qF1XGS/CEYXu6po7mugHw9Udq32+3iidhhc9rZ+87ye0E fmkeq9cQyPkUcOLS9yNFnnL/AHsM/vxyykduz3DWMQuV4GbW1+AhW9Pvn5dg /g2+d+CK4gVr/l/w0D1KYYnlHId3TzljeimC5y9wot3DmRoZ7KuEdWMVLD3L uL4xLGc+dLJCEev1cKmX+G3feH5/4TF/tBY1uXAcrn7nb311CPNp8KqxSg6j lzHeg18FDJs4KoFxGuxwUdf5fX/mzeAlX6p/mkuxL66t296idi09olvM7Rwu Gpzb03AJ59HD2krfL/eazXXa4S3StcM2ZDMPA9fkWolb9XokHPftqrEh63L7 eYKKHncP1r6sEpw8UnL1m1GM8P6/R+sFIgqx7vpDnwl+5Z6VdItln1X37XIf jB+HCnZolHrKXeJ8wLiRu7/91X4uNO5f3XkkVaxZ3G7cQ3nX4A3xt9uNa388 vb+z1VPBEfWs+m+C120e522P6e1PJ4bVtRuf31h5vNf+1wKtiqgFWrL8v+Ez ZTOLDb25Liss8ePr/gkvuG45/DGuw7hNL7gOJ9zXtmba0efM/8B7ThsoxLZa BxKO2dSjX9AL5rtgebOGHb2i2AcF50SNlpSQOSsch/MSTVPWTjzN+KrFrhV2 2lnTeZ0+OPP1kBufVrLeB4d3Fy0f1NGQ+eEWz6mUtPMbwH4kWDlit3TA5ZXC cXhm8+WlDcsZp8F6ew/dEN/D/Sdcr6MbrWfZ6npeLY4yDXdpnso4ClY63iVq R09r4Tg8bqfJ59PrmR+DM5ckbF8jxzgWTphpaSXS2GrdxRbb2y83jznPPlU4 YsntHm5XGGfCasfm6L2T4vpFcI3s6N0DvzK/AVtZhzuW9GAcBUuXflm3aT3j CnhZgdy+4zbMS8Ddeg1xMxbwvB7u/7hLodxZ1sXga4fdD+9ckCsch0OsJStc lNlvDNebB6cPVWZfBLx2UVKHhIe8bg4sWjt3X8MgnkfCoWsUN9lq8P+CMwTP Tb1XPhaOw+/NMi1jqlkvgCUdS9KGZfFzgU+GXdm8ajG3Kzht048jGRd4fIRN bNVnvLnBuAWudm8Kix7B82X4xETtoWv7sH8e7hG/a8jMZaxLwsWHBizrr8W/ C6vVnHKL38O8B+zzovOvWRWsQ8FTPnyz19vLuBo23zLC6/Q35kPgsw0/J4af 5H4GPh74R/nHNsZL8IVpWzZr7WD/ErzQ765WmQXjNHjdX5cD6Q6s58Int8t5 SwVz+4TXbBVblFLIzwXerrbr40lFxiewY++xHbtH8n2AldzyNvq4cb0ROHvJ 6Gdj3JjnhI9/0qwuNWYcCz+VjTGz1+T3EZ794/Q/zzK+Hrh/9fYZedms98FZ myfICkx4fR/46L5Bb0zF+L2G11yYbLyoln2DcP3i8IuFfuwPh9OuvsieOZXx EuwfPOWxgxzXN4M/NNh9upjOuAWO79S0pa8o/y6c+71Xr7G9OB8Q3llmvObo X37usMydHeEJ5oy74M+r8iUMI7jOMBxyUu5I0WPmw2ENcVG16oBdwnF4ru+N K6fXjxOOwwV207fGv77MOmOLR1bfvNhofE64nmhbt709Xm9Zrn2Q80HgJ9UX 3jYvaLWOUIu7Hby9d+rU29yvtjj++kUnhxnss4ITmpZERAYmCMel/EQC7w5s H185xR+M7ptXLXD2vS6xelay8P6/R+sFthbRm/q6ZApyng9PW5/OPquzS6UG vXcKbhcXFcRKeRqcbJ+nGp2XtWDux7b9UvWCGP9eIbPHHhW8uPV33JMa9lnZ v5KqedbxufD+f3+Pt4mbq7d1//xe0GX60c+pmlwH7PIdTUMru1KB2Mn53/uX cx17WHfKB+NxCpeE4/Cj5Uvujq6KEH7u8JbUjrJ+maz3wWYnlkir3GKeCr76 If/KdH32RcOf0pcdUh3DvnR4zPfJY4eeZ10P7n5wTGBZHfNUcGVch9GHH3G9 BXiI/+ZNh23dhOPwr+T3j/rc5Lw2+OSqPfO8evI6erDdNked5I2Mo+B5KU9i Q1U4LxJW2i4oDUxl/xh8fOe1CJGhnNcD54jZNQlE2bcGry4fHiO6kO8nXCXe JeBCGvNU8MBHa1/s1eC8P/h30+PbASas+8ACW+Ofg3dzPwPbBGVqWqowXoI/ 5C55e+YS53nBnhZdLK/cZz4E1kpeukN/Kusg8CjV9Tl5Cdyvwm9SxlVtDebx Fy6Wd8m7rcnjlND7G8Vrn/D4ApcHfs7yS2CeCs6TTRg8rSf7juA8/QMbAhqY F4J1Y82vjzvP9QTgHdXvRsiO4TrksGTthUGNCTwfh9OOLRvZ3Zf1KThRtqHn 9yQeR2CzMLu+35MZR8ELHF7YqqzicRCOSNieqKjOcfiFxch9I5zZVw8PCRmh fsaM7wNsOElm9gVnxqXw/S1LZ/oaMZ6B+xjqGQUfY/8MrGi45dDiCPYnwxGe c5pjOh4QPj/s2Nfg2Pye/Hm4a3/nD6OkOC8Pnmc8/MB9SdY74Bid+55rl/Pn 4fUmdqt2n+XzwxJhwdMshu8Wvh54tVaQ++RQ/jwccfFN9jRpbodwsEuSw/yB 3G7hjEWhzUEizK/Crz37vd0ge1w4Dp9PnvDtfCP/Lrz2sO3n8lbxEmxtNHem 92bm5eBuskErtqXw84LH7IjNyBAwXoJrbgRWi7qvFI7DIiveduz7iusDwCqf F76c4Mz8JKwvWJpq8YHbD3w2qTnCcwm3c1j/QMm6SA2u3wvnXB0ROUeNfxc2 VZId5aXHeiU8vLFR828gvy+w/UGvqb3W8/XAfWP7i+2s4P4B7qdW+UE8ntdx hh9/OiEoH2wmHIdzOh6pufOPeW/YoH/k8K8POd8BLql7mVFqybw33PD636Ra T3vhOJyYL/Nzvf8Z7h9aLK3gmz1amvMo27rtbUyJ0dHgWK4nDNd/17Y8e4H5 B/j7dJOv1ZvvCMfhn+PsYzI/cd1L+IHsROuPO9i3Yxl8NaTiSPt1GELVmnqs FP8guCRvvtSsT6bwvuWvC7YGfXNsUHgomB63d9Z+V/ZZlckmJChltZ8PKOOl b//4Vkm78a8Fq3esDytsN/5g6crHOYo3BU8jhpocus064/ykTZeVdqUJ7//3 93gLl0hU/TaqSrD/5bfR9/1YB0z8feiY49cywdEzH/Yt2Mo8HvxzVVj81/m+ fN9arOR9uulTI/t24C7NBmuK9zJPBcf/XZT17gSPy3DOvpovSRP48/Dpo2/X bExj/Q5eM7NcNlw1WDgOxy8Iu5R4i/VB+PndUMXMx6wnwpGPFhRcP8zXDzvP cFK8nch4A95jvnln/Sn+PKwnfSfKdx7jGXjALIX0c1asr8FJN6yOypcxDw8b pXyV1I7g/EHY+np47ysPGEfB7wx32V/cx3G4q76D1o/97JuCZRd+nTGtH79H sGXvImPNjqxfwLJLm5YoRnNdIFjDLWzk7kb2m8Ejpve/fGUK8wBwybBmm2t3 uD+E35YUaRmMZ90K1u3ovnigNc+j4e06F3zXdGK/Dfz035ikaAvGD3BW4eDV dru5Xg28XzKzZnAl5wPCjwZnjulzleeV8Bd7I/Eea9nXAct7JO5Sf8vjIPzy 28rk6T25P4NTDrmd2X6yh3AcNl48b0OEK9dVgO8vv/xQdTLjH/iqQ8Wof9rM h8AL1hmmpb5jPzZsW+N8rkOr9erhZe8dPve5xzwb7Bk+yHZxXx7HYetJ/b3f 2fJ9hlWU8wI7Xmc9Cxbxa1gqks18BTzerSwsLYh9RHCm688V80V53IdVC3p+ XhfVqk+vxbH2les7dOY4fK92pdqccubN4F49ylfcfMm8HzxMqfmWxlHG8/Dz gfXdL4zk64HfbIuTPPGUcSPslTvebP5wvv/wpPKjK/u/CxU+Pyw5ePkQzRTG V7Df77igXzNYj4MzZ2w7ozKefWWw9IIwuYDLfD2wlL7jCq9Mxg+w4fDSjeJP ZzNObvHFE+5fJ9QyPwZ7T9s69dZzbg9wZ/1RWuLfuH3Cne7uUTuizronHOoW v/jEa/ZxwSrpxlGnCvn+wyMXbdBJmMT9JCx+O8HuXyTH4chlY58uV2b9EU7S dLl0KJPrtMP6Xh9qHVTdGb+1+JnNhFkThzCOgtWkmoaLdeL2A6c7h1zvE9pq XfcWaxwoCZh7cwvzUS2WqByYvHgI4yv4wrbZw1SzWbeFE78IdHprcN0G+JNn r5psJ9YN4Sp5i+ZpM5jXbeu2t05jp8TOGME+Zzjb/4LTS1Ne9xYWy51h6tDE 9ZfgSXau7k6JzEu1NW7NexxP5hu07796qqNj0n3iJ8GWv09iLWY8E97/92i9 QE30wcO6UwmC8f9k5qa+5Lrr+y6HFEV/az8fcGRGQZXFgbb1vHqBReGJ/DSd 9nXDgiaDhJOfUgVyoqWqWj7sszq2Z/nrMsUg4f3//h5v306HlmyMKRcUzl3w ae82/t9wz6J/Nvvz44XjcIxnwu81nZmfgbe7v1evKGd9EE7+Htf/5Stetwj2 m+815+R8xhuwT+DcQrFMXr8Pfjd42v0lDuxLh5dnLVpZ6MA6IJw2XvBlxE/G yXDCApMpyedZZ4R9P/ktOzyW55tw/7UzjmjmMM6BbULEBYuVWXeD78TJL95c zfl0cJaNfYqpEfPGsNJAMb2GzlwPCj70+GTIiTI+P3ys4/xd5QN4vR7Y1Uv1 YvdO7O+C90Zs7S54yuspw2vC5CpjN55jHr7FiX2GuImZM+6Fx4gs/2Y7mesq wEd9NF4VOTGfDD+4ab7m27hW/UItPj/c7LzOD+6H4cQu6akeUuwThld3LJLJ i2H+AV4YlK/oFs/zdFjLcvSnFdI8jsCnFfT05wdz/wbnue6aHdOR/d7wlg6J SsYDmXeC/fecf+1mwjwVPKTrjE7fZnA9B7hqyrF3O9WduX9r8XKZovUWoawX wEMqVsXNWcrjCyzyYOm0LgLmAWC9973PfHnBPAM86leHS0132FcPd397apDn c85nhHuP2r3Yu4HxAHyw888pgcac7wkr787V/ePHzxHW7S7bYXkhr7MM/xsz c7lNPuMH2Cfpbpnhbtad4acHDB5OTW3Vr97i8rjipjHB/J7CYpr1vxX+Mh6A g990+1KYz+MR3L+k9qxlBeNSOLtW71u3dMYn8Phv7wf59+L7APd+UXk8yr5V 31SLtW1q834XMB8LO+3V7GjYgXEa/Cre58ySG8wvwX23ZE9dbcX3B1Z5s8fw 2Fb2N8Jrdribiq7mdZRgq50FbsXen4XjsHUH42+XShmfwGvXn+4TNoRxFPzK dEqY40bG53DGOK97gwJ4XQM4PaS+57A+rLvB1ge6/dzhwPUQ4HS9s3IpgRyH FbuZ26h4cPuBjzocHplewP462FPy1LbmWV7CcTi3yFI27TXzxrCFe+qy1crs e4f7l9pcyd7Qah5xi8WlPz2eW875KbB3ztUhPesSheOwqr6k2kwb9uHDifuf PzGM5PcR3nWh8V9SIevs8Kix29zyWvXzw4bi9kvXd+V2Dqe+yO6/Q5Z9WW3d 9qZWl23WkNZqflaL7752OTdfg8dTWFKlw6pdVax/wQbVUr/6zOG6C7mXDvsO qGm/DsNG3RUWu83ar8MQ2PmQ/RKbWkHql6PRlSYFwvv/Hv2/uMhonZqJaoTg x4/YSQG/uV76i6eKyrY92+ejnLer+YTtKG83LuG9fqj2qPZ978eX+WUJAp8K iqa/sdv1pKzN47zpK6YtSxKvESR8fT6kNPiq8PFu0j4h4WUlgpuukfb7k9nn D6dcSjNSWHFROA530hjZ3eUzz6fgzz4fHDo+ZtwCq7/18e48lv3tcM9zVhu2 dGE8Bk92C132agHzVLDej46TDmUyTwW/qps1tWMT81Sw/LilPvO37xWOw4VT 9+50Hc3+KFihn+eV8Z9ZB4QTQxcMVShkPgr+vWPiLtsNjGfgeyPT9bvvZLwB dxl41v74VPZNwRM2ztlXN4vPDzupX/r96xvjUrhatbzAeD3jWzi4YN+HW+d5 fRlYJWLLP40U5qPgkR9yHZMWsP4Ij5gXGjf7PeMxeM3+l7MWFrDeB6fvl74l 3qruBt+0HXLnUwb3h/C7MXNUc2cxXoI/VfwJLfjL+enwnW9z9tluY14C3tpB J+iwLPP8sMLKTY/VZdcL/y7s/3RHaUMZ92PwA6U/WyyvM/8PF4drN82ayv0q /DSlb13FNcZL8OR3oSOM9OcLx+HVj40PNnrcF47D78511lybxXwOHLU98o2t BuME+Mn+s4m7rvG4BqvnX/5V6cf+Fnjt3DSHCxE8vsPDTZv7OS/lcRM+JmM7 oPMxxldw3+5VUZ3n8LwAXqyip+OcyHUk4AM6Nj5z73J7gN3fy6Utfch4GJaS aMgpGsr+KzhVLWO+pjT75OE8CeXuskY8jsPXJM4raefzOA5refwNH3eceTb4 V82AQ0c2cBzWPnfUMWIgnwe+1UtN/X4c85mw7HUjV/8gvk7YNE16xcUX/L/g weq7Qi06so8LLjo6eFpSP8Z78HCJY0c/O7DvDo4YcT11pSs/X9hcrbZjQAe+ //DNveI5c55yHB6br7n5/mLmdeGxe0/0uCbH/h/4U5bvZdFExvNw/4Ls9CZt 9jfCgx5v+H3zJvOZcKe7Kh+L4xifwxcTb1ee/848DJwjUIxdExnO+lqLN4xr LPEaXSYch0V1ux0bfLFVf2OLT0eWpp3J4vWq4JzJ/cZUijOfDO8cf/iWcxX7 6ODfabkbOvnx+eEhBRGftWLYPwn/lBm3UrfVfBk45uCDOh9//r/w+XO7D1/I 4/cLDj87b0vyBM5bhGvO9FaRj+X1I2Bvx4Ifk8LWMt5r47a3S43bk+WjeZyC n3SZeeOME/ucYbOcuR1WfnsoHIfzX/yu36POul+K6fo06WPt4ysDuRt1Ot7t 12FYXZ5ZErbvs2BITnPvD97PBHGrOuWPrGtV31vbR2qxzCrBsIx3cype8np/ U26LKihOa18HHDfceU75/ye+Wnb5rXT/1Oh24wUxe9MzxZ4L7//3cd66bElM cZB+J3hS3Tur1zauR1F66chckVVlgoszRm/XPJ0uHIfFTm7VGVTNdatgjwch CsHujAdg0+INwZ+usY8d/ic/4X2RJM9DYZG1ax+dncL4B/5UmzttsAzzVPCv wtF7QiYzvoI7nyu/p2bMfirYbMLKD0FLuU47HDe0ufcmF+YH4KrKzFWidVz3 CZ6mI79vvQ3jGdg/X/NrfTLjGVi92m+IawfWI+C+Hx9YPvvFvinYeHq32381 2T8PWzl2f+V/1VY4Dh8p+RdfasR8Ghy84ILa1Sut5iu1eOvWh8njXHl9Dfjr yTEaa/pwPXb4458ra2xaXScadnLMfmE8kOf18PiXx/9KKfC8GF6bVOhrqMl5 6HDc1anv63LYbwYP/JwhPsKcPw8HnQ33WneZxx04efCwvxfGsK4HT1oQn+EQ z+uIwSqPSz0j53D+DhzUKXbJp2zmH+Aaae3rSh94vQx4psGSwidbVgjH4UCP ESINHw4Lx2HZ6Imb00dxfw4Lcn6NGPiP8R7sl3/20z099tXDzb7Lkt067BWO w8W+K2JN/bg/h/s87/4gsJzHL9gqeGfnDTeZV4Sz9Bfqp+7jPCl4qsWBDhop PH7Bff0Ct33bzuMmXKjopLYmlOdf8I71IiESgYxnYA2ld9IrV3L7gfXigtyr PXieDY+bmj/3qzbjBHhdg0X++w98fnhjvdnRIRH8edisSTZngR7rO7DfvOFz bw/hdgKXjlBWlylg3xTc+4ldzdfXjJdgh64DFM9t4euB500+ZBtzmvEq/Kib 3/qIUm4n8KIE0c1eWoyH4ZVPFfvl/uD3Aq4IueTe7wE/X3jndAlXE1fWoWCb wdZTJQtZr4eVFNcM29HA54etysZ0Dsnj/g1+FGFgOjif5ztw58kxj8+eZr0b Pu0adT3Mg+s7wRpzfteUlHPeBNy0rKfDpVucZwdfOPo1q6wj+7XgrX+CnYa6 DReOw52axO/mnme+C262Danqc5PPD++QXDtkayLXe4f3j3gT5judr1Po3Joj 7lbMI8H2DnsNz1SxLgxf6hDjpGzyUNiXDs/esULX/gDPE+G3Hp/zRq5k/xu8 1LFZ/kwHXocLXqr2wCmqk4Pw59u67W3YZ/8TDm95fg2L2inv/PuG60bCWqYf d2eOZB8RPElGxC+tgv3tsR03JO4f1z6+mvN0hHpJSqVgVNT6tFFFkcL7/x6t F7yereNZVvREcORlxb0jPdnH7tvrzM2ivXeFxr3fuj4Jk6e0j6NG1rr18Hdt Xx/sMqHIb/+LC4KBTYOkR9tyvqHxlr6TTFY9Et7/7+/x9neFWK3BsDeCpfF2 NlburANK3rc6rZ/wWhCxI3m5ZUmScBx2HTmyydXJRjgOm3ysH3Z/KNebgpMV p5+28OL8NdjlvK1Nti37guDNZypuh0xkXARLCxqy1X4yjoLdH0jr2Kixjx1W KZr14tE69lPBYVtmWT+QZ98R7KX5TnSyzxThONxR1Pxr2CrGUfC8g1qfO6cx 7oK3JNQf3vON561w/48TkquPzuJ5XItjnGc16YizrgdPCt+44J0d102FTzbP /pPylPkxOHpszMSwDayPwyrr5V6KxTGvDpcP76V89TK/L7DxB7EymQDGV7Db 7EW3XPqxTgcnjjq9c+0Z5tXhtcvOVOz/xT4ruFDUxPZtE69XAmtq/wy4d5X1 Rzjc79XGnEesm8AJ0zb2Ot2Tfa3wxQ6fMhWkeByE32rIbB/X6jprcL2OpqpB PvN4sPr+fVFOfsxLwPX9dNY8k2efOZwQpH3i5OCjfD0tnrRzW+UppVbXL2ux 5YJCv2lPeL1mOPLMDEGwNfs64AunQxu/3zvL40WL7xm/eOnwgefL8AJ/aesa Vc5jgm97jny8s4Dz02HJOMk3YSrsg4W9DPMDxmnx+AJfi9o5v0qLdTHYx/HY Oel4fl7wmVE+++bNYDwD/7Dv5S/2gutZwUpm3r3lDjIehvfrfRw105XxG7wj JuvERkke32GRzidOPrzO8yZYZXrNCmlv9vnAJpqf9avL+TphpSmu/z408TwF Tu0qIbVQhnEjrGn06NDJr6zbwlNH2j2KztVhXNrinVs/rv1syvo1/EwQrDTx DPM/8F2lDXcfvmV8BQ/Nu25UkcE4AT5ukB/aGMHzBXigxMoP0xL5/8KDR78/ bSPF9fnhDK2ukrsWc/8G68WZOMTOYFwBdxZMS16Sy/U34EnDCkIUbjOehKOl 3r9pSOT3Fz46J/6O9B/O74NNjtwcuUWP65/AS+ZOXjhuAuMreOOElOUxVcwD wzZmEqt2n2D+DT7UJ/36pEK+TvjP1sb7042Zv4KLt/g9TO7NvDHc61ePxDGT 2XcBz1NN+TMomfO/4B+/u1zb9pzrtMNZPtcSzlst4PlOi3tLmRqfEePzwzUa fRU3WnI7h//GZfifVbojHG/rtrcg9w1uv7fyuirwlW4R8sYnWSeC/Ta8CJD3 Z34G1l5cvVZxPddnOH6j3OPK8/Z9VuJBs3srdKwSuPZ7MNNt/F3h/X+P1gvG R87JiZdOE9iqv1S4sJV9UBVdZLoPrspqFy8d2NWkW1RS0W5c/VZC3/GG7fNa VW4rM3Mr7gj2n7fvdugxrxs41ic/ryDsovD+f3+PNyk/u5AxRa8FZqK7qo2d GE/Cw0d2+xcZd1k4DidU38zJiuD+EFbZlOrcwZx1Pdg3a2+s+Vzmw2Gba1qd tjR6CMfhHfFyE98Zcp0E2Hyjr9USo3PCcfh+VdDgmy+Zn4RDesiJVTiwHx5e 9b5AYtcR5vlh25M/O8dUM48EL82syr7vwrwcXJTbb8mbSMZjsJLmgWtSvdnv Db+wmzdBrRfjNLipek+Kr/ka4Tic+UZczT6E8SdsonCt4HoWr3cM+4qJXDFX shL+X0L3K6ztfprXwYFDnmbE5GVwXSx4+hKXDeUFI4Tj8CGv41kPC5iHh79V aUXeFud8djj0n9uaf9uZ74L395ysPW0W4yu49or/Ma1u7DOBnUQjDJbP5vYG d7lY+0z9D/eHsJz5vzAlJx4v4A/LHbv9u8rPHd6ctOvjsOwHwnG45JaK2ZHU a8JxWD1cfMfELMZF8EIRqdWOvRhHwXl3N22/5cm+F/jNGyuvu00nheOwVrd5 50w7MY6C3a1k1OXH8fgIpw5OUOtnw/gH/ju7S58BHswvwSbOHzqZSyzi8ajF 25Xi5D7dYb4I3ndiVW7/KuYrYAOprcaCPMZX8PZJl9IrhzJOgI/HDRwWP5nn 0bBPqlfxmzf8XOBD93b1Gl3HOAp2HDNP6d919gXB4g97hX4bwLgCjt27ZKjz PObx4A9Th9V+UWP8AI90+JjjvIVxFJxcZFtfuJXrbcKWF1/1zohmPwxssulU 3Tcjvv/wgHkRno3e3D7hAn+Rc6tW8X2GpdJHBedW8nOBfyj3OVyoxPXDYbsj 5RtXnuF5BLxcYK6bFsn1NOD+W2QsB7/k5wjPmzTr1x59xqWwgUftgeHTeXyH bYy0bWdtZV0Slon/YWsVys8XrhWVDuq5l9stPHrkxKV/HvJ64vCvmFztmy9Z L4P7dXbf96sr9wOw3qqxl9Ol2IcAx2gcv1vgwronPCrJyLbHbuZp4bV/p/aR 2cP1duAjuQvSy96ynwqONwipSE/g/gRW8Pqo3v8Y81RwxXvbx2OVub4W/HaN QvEcj5s8H2yxtXGDu6U886vw7wl5S7XC2BcKpzc3T/QOZh0Z/vb1V41kGPsc 2rrtLXpPwInBE3h9NLiq6rGR80HWleBHLzMS96nwOoPw67ObtjQXs17mPCvI OsqpfXxl67blwqVpbwWh8gabdns+Et7/92i9ILHHk6QJq+8K/Cd36/HlIuOf gTNsy4Y/5PWbce8z50nU8N+V7caP1Wl9GbesfV/W3blOL58ZZAhULGb2lF/2 ps3jvEV20lSoK60RKNyT/xi9kOtLvIjYJfa8f6kg7cezoIQFvG4gXPRR+9L+ g7z+C7zpbJh1Xhr7lOA9pYOKpiuyngWXeajN0BVjnxW8y29YZ9e7rDPCewvG WpRqMk8FX/hlPsl+NNdVgLUvvnjhk8f1GeC/xgWvH+czbwZnn9s/VX8k8zZw lk6Z3Dhlxj/w6wopk4x6rkMF19nPNV64jet+w8Edl++9Poj5MVjklm5jTS9H 4Thc2VHErHer6/vAB48E1d3pxfcZXiy+zyoqnvUIWH/lY/XV4uxTggd6BGzX /sHvBaz+q+sovxWMf+Cq0rDd09fw+AjrDtvr+S+h1Xy9FpscSZ5YFMS6PPwn x3Sdoyn73mH/Y9VbzxxknxWcUCbRR9yT579wH/VJ8UG7uP+EAxttXJ/L8ngH S159kaZR3Wp9pxb3zVtfYBjCPBtc8qbD2kPduS4QXJoRI2Euz+Mm/Fh6zgZx PdZr4LQVL+7+7cw4Cq6x65e0J6LVvPUW/7qSsnvTNV5PFbZNS5F1rGVfPbxv fx/X3Z95vIYXiSS+C/Rk3RA+/rqHjbLXKeYrWlyy0+L4ZVcer2Gp6aqGfT8x boEt5c5rqw3jOJwn4fEwPYrHU9hBbcT9/cs4TwrussOxWfQJ65Kwo3heD9lu jCtgE901Y7u8ZD0LvnJ2094njTwewUZdDDz8RTjPFNZ7aWh+fQi/L/Ba71nv j11rtf58iyMrJ5452uq6QrDExiMTorSfCOND+HBG/ZkCNb5O+NQJbVfbI8w7 wSG5VqOSe3L7hCtybq7YNpnzNOEuTeuu9M1jHg/O8FAzTLjD+BPWC05wW7KK cSO8zbQiz+Q0+97hkzGi8iLrOB8N/rMu97XudcbzsP+xuaIzdfn/wu4B8kfP PeT3FO6YuL58iQS3Z7iPv2/j4wc8T4F/S/rJ+rdadwXOE80Yv2Q2Pxc4IMnj Q0Qf/l3YeG1z8bdTjMfgwE1Lhk8ewOutwx9je080vcrzONjaaNI4y8/8fsEN Um5yac+43im8ascgufL7nM8Cv/BcNTethJ8vPGy5w+9/w3leAJtplBQeW8px OFA0S2FAH+bN4O9VBfKzC7gfgx/rOfx+cobxKtzX4Mjz+a48H2zrtjeFn3La 5+047wx+qPzLZ00qj9ew0lQ39wnl2cwztLjxZXxnS70s4fib5t9R10Tbx1c3 j/XKnqT0TtBHeYj0jME5wvv/Hv2/OGqQwvjVR2MFjT/cvlwM4nWZh14ojC5Y 1H5dUNEtT/5G+reNk+oFKV5fkvLOt59XeGT4q2O9nuUJXkfPLHqxrO3z8fZ6 acyGr1PeC672qLo6L4TrVhVPMpt90qtM4NT5+JOOy1OF4/CjD3vCvIy57hOs EPbcaXtPxgOwSUanKUtGsf8Hzozo+K9LhhPzMC2eLaY7b2gg67bwT2+L50Ui IcJx+PPbY47ewYz34GjblYUPFnK9d/jC08Gzjlm0WvevxeOdZmrqirOuBy/N vLdzYQqvRwPbRUR+WXyNcQh8JLpqrqEc4zRYq8+g4zJPWT+Ffxu8ljwtxvcB 7rpytuFBW8Z18OiF332n9GF8AofZWKvunsJ1mGGd6Uo5nkHMR8HTnq4u27qY 16mBD5SFqvtG8TwdHvW352qjWh4X4OedTtx9sJPvA5y459apO/OYx4MV4iWO uwcyjwevC3g8oNKV+0mh9bX7lA7geSV8fY52uHOrfhV4dtS7GyYdeXyBfVOM fvzYwjoCXC7/c/pbA/aTw9bVi9PvdWd9EDZvVuvjOZXxHpzzx2z/zxHcT8Ia 8z6+n/GT+UP4tFT5wCWpS4XjsIn067WHo3h+Coc+GV197C77NOCtFrJvjdI4 7w8uN5l5be8F9rXCPqqZl52LmR+Ao5ckVRwp5/o/8MqF9f0+6XAdM3jG7dMd pra6fhkcriAvo3uJ8So8fUr4vFfLWReD9YIrZz4IZ588fG3dN7dRWYwfYOu1 KeG/hjE/AO/sVrxeexmfB47sb2npoch4CZbq0U2sYDrjcPi0Wmxceh9+vnDh RpfeGuv5/8Kd/+xzMjPl34U9RY8aLzzH+js83f7nRvsr7M+BdeSdJmyTZV4U tkvr+fFVHeMf2N9ypN6o04yXYH3D0sh9ffk9hQsb7unUrGXcC7/+V3H87HbG vXDUitFGt8axjgyLDMn/HriU2wOc2CHwQU4Xzr+AG/dOqSz3ZJ8h3NhlRZBB Db/X8ASFYrWlddwO4XXHGpoUdBknw9vOhjd/vMzzC3hxxKvHIQv2CeNe2DBk 1YvzE7h9wgkHxcY9u8F1GOBms9qIHa7M38Cp97sdu7fElPnhFos93tD53XXG Y7DuksaqxI88L4PF9s29azWJ43C39NXpTU95vgY/vXF/Q40L63pw5RWVDU3a vK4lbOLqMqNzp2ncn7R49hRvj75T7grfH/jW4YWX/pXqjsA4LCm521krh98j uORT0p8Z69lHDU/8cOzroP7t80LnOmxTivZpX48ritIQ77qIxy94wf30E4VL /j995mVixVUerB/BM/XWNFWZHhSOw4e/m8Un5pa2e573/0KCTobwewob53Yy ytZr//Mp2rtWTNrKvh34gP77emOlV+1+flqHpKOeaZxHCVdEn/qtsoN5D7jv 73nvJ5x70e55/H8kaES67uT3vcVWD71VDri1vx6iz4ghVnNVWa+HH8xOrDhq 0f461I3yupu7rGOdEe7xeNAO91XZ7X5eo39q6LkH7L+CC1UuRA+azvX84RPB itW/Nz9p9zwiTs+bSqu5/cDmjUelC0JS2/38nBsDTQ7OYV4UDg7Kmy+u2+r6 7C2eMvHWsDfGba8/9H/bj1bPBV4pXGcVNinSupPZK6bdz5e+7D/toCBU+PNw cErd3Qfm/BzhB1dvhqye6iowHO6xTOw651OUp+ZskZA/Kojr6bX6cB3XoZ0+ 9/9RdubhVH3f4y9KlMyVJFQqKVISFQ4VSSVTGoiSZkRUJJRIKVOiUgkJlVAh YyGZydggs0JRkQaK/N6/z7Xuat9z++N7/tnPaznPce+55+y99ho/D23pRnsg cNTOQsFpizB+DFhhsvWyLdGXqTD1/SdCvfA6+vyZARy70V4HrGMnMEb6QCzV 3+vqnvEV82eflRzcXh+H/l/gfZdcXJoK0Z8IfEnobFCcziPK7Pf0tzVyuH/Z +j1K5GxtAPN8YKvyhBDeO6hPAh+QabFVtU+n2pPXvEvchfVSosVuqJz0eEpt TnvdayGJ9ueEH/p/Xod4MK8DbHt6kpXGJsxrAD7ZWNvntOQZlS0w6cyz3Vjv 7vPTyTwNDjnU+HBHF0HtDqZc5du3KsHkOOZ1gCWkHFoO1R1lyoEHXZ1atCXR Xgp8eqGlr9WCfEq9Uy+t7MM75vUn3zYUTfUroI7cf9l3SwXlxotX/nFNwfrA wOYRvruyFPF9BPbNGGPxIA/3KcB23p+5OweKKZ3Ms78nnMZ5d3VJds6FMS8o 81DJm2muOI/WxIepzH2L+cjAluPOmF0Rxf8LfG2h6tlTk3AfB1xvNiltTGkF paNd6/tjL+ZN64bFD/y6XkEdeBbJOz4f5fXBGctKQ6NxvRjhk73bbL1X4n0G DgnyEZCsxP0LcPCQpf6+69XUyzHLLRYWYB3os79n7HqmU0N94c5c5myL/gfz wp9t/gN38H6O8K8l+XurbLHfFvCpI9Kdd/zQzwWcf35nzCanKgpGuP78zT3z lUKqmSPIF8y6e3CzXhVzBLlr+5Ybi5UTmf8XePX1wBc1ZVjPEJg3jIfH4D7u p4Drx30N6/9Rxhzh+nMzZlbdm/aCOYKcuvJ5ydiqEuYIcgcFK+cEq2Tm9YFX Xklxjv6JcSPARlfexr1wwHkG+PUF4RlvujCvGfhTQVhOcOhz5gj/98vBqT+2 ceYzR5AHmyhZ3zqUyxxB/jLQK3HWAnx+gFPHqK7w98P8LOATXJfMFILx+QHm ylsXMfjyMXOE62c0lAfplT5mjiC3qlKLG/M8kTmC3M/pZHza3IfM6wNvqNec uC4L7xvwvhKVH+8OYPwMsPGYE1793JivBCyjuet9d7Qrc4T/a5TUNW3spaPM EeSjWI7UNO79wxZfqIb89lHzXfH5B9a087nl0P6XfjLCQUEh+kpjcV1mZTgu tKRKbZ37iSYf6tyz/84kuvxx7Ovd8Vbd1JuY1Vz7u/B5A7Z5c9X/xqYophy4 +LR8TsYGrPcFvFHe+5SPBn4uVobDWjbp3qmnH2jyPWY/D+nG0+Wvm/Xe8E+j yw3OXzM1Guigxhsp3x7ehr87sKr7uhti9RFMObCKPf+qeRS+18Ah5l/NctQO 4/zGwnB8zrllcJi7nSZfFDS9zvvne5r845NmB3U3uvxRYv+Ewpp31Irmr3aF lgnMvwOrcYo+qOtGfQDYTjIx+pI6+j1ZGQ7leVPyk2bT+1QuVdye1CdKl8uc H7+otqaVJo+9mXjRzKSV6jwvt3hQAJ9b4M+35PI2BeL7BZx6sC7BNAjj/1kZ DqtQNc2DFvQ6JILvOfL3bKTLrym6LTESpstlnt0r5TBuouILfm/f7IDxkMBX RvGslhlziykHVp1wY+3KU/i9gFf2fd4j8x7rigBbq/ftKtmI/cSBb9xOuFqw CJ9D4HncS+yXC6Mc+JLNznNDn/D3Beaad030WADaUYG/al9f9mkKPrfA2x7p XwpzPcmUA1tZ1UxT3Y3vH7Dh6KmLYjej/gBsNHW33tNctOMBb5tUe6LOHPMC gFsLl4XpbsI6dcDWtVcCoyyw7h/wgLWlOZWE+dTAkR8T688eK2DKgctcro0J zy5myoFdvy2wvrsT/QLARTFb3ZKXY/9W4IbuTa9OT8f4BOCXgjN3n1ZAObCT vsaUl6l4HeDYGZ/0e7eWM+XATywPtEhYoT8C2PPluoJvflifBzj7bWWvvj/2 rwc2D1f6vmA7xlcAj95lyOcZg31sgXVUMrY1ceK8AfygqHZf5gfUY4E3PlE+ m/UH50PgS+tEDCutcP8InB/wOOltNeYBAXME+agmCmA9beCJ3krPWhxRfwP+ 9f4T9wQf1CeB9UdVP87twrhQYN5q0p4AnBLlqiXjhXG8wGKaS7/IbsR8fOAb nwKE77dj3hjwcY3qqXqVeH7tg9uOx283Ue+OSR5N7X3DlA89Dpz31KiJsl03 PHaT3yumfN7xNr8K/iZq/6ahQz+TMI5aJmn4i/LbRqrg4QNuBZsapnzx/ieH S1MaqYX5igOWqViP6IPehzvJkY2Uz51hW+oiyk9l2Vc7hTVSQc6Raz17Uf5t 3puHfHcaKXnf81y/C/H6QTqnDg9nN1J7xXp7/LmxXvdOSbvnp941UiXxueGH wvDz346YFB4q2ER9OGsxYZITft+l/HOXr9BuogJky45U2eP5wFqyq8IrPfH7 AsfOlpoxJg0/J3BtxbKvYwTQnwV8S2FZkaQPvnfAext5hWQ24PsFPLkjNyq6 AOOsgGUsxTY7uGM/YmAzEUHnE4dwPgGOnez5VuXic/ycI+yjbHuzqwXnJeAI 6dMyb7fkMuXAHSXxc1x7s5ly4MJ972wVN+C8B1yxUr+mvB3rzAP/8XomuioG +/0BX5M9oKXojfMAcMG0zFdnT2K/ReDID+Gxnn5JOH+yMBzGr2VHXRKm+0mP VFwaqFxFX0/dExy0BffS61e4v525ZvUhup7g/K4oXWQrXa+o8GobvWDmO5pc 17BDRaWILreap/nu3Qa6vtQZYWHp0UiX73i4lUdrJV0fKznqzxnsRJdv3/Vq 4U4vulztyuWNcjZ0eUClS8GbJXR54EruPYda6J9H+kPe3N5jbD7/9/eawWJ0 eVy/Zp9uNv0+jKqpcNmwgy4fGlVySGSIfp9NprpI5V1po05Fu83Kn/+IOTL+ 2kOZRVpZyDTnMEeQj0s0qZl3sog5grzH+r5n/tIK5ghy82mF3byG1cwR5EJ8 HANtV2qo+rbfE1XK0W56+27pLk7FKirl7h6Vgatol13JVX359qwK6kTf1oqk VMyvDVonKiZaWkotrev72ncV7dMxvQerwjuLqAXjikMSJqAfPilljayefwEV LV3/cctf9hzNJQcPrHzwnGreXVxsPhfzUzY7B8i9Us+jjJ8p77/UjHLRmqkm gjLPqG+T+ox/HkQ7lX/zp73c23OpVH6eUpdKlH+cHRJGledQvJ+SFJpF0X6l kyvB22OdQ9WH9Qx4r0V5gZRY/ar5OdSNL18FzQ+gXNTWwvn0YDb1TUd/1ZNT KF+kOc996np6fbxQHt4f0wPpdubkAYETWXZ0OzmlUrZfV5pu/zcdPCSfyv+e Jp9y9thTa/cOmlxnm5iOsfMHmlw95efmtWO6aHKJpT+S387tpskjxjqXiHbT 5f7ch4U3b/1Ek2u+mOHJN4D6DHBp1pra92fRbgNstynXx4UX50ngd9vaqLfX cR4GVok8bL1/Ls7zwKG/5UrHX8P8dGC+Y2Mb7R7iegQcLOV0tTMd1zXgUPWq olk/cH0E/vXqSHKVL66zwPmeNzukPN8y5cC1HgXfb0qW0+7PJ/5nk7Qpev81 xx8vPL+toPtrLDO512a8ocexvN9mF8z/s50mN1rXu0IliP67u/TJt4XG03/3 x6uCuww7MJ4HOPWnl3bWX/YE4A5J7sZq2bu4no7wrq4d+1y88PcF3jRLOETB G9c34I0mj27fmoP98oD37q9cU3boCeoVI6w4JGqwWBl/d+BSm0vPGkNQTwB+ JeIWYmiG+gbwwpOPXoZdwP0IsMmLtzJLJ2McOLCSnLjRt5v4PAD7UJyxW3ej /gbssG610/u9qKcBn9ib6JsVi3os8GzxIK9tr1DvTWjvq3X53UTFrXrhxSOK 53uNm3LjXUATpT38+MveqahXdw3/PLRasok6XCN/mKsePyfvkrGW96IbKc+p W++056CeVn9joYvy3EZqW7y5pqsR3rexFuvlJ0U0UKJ6Ajf6WvB9vCHRFeMu 8t88Vbijn38A9wvjTLJ7s0/R++kMBtT0TLtE11veCvLVDHnR9ZbMW+5ra0ro eov6499zzou1UZ897nHMlsC4JuCIp427+O+gHQM4YPHugY4mfJ6Bj25UEqrb h34o4Gc5hsEt+WjPBxaa5lZQEoh2BuBuoS3b9lbeZ8qB5zdJZeRoo50BuN+G e0xvO+4Hgd2FtJNFyvA+A6dk2OR8HMT3Anj6o6olIsdxHwq88NuaBK4o1G+B YytSPgsl4/sCvDX3pn5mL8anAd9cpT5gb4p6OPCFSruik334HgFPUbDz4s/A fTRwQsgi8WmPcD8OvDKCw3eZLb5fwFZRV2XeTsPnFjhUJaklphX3TcDZ67Z0 peXiewesM0qjhy8T3wvgVQsduL3LsT8UML9pWlvbAD6/wN6vtOUK1fB9BI6X sqvW2YPP9fr40EbnqiZKMNhya9dXnP8lvo2vzLvQRB2V3j1Utw/ngdT4ueI+ q5soHZfd678W4ud/ONGVu3WgkTrKozpFVgS/b81hpxWdcY1Ua2CGy5V1eN/O 7+6/lrG9kSrfMnVjUzPe/50R/AvdeBupbt6ouP5x+Dv2+M3+ZJzWQAl9OJQv K4d2R+Agi/yr5c/RPgzs6PbAIjgX/ZLAuUoH3AqV0M4A3PTO6dulTMx7BZYr 9d04YILvL/Bcw0yDhjGXmXLgq2cnDQvkoz0QuM32ZtG6ULR7ABtWWTXOP4V5 IsCJO+VClI7jPADc+oq8D8AD68n7AKzjSN4H4Puy5H0A5nxD3gdgvafkfQA2 XE3eB+BoZ/I+AHeak/eByTnkfQBeu5G8D8DcruS8Crw5lZxXgRfIkvMqMIcu Oa8CL08n51Xgw8LkvApcNZ6cV4Hf15HzKjD3fnJeBX7GS86rwILJ5LwKXHCP nFeBuXrIeRWYr5ScV4Fls8h5FfiVGjmvAi8tIedVYPV55LwKLOZPzqvA02+Q 8ypww01yXgXOUiTnVWA3bXJeBb70iyLmVWDZeeS8CuxiTM6rwCcryHkVWEaG nFdnJDDmVdEb5LzK+Z0xr46XI+fVuISRedWTnFcf8THm1Z9C5Lza6sCYV/mu k/Nq3B7GvFpvQ86rFyIZ86rOLHJelQ9gzKsyGqT+DLynn9SfgaXESf0ZeLiT 1J+By6RI/Rk4wZDUn4F5d5P6M/DtX6T+DPz8AKk/AxsJkvoz8JITpP4MLFBG 6s/AMbKk/gx8TZXUn4GldEj9GbhxF6k/A8+WIvXnGR0M/ZlXh9SfR3Mz9Gex MamE/uw4qv9/+nPSG1J/jhzRn5OkSf35RBhDf/ZIJ/XnhyP6s9Q+Un82kWTo z1IxOwn9uewf+nOyL3v9WUyAvf7cEcFefzZIZujPrPLxPNfaOOzpdirT5b3m ZuPbqR+l5P4d2DaT3L8DHzQi9+/Am7aQ+3fgmHBy/w4cO0Du34HjHcn9O/Ai SXL/DsypRu7fgSVekvt34CgPcv8OXDTqW9TuOnyugI9eDGoQLUI7HYyBduz3 +yvGsd/vX/zKfr9fk8p+v1+7mf1+/4UO+/2+bS/7/X6yKns7VeI49naqgn72 dqpJ/0c7lfc/7FTCpuztVLMfs7dTLVRmb6eq5WJvp2riYW+nMo5i2FVhBPn5 hwy7KozM+2PLsKvCCHKv6Qy7KowgvzyBYV+t7CTtq09jGPZVj0TSvirIybCv Ng6Q9tVjqxn21bwG0r7a/YFhXx0/gbSvKsUz7KvtMqR9VWw+w77qcIC0r8Yf YthX5xWS9lXuYoZ9dVCMtK9yvWTYV/+IkPZVyWkM+6rdV9K+OuYxw77qFkXa V4MnMeyrS7+T9tWTlgz7arYeaV8dxXJ8/4d/pPEf/hGeRPb+EZl69v4Rnffs /SPPz7D3j+wxYu8fiZZl7x/hjGLvH3mQxN4/stGZvX+Efw97/8j0a+z9IxE1 7P0jz7XY+0dcutn7R1T62ftHuH+z9484vGTvHznByd4/0jSN4R9xuE36kYHF VrL4kUf412fSjwx8S530I4eP+JFjj5B+5KwRP/INHdKP/NqZ4UeWMCT9yMWP GH5kzgTSj1ywj+FHHsoh/cj2I37k1ijSjzyUyfAj+zmSfuTdI37kbG/Sjzyw huFHjhch/chPJBh+5OJY0o/8K5zhR37oQfqRz/Ax/Mivd8xZ9/oEyoG3K5D+ ZeD3C0n/MvDY+aR/GXiwlvQvAwcokf5l4I8dpH8ZmLuH9C8DFx4g/cvAx8VJ /zLwHgnSvwzcp076l4Fj55P+ZWCfKtK/DHz6COlfZvJG0r8MbBdI+peB/ZVI /zLw1DmkfxnYrY/0JwPfKyLjf4AHX5LxP8CitmT8D7B2Nxn/A/zelYz/AV7y k4z/Aea+R8b/AGd+JuN/gAeFyfgfYIVNZPwPcOIcMv4H+NdeMv4H2OUtGf8D PPSOjP8Bro4l43+Arxwg43+AU7TI+B9g5Voy/geYr5CM/wHONiXjf4AnhZHx P8CjY8n4H2Cby2T8D3DpHzL+BzhQmoz/Aeb9xBL/M8KORWRcH/BWDjKuD/jN RDKuD/jNDzKuD7heg4zrA3aLJeP6gL0mkHF9wOXOZFwfsLUiGdcHHL2ZjOsD jnlKxvUBl3qScX3AH2eScX3A3gFkXB+wdXwNEdfHynA0XmUfn1nwjn185pZ/ xGdG5zLiM1nl72TYx6n2LWYfp9rqwz5Odd9InGqqHxmnCnwwhoxTBb56iIxL ZWU4Dvwj7jfhIvu43+v/iPv1GIn7Hf2OjPsFluAm436Bh6XJOF9WhmPcP+Kr uf8RX332H/HVQiPx1f6byPhqYGMPMr4aWMCJjK8G5txNxlOzMhwa/4hjj/pH HLv7SBz747tkHDuwSAMZxw7sd56MYwf+spyMWweO5WXE/cPI+GsPVe3LiPuH EeSsn9NnJP4/XV2FX2QGrtfAm0vIvADgHkcyLwA4NILMAwA2ymHkUcAIn+dg PSOPAkaQL6tk5FHACHIbFzKfAli0lcynAJasIfMpgA+okPkUwAn5jPwTGOH/ 3jzAyD+BEeQqI/knKix5KBNDyDwU4MwJZB4K8AYxMg8F+BUXI28HRrj+/XRG 3g6MIG+9zMjbgRHk1xTJ/B1grTAyfwe45DaZvwO89CiZvwO8YSTfaQNL3lOK CSPfCUaQ/5nJyHeCEeRKH8i8J2CD22TeE3D2MzLvCfjlSP6XEUv+V/1I/tca lvyvylIy/wv4+3Iy/ws4aDSZ/wVsvZ2R7zZHi8x3ix3Jd0vMJfPdOELJfDfg jF9kvhtwzWky3w14cCS/j4Mlv49zJL/PjSW/L/Mhmd8H/JyPzO8Ddp5N5vcB r1Fg5DPWd5D5jI4j+YzaLPmM95aS+YzA9nfIfEbg3gQynxGYt4mRv3mcJX/T PJuRv1l1k8zffNZP5m8Ch8uQ+ZvATxzI/E1gfVlGXqo1S15q6kheqiFLXqrH IJmXCuxymMxLBS4dyZ/VY82fHWDJnx1hnRtk/ixwwEg+72eWfN7hSjKfF9gp nsznBd4xlZFHfIAlj3iKGJlHDHyyiJHXXCdD5jVrjOQ1Z7LkNadvIvOagSlD Mq8Z+Mc/8q+T6sn8a2CTdjL/Gni7Cvu8b68VZN43sPkP9vnmiqlkvjlw914y 3xzY9Qb7PPfwo2SeO3BWPvv8+jMzyPx6YO6JZH498Ph/5PXPFifz+oFl/lE3 IH4cWTcAWPYfdQnCf5N1CYDln5D1DYBX/aNOghwHWScBOPAfdRjC1cg6DMCn /lHnwfo9WecBWEGLrBcBvOgfdScKW8h9InDgP+paaAWSdS2A/1UfY3IvWU8D +JkAWX8DeKfUNPOZ5lh3Bdj+6rf3nvfwOWdl1kP4+YJJMUJY1wt41YPKgF+H 0N4CfCT5EdeSeLQbAF/0cr3Tok2/D/qUwctLG+nyQPMnhkvj6Pd51/aAZktX 3BcDr/B03R3oifMJsJLpovn8k2eiXjHCPMoLWieEYh1I4AQt3SKpKbjuA0/v 0hkufuzNlAMv0DU0PfzX+wgc7//oTdlX9JsDH1ZrnzV7xw2mHFiyflS8fSj2 yQLWapr7xbgD+/QBh2wRkzGWwj6nwCt1njYnTES9F1hiadPr+VNQDwT2mmRj E3Kcta95D/VIqubgvYn051DrRJ19rgPaA4GvLZOUvaWG8zBww0Gb60umYR0z YJOWM62zLXCdBfZqtbJ5lY714oBj5kV8vaiE9XyAI1qzuIrjcN8GLDLxxGPZ btwvAPf5xcT8DHxD+17Z1fVtHeL057AoI3Pb7rP0eXvuTAsxv8U4LwFXCzWs Cck3Y8qBXX86HrT+ivFLwByrJqkarMfnAfiKXEKC4EWsVwksr3B3/HVP7KsF rNxdFNTcjfozsH6ZuqBILWtf1f/03idjdoafoP/uIg+OUEEZ9HrOXFNqk3T2 ov4GvEV4fYbHA6ynB/wzKOdr+oZXzM8PLPzngPTymfg8AK+cUr58l/xf+a0j vNbP80HCmWLa5+kWoaqlosopnyM7Qr7cx3lir9B5h4xY+u8rNdosgusHzkvA TWcPNN3hx/cXOF3X5K6QMa6PwLkpcvJ3dtQwvxewrMdjuffX8bkF1ji7IOJP JcbDAHd8jh+Tv4i+HmUEB27ouU3vP5J2jeP8jlJcX4DHzJ12+cizSubnAdYq UTVstsd1EHjBvi0vN2Xj7whs4OIycaI/3Y//O+81d7Iu/Tkxi2mQl1yN+whg qYwNOcVmx/E+j/C55TLduxuxTh2wj/oEeflQ7LsBHBz75/rC72gnAQ5V6O14 /Yquzww9XdZ77wW9TmaEuM+0eDN6PMBXqdw9L4zweQDWbP4axeuEeh2wlWS9 2ZkD+DwAD2QlTq1Mx/qlwHUTUj7N58c6jcAzHc4Hm1rjPAn8fUHXRb5ZhbTP yWGw9pwqP12/yv2T/HPsDvp9KHuRd5jzCdbZBl592d9MKng7Uw78xPFPeMoM rJ8JzMm9nvOCGcarAMvtWvjJ3ZZev/2utnRX3i263nhJu2hIfSn2tQF2FJ7B laqL6ymwpGKFUfUFrHMOPDtwkrD5TJw/gWPHjS8vzEc/DrCYQNmoQSP6/THx qBf5KUv//EJ5l8ZGZWNcGXCY/N567sX4nANffyX70KAH3y9gvtyJe1f8wvsP fCnQ9mWADfoLgPtdSve824d+GeA0w8eZO1IKaJ8zU2+F4VtO+nweOriW40FD Nk1eUex0bJsi2kWBNXLWTVpvg/tfYD0tLu6yqr/qso4wz1uPePXpGE8LbJ2W 0SB3Cu8bcL7NnI+xmvT92qma7J2TL9Dn85bxjt12Q/T39OHDqqVpH9EPCCyu /3129z5cN4HvyKevH5iOejLw4vpnKZG8+kw5cL3oMtM389CvBDxZNq6sOQT9 lcA2og12R7Pon1/F6EJMsmcF/f6365xOCsTPA0wtE2/rVV3HlAPL/5SMnCnq j+v7CDeHrPd8MhH1beBJjTKjTkan0/6va2/FifEx9PnEVeTzZ0VXd5pcOn+e d5Ic+lWBu7ed1/QVxvUROGiyhcfdTX/VgRlhkQOfEoyG0b4BvHLqCdMUZ/TT ActcCFW1bUZ/IvDJZC+dlJ5TlHFVxobjdmhP8M2UGeS6St+/a5sUeE//So9b ++17f4LPONQPgVs+X5xooI/1n4GTRSt4PhxAfwtwQ12ewCEe3HcAhwUvLhQ8 +5D2fzf4fDedPEjv69rDde/oDXfUw4Erwr6V2IThfgF4Q7zVWudO7J8OfOdI 9O5+KbQHAvNqfRld0Yh2J+BTtts/63Jh/DlwuM+nKfpPAiiTuaf+iH1D+0z8 PWOFpO8RtM8f8PmkUdCEm5Rob0GxNj+e3/bCbbniZNw3Ae/fvXtmdz7WPQaO rZ1tsuoi2geAbz8z5qv0j2XKgYcOLb+icEqG9nmO2A9Zei80YJ4PHCTVZyY8 GesPA+fH7ec5qor6CbBldGnq9CjUN4ALGzbx3XCNpnRWK5mvV8A4O4Xta+oS 5a5S8j6mX6Vt8D5Iv8guMnyTTKmU+m+4d+4jU/5UyV3xxxTsxwrcOk7x+ppo 3K8BB+Ukt31XxnkbOHzKmF/F0zCegclxpYeuHvnvvajljbraivbJ5jUpGqF2 iRS3bdWhN21oV2y+XBSg7/uA4g4te3vvOspPC33e/Pwn/i7A9Tflo2dmoP4D rKtYq3btJK7LwLvKP27/IobzJ7BEZOPF5QkplNNmHdNFxnh/zJozjvB8fEh9 HBcY6aqFn0dRpSnw5gtr5nWA+Tp/R2ZYYV4J8Bzhtqu/U/D9Ai4IkneTcsyl xFM6s788R7vx4pKDkkuGsqglE2f3PzyJ9tuZ93g4LZ6lUyrBapTMRryfobeU RbqX7GVeH/jxLallduMwLwb4/ROjRU3v/srvGGG+ktfrPh7KoY6HCteN10F7 9VIZju2LvCyZ5wOPHfUz0/IO+geBZ03RvbNuMb7XwNWvvBZ29D6nJouo7eMd h3GP3c6ni3VXox4IXGMncfLV4bNMObDvwRnTdANwvwDs/3iH6PIzZZRK1Iu+ VlXcN/+QfGQU41VCjbWbY7JADe0Hqb/Pv3AULqWkOZZf0fqB50daWEcrrTnN vD5w/a5tew1KUU8GDrM4L52wuYJ6pvEhJUIf40jvz44OceZxY54PvKBCcsqR MNQTgLW/htunXKmmHKY9EQ8qx32P/rPciAWiaA8D/raOzGMCfnXNruvwQdx3 A28JWfd89fpq5gjXd1xzbcgsHO0GwLsDvr/jcUI/FHChbZqptRX+LsBS99SF 541DvQXY/AR/baUi2vmBl/SrBW3fhv4m4IowLu+OHegfAd7jNrd70A2/F/Ct yE0HV7fg8wzcmSeg+EgT7S3AxXGTZ5iJ434K+NmVwyeem+LnB1675OQU4au4 LwOe5vYr+dUmXJeBg24FbkkLQ70FWMM/6cjEefg7Al/TfXBVbBDj6IDvVqsv PCiM7x3wUxmTPCMdjAcDvr+455C71Qp83kb4SVZmC7ct5kkBl35aUzDmEdb3 Bg4fK330sRTeH2DtYN0pc3rwOQGu9yD9U8DW23y6xlWifxlYidt79V1x3KcA c9xJbYj3x/sDfKiqp9YuBOd54KrCkl+zxqEeArwr2OPpSye8DvCXPL3FHPfX MuXARpyj7O/dxPcauELhsqvITYw/Ab5RILf1jDPqh8DKP1+I6xhiP3rg5ed4 s7RScD/F5MJj26siMB4SeN7GbFMveXwegJeXL53nLoNxdMDJoVmqV/Zh3B3w YKPmrr0vMU4POHltS4PNEozrA7Z+u2hKphDKgfk2b7m/WwKvA6wsE/n0/iGM MwRWM4lVWTCEcZvASRbvJhXOQTstcIibepCKKca7AtcpVb+z7MT1Gvip+XVP hSiMgwWuKg3uWNOL6yxwlUrOsvtlGB8LvPeC0Zqvp3DeAA7l9c0W+IB5VcAi C8Lr9uij3QB4I5em8uWxeN+AW+OL9k16gfob8Br/4MkqpzH/5YVORoDpySbK XFAl63A36tvAKZdaBgLjG5jyDR5KKgJPmqiUoPs/9CwwXg74otfqiYc/YhyZ wI1x70OHmqj+qIlLkx1wHwe88nf9jYaXeH3gGpd51ket8f0F9nre/rA5HD8/ 8Hdz+9A1CieYcuDmbWScM3Daxz5v5Zf4XgNnm/LpK8vhvhL46BzunT5X8H0H PpTN66p+Fd9H4D1TGuT5z/21XozwwVu2w+K2aE8AzlEXn7+xCX9fYCGTLerX tHBfBrykYta0g26ohwBLz42KkQtAvRr45+Hl0s+rMQ4T+KWtZKj4JCmmHHhK ed7p6jy0gwGnhk6v75yEfROAqyLbuX7Yo94LfOvZ9Qkczd3MeR44TOiEneAS tP8AW4xXOcvdhf0lgZe+1c95GXsJ9cARrnuQ0Caxw5N5PrDowdsTXeJxvQC+ ZFZ75poQ9m8C9hCLHpetj/ok8MsXrtdPWAZhX6cR5pNuW+Q9hP414NUfHO9M ssbzgaV3RxplqOJ6DczztIKjZTf2IwD+xp0e/eUL7luBg3q28+8fjf3TgT98 mek0fhTGowI/dlkimXFfB/uBjvDZtef5ulJx3wd8XmHFndwGbub5wBXKAS4X v+G+DPhGULkNz7ajzP4IwKsr7q+ricb3C9hd6OmC87aYRwy8PM9iqtQszO9h cgjPteT9KD/sMV33bVUTRb1WN5xihPPAR32zyxwuTZSE8slpbgmYPxI4c01g 78ImalFs2N18f8yb+BAuWOfd10jprjKOjP6DeRYvzHiEfuQ3UsVX+Ub5j0J5 g8dyv/S7jZRn5yyF70E4n88/JHXsTlgj9Vp19r2+ByjP5VKL+BPRSO271/hq wca/6lr8iM49+qiRqpi14fErM1xHco9obrCpbKQ2FG242FCEn1Nz46MFgwON VLr+LZGvp/F71Wu+eS82v4lauSRc5Y0DyoF59IrWGB/D6wBfSDSfHhmKnwdY bP+Jzfv3oZ7Gf2lR3dhLDdSUS0bfJZoxjwNYxWfp2ll92L/+iPPNvWE1DZT6 wLWbyTq4fgFnJ4stjD6I67XPnAXtiiKNVMTPi6PXxOL6DvzsmvpM0VZc1wYy nOI5DBupNceD1ztw4HWAJ0tb/V40gJ+zXbXK+JhvI3XSa1KUwnXMUwCWb276 4/4T78OMGJ+7sv/97ts0swbz7fB7sTIc0RtHj5mv1EZ9zizzbTqOfgFWhsPz 5/EZudWtlMuPKQkvkvA+szIcDiIXXyQcaaVykmyHa0XRns/KcKTNqZ5ROq2V CooIj1gXgfoeK8Ohk2Z9LDq/hZraWRRUooN6ESvDwal4NvX80Zb/9Fs38SgR tG+zMhwVk+Z3XZjfQtXLFk28l4t6KSvDscZocpvX+2YqlMNpOCkI89xZGY6P ejc7ZkU1U09XWXiMPYXrNSvDMexVrda9p5m6ni6uruCFehorw7HpS0LQSrnm //ZHWr+lr+P6zspwCFyedbuxmx4/L+r3Jz7JkC5XXNyy6NJrehy+mFLf+YLP 9LzFco53W6U76XH1Od3Gj6ty6HH4TofW+/5xpuffpb5203/JT49776k+L5Fg 2EWTZ1gtNrgYSj9/8LIyt1w5Pd473lDx0trJ7ZSRf+IVzswjzHHkv9DO3xdo f6XZkh63f7zdaL/c1c80ecmMnTLtp+nn9+fdd/xc+IUmX9mZ8CzUtZ3aV8y/ V47rKnP81+fp2vrZ8LFxO3WrY1O/mPcd5viv833Xx4Qv5WunFlhdunen+QFz /Nf55zqtu2YlvKdaRI68EnuYzBz/df448c9+mavfUyq2HbeKN6Uyx3+d3z3u pojB53fUUsO+4r7uNOb4r/M7g+6pvQl4R/UsuzSzOjSdOf7rfFXu9Fnf5OnP 1UrB/lU9xfTn0Fu/I/z+4yaKJ8zDWCD/OXOE62fe1Z13fmIZcwR5tW9ov7BV KnMEuZtNV/K7F5XMEeRBedWWL5UKmCPIK55IR+hm1TBHkF8cd1/6em8FcwS5 hc7tvHfbqimNQ8lHl+pi3MSfjWNXO1+uocbs+H5sYiX6n+UneG0plKqkoj58 1zv0BOMXXr8y/vJq7wtK5NImbpH1GI+hve82f++RcqphnZzTuOcoHz3SD+Uk Sz8UT7sVmko6JdSTNZYW703Rfqj67Yf5XuEMqnflSpk5K9AeO5R4KjL0XiHl Mfdp/OK7mCcudTJrxneZaGpwY6Fpy3K025v0lp97GZhPbfIWzRB5jP/XLaTO t+34bZbn4L/7M6yVerkrj9If1TBriQ/aURdv2qzwSorub51T5HR3OPYZZXPt mezJ+WhnfiBgutPwID2OyHvGLS+B9FxK9ZB81s9IPJ/DeGLsGxe6/1q/54rj RP5c6rX3Iy3nfjz/hAnHnE2O9DiBKWfLdEuv5FDfVlytu6qIdubKZevOcz2k x8m8tgme06+TQ4msTe4+bYrnu3P2Tn6rQ49LCf6q46UllEOlnDFVaziK579J ahJV3UCPG+kVvRAQXN1Ek0tN6S1Wqs2m7By9xXYH43Ws5o4t/36MHgfYF9bJ pXQvm/JOPH9i9108v76kqO5pHf38PPHurLQj2VRYL8+MWc/x/Lczjv1aOY0e 91XAV5+3XS6butEfON3gA57fpnIgbqwTvd5CwJldoouuPKXMJDrS+qaiH2Hy oGHTSX36+Rk/Wo8kqVVTZ4WWi1z2xN/h9vAebaVI+u8yrdtxRtPiMurrOa1D AXvw84qdkPW55Ub/vsuUS0r0jPMoKyux0Ne1+NwOHDtvVHqHXn9j8bm8NrW6 x1RSA5+3HQ/6Zb5d9pv+wIRel2OLod+S8NnhVIqS7cC63/j9tB3u737g00k7 ny+dfV2RzT66qcrrP9Lkli81jwXq0//vwkXzTU5G0utmqKSJNObPo9fZ2Bbj ELEjmF43I6BQY7KnG/06bSUTWwXk6L+XX7jRx28GdHlgSVCoXuxn+udsHu6P PvOFJncfjD44IE2/zu5fce7FX+nncxzJjH+6CPVB4FM9QlcVZFBvBbY/lu6r twH1a2Dvq8/rMwTRzgkcevDXSxk3tGcCu50onz5zA+4vgK//cjzU+Zwef/Lk 0kX5lT8DmSPIW85s/fnuOH3euGpVEvXLIJk5glxn4or+cjF63GnthhXbs4Zy mSPIH5pMps440euxJCYUWU9fUsIcQe7N3+i5dhP9+VQ0fOcfFlHJHEEu+G2S dm8i/flUrXm12npqLXV2s/7RuWUY98S32Mzg4AX682alqW7eolVJqbieXqXm iOsmtWORWkUB+nmB1xfwHNgvhfYu4DiP5+GjnNDfB/x7SqWzhQP6X4DL+V8k 2Odi/Azw4pbTWquTcV8CLCJjHvnmHj5XwK2LBNSj6nAfBmytt+TYBWv0jwBP ONRvX7EH6xgAG6bXHd1Yjvtf4MwD5b4ZRvi8Adev/CAt+hv3rcDHvVYptDei HRt4897H25xHoZ0EeJev0o6CHWhXAX4sudoifBjtsQdUH1YKFjRRJrwOt69L od0myaTn+7ctTdSJvZJrT3GgncF9QodzbVsjJRjpNX96NNoB3uvO31a8t5Hi sLw93m0q7scL6h4V9L9roDRkzj23t8P7XLx7wOeSaQMl4P5RT3Az+gGVzH3U mkvodbQOZposkd/RQJPfHXJ3cCij77+2y04enTmXvs8S8j8uOPswfZ/FM4FR R0vopr1G7oty6phCQZPEFVxn/F6l6PJsRH8o8PE+FT9+ebSLAkfqZgioN6N9 FZhTTJ77yXi02wPPuSxyRS0Mn3/g/Htv15+JRLsx8I6Z2yyS+NH+DDyf9/b1 zX74XgDPv72xbpwB7oOBLeceD/UzRf8j8HrTKZuuP8D3BVjXpykp2wTjMYBT 5LWeJnVhnhRwafisLYti0D4BrHOg5/64LIynAvZzUltTX4bvHbBzZ/muHCe0 NwIP8hV+a5JCewyw1xedXOsCB6YcOGaneHNoBNp7gH9mC/ObbMD4QODh6bM2 rTHA9xpYfpj7lPpEzBMBLt8kHPlTAdcX4ETPi1+qeNB/AXzM2W9ZUTjawYCV eS/IR2thXArwNQWThA5NnDeALb/5RAXvxHgk4L7nPi+nDqLdEjhQNqNq80qM QwDeorvskfcLtFsC133f4Serjf4a4KOH729Ry8R5CdhveT43ly3GuwILTtqV Py8X/TXA5UfjCvPT0d4OHNTn9HN6C85vwKfLd6jFyWIdD+Af75bPKxXFeQ+4 QzXE/UYaPrfAQr+Fbqlcxvljhf3mcNNvTVTk2vXuOUr43AKf4/ToOLEQ56EF h/kO9SY0UcP+Ya5LwtEvCSxzujokLhHn1YRa64wf+5qo2anr9aeJo94CfG7q 6dqL09Dem74ibYqHZBNV0z/R3OQO+nOBK43brafa4+81JanZ9X51I9V4bdDk 4Rpcp4BvLg39uebhX+tO4jflEK9GKk6Dq6TjB74XwN1WiX5e2bh+zftQkW2m 1Eg9SbNrDk3BeR44Ks52fFA/6l08c7huSLc1UKfdhRaYnkH/MvAfnpviB/n/ 0t/SNBeI+DdQMuahcbd243sEvNJsaH2cI+ZHA19uG1eyUQDzRoGrXmedy3RG PxHwLfUvkhk/MB4DmHfDyembvNEPBXzj075i1/noDwXmlFScI9iG6wKwUtv+ MdX3Md8cmOtTgY7teYx/AP6SXKrl6IJxO8DcZh+Wu4kJLQQ5sHasvIaZK8a9 ACe9a29Xj2iRBzmw/p2q9Qt/T2JeBzjx3XybU0cwrhK4au9rnaA7mnjfRnjN 4/Irnt/eKIIcuHW9l/D2DytRXxrheP6CbWXHMH4MWKvKPd2o9a98/BFeLkGu I8BKimUXFl7A+wPcbEKuI8ArJ8VxXi7C9Rc4tYFcR4Alt03dN+cPxmkAT2wj 1xFg5UWb/izdg3HywIGPyHUE+GpcyZ65YzDOE7jzM7mOAP8OOiZO1WEeDXCk A7mOAG/4lR175yPqycDmA+eJdQT47dkHHanXUH8AvvOBXEeArSoat6vvRL0C uEqCXEeAb86/fz1XG+OUgAs7yXUEWKmz+eSEDai3A3stINcR4OLoPyLPHVFv AebaS64jwEf1cp8v+4Lx2MBPPOdud3+CcSDAjrrkPAPMnUeuO8BP35DzD/DJ ReS6AyxXTs5LwEdWkesO8AxFcr4C3nyOXHeAEzTIeQz4ayK57gCrNpPzG/Ds XnLdAb4qQM57wBFB5LoDHF1NzofAtcrkugN8rp6cJ4G3JZLrDvDkKHL+BD59 hGXdGWGNYHL+BL5iRK47wHxWVgoeCvh7ATfG3nsZIIJxsMBJleR+AZi3m9wv ABdrk/sFYKNJ5H4BWNCf3C8AB0aR+wUmS5D7BWDLceR+ATj6JrlfAL4wrfEZ 74e/+keMsO4Mch8BrN722SDtKPpzgXcak/sL4CwViZ2776I+DOzsQe47gA9b h4e35aI+A3zoOrnvAB4t9ImrZyzqS8BxDuS+Azira/x0R0fUb4HDech9B/DX oekds/lR3wOONyX3HcCPPrs/Pv0S97vAblPIfQdwOpehcUUx6qvA9/TIfQfw +lG73HuEUV+93LaqtiWuifI5Qu47gNsa+bmGnqN+bjjov6xNr4natIDcdwAb DvGMfb0O7QOXVQr9fnc1Ulo55L4DeN8rq/u60XidCU3JCzU9G6nVWuS+A/iX Nbm/AJ7PT+4jgFU/kfsF4EmN5L4AeAeHMKH/TzjM0P/XTSD1fG4Hhp5ve57U 50NfMvR5tZmk3v5AlaG3zzQn9XOpZIZ+7qBB6uE1Dxh6eKQzqW/rf2To2+tz Sb1abS5Dr46UIvXnR+kM/XnlwQ0Xp23C9Qi41rdGv/MNzvPAWyStvyXEYd4T cOpO0l4HvC+XtNcBH3F7TtjrgM9NIu11wCd5SXsdsF4Daa8DbptN2uuAf8mT 9jrgpetIex3whoOkvQ54fApprwPW30fa64BnaZD2OuAdHqS9DvjdLtJeB3zl HGmvA/42i7TXtY7Y634KkPY6lc0Me90Za9Jex8/LsNediSHtdSfXMex1mTak vc72LcNeV7OEtNe57mHY6wqTSHvdt3/Y69TS2Nvr1v5ib68LkWFvr1vgy95e 963fp7Ilj+6PbjG0KMuXeE81zmLY5WFk/LWHMswIFLRQLqFMZiof07f6q36U DsMuDyPIt5yN9Q8Xf0bVZMxPTbBH/4wZxbDLwwjyupdR0XwvUijdYhMT1b/8 PEIRDLs8jCDXKBJM/H0mnHqdP3RO6gv6ScasY9jlYQT5mRvDD3S46XmmHm8Z 9vlBHdI+X9u6dv2Tz/T8zbs6DPt8nC1pn2/+1e0fOIvuVxUPPBl5NQ/zYYGd 3U22JEai3gKsf5HXbaso6i3Ae0peh5jpYv4FcGZq7U9rWYy7AS44TPqDgMd/ If1BwFePkP4gYPvLpD8ImHs/6Q8C/nCc9AcBBy56ulUrBedzYOP3t5dMcMX1 CHjZUv525Vv4HgCPlpuf1Gv71zygNuOtmFsT9asjY/aRLfj+Dsec2Wr5qZG6 PPG2wq/QKuYIv4u5C3s/ft0vhr913XjS38q9IVA1yTSeMn9p43RuCfptFL8x /K3tXqS/1TWmYYDTyJV2fS6K4W913UH6W/XkdlwLTsinnS99heFv/fmG9Lde ObfmDe9yeh69yiGGv1VsMelvHXVJnHcr/67/3peODS1v0H9oL9eRtkqE7n/3 uHVSz0CVXs+qe0W5WGcP3e92tpe9v+9ADXv/7FY39v6+yMfs/bM5POz9fXoF 7P2zZ4zY+/tibrL3z+bxsvf3/Sxm77et62Xv79NZzt7vr6fA3t/nMcTe769f Z+ps7411UoFNC5VvpeSgvgGcNbGrpWEY7SrAnYJcA/nhuH8B9vyTrCrzCOMB gacuuvb+iexfcY8jbLDD4nK9Ae5ngW3EP09fZ4r6ALDDFDe1FBlcN4Gr0yz/ V4cURvi+M7hO5l3lzGGOINf2ZMQ5wQhyY64NspfnlTBHkJc9ZcQ5wQjyM3MP yyrsqWKOIN87lhHnBCPIM14kGIRmVlM+O8LNSs5g3t80Q0a8U5EpGe8k4hvY OpnnBXV02WM/Rxf0f515y4h3UrtIxjstXj545LVmAdXROvq5sAXGFx1bzIh3 ymsn450mvO1/bDgvm3K5yBll0oVxJrq/GPFOtppkvNMVJ8/zkp6PqLoWien9 Evh+FPow4p1i9ch4p/A5bxMHbl2gSuc4L24Ww/lBJXjO3Ddy4dQ2uWlvV//C 8z+F3LSfqvCU9tw23J59QfLFZZp8T/19DXG1Spp8vAX7+Kjpf9jHt5wSZx8f dcuFfXyL5zb28VF8TuzjWwy3s4+PWn6FfXzLbE328VHN/4hvOTeBfXyUyHn2 8S2uWezjo5YtZh/f8mAG+7gpv1j28S36ExjxVFuOk/FUimXs41u6LjLiqc6n kPFUHHwKMQP29PN9BRjxVOk/yXiqQg5G3NT1P2Tc1Nch9nEvJ20ZcVM7pMm4 KTvBnscvBtGOCuyvExutGYR2JOBtsyMmhHbiPAkc+fDAsyevMO8MuL2472tY Eto5gZeXrNuwpxbth6wMR1Ok3AuvqfS4XKcLpcuNP9Pjh4dEBN27n3TS5GH3 nlc/+NNBk5f8Iz55kfI68ahOen3s0VfYxycHD12VvxvTRf2JYMQlw8j463/v yx1GX3YYQc56nailAQmnVD5R5esSLdVuZjDHf53/soMRz7wsnBH/CuO/zg/L Z8Qzp91nxMXCCOc/GSPwvzhmGEFufYgRFwsjyLl5TP4XxwwjyGfkMOJiYQR5 2FFGHDOMIM/TYsTHHnMk42MDZRhxzDCCXIGbER8b9oWMj804zYhjhhHkljsZ 8bEbN5LxsdP2M+KYYQT5+P2M+Njj68j4WDtDRhwzjCCvj2XEx16cT8bHcjdM vO5wOp05gty3kxEfm36ejI8NSps3Kqw4jTmCfOEPRnxs5xgyPtbhKSMOVjuc jINdOoUR77rHkYx3jXzPiGtV8CXjWue6MuJXrTXJ+NVES0acaqweGac6roMR j+p6gYxHdXy8r/BKZzalHVVy7dF5lPffk722eMZTimOT0tZHyjj/zFtx+Dj/ MqxHB2zJuynV+Odf9uERvhssP89YA/Uu4MsrU+55m6BdEdj/tL5OrAHaVYAn TLnZ8v4i2oeB1/s0P9U8jvoYcPovb/mN57BvBbDJjGtNsRGoZwKLiMw21Y/H /SmwVIhItK022rWidnvrKybQ7RjBk9ZnXWRj38j6R95H7EjeR/h+zW2lGrj/ HTuWu68ojX6dB5APcvJ3sOjOXmZe3nOeqtpye/r5Ppzs80R0Qg03/lpPt7fc /MQ+f8TTjn3+SPsb9vkj6XvY54m0GTPyQVjl1UHs8z52SbPP7xDoYuRxsMo7 zBj5GqzylI2MvAxW+YsuRv4Fq9xAgpFnwSrXGM/Ip5BxIvPdHJ0Y+W6064Qw 8il+3SLz3fxmM/LdWM9PHs/Ip6i6SOa7/U5n5Luxnl8kzMizUJxG5rt9WMHI d9vxisxrmxvNyGtjvc4SQ0b+2vQOj4PP69CeED/164SG32z6Uf5i5K/Z7wle MhiBdmzLCXKm9vL051xgCiN/LSKw32XuBrRDfj9l3NuxnX7+1nmM/LXuZPXT cxvQ7mH0lkrb6kM/vyeDkb+2uiVEIcAIf4eQwbCgvkf085OUGPlrqwe6Ez0e 4vdz9o0V/lpHP99LlJG/tmNt3Uafwb/s/5qil28M088f2MTIXyt4khl/ugSv z8pw3DZg5K9NrggJvB2Jn5+V4cg/y8hfuzkn/HChF773rAyH1FdG/lrtgcLo Fnu8n6wMR8J1Rv6aEbeXC5cV/l7ANw3tnzrdwvgH4P1pD+/3DqK9F7gx4Vji gxOoZwLbn5Q6s74U7fnA43kNPl5qwb4bwBfUykXOVaGfDljR49NcM0n8nMAa PsNmD/LRzgYcWWB9zlgK5cCcEo79MQvxeQb21L192HwA3wvggOFly21Oo30P mC+EmrgsFt874I1ZCYe5LuN1gK2FyTxoYIfnZB40sPElMg965Uge9LKXZB70 g5E86OtLyDxo3ZE8aJ3bZB50yEge9GuKzIO2GcmDfhdM5kHbjuRBC74j86Dj bBl50NwqZB708pE8aKloMg+acyQPerUEmQctPZIH/c2SrLMBfPQZmR99TY+R H82hRtbZAA7UJfOmF4zkTecKkHU2gPnOkfUxJEbqY+iPJ+tsAHeGaju/scD4 AWBrP7JuRugpRt2MJJfDaaPe4ToCrORO1s0wvc6om3HWvHTvpGi0RwG7jW4g 6mYAdxYLRTgn4P4M+FYJWTcD2Nhj04nJY9EOBiy9nMwrB5bOf843Vx/9bsDZ RmS+ObDNbrKeBvD4FDIPHXhSEVlPA9j8KpmHDrxGkqyzAazzh8xDB95aQNbf ADYcHUTkoQOv8SLrbwD7nCbz0IE37SLrbwBr+JF56MATU8j6G8Cpa8m8c+DC pRJE/Q3ghjwy7xy4+vsNov4G8IQ/ZN45cPvHZUT9DeD+DDLvHLjwTTJRfwPY JpbMOwfWfVZG1N8AvvuZzDsH1nx0nKi/AdweQeadA8/RO0zU3wBOWUrmnQPb hJYR9TeAP04k886BOQRMifobwPZ6ZN458FFzOaL+BnBRHpl3Dtw/VpaovwEs bUzmnQO/TzYm6m8AZ1rbn1tWhfFLwNt7O/bvq0W/PHCm1J5pd8fjeg38xS75 wIPd+L2ALU82/9z/G+8/sEKU6XH+enxOgF9uPlYSEIfzj6hFTVSfZxMVE6iY MGElyiMWzHwy3fm/eTI51PWEBsoVRHR39To1UYohkfcqolGeKCAkrP/fddY/ 2yFw6vBfcTKTdrzvDW2imiePPpB9E+fJqe32KQcymygt6bFvzs3D+fZhfEHu /M4mKn+Hn5L9D1xngXf3k/W1gOf4kPW1gE2KyPpawHwGZH0t4LsVZH0t4Jwb ZH0tYL9Wsr4WcN46sr4WcEoDWV8LeNiUrK8FfFqOrK/FZH2yXhzw1Ttk3Tng JZt92hLu4vwMLCNP1pEDnt01fzPfe9Qngb/kknXkgFW+ximWqWJdI2BXK7Le F3CSMFlfDjhZnaz3BeweTtadA+6oIet9AT/Zy9IvaYS9gsh6X8APf5wh6tEB n1ch630BDxWS9eiAz6aR9b6Agy+Q9eiApWaR9b6Am3Zt2xXXjP0LgK0jyXpf wFGZZF0vYDs/sn4XsLoLWacL+MMwWY8LWFWLrLsFvEr3a5rfqy1MOfC1Z34X Vq69tgTkwD2+k38P6GB8AnDxs6irjvFo5wEO3hI/Xtsf7z+wrrLHPD8TfM6B JaddPLAnAvcvwCai7ga8m3A+BL6pddY7XhHfx8xxOjci1Bspu77Wcun5+D6K 9O5cLSDXSC3wv/H9Tx/OAx4HFXuH5zVSjnKnLnU9xfMPZHxcbKzUSPmFFR89 +hyvv/v0ZO0avUbKRVdV6Npc1KOub38QJ3e0kZqlpti9nwP1MbVZM42+/Kfn n81LkLTRR73uhrdwh2t3I3XX+kLrtX0YPwasN/fH/mkLDzHlwF/dyDqcwFa/ yDqcwK8jyDqcwJdOknU4gbVuk3U4gfsLyDqcwKXtj9KKJ+D5wOqpZH1O4CWR ZH1O4IALZB1O4Au3yHqbwBzdZF1NYAUPsn4m8ColbaJOJvDnmNMbpMZi/Daw /bvDBeJp+DwDmwnLHV85AePugB0k2upn/BVXDzxvJ9eppsU4fwIL2czLHWeD eibwJYOG7uFY/F0+dx8bpjrrKYF99dvd1TBP4b+F87zwi3qq5/os7cNTMN8h U2vxi0MF/8n79gUYvMPzU7csT7SqrKfsko3S/Y3w9xr/PKxlsLueGrP+5tqy BNRPDk/5clxZrIEKvZMeJKuJn/9sRbT0ty0NlJ75XJ32RlyXS/YFdFTHNlDH KgwOj32J7ztwkoRMe+J+jMcGnrm/78nOg/i7A8vOkz7lbIf9O4DX/V5rVRiJ 7wtwbr2NlsQvfC+A+zyKJZZ9xs8DrLE5a/waX/y9gK3OOwnYT0A9hJXhODgx wcKLjf1q2aZQcd/V9HpEY5JLoh/zsunne3yfyisz+vlqa6oTvi6ly7lW3jr3 vJD+fwMdo6U0ZtPtY8qaX7e4h9ZTGhuWbTyqjno4cN5KTQVlSfRHAGe/D9j/ ZwLa84FFpx4eLTkG8zWAfzTwbVjejfk7wCeM4zjShzGvBPj4/oV6K5IwTwF4 S9Qn9x+W+DwD+3NP9dYfxvUC+Foql/joB/h8sjIckYbvs02j6Pc/pn75aJ4/ dLlz648iTTZ9mbe41RXzzaHL11t8CBnN5joH/RrO8t+gy4+Nnl6x8ho9DtPf x7mwK7KZOhoh/LOpGJ874NnivqVzePG5BW6Yab84ogrnDWD+7/1L78uhvRGY T2Acd8zWv/IsRrhd/djglMV2TDmw+bg9XhunujLlwDGdjx8/58X5HNhJkKNn /lTUJ4HLVs3lXdCE8w/wovXqJc0bcR/EynA4+lVU7p9L9y9c/lP1dlYaXX61 uEtkWzddHvHVrOcUL92vsdBMQOxoIf387/cOhWxfQJdz8IZ2DX+gPw8u/IYR 6xNaqWkWjS4fHXCeB7ariBcWSMV9EHC/Re+xFdNQHwbef8Rdb3Qaru/Ai272 fjx4F/Ux4OydnHmZfo74/o6w4bu3lQHc2P8UeEryWrX9+1DPBK6rdWy0XIXx Y8CiX1xvHbLFeRV4qVZZ95H1OM+wMhweBonH3/rS4xZMVh8SjzOlxyEUm+h+ P3qNLp8Tus7cIJ8u1122RC/nCF0em+zaE3+d/n+rXsnW7dFop4bGtGlyH0J/ KPDPm3EFgzE4rwDz214YDhbA7wc85UWDw2ZBXH+Bo58vaLzkiHEmwHxp7TEC QpgPCOwZJ3G5WQL7lgLzbfbfmKGOvy9wTvqstYnXsf4q8BM5QztzP5wHgJ+8 HXdXUwLtIcAH9srVLdqO8w8rwzG1T/SiVTI9nuTtjakF3nHdNPnu1vLm3b/o 8nKtXY7Ki+hxJvPsTapWV9HPv9e+wDGTg/5/22Y9K7N910k1V4pKt+/BfS5w hORrjgk7cF4B5rZKyr7qgesgcOdto99lD3CdAv4ZMePXQU2sEwvc/WlipUYl 9rMGtlf/uXHCGdyvAYc99904YILvL3BI/a3j/hdw/w7sJcbn5PgVnzdWhsPv UYmbrCu97l/aKdWQoVtfKKMjAluXhC1ljoy/9lAftt+K9wnzYI4gZ72OwAHX 13zN9DqBPM2zYqQzP1HpBqtrHS3QTgusErRpR2cI7uOAL5TqGZTtwecQuKpl kIfHBfU64MPXZufrCmJdX2Cd1jC3O1mCTDmw6Mwrib9noz4JrEDdN+yIwXgw 4FDzvPvLJmOeI/Cae0mCixbi+gVcdbh775ACvh/Aih1T9UQLrjFHuJ+L7DZ2 zv38gDmCXPjju0kXApOZI8jb73hmaoSnMkeQhzSaGv1QSWaOIHctSnqQn3CC OYJ8K3V74pwMvP/AyU8l98rZ43oEvCZWa8tSX1x3gC+4+H4d9Rvzf4Ff7P9w /IPiZqYc2EXpvOeFbPQXAGv1dQS8nY556MAbeLYIavljHjHwvcY1W32sUa8A Fvlj6jjmFupFwM6LqyZaBuMI90H0xsOs+Loc5ghy8SmvvQXE85gjyOf8sKl6 uSqfOYI8/fkL/ZhnecwR5JNfK20X9kpijiDv3vFANaod7YHAz0MeRSdyYL4z sCLXsYva4bjvBhb00N6om4XrCPBR3lOas2qwrw3w6+m5H1olsZ8R8KPXdzJf n0R7EXCbNtlPBPi6P9lPBFjtVINCiyZ+fmDl6RJ+d2WLmCPch+WZA7y5v0qY I8hjuEOPTRj/gjmCXFg8al6mYDlzBPmRnKz+UZueMUeQN+tzhil/R78P8NmC jV+vvP1rPzvCGiW+9xyGcd8BbOtN2iWAdbl+WL7twHke+EIu2ecFWIelzwuw OUufF+CObH3FnkvofwReldD1+Xp5OXOE7zv81HXaPJlK5gjy0mBGnxgYQa5q 6Jddp13NHEEe3ppqUaFXyhxBHiXYLSnvhvt9YG7vCmnZUzhvAE+29RofyI32 E+CVkcFjavSwbxqwk4YNF/dv7EMKrH783nqhOHxugeukyb48wLYvyL48wGmL T+1f9wb3j8C1s+b3xRhUMkf4vkabNbK3LKlljiDPbZ4avlGzhnJRL326wxX7 PTqP9P3hZen7Y80ZEiMdVsUcQb42dZ1cxQGch4ErnoeM1b2NdhhgxTeTxIas sc4/cL/PUWEHIexrCXzabL3P70p8r4Ff75vCrdGM+j+wIEu/JGB9ln5JwBsk FDZ8nop2fuCB3KnXCgL/uw/HS4vs6vE+GLq3eVm8r6TMRi/7pqGE8exVI32X zFj6Lonvcdj+4241VaA4VUv4Ll5Hz2X6a0GJCuYIcq9tj90uxOD7AhxWmL41 sBb3U8Avo/myNqtjPQFg2V2k/RC485Oa28+Ov+qHjLAgS98r4CUsfa+AGw6Q fa+A7eLaTzpI4bwEvCMl45l1RBVFBZ11mpOFfWh/jPTJGsvSJytditEn69Yh sk8W5yCjT9af0WSfLEoiTFJlWi1zBPmsMoGmG8r4fAJfqyT9NcBSER5rNu/A 9QI4qPXRrcIEMaYc+OFcsh8ZsOzwD6IfGbD9ZLIfGfAurf43yxLxcwLbzT6W lr6hhNKxWX1r5la8D9qcPWdWchVS2/94ZzYOYtyy32tGX7M0YbKv2XK/wJQt IRXUhbb6i3rVmFfhv2iwtW8lzofApe/PjeqeivUZgLutK3dK2KGdBNjsxfDq 6qN8TDmw7HuLD5GbcT8IvFJVLdBzDtrTgH9Ekv3jgFew9I8DPsPSPw54W5yM nQxVQlXd6So4uAPvm+Vn0dqSs/nUi7MOk0IzMH5bdqTfnDVLv7kr8x84S9YU UEsOzF3VMwnP/3nP22jiTPR7AssqyaSfz0e/D3DmzA2lDa3oLwN+4uzD6+c/ hykHFjjbqOKcgPcNeOHa5ld/luF9Az6vTPYBBD7RQfYBBL4tRPYBBD5/idEH MD2Z7AMoW8boA5jCS/YB1BnpAyjP0gdQw8Jm7SmVUmqH/lrTp234niYMPVxj uh/9U8CXH/qabufBfRNwVFOQRdR0tN8CH3MUr/lhrcOUAzds99fnf4P7WWCO fM6k61J434C/RTZvVrWVY8qBT7H0cwROXEz2cwRuKCP7OQJzhpyb7qebR/1Z sqI3tQ7fx/yRPo96LH0ez7Yw+jyGsfR5bFN9euzD0RzKf6fU6vOr8fmsNhnz +/Mg/l/gZImGHq1U1AOBqVjzB8deov8UWGZCfPizE2gXBZ6zsfbP+veoNwJb svTrBDZm6dcJrMLSrxN4cDLZrxO4eaRfZ2EN2a9Tai2jX2eqDdmv02ykX6cs S79OncPyNsUd+VR9/r4isQv4/vo8Tpbd1ofzLfD2mONLjdrwOQQOFSf7fgLn xL4bfckV63cBd+28I9qtj/cNeO6G3Zm+mXgdYA0DyV3Gkeaot49w/zHzg+UL pVEvGmE+lv6twDIs/VuBf90m+7cCe9xzD+CyRH0DWNX0/f67q7MpS8OJJXcb 8HkTbWb0e/2ziuz3qr+L0e+19BzZ73V1OaPfqx1Lv1eDo3yaQWLovwZOUvEN KMrD9RF4qu99By0F9G8CR+7YLnL8x36mHPiVmfaJO22eTDlw4Cfp4QcLcF4F dr+V5HA+B9dx4O/aO+1aPKYx5cBbfgUH+Q/h/ADc9S5fOa8D9QfgN34WWr4R uG4CZ1iR/X+BO2vI/r/Agiz9f4EFtr9MTvfDdRw4r+YxdUP6AVUxXijxdcpf /W2f87vV+1ynIjklVQyV8fcaSlBh20c4LZmnqnNzNiU9+3fIhBp8HtZJbz9i tBP3TcDZn5/csG5EewtwpivZjxhYPWbulY5m/F2YrLOgd9pjtI8Bf1/onTrR HH934Eutn0q2yvRgP68RzuJoHa2Rhv4g4I+SEztmLUC9AljdREtSdSE+b8Bb WPpKA0etJvtKA3+0IftKA+tfYfSVPjGH7CvdGM2+r3TPB0ZfaUuWvtJhv0e/ nmSO9gHgT5wHc5UKcP8FvKuG7EMNHGCrLXheFfcFwM/4+95MycX9FPCcojr+ 43+4cF0YYemjil2xTWgHA176tP/m3t94n4EbLkw3+v4Y7cbAriz9x4F1WfqP Awew9B8HlukSjv3eEU9d9xjSHT0L84BT/Nn3JZ9+ln1f8ry7oU2fyxIp/U1T dTxL8T1S5yH7lQP73yL7lQOb3yH7lQN/Mh0jf14Q7zNwxcNfG5s8nZhy4Av6 0VbaFmpMOXDxggzrlSY7mXLgNF0b8Yb5+DwDn1zhmtk7D/VDYLdd2//MbcL5 CjhlP9m/HjhHlOxfD9x+nuxfz2RrRv/68Bqyf/3EtP9b//q676NePXz8lPLJ pXSFhVAvNXHO0BL7y18JfGDLJ5Gnm9B+AnwziNH3HuTAUZoGYxoN0D4DPFrp nTyfIc7PwL1T9Cb1VWMcGrCny7OQBZIbmHLg2Ffyau6yOG8AT3UqeuHkhe8L 8Ppru2unb0X7CfC00rO887rw9wWuURFv61Vdx5QDZ/yQjJwpinF6wMdC1ns+ mYjzBrBXo8yok9GsfYD+v72o4sT4mEKafGjK58+Kru40uUThPO8kObz/wHnm 5zV9hdE/C3xbyMLj7ias1wps5XXidlgK5nUC957b901gswje/xGWGns5vCQS 5zfgPYv3ePCX4XoNrFtSPvbOL7zPwH+uPnZskcX3BZir/llKJK8+Uw58Q3SZ 6Zt5+B4BF82LK2sOQb0dWMAub2/lk//uQ9rpD0LGOM8biDbYHc2i12UaZXQh JtmzgiZ3Uvw05qh5FHVxqyW1yBH1tPpnWSbWLRhnC2w57t7lfZw4jwFLfNE5 nRSI9x9YKqop2UcL3wvg7IU7dff/FV8K/Ef5qsbBCWhnBl4i475gTAb+jsDG UiJFmjF4/4HrBC0+cZqhHxOYU4uLu6wK/TLAGXUe8erTcX0BHkzNaJA7hf5T 4PKDcz7GatLrZd2pzN45+QL9/udMcOy2GyqiyX2TqpamfUQ/DnCw0ffZ3fvQ rgvsOD99/cB0vM/Ah7NEbpacxvsMPH6Uik7WMNrrgOd8T2gdJ4HPIXBRZZzA xUiMiwCuGfdha1EX2iWA7991PqfNi3GPwJJ7xmWc6sZ5Brg45/8RdubxUH7f A7eUhIoWlSgiicha9kcoEqK0kBBZkjUVSqVdJaKQJVHalK1sZS8kZQuRiKiU FqK96Pd5fceZ43qm12/+ua/3aRoz97nL2e65E5w1fq3FfWeYTcM8np52x+cI /GDPY6dXLhhnBK7amJNvl/2A1p8Jphqrn3PS6yxpD63gyGij11H5UP3HZeHU EfGpYfZ77OdrpYR2KHBG2cppxu5oxwH3R9qvvpeB+c/AWwTM+cUscb8Algk+ 7LDQyJOpfwIrd7zdoVuL+zhwjTfbrTZvXOeBRWv7dhecw/4H/tbv4izpiv0J XKZYu6Y+GP3nwBWnp02xmYv+CmCXcTzVFeVo/wLnT6xi+7OGXjcm5GDr1O/S TTT53mfu9SuDTtDk38vOjk0qxvkFfFzeuZVbEeuQADc3SN8y78O8d+Crtprq vodxXgNXepZFrBw3Qs8Z5izzbqPMZbiPAG/YNyNojg/2J3BerdrARnFcn4E1 YzklhPgfMJ8jMEdUqLVoBM474LAdQwnZYuinAq4bZ8wZbI16CPDRQxqcLr/p 68xnh0Uf93vQ+7l8ucT70kss6p5NGUifejyZijn/cmtbKuq3MVKiYmPu4PlH 4HOGDwe1F2O+E7CNoBhXrhH6x4Bt86ZG/ojE9RxYdbHYg7KFaE8BbzBeNvSl D/3AwGt/mig9MkK/HLCm8p0FHftH1JEe5nbTTFermbhOAu8T1eXMfYfvB75T kD6z7m4l83kB5/Jmf5SZhOMEuGf7yYiNbhgPAg75e2mrwUL06wIfl3kfPlGc ruccNltxXHMSvW6S69+s72Pt6POocPvleZNG1LsG1nTXENrFjvFx4L5Hpds5 C3FdBfZxFLc4p4HrPLCC9LqI71fRvgBeGd1Xs8NkRL7xMHcL66UZ6uP6APy2 WuTvFSOcL8AxT55YUz/Q7wFcfao0VHTnFKYcWEFd6oPji2rmcwG20eaVk4vB PBZgm2tDcYu+op8K2LVja0v7EjwPBTxR/nN3cxO9n9cWqX2+UdNCk0+YfWJW qjV9v149955TzRqMdwA/7uxP4vPDfgA+PbvV+qgr9gPws88H9p7ywnkBrLPs m9aycj6mHNj/q+0uqUS0x4GDCq4k/RXGdR5YVHcDx/t+nBfAwl9sg2Qejqi3 Ocyfbb1/jzfGzwfmtPVTtjVHewS4SXJW1M77dcznBTz9kebqDm9cn4E7nTc8 XVuMcUDg+t17JkwIbab1c3RpM3eWEb2u1z779DvLc0ffk9pH/Ty97NiLTjyf AvzuWpvcHH3cR4CnFJmUVFqj/xO4Ozduo1w47u/Aj/8uX1W9CucXsG1yoNLm KByfwI/8qutTS3EeAe94e8Aq2wKfC/Cv9xanT63H8QMcbhsby/8K/VfALwQu j0vhb2b2P/CpbFm563YNTDnwmIM5sq/j8HOAB44tTByqw7xN4MEwR62F23Jo /fzsU+qYcoU2mpw9Msyk7zK9bpuol9Ui+6WJ1J+MqXfrm9C+kIu2eHfqNe53 wIvG7fzNaYf5IcDjYjhO2j3GfAngx/uUZkiaXGb+XmCHOZmFr2fjPgKsMClW 9KQNzhfg3W/0e/OuoB8G+K/D/f6fR3G+AIcEvKqov4T6NjDPa3PfM0e1mXLg gjMl/XdNmpjfE/jWoKuE+lx35vuBvwtWqzvIYX4mcEnw4Yy0o3T7wl3f8X2u wCuaXGTKSZ+8a/T6e/Ec1olc33AdA9500rX9+iTUi4A1jdYlT7bAdQxYbopG Vu0i3DeB/YemhwyUYF4c8PmTXk7hi9CfwGSO+QoqCTgvgKM+L0hQGMJ5AexU cVzs6gDuX8CU+eqxQe8wHxJYUzYtTSC8BfW0YZ4kn8wTdxjXYeAZHx6e6fiA 4xB4+WNtgamNdPvifuGYzQkB9PVqV8ZO6kxeA02eOKMx09AZ10Pg74LGeQdH 2BHAgmM9Nx7pRzsC+IZd2tf2KHmmHNisuSxlFT/aEcDbztnfeTLCjwc85ti7 aaoWmHcKLJlfm77LCvUoYPlC84sP0nD8A1ud+BR7pw7jTcAbFiT2h6u8YPY/ 8O7OAq7Km/i7gD/xBeRIf0A9B1jv9NWr38Po4zmyvrWrW5h+/6x7Qb6VYxC9 HuZNt49b44sw7x24QtxWKEQR/TzASvxtBpHl1kw58PMBo2ciiejHBi5WVvnt pavKlAPzvuN/cO0o5pECz/6+Y5tbP+pXwBZ60zTNjXFeAIc8uGwZNR7zH4DL RPfLn+GfwZQDG24QkrIQfcnsf+BJhkUdaRMwDgv8W6W9WWY6+nmAj891d4/c TR/nJaIN225MoNcfruYvzR6fSfefc+xt8b7ng/k/wN/U50hf0kJ9G3j2Nvc4 5Vm4TgLHdh3tnGeL56aBK9q3uDfdxf0O+H5WzZE56uiXAM7SSZqyIQ3HPzC7 iZPMzJW4XwDviP11VnA76kvA3Mtcndw50d8O7CU6y2auTRez/4Hto7+8PnwD 7Sbgm5wBynFnXjHfP5pHvxZm1J3+5Yn+WOAZZQunXZ2M/kxgv6zbXMqpuP4D yx/Ze/3lcvo8MqPMn55dRZdfOR0RoyhOf+5hNoWrF9+k15tt3XS6w34vxl+A XY/sdQw7jPMCeF3roICXBMYxgU/2PVlX8xXPCwMv36ggM0lwLlMOzKu9sJM3 hhPn3TCbLDN6KDodnyNwYOJSk796GM8FFnlv+LcyB+1f4O8rVm/cXoz7JnBF 6O1nVf2oVwB/4e+riVmC8xr4XfqKsrBUXH+At2u9EZ9nh+8HvqwfnL7sPM4L 4A/t74LSrDHuBpzeypbqHePNHEfAS3braLfWSTPrgQAnjBp3wFP55vmPM8R7 2YBjHH3C+eeMOEcwzP8aJ9y8Nk1SG+h1hjeOeu7AwaOeC7BxQcMxt2vobwH+ Vz+fbpmRqXUM5zuw23ayH4BjN0WU+yphPBfY48kaWY7x+NyBL2wdO31PAP33 1m9dn2thhusDMF8Yn2aoOC9TDvy4lXfBzkuaTDlwUfD6FQ9VcB8HVikVk386 mb4+Z9jYGByNoZjvB05KmqS9NAL7Abg/O3vzBy01phzYz3YHu0cirp/AnEmG S0tU6PO9eaOpPd8i1AeA1+WskhQwRH8aMP+M8kkpkfTP0fGvcTkmbcx8P7DR 7P09A55KTDnwk5hIuU/z0P4CPlN9xlBelf75W9JCY89Zoh4F7Lvp2HLJXygH 1tD0+X7HA+uCAp+I0vXlD8U8MeAjFb+6rnzG/Fhgb6tU7gpuuj5zLkk6NEcb 5xewJV9qw52kBUw58EE+ofKqKvTbA3+13surZ0z3b2juXPA5+a0p8/3Acun9 Z2P+YJwRmH9WitvGDxiPA6bYnFnWIe9UisvJ90X7Czi3TM/GfRPqdcCVYqtj dneiPwH4YHhYkPl2PEcGPGHmKbvFfKifAx9ct3/noBndz/Pprk2Z0i7Uh4F5 X0RUq/agnxO4OixUyzWc/jnV+5bqdwuKMd8P3KPFfnleH55PBN5zVJKbcwGu Y8BGy4zlChrRngLeofMk60wV+rWA1c91b62Tod83wRehqG73F/c7JnOMk9ZT xzgRML/wjMx7tRjXAK7O4Nz+1Zb++acKrR0Ed6MeBTxrdurFMetxXwO+M/dv UnNvDvpXh1kw523iEUu014D5W8n7+4A3cd86/YEzmvZ99P+KlOhUoL0JvHAg N333ObTTgWe0ZXBIeOC+ANzrGbR6YDyuP8B+FX9TVFMvU/1cOj2qRuiv+KB0 eOytRRivB56h/MfC4f2I+gDD/KGEQ+vTMtRzgK/d2q686/Y16uZ1b7Wwd+iH 1wowOeZ6AdcHYH2f1htnHmA9E+Aza5/ukJqJeWvAGjlh4QZlaFcCdx3+PpFH D+cjcD4fB7/JDjxfBnxq3OeZ0QLoHwOOXSkttCII9wtg73Gnngmk4fgHrud6 Um+8Ap8vsOHLgOD1fLiPAJuIPFZ/7IT+AeCjk6KN/+ph/wCHxsVWdQrjfAGW DRYydxvE8Ql805ysKwVs/pKsHwV87R1ZJwpY76O8VkQ1zmtg7TNkXUdgrx1k /Ubgx+vJOo3AsaVkPUbgoACy7iJwZB5ZXxG4U32X1zSJRGZdI+CnvWT93itC jPq9Qx5knd61fIw6vYIxZD3eNwcZ9XgNC8m6u0tbGXV3496R9XUPDTLq67qx fyTq6G4OYdTRdTEn6+X2DtfLbc4m6+ACS1WQ9W6Bm2eTdW2BZzuQ9WuBb7CR dWtHM7x2LmZ9X8DFP4x7AUbL/VUYdf55uRn3r0DL+Nf/9l8pxj0r0ILcfvhe FY3N5L0qP4IZ96ccHnV/ysXhe1LSRt2TQrUy7kN5GUbeh3JtD+PeE8FR955c O8+4x8R4IXmPSYEd6/tK8s2L+r8spduD3KWMOvBDpmQd+IFtd9jD1rF4/xLG vVGiz8h7owaPtrO8H+qiBut7oHJDWd/39E6R9f1NFtqs72lKSmfc45Y6n7zH beE+xn1tPcXkfW2a9xn3sinWkPeyJVxi3L8W/Ii8fy31Cet71l7+Zn2fmh/X R5b3prGNevX8Ytxbt0ibvM8a2GYWeW81sNpm8n5q4O1q5D3UwCeyyPumgXvP k/dKAyuOLSHujwb+GULeEw28sIm8Dxp4UJG89xl4XR95vzNwdhp5jzOwewh5 LzOw7z7yXnLgRY7k/ePArnw/xXW3Yj4G8JoUb517NdXUugUP2mefw3kqOt58 Ms+8EXkawxx3qTl51Yh6vF8PKSfuvtdOSbsUHo/pxXU47UmRjMCSdkr+w/zu v9OKqbfj3fjYvuK8ft7+98eVo720cbLi1839lf10uU2Y1RmpAfz+wN2LFkbM t0P9EHhlr8AZQ0PUk4ETZu2aWP8T8zaBqdwYm8O1uB8B77bzLC68iPsasMi4 /vBINdwfgfnNuBpVcjH/H/iZzNjqr750O25P7cOWoha63E3S95fuLPr6Y7KO 9Tq2zIv1evX6cJibziDqJ8CxR/ZeldmK8wuYiz0sWmI16m/ACjkqmm1jcNwC V04fP7e2B8+5ABf69r6Nf5LEbOH7hPOuT1H9jfMIWONXTNz0Sei/BS5Zf+6W OBfW9wPuG3VfIfCuEnc7sTDUZ4BFbOIz/WIwrxW4NC5IILEc4wWjGV5q67oT UnLaqQpdfv1UYcz/B956zPerwXKMfwEfMtOtLOfBdQDY5/V9FfcirAsCrMyu ODFvOupLwHGPp1u9/oN13YE/j7pvEfjIw/jbYzJwPgLvXyc/+CIO72MFTiic /vPTMtSvgGN4nhif8UP94oLIce48+3aq1VhYZlU7zi/gm63is7btQ30eWHCf ukRZPeqlwHzNpYfqS3EcAgdnvuH65o3xBWCZuQFeAsro3waWeGdW8vQa6ufA 1r6XJ+wZ4Z8EVpK/Mq7YDM+xAgcu6VI4Noh+XWDvXRfX5Glifj7wnBl3r/T2 ov8BeOngXD8eNrRfgLPsTk58n4t2CnDJytN7wr9gXAN43suUlQ1X0O4GVlrb MUv2HPYn8M2vs6b8vYrzFzjbSt3Fjh/HIbC9X/u4wfG47gHb7bxf6B2LeYzA ha1vSuRcUS9VvN/hemZvO7VE9wSXrDLKz0acVzvj207ZXFUOq3RCud3h9AHF /97f61/yXJEN9d5ZnxVOaIe0U3PjrTZJ7MX9RfSrrl54bjulf2F7opcl6tXc zjmH+OraqRcBMUsq+lAPBx40ftP7R2NEnahhtth24v24OvQ7AX8ozm1LDcW4 BvCHN49+iY9DPwBwD8cqRY6UFUw5cI3WkKMPG8ZzgVvXeqiF3MT9FHi83ELN B5q4ngBLHuCoaGnGdRL4/AP1TTf1UE8A/vxiaUdQDq4bwI8bDp2KHFHvPXpQ YRO38n/9OGOJNEcvrp9dWzZw3FnwglK+v3JqhRq+P/9+9/YO2RcUn2D2+Y+6 uA7fPL3VaI3OC+rodzv/hc4j6s+fCpjw2O4FFT9PbYo6F+bpGT2ay9ET8oJa t9lS1HMW3ncwPjqzUqryBVXqVin4mQvnEfDk3p598snolwCOTU/4ofAB/djA R24dFwvuwv4ENrn20TRMDPU04D8WRWfjJuD4Bx4ar9RxTxrzSIENLcN3r5JG /TA8ct6Q/7NW6pyx8skNwahnrpiU7TPpYStlJ6P1w6gd5dnOr2wXV7ZS8lvG fH4hifvFlgOaf363tlIzJoUF7lLEeVoc0d3sxN5Gqe67uvpZJX7PphmJUVuX tFEbnkm1z+1B/WRRvSPfw31t1PYz4xrCrdDPAFz/SFjxbBL6kYAfJxR23AnB 8Q+8695Hb3Vb9NsDu12/z7vRGvVtYHUrxZ9cb/F5ASctXxe1tA+//2hmPhfe GaEb5tPras4PdTZXqKDXzxTcJHVRb1sb5XRe+/iSfNTrgB//JOvuAhddXbN4 gxju88AdD3wMrlVhfA14+Qq+8pVtuI8AN++xv7z1M+qfwHJr5/CryuL8BRbt /bQiOwf1+dEMr7CJV3NWN9HrUm75MD9jNxtdviv+z6N0yZfUg9nHRNcb4jl9 YJWbMvFzejBPA1i375bzoe0j6hUM875r7/nfZ+P8ArbrHquzKQDtJuBoX/Gy riCM545meNlqvdl43pNep/G98krVrVvp93A9l4znPb6uiwrhNE1zq8X9CHhN +VdHtmB8XsD5IWGNyRsxrw+4rENhiosUPkfgC9cjhhzMcD8F9ndKC2TvwnVj NDP7oVbJwZOd7m8xOPH5N598N7Xj47ce/jj0mwGb8c/STp2H/mHgD5KZgycX 4XoI7KAZKqDjiPoPcOqDN96FwqiPAb/L02LbJIbjazTD65qy3cprFL2OX0ag uH9JJd1fVFXdO8GLt4dSGnr6a+03zDMEnpnHHnp5H+pRwE5rDZ/u7EZ9D1iU /VjHUBD262iGl7WjYslmMXpdOz65hytmJ3+iMheYyIypxPxhYD+zRdwiTujv BbbmmyXz2X+EfjjMbuK/b2u+xnUDWFN0qenhYtx/gdewGeYKTkxmtox/7aM4 F/BOjr6cxGxBfpdrmsAeUznm5wBPUtG673Qb5ynwOZm0jvd7cB0G/sLHudvG DvcRYJODWjvEHhcwW/i753ZPWBP2toDZgjw5ribEfcR90MCN0ksHV6bxM+XA G1TGTH26G8cn8OqTpB8beN+pvQ1fy3F9Br64WnXtev0KZgvfp2Ui6T8H/hxL +s+Bk8Ys4RIzR3sK2LLUXPDA+VpmC5/v0l/uMfQX46TA7itEzgjLYvwI2EOY 9PMDC8aky5jmoB8e+IjspvFv9tYzW/i7a9M2x4S8b2C2IH/ltafHrQPPuQDX p5x/sUsD8/2A8zrIeASw4mTjnrzFuO8Ad4boFeZm1FHqnX6HQuIw71UkK+3r VP4GZgtyDTGNKUWHsB+Am7nIuAmw5Ki4CXBu1dxVBxehPgP8yG/pLleXWsp1 4t4pMouwrtSReD2tv4N11Nd7fkfYx+D3bOIi4zvAxUZkfAc4MXhfcmQjzlNg +f2bDz/7zw5w0anRmmI/ov5SY1UrxxDaBcAnR8WhgA1HxaGAJ5/oW/x2/33q +91jr3h10O96dozZ9WJHtB+Bp4yKiwEnZ5NxMWDTzV383+JLKctVId8Pp2Pd lbfzX80OcR9xH9Yw58RpvFrojPYjcMPUriGXmfh9gJWLvpqPz1vDlANn7iHj fcAXtpPxPuB+RZ76cL5CSt9Ha+XzAPSry5+dq83mmkt9sfLt2/8a65+skU6y K9vigvv4MM/dHNdYPR6fC7DKqPgm8DYlMr4JHDkqvgmsk8mIb/qNim/Wnp15 K+1APvU4xn/K2Xb8/qt2em07NIj7HbDNWENxu1Z8jsD8OYZP567HdQY4oJWM 8wIHjYrzAtuHL4veEobzCNhl/tc9IRKZlGQ2x+bWb+jP/1dcWPm+jW6a6Qj/ 0jDXW1ybPXYLni8GzvmxLL9fB/sfeCflpKX9BPNFgd+wy2i32+A6BvxunseL 5i/4u4Dbh8j4OHBxPxkfB77MY5LtaIrzGrh4/JS17E9TqIr4TY3UMnyO1Q+0 uSp/4HMB7mtUly15acCUA5sm7Um80o3jH/itxKK573fhegucn03mCQAHPifz BIDP/81gmSewyPMpb4c8jgdg/8jTKRs5sX4CcFbTsvhsfqxXAKwo4f3GPR/7 DXj8qLwI4MMiZF4EsF2btd+5iYcpwZlamidtR/jjzca+VlK2o+y+qpyLake5 6k62yyPzKIBLBp97f2tA/Rw456/sC+ltWP8HeLddQKJdEtplwA4HLyi2V+Dv AvZnJ/NGgMtnkXkjwLr/yBsJyvXjnrYygep722dz/hvOF1NhAemdeniOG9iw +dK1NnfUf4BP/zo38RQ1xOwHYPtbUYWqV3EfBw4Un9cy+Rv+XmCes0pXy8NQ 3wPu1yfzcIDFR+XhAL+JYp2HMz6QzMMB1h1U46/ej/MCWNGg6/OXK3ieBXjz Rl/36w74/YENbZcbmSvi+AeOHpV3BLxwVN4RsP58v8zOXnodgJTwe9oidaPv oe+j9vU9TCtRwTxbYBUDEyV1c9zHgY/uPfMqVg7zG4G7IhRPahuj/QscMyov C/hWG5mXBdzzj7wsCU8yLwtY7WWEYYEC1isDTnQNSdfagvmWwOVv5zUKBuO9 HsBHZ8cmvt+I3x94e+4Xjz/c+FyA+UflrQHXzCDz1oD/lbd2nts9TlAA7Utg HevP5nOMcB4Br5o16a9VCv5d4EkSA7fnx+I+Ahy7ZOaMOY/R/mWyFH/8483o XwWOGZXXB3x4VF4fsNjVnRk/5tXQfhfHETLfD3hok2AuR9R3phw4IfnzBid/ jF8AV4jb3Xl4Hec18LG+SLMj0lgvEfhXGpnfCPxKiMxvBDZzXm1WMo0+X/6V 9xgubV7CZ0lfHwafPc4wuoX6JHDjyt8Tc8xwvwZOTxcbChjEvH1gKcEdgaXC W5hy4Kb8g+9PuODzAh6X3yIibo9y4Kmj8kiBjUflkQKXiUeGnc5H/xPwik2s 80u1Asn8UuBZnVY+chp4/hfY9Hhpsv1ufI7AZ0u8VB+exnwG4D/Js7iFPVBv BFYYlX8LrD4q/xaYa47M0eA6nF/A/8rLfRBP5uUC/9i9Nud8H/p7gct5dfSP +qM+A3xzx9WNF1/jeAa+HZ94nUcXnxdw6Tjnv+7cuC8DU6Pyk4EHNMj8ZODM NsWQ2dn0PJm32c9XaSahHgs8sTdTMccPzzcB3/rCfkebc4A5T4HjJEqWhW3F 9QS4Z9XWOwtMUC8CTj2VESt0Rp8pB54xKq8bOGFUXjewqfGZON659HN2vv/I 9w6exVFwTok+rwNzyDxw4Mnczgk3tXC/Bo45EBc6+eyI8w7DnF9nIFx7Fp8j sIT/yrL5unhuC3jvqDx5YJlRefLAC/+RJ3/Vh8yTB3a+n9BZsArrLQDr972s 7cvC/QJYK+n1vTvfcD4Cd7o/m+jEhv4B4A9dnzMMatB+Aa4ddY4AWG/UOQK9 /+ccgc29oVs/E1DfBr63si/qYR7+XuCbX+cf2eWJzwVY+ljMh+ZwnHfAy232 a9p34DwF9hx1/gL42KjzF8Dv/3H+wkFo2S7vcbi/AFu5kucygMs2bfJqH7sM 19thvpasYl18Ac9LAiePOscBbHPtV9TR2fhcgH1GnWcBXjDqPAtw2D/Oszi8 PqB+hYe+/uvZk+dcgKv3kOdcgD8ULTr3Zyo+F2Dtzv0zi0Rw3QBu/JbZv/Ek jgfgAV7yXBJw8KhzScC/eFifP4o9WLNcJBPrfAJb5pHnjIADR50nAhZzWXDV KhH1Q2ChspoUjxVYtxC4oXt+r0W3LXNdBaYGA4l7LoA7fch7SYB9Lcl7SYD1 npP3ywCviSDvlwF2SSDvAwJ+E0feBwTcV0ze9wSskkne9wQ8+ZKGK/ccHOfA s23GcrtE2jLlwGMOvj3ZchP7ATjZgMxPADYO70wxvo55ZcA1U8y0K9rQPw9s MZu8HxY4XPTHosev8V4q4IVBKl/eT8T6+cAnIpTM7WqkmHLgzwPzxCVFRtSd G+b6u7c9L5n/xvvWh9mQa51TW9pzPLc7zOnvjY9oWKTgOb5hFjBYs8HhdQ3z /BrwtstbV/LLnWS+H3hXw9gZE+dG4D3jw/xcb0mOs2EoUw5s47359+ugAKYc +Km40DPeHhumHLj1wM+TLivlmHLg92K+V9Xa65nfE7iGn8yPMpvNyI/SENs5 71UE5rf0hPXt7IhvpyYuythgOSI//HXalHOZbe1UqH04T+VXlANzS3TMm38X Pwc4TKVaVTQY/+5ohtfMvCjRB070++9uSO5fKjyGLn+gqNauzeIeRvcxwsGy hnS55AIn3dg++j2Jet+71309T5dL1xu/32pGl+8R3Rf5aRxdrv6qerJBKT0f YIWAdBPvEbo8cdv2sPQVdPn6XrnDJwTo8vE7uJRbztDjnlvkbpT0svVS9TsY +YvQMv61jyo0TLfXupDHbEEudd+l4tzbYsot/lHs7ZOY7+p3MfqEaEkxVSp3 +67nBZQ/K79k6RheTJ0VlltTlT0i7z190V4zi2Lq5nyXkqZGlF/dddJZhq2Y StFXN+75i3ITd+0oz4ISZgvyD3m80nHnHjNbkLe+1tt44Xg9swX5rB2CBe4i T6iH0+uPSJQ9Z8rD/XtkKnIqqcX3eXpmJeG+2tmjOV/zQQl1+sTmD5uF8fsE djDqvXeMqvfewf48/eelYKp/vr9ihxD6D1USL3jPlC9iMrS7X6ToCGvV0eQ3 +OSv/vT+SJPvUDMtPOJGlxvqPI13eF1Leexfc09VBfUdk0f+3/yzKigroftj 9C7jvvp7He8Qm0AxdcjiV+D+7/i7DK1e3jp0LY3Kbbh0vJcH/cyBNUJ8lpMc KPvKbpOXz/B3rc4ONDXXpNvX1SXeZXLN15ktyGdsGyxXTClgtiA/L78jxVDk AbMFufzXeAGxpTXMFuQO1PSetLh6ZgtyrW0Hm7tk6qnDC36bqo6osxKbmPPS ogL3KeAl95IsdB3RbwlsNeHeBOto1OuANS+/lDXhxDxG4Ma3P3jaL6O9CSzX MXbBdCeMdwOLXhHOvHkB/WDAj7Ys3si1D/dxYINdyrKXTVAfAJ7eHzJUTaH/ HzjwZnh+0Ih7o4CTnONEC0LR7gZ+anOvTK0X6wADxzzx2uspiXodsNBpsj+B 5+SS/Qmcxk72J/Cpc2R/Atc/I/sTePOhsaHi9RgnBZ5/luxP4D4rsj+B/7iS /Qm8/TXZn8Bl8WR/AudvIPsT+FMQY9xDO/zXKVVTxriHFuQCcxnjHlqQB71h jHtoQT5DlTHuoQX57u2M8c87ixz/p1YsTlUZ38hsQe6sz1g3FH3JdcOxnrFu mAqS60aRDWPdSDQj141cX8a6wV1HrhtdP8rd/SyTmS3IXV0Y6zi0IPfPYazj 0IL8cRdjHYcW5Oy7GOv50BRyPVfdy1jPt5SQ67n0J8Z6/iGIXM/13zDWcy+u Ueu5Ouv1lm3Ua/o6odpB926a/NRwHtFo+Q8f1vty4PC+nBHJ2E+vKZP76au7 jP00ZC65n95OYuynV2XJ/fSCK2M/zTAi99PRfzehgLUepbOAtR7lqMJaj+If x1qPqpNhrUd9/slaj2ppZK1HKYmz1qMG37DWoyZOZa1HuXiw1qMk+xl61Bch Ur9VHdZvU6RI/VZ+WL8tdCH1W2B5aVK/BT6vQeqzwJejSPsIeMpM0j4Ctt54 TXXhIPqxgV9tJO0jYNlG0j4CfjRA2kfA2naShH0EfDk2k7CPgCOi1xP2EfCp PjPCPgLeNPfYupH2EfCrnw6EfQSsWsdB2EfAytxKhH0EvOOrNWEfAU+QnkLY R8A9sR8I+whYR8yKsI+AL/qT9jLwLm3SXgY+6knay8D+fwqeKwhjnh6wupLu uRwl3I+A/e84f2mTwM8Hrl9gveG14xLcN4c523N6V9eY18zfBVxwy1tnXSz6 mYFlx6TKhj/E/GVg9V8GL3w/4zkpJk/U/lifOSKfcZh9ooOObZPA/D1g268a UxVGnFsElt5ol235Gc8/Alv1bdzw8Tz6i4BP/HbOk/+N8VlgqcHt+yTysD+B +fyPf8rWPcmUAx++rWtu9BH7GXjgW+nVmqmoPwDXT6/tynqMcVLgxbZuUSvV MV4J3ONbvV2fC+MFwJWu1QYn49H/DMw/reC8TBb6u4Cbvxibm5ShvwtYs7uF p/c2+peAJ2QGd+8sxzrMwEsSQ/vNN2Ed0dEML4X+R5uDuOj3lbcpcAfp6dDz gbXmLg05a0Df74JkfhQ1CNPzbM33foo6XkKXT52rUayhSt8fY3495DE8TJfP KkvYk3KdLrddV6X+nMU94H/51z4NDKfLNfSFs+xt6fKbbCY8yjM+UIp7rF+m t92nnO+Zh84XwPw3s6V5Ilp8hdTNRWG5fSPywdal94xRTM6ietaU7fOJwPyl 3HcWllpjUqgK+0YLP1vUl2bID7lx/kqghtTswos6UO8oFn5VPG1cMCXU/sP8 wRy0vwYDxb0aUnYzGVoPF4qz4MkVmtxJiK+XbzL9Pg7ppCnzp/rR67E/cRU7 q/6ohP75Jir7g9vu0eSzn89y4au5T5O/KOZ7IZFPtxMjmpdLxZTfocmt561q S/r8jia/IF+pnvT5PU2e7fVsnoQ/XU/TaXQQWxnyiSYfK75/RfcS+jnchOjx ptp76fKN6rd2+vK10+TtclfGrxCi+6unNdQoV6u8oclbZO9NPmKJ+QbA+nf+ BLgF4voJLPhnzqWvzRinAA7w7MjVd8T4L/DL78pTHOZj/BR4YdHKIHUxvB8Z eIB9iquhNK7/wOoJP44ceInnEYB326+MYMvBc0PAipVJHVtuoH4CbPEm6L1i EdbNBn47Vu3Ak36s1w1874jYq+DleL4VeOo1u3kn7+J5LmAPl5cWrlfx3Baw yLLUvivsWH8YOLDIPPb5Njy3BXxtbbnw09cNTDnwpjiHI+aeeG4UOCnIYuy3 cXj+FPiDq1P3hjQ8rwrc2mCd/mcLnhMEbnkZ42AuhecBgXW9Qz9m/kB9EtiW SyQqLA73KeBVpis3GJzGcy7AcxfY6r+sRbseePGsHp579ng+FHiqUKLt7Hm4 bwK/mGAfUL4Mz6cDP8uM2+AcgXlrwPEJVt9/TcO4M/DxiEhxh4cYzwI+He8v 6ZiB+zuwQ/7f/CfOeJ4CeKyOVHHdZNQTgNc4KSdZtWDeMrDxzHPTBAJw3gFv qYoMf1GBebPAk76YemVJYD4/cK2OxxTHUJyPwH46k6KTuVEvAr6rfnmv/Gmc p8CtEXPsQuZhPj/wnA3PE46vx3kH/OHZ/N0CZTjvgL88LTW3dMO6zcBb9lo3 pa/C+QXskfZkgoY3zi/gLcVc77uf4LlIYNtdzuOX5OH5R+Dwt8dsL6biPAKe dK9uwLQUzz8CT89Pt0n/g+eygXdV/l42eQPaQcDfhOV4I5+i3QR8OfR2sbwf nocF7vF7WeatVsdsGf/aRxnembzITqmR8jjVkkhFo98jya/9Gs+0Oip74tLU nkasn50rriLgtriSkvBw/P7wFfoNJn1w0pSNuEf9OP5489YsXNeTea8qy8Vn U4JaT7fv2ID7e6fbtjwjpcdU6Aqji1ZvsG5BekGA4aS59ympxJKNPzzwc5rN 7A68l8iiKt9fnVOWjZ9T7L5d6ffRs5TEswrj0zm4j80T80ix5qffdxb34+Mt 2a/0utNnu/sV8tje0uSPbspLax7roclnTpLuUjzxgSb3dVsqp8pH308NN+g1 Peen75sduQ0rpx6+y2xB3pKg2neNr4LZgnyrcIeM/5I6ZgvyiwcvuF7f30Dl /yqWTmHDezY6JjX+bbxUQ/H7TWObJod5Cg+5BwN3vyyn4vYcKNINxf5QtNjU kXqkgPqS/NbgbPyI/tDasLtbK4Wy+5HJr7dhhP/K5OHanxb0uhP+exWFCvzo +37AQb4UR+XXNDn/TFmLmNN0fSBhgbT0GS66nsM26uU5+KPsKRfdv+TZMGmu tjNdD1+fLBeTdJ2uVx+WvvzUs+IjpTQuoHW+6h1mC3838HmrbMSae8wW5L+/ 3Pihb/qA2YJc6eWVAy9DHzFbkJfodLcWz6lhtiB3maR8TGJMHbMFOdcX9VpZ mSfMFuQxilnmNnz1zBbkTaK/eQrT6pktyFOVp927LdLAbP/Vnw0HolWXldHP 2165dWu35mK6X+jJLPsBnXcdVHHAlcdR6zC/1+LC2Pl1u1spM/+V4rmTcD8S 27eX7W/Gf+sXr42YnA/uOwp3xhuWvGml4qKVDSbux32hN3VVU+uMNqphubnl g/l4/87U8ZlmSwzbqD/jfYSeLkY/j6qMH3v9jv/WLfFtv3WlUe+KWzi1sTK+ jUrl4Lt36DPqXZJs6zxMy9sou4Mra8TDKpnyx66TPePft1Glc76XJ0zEe5dO DsR+4p70guJnP1Mr64X7goxBzcw38i+o5qsn4jVfoN5175nM17PmL6j2hOav F31wnQeeZNX01MxmxL4wzHeKr+hFrMd9BPiuv+I8Wxfcd4AnctXdcpbD7wPM tei+Vmkt5hsAz6nydQvNR38asOeRlhm6A9hvwOdTu61yfHCfBTYtt7r/SB33 ZWAPf8efbcfweQH/8VndumzKiHP3w/yaK3/RY1483wEcMnf8ewFHrA8DvEnN Y1/7ZNRDgBcrRD44MuLeTGDrhbbttbr4fYANbA7Uu7uhvgGsFrzm4I17qM8A t/y4ays2YtwCn9j2kC9KA88DAm9+kCV4IRnHP3D6gq3hQgdQ3wMWsixPf/0B 9Uxgn51GOW1NGGcB9tGaZT2hH+M+wFkm5w5KBFgx5cAW0+RlQ2xRLwW2Xz5z 89HbqA8DN7+plnJww/gR8I+LlleeHsHnDuxstMrK5BTaa8Bn+8l+A37Pd/e6 Vy+eIwM+bEf2JzCfxDyfk9VYfwD4VwHZz8Amgr6rdidiHhGwmRDZ/8DF2hp/ FD6POH80zNXG5HMBLvvIfoTix/UHWCN2zxr/5yPq7g7zSXvyOQJPfjRrqq4H jk/g+rBDzYZGOD6Bs+x3SSYV4fgE3rQz2vt8LfYz8HVlr5qhPjy/D7xQ9rFY nRX2J3Cqq53w+BH1eYCvXTkjbSyM/QbcYnJBKksR8ySBDyhO2aMQiPtJoPbD BqvGdmpRQC73y3mor/rmXrxxv/s/+cDBKOFgtBOB3y0vf7JaC9dn4Dllo9ax YRZVPWx52hTXeeDBveT6BpwtmurlllzKlAMnXSXXPeA6sY7cNFN87sCvisj1 EPihf4ic5xL0JwA7upPrJHDCuKLvC4qwngNwhQu5fgLf1LS5k3wQxwlw4J88 Yl0FFnhXXyucgnYZMOdMcr0FztKTeiQ5oj4J8F55ch0G/j11ndijsbgOMHkB uT7TePgVVp+3lH09Xa+b+veQ2M3rdL/rLUkXeY1Kur5X53qR3TGX7ncVjxE5 J7KTrgdK/r0f7c1B93NKcfu+sXSgy/MizO+ciKXL7cIEVi9No8tXdI6rnHyJ Lr+xxE2jcA9dznn8ej2n9gcqcM51Qr/an8DQrxbM+ZMweVkEs2X8ax91iVtS TTXhGrMF+eE+/cCu/lvMFuSCQ3v+p+9CC3KH/Vvvcs0pYrYg13nK0IOhBflv 7yQn+7elzBbkYZ8Y+jG0IA92XG3WcOQhswW5dAtDb4YW5BZqMWI+7lXMFuQv VRn6NLQgl+3P9ZhuUctsmb+Xl6FnQwtyyS9W89sT6pgtyFf3MvRvaJn9Gbkr gzPpCbMFeZwsQy+HFuT6X2Miz1iXUDZHbilnm2PceXKjwrGbt+5Q+SeUXlic Qbvnmp3igH5fBvXUWen+p0Po3z038D790J0rVMiBzuM1UiP8u1947efti6KK ddqviwShPRqYf+vus6ad1ESVadEJ19AeFem+0X97RSz+/+G2rSr2ZP7XVJp8 qL/Jr08tmyY/suZL1JJu+n2C1rW14rrW9PMLg8o+mvN+hNDkDQFyyuJj6Ocj JAXmJ45dS79Hlf/ObIOjM+l5+MuNWdunR7MvCTnsoOeHn9/D2m7tD1WMn+BA 9xu4BLK2Z28syuBr/0iXJwqytnN/D81bef8e3f9AnTs7NJGd7s+3Oz5miWAp 3f/A18mlES1A9z/Y3ON4bTFE/3zP/Ec7Z/TR368Q0lU1q4F+LiDz0zitzfLp lMWYwvTuAfxeTr9Z+1XG82f4XzxJ/72cPaz9LVkZS36ftKDb+5WprP0wX+Yd cx8bTe+fRH7W/hlRUWNR0Y30OMgdd9Z+m633ko6q2NLHT1emy74v5+nvF7Jk 7ef5PrjDbnEOvX9af7779SMN47/A9d5sxd1OuB8C+1T9Yre6gvss8ILXSTKH ZuA+Dmzvph2xuwj3feBbIsYu6udRfwD+KJ7EFnsb9RDg85GhMvM5UJ8Bviki XOxegfoPcNvCCxImKahHATt77N+/PgP9scCC9wKUORtRfwN+u2EOx/UZaLcC i3w/pH8wAO1xYAu73Rlr2NDuBu69/HDxsdVoLwMbR0/4UZqJcRDgQ8lqf7sk Md4BrB2eVnTtGtrpwOPMzraWqqFdDyzT/ECg6RnGQYDnnHyqsy0I/brAV0q7 Lv7SR78u8DpLWdEPE1F/Bm45xCPnko91ioBVDp4zS89OY8qB20VJPz/w4kMz V58VHWEvD/ORRtL/DzzVMn77+x2o1wGX/CHjAsDzJx55q9KMcmARIzJeAOyQ FsSuboT6J/ARIzKOADyTs/nMjUqUA7suI+MLTJb9dEvGEucFsEEiGXcATvAh +xPYdg/Zb8DnzMj+ARYbS/YD8J3L5O8FTvvRRPwu4E9i5PcHbrfMWpCsgvYF 8M+mY0Kax3CeAuv82bx9vQDaQcB7+sh1CfiVFBmfBTYIsqmxfYp2FvBNN3Id A868TcZzgZ+n168PbUb7DjjiAbnuATd9JeO/wPEP2lf3zcR4KPDJF+Q6CXzY hYwXA7+Rr9oqU43rCfCPLeS6Crywj4wvA+vfXKCfko7rDPCFaeQ6DOyXTcaj gU2XzLCTysJ1CfiVELluAysMTibi18D7Ts/cJN6KcVvgsDBynQceE0vGu4H1 3kdJDc1DOx144QxyXwDOsibj48C/xmsH94Zj/Be4TXLUPjLMzffJeDqwXtTh IQ5xXCeB7zuT+w5wQDsZfwduv0vuR8D2Q6pEXB5YxJzcp4Cj95LxeuD4T+T+ BbzuAhnHBy7dSO5rwDccyPg+ME8iud8Bs+uQcX/gsWfJfRB4wl0yHwC4M4nc H4EfrSLzBIAVgsl9E3h6JJk/AHxqBbmfMvkgmVcAbFBH7rPA1Q5kvgFwzSFy /wVeU0XmIQD35ZP7MvCzZ2R+AvAcc3K/Bn7qQuYtAM9L9q94PQX7H9hXpePP Dz3sf+Adg1rfmgOxn4FFzeYPplZiPwNbTPHQSxDD/gQeeiuUXnUE+w3Yg+/m zTXfsd+Aaw7UDKzYhf0DvF+5ZvN9DuwH4EanN+VVcfh7gYduGOiH5KHfL/nb OAnHH+2UU4b7mu162M+8W2NsciLaKbXGWLXJEfg9ey47cXHItlNeE1jbF2fS WNsRagqs85TmSLC2I8YXstb/66VZ5zVlzmZtX6j+Yq3/H6tlnQfVfZu1fXHh Lms71z6XtT07N5y13Sr/D3vzoQTrvLIGBdb27O0o1vbpon/koQn9w26N+Ud+ mtA/7FnXf+StRf/DnrX8Rz5bwXGGPwtakBf6MvxW0ILcy43hn4IW5Hk6DD8U tCDX+8bwN0ELcmdfRp6kcSmZJ5n1g+Fvghbkkp8Z/iKPY6S/aIMqI6+yR4HM qwyLZfihoAV58iOGf0nwFOlfUr7CyMPcsY7MwzSzGmOo51jPbEE+dR3DHxXg SvqjZjxh5G3mO5J5m8cm5Dxr+1DPbEGe3srwX7keJv1XxdMZeZ7cWmSeZ20J w6/1So/0axXf7vpf/qd9J5n/ydaR8T9/V6Aq6e/aqyjJMi+0LeomSz+Ydgnr fFFZ6TiW/jGPFazzSEPEm1n6zdhGvXxWty9uaWmjyVsdD6y+m9BOk8uu+vTz 8xl6XH5Whm/92tg3NHlZA2u/+oEB1vnMe9gOs/S3OyuxznNeLcXaD/9ZnHX+ c4oba/98oCzrvGiVONZ++wP7WedLb2UvZenP3ynBOo/6Ig9rP7/CIOv86m3n WPv/PzxgnXdtdJZ1XGCNJet87E2vWccLZKayztNuVWcdRzhkwDp/2yaYEV8Y LRcdw8jrHi2P0BJsPvCJ3s95dly8viz6/1FZq/C5sPfU2/QXg6sUUA/fl/ny r3NKGyX3LlBywiXU8w/2+TUZRLVRJzqEK5ZsRnshsj70qtORNqrFTHHC5m1o X/SKNhsU+rZRfj8/uO8sRjtlWtz1rZRHGyWs5yVWYYPyhaJF6k9c2qgM73qb +F2ohwOLriLjjMCvKDKeCNwzn4wbAp+WIuODwOyBZBwQeOkUMt4H7GBAxvWA Jw6Q8Tvgd8ZknA54hwgZjwMWNCfj9cApM8i4PLChHBl/B1afT8bZgZ0HyPg4 sEQueb4GOMSYjL8D+zaS8XFgzonkeRzgvnQy/g6sEEvG04ElOQ2J8zvA7uw/ VbYUYD0QYNVtZPwd+NU08rwPcF0AGZcH9rk66hzQMFcvJeP1wIfYNYnzQcC7 VMk4PvBdR/LcEPCOHWR8H9iaw5o4TwSsmEPG/YGreFyIc0bAXRvJfADgw6Jk /gnwJq5C4pwX8KP1ZF4KsLQuef4L+NVfMl8FePo78lwYsNgqMk8GuFD4k2vg OhyfwAYSZB4R8KJzrhNcGnEcAl9dR+YXAdd2alVVT0S/E/DcYDUB2U2rmHLg 86LfehbtxfEDvDY+tOSoKN5LAvy8L+/qvjOYPwO8lNMhZWg1+o2BOyecvWYU iHYWcF4smbcGHPoya7DaGe134LFryXw2YAvLcKeDG9BuBX6aR+a5Aff5ayqe sUa7GHj8TjL/DbhXMCo9ew/6Q4AlBmuJvDjgIRdy/Qe+KknmywEfG2PxSloK /X7AhUsPVTp74zoA7Hr7aIvXUvR/Aj/5FO84WwjryQPvrxM6rzUdnyMwd+Pz VZc68fwC8LsnfGcCDuM6APx4+uUpX9bh+X3gcZfUgutTsU4scEug29ZuNayr Brxza4WV5R6sowv81atp6906rEsAvLfzSnJdIq4bwL1/Dlxc9RPrHgB/+dX5 yEoB6zUBfxl70O1zDNbxA3ZQ35bXGDCiDvAwD0hOaVBlx3powLsu5l3flop1 8IBP1wrIc4XjfAf+YNLZtHI21mkEltd7tE/7Pq5j74yFPNMjW6kZ1WReq+l+ Rl5rgn/TyunhOO/GLvk889bjVopfhcx3tb7LyHf1Y9+Yvnksjh/baW/0Jdna KLtSMg92TjojD5bbxuFXRzv6mR2UL2R0yrdRHV5kfizFw8iPffpGyXXnDVzH sss0nj+3aaP055B5s84LGXmzms1xEauyUe/aKXW5TfREG8WjSubTPpBl5NNG 2kaelTyDel2SFffuplttVOV0Ms92NTsjz/ZLWNTPL8vQj6q6qmS56rM26mwU mX/7axsj/1Y/ooDnQT3Ox/ykuoknB//7XcpkXm72F0Zebrbq19gAXfSjZjn9 3SQu+oJSFyTzdTcYMvJ1b8T2PVxujOuGS/NLxU1LX1Dbb5F5vH0tjDzevx73 DV08cP15IKVYE72Zni/N+Y88c8fLDWZVBXS9+tcCRv75aLnViRdLOB5+osmj C5S28BX1UuZJjHMC0A5/W+qDCOOcALQgNzzAOC/gOUieF4ibwDgvoOhPnhdo 4WKcFzgTQJ4X4GczPhJpWUP9+GtZoLwG319Z+NN5YVwVFSvK+fidAvrP9nm6 VkkW3KN0K4yi3RLR7yG4mnHuYM8N8txBwrGBsgNjH1Pymlwi1CB+ztlXRTKP 3mRRrVz8KiZH0V8RqMY4p1A76pyCzoOiSS758VQw55j9alNH5MPsu3Vmxl5v imtxxnneu+gf0JonukrgLd2u177sOa8snH4OVKXg5dKM8XdpcvPLFt8q79Pz YbK7jr7aE0Svaypjutlg/EAzTc5bM6YhJeM5TX6iQCP9lQz9/OniDrVuFyv6 +VP12bycJzbQz5/aqHs2HNKnnz8Nm/jWT4ab7g/sl2R9LmPCWfXUS050P9u+ mkNz3qqW0eR3vaU7T/+i+yGt1lzgvxFA/5z+bMb5oKAk8nxQtvM9g4DwAmqK 06RPdrH4eX16jHNDY3rJc0OiMsXHGv5cp+J+jfN0LB5Rx0mTcZ5ItZU8T9TG vldst9x52vfJ0mN9zkhMTHijzWf6czdWyGs39qTXs+p336N0fCy9PwO5567K k6Tfpzx2mYbrwHl6HcvIzA+rF72hf87B9f77z32l58/cD0oQYX9H98c+4V0f I2dD96Pez9sSzGFFfy66usKZczrpcpn9jPNm0II8PSBG8s/GemYL8qFbjPNo HDHkebR8vndRA3PqqWNvZGtnFGPdnsDtjHNqbLPIc2ohEiJKRyWrqTvu3m/y P+C6dGA64/yazg7y/Nrd5/MTFyePrv/SRx0/yLF2xQ/6+PxrMlOl1+q//c7S xzHoCa6HQh2Mc3BfQslzcGOvPtoxU5Le/y4rZv8pVaL7yaV0Up97PS6gvnlO fdgVjH8//suV/52na9Ylz9MVf1TISXtHjyN8lji9dLcY/fkGKZ9fyKeXRnlZ uu2On47/fs+SPCcL7NXisz5DEut2Ausok+dngYsmK0o6hKLdDWwrTZ6rBb6t vP3V/RF1koEr55LnbYEb9S9V3l6EdYaZPJ08hwtssaAtJcoZ9TfguUXk+Vzg 0LCmqTtq0J4FvnCDPLcL/DNP13PJVtRjgTsSyfO8wJLr62uzFmP9WODgm+Q5 X+Abl1OTktTQrwIsUkqe/wWO8k+Rf6SGejuwmyF5Lhi4Iqxh7u9+lAO7eZLn hYGdJlydwvEQ7Qhgfl3PTPYi9D8AZ3uP09ocjH4tYLn9jyUC81DPBFY2mLnQ VR/1TOA763/VHXqBeiawt8vZ7BPHMV4PrLjj+hypZahPAv/5qFPRx49xeeBx E67vvO+B/nXght8T67d8QD0TeBZnyyHBCXiOA/hzFTlfgCW5yHkBfE6WHP/A QZrkOAfumEOOZ2CRY+S4Bebsfjbp1wj/APBgGjlugQOL3Lq0FqGdAixoRI5b 4LzfMze//oB2LvDcKHLcAquuCN22rhLzeYATvMlxCyxruuWndQXmRwF/CSLH LfCLxXuKbnSj3QT8hJMct8CJpYLfn0mhPQU8z48cn8DpFDk+gc+tIscncIkt OT6B37mS4xNY7hU5PoFFjm8MYT+FfiTg9Z/J8QlcZF5ZtXcHyoGtGw9aBvah fQTMbzLX21ET7R3gBJtline50N4B7tEd2GzYhHLgM8mzLWekot8G2E182mP5 k+jnAfbcxdADoGX8ax/VM5mx78u0kPt+tTxjf492Jvf3Z5aMfXnqGnJfvrie sZ/OcCX3092Xl0bNtCxnMrRSmxn7Y+sacn+craB4/ykvPS9ddCdD/8y1J/XP GcsYeqbNd1LP3LQ9gKU+6cjPWm+ctI61/lZ8jLX+1tnMWp/5vp+1PiP8D33v RhJrvcXEgLXesvkf+j9/DOu6MbZzDs37qE2XTxNnrbe8+Ydd4LKDtR3xx4th bx58QNqbu98w7Ef7UfZjqsHZjt2R2dTUTy0Gm61Q7lXJsB+tRtmPtd4WyeUX L1Pl3lnSV1dinHpfD2v7rncta/vOy4O1/v/+KWu7TzuLtZ5feJh1PaKen6zt QStn1nWKdFVZ24mfvrCuX9SyhrX9uO4567pGLe9Y24Nso15lKgsHTgfT48Jd //CfjDvJ8JNo/1z5P7/EZk4rwi/Rm8PwS3BLkH4J+UCGn+EtRfoZJuR25P45 U0n9uhR6iT0b7QXNb1Oq3i57SHWO2RXNuwnzgLzPys7fM7OCqlDZ6qY7gHLh whkRT/keUP0JPlln/XFdMoupJPyKBSsZfsViCdJ/2KzC8B9uaLIi/ITKUxl+ wnNKpD9wsRLDH1haR/r9TpQy/H6i90n/nuF8hn/voBHpx/O3ZPjx8gNIfx2P KcNfJxRI+uVCLzH8cmfFSf9bkCPD/zY1jPSzaTQx/Gzrt5D+tHPzGf60S2/I +ALwqraM34kF+H2Al9qQ8QXgRzP48xd44u8CvrWPjC8ARzwv3C7khP0DHDSL jC8An7snprztGvYzsP6Wp1v0vFDvBd46kYwjAMcZkXEE4MA8Mo4AbB1C1usD 3v2WjBcA65eRdfyABaXIeAFwwtgyor4f8KVYMl4AbCJP1v0DFjhGxguADX3I eoDAipMOEvEC4JBosk4g8B0JMl4APOYoWT+QyTpkvAD4gwxZVxDYK4eMIwA3 C5mQ9QaHub6fjC8AW3M9J+oQAju6knEH4PYqsj4hcF0lWY8QWCSBjD8Cq/aQ cUbgc1VknBH4+C6yTibwsflk/BG4aWAaUT8T2PAGGZcEvveHjEsCG08k45LA G3iUue9vQjsU+Lne86C0DLR/gU0t1Z+3Bhgy5cCm51ZHvFuO+jDw+0ZyPQHu FiDXDeAFjeT6AJyUT64DwD6W5DoAHGPE0DesPpL6RrP/sF7hReoVbDkeDz3V rCijsMWny1+jHrTb956vvjo9T/XKlX0rc1bT5ZOLWOu9HZqs9duiz6T9CBxU RtqJwHYcQoQ9COxqRtp9wJLrSPsOOIwi7Thg4WrSXgNe8w//JM8//JMTbrDu n/x2Mq4K7JZKxk+BL/mQcVLgfV/IeCgwL28XEfcETjIk45vA9q+aZkkuO8yc X8CHuMJb4pXwPj5gvgYBtzNt6GcAXi1+U8nxN95TCfxhcseyK/mY5wNc4dD7 RkyAnuesHBBeO+YpPd/47Vi9twvyWOQh86pMFQlBPxiwdZDLS/v1uO8AW4+a v8DVY2OL8i7h/UrA9/RXFK65i34G4GtF65wa1ioy+w2Y6rp9p5IXxyfw3Xli +pvGov8KWOvRRAcxP/QzAJ/81vX1wR7Uf4AdbWWT9SeivQ+cV/7q2p6XmCcG 3Prx+ITEQcxPAz79NnTskiqM5wIrpd68dkANxz+wg1rcl8UamL8EbG/lxW3x EPORgN9XLBhQScdzbcAiF6237M/EvCPgcMsc7vxDuD4Dd2VznfDkwPUZWOFH o0KAIK7PwJkvlhxNX4X3zQEf+l7z+/1SvI8JeLaWhlp7G/p1gX3WFR3RDxiR NzXMGhuuj402wXEOzLWiZabjTpzXwKciqAlq11BvBC7NT9vOFYX6J/Dld2oG JhL4fuDFXMuypmrh+YWNN8aZcES0UxKHljWKcqDfA/ivwHoOlxTM8127PlO4 t6CdGi/suM/ky4j8lmGOrd9u1s6F/kmB3zG3zV+1U3NeXxX49h31UmCuTrO0 V7fx/cA7l/atWc6D72dyREAv24g6LcDXKSNXfnPU54Gjtrzpc7PC7w88Ydpb LvcE9F8B/zAoPDlNB/sHuPCTSqbQEPrBgNf5ur/7KovnTYA59ok5uB/HcQJ8 snR2vLwT7uPAV6I0uNUHsT8P51Wp+Xm/oPzOT73isRzX7ULHY2ZKafj9mP08 zbgg/FErNdRr+XfuAStmy/jXPspWk3/z+vEJzBbk38+rSenro33R6cT11tr/ BWW/IqMmdzCfupYy5XFYMfotzKa5X+o4lk7dvCvRNO4F+lfSP49xOFYRQb1J rznuewn9D1Uvucp5H+D9GdBWelyyGjeHbqf/nmpsqevWRJMvXUbt1z7YRpPX zks+HGhBf/8K+RsuEU70+GObSv0Bp8Fcmrwk0Ur0JbNe5Yg4Zvye124H6PHT C9s+7m6+Q68/0K2WNeAZSfdrnRl/4LncKrr/h01q4eTZpXR56x1LT5759H1/ Pncx3xFDurxF7d3MEwV0f4XGDf01oq/pn88R7ySjv4X+OVIeBy8tf0T32/x+ EBZj+ZfuTzNWeicjeJt+Lqbjz9bEjz10f10Hu4zL/Jt0PSeK3+y6dBP9e3oc Lqlpd6S//5yAwPScP3T5O4HL8r9injBbkNeZMO5NgRbkY/2Wm2tso9+nLC7K 2u/X57Xu+6X0RKpTYdqB9w/xd5uFN5i9fYZxDeBUCbcvaTdRrxjN8Fql4Kw7 fzs9f0aJveSp7IFeqmPrbAmd2ZGU/czCwVnx2K+nXbbIH5TH+CPwhNQbT09P xf0I+ECPidGcXNyPgK8UJwpL8qC+AewaGbslqgn3ZWDPjG2qGmXoBwCuDnBZ XFeP+ztw/AKv2CFOjAsAp3B1TDVeh/YgsMj6lwG6JVdxfx/mU482PN/7Eu0y 4CfUtAU/5qB+COy06PyBphH7L3D8pvnNj/aingPsMtiZYzEJ7SlgARn1U58y ME8MuOb2inpjR1zPgVdM2xQycQHqXcCtfY8XFv7BfQd4tYnqybp23L+AOWY/ sKryRf8A8ORO8l4n4ItnyfgLcOTFHMOIjXjPNXAFe9kbwXb0MwBztZPjBNjj LjlOgPeHkuME+MV1cpwA79pBjhPgIFFynAALqJJxW+DaP+3E+AGWNibHD3Bf 2spU8Ud4bh04togcV8Abbop6OSugvQw8Vokcb8Ap027Y3w1BPRnYQowch8Cb Hq3UCh5x/wuwxTpyfAKf/UqOT+DkueT4BH6eTI5P4Fu85PgEvvWGHJ/Azy26 FsaNwfvTgf11yXELrOr75W3XJfT7AXtzKxi6dWB+BbDfGDKuPZrhVSPLep28 Nlj8v3XSxJb1eh4Ux1i3vRaS6/Yp1z99qnL0eEdNDOv98SuvxJZtU+j7+143 1vtmdTnrfdNHkfW+ufwf+2bMP/ZN1x7WeTWCR1jvm4oGDL1OOZXU62oFGHpd cB6p17EdZ+QftqqQ+Ydm7Qx9j+8Wqe/NvsI6//A8xziWeqBTHeu6W9/8WOuH A4Ks9cMSw4iS/m9VNHmvAWu9MU7Ql/9EcD1N/mIha31ygeo/9Ekn1vpkWS1r vdFfk7V+uLiA9f0dSnys9caKlxmNG8/Sz1nnS7PWJzvd1qQWfaS/f1EZ67pb ToWs9c9LfKz1z24jK83tq1noSyms9c/kNaz11TVLN/3PboEW5H+tGHYLtCCv TrGaHc1J9xPObOH8xlaD9iOwsd6yGeeiUQ7s10vay8BNQaRdDBwjRtq/wAd7 SDsX+P5y0p4FfrmCtFuBf8wm7VNgsx+kHQoscIq0H9ffZdiP7VWkvQmsPStu iY0U1pcAFvj9+UinLMqB5wyRfiTgE06kHwnYuYr0IwGzfyH9SMDfB0g/EnBI LulHAq7QJf1IwHX2pB8J+PN4H+I+KeA7aaQfCbjIkfQjAV8rIf1IwFXsTwk/ EnBuL+lHAk7mqiX8SMDHjEg/EnCWI+lHAn4+6eBGfk78XcCqTqR/CTi06pvR 0oWnmHJg3nWk3wk46lXl0g9smCcGrGqfvGg7+4jzEcPcJSecKRGO3xP45ELS bwl8v470WwLrpIkr1LrjeUbgbSW5j9zk8D5W4O25SpLNvzCuB7zCUkP1jzje Wwo8eZS/Gvh7PemXBt7zDz9zxyi/MbC20kYesT3mOL+GOX+Ufxh4SjHpBwbe 2+KommOxi/l+YO4pXZKbD+LnA/sIjYvpasR4JbBokfPd39J0v/dkMyevc3XY z8AtXNMy2sK8mXLg75xvBta+pa//3qtkh7YfwzgCcJbXrzp5Lvr7OWwvTlK8 osB8P/CqzrDXP2bQ658sSPiVEN+Kzxd4aYF83jZOev7JyuuaG484Y/wC+NR1 oy9WhXR9gNcvN7hwBt6rCLxUTmqZkx3dL2TP2fiUdxvGnYGP39nO6eHzjPZ+ 21c69gtscX0AHtPFc/7LBHoeDmfP7ke1nzDOC3wzpunbdFN6vv1D71vPXvJh HiZw555S88WS9HjZpA2Xu21VMV4GfGX8ePttV5cz5cCuk6coPJxK19Nu6Vp1 G/3E+3OB9632Nn/lQ8+r2dq7Mv8TP11PS4g8si9qB64/wBd/SVVeKMfnAjw+ Piwj5yI9Dy14coVtkjV+H2CVilk+H34V0t4v7HZCXOoC2n3AeTMi7ac+MmXK gQv6pUvK+0Npn6Nd5bLsRXoWTc79yzSwYTyuz8Ba+qe9t7nG096/l63jnVEL 3i8JXLyFy69KM4rKjN4vpRSM+rbOw7mpPB/CKLd6kbXUS5TL3CnZNWbXTObn AMv/zgwSHZNIxdi9+7SnHe2P5ERqsKkK13lg7kbVeecG0qnCyoxvM++jXeC3 W6rf9XYGZf9yp968MyhP0EmeM2c6rj/AMzxORlpZFVC7JTZZbb2O+iDP0bx2 A7Vsat9sAe5Ub4wvz463yfB9in4JYB+hzQpjSjA/AZh/id7O2tYiSlMxrfMR N37+lqFQ2T1KxVQ1m+pW3Teodw9tEm745obxO+DMvuf+2lW4ngPPdhatefQQ 8w2A+3LGeBXvvE9xJw0+mLMM7bBCEZPHbZ3oDwRuW32CLyRUkikH5sqPrlBa iHlWwOIls59O6xZkyoGl5u/N0D75kHJzW3rVTh33pSCZot1fGisoTdeEe2Mj UD7kXLd5theuD8Af3f7q1++ayJQDR0TuD0oOwnELrBp+SZ9azo/7/jBrLrk0 9XRPFWW/JfVrDg+u99rvyq2t4mqozSfj6p4ooP3REXfQYL0dfj7wr4u3L1Wk CTHlwClRRtMl+/D9wJ6/jXKFbkgz5cArqLOnx76uozwONL34ooLr9/iLEwvW a6N+BRxG9Xnu34LrDPCahsotKZsw3g1MSa8I2DeI9/MCl18V1l/7uYHZwt/V MvVb/V6jkdmC/Fb9NKFBNzyvATzZf9cUn8mWuC8P8+Cbcd1tkZjfDny3JPHG vd84X4DjV4cUtyyvZ7bwd/e87zpRFVDHbEHuejmSz1CljtmC/JrrEZ4wboxD AZdGR4xpMEX9CvhldG5X5ynMQwDm6bjg+UAK6x4A3xwf48vLU8Ns4e9mCCct yBeoZrYg/3Fy699njyuZLcjHaJ2qqT78kNmCvKr81A2fv7i/AG8J/JXVNOJe eGDVnq/2z7tRPwFeuLj/7t6g00w5cAennHPLF8yPAlb57v7kqV45s4Xvs6+8 xuzq/VJmC/J5SzS8bnmWMFuQ97W/vCQWXcRsQa4esHyVUQHaEcCfdJqNhc+g vgGc3FPxM9IO+x+Y8+bhfJ2EXGYLn/+zfeOab6pZzBbkIUcehKicvsFsmb9L JtJ+QUESswW5XtKyDYtPoT0F3KJXv93h44j7OIY57m8ir88k1D+B9/lcSj0R f5DZwuezjXqZuu5tntjRS5OLGATt/fuA7j9U1zKeFGX/ibq9j6duvxt+T+C4 qgnheUL43Ecz8/OXO+xYokA/H73He90T/Sf0fOC1a3kbBo7Qz1/PbubRWyj3 ntpmm1kcfRDtKeANmep23N1oNwFLqzz6VbcX7bvRDK8LMSttzMvp9a8uqimb luykywU9569q6KfX42rP2tuXGkevu+WoOP7E72v09z96eyNU7vUb6l1lm896 AbS7gfd/sLiY/xXHLfDCls6a7ePwd4xmpnzAuu8AH72eWLQ1v9Cuitf032vy vqlo/yuaXPGmZ+SmhfT3Ny9iv+y7lv7+2aEn+X72dFGO2/ebst/B8QO8JfZz z7Zk3EeAxy31Wpq9DO2m0Qyv3H0tlRMlu2jyM7bvItmHOun9fK35q0npS5r8 Ukhb0KTz9Pc3/x9d5x1X0/8GcESDImWPSqEilURmJy2UioQ0CJWkSEKiYURl tFSU0lKU0V7aS5JoSpqUSiEaUsnv+/rdnvM499zuP5/X+3Gczj33nM/n+Txz Z96L6ED68Za3X2x5oNxMWPFwcEbuw/WXmeETZ2e29p0Bvc6b05aKZz9Z9GVz VQxzLShqJBzVtL83xWIcHfAuCZeXXIYYlwg8cc7lwE2c6JcBDu384iAdhf4p 4Am/PjTPVEW7E7DVUrYM7ji0mwH/TuzxPr8T7YHALTq8xw8+wHgb4CzH/mM8 vliXBrjpxk/h8XxoTwOW3NqREzoV40aAH21QkzRyQTlwjutpH/VLKAd2v13V rjoJ5cC3ZKe8qBPAvwssI1U86OyB/qbnL7/dLD33337Yanr/OA+0p62dbPxl LV894XFls16JAq7jJpM4e16m/qdPKQz6zjn4g7RXrJlcXlV6kh6XsvKOttbg dnqdwKJGnmbiE13+zf3FBuk19DoVNyZ/jjLeRpd7nC+aNU6YLh++tc1co5B+ /mP7Wkf0N9HljYcVDYJv1RHBy8RaMwtQH1N32r+rLLCO4J0kzfbKHP19fOOS JpdV1xGleTz3Tl1OI0fGv3YTp4LExwUVp5IjyD+9K3/6wyuFHEH+u2Wno9if JHIEeU/TqtXOoonkCHJZxaddR1fEkyPIM1+aHucTjSVHkBsqCw3Xaj8lR5Bv fRGZKXgjihzJ6+fnzj07K5IcyevUnKv2gyOcHEHO1VDx86hVCDmCPCNy1s6X 8UHkCHL+DVdXVXkGkCPI9T+Ltv2dmU1UcFtwj+vD/ZpXWtUvi2UYlwscYrPP 3aUIn09gw1VZ+1SSsL4T8NXgi8nn1NF+DmzS9kB2ij3WEwbOa1Hk+LoJ67EA 9/yyzglYF0iOcJ2rrb5Mu1NdRvgKLm96o437jtPH3ObpS6C9BXgXT3tVhx/O V8ChScdeLGTDeGPgg0HrGmwbMS8DWDXr9xRfWfRrA/NP19Tom4jzHrBsY6+Y XjzGhwO/ndrk2PMQ/cvAUkINedwdaO8Ftmn/tjP1n/pUwBEbBA6aRKG/Azjp RHDwp1yMNwMOmPmVvXsS/l7Aud8nL7SxwbpezAyf90pXGo/m0Ncvv2Tz6pgq +no3/8indu9v9PW0rGn2e/Up9HVfcHD6hk8+dL1i+O3Zx4Vb24nPqdT7D/yT h3r/gT0/UO8/cM5k6v0HHtiYmPfqMd7nqvuWx8tnNxA2a6b6T3qOeb4ixeMe VEXUE1ZCPb2T+9BvwuZiu/LcSvq8F9e99P6FOPq6bLyZ9f0cn8j6floas76f 3A2s72dVH+v76VnCuJ/RPYz5EUbGv3YTheO1/z8/wgjylSOM+RFGkO80YsyP MIL8rgdj/oIR5L+FKv8/f8EI8sAVs/8/f8EIcrF8xvwFI8iZv5fgR9br3RUv 1uvdAR7W652vA+v1TtWL9XpXZsB6vTt1hLHedYeLUta7/Y6M9c4oS4qy3s37 m/j/9c6AV39H9j/9Pl7O/Py4lr+eeHaRqv8AS7tT9R/gSjWq/gP8VJ6q/wCL 3qTqP8Dr7lD1H+ATa6n6D3BmuvPzjka8TuDXl+S91+rjvALcLEnVP4Fz51L1 T+Blv6l6JrD37PihTTUoB76vmq1TlIly4DjDq90G8pi3wszw2dM8/oVvWjNR dY+1PfzeGPb/xhWs/RrpY/hr/I5Q/TXAI2P4g67OpvqngGvEP80tnO1MyoEj z48/dFetidQngb+9MZq9RIPut5IOsglqfU3/u2+vS7VvXM4iX8a6+suVw3S5 t15VYJcJPS4izJ54dPjxFvI6gbsH3a6/9FlDyoF3ifeeJf7Q44Gtr4471D+H hb/swEetyk76/R9OZ6u3SME4K+BNU8M55c1nkHLgE4RWn/Upuj9ricOWR6Gy dD/aEbHt6zmu0K/zRVZKmIYl2jOBH+6ean3x7SpSDtwntqLK0Ib+d3+I+Qkf 4qR/r4KGjN53TZiPCdwm01l6R5EeV5N1kGOS4Ru6X+/2+2VZncfEyfMAC/24 M2NERpeUA5en5HLNNKP7yyz7PiW5c9DjvsJnWK+XEKDH/7z5NbXseTb6hYFV E47GJmfQ/XdLn9sGrfxCjy8KfzgsoHwN3wtgRZV3cxpXol8AmD2O/ZdOJL0e l3bAgpXxCfTz55V+MlvQiH5J4CcnbrnvP1hCO/6bxy/Du750v96l+R11sVGY Hwocdm3xooURn8j3FHj3FcGRoUH6+UMmnJqrLfGSJjcKO/Uw0hifB+CnhtNf TdhG9xuy7333bR8Xva9ic/TTsiQz9AcBhys7rjF7MwXv8yhbWi99dzs3mXae jGKhV+XnsmhyC8WJvKeCMf8LWF5fV3rtRnr9fLVN62Q7Z20mjwc+0BM6t3D8 NlIO3N3EU5lx2If4uShLOP/RP/0CDm58fUvqJGE39VX+5ucYVxVssTdJQ8aD WOPqv/jDMB4f4zdpvGpqBDFZo5F490+fAl0Jiy3b/8QQX3oXf3ucjX669uLU t7/ZUwnVm2XXN2di3KLghPB9nKuyiR8jKyrO/+Mvc5DTPmJhgfMScJqFlxQX B9r/ge9kd/QN3H9JJAhOcWaTRj9U6Lxg1TmPrMjjgavfasocv/GG8PGr+Vy0 Dufjksj4tHwT7CcLLHh3vrVgqQMpBz6U4nvB/lIlOcJ5rIP9eh/0o38TOM3M 8I73vbfkSN7P/gVdikHovwM2uJ/9NvRgETnC8SuSD/QaR+J7B6wUabKYiyeD HOF4kaZrc94sQnsgsIthX3FA8z1yhOM/dRvvPZWN8bTMDJ8rtyadbf34lXgj 1/igfRDtqMxM/o5q8n0p7l+IJrkE3fQCtDsyM3wSvC9c1+mi6+0P/Ql/IcvP xKUh97Dh1RjvxMzwifutrP+ukL5f2JHwZfF4p09E3c+BNU9WoH2bmeHjEf93 /wc2+j7lisgSqaWFTcT2Zrtpe/ah/gZs9SrPQFYR9TfgrUaalkM5qI8B7zP8 ED55Ce7XgE8d2tjlb4JxbsDhe50zChxwXwbcXTfxkK8F7u+A696mCe7ahHGA wHwzqXoj8KHWqrgZEhjvDaxt36q17fk/9WxHefBm+YPEpWjnBLbNzJ21/R3u x4H3iGkozBNA+yfwvFTjRcF3skg5cNjH2ekn/ok/B5b101EY/I7nAb7gzfFu 8Tbc7wPvXd7q9VIC5cAX0jujloTjeYC7DeQc/D/g8cB25Vm7f46gng+sfszl r2Qt7heAddivvfVcjPsk4IawcSUZu3C/BRxidT3G0ATj04E/8ds32T9EeX4r T5NqfyNxylnumt47PI/qcvZpkxsbiePGx7dqi6H84N2Dhn6vGgnvPT4P+O/h 9WxLeCc5Ib2RGG5S9/4kg/IXbm8ktGMaiQ8XFFeEdKH9tZEn7tnl/65jrYpX /Lc9aL8ybfvN5SjVQGzZMO1PcREevzl2/G6X8EYiyqM3xLkQ5WYmj9K3/Cd3 WpxfZr4S7WYGeyOnaHyuJ7YJDIaEteDxnE91jgRHNhLWGpPFny7C6wzgXP/M 7GkjYZNC7a/xZbS/RnQKdV8GfPTc5HPfzuN5Kg65V55IaSRW7xt5ffYHyokD n2Y5FjQSizuo/Th4Kxn9OPjYvlL6bgSO9t3w4DcWFlJGeXiLnsDeI/XE+p19 W33+ee/6gnmu+J6oJ+K0QraqHcbz78ywE7ry3/m3P7l3MT8f33epr7MUjCLr CV61z735P9G/KTllf9dEP7qdfOtO1v10LjvdXatSQN/v2xiz7rPzITbObiML P4umJuv+Ox3zDvUodNDlP5tW3RhZTZ9XvTJ/2k+3o8vPWYrfO5lIl4eePiom 2k6XK8TNHtzGR7cjzZz90nGcLF1upawf7KBBl4vGiV6aeIAuF8l9Ll9vRpc/ CTB1NTxGlzt2xGl+NKXL2RPdtN/o0+XF+3eV31Sjy6sXlkhdX0WXb3Vveyg3 my4Pe7JJaFI//f505vD/NnlLl9c27uUqiWgmDFZR7TC5sxh2GObj30rsDIs8 Rz/P0zbpFNNtdDn/etZ9c9bkMvrjzN3N6LMFI+Nf/9Ov5g9NznxWQY4gb+Vg 9NOCEeRsUjNz4xdWkiPIlRdVF+5QqiRHkI9LeSqav78Sx1G522BYydyTleQI cs23Z6t0z1eSIym/bqRxyaGSHEEeVvVigsd/x8EIct2B/ZdOnaokR5AfXXFW duaRSnIEee0By50LiyvIEeSTS2t8DdTQngbc8bXrluFnjNMG1s26dv5F4j/1 ZEa5Q7Xt0kgs2pmBZftfchZfx/kKmF1l2x15D9RPgLsalaaUfcH1GnhJxSex 5PsY5w88T/ZlfG0criPAtY+pfSGBz4yTp/R/BI6eRe3zCCzLS+3nCBy6ltq3 Edguktqfcdlof0bDCQJtS6ah3Q84yn3ypTknMH4JuE6ztfdwM/pfgDs5q8X7 D6C/CdhHTjAypxfzGYGtc75Lng/G9xH4y6fwNdWH0V8DrBgp5nqFQPs8cG6T W9tqWdRXgaXbRyL9/unnArzGkNpPGfi9/odg1734PAC/+UDtsww8XC9qN70A 1zXgoHGHKP2XgR99yN+57x89FljuJrXPMnDwJYN3MVroPwI2TKL2UwZWTyzn 2XAS81+Ac15T+yYDlxSyd7aV4/MJvFWW2h8Z+Me5I1xyz1EfBrbtcUy+XI3r M/CEGGp/ZOAzXdcOhD7F/CDg7inaOm+L8fkE3r+B2h8ZeFdhWY9mPuqxwH6D hxy7/5nXez8qVTU/biT+3Kb2RwYuzo7ZHzOM7xdwSs009j8F+H6FDbmv+6TZ SEh0U/sjA99+M6TCp4vvEfC7fq5JNer4dxvlim4NdTYQ2tOo/ZGB3YQlp/j+ cz+Bt7w1fqIWgfdzc0Oi1OYrDcSUQGp/ZOC7PvHZ0rZ4P4GzV1D9YsNBDL/Y JcGPCh3iePzUNjeDNe2NxLO4dR578vB+8ofe7tmf3UjoLqX60eRfMvxoijG2 yUt08Pp9+VOOevk1ElVGC7ea1eH92fHtSVy5JV0f4+xh+Ncmpm8dd+s45kmt uyD0QuF1PTHj+LqM1iacnx8fnX482b+eiNjAzrVOBd/fhs+HU03/00vvCSoL f5bDfOeH1iaBOqvqifz5Kzi5XuF8ZdUZbXBtpI4I/t3/7KbrP/13Gv86T3pZ RygUDYnr3sF44HtZ039WedH10l+iGm4tRSz01Ylc0mkRdH1jUaH3gm9X6fpq 7BndNKOj9Pvz2Kk5d2ApXf+MSeUJPTW1mfijRp2fgetkqPMw8NUG6nwLHFdL nVeBk5ZQn5Os0eekNYn6u2vPYPzuayNcmmQM8H0Ryfg5R1ipkTArpf6+8vaM 31dWi/o79rYxfscWZervdbuL8XvFnB6m/C5l2ax/F4W/nCzv//GTjPtcYkqN NwCeM5kabwC8J44abwAsqUjVN4B3NkRn2orhugOccpcanwBs10PVT4BF1G1d rrLhugOcspmqtwDvbhaZ5yiD6w7wujqqPgNsGzZ5dmoqrjvAn0qpeg6wjuXl PyqBOJ8A60tR9R/g0HevJK27cX0BFhFl6K8wMv61m8gYF/5/PRVGkCd4MvRR GEFeMsLQO2EEOfPv/qOZ9X4t7DjrfZlbPOv913sV1vusZ3ms91MSnaz3TXeN WO+PpD1Z74O68ljvd5olWe9fDC43PKzs+0Kc3UONxwOusaDaeYC/PqDac4CP TqfabexH7TYeB6n2Gd5R+4zHMmoc3bnROLpsgmpvmTtqbynffn110D/5vP7v NXW7OBsI33qqPcd01J5ja0yNx/vMxYjHExag2mEmjNphGkqWtWRPwfmn+1ur f96LesJWjmrnqYxh2Hkk5lHtNt5PGHabehuqvWXnqL0ldwX/+ZX/1N36vell pV5VI9HESbWfcI/aTx4PhVoXWqI813GJbeTResJGhWpX0Ri1qzT5DVVyXMT7 uSvHcc1P23pisRLV3hKUzrC31HXpfNh2HucHlUr1XXw+9UTvfaod5mQXww5T J8c9X3cDzg+7PFPdpdLrCXUeo6MlfKgv2Y03Spo1oZF4VEK1DwP/2E+1AwPv EKXGkQL7lFPtusCDizrnrZHAeQO4ZB/VbgwsnUyNRwWWc6fadYFVSqfPlp+C +hXwcBvVbgw8kEW1AwOv1OD6W+yC+i2w4bJVthvm4vMGLLeMajcG9pJ0luT1 RTnwsbtU+zCwWh/nB//lqA8De2RR7c/Awz5UezLw2gLTftl/5MBLJal2ZuAN zj/fru3D6wG+mkW1PwMLCfAvs9mAcmCxPUfTiqfiPABsvZ0a5wysZ/OwTl8b 5cB1HxJ72ZZhPRzgbJl5NlJVKAfObaP6O4ClVPvanGbjus/M8BHd/CXgTTNd r2jwThQO2ErX3xzHiDPXGCOu3rDxg0A/i3XEaYy4eodv9Us5j9PlMcdZ5yOs V3a4pzWfHm/GNkY+QvVlK6N5pfTzO47mKdg3UfMMmBk+kuO5D+94TT9/lw7r /I6RnYq7a1/Q8ybS3zHyPpjlXOMMzoVsoB8/qJW4VkP+CyGvPD3o7Hj8PYFl N1LzP4AtvlPzLICbQou2vnZA/ywzwyc/umuz7W76dearss6v0TVxTDVToue/ 9G5k5N0wy/3aF2ztv0s//46v0+qOKn0lPi7itVzyFfVn4JYyal4OcEIyNV8G +MnIIqWDnJakHDjm5qBC3oKzpJyZ4XOqRF0k3PUboenEyIOCkfGvdD1NsuNw l/vx74SAKCM/Csaxjk+ZaPqnO/IbEaHFpi7jgXo1MMc2av4UcNslah4TsBRH KCWvCthCwK5oyzz8fsCZa71FEvUjyBGu88dqRn4ajCDnvqdUKHQ0jhxBXtDA yFuDEeRK+8InhfyNIEeQn1Cm5q8BH5D+avz2O+5rgCf3U/PagMdXpGne88E4 AWDJz+kiIhGipBx4t8vG15oKWeQI18M+mmfIzpRv6KFWc6budh45glxtIyP/ EEaQvw4Y0js6lEWOID8jVbtkKPqfemij7L+emm8IfF22cK+SCfr/gXlnUPMQ gUWiexetbsA67cAXeVJ8/6wvIke4npovjLxQGEG+Zfct4cqvJeQIcsnRfFFJ przRtCTPLZ+vvSRHkLtG1EQ/vIx5bcAzOqn5ocC81dOT5tzAOBNg9R2Dblwx MWQ8ErDxaP6tMVMeruzcBM++4HJyBPlXDUZeLowgXzJ5b7X4xjJyBLnOlvT6 /uJycgS51Vdqfi4wexA1HxaYo5Satwuc67Tsjdik7biOj7JqEFdmxHl1Ug7s YH19UdGxSoJtfkf6CTGMX8sYzYN2dqLmQbtsNbDmVqkiuo9vmd92Gr+v+8dc brOnFUTTervPUmEYH+fxnpoHDfz4heOV3qrLpBw4W4maHw2sH2zjdFf2Efl7 AYe41Qye/V1OZH7RnMzLg/GAUmsZeeXth6l55QbXM98e/++53Npxab8wB8Yh eo3mm8sx5ZsH8yxL3+aI7xew1j1qXjnwyKKEvRu8sd4I8PZl6pR8c+BZnP72 naewPgBw+lRrtn7zEiJ0QHXkSvE/fWZH8/Q3M+Xpqz3Ptox+gHYYYMkAaj4+ 8LbLKzadeI/zObBEHjVPH7hvtG4AO1PdgK4URh0DtzBqHYNJWqve1ux4STjo fvbz3ovH92u68dWtekE416T1TzfFfjEfs6l1DIDrZ64uSE1EPQJYZZha3wC4 RO+pV86af+K+Rnl2ym6FAwp7SDmwmV/R8azxL4jtCQFbhRzxet6uZdSFKFlJ rQtxOCrAKLU8lyhdFqcV5ovf13W0XkQ6U70IjrkK3YaleD3AB5ypdSGAK25M 33R5CR4PzD23//Clczg/A6evrP7WtzSd8DyldkWxH69zeLQ+hiJTfQydiPMh oYE5RLWE4jPJlXidFbUDydri2YSfF1v4nk6U7+qn1rUAFllGracBrMXpfen8 HZxngG99YvSlWsBB7UsVPFoPRJepHgjR7y4oXoJ+TOCkLdQ6IcBmfFyxol34 fgHf78q+3VqJfQSAzaoZ9UlMmeqT6A4z6pycYapzIuKka3hvA9aTB174kFr/ BNhhi/tRfcM5pBw41OFsVKSQEikH7m6+Zy1gEUzkHn688sJP/Ltj1Wkp0Vyz 0G8Y+7YAl3VR67cAB5sw6sBEMNWB+SPHup7MuDjzPuLjfaJJ59G4uvH/9JVu ZMSdcgpT404TM+e8a8zC+lTAGtzUujTAjURiZXQP/o7Am+arrZLJx+cc+OnP BVNvu0TQrjPpFev6Od8kYmNtIjDvAfjcH2pdHeApKSs2n059Q64vwJoy1Lhc 4Ju7xLdsPUjvo91qxTpO+KmDm4giL94HYElxar0g4CUFrOsOKRqwjnNWPEGt RwRsN5ta1wg45fAQ29NDWLcE+E84NS4aeOd41vHYkxpbAtRL6fkjfWPUazrB rzSheasBeX7gK7zilHpNwFz7t69KVKGff7cV67h027vUelDAvarUelPABwWL z9koYXw1sN9Mahw78Fj1rGRjWcfbc4nEnpm9EvsoAXPPpNbLAv6Wxjr+342t 7iPveWY7fjdhM0Zdr9It588lPsbnFvh0ODWPADiJn3X+gtf2X/wpB+h/99sY +REzbKj1xIDXf6fWJQM+/mLZOu/TnKQcOPMVNV8DWHSMOmneY+SD9LRS66cB x0+i1mEDdh8jD0VLdHHFijl0+Vh14QLCvjqvmqJMnh9Y6Qq1Xhyw+hj5NRsC vBp+a9DzWRrHyN+RKvB+UzYd84+AJ6RR83SA06Kp9e6AI8KodfOAV41RZ2/3 GHlJUfMHu7Xj6XlSf8VY5z0l6L2/PXBMivy7wCXZ1Pwm4ENj5GFVptZVz9Oh 5089GSPPK3xJ/1PF+3h/gN1sqflcwPJj5JG9UHb69VmFLh+rjqKJNrWOIrCT BDXfDXim+hnuhxUypByYyyZxZrgc6gPMzPwJsxT1kYxB+x7wk7lhlhMM8XcH 3vWjrFDCCtdrYLsdpqlc7vtxfRnlwW3OEREFOM8D31DsDO7Pp9+fiK3r7vbV 0+9Pm/jL1yIP6fLfFco7uC9gPS7gMJdU+618+vi9Rnn7xHFsAjZYFwt4t/px Mf0vuN4B8yh5vZvMdYKUAwenqhgGv0d9EvhafkBGHy/qLcBFXz5adUTQ1wur 2gst5Q/RDgP8a9uwfPmuY6Qc2H6/X9RCJ7TDAKsY3L/tdZg+P/Bsyists6C/ p/nx3RWOEw+T5wHum5dybEOVOykHLvkexmGgQZ//5f6mCU81pufB2X5q5th7 Hu2BwKKLOdvdzNG+ASw1HNnStR73F8DGQV2Nhqcxbw64eCDCJPcH5tcAu9XO nSl9Db8XcItqcJR2Kh4P/FAtXVDSHfUB4IZH49w2xeFzBRy9zLzL+A7KgWNm P5iQPAffU+AHK3beZbtH108u/rkdUPOIXmd+x5/ykY5/+qEDm9gs6SnpxucW eJHC3ikJb9G+BzxefLZeAifmnQHrXoqerSyD5wdOsgupEUnC+wxsLB6dH/AY 7Z/AyYJL2HMz8D4AS+5ZpVkbiOs7sF+rlIzkQbzPwKoXt5+X/YnzOfCITd+Z aXYJtPuzenNKtFRmGk1urWZ449UMrGMGHFTqMbxbNJR2PMdA86x977AuLsk6 vepJXXZEjOTbpRq3MW9OQam+M6LOkeh122F80wnld++q59wvx3UcmPfQ9ZLQ vHtE0za5ioJV//RTvnTk9ZGOOGK7YAR3hMo/dfJbrP+az31MOIVNDy6/gH2h y/iqhP0rcB4G3ujbURcjnExY+xcU7ZLDfXS4QZvJPrMEokbsakRHK8rXDjg+ +VWYSfwcHzxDURPtA2KjdoMkJrvBoeuhdlI2GYSY4d5FvaEo/6QkmCd6OJeY ut9KwKIU7R5fXnI8ipB7QUyZfyFawhjtJxmT7RXf731BhNrl7OfX+ceucmbC n7PRJcSdfIfxylG4DnznYdi7OH9T7V0Sfg+Ddd68JswTop/t/icf+tp7w/yt c8uIH9uVzx5/jXrQplF7pjOTPVPj4n3zR46VhMmf7GVPxqFcLSpYNPZoOTmC fDHfDuFNGf/0NRtl9dpu1QOu6O8GbsyyPXB/PvrTgeVvtAtr52LcEXDfjNWq r5agvx446nD90eEXGJ8GHGokvEn/NsYPAFcqtzR51KI/3f4pd7dCRT0h3Hjr 9ryLGDcS5B+3WIKjgbjs7LksXA3jBwKdTJ5Jbm4gXvqtXNVuh9/LoneR8AnH BkK3iatzYS76qct2uq/ZmN1AVM6gxj/smMCIfxAxv86VtgD33cCnO3vm8b/H OHbgqLmmd+Pf4b4VePhDbybbBszrGTd8w3ycSCOx7Ty/mmc4xue8qXy8mPdK I7FdyP0Yzx/0ywOXb5d8bpqF8SqunPIr7cMaibVdAWYJleiv/pK/4vv23Ebi dn5cX4YYfl/gK2eI29WfMI7FOOCLhGVTI1GyTElMpQv92xbPfF6V/mkkrrGF Lh84g/cT+O9IXZ0lHx4PbLVUd8adOXh+4OJX6it3t+PvBdzcsMXcdileP3BB kWjT2o34fYH5pJ5WhA5gPAmw27Eare59eD+B3bgOiYc7YpwqcKvwQMqcw/hc AWcOJSxVe4LxjcC3s+78ePkRf0dg6wkTpSdxYzwS8Ovq+pQRQTweuNIkKS7F GJ834FuTj0c7fcO4FGaGT5au/cE9WV+Ih2sr3TJjMO4LOPWY+/NSNpQDCz14 1zdnEr6/zAwfC8eZQfU7vhDnkj+XBRvicwi8bUPIvc8Z+FwB/436eWGOGsYj MTN8+nZNLor+2EFk+TzcKXMB5wHgO+zXDjp44HwFfKwmXjM7GeOjmBk+y2s+ a0w720G0N1rn8A5jnBVwpFdZ8XtbfJ6BtTduenxmKx7PzPD5LvMj6OO0DuJx pWaW2j2MjwK2JlZxCNng/Ak8ssVEpWox9mNiZvhET5+/weNpOyEqdCt8Zwv2 CwDe07VT9fIzzIMA7hLqu3naEd8vYD37nAcaceh3Y2b4JO2eeG6OTjtBNM12 O3TzH3v1KM+fmOnuuwvjaoDrnwjaLZHGOB9gIf5bS7RsMN6AmeEzbLXQes74 duJjJfepXyaYnwK8P015ya0FmCcCbNVvdOXZP3W3gHd1dw4ePoh2EmaGzydn hQdliW2EUGI036VXaO8F3las5GPAhvEGwLM79mqlv8a4WeDUvnWHnrfgvoCZ 4fPcJ/bvSus2oizyhORuHswLB376w+cPMQH9dMDZgSXqvP/EPQKrfT/GflIZ 7R7MTF5Pr/DcutVtxDddat8K4EdTLt54OwPXa2BvxaSEz+fukiPjX//Trw52 +yz1ryBHkAfy7pcMFqgiChqUwrJy0a8a0p988513OTmCfIr3QR4/xQriy/uN rWV2aA9rMeJem3KhjFgj3+buzo56kcNunzMaClXEhN1VfCaOeH6xNfEXj/m/ IbqMlxLFMmhHOWN5aryaWQmhsk31b+0r1LvUZl9UlssvJ46V/TnjeRbtbdJ3 t0/+e+glYRb/3s5JE/19PW6n9ba6FRJX1xeUf0hDPXDDCrmwwPtvCbcHnqn5 2WgHCstqShn2LiYkg93Dxifhvn/BCP/rdpWXxM9xZ+5OMcTz37u3QvT83CIi buVRC8UelJcXzvGp5n5B+N07lXj7HP7d0OzIi9MEColnghLEQDfKz52VyJNS LyCU848KmOm1knL3tmvy673yibXc6U0fk1AuWL1ln+SPPKJ7hkGFGQfqw13p F9dMMc0j3BZlGQ9uR/ktTtHn5d9yibTzFqG+LihXWHZr7w3XXKLpy9rKdc9R vuXJhZ5KH7o9c5P/reLZR57T5FXJ4blZNXR7YMahmzOu7KHXJ1GzrJ2asZDe T+rOPJWsLakV5AjyB/5Ol+ujKsgR5FGO32Xqh+jnaZLtv7HlfgU5gvz5pOiO j74V5Ajy2X1T9W560vs9mTv8HhjnVUGOIO99oRrR9t/6BiPI964L4pvQTj+P odr46DLvCnIEuXDyy+pv/72HMIJc9W6pgXFEBTmCvJSvKt1RpogcQV7tVqBr HEK385RsvDHOeze9zo++vNWpPE+63cbxmP9S90K6fZs/LUSXt5f++0Y1vIi5 vJtuTxu/y/7D+O90u+i09FYulVy6Pe3vm1rlaKMWmjxShfvL4Cm6XKgvdbvx RHr/OL9NTZ7F3+jyjF0BhjWn6M9Jw/mvpcWdWQRXiPJ2nkn4uzms3Hv5evQX 2vEj778be+yh98WbHCq3ZV07Xf47ryXdYBO9/w57y9XTLge7aPJbnQKeznl0 ebPwuKEN0+h995a+ttFKVaHLV47R1+yVcfy1wI30423OOBY9FColR+q/46c4 e9/v3fX0eNFZQ/dnC7yk19/mNdoy+3FyJ6E3Pra+7BfdX2NvGv5AV5D+HGrN EzCr3ED/HZnPbyu4catiJL1u+d25G2IX+H4n4h95rt4p+pAcxzrPE7kY4tGf //RDntrLs3iwrj5wtm7xa3sb1FuA4+ou7XPqxn0NcMcO4ZMmG1GvAw49pCKT xo56JvCCLT0Ht75DOfDAU4F9c57+E98+yn9FZ5ZIX0d9G7jcanuW73HU84HN 6qovaOjivgC4cJGr256tuO8ATkz/EBwrj/sd4CXaep8CXqN/E7i4ttzL/u8/ 9UaGBtMcPzUSc9dLc3YPY7104NqNM7n91TAeEvh2oaP56rtoHwP+Grk5Om0S 6mXAYiGzX/ceRnsvcHpuQslJGbRfAfPqfv6rOoj1gYBbjlL7hAK3N9q7bhpC PRP48pkwruXyGD8GrHNusqRZOsavAl87wrHp4A3Uw4ETVan3E1h6moJ7AB/m CwAbSVHvG3DOCup9Bn5rwJ3cVI/7HeAJkmv4e5VwHwZ8beGFeeLTTuN1jrL0 vftHFctRDnxxtVXcVj7Uh4Efx1N/R+CbN6m/F/DeoOslWX/w9wU+8ZT6OwLv eU39XYAf2a/WMe/C/RkwpwX1vQCek0rNqy0ezav1WkB9L4CLjlDzZ2d9Z+TP qj73DDX4x14EbHS/QiqwAt8jpb5V8pdnNxIrP1Lfl5hhxvsyjukzNYP1fHvX 5MWrgvJ2oucoY76GkfGv9Plt9S/W8/PP5McTxbK/0ORCBox5m1kuEH5Ey/oZ PR7eYj7redj7hJTupyB6nPzVmYz5+eWarxIxvp7kCNe/6ghjvoYR5PLf9c7M To0nx7G+r+QqxnzOTiQXyuk8J8exjk9U2mI27so3gjOEURcbRjhekouhb8EI 8ikud/MWcr8mR5DnJbzboWWYRo4gl8lLrcrtfEuOIN+1omfJyW0V5AjyX9ms 9Yd9Kgvmjjiy6H/6K4blOnvXcZGx6BO6HsVhyHr9vXqNsW/atJG6bzJcLKQ1 vZ0edzTutOXLE+v0iBteazwKW1HvuOogKSsyke6/M+cQDZm0m14X8aJOr59c Gz3eZtLb5s2xXHT/y4yrrPXem8Mv7CeE0uNJvJ+x3tfYrWWtJy+J0ekvzqNf z8UjrPXkPFfhGXIE3e+pkcRaf56Q/ey3+n563I7hTtb6s+0F95scnXT9OSqN tV69TZm1/hyYs4ifM7mVJu/pYa1X52iz1p9XGbj8jOGkP4fZJ1jv7xRlWOvV T16x3lcO1rLWt5Uusd73zQ9jrYfb+7Deh0q0stbDk3+x3g++7GKtn3MsZq2f z9vIej94pZS13r5jI2O/CiPIfx7/2TvFjEXf7enttss56f27t/dGZm0+Sz++ 35mxj4WR/Hft0X2pNnV/Kse/49Gyd/TrVzFlvY+QL2HYm2AEeeuovamVye40 5+e9llX/6b8wgvzjNIY9an0T1R613Ithd4r6QLU7nQm8svra5EpyBHn7AYY9 SlKBao96uophdxI3pdqdevlvzZ/3q4KYXfOp6NV0jC8IMmfYo2LVqPYocV+G 3akrgWp3+nD5ufW6yDJi24DLvJuxGJe0bhnD7nQrmmp3upXMsAutW0y1C03M ZNSNghHkUxoYdqFBXqpdKLqaUTcKRvL4eIZdyG4p1S60oI5RNwpGkBcLMuxC C7qpdqFxTB8PA4Zfg1kem5East6FLte8zPBTMMtdhjklb8+ly7/uZfgdmOVy RTJu5o87iPHtjH4hMI51nWvqGP4FZvkO/eH8MsUOQmUz1T8C/PUSo+8IjGOd f5Icw7/ALM9L+5RwrKGd2M9N9Y8AN7A//H//EhjHOn/pTIZ/gVnukjftl4VT O6F1h+ofAXbQYfRBgXGs83/ax/AjMMtrpIx0w8TbiRZlqn+EmeEjeZrhF2CW P5Z4LmZf20asX0r1dzAzfITdGHZ+ZvmihYNzpnu3EStTqP4LZobPTH+G3Z5Z blS85tDSXW2Ex7iDFH8EM8Nn8W+GHZ5ZfnzC22mb5rURTT+p/gVmho9tu8s1 qXFthFok1S8AvNXYoL0/EOUThSdV6nTVE9P4bz9Uc8L9BbBQsLZPhypeL3DT W6r/veIuw/8+bPe+7r4j2it+aPg3u4g0EOsdqH75144Mv3ykf17/n/34O5vd 19T5dKCB0PKg+uv9ehj++gxhmcxr9/A5n+k1STPwfgPRUEP14w/vYPjxZ8wL MZr8Be0ST2z67ixsbiAcKqn+92VDDP87kVz+7fIvlAN3t1D96fNH/el7TlD9 5nf8GX7zr1qWlbbqeJ3Aj0So/vSQpwx/Og97PcVvDmxo+y5SORrvD7DRCqo/ HTizleo3B66bVv6LVxLvP/DNN1R/OrCmNdVvDmy0Z8mSogf4PABv4KX604G1 JiRS/ObA318vt5gsjc8v8EgB1Z8OLFlP9ZsDV5xbWmPSj/EhwKIWVH86cLE8 1T8OvJd/XWpYD/q9gStPUv3mwC4ZVD848K1Z5ovEhDHuBZjdmho3AmwbR/WH A08PpPrBgScOUuNMgG81Uv3ewB8/U/3dwLNFqXEpwNxKVP82sMYHql8b+IYO 1V8NXHhd/XjNV7QvAS+QoPqvgRtcqP5n4GT19ytOXcA6S8AGnVR/NHDMQqo/ GTjh9bqV31ZhfTDgOY1U/zLw4kGqfxh47sCswCBurC8BXP2C6i8Gvs+xnuLv BX6ZLLx/3jisawGckUL1/wLb/qX6b4GlZcuOqHNhXiTwhZuLDlu6YtwgsNZM qj8XWHIgLmi9B84nwFN0Dwkdj8L5BHju7+kNtgk4X52+2RoR8KuRkI40Vd1Q hu+pN1+SQuyqRsL8WURuznKcD4Hv11PjzYD3pi/gvVyD8x6wTB41Dg3YK6eu TWg3zm/A1l7U+DTgoCaPWAERvP/AA/OocWvAJ0yp8WnAm+LPcMz3iCPlwI5C N3z/7sPnhJnJ69T9dSzck15XxD0wR+sCF71+SM+bC13f+ejygXmPvz18yMLO NlrHnlnetPvzSfG/dHuazGid/MrAkQOHlYLJkfGv3USRDqP+PowgXyX/4n1R eQY5gtzwAaO+P4wg19ePb84/m0aOIFeTlhbP8SwiR5BrBjH6CsAIcq7zh5Mr l70gR5Cvlni9tMb5LTmCXG60n4EcU1+D4jXHeA2E35IjyN0nDGY9FcJ4Y+AF GY7c7+dgPDBwI7fON4XFleQI5/mazOi7ACPIl4m8fTRLpZIcQb7jzXg1e/0K cgR5/YFd9pVumGcH3ErouyboYT4RcL2frLaoXwWh/NZXP7YM95sH3BT22b4r JxQ7HTSm7UR71W4e8ad70sqJPa1PwrSvo1x1583uFu0K4pRhq8AaPdwXe9zx 6/mRj/HnwO7h1D4UwLPu2bmauWCcP3DEziWb7m9+Q6zYa3lQ+gDul1XLGP0v DJn6X3zIV+h3d8B4b2DNGGpfDODUZ7mb48WxXw+woFvMqdN2xUR3mqhqwT/2 rek5jD4dtkx9Or7LCjabmxcTLiZW7sXFeHzGCw7FA4aYdwm8SZja1wN46peE Dens2LcI+OPI0m/fHuQT7k5dLpxPcN9dZrjsrsLHAmJOmXl841SU9+o9vnx/ JcarA9faUPuPAOeaHiz8UTCdlAPbnpd0zA/MJpRzzbIXxqLd685o35MEpr4n T6tf3ljxBPujAT9SoPZDAb5hZmjHaSSNesIoX3jF6LeyiKnfCi9/0uFB3RRi 43m+IzkdKC+eVHryMWc6ccvhxqfKP2g30moxLxhXjus4cNGZvUWHjmH+ArCT yOrKFlHMEwSedfK6r55eBvFcxFDv6CM8f5e6UeLh20kE+9dIvjY9tC/GeFgf GMyJJSr1RcwuuqNdsGu0v0whU38ZN7YgLb0pWFcHWNxvQvSDnk4yPxfYajSu 3pgprr7DJMZ/gskV8jzA20UFli4eUiHlwB7Lec5bavsRW1doib13w7h9IytG 35xBF2rfHMFX+247jeDvC8zdMKJ95iLmSQHL28XnjuzxIv8/OZoz+vXoMvXr 0TGdvZnnFeZvAU/dx7p/kKnnli0rnTHPAnh4YhilfxDwQqa8DGD79GU5hT/d aef3iW88fNuUbr/VGKP/0XiHAzcdelH/BObbQu2LBCzLlIcCfDwt6tG6Gpwn gTMdqX2agOsIal4M8KMx+kwNyTTvXjIb9WFgrShqnylgA6Y8IOBbmid3tpyi 52X/9Fx9/WthNk3uuZx1ftD4FX21k3LpfhmLzsc5pnfpfpaHY/ThYm+ts23V wno4wLdqqX24gK8w5UkBd5ZR+4IBNw1R87aAf8az7mvmr/eg7cBa9JsD8175 4zZlK84/wFP0qH3NgN+M0X/NZ4jaZw144qfJgb089Ovh/XHrnHMcXT5WvluO umE7oYf1SYALflH7xwFrjNHn7udHaj874DJ71n33ks27/U58wDxBYPmD1P56 wNlM+YPAXBnSz4+x0f2MB8fIH6xQpOY/AlueezFhnQ3WUQF+zD4ztt4T68kA 35x4ndL3EHguUz4msFhqnsJ0P3wegNfM4/D/VIXzKnDGGH0eS3auGLG+hnEm wCuONi7drYD7VuCnTPmqwPMDf+t/3Y7zJLBKrcnaZB2MrwDOGCNfVcSLY+8s B7o/8dkY+bA/TlHzd4HP95yZu04Vnwfg3E0/6n61XCHfa+Cz7F61QaswXxXY iynPF1hD5PEqkyHsKwFscsHr7cRq+vea6GrWfGgvzufAV0OU2m0WVJDXAxzK dP3A9/1uhvDuofvZj0301wr4Sv+78akeMucf4PsILLvQiVtwx31cR0ZZXOD3 V5XhnA0gB9Zg+n2Bzfa+rvyuiHnfwAZMzyfwhcqVIRmduE4Br3eQ+qxpN0Te B2AjzuX+8kIYvwQ8Vt66wGzLxXItOA8Dp4yRX28vumbdrG/0/HqpO0F7F9XS 5X8zl0grXabPPzLVClN9eFFfBX6TvMDe0ZOPlAOHjVEn4VsAtR4CcNgMlRVB s+nzz3c9pYwNpSzqUcizT/+xDe8b8FL5da8UQjhIOTDHHjNXk6P09eJoj+3q h6fp8ga1N20GPrfI8wCH7XlUtVEX9VLg1iaBD0dEMB8fOGEBv1vSKTdSDvx2 jDoeX1/+2ehViHGPwMZ1W3+9O1JOOz6Y95aobTp93V82h1pvBPg69+uOriR8 noGLXUxWn72C9xN41mH2N3vC8XkDNjT8NuwignY24NYx6sBs4aDWewGeOfSx +0UU6uHAvI2txYIbcH0Ebpi/cmDJCawjB7yen9eucCiP9ne1C3dfU4qk613V NtQ6PMBSn9L9nkgtIuXAmn2s6w45TbcImPnwNJGm5fXowCPU29eO1nGqZarj dMch1ddL9wkh+VbsyVcdjF9ouj/dbntjFDGxJMNqVjjKpUVnPv8b84SYpx/I 2bQN5XF/XZcHn0e/g8buad6XHRuJ4LDGswoD6KfgU1+tWvqokbDT3cbxzgDt lj/exq2zLGskJsX+yngXjfZJ9+03V0b0NxLjxY7l/JqNcuAdiQFyQZ1ohwO+ lHfOd3IJ/l3gvmK12hVJeJ3A46etkuKPRD8I8MSTNoubG3IIhxcFlu68uI+e d1tP4C5bIf3+ZwssVhDwJQb4M//MD8J92Zl3G2JalufQjj+lO2R6r4A+T641 PmjYyEOfb/vP555VXk+Xa3qvE1NWRntsvAl7u8G5BkKW/b6JwDysnwD8SW1r gshBtMMAR8xsMclzwuOBJZ33FMiz4foIbHckWqPgA963H6K1vtmWjUSvl22f 26sc4mqSkvP6eXjfFAyHORadDSd0bcY1zj+Jz6HLR0a+eQxTvnlMRcXQtcxA ojBX0Wn2YryfU81V+pwqZMn1Czgj/3h4YvwT2v2pcaLm9QN3lpl1D2bhvgk4 V78+qF5ZkpQD14tR6w8Ar5e9dNtnPdrtgUv3sO7zmy1GrYcAfDRe87nycvQj AC+5uM3FcSO9zlWOp8H9Hs828j4A72Gq/wCsy1RfArjbn3X/5YhLJb3r3Cfi 8zDK/YHUOhjABt2zRCoS6evI8mOTxVbLKZLHA6/28Je51EuPlxurjsexMfpo +0+ZPzhSivsL4D6JPo3d3+jHD0uYt87o7iDvG/DJnJte3xIdyfMA3w6dW7Bn Mf09FR+jnsmEnxbCf//Rk4E9Tpe+EBnCujrAxmP0VS89edZnig7ai4C9xuj/ fjHG7lFNB67XwIs7Jpb/vGBGyoHLuhz167OxTiDwWHVv1MKofe2BJw825Dl8 x30N8KnBrjeF5+j6c4XytsxdaagPA7ut4/rray1Enh/4KdM+AthBMuv+yiTc RwALM10P8LYxrmf4dfNqu2a8HuCTa6nXAzzlK/W+AUtUOu1P2YT5nsBX2w9P CFiAflvg05ozPeYWob0CeOqNH+lOWvTnTTeS/3hBLAs93PSoyHAW/fe6qLHG brMR5r0Cj9w4HT21DesVA6++UGV48gf6PYGTmJ4r4L3Zv9/xDWPdcuCybW2d EbaY7wBcX1Nvc70F50ng55P42N8J0fXz62Xnoq6n0N+vQ6cviTU50e/DcAv1 OQeOPhqw1qbYlJQDtycEPO/zxLqXwAK87s7v52CdTOBfTO8j8Ks/isek27Be PfAcxSufrbnRPw6sVaERV62AeiPwcVPnNZGX6HG/Q93GWc0N9PjkPxNFJloP 0+9PyUAQZd0HPj3dyvXmHbSHAGcyzUvAD75XLv7+G+uLAnPG1Cp3V6LdHrhj 49HnM9+jXgEsyf+wcAkLu9Z4sR47M276/Kzxpfl2w0n6Pmvm/icLctjo+0Rj 6Za2Gg/6+6LGPvfQnQv4uwDHeVjVqwvj8wnMvYi7Z8Ez1AeAS5nWBWCZVKtI nzMY1wHcbtp0STYI5xNgH2PplfaP0A4MnDzG+rKuxnTaooN0eeg36voCTEwX ldAYj+sg8FVXrSdZi7D+NrDFCxFRiWmN5PwGXNq5NtFt+Ah+31GO4TpqP0sB 5zHgi+0nK7q//5PvM8qmvKdDJjeeJ+XAJToZxs8NsM4bcNvOy/ZdC+j2ydOJ J+ZW9tJ/94IjVDsksOeP5wEnX6GdELhjaZIM17AxPp+jzGMyM2a1Nj4PwJrh pa8230V/CrCk/IzSr0fRTgUsO8H2j1oRrgvA+xv4rgdU0Z//2ctOmUlk0PUc rTcjdY6v6e9F2xj6TMa8eslprhinBJyfUXGuuAvjdoDfhUw91GaKdirgoSNU vQj4bcv5dHt19JsDqy5QbM54iP4U4MPRS9ecvo3zG7BUrEuevBbmiwEPOMjX 5t3C9QX46weLQwpP6XXJ/OP3CN9/Rs9n8bze2vxrGX2eVGKn6ofAUdM/v1pq is85cOHRG7/ziteScmC+xboOcZ0rSDmw9a91GS1FB0g5sKzjy6IrBM6TwDvy 56mPfPinrtoof+WbY/77Gvp/gaOdf5tefIT2EOBmd9b6c2zGI33J33R5+Daq vwBY48PDXc7cuK8BNo472+J9EesWAru4CfY3LMa4KeAgs07tc+Y4vwGvntGy /gQP+tOBhYtWjxfmw3UHeP3CjZJm5+i/r9/ajCW6P+nrAq+pt+dzdoynAtbV f3KpWRf1HOCGOyIi1xagvR14xUHqPgW44HLJIftErMcI/OWgvdutOHyuSB6Z FjjdGf1cwOJXHx2b6Mycj9dNJO0d5B06TV/3Y8ws4qJk6fupru+s91nZTlS/ FfDPjVpbhp7gcw7srqa/JmefDikH3qKn9maoGI8H5iyWssg8ivtoYAHXI0nt y+j2kPAXPxoOKtDtgZdaq/zln9Pth/u1Nr+4Nh3nK2AhdXMzrRk4nwAH6VP3 p8ADc9h2ixpjnADwyjMm9kW6OP+TfOvn0PIXOC8Bu4zh34xreKKwYBP99yIa qf5N4PXHQ7J93mPdZuD7gpmucr4apBw4TGDLXfmduK8Bzt7RPq/EC+cH4FYm uwHwbgOOPIdC1P+By5VElHpMcL0ALnXY5bQtAO8/cL9Szpw+frodI9BY6k7J olc0uYoTa3tFiDTVrw38uHq3S8h4nA+Bly+j2jeA7zoIFOtMwfgB4Mlas08G 6KCdGfjaEe29Ss6oDwB7MtltgJfqnTPtOYbzCfDHpCKnLDnU94CfrfU6ev4a fi/gwPurJrSffES7D4ey7xxI4qHbgW+Jx4Tl1dP99VFx1HgD4JpMyQVCL3Hd AX6t0V/TOwvt2MAVAXWuvInoFwb2cpB3v+hvTsqBVcup9jHglsIl+fbmGD8J PN+4bH22COatA19ZuChs+C7qw8B9yazjN6qVs9l6quj3R/Y8NX4DWHZZx+tZ 4jg/AIutpdrxgN3yO45r+uA+DtjOx+Hb/HO43wEufcc5rfgq7uOAbZemiXnF 4noH/MWdfWXmS9zXAy9stvg+f3kg7Xs90XG+272Vnj+7MJe1PfPedWpcDXD6 ytbfn1/i/g74pNOSiA4VXGeBHx3bpzouFesDAPNsH3pfvhf1FmC18F72p1PQ 7gf8gcO9+bEHxmkAj1xiHV+UOW5psevzqzS5viE1vgiYU/lz0/RS9L8Af5bd OneXK+rtwM9/qUp+mY/2H+BLizR+7T1yjZQD81qePRPWjPMPsLQoI/7qFlP8 lUf3rhPEfk9iIHsy14IvKO8uY9irPzLZq9/xz7yQXov1DYCnrFhzvrgB5w1g dZ+uuj8KuO8AdqqTysg1Rj0QuPv6VoGuA7jfB16rz7C3+zPZ23knWR0L7I0g 9v/11LZYhPItRtT4NOA1G6OC3e/9E+cwyl5Th+ScDPC9BjZKW7lw3FTUM4Ed wtY1dn3GfTSww6uA6HGNuG8CvuPOiNObZ0CN07PY8NxXvzKGWLpy57yOYpQf VxQ7vu0vzvPA2c32ye7v0T8IbDHzhdlja3x/gc8qhgjWcNiRcuAU+e9XD4uj fgVctMQq9cGlDOJWf5jnnvsYf9g7uPzg2Yo0Qml8oqiwOsZDBvMx4iR1meIk DUbjObWZ4jkP+PPrL5XIJspkzpR3dfwjH407fcsUd3rWlREfq/ycGh8rdf5u TPGHl4SZYnzkPD60gz4ZjY+NYoqPjd/BiO+NYIrvNdrp3BS1+g2xY2+G+7J/ 6ty/5GbEIR//TI1D1uJhxFXDCHLJuT2lpSaV5AjyfrZL+rxsGJcLfCKlX22z BNoNgL+UFW/uGofPD3D6lOvj/sTgvAScxHWrVnIR+q2Aqzb65Pzsp/cHGZl2 ltftBt0/ItH33qpzOt0+o1cfW6V/m4X91mzX06yvdPmigtWnU/fR7ZmfeRYb H+On57MPnR7uXitJtxtcS1N/KvIK826AxeOErI6sxDwg4L/zow+l3cK8IeBF 5eqbbvzBvCTgixu+fuY+gfo/sNv06bOTh+l1pVZE6Qk1V9PtuqI2X+1qUun2 HO/frO+n70vW96f6j3LijE3o57WM4tCY4NNIpHPtnWD2BP3C5nsSFnzPaCSO v7Le0ciOfmTxQf/4nS3/8Zcdz1ri/6mzMsqD9y58H/dPn2hgO4vP3RZ6eH7g JK3M6zMV8HqA2R0tO/pWoN8ZePt06nMIPK1GvGd1DOohwG5/gttFpfE6g9Ye +dPW3khsJPy+XjiB8lLb5yd+fG8knqmcX3shGfV/ZobPkyP3N8YspdeZWXGA rVB8PV0eVfxGaHwjPZ/3K8dI+PsaujxVNPuSI4vjI64mGi/ZT68bU2DetWXZ brr8ZGV62pAhXR51U+RCzvXvNPmG/e7XCQe6fHLvkO1St++EhY2w+IUt8eTI +Ndu4nbBesu3vnHkCPJZSn+kJgvGkyPIdTWSf8knPyNHkFuYvCtQ0oslR5CX TVssIfYpjxxBrqizZ7eCZh45glxg0Ne4Nj6PHEHuJlsSyqaVS44g7wvJ0hbl yyNHkP+Z+qx7Ql8JOYI88OPgWYVxJeQIcsu0Kcvu3SkhR5A/C36all32ihxB vn3al+VDl0vIEeQDzRmdy7ehnRZ47y/uaxkFqKcBr8vUzLv8FPUH4NhPv3lP 6r4hRzh/2iNGnXQYQT742cj0bFQZOYL8kduWiTLzyskR5EW9dzMvbi4nR5D3 pljvZHcuJ0eQF5asmZmzDvU6YA7VdrdXgrh+Ab+1ih54xI76A3Dd68WD34+X kyOcf4PaqayLvyoJ12NzLw7zoj3M2FFO7sadSnIE+buLl6dkrakiR/L3Gq0z HzJMrTPP7p16IMqokuh9f0MhWh7lbxVPZN/VwLw3YM8/k3c76uO+Brj2zYeV tSoYnwkc+/qwxhpj3K8Bt+/uUJ2ZjHo+sNCORyOyZzAPCPjXaF396Ux19Z0M yosKjpcRI6r6x22EUc6zcPogIVlGtBbUT3EKQ/njE/mb1srgcwU8wKP2JVka 82GBQ38M3/J2Rf0W2PS0P7+9AfoNgU/pz4opk0L7EnB6aXL+T84y4uohjzPz vuH1mJ5l9B3QYOo74DtD5dSeg6VE4mnDQp03uB5eUpLxu6n3miAaTGVTtfH4 s6P9CJSZ+hG0NGm52LWWELem1TxXvIny9zmZs0Q88fkE5l225NT1UrT/AOeZ cy2yjke/MPCONrNeyUhhUg78eOYXvp3iaC8Ffj/af+E2U/+FymJGvwbfedR+ DZI1diGLeV8QHd6Kz76eRTn/u1tfXmWinx24/PsKxSuf8HsBG4b8zTQaxn0i 8MRtyvtWleP8A6xyZCgpzZWHlANvT/ojGLl4F67XoyypzOhD8cWQ2ofijVvB 47/ZecSd9YHiToIo1+vtdxGryyUqna887/RE+VHjSVlimgVEiYZ9cKcu6vM1 vQ6z2F7lEbeds20c5uHxdVzX5+jNwHrawKpHN3cJmaA9BLhF3DTEdAG+p8CW 1ScPeTzD/T6w03oT/uGbgqQcmL1vX129C8bJA2tvPmHU9vEoKQc+7sWj7CqI 1wPMa3lVfjAW9Xng5u9SQtZWOK8CS69wHvjKj/tfYM/1a+V8IwqJlI+HWxIe 43MSPMjoM6LL1GdkT8KHUyVHc4nqJXyFc1/h/Rx4ICVlG59NTFxh1q4UgXr3 59H+IxxM/UfC1yacJrakE+9+eAlLf0P5js7BY+piqG8DD09+mVyigc8bsPWQ WM3Re+inBv6bV5LTfgHnJeCPop/aU5ZgHz1glzuccZKbMD4W+F7C0/GPuTEu Ath3M3W/DCzNtF8G5vu21mO/JNpJgCVyWiPe1KB9BrhivfAmSQu0twDv2M/o C2PB1BfGzo/RR0aYqY/MRgmvlzVbEomfNgGvuZ6i/M7Zgt8Ja3AdAZ4beX7X uQ9opwIOmmqwOpQN9/XA6Ruo9g3gRh6qfQM4baLcIVd+3FcC+8/SiPjhj3Y2 4Pw3eWkhV/B6gINH42m5meJpdUMZ8bdJr6jxtzVyooc5Z0QT7HMDehwCUX5m PrUvD/CFr1dOnp2IfgHg2+sOHdnpi9cDrMlkpwIOlaDaqYDbLZe5HbuD+gDw 9KI9ah+1Uc8B7o9eUfd53T/7+lFOuSp7XOZcLKHdYG0cH4L2HI8jjL5FLkx9 i8xGjE6oZDwgZJv4tfduRfuV0amaxZK/g4nbP4w31DahfKs9I85ZlynOucYg YHaU5QPC9DZ3hpo2Hm/oevPIr5Oo/wAHS6no+8igvQj4VYXx4rrTGBcBPFFL RDvcHP2kwDdsbBfIRmF8PnBJ+N13pUtFSDnwGSWq/RP4GJP9Ezih+run/2t8 boEtLzmuXx+OdhKSv3j+THiIehGwghqjz1QNU58pBXNGXypdpr5U2ZP7d8d8 tCaqRR/Kn05A+fFkal8q4Pt657culcH5HPh8ywn21mFcR4DnM9mxgaWZ7NjA zSsUBhZ+xOcWWKlez/rzfcynAFbepfRpcQDaXYEHuDdah8aHE4ccUmKvH8Xn ROAV635e2ds4RJ2dnIm4ghfVQ7vwPjgULspZVHuRdrwTHyNuP4kpbr+e21T4 /Ac/2vEDI9R+YcBqI6YOBVmopwFbfNi4Xqwa33fgradqtno/wnUEWJjJPwI8 qfXMp49vcH4ALqlqDhcIwfw7YMn7RZ5hh3HdAQ58bdtauxzXEeCPt6n+F2CX sxd29Knicw5cPk140SIBXE+BWwnWfdmenmLdxy1Q/tUM14epNPm+cq+FGo9x HQc20qT2dwNWLpW8vs4b13Hg8r6guKubUK8GXlZMze8AXtw1cX3+/o2kHNiE ya8H7NNAzU8BDg76vEWiG/3OwNvMhddrD2K+CfA1pnwWYH8mfx+w8941czUE 8L0D9nILqr0kiPok8OAY+S+3xsiXOe40f6TIhS5/Z0Dt6wfMI0LtAwjs/eNa 1L5M1IuAFZn8yMDlh6h5RsB6QW67AlrQ3wpct//PvmIB9LsB/zag5iUBl+6j +peBi290vNxwEuNVgF9fln72YhL6H4H3q1b9+X7lAe3+lGrv2+EdSr/Ph/4u vFnZVUCT14ez9lO3fg+r4c2m119VC1QL9S+g+6lzg47NtujBfkbAbs7UPo/A KS6R/aGe+L4DH9rtxV43D+dtYLluan4WsOe26JnF9wfIOAHg0uKElpxM9JsD z2aKuwA+zZR3BvyMi19+VxE+b8BLCmb21AiivQKYZ4R1P82b29bfXKdDl19y oPbTBF44roLSfxN49zGn/WZW+L4DxzHFvQBfZ8rjA95rG3axlQ3jooE/2PYe 5nLDeR64eIz8Pokx8gEzsxavilCmy89M4Ns+5zvOq8DJj6l9ToFbDNRiNU7h vAosSFyv961C+xJwNBs1rxBYsCN5w7m0n+RzAryTKQ4K2IwpXxJ4glDF3iPP UD8BXv5Y+nDIEYx3BdYLGJrXIE9/H09zzp73sZReb6H05srHEan0+KIIN9Zx VlXdWqUma+lxZYWGRxyIAPr9/9hI7UsL7DtE7WMLvEvmlKBuLuYrAZszxcUB X2LKVwX+JdZ36GMV5qsC7wh9bnY2D/3CwAfHiJdzUch+eESUHv+2dETvbOBW etxg2I6Qq+LXsD4YsLIotf8vcKDM0FzpzVhnDLi56akr92a0nwB3VlPzbYEX 7Kfm5wKHPFhp1JolS8qBp7jU+ftXo38NeCCWGocJLMEUhwm8uOvj3Dh/3GcB n7isZX9lM65TwGteB+XY6uDvCywyRj4yMUb+8vhzSVyWkvS401tHqPGZwC5t 1L7MwKtk8wmD0zj/A89O4NNrZcfvBSzCFH8LPOJAjb8F7vSy2cIuhfsd4I3V 3cUBzWgHANbpN0kfz4f7WeCd+qzzwTvGyB+X6gw1StakxyfHGlHzxIGFN1Pz ykk+Fpx8JgjXI+D+uqQ7G6pwPQKOZIrfBuZiit8GdmmZ2TnAjfot8PmQ4bK0 Mtx3APvwCM7xFcJ4JODWLZ8a4iTo652FzbDvsYX093T5Z7uVVzPoz8/LetZx 4LU5SjVP2ehx9SfVbvTnuNLPc6N20lftRejvBrYRoPYZB26fclAqfw6uO8CG 5jvMasfj8wlcOY0aTw6su/ie+CRz1MOBI8L9xYz/oP0cOIopTwG42piapwDc 81g4fsI/dW+AR84qt6XNQXsX8CT/x9KpV9EfB9xUzzpPYZ1xgUkBH/153jZg clD5Oj1fI2s+NR8BmC+F2ucd+EG/xsErM/D6gYWuHArdKIf7UOBbTPkpwBeY 8lOAuVvD/fKe4z4R+J6Z89viDIzXBe4XdlSRVsfnAVgli3U9itd+rOtXeN4I SB5io8czGD2g1qkA7n9PrWsB/JT4XuQdgfoq8MTS3e+sHPF9B+6fRa3LATyY Qs1XAiZ+XLj29xXGwwNLCTVNcUrD+RY46bdm8XId+r7MhS3y0WAoXd9Yydaq d5HFOqIyRj0QUbbqT9dZ5HPpdLief7MM31/gqPoLLeUP8XkGvvHe0kc5H59D YL2eO/9tGPH7Aq9jqn8CbMyUBwe8vcZ8QP0LzgPAQot4ZyVOwvUF+NkYeW0P Wq3qz0bR42RsBPZt9zZi8fxwUPPagF0yVAyD32PcOHDX9b17rpqjHRjYRGuj gLstvl/AwUz5jMBvResmFW5AOwawd97Dml431BuBS6wvLZlaSp/nlVZMa95x gz5vVLwpHTc+lv59lfSp9WqAm2uo9W2A6x4btni4oT4P3Fpe8PnXAZxngEMj w7Nss1GPAn55MUeiSR/tqMDL7D47CC3H44FlJMWKPxzG44GXMOXJAgsnpKSc zUP/DvCDaQbsczTRbgDcOJl1nuzRcX+VfKro9+1qyEf1DGl6XnBnrUd8eSDq w8DBVco7uC/g/gs4fpJ4T8oP1N+AlY12vK4OwfUI2NmMmm8LvGbFqajdt3Gf Cxy4n1rXCPhq2YSLrum4PjIz82eggpp/DRyi1Z516graqYD1ZCOv8e5C/R84 yFLURzIG/ZLA38bIyx6rHlSk382Yk1Z0eV6LVUTnCnoe+lj1phI1qXncwK49 ZYUSVqivAl+U5fA3qkR7EfD8EolXQlI4nwM/ZqpbBezYO/F47x/MFwD28pNe OBCP+iHwtaPXrA5m4vMPrDbx6gn9TygH1mkJM7yQhPcf2MPE8bT2L3y/gMeq o1Wf9I1SRwvY7p5rmM5F3L8D23WX73nTh35P4EmX36guTEA9GXjGjjPcDytw fwd8X/TPtR130b8JbDo1P4krIY72Oy5svbg+YjJd///tyboOm+aUhiO2xqg3 Ah+M2FsR1IPzNnCqstOvzyr0OMlHkdT5EHjd36AFjofQLgRceEbveecG+nnq J57Qd/6J+UfAl/JG4n4Hoz0E+Oyy/qeK99VIOXDVbZNNEseSaec/M8Rar9g5 hj6wZ+Un629WdPm3re9vDxyTIv8usNEY+thr3b49xCS6HjJzDVXvAl7tbK4Y uRr1BOCGAzGpqinM/Wa6iQv1MrcEkuh6NVuAV8NvDbpe3ZByT1/SC/dZwMnd CTLJtpinA8xZ7P2mbDrOn8Dzp++c1DCevl5Iqq+5X6aN9gRgzzH2p0csnicr e9Pl2abUfSiwnYxP5eF49DcBt9qytg8k3zx2ocKerhcNPp/hO+CL9gFgXs2h qck7UM8Bdm5bts77NCeuO6Nsn2RZoe7iRju/T8Tp2IEl9H2l2fZf/CkHWNSx 8aPabYDVUk+8k9PBfRbwU7bdVyeI08+jJEW1pwFnRnCfdL2N8xvwRb9D2rmx aFcENjjwY6egGuafAs/QOn8u8TH69YBjxrDH3ii6ufKqB93eGBRDtZcCr+Ye 2B7zbz7vKJ8cw75tUi3tGtJHzwc0k/s68cz+cGLGvkPEShv0q6p45MovLKP7 He4abl+VqEKv57behGoPB17aW5R6dQXqe8BfwxsT3VRQbwT+3fPyWc5qXBeA L4gXn7NRQj8RcOyv43NfzKRfT8hw1P/oOu94rv7vgVNJSlEakgYlUkkS0riK SgkVomQVQpGS0UJFkoyMBpKVhAope++9I0LZqxKhMvp9Hz/OPV23z/uf83ie btd93/e9r3EmxR8BfDFdxzLYAO8bsNGNf/u53NUlJNnG6XXD4r5Q/VnAc+bl Cp9+ifMp8HzpIzMaj+D3BU5eNV/QXBqfH+Dl5iPTX51Cfz0w0+5/+0nls17r uR6NoOkFIrybvhZHEkPKS2XtijCuw/Y4U9sWUW1CYXDro4dN6O/eeXTdflkd eh5cSAXVHwosLFRw5gGBvzuwBsu//eavVu844+7jT9Nr8GiYK+lgnxHgPMGo qEshuH8E/mW6b77TDtynA5dbvZ/zSRjzT4FLXTbsNo8vJZ8HkocH/z9eYo0A NV7CdvxSasJqZ4JVbYZg82LUX3/HUtGpmkZkrBl5MKcK49Ns53CoML5/Sbj5 aVQTezG+peyt0SDR/JQIVn7B8JER42fuizq75Wdh3WPg5fGcNU2puO4CFgzl f9TxCeMugKdJv60KH8D1J/DwmoNbRLJUSD3JGhPxNtpT4m0kdvvZdK8OJOrE WSNvJqJeRV9j4ZUhXFcA770euoJJF+vwA2/ZJ7b84SjGgwH/FJuIm+KdEjfl toShkaP3FTFvjLC7zot6GTMh44KOHEIzxyCf6x7GE7I+WBr9+kYScd37Modn E8b7Hb2QJSpt9JaIaCkROf8M49MClWaMfB3F+Ezgq1fVNHy3oz2B5IhWRs/r OO8DH7cxPXtrDO8nsAmbq6G6BtYpAg5dPxEvt9icGi/nNvfN9pdbEgjfHRxR C80w70x/Z6pll0U6oaCzSsZJBp8rZU/eXQxGcUTPCcs+mzY8fkVL6vrC9reE BDP7VvnbeP7K187qGiy4zwXO63ddua4I7czA6+e98s+8hvY34CThYO1sXYwb Aa7dyhLF3ytI6oHPTcZhtk2JwzTwWzw9yTGF0FeT/OOmgfp+LeMDNySKCObD B9RTW3Cdm6vTwj7kl0VwK7oM20Vi/O2tkKsBgU/SiZQNe14Lbcb7M+5OjbcE NtRyPcz2AfXAbv7bWzecQf8L8MJlHjevPpLD+XqS/fgs4xPkCwlhY5kg3uO4 j9R8mGeSyphLHInxkV1lg89n8/qoyyurcgk2I37pvkWoH3LsE+u0ySSYEh1a 50hhvGv0Cx/t+IoMQmB9tGLQA9TLbhptHtiD9gFg65nUeGOS50v1aZSgHRLY 3LFR4vJrHDeATdzm77zFh8cDB6weOn3zMj7nwDo1E3Hghz2pceAioWyBKZl5 RMf6n69W+eG+Wdfl/ju1B2WERMtHd4VKXNd/tdax+7C9kLgjVbqT4xTezyiF LWW1h/OJULX2hx6qeB7BQvamJ+LYPwh4WhU1/hx47byt2fFvcX4HLmvX6gpU xfsAXKv5yj1dDO8D8HimipSWFMZTATtMxvMnTYnnr/96ZNQrqZhwn1XD+JYH 9T+W+62UWFZNStBn+Env/DNWTlzLsLJnnIH7g7KqdeyWdmWE5rGIpvnDeN+0 1GKt7z3HfEBgqbg04/BnaBcCtrm6cef5D/icA7tbtDppeaKfF9iu8z1hHILH A4fufFit1KtI6oHDVaXS1ESrSQnXueJu7W/LXxVEZo/CbPa5uF/h0zfTGAqr JGK2LN3LEYZ26CoX6ZS4qHLiWLPVLRdfvA8bnVLKTK6VE8+6bmryMqOdkv+d 3MYyI3wegA1mCyYdsMHnAThvSYzqdg+MywUO+b7TergD1w/AdQLbOVJv4XwH 3Lna+3qPmTipB452n8jf8a2j5u9YqsgGLtxVTUrQy01/8HyNXwUpQX/itY63 S08VKUF/WPbkRda91YT2+f3LOszxPBJsvSuFrHF8ADYgqHlDwLvTbex+VON+ GVhM+9DdkXL83YFjrl3tPvcJ7YTAh75fsH0s+oJcRwEHL425P+hfQYCE61Rp jtMqUygiJejNs44svvGkjJSg3z1b9f26HeWkBP0Whel+4oPYrxB4c6+G+3Q5 jHcCVtxNzf8CltpvPHPWCK5PgLtZck3G/wiTeuDZ+oKlAkxYtw042i86+VVd OinhOhPY4h6MSeaREvTfVFx4q74UkZL8fdOTfzKoZJIS9ClHJVRUZfJICfqR d/f3tzvkkxL00zSjdgS3Y39JkhnHD0Z04rgBPOb+JiRyGuYpA2sH1IaH3sL4 N+DO4vnvOO+h3QnY4t6CQ8RT3K8Bbwjg3rsxC9fhwBryN17OecqG6/xJFjJT 7OT/GkVK+F5u93YUK0ilkhL0QnK1Fh89M0kJ+gM1WzU47GNICfrkK3OV7ncm kxL0P31HThiOpJIS9Bt2Ppu7NhHHGWDWDXV8I+E4zgBv2JCjKq2H/i/gp/wZ Xc0rMR4M+MDx3WNyr9lJPTCr7w+erY3Y52sqw6fmxo4HY0HfiOmEx+q36iGk hOtf7Ceds8owmpSgv54RE5Xz+hopQa8kOGfB42fBpAQ9y8lgpoA/IaQE/XRF mepLWtgPF/jUq6W/ll7BuDLgIUkJtoU8SaQe2Gb9F92yb7gPAt6Wl6Dg64X7 ZWCFXU5299LwfgBHbFg0/6oC1pkBnm1YYvDRE/fRUxk+5/yW5jpE0POa/xTJ rQ52/ErT23Wd7nU1oec1s35a/XxNEr0/IJdQ/oEVYfTztM/QH+t7/pXILuVc 066P/UyBlQ9NlxNxQ78D8P2ZH7r9PNDfB9zxxs/6RTL2KQNO5JZfP6PgMKkH 3rboSt5+LrTvTWXy/sic545Qp/fRXhfRu9tKpYemj9OziTeQpt/P3PYNl5Km 0Y/vsl19Ob2Arq/q5JYdetxDRE1r2T3rPPa9BX4danco5hiOb8DCfhG5o8/x OQSWX8luzPcF90fAj66kai0zQ78bsPGHueVS5ZtJPfBA3/vfKkO4TgYOs/8t lcmN928qwyf8T0X96vg2mr6CkfX04eJ/9MU+ukelLpeev6/CcPJywHa6/nuN YJ0+uc/Aj97d7yOswvTzP5cs1WkQ6CAMNBqvdpth309gZeUNcSOGOM8C1xS/ 4mCPQ7sNcP3u+X6WjOi/Bl7/amZBgBXG0wKL+654+GkF+imA/WYt2/WKD+3M wE41RTd1Z6O9dyrD50+TJCPLeDNNP+1bw9pZJq00vY2Mta/iMvrvMs/OVJur hH78Slbvnj9dLTQ9+1Y5CUND+vEZHWIphpKthIg/x3BTAcZRAIs5W+V7jeP7 DizM5Vy0lhXnHeAPO3POXbPBeBLgYyenZyW54L4G+GDGoB7DPdwHAS8Y8agM Z8H10lSGj6uKN7ezzCeaPvIzY+6DBHp/1XdN9SuGDOj3P7Mj5udufrr+BePy sj0+9PM86uWPusJAP36WRMGS4lefCVOp3cLiK3HdAqyts+zxkm70wwIfPv5R w2Yn+qMLdX86cZR+pJ1fZk+3T+nnBsLWc/W+i0uwrprfXpHS87n044fbr5gU tjYQh3sM3I604vm91SQjdcvpx7d4LrR3fUzvY8toHrJKiq+RiHytlOCqhO/R 5yy/z6O99PO8cD1zZHNeI00/7v0w9s/4R+JOu41txRnsXwz89ELoR/WjGGcL bFb79sd0QdxHACcKcV3aVI164MZVPVxiG8pIPfC3ovlLds3BvhjAV+VY/hTc wb7GwA832AuxP8B+9MBd/bPqvddj33Bgrwz9IdEDqAfWvNlfJjGI5wEe5+IQ vLQd9cDCEdQ+y8BM8dR+ysB+gusWDkYVkfo3NW39zSyNhIlzZBvXZzx+74DB UTWTRsK6bjxM5wzORyXvvj/jUG8gtPf2XM7PxXVUSpJ40POvDUTaUaetfv54 /q8fFNR6ZzUStZWCrWlzcB+k9K3NOzO3gVjz3Xbt3CBcP/zos6rZ/7CBmHVC ZK7OWZwfL/LU7k+xbCAuypvy5Gni+JO6KlWywqCB6JsZdDHHGPWnbPmsnhs2 EKLBI1XMN/A80zNsxPqtGoicX8r1B67i3x2tklNa4NVA3NnLukxtey6pX+we 77opqYHQvHiyc+gJft8iXqYq5d4GItjxw8enNiWkPkPB+/Od1Y0ES2Dm0Jgm 3k9JfwXlFq1GQkJQJMXBF3+vbncmhSdPG4mnPAHas7vxebhlPvho+Wf6e7F3 0Xyb3hT6vMkRnl0ZNU6fH0U0Zs6xTKevT3Lrk0JPa9H1vjaNoVWD9P7R7+Pj AyTv0PXeP2cJeS6l67dlidw1iqCvu0RVR7PK99D1Ae9aYs420r/XqVS24XO2 dP3j9dpqQevoegOBRIHrdfT7UM35m3O+B13/J1vs1Folup5lvJRtJxddH8g3 WHNwiD4/DnL0SvBL0r/Xt6tWF04+pZ/H9tTQgfL59HWmcafEWJM1/X763REK /9VIX4d3F9zkuKb1hajVrB9tjnlByol/7aMd/6y4aBFzL/36t22YXnzAj349 UsOlSxOl6dcv4dTjOapP30d0yLgKzK/rItoNXh7TUIsi5X9dj4lrkYeFRS8h f6oq9rpXJin/63jdh0rWVQu/ETIrbJ81SpeQEo5Xc2vZd54tnJSgn7f3Wsm0 o1WkBL3FnNd957nSSQn6W2WzrSvVyolfmt3TjyugHY9ZkMmOdV8hKUEvm2sQ a7w6nzjpK7fmgAnagVelGvQwaz8m5l06cOOPIfrRjJu627UjcP0DnNZQynV2 DY4bwCO+dic0d+H4D5x7/3HmctZiUv7Xfbu687vmydntRH1BzWFFjQRS/tfx WWHCcUnLO4nT05ZtXPk4h5T/dfy9HXeFv4p1E2ODXwSNP5SS8r+Ot5MaqihW 6iU8OxlCFC9UkRKOl2zy3BXyLZYQyTthungG+omWTo+xuBSL60ngd+cfznTd hut54OpP4SlWf9XTABZRsLpzezraSYAzW1dz2YjgPgL49vPZS+Lj80k9cNqF W2N7n6D9Cli0rlDoYh+uK4B1JD6N/pTG8R/4tBL/2KsCHP+B3Xq5Iovta0k9 cJx96cABC6wLB7zubHtOsS/OG8CVVU0O8jNRb+yYGV+aS6/PdsIwtzC7gj6u ViVGzBBIo49LnKFnFC++po8b4Wab1Fr8vhLWiV82RD64T8qJf+0jrNnVLZbE vyEl6CvL1npLZH0SgvMAn8oIX/76JdrfgDfncLsPKn4mjwe+a2zq+HE1xskD 97WIs+lkNJPHA7M/UFSof4V+YWBF87boRPtu8nhgxdWxIs+uLiGPB/bU+hKp craXPB5YsfjLoRkuXHj8JNf4SLzOjewijwfm0bTmielaTh4PHFtnk67woY88 HjjKoXtoQ/4q8njgyy8Dgjp2fSePB95/vFk+JRvjYYG7hlns9M1/kMcDs7eZ b93VuwbvzyRr6p/rezQ6TB4PPFyzdtPeXfzk8cCOpvZcDYF4PLCbbEOKYvI6 fM4neeWrwq5n836SxwO/N+sYizfaQB4PfMKw4DtfzBh5PLBa7OZ1ifsxrg84 Zcb7dUNaaFcBTk/6JnTVH8cZ4IgAAUc7Av2YwM2fx58/3IN2BuB+4enNZay4 T3rh4bJ1SUQTIXquWlB9OdZvjHy35MQjNfr7eOf5xDhsxT3SeyEJ/eA3+IVO DsTS91Ni2ybG4al6q5lvv9Yp0Pdrq3ZOjMNT9QNvJXTElZqIhTe2Jbd9wnVy gtF8k1jvBiJyvwxvuziOt9lmek+Ut/xvvyk//NrZEfebHJ//2DPl069zzmr5 u615dP33NA/ur7fp697B658zfq6l79/b380NNJv3mfDsaVsxzbCKlBP/2kc4 nUxMW7I1jpSg/1o9Ypl2vYqUoHeUiJnz5N47UoL+9wvbA5xWVaQEvY+b+UrD 8BhSgp5L1FJ00ZkqUoKeOdD2VkNYJSlBLzo3vKv5QSUpQe9Sui+kw62SlKCv Tcl//9W7kpSgn3p/nqX2X59/hW6XeG9hKMDfSdebc+bbMIjS7RVhb/hvztCi 6+Wf6DtqnKXrc97dPVqqTtdHrSza5LSFrvd8vXMV0xD9ej5/VmUpCqHrs7uE 4/QPfCZWzHIou78Gn2vg1otOkRp6+D4BZ9wUdzhRg8/XL8GZbLObmggzJa9n HL54nr43NULTkpoI4vKejQF/2S0uz41+fSu0iSi99yPAPgf1v3VfJO0PbiJ4 D8xe94oHz7NqluRrg1dNRIDyeLHld9QnabYstsluImQt42Z95sPr7I0NDM/s aCIe6SgYj6Tjfhb4hO6OXm89fB+BFZtmnHpwDtctwJts2xQPJOJ+FniRb+Kn zr24Hwe+wRdpJcGK9h9gc2PD3HxmvB7gPew8GyI5sR8usGLPpcst3/Tweib5 rkbnjeeM6JcEvrHn4OyBGMzvAzZ52/h7miTGzwPLbxsWiLiL/lBg6T02Kno8 3zHfZ5LnLbhQrlaNfmHgtwf4brvb4ToB2HHdgvce99BfAxx30UktRxf9MMAX iyOUf/RgHDXwxvw7y5heo/8CWECubHyXjiSpBz4SzvrGqA79j8CeLhHSW5et JfXAYTlBXC/TMV8G+NX0gHsfA6aReuCkw835Wy6g3xM4x+Jw3Ch3GHnfgA8L HhDKV0Z7LHDnivGtwjxY5xCYzd/4cmsr/u7A6TetzT+yoN8HWMJua5XxMcwj AG5K+naqSQ3tvcBKxPBT27/iAYDd15aIB/JhXsNUhg+Tn3+qD9tngu8/4m/Z Z/w77rqa/d/x8FX/ke8g/ido1i4jXE8C2z7sOHvuBP34MzHFEalb55HHAws+ Uu5ybsP3Gph9pvnIdG2MLwU2aorkMdHH/C/goAvP+Nj24zhA8rntXBaMWJ8H 2Gn6WnvNEMx7BTbNSD527jOeB9ifKfyhwXSM5wGO19R+d/w75jkCh1km7uX6 y18DvP/Yl4WpKmjvBa5N4Nx72RDPA+zzi7F2kSaOY8B6jGcztuaifRhY6kkg 7+9uzDsD9q+NJZ6siSJqWRZE1r7DeGPTZDbrj3d9CcEZKyWOiuP+neFaY/Xz vWYE++1Q7a5ojLNd25Py5Fwjnh84vUHJccF69EsAr3F8abZXGPOngFVrxo9a 3MD4WOBrb98KnhjAfStwavAVMaUWXMcCX/8hFBPhhvcNmNPZMuz5KqxDC8zL sWLtmhGskwPMuKyhb28cruuAl1nOWyHxV99D4Nv9aZ5tVej/Ar67aXr4s4Ee 7NM6yd/qfsYeXZdGOLpPDz7Wg3GSBUwlFyJmJREu1vdaqsYwDtPio4dW8HLM wwW+Yqqad+os1lsAXvGHZeeltSa4TpjkgzGadg9bpUg9cF2ogKkAUUi4h/fk ntXGeL/XPZzVhXdyCIG7Zou8EzGeMOO9McOFwgzCf2G+zX5vjIfMfOGgNJcX 7QbAOZsFEpxyMK4A+Ou+9Qsd3NEfBJyy0qfkIxc+D8BnV9k79p3AeQo4dFrf 7T0z84iIcYekxlG0R9WJMdlY78omPHSvp6VpY5xqq8LdBR+35BIutQlD8/Xx e+3VEHws1ZxNaJYbvWmah8dfbXZk6F2K/j7g8vVCHP0B+JwAx06vG1lsh/MI 8BeNL5frSzFeETi4xKtj/195o8ArzGJDs9nx/QLuHh+4LiSF9wc4bUekeEMT 1t0FDshY6pN7v5JIuVKUb/oR4/o6rFvstdrKCZFp235IbcXxniPgRX3M1jKi LjlC9oEn5vHfyE44fr8arxN4pggjl7QQXiew8A+vHvtufA6BxVzMd1xj3Ufq gUU+LfVX3F1F+BJFqdp/5Tm1OUodt6qpIER7reXZjmC84u3mDFaDV5XEgOSV 9k1B+L1GDjv3tR6tJGZptq0QO4F5VDczHjAdfIbjJLCp3y1W0Ub8HYHlalKX dmjhOg24ZebHs30n0L4B3Pa256tvSQkp4e8qpF1ftk6gnJTk9djedd8kWUlK 0J/bn9QwVFBBSlJfynjwunolKUGvcatsjeCNv/IyJtllzwhD/zV8v4B1o1hS Qq5iHDUw33x1x5gTaJcAdl+1wiVMMJ+U8HePJv9izfhdSErQM2zlXPi4phTl pN4wR2A6a0ERKUHPGmgvULaghJSgd8hW7H9Uj/ZM4IyDhzbE/DX+AxMdI3dZ IiPJ8Rb4SLQN6wdOzL8DNj5r/ItIxnwx4JdHhee/qcD4UuAtu9+sqB7AeQT4 J2etAzt3Finh+p399wmWleeSEvTWTXpza0IzSQn6l2cyI2bUZJES9BLTLd33 +eO6BTjJVbU+0BztJMBLFn43mbYd1+fAYwlPdR/MQzsY8Ife1kX37r8lJfzd RIvxxqNfkkgJ+t43Ai8a98SQEvQrlK4Xhn57S0rQL09aeWbjBXw+gYPvFCgv WIXrOuCkhKTVq0PQngYcHPpULlYL6zECKyQt2h5Yj/HkwGW5z2c53cDxEDha 5mjjzxnYnx14nFh4XNRPjAAJ12/QNfPIg1N+pAT9i9/+Qm8FVpES9ONsrSuL Pp0mJegf5SscKdbH5xY4rs1f60sh1osAlumXih2IZyH1wP4vChd3p+F6YyrD 51VzySe933R7l4icsLvMD3r827kvbB8Npen6oYfdWy4LfiFYuGunzdFGux/w 7JvNDjP/sisCa37nkdaZhXW9gE/uX1yn0Ib7IOBNn7/t3C2C8wIwV2W6vOgj rP8JrJ+UPXRgCL/3VIbPGtWDgxY+dH+l/tIx0Y0BdPuh2OG3EvK76Pq0c1fD dwzSz9O9OrPYpJXuR2CcwXtP6gVd77zpdxtDVicxanTvjxc7xmkAf6heeGnO SnwvgBN982SLrfE5B/Y58aOe3xDvJ7DDcTG2dku0YwMPhgh5nd2P60DgkBbd DpsorBc0leGztrBn4YleevxV5qknX1aP0ePZXO76xR/yox/Pm23vcdaijUjX +G65fRmuK4CrPszzZfuMdeSA7WRK415X4/oHmHkTV5NWJN6HqQyf4uah/N2c 9Hgw4lZiIUslXX9KXUv3xg66PvrDy6Tx383Edp4LIgEV+HsBG+Z6Dp/9q58C 8JW7dccE9v5Vb2GSPYWnXzr0Ce0GUxk+Q6rM9jE6dPvwjrJrvd8W0O2Hbe1W nLqx9ONZVvaE7VD7RFyqseCu7cS+rsALFh4cWm+D9XCAzzfqHOv/a98HrLJJ wE90BebLA9cobYkVHPyrDu0ke/lI/jRhxnhs4Eu7Bztsl2A8FXDsTar9BDgg jWo/AX4ZHN8/7RPmTQDb8HPHrPlr3wFcKZ2mnJeCdj/gw/xbrLYvxX03cOUj ql0RWGUF1a4IfNaIalcE9t0zziGxB88DzPuzY1Y7G+qBd589cTriE65bgCMS xvTMGDCuGFjl+8+tusl4f4C5eJednNuP8ZjA196a6wm2oZ0NuNmYWq8G+KvW mJKMFPYBB97WqMeUk41xZau3yoSnOTQSa0R82lIEcV0H3HypoyHiC67Pgb9e +m1Z+QTXP8BBOloPPx75q17lJOstZ+0oi0sl9cCduVJrpb7jPg5YOYfxWAz/ e1L/RSH34XBHI6Hevau01BHt1W+zrLY09jcRVx56sn2oQn8W8M0IY6WL0mgn tzXw1oz1aiLmmZ7SujaC4y2wxcwEfva3OI4Bs473/5g9iH63eQ5Wmy9vbiAW P73zSeTkB1KvltTPySvdRAw+rNz0pLKG1Jv+2LLr1pImgr3qN8WPZrt2wo/2 jLNtOH0Pfl//7U7LfnU3EkkyiXNTX2DcxUev24wOyXT/VPLsCf9afXeT6ttZ 6N83OT/6UNi1keBb+KcgTwvjOizcwhp+adHPY5kw4XezatycL6VZSv77TPGn /B2bGgkBF4/9RV8wnjw/7eyqsfEGQk9+ulrtOMMm0AP7Pp7rHSmIceDAsquo 3/fKjonvO9pPvX4V04nrr/hGvZ6xyeu5/ecNJR4DWOwsNR4DOKUyVaV/HOMZ gGdNiUsMn4xLZLpHjUtcPhmXuIf/BU+0Lf4ulwsXHB+OaySUP1DjFZMn4xWz dlPjFZ0m4xXnfKS+j22iE++j+66lDY8F8O+yl0zbWnv8f+/pPuq4BGzWviTp fBTaRYEdO6nxq8DGXNR5AZjFgDovTGX4PPwmu+3VSfr8Nec/5mvTXzLqNTl0 /XvxgZPZa+nrEJn/WLcoeVxzUu6l6w94E96rjNsJSQa3oNGtOD9OZfh4Kosx h+XQ143s/7H+nK1xRFE6hX682eT60z/o2dpBVtwvAIfujFFL+qtPHPD66Cnx /JPsok1dN05l+Gx9VO5VKkzfF3w6+O99RDRvsqOMAF2fNLmP6H7KJ2g7He0t wLzbm551/kY7J3CjNTXvA7hQnrqPAPa8J5HTy3aTlBP/2ke8qZ/Yv4EEfdU9 5+QTerakBL1jWXfitXuY9wSc1EXdrwG3zKHm+wBz/dJVNUvDdQ6w08ulxwWM 40gJf7fz0sR+GyTo97WYnGY/F0dK0H+98UvPezyRlKA/4kTdXwNbimluXvIH 61cAq7Y5cJbyYF8DYKt31H038G2bsWjuOTmkhL/L9HTC3gES9H4JIt18e3JI Cfq7KU8SrnfmkhL0Ijz35BVFsE4pcKkH1e4BvDdZ64fuc6wnABx35OZe7qcl pITzf98yYZ8CCXpu9rwbz0RLSQl6J/avvy9dLCMl6AX/SAgruqK/A3jHKHfv Hj98HoBFd73/eeKvvsnARfbUPE1gIS9qniaw+oAtJU8TeMGkPXHBFLui3f0H 1Ua3KklJXj/jb+t9VlWkBL3L8vcn4j9VkBL0GfupdkXgzdZNjEt8cZ0JfC30 4Y9nQ9hPBzjOwb3xj5omqQf+cSl7UWV9JbFksXnVcVm0675VZl1r9KaCeHCs 4836x2gHLi4NO7XkQyWhrx0mWS6Px6cGUu26wKx3S9cFe2PddeCVK9/289jh cw5sMK03eeRqGSE8wm83axbaw+9M2sn7kqh28ioel9JsnTJCNalF+9IO1Deb zVxsfhHfO+BVYlT7OTBT9LqvyyRwfAOWvHub8X4APg/AtjkpxTvnFRJpvquW frZCP468vNHPY8X5xIkPBbeUl6J/RGeOJF+JD9ZBAu6zoPodgH8sVCxnasd6 XMAe0jLz+RvQzga81YxaxwA4qZVaxwA4cB21jgHwAFdLWUVNNnH7osvDxQvR L6MvPuHfkZ/i3wlPkf6VfyOHCFulOX1ZKvp3+IWp/hrgorQt61+GoZ8deA/v 6gTbNqwHCOw653xIG3cGIXElb4Pzd/R/udZM+MUkpvjFhDmaMvtF0wkDC3a/ 23ro78uc4fXxdUIa8fT62/mhgagfmXtqxa9xrBMObPXW6FAoE9q3gLOsja27 MhMJRX9dfyY2rD/TP+Rv77UxjpDJeOjn/QP1a6YdbOa7l0RY2hg7DH1EP6Px W9ZVt/7qdwPctfeE5J6nbqQeuCq2a1aVC64rgNUDrt0Jc8HfF1hK6aWyuFM0 IRxeJSiigX7nmaet6jbH4nMCrHCV6m8FPj/3+QrRNbjfBJawLDTw13lOcN1v 7y/kwPpIjx4zMe6LDyFKDjURNQKoX64eXNKtjOM2cNQw1Y8MHMoSNbCBE+M9 gCPzO22zB7wIfbPvzzP90W/Ozis4W1vYk/ikofHnVxLq16wIqR+egc8bsJmn Ym8dI+ahA49ruZdqGUmR/x/k/9bu/++Xb7an+uUZ3pdufbfJgghNE+Df/Rz1 My+Nzt2wBP2SwE8+U/31wPLXK1leDNLrle1rrRfNlHpD0wvc5JBh1sXfC/im PzUOAdirJKOO4wnWbwe2t8/rLLdIpp3/2Wis3EFjHLeBxbRHA0+5ol0C+CIv Y2t2GL2Pz9k9h9+lv8T5CHhzMjXuAli4RWGh1DL0pwAnS3Rf6xYrpJ2fp5lt Nds5er8S9g1RdxqeYx1U4KEXtpKi+li/FNj00PrWOtky2nmUdbcIGwzieYBr tanxJ8CXb11n/5CGcVzAs96wqWSvmBpP2UdcLzof6OOL9knget/Zh9M9MA4N +Ou2j5eWNtPjiH6bCrj3D9DreQol8dcr52G9UOCO8dzr0wLp9S3DFs3q0bXD /SPwy2Xr7G+64jgJzHbv5nPZJxhnArxbw6FX1hLrYwBXvuaK1p+N9UKBz99r 2cBzg153NDasp83vANarAT46kxpHBGxecCkwLZ8eT+XVuMEryJle3zvskESY PDPO+8CiMVqcga04HwE//5R0VreTXpfVprV/V+t3jMcDzmWebn1yN/rlgXM/ U+OpgK35Pb/ercXzALfs7bzyZz69bvO8vLtms42w/hjwRuuq382z8b4Bn9xC rcMMPK+QWocZ+PQW9dk8V3GcBL46pQ4zcOEb6c5L3JWkvw+Y+9K/664//I+6 6wfL/l13/cnZL4Z+qWinApZautfiAjPaQ4BZDZrWqkjhPhc44nLutG2XMD4E OMGRWpceuPIQtS498IkZ/+4vkMn07/4CBp3UfgHADrXUvgDAX75T+wIAv/iP /hct/9H/QvIHtZ8FsOUNaj8L4IYD/+6T8vE/+qT4/EefFP8P1P4mwNmzqX1M gGcbUvuYAK+9vX26wUgk7fzN6kcPpy+ij9u2310u20fTx8NgEWofH+DN0dQ+ PsAl/9HXSfM/+jpV+P+7r1b+f/TVEnb5d18tIUZqPzJgcXVq3zGSd1L7jgEL if27H5+L8r/78b0f/3c/vjW+1D56wCftqf3ygBuPUvvlAf/s5Agd7HhFNN8c O8i4Gutb+uectHo0z44oWrpzh5MWrqM0krrbTd+9pF1PThm1DybwriJqv0vg iv4p/S4nOXT2RB/ViCl9VP1lJ/qlJk3tl9r8736ppr+ofU6B11RT+5wCEyrU PrPA0h+ofWaBf9pN9CPOmNKPWG10ou+wxZS+wwKmE32HR6f0Ha7roPZfBlYQ ofZfBu7wclzucjCLYN26/XtcHe77rDfPrnRnTSECzHbK1V/Dfc2DA9pvT3u+ I7y/PF/QcQLzK/dN9kNvmNIPfSB6ou/57bXUvudZwRN9z/2m9D0Xnuxf3zml f/2ZgYn+9YduU/vX/3qbmHkuoIKY63nHam0y2jFmXd5tYWRQRvTNvc6xfhPa Da7EJH8KzysiMvkC2MJ8MJ76WElsVv+sckL5tJsF11ccX99x7DU7plNC8Flo 5CiX4nwVs0fkofOJYiKkUV80/iiep129Ii/bpJwQkVU3ucSL56njnv+bECon DuU0zLENQn1t2y/2C2qlpAR9dYe2vmVYOSnJ++O0f4YIVwUpQZ+9gxrfDqyy jhrPDqw5c/SuUSX6qYHj3AQsKh5inUBg1Ucse3wk0R4IHNORorjTFeNmgS04 3+knsWCdVeBjtW5RK1ajXxK4KdyCeZkb+iWBFzCIzsrUwHEP2Eqy/s7rKJw3 gcMYqXklwL7fqXklwFca01fe3EuQeuAD+7abGRTsIfXAIvuoeSjA1vuoeSjA t+6MS/8xxrho4J6bGzJmXMJ9EHDQQ2reCvCC7dS8FWBXMQNp2TJZUg98kNOo NPAG1g8Hts6xpuS5AC+ekucC3Kmb45ruiucBNnS+/XsuC+qBOV2oeTHAKvzU vBhgMwkV3RQGvH7gSx6Hjy1xxvgl4Mgn1Dwa4Ogcah4N8POs8y9bsmVIPbC4 lcwu/kz8fYF31lHzboAtdlDzboDFDmY6zPVFfzSw6Y/NA/xFWD8c2CaDmqcD nGVBzdMBrm86x1xvgPYZ4NVCD4XFN2FfAOB9u2RjVuugHQmYq5qa7wOsWOpP yfcBbiuPZTsvifUhgR0TQ2MfERjXCrz3T4tepi32LwN+okPNGwLWDj1KyRsC 9j2bxJncgHGVwG3mG8KdcjFOGPjWhWPZu6ajPwj4/RZq/hHw3QvU/CPguhfz 72rHY7wHMNMV1QCbjUykHljSrWtt7hIcJ4HlVZJLC54IkHrgS06nHdfrDJLf F1gxquLrrWH0awNL1Dq/DIzHuAvGfY+HtJUaCOHD3Q2mOhi30DWLa2usdBPh 8kWY48t3jFsAjtkV+eWHHcZXBEbViS3TbSKepIxe9B5APz7wb6nF08PnYT0B YL+DxlVWcujfB95vVvNcJhz93cBjsyuG2YWwjgHJ8nx8ec+w7gEwe/b6c7OF cd8HrHZhba3eEPrNgZXnbIsPGsA8IODeeUY8ArwYxwLcbC1nUvsF7yewHfFh o9k1rAsKvCBj2+avWzAOAXikd/ETP1aMMwSWfMmrycWA8xowr2D5GTkWjMeb yuSn9Y7DJgZ6vZS4km9zTefQ/dp2WzcMuN3rJvb2+bZumVlOyol/7SMO+9ht dZhdRUrQ31zssoxruJIYrWjJK5z/V13i24kXtz0vJ9T673A5R6F9JS7+9S85 Tfr+pXC9x3jMNXpfwlTB89p1avR9fZ/SiL5vNl2fpKWj0TSXntdm/x/2q5+5 8dUZPWWkBH3QXd6F4gT9eph+tBy0ZK0mBpdIGM3vwP2i5zVXZ+aef/TJYjhU In6jjLgyfua02xjagfTSeThmxbbRjn+UseFqw/48IsbPcM/8j+gPylS/0x85 q5N2/Iz93EvHbej6lJs8uvwvW2n6r9qxOeLKiaQE/UqZ9Q+Sj+O8BvyIf+Zo jjzOg8DrRO9U/HLDeoPABZo7PggIKJB6YO37foHzWNEuBFze5daZI4L+KeA5 Bzpe3b2L9SGBOV35HnsuQjsS8AuztebM79FOC/zA+cCCrmKcH4G3/2q2dbHB 9Q9wTdr9wJPbcfwEPsw8Fvx6K8a/APu9EvJS2oXjJ/CfmzLebvtxnARuFHF1 Wjkb7erAh0oDu+aoYh0V4EcS54sSz2HcGvCRHZsee97BPG7glPsFkXfCMJ4L WJ9LytVnAY5XwHs77127U4FxdMB1p1hjPzXgfhnYXlSM44c01jEDnv17vfEN c1y3AO/ZdI1rHRvuC4CbP6erXF6N9iVgj1dPDfdU4PHA7/aaRssuwH0o8NfX TkWpY7iPBs46/KWd9TzOp8Dff75zeb6tjqzLAXxP2lV70GEOeTwwe71+IUsk 9iECTh1cPbd9BNd7wLqPqPVhgP1EqO8XcNyLw0aCBbieB75/jFo3BnjhQur7 CKwz/OvLxjZc9wIPX6HWkwG2W059f4HzH83ryjqC+xHgk0zUOjPAM/ZS33fg ggRxMa3ZuO4FfhZGrT8DzHKLOj4A8332LTBeiut84CXi1Lo0wIEfqOMJ8EvB 5M2n1dA+D/zuArVeDfAScer4Azwz78hCu3y0AwNflKLWsQEOukIdr4BH96mV /DHB/RFwcz61vg3wrJPU8Q14x8JNKj0HcX8KLBhPrXsDPHCJOh4C66xbM22H FvYfB97IT62HA3yokzp+AqfNucH3+Rj6wYF/yVPr5AA/HR6ljKvAqkKa2xZw 4/4X+IcLtX4OsBoPdVwF3l5BHWeA6x/sDk9gwnEDmGVf+599v9FPBGzeVlei cxT3icBGK/VaFjThfgTY/9VhvZYitG8Ae11+b/tRH/8u8MWa99fk1XCdDKwb W+8ftQvX4cB1odR5B3jwGnXeAfY7RI0fTnowET+8RoQ6vwDf46bGCevdn4gT LrpLnV+Afz6lxgPnpE/EA3Op1V91OJRJyol/7SNUh7n+v44bSNBn/JxYX12Z R11fvVXVTLiZXkE8OCzt9Psa2uV+d0/UdwMJel2miXWX2CB13XW6qvBi7aMi omSRd47HG1wnCrZM1H0DCfqUwon1GI83dT22eckKg6rtaDekSvw0LDM6s2sP Pd7VepiZifU9PY7UcblMnN8gPT5Tv+jf9RLdBSfqJb5ZKOMvJ/WYlP91PfsG /11H8bbjRB1FjlrOx51hSaT8r/N83jNRXzFGfaKuIkg4vqp/SZ3UgXxS/td5 9J0n6i5qq0/UWwQJxw/J8e/UHy4n5X+d56jXRD3GmCUTdRhBwvFfq87bKt+v JFYfW/XnWAPuU0pMJuozggR92e6J+owgQT9jaI7WkaPFxPiMK4drjuHzo2R6 ac3nxnTifW62sSs72p8rpk3UcwQJ+oDKibqOyWrUuo4sy67tsGfKIq71p+vs HMP9wYNOzcHr5+nxAEt3mppl3qf79c425kbeUqHvg9aV1cmEa9P3Ba07P90v +Ep/nnenBWek1tL9g+dF/71fG/AvOakbUknK//q92LquPPDYT8+HcgqK7dq/ 6h91wrs/1jEX0OPDnUU0Ygb+kS+WpzNw/r4mPT5coK27ssaDnvf3cc2/66mu +496qq1nq516lel1a99d+Xed1TSdf9dZDYm69MFy5lci4mesc41HBSkn/rWP WKDkZSEvVU18PF69QM8Gx0PDhTdkxLMqCKGaMYv7ljgeHjDZkLlJLpv4mGe4 wuAEPj93ivYfF/qeSSQtPVlpwIy/877xtYkVXzOIRttzgQ/uoJ7FOz7GoxXt FcCObjbh0eXoFwPWZ/O4unw3+qOBs/fdOm91B+0bwGeqjkXMuYH+d+BV+/k+ pQSjPrh3222PGQ1EmcqgHncN5gf18fleOsvbQOwbdlzvfxX3TRrKbB63bJoI WZ8mS6mff81rB7fuK3nRREgfPsBccxLnL+ay6G3G5U3El9Dh5Jpw3Ae9kHPe HDLURIxvOps+vAT1wFuSfcT9enD/BaxcePnB7CL8u8AvKg7WbXyH1wkctnjL Jo7nOF8Dn5aR/fGpFu1dwAVKo35VSZgnAnzxXFF3uzPqgfNiqHY/pr0Tdr8U Wardb9Gk3U9zgGr3A5YRp9r9SiMn7H5aWVS7H7Cg6jVVQwOsD8busbmOybOB +GDGcfB+MN6H0cqINex2TcQ3Ptezc8dw/QNsvVcoUT8V72c8867N14OaiNv7 qHZFkguiB5MFcJ0D/G5W4PqfFnh/gIvL5DardOJ9Bg6WeFUZ+BPraQPnGFH9 LyRv+BnHeRrzhoDXc1P9KcAr58wQZmLFPCDgcAWqfwS4YIFJuO1XzOsBnstP 9XcAz3xZM8jJhPZM4KdxVP8FcNEeqt8BmLWW6i8Adiul2vOBCWOqvR246+eR fbdeYzwAcEk01U4OPJs9xfWBEtalAY6zp9rJgSU2UO3kwO+yZfhcuDFfD3hG tbTXyek4ngB/GfEaI6ZhHhlwK5cTw1gk5gsAx7Joz7snh+PA5rxyV7Y3TYTR 2QbD0Vwcx4C7R0coflJgPx+qPxR4XTvVHzqV4aMhYndouyI9D+uM66OZtpF0 /cC+yqA97+j65Blf89X96fbhTs1c48VDXwiPTxeq9S49JeXEv/YRelXU+gDA 2eJc5WpNK3H8n+QxWfP3LjdxPwUsvCtztsfzZFLC+V0m61m4TKlrcfroRD0L kKBP6w/q4HqcR0rQB0/W9QieUt9DcLKuh+CU+h4vgxWFLQLLSAl67ck6KdpT 6qVYBkzUSQEJ+m+JeS8v1GA+KXAR50BJiV4VKeH4lF/RC2rbK0kJem9236Ov 76IdAzjch62Kd00lEZb3STUhFuOqmEvCe15+rSD6TocKBPPiOmG9zI2uW1/Q zwUsU0atqwPMWVRPqasDLHTU/lPY1lKi61iyq6Ae2uMFZpzlqf2FcQLAq3qp dYeAr1yj1h0CZrv2OLKgPp/4ufvNc64FuP/q33O/ONSulHDQFH8cvhP/7pYj R7Ty5hYT+qqqZcsu4/r3zgHJXSPvMD8CeNYItV4T8FoRar0m4MUbc9VzmLIJ c0PuCu7ruL7aGNfq9dwOvy/wzz8fKPWmgOWOUutNAbP7cKiv3ZBGWIlYVPR2 4T5C8HbUBaPd+HsBc3NT63EBZyym1uMCllhrGv/sZjJxcSjo/rGn6Df48Xu9 jmVlAiHN+JafVw7zEapeuQ3H+MQTclXLMhY8Rr1AtXcPQy3G8QJr/KTWNwNO f0atbwZcJiJ+3fZIDHFoS/Snpz0Y/6O9I/GBelUk0Sl8hKurAOOXPkVp3Had jc8JsHC+vlXAvQiibu1A2VkTjBMrqukI7RHC6wGWGlQ6T2jeJyLSZrNwd2P8 /+KrVxnUf2DcMvD4OF+BY+Jt8jiQSfn1K45JYP9xYKE1W3Iq+HHeBE7OPfdt 2fontPNcP2r/uE+W3jc8U7ztV3s+5msAG0oeVlP9iPG6wA3evxkadDD+HNjr lPG2jZJT6+z3EQrSadMHqulxfT83dhUvXof5hsA6p81iwk0wDgfYu3xrl4oH Pp/AA4VC3Kvy0a4IHDl0Y2WYEuajAbPWXjb6tB7zWYDdpdI5Bzlyade5+fSm R0U89Dj/jx9U7gQwYtwC8OtVbSnmcvieApc0vpTi3kn3S162Ckjz+oB2V2Dz 8Lqb5n/lCwDHH9md6zAf90fA3+WNDBQX4v0E1lWd873CFO8b8D7V3+wj5vTr kTI4Fx0mSo8vFRi0W5fFjPcNuGOP4v6Rl1gnBnjD8h1CBpfp8ahvJJL51Prp ftI8jZc3P6thXiGwuffq1Q7cGDcFfOZJ4qW07fT4XtWG7WpLr9PjnEObQpXs WbFfIfDzdWYGG5Lpx18vGf9oU0y3e2ikVl4u6MX7D9wVNO9Uhz6OV8Cvj9y6 3stNt2+0vT2/tOoHPW4/cijR50Ih2nuBj2g+DFtui+MtsFwg57QTPnQ7ic99 3QdNdnT9/iyf5EF29DsAz+tpNu0KocctL14QmsP3j7hlc/6BKwas9Ptj4m7a IMeL+T7A7bysA9x/5XMBc8iZCKh3q5J64IoRP70VXBifA7xyoamj8yMcr4B1 7sRfl12AeSLAOuWXw5zi6PdB0PymwCdbuv3q18Xl+9glcD4FXnNYP57FFfNV gUf8F9Wk59L98jku5uHzOvB5Brayrta48B3t88B3hFKfbn6Hfg3gvgWf9oYk Yf8U4E4m6c51ifS/26zYmWpmh/VngO1EnzuwK+HfBW566Bx5wZR+nqZW05Ce jS00/ZGYuDjLzOf4HE5yM9vJmZwKmD8CbMnwR9qrmh5H4RzQLJcsTP+7NZvM wlQ80W8F/PHDtBuOSbjvA/7D/5EpZzu+j8A5maG1P+7ifgr4aq3RT7lujAMH VuVhX/yWCd9fYK020wbLMHr+zqUVxw95aNO/l9b3aw5/CnG8AlZf9WmObQLG 8wPXG9iXFSTjfAes0Bb8MDMR/UTAB1fb7BWWw/cC+KCVTEcCJ+aVA4u85H0z TRL9U8BHvSOE42/jvACcGjBanlBuQeqBS1oX9fxkfUjqgevmruR8sArXM8Ap 6dK1r6bTx439B+8NpTvSx+0jAr7rmIxwHgTWi/QW0B3D3x3Y9H1fgc9nXJcC r/a4tH/mJvwdgR2G9JIYF+C+FjjoluJ1u904ngBr9jYvjfbG3wtYt9gv3UoZ 1/nA1usGTzVXY7074JzARAPLTMxvBTZdVal65jXG1QPbRQifDjiD9Z2A5/cp luhJlNDuW5/GGWvCh57vE28VdKNtOsZPAvNd/nGa5S72OwVmn82xSykP/aTA Z7IXDdSuxPEQuN/vrpJPK667gLm1xo4XrMD7CXzIuSt/+wUcD4G57YRf5zJh /hfw2y9BtexpibTvpeB7MNA7O4um53ravn9DHz4/wNlGvJJH/8prBu5QFVsq vwLHSeCyu351N1cGkHrgALNaWY8XGKcBfK/NoqW5FO8n8OH3n4NXBOD+C9j7 ad79oNMGpB74S7FVW916XE8Cf7e8dnhwH86nwMbsvDw8K3B8AP7RcOJi+1PM kwUWE5L6ubwZxz3gHCXpljU+j/D5nGSmWzaSksGYJwusUvPtvnfxU1IPbNp9 vz8mFN87YIe8Ywebj/713k2yiYng3bOPcFwCVonY+LF9G753wKOL5UO+e+N6 Hngfk/gpRw4c54EtyjITAuwwfwS4IL0tpLT2GqkHtvwq4aYphPcfWHM7706h c7gOB/6z+7x2RzO+v8CD7nNlHFfiOhz4St+mVRdN8TkBbjO+vet3lDOpB964 6d9xidM+cT3ZuQTr0gBr5y88cEQJ7epff0X07GZpIkY525udNqNdXaXd5Pn7 E02EnVPJKftbqH/yXlG7/3QT4R+Qphh9LZ8Qfr2yNmQ3zv8Zj/PEG19kEyvf LGtlX492ifjdAStr/6pnAjxjUa5BxEXcLwAL7/p2+/Q6fB6AcwK3NfW2/z1O TvCf+M3LGebhcwXcU+ATztCEzyfwgo+bkjN0Ma8EOMez9+OY1F/P+SQLO8mu 6NXC+RS4c4bp2Sc/QgjdP/ePnuPBfKX+VfLDqmfweQDmHt4n1L0M30fgd+cs LYI+43MFXDaUJOF1LoE4lFEWVaeLdg/tCjnGZ3mRhMGcl6nvi9EuMci1m1c3 Du3SwDNucyXML8G4FOCQoB8zX83B5x84Wm7kQ4Uqjm/ABsyunyPc8D0CXrU2 QcA9Cn9HYKOaWWwFt3HcBtZwnbk5JR/fa2AB4cvaDjzPidEPfRyly/B+pjmq 8S7mcCCit39ROLMf89qO+3x0ZH+LcU3AP6/vcr3hjfnawK9Ol0umrcb6HsDd 3DxBo49xvAL+pXGnMOQp2smB3dU4VeyfYvwS8B2FJRd8lFEPPOvMUVVpe9yv AR9/l2ebKo7rdmBNCXfDqw44DgNXpD3SejeXbidpF4gMymygz3dHVux/vOsI 7heArQ53chW5Y5478C915kzrHPRHAN+XXi09oId+VWBb9YKZ/vfdCNkTHn/a htB+9f6z9GWJ5TG06/Fy3jLqsgbtRcB/tjkHzwrCPCbgenO963lq+NwCv3Du H1mfi78LyRdffbjw8wThcmStC3MbPifLPebNmcMwtQ9oH2E8XuPH3JZK0w8e P1g6UoD2CuDQ/E3nUgzx/QKemfe9UUeKvi+OaKv23pVIX3fNKHob1vgO18/A P1g/dhQE4fcFvqJz/a5LNNr3gB+PsT2Zb4/7AmALpTlP7BfR7//bPwYhNR4F NP0wR6vk+bmm5HmALxr0HL1shO81cFvuVkbeBTjPAudtSy1NtcHnCli3+uHl hVa47gKOWsBp9MsBjwdemcUlN16P4yHweftf+jde4LgNPJz8Ql3oF32/wBR1 J3OXIj4nwGvC14qZe+L8C5xivasu0wXrKgDPjjnG+/Q13U711Knt87BgHU3v oX3vV2YB2l2B5cTUrKN7NpJ64JKdC0u+GOJ7AbwguKRw92Ocj4AHGa3GDubh vAa89u4TK8fMdNr18AZLvGbIoT+HjQtr5bV24f0BNnCcr9VxENctwKvYzQNm N+G+A3hr54XKvm8YFw1srZysm3gS1y3Aj/U/3RT1w/EWWE9XePP1F/i8AS+v 1Wfj0aGvc6rZ+DfIM+J7Adx6S/FlKg/GDwN/fF0n01eF8xpw7A7DxEUf8HkD ltd8yZ0+nW5/0xVu7ah1o1/P99127RdZcb4DZq+Uj34vhc8b8G99e7HnN+n2 1SXfdVM/N9KfK58DHT0hVrjOB46ubbjk1Ir7buDgSJ/EwfvYjwB4Pp+r/QdO TlIPPCTbkGObgvXHgHkUN/1WW4K/L/CqQvl7C07j7wgcWvl5/1ULPA/w4c7T 03y4sV4fsIjCIreleX/ZHybZ7zmHSXYU3f62W99w9Wgq3S40PX7bnoJVOI4B t3ctWeLfhuMq8HDx561XPuP1A+sJHBk4ExpPO39T0YsDrcF0u/TTH8eSVrPQ 7Ydt3T8Wq+6nX/+aKdcJzNJDvU5gx8vPFz9+QX8Oy6SCOdRe4/UDix2g/o7A O6f8XsBOh/TXL5XDcQY4XoH6uwOfm/L7Als9qjD0M8F67MAbu0uiW37i+h84 xPuUFpsP7neA1bcVm1lb0O/zPMd/j2/BQf8e37J4v6/PfIzXA3xyEXXcAzZw mjLuTfKPT7ZFTV5o3wDWOde2W78Z7RjAguy3d3P8QH8f8JgkdX4EXl5HnR+B Ff74hLO+xHUssMq8mSrnf9DrnHw98u95P3783/N+l+DgeH0L2n+ANxZT1yfA suzU9QnwRoNnXvLO6K8H5pHg4qj2w/h84FXaE+vG8ePUdWPKp3+vGze7UteN wO47qetGYE37w/MXL8d8BGBD9xeblUPQjwC8QJu6zgc20aGu84FFgx+vtB3B /SBw5+aJ/UvWlP2LlPPE/uXBlP1LPEvnfJsKrKMFvK+U6s8F1t9G9ecCLy44 Lr9ZDdctwFXDE/vHOVP2j8qVE/vHDVP2j1fTXPabXkW7JbDiml62P6roFwPe 8GTBkOBb/F2Ad0hPxEWcmhIX0Xl4Ii7i3pS4CBObDPVn/RWkBP37GXsG8gqq iKNDV5eaGOH660JfQaW8FO6PgIeinsgLnSgimPg3f+iswPMLzDQPsknD8Qp4 EbuY38ESPA+wtS/1ewGzXHvS1ns7jRjdvdnZMQnjIhKHE59be+C8Buy/mnrf gGdPuc/AXvnU3xE4dPs7Zq+r/sQ9CRYt5z58rqKvTPMb24HXD8w/5bkCfhpE fW5J/vQo18dwDdHK6lB0cQyfz9771PcF+L7y4M3HH9AuCvzTjvreAZeIU8cB YJPDi7OHhjH+CeQC9fQjVmK4TweuO0MdZ4B/yM4pP3slhsjamDxH7zPGb3CG Gvk0poQR42HuG9aEYjxG2sXw+9krrhFiR+O77Fzx+96eMh4CH6tU4GQywHkE eNaU8Rm4ge3f43MCG3VeAD5XtUX4+km6H2ThqMv6A1+wfgjw1inzDnBnU6jT +XKcr4HfTZm/gA9PmX+BeyT+Pf96r6HOp8AjXdT5Hdir4fIXDR66X8zI5snN UC308wI3Jt+v9X+H7wvwRa3tB59upscbHPKmrjeAVUyXsN/oQXsg8NL/WEdZ XnC67NbyV73rSV7e8+/126OQ2xv6bfF3Ae7epet+P4u+LpVTNI87nYn+PuB9 DkWnFv5Vjx04e4g5b3kgfT0ZmsC5IkEa/SnAegG3ojdvoe8XqvvyysI34nsH nN8/wBW1HvMigaN75keeN6Pnd4x+PbVwy0O0IwF7l69vKKun19362r52TyU7 vkfASo+OOoqK4vsL/FKs/qHFvlDaec5LfzO4Hoa/L/C0nheX5ndiniaw7DN2 xe60IEKtZ/m7ZgccJ8/lHPe0Hcf1LTDbaEDF8kpchwOrMQkP2laKknUtgHed P3Jh7Z1YQjg4/PTQchxn1mxjNvBKw+sE9t18nWH/d8xLBbYV4noY0hZDaF/a duJBDp5nhf9Vpcv1aI8F7v5klM1QgftW4JXzA6QaNuH6B/gqu8NFB5UMIsMy ad+OasynWK02Wqx2GL8vsPmd8SAps1wiJ5HhldY+zMvJcbcavFuYTvi9k7aX 5ML5LpBPP0CfG78vsGde/8wGRsyzAF4iuX2u9199TICf+IXFuAnlE9GRYc9i DdCP8M33T4r2X32RgF8Fxlpt2Y9x0cBKxaudSy7i+AY8lrqbsbihjJhpe21M Twbfe9m1fGZOJRgPAFyRQviffoV1LIAdf7P+4v3LTgVs+FD0KP/DSkKo/IF6 VDnGBwkky4WaJZURr+wNXnM64N/NZTnYHSuMcRHA7rcvMl2ahnU2gNNeljKz KqNfEjjEpf2zY0wV8aZZZEfvA1wXKRbWb67bi78L8Bs9L2YlFYw/B07aHcNj LIDjA7BEZgLjm7flpITzz9JseD+ugHXqgAMLq6zn9WJ+B/Bnvpm9krPRHwrM 3frbUoqhiJRw/rGXq+btFc8hJej7u5ntixwLSEk+JwktfYWseN+AK/pYHZL/ GleBX5zaKav9Ee3YJJ8Vt98jgfsaYEeVYypSCpmkhL+7WN38WIhNAilBb/jW wOD3kXRSgv4aN7VPAfDRBMaNbUNobwcO4D9nGq6HdZCAefIkjcseRJMSzv9m IKrdoPkBKUEfGhX3cEvYK1KCnv9dnGeQJuYFAOdtovZ9AJ63h9pvC7ikKnX9 cA3mcUxl+LhqujoR1t9o+hUB7cwZWfQ8U+cvxBV91W+EeyG1vwbwkIwxh5oe 5oUBvx/Lzc1djPujqQwfxbO9+wVV6Hlwyo756nOv0vMOJF5G/DRz7CWULgl0 L3mCvxfwNF9qvxLg30zH4i+Y4XgF/FLpW7+UD9ZtmMrwUZ01Hvyhlp4nWCln r7KoiZ5X6C7IvfHZtw7i1+tLmoHh+PsCb/Sn9oUBZlspICzLhv0ZgX3teYuu VmM84VSGz3yJf/fNecufv3xPFj0vMkbgR1Tur1bC91dabeU5fK6AM1nE096q 474G2EQrNuP4ZqzbCTxq9nKbyly0S09l+KTO92HTtWim6R380hWvsdDzQB/Z Dwzs9W/+3zxVYczSj+vqqQwfndztpxWPNdH03eGyYYdF6XpNViktplR636to k9y+0nn0vJiGNQaOWT8aiB3rqP2eoib7Pf2WovZpUp7s0zT1PIyRlpUqPvTn R6qKjXfXGXqeqfa5f+eZLo6eyBsVTTrJsFnak5QT/9pH+O/0WbmdPZ6UoOeQ nsgPBwl6+5aJfG+QoE/6OZG/DRL0LxUm8rFBgn5vxUSetYU6Nc96oG8ib/o2 MzVvWnPxRL5z+Q9qvrO77ERd0I9T6oKyigzwXThQSUrQMypN1AcYP06tDyBY OJHvf5aLmu//daHb0rnzswjHQXGzy8N/9a1IotZjAT7I+ptSXwX4cCS1Xgpw bB61/gmwRx+1ngnw/h3U+iTAIvXUeiPA19Wp9UOAbwhR64EAc8pS63sAP11K rdcBfGwXtf4GcPQGU7/ePzhfT2X4WHSLVfcdpT//pwwYR+LkPhGz2lsui7Fi PEyryadT6oxNRNkIta8i8CMBav1MYF19at1LYEYGar1K4BuXqXUmgVntqfUh gZNNqHUdgYW7qPUYgS+so9ZRBL6ZQK1zCFx7jVqHEFjMmVonENjviFjX8Xqs Xwos60Ptpwns5kCtvzqV4WM4OT4LbDd2O/8H7WDAQ9YmqvOno18eWNb5W93J BsynmMrwKYnZnrJyPn2c7xkflTTjoOvL1Rc9rX5Hn3/LNwys2FlI1+tLSXPa K9PXD0v3ds+xt6DrLfvz+nwF6esQe/Mz339I0/WLX5gUffClr5dWR+kc2ZNN 17O/3cMw7QB93eXWuj3YyOAb8aJkoemFaR6knPjXPsKsQvKVTNojUoJex+VL iIRFJClB79dUyB8SHUVK0OdtLwp52pVOStBXySXGp8ZkkBL0bjtSGL6tLSAl 6NuX1hwpEiokJejXnFlcVeT71757kqdvf3Or7BH6YYGH11muOs2LdTKBv5xI 8LJ7hu8d8LzJ/c+8KfsgAZWQ+LkBFaQEPaFZJ88ciesWYNWlR2svDGPcO3DZ Iur+CHil55d6Dvc/pP0BOGVy32c3Zd9XptRacKarktBSEzcS3vjXfGcrOj3W oILgGn/w674Q5mEsjtNeo1VbTlS57ordrYj2OZnJfavFlH2rROsT/VK+MsJV PEtEJwbtUr+7OpeuXvbX+naS75csX6R86K94oUlu/X2WKT0R99fA6mmES/g5 XNcBf3qkdyDuKdorgFvN3zw+FZ9HzNu79o1CENoN0twqnF1zcwn/2MXbJLjR juE5aWd4N8XOIJn2J7NgTy7RspLBz1sTj3d3NCnleZNDiCfKcp4PQb3fo9nL 0mdnE1Fvrlx8egXna61Je0vZFHtL+/ZAq7vRqQTzhRodDQ7Mc8ybtP8oTLH/ XIvy+qJ9JJoI9PDOen4W/TIMqussDBehPQS4/oHde95X6DcH3jSHahcCttwh 2mw7LkfqgVddCZFYfjOSsNJ5H2XVhH83tPqXp19HBHEwW3sj62m0nwfx6NZz +OK6HXjeA09Go2i8TuA5q6h2MOArnTyuu7uwfixw2WEP2+nDj4gfBUO5rqbo H5QqYXHm3uJEuEQ9XHZmLdrtfwZN2P1uTrH7rXr3Pdfay53wa7XlCH2P52mX G6t+U4zvKfDvfVe3sQej3RhYTyOv9c133B8Bu0t123ez4L4eeEcL1T4J7JIW HHFk7jj5fYHHxP9t/9x682XFz7/6PoLcqMy9YEHs1LpIfcSrMa6ExyIZNL2C +Zncke34PgJHDjXMCmPCeRx4jSfVTgu8iNl6w5VluA4Bjq74tx34+I7rl6vn FtP0IbVFWcob8XqAW8+YrhzVwN8F+HQL1Z4M7Jx3STd+Ba6jgJ8IL9Xm+U7/ u5fcnouK7KXH22j0Uu3bwOukjceeMmN9AOCFvf+2k+9ZEbNpzJMeJyb4jWpv B/aQEvn56K4X+TwAezxm0JDjo+cbbpPISs47Srfzq6i2BDtUof0BuDq+7dcG W7R7A8f/h7/AI2qLg91reh5i01eqHwGYceGsDmebrbi+neQhUemSD4vQzgA8 i8l9r+wXjLMC9oml+jVILpy5IskX17HATpVSDq2/6PFXD+s29aSvo/tfZta5 val4gvWTgX1mrBuI+47zEbCA9r/9TbbFowYbFmKdZ+DzigG31zng+YGZBqj5 sMC/X1P7WwEv51dsTHNG/yBw1KC3/JKZdH+i9X/0/0rRN1RT/Ec86kltal8w 4Oem1P5fwPkXi7de88N9FfDxndT+aMBuVdQ+aMAyWZlqoefQTwrcdvrf+eB7 Hf7d322v5EnZ4w/p4954uOc/+9/Zlk/0uUuY0ueO4cHyV7khxkRVVpBpdBbq a4Un6gAUTKkDEHp0oi/hsSl9CSUYXwsE+r0hookqc1VO1AuPvw6vXJRAXGJY uMjpCsZdxDBO9FX0mNJXMYPv3AIpjiTCbUh3ZNMI6tdO9rX8MqWvpcJk/8oP U/pXWuzZzpYSkENka576ueo16u/lP7nZoFBISC6L2nVfDd+PPQcLV4zKFxNN J7z7GI+jXeKV1w41vm9FxLq3n5WM76De7fnzQRn7SqIpMnKhxSCOT96T/VWL pvRXvXHwQPmaOVXEuJGxxrsu9Ce/lTkyo/EI+nmBldvYRs8eWkTqgevj/Jki vqD/CNjqBkNJg+NffYcneW5fHMPNZ3h+4FlVgQYv3XC9DcxHPLqj7IfzHfDJ 7WJR/gNYn+rRzJmGg0pNRF/arz6zJzPI/vLAhdmiHoM3cbwCZtbQel0bNo08 HlhJWLPut7IYeTxwx8MzN3KKME8Q+GWSvrDmxpnkeYClxu3Wm0uhnRvY2l7m 7FUBXD8Dr/n9f3WdeTRWXRfARZIKJVQiQpQihFR0vUQlRIZUimhARcocQoZK CQnJ3GBqMKVCMmbKECok85zeUCEV37cW+26P2/v8c9ZvO+vc494z7r3PPrt2 9vQuJMsBPmiTWnhMBe+DAO6f0zDa4IT7emBTSSLT9QozWQ7wvGWNSgmmqJcA HhRyGjrxCe1owL2DoRrv1i8mywFudVNeQHdnO5kfuLWWxfDHXrT3AYcaqxdt OYt+XMCXkmi/C7BuY3+wqDn6WQEzcdB+F2A/RhfmnmBsb8AerrTfC7i4mfa7 ALN0ST4qX4DnQYCb7Wm/F/CzfbTfBfipH0NfbBXmBya+1dN8L2Ce4Qaa7wK8 2XrlCI8ofhdgfk7a7wWccYD2uwCXuZ6KTgnCfgr8Jp/2ewFPmOjZnytrJtc/ wLl+8vr16RhvTXOD4Bet2BZi9T39p5n5qM8LPHnB/FVTCxF6SFHw2gjKxRYo HnBvbyHGJBY45kVinLfXB2/UWVxqIWzZtmyT3YryuhKB/u0OLYRDV4RlHiPG vwImCNrxCtjQiHa8Ar4RRzsuAbcP0I5LwB6PaMel2Qw/7Yg+z+eDVH3mdpX4 wE2sLcR3572N8xXSyHTqr4OEB3tDpvXLAjIF+Uq5jRUbuSvIFOT7vHu4PQsk yOcA5xfSXf/t+4H8XsDx0/PIw1nziNwJH61VdHj/C3BlcL6aopckKQfmL7XR UO7FuNPAx1cMBsgvfEE+Fzi6Vb1J1+clUV88UCIaifMmz1xfuoc9L4if2z9N cnjj/BtsOeW/cXCW/4bciIDBEHMqcU5pNOGSC87jHyctv+1VvEQ+l+RKtoBd 4zqE1KDlM8YBXD+s6joSGs4cRzKkJby5ixTD0e8a2Dy59IdpM66HgZlcWBvm quM+CLhSesR5Xy+eIwCejLh6MoVjRnyDae4/wpy/UBv1TsA20TzmD7NwPws8 kqWnHvcY9+/Al/d9Ll46QPWvbro4rH9lN3W/I7M+/luNN3W9+tjQKHn1Qqqf W4/phutKc6n7nevKz89aCFL9x8piP5sXulKfq+KjNRy8lJr/9LDd5yvbcJ8O fFRUx2N/BZ5nBNYe/bv/1XL5oO63/1L9we4L//28wNv/OC8w59+/nxfQz6jy 4tuK+gdg9lAJ3rE0PN8BfMHc5+zRHGxXwNpzva0OdaAceNKKNm4J8Aml7E6h PHFSDjxc+TlgzBDvEQBecNvkRc06rA/widqi7lEj1EcBL/Dp45TTxfoAu8Xd e+Uwwy8XeOOhc5FHP1P3dxWNwSeDvKn+e7J+ZgMsK6n5o/4j7s36/4h7o2pn GnmXlVqOLj3tfbjAndJrh8Pe4fwOrM0n6cKR2UmOG8At/3Ff8MRL4/y9WtR2 cnxy9IWgGPVc26cHtPcLA8uoFahu51tAyoEnl5svSejGfTpw6X/ERyr+j/hI PwUM7t0XoeZ/w0J7/zIwz7FY7t5W1DcC91maXdNxYSXlwA9S/37fdGKPrxbr Tep+ViLn83nWHKo+R/pUreai3zh/AjM1RkTcOo72SmCmj2c0H2TidwSON3o/ r9oJ1znAxbFLv+p5YDnAfcESXe8/bcb/a5r3Cf79nvFVPUVNk77U87wC2f3m lveperwxkzWXT/BhXCbg8GHzyDnxqAcDHk/q2mZj+Idsh8As6bbWPH2JlPLp TtoNNRhcJI4Jbw0N95hxf6iDTJLAVxtKfv+++/9kx0USZjFd2zw5Ub/Kr/Lu YuLSJ4Thfsbkq7yoN15rpsKTaJZA/N5nn91fg/Je23Kz6KNxxI6A7uHypai/ bS2eiqc3V4Q2nt4u1ocKkdxJhJyrmtzDcJQninmNfVmK50OBhwJPnTmujH7v wFYl42kbDxcRJXfohc20cX/tP11/zVn1T/n+Nf17LcZjBHYznHpvfrPeW2UX 7XcBdtknzn4gDO0dwLdqa+JtD1D1vYZ3aNsbsEIdbXsGLo3h7zIKpN7b++IQ bX8EZk3m2a47Su13rBtlvquq4r4YWGgD7bgH3JXM5ra+ljq+raqIu/nQF8d/ YAMvx9NrGVEOXGbJ93HpKOobgV3u0/pdAx/Nr5VeK4X6VeBYM/mz16XRXgxM /8rojrUy+ksAP1i+/mTCLtR3AZtz3LrtehP9LoC3FfNf5kxCvTFwh8SvFRL/ oF8iMP0D2nuFgPvr/KR2ZGC7BbY7SOeaqYD7L2BpXg3WFZ64TwHuvpKoPaSO 8xRwyvcrYzwX0R8K+H2amaLbBMaZAZ4IV7Sjz8LzX8DtN844dnaiXQnY6oKr bRMzrqOAhw+5N4Y74boUmNVvqeOTs9VkOvXXQWJyDZ/lap63ZAry8QsOJjf/ 1JApyI1ZNhdoNNaSKchPG10UjjdDPz3g3F9Ph857YPsBVjhSWPc5uZrwVrbX XxuJ64trouaRCZlVRKZFuUSSAK4LtgYKOKQdmHEv3jTH+v/8nvsS7RrASmeO Byboor8isPZZ746wBFyHA7PuSRE7twXvHwfO7vNQK1yF/tXAzo2TDhfsMS4T 8MBT1ZSyetQPAC/edynN+y7aU4BLDkfd3RaO60Pgbwwi89V9UU8CHOo4rFfM iH4cwBuO/cxlu51KjDzIY8s+gPupaIa4iLPeD4lrfHsGJK1wXK13jmBQqsQ4 28DiuRH5Rk/x/QAbMu1mUruL/xfwuWqrxqR1uL8G7roX2OQwinoJYAu+3qQ8 VjyHBdzufN78ZhmemwYOzNogZOGDfk3APa6qTNGGWH9guT/NYy0L0U4KzBo/ uLupHf0NgHW1xTTi7XHcAy4KLi4eOYz3ZAGnr9W95DKI3x24Wz6LZY0K2luB c3Vt/j2Zjv0XWGmpTjVvK7Zn4Kw1K+3iM/GcF/CC7jfSq7TRvgk8UlDd+60U xxPgW9FqVtvTqfsyKdcxjhuV1PV2QJPInp4A1J8ADy/t6wsJxfEN+ITGzfCF AlR7TdfgyqrwDGo8tBpe2jg5wHG+tHFygGu5kvPL0wqI4O9xq7iF0b5vYOYv PG91DtHfdcguxx71DzKxU/GRuh/Txkd6Nx0fiWtWfKQLdwz4ru6qI5hLNfM+ W+I+YPVzeff7t2uInBvef9LfoL1OKazK74w22puAy8WE/hxZgvcdAM8J0DPu DS4g5cC/X20Xv/0Hxxlg+88j/YvDsXzg+V1KQwxjWA7w7zmaT05XzyhnmoNU WbzoL+P9fcAWPD78+3dhfwEW+Vy1ZywbzykAzyekfQ2uoX1zBVvGebZS1A/C L+D3wswepyZikEthTK0F81ue7DSSLaPmP88cMTzp+H/5oblDzcIYd07ZXf73 r6YmwrjzQ6xjDY4PgRbbNnl4NBGt74xCIq/gvQbc3KOf96Z+IqJDUudc3IX3 L5yer83KNLeZkFCjvU8kc/o+EUM2uy9LgvC9qfNarCw59YlSz2qhgZsfJKn+ ujJ5elKmg9R7XnLUHm2MYKX68X6PFDBoqKH6oVkc8llr/pXq36u04eVPx1Sq X1nquXNuS35T/b01K1xWHLSjPrdPealW53Wqv9x6/tThpnVUP7cRh99e+SLU +pTdWcdp2fIvRa79UUY2oegLEXk1jfO0cAKZTv11kNjOo31qV9NlMgX5EY67 xjpjuWRK5rex3/C5+xmZglze9tsDWftyMgX5pqcMekmyr8kU5B5FRVZzGmvI FORdw+MKhGA1mYJ8TZ9JI1dTDZEutnVPzc7Z9nn8haxQXiC5lPrd/cWOvyo+ T/1eVj61TC/XUb9Lfl6PR/9zqn+gG5/fuoUqn4le63Eev1dPyPS/6qNvM8H3 1eQLMWyt/DSsN5dMIX/O7hXMBxa0kfddAnN0iWiyLEsh96fApTf5Gjz0O8n8 wA91GARy/NPI/MAT0dxqS4a7yPzA1xbf55ivkUHmB357kp+3triPzA9cNfTU dq4W6pmBH8S3lnPIfiXzA5eI7v5REJFN5gfWfPBy+xbRz2R+YPNjSsqCvLlk fuBXog2BNscHyfzAJ7/Rm7/gyCfzA/uVJezh9PpG5gf2ibaN9d5cSOYH/hOy 9+6+HyNkfuAl/f7H9/u8JvMDnx6R+nbNYpTMD7x/RUjsJ8ZSMj/wvNH1ikky v8j8wMy3wrqS0svJ/MB5ISwJV8PpSHsfsKCjnJnErUoyP7DS2pLNLgbjZPnA IjfaWQ3qqsn8wDxGv/I+P8N7AL9t5Gmd+PWJ+B1vryiYivPX8+agS11XqOOt Ldff+9fzqFBtbbs24vStoTtsL9Hv0ajm+j7HpdRyNnr+vd+ZiZxxOh1PPYci wDPV72bLhzMObhZso56j6T471e9my10dMsJd+LqIFqnWDIYAPG8IPDHctj/j Mvq9ALsUfzjm54X+/8DPnFyPH5PHdR1w8vemIs29qGcDLkzemqZ6GvfFwD3V uU8yuXhwnTzNqoWHN1Udx/MFwJ6/2ukeJ9aR3xfYbeGYNtdh3I8DP74Y+d7D Yz0pB5ZOJHQPB2wi5cDb/9nU/zYE1+HAEXb34oND8R5e4PUp9u/u92A9ge/U XBOtPNJE1hO4hYlunnAGrs+BNzTb8PqrCpJy4Pxh2wXJDLjPAk7yzvDScFIg 5cDOur59O+lQPwAcq+ahc44F/YuAr03Iapan4r4e2FtRW8TCAuM8ALctunrs gCLG4QT+/UOEr2oM/fOBzcb3B8YJ4noJ2Oi9l+ScLMw/m+Enut26xTqvjZBn GLKk34Z+RMBXmpp59tFj+wT+xSo6b1SYqndiT1ydoSyBegBgz2bVoBBpqr7r maP5j65NuL8Glo1cbRv1i6q/3e3Ps2tjFca1BrYsnTNx/hOuY4HzLn4yObqP ahcLm3OLsTAB3xvwyJq4E+siUyn5a1UyD41JYz2BD7lMsOxpw3MPwGKCRz4M rqP6Wc0VFXe9LofrcGCzPr2PnHNiiDqlWzs+taA+lm5TzIj9DmMi7CX7YvsW 1HPeu7KBfk5+MhH6yebVxSrc7y/KcmccyksntgdE5VyqQnur5WYDESHP18Tu Tp2BLy/RT6l14datd9dkEfNdrCVDZNFuy2AevC7y7GvCtVz6c3Ix5o927Cse snpL5CwSO8vDj36L3P5JK+4ue0N82yx6Xvw72utyG156VAzVEm7qnuPHeNC+ sXFd41f2jAoyBbndEK1/CHBeynVOpkDUuwIPDOVpSIeuJuXARzjXCdy7uoYc H4ANkqfO5UIKzz2qQsdn1Z1KpiD/mT51rhhSkK8OGDcs3lZApiBvmT4v3TLr 3HTCsY7qB05vyBTkettoz4MDOxaNdEkfRP0D8LYHtOfTge1TS1KV16M/J3Dl 9Hl8k1nn8XN2jTP68VcRMR/p/zy3Qn1AzgjtuXvglcLjQp6uqL8CVi2ljQMA HBMSc1JfBuN6AbvJ0sYlAH5Uoe7ygBX1xsCOurTxE4BzkzZrKxvhewNe/JM2 vgTwI8lA79JifD/Au0d7It5fptrdHnbePeycgfcyAOfMZwxYpYjvAdjcqduV fz3aVYG/Zan8615N1beoBKhPnBim2kNV5mnP2XQB/y9gkWiTK6mM1PGWQ8TZ Td4Y/ZqAd7e9uMe8l2o3PKYfvEDvDtojgG28PRikiqn+Bm8eP5yfOR/v1wNW 2LTj5BUu9DMBTmzmE/bIpMbFHTi93lsxFecR4D28rgpOc7GdAzcbabumvr9L Kcf4FJtukEosEcTuaqvxDMfJsRrjfd0CCURsV5rM3Y+o5+wRduZex4b6f+Dr BW7iO1dgfBhgCe/1XPvlUa8OLKV699gdXrx3Msjx5O0TZc2EzCLX5p9ZqOcH rq022mzZge0cuCL3XvWBz1R/2otj2nXFBzCeD3BYYvypRH4sB1jmTEQ2dwyu K4DHzydwtiijvg74ZeqSgxfVMe4QsPOkbGdaJJYPfPA7Q5xnGvqzAcfxv7ZU XIbtH7hck+i1S0e7EvD1cdp4SsCKTnrOlj7XCHFd3muFK3Fe+7PXJ1N83Iry fsRri9TX91Ln5dOVZq1fv6B/DvCPL2066prohw8swrDuvUAuniMHFtfJ9BBf gH5BwC0ZFZdK/6B/CPCSBgbnEDX08wGOV6t+sjw4hng4wtgvXzFjHnf0Flm/ 5QzB+i054XrRjHjauxVqtb5Tz03cH1Zr4I1B/23gVSXVcq9m+B8CW66mF1Cx w3Eb2OD8wY0m/8QQwSkcmbUfZtSHb1mBnvwZIv+to67PjPrcT7yUOsA8+97u /8sNtsn9FsTygTl9fxrbmGL/AjbbI7ni/RjOC8AczzcJ14+jHwXwikMOu/gq UD8MnPjyIv/O79g+gfm5viVzXEkk5CPazD89xv5+Vv+HYf2G4P/3GwknqQi0 jz/Vk1uYwp5D+b9acp+XnxbH/gssuOabb8Q6jPMMXBBXWXHvFdYfuD2522WQ M5Mo0fFuvTTD/7zXTOulm2sK8borqdooesb5svbW5PE5LoSDszznmC++/9Js jqjyS2hPAWZ7Ln10bBPaH4FlX4fsjz6G9Qee80RQsvoMxosGLno7V0jGAeXA 7Fk7JCMEsBzgBWN0H1KfvSIm8gi1peyob+fe0vfN9dIzIjOFUZmfD9eZDrFn PK9U3CVS95yr0vTG9rbccK647xK0twJzLNBZpsKC9QFWNsppYezCdgU8tzDT ukaqlJiIECgOPoF6/oILbIx0+oXEKiWHP5N1qOd/41cQ15D+gtDgYQsuDcTv softW8OyfKwP8Pq18g/UVHE9D7x8iQoTUxm+f+CCubUh9wWrCaeRA9XpM+6z Uku6sFx6eTlxUDT/W9d59P+/63fPdF9iAfH4uVjle1G0a+gdVnVO6MDnAg96 6SeZ6eP7ATa4LKd4dIZ/L/Ack4TlA1q4zwOOLR2iixbE8oHHu26bGs3BezeA N3tdE+r0qCECf3RnbB5HvWiKQolNNlM1EelpxeUziP+vXIj6gkmTUuJYeoOT m+aM+6n2vptQ75qx75zmNTUVH/Y/wn0u8PdCJfHN5/A9A78sYkgP58dzNMBZ 60w+Relh+cDi/M9jbgTjewPmaTjFJspeR5RorG1L+oh2n+e2W6Qr59YQ/hzX Q0xHcJ21fb9P9ou8SuKobvZqwShcx/3e1fphYgvWB3geyz2LV7uxPsB8dZkM HVewPsAskvw6XC7VZArl07v3l/GtqSVTkJexl3cpa9YRpxrNpR1Msf7i8goB nsJYH+DTN46ua7qA7xl4sokntmgPvmdg7i3OxL0YrD+wq+tEZclj7C/AjX98 f/wTgOMGcL4Tb/2SVdVkCvWsPubhmpz9lkxBLiEQrHXzRS2ZgtxNZGWY7Bas P7CsQfeW5ptYf2A5T/drCUzYL4BrPMVO/Yx+TaZQfpzaBjmRnWVkCvJvl4O2 vPatJFOQMxV/uF5kjnoDYLPT5UsIFpwXgFtemcdkRaL9F7i6P+MQvXQWmUL5 0UFB23r088gU5Eu5DoYFBxWRKcgXD+b+lOTC+gDLGZ4SkeDC+QvYXsbv9IdB nMeBdVY690TdvUemUD5zeUech0oKmYI8R0HKQ2nZCzIFuX3ItkvMt3E8Ab46 0PnjDiuuJ4GPNotc7lKYcT/gLIZfSZb2446dVLvJZTbpZ8YTX4mbHU1LliqE kSnU531gOv1GYfwuwL3lCveNOHDfBLzIVl01JAzjD89m+Fl6TXR83E3VAwdc MAl4n0eVd28evy5n/C9hUxZYLtCB6zrgRd97eAIl9+Jzp7kl6qi8cE4PqceY zfBTtO93Vd9E1WO3Vb6v+teAKt9WFzC379lnwvPpzlVe+rjfBA5raTplcHsL KQduNL1d6XP9J/n82Qy/Emm9PScXUO2n9vt4ZAlzqnxLltr5xOFugvj5XK9B E/eDwA86viiE2o6SzwHusHMZ8VqP54xmM/wGO7mdY050UuTmmQ373bWp8lfd NzKqz3USgYz7fDuutZHPBWbWDvuhuwvj+QCnZau2iszF/ddshp83274Y9SdU e8T504nan3dS5eamkn18Mu2EfKe/+cRC3LcCj4wq3Dx8cMY5gmleuCxynUQN +oPNZvglXXUs+RxLjX8lwePOUdtHjaMV1Hs2b9C6hRjbGbW74gn6segt++q0 mfsTkc0c4GYnhfb3sFs99SfmfCJaRa1dAi+inmRjqZbCZFwTUatj2jXwwIVM p/5KtXtuE1sralj5LxH5VXDi4OoAMoX8ZvOeTox6YvsBLtQJYYlwx3jvwAvo bPx2jOA8AnzXuWPAoA3j6gEHReg8HWzE8/jAzKb3hKI5Ub8E7LPM47hUP55b BHaqGFh1ORLtccA7Qw618zvUkO0NuCfwBVdK+YzzidOc2VsWF7MO5xdg438c WG1s8RwBcNfJNIc8Y6pf0ESar3dySz5BL5yZLeKP69LWY6/otSpDiVTmuknu 87if4hyJcVz1mHoPoImaXpobgd8duNssKpsjleovVPVL+MpAO+YHzpx3Jpxr Cerzgf32y0aIdKJ/C/DRV4VW5Reo+1bevA6duBq0uwF/Wm5D7P+Lfr7MTUNC UwDrAzzS6dUy6Yz2R2CJwPolVczBRLNdO6tp1Ax/7OpOsTunkojfx5XDrgXi /nTV7eP2q80LCetNGjusynGfcqBJYsemndWE5s5I+9vWuK42VRkdblevJlOQ x9YYnlemZyLbD/AzpxWtDmzvyfYDfOjJ8R09cXiOFVgzqzfhFkM9mR9Yw1s5 qLUDz5kCD038WF/D3kjmB2ary9N4YIP5gV0v8EsLKqCdDnjtLUfPzR4sZH5g gc5akQMeeD4RWE0gz6yDG8sHTrnEJ8Bm3UrmB1Y/4TwWF45+dMAW+ZJqjIno 3wjsKX1Va4s7fl9gZ50nSS6DuI4Ctj9ze3TSHde9wCGHP/7ifovzKfCTsXd3 U5fgOgTYIm9ImdiP6yXgvX9Cf+4dw/0a8GBJemdeDuoHgEf83IteWuI8Axx+ g17YT4h6zmVP7sbQ3xyo3wa2c1kTE8iF54mAf/4Q8bKzwviuwEKT3SnDy7Ac YJveh9li9/HcBHDrIX9mxS2otwRWZuhTfRePceFS9WQP57O3EPqrL6ezP8D/ F3j42vx0BnV8b8AGSyUzt1ijvgj4wMn31qIRmB/YREaJuWg36p2AJ2/qfM3W Rz0bsOsV1Yu72qj3ZaQKhTc+jUf9J/Brm1v6brfwuwAr5Tx65BiD5QMPbDLX vcCD61JgN8keUa14R2Krqe6rI7dRXyQqOeZokEo9j8NixCmVKkaNN1LQZaJf 1FFPlu+zoiYkV6aFyFTnPkG3GuNbAm/Q1bT3uFNMyoHlajZw3zJNIDKPZxpe r8Xxrb3q4/mPDK8pz+0Ve2Jywpc6/k8IjVTdNML1BTBj7KN3vherSDmwob1R 1Lsa9N8Djt5ndi4t+zHx8EdqgPlarI9Kw6COOzv1fIc5V/AK+utUvWtjGu8L 3Sz0WwQOT4liN3DGOCTApadHbs7Px/kIOOoOgxD34mJyXAKuHwzW8hJFuwnw xInvQgNqGH8SmPMaqzdDbQFZDrCv+rwHRlzozwBs6ia0NtcY1yfA1XF0v309 8RwzsPQ6HmW1nGpSDhxv8q/J16/otwNsH7mXe+VP9KcC9h632tpyhJ/MD+wu Fau58jZByoGXnxy69cYkjdj64FKjugjqRSfGX8Sn/PCgfBf9C1/qhE2o9xAZ d3NuPjqE/mDARyUXHr0wspJ8LrBYnz5H2yKMuwKsLFOTGBrwnCwH2DjjxkDs 62W4jprm06XFPuyseO4MWPAJwyL1/HT0p5rmm8JvYln5OMj8wE4a+18M+qGf DLB+W2z7Zhv00wN+++LfhmdDi8n8wJ6LU3LTPPD8OLA4x47IeKlHZDnAOx9p PNYzXUTmBy5cuvEDfRb68wBX3W3dL2+J9+gBx7z6oc2cheezgN//NgyzsUe/ bmBTGaXSf1+JYPuc5lHbfd0bB3H/C7z50dHW3micT4ErpGnLAeafVQ5wtnCN hno77uOBV515o/k6tYKwLr1dHy6Mfgvq21neRZ0oJhqNHTmT1dH/wb3vlOyt odeE4sKyYzI+KPdYL/3a+mEOwf/jnF+HLurJd51J1OjheELop6pxmc441+Zf 61WVa5JA+KmwdcfNGD8rl9J+L+DCh7TfC3j3HFZbMUOMLwqcHnQq16IWx3Ng 6+1rD7H/Qj9qYJ4QmYqMCOzvwN9badshsMWsdgjs+u5G1sedeK4Z+OFj2n4B vGZWvwBmC7TLkvuF8QqAw1ufWPipox0WeG3sRMXXl/h/Aa8p7q9Z8z4fy5/m QWna/g48+ZS2vwMfepAjc4TA87zA3LPGH+BBCdrxB9hVSkjs8W88xwcseT+G c6sOzsvAlx4+Cl05XErKgVW+rCh9w4HnBYCFZo3PwHqzxmfg0HyZbgtF9HMD NjObGp+7788an0v/Pj5naJ2tuH+Pap996ks7fwHvnzV/AV+8LCNgvgj9G4EX 22y92hsXSuQaGNq72+I+64ibqMrieuq80Nasoq9ZV0KRj8TTzoMki9LOg8Dn 72f5L5yPfq3AinpT6w2DWesN3nd/X2+83rtLzOg4dV1Uk0673gCOTaVdbwCL 71Xq9X+G7RxYsWOeFvv9K0R3ycUzH6Rwfej4IuRjBlc55bnb32QVfuCm+nu4 pU/pAXLX0OoBtE5M6QHCZ+kBHm2sblNZRY2jWL+Gdl0HLHKXdl0H/KN8/mhE EK4zgfOF635K+2F/B3b+d/6erALs18Bu1lb2Szag3gB4rHZqveoxa706r/Lv 61Ub8awWdSvquppOfmodvnjWOrxT4u/r8K7gVg9bW+r+q7aTdh1+ZnodbqxB uw4HTjzuvTTgB7YH4MCv724G3ML2A8xYtYzFYGEZKQeuZLY6lyiD7w24VPHd NuMJ3B8Bt9RIznu4CPdfwLxfWZ/Qp6MdAXjhg/WsazL9SDkw5w27vjsSGL8C 2E6gocKvHv0xgKOyqpPtDqIfDvBb77CB+kDcbwKvHpnbcbUS96fAyfVT9r4o TVp737BpkkFmfCXBpJlYG5uEdr1XXVuaLi94Q/CzdARkjeN6gGvazls7Smvn XaCTHHe8soC48F5kQ8Vy7C++B7bHPDLPJbbVGm9cV473+DTkT9mvgyJp7df+ 7Ro9Zxe9IAx9NrzuyEY7dfKq4TRhxlRC14FBJ8MVx+F0N7WkKwy15P8LHBu1 L95FGMcH4OU34uP3V+M+BfgfJuO659plhPHvqluCH9BO3fTwkcMS4adEWVBd zIUMtO/3Hjnhv+xMPCEk/Y3l8DD2I5eUnaKaN4oJJZGmfgO5Gf6lT+nGP96J J3b0vXLzHMD8ir0XBrhuuxM5/OG7Np/HfsT9PTnyrEM58c0rLrlYGesT2j55 4qZ5PPGYgf9mxYznbud+pBC+z41kSA/IFlpmyZYQdZ0Ru2I78T3zS0dGsSpe IoxZGXwnj+Nz7VYWtEucos4jW+No2zPw3VntGXgyeuxz9Gb0CwL2lunnCGSm zo+WdwiLInOqn9t1oX/efdXEfgH85+mIfnIblg/8YlzqfPMh9HcC3n6mZYXz c+xHwL3uXgev30a/JmDWoEPSIRqoxwBWLD52SGwP3m94qFz6qPCVJkJxDgfT Hje0O9iFy4iU5DURMvPdCm8z5JEp/F+XWpYTjoOPyRTkLrUsgVnc/mQ5wPXN 1RUDHaifAfbeKcTWxo36NOD9fAYPPGXxHATw8+P10qplUqQceK6ehvoXnVpy fQLMKfclslsC45AAjzY/5mWXRLsY8GonuYyv21AObNlKzOMNxHgOwCKWR7xu OKFdG/jg4jlJK++gnR3Yf1a7Arb90344g72MUHVnfXtvBPvLucUJR7q1sojO LD2z1+tn+CNFy8u7n0okOk851N9IxX702yjebEwH75MCVnz/mG3l2P/nfXbG va4z4kJPfOj0z428T2m3fntqk0+aPqXImbeuiO8apernq2aN/8BMz2WfSR7B fSXwNd8i9aeDqN8DjnU6cvpSP/rvAbOuSWJt18J+Aaw/7e+hy0nr73FYzCKJ NbGaUL2/PqE9Cf2lpRKn/Hm6Z/nzXKk7eCzUqJjIvlVTsUkLx70bTlP+SM9n +SMlh1Xed9LMJeJTlz/Kr8d5QfxTVXZyRiFhviQ0Ju4e5teKqq243pNDbFju e41HFfeV4hdo/1/gyJrVVpzs6A8JfCZsPIjrHPqfAM+rVyoMrUK/EWAHbj6f slsBpBy4cbiN9308rpOBm44HWaRV4T04wBl91oH1p/B8LnDh4yl/ub26tP5y YZOLJzR/5RHSbqNuBvT4fo7pSteP3HxG9PYP76ZfifMR3fdQnmMj/2+3BQ1j J+jx/ZyUXGStaVdEqPc4FtfvwPdJVx4V412YSSiyhO5v1sTnJraLSq7IzST0 dz5N+7l3xr29P9yHNG7mE/qMBNOBDJzfo81NHwY/SSVC1/TocuvivPw/MD1I Pw== "]], {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{ FormBox[ "\"\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(rf\\)]\\)\"", TraditionalForm], None}, { FormBox["\"\[Alpha]\"", TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], LabelStyle->{}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel->"Out[1227]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzsvQd8VeX9+H/IHoQQIJBB4GYQkjBCBkkIIew9ZMlUhiAgCMjee7j3qKu1 Vuuq9dva3VpXq9a2WrVV697bioMNyef3/jznnNxzb+4NwYr9/r//8no9EG7u Pefcz/P+zGeNnbt60dlL564+Z95c3/CVc89bdM68Vb5hy1fyUmQLy4p8mHav z4riZ7GsJv76g2V9O6+2Nv+P9iUlJc3Jz8/fVlZWpm1Aenq6FWl+F+X9nb5u Pndn8IWSzf8j9Y2yYMECbVak+TvqjenTp5sL8uehMWPG2C9H6st6bf+Fbg++ aCv/07kX1U/dMmDAACtCnyfCvlTAXSP0LVak/tpy/zR1+Sh9p/tpfU77e0fq XfVxzeXMjcyH7g59lUh9q/uAVrRfdO6VT3gB/aC+SS9kxdgX8H4xczF99a4T PIERT6y+5BFPoCjuCHMJ/WjDM8QGXta81uQDBHSD/eko94qucJugJ9TTRjXu IvM84a8S9CVsQUZ7L+A+ShhRJDfuO72i3aXRrjTcCxphh76QrVuJ5lt7nt1l Xv91r2Kg8cigQS8aLnZb8NVT7C/rvboVbf/tSjAACPOhHwZfpY35f6z7LF6I 9WdzpQhbIHonvZK2BhYb6dS3a77+++p/Xz25Vxebv2Ncp6YwK+j6ryqAY/OU df214d9+Ldrl3/t264JmXc79tblcZIhbJOjfe/zXCr6Ovua4BO+19OeEwMsZ w3a+/0r6afdqJ7hSTNPf5YKmL2o7HPsbut7evk/Tl704xPN/3WvZNto6xy91 16laUf6go+GKIZyLfibK/3H3V45lDXyYXf73uXazqdt4vaP+zjarkV4HaSXo 37vC3z/ANzrxmdcD6O8TAq9rvOBe+zXvN3UfNSBO8oR87vv8cjXfvkmB7g5/ G/MYAd0YEeIXESG+ekyI5zw/8EbGfTq65j6gJw47MQn2fa1F5u9E79v1Xzfy 1X+9rxsv3SREUV6HagJWc8uGl10W7C6P86LkvbF2q74eEYLCiCbpCggPEvSa 9q0a4rITPFhU8xnb01gQ+nvnwl7M9S1RoUmzX47z3k+f0LUMbg+EEsSOxoIw MrPvH/xY0U0jGBf8fvcJgroiQCGDtCwslfaXjG0KM/fRGgJD/dPCS2nDF3VJ 9Oiue1V9cI8104vb0gjdq85bAzKZXY1v5uciMDfwdKl7J89zBZN1UeNn8AMQ Ipuy+zEwMo4LgeHupsAKrab2peMCLm3ZAXpjSUZ5lVRf3tmU3BvppXk50p9m NhJAdGNx6aXDWrxIj5p6lToIiQCVtL/fwtCScmxmQDKXGKK7Q+S4+ig7A99q co/oxrLwhy6N0nvTGxeGuKMJUEIpXqjEL8gXGYHZEU6DMtqhV2PA9YHCPPKO QOF4rxrwjRNCYBw2Jd8T4lGTGktXPxOqcwK708uT/hxWaLGh+y9IRubb7GjW W83VE5vo0ws8jxLgzqNC3DPeL0F93TYE+rcpHzlFngAHsC1EP8QEkhGqb/y1 jlBS2hbizTEhOiEh8CuYrxcb4oFC6XFS455riMfNM7XQW7XwdnOTTsbcPL7J PgsQyI4m7h/01paNu9e9suP+TnRHI8H4wAe2JRjCp28L1y1RJ+4CfxksSDI7 ArvFvBam3hYf4uMn16sn7qgT92vAreKb7KyAjwcZKyOk2BC9keTvVK/bMU+3 p1m3M5eOD3xa20nYSVzAa05iF+ButzbFTuhucbAwQnH/eKO6AAtzApACbuzp +AD2Yxq/Ve/RRN+HKqcG4BnY96HeHkptQnVoQE/sCM9SwGtOqdPb6Xq/3eFv E/BaGBMTFeLJdzXGyNO/wXTFNb6wthDv1p+3N363PmaI7tKX4xsjpRdx/L1X PPrySXZugKZ+c50b8FpzO9cuPwckXvrzrmbeJiHwNU/icsKe9dSYQvdsI/9h dDVEfK13bTL4aNS9CY2R1ovb1iYg/PfXtEJ2b+PwIOi1/3D3pjTuXv39zmbe JiiiN8BG/lvdqz97DHOs18m5uaD+a/uAcDa62XqcGCgTcz1PaafByDeji72R wkl2ccDbv2nz3KYxyyrAJtx6wGst/Z0R442qvN/j5Oyy1++6hRDzv+gQ3bkj 6M0NvwjhcvVGng5tqNVFeIo9AQW7Jnr1hN0UuldDBVyeXm0Ug/w7AVdbj2gC 4pdtzb+XHYk3FPjsUeoQ99oVWtpN9bBdKHQVzTxXmLHB3SfZx0HJtmse7OeO dkc+vJ/wVtkbrh7x9Xo/hFcO1VUBiUHT4XbA3UIUID1vDWCqbeDHPVYhXPoU 4rvGBtzdClRs6wRdE3jBUNnrxYGveUPgYGmEyryiQ8je05duwbOpvgwwmidM nRoJPkyBKuEEggno/p0neHPA43gKCw0uKFSt4EQXDUDFnlsR477mjkK6v98d tpcCLxNUsfe/L0Llsyvcb0Ny0kik0SHe6hnScN/qWnDv+5JOqu+8FfBQAvSM rTY8SKhIp+naZQiOw1iywNpXKIntDJRsU5VTp6eD54sE9XSAzfBcyYut003B Xt0zjBfIYhCfoQqaiScQecCXth811jte6P025j2tTnDBgMQjYHwuUAQeT+Pt t8TGXHmK7l5P4xkUa+Ld3p5wru19DM+QX3C1fWfozgjKpTwpW6PJSuHGNfxj NgF5q74lVME+RH7VEAKGisfDjCwmBpIffGnvV7crgtFeQQX2f9D3D9OXTu/b w/oNsYnrQdzJAMEjs3aA1CgTDDEeqa/sDnx30LCo99p+GbQMNm7eVCfUYPGu Jh/J2+36hVIav1t/DjHOGuYi+rMthUZm2J3z4SZk4QdUY73gqtS8XzBkEGtb n0bz3tzPheorp4AawJr+zjMvMM772KGuEUBJpPcLhxzyD8oB7Xf439egCbv9 1ws1y6PhfZ54vCF9ifa/ryF+3d3M+6Y0Vin9zN4QHw81kyMoPQj72M2dsuFc L8BPhBJrqMQsuelnCZ6FsdgvcTfvsCLM34Ff0YbDsG//1p2ZaH7rzIHyTlXS 5lqM1qE+3OCHnA+7wYr7YfcG7fxfyH05eM6V9yP6vpTg+7kPYj62N/yH9Zla h/+1/v8S+3Hcr+kXTjOEaLu4/xVT8/43vGpSCTGUNvw1U/8KTBsNvO6fViFe y/9f9FrX/0XP8p96zfRRi/925P/nX/tvR/4fee2/Hfl/5LX/duT/kdf+25H/ R1772h15a4jXftDM9zX3tf8+3P9/Hy4o55r638+E+UysvmDqaK19egVfC6tF hC/CirDKfJH8N8qK8kVb0b4YK8YXa8XS4mjxtARaIq0lLYnWipbM+1rTUvhM Cp9twzXacrV2XDaV1p57dPC1aJHmi4hI90VGZviiojr6oqOzfDExnXyxsZ19 sXE+X2yCzxfT0ueLTqal+HxR7Wjtfb7INJ8vIpN/O/I6LSaL99LiO/l8CbTE zj5fEq2Vz+fjo77WND7ua+Pz8Q3a8mHzY1fzC30T9/BxL1+8Nr0QF49Pp3Gz BG6awNsTeHMCb45v2dkXl9jJF8Mbo2M7+qJiMn2RURm+iMh0vlA6X4wvxZeL 5EtG8WWj+eIxCCAWQcQhlHiEE4+Q4hBWnBFcghFkDAJV4aqQEbYVoWJH8HSB 9oU2K0e7RmXYQvQn89de/SuxoQtPrKgDHBAMDHH6d4ToxWuEWwm3FG4vPIrE 8etEK1GSrWRpZ7WTdCtdsq1sKbQKpdQqlWqrWmqsQbSRtPHS15pGm83rC2jL aGuk3NokPaxd0tW6mMe9imvcKG2sH3DdeyTa+qm0aPFbiYv7gyQn/1U6dPiH dOr0mnTp8p507/6ZlJcfkr59RarGiZTNFemxWqTgApHcm0Q63SeS/qhI2+dp b/P/90UKP+Z9n4nUfiUy4pDIpGMiZ4rIubS1tO20C2lX0q4TiZAbRfgaXE1u oF1Lu5S213n72bTTacNoVUdEqrlFzT9E+nHb2p+I9P8ejQ8M3sB7zqqTfqcf lPKR+6RbzQeSU/ympOf8U1q3f1Zi459EwA9LrPVLaW39GBHcLjnWzdLNuhrx XCz9rJ0yzNogI62VMsRaJAOsWYjzdKmyRvP7gdLLqpTuVg/pYnWRTlYn6WB1 4DqtTdegiogxWrvN9GK0mE7lJ9OzUfpThHYs3ep2raFLPxWhvRyp1zB9bX4y rzm/5Y2R9pW5QLReqpteNEV/EoOQ/lVrQIrcZnn+nIzjCMfjyiZ5bGu1lTQr rYHHEqtE+lh9DI+18NjPmkCbRpvNawtoy2BzjVTAY09rBzxeCI9X0hnXw+P3 ue5dfOmfwOOvJTb2D9Kq1V8lNfUf0rHja5Kb+5506/aZlJYekj59RCrHiJTP EileIVK0R6TL9SK+H4lkPCSS+pxIuzf4FxZ9sNgNFnvD4gBYHAVIM2mLaWto 22jgLJc78CmEIBkA5GW082nraAtp08S+Th+u1+0AOgH7PZ/hWR6k/ViklA8O 3AqUiwByylGA/AogPwXIdwHyNYB8HiCfRsKPIddfSYJ1L7K8XTpaNwHYVcjm IqlEPgMAcih9MMJaIoOtudLfmor8xvG7IVKG3hdbvZBhV+lsdTb9kAIWLa2W po8cIE3/0ZMxYoxTYyZN7zr9q5+hWaGYjAxkMiKQye4hmOz3H2XSZ/mCmBxo mOwPk/1hshYma62FtGXwuQZF34w8lcnz+ezlMPkdmPwe172DL30fTP4KJh+R li3/Im3b/kMyMl6TnJz3pLDwM+nV65BUVsIYUJSdIdJrOVzsFMkHnuy7RTo+ INL+b7TXaB+KdIDHHHjsDj98TEbQpjtsraJtcQygcnc17TseJq93mLzc4XY9 7RyH6bG0GmWSa2d9IdL5ddpT3Os3PBOGsnY3OrCsTqrPOCplIw/B5Ocw+RFM vgWTL8Pkc0j4SeT6O7r8PkmybpP2+IrOMFmArpYgn2prPfJTI3muDLfmyyBr BjKcwOvD0et++KQyKbKKMK45xldpfyRZSRJvxZu+0j7zMum3k5GBTDqYuSYy QiGM1a6OCIejgT2qAcc2gTjWnCIcVzUbxwKrAD/SC9SqUOMBYDcCUY5HzafR 5tAW8v9ltDWIczPi3gnCiuOliPJacPwu172dL30vOP4CHB8CxyelTZt/SFra a+LzvSddu34mPXsekt69QRGuSmfQ9fjeHti5rleBwh2gAQ5pYNHhZf59j/Y5 bhxs8sCHj8lQ2hTH90KybKRBjlxCu4J2jYPhjQ6aVzs4Xui8V109llnG0/pz 3Z6KI8i3+pdIm5cwyZjJHreL9L0IP766TirPOiq9TjskRTX7wfFf4Pg+OL4O ji8i4aeRq/rt+zGTt+Nzb0QWV4LXhfju7fjmdaj3ChBUE3k2PvxMGWhNRraj eH2A9LYqCH1sv93R6mhCKO0X7R/tJ+0zj5m0/L47PpDJk/LdkU2CmfKfAlMD FS+YGsSo71AfUmwVGzCrEVoNYNY6YA4CzEGAORAwB1pr+d1mfM9OdPwCOkHB vBowb+K6t/Gl7wHMnwHm7wHzT4D5HPHkq8ST7xFPfkY8eUjKyoGSaK4XTrTn Emwgxq4QqvJuw1b9EhD/DJAv8i8+NQPfnXEYaAGplDaYNok21xNP7qBd7ADo tZVeMOFMtjowz3WuMRgwCSXEB5gtsZWtsZVZfySWuIdAk+ep3lgn5YuOSs/T D0nXQfslu9cXgPkxYL4DmK8g4eeQ6x+Rqfrvu/G7NyHTK4DsAmDbhg9fh5zO Q6aLgVHt5Cx8+VRkOhYZDub1PsYYqFHQPnADSvXfaiuD/LcNZnyTxtIy2Jme ptHn9Hd0kw7cD2aPEGD2/dYtZiurFTC1aQRmJdF3tdUfwQ0HzNMQ4lQEOhuN X0hbTluLkDej7TuJ0i+QPOsyyTRg3sB1b+VL3w2YPwXMBwDzccB8BjBfkays 9wgsPyOwPERgCZRDgHIqUOJRizaR6JBZdPk+kPwMEJ+gkXlkEFhmEljmAE0B cPYCpgG0CbTZjjNe7QSWFwaBeYPHgV/pgLvdcfpqbadqpnPMDlZzATOe4LIV ipCJUhSQ7fQmY6rcXiclS49Kt5mHJG/EfulU8YWk8R1at/8AMN9Ewi8i1yfp 8t8B5o8B6hYU/ioc+fnIdBvArcUinoejXoxc5yFTtZhTcejj8TzDkHMN4JZh XbsZJ+4NLF0n7gXzpLx4MxIdc+XI/x1MJlgJjZjMt/JR7p4EOxV4mFo8+TDY O80E5wMdJofC5BDk3B8mK2CypzEKl0mWdQ0e6AbTJ9HWnTD5PzD5W5j8I0w+ DZMvweQ7BJb/IrA8RGAJj4PgkRS4iOiwgCw3HzfchWAuGx46YrAyn+XfV+Hl HTv5xk5JBVz2gyVydiEelQW0FU5geb6TYV9tJ+CGx+84P1/pePntTnK0iEYA ISM1UIXJbK4bRxbekiw87WmeA4NddjOJ2N466bnqqBTMPSQ54/ZLZs0Xkkpg nNz+E5h8Fwm/glyfossfQqb38/1vh8nrkOsFOJCtcLYGXV+O7p5D1DMPmZ2J XKeg5+PRc00k+xt5q9zzrDzJsDKMA9O+CRFY4uYsJ9uJb+jiyJPJdsJ6cQNm zxBgVp8iMFcHgKnP7HpxF8z2VntTkvCCWQWY1YBZQ7ZYawQ5CzAXAOYyova1 gLqF9+zEA12A4C8D7GtMpJ9kwPwhYN4HmL8GzEcB8ynAfBEw3wLMTwkxDxJi AuVAoMSVFmC58kmNu+Bmc4Eh+z6RTo/gTQEk73neA5wlwFkJnP2AcwgQjXYy nvm082jYWtnjGMQrHAN5vQPlNQ6YlzreXr3+YifEHK3G8jiRA//G8m8i92hP 9p/zWxThB9z3kjrptuGodFl4SDpP3i9pg76QNsWfScuOn0hMwodI+A3k+hwy /SNg/hIw7wLMm5DrpZKKsewImNnILN9ahEE8C3mdgZOZgmzHm2xyoDXIZJfq pLwhZojSUJisJ4jNUFmPwTLqxPbSYNn6P42lBpfBWGoE3tvqDXL90Ouh6PM4 bOMUxBeI5SDsZR+wLAHLArD04cM7YC+TwTLGYHmvxMT8CiwfkZQULVa+IB07 vinZ2R+D5QECTJLfWpDDGRfMA0uMWB4GL4eI0HcvWJJ5ZP0VVEGkG5lIyZsE ex+QGBNoDsXXjqqzfTAflWU0zK3scvy4Nxm/1vn5Suf1XU4irkHpHNoYWkU9 96TF0hI/Jdsidsj9vUjxD2lX1Evh1mOSu+SwZE07IB2GfSkpZfskMftTiW71 EWJ+F9k+z3d+gr7/DXK9F3X/Hn74CvDaiUxWg+UKZLsELOeD5SzkOw3ZTQTL MfieYci5ryl+aAyVZWWZ/lA/rsm4WyAKTsZNfBnbTDceHQLLyGZayz6nBks7 U1sZwKTrw/W7u0yqqiqT5VY5MuuHmRyG3MZhJqeYQH0ITA6HyVEwOdgwuQNZ ng+Tl5gCegfrepj8Hl/7dpi8R6KjSQISHjEF9NTUFyQj402y8Y9Jeg5IURGm sgbecMaFwNF1JfyRTucBUs7dMPI7kh2YTCUbz4LHXHgsgsde8FhRZ2fjk2ln 0ZY6nO0IYvI6D5dXOa9rAWmzY17PcuJTHkPylUdaMtl4Jua5K0z2IOnpyYe7 bauXvHOPSacZhyVt+AFpU/6ltMzZJzHJn/I9P0DOL9C3T/K9f0fn/xgub0G2 VyLb3XC5lqRwLTJdhbyWmuLaYJLHEdYMGUNGPsL48X5m0MJNejS2VFvRVIEo PpypDOvGDZjRIexlEJjFIezlKQWzXyMw9Yu7YKqSKpjdre4GzCoC8X4YywGA OQgwhwDmMMAcAZijEfRQwOxrwNyDQC82lfQO1ncA87t87R/QYXcD5i8lLu4R SUr6q7Rt+4Kkpb1JNv4xSc8BKSgAtGo6HWfc7UzgJD3uClldcLi5d+DHfw0g T4q0xVAmf4hfBcosoMzBz5YCEHGpTHSSniWOX97mBJiXOSDCFAK4zgzxuNn4 +c77VjpJzyQngUJPpDXXbQuYPsDs8iiv/Q/PhvEuxMLmL6sX38xjkjHisLSr OCCtcr+U2JR9EhHxMd/1JWT9Z/r3Ab77fQBwK3BeDZx7kO86DOV6lHw98luD 7JbLeALNyfjz8RjN0WTkA62BxkFp5VJHM7wBpvaT9pcDpn+Ip+lsPMhaRoWD MpQTD7KWVafIideGdOJeg5lqpRouNehWLjUxVC5r4HIgXA6By2FwOQIuR8Hl WGQ9HC5r4LLUcHkRXF4Bl9eZuCqGfmnR4i64/DlcPmyq6SkpL0j79m/iyD/G kR+Q/K447yr6fiR9T/ZRhFct3AqbeNsut8HmL0h4Hhdp9wKJCMYyDiaTif86 YSyL4ac/HJ0mdkV8kZOMb3Hiy0tspx2hQSVf5WoHUxfLLc7b9WNaASXClR60 drQ0sMzCRuc8waP8nEe8BSQxwnlwnH1GvWSOOiaplYclOe+AxLf5UqIi/yWR ka/ydZ9C4g8i5p8YtYwj1E609iLi9ZJrbUCcG2UcbRqiO4O8fBqinGTNBM0J qPhQE15qWJ9r5ZrwUrvErWB6wksriMugxCds+TKqAc6oE1eJQsFZ+R+FUyWi cGq1Qj1LJVFPjTXElNkUzhHAOQpPNAalPw0JjyTxqQXOcuAsMnBeDpzXINEb +ebfp7fuBM6fAafW1v+MR39B2rV7E4/+sXTufACPTq9X0PvDgXIagLqVIixe /veh4X5A/APG8u8ird4VidovEg+YmbTu9bYHHu1UerzJj0aQF9kkRiiW2P+r nADziiA4FzsfV/tLGibpCii3yXwDu6nB7W94lNt5FB4pm7ys81z0ZXS9tK86 Jq3zD0tC2wMSHfW5REW9AaDP8JUfQeo/RdS3IYJrQeEC4NqIaDZiEzchvs0y B7HNIeg8w1osU63ZADoZUY5ElLVG7MFBpjsK6XHoQUPj8c20m6GizKBR8W8b TduZrwrgUqMXdeaa+LlcqsZ6uewLl/1NdH664XI0XI6FywlwOQoBD4DLCixD N7jMNlxeDZc38LVvoZPugMv74fJBM+aTnPw8Dv1NHPrHJOYHcOh0eDkdT7jY FdNVuBAuSV+KgKrgu7yOI/U9TBbyDFy+hcEkI0k5yP/hshAu+4g9DKmR5lwn 0tzgiTQvdSzlNU7EeZUD5kXOe9Y52Y8m9UPErop2OSKS8RW68D6WU5Nysq9c It5sLtCZ0DRrAb/HUneorpeUrscksd1hsruv+J5vA+ffgfOPfO+fI/cf0tff QQ4XAsMmQNuMTDfjaLbIRCzobIKhOTifmdY84JyGTMcSMA0yhRB16Dr2doJI 01PFbAaYJ1VZDwVmxTcOZmRQFdPLpSpjMJcqF80OK6xqqbYGGy4HO1yOgcvT 4HIiXI5BxoPgshIue8BlLlymGS6v51t/j/65nf76KVw+YIZ8kpP/Dpdv4NA/ lszMAzh0+r0UNgfDA3B1pc8LgaXoAv4lsOtKVp79e7uamE6gmfkOxgpP2+kQ n4FLTK3JgCY4BZ8lDmtuoOk4dMPktUFc7nYYXuYEAzqHqAYmS77kvp9wn/e4 5z/Riz/yDOhHp+t5bSdMcpO00+G2lmC0oF6S2h+TuNiDEhv7Ht/1Bdh8AjZ/ ZQIZCzlEIpdoeMxAVsW0vhjOYTA5kf6YjRxnI8+Z1pno+QReH2Y8ugZTWl3X QNMdk/QGmiE8enMnbkQ1aTb9dEaHqxmdKjr7B9CpGui1miqFTCvTSMWduNEb SVWbyUSjoXMyGn8mVnMBsdFywvd1xE1beH0nEt2L5C8iErgciV7N9ZTOm+mh 2+ixn0Dn76DzCeh8Djpfh86P8OgH8Oj0PqYqh0Avl1ymCy656xosJslzEQl1 4d12KTHnMWj8G1YUQgvetfPz7oftQclBTripdXYd+1njuGqlzy1nXmnSoKuM W7/SoXOn4/lXOJ+dCJkjILMWMsv1Hq9hJV9EI/4CmcSbHbHiGSDfgZAhlbC4 LRqVQnDaqkO9xMcd4Tt+CKEv8X3/DKG/hdAf8f1vQvyXIPeteJOtaO8mMzBZ DZnDiDUnWufKLFKhOdZcOR3tH2kmEdaYcqZGVa5Ld8uZrksPX86MOmmPHlRl N5+NCTf80/sUodmvkeH0ZufBaOq4raLZx0FzkEHzDNA8G8O5DFGu498thO87 MQZ7ef/FZKCXY3yv5nrXc31F8wd0E5lq3G8lMfEx0HxW2rR5DTQ/lPT0/Th1 up/wzkc6kzMePM8Cz1XgCVcFWLoiMvRuPyM90ZIiKUnJsyJlr4j0xqhV7BOp OmpnQmMkcG6R69QvMEiacPOKBi4vdH65wUnPF3GRWXjwyUQLI7lw/9e5AUx2 I4rw/RkmCTUzfgCTmOFUwG87GyYJI5JRjKRMkYT44xIf/ylf8lU8+1Ow+Xvz pSMj1XNcjvy34Z02w6bmQqvhbgUCWwqbi2FzAVzOJx/SFH20CTXdeqZ6dJ1c pB5dvVtQih5YOzI/RZ84E2rGhLcguxkEZ/m3ajddrx4Kzgrg7Auc/ZHbEFN7 O5OoaAEeaJlMAc7xBs4dvGcP778QOC8DzquA8zt8dbUZt0pExH302W/pv8ck KelZad36NTKhD4k49+PZ6f9ugEk6kzsWMHHNXbFLBcBThJnrTpqeR5qe9wi/ w351fR5bSnrS7SOAhafS4/5MaJpTBjrP4W67+McolcxIYz3LAthc7XxmBnyO 53rD4LMvfJbAZ1f4zMJWZ6EYne+EUS6SvhFG58Eoz9qWkCIFu98qqY7vtg82 3+B7PgObD8MmaVCkliiuQgY7yTS34U82m/JRCXz2g8+R8Hk6fJ5lvPoZ+KBx pnykJTuNqtw8XfslRPnIH236i+3RX2/MPDLQaH7rXA5okkstn7lcar1XfUqF VWUmBw+Ey6FwOQoux5l6x3L0fD06vwXd3w6Xu83QZL51KbLU+vK1fPUbufX3 DZfq3+LiHsNwPovhfA3D+SGGcz+GE19ZCJOkM11GwQJhXwFpSREOuRu2ricZ etefwsYfbEY66Ww0Is4cIs6uB/j9cX8mpPWfs5zocZ3D5V4n4rzcjjQjDJrl DWhuctz/QidDHwOeg8CzCjx7gGfeq7hznULyKGj+iKCTbCprK6/xgfQJmgiB aJ5Im5Q6whVF823Q/Dto/oGv/HPQ1OGGaxHDHtDaiWh0Oscm0FtP8rgaM7mC BGipnG0twa3PNgHnEJJOnT6jwx06FKfDH+rSQ5SQXDxNyJnQQGczXPq/YzXL ThGda8PS6U5/09hbi71Kp1bYehs6B+LOR+POJ5P7nImlXECkuVxmIOJJ0Dnc 0LkLOs9HnBfTBVdA5zV89Ru49S3QeS9d9Ru67TGsy7NYztewnB9iOfdLhw5Y o650eyW0DYdMTF8RIWM3rFMPQsVeN2Ml74PIh8g9cOepRIAdPuAzuPM86Ox2 3J8PadF8jpMPKXI6vW2PE1le6hDqFo8Uz11OVLrOiVI1JBhJqwXRchDtpjOa 3rLzobTHuafWC8iHcglTO3OTLPKhTPKh9AKeLbWO77QP7XuH7/kCeD7Od/4V eN4FntcjhwtM4b2jmSa4zUz3H4T8xoHodBBdiBeaQ64+iYhzuDXcLGFxp8Kp Z9eZNu5IZYipcE0bz6CMKPJkCknR4UaFThWjawLqm8EZkcuoykSjHmW0HFXu axgdhVefjFc/00RKU2B0JjI+HUZHwmg/GC0h9MwnK+pI6JlC6BmLd7es78Lo j+ivX9Nvj5ExPEs/viatWn2IFd0vqamYpy70eW8sKKAV0e/dydl7AE4xMWPJ DfYUyZwHYOEpIr038aZ49XQY9cFowXE7K9IBHXf20TlO6LlZ/KPpF3s49ebr Wx0Pv9jJ2TVC6EsrIdsq0Hu850yjJ6rIICvqRFaUg1nOW45eAXVn0rGs7vwu vQ6d24d3eEcSEl4MmRW1gtOOpg68U6rgdAicjkeGZ8DpYmslHl7lOg15jm4Y uXQHiNzoUz28a0YdD/81jOhJFeGLQxjR0lMGaPC0uGAjqoJwAbWH1CvN5PaB DqDjAHQSgpwGoGci3KmkoaMJPfvj4sswol0NoJcC6FV89eu49c0Aeo8xKOr3 YmOfwZC+hj/8EKOzn/QdA5VLx5dhnEiBC7CEPfDTxcSEvbCAZdcBLGFfrqYm pCipuPjWGNHUffboZR6AFos9Pc6dhbTACT83esLPYEAvdV7fIf5J7mc4+RV2 UXodE8nHkHZCGdphSNsRXqT9GkN6K9BCdx4akH8mzzUMUHvxvqw6wpV9fJ93 UL4X8fUK6O8BVNeafA85XA5cl5j5xEVAqrO1hgPpJCCdhRzPpW/OJgydRgg6 xkxdGGgmu2thSUNQDb3cmUiuIW1cWEo48RCm34I2dwizVwgL+o0C6h/bIpdp avWFaqgC6s7bVEDLEFK1AXQkAp1kAJ0MoNNNpW49At2KQHXx1W5gPt8MYWYZ QK/kq2vwdROA3k1n/QJAHwXQv5n8NiHhQzpyv6SkYJ2y6fgSOnognU5g120u gEBYKfSUX02ceTvWlfyo82O87zmsJ7lRO2LQdADNBlBSKxOHDnfi0PlOHKpz P7Y5cahazMuCAL3IsbBqabWCrwsvtTalNapyAO1yEC/+GQEmVrTN33lOcqSM O4CRi+Rw8Xyes4C4uUs5/8+uk6ysfUQt7+AZXiSS+TPf9UEA1QWjtyKHqwBU ixoXm8UAVUA6HEhPB9K5QLrM2oCnX4pXmi2nIechePo+Vt+GqXJubcm1oqEm vftdfXOHi4IYDbsQIxSjJafIiIZn1J3C6TLqTv8os3ojq/4wqIxOxMufYRid CaNzYHQGjI6D0UEwWgGjOpLZCUbbEI3GEo1a5EoREXeZpCE6+hH67WkYfRlG P8CQ7pfk1vBGDpyBJezcH+MEJIWz4RLIynDBFfBQjOEq/AlMwEgu3tZHZJil FXOMXBaMEsg2RKPuqJEbjbr1zwucfMnl9BLntd3Oe5Y5Uewk5zqVMFoIoxm6 IIOINJl7tn0EQ0rE0RG98QF2Hta6gOctquLZutRJdvY+ycx8h/zvRXTvz0Qz DxKVKqM/RA7XIuOrTARUBKdVcDocTk+H03lwuoLcfjER6SxrPoZ1Gg5rjNRi G8pI6rxzlLwV+pAjR82wo0HZUjPmc36bjK5t0tEroyoHl1F7VNNmtL81gpzd ZnSSdTZsLidy2kAUtZVoagd6vxu5nw/XF5mVbO1gNI5o1CJjioi4A0Z/Zmov sbFPwehLMPo+ffgV9gYblUXf94A3vHXOWJjDoHXH85bAQSUwld/Ez3fB7S+x meT0XZ+Bj9exoZ/wmSP2irYyx/65I0huNKrJ+k7Hll4o/rz+YsfR73Si0RWO /Z3iZEx9YbQ7jHb6wp5Dl0RSn4IdTyVjSidjysLGZxO+5gN1kc77K6yTLl32 SefO70hGxotE2Dqr4EG+50/53j80I0it4FTrb0VwWgWnw+H0dDidB6eriOaX 4uzPss4heNI63gT0fihJvY4i9SQatUeRdHTPO+240bB704xGnkyRvmk72usU Mbr+hHY0mFG1o9XGjo4wdnScsaNnGzs6zzC6BUa3w+gu5L4XeeqC9Etg9HKu fZXpGx15j4i4H04for/+asZY4uPfo/++xJZinzLo9yJ4qMZO4jsLZhCQAlkp aUwVYJWRMRUTkHYnWyl8FC4IDHPJYHzYt466AE3s0fL+noxpocOdW6zf42H0 siA7uk38azVmugEpjPaC0WwYTfnMztLaPYku3c89b+aeXDAP41swlWclVevZ vR5GvxSf731s6UvY0qcIth9BD9V/3GWC8ngYTUMmOpBRjowGweh4GJ0Fo8uw pcvpn7Otc9H/Ofj7yTIU31VN1lSMzcqjPzQg9U4PCTc1/qTcfdjCU5ApLQmB afEpCklDY+qduKSYah3Onbik7qYvmA4C05FgehqYTgHTM8F0PpjOMqZUE9Sd JszSJW4+zEQ76zKufSW31rxJp8ffD6oPgepf6LZ/mgHr+PgvQbVe2qbhVvHZ nfHZXchBirBnxbjS8rUi1eBQ7uRNhWCaD6Y5YNoZ09YRTNN1Aa/YU+Hcsr27 ekPXVLoD8rslMLm/xAlJ9zh51TonLCXSMIuDB4JpGZjmfompV3P6tkiHp7gn 5tx3C4jCeMFKnmumvTSvtFedFBTsN1OrMzN1rEyHJbQMrMWMe00BLs7sJXEl 8rlMeiKjGmQ1GplNxxUtQo7nEI4tNLnoPJloTcUsjOY9/c26dc1h3c093Mki 4YY8EwIn2TVjrkjTU+XDWtNThWnTUWkwplr3KDWY1oLhSBkFphPAVGcrzkKc C8w8nK2IVDHdAaa7wVTXrl8Eppdy7StMNGZZt4tltpx5EFT/Aqr/pOveBdUv QLVeUjrUm/pTNm47n/S+G160hPS+AgxqcMkVV2GtbgNhMM0hMuz8N3v1WzqY ph6yJ8MVSWAV310u7EamOyUwxb/YwXavY23XO5ie5USmQ5wVmVqDbUP025oo uIOqx2/tZcsFcN6di/eC63JuWlFeJ9267ZecnE/w+G+B6fNg+icwfcDMRrCs 25DHzaZunIFsCsx2H+djMXcTQe3A029F7deRRS1DpmcTCcxA3rpiZhCWt0IK nTlNTUxSDk7xmzupqekaVFST9rTnt5I+qcsIBlX1VdNJrXvY+yKVGVAHY0/H AOpEQJ1uhpOXo/sbEOxWBL2dsFVB3QWoexHohYB6CdfWYelrTCdZlnbW74H1 L8D6IrC+Swd+Aax10jq1XtJy68VHml+A7+5BSlIKAJUYxFqMYRWxZC8dbiKF 6gyomVoPAtTUj4AImNoDVr4EFvRnOW58pROebg9Koy5ywN3jQOyCOtcBfRhp We+jQMn12xy0615pz3H/B3gObHu3K3gmYopyyK7CiPeprJPi4v2Sn/+JWXaa mvpPQP0roD5sJsFa1p3I4xYzZyEdBc4BVC0q90dmY5Gfhk+zSB1mkuZPJ4Wa YmpR42WgGXOqMhsmucOhYaaR2H0cpb2deDK1qOZa1FCg9vhW4tPmgFoCqBoj uaBORoAzAXWudR6OagMx6la0fzt5qW68oqDuAdQLAPVirn0Zt9Y8Smsx/0N7 QHQJRIsWLwLru8D6OZ1YJ63a1Un77HrpXFwvXcmjinXjJBxqH5L1/lBWDVkl OvL0Y6zug/ZMvFRAbQOoyQpSPQ5a/HOdJjhxprs7yAbH+e/yWNWLHGhdUDc6 79WAQcf7ta5VAaxdgLXtYWJUrHfaP+yRr65384zXEBhgqisJUGpQrH5966Ss bL8UFX1Cvv+OdOjwMqA+A6h/MGuvLOtHyOM2ZHwzoF5DTnQJgdVe8tNdpmg6 lTx/GjnUFECdBKgTrJnkAhMbalI9nZqUd02Sd737iXKpsOs3mzaqQSNPhtXk U8iqx/sPDDu73rskSRXXHb8vMZvN9SNIHU5ANcGwegaszoPVJbA6H1anwupI gtQa5N7TsHo+rF7E97/U1At1/N6y7qP9jvak6HqyFi3egVedjn5cWrapk1Rf nWT1rJf8mnrpST5VATB9sYoDsXZ9L7DzqW732PPyMv4Cn7DaClYTYTUZVjvX 2wV+zafGOrzNcwzlOicCcFhFApBKjuh6/12O4V3l5GDK+UjHSHeB17ZEAimf EmW8CKsY9YJ7uReBcwWWui85f3+s+MD+dVJZuV969vxE8vLeIVB92WyEkpDw BKz+znz/OAxrCoZVNz7LxrAW4Xx0U5VBsDoBVifC6nhyqbEEqaNhdQSsDjNz 82pNP2h/6CiUW+QPMavZEwEkNnMUKsZGtHFG1VzD2v0/Aqt6lWBYeyGkPlYN Ah1mYNUFNQrrfGA919pIuLoNg7Cd3+2UfmayyR4+e76kminmF3PrK002YVma VfyW9gTtedrbAKtrzo5LYuvj0rZTnXTsXid51fXSY0S99MYN98PKDV7Nv1i/ 3tcSGt6BR/4VYeoTAPRPQAXWOLxzS0DtSOvuZFW6o5xudegd1t/khKR7Daxg alU2RAFuod9dE6LF/jFO6KuRRTuAbbPPnlad/UdgvQ9YUZ5KPliLNgwm+R86 uE6qq/dLScknZFbvSOfOLxOuPidJSU8C60N83/uRx4+A9TZgvRnorgHWS8za rhozkrcJSFcTni4B0nmEsDNwZhNM4VoLqTopSjNcdzKpFqm8Q6Yhd7lp2cBr 08Y1Vi9hGetqLua0yMCCVTOM7DfKrScgGBQyIAjFrSqzZp+9rBKzvm4g3I4i klJuZ5ICzCdyXQa3C+F2BtyOgVsdQdW1n3lw2x5u4zG0lolev2ccomX9hvY4 7R+0t2j7YPeYxCcflzZZxyWjW53k9iFVGV4vZZPrpYaocOh5GDGAq3TSrPyf 2bsipT4vkkTaEwW3cTCbTisU/yDVRIc/t7iqQcFWf/Rqo9vbYLvbwXaVg63i rmNUOspfIPZaOy0GZGDXsx/ntZ8StN7EI6FO/Xm8YTPI7IbVSW3tfund+xPp 3v0dyc19mUzrOWKCJwnOH+ar/hJR3we2d4LtLYj3erC9AmwvNEtmhyLK4dYq /P8STMRZiHK62ayymjisyurfsGuYd8KUd3MmT0EgpJ1tmtu4JrgNZW/Dctvt FHG7qVncqvPxcquB1CAPt2fA7dkOt1p5mQm3Y+F2AMFBqcNtB4JZm9vLTJHR su6haUD3GO052hu0f9GOSnxLuM2A2wK4rYDbIfVSPhFu59TLUOzZACfrKnYm +XV+1N4LpNU7IjH7RaJhtn29P+vSZUrjHSfvbpCzzoHTLRFc4CkNuINWqx37 7C6q19F/HbDtIHbWlf4m4OqGTb8A3FsAlwvU8qFhpHejRtXLgAEHCRB0mz7d Fe016djxHwQIf5H4+D8YXxNFMJ9k3YWMbwW+G5DvVWZxQyVy648sx5JojESu w/FnuiZ8kHW6Wb7Tj6yrrwlmezbaFVT7LWh5SQibG9OAQFQ4dhNPbGFLQ5Ba dIoig8akBkcG6nFcUlWdlVTd4mowpGquejqkngmpC5DoeUh3sSF1m8lvB0Br KVY2D1o7QGs85sMyoaxORdWy+C9o2mvP0F6jfUI7TKh3TNp1OC4d8+qkS2md 9BhAZDCuXmrPqJfh2LxBIFZ1mU2HbuvVWRfmPWtv9RWL6YslzGzrSbt0GbIO DcwQ/1SAtQ6pTnTQQKtL6janPrDM+Yy7yl5ruJm09pCa9j5h7DNoC6F0zx/a w779yNWG8oGR4yF14FFI/QpSdSuLtyD1JbN1Wnz8n/ieDyH7+yHhTkkmrE/D xOoOBPY+oVqn3oAl2IC32kBacB7pwkLCWp0KMMUs0Otvaq6lDZP+3L1Cg4tZ Xzs6aBnOpvpXmISyqd8uqcHL85RUlYZNai+jz0MhdSykToFULQcuQporIHUJ pJ5hSN1mlo6WYh/yoLUDiW88dlWnuFlmWuodNK3mqGN8mvYKTTeZOQipRyQ1 9Zh0yq6T/OI6Ke5XL5Wj6flp9TISozgYhKovtnePLfgfO0HXJaSt3yAO2Gdv BpZ63B7EKnZsoY4OTD6AXSXOnU9b8gF29aC/mrU3BKkaL5zn2GGNgbXQUELr TMvgsx0htdML2O6H7c1KNK6u4YOD0aYRp9dL/+GQWqX7Uu2D1Pch9XVIfR5S /8r3/COy/xWyvwc/9j1Tzcow1awLCQpUbhuwBjozTeOrjcRaK2SutUjmWHPM DGpdSqp7Q7gb4mkfeQdbQ+y2bE8KaEbeFRnOpgZ5/1A2tfBbt6nudAD99u7E VC2bKKnVDqmnIbFpkDoHUs+B1FVIdCmEzqKNM6RuR+I7IHUXpO6B1L3cWiMA nTisw+E/Fd0uwbK053RXD912Zj+kHoLUI2Qox6WAyLWkT730IXIdSO+P1sgV D1sDVqU32aUs3WRWJ6imvCaSQMoerzXXI/b0qu5OuKkDBBMgddjPyZzuFpn2 a0JSUvtNh+zsao9jV72kainLLI0SZ7tGJ5rQqQadIdUHqTmQ2oXQtTu2vexG 7sWFBi0nUp6JDxh7VCpqIbX4S0j9BFLfhtSXzWRxLYlEWA8g9/uQ+63I/Dps 4uUQp1tabofA9Xj59TLelFs2yRraSmslP883y/d0canu4apTrNSCBK/I95YI nMqrh9RmlLNaNjnSaigvC0FqQbNJ9Z+AET46HXxCPrUkony6UwFUHjrJfIg1 FD7Hy3T41Mm9S+BzNXzq8PVsmo6xDjR8bkfeus3WbmS2h1ur39fJ0/4xAS21 WtaLtPdoOsZ6AD4PwedRKSw8LqW966Xv4HoZPKFexs6m7wkv+wFR+Xf8E6hN +epluyKQSITaAX5yYLTHcXtfcB0XGAefg8nCBl1JlkUGP4/PrPnU5nO3qQrs NVUB5XO7+MtXmomd4Vjjaie1yuX6GEfpCp+F8Nntl+jL920LP3AN9yOSrpl4 VMqHHJTuvb+UvPx98PkBfL4Bny/wPZ9C9g8j958h9zvMoodEIvdUYqMsZNbF WicVZjMDHbPeCJubZZ21Fqu60Czjc5eXljl7hGtMphFqsN8PWRXwM9q0NXUm /wWUXMNOX2kurXENcH7trMreNWJjyNX53sM9FFotlyi0fYKgnQe05wLtWhT/ PGCdY+qF23FR2xGqQrsDaHdy3d1imRBAJwb8QOzxAa09auCmZax3aJ+bOSyp qboO+hDQHpWysjrpR7A6dGy9nEZeNJK0qj9UVVwNlD90ylh/Ikd/0d4DVDdO TvvKBks3s3fnWo3i9VGECVP+ITKLFGz5Z3awqoC6htU1qjs89QBNq2Y59QAN JdRQd+XahdyrG9D2ANpioC25Q6TPFQS00D5kAYo2TTe0Pyjdqr+U3O77JDPr E6B9B2hfMWlkhDlo4dfI/UfI/XvI50oSBA3qt5FirUXWa00IMI3+mcPPiwgB zrWWEF6dYYLVAdYAs4jKu/+odyfxcHNZEgKZDWVXIxuGCSIapq6evIXtemoq ATazg07IrDtLQOWjuxsMJhUdZ50GszNwTmdjYM/DEGwibN2G4d1mBl+H0HrT 8g2zO7juLu57vtizBHRM6z7xl17/LnYJ6zOY/RxmvzK78RQWHobZo1JbWyfD Sa3H45FHY/kGbrETLFMKcHbkSf2HXQpI0k3FP8fQ6mqVY/65V96xgnOdNN8d 29ppMxthLG5vg7EiqxVaHVbQEpZWwAY7UWs3kO0BssUgWwKyZSDbG2Qrr7PV afC59VI966iUnnZQigZ8KTkl+yQjB2TbfgCybxi/EoF/icLP6HkosfideFQ5 ET+UbG1BXGul0FpDLLAOn7/KbCJzOrieaYYO5zSs+3O3gNRYwDsGG2J3npBl rLDrUpuG1p9q+ScMlIeANv8UBbD+AMENErzcqqPxcqtjscptlYfbaXA7z+F2 A9yugtl5sDqZNpRWYQ4K2YHzUm53cmsNYnUsVse3fiz+0qtbwvoUbj+D2y/g 9iu4PQi3h+H2mIwYUScTJxOAkvsMWUeweKETxN5rB7Fp2NFk3bHnE34m5eoE t12O2Ym8BrFafp3sQKhBqTsha4ttb5GAH1p3gaoWBdzZLRpk6KkPOl+wFGjL gbYCaCuBtg/Q9gXaWoz1oBUE3POOSsnkg1I47EvJrtwn6QWfSEo60CaoP3kV uf8NeT8KBL9A5ncimxuB9lLkvh3wViPrNQSxK/BVS4FzEX5rPsHCbDMeO8Xs PjPCrPPXACHcHpGh9zxrGtrIwMkDBtqYE1taA22rbwfaIQHQBhtbhdZdbeVC qwVqjfYHAfxYaxzQTgfS+WRbyw20q4H2bNoUhK/LVqtohQCbTksw0GqQoIOy Os6l4wW/NrmyZWkmotWsj4H2X2YZXadOXwLtfqA9JP36HZHhw4/LJCLb0+aS Aa1yIludQXiXs/KKKDXlVYztxwQLQJupC1uO2WMGGtm6tdczneqUa3A3+w1u hEYKVkVD0rXGKRHMc0oEyr0OP/QiYC7/AGaJSaqeIJglievLY/S7Hm7RpYEo Q9WiY9Jr+iEpGPWV+Gr2SVqPT6V1pw8lLvldvqbumf93xP44Yv8NYr8Xsd8C t1ch+t1wt5YAdwUG9Fx83EL4nQefs+B3htmWcxTGdow12sQIbpnA3ULSu24g 7HZo/kWCMeHsbVQDulakd9jAijqx5e0dAuIupwZib4jrXUbgToFxD8NRgrWS oktdNKzSCssYwizdvOssxLvUWibruc4qaysEb4XgbWYahy7SLITidFoCzTIh g04s/C7tbtFhHwvzY2GG7CoXXRz3KaHgPsnK+lK6dtWRTj3P7ogMHXpcJoyH YHKzEc6olwlzdee8X9phru58mgRaKRDcAYI76RIqx1xqmOvWZNWULnbqAorq Vies3emEu26Iq2bZu5xghGPCi+u4LtcvfJfYgTClxx957eegfbs94bGWD/ch rCmZcUwKRx+S7JqvJL3nPknp/KnEt/5QWrR414T1LQjvIwnz9byqWEKoeLPV 5Pm0DWbL6FwwLsT0lmB6+2ApBpjteXWryam08bi/wcai9Aiat3XCHf2+Nev7 zYNr1xS2NDkZ1uVW6ykut7q5nG77McYaA59TibvOImVYCrcb4HYLYe8WXt8K t1uR6Vbkvg1ut8HtNrGM9dWRWh1HuJOmm9w9bPJru+b1Ptx+LCkpurRJ60T7 pbhYz707IkOGHJfTSM/GYjqH66gXsFVeYS/XMqO1j9k7o7aGpZR/wTBcZRyz z9DR2HSA+DegdEMGNavrxZ+iuexud1he77C9wPncaCdkLoXbvMNYdz1rTEe9 CFWyHyas/jEmGfPbVyfsEmuUkkoWjTkmOf0OSUbPr6SNb58kpHwqEREfOjv3 /oVe+L3ZIjWaWFfXAetYSwJeLBXzq2GDbg1UgXz7WecQgs3H480xU5BON3sv DTexrtYhNdZ1z9Nxwwbvsq0mxhOaDnejQ5jfsPNkmja/eafS/G4+ofl1MVZP pRir59IdlqbgzXQnsCV4unVkw1q+mUc73dlrsYpWSNMTOxJoFoGEPXCrgwze 0u1fxC6NvWt2JUuBw/T0LyQ3d7/06KFH5R2RQYOOy9jR9TIaNIaS9g9QE3ep PdBgpsw+au+h2prIt60GEbqP5DF7QMCNfEc6ke+ZDprusNhGJ4gIxniD+Gd2 zXDMt5rx3nX2ST4Z+22VaUfgkvGkrU4l3+W5dNYZ0Ukx+tKNNDGXqD0TdWzr +0oScS2RkYrya6D8tFHjFtb99MEPIUK3+tKZmluQ/QaignUgugZUV+LylhI5 nEPkezZZ8hyZQfCmpkSHxTT61dmh7mCDu5NQmMGGoApuqOqY3wInntjuhiI2 9xRFvVvCpmr6ZVV33aN33FkyCq2GWQrtKGuUqXvrSM1i8t+1CHgFNmMebTJt GODquY6FtHTulUCzTNygI2M63qCLEdyps25p7C2gfR9oPzHr87Oz95vjoXr3 PiIDBhyX0SPrZeR0cnj8cS2k9bnIM+bwkD061uZ1INI9Bz7n/7oJqtiRrzvr YIIDoIaySzylhq0ecL3Qemd4TXBStiqg7Qa0nYC2NfdJ1Lnef7Ojb525U6Hj yxvtzTsKJvI6Bjuz1zFpm31IWrb5CmgV3LcA9znA1THsX9Ajd9IPNwLGpRCy Db+/SXyAq1sG1gDuCMAdZ7YQO0dmAe4sZ1NLd48h9YvBB+R6Zx40njLT8sQD D6GwDTVBJlS48M1jGxmUrAUv8WoKWdVtRXYyLms2We9ia7Gswb3ptIOzaJNp QxF5Ja2Qlg62CTTLhAw6KVGHILSa61bGtMLwd1NhiIt7F2Q/Atl/geyXUlSk FYYjUlt7XEYOr5fh+O1BGL4afHlliH1c2r6CfSVk6ODsQtD5qB3qakXXnX7g DRlWin+yzDZN1rabZM1LrOZ0cx0TbSJdiO0JsdlqZr8USfjYnlemWtPtbm51 DaadyxTywS7TeN8QexOFdjnHpGXbQxIVpdS+R3sBap+AWi2y3EOH3ExXXE5X 7IC4LdC3CRI3SDXUjoDayVA7E2rPQtzziNK8G116NxR0Cw2asLnRrhMxBAEb djWNfxFtyxBLZ5thZ3P+Y8C6M7pUEjo2ozM3FViVlAI7i5T3HPR+DRI9z6yh 2SCTzPnEGwkiNkoBLZ2mMZtlggMd09XhBy3luiUxf3VB9zZLSfkAYHVK/+cA u19KS49ITc1xGT60XoaS4w84m3Qej957L7ZMx83u8uzr8k9g1Q2rPgJWZ4Os wqN2ObdhFoInODhP/DNqtyiwUEuqs9VTXVjqmGQ3xK2ts/cdyjkokqwTHz9D T162Q2ydDNHrRh6JR8tHGXJmYYpH8WjY+NRc0sZ2xyQ6WqH9CGBfpukSogfM wVpacGlhXUmX7DI7DHYE2iLEVmX2DV6PuHU/61Vmn6xF1kJigxlml0FNk10z 660weLd4CRUb/DtGNmhul2E26X8zs1o+VGYnWZMMs4vIdVcjTF2ePMdsMbge f7UBZjeg+RtgdgPX3Mht1dDqOK8OP2gZV2d+60zEPzTUE+Li3oTZd2H2I5j9 DGa/NOeRV1cfk6E61jsJaCCoCvNXtsc+UqfgDpj9pT37uz15WYZu6/sOvMJt EdwWw235UXuMdoT4l9e487zc2bSbldmthtnNDrNrxT+9qyGehdlSLuejtSL0 iPnSngKhJ0jqjjM9dETkEh4JP9CZD2aOR41qCFkKeH8q749Rbj+F29dh9m+0 h+H2p2YnZV0W18Lai3HcAXu69eBWxLgZcW5E3OsxCWtlKaLWkTP1b5PNzqMj GvbOcochdPqIu+tLiB01YhoYCzvLy29nw85HjGyS2exvLwPzQuuuq1FoNUnV KN+FViWl0J5JUKXQrsJtLcOFzaHpCQGDab2RcldaGi2BZhljq+O8V4u/jOsW wZ42xYS4uNeB9m2g/QBoPwXaz4H2ANAekcGD6mUgxNU4K2xLdhEwXm0fH5Gt e05j6TKes/eh7gJFRYBbDLjlgNsHcPsftYNRHa/VsbOzHLfvTqXdaBvbBmLX B1E70wGex5BetE60lnX2NHMd89DIRA2+bnbc5SqoRgE6EgmnTSEsIHVr3ZPA l+g6NlbJ1fVubzWcHBAZ+QvIvbNhR8IErG2atRMK9dToreZcrwmQq3s+LYXc ldYKOdvsX2JbW28xTK2tRnSaQbtjviELYa0asPUfvRLZzMmJflMb0xDPnnJs bVO7Layp1UDIpdadUqMjM6rPqtdaeploTTQj5QusBUaKy4z/0v3v12IblNp1 ULsOU7vOoVbNrY6Y6SIbt3TrlsD+amoHsbGvS3Ly29Khwwfi8+nilM+lV68D UlV1RAYOqJdBGLt++Nyq5dg7XHmPKzC1t+KHdXfXRyGHNCwLc5tDLt/1baj+ kPfhvysJPmuO2nm/LpaZ4sS05zghwlq/uTXkbnL+75ZuNfad5YQWOvVLS8G5 9fbBVbqopw33yoLaLr/leX5ESHIdpn4n5IJ8R3DvMJwYgqA6uTPkJiq1+6H2 Pah9AWL1XIHfmO3v3D0K46w92MudkmsO+tpGSLYFOjch7w3kD5ruriQsW2Ss hnu+QF9nly0dkdcBIzdGCLPrhvXvGNxQmVgog+s7ReQObXIyWDC5GupryK8S Uklp0XumNdPo/QqzNGw15K5xyF2Ld1vLZ9YachNpLZC6PWymxVvtIS3e3i92 1etJU0CIiXlVkpLeltTUDyQr6xPJz/9cevY8IBUVR2RAbb0MALtaXX+LoSwH s+JLoeS7UHIfdvZBKPkr7Xl78408aCqE3J6QWwa5fZxN3b2Vr4WOPV3tULrJ TArbbCaFbfSQu0T8C8X18zp2Ztbb1NtrJ9Owt76n0ZiH7dNiCrSocb69caFv th4hxHsqoZfoNjmZ9C1Byf0Qcl8y0W1k5AOQ+2PIvcXIR48RaoOsfJDbE3J1 udgosw5Xp9mux0pohLsYeduRwkjP+YDaT97BhxAbcXiKCEmB8W3E1zO6Bt2K EOh2/ibRTWjwDc1A151nq/UUF117HuMQOc1Mr5lu5n4uJ1FYYg4bWW2Wjg6l VdAKaBngm0jT5ektDLpuwVZrXzqXUWtf9hSbmJiXQfdNadv2A8nM1OWrn0v3 7gekvPyI9Kupl1oSnJrpxKpYywqsYq8L7dP58n9kH2OZ9Sf7oJ9Or/B/0M0H 3W56lOV+e1+Cvo7R9C4hX+Lg6RRukcimAHRXOrWveU6I4W4Iqytu0mitdbs4 wpIsXT5OuJL7c/sgroKL7YNm8vigj/ikIx9Kg3fdP1S3aYyPV3RfA9unaQ85 Qa4WV64CtUtAV+c07pJuhAt9zDiOFsI3mm2jliDn+aA725orU60ppng+wFnt qCGd9pd3PUP4aQtB6P47VreiIdU7Reg2KzXzLmZwJyvYC8R6GXQ1qhpnJivo UO9ZWIGlZq/dM2kTQHgooq2kFRp013C9NQ66u2i69EajOW8N7DFTUoiJ0R0q X6d73zMlhZwcLSkcMCWFvtX1UkNuVU1iX4W5rIS1UvL2Ht+xt8XI+bW9E2dn rF/nf9KwhDmg2xV0e+y386kqsWMGd5bYWU4s4KRoERokRGp8a1UYnBc775nh fEYX+OpsRl16ozsedOD6GS+hKuRl2cQKuT8EW2KYQgx3IRfOw7z7BoAtH0pL U2z3mz2a4+IU2WdpfwDZnzu7HF5nti1pY3Yq3Yva7yDm0n149HysTVhY3Ylz NfnZErzdXLOncah6grtDl/ZfkzMWQhXBIpssKIQtglWGoLbTKaJ22AmX4Ljz wnSEzF2CY89nHGxGZ6aagd655AvnmmU4ZxDtjofcwZBbSStEypm0JJq9cc1O /r2EppXbWxsVFWJinofaV80mwFpU8Pk+J9I9QKR7RPpU1Us11rLqdIwtlrK3 FhXIz3qSnxXebp+vkU2km/0XGsYvm/ws+wNeh9pCqO2pO7uLHS94l5YvdHI0 t4K7Qeldb2zuOqfecK6Tnp0h/qm4Ouime4C1OW5vVZv2ur2nTaeHuO09AHwt AO+wq7d6MGKXIfbRSh07AnuH/eaIBt0MPy7uOeB9HHh/ZU6oVV+kW+21wS9l WRcC7x4zlXmA2eJ0M4ZBV+Ss4d9zMRpnkSJPl7H4vmH4TzUo7tGYamia2Lqj 2TbXP9+m6TEHQ29VCHqzThG9O5pFrzu+q/TaM8j7ONNrxjQMlS3BdS00+8Wf h4jP4/crsBcroXcV9K4y9EaYHUH1nkrvdbTvO9UFXfKoB0Y+ZY6mSEp6GXrf MtWFzp0/I9o9QLR7RCor6qUKBComQSEuuEyrCzv05HNcN3laF/K0HNDJIWTI fZb2Mg03ngta+dDb7ag9XaHGCRncBeZneyoMa5yKwgbnXxff5Q7lmqfpJDOd 8qBl4WxaB11a+YVIKvdKR2s6/gGEiXazCWPytJbLhQv1MGRC5C4kdz4fmGfu N8cypaToNuTPkZsqvr8zp9HrouU45KNbzmWZvbwuAN/dUov9HY39nY791brY DPA93ZpH2DbdLJDWE9r7OQMQ2ldawvTu5tHkUgg/wVH/rv01BCd+OwSHt79a T/ESrLG/u3DHnuI4yARZSrAWdRdb58gCgt7p5sjh5RiL8wi+ViD9FUhxJUGX noSopyts59+LadfyBFp1v8epNOjWFn+GYD2h45/mxML09Pcg+FMI/oqg94j0 Lq+XClx+OdFq6Rx7/+5irTRcBp06S4F8LY+gN0/PhiNyyHuR9ibUfET7kgD0 qH08q0YOQ8R/JPFZTrVhuZOzrXXtb58GgJc5wYU7r9xs3y32yvVMAE4H4Hbv i7QngEhHgTrqQQi3ADExbx7Xy+cehUQdRXoMTheFWI9s+pCUVA8jeU4SEx/n qyvAOvb9fQC+AYCvAeArzEniui9/La5rpJl7twnbu9acKzOBXGOMNQPbO0EG WsPNdjTlzmQF73wxt0QWdmWkv9gQds6NMcEJ9vZJTc2v6RMC4I6nCOCdYefo uhvOBwNsTyyvMjPFFGD/SNoivJp6tKVIdJn0B+IyWj4gZwBxEhBHYoYVYD1e MoLeiTAA3037mVNw+BO9+DcAfgGAXwVg3b/lYwD+AoAPSVlpvZRj+0ohr9cs e3PvHnoQ0iXQcbNdnupC6Jv/CI0wNB9zmE8QkQ9Z+fsA/LC9laLOWhjoCX1n e8zwSgfiNU4G5xK81DHB7vjvMEcR9Ho+CM6C4PT37Y3GOujRn7+BYoKazriH bBLAPD6cD/qFhB5Fhfw/bz/f7UPJyHgNip+T5OTHJSHhdwHbKbYhNciyrobg y5HlRRC8F4J3mGN7phOMTTTGYr6Z8TgIgvtZIwjaas0mwTpE39TMhaCZY9FN QhwZCHF8A8RhrXAoiDNPUdnhxBC788Tcs7UVYs0T3Ck3CrE9SrHQ7Pg7HYjH 0gYg4HIg7grEmUDcihZlzkneyr0uoF3Nvb9Lu9PMkbJLD4/TiU9jkp4nRHyV XOdt6dTpI1N66NbtoJT0qpPyfkA8BoiJR4uXAPFGIL4QMG4A4rvsVWm5QJwL xLl/t3dXzgWuvH329EQ1m2VBkbA78VzztPMcaL0gr/aYYbXY053Sgx4bogvd c4/ZuytnvW/vVJPKfTN/z//vBvBr+P12lGuJvcNyN+x3jx5qig9JdvYnmOI3 zZ6gKSlPEk88SDxxvzl3PBLZtMIU6w52eZjiYkxxNaZYt/09zSz234isVyH/ c4jb5gD3FDKPsYA+2KwUdHes8a6a8M4bC4LYb4nNT6Emn/vnjX1NS3yqIB7e LIhVkzWoUt/kztl15zT4By10d6UlZg9LPbtzMABX0IqAOAuAU7DEMVjiKKxI JBYlko6J0CNAdL9lM3dMixB/lKiopyQ+/nks06t07tvkPR+ZIoQu9SnuWSel ffHhBJWlmNASrFsxprIHAWd3PcvzdnuyYSfSuay/0p7n5zdoH9rbzPuO2HuB 9HIAHOHEBcHhxEobYCSz1sQTqx243frZDCcg1nhC9xXpCsR5XD8biNMIXdrq 0YkoUvaPef16+6zRwuX2/svFmPAS3eu04LBJUzMz3+V7vgTETwOxHoPyKxMQ R5Lmxpo9mK9GfpebzW3LkFstlngEMpxsJjutl9nIdwYGZDKG5DRT/vUf8enu CRK8zPLk44nIEPFE0wFxKIozTg3F9mjx0AaEg0+vCYWwO1qs42463mOPXsyX edgEzTH0hM+h4NsH8Xan+UC4LQjHg3As4o8ivY4k1Y7Q0xdwnC3M1Bxd+POo 2TY8Lu4fpiLRrt3bOFu7IpGff1B6dK+TXoSTpWBQjkcvxXiWYDSLd4Kxnvh5 qz1v1912Ie1FG6m0j+zTPDoe8c/d1ZEH76jxXCdYWOq3xQhojZnrsMp57Vwn 6NCShDsFUgOTIhAu+NzeTV/nr6W8gh3WMjD5ZQFBTrcLuOcqe2/mMox/b3K6 7t0PS27uFyD8EQjr6Phz5nTo2Fidn/MT5KNL228mr76acPYyyQZh3Xm10py4 shlfp9varMP/rUX2y8xWFzPoBy3JDzTHMPVuOIbJne8QZguGUFWJUEuFm2uI wyKcfioR3nFCK6yarOLQOEsR1oEedwDOHsWYZ/ZcmW4t5rWl4L1c+oKvzvrP obUH4UQQjgfhGIPwpdz5O7RbeQx30oMe4PokCD9ryhI66SEN/jp1+pxw4qB0 K6qTnhXOTvKYz3LSq1LYKiGpKyap6/Fde9FlDkld5pP2Xo06nNtO0dKF7kfs 8q0OmvX2xMSnO6UGdzRDw4YVTkixxrHKyxwrvEACZ/GqKhSDcNf9WN7PuBcW PxnLn879s38B3t/n97pB7zq7jFIxjs/woV69DkvXrl/w3T4x3iYl5UUQ/qvZ /K5Fi18gnx+ZFUCJyKg1ssq0LiS+1X0u9fjKTchXj7NcZwY7lyFXnfKvpSH1 ikMxSe4uIu4+Yu7kh+BdGhodhPMNliaqxXIWx/1HMPYe2uBONlOM3ZUTOktf p5CquPwjGnMR40KS5XOwBktAfBmon4dTW4H4VxKVaW1iNZZgi9lYJIauibSu bUjtLCe1i4p6Aoz/ZmoTKSlvmfPqO3b8nIDioBR0rZPu5aRzePFeePNS2CvH PJaSNpVcDC432tNpNSrOetxe965zafQ8Jd1Xsd0Re6u6PE9AoVHxJMe6ugHF UieoWOFEw6uCMJ7tfEbXYeqAXM96IlxdDKSHOXwqkvSOfZhDZ1K7AgKcElK7 3pvsEZhq1K8fNy4vP0yU/4XZKT89XWcwvwLGz4DxY2Z6byQBViyBViIBV7J1 FcHABeC425wqWg7GA0B4LFZ4OjJdQGSs67XnYUp0JYt3sxHtLzU/oQKKkBvi JAWOcJyUNW4GxmmnEuOdjQKKcBjrnEkXYx1THmvWYE41ewjoTmNTsMjjsMhD sQ41pkKxAouw0hSJW2M5WpGUJBLb6Vbk0Qbj70oLMyXipya5i4r6Ixg/ZSoU KSlvkLlrBv85QcVBc3RXEUFodz1+Zpyd3JXCVvl6HPX54HKdveVI/s/tuFjX NrTVFcUEFK30eDAwbiv2zmNuUDHMiW81WfMOdbgYr3KssRtQLHTe513TVqL7 7h3HAh/0r6tIfdY+Tjz/Lntr8ko8Rg3PWjsFL4AbqKo6LMXFXzj76L9L8PSa SWhjY580B11EWj+Hk3uQ1fdBT/d0ugRTsAskt5JcbyRY030cdNrJagKJ82QW pmO+tcBMRfNuP+Lu6+TdyyF46+fgKkWrb2SsLrqB5PivQfJU/SvCl5SU1Orf YjrUeTrKtDvYrIOYLtM6xcdl2h74mG2OeTsd8zwG8zwYGffFPJci70KYzoLp tvRBCn3SCqYTzdk61yGL7/EEuoOenetFRT0K03+B6X+YAYHU1PcxXZ/hiQ9K Xm6dFGBTi2rhegxck3D1WgTPpGPl5FJlV8PPD+xAORueOv4ZE0mgnELgmghr LWE6GQY7in+90GAnypjiiTLOcUzxeQ7PK5yf1WQvcgLq6eI5+lF3PYXpNJ0U TKQR/wm6Q46ZSa6XR8TTnVyvt+4KjaIM4pmHEprU1OjWKl84W+6/SySlhwS/ IDExT8P0o/THryHmPuT0Q5i+CdldafbI7Ij8dF51KWa5PzwPQ76jkbUepH06 7nEmOfd4MwBi70/i7gHpHb9rYi+o5lrnsLMmQjEd9zWYHulQm56e/tCYMWNu GTBggL1LlBWpoG8rKyvT13lqZT3yjenTp+t79HdW4tfUgmFhLbs7W8irBSpZ Vwvc4b/Z1iw5Aweph6CNNhtwLJZqrHsJ1l0HTzqjBaloQVt6sTVakIQW6C50 umlSFFrQwky7+BVa8DBa8CRa8Jxx2qmpOoD9KdbvgORk10uXnjj9GjSByKI7 OV5PsO2F+S3TA1Avt5d5Fjn1Z58zyTj1dXuTk3iCiJZiH+Xjlu4GOEGK1pLd qsdCf7wdoSpg9WlQgnOct0xzlMCcLalbVqMEmShBEreI3Yfi6QAKt89BIYtu th1PDRo1BE0bOZLbDjgslZVfmL38u3R5lxjsNWnT5gWJj/8bSvAE3fF7RPMz lOBulOAWxHYtSnCJOfncR4jdHVGq06xCxP0wPLrX9HDrTEQ/jUx9kpnz3d/s N+3fN8J7cK/GKOEHsv2mPexk41CmPdTkob56ldivrwZz8vPz9VXF3Io1r0Up 6qoC+rq2CP2lRx1Udcw740+pOmghyT4UqLRhBpKqgz0UcybqcBY/z6dPtH/O wRmrOixDHc5DHTRm1/0/tmKY9tLHlxG76+L073HPH3J/rZ78wkwgi4v7k4ld W7d+yVRP0tJ0c8f9ku2rky7dMPpEKIUEy93IF3uQyvVaYc9cLr/U3iSyx528 5+f2/EudQdzhZeJogo+WX4nEwW+qBBYBhztp5DQniHEdw7k6EQlF4Ku6qjDP 8QfjnRipWk8dQBU6oQrJqEI0t0hG+zrgj3xknYVknSVkndVknYP58Gjis8GD j0p19Vdknp+Seb6Pv3vDnBfUsuWz5iCvFmTfMWThCYiklXUb4rqBGOVyYs09 ZkVeF3xBkcnoFxO6n42Y50itGYmZgkrYW6ho8UTjHHf/Ce/+lU0MihtlSA43 q8NfAgzyCVHh4py+DeXwb04Z1Pa7r6lviGisI/qrhK+pCqHjI3fJiaqC+lZV Bft0jF4NE0N0QMdedqLHucw15w6ORRWGogo1qEIZqqD9loNnyDCqsNlM603G zLW0rkEVbuaet3P/e036GhHxoERH/0kSEp4hXtD9ot8mfdWD0PabM8/zCuCr N2pAYNMDfovJI0sAtZzUsOJCe39MjfsL7kcVHkQV/gKXWokhRkoi7o+rs+P+ zmJPqNN1Uzq8Ps4TI8134iA39j/P+fdcRx/mO1UYTV91KnQN+tDzuL1oqg0x WBwxUivu114PefsdankHancVOcYW4n0uPAo3NGiInpxxGH34An34BH1414yv t2ypq1OfMWMCLfCUMXjMBOTTyrrRHM/cHjOSgQyzcQ26GUBvZFuNTvRH7oOd /VjGohMTnBhJTZZ3XwvvfpkhauLftHeICacQHb6uQsT4yXc9g/4+KvTLJ+Ub 7AR+RNhpJq4+uKP07pIAd5qJ5lnu2NBMcq+Z9McUXMN49GE4fVSLPvRGH3rg 0vPQh47oQwejDzvRh4vQh6vMlmcx1g8k0kw1ud8s+tRyTmzsM7DxEu7hbdzD J7iH/dIxs05yCHEKyuxjWIsJ9EsIb8p0frVuW7XH3pNI93bRBae6WDtLj3F9 3q5MJukO3Dqh6bg9N8/NGdw9XiY50ZJbYF9ih0cRGjKh/kudas58R22muGkw 6lBy3B7jbIdKJBywzzzUxdqddLKAnnp0vX2QzAAuNZKUYeDoOunT9xjqcBB1 +NyM4aamvs1XfgUR6LYKujridyaAVM+ZQMrQipShjTm8ZAumfh3R0lpwX42Y l6MKi1GFs802LxOd3eFGmkNlahvtj+Fuxh2ivh4+EQ7lIIJKOmET4ZqGkaZv TB8i1SkEv+Y6DZNcfA1N2NNomvaJNMEd6tegVINTHWLSrUlmmEUaOn1tId2w GE05F41Zburz+WhCZ7O8azPXU024gK64gvtczz2/z/31pISfgIFmz4+RQeoJ Ai/hHXTna61f75eM9Drx5YEW0U13opsSgv2yqWSlRDWV5A3VO+yzPXQ7liLw y/2tXdxM+zua8Caa8C87b2h71D6c3s0b3EDJrQrNdqIh1zssdTJpVxXOdt4z 1cm6B6IKZXX24V86dTDpEPfQ0dIXyNK5fxe8VM/v2p6r/2ruRSQ2YHydVA1E FUqOogoHUIXPzGKgli3fRAYvi70w82FjHVqgCjF40AQsRyuzYGYrclyPl15n Fh8NRh1GIOexyHwi6jAVdZgZYjm4d+6K9mtTuynHNLMsFGrENFSBs7ah2u/X hvb/pja4MZFJoWMC32c04BvRBvWdrja40w9VgqoN6m9VG3TOgDvgaq+5mSbT yKInkTaMo0dGmlrSUgzXclPm1yngutGPLupvjzakGG24zOzfGkPaEGlqSfdB wm/Qhj+Yeooee5+Y+LYkk/62a7df0jrUSVaOSB5ZdBEBTi8Q7k3MUUlO24dg pmaLvWe3pg2646LuV6enNKU9C52v27suxh+0FxpkoRFdj9tpQx+nnuQufDzD kzos9mjEueIv88/xpNEaZ1WgEQVoRAbXbM31AVsyXiROeoLnIJvvfhvP6pwj MuxsrZHWSeXwY1JchTYUHEYbvkIbPkUb3kMGujWqbmDymNjT4nV2m8aTV0Pv hWZzhFRrA752PenbOqzOWnPa2ERkPRWN0BOGtK6n8etwMx+xxsRK7vF47gG5 YY5uCqsNYX1DM4qktQ1XOUltKLPp9QZA0GuyZfUNDR8M0gav1ujP+pp5vxNn aZbtXk+vHXfyijMyrBtxZ567w7xqgryK4w7z2uNjU+m0M+m8Oc40vEUojtZF lpu5u93MBoXruIbuMLaLayoAl5lNDGPMFi+6YO1es3AgKuoRFOevKM6LJBpv SVLSJ5KSsl/ap9ZJpo9AicygoArTPNSev9uH8KbvuTaUekhE7+vsjR7z77cP 5zWDC6+gOB+iOAT/7VCeLJ05hvIUO5vxuyWoSY4rmSX+VUBLzIyFc01U5SqO W4R1k24z/VGP/Kuzk4w07pX1T3sGfP5v7DG7cj3WZLu9I1q/M+qk99hj0qP2 qOQXozi+g2b/4JYtPzbnu1rWP8U+hOABsVdDfZ/eUlldZDbHTLE2Ops3rUcx dFP+Nch/NUqzXOaiPDprRMcstRaiga/2lztO5g4weGeQeaZBekqxJivwq5Mz R/0kpjI07Vv6h9Cm1G9Fm5xClf6i4c0hchRVr39bpUIt5lCV0i5wVUprIlom VJXSIWd7rG6KORVoAjZwDNHZcKKzgdYSunsZ3bmSz6zms+vAYAuB8i5zSmBr 63K6UzG5kfvrQrp7wOkXqNRDqNSfUannUak3DWbJyfulbZs6SSe56FwEpiQX 3QfZM4qrSCz6wX7/tdj43fY+pbrduuYpOrahOwDr/qmtiJbiv7A38Ms6aA8R 90Cteh+31xW50dmUoFxlsVEpVay+Jmd3VUrfo3PfRji5v4796ZGvqVwzU/cC 4p555EiFeqbVPc75K3vxXSt0m4s6KZ90TLoPOSp5vQ9Lx3xUiuizZUs90VNP RNJdj3Wvl0fEHopXX309PXYx8tpBnLAJ1dgoRahVFWo1DH80GbWaa4afl5tl Ce5CfNcfuQs83PEN72L8sPPZmtaqrznHLSpQqyK+hlaV618tTeHWqNbXU6Po cL+I+aYVyZ2CpIqkxUQNk72K5B8amUybQaI/S0YT2A21FmATz5G+BHYV+KZe dHABHa4DtllmH5ELzcE8raxr6URVJF0ddRcQ/QxFehBF+hOK9HcU6XXg+pBU 5ytJaV0nHTJRggLSl3J8AQ6lF5FYBU6iH4HSwJX4mO32uQUmzfmRvfeJbhyk mbcWpBJI+NvpbDqUKU/P3Dhsbx5Uc9xfBHP902wnsFtkFGmxKQi7ijTHUaTJ jk/TVVY6q9ldIZVFAJnzMoHjn7nH73hOnqX3TXbQOUj3qF9UJ2XTj0m3UUcl t+9hyex+UNpm7ZfEpK+QwWeix+Tax47qDnU6u1CnaOlOH5dLC3M+yWZkqEXh jWTzGzBa6wiu16I8a8zi6uVmu7azzGQENXShdr7yFobDntMdSpFiAieLhnJP QfP2Q83tMJ8dYCuNubQLp1+l2nzdJCi6sZ/R38c2qTeJ+ouYcNriqRWPCBvK qbq4c0S86qIz9tw5Iu7QyWRrOl12JvnPXF6fL/0J56pNfew81GUVNnI9n9+K 79lFd11IHH85du9aM5Un2qjLHWbNfVTUA6jL42bWXkLCq6jLB6jLF/ieOklN x6Z3ActS/ArOQo8DLyc1ryaFH7jcPkfR5EE3gOmd9gZXetRHh+fITd7E7/zL PgFZJ6DmfmWfy1GGyvRFZQYft4tdE538xq0bL9Thk3OMtpztaMoMR1PMnnBi r0vUkZh0LRl/giYSORbi7no+gGu8l2jxZjTqUvsUkj7L6qR09jEpGn9UcgYe lozSg9Imd78k4A8jor4U+3gzewtk+1gpnWagbvka0T1yotCUtqZcvEmK0RY9 /ms02jLdHKu0xmxttsjZ/0XLlt79ttxdNNytkMMcrWjQiAqnLbHhFghEBgZz QatcQmmLXzMmh9CMqAaIT1QeaGZopr//xkIzddVeFXEPa3SnUbmji2qp3BLy 6ajIBPplDCoynFR1IP2kQyqVqEgpVq67UZHNqMhOVOQCrnkZKnI1KnID99Vd VOw9lXWtaVTU42a1Ylzcq6jJ+6jJF2Q9ddK+PdYas53rlgpINSp0dh3mfzDR 05ANsHi+nfH0dDOeh+2MR/eFS/zYPsVJw7OOB+31MiY8q7O9wghPeObODjzb nCqyyOjIAue1M5z3aNGsv9jLC3T/0Mw6e+v8ju+hxnix/MfsY8d63WEfGFG7 i/sQmvUmNOsx6bh0ITTLIjRLJTRL6rBfomP3S4sWH4cIzVQ2uqr+Ivpqm7Px 52Zkuol+2IAerCc0Xifz0ZMVZoLrEjPBVSdB6JCXe1qD9p07rBJqqUEjjxId Tkf+HY/iD82a1pHml9BObfoy6qR0xDvsGFxcnkQGOhEdGYeOjERHhhB19Sfq 6mNW9K422WtXoyO65+BernkJfX0VfXS9mZplH8lnn24WEfE4eqJ7gbxitnBO SPhCEhOPS7t2uIVO8EgK050UppQUpopQqb/uPY69H7bGk8LcGpTCvGwfAaFD La3Qj/aH7WHz/Dp7da+7lsGdCD7T8Rnz7EgrQv2JoybzHC8z1QnUdP64rurV UZtOXC7tEGr4GW7lDf6vOzk/ZD9Kyc32oUB9CLwqdR7NlDopGH5cfFVHJa3w sLTOOChxCQf46p+iKlpR00OH/thQUbM3qtKJxlqb30aXbDHbC1ea7YY3OFs3 rpNluJNFmCedQKuFAQ28vJvgeYdbTricIbnJbKW5NYAgtzGpOSoxxEbXnYRl /hcRTk1C18xOiYa4BedgDXEPUvUm+W7BWSfKTSQGnmCdQbA1F89/NknnOXiS pXgSPRBhNVq13mxwnm1tN5MtUklWW1tXoiE6efFmCd4tRweno6JeQUv0kInP JT7+uLRpU2826kA80hPTXU6YU02wNRBWh8PtiBVObqJDMN+zh2BySLAz/2Qf NqG5SSsioWS8SGu0I805Evj/MffegVFfV/b4SBr1LkQTvSOaAIFACDVEr6L3 anrvQnRccNzjFCdxsnE2u5t4nWw2+e6uN5tsNmVTHa8Tx147cdziXsBgOkia 9zvn3vdmPjPMCOFY3t8fYwyC0ejz7nn33HYuRZpYkBxn4wzXr+JyZ+scQsqE bK2xYYu3d5GpN9b5ewAhnS+rpnruOwDiH/Xbk/MN+bp+tBIQrhFwesPxBgOn NiE0aURocg2hyRWEJpdNcvJp/Oh/AUpYkPy1fSTsW+BF8qDM92ULXz0mjrkY KKkGSmYBJcvxmDcDIevw6FeB7y6VvSm1QcE9Xm6uChPZxxgR50ftWomZKmt+ hjia57gJmKQ4U3d9KfxDL0wiUCKVyI8vs3wyph9xOytckdK7btg7faFDRLOA kPn4danMxU4HSibbskwFUFIqXXgH8O+OyIbMzoISlwr7PL7vl01I8tctwfo9 kPJnmMuboiyanNxocnICpqAgYHr3hsnh8i8B3xoLvkXZ3ymw26nbPCGJdwrj F6FdFjnvaFs5Sye5Rsv2HChy88kTrXOYb0LlmVtsJL/e/nqLByaz7b8ZYyP4 PoBJN8CkI75H3nu6Ur7DUzrUNPBRXZxNFaFhu3QmbggcV9+KJtO1qNG0637N ZOVchd88g5/3dfzszwMqjEsoNvDdYFySIGsI2cbChePHYPqH8ZwP4bkfNEvw nDeAc61GBL8c57AIN9dc2+no3ezmOh15AzrBdY8z0Ug1PLBOCAImNQiYiLrl TQ1m3CRgJsh/kx0SXHUymk9xdXuBQrT6fkurl+kRofuU67xJNJy4tcfMlnhb 4VmFqQWvnCkSSivhTdZK+XKCzO7vwt9jO1I9vNAR2crZVTakEif3S8o4UWQD ncqwU7FiMfsFYIUaplTgbUD4HjAdOgRMz54BmXsfhTu8Anf5BNzp3PcyHeH1 +AOhuMSNeXDnC9dnMC7JQ7yQx/D9gqZ2O9p4gmVMThvVeDyKtxqzVrJdjFDG BnGyxIRavSpsbMISZk/gpDNw0pYx0Ns6KcVqUP/v6EoPyhsO4Zg23m4g3qCw mqmIJtOxV6PJbdOA+OtDYOVNYOVPMv4dF+eNTb4oQ4psCyJv5TrpImClDFiZ AqwslBXedWaFbwcww9b45XI202wbpKvGUH/BuRRHupprjU+OlTluvroZzclE Gy0NYWZOSzAzMdz2xd49HcDBf+i/3qPw/z0Bi5emfXT0RJu09qLH7V92XIyJ L6KnRlYsTgcRmItfF+GUliOKvEVqmBOBHipolQM9o3CqQ4EeKvD1AHo6Aj25 gp7PyDYgJRpsDAupaGn2h8VwLmRpQGTPqD5guncPmIEDAzKxXAnXMGkaogzw sZkw8Yl7NXIeZSMWmbz+sd3kgYilzWu6Nakdk18XtQmghy2WsA7JWuYkS7IW hnsaPLC1QsjWeNDjsl/Vls8NZEsM0NPtrIYsXOXBcVnmqolkfqbBIGQDQcgG UAUDEO2Lb9gbP0tnhE757ZrgTc8DQW8DQS8AQU/JYE1c3OPBkIVCC+y3LgCC egNBRUDQGN9R2ZAyT/Y0HwAJ24EofwM48gqcCzvEpstZsbmVNWhmwLyNADcm ZKEAPjnc08SsYgpqElsY1M9uCWomyX8TvVFIRDtxgrdn2JcQ+vteLyMFmo8f K16dRDIy1zbGuIWMTPvrp8HLzMGvC4GTZZIkniRNxVvx9V2I8PdJlma4bL44 YXrhfDvhnPOlv55YYWaHsQtbx8KVwXV3+RnYSgNsB7aUD/bSNWAKCwOmuDgg c6WTYGuzcGPXrtLljlXHED7bukpwxPsJ3WOej3C7A+KXTu/pIhHuhe5zTcNy jnmzhYy1lekWB0ust1ktWCFiyqUwudJG//Pt362x2YEh3C4GrHSBJ8s7p1tE uBqV2QW2sTFxPYCLIoDnfmBlffBGvcDKesDNdcOHaN+xSdQ/c3LeEWUGNlYn J1Nw5PtWge4RnNXngJUHYef3ASt3ASsn8Xxvhdc/Cq9CAa96MLGdYGIc6FyJ M1mAs5gBTzMhWKRkJsyrWBCjozK8UBkK7lNu7GTEllJuJk9c2xK4TL7eS/BX zxSKF0HxEsL4vTSOoGlp430kTj4VlZG5hjK3stfhhI3Gri+GjIzefgYuhWky r7wUGFkFf7IeX9sCn7ITrGwfzqde9hUMxnn2wbl2BU6oSpEFnCTLgh2nQ+5k wdgT8pzRGhxrcdcQ5zchxm9CjN9k+vULmGHDAqasLCCDfrW1xsyBA5i6FdHL IbCru7WgMtAqK7HNsR2YUcc/wYaBle7ASq93YavAyoALmi0ebiMQF+e7osoy i4s1ihf5/+UenMyw2CKj4+AtBWk6ITLKuaibS1jEYaaaqiJcsNYPrKwPWFkv sLIeYGXdgfEucEqdEPoUdMbnbHcJWHkPWHlZRtPS0n4JrLDt9Dsi7uyHD2YR qgBY6Q2sDAVWxsBPj8cdVItnvFg2meyEn98IjPAsFgAjM3AGlETQWfLIdsvI HpkIWYQQTBKCMAmNqfhjwSQ5CBP/jQP+FsHEpoq9Ab93YNF5FIuBBG9CwPdR 0XFnmBdx8uZedLjm40jG5UZTZspoECW2lwIhq6SOMgHoqBHd0n2IKevheY7g 357Ae3DU6C6cyn1yGybLKh+3m9JJnTPtw8r0q4Zb2X2+K4jvyUaaENs3mT59 AqaoKGBKSwOmBlf4TATjc8Fepm3U7exjT2oMPdgj2cRyI0dUOr2M37+u2tF9 cMv3P4/b/SrYUEDTWJUmvN3FeZJVFh2rPOhYaNnZROuBmB/oG1D5R+YOEoGQ 7Nf1e3dHzNLv/wGNj+B73oe/RwE9xFg98SbdgfBu+MddulOG9xq85QcijMJR 3vR0tvtwXIdjCpSzehjn83l44QdxJvfBI9yF8zgJb30rzuIoYpRDZqV4kh1g YOul/DsNrGsiWFe1TRQ71sUbz0mgexeqRe/NT2rWjSRESYjFdCPR8DGrJfiY au0ZcUewapIa8iH8M7749cyPCIep11XeI+HAC4WVd4Z9DP9YViSZZbmKKZQZ wPpMwGEG4DBNSibrAYktMmU9HnCoks1WhwGHY4DDbYDDp2QgNRtkOllKygxC WDLxrhBkvYDlNXZAXQIcrsE8mhDCN9kQPoAQPiBKB9MQBcyGWU1f13wQ0v45 XMZUiH5dVcx6AA59AIf+gANiGql70Kxd6WRuuMOIJxbgI1d40DDbRvBVlpcx a9YJb5UNRCSCX2W9iW/LCZVfqN+iRvYgfLQBXCm4HR8P790HzqkXAqAefajq SzScAxrewo/7AtDARuyfAQ2P6wYW8Co/0JCJR9cBj7An0DAYN8xoUYHiFpaD Ik69QRaL7TDLcBTa3zoPaFHtER5ftEkV17MSRVrSF+EwJAxJCwdES3lVKHiP 4FUzWwKIluqPXE+JmrNy73JMPhY+Hm9hkGWP6UAsw7mZMgvHssd6PNItQMBO 0ckYh8fOva5DxMpvhZWfxHveLeFisqzCcosynbhZaIebNlych5VfwbE3gDI0 Sag9YABD7YCE2hz9ngl+MhXsfqINH0ZHCR86PgMrB5VvBysvoFYfrLwHW7Ng 5f0DoZ57R4u8F/9ye/mvtL8u85j5NBOqfVAxlXoQ2Xg/P/Ub8H3a/km/Pz9H v3+EmT8EBN4Op7Qb6AJyCuG0+o2FuRdS+/cakHxO9tlmZb0CM38GZv4rmDkL pv+MY/t72MvDeG6fNrkw8044v76+2xESHJdk1UTcKAvwWodnzh16G33bzVo4 4aUebRJSWjpvb7IqMtz29N1HRNv+8Gi7pfd+C3hRq5r5tJjcxlX3vDtgI8dJ WLeYhg84HbfFDDxKVvdmwMynw8ynwswnywaig2CnhwGPY/CpoXxsNnxzsuzO cqsKnQBaeEbJ5/sQZn4Jx34FZt4gUXL//uFR8nTcvJNBPsZv1x3crF0Mt7WL Xt/XISvK/HcAv2n3F5ge91bAzLvAzHvAzHsHtDw30vIb9ovMtBGAyywtl0h5 mdzoS+1FP9tCosZGDqwUshZC+RM/IuaMU7pGuePvtF+F25EKwf6HgP0P2w9z Xwtzn6PyQQOGUCD4munS5Zxp25Zm/jrM/HmRaUlM/LF0Zcb5HpWeGkq6pMPM 88FNu8FBFoqS1GFcPQekzLcCr214cf859xhSrJl9CsxqsL8nmjylN1KOOXAV MvWkZm/0j9hRNaM1TT06b/EWsiNNPbJbfSo+4DTfXJj3YinRzYKpz/Rtxe93 4Wv7AYeDcJhHEGAdw5HcKiJf7XETccqcN5O2wz3iSZ5SwP23nkD3DEz9PI7+ Ekz9Kky9wfQFXx46lIGuKtpMhc1NwFU7bqtu7i77lLYgsfzgOge5fKsAJKLD SzB36lOzH4Od6zD17gFNCg23AatLCtXaYHYJecsy/meplB8WWRhM8wS50q1u tPSXGNDO+JzXNcBmmbAnQop+X4NZc3s3aPwI0PjhwNHQCVqY79//mqx3Lih4 HwE9zZytLr+Hmf9cN2rA4yWKHvbDOJ8HcQPfKUsPe+K5DpYVs3Wi/bcAr/Uw 8134PVf2rbF7kV2ZznujRw6DREmghvcIhqy8+UJdqOgQ0mNo3sqnt/6FHquN 3Lu6k1bOICeyN5bp56m+OSLvwgIb5wNrYeUz8YSnw8qnwMorYOVczjMQp9ID Vt4BJ8QiUbLs5fqM0TbpRz3pnN+EBaxJSR/K/iqmOrp2vQorbzBDhgREFZIB 62REjTWwwqrNuux7NAPWz2qPRL/vKUPvyp0BT8PSX4Clw/ra4rJtCyvvCCvv HNBC2xDLP6ot7WYwOs9e3kuCF/pY4TKL7NdmegJWFqPZApKPVyreM+2CNlLl W+7SDRS9N5BXCIo+BBS9GA6oZKnVSC6hYPY1BOPnROGyffvXTXb2n0WcltoS skjZ9z2c06OwxEdEkoVOMQ8XeicEqn3xnIfJvGAdnn+dWQLOuMq3WxYqU3mf umrTbanAXepO6TJaI2DU1vLkcFOPaOKIVpNu/kKP0FeY9rGburZc3HvDgQln 6Y6h0925BL8rhk2CT5gCtzjVtxBPcoUM9M0Ula9d0sg/TTpnjoDVH5fEZS9Q lwJYeo5YOtd4kb58xYQWKP7IpmYYi76M13uw9DPSCc758K5dL8PSr8LSG01J icaiE3H5VsP8KjbqlvASxKLFD8LyHoFVfUfVEqgt1fUpWDU3L7+ia7faWhHM jgEtipF6MB6tsNY73d7bZOqLLVtfan91lj7LUh3+G7J8imlyG11mQBXWsii2 +ZImL7vgc/R8DOj7Au71O/D3wdJHgqWXAi6jyqiqfU02SVMEsxMC5vx8imDS 0p+Epf8Ep/Y4zumfYIl/hzN6WFJbbaRd+Cgstt4MwPMuFbq4F+exC3Rlm1nk 2yQKjpyOddNIFbKtY4Qk+iN7+ZpR14l2r4ca+z4ie4kw9qmtZOz3NGvsrvLr jJ3VD4ajzNK7ahbzkBMRzU/21Yre/jTp575FBvJngafXykjyIYDiCA7huFQp mYfsDGPnPjauEvQJgWGW/hs2D/lDm3h5Gq8X8XoHxn4Kxn4Gxs4r7wKM/bLs USopaZSQdDzIciWsr2w9rvQ9MNgTMKQHrGjxt3T0uudPca3iau3CXQQISzsy IwIC0/ayXsNdbdbEEZgae7XPtEa90Bq4M/qFNjEz05N5GWHfgyFpbkD7M9hn RBEGkhhKCnb7Z3yer+Bz3a39E8Xr8JmBqLGV1N++hp/rnEjmdOv2OkLTPyM0 fdakptLYf4FT+wHO6Xt4bo/ijB4JymW2w9XOVe29cJUP8e2RPRNlcK3sqZ+M y2eWSLUsl5HI6ZKPDElJMVvv3YkQo8c7Mh+ZGDTU5PAcZehu9wfNPVr6xR+L xrSWuc+M2nTqNXeGKt673WvuLu0+Scx9lhQJp/mWibnPFEHjnbhL9uPXQ7Ja cIy0ft0Kz3m76QJz58B2mpi7d8MoW7P/w2hLHTMwL0hompj4vsnMpC7GWYRt 5+HpL8HjX4F5NJiKioAZh9C0EqS67Bbckbtgdkdh7vfC3BGaFj6qfL0HmEw3 bhwFk+kEJtOR6XAymYswx4BqdfexTKTUmq/3fp9v7/iFpOyLJDr1WjvRwV6J QZbItMVbwhOZduyrgLXnIyIuQHTcDZS999/iYwGNQw6riO0ovGf5eArDNsrW 6sLC07je3wRt54bK53C9/05EgUjwVBz2W3h0X5ftH7m4Ldr6TsJaqYqzD493 DyyeM/IULKVG3VqphNTiaBbKENasMKEo1/MQmW+MscrGE50m3sz9nhJse2jB /T6llQz+vhYZfLQua1bymFjnPTERQQ93sk2XxDo7rW/B090EY2fFfD9+pcEf lu4TCqj3w13UBXd8G9kqf7fxCaGJ3PD4M5uL4ZQ+eynfRbD2AU6fqzPOm169 LpmBAymx2iCV2CoEeNWzdW6ndBvIDIK/4QhQhyBAHfj3lrr/l67Y7fS0VmPb vwarfF/vYBIPqnr3NKF8jOtcmGoJy9yQwcs9v9De+7X277ggNUho8J4d8d4d 39PvlfdnWDz3lXJp1DfwuRBWDIUfGgnqXopooBKMqLSsCRZ/DRavhKag4HVZ TkVCwx45TcU+LsqJySA0aSA01IHKFUJzTDZtF+KZcz6qVCrgW3EhbcK5rDPz fKvNMpFeCe8ndaoFLJxEVmRjjliH8jEp4RYfuuKjWbw/VqQaYfGTPzFG4yw+ Wn8Ok7GulMQgx4mcTQAdnIp7g6WkWTKwfouZA0bD2vd8PP25sPiJsPgy3EGa fbwVT/d2WPydIszik2v+oYiUzE9sSuZ/JVj1+9nbdcrk5Jw1HTueNz16XIJV XAHdbZDqagUu2IpZOoVTtgl3JVcc3KFCe4O/phSe/THsP+j4e1ggLL4trfB9 K2IcUCFAshqXlnE9CKTmLCvNthburH6B/b1LsrP8xCk3Vlf7Ga0ndcZ7F9CN gD3lIGToiPChByh8f1D4wV/E97lDJanKQOGr8U3KqprM8BEN8rNx4Q+3pnAj JsXe/P4/2LCGjO87OLd/kM0iab7P4qzuhtWfgDvmFOABuOAD0kM4HhR+GgJV nsdi33qzGmezUHQ6ZgRZDcMxJwjIc47MQtqA1RetjdofDFSTouRpbqrgGpPg tJb1x77vo1k/74NoJSbu3pwCssQSE+cz54og8mZY/k486Tqpc0+G9ZfD+oeJ nPVxmfpvgzs/DfeUT+58JiS/alM13gD2GQlgOTeQlsZOFHL68yIP3q8fZeIb pJg6FgHsWFhPuZ3+HwOLKsFdOvx+EBburXlMZZ2c9D1LPpT845QNUylMHjJX XmDv6iIT6jGYYK17VgQC5lviM8uSIG9vActMlNHoAvLU4QyQRZl921/A/DsH 0YoQa4wApy89oJ+5hnOmE5rMiNIGM3DwVVj/RVg/fRznU1+R+QH1gaxL/KsE +wl4ZixEp+Emy8Ktkuc7CLZyEOdTL8XrKbh9asF4FoDxLAfjWQd+v0xuqDnB URtWVb1BbGRyMiKIjezujGn2ETTHH+zDiUZzopVVJ32iZh/ZbOZd/0sCyLyN azijq6zxTYBZz8BFMl8GyuaDSC6A2S+E2XM/4kKY/FQphTAPT7M/hvc6AbO/ HY/1JD4OL35WV//G5m2uD2X9/tdg9m/D7E/B7D80nTtfMr17XzGDBjWYESMC ppSDZdN0FTu5fdkOXPyc2roHFz8u10Hf0BFlZinZIMkGTS4v4Zhy8nkQdZaG SHWYu2HpyfYSjI24+GdZU58Xxewn2bwN/x1zP8wBdboKUo/3zz1tRwHYSPBz /SzsbSgBuS8Dua8EuZ+Az145pcmUlDeYwcOuml59LsPsz8PsqWr2Bp7Bi/Ya +KWNfVyT5kOS+0oT9dzDoorMnPxYvKYBAvOkoXmvWYPz2CRTZszJs4F2mlxb JYjR3MVPxx558UdkKqOafURTc7SsvBhXUtDsW5CVby2zf+CGZu9duepue5eu dH2W4xAbTfJNxyOeJxNi82S8dbNZAj+7VJQUuNHrCHzrUfjgo1IR7IIbvw1u pzTc+D5wHk1XMoPzD56Q1k2/0M+/KpMgOTnvwezPiO53z55XzIABDWb48IAZ BfscPVl3uZeuVoY/ph5mdSdu/M9rcl4EXn+oPfTtcOvmvgxTfMeYlA+NSaD0 JCUo8eqJV6GnuaDS3uTeG3+uNf25lt1Pt9CotjHtEOs1KOKXfxkQO2t7+OFl Ov9aPQ/LYhSfLT+hYhuTwNOqZzaZ0eMaTFHJVdNnwGXTuesFmD01yd4V6Gu0 4ybGvmdCkzAPwKDuwLkdQSTG8eMj0sAxCa8FeLGrbL2sotqNG38DzoZRGAWQ J9gE/VDx4i6u9a6jarbq6o9l+dF4ToTlt+DCn9hKlh9K5ERTuHeW7/oneRm4 3KW3E589eRNxeUxFvDTLt0QkK5kYXgbLXw7LX4onPwsnUQOrHyUlqeNglMeB qBNySfnk0mfu8mGjyRw2jX3f+nPtxvf7X4LlvwbLfxuWfwqW/6Ew/f79G6T4 OhKUfKTVpChBbDtqC16UNr4NF/CDoUUQ7Ngi1yHbphVmvgGG/4Ex/iv4/6u6 fK0brLVPQIuoLr6t8Vz6tZRumSOJnFr7R5OtX3BhLXVhqQ/bxm5CkWb8l0LN +Gx6pgJ5OUh+DSjZlFUc72wyYyY1mGFlV02/osuma68Lpm37c6IaxiBHe+dU 8VtD/8esj/w0ju9OHNsxGCw7lfSCYap4Dl5r8NqCe383jmITwtwVCG/nISDT +74quEbQddUwheHGJZtPX8a876PRHLEtSYwntdDqJ7SS1c+Ked9HWr03to1M YVb7xiG+ZXlqjkw6zsFjXQgWuRRudSVc7HJY/Ww8+gk4ilIpix/HvXJCxFrT 8PLJnf+A0RTm1637ftzGt+ytf1bm5ymSl5PzJqz+PVj9GVj9BTD8q1KMHY5L tng8XrDDEctgrRvx2qcMv+Q+nS7k3AfpBZUmuG6Q04fsd08Dw/dfVLUJlqk6 NSrV8ca4LpU5JWT5eHK4+UETnOlPsaY/xjJ8/nsiqN01lTFOPod73/bX9/gv bWzj56LUBKczp4HhT1jUZMZObzDFVVdNYfFl073fBdO+0zmTCYdBuQmdxWEL BovU/2lC6kUPCV30ix89Dr98HHf4MTD8Y7hxjsHUj5pteNXhLLbjNuKyq8Vy 58/GuUzEnV8Wlst0LQgxZCdi3fmhzE7MOz9JOU6Y9fubtf7x/yfW71Wzc1OK tH7GQc766SmrxPqnSHF2hlj/Klnjxkm5lbhoVtrLZxKefhlOoggn0wvW3x6v DLH+20x4PpO9Za7hRgu0fv+fRNkuJ+d1WenWqdNpaUrp1++yGTy40QzD5TwM VGM4zHD4EljfeqBgtybxR96jFywZj2R4/sNKF/9e84sk30kg4mmw0Nyryni6 BvTidjFuhb33J9m85Uyx/lppR3AkP9L6SfR72hVY2Ze1fz7zTZ3L59wxm5eH PgJGRd0uEP1pIPqTlgVMRW2jGTn+qhk4+rLpOeii6dj9nMnOP2uSUjhZ847R ltKnwmJcZYosglBwhX17J2Q+YSye9TS8FuO1Ec++Hr/uiXr5c4dsSVhe09Wu Igq1YjCecV+fzyZ4Ev9aEEQkeCLSmzWtAwLNV824TqTbIcAtfHNt8l6+7zL6 VZLRn4onPRv3yWI81VVgPVRI2ykyN6sFAeSeR4CAo0DAUTxluujj+B4n5NR8 vnuMdld6Mzz/aUM6KkP80SQnc8aI2e13TMeOp023bucQ6l4G5280Q6mhUq7N LCMXUN0K9z4bXA7Cgk8qr6a1DXgMjOZxnTqX2d0/atYl5Qzu54vKfLjcoSAQ yuwXW6uutpmeKWrxMADYPmjDTA8CxluWRLZE1tSb7wUE5PL+v6S+hqij/xHx 7m/odAvb+qn5MgmxSvVcxC+TGs0Q0J8+oD+del40ee3OmdS0s3gOVOZykkO/ MCGtRz63zxgqfKTK7XIc9Oe4ND6Nx2suXqvx3HfhtVc6LneCDlEtgtL2s0CR xstGe7fwkLedd3dnMz4gKdz6k8Ot3x+LAIn1J7eQALWq9c8M8wHRrN/bhsan Q5LoHRRhAZdThbNh/QtwryyB9a+Qzah1eHEFO63/kLR3F+H3VDUlQc3ACfkE AXcbbUVjg47rWfiBJbhP4dS5BpArLl83ubnvgAGdBgNivecyeH+jGQymPRwm WgLzHAVSMmoF+D7u09H7cb/eqlI9QQb0L1rXEgb0v8pI0k7hBXaSBu6fTcYS 0KbJ/pbEe33AZBv5zmARl46gIsz4K+1fF2kUvFVnt+HnsrYYM7fU/mnNN9Ed UWtrzN0AFgjQ+A0qgDRmSsAMK280/YddNV37XDZtO1406ZnnTKL/NB7FX4wW PCIJ0OdxonfBSG8HaWFYdUymFcrxqKfjtQSvzXj0W0FIGfSul7BshSyFmyQS jhU40uJgmtNLgGL06kTQ/+QWJvdvngCNa03rv79F1u9UTiJrWwybJsqYFJXl FuM+YcVwo1kF61+HR70Oj5z5hsli/VTUPAzrPwLrP4LvcRSf5RhezPAz3+Oi 3n+yYR09/G9x5M+IwlxqKqfo3jH5+adNQcE50707W9QazUBctEPB/0eCfpTC LEvBgMaAAY0BAyo7quYlDOjvPDmfX2qmXRQZ38EL938G7/+GUCtDbxOKfMts DODu/2n2zp8RcfdX2RwRFUu5BKKL3eiTelVXpuS+pilW5pxESAufadSnYfb4 nNXbgDIgdwxQNaIqYAaMaDQ9+l81HTpfNlk5F01K8hmTmPi6+ELNBjA+cqLZ XzJMW6fiWeZK5w5riEdNieg38AY6IjfROtxI68H/N4g6o6Y7p9nuHebvvHUu N1QSY5ow2uUf6rSPGf22gPq0pvln8L8auzwYlvNprl/NbTYkAyI/5CXh6lsV iAAnyAhVrSBgCRCwApcLk8obRJvpCFChif6xVlO2F37lGituJfcJCpjxZN7n i1FigN/gxKmx+Ecg4FVR8MjLOy0jRl26XDa9ejWaQpDtIdRZhPmNgmmWzaf0 Ol7b7QYGLwOyvWtsvqdOlegtgpdn4nLOOqdcPbsJPsCEfMAwm8Uca1nQRBsH OBRMswiYYL8ejIADGgG3BQrSGQcAZXmvq5Qc2RcbRmULwxdUD7JiL/7tWvwM 8/Dv8WaDRwVM74GNpqDbVZPb5rJJS/1QdCYTE6l/xOYm7W1wCSCeaarvXpzZ nTgvtnsfEX/LFvAZeN7L8FohMRkzE5vBiNYiNlgakfkMKTO4jp5ota4YSaDk cBhEzFZFg0G0pH80L1DdOjBQL/BAVAy4rL8XA97cZ0hdoUJqvNPAJKkvSgys AgbWSmHlAF50wIeBEdUtGyYYOAgMHAIGDuOzEAd32BiOcTBnrP4xLAqIj38K GOAm2JeAgTel4NW27TnEwpcRCzeavoWwJRjdUBCVkSApY+bqbVqx2a5MiMaD fhIqelG3LftdY3I+wOsCcIEbOz+gfZeuPX+Evd29XMjhYKrFwEQPBvj3Wefl IEs74CCjQbXo8t/U7gquD2Is3P+7OupYhlh9zEHN2Y5Yip8FbzwYrqfv4IDp gp8xv+1Vk5lx3qSlvQMcvAQcPC0arMoV/0nujjgQoVQZLbwH53VSMm1Uqxwl o4WH4I0P4T7aL+okzE0v9t2Cs2FNfh68tO57G2kLX65F32X/o7Xoh28n8Sv7 b44JhTCQrBo+zhVEw4D/E8TArBZhwDEhYsAVfDX/X44oSmcMqSC6GFHwKjAh etstwMAWYGCZTDEfRsxwSKQu+wgG6oGBg/gsh/BiDYC5INfp44q+GgvExz8J DDwDDPwZGHhNql/5+R8iGr6MaLjR9O6LOxeX9RDYTDEMcXQt7n/YUdV6u+0g Ghv6T61AiV7iK7p3MJfrymGn7S5qHaDANu4PsL6gxDIi5wsmSzQ8RaLhyR4/ UGbZk+SCjPa3ZQEHuR/CJ7yF939JYxDOPDIqp1726Adh/1xaTb3E1bqydACY XV9E+N17B0y7DtSFvISf/z3g4BXPiAr7Qb4nDDIOfjTV91mc2QPAwN2iDFaI oGAonnElXrPwvGf79uG1A69NOK81eC2TfNB0u/2AsZ3re3CKVtGmyaM17ycG UZB4Y0KUEkRBhCeISYiqPnYUaEK0NmbzfiwQuHIALwsVEmEDv04fzsbDXORb CUe7ESRop9kmA55H4YCPmFqAYBwOYiRe/XAYHQUE9fgoBAITomx3+5zRqs43 bJSnhbD4+CdEmD019Y8wglelEJaff8a0b38JQXGj6cmthritB+KmHopbeiTo 9JhFcAK34NIGIRoXixD9XMUQ817Uxp/8t2Ggp1TYsxOA0NVOJPazzqDYhMrB NQqEeEFCheRJx1sMlFu8MJMkOwyMjpa3OaeKcW3+ovU39nlKQewxfOQvwv7v BNaohbgRHxEfv+9kVVLoDj/XsVMAHPAKfvTTeAR/AQ6eAw6esLO3zIk+arjW LRW+NNf3GTze+2HDd+GobpfuwtF4zJPxmioDLNtlMT23sFDzhc0qM6zMLqv5 3qJYrH7PZjREQ81vKS1kRpJkwpdpe3xj/V3LOFLlxx4py0fHVdISZLg0kZPN daUCJkrHSKGME4szYP3zzULfCiBhg2wxIjJ24FhW2UQpW59LgIxCHFEnvDIF GQdMKFXEniCmiljs/46lwDz6XwEZvwMynoNZvCTFsvz8U0DGBdCkBtONGw5h h4WjYMGwzWJw99ELYKKrgApQjgnN0KSOT2qyNP9lbU3uCHR0Bjq6Ah09gI5e V7VUPNC6iFHW9KstFOgmJtlfayxqxtq/F2yOMDqnm3sJL9aJ39QAnWGKCFJ9 R8Wwh90PWMCVDaDICCher1n4Ot6wcxE+F2KWtoi48/LOSLkkM/OPgMf/AB4/ tUIj38KJfg1n92Wc2UOAxoOAxr141p8CNG4DNI7inOpxO+0VOeManNF42biy FK95CPVmSsKDaT8mQHi+jiZF9gc1uw/Ur/zI2XD6TWMiXsvIN8RERSt5i8/c EBPeUQCvt3DjADrbOB5X0HSRk+aWz1V43huAie2w952StD4ManpYRChHyyaw g6YzzicLX48TTEQmkL5uw2degz8ycXFcUfCUSU6m/NJLJivrTdgGQ4fzoE0N uqYAMe4AXOdFLCCwpX4OcLAcdroBNrtb1UjG3OOhTd/VBmWqoZO+cO4w/zWd X+8I6tQJYW5XhBDdgYleTRpCu/BhjLX9cRYXEywmXPKo3IbakkAyKtHApus0 vE863jPd5VD/YMto39PSXvFn8G9uw//vwc8CT9cP4U8vAK07vmkXgIsbTkOi hkwlc7XJL4OqJEqbKEf1EK53ChveC1zcKdoAw6RwXw+7P2Am+XbDdWyVVdGT 4d2n+BbjNVc8PodiIttFI9fhxJrwjYaJCN4UgYmsKGwpmv2Xt5L9fy6m/bsE qldyzRXPeFe48gHTDZztZQJuLux/Cex/tW+92Qj734lnvRu2vQa2P0+GAw7i DA6agTiHLvhaNl7xvjp8EqaPTsYInX8I+/+5hM6Jic9JyMgtsNnZp2AL50Wi hEsI+iC+HYS7cyjozMjxmoCsXAyb5CKC7SpSSOnoks/h73xNGxdEquQXmstn CimHgwJv6XhMe4rgwlY7s4WoSe92+oXh1rbLra3XeDBQ46FLpfbvSuhsNBWV gfeJR/icfFbTVRI2/ELDBvqpYZYyDQdlKgJuB4Iy9QeWe1N8CgAkM2zb9pKl TK955Ep+ItsY9Zl9VcLnNITPeQifCyR8vlWa54bheVfgeU/HawZCuhm+LaI2 MBNnNtO3CCHFHFlDpH2jJWFjkNEGBmKFDiEItIAqZUehRYlRwubWgsDsqBCI 1kHhpUbML7saAqMs1a/lkrP5Zike5y2AwGZAYBce+R5AYC0gwAmBSaLOUy9b nLrilYOjSPDtx2c4YuIke8SgwdWQQ0FDXNzPJHJOSPhfqaKlpr4JEzglesj5 +Q2mALyjJ6jRQNjocISro2CbY7mLYz6u5pXGTN0M84RZld+muXqWrJi1ZP5e 6sigJ22fU/Wc7Lc0ekY8IrOLFHjgRqbu9jovshHxGJtFqpbIuUYi53EWAhUe CAy0UQNH3ZmVZR0h6YLWLNp4RKkISa5FH34v3v8w3MFWQHUZoAGKV1jODBJg 0L0RLu8S3N9ZySKnp79opUx+IavilUqy/sJawgMyaZcnWweorX0YMNAV6eNl Qm+/zC7NlRmmtTi75XgtvG420mmxRdtvG23j00d0Ay2gQWNbjIFk/kFa85b/ +Rb3DnmrZ26XBp8MySPzDFSkpRDMclg+u7K2wPJ3w7r3wfLX4akvhOVPgdWX 4c8G49UNp5CLp+/37cP3P4LPcbuJk+4J1o+/bEIVtMdh+QwKfgPLf0b6RpOT 35QJMdmOmduAwIByZbAQxJTDYW6jwcjLwUbG1Wr38bT1uJxBKCpBgErvVZVa dimTdLCDjdbX/hlY+59h9a/jYobl55yxOwTYS9Sk+dNIBzDWkqBqS4SqPeRn TITlsxLH+gGDgswPgYBTNiiwOlXU4RwIAlT0ID4fu/04vLwaKJ2Nz4o3HjCM Dq5R5oHatz8L5/ceLP8vsPznYPlP4PmwxvIvQQfA4CpOBqvvgLVyw88hWP9+ M0SUgffhLLjVeZ9oci62+dPFYv3zRD+VDsDFzN6JMbcW3bs98waBQbRqWkwS 1HwJuSyK9acEjf2je4A5YTiI1kHkXXHp7SJ1NTTigNVH4oDPkPpf64CDbXi+ e2Hv+4GD9cDBIpzDVOBgLP5siKxY3o9nug8/+j7DnY0JCN7icWPFSSDgOkkf k7ONi/uRBMcJCdzE9ALO/Q2c/ynYwXnYQwOIge4r4zamoiJOkcM+YZjjcXtO WWjMjDXwBDtgo4dUxIodOxxSEdETNzEJe2z3PGz/FdzUCI4zzmjDM3vq2jRp 3sd5gSHWC5Ram69k6qhanIAXBowXWIDuY+OAjtd01p4lBG7aZMnC6ViJACd4 0OCHcPGfxL/dr7vLRsKJDQeki0oAhcJGOLpLplOns3B878EJ8DH8GY/jd3g8 bDX5D+sEqFfKUuR9eJy34SiPydhYAR51X8TFXBPH+HgWXsvxWuHbjtdGs9K3 BlC4fkA+mhNwReXmeypCMIhZSfDfTCwwppWIUAgG0Rrp6OyiwcBbRmMpmTkF XiEct+Z60fWAwXbAYB9M/gB4/kaY+RJZ+1Mva0mLAIEeOJN8vJJwDon4mh98 NQEwiAcM4uQMHzHaUPc9wOAHcs4JCVz+8Eec+2sig5Kaeh5xQQOIAUVajaxb 4hqZkhJdhDEBPHoq4smZKxAPbNaFxGO5vs+NE7jRyf/Gv/8trn3YZP6LMH0u KTulcSsb63IAAyBNXEIvj0tgDqhM7T6BWMBtMNZCYKTlTERNN3qDa7rdMuec zukwFHDZU1Yy+oIHDQA/G4JwfRjQOnKz9oOUgM8VjzEiZ9Sv3yV4vbOmQ4f3 4AXfgEdkJe1Z8ZQ6R/Mv9pH9jfWqn5IwKw2PPQ+PuatvD273PTDvPeCke+C9 94Cz7oH33obXBsBgZdAbOLFOr4Y5j99VlSN3KTfjDUKNdYmxYJAZyxtENJOW thIMPh8TBi4t5N3D58JiV0lzM2T0oG6j6zLfMniDdWYHYECFyHqcwybAYClM fQbOgyqSwwADqtS0xdkk4xyS8LVEwMAPL86dJvEIi+OCMQF16b+Ps/4ZYPAk YPC/OPtXAIN3wY5YWW1AXICrFtd1jx6wJcSgxcUw97EqaTh9ljG1sKcp63Vc pYI7+jhf8CU7Svkv2trGihpn6Nnp0OZV3UKWyWv7ioayuZbT0yP0tzY+wrIj CwWJA8otWyq1WGA3HucKWI3jjpl27Na4GIoJuOdCmBHikt5gaf3gpQYiZinC 5xy+UyeCxuBnGA2YFQ9vRMzDcVFKwnCO7g14Q7LE5yVloN0V37ds8us2vcDq 5K2SekvDs26HV2+8huNVidcM326czW5cVbtlpHItYoMlsuddKwpOo9m7kczb ZxRzV0xEdTnl4wPD6E/cJ3jH511FLXKg0ul5utWtBAM3IBIM2+FvD+AADgIM WwCG5VLS5Dj3ATzc/TiQfTiYvfheewCIg/i+J/AYuDjjAZmJjZc8B2sH35YF QKTACQm/ARieARheAhjehhGw1eYaOIKRlcfdulELk9ppMKAxqnwo2uQL8Cvo 0QTQo0oEnqV3wbAo1//1UHmZlbVOT8Iw4RfavqR5/Szwl3QYbgrAkGnUL3Sx XGeQCZWZYfh+IgL3aKnFSJHFAF0IR8u4rSyTCv22v5pVbFazycp6wC31AS77 f95Kwe3Dx7MdRmXjuSmNekHUyTgLvL9nCgreMG3aME32vHRX6ATGj2w67Zse n8COrcN4jLtxjLtBbXaD0e6GG99tJuA1Fy8KIHLWZhOihFUyFaJKWYz6nHK/ GzVzPoERAk0jik8IUaNoPiEpvLzsjwKDCGoUAYNRnygMvKUC7z4wr1C5V/CT lUi3n5X3CVfmbsP9sh/mflhmmzjTesjMBgxqAIMRiBD6AgYdAIM0nEMy/iwJ 0Vwizs0vPa/0VV/BJ/w7GyX8K6DwXzZKeFrmzRIT3xRJxOTkK4gUjGw17tJF 06XcRskte1VVKl4+ew6iBNCjSVsQzR6AbcHWRlIa8ashtTjeyZ1/A7/wB9jn C1pkzuYmPHCZVNhwGuwZDEzKYD2tjdPWixUKfhIi3AbOFRTZDCmDa2qItgUU MvE2/qs6yMkqAbOkbPTu8UN8bHyMwocBg7sBg4OqdDtqMT4qm6VKmQC4CndA oSQ2l7+NoOhVkelPSqIWqhOV+Hej43lsUmSTChMPbGLfh+PcjePbDZqzG7fQ btxGu81M6w42CRS2B92BU0jksbISRBbM1KATl4jRdX0DeZWPSJNizty0EiT0 h3johqUzt57CyTy70oHbxEqZZ4ZaXB1NOWFuXN+Hg6gHFnbgtcbubZsA2x9l VZ46AQ+ZcAupgoej+N534DPci8/CEvfD+HhfN97OO5bPuL84IYEz968DE6dh EJdlDxjDBeZOe+EiHjTIyN68igq7C6wWeFgKbGyAq9irM+2jwJOGUen8m7qz jhkk9kG7yLkN7u0cGzmTJ7HkRcWV9pb797WuYaiHK5XaOKHU/n6kdR0DPWEz deQ4y+9vgLs5q1tc2PHHDlRytX5wUwMfAaBY9j6qc0NjgOVyqsWAJw0v5l7A q/g5zwEYLB1yf8WreA6U1nOyE5TlYKcW3SrLkJxnZTdXPdwwQ7Q9OMM9CNn2 wOj3IDbYg3PbA3e+R3LdG2ViZEUwbvCqKbrOCy9PitKFd30H0scdNpS0Jh7m xqwjxMKDqyOQT4Z2Rs4QP0t/S7+7B8/3ADCwDa9bpPuRnS/1iN3qgKX98L17 8d57TAbwkOI7gu99Gz7D3fgsLG9/SVoFIrvw4uKekh78hITXZCY3MfGi7PTO zeUKl/C4gVLo48Ezps9ECI3Ldgq4xwTw8MojlipRDt2WlNn9wxCadtkOFzdo iHTjcW4g9aLtoG7ScnAn6yNcaXm4tf1RigVYwmjhTA4Pgy1+ulqqRUmXBLxX CnxP1ls6k8ZSHr8/YxhuWxr2WeDsNlU/ZTd5JXxcJWjfiFHEQxPwcEWmkHQD AH0l59LcbMKPjZbgQ1lVLdMfwXOux1nqsx8kqnN74Qz2wvYpxbJXmsXW4uxW i3rCItmi69JJbhuAV28xmrOIXlNIC08n/dWAGPl/D4jIniMHiFBtWcsLvFx4 yewCId2PA9iC1xpZLXUQfyc8n9QGgMjGn6XDQSQLICIDadd35Da9cBXvcwDF qwDFewDFBYkdcnIaTfv2TRI79OuHixs3N1XTx40DGBA7TEbsMJGxwzaQpnpL mj5j9aS/rbVdXtBkMBRokTqzLTOknQcgOK4GUOQ3aTDdzbKhAR7iNELJEwAx ShJLxdaBDLLg4b+R+rJh8smYZATSGSBlua8oe6KDYm510KN4vy8CYJ+Cc6iD o4NjG7cQnxvsadTYgBk8tAmBdCMAcRmAoGL8+wDEG0a1KhhIuGFNbzDNguUJ uXja4BxY1++P51+CV420p+4Dqd0HMOwCGDbjDG8Bm1omsaCTYyQ55pm75FLk 0E6UUkPkyELITUSg4iNGEiM+WdoUCxXeBfYsNrhys1t0xywr00vMsu6QYgMH w+vgOupkW8OMiIia6aU86TxiKvA2PAzuXbofn+rz0mypWfPw0TVOKsbFvQJk vAtknEMocdVkw2TbtWNBqum6UGIyQomJCE3Hr4R1bYZ1IVwtvxVf5y6kL6ta CiUsGFUz689UD2VxKWOR+Q5QcVajai6s49hZB1uA62FTqC6yHm6RMdJG2V5U FNq0FGlXlmHcoaIwaaeVOrELsMCWndk7y3I4i4NjEf1XbcVnB+2r4RhedcAU jWwyfQuBii7afZGVdRao4Aizk7GgvIeTLmJ6jgVMDkLdgXOlEtpRoII9wlxd q/sFZoqQzn6c0x4gYgv+fy1useVyy3nDa2bVvZUHhpd0FdEGecLG2SJcRcwC nBSdM6LEEtFAUdyaoPjiDSvRLuca2YrH8oxT5SUoXJqJgRoDtt0w/I14rcAD ny9rBurwd6mdGYqv83E4uTioTICC84eJIp/HKuqXTagdLzTNppz5JQDjbQDj Q4knsrKuwkC4UagR12iTxBMjYKHcmjRhkiofjlsOA9sIDgI+Ug6eXsq9qV9Q rsIN8i7G5kQPtV2o50Vuk4ZgOOO87jjNv6KBcqS7GGKBUewBRrGHOxVavuVa VJPxSkKgnfyhLtlg07i0qf5Y015sk2KvSCXinnHgexNX4eeYDRc3IWCGlTaZ /kMaTbeeAEW7BlmhwzyDqltQys5NtjlpI5ZwPif8KUVUkKkNy/nOIwDFQXHd U/FaJFo7exFgbzULfetwXitkEoUxosu9un2qrjLtneyJMuN5fUzRAgoVDRch CpUcjovhHycuMvnf+FgU6ka4cCU5N9XjtHtZi2DCgokLxtlb8Xx34fJZj9cy PO+5tiugCvgo8cTZ7YXnHoNTuh3f7y587/vxWYgLVqddmx5rTcwv/srSBKqb vAlsnJG4IjPzssnPvwpacU0mPcm72anBuKIGcUW11fOtWI8LeJdKJpbeqQto ir6mpTmJtX+kVIYcP+8F1bxgK2kGHEbOedWnyG3UrQUutuhn4+gixQEebLFQ qOERuGAelk5GFs8Y7VFKPa/6dnRMpG5UGmNcwQmfkZ9Tua/xcG6T1ykNLJ8a MCMqmsyA4Y2mR1/QxgLgAo4yKemi0Z3Kbuz/10YnAr9rQmXqe/Fs78KzPimq sVSPHY77aKz0jNUDB/WykGYh7jNuUZ0ti4IWycSut2VvqEfzLnLaJ8Jh3CAR Fc15+G8GJEmtCJJI5/GlqCDx7qchSLwC1wSJW67t6tbkowQJ6/8EyWbw1Z2+ 3XAkmgGcDbBMBigqpH9gHzjrPrzXPjzog2Br7C+gRuddiDl0o2SCHKzTPf2e 8YrB6E6DN8QwGGtkZFw0bdpcNp06URL3mgjCDBvWJLFGFWKNSiZyFqn+6Zjt CGg5YslYwzbzsXAnAfh/hALw/OfUeKmDmgEHknlORbyYSMox6kC6WgdSaIHi nIgDyFALkgEekLS1sUY6QJJ+XjUxKL3HBkIWLCTW+Cac0Be11aQGcdHUTXgB 5JWzAqakBs5xVKPpJWPRDSanzTVhldywqZs2+WycPJLra/2KsCquRmnju1t2 R3CHxHCRSDomwuOzcQ4LpKmPI3EbZGfcNJzlZBACiru5zU1O/t2blPKu+Ljx Sr6WgiO9hcxqWGuCY95Ng8NVLrzVbFe5YDZjtW+1ZKZ2SJZjl6ii1gIgbKwv lz0rexGu7JVAvDMOpQMOKF9ETe7CTXS/zDUmAhxxAg6njhrSitEMDJVBT4Fd saJ9weTlXTIdO14xPXpctTqRjaKJXVHJmxeeYz6AwQVJW1UrciRCjhH3acDL 4YIBUYJxVpoz39JGJNGOATjSGrWY57xID5t1KrShxRDG2EPFiThc9HZJWhtt sE8k67z2jfDt6axI6BjxMCfAMWmRDDuqvenTGSnNDZjSSU2maCyiDfxonXs3 mDYdrpm0DOLiitG1469a4vkr+7iYv/hbIVZJvgfsJta7EC3eCUdwO2z9hAgn zZLm4wMgUtyztRlOYw2cxlIc1zx8ncIZE3CnlQfFM9wskHMg3uRUVL3gUMiR Ht7xGo1aJd0MMIZ+7MDQYbj5YRU9h4tYFT1vYTtyUSVZKbN7C8FS2TXDBNU2 eOkNope6S6qozJRX4TUKmBgMTDAUZ6KE21rywYSp9ZCJw0v1PYjP8pCNOqKH 4qqc9a5EHSkpFxCKsyf0SnCtH7X0uJJ4LKKOyolgVdwPsgwX8QZVkxnN6sBd ymDY+BQtHGc3EhvzWIlmh1LKJbwa8PuAOo721uB7WYY1QJ0Enih4Fi7ZIRYr /PM+Nkqhs+G/zQY4shnJnFKlYql0x2BXE8CupnBpOBxf+fSAKa4CuxrRZHr0 B7vqDHaVcw0M8yqY5lnrTJ2SMKM0Vn9UVSZeHMc9snulCxgWd7FwVfFYMKyJ tuK6WDT8dwAkG3GXrRYdRK5lnOSbJo7DO0tN8uCGgrzVjCiOwxdR8k4P9xwx Y4/0YEt48wAp+thjj4SbAEg0BXknLubdccmShsvgrpcG8W1mHR422wsW4DUD 4KixafSh0qG533THoXTEzZWPg8rFoWXiACkKkSi5qsgpuf8yoU2ALwqLiI// AKziHMKPSwg/mOZn+asB4UejyGuXjoHTQPhRNUOXpJXfomIzlNguvR1O5AFd asxmcYbDnBbitFrBk5pVpeFSeJJqwElsX7qmnSBZAXUeBTYH1dtmaQcKQAZH BQj/HptrWTpns20uAJL9gTI31sDJ5Oi02KjLcIiTrZzm41TTROarVsCb1ALc 4wNmyOgm02dQk+nUvdHk5TeYVMQyiYlnARIXmpN9ekPzr0r+L8F3H86VC3Xu wO1/q11yTOGZg/AWB3CR1SFUZNP4NpzlegBlJYCyUAatyZxd0zgvR9qAW3Yc zYNcJz6TFAsgzVOrxBsH50M+EYDE6gnxjs+5mp8rcbjxUTdB4ZK5zFtt9m0x t0hLMtcs7IHb3oObaq907xfjxfi8JwDSGQDhBqRcuPtMkY67H4/ks7Zt9noF Gm/oER//PgByFqHHBZnE79jxKthVg6jxUYV71GgYWbWyq6p5AMlKVaIZi1u5 7DhAAgMc+ZCN0b+ls0SiyvdrHe1kPS7rDfUiSee0qSOp0fYO2s1TLrHbRxkW nihhMl7AMdCyrt7275CNsW5IVRvmwThJwYQuvwc9FmeYmDvjZAc720c9qLmr Gni96rX4f8ToYycDPGMDpnBok+neu0mUODIzrwEkHwIk7wIkpFjPmtD+HZXm Y4jpF+9MBnu7KN/2wHMfJGPu9ZLUnYYzWSB5xj1gxFsAlLUAynIAZf519T/G 6N7tUzcod0Q4kYzwkeuYGEmL5UQiMDL4Y8dIKIGlYrNfbNaFuKq4KwI6hT5X BGRm13XTus6pjSCya3xbwbF2gHvtwtf2SnBeiRMYiZNgZbwPTqYbrrAO4kJu w8ndie99Hz4LVUZZvAo1liuh1kIgNeqZrWHJIzn5NBDyocnNvQie5ZaEN4Jn BcwITtpVavsReVY1dWrAVyp3ATWH8ed3qhW6AJ2WyZKD8KyntOxB7UpxI2e0 +49bG1IbtUpO7aaOlmt5UCJuY6D9tb/9c4cQBiHMgmVf0Ywx3zfDVcd/r9+b rozFQAboHIqtOmCRvUwHZzk9OHhEwPQubDIFXdgl0wCUnANK3gVKXgVKItX7 vikNmX5w1yTcQClw19l45h3Br3qDXw2B+xiN82BBcCbOiF0jq4Ufb8J5rsH5 LZXbj2fsus3pRiK3ErZ88u6vRkhSayPEE6DPv86FRG7p8VbJvSLeTsCVAKEP ZoDO7BUD9A0iYbnZLIW/XiBLZ3fjitoHd7NPDmMIXv1lkdIRvC8XOBAglN69 B8/j0yZOxlCv167xBiLx8W8BIO8BIB8AIJzGvgye1WDTvAEzvBgugmtMJgAM s2Bk4FnVlAcGZ6msU6UORsIjbJBe+E+aPQorgbwUciOUn0+iEDcMPB0AyQmo wTuQ9LTBen9xJYXCtSIBwko53U8W+Fr6JX3P9He11MKWW+k1/JGWYxggld4P MB/D59+Jn4OSzHCFIxBYDSvF38El0K1Hk9RC8/LOi6BTaupfAJI/ASRuu4PK G8fDjfjBW5Nw+aT67pa1Abl49kyQ9IX7IO8tAzgmAhy1knHchYtuh6hJLBc5 6kVSBmHLnCuDuGCESRteoN76YMxgJBrXCqEkFIz4gyhJ1R0nN0TJoNZEyYJm q+be2SSvvBkdrauauxwvnyLDdTZYcUxvpYxAbjHzQLi4r5bhOgeEy/DiRviB OKHeslj1OJ7ybUDknTJYnIirLk6agsJHVkNFQo1G4uPfAEreAUpOASVnZTd5 585XRPKvf/+AKXLSxzWwtum4hhco2Rq3EUjZo5JnXLBAtadhLmT/l/CCCAkQ XQkLeemntXiRDBeQ1KRrPvOs5ReYUNHQIiWeMTy4ieNZnW2En2d7DqmozNkM ApDfgsEI08sEqeuzYsQ+5g6bedtkTDE84TAEVkXwjoOGweP0CZiCgkb50fPy 3hf5gtTUPwEovwdQQvWQeHgSP7xyErxzqu8BXIInRWO3DTx5V7mwyH+ZgqeE xy6Z3yYDWI9Ljlrgrv+QfJqXoiuiewMSB5SW9CCGnEnMkOTmYTLwk3EmLYGJ y/a6OrqrFzLbS5iwD3GF6Bmsw3PeIDuw5oJ1zcAz5/Nn0F6Oc2Gv+mDAhPXc 7uDGBXbvZwZgkiQjmJw3YNDOrBabr//NBu2/sjHJn0QWm9Pd3AuVm3tatppz FVyPHtfAuAJmMKLmoaNgW1U6C1c6VzNbVAas2aGiaOW3q/STTHnbmnqwJOI0 Dl5UqY8szjN9oKN97F1PCWj6Ns9mqxzr6oVDSyBY4Ex62WC9i/07bawaIP99 4mVtWqezYsrXsS06NGotMJlQQgmeI/j/HaoMOAQ/wyA4xwH4ufoVGmmoKSi4 IFuR8vIo/fQCcPI0cPIb4OQnkuyIhzPx4zkm4dphJj0dDpt9C1lgWu0kcbIX V9YesGA2sO8EFnYgDtmO624bWPMWYc9unonn7NQymbRxMYk3cI8h9xEVJTEp lz+Y+k2OgpLEKCgZ8MlTrkiUeKvqbqjJuxPU5X6JEg67rkHEtwwOhbtTZuNJ T8cTn4gTqMZJMHIfJW6eomhHZX9KZ6CkHVCSDZSkiDPx6ic/Zrk1b0Y23j0l cUl8/MtAyWtAydtAyfuyOY67oXv0uCz53wHUUeYulQpY2iTV0h+zRNNbVduM Gb8fzuW4po84Az7UVtglev+x1UNA9N72edz0L6nWcQ73elp18XTqINtcbluP Q+khlAs+BPTE0a2ulnIRKYxlqMufZsc72HUi+d+XleZJeuuHSgEpacg9XxSD KtoHJFMMZzG+Ng0oKcdnLaLaSQBo4e7QUzL1l5dHPdE/AC2/AVp+qhOS8Ch+ xHdJ8CjUEUyHR8mU582MSR3iwj04h924uXbh5tuJ22wHbrbtuOW24iy3mE0y EL5SzndGhDiUd9yjOXGoGHngzBsHKMlBjeXkG6Ol8JPzKdF6UCIVxt2sh3en IokrnyL9M/Nc7I1eITucNuHPKEW0HRHgTjzlPRLFlyJq5IbXQtHbPwa03Aq0 nJQSO8vAcTKf4FRmI6P4J402Lr4UXC+anf2+iGxyr3TXrpclGcxxQKFfpR76 NT9Evybs0s0+Y20kPzwykv+l3bQLv9LGim5yTpajgYy+066qX8m0uasOll91 E7T0FN7VywYu3ezXOti/y0QyMwEJ9C2Of72mWQMmoZlr4wYiyrmNeAif/1Pw e/CBwxBcFa0AamqBmnFAzQhVhWDmgjsH2rV7F2j5i8gKpqb+Dmj5pcyN8baJ x63jR6CSBF+dCp+djpspUzYSscVhH851r8yNlwA11bJzeqds3V2Nm26Tx7ew jcIlhV0078rtN5CSar4tJSNWyOK/MW6ipb76/9/hJpoyvyuguJlBBnquBZ4Z Ej7bVaLOvw4B4iY8+y141tvhaXZK4FgtCi8HwJGJm0OypaWz7KljawrXClJd hPPP7MXzym/+u83maNgSF/eCSUggH3sbnuZ9eBrdSE2l8u7dG8SeKK8gGbAK TwYMnmb8WmMmwdPUHNCdQFED/J9pgM+Amy3xua+q7pRILVAXwYYu6YGQp+mo +ABuwMDgeXtaL9M9AjfEGgsxzKRxYxcLNNRYYAbMzZX3+VfNgLEhueReWxVF gD8CAf5wBPhDEeAPHq16Wj17NgI3V8TT5uW9Bdy8DNxw5v5JPCfeNSo5Eo9n 6ff9Dc7585JlTPfdAeywwkvFo/0I1vdJZwRnzKcAP/OAn5WyYWGb6IWRZ7sG YNeqwtDVmwWLpj8VbcY2WvDy8QCmX2sC5m+abVWJLMmzoOLE2JweJx+a6453 vVwr4MKXgZothTtfDNfOOH8mHv4UG+dXSDPwQVxsBMxhvO8xPOjbAJiT0pQX JzMOLs7/O+PV5tSiyu9gCM8DMC+bpKQ3YRzvw9mcgbM5L7LmvHg5YCjibMON Vh5rtKerZoEKtE3ZpDJVLtaX8vwjGji4dUeM9V23PGc7shFoZL4HxwAqlWyz Ymm2AunifZcZ62aB0s3Sss72a+JoCBije7L9l23K+G2lZizNS8r4PxS8nGsp flBXsZbtxa8IvkoWAThTWVhR6SGmx9mO0K7dRdEp5cIzyr0nJvJiCRcoiYfz 9oOasX8lFRdUuvTRHcJlWA/Dr5PJhXIAh8NVc3BebKlYJw5no6y/4/lGBjJu lsQtgHHOJsaAVWQgE6JmoU4qfxTEJIYjJjEWYvq2JmIWXocY/nReF+Ot0TvE 8Om4MVxvZoxPkpkxCrktBT1bIvRsC9zMdqBpF64m5if3i7owlWyLZAEAEXMU iDkBxNwOxNyJj0eFZydixWAmpOapOVFOW/0vEPMiEPOaSUl5VzbjuhwylZ45 gkh6xokrzpaw0YuTSuPnWGE3uhkb9o+9Q1vVWReXev13tVbOsJ9UiQpTbPaS luF3w4stKbYkKYLmNvXVybqaBGIFFK1TJFrwd+M4fnhF1Tz5nsE6/RM6FkyK OIgjiA/pym72FZRvwa/LgZpZ+LNqHa9kP0LPnlfhYihryH6Fd2VJTmLiH/GM fmefV0jViiPOflCzJDzjVKFmXI99WBYxDMVNVgbU8IxqgZqlIuuzSxbFLJMV 5kuD6TG3IMDNmLimlkh1K+diIsuR0QATM/KPBphQLBMBmD6tCZivRQVMcxVJ r+qhK7i4jkgX/XOkbTGuo0XgZQuFl20HX9sl1a4pojfJed2D8OeHTH8cWDcB zDE85NukWka1Pp23dlVJtgx7iy5PwBj+IDPsSUmvAjDUvjwtKohsGw7KQPdR XsY5dur9sL9+ItzMFLiZGauMmQwDrKFE+gkdeKIcNGvl7I7s/XhI94ebVdvY oawM2yHJDascopI9YIhJchqUm+Vb7lVg3UoX+2uBi/yNzsCzrz4+oNE/u8oy 3tV4hrkyujV2gPEzDIDLK3oY4LC8rJyqdavx88wFeCaosl1RUaPsTaYiImWw MzPPADRvifQLLxYdyvLO7/6NNLn4wcuShJcdx4V4VPa4DcGZUBp6PMDDwazF OK/V4mq24gJch7PkZpkF182guAolL1QX00TO8TabV86MQs1uCjdJrY0bbZZc HGx18QokNif3QNg4kcTwVXuVYWmAJbiPuF9jIe4mJs3m4ZEzpT8bsJku9xin eg+CNh/G+xwBDT4qxfxsmTilaCglbO63aYCQPJZWYTS9zDs0IUGXT6akvAHY vC/F7Nzcy6IeTbU4sjOOuws7K4WfqdY5xmnwNTPha6au11RAlS3ql3xGu3gH eZonqRAkvuYZ2/ryuvZvUa6BYUga/E3WZV3Px+75XBvWWOjgCXeS5FlH64Py bZKNkiqc6k3kSMqHOtmbZbcKiETQrzQVwVT3ILCzYWBnJbcCKnvt0pyFYJpT 9DooLm4UGQgqKBYUnJdqVGrqKVnJx5BPU/G/MJEqilyu5Rd2dpv4eW19OSoL mapxPlTzWwj4rBSfwwTaBpzlSpwjR99nBwv7TJzSFtySYq+yureJMuq0700B J0VnfPFGKTcGTu9PnqF5kRMps+vmU9zEr67oqxDkTBed9bl4wlzTyoBxjQwE zQVLmwNeXIuLi5fYFGlKOmRKcEKDgZzeODFW+fMEObeZkNi0SwSwfvlte2Fq yjku7n+AnGdFJCQl5S9Azjty0XJ1UZs2DSIwR+ldSaIVWZZWAYeD4HnGTGNq YXnT12gyYNwBFZ8efX94cYYDj9zNEYxtnte4wzkdVueZSEtncaVBnUimLdIA PXiqHSQZ0N6yMzoapqc58cvhxtRzWg+VeOYV7dxk4oGOrg+QOwCfowgMrRio Hg2GNpYTy8vAMmfqNPPo0Y342a6K4GLXrmSnFJ4+7WkWi+ZsVCwiXhjaHTL6 oB2Vx3GTHcUteATx6SGc3UE4GTocJtE24QxXw8kswRmzFWZ6MN3sVpl5lxpH DnbdcOgxI0i0IhqP/UHMpNJC44POJrFZzPRqTcwsahFmvIXM6GstK+QZku2y dWwB3ne+rMhahd+vk7VZtb5teOZUeeJg8EHZ6FQKzAzFOfUDZrpIZ8ytcvPF iRjOPVFyAYxsmHj+GWziCRHf4qrLlJRXgJmQUHte3jXRofMSNQ4IC1GzWnRz 6HEQIUzZCBukbPVRFVkZ8TmNvd0wJG98iW5+qzE6SRTJlItuUs5rTiCJSTDr RbJDuPEzOYBHk2cDGn6Zf02amOGsUs/Y5mObb2btlA6u178DtuBng8DPhlGn /QgcDWXzVut888QJ/HEa8WNdFV3Gnj3Pw9GclXpuaiqH5t8yOh/qHM0PLM/9 exss3ieiBGz47gzosFOfI17lOIrJOJK5Ih9bL03jvPJqQRym40in+OaDLMw0 NeDkJBkkG67P0rvCw9tnGWsdcoSfuSnMhDIB0TDTs3UwkxDhZ6J1kUVq93p1 Gt0KTJdsZu6MmYAFeM8FeLjzgZd5wMtcWTO3DV/jHNF+YOYg/j4XGhwCXo7I st6uOKi2wEyGCGxyCxoFc1xZkw3JLNR81wY2mnCmOJff/7xJTmZi9Q1JOGdl nQNmropgXUyGNhk+phavxZoNoLx1tc0GlHxak7tuLlL8zI89fuY59TNu/Ivl yCQwtESWJwM6HJ9hMdNG2Fk+O2XairNxjoaoSaKzacI/vKLOitru0pH8gkZR rBCRHvaDsxv4NWOGgp6NZFZ8n048j1uEDz6FIsUBU1LSYIYMuYLL4aLp0uWc VKvYNJSQ8K7R4S+vswlX+I2TwdOTOOA7QM9uA8U6gUM9Bnp2VHaWUnt8KZzN QpCEeVKfXo0DXILDniszLs7ZsOrgXfwR2cIfQ9mRdph8Y4IWAk7ejeHS4+OE S1azLibazg/XAUC4ePXrQosCtXfftZTNR4y4EHBZJDqZ1C5gXXObTIDNkYQM dewOSh5gqAiCHAZcjkr/fgYgEyer0SIDGtZn2FbGfplQujk+/nm7DeENSTdn ZJwT/YncXNM8LZsB9xIjF0AdCpmU/JbWRySo+e9QnUZm7j0uhj1htHp/I/4/ oCnkDBu05DFmaRN0MTmWlTmwSEnTlWbe0pYcdrGxCYAoZcZ7IJA7FB9pBLxf KVt7tqp8xsRZYGYs1Y4OmKFDWcK9Yrp1Y3M2HwElBzg0Sm2WPxltmvBKAKvm I0tgCTJ0dzviyVvBHI7jWI/B8x8BEHS55lK4meWIZ5YgnlmIeGYujrUWZsM1 8U7ejm7Gjdy7eMabcY50MzdcMJh1Y+DkRuFmEQm07q0JnMU3LGp6xbGjCT+y RuOazJhA49reBbiKCJzFAM4im0CbL0UyznPr4pwyAQ6bzA4BOBx8OYLveQwf jeqdLp6J5Ga8Jn9oQk0B1PhiUwB7Mt8HeM4BPFdMdnbghtxs+jz8uryZbMA3 7Qz+93WthyTSXEzzilq6dDF/qNln/zUdiEkOhOKabM0M4ELNE1eTY/+MwKJP SrSFTf8lzSwwrsm1K2i53zCYRAOIi/CZRjyAGOY40IPPO+4WVWaqolpquZEp uAEDmGnn8M9F+Ntz4Kxn8GzewjPipBj7V39l40GnbvSwNPP5wYOTgJ4cXFqd cAZ9cZENk/XwByVrM1uEXA6YVb69Zplvq5wr49W54BS1ntWczt14GzRjFTlj E7UQbEJE7eZh0601YfP1FvcCEDbePVNu1ZpLoPHRMQ0wB557PuC40LdS8pRL fJvxmJl82Y0/q5N9U1NxHBzgGy7lNPbQHsL3OIzvyX1TXLvmQpoHm6FoZBwc O9dWZr//PZHWTk29AugEwFICzVK0KbPxWoL/Xxs9FcD+Fedz2NLc5edqyiza SCLtNdWFZ2+ly0EzTklu1EJMmoVHVgg+8muWdTphsLkcavhnwYY5bkJUSpw/ 0G0osooQ4dbok/icddoHNBEUs2omfq5x+NooasUGTO/eTB5eMW3aXDRpaRRG exfPhkMRZGm/tc+Oflv1j+LgeChfzvgmFbDJE2GwI6Dgh6Rfg2XoKTi3eSLg tt+swTmuRIyzLEIczE0j0/Ew3HX6287xxBrXvw46CUHoJP+10On6fw8dJ70d qSTpzaC5bMBs3xy5iZjaXySKhJskb7nEt0cGwRfJhpJD8FIHpTOgUKBTD+gc xPekZPphwxUCPinbMLr5giXiXroW3t5Mvbj4eCpLfihy3GlpAdC1AG7eQEy6 Rq7D4feJCK8nbDZm/F5dZMUF6NK8+dUIr/NT5VDtXfnmFW19SXN56Et2DJNb CJsUGmkWJpke2GR6oMPcc1yT1jo5xplqRy4JTWYe3LwM652svRY/DOjcowNw 47Zpd0PlXEAHV0ExvOngoUbaubt04dKiK6J8wxw0m1q50UXXNoTXPOOk5vlZ nP29klFLlyjzMM6Z2yQPiGRVtWRwdARzDV7rRHFyk1nhWyNycE5x0tuS5m2t cWMB0drSog+ZRZC1aNDJCUInMRZ0urQmdJbEbKiJVraJ3PHmoONNDMyC856D SGceIp2F0iKwETfUdjj7PRJfcrnPTLyYGBhll312F+hwPfpBfLRDxhcW6XDM zElPegmb04LhLCZjX9W88OP6T4btKmFjD3AgKmHj3qvx8/H/ML8a3ODjdoWS A9Iq8HCE57H6F5xskYW4L6qHIMEKVj8vK2ljxOM3YfCJJ2bAZzPsH4Uhxy48 pANzfTVsGJUmzp/ot+fKdKKZH41C4+P2ADlrdYdpKYK2YjjTwSVA2QAGdwFE Ow14BBT1PyPLIJOT/4xH87SI/3uXPcTJWCb7az4tU2cZMihwGM6i3vSUoY39 IBb7gqOZi/GioDf3F6/F0a6WorYKGHsnz7w9Nm6ohmbklCmbb4FO/Pjg0/mT hU+sqqd37sy7Gs7l1VyiYKZvluxOn4sbaYE82w2AzVbcUrvxqgOMqGN1SHZF M1EwBC8O+rcX+NTjo3GP+jGj+3JdI+fDNrL1ErefWRLCYXbq9zLxehb2cRkR chNu3SZL3AIgboHriFs1l4fO1VoIR5qrmOQ9EEoWcPA/pvd5Wr2PiFe+4amC XlAvEt+ojQCJNmmQSvikC3zSbJ+AJAoC2pIWTBacUR7InDTH3aRn4L+1NY2l JKKZTpG92uSYE+EwK1foKuziSYBPGeAD59OjN6DXMSDbI5lmZFkrNZVTFc8C QtymSN72uNxGcTK0+RXb03k/juBOmPhxHHs9jpsT5vtwzHs9g5t7RCpuA16b cSuul+HN5dc13dA0mHplCtY7bxMjaWAXR4R5n+zwmCfpo8GnU2vCZ+lNwSfa ZkWWvphnY7KF6YLpuIZmIe6Zg7hnnjQOrBOthWXS5FSH12FJF0zGa6xNF/QR IZl6fD+3bt0b93AuzWlZfsOEj3ByLtHpWVJd6DRel2AfTbI7glr5St4COsbp IW+VsLfKWvw/4p6KWzR5Vb4PtnlUJfFklsDjgfp6PdBT1gP9OdwDubQB3Qkh xERakk1Vp0jKIFUwlOLBD/dFkPAxXeAa1diYwGY4kjemKEjemHATefAv6WRQ 9RG7DgmfvRQEtBjedHAV8DMS7qcQ+OkKDObBleVcFJlwbiNNTWUK/3+Aof+2 u3i/i+fNec6v4ey/JPMEGXjmWaIEd0T087sAN/3xGi47JTjTuVv6plbgtdm3 U3RKm5spoAuKNYXTgkaCiOAntIAoMYihbG2Obg5DBS3GUMy1vH+d43EFHe8y RoccJto0YzAjiJz5QeSwLXAnUMOOp8M2Y3DIZgwOSsagE145QE0C0OWTsOe2 iLDHZakdd3PzamxdpE4EVU9Z+buAV5Plbk0e7hZQLQ3L3SrHAzEgPBVUVAV3 K9+EP9+N1yFd2CjTBA9pc3Qs55Mf6Xw+CPG3+Gsh9MABJRA+MKokWwC9DjTn NGdHfUu+pQw/P6kDDLKv9Ns6kz3aCiVPQIRWDbpZthzOaDYiOkRxhWOM6TkE YOule8hyc69Jf3hm5lu4SLjA+g8mKenXJiHhv0xcHHsIHsPj/jsc/VfAox6y Y2ufklxbngzi7A0O4nBZ1zhR0NolMihrcJzb8fIu7HLiM25xnSuKuqVdkf3R XmmN6wRoEj8+3HSMgpuPvNA3EkHLYyIoWo0ncnUdazyuOdo1rWniYC78jubc mNJcBt+zUgLNOtnxzk3XbCOokqa1erxXvSj95eLlB8qaj37YOvI9G/iGZth8 vpeNyqJ+CPOgmFdjFPoWkLV2pG8VVdooXQXzq6LkKsMIBOIVrPUcs1ICn9Fm afE/3/bk3n5p/c+ztqXA9n9K2vqshjHMv8U32HEBRZH2DogP8kvaOsFyN6KN qHOJAwl/XlV62N5VR3+oKC76ukocjD2pTd3jt2lfQSlugmLQ0cGV8D/F+Jz9 gPTO3GXWKLrjbK9IS2MT+R8Bo6cAo5/Lmlilwt+AHTwiaqMpvgftPBvT1vQ/ dSLfWwgoqabAHhkJmSd5N/I37r3bKnpcLoHgbWRzLTnR/E/LEgjZNwMjwWJS FBh1aEUKp+pNS1tUJ/WWeyLz1i75pq0FbMVZDPxwLGedLECgGtBanMd6nMsS 2Yt6UIYMqK01ANjpiq/xvJKAoQTJIkSWfB62HM71TYfPszlNcsotx8VdEtXI tLRGScB16KAcrl8/5XBcGVxWDuxM0CUQ42B/41bqtV69SzdolztP9AXriR7V WUzGInQNMkX9ey39iIDN6zaH7XjcRRsKeXAkrkcwlCA8jiES0wfxNm9ND0ZP lu7pm5YE3BO2aPqvNgH3ReVwTBRWw3OOW688lEMHw2vwWUcD74PwObuzVtwo 2m+sH6elvQMMvSzL8hISnrB6A+TCbAtkEvbLsIHP4fzvk06DTJmiPgjbPwAe tt8K2OwTnbpavJaKvvxu0eZYhzgo0h25SWonxezdIentNoiZSogWC0WkEkJA ylLtgeaA1L7VgbTohkDyLpD0LghzqTjWzJiK40XEVNx8vOdSAIkDoatlAHcX Hnid2QggLYNDqpUenXr82wMAJFfO1+F77JeFbn58LUHqpwyG3MTOF831jQfM ZP/SUjpmsinN/D4M5DyAdAmGcy1I6bp0UUrnll+UIuguHwcjnKLLI8bbAdGa bdp8UBXpkP5e58woR8ApGnFIT4YGRWVLzJvhtE6CIgVTPNGE/+A8pxocrfF5 QXQlHESkhwyE6OzY5MBkAjkde+xYz2WQRqBXHACYEMBVr9QhhBI416GgqgPg cHv3MbLwo1071pAvIAj6QLrM2TObkPB7WT6olNgtX/0qnvkXRGErRVp2bpV8 XEeZPaxHUFOHs9ovKl0zRG1zL86US8W2y8zbKk822+uMIjfFuHycN6EQo0c0 uYUwEi+WGU7rosGo3f+hP2quGORNyYVyCpPxmGfB5y+E31mBx7sOj3srILQL EKozWwCjFTieOdK7Uy+aBDyiHjgiaq2kytr6enyeo/hkt3vmeB4y12e1aQY6 /KaLg6jk/A5MhNqTFwCjy7JYKT+/SXgdFS4KC3VdcQnu7LJKVXRma/JEOzY6 wWoUUAi2wuOTqMnJ0VEWZVjXFJ/0m5BWQa7Lbltux/RcBJQENoAPjMQn/igI pWsKJabzUmyfKCHp0trMoDOPwXwGhXOdPgGLVmVHdMdHBVOKXGcwHWFSNT7v SMB+gM5as6aan38BvO6siMtx3okDHHFx5MNMa7pmHj5brn74DGzhXtkrkyGj u9QgOoTzrgcHPwD+XiczWPNk4dI+mblegch3uai1rLhO3aMlLQkRmgU32KWR c9O4knApJRxXbVsdV0uiFlkj1dAj1/URV7x++Nxca49mHGaK9ulixGIr8azX AVfcqb4FZ7INZ8SMwzzJ1dXjuXN1Xx2uwP3A7T58z7123/FRfKbb8Ok+hc/K eMmb7nbx0g+sXYT6FHT/zAfA1YeyPSA7mztoroHvcJVfQFb5cWlZMexuNLhe OffQTAOm5hgzmb0KtxgzCVf+hCguihxLXNTjOpZNW6f7oGqOFF1fDud7QWxd tLk7uikAiR7KQirOynyQ5hFWpIiEJeHJGi5pJAVD2b0qkwv/pipw/DjUqS69 DfDCRy2jiOcKlWIoBX0tHmNENosT2d27s8uH8mtnTXo6Z37ekvlbjhVqqtNN ZfOxPiKhaYLICd8pc6bU4e4qXfGHwUYOypFNxGu26ELXiV4hU7HawcUE0+Iw L8UwIJLuRU5ne6EVW9KgBXDKCLK9mHDKbx04KT/9RrN1V++UabTCkUNTePZh Bh71PNFKXe67BdHSZkSou4GkA2YHjuUWHMuCYMfPAREuZHWiI14ZdltyMlCX hKP0y9o/qrJ91hK+yInTn5hQ9ltbF+Li3ofJfAA0fShEJz+fU6fXhPD17q3b k4dR7nOMqkZXgiTVzNLNSFPhqabCU03apZF9NE8lY3Q/sBvGf2U3yD6rpC/7 1VAbgxdRhItFlOT0CCMpLjVcDyeXfXBdP9Ju+oRtmPu+FTf4WxVeoJLOqMO4 GXbgc+ImKFsIWE3F7yuMSJpyZLt37yv42S/IQFB29imQvndkm65q43pbGP7Z kukvC8FOEEW820WPuJPvBM7oGM77CM76kBD1GXYLmnZxbcWZbgDJX42bkhq5 84Oeqtwu7IhsP6U9uSmHKFq50RxVSJUqggAmfTRktfnYkeUP5fUebXFHQ7Rd gS6vF56TmIYwaa60oC4DvV7j22Q2gSPswCnsBrLW4XQWS0PQQVmmSa3DfnY/ WhaQlY7fp+LvJANZSbgs/dJc7BSmozUFuVBKOxsozJ+Y+D6Q9QEs6UMg66Js umGDjOOAQ4Zq3xm1dsZO1KUFE+bpSqUZsNApXl9F6/X4Khmze1zzewxxgjzQ dTm8psgQdH0Qyk8E0XXNIuyaoop/FoksCades01Bz4Y4IHN7zItwDIP1rmKi /gQQtg+fETfC6GVAWC0+cw3+bJSRrT6FhVfwc18ADzyLZ0H5kHdkDW1cHPOg z5rQBMS/WW5NLsBnfZ8MqWaBB3YAunoCXYPgtEpwhlW4HXkzzgPC5sm+u+2y 6WM2zrvWtwyhNPMSukuNcYHjgbSXyF3NXnGEWFrtMZ3VR4RU3scJqexw7hcl VR4NUt5xCO+aQS+keCmNk+wEG4XmSHvqUt8qiVw3+naY7YDKXhwHsxNLbZ/9 OEnz1cHxsRy4z64y3w/qeVjaJJN9J6Xvi/L7ur2ZYZXb/REZVrl0+VsyoZmW dkoqLW3anDMdOnCohqbVIPRv0GCY2wjVpy6F+VXggq8Bb5qEsGQGHNb0Fjis XnaqKEgBn7YpP1t8osChhFdnNAUehNUVSfNdJQdkuCWNRZcspM6GIBWsOj2v w0RcrcCsiMxH/KOmHocB6sUn8dnwOUduA4xWA1rzAS12eY9lFoZi9VfAAS+A +p7FczhtcnP5bN4UiS9dB8HriEW7H1pK/U0bvrrBojtx9idxld6Oa/RWnPdx nPVRu3XtkIy3zBaN8c0407WA0go4qkUyyUriwnCAHJCEJnJ9J+3JZSoipRP+ Klil85+nNAur3NaE1T+2qIYbrQLlhiVIl13/HTtHpkj2fLZkz5cBVmvADRRW +wVW3mzFxGC2IrQQPRO/puFrqeAcybglKSHDjuT44Eodb/c3uctP7W3rMuiv 250Ip6xczznTtu1FUUfr1q1BeCAbiYqGwexGwwQrEVnBW41jxgImOQ23/fS1 8FZWhzQssvqKjay+o+ENPYdwwV9fX5GSBOC7Omvnja4IIQsvyVCIl7rk8VQf eLIVr2oXETPoXAUtjXiPazWMHeCE+si7AaWj+Dl2A/7rAKfF+LxcxFilVYIh Q6hCQiHvCzLl2qbNaVEvTkx8s0XeKl7Ure8QsTGqJg8IrtzRrZ/k8wulpXUn rtItdghzpdTwZwu0dDcV7SMWF4z0VpHiVwk3gytJUKQF3VVSLFzltCauHmu2 susddvXKXnmT6ZFZQHp9xdUixFYrEUttAAPcDga43+zDeWyx2Qr2R0wRSRIq k9bJHjcW43Px99iclwoMJtu16n5Zq+428TC+ul6aJNQj8aqsUvD7T5nU1DPS lcapAu514zoFSmGFZSzGqoAcm/SYVJ8KlzVtlS7ZnLRbs4FSobo/pPDjsoGM dSSx/nO1+6DLekljIw4ppds4K9lh64JtHb/kcVUX9WvEFRPqZI9MV/A9yAKJ VzeQRDfJTOBgywKp0F16K7C0XwUXypdryqJqvIrjDcX9UVhIWawrYIGMNVV0 ISmJPcCRMZabIHcxFl3W3ZKNpXJpe7gqysYMxPmNtLExq4vLcJbLJXWxC1Rk i0zQsCK5yNNp5HVZsdZatWhIKfGmoRXKrkdAK7s1obUiqspPNLHfaIpy0RKB 4apyK0Xoko2ROwGd/TiSrXitwVEs8gRYxTbAKpDF7PvxPevx/RlgncBnOonP di8+7YMyUKMB1t9HYYOueeIlmQb1+9+VBeXp6eekaY2TB040i27LaTOOKoVZ 4nqvmgRowW1NgduaulzXEE7aDrdVh68d9+xjcG7r28rKrkthuLrVyxogSaD1 vieNcU6aKhKIJ3h3Ii0MVe/brMVrilC2H7l5Jc7nOiLIFiR6Ufa+loMIVm5X zaxqdsCDCI6t0JuDP2bv3o1ChLmLITv7rElJOR0c+QtPBmorkt5eHJolU2B8 ewJWf0y2V/bEsQ2yBJ4aZ2Qeq+VI6/DrbrPKt9WsFG3TVWFt5NGyF24Vr9vN cKN2pJDTyg0K0GVEQVZKUEgrpVlkZf3/A1luGMMhK1bqwis+T+nYtYKsbUDW XkHWNhzNLXgtxpHMClaBXZzF1e510k1GidpUXJKURfPj4qTWk+7++bKNsx4z obYkLyF8ASbzqphOUhITYNQuvCjtBE5Xq2fP0FwTJekYj1RyOGOaMZPn2LHA NdqqTfXTcYd18SdHAykZzFiLrRV0HmEpjCc0HiIc6GyYI2fK3cVbgq4z0r3n J56ALAItDFXv6D8hMIP5wF9rOMdvFcwH2spVle2mqFmPjw8eOHE6fpRxQB0u jCFFTmG7UXx2Tg6reWclBPX76dsjq1ffsZfWw5KDjceFloDHnwg/lS3F4INA hHL3MpkKrJcLcgOOaiN+v0G6KrbK8hqnGuy6y92Ca+evyHu8MluuOylKh3kU ZCUGi0NpUTCWGMRYqnFLUJrHWGYrYkxrWMtvWBuOtm2OiQw+MRdxefXq+XTZ w78ODIGLS3cBPHU4DQXYQTCHg3Bx9RJxjbGn1l3WwtfJwGCujKkzkXG7ZN7j g2uDXN/5oybUs+Rlhs/bUfXXhflwNDst7aKM/eTnNyCQh6vppuPqzL678Q32 /9XAfU2aqbqPk1gn3gCr3aFzEeK+7g65L+kBfAzs8P9p/5LIcXnaLsgOJU/o Iq93wl0YUOWLJ9RggQ5lZI4Oafz7TIYQpBJxPaOjTzK78QPND0rf0peUsTLZ wuiQl8Ikut5afG5EkaXl+LwjtE7cvUeodyk9/YJs6UtM5GzyCyInExfnHYN6 1Oj87RcMNwEn+O7COTBXe8jOcSiTH45fST9miSwXqckRnHE9ft1jF9auu26Q kLbincNlQsPpdEdTTLluniMxHEzxCiZHFKNBLZ1vkHBjqGW0OtRWRM0ZenWH o+2tI9SY3GBHk5uOYhqeo81uNQRbLtn6vxuP/gCOaTuOZK1ArV6gNgnHVG6L XL1kmXaddNDkywV6ApC/XeqW8bIm4kETklV1Ix7/FsEUn4XZvCCXdVLSW4Da KRnppjIEx4TYtd25s/ozpuOpScwEQDlMchyClkn0Z3NhskthurcAfuwWov7i EevPHlB/Jq2C37DlY4/EikvJS8HrjzYYey2U6BC4fWB92lkTL5ibpig7o19y SGPKkLkN5kokBntK0UzXKYOGj2pzE9FPEstYcQrY4lSwxelgixPwo4yt1vzN oCHc3KUCTG3acFPqFdmUymVmiYkv43HxsbFT8Kf29tKuDKZo3UphPwh7ouSb DkiczKpJoQwdqrwnOwDWAG2stOzB73cL2rbgz9Zct/LOdWbQhNzau2iTUzRF r/pqlI7BxOCkVEqzaGvXLMbSP3aMqeLqaunNoktuSRk52t47hzLvEJV3kQQv Mg7W8FHvwSOvB7p24LUOR7DU6ncoyupswYvLPw6AShyC8zwqOpJspE6VVMc9 JrSMxcVj37bxmGvOYCPu00HhoqSk10X1Oy3tjEyAZ2U1wMRC4kVuwQQVsseM US3GiXRqs2Cii4CyVSrMULULNIzK2rcqTaNZM8XAZnJJeXxXe/qCjRpPamOu FL9esMzxNU1dBJF2WpwXnjzAhVuJjox/5mgjIUZnSKfoAjJSR8Z9Ukr+tn5/ Ip4OjeuWJoLdzkAMOQvUcTJ+hsoJiDWplw+n3ZeLv+DI2+KWycpqFCfvJuKp Au73P4XnRj1Ol51/FM/7aybeNj/5ZWPnbTD5w9KQlofzJAEpEu38AzKQwKZq Vl3qcHYH8Ptd0uCm642csIQbTnQKraSPbkDRzYl4VVpv2E8oMEq4sUtrG0wm RgNZWiuBbE2LQBaZp/cKtLo8PUHmkh5u+YTbVcx7bLNvM+613RZk9QKyZTiY OXhNBrgqBGT7JTTrLdtCDuH7UBmMK0LZ1fYpHO49why1AypaaPaTIHOMj+ck 65+DSuFpacxLnxeFsJwcHULq0iWk2BKU2K8AsMZrbDN+HtwY2Ff1utD0iEwv 3mnd2UPqRyjkOiAi+UEwSPLjDza3+KL6JAnRHNC4uOKUACueDgyPjBhjSl9S iZY0Emf853wb4lZaNv7bFpa/pyNgzp3R044HwZ0K4jgHH33aXO07HoO7Yxi8 dSHukx74kTsUGHkMGRlX5f6hcHhy8ouyn8Lvpx7hj4G1f5M7LM73D0b3kqh4 S6IcxXGYCNO9u00HuLO+stilTiLs2TjilRJ9HzFH4PYOSHvODiGPZDauI8oN MTKqJ3lk/syFakyCuFn6KM2GzbdwfETMpYZjLqWVMPfdmJiLJfDKSydyO5JL NEZbX0HOwEkDXm47fTvlAHbjYDbitQL/P18uRMqF1Ek6ZLBMcdeJlEgnHFo7 uys8w25LSpAhe6860jdNKI//oyCFjIt7BobzJ1EA4hKYlJT3pVcqI+MycNck zq0AhufN5bNBvqxMB+4nTsarVp1bDZxb9SZ1bhUHQ86NXR2MkiQt8s3wtAjz +ZIWcTTyT5ZGRuCOuX1xcoo9Bdz7+jVxbm9qDp//1hut0XnSibI2J+Jif6u1 BXJIbkibDA45aw1eCzXyrMA9UoKfbcgw/Jv++Pd0cG3x/plNYQ6OQrl0cAkJ kQ7ub028lX1hdy97ppIlCcyE8B6Z3OKO9zE2P8LJu3UA3h7cm4fx614Ac4tM FoULWLipE97bjkc6EQsXtTXTMB9BI5PC0Sb5kcxwtAnG8ptFW3LroE0vitUt gpq3aT4y8+gSI14BMm/mcb1vPSK07WY/jmMXjmMLjmO1pKy4UOEAors6HBNX X3KBL6F2AFDjstKj+L63Sgk0RVoSOZD/6Qge6fL65JE/DfJIloC4CpM6fklJ 7wFuZ2FWlwA3JgWoj2Kuy+1zcURlJXzEBI3YJsE/TFiq8yjjGLHtw9dtxMZu D4pJBBMk3wolSKjtx7kU6fiwXDISblJGeyfo6nDpAWTwcfRtArW3PVB7Wf89 wzXX5cvvESyb/YM2c/EzVVkuOX0DXst1Q0HNFK1ZDIePG2B9XEdcNXl5TSY9 /apoHDJkS0rSkC0h4beekI1X2T8Y6sTEe3zc/8fcd4DZdVbXztwyTV2yZVk2 NrZxAYMpxrExrpKs3pvVZ9R7nT6SbOOGbTohFRKIIaQBCe+FRzqkEBJSHgEC CWADDuDQjI2aLWnmvL12OWfff/5z546tCc/fd63RNN17z9nr33vttddu4F5L L51BXdzijBEkaIu205+A2AO8yCwzuwgdMgHZRkca0e/NmIPWdGHEYq1hJGOt LRpr4WpZH2uxdDLm+R8yI4A3tKd30Xsfq9mu573lPTxTdBHPjB+lf/c+9v/B wpkiz3vFBPV/pPcFJAsQKqLN+lVepOn7aE1NML07Q3lUP8H6QJTtxzj/ndMo vuZIzTP7bh1aoXt3+gH6Wo/URixYfLcMLtpYv8lAMESC4RXrp0Fkz6z/1yVu ED8cb9/jmCohuOjWQ+jhxONS7Sll+b8uocrlmip/kbEirE1MxSNfFP7Te0Wl ModOtNmr5ESDM8GNbxZ1y1XXCLxccEE/21QDehobn2GdIjhIWMBnHKT10X6L VTZQBaCFWWaS6ijdFn10O3QT7HZwBXATX8ZeVhts5jA7zFpUXHLzw7C1Z2aj aakkTjTjIYfqUlcLs4wZycKsMW2rcXBNkrZaTpiVf35hFhKQFmY+g/QqELx/ fk1AWLXtpfd9B12XzXSNNjBj1Uvw1sNQiL7ndfTnVWwQiDA7TO/3Pcz3Yx6p yPbnmFE2nxlPQtqqDcz6w6oJsyvfoPvmKQq1/6b7CPfTcQq100wLTJokfjOe 8wc9Ypw/OPK7qHKbo421WWis7ZY1AjwfhiGRt1NW9j4dtXxcbMd4RkxVIRVk 5JezUEP88NEmpGQBsVZAvkjQxEfZ97Vc01hjBci/y/GIY9LmwcBAssLKzYRh 5SFUK7Pgs0lH2l3LBDJuoaP6ejrSrqXXefkVYCEBNS8k48ad5GYjjv1S6TsU a1/jVSXyPtrcv4xaCuf/Lu67oG89mq7NJK6ue5LL2bupO1WErNV+znae++vg Iy2kSEChmTbYRIxh2RZby+FUIcWRCLfSSIbbpiF717GBFgs3rwwBE+nNBCG0 CQu23dzc7KAMspMFOnfrUMR0eryJOf8e9uO8jC7VhQSP0l67j7faFNkVzSaZ TX7/4QhRAokDfDlFfFVfT7dzATKIY3RbvUBZ5JlkwoSzDO8YcAFR4nl/2AOg jw12AUXbXAy5bKCjYhv93VQi94ocg8mSXxG3tNc47h+tr1Q7/AUXcl+T8EE2 CXYSIYXQohAr4kyjuxCHHQ49HH4WbYhU9LDRtQPfz7Wa9rHRckAiC5Ma7q71 iLvG9M30ElbTQbxQtFc36el29TUgYfupXsUChpO8LgunW6n0NEXbE1zrSiJu DgE2jen72Q/S7SEut2jNIOm/hlAUiIlJ2mXazmllZIXhoLg9mduGabCQRBop 6btsVq/5iLMksnrN1lg14rI8cmLViCuOYMRJe21j1U52zP/Jws3kIn5LgWgc RYjlizZMumxhxxM4NnRSUdet3WxpscHF5tV0rV5B1/BiNV0fQ9e0ia5tkY0D bOLZJCNmROg5EkjLTZ4PM0LoY2HT/zP28xQDAdjBnmWUv+yygWzD9BvpvsTC XIiyZoojBwq3eaulZzVHNY/ToXq6XzrbzJMETQDEgmmKK4q3r4hfFCeU39SQ s6TyuyjcKNooM0AIDoq5r0nIIjG92LQjnxY3G84oPyRFJHMkVFjeiQW/O8SV 8LbllGnqKffGX5DT/Mor+3lx7pQpsgp09OhneDKoWMT83X8qZJmhgB/V/BVV Zz3C9rgoqqfU3UtxcoQzk+soxm7RRgA455W8pg3XfD9Pu+9gY4E2vjdQ2COr 9N1t71SIe83PmIUEJd2zdVlamVlGNTg9VrWom5BGXWMk6gr/g1EX6wSEe0F8 1JmGxFYcALlsNwioEpTGVr5tp8iDVdd6ugqr2XOok77P1rb10DvfSwemrDp4 Odu1HqWIR9TdR88SxtPwjwIz6XUkyCvDtlsm1hLbjh+y3wBsQJuaXiBkP62r 3M5SXtmfvOIVYgXKngM3iuaCZ6Pn0omxWKY5sQJhnqr47+qUO7uCMvkNoSyQ 57Hi+NNaxqkskltw/yb5ISJoUhh5T6H1RrFGJx3+zi2AIOK4hvtH+Z04SNF9 eKXmlWBIcegi34V1x610IN+CKU6o9xfJDtFMZdxPh/sLdMif5AUi48djwvVH fNLV138rEZ8GU275ac4P8Htfz74Dj9K1eZjqjAeoBriP7oWjjJjWEphLfy7k 9dWwaNvHauNWirgt7D+wjtux83XdG2oRW/dmu0WRW9boi1OsjLksql5KzNWP eMx9sqZOQN5JZ5My1gmwtSLI2fH+ol5GLQf/gTZ+/w+wVR7WicNiZbZep5vp AdfDV7EVy9HkIq4V7qXngZiDZxv8pswz1GxyPqLJpadNMv2WeHzAu+2n9DhF yeXz3HaCBSAsnGEdc8UV/ewfyur+NwrHgAnq22ZRbOmcJ+q5+W0ylDb7AJ12 EerExJLI+DCcxkr/vxSew9MnfOJ9TU88SzK/LbGHZJNPuG/L5/H1MO6magsO vxvdB1P2I8NkDfIj2imk0+5mOp3f1ErxSK/hRsKQX6BT/AaenMFrfoFO+pN0 4mOKCLOvWMfytC7vsfUj/5Bk0zPiQyXv/bvoPnk73RuP0n3xMN0TD1CGch8v iX0D71jqoayniz1559L1XsR7mHbxIp+1FHdtvGpmNWeZKETCus6src3XLdwb F/Okyg2+xrQRFwQfh9z4qsF3ruJuvOSs1c66vLaAP+u8XtI637H1pOBQ0HlB ZrGNuzB7KRb3c9wt4xWlthe7hzOTN9I1ezXF3St4mfxRFnLBy6XEPm/mOOp9 dR53WabxKJmYS+4fePb+OIHzaLEI5dIL7K9z/vlnqLI5yxUOFhGwcwGdBTfc KBP+t9B5dweGQem8m3W3nHeYsZ67W6j3lEt5m8pN1EcRGR9iAT5srKP8K9mZ yHzKv0o3nM+8/3Cx9yQyTIo0yhHGWcw9KedhGndfEbEzd+H+XrJM/H7EONRc 4C1x7oLbQafwFio+30xn883w7qUz7yaq7m5EN+5meZ3XXnuGMs3nKdM8Tpnm s5RpytQahG/i1uqna/xAKPDufXT7vINi4G10bzxCeclDdE/cz6syr+MJm17K HHvYTn4W5Tbz6Jov4sm1HbwbHfP1qD6QaSIv8lM2VuGFyi7jL2MTbBWxly01 aYjEHsv7Gypjb1zCq4IHx97AiMfe5qqxF/OxMmkX8gLPX8YIFXBWqPC2EeZt odhDpr+GYm8Fxd4SujZYrj1Ld868ka3hein2+ljedZ7uByqxzbx5lfpc0zhM 4PH/SrLBAGnNiWMI7iNsLUSueUJJldN0r52hcw/zJ/3sW8reBtdlVR7aWPDO nkbn3kyq8uaulnNv3nY69/bnECsf1HzzDyTfTCu9z2aD2UyuhPH3TYnBCRKD 9P8Fct59U76O78NZiSqRWZXPS76J38085u9rF/xX5bkgB4Y35B10Pt8Oz8V1 9Lml9Fzp9dx8m7REUNFeddUZNuOZOlUm28aO/QnvDsJuJcGtkF3B+/xhfe8x BP8Yxd8jrAzC8rqX03WCKc91dA1vUqJsNl/jQ1TJ7+el6lipto6nBTby0nW0 k4DVfhYHBJ0tRAkX2YXmPJU65opqL+NYynkB2JAG4NjKAGxJA/DsyASgoMXm qi3xPEITmBQqUExaGWNYkN9v4Tx/j9Z6B+k6ZLXeXLpe4nEq1oyvYHllL73n h3nJUIlisC71ObUdXZ7U9O068xWRdp2ZIMDvFCwLbBqbm4VlgW/u1Kn97HkK lgXtcZwLUIBhLdxtmCyFXeNimR/A1PbczSKr4ulSZVpYbvlelVv+lrbtcnLP QTH4NWl50xlHV4EisW4en3f4HL7GcfdvkrNCTebzTfwbOG9x7pqKGT0ELEea vku9WlfQc5xH8XentP1B3KI1CfOHiy9+nnIAmX1rbgbp+988yCT5enju/a6e e8g73skMSwvlm8awoDaHS/rreSq4l73M5vOuz3bC2gOUY+6l676T7TnX8nTp qjTnxD2De8cbIngv4bxegjAsOUKwzHSu+hmYheCYhNcYDw7BM+c8BF1PIT8E q5GcNsgdkpzhRklf+sEkYRMLyvdT2n+ILkMHE2BLKeQW0OWaoUYJ13EIog3b QyEoy4pKbNd9j0tBvQDztzQt8vMEla08GCbAKbVQwF7SY0lT06lobwG3ph2D aOfdqmQnlhhhTg7H4Bw6BudsF6FVlHb5QGUaeqWloZ+RNBQEZUUYfiUNQ2yb /HpS4Gicz2cfhhDQUZgciUPktSZNQcyjsYFeHtbCABdwRmPP30zCjLtWiwvY nXeJHAAvEPk2ZDnwN8K03IQJx5NRo57lIULMOhUK34icgdZheL/mIRgBfohu lgdY1jCFPR/72PMRntHT6OMFLIno4pxnNeMv8iAsesNkwTq+SXCzzAp2hvvV RsZ2eheFIBYlnUvVz3y3B+29WBQGVWBuFJ4eySjcMmQjPTTU8ssp/eBcaJYf FoIb2Z8YOwn20gMLPrBrqovlmPAoRjJ6i3b3ruIo7GJRxGg2zsfOI9u4Z8mo J2Fs/YRPRis7fDBaLRTgeoiBZ9xw8Os9y2arU6fKBj401e0wRJcPN+wd02SA GnMHmAWfvU7NIemgmXlQhCLY+4BDCOKRtNOXl5DmReJXOeEscjgukvj7Dzkr wbsgB0UNiVoSwYygvlx5T85DH894T4ACatRZB2RVLZ4yfC3vmi3yN5zzkOhA hQotAcbgJ016PhkzBnN0P6U4fFr3WH5Vz0NvDITz8EP61r+bQbFAl6WFVbNH 6fboY8nRa5lPgwtNH0uiV/JmuA7e69JK+RBy0dV1bWwQtVSdTDz/aXbGNhdu /Gc4wZrLw9Qagdk5OEoMGAZH4AsjGYFbK3rrYbMvzygI56AvB/Os9n052Epn YSudha1MP++nRztdhi5KV3u4GQt7tNvVMveVdLku5QiEeWQ3PTesTTqs6ejD mo6aUtPTMWE6Wtn0g3lQufwTisDnKAJP6MryfjoGBnggwRRkTIWqtAW37DQ6 PmbqzPhsOlJm0Vk4E1uY9+rGlSNqePJ2SQkRCmi+8azdxzQltTbEZ/U8dGkp jjgcdZyafhXtBzoZKQwRlT4EMUyXHoOf0VLwU6JWQ8Sng3WPSEqKc3rObilh oRGYPV+WE0L0ff31gjZXXCEDdqClxo4FTXWMxeMNDU/pOOuXIkfhb2sZ8Eua kzxMd9O97JIxgct4rPvtI1TGNe2j8DrMZkJrWMLUQQiM4xDrgjfzDtRldSvZ Td7s75BPefs77ypuJeEQg+S2u7zO9/+qh6EGH1t3DQ7D50cyDLcPCsOhun8+ DPH2VDPqR1VoHcD1dBiup7BHVbCeq4ODvGZ+Lfdl+9gEZZoz7L9MHZFHs2F/ Fz3v3iTbYGasqIk4/RazMCW1LuB32GuoXIZo+hk2RMEWlfHjT/NGGcwo+MPQ JC8s5rxTThGoIWfRYTiTTpa76DCcgdW0B6UrkbIz75S0FFVaWh1+Qk4sVpv9 hUya89zCPwi7iROOQ/HLcigi9M7/KtJT+qhuAYdoGoqWkf6dhLRVh1dr7x3d EMtKwdaiap21XzqXC9FNAbs7q/JEFA8HmY8aP/4MvTen1ND/+yqe/nd67/7F nYhIOH5f4e/XNTN9G5cLBUpYWljZ2cuZKTqCN9FjBoXhYnpAbdaqC9JxH6yh e3AlnYjLKGFaXLecnQesD+89iPzKWuvDgynMcaQM1zeVKg+93FgclXoSjUr7 hxk9emoEY1Hy6T9+0YEYWv1n5nlzmHJG2g+BEcrxtbz7eTu3ZNfSmbhWl9ia Z8pdaunwWnqgNpzKwycIxA560liIdlSz0keCrNRPL+AmsekFZKXWGnySW13l 8tOM99jkOnbsMbrxTnFLHhMMeWdiOqg3lx5LdCK2VcxJsFljGs5EbVMgM4Xw C0YmXCM+Lm2DtEZUqoaFMZ/TYPwnDcYvakB+KQtK/Im/4/NTLBD/UX4WvwPl IegfZL7IgLHRA2IcZMdoDQIgQNVAuLNgQ5IsBs1Lr2PaNJn0xaTGq14lr3sq TzEkLFMAUDU3A7S+Q8H4n7rt9h/0XETOgdY86vEPuvT0Ec5ZCuxz08fGKlfS 4/UUfLeymdvhZDkFahs9NvLZeJCX4t1NldHyug0UiHdTIGYtQoA6wB0g7ykb a1VUoWzCMhHTcEGSGkTkuEhElsQvdnBEnhzxiPw/uREZWwRlDQuLyHAtoS30 RAEOMhp1IhZwrOGV0tv4KqzhjeyH6NHFcLmUlwX0MdH2BorIq7VOnEgR2cgR 2RnJUt/jslS/IzfMUtE0/AbdUd+hO+t7TMhjbHbMmOfYL2zixBcoQ+vnO9IE 2P54TMf4sLVdm/Yz1lI0bqIH3enTMO/QLVkhMlU0D61eRNaIKGEx9h9JRgnm hqPybyqjEtHGGatGJhr6PhoRtRyRXxAZKAjYtGH4vzM5KGpUHM/p8dgrytV5 OsK3cKG8FiCNWF1WHo9jxw4ko0efpKh8RudnnyAk+3d67/6Z3sO/09QDjdmP KRJ+QLNVoORDjJyo65Gtvower6TrdgM97uTlX3CtOsLDD1jYgcbxqrodhNyb 6B6AWTPsjqR5CGT39pdeIuqLxnDOyBWNNczTNlWNzDHyWyoiM8tbj494ZG4b spURmzhCEuEZnMHrO+bzOATqR6xJWU/v/nr6t9bz6pT9LF1bz5h5mEdVZO1h L13FHroKmPLroncfhrMd9Cw7h0hcP5hkNul/rMmVydfQUgSL8y1ukWECCXY/ GK6F3xjGbzDphvPSPFpwXpp7hD8vZyuTM2uljhpQMjgDIxKHhMnBdB3WD4JT TevID1bK2cDmsHb7r7LoZEbnC9ImRAQiQikaCwhTyv3xV5SO+DK+DaVnWELi OMaxjFwZ/yxUPcij7zgiG37m0NG+gPLthdC+zss/LidNGuAhSLgiNTf/iN4q pBhYDv8l9mrJPMgAgr+noPhrCpSPcTqD3LVRafDK3BVp0WH2ztzOAYqNOvu5 lllNt8dKVrOt5DTLLJ/DUjJ0+vPTSTnd/dLQ2WsWkfy5C9MpwSwOj53LOGTj 6LClH4/DofoZyB+Mx/GTtpUrE6WAXEtvcCu90W28Tm83v/ltlLO2Uby1qYvm QvX6u0lXVWGlzhSKvzEUh2X6s1iVTQ3nJXCjmKQNVCC4HLSo/0tHlDDE/Syv 2IE5EKYBrYi0U9IMJvwpedddkvPNWSLjdbMpd52F2Qnlc0Bfspj7kZxC8uMy toeC7/IwFj8vp5+dlhR4RQQlJRr4Kz6NdDWNwc9KDHLt+ElhU9FGYTXb+3ST IsHC9E56ikrlLIAqaNHg+tEYVdBZaPGMGnVa/ZJAeyGx+A92J8scNj+VVNI5 0mUUOuc+bj+10CW8QAc5X6sqxZms4xajid302M4zFAfoFtjJu2FW023it1rh VrL1O0hbfZc/r9MYDuMGrGpjhM6pIQh/ds4Pw3KMxInFYB6XGkprQm+ysHZc zQt40NHI+oqbKAZhebpZC/vFasD+ZjWKvoqNr7DboIM3L2Kyusgx6Nv7xqeG QxQxIgcSG3Q1nuauRqmEVWkwnQSNL2tNcRPaeYgb085DtMNxHuIAwQ08f744 pcxdQ/GIgYodIrXBOhH0GDEwxOYT785MX7jP6KWmn5Yg4jj8a+1yfF6z1i8w uUNXho4/eg+n6iGIr3GGqgQOB+Gn5feBs8WZy63FXxEMQNZ8Z6+spZ+7VWQJ c5bLJH+cUx3ggRJI/pqbT3FrA7V2qfSka21Yqz8kct7L16TAppzwRkX92MVj g1dqlwpVyBw1aYeB2T7KaHfR92CQaTPlSG0UiOt0Gj5m1G5tRmv5+zZjzvhg SOaUhz4OORmdEonE52qOxNyl9bXFX14vw0vbkI96EnXwmsZZDGboKN7Nyw9a eVXjFoq/reyu004PrA8+zM4Ey9So/TZd1wPDuUt4CUIHPY9OwoReen5H6Pl6 ean19vMkbjY3CP4G9w96GpBsob//LN1XaJ89z2uFUR3hHPTjunYOQgaGexWO ZshJ58yRamsB3cvz10oFNm+ntO9mWMX4kI7uvjebkueK8fcyUpVj8M9kjBcx iLhKz8N/BIlKUVe3hA9Ajr9/lLwVklIchByDf+Fi8BPa3v+Q/JuoVnEe365S m9m7RJOAfSmQCqFLitdkchtgDiRGkNpi9d6YMYjBE9z/gWsH7KazBQl/rbnG H+r7LkNNdTzU9CiPyjfW3cvXbRxdy4vpml7Dplkyho3xXaxowvrog/TAnpld 7EixizUgfmOq729YmzE2Mh9r91esewzs3WNxOL7yRIzF4bOROGzG/xrOwYm4 M7e7mGe1FA7LezYV3A3euWwl3TzuMK7k5anrqRLczMuztlNE7uCh+R56CLu2 UivEO9Us/NW6lgTeIuO4vQE/rSP0LmPY4gHNTG1wHndCOGxRab8kgpGvp6ei CN+O83hhY+NZKokG3Kk4ED0V4eZpHA5KrEWU4i2iSnEhBOBbVACulSJSQpRn 8PfDyjiI4LhS/IgTgsei8m81Kv9eoo9OQbqbEJ9L5ET8vHydeRtta4Chhaic BTeuRESFClS47X4x9oU//eytUtnOWEGfmy9jvZXCmwG2qZ4yBWLcU+y9WC5j DPOHvFpB3sMvasZvJvB/kHjxTYG3Qj7Cqy5aWKjfyxwcOsbXqq3WDHZqFZ+Y nRSRnfR9B+nz++oO8jDORqpizMRilprpIkW1Noe3+DTvQS8ED9NU6zqW065j lqbmBiUfjpPx1ZbKoPzpSKapg4OyWosjDEpvzOT3RIbl4nLK/6FyAm2D9Vtb eda3nQ1jdiu55svFN3Gbo4uNfi5kE8lOXrwwmk0lkQJhvB5B+ZimqiDzYpMY 3qhp8FGJGgDTh6XSGUrL+oOjciDdIWRHJTgOpKtI8UDfIF1dQmXjYjp2FmNN 1zadRNSyEcHgWx5cNn4oE+QMCsy/lEBDwKVH5t8jKCkU6chAoOJzSGkvVTIV vUsQqszbWL/xcdlhhBQZKhzQSEifYWsPJ+sZG2XW/g567rfNkXlmOypf+coB 3nx88cWnk8mTTzHhDPthpPUoswXU8D7+S5LtPKlU4xR4C/I7KCAeYVUcbP3H 0TU9nwD2crqu16mX/Cz13G1Tk8IeCswO+nxmCFo5Bxy2PFAihaagoRwgosoJ OJwgLhsjh2UWl6PSuPzJuYzLCemzqSUu/ZqGMC69HCe2qgGpP8jqhbwRGTtc 1/BaPGzG2KxbkffQNdhH12SrrsZboiXkLWpzfbWuxzufGx69vCcAthfNvG/o rc7Q6ReTSi2ApbB/ooD+ueDAxKQG7jGA3km6384kDQ39dDD0BwfmQHpg8qKU G7M01ugcpLHLqJRcSqXkIrrf52kpOUNLyUGNjw8opfPRwbEJipU1Ap/Rg/Nv +PCkK0TRSHGJgxSf45bjZyR1tZgEj4NmClJklJDMp75HcAFivemUVs+gw3Ia YccdmMWnw/KWBTIZjG3QMqmB13s2ueyy01RKnuKtnNjLBKO5QuGZRNT1Nq3x hSRrQ4qhWh17YP8y3Ufv4UnFFrpG2Ec0niU63Wwciv28r1cHGsiv4GG4ha7r AfYwvCfpVvPQbW7Pg00KozRCQmalZMxczcdlDrcaE8s1pV2M2Hl5fiQufzyS cbnrnMSl3/CQraqclpaWS3hd5SpKSjbwZvhN9O9uoxICJf0B3rshu/WstLxd S0s4dl1K1/ECbncgEQLuitFaM13zBvYQRVyah2gskQW9YybZSL5EHgDJnLy5 IK9PJ8Viv56Z/cGZKVP74CBTCfmtGcWDZHYxlWgr6D5fgh6CTXN4zY5ve/yq 0jyPSwlYEZv/R+IMdA2SWpydGp8FDtBlfExyWH42a3Egh7XQBLuDX4vQ5yEO pVm5D0lH+HQ6Mu+kp3c7VcK3EpS8eSk9NYKXGyk3v+FN0OcO8ArmK688TS8f a6hP8IbPMWMgIn9G0wzkst4yw4zYZAVfgXLZMoVnI6UyGGYcU/cwhQvsao6w 7hg29bCruYGtYns5TVqjK1iwavFeqkbhd7m3bi+F7NZ0kH+urmFBSmYVpvc+ 9JRrHtPjVXQxR+3mSHw2pedmLD5/NILxKb2PnUP2Pmz1iu99eN7H867G+yAB MVs2LOdbS8HZSsEJfk0Mg+A4eiRd0He3bhGbxv0PMfe9QhPa83jf0WF618We rZkXYMJ1FFWm9SLDuQ5YaYD7MTfETCkgd9gP0oOzvl4OzlGj5OCcPFkOTpjZ 8L7ZV2fKciS17ESqPckFdPgspbt8+d0UqBvEKR4rnXncuE8OrVu0F5L2JX9T eNgwQLk/+ScaoH8pEchB+lkktRSXVGlaZOLrFdGpvA+4XW6C/IaqBN4hHBQn tJ3Sp5lBz3EagckdyylyKSl/M5b33SKH53XXDSTXXIMFfqfpPTjFS0LHjYN+ 51kCsWc04YA1wr9rMvK3+j6bddsHE7jblymZaSTwbKl7lLcNjKeom8g2e510 73Qwi4DC5S5dPbZB74VuNQFuVxPgTVxtVi72s4YIkjXPAfn1LSEH5JQDjgOq Hp4TKo/P8yLh+cOfY3hWa4uYTCC0cDMSKJSZQybQxlOP2KC+n8CxMzlEIYdN Oshr1gStkddra+QSPj+76S23vPZezWvNqNRalHlEkLVHTC4w+Pysr3+e6qmz lL9JzYk+Oc7PSy6RmtMmkY0MMr0ryCDktiCDltCtvoxquEVtYsCbjmIdcVK7 dwkhdL0SQoNC9H9JqEEihxwXeSuH6V8ht6WgJKjD35H7oj4dFJq/LyRT2hp5 l+oE7pOzHPk2xsRgtDrjbtm9i1Ey+EzhdYkDwABvAbzkktPJlCmnkokTT1C+ /zMejikWcTd+VyHOO3DYJPJHqua25/FGpa7UXfEW9ede4doknfRnX7qEYmfq PWW6AdRMOAas5qyFDApM8hPzu4nVnLHgZFp2ogyCVATnD34OwRkjg0INj5FB fhYyVnR6+6mNdZspqd1JSS2WRncSPh7WovNIRd/EJ7eXce+ym/7tHnrD+9hC s5ndoR909qZGCJmTcHh+frbK+fksBecJZmobGrD9ZCAZP17OT/TwYJhvY8pG CpmmB6SQ9TAXghRaSefoWvo46KHceY/0MWEOx8TQL2WMbUWAfkICDbpYLkL/ RIKQgpSuEIUkBSefl38qXx8UmB8VsiktOB/Lslowx/Moq52HHitmWOj5Tp8r E2YopJG4A4CuvhqvGUZ4sCrB8oATbHeKvkmxCGbbjyrHhegFymXKbJEDq4CH 6B7CeBZsxHp5V5ZtrPC9k6288uwwAXZfurViG+u9KgtPG9EKC89q8yF5hFCg J4gFZ1ManBMiwfnf/x8FZ0zYE1ro2zZ3L3/1w8rb6d/bTW881uN2su/zEVZa teoAz4I0ue1hRu9KPj1FIQIp5Shma+9VttbMUJHcghUKBT6+jeJPz//Q5AwM x08oOMFEiodHczO2gA2wxf6UKQPpFhkT3IEZMqGPb3DOQ4NzGZ2cq+gUde2U WSa8u1ebnMoOMXMbBujvS6ChhORE91MapH+KxJbCtIgDlSIURyuyYPRMBkWn qznDrBYZ90KMhxCCzF0uOt7pdwnS2NGJMhvlNoy7LrjgNGX6p3iSDcsZse4T Vo1Cd8c6m/l0LRbqnk8XD17tlynyWh9lCfdRxJx4F/39AH2+i26QPVx7il3q MrcO3oyswswWp0Yo96kiuytW5rZBhDZWlp6c0Y5LI3R0GqFPj3iE7kojtFqD Mxah4bI05BsmUEeJkOdotbduH28B7aILcoAu2g7m0yG/6xuU36JNfTkvvICz Rx9d6MP0/I7yggXxT7XREROqvz+pnOPyR2gow5MjtL4e3rxwxD7BLlcoQceN G2Bjfj/PZRyRb3iCI0KOO3se3fSLZQcg5qPQW1mgvZWZHeKvihzz1oerROlH VZLwcRGyX6VHKYKRIrWI87RuOcennZ4IZOaEPi4/ijYNYhSVp7VSWHVwn9gW I71F6r2oVWR4eMoz50iqbqcogCimPhg16jmetCmXv0dxCoAzfsiM+r0cT0w/ sDC0XPc2uq0eZtZgIsUpXKcv5UmS7rStMpvbKmJpvJFX9HZphtVe0e9EqQQV Qriq16e4ZgDiF2H7OPU8UW1xmp2ko1LBun5kcfq9kYlTG8l2yiACa3oFdVsH UbieJQrL0Ni6Nd/2NJYI7zHKCewigb3xIV7W28dl6E56bORsR4bSLdO9gfUI 3azsupQ+N4WX9h6m9/wor64Uw1U/9Wwqod9MKo14vCbhnwYdpvX1MBbFgD2Y kJO8mwXrkGxfjU17hdmusUXIdnn8coGY/M+7WyThaLXMN9Vep6pnVckOfQC3 W7QVilBFqxJxxqH6MSlL9VCla0NRWQTLS4GKAEX8Io4Rz/hmUEP4YXDDr9fe CmRJKYHbJ6kuTne45uEwxck/Z770iXCYondkhymyB9igTJ58lmdQ4UKAoZKm JuwYfYoC9ZtJJU3054qJcVFCM2HqOLpgk+nCwUnwCh4uARZ38cWex1RRD2F1 N2VVnZT2giJqJzzP3P5Ri6KHHvqP+/6np4pCdxBbjjisejQI1NFyjNJXR1ce qN8954HqtAmlUMJXwIugWK0Wp36qxKv4TJ7g2y2hSRb24oFDlx2kvVyR7qZL Zou1l7KBLgxdejjpfS2r+bC8oY93SCFnGkuXuYmq0gKr+Wy6BC0Xo4xs9is0 SLaJzEple309lO0/4j032J00atRJnkAUdbuMWWAOKkx8cVsbbYS8cQamM7H3 Zrka2W3QynSXmLhCYcux+hZtv/hY/XUJL5yFFquoUDkB/iPOaylWKWILiFCq IHCQcpx+UgL6VT5WP5z1QcFNQbR0q+oT0JsFcMBhbz4dqgsJVOYvElo6PFQB TMglwJthH/D48Se56TJqFMYyv8s7gYtFAJ63LEDy+8kknDUpEJg2MG/0EN1I 99MNdB9VTEfZ8fo1CsrTWGLbnSyi2F1JcbqObpLNdYfYs34/gftW7Yuu1JkT VFRG7Vp5inj13FE4EOa5o9BJJKhRg+ZoFrDNacA2iatkRcD+17kM2ExMVKwW sFsqTHx8/usDNm+nIt4/q1JjDuag1LEZp4+uTwcF4h5dz71Ot+MAY+FCiMTo enWXvIq+jr2mUyhg0SMdRQFbZodJG0N5u+bARiNBAvqRZLDLnR2umQy+vv57 7OIGB6nm5p/S/XiM7kvxNMBoGAYWYbER5sHWK8WZdAfWecwSy627lsiI2BzI cdtctRoG7Vs1aN8bBK0esBDrcdX6cQpTCkrKTTh2P5mFKv4OCVEasr8naTSH 7AflV4Ktgvqe8+C36BHbLs4iMOabr0cs2rwouO2IRf5gRywmAbB+EUY/48ej V/pjepuw6fzbFLZYWPUVxcG/17cZuQykDDZRLWrcoppPjqewheH5yyhsX0GX 8lq6tK9nGRlYJRgvw4CynUonGNwf5EmlbRSytuIDt5IZcBnlC3Ik1i9FHljN /CffDLacF7YTK8OWf3ZiZdg+NZLnbCwh3pm758P6Mohbzy556hfskrVObUkj dA0YPwBBgBbYTvo3ZCdqNyXFh3nh93Zum2GMAU1u2ftxm+Lva3jIWmYAp9L3 T1Jn2AYe47TRlRjD9HhSSQGH9gdfTbIxsqfZiwT7ZTArJcvAn+f5KRy2U6Zk iXHYRsXZdNvtInLFKp4ZC8XpCovm5lJiPH+j1LAcuwdVh3RERss4dt8huSti 93p/4H5EGKf00P24HLwI4QLClbAQAQu6GF8bFLgfkmQbvxcHOjszG9HUJUJd zHNiZdB8wpkFC4c6bxPe/gWyaexYvEdwSv8e4d23CPf+U/fx/FOQH/vBaxQs 76D77VHC3bfS/fQgO8deSvhr2wrewHgNsUMXYX4H3QtwsDzEbvmbWNC9lwtZ k9OHDrK2tcAIJ+9kmSfejQRv1lDNTNSzhmpT5ZF7eWXEfmckI3ZfVIU0lJze 2CY/ZBayTaABhipjO5kP7uEydhddrU1KNSzRIaQ7NT0GHXG1rlidSp+fxA2b w/RcYVRiRpb+tPWME2gPv8vA1IL+tEUpmxl5Yfizufm4bjk+w8IHHDM2AJrX Wb39DvGERAPkrkWy0WfOKvFan79JVL1z92jUdusg2v0igkDU4sQF+4SMFlQR mi6IPFC8OHVB93LkfiwpIUTppEGQ4jBmlskFKkSIaKQCCPCr02Zqrzj8zdop c3FYOLSAEoO5rpCtZIUFqNC3gqcZTJVGj36WPUtkLeSTvLVWGCfzLYkNYsvs WYku0ygC2IlsNXsf3T5HKVgPczJ1g275nEGXey7dGksoWO+mYN3Ay5z2022z h8F+I9s9r+FbKlxzEK6LjAWrsU6B9qFSncQ7eQqSkg4+c5srU2XW2L8cnxub xu23zmXcTkzTdUcR760atLEUOfQwyatpzeIrliKjpm1n+WAP1bjosIHH7yNY 7U2dZ5Eiv4Fp4i52TJhKH0+iz8F9toG9TDAlastH7KgN+aeY/D48apHPmAfm Tylwj/FUJEzZx43rZzmEOSiEHVcvKbzjTlk0OWOebL6bvUJq23l0lM3bLNws U8aHhK/lwH1AclcO3PdIPsuB+wGljh/XI/ejUrJy8P4+5BAUwnXL0qjFkZyW sx8UuT2kilBEoaTFv8GzMIdlHGAmAcicLTIpugDPE0AzRyhvHLOiVJK0Aq8Z PqCQVWLZJrxNoFaSJZPfpch9Mskk+ADFOF9sppiluofp3nqAovctdC/dw6u4 rtQR7pt0am0WXW8soFlO9wl8bjZSnryFwB4LM7azU6MYRi8OnPlCzjjW24lF r6Sag22IgoHSjJeqIXafHPHY3Tdk7MbSZM9HmXzJ0mTUGaYwNFl+mCaDDjxA adA+uka7eY4NLZ4+bfGI0bdxx9fqLBtkL5Po72Po8w3sstBHD5S4vs2Tx0l9 Mjh0/3nQoZs5SWMd40lu9cDqA6cNWj1IEz0vFSoOcWJhH/P0WbIoFgoEGLxj 8nteq8bvDo3fdm3M3iPxywfv2138/qryyZoy8+H72xLDfAD/LpW8FLT0tiKk Ebr4EsIc4c7h+37ZnQBGits8j8o/BbHGdMqSZ+4neNkuT20+5QZzKbOfRU97 xkyhwwFJoN0AUzh8oeQS54V+Ntlubj7BFB4MY+rrbaeQqfX/RqHSCyeQB5mh 5lvptnuQbjFp+UzRls81bB4G2BaGYw5vS+xkdgqGOG2cLe9hBRyozRg7ZW5+ nk22fSfhRkvc4lEjsZKP4Mp6tym1ZmiuzJk5fi+tjN8nRjp+2Rep7u+rSoOH GkA1BYXJg2M2RT5jBje4j64GtvjupKDcRldqC1sz9LHV7TwmlL2KopMF35PY JqWLnies/RDAZu/nmz/GT3kd4h/qYfDnweELUhlSJ5Qm6IT/hAL4OQrgEzoq foYPG7EvGkg5Kp81+1kbtsKdThEwW8QJsMPlAIZgoVW8LXnmZp/2bGMB/G6J OKS8zFf9hjaFXBBzFv1RF7UfzQ5efF80eh+T+R78e5w6H5IRcYyzg6CCeTas l7DZGY0sVAEAJvBwsplhQC0bZL6hufkM97PRMKuv/0GSbSayhu1nkkrbvw9p UiTu8LhmJbp22N42kZ2pD3PT4FrezCcmcuA6sAlnGV331cwvw5h8H1vrbKb7 yDb0gagK/ThxkJj8ySLY3OItha7WuPX1blMaN7mxy5KnSypj95vnPHYZPzQ7 KApJVScBvLfqqnWvT/Rr+mLrwqxzG06R+44QWMI9VMfspAuynS7MFgpKdNVb eUiqj6cx7tLhOMueL2GNfwf7HDWw3xiC2NwAH0qyrtAvuhM4JKrCIbkv6U2H PAedN4hjn+XJ8nIZfgan+agZP16c5E0S5TNoL7hgR3kqfafPoBN4jhjpzkbp ezc9sGalTb1Ndmo314QXFsRvlUYrNIzIet+oJTCCMQ3kxyVQr/sIyCo6cCmD xCBcGrwfEqILP3N9LIDvyzLo2ZQJzNsqnSuU5yDX4MON+hevA1kFXhsyDaxS wzDShRf2M6AhM2loOM2+GBCoCAA+qaBog6zeJdCyaJCI71HAfZBXwKFZMJHV UYd5EfF1dP1vVL85ZGJYp7OC7oFV7N8Kb+s9vOphY902zuhMIWWEVbjuwQ/P WSadt/ooL4h1ITRHpwVVoWpgT0wD+2JRT1lgf2OEArvkA1tyCdQEe4aMaxNO mdeuxbWtIrPGka0CDH3LAKK4Drt4MGAvO0RsodjeRLGKBeDrKY7XqKnVnEhm fQF931i6tg30EJdPZNYxOssOZ6OzIBLwQwLVD2cMCmA4vVx+gdclgdKaOPFs MnmybIkApeWza69HNveIGXeJLy8OO8Q2/M0Q2+CQENtzrfvbKQcl0l0mpFVY hVgEF4UsG4c0x/cHJNNG7FIMFxDkBXxEBxOoL8Q94h8HehrT79aYfli6RiC+ udmLtRA7hBxHgwvd6dlKQKMyxuuw7hEG07Gm7eKL+/k9AM5BAlosnqaYhrMl hiv+K8mGBUzxCMGaNX0/rFiL6vhdisP383q5UTxtd4Sw+wg3fl9Hj5vZkKBP hRqI605eG7laV+eu52XVW5jbWs3rI5byGYK4ti6SrRJE8oi49ul16LEUEWvI bE9ModxUSUVPSiP4InxufBrB/3kuI5gTgIaXHsF52yMQwb6FZK5n1vo1x2yR P26n6IXr0l7dqAT7+g726F1FUbvCWdjfpJYSll5PoOhtpLS8jqMYGyWM24oJ lb22ynNbn0kyUtpGfZ7Qu9Cm8U7QHfoCnc4vsAWfLT2bMqWfJ/KsDYwUG22W sEY2SSROulmLNUKwgWk9PTbJUhW0lDiKNc0Gz4UoQ5uHpwzeKbXyoFNaIrmE kCVgRFBz4L5fvgUBb8ELMMCBj4Of95v1CB+OfxqZPrpHkIDNWyITSjiUUSHg ZUgHaYCHCbDnFPveoNiAOVxDwxkKXuwV+pm+Zd/WJAegaLYvn9K3HdQiaArU xu9LrDbGZStTVg3pzQV0GS+jB/YmX0+PW3Tvy0Ldv7RMd6HdzS73todwc0pv Ifnz+19s6zyqPgvgcAdMLIBDS9+YLjIWv9xAmloZv//xPxu/e3N3L8WkG6Fj GpDOyuPQX9tc04CUeMORXWPIQJYS7qPPIVsC/9jJkrgV6tszMye7HkXxW08x X8erKGL8lm8qxfgt8KZ/k2S6K+gOzLfp+3qi4MbEuN4LSVMTJIGyMQ1ufsgu QfSYThKdl1iZjBJz5ix6zJcYxroKjuENGsPbNYb3a6nco61hi+FHla/WTJtP 41/N4phOZLqQFLoUxIhpnND8eTuBf1l+DhiA3wNu2rJrLo/bhWdDo2sBJCar RcOBSSZMNAGDUC2YVFJG9jCu2M+b4/B+wGkONjqyj+Gn+v49kWRySXM3tHaw OatZlwlZ00N8DdEgHE9BDG3z5fS4Vv24b+PdXMJ5YnEs9BwreJHzHrqndlAw g+TKlvouCdzybbGobwuHmo6YFIuiQgrPNMk2oisrlhvS5nBzJKIvrIzor53L iM5y6lA2qVy1KDr2RHvDoQFijO2qpVhGq0lmhnbQsbyHHZ42sdSmXTfKdDNd jaG+uVws9aTWa5fzUDys15BUI6Q79Eg+6o7ktyVZu8nPDvl2kw3HD3UkH+cJ 3HL5NDM7OId8Ym20NVoxVjTzTmBXNPPCi1nCAc/S1tPsNRrSm4OQbtf20xGR Qqch/XZJsPlofp+EKYf1r7ICpID4rVvDYhBEOj7NR/IvaTS/W6P5UfmVt1ut 3Kkiyh2ixl5EefWiFWKIM0cJL2QWqBNszu+aa8Qb4KKL+pk7ABEIpzpkLuIa P1RuDeLxI3pZwGeAnEQW9QBfRvhbjqdLf6Ejvm5gT8xevh2WcH7dxSKPuymi V9MttJYNhLfymmDcXqjdrPtkTvu2ns16xz6icUtXE1fmkl+xxlMWzzylcIHM AFo8f3UE41ko9v0Vc0XVLL1DtUe1EjnWOPYJNjStSLB3sGDuIEV4Oy9B2EDR uZY36ckU4AxdTWP2wi9j/rqdnls701/1Kf1lB/SjSdaAwgHtbfd9mWwcNjJB 0DTomFQ2oeAei5HdQuEFzibF8vQsa5RCHrtqqUwRPWu2RPTsJRLRczSi5w4V 0Q8Kp40sGc1fPqjfK9kzhSudFxS4BQR33XKOYWThiGN8A+QjgAHAQRrLViN3 a5q9S4xyMK64ZKUY6EBhicoAT96fzniBV14p/BeqDPBfo0YJ/1UsnkyyVNtI bJ9qG4kNWA3bUMiq0IA4wh7E43mHTS/Fcy/dVKIDuYNXDgPmIb6FUBrrTrHL aE+6ehh+1UZkL9LNGcgQa9GCRFafisa45GcbKucbcvtQ56XhPLkynP/9XIbz pDRFEJnKoaraLe+CEabbflLQp9t4w2zTm5/nDdPtzXVbKKJ3snoOZPY2itLN SmZv0MFrW39qZsUh6dVCH5fp8/W5HSl/PntC27u+/Z0eIOieVEpCbMa3UDjJ xA4OIdy8kIVADgEFpslC8srmMKJnL5CIRncKEY3uVDSiKdimHZG0mAnuh6V8 5nPaRTWn4O9LihzaqziGcXxbho1vvdli2fNdPZpp75FMG1ODS1eJ1w48d8B5 hWczUg+8RDSkwBagIYW3oqXlNMXzKXqLjidZth3js00Vgmw7bEpJ6VzHkrxe iudeusV6eEAUzqlYBX8nq4NEJbRSOe01ymmD+1rPTam2VIRpK4xjextNHRJq u4YYfgjK5yyay6l5TXNlNJ8n7hkWzV8ZyWj+lxcdzTFfG+stm8Gxn/0Ns+02 KnTQF9zG5/MBiugOHvTcQpdtI+9FOZJm23dGCLCJHNFd9Bx76Hn30UuyFQDh 0JIV0H4GwnrMIMHMTiPeokK7pVD4Gd2q4rPa1HSW/RxhqwFNNYQiftgwLKJT sYiu6oBoarYOHc7RuQiOaCPDdgURfVgm+kFrc+b9iKwQ8FGNsMUxbNGNP/F3 Dud3yZmOs50L54fkd4Fkm64hjR430u2FlG4vIYRZvlw8esCE+SMaCGVHtOip B3R+qZ/p/ZaWUxTWx+m9giP+j5NK7xuvFLGZQ1wPkJNIua1N9ZBeR9jK91BY d1NYd7PvKlaw4D6Yzm0qtC97KaS7KKSxfjcL63Wsq25lueZyt//R79Cx/Y+x sI5tKHdD/VHhV5Z650b3OGlUVUT3l0cwuuVpHhiW5gsvPwxt6zp7zaa3rQpT 7w2EqBt5o8BOnlMRq+RuCu9eOsAP86oVn3rfwqNNslngUvUxn0gfj6XPN9P3 lOn767lDZeNNscM6jx+DjN/sk32XSmaIoQErFo+xY065fJYtIWHKMWGC7Gbz 84lhQW0cmfHcCO/Zc6QDlIb3GiGXLbx5XnGfajq7pCONUORD+0E9tB/VVPwd HOIFxDAhJnhsRDv+tKgGCgANwG0ji8dhbaoRbjprIY1RSbhVLqOntKSGAzub JIY/iSxTbmmBBuw5NZ0LVSRehG3NKuRPtqrOCmqgMy5lDyuDxtNlvpCdsrt4 HPVmNaBboqPlaIWsYw5mP/25mx5YMLqJ1xsiLwwb0eF2Vx/dRpOZXWTMjC5q GRkL7VFpGn5+GtrjxJPOQvtLI3lwt9c0QhGL7tDzyjpXlorHfK98Kr6OfSOx nWA7M9/bKRXfSVELN5UdakxmqbgpO3/B+UdO5QjvZuNlGHg0qzNAfarMzju8 Y+rsfLqsvl72+RSLsk8EfWh4SsITa+xY2YUKlTYKbBuv8AW2UWapWMzMPSjC 57gIn+sifJ7qTcBGo+7lvnSPpuX3iqIaBzDClaP8Mc616epRrNNBhbybD+pH tV2lIY2+NiYV8fswODl3pxgCwN9y6Wr6Uw9sq6lB8eF5+wPbK7NhEIAtnPDD gjk6pJ3FIsgI05XYTh8/wejFYb+eZC0sXC/hyaATauDdTKLghasH9vvcQtd6 ltKna3i4tZvDeh33oXfRA1tKN/LmC7SxfB+6WlijnLRWVsRj0tfWavARqa2z 9VtBUPMpzWf45DSo/+1cBjVTZQ15OjFpZ+3PDWqfkceCGvV1zC/LnJqBm5aR r+HtBm28CAhuzVt58CXbcAAndWTky3X1yDTdcvA6dVO/hC94NwV2LxvDwjEf 3lllCur6CmGJt/ywY9vPSnkH58Ftrfr677KLf7GIRV2i/oSXVmPjANXZCRWX mO5L0jo71p4Gc5bOTrnAnjM3C+y5K2UUY+56MZnjwFY5N1rVaHNZds6ik7dI zW3BDTaNgpguJIV4ATFNdzWKcYtsfCN+APQbp+J9kg9YUxqutbDGXLJWnPgW 0pOaHzm0oRhDuYEXKMJtlCRoBmCT50m2WW9p+SmPcxeLOLSRktu2IOtrmXLM z19Ypf0OvXjCnNWxpBf6g07eF4wBuTekG7z62JpyHUc49gxj5HEfN6rX0I21 mm4wrNOz3la1CAdBFLLhsWp7iK3QwV6hjBXPUvPJCR+vNiA5JQ31L57zUA9Y cRflh6KLoGOysZBF810ub/ns6260HWTd3hqui6AYaKM6aXPdXubFd/BgxmFe LtOm1s9eFnp9al/ZyZaHoE3Pp++ZQN8/hv1loWB4gF5dLcd3aAUdHt/fpCj/ NkX59/iGLZV+wkMaDQ0nWSLa2JhQ/Z1Q/Z1U1N8mE7X6Oxbp3Mh2kT4Xag8b ulov/gRQg2BwI2TW0kT9XhftDwpFlkb8IxTr9AHFekWM3y/5PVg0Tsy7JP/n nvV2Tc7Xi6Efby5blIlQYic5XiZe7ste1k8vX5wtJ0w4RrH+LO/Zbmj4Ab19 39cEHcAZlt82qPHhJOt4WQ8bZCjKb7Q7sGFRpPyX0OV/pW4Ju127Xit5Q1wf 3VJokGLbO0QpO+g228KxvopqwbxYt/WZXvJdC7OWrtGMDm4E/a+Gyki/AF89 zx23hhJZzP/fkTneXSesY8hOWNjbjrFtsZLcettWkoPMtKR9PbtJI2nH9iJJ 2nex5X4fm3xjg5GshRfRKPrbN6ol25Uc9Z3MwpzPa8ZrOd99WW7nezjZEXbF MNT7FLsYIBnFtEK5fIxuZ1k71tycUGmecGluc9E47szNAKW5MW/WHUtF4mpu y5G/QJblWuTD3SCN/O3KwO0TP800gQ+j//4UAUqIc7rTOVe/X050fFsa7Z06 wLFPaoOFmrfDGBCTlPO0FxYrx/3JjhoF0jM4ZU6adIpSnWOU8jybNDX9RMey 0FD8loLo/00Gz0Wb/Mz0o7hURrihsdnL0oVmepynG8iwe/wG5dHn88TeYW61 rOOy/CDdMnvpsYOifgs92nifq/W5oVyJLcwdbsTnupJUZ9w42F+bBva/jnRg i8KmvSqHPtxS3LJ2v1/FZ+0QCm2iqN5Cl0DG1A/yGod9dImwj2obRTVs/Fc4 ss2GpF+p5/mFvAdJ/OLH1FSOW6/bzvNwJ5J1xzzh5jP3n1Rk7uDTW1qStCQ3 fyGTh3vSzRxx0wHqO4Iz3Uf2qiyy52+WhDotzQ/oud4lIcpZvEY3DmpEOIUy 3QkU55Sw8t8trI/qYhUNbaDEnH1C7HHS3io+ffAimb9EknbIVvJ4dLw+IBiq FbS7YbA5fvwpQrpjPDQNZwg4RMjUpQnS/OC0Nxey0hyMm8nDhXGr1/BuoQdW PsCK/NW8YLCHqzmzrm7lwXqMERykEN9Lj50U4hLeq85xeOdYIZQjM5il1L0v S9qz6P6Xcxndk9J/WcCmZ9hUm7eXj3W9wxlMn6/bqIc5WWPUY1vddortPXRS H2Qj1AOpV+4RXtXiO9+ebrsy3XPWyXuyxvBi0MOsNq5nyLeTO49Q9ye3UW5h v0xydiSb9fXfp3v1h8wQl0rHdKxLnK59dW7mCF7X4se7fCfcxzhTbxrjc3yM t6o/kc5sWu7OJ7hW6mmcH9FYvyeN9wI+oLcan/LhjR/jED/oQnybqNLgFQrP 3AVLxXII+ToSjBihbo4mcoIn3AWfOBETMacI+pDggKH8Mefs9fXfUciM2RBZ J9x0p8bAibKlnn0bsQ29g27HDrr9Oge1zWz3UhtbVXXRAzMHe1ndso7DvDU3 zHEUvdgwj5zipUhTnOmvMZWH+HVpmP/zCIa5ZOf/lhvjMSF56Erke+F+TBO9 cDPYNa2aGSWgR4lZa6wH2EUxvpfNEjp5dQDWMe3S/aLr6KKF7Nvr03O8i8/x CTxz3c2rncv0vfWpAtXO8ZhmzZ/jn0ziDFyWoceodUg5mppeYO2ar83NbwzF qqfXhxXnyyXO562V0UkIvJFCz9dmWnqeW6zrmY56HYEM6t1iHn/i7xzgfSJp 4WK8Q4N8r+QICHIU5VhWvJD+7YXL6LEoS9OhzPGyNeQl/izHawbGoS8+btxp wj68P8fYLEaWA5sJinXP0KA0OSpyqT9IKkc435sYEVdPgV6gQC/RNS7piO4U uu5XaAcN98UM7Y+vVZNmjAW2sqVRGOhrUhkb7kkTmr/YQNezXMeci15t7jpp DWl9HkT7FHz1NWm0/9OIR3tXrtt9nvLFBjfxTvihbK9MNUsjr2UzZwU0N2ww G7ZG+ynaD9LVg/NnOy8NOcIt8g30AAu3SMdHbk1dBLv1VO/iU30MPZrpc2XO 7kyh6k91rzk3m5TwVA+ZuC9qlmmjJN9j14BCAUtTsDzlOJ3qp9Qd/2xFTe7Z OPDuvqGGiDdFTCziWRWzWCMes1hUIM/HhsVWPXK3Zsyc8fCzXNTzKd/D0V9A eBfwUd1qjnJ8nW2MDsnPQcSGTAEZAyJ9ESHLIjTSVog4FaMjyNpBwaE/4GfB 7EjH60MGI0d6wpbGsDaGFRRsyZG5l0pP8yrw+npkSL6phvfbeuUhFSdKmHq6 hgUe7jzK17eBZww6uIGKewC9lzdrv3wxF+VovuJo76LHIYr4vayGWct0XCtv yq012mM98yoD3HU2XxLj4xrS091BAv42Jm23TcX3vep/LvLl6XZUXeJmybwX vMVabL5vbm5IYTJvbmYYMYEjEvYBtdNl7GLT3yPsaLZNF1+s1tltL3x7nS6/ eLnKJSZw2IdS1vCgt+mx8KD/uDvoPRU3OKH3KhlZinGcDjJkreKW5It2o+NC aav10msJ/blw3l0pFkUL1soBvNgf+Duz8LdDH4c3snQK8SIwgNCVo71TI75d znbQb/hRMHwW9aDhFq8RSTr2oEMVY4k8zng8TX/G4+WIv4qgHPIbvHx4rEDS CiMpJPPlMthLODt+i94+oKhvtlnNblaFJlMXSq6eIr+gfiuo0xrp8jbWtdOt 2M66R8wnvF53wc1MF9ogR8RZDzW0j/zNvIN3uJFvbfVwxHsIC8OGtK/eIMe5 Hewc3q9Mw/sLP+/wrmZ0FuutWQfd/JLAsvs95GZ4hpkTcxntoH+/h65PF12b /XRtdvD1EfkDfJMWuP7aG9nXu5syiW5uqp5HjzEc3uHsSXiy24C3N0DzJ7tx ciaCG5zLQ7VeX4+T3czQjvMJJgs1zlbU7J5xD7vqsRCvEMXhRF0kzmPzl0vx vBD7H9dJHOKEx8KoNMz3SNHNp/xBDvUCgrmAgKd7GnGN8OfYPpDl7hbfizS+ oWdderfI1DFCZjm8newo1vGc0TEwk2872cFDysmesOYXGQ/MHrEYuVzGYgN4 Lj+hVqToX35B32uTrvupb5HM1NN1K7Al6cN0fe+nexMLF3rp0c5D/RfTfQNF BTjaW9nYMFvHuoVP+C42CtjA3Byod4vx1amEHfdlrTEeToGbS1rOIquMm2tM B8k4xi/C565JY/wfa47xRnyiZViRnbHsYb6e54LmWTjfP/PewVahg2k3N7Rw 3BtmSnDrx1K/HroaB9lDWNaJrWP5g8zqz9IemhzePXp4Y1N9F2sem9h4BY9q h7d37887vMHGfS7J5lEsb7cJsx9y3m6rcpqajrNKe/ToF3jKDHe2RTfudotu 66THotvrZji6KZrmYOPVAmlmzUekrZB2Np+u62UDFk5cy+FRuetBTsng7P0J ISdHukY7/sTfeQPrPs3Xq0T3smWSt/sTHAkGnifa51AB+BNc9K1yguP1I5EB ewHka2x8juUy5fL36X2DEuEbFOF4X62p9jf63ptkJhtOqacIL1CElyjCyxTh jRThTdwr7eVpQkwVgpGFDQBUFbfpuqtlKoveWhHhe1jvuqZuE9WN8D7MItyf 4p59z9O8IhbyfBBdhNdl0ypZ6j6lMsavTmP8HyIx3pSG9Is5x6M9tc7cnlot fJzvq+VV6NVSdXj8Yzk9dux20NXJUvW+NFWfpwbEeWf5aHoNpQobtbyz3KzU vIM4zhCzUzPDB0vXM82MpetibIqIf1YjHhLP59mcGHlqGPEgpcOIt2rdem1h xPNU2lyN+EUS8RCuYN/N4tWyNpbPdE3dOeq3u/R9D3priP1Wie69EuH4Grrv qMyRB+BnkReEkY5c3Z/lPlfH87WzHD0F8/3Ha0WZAqYCHCUm55uaquXr/6rv MxDWeLlKa7V6umZFjvbHNNrfQvfnEZ5JGkWRfh49oIwER4tpxNt1f/Nyvn/+ 56M9aKc7a6asl55F+8X43JVVo/1FZ+3npf9eISUC6c2phY6rVpeHTbbYMo8w cTcCHom7bc/qoufSVXG8H3bHe9Zou1G3aEEFCb3EBfQYRxe8kR5FdnXxNhCx 491ksI/rMWLD45/Sm86Sd0/EI9k0SwjotdE5eoab6g0Nx/imlvr8TBrwRsaH jfVaAt6sIpiUpyR+7kKxSZoPUhyz3KtkkfsSn8hb0G/T434nH/kFRDe93Wmc 75Qv86m+VWvyNskYllK8L3PxDnm7Z+XAv6POQEaCp+2FsHh5IoSVl44aBrJ/ GODAB7WSh7fllV9STP1cko2S/1ESsnP1de+lS/tO3v9RpkvaWHefxnw34Xw7 3ZIddOZ0sl7yBl0LPU+FsT7mYVDeyvNq212dLjHv63TfX4/J30OGzszKKWQK iB+NJBsvNwVNOW2+NaR5fEsa9Vfgoz+UgGcAsLhlJJg8MkjgiPmeqiK5apMt YaKf14qLSWqMnIdVLdazHKRL1MF7R2VZyD56bA9YunnssNer67m6efL4Ct7y 3sW6yVGMBl1JkZHAnBb9HJsd/bUwdT7ZN3mNJfvQdcsA+mC27nSKBjj+DA3Q gh8OGthQOlg7HmOdJzJaTvqBBsuFSkPYInwrEGGTlPeKCmXEPL3V6LQxG2cn PYbK18lQSxj9ltvjnzdO3nJ71CehPBYvD1kOGDqM9GG0DyYS6F+USs84Vc2T mkV9MRlcwXszCRHO1RN4F3kD0CN0ez5Il/deVlWMoks8htU1HaysgvfAL/AW oN4KBNjGB8pLR4DQ/skjwBDt9yDNb4xAwGUpBBTTFODcB3404e8Z1jxbLOHP 81NFwh8T2ti2Aiwt3ccLqdu5CY9tI/srcoDDaQ4wU20mfoFlsmIcA5U0xFVj 6dFCHzeyeAhR74fTzd3NC2580m8ujT7pB0dvohsk/WglibBOynxMduCWfpaF NzjkmpqeTyMfngth5CMpRuQPlfjzQj/l63HwzoTJzDxp0POSa4QnFQBLKfqX rxgc/TjQUwTYzChQRMxT7s9/3aSRb+f+Wo3+lfHot8oeTwnnv+X7qO4Hy2WN vxtg/g5aQ4wB4i1CyoTlpOLcYXtxrcLH2w2tk1X40NaZc+MvKQK8ndcKYe4B CNBCt8ZoutxjWXjTwa5gr9HF89NUPruSOeAXjwB+WYm3izKuHgjgd4NVsVqu K6SmUc0RCLgEn7sUH30iPZ/LefnA6J8nLFQzeAxLg1Bf63cghNqcGPOHbv0+ goa9dG338GQcEoIjmhAcTtt209RP6g06N3M5LyPqJMjqTD0rGun7igwLlhCY cavX2g6nPIAI0vwrPB/wQ4WG51SrczKFBphBGjRY9z6EBt/GM2iwsVjP87NV Mxzl5grXjzJhAcXt4iXCvcNTAjENyxjU8osBD+ul876wjbmCEoCgbh1DARIB dotal5UCjC5BOeDpfOQnRueDrMTTxdMOpTlC+g3wSxdnqTM8/w+bD7RCpKr6 tuZWX9a31pr2ngow4s+o/XfTJZVtYw0EC03synyYd9iMY5lOB09AY6jiJpXd hrAAd34xHtxDueiOCljwLTzT5Pm5OQ8LZvLqLS1yYEEm0Cpb85k2rykxg6lR KTC8LAWGbIHCqHMJAuenoOOKgieqavPyfGqG0uB6Z0hfFGDkHYod7w4JPnAP pQe7CQd283RsJ31OFhpBo7ee04PDaW8vU+2EWlwxt2ih72uknyumO0AtPbBJ GuMEYzN01QoD8FeoaZ/Q8014QVgt4SYvlU4wDjQ3P8+mzoYDyJSr4YBp92zC Bjhg/T5PF9wFs1gtEObNl7MbAbtEsWAJBfIS5QoXrRGLR8MDDvoNyvltcCCw VoGA8GP5SsUTZf3BBRoYmNbe2H+kMHieeL6oEJAjhD0+cbkQ20jwgnDWhHV9 fb352Nhoje3jhkLl75KMJ/hkkmn2TJz7i9zrK6bc4AN0ve+lADxC9yh8bTrY NfQVdD/A1+hNKtBdwL42AgjbI4CwLqenHwKCt6Ez12fPEZp+b4i+vuMIMzjI 8oSX43NTUzg4P4WD0jmHg8z8QtjC3pcEB9XkuqGSB81AG6NFewDVQibZ3U0Q sI8trDAwv40u11a6lFu12ENasESH6u4cJNu18RsoepA69tFzP0Kv5R56hfcF aUHIGtZaMYSCPmv7P623NjawHGNIkD1oGSRA0BZCgvEFeZDgm4Rme4VQxKIx HsCbI2GKcEXYInwBC4uXifhuERhFgoYlq7gMoCtLQU8pGBjGNPSRBywXKMkL f2sJWIlgFKHlA9YEFJpQnOngA43XDZqwVMJWBrhNPqcplI3ffDXJJLtGFJic x1xkTbYLCHgnQ0ADXccmgoBRBAFj2E22h645xHwdPGBp0l0PAZsGQcDeFALW BBBgOn2brzXnOjN+D0V93uZqiLa/yPoKEbaAM4LL8LkLUgi4MIWAEY3+w0NG fx5XEOr4wlFa6xeE47R4l1GYWVEAlnA7O1ztZrvorbwvtp0Lu01qYrdeLTPm O6erN6pt9CvYQaGDJQHn893QR88XRPI9TCoXuWcQaxIaU4i7LCwMTM4bFgae M6hkC3GHAwFkkVqGADB0MwRA48wjgDUMPQKYTMC4A3PG4gJhesYcslxAUQCJ gaEAOASgwBJENiJ8hRQMFPF0kyy/Oynwhxs4/O30X7qsEgbwCw0GTMVnKh/j CsNMIBunH9AJPOgizvCbAMcBMZE+kYhRpTEG31BItS7hX2smZpyhLWv5jcQU /AXuGjxGF/dhulEfoBv0Xr7ggH64GV40BBTsyIWCTMlvIzs2am9ud2YbH1Pz hwqgHF+sQkocMhS0JHW+d8BQcEVSpwP2DAWX4KPTIw4F5RgUUN5CYEAhWc1f 2qDAL3EJXWnRMDCf6bzaANThdl7msovgYC+752ypO0RQ0EmPbt4wjmRglbPF ytRBtrBYkoHJvLS4l64G+CRow+6h13Yfz31UthBD+tDqA3BVfpYHdyUK179L Mg2gyXwHU4iwV4YhnsDBKYYD0Q6czU0ITA9oan/z36jGFxidiCgFJIDbm+9q BU0MCghvujMQ7DjzKfDpQuP/bQIASyV/4Bwikgt4EIjlA0AuyATADyAfgOs0 XORhpg9TfaAgtleBNoTpPrZaCWp+X986lFngCP45yTgCow5N/pc1D5DDFejy lRUIWhQIxikQTCIQuJhlvp18a9ys4zwLdfp+c9WcIBP5AwjMc8NsL81tHrd3 CAShdMA3EXIM8gL1QMAgXo3PsS0ejiXhEk+dcyyIygO7z1lV4NdHVNP34x03 HQHIwp0EBNjNhqpgBwHBdrqa27gq6NNhPhnKz88LOrmPgA3I43SDOZrMZR7k vk/zgpAw9HqCD2kmamQBGCsUqshWQ7LANAVGGopsMAOD4w4MXoiCgdcWeDAw Sw5k3bEKwbqKqc4gUiVYjqCgQMBusFDA8S8AsTEFAHvg2w0MgC0GBqb7BRh4 shCpiy8O8BIsK8CiHKyVwMo2tFMsK5ACAXb0P9KUyjqJpgU2juBPkow0rOwl AMcFEB5VQLhfAeFwAAhdUUCoViSs1swARauZ8JgPLm5jAAJubQOEUEvkNyiH 5GHgiZt5b2VtxYA6fFUasH+SIsLxc4kIkyuzg2EhQl56kDfo55VFvn3g3TKh J5D0QBbL7KFLsydCHW5X261VFVxBZXpwmS6ZmchDYF3camqq8MZFtWD0YSgp 9NVCLXxBdQpxuKjgRwa8zsB4AxMXh1VDyh1EKgeHDIQIFOwFRH1RsIE/os/R e29FgcEAfofBgLURY8UBnp8VB5IXJLxSGfuijCrEymlQhbAGxwoPcCmSRtmC 9K/qe2lcwV8mcbrQLDsABW9XKHhIoeAehoKJdL3PexFQYGNANtdvflzQvAAK bHMF7mNAAe7tmMNm2F70hULAGYiPZTHSX8yw4AcpAjx3zhEg7Bv0RcVEQ3nt VRv58/4dpiVGfYA3M48s3Kpk4b60h9jFPcQ9LC84mqYFy3P7B+LCNVmnQEfz FIH3vrc+Yi01glEGfgIY55TXFhtp6GeFno6AwEkHAmd0ZqhSbmAgYD4AAAGj DmK1gicQ8+oFAAEC2oFBEdHOgc8fFfA5ggBfDuAnASVh+JtyGM8AkOTLAjxj dArQOgRVKJmALGVuagIEPE/vxAmCgGOaND2dZNZ7XkkccgSeLjQ7j3cpBDyi EPCWQRCAu+BqnQK0+d8YBIi6YK864ptBl9hvonoFBNiyCwhjAAG2xBkQECoM wsn/vBIhhYBMZdSSQsD5+NzoFAJYaPijEYeA3qoQEDPeq9Y+9P0Cry6yyiBm wAddoSyYkxYiFEYH6SIdoOe2n8cKYNd1lIdAVg3RM5iqecAo9mfsclPApjIy 1jBPTmDVgVEFJikwR21jDr3ayHSGIQwcczDwvJoCDIYBP2AUthV9lQAYsCrB 8gFrL/pKgZVIMyuggG46CvMC4r2BQ7+Yhr58lb6P4AAAYh2CGASEygE8Q2Qu yGDw7PEqsJhLsoB+HhuC+QneAbwTWdPw+0ll09AYgs8mgxmCD0dg4G0KAw8y DIwhGMAOukl0N5xfBQaMLqwUGVlRsIUOpDa2ezafbWSrgAGQWzYwCBjA3R02 EHEYhtsma2AKXBMxSwYyJACbQmFFHz094khweNhIEKsIvA3nUIKi0LQPpl5t upxuF4uKDibtdJ3a6fodout2gK4zjHg3qSVnXkJwldpuT9bVk008FmkDw6Y0 trkDExXEqgKzBIkJCzxxaAIj30eIocGJmtAA4jwcqUCDkDMIq4O8xMAQIdUm zqxIEOi+o8hvBATQG24sAL7oywBPD1opYEAQ9gqMJszyAZQ6A2k+AFUVJNfQ GMMrpb4ebwrIFLADKKWMHUCZ9bkk8wExey9A8uNJ1jf4RYZwAYO35oLBJTpT +AYFgxkODAYrDgEGspxynTPdx1EVTg973bHfIR2bIA5ZghpKgywv4KVXvP4K yEk5Nn301LlEA7YSC3fjVC8NQsbQ0CBcgRUrD8Kls748AGuYdRPX0MWQ5XY7 ODfYT3lBBzuDdNKF66ALjdwABvwb1Jp7cSQ3eJUuop3KrGEHj5+V6VHPY4eY PbCxw5imwEoEkxlZV9F4ghh76O0ErJXgEeHHLwoRfEvBSgUEnu8y5uUICN6c PKGAaKe7xNIFAQf8v5TigmIDf2sBP0RAbXWCbx/gnwMQGV1gbQTPHFYmCyI3 RLKACgnTmJjKhLcxHNREcuiVyNVoA2MQYxjxGGNEE2HEKMKIsXTrTEgxonMY GHGIDiisM9+VYsRawojVkYlEr0zGAeiZxJg6GSGU12e0NdWxRmNTihFZxsCG Ik+MOEaUYxhRJ7NVnRULqT2H6OuHkEKw+sF4xHA6weoH32ZcpyvzttZt16zh EGUM3UkPXbhuimufNcDfcZl2Fyxr8FMKl+pCTMsa6ukhO+jNjMCkiKY8CDsM pj2ydqNZjsT4xFiX4dtJpkAQDRJwolA4kZRKJ9nwW+wEz6jLUDa27JUInlLw tYRlD16RYNmDx4owg1C8qOPgLwoMVABCgb+8PkUE/DAAB78QaYmhgjUXPZHo mQQ8eckcMI88wE1GODK0tJxUn0DZslVfbyt5TIxsbIK5EHjx0R8oaJvFt5n6 vyMXGc6jG2MyW30LMrzeIcOCCDJsoptuoyLDBkpf19MNuZYKW9uz57WIoRAJ yBBOLoXEYpXGY10GDYNtxkalEDGpMo24Fh99fWQgoqRzlBFz4DpZPNRZ1SDY ECJvqQcQAm+aNwr25kNWV/j+IzbvbSbI3kEXaC9nEvAY60v6CCHa6aLviWQS szWTsIGFa3VP10X0OI+JxnZ6bYfodQMlfG3hyUYvWDZ9kpkIWx8yJBzNzMCr FL/yIlDi9CCUCLsPnnHAEW0Zhe9NVkMKl1XQtaXwLwAsioADBQsAw6aUUzBw AMIMBRBGNYapA7IhoB1eD8qLsWPxOkG0ouvyMx5ihpm6lBcmUDY1gk0sGNfw KQcSv63obaZj7+HrJyrFt9L9+iBd88EgcYkDiZsdSFQONUHs0k5/30+n1W66 z7YzSKxTkMiTKJkywXcfDCRwevophtiIY8A5BBlEBg9BlcFeo18dQXgIOQc8 x1oGmPI4h2pVhm9CmDbBGEjrRG5kM/EdyW4qAQ9QTHewjREyiHsG8Q4+g7hN 14G81omVpvAWKOyLwC5CYINVGmAhzeDEVxrWjLCBhrAj6ZlIr2H0DYla8OG4 4sOpQfgAIwB0J0MOwusWrDkRZhK+6sjDCIp3wgeKfLpVLKugRwVm4O8bByEE fkNYXAAlbLDZCgw8s8qepLwSvCLUUlJknGaTp8bGE2zpBms3KTKsN5lHROBd Rw73Cb0iQO7K/qQgxaOsZxYR430UjUdZvXoeL4CrjhRmgQCk2Eh3TRshRSsj xTZCCSBFK7fM8iQL1qf07KTNO4XspCFFjulRXVBtBKONWd3BK3t50umZFDXO 6d7eKGocrZmbqFZ3xLKKUL8QOqMYW+nbl1tY1STty3bNKsBPtCs/Yb0Lz09M U1+ETNlkI1BY3S21B7zqh649bO4h1sbEfWqsZV4PYzjIcUKRI5ueHjOmnw3C jKsI1dCoQWrJLmLogazAIQjdLIQIDCGMIAImG1OY8FCBH/VcZQgXQ1UeAEIA IiajM97yhOMtrfqoxkuYsgmXINbIqB0yrnaQMT2ADHE+FMhoJcjYwNzENlY5 YW8lDreh+pohhxlKH60KyWlq1BVShiIYlsySDFY+jscnWfmI24pwij46p7sE GS6iyscjFVhRi8zB+6bkdTa81KE6l+n7nDvSPmcnXdB2upjW3dgV6W7MVEel m3J6naN1F10xtVGr1uHw/c4YV2GKyLDLUSteiPxhMF4It4mAAl54zsKqEd/x MN4i7HrkYQYCPcCNAtCgAFgoCXDQR/w5igmPEfgx39PArzadA/5ZX4AAzqwA Ee5SXgp83lta+tVF6ZRqHoAVOBatCKnGVFTjMF8aVsxXf5XW1Am5m3ADWLGP sGEXOyysr9tCt+dGvkWt3wGKDUeeb37iWPRcZswVuYZiRMaqS948Ne2CtqRg wTvDx6dCKF5pdE79kXPBQp5f34vugVbrenhFhM1QmTIyYzTXsWGyTVFaH/Qg XTqoIvblqCLmquPSLdoLvc71Qi/QmmQ0cy9dzoMtrEm8QCqPs8Atino51gGp FS0ysZRNWZoBAzohwnD2c2hZbYKjOeyGWIZRrT7xiGE8hkOMArCgAFAoC2Yw etDn6BJ4hLDCwzobPpswlABoAcCsAAG4CZcpTqrY9dTUJG5LpdIppmwgi6jn svu/9e0JfddAV5hCKo/T9EjxNrq8j9Dt+xDdtvfrNFVtSLGcN2wIUrTR12Q3 CpBiN8skNlCy20rFCMb8hup6xGgLK0byaAuvoa7coFCZWHBBwu4qbMg4Fp+c kMqmX4ePPjcyWOHqkHuGXYfEJJS+DsnTUXsLBi+jNHbTpi5hw7DXuTTto0u4 ly7t7kBKiQPB3BoxbvUmZ8liDOf5ujZJ5JTd6tMWq0XCfqlnMbyCwlhO64WE iGHTmCatfMIhhikpnnGIcVxXH2c9kVGj+tnCNFaTVMsxrC4JUcOYDYS9yzUK wISyww76iO4EDxT03QX8GJ2ogJ4QL/APGl5UqigzalMqkIS3uzY09PPgtXgv HOMqJOuBPJXEiQtPcZqq0ihOwwxA/LsGYcaoADPOd5jxOp3CnKbubct1nNc2 rGxgzNjPvq2tdEO20jHWxnu121KqM28w2xMYseHsGqqRbCpziLZISyVyYGCF wo0++syII8e9w0KO2EyWIUfIffqqxAY0w+5pyH3akOYe1VxBhL2HLvZuutA7 6SLvYGPno6lrg7k7znAdVBh1XK3859TUuQHTGN0sxi4ycsQqk2pMRsiB+uUN 1kk1xUWt6PFcih5QXlivBOYmSOFxQPsKJcw5rLNqOUceglilgsD3uQfhAt2K hBAlQEURmFHAR3QJFDbSHMNwA78Gvw6kCf6JEDusKhlMeCa8PxZ74UulfnrZ YtxglUk9C41RmdhiRfN5s/ksIz5NjmnEp+HHr0Txo6lG/LhTl6UvY/zI9rFt 4OrkAKux2qhCaaNbcyMdbhtZbZEtYIwNcRqb4Xuq3g82rFAie9oKec5PDalK k5FjTIocmH2lfIc++vNzjhwNgeai6JGjjp8rvXV5HrBhlRLyGUCOULcdVim2 +MGrNSvHN7ayJ+w+gvw9hB6Y4dpJlcYOupR+shNHBEirRWlntYdTz+vddOcl jB5duna5R2e5ep1TpOm0fHfVeI2YBsPWvoDX8C4QQ6GHVSum2bKpz+fYJgpq Zuu0Yo0rhh1goopws4olL/+IVS15COLzEEURugMIIIoMJOUUM+yBjKPA37al Aj/wi6phiNUsxoJm7VXJQZqaEoLLhF48cATznZBzP8t1i3hF4o1C3eIZDmND bc7TlJy/63Dk/QGOPEYX+61RHJnkcOQq3el4E+OIeMcv1U1vgiOoXTrYPx6K rY1Uv2yk+mUT3aybuJmyLjrwZawoEu+8tqtNfIS5SGwGNGy9Zmsf8ZAyhpOR 0fJRBaTcgI8+/XOBlCNVN0r4Tc4h8RErZULzmLAZG6NJdzBNuoegZR/BCSyk DhGcdPD8zmY2kRHniDWakNjAuDVkX6dU6RVMgHQTrHSrmUyvDo3DZRLSTytn aiFA/HiIbaCw9spQsGIkiElBzYES7cdn+VS2Bi3mprABvrHxDLMFqACsrKmW mKCKGApagAAReCkALpqAHPwRhUkIHfihED6sgQL4sBLGyNEwDWloSAg3ASFn gjLmh7weW8oYW/1qSg0jSUOhp0HIBwMIeWcKIeUqEPIyhhDxm7xRrejn6Mq4 tepj3kafa6Pv2cjSrv0EG3vosZNuvm18g65XcXjepEgtFEgIIUOvpagYHhuT IkdLihxw5KEwo4/++FwiB2+gHaKzUo0vjTEgYR2D7ko4SOo1HL4bW1s2gony Q9FsJFSM+46szZBgeTQW1Uxh4xk4lWJVEdaN9tF74KGjGhNSjTutBTqMPzUV uU2c/8BBx3Mph4rF8gIdp9nUGQf3UFmJhw9Ecgw+QHAqhBQABXRieAShRxMQ g+4EwwyXctB9Sz9HVwe/JZZ6GHZ4ytSasKjIpIQBdgzQq7Uy5jmn3bAGCwDW aJA86tSaLB9OMg0HQP69AX48mIMfMmt+pcOP23VZ1RLdId/Kjx56dPLCWWg5 NhJ+bCT82ET4Aa5uKAo1RoeEzVkrZ2J0SCQNiW2fLqcpyBixsqQvTErtqW5M bWpGHEik5DpcExuS53JvnZdQ0+ETEJSKtScgUIMdTK2twYjsUkYE9tYbh+jV Xqt1zaVa10wO6poSI4mNqIc+FcaKeCQxTtUrR2tBEuvE2DzKk4okZm8lvVuk 9GKDm7EjqG8aG8/SY6BqIlIrmqBDowmJ4kLRJyUCLCXAR4H/XkwzD3xvgX9u A/8G/Cb81jwkiZGpVsgUi0CSfnpIMSNKF7wLqPasmME7Za6WX0gyNZjNqP6h XgFr2f5mkinC3qNnQQxNjqRocp5Dk9foWgxDk8W8SA0NGSy57KFHJzdkWllD uoceyEa2c58QZx/OwGo6Ui/1iI2ieMs7P47iihqRb5eihlcZkoxLw5ttb/tT JPlYLUiyQlDj5WPGjGm76qqrPnjHHXfUFe69/vrr5XPpD7YMB3FqKXr6orqQ ajNuvn9TTRtiLOxQWjKfvRzSHs5+7eGYHcZW7frmM7GiRL1c3bKm8L4duGV1 s71+A+POYXorkL14PiXUifxSUr2XMxTuWAfY5uDMY9ectKwL/AzXAWLDL/Z6 EFEgi2logAc91lMNUB4wwMtqxo3DhPkAZzG1Yg8QwmUzBSQidAu4mohuBvp/ iVOb3YY2/A14WN4CxLG6B78Xv99QxyhYPBerf0wcIi0c5DADTKHU15+h1w3T t2OJdMFRCH5f3xsw1/+peO1FZUajGPKgAP1okolFfq0m5BlP98tERZ6L1Gbb kAfFM3qCi9Q0Yz2v0O6mRwehz0Fu67RyHbSL7sOd3DUALZtHpyBj97WQ0bIx baofdwkH4XIolcCDl8uhq1KX3Tfho9+pBXGWZYgDnGFEKfP/i5+ZP39++oPN LwFxXI5zZMhKaSgXvlBdEstx/MLemOLdd30O8D6vLsKc7uSg+m7sI3ww1fu6 Qdxtb8rdWrVknZ/J2vkZQ19rZrzBLPERhzeeaAnxxmZtvQK+FrwxxYnN05kv xxMaU9YFEsJF8OZZ3gWGgXTkOvCxLJdhWjOguQ5W42AEbYDX5Jg6HhmFxxxk GyH5gmzEdYcKAA66b6yQStGnCJThjwSStg9CGctt8Fvx20HSxpAmbPjgVUjT B0iDXN4cu22kFu+IVUx5jIuRttb8+W09BUya5tHmUYc2b3Fu3oI2kxzavFoX AAJtZuqo7UrdI7mWPr+Ovm8d3ZHr6/axU9dmukO3EeIgI/fMi8nUjHnBCVtL 5VRNqjYM9mVsJdwU8b+b8dffqgVzlvL/y8AcYAy+godkO8h76kqGRXjge15K wuPg574hjcHzhm3CZaKxYTyf7ljTubp0Pkt3sFy0g26CdrpxDupQnjWe19RQ Zr2M0x0M53WyFeAohiAQNocVgmybSDiAE4Mg34AeCoJMwmIWgWYG4hvRxvlK uYUOrKwjlO1D4H1LJWzgOsNpQpj2CAwluTBkqY+1lyz98VCkKRDDUTOght77 EGzwvQY4ltrgd4ZFFZ5DppOXwgrPuVzup+LqDNM0dXXoY6C4Ms28p3m/ru9R SNWYHta082HX2ZRu1YFnHN0nExR4pup6oVfrtuFb3OgNpFBrmbbppj876IE0 5wBP825lo9o9nJIPRdmgr5HXgY6N4fjJ3nDNQF73KJPJjq7EHl5A8mb89f21 Y08JKGP4AqwpyafvuJCusYOjYWU9bFlSGD7s5DmNepexUIFvulpzGotlPhAJ gN2JZT67NfPppNuih26BbrptOnXez9Ry65UnDvW1Vmm9Uiuti3S9JRRzYxh6 eug19in0HKU3BJmPMTyeK/Ztppj2pRr0mHru8wo9ZmDuu9jGGWcVF1hTQE+x +BwbmheL8Od6nsMWvIjPgLKqKxkSfqy7bZlQAEEF4EsBQFMQFKKPiulHVE0Y /OBnDH7we6y6wr+B7hIYYg9BvsrC8xax3Fl6nWeTLPeBGbFni32lhffLczx4 X40x/mRS2bT+YBUYejiFoWyhUS/D0EQHQziurldDgelORLeG+Z5u+rOD7rt2 bl5vJijaxi3QvXS/7h6S6/EV11A5kO9A5VkUBWbGkgPlllxsbnwr/vrLteNQ 0fKfb61evbquQUDI5z7IkZpeHAgVsz5VVGtHr4deKb3v1ZS6vvqq5lYSLkUw htkcS3z608rpT6bYRfrTTfdDH2FFL+GPTQ/CAdlY5hWRCuyNQQUGJ2RU9uMZ h7rpdfUqDh2hd+Eeh0PG+MRwyFQ0teCQqXhtHvkLikO+7W2Mc2UlJuKRZ7ST c0y7Os8zOwJu1tKgSizK+lghFgEXgA++KgvwqABgodvIsiJ60N8MnPgjCjKf /3gQsjzIVDIxILIiDLmbAFE/v5i6OhRilg8Z2ewV/3iTQJN9OcnUM6bC+zMH RmH7KlT/V4JRowOjsXQzjFcwulA3sb5KfY9uVkWvKPL6eI33Ks6JoMjr4PnC LQRI2wmQoMnYS4CEQ3QoNY3Pi/Jmh/LUvUYBVSvKipWOBuMQ/1emgNSSAtJ7 hwlIACMmnRvxqYKwQVyX2X8NLxWSas2LQjYotqDFS26sHIvNG1nvPJYXiQeC 5EX7lRHqpdvgKN0+cFJCSbab8GiL9s9XOenNXTklmc0eTWRM6uKNn4JJ6PQd VUyyjW4xTfBwMckmC2zS2ZyWfD/d2OhYaWY6YZl8ltzheQ3ffu5A+/JMcCmJ 4hLYaZtwDPMkh00F4EsBQNME1OGP6FQw0AmBx4qwPPDJRgaEb66vH6Bnjkzo hSTLhGwwMVaQfSnJmKC/dQDknVI8AL0/CkAFB0DNvO81A6AJCkCYY32ljiGZ JNikfHdzUdbD/HMbi7466O6EtvQgKzv2cVa0kxmhvMFFVAKoCKpJ+moZds4B IG+9VCnsy7DoFSkWcc12G/76zlqwaJpAibXBGHpa+P/RNhjwygq5ulqzpQvx /xfLFFVbDhFLl/wopJHVOBlCRaBPl/yAkxlB2oAT2KLDBCGH6eaCGeQ+euwI COvFrmyzBtnrXNmG1uv5Oho5TuEJEp8mhadiulYmD56sOV8LPNnogg1Wm8WT b9IbeZ1Xvpli8KcayFiugEbSaQ7yQuEslXD9zMI0NvazKBlDUcYg+TLOmve+ lLP0SWGqAJyqK6VZlD7KAKeiYBd9qW4Xw5kHKPweo6fxb+SBlAl76jlE+pOs XDumEGwlW0hXf0XfLzBHn08yytrmFcIGmRcKZhPVBlSlFKjuYaAa44AKdj4v V+OW16nm+A7Xol/J2VIv3XPdPL+wib5/K92fWG+EfcgHOGPaxc1d3McxTzgw pTH6Os9ZNjY/WUPDLDOZLUYAiou52/HXx4YBUJ4uon95cJ7U4hIoRqfhJlAx lOL+PV2wofZcDtVRG4rSHk4OZXPbW9O5bXGEAbfUy3XdvVTnxWnthVrXeR3i dTpTZW4PUtfBIcb4pV563cYvhfuvXixQ4YRHz+fTClS2/MJ39Y3izqvvMprb piYqc6nT3JcC34SOG2TOmL/Cxnn4UaHrhnzKVEbIqQBWYa2ngEX3FkEO3UeW W9GD7gAg1+4oKOFn8Tsse8Lvxr9hPBLyOQ9OdMepVsg23x7X1+StYP4rGZxF 4X36pyRObX8iACjTDvlhCA9QDwwCKCg6cD8gv75Uh6vASZqiebZ28ldwKdfL vbUNbGPbwftYt3MmdZAO04PcBQa3lDdkhcMZh7TPpmK2tmFHP1Qnxqjuimyq GMmmyinlfUUKVtx9uwN/feswwMrabdzWb+H/M4ClPyhkdwnf56nxYSVUUfrp waoy6WpDW2G5l2d3F+ZUOE+q5VSh0PEgnVdddIt0MxV+NDXP3ZVT8s10w+M2 xHWlih2R3E+iWwz7eECHt/AYaG8CgWdR6fD6dI2vFwMMB65sqAtwBXbkzxSu vCjAaPG80q9abnU8hSzMPGGvHUQCEERi8SWcobDioqWlsksHgRK8ayFSMtjy eZZCVwF4xNBVAELRzWWJF/7GnxNg210BXB68wswK2V0IYDK15QHslL6yn+kr jZHilmHhXfuXpJKLColxLwwwEDM5de0gNlm9+gXEMlm1CQSWcabVwwT5evp6 G33/Zs6y2lme285/7hskEvDjGTi4PUlumZbf65NHkntRpAeyINPK98Iqp5oB XuixP0WKD6RI9pZakGxphmRpXRghzYFqjFqj8LeGCFZNTQanVa74u78mXmoo rrxaXoW3H5ehWs8u2wtSqY5sp8vfQbdCp7rtVSsA5zmvzpvoZ2wrgPFT4tfZ TpcV2wG66LV20+sWlWR1sHqXA6tqHJVNoP5hkrlr+R6e587zCsFYfuW5KgOs Uzxdhc17mAURd4zn2ZpK5kH6Uy7d1E0ALCicjLsKQKsAvCkAeMpAISoHDY/0 wV+jwtxgKYQmy62Qzw0NT8gPUdT6AtDnWCFVjhzrn5OMrfqrJCsCbdrjd5NK 7dKvRSDqkShEjab7APm2hyibHAOZcKvuF8KBuJRzrR6lzTuZNt9Cj130gJK3 k9W8+6vKCXyuFUoKrBg06jxPPRlz99ThdlU6l7yCslJZMB6ocBk+2oGPLkib eXfioyMRhCqlKFMpL/BohI+L/OmyV1masqlmZWUMs6QUvD/X4C/PTqPavvNw FM3nVzbFGiqcfH5lgyShyBILTCCyxEojqJzyysFFOpYWkxtcwUonuR3HE2yN oT9b1KSnfM5gyyZcET5m8+VbfiF/FSsLLc/yHJaJMK00NJr9BHthZQtRxNgH Y2woD8FlWRsQ+ZaUiJWclsJXAfhFt5IhGD3oridMagBAFQXR8MndafHnQcpy KDBU0sczKt2AakAblAAqY6qe01fzoyRfYIB35l8V5K0gNJFlCFamd/Ky7upg 1aJghWx7rLKa0MPZYMkNTveEA3EJiw566ICF4KCTR9W20vftVqO5bv7zYK7o wOyHcWj7nMoXhmFOFRs0qbHXF1oSZ1j1cny0Lf0I7xQ9JfqoI4JVeTJML4VK pQgFQJNgEtPrKe1eazUYoJWrBu8bEq1i1WA1OXiYZJkgwZIsb+Xh7UnDJMtE Ccil0QTcz4eXyMIPOptSXxEiN1+gdmJ35hBYF+k9idUqo9gcvZNefx5imUiq VsRCvJjlcawhaERWqNW0ytAnW57MssagVYdmcSqEFoZuZcWjScifdzLy/grx glWJSm4VkA3RLeDBSwGsjhGsGegkWLZzEEBZJgWQCrMpmbE3oDrLE27SIvCs 1Y/1BcWyKqPWrfDziiiwVyi3/eTbh5NMnFkdrBro4jYxWB3mLvAYbrl0pFNw pg43dZQIEkCzoyfYQ+DTzSwWTEy381wU/HPh1N/DBeBeFmzu4GM3ND7GEV2N aveWY2Ff0LKrsAh0lh+62aSY0u151oXlFLkuwUdb8NGVKXJNT2vDmoZWlFaH TDPl4IvZ51LEepH5VVQ+5cpC+vfx0o9GrVG9kXLMJcSknGGOZVJO6wvGVORh jiWyhd1srLyXUGsv3Uz76Ebaz8MsRypKQy/pnOekC2aC+OqKgRa5OWHK3sJG yyFqiXyhnvuDw0Gt30oyg6KQz/pjDbQ/SypLRC9l8LmW57Qs17Iy0YbsjNcy AyMxMRLp5ynmtkT+KYolj14mc0A2BLAB6BD41AmEFVMIowfdFQRT9H8DLHs4 4KKfw09vS8ErzLIAYOgHZgB2WgEMZSHKXF8W4vWF2VZIv3shQzUQMzVVCGJv C0DsPrr/72EJSwu7yXSxCTf4zotV4mmqKhM1zGYWCwYBPcxiraPHZvr7Tr4/ +5jG6KNHB/08SkScwFvYlXkD3+e2gRKntmVd1VTniKvQndl6hnllYsWIb7li zq5i1q4omx8IKC7GRxvx0WsqAWzncAHMGobMxRfyVQ7DBbDSkIvqjlY1a7Ua MRz49XYl1WSgsazLBvFwOGWTMKJt2KWOR7vVSG0P3UcY/t1L95rViaEcFHWi dz4y+VXIxY+hRzMvl+ii96AnKetg3vAxzAb0zGQtpLk8Jx/Wi9ZGjGVfvpVo 3LzJRY3uEhwT77GfqQ/ZCWa1ZZT/DGMGhmwFy0TOnmEZJ0uQ/baAyXJ4lmZl zUCqugNpkuUTLWAVki38Hku4ssoQjSkTW9n0i6eyUCH+WF8LsNkSL69pMMbd qkS8Z3+VZArQWOvQq0BjuPUQXeMHkrLiVpPi1ijGrXa+N6aqGtTEWNA43K7D wAs4+eqlTL+PrQi20GMX/Y4D9MDIxBH6s6uui3UO1arFGAPvTZKGordC38Yh 9A6FiODhPKDDRfioFR+9NiW37kpTsRpnhSvkVhOGA06NldmV24+n4CQAfH9N 03nVJOpeEhpa0HsjFORX3pTAjKVx7ti4DK4p8Gkn4xMoTOBTBxui7GFzgiMs DfXmBMsCWYPxWK+L0O8T6R4czfjUMUx8CmWiNr1nbm0xPsto+Lzq0Kh4z2n5 3qHR8SYdNV7LU/JZlej7iIILZxgjKnGqMucCtihWMVQVgD4lwBBnT/oRfU6A bG8KSkiifCIFYKK7LwJMnrqyitADkyVUpmcIufbPJRmF9af6ZoYtQS+88uD0 zhSc6h04NSg4NSs4YVMzbgxTil7j9A02Ozw/lauL6xI2aO3m8dEj3MQ+wo3s bm5ui8Zhu2oc1qWbtEDchty7rw5jnikxOquacjQCUFodVuzASH1UJiWMF/TR Bnx0fZpfzcRHbcNAKqsNebL4pSDV0HXgvTXXgTGuPY+9CvMor2dAcY/LmGlE NzPfDvmV5FEH6LKLnTXIAsmjjrCxQZ6mwRisGwZx7rZGo51vTSzdaYxgVf2w sMrs4TyT9TvJYCarWk1obJZvHXoO3nSkxmiFeGW1oW8jAh5Qc73AkIEaDP7R xeJpnlAGw9XQcIYnXDS/AgHSOFAAChUBRyUgU5mzrVKaLwGaKGcqAJ/oSIkj 1Bn9Z63kGwqljLvKS6F86ZdHtpt4wWvZ31MDUvWkSIXbwqSipsQyT5W7HOl+ N3uqHOYVG7uYUD1C6dNRljJ38oaXQ1wGYJ91KyHVGkKqFVQqoGQAYetTqVDf jrBBKhXa5w8zlZLKqBRVj5bTUZvzgREXpMkU263gzq6bgY/WDwOiPPteM0Rd hP/HqCqRLzxQIV8YiVwqrx9YTR5qMgbU9xiz2UO51F664MJXddOjjzEKR5iX MoR8FXRXnmXPDJ+yvmAeRhUGYZT1BsOxGzOAAkZ53srY9mo1319q0PmcyvcJ TY9ldZ/nr6rhlJc7HFOAEKxCDVgoPM+jzKXS88rGA6/O4qgt9RcAVQXBHwKi JiASf0QXwgo5IJI8BgJkshE+nz9VQ6fvOnTKI6Y+r28O3qS8Iu93AoQyjaif tokh1NEUoVpYgNfON8UUpxX1GobpKdMugvZ1vFbwMN2EIE8xF3+UZ1OhudnP nqp76ADdzmvDVvP432ouGnw+lce2G1Fl+VRee7CKnkHyjXJ0IrCUN4/DgHV+ mj+x0h1lMsUqfXT3MACrQvPeyJlVpea9cTggVmNF+JaahVh5qtEYY5UnxjLl aHXWfRtX/JjI2ac2mfuVdQeS7dEjLjbEPFdt627XNQCxfmGGZIcqkKzE3t0e yaxnGCIZAsRb2RkDb3Z2xl5ZxpVXHVrGZQwWMq6Qifdo9o0h0MwrIKxStMzr BDNapoYQXxhh6AuFMygRCv343wBu8UKKWHRLIKcqpjkVPXDb1w/QxckQzPIr oJjlWKZoN2p9KCTL6xNaroU36i+SylzLqsKPJlm/8DeSTCz6iw7NHnNodv8g NGtmhZ6gmSnfr1I0e6PrG85W4egK9fTeqJ6te3k371GeyGjnHuIhNnnZxGi2 ib4XlPsapmd9zuVpd3PUzMu5TAkfc5saRoVYjGge2MJ/Qkq8c66F81qI92W1 gNhy/K856xKeE9RyqdeD0dQrbyLHU+x56tG81MtvOLLJHE+zW3kojgutFYsF MJ2DkwzKvAN8qoFm7+NdaTt4F/fgCR1PtZvs/TVu85GJHMZzu/AQ73FuoK+V B4FWTJoVgpaXwHvK3QseYiOGKBONdjday0pFT71/Mamktkz8EAOuUAThUzEB L1lgcEwdZY7TxydVJHWmAOBhg7R+hSKAF0FTCSgFGKOP6K8F/sqeIaDKJ10h q/50DlzFNFhh8hV2Bj8WgSzrDsYg662DIAvDWU0OssYpZF2iuiyTOtysE4Wz 1JPK/BdaefHWEWYsDjGRdZT+7KG/HyIo28uQ1Vq3hfc8g9Ba5ZKwUPIQGsMY qeU1WtYtrKVUHMIUuIJ7Z+DK6rXt+GhuClwMYfNqBi4ZIgRuMXY1vITs6+L0 KWW72RyOPTykQKuaCj5vZCeWfNmEofcmN8mDlZFQCVdOGW5NhVomLT3IbZge +hwo+T76upx5lWItMdGbrfLSW9W1IZM+dEaxrHEQlomH8GAss8lDb6xn7UNP z3sZRF4L0ZIwo718G9GXlB7PTBIR4plvKRqe+WQso8HEB1280MUd3Ogw4NkL wKnTdKMDn6TjaI+znHL1M7rJNDY+B3A7m4FgCmp1+Nzzddsj4Ga52DNJJnUY CuBClj7MyUKmHmfGHySZOj6vlZgPcmW6/rJ/rIfbNk0KcpNVfPoKdbt6g2sp CmsvHg/SUjzM96ew9keZC8M9vJsX/uylr+2k+30br51dT7nZGjrLTdflJRGh at78HmyMOpxS9AM+MTdQBTp1iCr6/MwN+eSOK14kgMafNLxh4LssxZtyOid4 adqIZHp/Wi1gWOvCheogJ/MAD9U8P13N6KFathaKIpCtmSgibzgx8+nbzaIY eGQdojvqIGdrPSyM2EV30A49Jr1f31InSbXmYyiOMIGXyVIzlOukt6ab3qPe IVDO24fGiH0jzbxQwkpNmweyrM2IM2tGGsFvSGcNSUM6I/kN6cLGpCGdlZ2G dj9K0Q4+gHBCzspPa1YyqcbodIrB65T6cuEh6NeAlkCRcRD/f0Gh8RT/0Eku OU/oL4vBmclPPaQ9FYE0KzM9pR/L28JSM0achU3IOKyV6ELHYA0KQFv9Ygqv 17lm5AxHoGUUv3SaDjC1f5Rv2l08s7ifbtjd9PUdvNkSZnDrdF4Rxzw68Mjf 8mYWzUsrj+qPGfyFQ9g5WvtCWnfGtl/CAEW6klPxSVZS4C0VBu3mEYQtw9lB Wxsk+XywKnDl6efzJqpj6VlMkWosf6josnXcVmoeZDMtTP50cam5j483qP/6 CODk+NvohhaXBN1Ir5x46eDljf/CrmTI+MdKTt+ZRLwZV2bdSVN7Wdnp+TLP /n85GdwB8ABm5aelawZiP6wAsYxDy0pRwhzA0HH87wTdMFn6xilcmYGqbJDl HoJ5J+oOBNBlpaaNS/84yTKy/04yluwpfepP6ksxCPt/1L1nmFzXdh14Wbeq uhuNSJAAwUw+5vCY82POfMwEmAMyGkCj0aGqOgMv8ZF4SrYsS7aVc/STlUe2 PNbIsmT7G1myZH32WLLHHo++8Yxsz2jC75691jn73H1Pn3urGmjKn/v7bvWt uhVvWGfttdfeR0PPOmam2v8vrRHGviOCsa/JIf/KiptjeplJH0imQ3JaDHkT oM78cLXxVNzry4Oe9B24Xgk92ReZhEIyaoL6v4MxJNRhAhoThnbIz4q3V8br D8nQ3qXqogzNeiu0JSAuJ9ujtMpfYVsmx6FoVT8JncRX4MKEo1kUjxLLLsLa VXhsZyjFfh5rd342WNZKxZmfDBRnxp1JY5G/ioUh02JZWDybnrVUqP1LY03X FXCfqbxGp9JpOQu6jDVP0v415+fEWpBBzeW193qxP67A1rTlPcYGpjZVtdpv oQ1sLWAWWyxSon9VzBmXOf7CSpHGjONOq6PZBECspcWAFsefMahpDJoENSLS X5BkKUP7f3jv/0XT7/+Paw0+OBmBlQKW6mN/vlLmXH9WAVr/OgItlfjruBfw H+NAlW6mUn8MXN9aC1wtTh+CiouZklP1SpPATEn+u9nTfZFjKnJPJyj1o7H3 AqtCxtlG8KRsOy5jL8qFDjIz/z41tLdDdy61WljZv46DqYamHAyX5gDJzIF1 NAaMSHPJZS9r14cZtohbL2Ht5nXHraH60PHrA4WOa2FgKYEs7mtjfRYq9tdl KE+yZcQMW71P02TjwsfjFMkKFqaC/x7TO1CB68EBgMuysHR1o/YStN6wOrGs jonFdUO4AjWUtJlL68Ow4BULZwpeVjyrAjBNCtjQsgRiAKX/QqRScvZ/8d5f gHj937j5i0Z4UHHqPxPu/hNzAJZg/W8rZZKVkr80VlSihV+m1T/goL/l9wT4 6a+v9CdbP2hwSw0Xagn7Vn/kvu5x68t9cWtXBW49XtL9F2lkxVmISg9UfKDp 7knm0nsyzE4zdjzE2PEIY8d9EemqMmDEpCtlwqjT//vEj4NWPxaJzALHbg78 i7EkMwM3rSeOXbayOpbUL2fcrL6E8+N1oWCp6kbrao2nIo3l/rrUJSotEE/2 2ElijrXZzm/hKjOOeDHso6ijROy5GATNoH0MRWjWLKGZ9V5UiWJrpWIqjP3S ympxzKYBqhDNxph/vFJQMotq/3alSHNaWpZENuLSnxOrlKL9Z977Lwgv/882 wa65Ug4P/7zBl05EQKbES/2rSr7Ubf+v/BdW4Qs/5vc8mGk9dgxmv+Z3VB0J wxCSSmAWHtfVgLbkAW22BGjnR4B2qwe0B3wiU535r/t5BD/y+fRjjB6XfZ69 xxaphwXQDgqg7WMz+UNs86tkrM6DgfgFcYzV+lM+DNvMy/Z4VlCLZzqNCVlF x5yiFPLjAGS347FdQctnYtPNCxZyA9etO6714WefrCs/0y4Tts28NWPEnSbi wLKq28QJ9h+cYoukWc4CNu8nInR+WOciK1DtnahPziCodmFW+GJdHSQkkVlO iNoqtVHVKTKq1DJr0KjiadYnq4qZlfyVq6lZw8r+imw2yan+fkU25WuaAtCA M0Y3VdKSCEdU+488RZW//R+8R+T6T8Q8Qh4fI75pBElAa/BNJvzb2YAyxrU/ MdiGr/xH/mf8swjbUqoYdhECzEHIWp3Ir/j2VY9vpzy+zdfi23Ue3+7yOczV fv5F5tZV7IdK5sTdnpyy03KKTwiugbAdpWMW3YH3e9L2To1hQ7ut2kaFlrRZ 00aV6F/XYCf4/PPVRUlFT7Ao5LwnUDVONEYL7TXrCWmXr2R9s5Wf1tr6Y09G v4ylbfVly7hj4T8VdmrWsp9e1uMMY/MCb/Nyf4Gls/AhHiPRX6LC+mFUNrlW WCvKJx2sDQVYWzKwph2irW5mw89+hC3OZCphU2iLEwIxabNJAQttKeJmw9EY 3v5NHcQBlv6MaKU8jgtA7D8i8PzfmwV4TRrwssQsBWKqjsWy/h/4L48f8U/9 j6pSyjTqrDJgWKJmI89Y6v+UB9GB2ZcCmDUjMLMllFf41oW3+Brv+7z1/yk/ 68+rQfJfCsrZOEnbvKz35KSeFhCb4HSsh1jnjQmgxziGa723Era4VwWEZjsb UIqwVUn/GoVWZDGdP6MZ+2cLi0ZKP6Nq9hAeYwYAZ7Z8K1m7+jMEs9gn+42B df+qMqWUx6zOgWFN/nWBZ+zCiGU0VNTOy2nRyzBZ6yKrbU9w/APPL/Ds7TXg mXrOdvgSy42+5c6Ib23o8KyYS/q8MJmrLWNaK1WLG4ipB83SNetF64dpNhi1 lO0PIlyztE3dG5XYBqT6X3DzHwBh/2uT8JZb4OK9P8NTCH7/Qah0GcL+nX+/ FB/D99B40wr+Cmf/2P+uGM5URPtlD2dx3PljCUjT2FPFtHISIIa0nONXAWkt A2layXSt95jdXpHF3MOZFQtRDTHomGw7LK87QH42KefsBA21Y3KOIxzRTvgY z5WjqSlDORqunTgpYDkarr84Do0rnKy4lohDs7jMqYaoMQzElSBvKWsX4bHN 2HoJ1i5IhKI/HUDv/HUHvcriAMfgzpQQr67tYSy1pSoEUgXk1rqRasZTFZha uU29Zyq3zXF+RjTHX5T7rnJ33KDePu8/04LytaDeTt8EY5NHvQ2rUA/ZzyWP enYu2Rj1+jE5G6Qqk1Pks4GqzYamkK8uWFUprg79LLNLIiCD0/8Z5+y/w9q/ 36Ao+O9J7RTRiGp4+N/IBexerhkBFdL+2H+sBp2xoGYBrk5Y0+DTcjbswjgA tQJbnDFQkPtKEuRaAeSmA8hd7o20N3mrxj0hc+AynjZz8KE3ex9lr6h5We9y LqLDrBiYZPbgmJ9KVjvl43TXKT+sZQPcTd1nMXfTzKfaNrTfmDXX2uxnir/5 YDSrI3BRBVQBctsdbtE7K1u3h1QoTllnu43g7j732PqA3BUrq8PUvGB2H/ct Pk81Gqua3zFmdnUpBY1U42qoOFK1ApxNK0CAA7Nb9M2dZgzOjfmTS3HurQFw 7mbfTPEqX5xucW6UONf1ODcX0gsO55YNzvWLWFMML5VmUJZnG2zYdEOcQFU7 m2KdMj2bdrARbIx3f7hiUhDEs39J7CphHk7TPyWA4ebfjgDTGgHUcPOnjFKV stkINIVuf7BSGM1sNPqP/Jf/HzzCqbym/g2V17650p/GWS9HnEZQlPtaQLmG QblmhHLbfE3UZd5Xe4PJjz4YpRNUbvvAhxhHOPCCyqEdbFdO0I4gH9pnTPrO CifCzGtK56zHFiFPFZ2L86QgFqmCdY1SY0oX1Us1CHUt24s/TBnCJKT3tvrs QlYUCODcl/dj01h57Hps3oY1PobhyZG4vyRoS3at9hh+qrZz9aAUriq3AAoX B67WgauBq/Yts0VSNr8ACrfIpisO3k764hOFt72m58ag8Ha178l/ke+1uLkE bz0Kcg7eFmSnLnp4GzSAjalcKoj94ZUikLVlBtbclvKIAAFsMKuUzop0CnOW 1lmx7g8BUn9EZCuxOzz8r3DzP3EsVob3J0TCP4F/7U/x+J/g7r92z+utFDGp jUsBbn8YAVwco1aBnJXe4lhV8wh1VO57Vsr5BAt0Xw9Ad54BujwCOiTSt/q6 qEu98/Z6k1d4wNdGWSlujzGxHWLsCpsS8gqzAmo9tt8bZ+uYKeoyoHSIWJTS WReuGkLqKJ2tlbItZON6qZQxJJ6CssqR6yCkaZEuiHPtAHasbt+Cx27F1s1Y 42M4iPJNPzuwSwarX60NVus6xg5C5KpSDjZgjXtxaFch7XxmuzTGaQdFu9kB 0O6NCrS71xdO3eJL3a/23dB20SviSv42cfKkbmXgmg1E6GLJrip4PVvE0yDW EjuV8Gwg+zsr5WA2pCgIXb9PqCuRPDz8L4hyin6e77UCBrZ17V/Krimom6Vv McLZ7KilcjZY/U3/M35jpaBzVUiHoLUfpYvVuXLCAYcO7mtkkxqcIFnRDpXB HVmmk2h3QyKL+lSFSufQbpFoNybPOxrQboZohzgFA7o2ya5yi/RT6qx9N7bB pTKqg1jhylWiq/MQKV5HgLsdWwl6DG1xNOUrrTfUDZ0Vr/tqX2muqnlHzOsG CVvjslArz8VJCaCdTUoA7ZYitBtPoF1VYuIhXyZ6p2/scYPv/Xi5RztNtmKG nY3ymJsubo5zW7ZplFokv8uIeHX8rl8IuxbEi5MVini/spLmeTacVa6nIW3M 92xoS85HWPsDQp2i3x/ysT/CQ/8CKt0fF2j4R6Wn/HPyuxjdbKCqPM4inHI5 zTtYlLOp1BjlUpxOUU45XVXwapHuFAewnD0P5gLStQXlNICNke7zEdLZfMRu j3Qf+VPyEKuX5zmfyRhNvh22fp+Q90bXWp0x7rD3jdichJp9NdVax+3ivERd utX6R+Jqq778rgC7VhnsCl63y1RzasR7EW63Bn8JTgT5xHUEwCtX+nO9Twfi eql0bD97iY1s4xZGNiVbJ9xVJSgsAkK4W/K9YmZYe5wW71IICK1FC+Xv8v3Y bvSdutVussMLeFs4K0qXs1/oZOTDRMAFj4BY6jhfXZS7HigYC3ox91Mk1KjX inuWA5bQECj2P5L+2SD494mJePSfI6r9Q4JjIIm/b5/1z8KLAXskdnj4H1Pi 0wj2t1eKKFb5nUaympSokuzq0M9GtHU8z0W1mY9qCwREFR6q8WAu6QSDSUrC uzV0/Sj6Sz5vyrM0WbGfp+WCkfF6lPGOs5Vgh/O8TlLOGy9Ft++ZLiCD8D1b rhUnLXCZ1qGgzc7WoGBlCUQU434tYOFmh3ZESn0eg+OdAQtpT/k94td6wmA1 D2xXmVKcgvmlWo/dIL4UDXrrsrRVRfZa4gURNwZCzWCkgLDjmzCMM/e/Olur QIgGDk/7onvti3QX24D3ShnbS43Ut43FEl05M2Zl38xxXjM31fm87N8F2dtY quhgXQBcBYbfXwGGqczGNyNA1Gyu0kIFxL8XgWKKHhIUAVa/S2oXcJHUziEj bn5vI2AOz/g9h5azK0UEm+J5injK9WLEi6PaFOr9pEG9Kt+JRrcx7yunZt1A 9WVfZ7zMwazQ83pEviHjE97pex3FyHefQT4tTMV59rZPYOyjZxjTqczL+Tgr 6NeTiBZt6lFb3WWN9TT1PRfpQsqOi1QRGvXjf/0SGaloN6XvVXiIs7hZuJ1+ JS+HvKyUKELeC7B1B553QUhqsHritz9DvEvSvq8PlKtNFUoMmtDAmGMniLLO YivzVbnxwPircrbwpljEm4sQL+VPecOUhD3jeyQ97Lta3u0nPrjJd4Ozct+F pH9w6HVlf8zKfpkj/Rv2+dsGtS0gXhX9qwqCq1BPc7mWAqYKYVX6U+RLFVso 8v1aAv1SdPC3AGD/kGgXAJBo97vkbLj5J9j4T4cBcSB2JHP/hBxPIe53FTb/ kaDFam6nkW2Mdpbj/YJBvJ9NIN6PJhAvFelaE/HqaLeMehrtOtQbilBPjSlV qKfl+C/5KrC3vLF4L8/DBU5+d9DzPWQz0PwehdmupHEmZDQOm2oJm9GwnE97 i6Q4n2Y16hx5YCoW+eLqsArOl8XlE66ENJnhaAb3CjGwYH9bsfUqPP38wPmc Wa9JBPPuFSz//V8yKupEgAlIxByO2SY5TaoyH5YE1hVbpJqTaDRs9UBr17PV sf1gEZa9FCyeSMCirSn7omkd90gi53u91wVtVHwBobEn+2OWZHBUFjcn+5zs 4jnZ4fMGFi0ZtJFxysoXQ6PmgG10bAs0bHScgke191l41ErbKogM5JD49w+y 9kqZJAaiSKTDyfs7eQDKIV37HWKpEr7fzhy+9lbK5M9C4m8MAIs/v1L48qqg sV8YbJO7akguh8KZD4XPowF9gaTQGZMdPA57W9N2D4+X+aET54rWXKhBGefV s8bV8qZP9n5EiFwQyAM8zjH9gQY7k6yJdBMdd9mw2oXEY6b+Yi3EUDsBaFhs WzDZxK9CpG1kXlVAm2ho3kjFxa4XUykuJhDh7Je3krWNeGwLtt6M53FtEx7b EVIj64qDw8Gt3IxKNHIbDXvA//rABDF2vKwlJE65XhASV2VHbC7YOl9iNER2 ZFnO4tVouFwq3VA0fNX3onvWtwvWLInmhG81GqENjS+U9e1Ew57smx4zJQ4N Z2VHIyQEIsZEsSo8tlphnDGJQ2R1xljz34+sFAZARUWbL45R0eqH/ZAxhM4N wmNzpeCQBEgg3m/h5h/C2vfbXGP3OYU8XX7TQ2t3pcwIFf5+faWIg6sg8OcS MPhjK2WGGMNgHBdbRTDNErPAEl1epGmgcHiNUAit5RlfT6u+F1UHP/JQeNh3 ekWTi6nMTZc8L0uP7XymaXhI5UhSbDGlEFbFyZonAW1J9RKwpWl9MsO+liO3 Fues8DhHkfKZgIWjeGyT8zjL8zbiFVzbFFCRCeO/u56oeNXKgOywtmxNfp7s DMGatbLDVNBc5Y3RklybL9EWdjZjHLsB05h4ipg4ZTAxLs/d4/tzagt1zZto 5ljzJho8X2WC5x3ExK5gYpe5k1HvDkSA1SALAi5qAK2SoQ2gbRZZZcMULtog Wv0z1hQdB9IpbLSlcBpQrwkfgWZ/l3ioEFnAJFDwH0Ao/E2u8THc/H0SxED6 iIi/ztyIkj+rAmpRxs+vFGrgz64UWWB19lUhYF2cnCKD/VGwTeuTQ8ERbwQ9 P6Cgm8cUhlFbsfaQtzk/7VsIv1JSCuGJQXOyRTYpw+wkJ2WZoT9/kcHNHMlh fZ5kEFKYipvVDZjKGKcUw1S+JNifc5suyeJ2d36JvDJDAQ63BDjc4GyB8rzL 8IrNDhjlsY0upJbn/fpnCIcFSUz1j3Ik8eO+JLGqsk1JYjz1YBwyV1lorJIY t8ezSeQUKGqj4hRRnIrC5v1Z0WDqTdNx/fmQQ5kLOZS7feh8SyJ03ulDZ6co dmmrGWGGsSv7uSd7HcucLPOyOOv0eb751Hml8LkOGG0IrTYba6W2YXScW6kC x5TiWAuQRLNfJSJaEumAEjd/D5t+A2Li3+caH3MwOrdSEEALhb8SwWEVIfyZ lepEyQ+vFNKhhUVrfrYxchU5LOLkjHGyS540Q0e8WXYSG6YvfprQWEcQ7/EV IGqM1vSxTaLs9a6GMe9ygNuh4/1fcL3Os+lGlxOkjLPAtxwvq5FG696046eS RERdttGUJYnWOmibsfSrDKlIqDirXatUBreaJ0bAiIHJuWQKYNyE512VAMbt oT5uXYFx+BxVxFO1yRXrqekXO6eUROssTFWN2KK4QWGxrCaubn2g7Y/fKqWW i0SLKopVMTSIwi5CY1fOmi6hscwXu+SLDcbS87zKGplr89II8yH2g0arLqr3 xnqubTydSsCcMzwC2H6RaKgISZQkSIIF/hpu/juQxF/nGqmh4t6vEkx/hYG0 4l8IiLnt5/n8b/pP/lk+9jMSJKZxMKaHmkb53gGxsFozdCx+mYNXIwqWhzxN HPUTGiK9drFvbGCr4e5MUsWFYCh826RXYjycCXi4HPBwKuAhLNRILLvqOE2x QFHShgfavj3u4zIIXUwlmFMmw0SqxVHGZtJnmCeI4kggipuDhjjqsE+e9zm8 YkvAwy3BW/Mj64mH7B4Txc15vZq4OBBR7Bc9x/2TbfRs6+jiBjCaX7Fp55TR ph8qFmabpVJrBDs1j/Vex3mWJxNR9G0hinYVJ1dQXUQk3TWRdE/2V491diCM TS6zvtJ0wfdEOsVmlueVFMZ+yGhdibHSWJV/6YuOxKCfJGbZdgtER277pgOu 5krBIMki8YpfwrZfxqZfAbD96pCC5S83dOsv4uYXiHshLOb7/m2G0DEX1BA5 hYMxJ7Q4WBcuV2FhETI7tRcl3gscvQpjjZuiYoMXD9VYfYlvxHet74GgeHhf EBDngoDYDw9PrsLDBfYEj/FQuyrj3NecSspsrY36BuWI/VLPVkyMLIcNUqZW mHjRVprkRXFd2VQdwSMOiJEVR13KWV5wpUlbm1h8U0i/0JxzKV7519YdMAch kEsDmbIHjavrxMa6BEwVXKpLZxC4LJw6cZnKIudrPBwZtVV01ERMEV+XHTsa X9/gfYpX+bKVS2S5SJYL5XGkp7cEItn19akuRe36/C6xDWoe+mv1g0zr4kmJ kFUJmr6wCdT6MWaZk7wSm3+WOKnUkvQSz/95bPs72PQLSLj8ItCQXPPvNHTr NwnBGh4HWCRU/rQcozI01sFjTBUtPNqcShVEpnMrjjJCAF6k7tEIdSfOeT3i nTjlELqsLt7ma1Duq8izVMHk8RJMLkcwOS3n6YQ875jvY3rAT16WDqVtvqUf dUzlXJQ6DhpOVzh1kmnosj07opDbAoXcGELqmwMibg2IeEkIwj9LRMzLiCgH Zi12xX6VKhpVx13rY7GxzqitHp2UdbEOFK1hu9yXwcnc46b3s81O6xwdr/mK ZY2un4yi6ztNNkaFxyt9RuZiub9Tlgt8RmYThceOnyqrx5Y0Q5w+a9HP4aFt aeJstQVG6+FJiZAxOMZ8MgmOwKUfIhgmaaVjlbnBx5/20W6+UjDMn3NwiYf+ 9jBBEKuaOnH3vsmteO3POYTF/Z8pvelPETtXYSO3/Sgn7kjhYxWFjPPOFiO/ pQYji7DaGQgWqBE3fHVKiznoDjupbfKh9QVeVFHX4vUBJ2dDrZ46F59N0snF gJNHSjjpagyW5PtYnDzBnLTryXCQE3XUh9hroZRxj4ZzDrMTmZmooK9ASYIT jpEx65BJbsDz7iqj5NaAkl9ZT5T83IoG2q163riwJt44aJhdl5NJJapTMGmt jHUwaetaioYOi7K+uDLtYfIEM4Nu/NZw+6NIhHzF80ebtNZiP8sfb/T80YXc PRkeenI+9WjoOZ9CZIetbZzPo0fntyt/ng/zgp8XSqBTUPm1lbLdMRV6VwmT lXAJ+Pn+bHilTCdXReJ42o/j5icIbcopf8qhJ/kfIW84oJ+yQ3fvZ5vE1eZK EUH/lL7yJ4v3VbqosNhKwWLmvjNmha6jj981IDzGqmMRaTs/AdJns9SNmyze 63C028jypc6qaPsarz7e4hPVd9dA5BsRRB4oQeSyh8hTHiIXBSJnCZETNHmP M+rG6b6/IurWbtI2M1NFJ9XNaEtdBom8K0qefY6ilSr4S+JkM5gaiZM4jx2b jBI0m4wiWNBRipTy0IXl9M3WUBpz+rNG0ZhrNmOu6fJUU307GfaLv1O9qq1c Gee2Y8NPyhLeD0e1UBo4Cil8weMo6CZ68k+QcrpkzpFsdcuI3cb887yPpzQO t5TzNs8trmdSB90Pe3Li9WQfdJnU2c42Eu7i026vI94u3masN0d78Xml+kGL pZrgUSxNxeSpJE8pLicAfTd5pZqEEpiaW0zlS34YNz/ikC1fKYjoj3Prj+Oh nyC6DgVoDWBZAG3BWH8y4OZPBHwmUlMF+JFsyCBnTCq/j5/5vSSe1soTo+d3 rhTGRrX1KIKqtcci6OpA3Dmz5mhIyL14MuwHw03+gG73hoZLEyiqOe0HTFOI GEXf8ij6UQlFlz2KOoeaRdFp+ZyTtP2gSNAZIGH9sflta4LUBta4eKrIJoSv FNmsyulYJF1DYN4oZiBZVTxYzHvZCmXTbwGsmNq5PawVmLohmCOvwZtsxtrG RLpnYd3xczjgZyOBn46FdtfMQuPp5aqC9bqETxWCYvhUy+SgCKqFNUBQbS0G BJ33CNrJMAvAIiMindnEVVovByXTOoXi5M+jno2qW8imxa9j4N4LCaCLfB3i NragcI0WR71raJiJhB6TCjkvVi28sShqbZVVAXyVuhmQlMDz10jtVrFTbvub hLSApo7u4eYHuCFwVN5zmIq1HyWkAvN+HO/9E+CaP46bH8sDJAYU/iHc/CAR 0rp3SplrfvDfIEJWoaJmsvshY1X47ZAxo1XLZeGG/AFRfnm+t3lZqRJhxo2+ eNA6fh6p4JhvmSoZh47LCXQ87U/KOXnMOX+KUHxsVSieMkdanokLxlbNWNky LqmOeeag4XgdQgo4Gsd4uTF2HhCSJO5lwNHFWPs81uiXHHG6pjxvBK/YgNd+ Hu9CrNwQEHJTaLwzNzBCDuGBDf1xsYjO87688uRZy5g2Pu+HjDYVHvsm14KM WnKISlVtuqgdtBe8Q7fj43Sd86mI05dLcbryy1Sex0qad/nq7JsTuR71U273 mtfG0IZW54XqMtXaLBXhxBXbKXS0PDMlcRIhCTTfQT6Z5JuObrZWyiE8Kadj cbj5vgImiW0AvR8iQuJ9fwSB+Y+2FSsdBhJNA08FBn4/3+/7WHBtZce6+DqF hZqqUaejNYHX4eGC37XYxV2yxbZPuY16CUXZ4g7v+LncSy7XebXaun4e7MMY FRNdCscV/U+ylgGYeJqYuMB0zrw81oti77EQe6thHKe5thezqRx1AcXT01nW aJvsVLHGqnROn5ZjyZkCKiLwwiL5IsDoyoCKm8qoOIxXjLhoW95lJ96PEfho wMfR0ISW5YczCXwcDnC4RgZ5TRkpCwaZ+4R81IzHDQlTgUJW9WW0FPJcxcxz BUuMtFqfrR3LAJbajxv+oWIyKVfg5Wa8XuRsxmP+rNZg3CbFtT+3UkkrbD7g a7bv8DmgIiAvuyy1o9lW39Vsk79KXSdb7d09692Wc/TwlR2Xp+m6LAfmVUJn AE0i1LcRDQellqSXjs2RXzaInM2VImPEJQ8Aijf4wc2AyKZC6Q8EeP2+ALl/ y7HVTgSOawXIWIzUfI2G09WkUUGyZUDShtQXeuIYh9WWON7vD/tj3i6u3Sde MzWFNtd91NczYIL1LkPqswfKOOddF15rLmdQofJcCWR6ks+Sn7ygkC+tkL6V Z08BUF27ooxyQ8DODYFR7nSmTPmIiwK33BiKFDlNy9V47bsJ7Dzr6DvCzrWo lxNrir8HUTDPFjxt0jyu0tFyboCndjlDlWvsJpplUwDMLDovw/68bJ+XM3aB FbPHMp0MaDkkz21W6NVIzVR7uhoxbSx+U4jF1YxZAOh2H+Jt9VU8MGVulNdt YNHHrHEZzQenUUu+U4vmzFMrWcltlFI3CaIAqjMkmKvIJ0AJm/8KYdNyT/JP wqZjoA3CaHOlTEEdmuKs/17cfB8+5PvxVj8Ayvn9uSKrQcyAxN/Dz1S8DJjJ z/xOft0kbmLzN2RULLilwmbMLdNKZAo6NxjoPN9A5yXGVR6nvu+L4u5nvLvc Vdu45j3vZkXbMp3KfUK+07QsPQOfi6yNmGcafNq3r4VwdNTkeACf2q1C4VPV SZsK1/hb4dN2rdD4O9XQcS1cMzmjaHmullU9vQv7eZ6Az5uxxlnwzg/58UKj JK+8De+yJeR46LC80E14IK94fD1R8tqAklHtYv9YfPy/CZTUFkDaCxISeGwv glqJzlIdJh7n5KR0bVWOEyldzgdC0hFDM9+PaGacP9f6xgeNZf32kmrZNbZ1 LehxjTEuYC7dNcfYwr6Rs5zndMjTTUyeAO/CkHz2EJFyifajegXza8CTj6kF VgmZVayTzNPBlaOe+UpBPX2eCA99D27+Bm7+JvDzb20CIHKtWQbEALSE3O/i ByqHDDzS6wX6ZUo8kts+FcBYLUDaBLfyySLJ7YLuMjAOERg7JTHSAuPlXkOJ Leaarol55YuRh/K9rOhmeziIkqcoSio4Lq8Cx5kSOGrvCgVH66e04FglTmoS fJBAvB+/7JPCyQYwDaUESobi967ojKPNiGfiXmROJ2RuDpC5FWtbg7loB553 R0gJrT9kVhJLrV2P0jpuvxzr60vvZ8NcK2Zqu7Q4P57CTNs2Decazrk4R646 pjtPe4Kjs+zQB8w8QYbptMyicZDL8ii7tLny2J75qAnPrZ5pvesWNy/mddql VRMe9u3y3G2mqdAIEw2znIYBTchHiJmLnIohD2KcnZIhsExAzFeIl1USp4Oh bxCiLNs0cqfjnPlKwTl9+E4IJQRi7bsBkN+zDQDZVCA1AMlXBPz9qzLuFnyx LtamIMnP+zqJpC3DtilsxUjdH4qT6DXUkf3UoWdyaJUpyCVtdvrjcJmXTlLm IEsiH/fa9Qu+ZPt1H4Or39wmcFSsVKxcGBArtcOFTXOrpzJO5NjSxSrRsioW T6W768ik8Ve6kp18sKaREWAOB8B83CGRAibx8oLQQDJilhcFdLoUa9sCYLK9 JGeF5gRaV64nYF4XAHPNHPPQwBxzEOu69RNVYaadcKEfZtrmajb3o5hpcz8a kXcy17/5ZIaupljmZJmntwjZcQRNxzzX1LJIzY7bqFy55tM+Ko9x0/qMFDet vf1Sb3G/SJYdxM1esLmPZm7qmlG2qZwnbroJu9Dhf554Ms8I2fo4T+Hh0wxn k0qnQ6E8AZ9NA5+EUDz87QV8EvPwwu/MA3IClv86br4bH/jX8RbflZdRMrz2 O/gJipEhtv4WYnsJKldMjM0v91WBkuo4W6GyyOVUweXmJFw6ubIccxd5HaWW j1bkdt70smW500UZMmcpWTrIXPIV3r0AmZOrIDN2BsWQmcrzxPJlKv5O5XrO UcKM0z2rZpqJOqcVkPkE1nB0s5ZDpczP/BKxzW3lAH00wOj5+Ixm+LQhUzuk 5dvcuiOwUtaWb8O77Aogu+OzAdl6VuoGmLGS02gtGFuVKqpyHNVhrI3lU2VC toGlpoxswzZNGanqiXge3NTNCgLrG3B2lu1RJ+WimWSe3V0cbq4Hx021V5HG 9OpC0tRRCmfv9+kjxVn1xl9ncBb++Mvo63Q4qx75LV6E28TydNcKeMQooXk2 i7NzlqdjSL8Tj5aIrzbED1jr4CpfMVSVL/mEj2mor5ibW8x1YT9RNw+oi8vi r4JYfOdmRd3vbCoS/5WAzt/uJIPmSsE+yUCdFtuMkbVBaB1bWZ37qeOihZhZ B7Bbvbdhh9dTLvWi5tUJM5Fy0ociTvq8zwtp/K7i5odG3NTckCbRFWRPRSAL bWky2C/LIBsbjFLJdM0RqchpTUYpbmpBVvNE681NK03tUUr9OUdBS7S0iN43 lC1HTKlfi3feGuyZBWKSlt6F125aT8S8PiBmJS2NuxMZ0MzcHjp8TqBZZUbq B5rW7G5BUztc2jx7KlWkIqgG9CCn0zxZOySnU14IRa59mgYllwi15FSL0KuC +i+WxNAibVQGzlkDnM4MfzWtnD1PULu+y1HHT6TT8eDZDZbOIS/i5QSHrgcK AugcCZ71L5X0UaLel4iEgaxmDp/ylSLYr0FRskjcfCs2fhtuvh2I9x3nK4B+ R66gSnj91vAKx3qVeBIiC4IccjyZ0yDG1wCThbyZyRHNZcEU0+ic4crCB4NK Dd81B2T56GOGj2oe6DUTwqvfSOXOYwm4XKyBSwzlxyK3eh1cak6oqvZn0LR6 qkNbXAO0Fve66eabmO81BZrPhtzQpnIuvfAhbcS73Ik3pCNpU8gSbStH8O3P BipbiTboMblsBZxc3c3tQGUn9Hi6HJso6mfcrEsWxVhpG1+qJ6kqYZQK5B3J nGFtxTQjKUxJMkdv0gyLhZzbGGd70SU4HcyrofMlL4I+uwa8VK+Smjttuv0C X7G3xffKGfVX/5BHg5zOxxmiS4dVkQE3V1abPpfwtGUCUyCdfOmX+ZgG+TXY yWQNCSE2foPcEzffirP02yBmfjuI5rc1A0TmCq9nwms/IWJqeE6ILChvIJKZ UyGOrQElOxVI6RpobPUtelMJoWt85K5JISWW9yeI5XMmekdwodG7mo5U8FS0 nDIOzTJaLiTR0haS2yrJuiSRCp+xW7Mui77WRFEf1+Zao/gCLNluiG02aGqn 32djsG8OB9gcxruMOLCUd74CH7EVaxsDgG4KALozAOh6YecNATsLmlkdmI+f dWDeL8k+KM+MS4LixkbWz6mJo5QImgrQlWtOybk7Ra7ZI9ecpj0JXHOJ5/wU 3SPLnmsuGa65WArS31gjfmoCXvt92GTSZV6V2+mTv9sTGIqJCzCtaZNLB5Us GAZ7EpS7tnJzbC2X0wJKG2gDPlDZ3GC328IN6lsUN9CMkxES5lL9ql+Iay5d T05I9GMkDag7g7VvbAVKcq1ZRslcX/Ex8VKz4oy2HWirQns6ZpPYvCiky9lX F3zz0DlvbUVDUTQW7ayCytESVLrhpy4Gv2UNcFmVH9pvYvHxKJ+ugucpWUfL GJ0WJzYcDUIwU3n1VK4oBZlKMAeBzAGM7vUxeUWr9Ag5WQR0ZYjDuXbpisbm UTnQiDO5y9tehE9gPvvicpTO5NGFeMXVAYnXHzlb9QF6RaJ96r8adtrGHtpZ WL3wqQRSvzhduScU+5PyuyZ9rD7pk+9TcrHMsOZ3OWCnFhJhAvn9mZsmIBY5 3/BC14uZm9w2hZ82EX+78crfEImdSCpdUjIyKYZ2vG/e1UKPEEddwZFrEDIb moQM+UYhhQ10kdnPJXbSD3bQDKh6KssDmjbI+xoBSouA3qmixFPyUlJI5qC2 AzGbATFzRVs+r0wqv+yVgrYBzBK5xOYFOVbnZW7eL9fTfN5bWl3/StdMr2OA s1wbboGzjmfe6qNyNSDd74/To96dGYPna5ERyYKnVkiqU7NrKoKWWS25zIYy szTHdXy1ZME3Y8dmnDWKI3Tr2kxF6FWVk2cLoD5Kb7BVR/MsgvQIPV8FIl23 otOBac5IVkPO6BrcQnZyjxXp+CKPVOieDOFvwQefb1t02qYftIFyRp9L8dob 8S4CsPio9QHYkSpqmg+mgE59Jggbp+fjgvW47WaVEoqzENFPnbVJGSpoAVB2 QlB2Qn7XhFylE0wj9aiGdjzCTmfaknPJt+R0E7AcSCii1h4as9RU2l4N9Tal pJF+wVT7I+1GLqivdkZ7TD2+UT5vQ+Ym43Xd64KNlPa8JZ56S+yKnMs9FH8s Nwi4OVskN1ybZBdiExJJKAmVRE0STkTyH28ApgIvP26FQD0PFDS8lu9yikRV wdQA6sSKa0ukHS7nCKjua895J2zPN+Rzs4qN+IrWTVm5rNyC6mUJqfNmw0jv iiqGqoDVZojU4bkv0w5wadlzgcH8KbqX3Nw885XMtC6Y15S8Zotsd7h+4Grl zyrnZ1yanmpAvIbUfLoSMwLX14BG1wZwbQbi10rA7Bd427SPla2hG0PHD0Lr Ffj8AtEucNWcsnUXnndt6AKyXtB6Y4K7Vkf9zVgxXUtyybqezgVabVe62P1U J5za7LwN/pXAqniKLCi6w45TtAKRAInFuT/HGftcY88lP2WGFncuhuaeqYST wquKAKlsvbrw7/fXdSwEKJFVMbWAWNdMHgkoC7FbEfRvlaC/xbl8t8pbbya6 YqrzWVYhI/G0gWi7IMviyjBNpwvktMIN2Vh2kXOdFg2VG2yq7GTWZcIi1k7j 5ktMUQFIv7IFQNpSwP1y2OqAtKGv9aH8jFE9tTuRm20491aDtmffsMduYEGW 65bv2k6V80V1YHqVjwSu82PWLYal3p3wM2kd0fMRoGrN+rsRoB6OQn1bV7TA kH+ZLRUsW53iGD7Bk0/LM6vCfVVIq3xONgXfL6f0GYHqqvr2VVJphKqkp28D iK4IHI9o6ZGOoNlg4NRw8PoQHtpaxtDNjoAqYFFlaCcMT63wXbh2pZMN5LVX 4F2uYL/59QTXkYTXKU+Ba1066sRZeUoHRVfbaUlbI9u0lJUHrLRq5QElr7E8 APKq8qpKBMfl9xznCQ8CO010nZGLoceLYil0YXJ97NxsgUe9TFCV0leZNU7r P50V03KkpAItq7/FoKx6UNMo64jshZnrRX+hvP4CWc6nn3+WdVC+apSBByAW hFb9qa7H6JxWkVI2WOCUBQtBj5XwnMSyoRRziWAL9nkKN6eRtv8S0PV0swyn eSClzvs6s1KkkWZ948xZzkeHPuxtX6s1QjCd9QS85wm56zm8pQJUL06A6rVR +H97iaU6X701iiqwvmgkADWMaqGmppwOex+cygBTRgaYJ8Aus2HSnLzHnEnU n4xST1VSgGqpmn5S333KRGrBNeVvqqtVSnmcBgTXQeqVUtB6VYjtGyHevxpr bGh8PZ53/4CAuiPQU1r/L8MaJ6+8Hq9ofYbgWRn0x+Bp8lHJXP5awDOVz7eF TLYZk+0rXwWeVlu1Hiibm9LIH/RU9VXN7aM34lEB0GOkqCfl5J5mfqpD8JyX Ex+Rf9Go6aQvcNLC0DjHrwCqOmvsi9JyetVaLU29z1/YVm8tg6hrdxeBqBwT gVFhBLtoNp01BVE9FkS5YtIeJl2elcO6yePShsJ7SvFrlkUnDkddn1FHGIU4 AgTniH9YWyAmAieXYCBYRrB/aljx1CFmHhCTrw0Og96KZt/PY0qp66GzKMfU WnXX6sOVc22hdbbDjNy2rGj9UUCnK2tIQeeNUZBvOammnh6rgc/dxm+vGXtV URU+NdhX3/0c/y+xzdcsh+C5Vdy0X8CvampVOqoKQqssojGEpvrRxRA6gO/p LBH0kpCNYlHlDlerKVvvCzR1Y3Debw7B/K0BIzmP5Y4VzrV7GjT2nOHxplp4 jLilU5BbqXx95kTnmbMK3WN8tIWetlldVe6pqngJZ43N3SvBtOZ6VUc1f48z E50RManLMTlbTwg+TtIv2mHxHZrhzHt81GZ2Uz6Mn/BFoOMGIy3J1FzUWwYj tZD+hQTRfNgQTW0/cmcFTl5nVNMrvUfKFT715Cx3TesR2u/ItODezaSpWLnZ +Ew3OETiKd0lQDqkanrfacMhGZCONz3A3SwxD2A4j5sFhO6LIJcLzYCIfB5f EV7byXDyd3yivUOfAfJG7azjpw13eSMXmbtiAve9CzJ5oVeGdzFKd7+7HyrW kcrH/TF4xhdtvuiPUwoZ4/ySyqA+apd9KHG7IBXkHrSG7VH6mWMDhm7ka6qL 3FUOrco1xf6mQQz0VehYZaJfx4L4FDzuAhZ9zpFJWeMEvfet6ExrJJ3tsHZh SDIVpfGjwVz/iLM+ydrnXJJpvdGyHSLxZj1aDpUaHEcZ+gzK2lY5w9YDLfs5 RC1aVjmdbCmSdYoqo7Qd7DSfdDiE5OPeMTrFsxpnN6woCwylXGPkbuZmxERO aYr8wV0pipgalmuJknWPWvEzxSytAGrD80FRMw7Twa8u8nxLBdHzTd5pM1Gp cJsO+0x329uFmt5l2ZDlvGyGSucMbjoEP0BjD9A4izL4ubZCKMG0G543QwY5 Le8wLe80Le84Le88LZ8wzU9SU9IG7+Hc5D1cGmxvJ0bOlALuS7NOX4zUwDtW NC171DSROuMVJ183qSKLkzZdFKubHQbiyzxDujxTMHnQHGMSNJ8Di7RpI+sB tYG4qpx1qSNrbLIVnVVYmarq/K+ClUUa/iIgEVPzzGpvc/ipDO7SFZ3gnJXt m4O7vkjIjwZ3Pbt8XogPvgZrVwWb6Lqi5oYEx0zqlxXJoTyBm4tnjZtaGl/l cBpUxrRMUxNFMdNUKVOjcU0WaTQel3MiQYq4CXUis5nrBNr1bvvprGgsPxmc T8ulqY4K5+hiSdasYpzaiiSOzO8fED9jmVPd+Rd7xNmZFS797X4m263eQrkp tGUGgk3LoZ+Wk2Bazgagm0O5pkM9JuVnkJ/vQCDq4qYH8uAAk/q+TgLfo8rf Y6Jdbe9c+Pys5RlsJywNvoG8NWeLdZjtlukGP3zOgK77evia+MqjspSB1xno t3sTvQLvrpBCKoD3ap+Hu87vzpuMWzQGXzU+PWxSSk958F2dViocpFYB3Z/I 1580ZqiO3O945byToeunAnCXVcbTVNnryeogobxWe1pzFGiJltVXEVZbwvSX ncNPzSVc4PGFAYXJSS/D2vbAU6NsPkmtKxTVhBQWNsi7IgB2NJ1HUTn6RXyx G80XWx+YvrlMbvsopWuA6cHobVxdr12f+mWbBhEEYjN/THFjQz/OYxUFUsZU 7aQHqEaGoMuiqFnm9qdYfT/PLido3Dxl7FNu8k5nn1KTqgqoVhyIqa41rD4d 4NoRsS9EIoGKqWqrutUTuhtrKK9CttqsyrTX4ZnC9pYkdIPejoDejoC2jgBp h91NTy6mdjCEavFqx5Na0OQuZtnu8tpyVZwZEb+jD7eyjgflaTcEtPEZQwRr Jdxth8w4N6ezLseRKnDe1gegY3acAmllyLf5Ha1KgrZ96gfULw3AlA/U6K09 z5YdWC8EsJ6hojAYWKvuiriuzhcwCGPu1welrhfpgFVUPgvTTE5nnGohlaLN hOTRFba/L0xXhEctIr0Kaw+u6BRJkLGynQHYI32WrZ5vNPUI2p1elnv5VfLT GC3OGZxv6a885IN5ABZLaaxBDaz90DlOZ9UJEHVEWlNath+K9QRYEUJNrdYX MB5ECEemXdjoelDBH4AeVCeyHvv3TbIMa8nPReL8AXBgHZIL6gAXZ3KNxQhL qGM31vOmrCAm1VUobYm1IrWWa11jyHVZ1nUEe1eSZKtQMcMReAZJMN50cNOF VN/FQN2FRxz4POptUMNedG1TunDUewhAPEyw1Ydzpz3AJt3BqTfNy2/Gu6g6 jGkRz/uhwSNxoU9srkBj1XJ3GD031iuuNJpFijorKqfo84P+QFj94qkKZ9br xkRgm5ruNchsdQw1E3Q8Ove8ltFh5DZPelCg80xAZ+vYsgVaQGc1FlTpGanM WJVzC+hcRafXYjAYoFvVoJJGI8i/LVfbqthMqeJz2DoUkFttW+e5FvwExcKH EBFsisj3JGxfzbJLwU8nKt9lO77VsXVH7A39teK8L2K/cNaIHXdRrUqw9XNw 9ePUitpW/oi7WOFkjqXjuBQBF8QULwwIfTP0zI7zv+tspYVfztWFSVEW5AJc kPfBstiAeVa++qEKb0JKCYmB++ka4FZFpEyxV4N3rIzEVFsB/JIKEBcMlBNM 0BA3AtfbcXM+4Pp8ihpoXOjydciNzSB0nSb/nibcjhL3R8nJN1AeprCSgZdP 59zQDtR9tIzNGBuExXO8EHiWHVkG6JkSQF9kQDqmzlf6H67i8nVeYE6BtVLo uw2NfsDQ6MdMUu7pGsDebQBbdY+PjO6h7q+U9gELA2au7wXQnjOg3SFow8YA AVopdVxVq6DdL2EXayC2wjYlRKdodV0rlwELxarauWR1c+1FtLoVSDLZ6XAo qb3CNSNgEas6cRXEc4/XuNcKWseNWPvcis78NBpe1gpdCtivYKubRkXenp6x 19YTtW8dUKvuj9oLa0Jt2y7LCtZxL1dN9KWsY4rayrUHEa1xNsYWMk34WeRO 2cgscuOqmGDvt0m5MqZkmWYxGUp2p6kiLrDlARQRNyPLvJ+RZZGqyLGEZUI5 93v+alZl5I0K+FYxW5OB6tUtQ/hsSdS2/FuVkpsMB7/O8PCrDQ83UN6AC0tO LUXzi+mcuBgbdsHocBHWdoJx7xT0zmn53U4HBlBeQHYUcAtUF+DdBuA9HzeC t3IFXlCmxXgjxPpVwHt5xJIVgJUpa4ZPNQwVm2Md417vilAQ/kLkGVPW/Fyk aVQB8ft+JFZdwwKxsmerbcwZP1mX+oaCcdd3IqoHY/WVWTBOCdKxxpFyUKyV Rcces7PsrZXFE6+YGoi4breRgOPhAMdDIem3C68Ydv6xEgg3AkUtwDpPgPVI UE0ixj0SjBlXBPCMuPe2gOwXBhZ+kUtUshMNC9Pk+7UcnrMkWAWd29YT4z9f JXSn8pFaNW08b74S+PlSudog1cCDgryVu6scHUrP+0neFuhThRYpoLcZSltw 4a40mOAxgzDy8FOk6VOZK7zokp7PB/l7grVfE9mifNcJ+uPc1a49FZWnx2D/ TgLsy1J4kbm0fF0B/wsJwFfOfmcFb7/JcPcY+D9XBn/5TVcA068Aul+Om8sE 2IdoxoXdThc1kOykeCLovQEw3sJa7h9UHPcLho2OH0ocpENMEVCXH6ewfmUE 6zG3VnhXfq25xDv8j7dStYoiyrMfibj2M5Fs/WLEt/cY6drCfGwXjmFeDR+z rLpwlRdzNMgt+JNolqpdCurBOlQssRbiGOpTlRgx1Nv64SrujYturdz7LKoy TMlbK05CVmraRPvNAe3b7jHqJtrP5kK8eLjchjEvjxntFZ3SdYMrnMu8taRA 7GuDS5mIfYHr7C3vcg3e+dp1R+eUbrI2dH4moPOgvRrWkoy0fruUeKKSd5V3 ZBABJYXQcWLSIvQxciAs4yyLOyFUHELKtKnsEO7YQPsxAeQp5iadeXnKN+A7 6Zs4apFHP5BOKeEv17ByK6xYZq52k/sMO7+rgqEnAFsO+fW0dShoX5u5wpFr uO1zpN1otHuVW+SxqyikWEHmMujclwKkLwFIX0p8vszw6ssd5guPv5J83/Br eUOBYv/h1xlVOubaCsi3GVC2wse9Rvx40PDuR41iHYsgLxhgVpfyG/6gKDi/ Z8SQ2Ahy1OQXT3oVe8aIIgu+5nietR0L/jyyXHy6VN+RAmjrzrMAXaVox+JI HR9XcaSqJjl26g3SvTECaQcpbZt2tBhdz8aJz0OBFRNtW67OTTs1mvQl2D3b NQ67SReKqWlLzSHzoK6MlIG76VKVmU9aNhJE/AHcPu5cK7SdKP1mecll6wnm tyXklGaVp6QazEcGAXN5rhxGOVFSYF5nnk7RbVtuEusqlm7HuspaAd1qK5rL 1C4SYwT1cXaRmPBgPhPKUOZojwVb6pJmd4Vm3+1TTstkVzP+Yu6H6taBovnN OvodI7tScNVcHo1oeIzu91Qg/G2rUb4B9GwARhsE+mbg5g7qewTeHBjcAhgP A5XbWAPsd7m1AVSWK+s6o4EYssyPkE9WiC7D9Owq7ny3gen7fZChEkmKQz8V 8WiF65cMXMeSSQzZ1g5yJLKEpCB73jfRXfSwPcdyvHn6lNTLN2USkDFsq4QC 2I49fRa2YxmlDrYH4dYpf59ya5uQPDsppZ2SUsoz2EbQvakM3c0ydFOa2OB6 k8u78e3akXgBf14zqC5DrksvJXJ508vw9ucHII4Y+eVY2xWeRzcKJw9n594L 8H4X450v/mwAO6WNDAzYw/0Au0HEfrQ2c5mSRwYh4NZzUpfBTGnhICHngtlx NlM9KLOZm3PXlX7R1M3SsEU5G11p2DKv3hnf0vKkv7odZqM5GVKb17IzUBm3 ndH7XSObKCO3OrnF7hc8dmu60zJzi9+WnT9QjeHy3e5kjbXF8dscgsq2W8m+ lbXfzHs3wbQt2NsCCA8DjdtYawQ8bjjwvwU3t5LaK2s2kOw/uJdk0ArND2Zl BftRA8/q/1A2bdXsmFFbiLasWiWPMkyXmfV4gGp3cAuoPkXpQ1ukFVA9x0G+ 470iU+yBWnhFEO1pE4oYqqsYdp3iXSeDrBfLPos0ZN8sZAqt2wmy2Qyycsth tLzjDrw5p2AcCrjdds+TV7SD+YRW7B0BqC8LQH1FqLG5Lfi8twY+TXjeGUq4 1wueb18zPKuvPapA1B6hETQj7bRdzoY6bSSG5kHotFWvLZ1O6SNWwU7Bs01V DgLPtjFbCp5xhbkEf9cn+2cbyP7LyT7DULco9J7MtJvQArOXY1xcVyHXt22R rkH1dn9IDud4nLJrK26rbmIZ9ksBpQtTyjMRUsdM++GCbQsoCuTJkY0QuwF0 lDNMiXcB3M0A3H5pAGTlqR7DPY7L7SiwmFDst3owlq182R24cWOBQrKBZXmW fBc5WVLQ/PAqeC7EDsugn6tg0dayVwfTe9ErTnA6e8Mg9RIPoCL1BNF6iQd6 kgfe1az2iM5L7L2mLYJ6BqkLoTpNqm2lIpA6ZRRRwXoQPaRKtF4rWq+DaWRA 4TrC642BXUf9eJsBzFoBzIbw3kyGXoRP5BpFGI4Pue/QZoYKZ8j2VLz0XVqJ BGgrMHPOoH5n2bKyNcB8yoHInkirm3NeELh6qnSI/pVL1rN+546zHBtyOzZ4 80puebs8Jsde0HhQ5bxfxWVsYkmR95TgklLQ60aIfgS+SknXXOdJ9v6YZEX7 JMNl9qFvwEkuX3sqc1MhTYeU5xznhD8my1EuzuPi+s4tsvLnEKt/FgQIFuSj sSxSjN2b8LuoDmP5vKrs6n15MRotEry+ASCVE/xxD61m0JAjK+ArnElpvqX6 9wPN78PNvahMvwc3Auebge1NrPGxhhtc7uOIcX9BvP04NBIQvgbl5bnyPeUE SpHxF/wvVLTX/KOTucuk/O004gdifpCRlIC+nBQF7C95uNd2BKgGWKC/dNK7 ljqEetfGwML+jIf9yQj2Y5IO2I/9gdbYbT2CStL7SeGDeAVj6NecZQr6zzJn udaUZbOM/HktVLUCVBHviVSwrm6kIDyE7zJspwrR74V7LWdFd2hmzY15hHpu /JLPyKPCRv+TirZ1TskhlvuFv7BZlnbO9/aYzEytfLkr7awwpDfDGLjZlSat HmiaoUipaLHfMNZ5zZS2QgRyadCp1nWAGQ3xVetcBpihOndk5tShdlWdKBx3 l0rkkMrO2jEmFYHYDG2Vxb1fllbHmDqRSIuUbCRSzta6SATjzAlma2FvmJSf fiKbku834dtF65xRJ33h0nFZjnKZlfU5hiKueKmwwh+W5RCXRXYFOEzBPxaO llaFJZrOTYUmKiKVB5350qAThSmZG3nyICw9xmFBwF8e07AljEI5RoomBo0t GD+41sBjfiue2Aqjh5Fx3Me4IeTy0hASBwxVw4gNHPYkZPj3/b76KBpOjBzf QAsGIe/lEcW1BXPTyS7S+wqOcDJzVcIzPofjmjzMsc2JU+aLEeWECSTqZB8t 5KySfnDKWulnrUp9PKqkijvtqNJPrcfIctbGxxQOrx5f2onxpUg7FtWSzYBU BCoWmHIoaeFbUSKhT3dr4MO83cANrYBdZkZpNxJlrRLG+V/o0JAFGEUrKPy3 olcexp22i4J0lGmHUWY0dIFhYmDIjQAF+S+iKl3bECyaeXhtIxTFVo43rZBV 5mOt8C6j5TGo+LQNSZd/4eVRy+fW9WxkeOeAg1M8yNvuBW5oald5Op049spZ hz8pgcx6+OPhKRbI7PBUVYWlfv6qHIbW0FblMeIh6hjbxI6zVewxys8nOZvB SYZDmCymQ5//uCzHuHQ5RJ0QPNMOCCcYA0ExA1bLICX7RX3/Niet3n+tudWY SHPTGhfZPIcOVW8MNFwtNDAWyNHXEcuPWg0MGXKSqb72JO9xVHkc7QxlpBnG kMNhq4U1PsateTH6NMPo87S+77O4kU+Ts6piFGrgu8pZFMc0OhDZuObdisFI 7Tw2P3ysSD7IXh+X0emVaFTSVmyLrKub5BHr+el/et7QO7tqVJrgGZAelVTi StVC4ezrJ3PVJSXU+lOXQx4k3hlkZIpjHtfgtGI6wsreA6lBqYDKPDEoFQjV KA9KeYAnKjMo0NuCipGtTXzPYXzhjfjmQ1gTOFKVRpf4R8U+SN2mQ3GcsdVt foj234nfriTBNYNpqRXcpu0w+HCq70sT1QOtMJQUtb6jYchphBRM0+XAVw9X rfC8dlhLDVx5uYlknvguzUAb7LHSITYK3/jbLl3PfuXFOFaoeM3KcSy345gj Tg0f/SYS8F7IG+4n5MGGfrFcyikXbJWWFyfiU4OZLUqr0vNszULKRGWn4NF4 K24KAWJsE/OAJ/T0PUKogiKvvc+dS/YkYW1a7k/L49MsXhvnwObKjidJ2DGY zbN4bZz/XdyldQ1qstL6hqMehg97s5UObPv6DGxvVw9uDYwPcsjN+CZHVIYR Odo6xqkW+ALH2uf96MNxqIkRqYWhaRjjFNdyPJaHUcoNjzkDOz9UybvIe8vB 16BJk+Ll4Gl1ABWPW3GyPNLluJMOm6YKWjNwgpMEncyWcwxbcvRtPgaJOSTp XNOlnj9iHV+RYo1OxcB1PORl0gNXnEm3Il1dNl1DqqqMuvpW1zp41ZmgBvSv rr3ANzV2FVOUNWpLpvKELagYwBrOUCvfjEEVSh63oeTx/Ca+PSreL2jh92zA D0O9484ca1keRmrca4StKLC8yGyFB9Q5QVsB1+w2fgwrKy+wDS0IjbmbPhOB XTPsNw+kuRt9dfRrhtEvd0FkMaOF83xpxsdHqC710+bdRtHzTYOkItfUCHV7 jTBOFXNr+q5xZsQoxrWbwlozjITROLk9jH/bqkbR+pG1CAkrg8M8mCWKEf1q N3auzxB517oMkXGwF+mQLtgbW9dgr26MjAu3B8l5xUbjOO9l51rWMTKV+wL6 HSQKHmY3Z4yTR33gN15okwz+jlOUmi7pk65VwrwPI+ZDacm0z57PeM/TtC// wlg54bs+Hzfj5ZEBxssPymNmA+OLnIHRsNnAUCQPa1joQ8MGRi0GXA2MYzkG tRzjWxND3SjGvBbWOOZxayOEaP61GILbQTGMBr0GvoOccWbckzNOvqqcRB8k xr790finsdtRE7+d8HVz6vOd5rIMi8qyHOMZPxpiJFSHQrmMrsfjdJLHa8a7 FNT6q9XT45wTZiwSGOMR0XaLw3llRcZ+4Vxd+kqrOc5lVBykm9w5p7GKjkV5 eVQsIrrUjO1RQqRRjIg6wLiEe5ZbJMr8kKRgxKQIRzYOiBzxUEF6UQs/ukXO 3gzswC/DRb4kt9vkmbjNbepPfr4bSo0LxA20aFpwIT+/ja+Tl8fKphvRNQ/X LAeHkStDZ1hu+7HQGqW57/xk0MYwoeuN0FskG43NFuF+5rNu5r7LNHIg3ZXI zbUTj3Eg25kYDodDsWX0Cn7aNWc3qKaG1+uco3G9h82NAw6bfdJ3rZRGmpHG ybZEaJk5mra3tsIyHjutTyQ1dla5CeMmg7HhWwXTlOm7ylkYj5/ARYyf++gw dOPnYR9nHvXC6bivl7dxpsPgDp2GXUpsc+xu4Qt5/BwhS2xFNOs7YfRCe2YH /1NmHNWY83gUdx6JxtH9bshpYOyRyykaTt0g1SpFoX5IlSPHkU1H1QYGPQ6t C2FofR0jqIyMGzFGtrCWu4D1DUyKtdu/XM4kDQzd+8onyLWpAaINEv1gKc+R LypnUdWAeTgxaI5Hg6YWnM+EWQbYY4T2+2U50m5Pu5ETBo+FLC6Y6fGITXEa wCnvBnJmj6L3iPr86kfP2J1txdA4prTmDxtTVqXqUv1J+o2gVX1K1ugBzAZo +ReZ4Ip00Wh5FG2UddHKUbTC08wRyfWdzoN8CViKxlCOa/Ieyun90gj6F4fG HHsFZcCXNbGf5C2Vc8h/+Z1y28BObLm18lNwj6/N8hAmhIE4x2fw0+S+7m4A Ze6C2tKo23ChMZkAw2UGzvyhGpnGJap6JKIuuXhIp7C1E9yynEkZTqpNVyOw ntz5Gs/z85nxMbY/p8nlXaxd5QbI05n5O+tx6+7+41ZexbL6i6Evl8TQtUR7 g45a6j6JRy2b4otb42qZkpaWVimjsROlnzpqRy6N/FQhVeejbellPfLa7Bxz +sxBK5xn3mrBQyYKWFDIsuRLxufZwuk0BzEdvGZWDWDLdQOYHCIBeLmGdD50 P5A5B3czxIV+MGtg2JATSie+eI9DjgaJjMqaGHk2YxhqYY2PcWvDPc+Ngu+b Uag8Eg2XRqLyaESfTYPfe2hVFGcGpQz+0VPynMSg5OehPZ1h755qwGsuI4Pb vbos+hmV3OyKOCodU4W/emQ6Ghzo8ciEsyFlHrFpOqt29ovt+qXr1Jkez6tz tqPTADbFs0jbpYAvGqjycrhXPftXM54rsZBATfGN58+OPjdjMCqkTj9SYBdg 3Gi4IURwyQwwbriRvYZeFVegV8WVaFVxVRN7tQ2QGsU+5hof81vlef4VfK28 DaPG3MWPOlY13BipI1SjPEI1wghVBIfRCJWHYLvQTvOgnRaZw1Y5c3gvdv0N WOu4cGp9hpZ7qoaWZqKrempoiaMhczSz+HD6ccUdyefWPLSkjPPnOrRUCYr9 giIVFavMjlXDizU9xsNLh21quvRVd2Ep72Vzcu2Ahc966/VsprPILZrZkGjT BqYuyqXs3NvFfO/H6L1fgO0Eg8GYt+EfZvxxiGiPyTgOZIvh/35u24fhYC+G iI+w9iHWPsCwIYPDRowTHDFaWONjGHzkKR+GV8hrZbhw/n63HDD/D7pagAa/ yTZ+J8zhNJYt+oIy99WP+5+ixo2JzM3GPJktBoUVe6LDEarHUbGb6SyTiGHk p89isJbxQg6oHTHiytITjFSrTR1qN1Rjh1UD43im36ih1kObJ4tjmlgVjGua bDOuqrqmc8iXrefIscEkR+pCHK+V+fYyWRzneLGwEWmFAWxczqId0CZiskVs I9/FQo6HHfa1c/EM2xs57JGFPZQ+h2Ya16CZxrU59nmOnZ8DioZwKEZxTFDA faO8uR4eHdzdo7LmXyQv92/Et5Q3R3+mq9GW6apGGIpcPNUKFQq6OPlSfkvT DUTI6hU/GodUD6vm9dgzu7Bpagjly5xUg/VjcyHOlioGbMdfM8uHPyFwIrjZ PyBe6uKFTXdyNGNdUx/Wc8Y/nBcFaSWF0xWSOXUyoX4aZ2aROLwZa5+u55B5 b3nILHyW0ZBZqIhZokGEzuUSqYjuYA2FkKxaSGxX9bl3p2+7yqfiztDHBpIS Y7tKXBpgAzMrJ2pglrKtWB/mIKOn+jG1eFlL02yABhCfYqM3lRZdIXMnyItu dqopWllQSjCLrpyzHC7naEk/4UvXjrvyNQyXcnOMnkaUsY3JckSWwxhKDtEj cqgoNJBjcpAulAO+sk2XAxxK92Oc28fx1014tcDBsYXbzRgsEVW5p7Tdkw9Q YfRjpC9jWMQHL2DAxCcd8dXXR7MFHePpLZ2Xc1O+NvtLj3vv6QQXZ91R//2k T1dO4wd1WB9XNHyf9bsPZc9CSeQw1o2Zx5kpPZaMtHAobaSVKv7SLFqsA+q4 abs1WC0wlU2LPSapiMvqganJ9FKFYYMaJT2crvfQGamDUY7Nv6kvE/DelnbV vMvO3tEu2RuNBBRbRwxNzxpFMq0Zc3WOXVkz0HWvBnGYk4eVuXv2ThhquCFT jgn6o9yCTie35jhUTRyzFjBJfppKuriHEvs78sQGPoa6/dtQin8734BvxTdt ureXD2qEUbrhvoZ8H7bGKiiUyliMD/Gb2lbztPPdMkqUHa+F44rGerIAp4uo Ud5HFWUL7TpEu2jpwlAqoZEU1nH0dKTQUgk9olhXnROP4b9yqOLUcxN0aXI3 uJ0Y2oXTiJPe8jTUsdt6eHTw1pHab8sa5rQs1kpuHqbxLv9shuJN5aF4gISe EUabsTDaKEbhZuwSdYr5cD9dlNRNoCzVFqQuoafF37Y4r8o0OmgMW2eM6RfH ItSxLUTcVOeujYjGsiqXahHfhJ8F4aQvGJ/yI/JUqJQo5rSBwfSEmZFs3Bf3 HWNxXxdFfhmG4Fm5wo6bqvIxGZ6OyHKY/1E8N4Yx7AjHahmfMTzrkmO05LiZ c4TO7Zgq73sQ0erBbIlrGMSXWB3tIuPyAHwI4ulhPB8D8EgYgHUQduuOJeD/ URpQj+GrHWf5g37/Y55mjDvaASaCOP+E/JwTmU7O5soQJn0pwjT/YwK3Dkyg Mw3QHTmkOhK7ySfKo/EY/b5Hkrpn3IFDtc+U01N9LXUjskayqc4cdkRORbO2 oM7OJFDnc6mba3wdMnVnOSDHsWzTxrIp34ub1BGj8XDVaFwWzdpVuOMixXZV SsYNwrmFn8yGqjgGRkrL0Ozm81keICkMvehuc2cDxxGtEO5GT517mkCoFo5z locjLv/l8pLbRrQB95q4zfEydFC4x78V35Rvzw/CZ7YDd1Pdw/9v4mvL+yiN 80uTv3MoKCG6Cwyzy6gIyw5PsTzD9qg0+/So99xiaTqKhKF6NBwvHapVj7Cn XFlMaa5u8UWvEAbpVhi6dSmGbg7XdujWEbqojCzOQ06ZzCF3x9qG3CE8sCEx 0N7Xf6BNycSu0rNppZsoQ90uFeKsGmuH6sbazJ30z9RWwPdznqba21oHjXWg plw0OuBWOWk09K0TjnViuKrw17bDPcrFuWuO051aDLyuXFqnIJrE4DMpexiz EaGwQ8fd47IcwxhylBPs2KLF42g3eIxtZlFiP1aU2ucYtvgwBuCwuIgzZ5eX o26RJ43BDXMUuvBYtrgFJeEt3MVnLfITw5OxjvERI/M4qyQZuWbu4zbYcZL/ x1n07zjCcc8ZTuBLy4gpPxV04gSLMXXavBlQDmjj+Kknadud4k46gR10IjuJ l04Ie1LxNzV84kDo8BkHtDZ1WCcEqzVUO5sMMoTaht/W5DJIKtEGtilRONXw iuMMGk8Mr9cMl+c+iLZLwYwJaWMFrZRD3LrmNk3RyElNVj6sDkvMiBkPmHJ0 Mo6V7ARXKGpeVcvsqIgjLEuGfkEPouHDQzmOfgOnQROgg3rbRzfg7GhjDTW4 j6AdxMP+efIK/1p5m4YddDWLIIu8vXwJ2V96AvmTqBECZ9mmI60fZRkxZ81Y zY6DZuwjc6oVIjYnGAhWoJBS1Yyt6ioulVsuYnElLquTq1kznJJ+qUyy5uUk a7NcnjkUetakyhrp7vlGYuAcwU37LGLV+4NsPFQ7hKbK88sxa25j1ixp9ypa yIyEC6DmIsickNGuquFw9PHuZEuZ1GAaZ19jS2ocvaYGVGvw0Qi2KhMb1/XX RbE6qB7KDkNKPcLcI3TLY6Hiw83wNM55RMa4nJB1N+PTcTPF3zFZjsr60WyK kd60HLbjPrDFchyd0mR4ZezXDePVOAO9WfzH0DfLV+nwRpEWA5OMoOMcFrXO 8gTTu3I7imRoC9nQJu42kRPl0xrutRN8meq9Jxghy2f5EHPC6d/878LNrmzF t+v4iLyDt+jIueoIwzRnuXJTGrrfPsFaQuUaJznXyrHsBH7ruBw5R03KknA8 kuooqunUlDRsR9J+8nBdajUeTWPLaDyapgovLNSlJoqOpeJEmtXB19AAXSQL nc6n2NZxUPWtIE2EUVSFJSPTy9Y8bdAgFsE+Xg4fgDbjhohuDGsHn3vE1DkU ymbbI8TgDLpVPI5eSU+gW8WTDZwtaHzxdAPnThMnERpjPLcJp1ULa7l7TLbK dwEy4fzyi38PeTf5RD3fdPFmMI7Ssov19NNoQk9D/f6gBE2O0s1wWvpTk9Fw 1gqSCc5Qf5Zm6A9+i2zTs9XIKFnDJftkJ8vh1lMXh0FPXa+rOK+UvIk9jf1/ l2SWbTYI9hp2ZluUKVvEgtMj5JfboXGCnu5e0rbsrVSFxNHblSKpsm0UlFIS xSeiM0sUNTzWZHQwXzdD1Ox17GI+Gf+YFtt4/dvbtIuEtRasuitwtUG46EBU kZ+u27apKHBtxQWuRbFN7bZVhbGNc3nPe9ZTqH+givw0B9APynVihcfdtJ4y opk/L5tJ74ecIBalFKkMSjVo93imspNeynQWd9Trlz6PqU/K25xKo1vqYwX8 VIVOTH+0Ume/DL5arXMoVLuO+crHo/IY5pAtukQc9a2P3Bg/gXh/ghnmk1AX vLYwxYJYqy+44Fv1/W4DarYG6cpAXBY6ZKIhbM8jUoeCUC6gFXozxez5lG/b I4vAyTSE+mm/ITw3a+gr6Imbxxrfd67hEv/8KpP8Kif59VwDJ2U78lPwTUHm TvDXKeE7CYIzwWTEBCuaCp54nPxR9l+GPMSYHDervNfJB+ojsyq8dSAr8bEy QtwgVXsvWDdyXCujjuSUt8zWzNT5y6ycsE6qvNagG0V0VefRc2Y/hVpaGhqC PWdjVaa8aqItlyK/KdWZc6DJAdYiTMZT3abEyTpgUaIju8xolRm6nTwnO8Xi jMeaDC1VXkLd98uo+34Fdd+v5jgLmzgdh3FeZnmg5u4eblsBmcyZK+8ma1kr nMWqiMp/eZ28v9zqmS2L+/SsFcQy/WbyTeWZ+NbtUBmGX2N8+Dl+rZwCehH4 CwEdNx9l68wiGPCMzIku8r6GkWUN8rEtIWsVBwo4RLZlHQ6dDYuRV3HMazgE EGossEyMpgkMN9uCqUDPGKzrVBM4k3Bm6Zmmqp2dNcj5wnhqUsSjFxLj4K5w xen5a/0FeAznuPoLdBuuBVwD6jfQ60OZmvUbuLiFFxMI2oUhcNEnqd9F4w31 CBoKF65PpXDqNyiKpsnYCATK3eR3xfYEBYb4vm1AP4h9IdscSFpu8EYVopr7 qV4m0ZqjgUUBd7a6YHtVAbdSR92mS9jWCH1NuHZZKKNeLwr3YILCtapSQHlV pUBt4Ue7qgqt4YvzLc4W0hXCl2cHjjRjEleFt6nqgRhvq0icJoTiSoK4UM0S OeuJtDpWFZmL9awDvn3JIRKPMS9qMVlEX+Bx2b1HQx/LE57EnHR5kIlsytOd CaZIptEto+HsBlOcO1BdCNPBH8iq7Satg032h++GZbGJKoUcdvzNqCymMb/t HutC2cKLdrDqWz2H075Tx5R3Okyzs0qXxpFJ1h3PmPTNlNGgTvJnGD6mv/ZY KEs+SorrSpMPw+VxSA5IipVZOSpmZSpJ9WNmttGwjlMp56J1/cf1YrGDMWZn /ZI91slYJU+twTeRaRVpYvrXc0/7GPx2PTAGzf1cuaaZrddC0PqBhQcKehbk aydwIkPT7i/I16oL9mKcSOjdZGDyEQnIyNBTYE+WB+iQJUNPgbfl+QohusjZ LPtYwKSJk7uFsxwFnR81wpp/TLZmuQ1PWE/6vhwDvSDiC8NcIO7LNPnt8nCF OBYot2SSclRVxfWUTy+bBnaAHHAr6sbxTdDcNpUyptjL9kLCugpsyppd3g1H rBDZvKrm3CatkssEC0wmzidzAc8BvdZUEbBRkdpH9dqLo6TIb+JSLiPhktTT Uy9NZXshESZnf2wftdIbTn+/XvIwRg1N49ltnCPKVc6r01SrNb271PG61XM/ 28J6r9kU4z8u3w1VilygewModAXfi1wusTxneuU45pcidindbrSWqBGnrl3P cv4Hg5lmyLWHK2UCmwkxLE/VXBbHEFqYk1ubsRoWzyOhvQBLfU6H6nAxcyHK 6yUydTYB7CCEyjps1NIaJwUrgDJJqmxyME2sPhSo+0jgb6+M/6qQ7V/lvrEq 2WoHzngoSHEunGLOJFuY4mfZY0EFJqvugRXNojhxLkc7ATl489k8egpwWYB8 tQBT6iL41CJY1FK2NCI3aAe6VFTEZw3e5r4ynkvmXzvPZm143zm/zLJ5AUrn 5/wX4FdBlccHvsKj4wtppkPnUOcxnfT23gnf/rpsmFGqFftOC551gPu3KvVn hxXLteIUYIpvxWlA2zWmzlhjh4h+ilhdSjDmXGtQxTLtGVXNu1ZDrw+xI9ZV NGdLca0CHgmR1YWXRT7wqUHEsHWbJrPKC1/X3CoVifUDDeskSNnzagDD0iMf jGUo29onO1Vxw2MHLOSH4DA4LNtcAdsR7+IbgznuKNTkY/Jex4klXOQAyNVE P4Cz1rv/x/hU3ByVw+Gs98CgMf9+R3x/58Meqw55g8NB9z3kC8nHaJiDL9vg F2+FS9CyvQap4rD88oLhuT0Bhvem7J09spd2oxPWG3JGviE77nVyPCh7r8hO fVl2rqV1L8iOfx59lZ+TgcZeoE+boOiJ7HH5ZDmC2XDgc/ZiNfI1vU00HsuF YaU5c+HGfiZ//bL4R363DZ38pZxpnZLSudVmpnJfo4bpa+T1iCxqE+Htq8Y9 HC78kEDNy42NmqGxUR4cTfTPtsKcjyzAbQdHk2FShl1ldu5HLTYbDU2OIizg LSdqvARIccF6sp2HAtsZrtWN8jLbyRJN9+L2VmfHdtpVbMcVsD28JvVoEMIz qGKfIjxxdBg7oc6O9KxSk1ijul92aER8kM06kuW25CdreIwqyn7IfZBXO5nl ph53ipm4afRpnQHB6ED86UIV6uXow9AGD9kMctLCGh/zW7ugSB2QJb6W7yJv CEVqkj7ek55useQF9qZxGp2PK5Ja45ED4XZVKo7Br+zmuoxczEcsF7HBbEr/ iaLXVRpQKkPXz/A7CCfpZ/xdgxbkrUB5oo6mleIl2ZqISR8RKEVMHj9rYpK6 9quazNR13IynJ4q7Vad6l9kLuqpE3natriuTxznrhvHczuCauZN9Y2g4o4V6 R03jmQnP3osGNP7K2kjSr+R/glfxTKiqR55fa/mmWTQwCXW4I8f/GGOETliO +/vac3ncKcvAiBmaGKf0IT/tBIyUJ93MfznT7Qf5XadoXTwpL9knv8Ol4Z3O u1d+X/AcbpW7h5mG12UfiVARsEEZf1uw7m3BvLdk970pu3GPLLvlYt+dvYf8 5bvMX74jR+FtORpvyfKmXNt7MiRCd1O02i1rb8h1/roctdfk6L0qR/EVMJuX ZRe8IAfxeYGA5+SAPsuUZUnbEgh4Hiju8q4jggRPl5DhMZIgG608Jp8sZ5Gc y44IlVHCVtdp9BIjhu2H6VXLjOXQWR7UTBi8HS0aJZoASRRN4mo8gyxZ7jpn gRe1eAEZkzdtZbblMh535eNF6xWFHn9hZtrfSy9Y15zSzVegkOQ1r9xHTN5p FhZEU+y75aMptZ1pv8NWoFS+YZWm+z2YOM7hmyWqCAZ4c9uqTWmtYvLUooG2 LeLKPVOLW6e4bc6WmdDKHHdzbrR2SR0z9dlOPCvKtXVx/K+wt9ltodd0o0ZE qxDY2It569nSwS/gdnNVGnFQ8cuYwHLb2CaLGzCbYcCfYcO2g1x1+fZQXTIx 0wqImBL6UcKFH0N1fviMdRqyJwb0cMQGsQb9EJvPlhSi5eM78gMqeKEbWYZK icaIGtLpdAS112MsCzsaqJfQMDKyhuNmyg1JDTFgTOUYXtBuZGYbSB7X+Jjf OomU5ElfmtUIDE+Jp9I7T/EcR22X9CZD81x43q6SnNDE7F3BhyqmFytPlu15 ppe5Y9GuYnsurr1ylQCVgvBUkXSK8PWzZiWSfxr9VPC9vjJU30lJ18T3NE1o 41PH975YlfRbM9+ryvil7FixCFU1U7Kq14NwvSrRKe5RmypdsbN4pWpBfa/a jJeH7BtwOhN6MTcO8tZjH58uaRaI2wLlZfohu/J1533v2knWo3SYv5/394+S 90E1XqZX8whT8PNszn6SrZA6rMvs8Plot4C60llOyDHJvkgdVpBOsV0feiV1 +dgkGxYu8v4+MsB5PueI3P+AbstZvueY3H9PftZR9kRcZA3Nu0L9jvB7LrJ6 5T2hiYfk587yM2blqh6XXXbSty6fk6v+hOziMdnFY/L/iOzyw3JZH5LloByC A7IczCBlHcyQtDwgy355bL9c8vuQsdwL89peOW3eEPR4XQ7Ja4Ier8rheUXQ 4xU5VK/K/9dkeZ3/cf9dee57PqnwkXzmeyST78h/HNo9AjGvEF4crd9NkomA UqHmDbn/uiyEG2R/XxUcflnOGqC8RgsvkWg+5518wKBdAXU0ytA4U89IrGvh Fc5UnLkqo+IxnNGaKlVoslXRroaQ4hpyqLsCLuko5xOmQb/VhKk+hstLNV/d ppehUk0dcD2mZb4NHhjnhYFeanZVjXFatWZNc7jO8V9xQPsgKjZoGz3vl6M6 RPscdLsiy6oOT6Wa+I+30Nmb9TlqrAMc4bVqrNvqK1Fx30OX5yi7QjCt9FXv 43V6X415el/Tsnhf2wgoNuoVyE3yhNVdAbkVS7XdgL6J3k91ElLXnxYPKQ3W +0WnIY4EWB2pdP7p/dABa73mQH64il02E2JjH5NaYiqavuyy4ZtGRNTSllcm fGrsKym7pI/Y6EK3dklvNFqjk8SHkvNneXLpI8p2leTIOihPZBL1l7QEyyfU cMwMc2W8mbVS4qNsQ4KhXRIgjQjZcHQN6YqmKdMshMiGo3uaO0Hq5DjUgnFU P55AHeTEEHhjGyPhMNb4mN+qDNInU/gugT42A330FJLfw6mirVLK0nPIzKWC 2lVyodsPOwfikVY1TGUyrXJoOo1nrBD35W6xeijngiuW27FKBjgXPmlayjo+ OdxPQ3Q+lFZ1K57Bah4HpZQ2GjYNSk032el15ZNxUrNq7oNUi017paZ6jFir mF6OVTzS6oRxPxHbwEtbadpm1JY7aiNq9HtEr+RZzszjvJk9ksFFT7bmSBYX 2LJ/mQRwkl2qMeHBafZoPk5y6Fr8nyDhQ/vNZU58cIIzB6CZxxKnBTjGWQVm 2ft5nFMHYFaDWTbZ1EkRcH8/O2txggQI93O4hpfl+OyVx9+T73iExHFZ3mte 9klHPnOJzz/A+elm0ATMz0qLOeum5fF5Tk+A3tPYvp9tM93MfO/IfflOGYLR U3I+fSj7ZLeQSyx7ZH/t4foEJvk5ARJ5Qs7IPSScbtkDxNkNxNkjTP1ieey4 fKfjcpzw/5jcPyZbjsr/o3L/qDx+VD7zqBxD9/992X5Y3gf15/tk/T05dgfk /yF5/X5uPyL/x+Q3jcnjR+T7HZb9cAiodUiGY1mVBaYLXQ7K/f3e7LJXcyAE MtoAOf3Ru+E0wgIQczbDNk8x7WqCBbBGjop6jQ1ENZydimJapaQo5lHN19+i ImUk5EH0jNfwWFP6rkIDzTHafEyrl7B4vurYaDuIn4p0oXyWeoyz9yniGYbq xc92YKgqgHox1NVxtLnJumz9bA0NlyNmjwRooaNBLtJWkZasKmgAMFwDI2ik bT7H9nj2NkFXstgMm8IMPcwyQ8zaEpiGrc7V4hDFL7zOJJ5NBa/rlq2zSGgm 1T/XUx5qA6BAW0olJAqYel9BVJmvAqsXYjN1/psZ5R3XYjqX1IuaHsaFoQDN ZuIIve9hPD8NoD9nxvhIYIyp9HSkRzb7z+tbTRvrprVoxmVkjYI2tlK0MXMx 0VBdkjpz7VtaKVNN5prTbE3Wq66hvKzhK66S6uRQZQMP2IDpCPYu4bKjuV3K fBkW2ShszGGAU/tylps6V5/Q9iRO3Th5YJJ5cOGgTODYRvBCrvExbs1D6ti/ ts5L475BK4iLRmDMnMI4VDLTRCpj1mD93FAdQ5TnyJ6UfRM3kPIM0R2J25IF oAkXTaXqGDPFmCXWpZr7WeD6UEV3tfjOxLZnQKnpVDPOOKcKENZEF+MeygVX fH7duGLKABfnme3QpMFd1SQmOkLGhjftQ4crrmomR+WIVZOVaKv11DxY4IbQ FMENYStdpNd0WTjYhZwAa16WOf4/xXkFu7J0ZOl5HugmvlpeNXsj+J+dBdnP JpWxJ6scg72cOqSYDfkDuW+ncMR0Vx/YKa/kcNt5HN9G7dFbbLq+Ryjgm36m 5Dc5PfJ8ZqdnlPu85x5r8/5b5vm75fVvZ0vu7ZryWUt2umNcyrNUE2dlmdMF bzZHZJuT17nlbVnecf+Rj5njF5+TnzAnh2eOESYe+0De6SNqmXM0G87Jabdf 7h+Q5SB1Wddwdsy102NrPtf93XUAOs7+efPUWU9ycXX3U/jYaXm7nVrNRcm0 5xl/z5mE/WxniAQQAUCKxTQ18DLDKgC1edL7g2HIgR8InmjnXTyajWVg6Aiw C08icknMy+zNmj6mBo4DNt+HRvCeXFNAy3eIlm952yHQcjdch37EKCPlq1GX 2heLeDpruCHJaRs2oNag+ilN0gwFV04MnSjm0VphvQ6RwMuDG1H7q6kk4y2J rll5U3C11L+l4brGCbrmUZM1/58Ti5i+6d52n4dZQ3InHYEMNIOa5Bu8NL1h 0dSduHs6G6PpgOHucTZk1+6lXapBMXhdTMwoV5ECnk6zAucd61SYrm96aqkQ qdTSwyY7lQmFQ8b8nCnco1UUrhkoXKNK9Mur6inyqj7g5ekzc2suyuJyioTJ MHMuw1apTX5VWjkaGFxTpOF+1RWu+d9wPxrnzvjcJpkzdkOSUdU6lSpqLjKn BuZWDcy01l8VQZN5zhq+QEz5HBLQjhvlIQXtDMgajzZCKppJXPKuHCMV5cEW EGUrBqx2IGjcmoe0bx64mYtv80DMgtPZfYNWKf/r2Vlgo6bTgWVorjSvXSXj OafPcK2SF5oTXHrOPC2l6NVwNReujgxC1TJ7yUfuwEw7D9bNG+V8e242QDMT evC2pBhbNNVgkrGV1L2QMfaMzVmGZaxZL8ZWlSlWxpZS9mznH1X2Ut1+NEOs 7fltV5+YrSH4iJmaTooDpjZFm94063i6HLNnWfiDyqAlYVbLwrqWs9PC1oop SnV+bZ2eFOxswqtgxyvm1N7vmZiysPc9C7MzaL9JlQ2UaZGTZiPmQ3ufV4Wm vCLLy7K8hEKnF3HzAm6eZ/ff5+QLP+uWDCP3PJBpHrLRfFOuoPlR2Y14nqxi jfcQAWEaG3kOH3/KL89wm7xcThZZl/de0Pfm53xRvtxzfM4LbOz/ktyX78Pl JX7RRX5RfOFXOdf3IoFugeUP7scpN3zL//B3ZGcU03kvuolZ29xPH5HFLtvZ vBFhLsu1qRN5j6XnTfVkeSlMiqcdk4/5WRGOMWvfY+b8oFC0MTkFkLU/LKfD Pjk1xuT/YaFqh2X9Qzll8P+g0LaDcup8QJfkuHyd4/L/uBzaMcTQqDjZJ2cZ /Jb7ZIHR8iNhch/JGfgmUyIH5a0OyLKfifAPnaC4Vy60l+Xkhdb4PoPiD2Vf vsn/7zn8lae/GTIn71NrfCsE/hocv4TOM2+w0uRZgVftHwO294SMSa+GIuIX 5dp6BhDs0uEtufs0ak7CJfZ49pQf3nI5C56WlxOGM1dNPOTlx0eNJPmoXL4P m0TLiFzSuJQfChh9Ly/vBwJW30Nfl229q2lz29ovtPfLy/39wmQ2OsBnnMBG ttmJ/xzkfD6zvXlN/788TG0jv0mDS1Pnopl2X+/COelCQOqDUi8utcP0YdpK 32uZpDB+YlV45VqhFaYujn2Sap7e7EnbOXG8x3C7pYrjFYndZqKBXMo2OMD8 6NEUSGWOl9uhInM9SIbCkJGwDob9Hc2DZIS6DSWjeU1VSSrTGxE9f8q2Uppd Fot2nu05wjKUagml4l1WNISS19v8rywNX/avg1dB+pqW9GFpBDWPOWHyMlbV NV0nAhnnzgeBo20P04l+1AzdCfwrAnfLrbLmPpDJV8femqXsqywqOxqJLXMp jKHA4BLJ2MzFj0NVNI4szqXXt60Hl8tsb8+Iy2VxrZq/Np1zdbgfn+tP59qB zq1qz8nASav+s8RkZnkgc7m7Ugckc+0qMufY5AerFLhBuVyq/DTmcqn+Hur4 S1V3WOUtnpHeKm9Vqpu6+6oUN83GurrxDmfjc5qMy8C6+dBPBQ7XM9PLT0X8 7ZgnFMrbDhgV7SPP29711MXytdc4oeArLCAH/fmiLC/I5z/vadMzno95Fva4 LI9SoXqUQtfDwkkeMsuDstyPcvP7slkOj7Oyd2flMkB+FbctuRRmZc8Xy+3c dhvnaZR1WevJEcIy6+/PQkbBbBW3y7vLXdzDgoQfdK1b/UPYfKd8QbwS73CH 3L9b7vt3kW1z8o0W+B+P3SX/75P798j/O+T5d/PLL8hj8/iu+PZUgxY4lQ22 zckFvyA/egE9iPH7H5G7j8nyiNsv3D9PggmCqg57YrooZ88CSemz8h/E9Hnu 5QWI/QtEpIXAPfW/ME85OPMMwOfksoYeuVve4hX5Yi8K84PE+Kbcf1W++Aty Ar0pj79DFbIrH4G0dVdOQpcef06Y326muaE7duTjx+X9J6kr7pXnvSzbX81O ZMh89OQiOCjveZhpdrfsluc/JyfwAXo/u3Kij8tPgvF6kv7Mj+RkfpLtLsdp ITggjPMpOfnfE7bZ5Twek/Id98p3OSwndo8NB16j/3J/kJ13y4XyggDAmA9y 3pT7T8sFtV9ec4xp872yU8El9wn7PSInM+5DeHhfTvoDcv9D+czd8r7vQHMk /3yWhTxvUnXEhfmCbH8BQxjGkJ2y89+Qo/KqfLQbyl6UseMpVmm50e5F2fYk eecrrH5+kXz0RRYAoQIaxT9PyiDyLOM65MFRAIRcuLrFL2FB0NOmyw3Wn5Ll 6aAVoK/hs/I+KlY+xceeYHtzjSOfkfUnQmyJgQm4pFKPb4We+TkiIPjsCiOS vkhHJ7xI72OU0udgG0YrACGeg/+amgAg4r4yFG1m7TLum8Nop80UFFRVscDr 9L5XL04LmJ91ecnjZZ5Y9FZpVfHEyvKSvKq8xKXNm/Ek08YAWNWpruwCTM44 0oz7rDguP1zSAhPVx2pxSGiCmetnOVziiglh0LGXZjrF2wpscXUX0WZMGRtM WDZLKV/ljb4RFHTC3OqEjjh65iYcjkIhuR2yIu9invn3hjGAtkACR9zaeyjd k61NRypZ2MLXKv8jJ204doqPbJbakPI7sckW+F+7pOAZ/tfgb82tiuc59IYS BYyreg0FdCaWjWtlgY4Ebj7bBKyecbVEME90I2mXykBWzWvbjHv1NkIeNuri pOpevu6EcH8yJbtWQhiX/cZzEahtz5aA9BP24tlLtLzXWvW0Vbct9UAK1pJB LdXV1KtrIIRpmHs+WYdajEUZN5dow5un9c4RwULEWy6JeEci8e4DQwDf8SRw D3OgTut6yetgXyQ9IemDkkb68oRjNoANEB6QvAccyQPHI8O7CwztzkDgQL1u 8cvNstwIpnaDEItczuieHISunM1dyg9dyg9dOUjFcrksl6EzwGVZR86tS4Wv XMIFD/fkfpfReRfmmZ7EP7tkg9yVe7PyhFne38Unzsp7zcm2Xrh/hfwY/L/Y 379S7uM1l/j7V8n9K+Q18s7y2ln5bvPy2Jys9+Rxd/9zJGVX8ufKuvyeeXl8 lsu18tzrwJiv5Xym18ndG2TzDfL/etl8gyw3yf2byKBvwm67BS0RbuWzb/OE V+mqo6hKnoWgCqZhd99PWgt625FDMUsOfh/vz8iZOksO+gXen5Ij1+PRfILv NSlncJf0/jlS4Ul5bpeM82V57GE+f5pnhSqee3y4ALXzWXn/h4ThgXl+KGfY S/L5D9LgiCz1KXl+T7bD5NhjGPIB3xMVOagiP8VpVp8WdreH1UCnqHGCeb7C PqWc+kY+e0K+21GaSKF5vin3n8kOsYIIs8G9K/efknDqA07I05Gr6qRsB/sb p+a5T7Y/L/ffos45IffH5TMOsCpoP6uGjlPVPSjIvFeeg4LzPfJ+r8qVCWMl xM+35P4rwiDfpeh5SH77Ad5/W9DoQ37Wfnk+Ksyheu6T+/tYNfSmLO/ydR/J e+L+h3K1fUhm+qavRn9bWOk7srwl67j/lqDD21zcY28JS32LQgccmnjOO1RM 36Ky8j637aHq8pa873v8/4ZPv3lXpx8HKZBABNkZpBrtqaW5B53z9VVy4N3c prEtnqP1R3gMz/kiua6LgX1lpBdbR8OAqlOn6OuUqwIucd/lH5mTPA398Jw1 wyfLeeF20AxbVcUgERfME5qhMfTlNifsct+mft0lzsrlINbc52dcicigTw8P laqOI49fpvJuDSXMXAlybuXDzFllh0qeokhD9B6HdilhvCpp3ApJY1NAkhVT 6WTNOHtMVd452PIgKIYsctRmnlSN5JBd5kkMmzhPh3DubsSpzLWmazYqW/NA 8/Kg8TVCjtZwvNxqfJnLFTSDzhcsyvgNrdKEP0+GdAHiqeES16vke60U3wuH oSaL6xXhoTrSV1LpE847PcuqM7op5tdKMb9MZ+ux3UHrlMBUWvcsiJ8tBA7E b6bSi7dexM/2etFAt5//znrvNJtbpQIq6UM2V+syYgVQazFm6LbqUv1z7qwF kr5ZGSLn6LE7HTK3lvAdNdlaVfw+jNQ+o/RRWHrJaU+B6CnJe0w+9xEqXCrj zZFu3O1pyB1em7vV07qbZBFWJ/u1Bz4HNicnaInDkbxdLDQOENmR47lD7l8o y3b5zVi2ybJVli2ybOYxn1nBsR+V4R41PCPZND0FM7Rjd2SNC3tsdOHTBqkc kS+2QZYR8qQRiowb5MuPuMe4jFLBHBHehd4e89yuyyj9d7LW4mpLvsGcLLNh 2cQnbAJd2+xuevKsLbJli/x2t3Txn8b3LvJNHbYtm5ETtsNlO7pcXSC/Y5i/ H/thJ//PyBXLfcR9dRH6YMnOkysBu/ES2QWgx1f73XulPP16+X+93/XX4l1v Br0Wri2XB5i3Msc7KHi6w3cPyTq00xke1gd4mCGMTlO5BIN8jKLndOakyxGq vQ/JZz0bpEucKrNeIGasQLPyvFx+L8q2l6hNglmCUc4JLM/RUwnWiPXXZNnD 7TPeLTlL5vgytcuebJulhvm67Ia35T5YpPvfhW2yKyjwLglgl8t7srzPUnLc n5H/HVbu7PX3P5L7e2XZJ8v7/FmyJoBzgI+jAmiGcubB4r8c40PY/4c5K9AR 2TdjssH9n4ZlfDrDhMXTQkynOQ8kCg1dJ6MpP68QOhmhn9FG3/TIdbA/yT5J 06zWP2l6xmq/1VITDPmO2sHpuJli8ThbHh3NXCuOFh/T/qtYXAe3g0JscyLN ftfjNtOWb1rc6BfapXJfDmT7ofme+OrZOo1h6pw52lMJvS7y7qX0uvq8bsHR 4pTuGuhZM9AzP2w4x1S7lNg1XSRcoVAr5HVXF2K0q/K7zgLQLul2q/x8rVKa 10t3mesy34xnO3Q0rRnTtGjGwyy3NM0J0wVRazg3hQxknJ+HRj+mTamhca6f HWBcXONjuWNwyrhyVzPMd9Hu7o3CGZcHZxy+iosWmrE119GtVqBbRl7zv32o lGWNMq3eeZFbnS1LzahY5l2tFO9KZl0TMx37zGvDT6CY1NzapeSrScA2fKOq RP41M9Wyue3AkkUFEHnCTrexP++q7ra3NHAFRFWnvarqh6oq2bi73nqyriqp Tb1znVWMa54Vr45xLdMv1zW5Vs2zWsZl5bX3vLT2pmFbL3tZ7fkwfK5mWg9Q vHFD9F1+6FYBLWZYqpRdQXblZLGLPJu4gEQDrMoRjq2ybJFlkyyjsoA9Dcv2 Yfk/JEsb1KFJKpXL3YYs58mScelmmDOyhzmGZnEzh7vzWFtoys0ibpYw79Ay HjvFZy9jjfe24LaNh/i88IoF/y7n4aZBQpbL3mi6hb6CeTkD23J/SJZhv4yQ rs3L2blA6rZRls2ybJX7myFMbpWXXSY/fEFO1nn5Py87Y15O1HnZOYtyki7K 1bkoO2tRTtRFuXiXZAcuyY7Esign65Ls2CU5YZdkJy/J1b8kO3xJ8GBJdv6S nLhLciCW5ORdkoOyJBiyLAdoWTBlmfmvZbnM75D7d8pylyx3y3KvLPdh59zP zQ/I3QdleUiWL8hOeliWR7JTyKGfEmR7TO4+LssTsjwpy1OyPC3LM7IVSYlT chk9J/efl+WLclri9HnCuB+f9kT+Wf6fo9MRp9wLPpX/GrU6tWGi6mWZqu9r LsMsl84pru/2VS/vyvY35b+6HN+TX+3LXspOxyZjjQ9Zs7OMKwEkaymDZfsU wxE1Ioxlp7MGC32GWKp9XH7FEV+yjRLwcbl/jC3u5RIT7qsuyLITcoluyOPs EQRH5AJ6PMxzwqM5rPH/UVaXwyDJovEeCvy6bPyAKvEZti86DJZ3SAhcW77h FDsLHeQyKd8WWfFJJMLRj/KAxGj7w4L67BOCLuP4neMsRTx++nYZefC35WzJ 0dNlcjSUIEfN8pRbETmqF7AavmGiyWNmyZpUz48afclRK5CjVc43R49yW6Oa udLrZkB/T48axvWo8lVZwmqlJKys4bqDQ3hplnKbsjg7XB7scM6tVS6ACNa4 iCY1gjmO7CUHj8kx3FBMYpazBb4zjKEH3uZXN2KtFThQM3Ag/1rlQI2gNqkz 1dCfrFEQoGZMgNzvaQbJqSQ7tUuyk5Ge3N7LrfKUaa9CW0MQ1RF4wbGVSjtm rgIptwqU90MOl0xolfnHggtFZjRt8h1xocrqgrokZD0nqi4KHaTEYC5MnbiW EoNYjIpnREiVF8Ri1CAZSNtgWOV9m4G0ZQXaIOQom+0WVjQIUWgI0gtlgY4S zXlKpBa0fpTI2s3e9gLUG54SvRQJT4979eEhQ4Xu9sqFUiHQIJM4JA26wgtM l3jxxNKgrV5EgoAE+rNZnrdRllFZNsj7jMjSkiWXpSmf0ZbPbWK4aFDnASdp yNc8jwJHxgIAoTGe4iwbqnNali+Z/18GwflKBq7zVVm+pgse+Bg3n+DmUxCn M3jnb5A4ncFauPcNbPiWRlgb1bUzfN9v+Bdg+dQ9fDVW5dva5RP5BZ/IL/lU ftgZv/6JrH8qP/aM/Mf612X9E9kZZ/i/lX0sF8HXZUedkQsB978q978mO++M 7LhP5Dlflce/Kpfpp3IBnJEL4IxcAGdkh5+RC+CM7PwzqJI7k2Ea+U/leHwq GHBGjs0ZOUZn6Io5g5tPaY35VA7gp3JRfCqA8qkc0DMCMmdQ6vipvP4aeeha Wa6T5XpZbpBHMT3Xp5zT4RM5Hz4R3PpErptP5brBts9jX3w++0R20W2y4XZZ 7pDlzuyTXLDwE7nm7pKfdrcs98hyn2y6UQ7gRXKO4Nz5vBy822S5zNPq2+SA 3is/9Wo5PyBo3kbq9jVmb6/h8xcEoD+Wz0ZmF9txHn8sn7Eo79uhDfEJef4D ZIo9KnGPZ1+R8/y0fKWeS5c/nn1JLn31Rz5OuvcVudTneRk8IS99Qb7CIxTh ZuX+olw6X+X/R+T+k/L/Fbn/jJyXj/E+xLevyGtAIedICV/NviyvOf3/03Ye 4HFU19tf7exqJVuSLffee+/dxr1hG2N6DR1Mt3GVbMtg0zuhpkASIIWQ9g8J IYUkJJAQSggl9N67TbGNbel+v3PuvbOz45FkIJ+e5925d/rOjs572j03VAsX sm0RsINu1iAyJPy63mV7rlHH3kLW7auq42pdLtBBMmuE1STcbVfJoator9Ld Fsi3Wai+z3lu9SLFSuHRlcjSxTyj/TTuvEK9gdKWdfvSnonetVgdxPvzGdT0 T034+u6m2aFGVRpqVPn0sJhGlUkYRhDTqCKjRINQ8oeT0CeOExWXUzo/G0Um Plg0na9BnA1t5ojPKaWDf1PBnhFBO1FdNikkmErnyxJn40qVKgXp/MCCTBgU dIFB1Sr84OeIUmUHGaStPlKP18knkOV1qkyoU+lszjoFdUaoqlQ0pBIhLG3p uozVuNgvsEd4XSkd1rwI8mpSEFWTUunGFCVbgjlbEKArDNIVh6pSLFCXH77t 9NeIw8iO4s0VaEoxn1HK6su5AqdRLGXfviWxgr2RqhlWfc+Gw6ojcbtUOj+3 enLQLmgwfT+WrbU3ilI2KWjn/EcbvlQFjfqmkGqoekZ9Vdbi/qO4stSQ/0jS teK5+0l5+9Gxl/kKGbZy2mqXry+K0lqXopWkKJ1aj6KUlJK1wClKMyL+ogkJ viIfjevvFKTuER+RRJTaO8XIR90qXbRNIm2lIMN3yapfaCVYxe+7il/aKkVZ rl3EMuU0ogz3WqSakCzXs24DyxpRWzamxOFzXkzzOR9cIFrKharbXOS1nZTV fuSQS8FlEVwBrpTNV+g82FeBqx20rSe6Rj+/Ca4V6OmuFfXoOvm4Xg68oZSP G2XDTbLvjXrETdIKezeqRnWDriuykP1v4J9QumldJZuvp30D3/4m+tfLVehf zxO6SZdyI2nW5dg/0P417PdNnuaNPMHr9OaLWFfCtqZcVP5bbtCCUjfwK9zA f8sNKaGZG+Tjevm4ToesXc//jUJj9tfJx7WajXIt/0jX8oNeq4GOa+Xjm3yV tlyzHWhvEfBxjYY9ruaf7GrkzTW8ENfIeL2rRRG7SktFXMWLolBZdZUM97uS /4Ju/A49UldykQtED+a7iyPtIk4kGmQ136uK/gXsdwnfY7367Nrxk/fi96zk rSjhrWnH69CXfhv+G8Rv1xYVqz/7d2BZwfbWHNeP96Er+7XQ7eJ0u5D//E0c U0W/mv/+zazbrE689qzrw7aBXLcLx3bU/rmi9/HWr+fLraVfw3/FBfwnbNBc vz4sh9Pvx7Kb5uato38+UmQj9yrbq+lvQt6fy3Wq2K9aVcFh9AeoOlfF+eWc G9X5N1D76+nXsFynKqAspT+U5VC2D9VzyD5yrSqW1W6fav5rZfRJlaqQw8SB NUo+hqrfczTrxuj6tZx3jfZlNIqMYhmomZaS1leNhKuq6Zya/JWT5+fIZ/NC f1Nxff6mTGHCVJCQPB/zNwUN+psaCsalQ8XIxVkielG6wdx5CCLtCqnEsqU8 ecficekwIGcrpGUKqmtomRcfkku7AjCRmJzVj/iMpE5ZPSQIFSRVVTJCP0Go GGVDxahU+KipKDxaOULXZWSr+oaCQoVHz+fOLLn7QZiGZLUzHfQRuoWC0C1k vWX6PUThyyZNo5dK5yfSC/aMkVnfXRANkqV8rcR6lB7vI4zMoud1npSNlmUL PEQNlZ8orBiWiScspRvIVQ8SaobVq/Vk9yJklivIU4pNWGBVMYTA1xm22Fiy Urxg2JdJVvoq/qGkRKWVWhRMSkVV6awCa11WepUrCLvCqTxn7YXK40NlS1xi 0gJXsWG68wlNiPiDhruc6EFO1fEhsW4RP5BXdVq6pKKK0A90joa+ikEadSet 8a6VQHxAq8EadfoE6vSpjjh7VL3xzh3Vb4pC/UZ1G1FtvGKToNRc7hUa0V7S efXFKy96yHV6yPVOFfEQNeUm2fwt1YO+Db4TwXf1RDfLDrfIx/ek+31p/UA+ bpXubaLe3C4fP5RT/KiCjx/ru/5jackqBX0924/Yltb1PwyRZq1su123ybrb QhSlbkvJv8oP5eN2+Ve5XdJtb5PWreqc/QH/OSHEDPm+/C99T8PP3+N/SaFh 7lvk42Yxw28WtvmufHxH/6u/w2/4bQ/hn2/Jf/xN8r9/k9jpN0rrBp3X/Ab3 uK/QRx+wzKSuELfe5fz3BawqRQ8K+GUEaX6lcu1fwm6X6rKCvjjMsrruYv6b r6J9sTrNsvzK5Zwjx7JEnWQXcR+Xip11kX6FC7nli7jhizSZ7EIEQHP1nV2g aAJacNqmvDhloCkvUUvVns7ntLJus/rTynnBKmjLsgXnrEhtEpVwk+aTnc8p NzmcJ0Jxk7gmztNa9ZvonhuCvqqN56rHYiP988DGVFo/Zf9zkU01YKMuZa1w dg0PsiX91iE2sHaDLEXPlPrIrfjXaMuqtrpcz+nXIdbWC72vTwU1ZTDU1/bg zA11lNIEHSUbSuVsYcJQpjBhKEiIiQWNx8SsjhJEdRRbCcIV6fVWvPfgpPPT imbiGd2ByyaJFm71TpyGAmPp/Gi/IPTghKGxet04Xl/J+3ICqx744FgQaika bFIvTlY0jRKhjDLRPrSlmks21D50uGAQelr0fEGoeHATPiPHobA8ymg3PtHH przOFfW26Nf1LpdUEA1OpdL5aif56NSeOdLZaG28WJQqG/pd9vS9BKHvpcGk 6XRStCqsbxwWLg2ihUtTLmhrc24i0So7Q1vDukgQK3cfRMvdp3xCdiRalbK6 0Ob/mRMmHrGqb+qkpGmTGotYfVknjJsKSZ0w+TKlK8PCV36OoypXMMEn8Cz/ EtqIj1Lt58bCzXYRqkkuHXq0i0z5GgQ+MtXLOV66OE2knXO4tHDOljJ1tizn dztHnS0BKAIu2wasAqvV0ZLiuqlQC4mGmc51HpZE7cPY2NClca1DlI50gctE PBLXp6ynI+c1DVE0ImrGd0W50H1uUfXje6JdiHIhuoWQv267Xbf90CkSXqn4 iW67Qz5+qh6WO8HPHH4uq38hH7/UG/oV+D+BHvRr+bhLPn4jH7+Vj7vlFL+T j3ua8/F71ZbukVaIoiLty973cNaiot+5Xe7Ra/xOPu7WW/mtnNrht7LiLvl/ K5I7+LW7k1/T/6Xeza/0kP+j/wt3p7/Uu9dv/Uv5Mg6y+ed6yM90250ccqf7 4j+VpZ7oDr2UPiH/pOj/yKlectu3m3T6NgHnSqdv1Uesipx83CrnUA3ve3rI LfqzFBXdbDVBfsqiou+aQi3R/5zf1n2+pS4wOcON0rpBPq5Xr5leXV1pAvum yIZrpHW1tK6Sjyvly10h6y7XI+RFU7+dfvfLZJdLNUgpHxfLzhfJzjbqqTON z/z6qsF806hqEMslziQEd2KqQVBfAffC+E6moE6UFukPQzyF1VbTsSBPEHVm pCLejCAUsKIopGP+jCAUuWGCsfVoBFGPRiqd4NNI29pjXlHIOzSCUEEIRFBn hMbVlaH5xVpLSgvkNhPRXSKtrFUa2JopJP7AniUk/ExBgMVXy43no4jbIci7 HTLxpJSI5yFTkJ6rj0UfkC2yFfU8FIRcfGAtWiLJ8X7KB+SiVcoTyiXtUbDc qZCFM2QXTpuYlLUbNOiCKG6c9m3gJRMPvPj5dGKVy+0Nbmx0pHx9qbtR9TWe uhsfMJUUemksdTfqg5DU3SQfRNJgKZ+2G/VBVMVKJEUZ/2yXQRgti5TM+Dbc ssiNapnlwi2TXT7KmFioJc74nXXwuR3MI7knlQWMf06M8X1+rWd7Ca14to8n lQjbe19DfUwfBkyMjZCEjgXrV8iHNxy7y+rvKOkrwZs8sSupC9+oKP9hSqIn ntTvMHkO93SnvG05W/f9jSPXux2EgYWc/+CXejP3Kj3+FdznIO2/63nuV2L/ O/gH+KeDtB+Uzf/SzQ+Ch8DDDtqWzY/KxyPy8W8J3xQ9CoHKDo8pior+bYLA 9/9D/zGTyTyky1TqcV0n/XT632E/m32IYx6NbH8YPKL3+h+ZhJl+Nvsv3Sbn lfPncv+UzY+hdsvlc7kH9FbsLTxiSkruZym3IZeR/t85TE7xqPaLi//Oaf+p l+BbZbP361OTL/kv6XHC+2Tbg0ifILif4/8SPi7b/zPnv5++XPfv9O9l+Td5 uPpoc7l7YcWSPyKUMpk/u6f/V4kIZ/+kV5LT/Zltf2TNH9L6gzXlzH/kzkSd +qMinf4D/d9xZvsDy7K4+LesvydlVTCsnKz0/YtwN6f8DefxSl0Q3KWXk5fm Lnq/Zvuv7buU47D/o6s6ob5nRUW/ov+rUCv7JbZOJvNLp5VZBMEvOM6rYz+j /3Ppy+53iir1M1VGpXWn6qaSHFL0U+kaq42JJvYTDrtTl945lk7/1Gls8q/w Q/p3SN/pvhn6P3HbbxekRZ2Tbbeppif7/8j9a90q2p0e8WOZWrvogK+vBy0w 9ehBsSSXoDCME4RhnHqTXPJhHM1vSWVC9nDIe0ny+k8kbTiIpg2nlIsDVys0 kjhsjXY3qZLweRAtmmlzXVT9YUMkoJNy1fStl8AboeEo+Lz+ExTqP+qLyIT6 j3ossqLD6MiiStFrtFUc6jUZ2c8V/ufYwJ6lwIcR2KtZL02k7L9Vz7ymFqnb al0ZPNGIShNqNO5Z2BhXdLi312h8bCyWcBvXaOqp+2PLF1jHVySbJJVXbPzU Rr4UZOFwpHht7+gMfvmR4JkE3aa4MLzi553fc1Lo4vpycG2Sy4Vf2qkhTyg+ J/T/7zTc+Jx9e+fUOHMPp8ZaVINqVJV1qAXrIhUgz/kS6k20wM98N1REHBpT EsIrQ1wmSb9G1JtoWEVGEmVBEA4f8s4MmzVSvyMjrtrE1RqxLb0Dw6s16rkw kfiIsXqNDYhYb4UMPooqNbebQkVG7XGTV2Z+6YjmLqEmPcfdoYfhjxHcK1Qp m+/jlUul/qYka8nXL4XIQ6XEkbzVDWxb9IinwJPgCfBfOd0zerWnwbPgeYfn wAuy+SUlyhelBV4BrwrNvMz7nUq9Rut1OOUVmOslltJ/k/ar8O9LLF+n/xZk +RrM/yJL6b+ty5KSF9nnNY6R/humtPRF9nmVY6T/Fv2X2ecVCe9k3kLdl36T JnKMnP8d+q+YsrIX4H25/jvs+6opL3+uoF9R8ayeU66Ry72mfTlPELzFfq/p /nJOub7cU1nZ86Zp0+f1vuSepV1e/gz7yvd7jX2f5xxP039J+6Wl0v8v535B n0FJifSfov88/Zd1WV7+FOuexGCreAIR0KTJfzn18+A5Tv8U/ae43LP05dae Yt0T9J/m9M9yuqe4pce53FOc7mlO9yTb/0P/SR7jf1k+Qf8x1j/O9ic57gnO J/3/0H+CczzOOaX/mGg8/0HC5f7NzxYEoos+xvGPco1Hubboqo+6/iOiY6qy mM0+4voPq9Ioy1zuYae3/otzPMQxD6meWlT0IOf4l7bRSdV99M+0NttLE/yD Ax9kzYPaLip6gBP80/UfUK0xCP6h/SB4QLVGWY82GunfH+nfR/9vegz9lLyT 96W1mdONRUV/VZVUdk6npf8Xln/nbeYQVYGO//oq0EL5rLQzfxWMnCouVIEy CSOnggRXUJAQJcqn+AYJKb5Bgv4Tc/3ko0N5r09e64k5fNJ2TiDoKO/rCcKg kOoYeTVHPSqZUM3JiIKSFbrKidLSUkhLW8Wh+qK16YOwKH1efQkK4y/pQjdM Pv6SjvlggtAHEw4SSieNlo4Wq7FJIEGYBGLLrdu0oFgCbDrMgM1HYFJBNA0k kgOblAhSUL3GTQ+0pysm07i6Un8Ept6cEK+s2JDR5q/kjvm6mbB7M5I66o6R IEzj7pgzIu4YO/tIfuYRO+tIPB1EMmBP2wtXjK9PM8/pKq74oA4P8gGY+nSV LgW6yjkRV4wf/ex1lZX8wElBF5/24fWUaDqr6Cne/RJP7/BJqj4h1eso0aiK d7jc4nSTH1hDsauxAZSon6XAx2JsZEJM5budWiI+lT8ZsdStxS5+FPGb3O90 kX9GdJFHjHUueD/HE07/+K8oHaruPKvDm0TpeMFpGaGmAV5XNSOVehO8Jbu/ rfrKu+A98L7Dh+Aj2fyxBg+2gK3I/E+Uibby/5FOf4Lk/wQC+QSS2cryU5af wmCfwmpbWH4mNkDuM07fpMkWacF+n8Ggn8HCW2SJEdLkM/69Kiq2QLyfKcrK PoPjPwGfuvZnbP/UNGu2VdoiHSrklJWVW6SlaNbsM9Oy5cfSTktHsiFsVzcJ Wrf+SMRM808lG4JtlZWfSE9RWbnVtGixNa2bA+3KLs2by5eVz6xp1eojaYVo 1epDPd1W3fYBl9iikG/SsuWHUmS41fu6x0esl1v5WM/1odz+R1Knv5mc8APp 8bU+Yvkh/fehr/IPZdL15u/x7T8IQV/yi8s+4KetqJBt7/O0LMrLpf8e7fd4 nnZZVvauPFw5qEmTd1n1rixluGXpu1IvqakofHnQlwyeknekzlITUfbeVuRy b8t2cXnn5DWx696KQPsI0eK3RIzmRA98M4Tri9rypgw0YO9s9o0QclAgLbEY i9+i9bqqjQJRS9ki2urrcvwb4uB6necqB4ou6SArOEtNOr3862sf+yVoH3kH TDZB+8h8Ne0jKJxGWLmyYcUjqE/xCAoVjyBUPIIwIUX9FYFVAFAF1MeSCRUP LT2tsx/mhHDaiUJRLK2sVUZ0q1coAqu0FEyBmKRQBHupUOSdIGk3wWHEC5Jy T6OejA5fGSiSWhpP69gLH0jQoDIR832UFyoTiXGdIBrXsQOcU4HZc/Txn76S 6yOaYRotaLQ3GaZfRp2Ij0CO1kDem3yOs/bI57CuDz+B2Ro3cZnN5ciXvjvJ 1ZfwRVh8yTvJKs27ParC4is+sjMhFtnJZ5XmRxf7PI5Wropb80gxlVK2F4OM ZpE25vKI5m3E3R2NuTq8m8NH8gtUCJN3cSTpEN614fUHH5Px7ow/x3QHjbUY 678QvcH7Lx6P6AzPmLyjwusLUV1B9QRREyJKwgdOQfg41AxSqU/AZ+BztIRt YAf4gv5OlrvAblCrZmUd/wtFRQYNwqBBGMS4QYobOMDAEQaWMbCOgYkM/6dN jQyFKzPwnIH7FEKlfFRWyrYWLQycGwKx0JqPNm34aNvWIDja0WqPmW46dOCj Y0e6nToZcWp3MqYjkF6x6dxZPjt1NqZLlzy6gm5dOIQOm6XbObK5m+37zd06 5zdzPtNNzt6Fq+ZP3qlTHnLxrv5+uIOOHAk6OnTqYEx72cyNI1M6tafLqg6y mnbHdsa0a69tMbfaGZn5inV86xCt28kX5WHwoNq05gGxroUFslKeUaVuq2Rb ZSujy+atueHmrdjWrBWtZi3lxBU83YoWeZS3kMPKK+W+m1ZyQn6ZZs0smgvK jeg6cihNU25/OP0Rm5XJPdESBYkftinr+IEl7F6mp7P9EKV2Gei7wJ00MdJS lNEubyKH2m3SL20a2V4qd5ljW1ATZGu+voqwWD5bhCpCSaGDIklFyKex1qsi BAkxmryKECTEZoLGVYQgQUUIQt9EEKoIQagiZELfRDZUEXLCHh1ECSi2ygLr MnarqhJeCQhCJSAo9CoEhXGQPP/7AFLEoeBzbLxLIcL/2Sj/e6dCKr2XLoWg PhUgqM+fENTnT5CU+3hqRyP+hFxD/oSUze+49itrAfWNM/mqOR4+CPJVnQqF 40zO0tKY0RyPtW4607U6ufx6tq03y2DXM7UqlFSWqtZKUklOhYNiY0vmuboj 3qmwZ1ZnY06FFRFNwNYT8ZqAdSqsAqulvpkOmixyw2RlDElRgUPBZ2/GHQp7 40zw6Zk2/2/vtIBfOS1AMjSi3oO/eua3WQVNYsQvkICFj04850j/Zdn9VbX0 X3d8/476Et7V/I4o1ws+023b+O8Kgk/BdvAF2AmPb4fDvwC7wG64fBc8vhth XAvqaNchy+uUGcRWF3kPlyt5t2plIW3P3PzjCFEKlwqEFbt2hVe7GdO9u233 6CGn6tVLTkXb9O5tTN++xvTrZ0yfPrrERBlguNv+A+iCwYMtBoK+YOhQY4aB IcM4ZDhtMMIte48yZvhIucTIkXKJ3mPojzZmFOtHg37jOH4slxgzRjYPHG/M IDCO3caN5ZS0+05kMx3+84dPMKbXZDZx1AQ2j2Rz932MGTve9sewvttUzjxB rsheEjSmP4LjxrPPeLb3pD9kkjGTxtl+vynG9J9ijx8PBk+y+4x31xg6kYc3 LX/NEZynwzR7rbH0R4P29Ee4/lhuvQPHD2a/MfI1+LZdp/B7tJ2magS7tpka ImtaTxUmb823aGUh7g/9bEm/5ZQQWdNiijyjSh6APMbR7jF35cJdxvGMRg6T X6k312vH9x3Br8Ea028k6gXfYZj0+ZUGc0hz+kOG23VDh9n+gOHyzFjDa9+C 43uPtNuHD+FGuUQPfq0RQ+wv3ZnLdxzDJdkos36wa+vxdpPs3ncE+sMkvnL5 RFEdijv/D1SHJQmqQ5J3Idu4dyFI8C4ECbGNoD7vgtrZQWFYIyhUHYJC1SET qg6ZUHXQSWyzoeqQE67pJGRTbJUI1mXsVj/BrVM7CpSDoFA5CAqdA4EqBkE0 6TPlvoLN0Y3kSKTSYZZEvZpBzC+QLhzrEdMHgvpcAjF9oGGXQLxAqx1FIsme 2aTogk3fwG5srFBrY9rA3oYYvmxKRHycR2N+ARtmyPsFlumcSIV+ASm0sRIs h+HPcrNkL2XbUl2uC+c/8uXwj4j4BXxhVj/X0cxISsTEWEpENOOzpxttGi2q YTWClVr+3WsEJc4vUKS+gdVSVEyLZ6S5j7QWzfDaQHw8h8/w9H6B6BiOa5w2 cJ0pTOkMB2uYPXM5G9IGJN1BYgniB/AxBIkd/Euo+iH18YsW4MMFTzot4HnZ /KJuftnkLX6BWPzvi0rwES9iKvWpUL4z8D9nKcZ9bUj62ewuNeBLSmoh+Z2Q /W413ioqhOx3Q/Ji/EPtvLAtW9ZhpNcJv4fGrCzVYu5mWV0saM/mcLvp2dOy +sCBkF1/y+6DBlnqHjLE0rkIe6FliNoMH65LrgmlSRr7GEtuEyCGiZMQ/GOR 7IvMJJhpCkQ2DowCU6YbM30G3DkTrphlzOTZxswCE+Zy+vkcOs+Y2WDSvlx2 EfstNGYu7X1oD9sfvgRzaE9fzPEHcgtgFuvm0h91MMccasyMA4yZL/vSHnCk MdMOMmbREu7hMLSPo7mHQ4xZzD4TD+frH8M1jjBmP84zhX6f46DNo+hzzDT6 /egP/wbn45g5HD/oWB4FmE17X84/lHbfE7gm+y5knxH0e5zE/XLdxdzPaM7f 5WSuwXWX0B/HuTqfYtfL9klcqyv94cfa4+W4XifC5B2Xil/iFFodlgr9t1/K 73iKQgbhnSI+l6WmxLSjP8i0ZUubU+ztzuY0M7i13sdzKjCN9lwu1Y9LdDmR Ry63ztcdxK2041YncOv78TiGcYutudUR3NIi+qO4lTb0h7B+If2xR9j9B3Dr 83k8EzlPJ756H847i/NP57o9uX53rjmVa85hXV+2deSak9w1B3Js5VJ4v+Up wvulo/4HvH9gAu/nCnk/G6Z1ZgtzGjJhqlymsDpHptBlENTH+2o9B4UuAyXT IHQZuAnhfVQhE/J+EPJ+RjhEp5zX4Rs6vU0X4ZNiqwGwLhsye1DI7E6PKDD7 Y27/jEsy9aVGw4Gcgf0KjZJ6kB/JkYmO5Cgk97y/P6jP2I+Ru6SeWWM/k5A8 UL+/Pxda+vXz+9V78Hs8fWBv+L2xcZwNpTzujd+/IYs/Xnn0tLDyqJ0AO2rx S9XRFXDmMnCm1npeK/WetfbzaaHvf33o+4+P4Yz7/mfshe+/d8z3bzl+Jc96 ZcjxZc7iz7oKEoFWkFijlSMCrhvki2KZVKMWf0PpA+GQja/A7+Lzv9tZ+d6/ rzkBaoc/wvtjTfswD8CZ9i86Vn8latebfKD/I5P33Qu9bxdaVx/9TpmAragO eq+D2uvUjhe/fJMmxtF6rdrt4nwXm13oXPzNUHlarHT+BTybC4sLhMGdPS5J 0/0NlxDWFvZWM26oZW5hcGFrWarJKow90S4nYznusw+XmIrNOdFMh61nwtSz ZlnMhqnnwtRzYerZsPLsBbRh4zmw7SwoYjqYe5CloJmHWUadA2ZBKTOhmwlC FVDATGhiJtQxFjqZAT3MgGZmQF/jToM6wHQw4wxY82yoA8w4CxpjOfEcbn0l 21lOXcHtroKu1rKNdfus5nq0h25g2xr6VaAaujqX9SynrAProaDNnKeGY9lv HzD4fO7jPHlkk3n9OphRbB8JpnDcpPNgarYPvoj2Jo5j/Vj6/S51fdrjL+Dx X2G3TaA9EXS/wq6fcKHt97yS++Yc4y+06/pdziPudrXJma5Xi1u96zVQcxRX i9FMq8R0vkZM9k6sHHoZF7+Yk3CiwbQHXmbbsm4YN9T7StsfQ3/kJdzEVdrn i7FGIr6cY6zbLsd0+iZf7mLbH3eRvfCIS/Lbe3D84Mvps24c/UG0B1xh26Mv sffT82r6tEdz/RH0212HpnmdaijXCcGXzf8fEPzB9RF8PmmxOIwJZBJiAplC wz5Tn2GfCQleOTEoNOwzoWHvSLXAsM+GBJ8NCb44JPickEhXofCcNfFZlw0p PBsa55lCCndKRIHTPpNglwf2dvccvRAkGOdBoXEeNMjfaas+FYxVyNjkjT35 O2+cB/U66zNxZ70vW74ng5sCBk9KAKyPwaNJgEkMvreR+7iV3lBJzOjAhYam VMknAy7XZEBfjUGmUzkHnA3OgCFP12UVWKcDF5KTAav3SAZckJAM6KdN8X77 +gYuyIzB7YBn8UpnpTex05+ozz6jNcDXuElIhMGtlV6UGL33VnrcZx8dfxll 8Poi94356yVa/wdnmd9v8hl9Uee8Z28fjfeReG+Tv23y0fePHXN/qga5Y24X aa/V6LpE1a1BnmdtCc5WVloPe+vWxjO2utWFrsXwFre6UHXUjT5ggDW2PVU7 49qMHm2Nak/TkyaFFG2mTTMF/DxnjuXm+XDzvnDzQiznRXDzYizj/eHnJVjA B2KCHQg/Hwg/HwAvLxErFV7eD15ehNm2ED7eFx6ef6ox8+DfufDunGXwOXw7 C46dCcfOgGOnw6fT4NKp8Og+G+FKeHKycCZ8OEk4D4qYACVMgBImCGVATWOh ijFCQUI70MSo68GN0MZN4Fvg23zv74KbeQbys7cxw74Hy3yfx/IDcCtsdBu4 HfyQx/Uj8GNYEAwBA+4APwV3gp/xWH9uTP+f22WfX9L+BY+bZd9fQb29fy2s 2+f/2PRrh7v4Re4SQ7v3b9ih129Fe+p1NytBL4eev2NHaf/OtnveA0v+np/0 D7bd07YDacjQvT+y+Q8Kycv6g7hJev4hXCcoMT3+qP5xdu3u8Sc2gW73ciN0 pNz1n1l9r90k6PpnPf+fZId70SLYVWr53KsH6d6CnvfKXrQQuN3/wlF/Zf1f LLrcx9L3WXb+m9wjLYkY0+96n6lpfmxN6ivXzDwkJO0yoYbS0BuvpF0cFp0o Dr3x2UKrPCi0yoMEqzwTWuWZQqs8U2iVZwpJW5PsM0IUSrfZkLRzQhjdhTFy IS1nQlrOWDtej/WWtaoDmcJYeiYhM1/vrsC4DhI85k5Fkey1IFqdOj6kMCj0 nQdWDfKx9GwhPRc3aF7X7zsvLrCt98jOzzVEzq5M1C31knN9IwrjAfWkLP0k E7uxyT3qK5wgJrZ1o+dN7PzIQju5h5jYMt/ZcojzLHAm7TMhv7PUlb5O0+v8 yMIkN7qf0OOruNH7RNzoUYJu7UzsCpdeJ6MKM5qtLxN1rNY61BlnYqddUN2m 10VHE0ZN7PpS66Iu9K9CzlG3uQTP/TBAIWifNudT7SVy/kyEnMW0ljS5NyKm tSdnb1ILOft0uJ1KzpLyBjGLvlliNDm+kJyFmDVnTbK+2mr4WzPNupmC8LY4 weO8PGJE3nxO4mSsZjNjhuXiefPkFmBjXu2F8PB+8PBieHjR/tbTu0jcrkew DiyCgxeeYPl3gXAw9vDcsx33LgcsZ2DPTsOGnbreLoVvJ4m9iek2WexQzLNx V1meHXeF5diRN1puHXmD5VZPprq81ZLnwDt4FAN/YvhP7Gf5USG8CQuGXAc5 huwkJCPrhSiESDr/HV78o112+gcW4D/ZX0hG2g/ztB/hONrdHjSmzX/4BUAX 1vdhXasnwVOoSawb+ACq09P0Qev/cosPyCNshb42zrR8jp+A/ds9wzlot3qe r/Evrse+7ei3fYGfiuv04Fwd2NaOfu8nuAZo9yLnB70459BHUcdod3yJ++e4 kdxHZ/pd2L8rx415iKW0ZR0Yy/bu9LtJn2PGcHxvjutOvyv9EY/xmjxt+93o D+Qag7iHbi/bfn/ud9R/bFvW9eZc4zhHD/o9QS+Om/AIPwEdDH1ZPYHNfdit F+0eHDLu3/wcz9t+T/qjHucSz7r+KzwmLjHsaXlU9GRudG5vzBN2m6AvlxjP bfZ6Rfbp/YoY5i3O/h8Y5ofJZys7fbnn+Fxhsl5x6HkvTjDMswmGuSbrZcJ8 /kxomKuLOhMa5nmOz4QcrwP9tYiRVlPWeUJKhHAqwmS9SmnpumKrAeh+3szO FJrZzvhXNwDXzbiSVtGKR5pK6I3soNBZnufzWAQ8nxSfqY/Fi+tj8ZiRXa+T 3JdW2rPmcklBVnzCJPF2nrsbGh1n11Ba3N44yr/szKVJRQ+Fyb2ZbZ3le5rZ duaJVSxX0V8Fu68Ga0AVqAbrWL8+LHoYd5ZHE+X/F85yWyPAmtkt3ayjTd1s o1k1tVfqjBJZZ2YHGgyvdjNJ1JckX5+jPJogX19aXH0sLmP+vXPcJ8L7NLi/ Oyb3CfCPRszspIR3PyhOktw/VMf6Fi2sZBPbJeZtWXwXDF4rCevsIzxeHJrY ktwsTnFxiPuscxg8al0Lg0s42zO4hLOjDB61qr3jO8reYlGLNQ17i/XMLWBH Y1sJcx+A5bwE5t7vYJj6SN12guG/aeHxlrHnnG3ZWpfLrJW8z7ncJqYy/2Ri GI+HmCdcYklbiHrkTdYQHvNNawCLhTsUgh72XWvpigXb/2eWqGlLHh4/RY2a rL1/a808YWE1DIWB74f9YLDOD6hJZ9rDiG2EAR+166XdAnpoA0N1hFZaw1zN XrWM2u1xy6Tlb7H+FcuknaCdsvfQm96GSp6zTFj+Aes+slTUn+3NPzQm9znb XkfJgJba0A92cV/v8B3pd2T/ojruh+VE+j05X45+l49RYDh+IPs1Y/8un/Bs hFHf5BxfcG3OOZZzjgOdtvNddvKcuLepXLfXZzB+LT/luzxq6G3QFrbTH/W+ MfO5xxHcX4c6u1xAfyzrO9Mfzn77co1JHNeDaw79lJ+a7z+N79eXaw7cZsxM rj/rDdpcsw/XnM62BewznGv24hpTuf/FnGPsFtufzPc6gHuYyLV6cY2JfK8l bN+H9X3ZPm6rMftzzzM4biDXHM15Fr7Ga8J5h3DNEVxnLt9r/pu2PZhrzub+ 9mOfsew7gHPM4P4P4DeZtFXegQF1QuGta/4HFH6EfLZOoPBcYfC8OPSt5830 bIKZni2k8KCQwoOQwjMhhSvRZoVjskIyxcIyOSHkCuGapkI25dLKWVpXgvdG d8bSv49kZ8JIdmCdAgXGdp6c8x7wIPSABwkecFcVsyFybp5AzkkmdjqsrZnK JgWvHTVn96DmcNK01A8aHQMfL0SclKRWnws8Pqv4V5lCMx7IjrrB66/fY63s 5YpVamUvV2u7SpPVlsN553yJMfFJ6eszvoQbvIuzsn36uqSu+9KExQrhZmtl Z9w0CGmXup4qsLKTXODxRDUfxK4vSS3Ozb4uj9Tk8YHr6EA1CWD75DQ/QM27 wR8zhYPSwtz0GDeLhf2RKXSBb9PBZkGg3CyDho2OKbbjyGQgkIw9kli1jg2T vPK2mnEmxrV3egstS3za0/Jglxjund3eqPaUPGVKISWLUS2ObUvLixeLubTk AOQilLzkCGtMLzrWGtDiwJ5/mnVgi+NanNbegJ6ySZ3UnGMiP8l+ysOjr4U7 brBGszigxUBWLmaJbawcLFaxLMUSFm+vunfvsdZwF2f5Cv92/Kfl27ZYfW0f s8tWz1jebQHftXzWcm4FvFb+hm03Rd43QcaXg0p4oClcUg6PNAcd4IlKlpVw VUvQDR5pD6e0givagp7s241+W3ijw07LjQPluN3cF3zTh33GfmD5rzvoy7qp XKcn7d4G05LlbPqD4Bl+FoO2ZObC4WM4Fz+NQWsy8+C6KTt4RrT5mcwcrjH7 c3mG4438DrPgscXwNz+dQZMys7nGYdwXP5+ZIftz7qM55yy5lvRZHkt/fq2c Y66R9+VY9t+fa+4r1wPf4DsdvMP2F4Aj0AcO32bbC8Eh7HvsJ7a9GBzMNU/5 yLaXgIO45mlc44A6uQYvClL3NLYfzPoD2c4acyrP6Yid+f7JXPMbO3iFWYFw Po7LHbvNbhYcxa4nfWrbh8gt8YjP4BQohFyCNdDyoP8FLR8d0nLee15S6D0v DnPZs2Euezb0nmdCWs6ElnUmpOVMSMvZ0Huu5KmTKmaFWIqFWkuEXsqFXyqE YMqklZN1xZa0vbc7G8afHc17qziTQLxBAvEG9RFvJiTeTKFvu7KQeDMJVnGe eCNF//OzL+YKEsdig8XtSPeUabD+THwSgIYSxPfGw/1lbeOk2nney+1tY+vl 3nPomK9HI7axDCJfofbxarBWE8lWaELZOh1EHq+f92W83D4MvTdebj8Do58M oDKcddFOBFDsbOOsm4Y6cIni+SmIorZxYx7uKPdGE8jq824L9/7Eca94tqND xHyRGZ8c7r3cYhs/HLONfQjac6/3cCeFn2XA93blXrGL0+laHdQtg7llILe3 icWz7RPFfMjZu7V9uNllhhUwr3dnizEsg5+EeaOsK6Fl58r2zKvhZAklL8EY 3v8w+pIsfQxS+EQbOpaw8ZzledaVMLGkUom7Wqze8ZeZPOPeaK3eYbdYt7TE dT3bii9arFyNu/7ehT3Fp/w352P+l7Vu2z1mrVrxGQuzCsNWYn1VvGbZVaxZ YddSGLAE6Z9DwhcjwrOI9QB2ScMaRTBCACMVg1JQBprDGvz7tqTZGrQDHcWI Rep3rbPk2QfwRMUcM4PBMDASjGYdT9RMAJPAlDpLhDxRM8uRnxDcvo7I9qvL k5Ywy8F1ll0OE4YBh4MjhRC5S4OCg+ThYZuTIkDdMag75nRwJoefyRLVx5wN ltHnBzHngBVgJX1+HLMKrAZr6K9hyY9lqkzYRmaiLCFiq+lviIAf1NTw4MxG I56Rczmc31dxHtikdEsrYzbpWfjhzWZ22qwkuVmO3CQf54db6WrPrsvqugui EHtXWtDrjP8FvR4T0mu5kEeTQqs3iV6zoeM6G9JrNoFesyG9ZkN6zQpxFIf0 WiLc0UzIo8zSqxKtUq6nUiXkbGjDZgpt2ExIpZn6qDTTOJXmbdgW9VGpG5TV OJUW10eldrD4qw1O7hdP5NpbL3PUkm1oAPbesGnUmq2PTcWaTUrLPj1My7ZD r5bBVMtgqmUw1TJYahkstQwGFGt2GThTU7KrsWKrsIirzPHgGLYfzfJo1ls2 reL6VY5N1+o08nYW+ry32VuzYyJT7MS9zX56nbaxSf7KNTV7FT/ean7GNfyk a/lxq/iVZaZawXpQA84F54HN4AKd0i2tuFing0vDpmnYNJ26ClwDruU9SmLU +qxZHyv+hclXlY2WbfNxY1/m3pdpizJqNB3be5qTGPVT52Xerp7mNKI/k9ml Q6mbNNmlpqxNvZY4cZ2yaZs2+dFTUVu2d+862LRWbVnvXhY7NsqmkXxqTdby gWFJ0FqwwCZo7befHWuzEAtigQSEj6Z/HO2ToQiE+twzrDt5FoJ7BoJ56oY8 k0qCVZRNJdg7/Dvcy202O0qzoe5wLPpbDQ/eI7aasKiP1Hb6p2VRsVFbPwme siza/KWIjfqmtU1LP9SYOg+yTQF7ZrD9SjCEUEgMCokpBigjpjVoB9oIZQKU EIMSojbnIGdXij2J6W8w+81kIQV4EkV6mskzpJh78x0zHuTsLrXFLCMKISo7 Cg2e4qhQ6PEMT3+OClc4ulsbWQqdbbR0Ju1A+aeV0tglDpc6DroCXAmucuuu Ad8E17r114HrwQ1unSxvAt+Sb0UjlTH8NuZm8B2/+hYj4dqbbdd8z+H74Nt2 yfP+gdqt36VPy9zqcHOkf5s77gdyytv0lD9wp5FNt7vdvm/bKbtPVi6u2x1q ltR8jWyv4+SzTUioaq+WFrqRi0M3cp5Qi0N7NRvaq9mQULNCHsUhoco8iq2K hT6KhT9KhECaCYM0EwqpkFbOkqzSrSfPbEie2dAOzYR2aCYkz0wheWYaJ8+S kDxz9TmA94Y8s0lJVqmkLKsYe7oasOMbtEUby7ZqqIa7MOje2KNJ/uAog8bT ovNZV4VFzcQnfAZ26Rkw6Rkw6Rkw1Rkw15mpVXzXs1NrYABJjT4VnAxznQCO Bd/Q5VpQrSx6BDiU/kFgCVjE/gtZxlOjvU06roGYbXySujZqm0p69Gp+kzU6 D3sl523OtctBE8U6sAFsBOeBTeB83oDzeSnO5+24AFwEZNLUy2TOVXAlr85V vEjRtOh45lV0YJNnUe8PllhttICZt0t9zPa+mF0ajdn6zCvvE34pZpfawUxF RR+DLcAyaSbzOez5uSku3qk2aUmJFB/Z5cYjm7BymE+F7tChDgb9wvTosR2b tDYM1EqalWdQsUmTvMHCoH4IkrdJhUX3hUHnwaAL4IX9xQsMJ+wLJ8w/wQZl Qy8w8n/aBuv9lXRlWao9ejkMepVl0OEu6iqeX2HR/ndab2/v31gWlaRdsT+F PWUpnl5hTrE/2z5uc5aavwxzYns2ewX2fNUyZ24L7IntWfIhbLnN2pvpnZY5 m8CcmO8GxcOUgJaOLTs79uwBMNUNj8f0d6zJ4zCY6eJ71fZ8S5POk9paafII R5cHOJoUakSxMCgYZqmx1uCZbr1Yh+sdJcr6asd5m9z68/TcPCg09AvpX+w4 7nrHh1c4rrs5wn83O+q52W0TSvppZB2mvvmFWyf0hNlveMQGs9/8GNyp1/yN cNrP9cJ3s/Ie8H/uwN+BPwF2Mb9y2/7s1ss+vwd/Bfxm5q5I3x8j/fvAveDu yPa/6IU5G4L6L27d790+97pj5Jy/tedi3/vUMD32f2GYnhgaphUJPJoTNsmF Q500o6o4NEyLQ8O0OORRDccWhzyqXJgTHikVIqkQJmkhVFJhGVW51XNmcWhw ZkPOzIYGZyY0ODOFBmc2zGjKhsN+iws5s2WCwVk/Z2YLRgwVTtyaKZi4NUxO frsh2vxKRmcSbSalN0XduPXVAPVh1IbGA9dX8yNaBUyoc2nqVHAaOANaPBOc BZ0uU+o8C5o6E5wGTgEnQl3HgWN0uQr6XMu6KtpieK6FNtc62lzDPazVUGrU nTsnNqooOuP8yIgB2i8h3akT6zqyvQPHtudc7aDJ1ixbKHUK1oENoAacqzN2 VyhtbuJNOA9sBueDC8HF4FJeEzsvedFeuXW/7ajTG6CS5vQTU5is7Ot8RF26 PqTqJwXzLl0/qkjnJTGFo4p8OPVtaPId8D74SKkzCASfgx0aTi0u/gLa3Kk1 vJq4wos2zUlKeHwBZX5mOnf+1HTpsgPUhlnK8fymqDtXqDPqyvXGp9CnjBCa A1fMX2yLOkgNioWHQh/wxcKjbQBVXLlCmzLqR0f8VNlcpqkbI27cy22wVLKL JWDqqVOMzn6I534/s7QplKnjUVyQtMO/tJYmekc30+Zxa2xWvmjRHMosezs0 NtVlm/0cs+yLQroU9yyPyGCvq5GJXW54LKajscblYGMDl7Ic7ShSfK/7gJmW KsXXmjaoDvybC1Me41jySMeIpzt2FKYUw1F8olWuLUaj91CK8XiRY0DMcLUM ZYkprjacsKHYdt93LCd22i2O7YT57nBM+Eu5HVgLQXan45bfRfju9457PL9J G/3D/D3PSWmDMoKwk1X3g4fAw4C15gHwKPg3wNg3GP7mMfAft3zQtVFjzOPu 2P8otT1pJMHtEbf9KYdHXf+/tp/WnTO+q5seldVPqYf3CXfVJ8MzBjVL/xdk ebJ8tg2DpGWFZFkckmVxSJZ5o7M4NDqVLItDslSLq0S4o0TIo0LYQ2fWKJdW iSVQb0wWWzPVG5PFoTGZDY3JbAIxFicQY2lIjLm9JMZIlm9+UlNnSsYTfesp fmknPDN7FdT8qqwYD27GWdEnF8Vdsp4VfYCzsWE8nhlPxKg8KXUKWApOhSlP hx3PhAWtUXk6WApOAsfDlMfqcgXHrYIl16hb9kRY6jjwDWXFNbDwWq5ZpW7Z pKpY0UQjGdITTwT2zOgrY/XWhKPVPMs1PNO1PNsqnnUVDCnMuJafRiAMuR7U gI38bMKKG/l1N/LD14BzwSZwPriAN+JC3o+LeGUu4gWKJwMnVcu+weTdsw0l GkUNSz+rRjTZyDNjfEhPlBmjRqWvlOGTjQqDnem0dc1KsNMO5amDFb+AEWWW iS2mXbuPwGemffsdoFazf6OBThm/Ew10RrN+owZlQZATVpwn42adS3Y/6GGx BDgPtalFi32AU8bFnuUCnKsjrHg+573EjruRVF5JJRrxHaMDWMWY1KDmz20K kbCiBDSVERHcnR6wwUyfMiQuWEkVEkYUF6y4XzU9SAKYH9vgpRiRworZXRiX tTZoKa7XSmPdrR0dIwobYlur8ShuVolKSorOVMeEYi7ybyuEKAFIsRcPdSwo jIgJbTChNbIoLlSxEyVyKHbiesd+5zkmFJsQnUB9oeIbvS7Cgjc75hMG/JFj P2E+dAQ15cR8uytCe0J3f3TU5k2wv1leg0H+oak5/3L89ojjo8ccdz1hmUaJ 6GnwjB7znEYyn6f/AnjR4SXwshDVK8pfPGyD5W5et8uMeUOP4vmbtxyk/bZt Z6WRNu+I2/ht2fstab2plMeBNcsdxTX7qvS2VD7b2REgPkipOUClhbZgLvSp 5hLoLSdMoERQIixQKjRQITzQQYigqSU6pTwlPx9UdNTobbziMD8nG/pFi0O/ aNaSrs/PURuvzVejMusSzcTjiX4W8QiPpezMnKbAvPMmXpJ515BXNEpmSSNY orHF+kax1FfyKZqtEyU0ny0bH80ihCamnmTtHJc6AZwIQZ0MKS2FzKypdxpm nph6J4MTwHG6XAapncN2MfnWaAmoU9TEW8P2Neoh9XHGb0Au0VEt0cLPfmRL foxqoakXnf1yEMuBrB/IfgM4pg/oCbrR7ww6KqrBOrCB32UDv9UGfr8N/KLr +ZnX84NvABuB9ZSWgGIQYPIV1VvqMU5q15nGM3iio1p8vNFPw50Ub4x6SuOk Fh2nmkRqHxV4SiXemM1+phM1NWv2vmnR4j2dA6lly89Mq1Y7WO5WT6mPN3bu vBtTbzeEthtC22369KkLSS06GDU6lCVOarPmYMJBanMhtXnO3JOBp/MR73Mx 82ZCaNMgtH0wdCZj6u2zinVrbMbOPudCZoj1MRg0oxDpI64FkUGkYurJmBRv 7mmM8XeO1KIZOg/bHNg2T9oMHSE1iSmWSVbOe9bUK4PYKj7C/NsC4UFupZh6 zUAr0Hm7JbQOAI43fXfbdBshtBFCXmVmLN1JdQWcpnHD/R2h+Sya443GBdNi 0yHVPZeJZbfacZmmpVygCa1CZeLa9CE+cWFKEO4Wk4+s/djRmFhskLtaar9R urlbLbk/RSjsz5a+1PT6p1tGqevRPG2lxZBCdGIZh4z1gmMriEpoiku8Jju+ qTt6YnrX4T1HUu/rjh9otE/WfRTBh7rtY2WrLW7dFt9j/49tP8THkW0f2b5H zeqvEzk8vZDl1IhrIjxRIjxRUmjE5UKWKxGe0AzOnPBEiZBEEyGJCuGIzpbl aCnz5UJGy4XGWcZypY/0FYeRvqw1HrV+ZIFx1jZktGxhmkymvqEeQcw4Cysm hoyWiVtmdqjHe3vlr/wqhBYd9pEU7osO/UiqgOSHf8RJrb6Qnye1o1PfAMdA PMdBRCdAaCdBTKdAYOK/PB2iOp3+6ayX5Zn0l0Fw52CtiQ9TCi+spb1GLbST aZ+kkCSadTpUM56OGq1tGPdhRgsvRJNoRrEcyfoR7DcUDKLdH/QBYql1Uwi5 rePZr1NiEz9mKyAhwArFOrCen1nCfzW8CjW8GDW8KzWuxmFjcxv5YZsNDQvx sxjcZvJJNN5S8/Mg+kSa6PxF0bkPo8k00bmW47UNZYrkN3Ra5KKid8EHGgbM Zt+HzN425ZgnMmFeRYVMwifTCn7u5iMQH+ZuLLYdpm3bHaZDhx1YajtBLeRW F/ox46mpPgxYUPkIk2XiFKT8NGOmzIDgZtsKhFJ5cDqW2hSpo4uIH4/NMvE4 yAsxPxu7ZQHkNgu7ZfIKzoGcH7eOfZDzE7FZJlxkqxJJRSK12K63vkxNRb1V qyJofSAtgXB3fsCHJs/cb8mt7eOI4JYoAj3VjdnaVSFog5BuJZmnblxk860Y ZMhiqF5zZHgqphvt7tvtmIwekkaKITcYDHfpo2KsyTiL6Y7QdMyEsSmihztS E0tNInpinUnSi1hqy1SsV/FZpqxWY6xlJhAr7TJjo3ZimXkLzSWG2FSTjspm v3KMJgaai3OFMbA/O/YSR+NfHZt5x+KDri2Gl3gDvZPQG1vPOUoTK+sNvVWx vHorWwlDvWXXa/tjy2BiYCnjfOLWfeAYiSdoPo1swyQ2n7u2rN8Btkf22+7W fV5Pf1v+mJrqr8NoZ8tnh5DRmoaM1iRktJLQbtOqOyUho5UKTzQRklDTp5eQ hLZKQ/bK2SRUz17FoWsxG7oW8+xVErJXu0J7LBvaY7HxEkHMtRhEXYtuar1M NOKWT/M0Be7FvY261edjjDJZNOUzOoAiaQBj3M8YHcQYNc3iTJZUzy9qnh2e OgJmOQqz6Ruw2LGwzfGwlfgbT4aRlqq/8QTY7KSYv/EslwYqgxrP0tJBa7RC 71mRogPRgRV+YGO08MChERNtUcLgRkkH9Ww2kW3jWDcaDAdDWTcI9AN9FGt5 tmtDE60D69qCVqA599mcdc04RzloAkq4brHW+auODbSIlhKKs1nSIMd4pd5o Sqhnsx9GGC3KZkkz+sYHW3j/o5+915pqRUXPgOfBi+AV8DqQ2U9fMyUlr4C3 wLvgfZPLCbNJYovMsLNDJ8iV2W2bN98GvlBGa9GiFpOtTk01m9QSTw3Ns5mm hg7FZMJWGT4KlhFGi5hqk6USPnJ9zALW7wczCZsdiLiH0eYfak21acdaRttn qa2LOxNzbYYks7jBFZISKuba5AtsaQFhNR3G+N18nR811/wwxv+zjCZROR22 +IA117ogyDtjrnXEHGmPKdJCTDU3gKI9Yrq5DKKAykoQmG0Rwu0Rwm22WTOt vZRHzJku2+2o+m51NoeFp6FBuJEq6kfpKL99jB0E4VlNzLRDHKvJUtI5fQTu FMtoaqPB3ep3FEaTiNulJu9zFCa7Sa9xo1KY5Jr80OE2kzfOfH6JTx0R40xS Oe5zlPagozXxLXp/4qNu+YyjL6E2scxeNt4Se1lTRd50VCUU9rqjsA8dXTkK Y9+tms35oaOpzx22OpoS+vnCrdsmjLxTPrbr+XmsZrfbLvv5/s58n/Pv1uja +kajazlZ0SSBvFaE5FUpNFFeSF6lQhOlQhOlQhNaLk5TMnQse4VQRD9LXrRK ZZ1SWy4kqlzoOMwTVc6OvlAXJ9dtX2hmJRFVUJ/jMJ4UUlCxLhPaWQW2VjaJ pezUuDBatIDd3tpb8dTKpPlg/ACFJCdiPCIWH3LfGFPZwQpHw1LiSJTI2Aka FROmOgWWkrliToehzoShznZVaKWW/CoYQKrQrkHKy+xxMo/sWp2WfkPBtPTR EjlRuyuppnx8KKBlK4mQrXUOxTVqd1mHojgTV8P0q3meEh1bxbNepbkj7V25 HDubnBS+W6UDGEpBTofjS1351TqbXOG8skmF7zabQodiUpQsqSptPP2ysZry cRssOn+snzs2mkviBzPYiFk6/SJ4GbwG3nS5JB+4XBKZHX4r+Axs0/nhZDBD cfFumKtWUzGjJXPc2HydEsZHzNQGw/7qJRXvXBVaHzET5+IYmYVN5iibBEth f0109tc05PZMySPZ187FMhsZPg/W2hfWWnSozSNZKIMYYK0FsNZ8ZPlc5Pis VTBXtWOr8/NsJQMYovZXNGLmC930uscVRUVWd3nAlZX7t029lCI2LTC8KpHE zWTAwtuWrSqkUA0s1QTZillqmiInmyAnm9TZdEsZpACBa6qlUFVfYwcm8NXF +ErxLyvD96Y6xpIBCXC0ZlSK7XWEYysZbCB5IjLgwHsVJVdE8kRkUNz5pjA6 Ji5FyQuRyJgMBYi7E4WtfETMJypKNAy+VoPLuxGFrR4yhdGvSNRLDK20WF2p YnUbis0lJCX21duWlNLqIixWjvJOvS0mNKHSQkrIR7GMtpu8xfSFUo1y0y75 2C2BL0lpNXW6P01pedTwl2oSss6XtKbk3xn5W0BIZUIHTUNCaiJ00ETooKnQ QbnQQUuhg/ZCB5XSairrSq330NOQi6BpLM3TUElIQx0bpKFY/CqIxa+CqLvP lXbJxJMx7AjzksYMpjgT7Y3NFPX8JeVmJIWz6kv2j7JRUgGYKBtFi8AkhbWi if/5euj5wegyj6kv1mZnNqliWQU7VWlBmLO1Rvo6Ldp2RjiMrjoyjK4K5lvL NSVfYy33sRYmWgMTrdFBAPvyOs1VrIGN1vC9VvMdV2M3rcZeXMVzWMVzWeVy Nla5gQArdZZzO0B9hQ5Q7xAOBsjXSfczmjXhmBJlpdVgDbDD6nIwUQ4mysFE ktFYrNgMzgeSu3ExuESzGothIzso4CpwNfgmuA5cD24E3wLf5p38DrgZfA/8 ANwKbgc/Aj/h7b0D/Az8AvwfuAvcDX4PhJEay+F4fA9W2rMsq4S88rOdSMgr nf4MNtqGLbUNRtphSkt3mKaI34qK7TDSbmyq3aaycjd21G4YaReMtMt07rwL RhLUheVi7IRktdhRdWbo0DozfHidGTWqbo/BATLErmDA+nwAM81dYqe+mou8 nn2UnXdk2sm0kdezkNfTkddTYaUJzjM4djNMJNNbXOa8g25Y3aCbYSXk9ADs qH7iGZTiqFgUPaQEm8vl6HqfLbvWUcJej7qQ1zN2QLoMCtCw19su7CWDAdD6 m35qy7q0Ae0EiNfOoAcYKCXVEKX9d/NYR5jBSNmJ22z+vx9cPnenDXlJ/r8M JD+wds/8Dc9My0w+3rXeMZPPYrwswkzXOmaSYJcfjeaZ6WeOnXyuxj2OnTwz ie0kuYb/jDGTuAEluPVf4YhnNNfCewSFmV7Oh7JcboVaT+L88xaUDU1tVbYS S8lZSCE17RAK+kI+dikFiVVUm0fNhq/j0KuSz84hBTUTKmgaUlBZSEFlQgXl QgVthAraChW0tNYR60qtu4/9SkLiKbGBLk88TUPiKWmQeIIE4kly1DVEPDZ7 IhNnHTukLNeQpy6lk4eiHzcWc0ry1kWzApPsoGjcKSln3jNPPPYUZx6fIRhl n3juvB92Fh28fbYOO1vOtuU69OwsLRm6Rgt/nw6WAjv0bBX21QrOvwLGWcm1 VnLNlVx/JYyzgntaATOu4D7P4T5XglVmHphNewaYCiazfQKYSNsz0GjHQENZ NwgI+/R1DNSL9T2cTdTZ5dO3B22AHY4mWAuqwTqwAdRo5mClZg/avPrmsE7z 1AXgInAxuJQX5VLeG8Hl4EpwFbgGXAuu4926nvdNcAO4CXwbfBfcAr4HfsDr 6Rnoh+DH4KfgZ+CX4Ne8zXeZwgHeBeVEpSLoA3zNwsk7orXBk0moqOhtCOcd CEfwHvgAE+gDzJ/3MYO2Omfedg1PVVZuBZJz8Zlp0+Yz07btdjdbpjjydpmu XXeAXQW5F3371u1Rsyyaaq+5Fy48NQFxPBHzaDLGwkSZvhJjYcpBkBGYexj7 IJbHnMR6mewKs2g0Ynn0CohohU21n4RoHrGJc19g52YagdEw7BpjhmAeDcI8 GoRYHuKSCmX2C5ntQma1kDCVTBDhpm5Qp157X4PscVvvU3IvWiNrO0k1a0ip BRZAS4RsFwTuQORwG8RrOTK0M+r/KNb1+NyORuuOSJ0AYY3c5kagodNPY9v0 HXYUmsSo5rHPol35pAstY2KsfXSSmgsnqhdLBmSvchA2qgEXOhYSO+ly3Zcv i3IrWYSSOx8d4+xHjfkA1a8cA/kA1R8cC/3D2UnSftgx0L9dW5joOWcjPWXy ASmhohdsO6V5fakWobEkPPSR4yThI/HYfWrC1IiQj4SbPnGcJJ46eEi8cV+Z ejaE1k9LIYMKIYOKkHrKhQzKhAyaCRm0DamntbSaWotInXUac/KE40aVecLp VEg4xSHhZBIiQ0o4qSBawjKVDifRtIQTRAknlc7bOkE09zxlk89LQ1ungQBR SmfDQhwlTc+YRDtR11tSukOUdqKBouhQLZ/y0FiwKD5kK6n6pVBP1PBZqonp p0JHp2rqgwzdOh0KOlMpaIUO3zoNnAIkSf0oDKTD2ecI9jmK/hHgUHAwOAAs Zv1CsB/H788xnn7mgzn0Z4JpYDr9mVDHLKhCjJ8ptCeCcUo9K6HllUo/I9xI 6LxLbg3PeA3PXBLWbSpEV0UVqAbrQQ3YyG+2kd9vI7+l4DywCZwPLgQX8Ttf zO9/Me/CReAScBm4HFwJruZNucbI9J3lIE9B14MbwbfAd3j9vs0r+W1e0O+A W8D3wW3gh+AnvL138C5H0yIKqmXKpMv38DjymRF+aopo0cyoZ84OkC4qehaq eQ6Id+4lEwSvYN+8zFLsIOuZy+XexdZ5B7wPPsTeEWyBjrZjB+1UG0jS/lq2 lOVOqGgnNLQLO2i3DpAW71xS2UzvnRuKBTAY+hkyGlGMJTAS+hm2D3QxLT/S azwWwYj9WCezHh9oZ0Ieg1UwHczDDpp2PEYElsEEKGiypP9BQxORx+OqABQ0 Abk8+Tw7v8QEn9d+jS1X7XPafUzJ57SLl06yJISChH56yKQQf4NW/20ndej8 BN9BylFDQ02QqS2RrYNY3x6qKUOeViJLB2Ej9ULGdkCedkSeDkLuDmZ9/+22 bOUQliPBGNqjXLWtMTb3D+EyWwNMPqB0qMkHlMQIkjSJaECp2i2FgnxA6UJL QZoiIRl/fviWCyghhm5X88IHlIR+XECJbX/S4iF+XPGDDn4wllCQDyhJkvqz Jh9Qes7Rz2vWGtK2mEHqo3tLx2C97xhI2MenRzg/XU3V12AYcYsjVLWSBdK/ uUj/ZiL9y0T6V4j0by7Sv4NI/5Yi/dtJqyLklVLrh/O80sR66ThfFzlzaYIh kyn0oGXqq4wRhLySCqIZB6l0PucgG+Yc7EktTQryDhqwaKxBM3uv0w/i7BI3 aqLutPh0glF2SaqhEWWXuGETZ5eoW+2YSKDnZMcwMpuRD/QIu5xE+1jWHcG2 QzGADmd5BP2jMIKOYNuhLA8CB4DFrF/CugNSZ6dZuZzHswRyEYJZAOHMBfNo 76tEswo7bHXoXROCmQb2UQjJrA6zEyZgn4x12QmSazcMDAGDXBL5QMhkILbL QFSfgRBKf9AX9AY9FeeC88BmcAE/1wX8ghfwa17Ar3s+uBBcDC4Bl4HLeQsu 5824nDflMt6ZK8CVQOaH/ia4jlfrOiWZUpCjnYNochBNDvsmB7kUY99kQFoz Fb4fifvI+OE7M8IwGi6K1rCSnPJoVWYf+skTTFHRQ+BR8Bh4AkRnTnhJkxUy mZfBq+AN8BZ4F7L5AHys4R9JWMjlPtUqHJKwUFLyBSSzy6Xg1UXqWZmC/PJw 0iMIpntPBDcE06efMf0SbJwh42lPoo2yPwaCGYeNM3kWQncuZAPRTIZopiJ1 px9o54GfhZ0zE5KZ8w3IBum77wnGzJfKkKe7WlYr3cApJO8UmcQoWhXyOksy mryA1B2E1O1/B8uf5qtBdvsj9/n7fA2rdij13WQAFdK1LQp9ayRrB9D2JfAq fZlPACHa7h2buNB6i62jLA43qZ/cGiVdyjy2cSUe/cApCQf5gVNSn0qqbUhh KokFeY/bEkcy4nGTyhonmHz2goyYOsfksxeEaM5zJCOVpWTMsKSY+zw8iQX5 Ok+aj4d9h4yKh4PE6ebDQZJZLgOjHnBcI4kLkof3b5N3uvmQUDSd3HvehG9k 1JMf4sQTqlnxdVxlMlIDmarZ0p5NmovMbyYyv4XI/I4i81uIzO8gLWUY50gr 4JBmcpauCRySKbRNMgk51/lkgHRhwvVeZgLsOZVdEOWOlM79h9Dem9y1+mIx SZnY0bGy9WUHJI2ZjXvGhEC8ZyxezrAwS+CoeitLnKrmySlsPwnSOQECOp5j T6R9MmRxCsef6ojkVM69FHZYClGdxn6nc50zeUaHpc7GQjwY4oFE1ERZDGss Qe8+ENY4GHY4RCtNrOYeV3PPqzkGDuE778v6+bDBfC17WMV3rOK7VsEqVXz/ Kp5FFc/F5rmNZTkWxhiLCTIWhhgNRoLhMMhQMFixEZwLNvH8N/NbbOJ32cTv tInfTLBZmaQHJkl32KMLy05AzJW2oA3r2qQuBZeBK3hlruBFuoLX6nLetMt5 764AV4NvAuslKwYZkC7I4NbsbWGM72sydzTtLWl0UpRJ/hBjEp9EEE97i86k F6/nFJ2kXkI2Hxo//NaGbT7XZAIJ25SUbINFtsEgErLZYZo122FatNiho5Uk oVuG33bqtEMLU4jHrHv3XaZnz12YKrtMv367zMCBu2CSXWbYMMFu2KTWjB5d a8aOrTXjx9eaSZNqzZQptZgstWb69LqCAhU6he0ili58M+twljDKbBm1dBJS 2E0PP22ZHbU0ucp6ziadi7kiU+EhXkdekWeUUTDKoFsso+jcsTBKLylS8Svr OZPhuF3uzXvO/HDcNq6mky9SEQ7HfSc/HFcSDCTDu7VU4Echb4fp0llCN6A/ DNNHQjk77Ewv41k36XPrPZsN5oP9wAHgkM9dhXv2PRocB04Cp4IzwXKwCqzE 9FmzG0YBNWATuABcAi4HV9TaChSeVXxlQa0OeLuObfLjlX7prBgfyhHnmTjS IsNtNZQjzPKwtVz4D31M4zcunCNOtJozvob5IbmiCE1PGC1EwFeKgG8pAr6r CPhKEfDaqghpQpOqy0Oa6CZn0bB9cQJNJMVMggZzxhLG5zjGUBdWqjhx0Cls YckiV2BoJIdPskkFFdgGXSCsGkt4ro8wovVuo/6s6BAeTxhJtW89YTTm04oW XTgK8jiUdQdijRzM+kPoH8b6IyCNIyGPI8Ch4CDI4xDIw1seR6rlcWbo2zpE LZCzOFb8W+doWEUq+x0DGRylRRhWs321ksYhLrh/MML/4LAgQzXmSTVEUg2B VPPdqvmeVXxnIY9qsB5sgEQ28Ew28Gw28JzWQyLrQ/IYC0mMBiPBMDCE32Ig 6K84V4mjH2TRR82PzfySm/hdN/FbCzaDC4D4uC7k9biQN+ZCDbWUg6a0m2KW NIVEmkAaJcAH+tOaLC3QZGnxT12nBCEZaPECgD5nOpovXR953O3IIyln2sf7 /RDXeCZatKpRfiK3oiLJRntdTZJc7g3MDcFb4F0I4z0I4z3I4j1Mjvcgi/cw OQQfgI/BVohjq+nYcSvEsdV067bV9OixFeL4BHwOtpvevbdDINvNgAHbzaBB 2zFFtkMgOxyR1EZyAOpsmV1Mk3FTEfSYJeNnW7Nk8oK872sGmH4oZIA5Muo4 BO8x4Hj2hUSGytyqp9uaDpMhkgEQyKQNnIPl+AsgiCshEjDeZaj1RUcfeEve NOnzE0yFn+dHCvW8204G3sXlAgiZdHzQhmE6QibdZBbOR+3kpO1fslOqDUOU dn6D/rv0IZfxrBsH2Yx7GfMITAdzwL5gP7DwddpvQx7vGbMILAEHg8PB0eCo DyESSOnwz2iDY8AJ4GRwKjhtmzFLIaMza60vTFLWzq7T5Got254qU2tFojHR erfCKb6Ww7ecteLyAtLqGyvx41/DCn2RpLWa474GR0hGJjJSc4OR7q1EurcR 6d47DIJ0l5YaGs1tgpgaHxzRS45tGjJDJpyGPB0Wpo0FN/JpXMFexjWSQunh LJpBNK6R0qlFMWg8JzSQzCVz/aV6wRMJ6cVsgxWQ50kpxvHwemNDOxvzRjWU cuy5wRsUB7M8gP6BLA+mfwh8cRjccDi8cCR8cTg4BIhBcQR8cBR8cDR8cAx8 cBx8cGzqDPqnI/fFU3W2xj5OgAtO0hJ2En5fQ3sN69Zo+brjFVVpDq7m6x7r JgQ7SkeBSjbyOi63jttdB6VJRrJQxDqwnq+0nq+3HppYz1deD02s4zGs45EI hCJqlCImgHFgNPuMBMMUNUBsihp+jhp+Fu+h2sDPuMGFQs7l5z2Xn30jL8JG 3o6NvCw1vEM1WsOnHMoogzKagBLNA9vMe7mZtzQseSAR8Yt1PJlPUk4aVhNN Uk6qth61L+IF7yQqEh1a4z1WUVsjWg3BR+Z9iti/oYP/QAX/wWYQPAn+C54B z5ni4heghRdM06YvmIoKwUvgFfA6kIGjb5vmzd82LVu+bVq3fht6eBe8Dz50 dPGJadfuE9Ohwyemc+dPoAwphLfNFcPbCXZje9RBIXWuIjsiewAidjC691Cb yDx8JG1oYtBERKtM+AldDIUqBs3BdmA5G5tjDLbGoIOgisV2jpPJ0MVAbI3J UMXco1meiN1wJiIZTD/LVksYhrwctc6GSmRA6UgE5khJHZNQCUJzFAJzxHU6 k2faDP2eQYmTkThSMEEiJoNhjeF32rzmLgjI/gjL0VIv7wE7PXZPTJBxf4G1 YJJRrBuNIj4B7AOmg2mP0IZNJsMeE1HCJzwPW4DpYDaYBbvMeI0+jDIVZpmC uTJNJuD60E7uNQ/TZQ7myiwxQ2CDBbDBvDo7Udf+OoPH4UoFvtK6OLUkgnKi W8rgUkly9illkkp2sVDBZqUCYQ0JolzjWESYQ2L4P4IKDvwaVCCqEKJQo9aI 844izgeHJd/6WMNBTQi2Vsp+fUMCyCWYBpnQNIgRQNCgB8nGHoJo7MFO0pjW 8EO2IIe3cEhJcX12gTULShrzI6XFLkC7byzKXV8sImodJDFAtDhpUppv1KUk FsL+LJfABgfCBgelDkXcHobYPQJJfxQS/2iWR7M8Bql+HKL5eES0rWZzgpZo k+GSp+mQyVO0eOnZWp7tTE288sMm12rt77WpZ3S+5rMQ4WfpLBrrwHodOnka IndpZPjk8cBTwZFKBeu5p/UhFRwAFoNFnGcBmK/Wwjq+9zq+fzXPoxrxX434 r3ZuJnExVfM8q3m21VocYDCQijd9YaDeOqSySsu4SUS8kxY5XcsbsFaHVVbq 0Mq1WiCgLBxWWcW7V8WbWK1zOxcOVpFCAX4OyaThlXEuiA9aSZrnOWngip/T KqmAQBIv2HB5Oi34K/gbuB/8A/wLPGyC4BHkvuAx8Dh4EjwNngXPgxdNScmL 8MLL4FXwujMf3gHvgQ81bF5W9hHYAj4Fn6sfqqxsJ9htystrtUBqixZ2lo5W bezAFhmKKRNBd+6Gqt0jHzqXwS29B0UiG8MRuGNt9tbYcTaDa8h0+GG6zeCa ghkxciGmAJgMJ0zFlJh4MG1k4lQJo8MJ0+CGqUjD6ScjRJcidGVoJtwwA26Y IaXhqtzcVz6MjhI9CYy+xpaHG45IHH8j93Sri3JADGNuZztK9UiIYfgvAZr0 GDAK02LE7+GSe7l/CGEwhDDwQRtOHwIG/5tzSHj9afgP86EPwr/Xq9ac6CPA XOj9vp0psvtWlgj9Hgj9bjJDJAK/j6QZ1yG8B2tptVEu2CHJXftEAh4wY5jg dbgNePCveZwK/Gia8VmFQY+aaV9D4IsSA3Wqjwfx3UfEd38R312k1VrWabns AaGYLwnFfLZBMR/Up+fHxHw8dUkiBVbMZ0IxX+D9yYben0iomUMkjymIavqs Q9Bz118iZMAxSHvke2PafjR0EPcENZbd5OX94kgMes+BhjIrkniEpDj10chb 8QjJPL/HI899GOEUTbKNzpC0HPnuh3isSa1OyziPtAw75Dms1KEe1Q7r3FCP dSrrTwenhsM9qnkOJ/BZwXWlmpkM+6jinuy8D3bYh6CK+18bzqA0T2dQWsP3 5pLTUmtQX6eEoz9W6+iPUWC45t+u0vzbAS7/the33APkR4Ccw69/Dm/DObwf +YmVZKrgJmwv0akKV/AGClaCVTpdcIZbyKjYX6eTLGUQ9xnEfQZxn8FayCDu M2oJyBQRF2o1TzvZ0iXgMjfh0hVuwqWrwTd56QUy8dL14AZwE/gW+A7bb46I /qQKnw2ZA/eY5NoxSYXR4km6vjhadEKm6GgRCT1sAZ8YX/kzlZLKn1+4sYw7 dVoJyZhq2nQnIv8LzIWdprLSZky1aSOoRezXIvZrTadOtTp6pEePXYj9XaZv 312mf7/dAFEpmVOI/xHDas3okbVm7OhaM35srZk0freZAA1MwTSYOhmxPbXO zJ5ea+bOrDXzZ9eahXPBPDtR0wIE34IDpVZ2ndn3yDoz9xj2PaHOzDylzkw/ vc5MPbvOTFkJEP1TqhH1CL5JiP7RFyLCL0GEYxaMQPQPlikPb2J5M/f1A8S1 THmIVtwXkd/HTXnY43fGdMUe6Iz+3+lvUJsEuR8yps2j1jZoLtNMPGsMFpXB mjKlb9iMKthTpzjMIuJzn7IOlH/GvoIdHL8digTdtgHEf2/WDQCDaQ/dyT2C cWASmCoT3++yE/nOgyaWyAS/tXaIyWG7Tc3grxMlllcQtRVh3VOE9dEirNtJ S4s5D5KtZQmiPBs68zMJojymsQf1iXLrrQlCb00+XyiblIpqXTZpDfsGCX78 JqHC3kjwN62Om2xS/JdTIcoxDepR3NMiyTl7VG9PGppXnyz3VSfjunvSYIm4 h78wa1XDwmlJLEp9xKefc+BMNp2l6rvMPXC6Gz/hqyyfAI5j/THgOOTjCcjE 45GJx4Kj3RiKw8EhbJMxFOLol6rL4uw/GBzgIsT7IUP3Y7nYzU0QLVYZnZtA ClbuE+Yb5YtW+knyBrtp3/tHqjHLWPPubOsKOoOOOuZcsEZVeZmzoD0yuz0y ux1oA1qB6BiLlqjrLZHdLVPn87Zt5gXczJt4vjr/y5Hj5cjxcuR4OXJcggCl IKe4HFwJrgJXg2/ykn+T997L9uucbL8xlOt5lb6+Ipd3RtT5ePVmL9f/lCDb /bh0L9ujYeV4VOBFk48KvIrclkSl15DbryG3X0Nuv2Yqy982zcvfMU3L3kJ+ v4XaLpBIwSeo8jIgQ6o5vwPeR46/j/r+vunS5QNU+106CV+bNruR5x+Z3r23 oMpvMf37bzEDB37Mup1hduyQIZ+bESM+A9vMqFHbzNix21DtvzAjUWRHIt9H T95txk77woxBoI1CoI2Yv8sMW7TLDFmyyww6eJcZiEAbdFidqviTDsMkOAp5 jGo//nhk+Qmo/qcgK5ez/ixbfWUq7b4bUM9R72eh6M5A0R10ESr0ZRx/Mar+ 5cjV65Cx37ajB6USdH9kfYcf26KZA1H1e/8CeXyXHUEoPqBuf0K2I+87/B3Z L9mzyPzuMs3QwwCZ3+sxvicqf//H7OCNXmA07dGo/T2Q/33AODhh+pM2g7bP B9zv68jspzjmE+7nMx1RWNN63VfXxeXNQuNEMPcXwTxLBHNXabWXdUNka3ko totDR0txKLazYQw2W+hpz+QzPQtrS2llffG2B9GUHVv6N+JwCaKauJ0Wrd60 HauIZ+Iu97T63EtD6d2ALs55EOCI63pyQNMiv5H08WpUIsTTIsAhkaR00Hhw tr46iz5AGxXj0SCtH/PmxfixWq3qOK59TOp4th2DSC90w0jlqqXIZnHELw0d 8pIqehwyXgoMHw+OBd8ARyLvj0bWf0Or55/DPivZvopjRJ7bsXBH0D9Kp2aT osPVBe4YX9HKB26XqJpeWCtktqvTOD1W3WpCOF3bWq0bMgIMA0NclatBmksq tRvXaR5pf9AX9AY9uFYPXW4ANWAjb4AfsFDDC1PDm7MRnAs2gc28V5tVpos8 b8a6ckVepjcFpaBYp3O7kNdfcDG4VOelKUpdIV78K3VcW3Rmt6T5UesT51Gv /c/qUdWjQd6oyu4DvQ9ERLvNPQ2Ch0w2+7DJ5R425aWPmZZN/wueNmWlT5lc yROI6CcQ4//VQQ4ynU1p6YuI7qfBc+AFRPQLpmXLF3WsnajuTZp8ZNq2fQVR /hp407Rv/yZq+RuI8I9Q33ey/3bE+weo6e+DDxHfH5uePT9GZf9EZ4Xr0nW3 6d5nu+mJrOo5YBvYYboP3WG6jtxhOo/dYTpN+ALsMp3H15qBY+tQ4xFrqO4d ZyB+p1oVfuRM1OZFqLRSmmSWMfuw7Hkofal7vJ8xcw9ADB6DSESsT2U561jE 6mnsswxxf5b17g9Fhe8u4/DAZDB0E33E+2DU+LGI+CFXImJR5ftfL+6Pod+S +VCH3GAzjPr9hP1Q58eh3o+83c4e1+83nAexP+kO+vcivhHr41k/Awro+U9j WiGyR/3VmH1Z1xNR38Sq8zWZlV9dVAvpo0cijCeKMFaf+DBp6ViyUYUadq7Q WVIcatiZMKsyU6hhBwnOkqBBZ0k6KSIaesVtWDTYc8iX1bEzcad4WsQzqrcX 0A3lWCKg0yKhOUus7EVaJHTKNOgyiara0bHI0UCpT6LZWzl9sLrJD0UGHq6u 8iOQyeIqt5UFj2F5DOtkeRzy9Hjk54nIz5OQsaeonD5BZbPI69Non65p/VII fqmrmXsauvQpOnhsBf1VWjf3DOSiuM3P1qqDG8Kqg6e5Wk4nR+o5HVcQRbW1 dH2ReF9P1+vedvYT0b99lqatrbuPoornV82zFDd6tbrRx4CRYLiiGqzjF1rH r1XNL1fNr1jNb1utReS9vM7X212nOngbV3O3hWI97916rbkrxeRL2Z4D4l9J q2t9PfC1d30NqLhb3dff9W71aC2oq01+Ks54qDWekfODiOBOysz5eUwfFwF+ F8L4NwjZ35jS7O9Ns9xfTOvS+8E/aP/dlGTvM0HmL2z/m4lm6uRyD4AHwUPg ESCZO88Z73cR4d206VPgafAsura4318HUvnwHba/aZo1ew28Ad4C72hhelvH d6upaPaJad7yY7AVfAo+NxXtPjflHbaBHWCnadZht2mv/pc606mDMc3E7e5m YunVE312AHqom6dsMO0ewxG+w4wZJtN8jmQduvmAyfnBBSOmISzn0gaj59uq iAOW0EZojzkIoYkQH3wkQvhoBOw30MsR3iMQ5GPRz8efSv90gDAfv9yOZpu4 2g6snuT8MZPPRehuZN0m644fJz9xEzPhKlYh14d/y447kAFuM1Hf+//E1bf/ ualpeehXl8WShoVUQdqeKtJWkx3HGe+uLg0lcC5UlrOFPo5MoY8jSPBxBAk+ jrx+bN0bQdS9sUdauwhg6+XIhF6OgshkcYEQjjg60pq52KRACDcwWiqtHo/p jTqvk9JV4g7spIBlVBr7PPjoUN2k9JUjwjpFR+3hzLY58b5e0Z5VI5YjdVcg bVeh4q1G2q5F2lYh/dYhfdYjfWqQtOtBNZCqemvAKq2ot55j10tscz2PQWKZ trDeOsXJ4EQVxtUaz7QCuZrbtALZK9ASz9w/okAvdKVhfcG9mU6BnowyPtE5 uq1DxBaaGAYGc+sDXakj6+xeGTq7O4OOfL32zuHdElSmlvPmLec9XM6ruZwX dRmv7TLe3+Vp3uRz1D+9AqwEq8EasBZUOZm8zsnlDWAjOBecBzZp9ksa/TqN XE4X+L6tPm3931dG/N/XgGvBdRH/943OB/5t9ZUUIaOLkNFFUiWp6FbTNPiJ qcz+wrTN/Qb8lvZdrPuVyRT9QuW0rZb0K/Br8Bvwu0jFJFGsfVpMdMRw1GcS nxsynopv66rnfeKSjv+e8ROHFPrFt6lyXVT0BdipM2MF6d0mk9mttf5KSnab sia7NSxqp13ebVpV7tbQaOvWtSjktXaWLGR0l861plvXWtO9W63p3QP0qjN9 +9SZ/n3rzMD+dWbwwDozbDAYUmdGjag1Y0bWmXGj68z4MXVm0vg6M2UCSjOy ejqyeua0WjMLeT0H5Xseiva+c+vMgjnGLELhXrzQmP1RwvdfbGfRWnSYMQuQ 2/OPrTPzjkcJl5Cp1GY/u87MOKfOTFtVZ6ZW1dV0nfLVhaz8MvzzI1BniUAd alVf1jUrFLKZcGqJbKGam3ckZxoXskGCmhvkJW0m7kgO6lNyg7x8zSY5klNW 0y0ucEVENF2bB5grcCjHMkE4BSKWU3inckzdTYu+i/iOOpYbcC6nRchytmgl hMhwo7TIWJgtOuIoadSR908cmzqWGzw+dTxXKZzX1tcptaHDM3VaeJnb1s5x e6bOcbtM/c0naqVtO1X8aTq37dnss1Knij9dE8jFD71adV+pGidz3x6t80pI LdMNOtPfQRx/suq/63WCpEX0j9ZJktbrzH/z6M/nmHlgDpjJdaSYwlQwRSE1 fex418ksJ7iiCmO0mpwUVrBV5XxhBe+DlrlyfXU5mS+3m2KVWj+rkXVduTdf ZKGzTqRUVTChkvgtOqr/QjINz1XfRVvFJrAZnA8ucKOYLuJNvcgVXrg4Vnzh Ct7pK3VsbDNQgXytQL5WIF8rkK8VOk72ev4hrud/5HpTVnSjaRncbNpnbwO3 077VlBd9j3+iW3TMbL4ow63gdvAjLcyQ1ZpAd5j666X+NsGhER/2FHdoJMld 8VXH45HPIkOlesPz6NMva21VWWazkoryCjr0a+B1TUkpLxf/9ZuallJW9jby 9E0g8118gIz9ANn6DnJV0he3sH4rcvYj063b21pYqHXrz9n2qenb9y03S+EX pmPHHWbQoHdMly5fmM7IYZnLd9iwD0yfPl+E82CMHLlFs90ljXHAQPTeMdvM 2PGfmyHoy4Ok2sOUnWbMnE/NMGTwkH3AnN1m+EFbzfADWXfop2bIkZ/WtBm2 9qvH5eQxYrcgMGdKq3koOkvCueeyYTpFcX36aaZQdAaFMbggQT/NxPTTUDMN VGRmk9Kl2aF+qRmo1MwWSEyfOh2oyMwWOG99HC5QgVlcMKwmkj5t43BBNA7H P6p8Fofi0sOppWnRSyPiMpZQnRaZyeboeBuvnKKYBuLP5c321ZyPcZD5B47W KeJscE6miDtS5yM4WSXmSTq8Rjy8pyL1lul0cUehv0qK9Qokzkok0HHqxT3d nIOEqVJlc7kWABBvgVR8liidFAM4kX2X6ZwEq3Qc50FadmY5t7tcKwIsBotY t8iVndlfK6CtZptE6nRcJ996lVYHWMC1vNfATzGXrwq9JpxV3Ht6pVrAeEU1 WKfjPMe4RLyRmoy3DqwHG4CM+azht6zRvOxBYKBChvCcBzbx+2/mPdiExLVj P3sqZCjP+eBCIOM/L+L9upB37ULevgt1OE9HpGVHpGVHpGV70Ba0RiNtAVoV XW46Bf+PuPeAs6o614f3nDqV3oaOgHQBAekdpCNd6UWadIHpzBxQ7Bo1pqiJ KTeJSW5y03NvujEaY2ISY2KJvcQuioIIorC+53lX2WufOQOoyf+b3++d3fc5 Z++13uft7y2gz6qWeZ+WygKNTfmaInDRQiwLg1tAnwV9HnPlVqkwkATFRVr9 vCetakk1jNawFoVclaZzWRT8hFFyTxvM7Uuuv5HtvLzfSgBfXt69IsnGYveC E94HyVIHecfjf4J0qS0MDPKOxR5ShYV/AVf8K449im1aFR4CB3wQ1z0lHsCS ksfA/R6SvgqUaBs1elq1bfsQzntBJNqSkhfB/R7BNeyO/r5w086dn1CtWr2M exyXEm2dOz+Hc+gtPIbzjqnOXV5RXbu9rFq3eU+1aPmB6tjjDdX1nJdVhy5H VNt2H6qOfQ+qLsNfUl2GvQp6XXUa9XqmUeeyj88F6dQUbSNvDtckirhI91Gx ySPJqJ006QTIZNSlFdpJE1EumMiVN2IoniMYIcIVg7gfQ2yS0eMujySMTUhk M8eYM55KomGMTBHcx2rrWRq7DjVLRgTKUKikjysR8XFJpIKwSUqUcT/sDOeD QeKjfBuqZ0fNliotizTKe4zaO76U1d/nedZUSpbzsVziPF/LJQ1luctrZ9rJ SimQstFIl2vBM1eCP24RCXOrdCBbjn2bpW/LduzbLl4wP6JBp6VsxX22iYS5 CrRCPGI7RMJcLaW6yqQyJHnmOgaZrQkq8WvWSktpxq3tEQPrxcbIalu8WKeY NbRax9h8oVr8XB2vzNSVWaAZoOmgaUK1eHZ1wJpaPMxayXIcDxoLGiNUB8rg ZWTATjOSynKepLPUgYXWSar8ILDIgaD+ktKyN1J4hdmoPSBQdgd1A50F6gzq aKp8dci7THXM249xebk4zVqB1bYANQM1ATUSYjAEMyCvkHbVaVASZDt85uFY nrStviagt+zagOGc2cZY6z2zrWSsQdZPj8z2pPls9OsRdpqX9y3le9dise9g X8hO4/HvY1/YITQWo5H2f5WNg47FfgkF/Of8unczOS3vbsiKvzIyqU7LLynh 9p+dbNqo0d3Kr/PfuPH94LaPCCelTFpS8qA43Jg2Q5m0sOgJXPNP4aYMlS4q eVY1afEEuOmLwklLGr2omnR4QjVp/xToGdBzmXSTHR+f87HmPeY7/s0k05PW jM2j7C80UqacRz/hhMBEVH9O5NCfQzdR3AmB8aiHKPTfh84hMU02yOliEk6b yLZOauU5ke0m0ikUqQi7q+ctyo9E2OYwVMYoFeK0XIkVnr1SM77h9UyWuRz9 2U4kP2ZLS4hUqhd4EqKOw6VinSt+S3cR1jFcVK6z4rhyFMBlCXYdn1sGVqZj dFmGvUrVgBftAb/RJs2MmDT3YMkmIdWgyqAuYBxvXdBYmoXsBO0QR5PO0dhi WlyFeRp7nLNpVehwwj2WBjUSl2btmza7O7RxzpYM7zBQwIqQ4z0RcqQLFqgw zR2t8l0unYupfPf2FPDungLeEb+/I5ZhmffdGKG7TfMRG+i7E4N9J4b+TsyG nZgbl2KmkHaCWFqQxHY69PyXqyDSmIQlpW0rreycj2wHFVMBbe4HG5bkclb5 eSBRPpknPNLyyVvJr26TOW5ZpfVffUVY71eh9YUSp+/Hyk4TsXq77TVpGyn/ jLf5pdzGzyD0zaV+JmHIHjVrlDCzTBBs/mRcrAX/SaxSTQ4ulu9SxpKOiyV1 G1jLxZLO2Z2IqrINcrH6fu7cQUk5mVrSZ2o2NikQvqazBBLibsl2u4gYFxd+ lnT8rH66QNyX4YyWm3TMzPO84HzwM/BG3/vicbWYCHNx3x2OS/g/FXHEeNlj rOkzI2gWYWo+Y6Pa63vI6Y+xQalLRI5b7jO2mJgMv+qqT5CnrZeadxsiLSXI 2zZJt3RWV90qwarsnL4BtN4YETeaDurMOmbD2Q3SQf1SqUqxXoyGu8CndoEj MQBKZyGvAy3DOSvkWIVkIi/D+kK5tlpkvWXYPxv8VDdHqhGD4vm4h5X3lkqO GSte6OoVi7BvLM6fLa0qtHN9FD7/fNzH+nJGS5HwMhPgSpW4DC90p2mkVCWF w3viOwzx+FwXbPvBru2x3V14Xbk0WOqA9S5SVJxVXavE2NjRLLXRcY9ndNyD 6+tAGYznGhADYetw/HIM/jpQRlKc24NXNcV6U6yz4DhVZ8qAJaBiqQZ7PdZ1 2nMBqKUUHL9a2mBQJmyE48USOEUn0FUSINtUeJlu1hQTY+Wtys9/ayHMLOR7 zSD35YU8D7P265j1dzimVwSG1hjMrBGYWSMws0aQ+dLC3HRiRBzqdQmYWhGY WhGYWhHU6SLIfUVQpYvA1YqCuzLJYOUnFLR+p/kUGFNJQ4wppdsF2M7XMceY colXySz3RELcE/WqnKWc18LWrjE1C8RrkciRwmTDJyX8HdeTUzFyklzKrksE JYWwpGsJ4PErLYPhUuu6yKrVrN0YBc6FQbsc123ADsUws240z2Jno6NtjmS1 UCuHZdVNi3ElKHF2OnIvrlMeI9eiPEYORs5FOYzymFnHR0IXxUdaFka2RfJZ 2ELJgdVL4+yIcQXsf7F0D11m4nyWYXsZjpCraTFtKZYLJf6HHud1EvczH/to 0SNLY+zPAhxjwYTNwr5YZW0t7rMeX21LsAPv5yKwv/mi0VJ8q8C1m/FV14Hl 7YKYViva6jRss5gCRTbG4U/BfVlMugzTd7X4NS6Ram1bRSRjLc/NYEXbRXVd KdXYtuMe2/GZy4MqfJ9puJZsbIGwwD04fxdY1DbpdbBIiu/sBpvaLj0P5koh HvpDdkjvg+kislUIG6O/ZALuwb5wo4zoNkrEOLK9PdiukT5x58mxWlBGYoj6 i2jHCg0s1sPYoQqp+jYMLInxn13ErV2Lc67AYKvDmKZrmxbDq0StbSl9FGow 0q4Si2BT6aPAft9XgkUyvrMCU49df67A+YzbZwfU3VLMuofUEd0nYl1L2b4Z 8+pKEe2aYtkVolcLXJOHz2WcaGeoqy3Fb03Wx9qkn8PcuR2ffzvm1hdAd+D4 bVIQKCYs7zZ8zlcxJb+KuUn6GujroDtB38S538wUBPM/IQui5S+QpJviKAvK 122xwjAU6Vhidb2kM3UlnKkrZEam4YjXf1GqaCWc3ctwJtvzCpTIGcXN/8KP 6rlS61nA8D8hDtWki+u2RKYUFxEq7UptWfZke2W50ltalIq77HrGeUu0dzyH HKWzdgqdYpjd08R3tIITae9B0jElS/QfiEQFmdk3j2W3PbEy1VRwpmngUFZb nAGuNF1zphglK4zMaYZJWXvZdDCq+S7h50KwMyqSF7q4l3lYX4j1VYYjLYIy OR/ba8WncLH4GmZje6MRstZiOQvnbBBPLUvYb8L2cvE3bDBC1xxcs1L6Im+V 5P754qO4BNyEQtcOKQPG2pGMLF8rJb9YfHiTZAqtEXvbDvyGzWJbWwXOslJ8 DVvBe3ZJ1tBK4So7cB07sNCjW4Hrd+Oe5dhHDlgJDsksokrpBcbk0KWmQ+WF kijKIBpu10miKKPQ58uxvfgt2k8xU5TPfSKATTHK5lwIMaxFaf0VM7E9TiIc tbI5GeeTaw0yATa6hkytZJP2kfL61RgC+yTQpqdkmVLY2y8CWXcps0+Bjhyo 2kRBVmNEXYXxWouxXCOe4AGyvVfK7reXKPcrwcWuxb2uxdAlXSf1LEtFWMtI abKzwVm6gc4CdRG6EXQT5shNmDk3ZRoFUz8ZM6FGh/kLZtLEMZMCJ8+YInxY C6QIONdkK+VYTSqqhoUMJukYTMLZ0kM1LO7UsIRTw4SVxJ0xKe70rnhU7xJb kkQa53InRioxxaJKF36FF+wWxMJojLgzJoUKWGhEt6QZiFbEfMZhlDHchepY PCt5hIb1JhETU3ZY3Lh6diZyEL/i39QYhRu8gZCBSBhHnBwEjNu3OM31wpe1 hEPLUxjScZFU+7DN0Zfh+64IVgRNXVFZtp8lrTH9L9aKCKJb0a4HI2GlcjKP S0Rb2+Iqlm8VMWMbRJu4tGS6FJN+Z7Ab+3YFZZIpXiHtaiukXW2VqsKkoBOz RtrWMuCOFqq9EH324poa/D9LWtlWSjvbvbg2g3tkICplcN8M7p8x1iqGRWck LERXFanD96uT0Oh1JjxktbFYrZKovFrXpN0WnLKWK2p1C6TaSI2pOFJDyxWF yRq8RBs5PVXIL1Vos150FLXtlDtK+Ea1+ENHsOTVYDoYBgWVkJvPNX3ebRZM H1CvsOd7pnkw6hNKCjTRBKU5JndMF2LGGm4VN3ObW4Vu6oeTOxW1saRyTO54 VGCQyS3yQjwaLpDLxiKZBUHclfrX6bsujiDuxxEYt1k6l91FmICzv2CCUm7w bcs0K/vl2YwMYQ3Nmjd4jjVaZDxrc1w4Q9xVbaO9WYfFal6QVd3TqDxxX90J xPwcJ2vAA/B1nezybj6DIFPwDdFkCr4x2io9xiAdF9NNO6f3WPJ7E/j1IShe LPDs0zTf+KYcBn35durVIiKEtmpwCBMMFhduQZsOCPv4v5lwC9p0NgrnoChx iYgb600nnbVCW7DOxIjNkiCxCtsXSyLbFkloWx5soQlpKz5ilbQ92IKvtRUf sTLYRtvz1hi9emCDLEm6SMrR7ZC2O4shp8zBDWn8WSztd3aAg27GeYyb2AmW SIPNZqzvwt0W4X8rPNsteCC7RC5ZALw/H/e8ANvzsb4A2D8d10yVlj3lEjMx E+eNxefMl6IVFaJJnYt7zhV5hP1LKzNnB6M+2VRmUJRu8S5Tua2byqZDlPSK kv641q2TcpNVRP2kE/VTDomTfvYPUzVZJtGlamIqcJ8v9Zt1YzTVhgk7l61R wpVV4eQuEQ2A09pqBFznjLb7qBJwdtt9WjWgVpDvZr7VCuysd9mfnO5Nne2C Sx7iOie13cfJTti3+zjxObHtPk57LQXku1bwRhJwDMBIAjFhAk2djYNLMgSu c6LbfRQMOOm5jwyBWgUFAgoGhiEYwSDhyjw6mwelhvkuyZSsgOyB65z2XPKY tXvYfWQFFA7sPrIDeuMpKFj7CHkAeYGtD2YlBuu1nydSw0LZf4FIFPMxrBeJ 636uSBZcXij7dB2xRTjvQlFFFsl+qinc1olSC8BDZmF9jkgcNKAsw+csFrWE 7n0aUWaDt0yXpCqGSV2Mc5fjtyyWisQXQ+qYh3MmYHshJBImvXI5TipWrpEu XIshnYzDfS/A9iUSHrUJbHIFfje3ac9lWfspwZqgWGzF7NA1A9eMkXQBpgFU 4dqNeEU07uyQUP+KoDYzKhj7yaYs48V1G7iOum2bbQNXEJ2y+VHtPB3FVzEa AmKolZve1EIsdB2PBql4TUNN3rXeXejmMW2KNiXbzmdbDk8EcE7phJvKhox/ V/DbzeyUA2yr55vZq3X9fJm4vjGSk9dOdMnoliBqTvRCB98Wzi1s2/0GvrVT JeUmsW8RAGrHxSSQkDlLEHeeY0zgmK7mwdmbcJPaQLnenXIT2Y/HxmTVFoO0 HOJc9a0GnM96LhPyGwmmcy5b+6b1wliFQM/xsVkFnsbpeMS0HBprbJyaOP9p 95zgPDajIQJM8OB/LJYTbYh3c5x6PjanYIhrPWES2MBYwwpmg6Zh2o/G8dlG HJiJaT8Sx+cYVsDlSEgUs4O5AXsILcRHjhJdY76IBHRfj8c1M4L5NCkug1w/ BZdNw+FV0tloJW65CN98riTkMJCHNWWH4+N0OjvlhXiGOlRkBvnTrLGeUp1L SkpWnX322V8eN25cEL9r5syZuHDQoEHcL2dc8FGmI9MzMChsV8YmbjoWcjoW uukoPekL3XQUBE1xEqY471JhmfmwvZWee2HFAzMDgzBqLMkplnJhEwmn6SY4 dRLORiYyb0JbxjBJxDyW4DSQqDC8CivU+nVrbIxYwim7cRFokxjzPSPJB70k lNaWtOkbCaToK3qviyBj4m1E+Y3LNEhgGgyU4W9k3XhWTFkk0CKJ1aE2zEwm wHnBsEAjXAuZBMNBY+oJwGO9MgsUgMd7vssJEW15sqCfaM0xTgmMECr/DQ4t PXDiHFYcUDJ0UvI//uzixYvHlZaWyhmzP8rQYrNvPGEMrVa6hKkdWk1c4HUg VhSuyVa+bsJmub9ppIY16dSZ9Pp1mgZrQcoZVgKBBNfIM2kAgqDA/RYgaNSV gG7BjqQMWfE2ZXeW1p3ZvGIdbugat5P1RlmkyKrHFKmlikuIGn50pEETv1xT /XY9GlJsjnlWOSed9phw/i2jJurcnJQgSnZ9Vs9HT0DxkyMpNEoKj3F7eTZn wZdYaH220w1bWIuL8ph2VUb8iiOcYVrB1DOPEOMHsusKJFE7dVgTPC2yZjgT w9zL0BqVslqnwyYjbGp8imf4IBsc90UhSyU71SNe/ic47rmPrJXrMX1QuK79 m/VRpoP8Y7sc/H7MiTZuTjR2HdELctgeZM3YGM2+qK0i2xDJiRTz2t1qwySn GOaVLO2Us96QmK5lk7Um9RKwGaTsDJQlb2K25ZygyHU79CZrvW3OS90NUS6U gBRO51LX6t30S3Tb5go3e+0+Lgkx2dv+TLdOG7MdmNIOXG3tJrr16ljJ0F5k 1L0IU+Bstuf4YqO91sx4W0lftEGqjK3dXLdXWGWQV3CbxzipLX/gNie4PYfb Vp609zJaYmCkT853zR14kZ3zlmNYKdPehMc4se05dpvMgOdwaaVOq4aGRiTh IJz7xU50tYqm1UXJHTj5eZHRTTN4TvXUhkL5n8/JZ0GHE40TjoDDbe6P6wll 56dMto8k4si/fP6TOiGFXGvppmBLFwmfr7t6Yh8zf+OxHGuBHJb5yS1pwWDm pdln565e08bEtJvQSe9ks63XwunsGSHDmWqvM9txM6k5F43vQchMcD3nE5H5 LjetP83NTezEttuSBKXnvj/vzaGQNSTcPDd3MXWwImtmHhcZTmG5g53zdpvz Vrfg1sButh1fMPPb3FeSEXh6ynU7MtBvGYBuhpSWTU5Tnz9wyjpJAD/OTm0r JVhx1dzazGpe0dzJA7aul53+PrvgRPVEXtn22QUnsa4nQ3kiVC2dgirzmgwk tCTZxrCGAWitNJ4pNPMoJ77pQwlOKTu9ON1i4fQR/YF/el+CIqCdZjz1I0l8 8o/RkrgA86sR19pxrYPr+G5mEPaRtI9NCq+ZWcGDhkpdc5TmLoooS2DU+8KR bkiP3bgbztzyscyOZW/ox43AaXdxK+HtM8M+CNtuBXKJHcIa2LQ86oa5B4Qi tgbRzsBJl2dopFoDaYEe2fEMp3GD77ZAvzC+JPvCyDbjDb9b/9SP927Pctqi 9CwYJ+8w6b9RIb7OmO5YwNW48hhn0MIxRnnjLQy39OSbIOYSk7IcrC111zQZ CBne7DRPJ26BRMt0/8lHI1W7z9UAI3Aheg/PScoz8a6Sp8bQYv2QYm7C6ISF yKMM3LG4f0yXnG3g0evzE9nHYu57hWvp8AI77QJJk43rCgNhs+vIWsrBogdz 0Qls63AFKf/tK++0pLs01tCa9/q5ZfZl+PNO9+YtIyPP+8+++Yn8Jz2dhp/i fcdPdywcC6deO+1IOc2V0XGUzLEvn/8TuseUbVcbj66l3AjKWou78ZVqaMyF a964cCwDrzfw/v7/f70vOMkxoTU4uyaPLu7Wcu2Lh2/F3TmZY1/qtAPn4z8V q8jmeipWIPjoT0X+Dfm4X63Q3Nvalfj3//o7LP3Pfx5/HwekPP40dxXzaU/9 D35yc30fq1DJZxRo04WbGvybzH9pHrDv4iN+cr67QfSTKWs6G2KDn/wf/fVJ q1L66uTH0Bk/9lPnOAvm/qc/z1ikIpPo/8GP5EP9BD9yFv9JOY6V/260bNcQ +skV6RxI1/i0UtSpjkVVmdhHv5c873p2EfOcyTSEUfHvoz9naT0wSAvhp3vO iexjn1ACaeBYk1Mca8a1tjlkBC0aJH0JVTlR4bTHopKtyDRBE+VroZ4Acqbb MWP88Q83YDCKeQqQEX3NdzmNFJvFUT7mIGjPf5I62NQ90JLTDYeJpxjI4cvJ erTSvqjL6exhxn7tHcsl9ac8dcKavCXslruT2ZbwUxvRtN6oLQaeJpmRgZD9 0LWHNeV7WO0sFKTULldhfPbvo6NZMz077XBPumEyivvO5loH7ivl9xWFtxm/ fWEOm0aYso7hlDACX87hZL4Sf5n9NUGjfws4N+W/bvzqpc6BnO80gZZmhmaZ dkJLUJZxIHlGFtWs8ZI83cA4lfvEHyC+LdUZm4xdNcvOqt9EfdNTaFpNmleU bXDSpiN9zLOcylLbiPg+kxEPijE0BX5X39AZaiyrxgSVjHhTjOVUn5llVbXG UrGq0uKUiDhaxEej+xhYP4uxh9roG2sitaQdprwkZU2sjoyJNWbSaqx11FhR rSHUix3QofC8ZdLZVw1l+ITqzV49TtO+sdN34MmYLuTWJ57CwibzndLXkWvi TGjm6kpIVHGQ9vEh2w5yhiwxiPoDrVfQt5fpcZr2XQTZLgN9TugS9NdyuAWK croFcrgJjFFULuToS/gOwtBJWOoMn95wdi4Bf9uek8tF4LsFvcFrtwPPLVDq 3AL2IusXtDPAuvqs68Dftj5F3y9gt+05jBwwjgEZwLTWN3dHbSyZvYN1/VnP gXX9NTfXWMu+vUY7Exkb0M5FGNj2fNaVaKsq8b72OD149r7WG2hdidb7R68f r7Hb9hodc8BQ0ybu3rZUnfUucp2eQetNtN5B3sfEJmTw9BqYnE6eEaUlFt0n Wx9JxjnBfz3d7BNvetsc86PAOMSyeHx+LoadyGbYCeML8HmxDU0M4r6937iu Er6RX2c4a2u/x1gtRw3iWYzXkGW8HtPVjijNyy2b1L5tctRkxKVt/FKBZCAY /5bHP13Eo/FHmULbsqbreFknlwmB9ANbzOgygS3FMiq8sMhI1LN1btt9EjFJ z3W+XyBRBpPdNvGS+rQS55E2wS3Om+1Ht9hQlrA/pQRRSjiljoX2+9LTXe0n R1jXtc2WYuyKXx7chFQGuqtOvmzbxEsbQ233SUYVw1nyI1VuGVDmtbzXlXlc 1EuGCaP8a9zApLGu73/PpDnOf9J3Oissq5hzosjJmmGufjoagKsh3sVWJKLR VOlogqwdOXYw6VBamyebcMn6EkOL6ekPCxvBgGXCRTYldDRtGAaIdymxgHFX YCQMS5LimXGvugiD2uN+2n6ge9kl8I56+1VHGPOnk1ui6bK2yZ0N/dMFSBJe 4uzgsB9HSg0zVTdt/uwICfgbFvMKzLk6nBlG/Z5qHFB24ViQSM9FH+Wds4Sh dhk1c57YEhd0XRANus6PZizGjOTpxeUEYVlAibDzArE9DqT5lBdd53nMg7gJ D7WcyFDC5UgFYVtD7Snn/2R2EHaYOWVCr70WthajNCtJ+TFyfiut7FrWYR3C pCsLYUl3unUlW4U/6H06ucrmVljewdi3eFjG1cbHBTGvhoTf9IWDz1X1SkZS LUy6RaAbdiVdTQmGw5nar4HEvOnsq7ABo1/zS+K2GZmaMhGpQ73RSRruF80Z GoyQ0G2bkjWUid/s+VUsQakjglHYshlZY7FvjIRq66wsnb45KhinJgUTdZR2 Ae46zsvgPB+fNY5ZnKa+zjRsM6KbdSpaq5nBDNxysqvMfUEwG7fmebp7+7xg Lq6dhfvMkhDthcF8CdOeGMxUF0oHd13FgmHbi6VNjeR5Zvj4PlkKA2s7YWBg NnV2KQzhbApTGBJRDhrm/6ZdLc1UmKaQjgSg+foRj9poEHvMRoO4iBHNWP0o M4kh4e6mkWwki+FZuOxSj7huU5DsPp19yJnR2k0dGzxqkdiWT7FhYRZr7T6b sWD3Way1c0ZnJ+tcBVvcwMSJ6uJ37VwOop02nBN2jvAYQ0TJpu0+zgsmIHKf PWanhG10x3lAxm0TFcPqUSw139LVYbF5S1zn6Lf5DAzRZhg2l9zHEG2GYXNW cJ9NSrL7MDtwb0wA/Eybv2hyFGM8ET9zmklSsJUS9PYsjPwZktbIZIVpkmww S/KVOCOmyrYuRzUTNAU0Q/IZ5zJpAdtzcJ4tUbUA53P2zAuY3nchHuV0zJ7z pZTCRdILeyZmzwTJhVws2QsXYP9YbM+TUgos6rIUP5UzbqlaJwVcVmF7IT5r meQ6Lse+CZhxM7C9UXIZN+I7LMVnLJU8RxZ/mYH7MmeJpRbKpOTyGjzSCyVX qTqoAFVmRn/idF8WVfdyBDu6HMFwtqYbyhGMuwyHuBNwsnIEs7L1LU5Z6deT hINEKP8WR2Rfb5o5odZruK4T+8N6kaZgkZVzdQqEnxTk5fiaVH9CUNh5wQ/P lgQgneLrRWD7yUDZiGOrGmnEwZwxsENcyZc55Pf89avqSosG4ksnN42IKzbt x6b42v7ufm0jLm1dI1uT3Kb32pyf6d684Tzh3LhA5kFYh3KejHmWFimQfD7m 9uoyvLpq+UUGKUzDhyAmZctbuKYPzPv1c39XSr7vGtm3XIglzbmtm58tC1ZL 8aMV2MdiSMtAi4OLmSR0MZ4SDy0CLcV0WS5VRdbho9dK+t4KTKNlwXpsr8M5 63DbjVL5fCH2zZHjm7C9Ccc24ify+s1MCcbX3oTHcbFUIWH5t8XYNxHHL5Sq v5dKCbgJuH6BZATvkrpJk/BZF8hxViDZjUe7STKCV0nvS2b3bsVr2SiVSVZK abedeMv8vlWsoIRldeacYPS/oepGG87UIielFrlAscJoMZ/0R6mwkchRYSPu 8o7CChtxJy+GeUcxp3DEsipsxP0KG0E8uyq1K6+RjPSSMiAWmAQ8KRkW5tCb TAatYQRxv2qrgaREpMWUTSrS8yoZKd9q5lWg64Ulsnptj48JFqUjJTayyrkG On+uwCtmXa+gtS2yEeh+KSWRIhu6srWu1GNLvOpKPUuZJicdqgAvAfPYVzFf fg34kG5Vtda0qlqvLsHg3BRsZH2wTbj/VozLbRirO6TU6zZ1qetctVNgpBzj tyIoU5XSwaqCXaxw/+qgCo+zJqjGdjWOVWNfBf6ncX41rquWlNddWO4EXQra gStiajvO6YrPrManV+FrVAG6qvCVqvDVqvAVSSyJXYWvXYVfUemWq0ArzfxY LnXFKvHbq/A8KqSSz4WghSBmyy+QZSWeYyWebbksddY8yyaWY1mJJeuYVQRM 263A954otcZIFXhvlaZnSzleM88ZEZThnGF4DsOxbzCeyRCsD5b+LWWZUiid /4aSf1JvqzEna6Grt1XgXCvhZM1VlTQE2OQpy+EkcjTYCGsrZ5XDCXIUxhAT gen5ZlHSE0Zj2lqgu2z45ZWNUhbEwpb3cT83MIhp8wCna9yvKq9RMe61TraJ r6aEViCqPy7yCi3rWRrTue7jmPzK2ZnE250YKbQ8KZgc2E4cBLpJJondgtz5 LFPK6jdpTExi32yv5vICWwUHn42pCd1iHibpEsk713WXmbtumxoxU3UOJi3r Wawy9ZcvwAReLY08L5ZJuzYodE2YWUprCY6txJxdjfU10qbjEtPgcxNLyG+G lLNMNlnKgv2Yt2G5TTp4XCz1+S7FLbZKFa21pmwp089ZspRdPFi2dDWWa6V8 aTm2K1mdXkqXcg6ybOmGoAZfbR3+N5bSzOulH2idlKq3BW/WBBlpP2fL1a8K 9kolrQtNieZlUmxnLub+YPzkKjysjNcjlBUtaqXazWSpcFMp/UInmUpaY0zZ 5klS368Sr7pS2tRNwj2GSJ2/Kta6wXWXSbUb1v8bIPUCWfuPtQBZx68K5+3D UvcT7YX95+D6wcF+XHM5RtnlOPdyjM8MRm4thnAtxnIthifrA16B/VdgLO83 9f9YYesqVtHKNAkmfrJpz9rHXqXPcNqnXWh2yknTcSdNx1y+cCxaHifmzIXa JGQV2iAeqrVhczJdWo//w7wI3+IjvEAbErOyIq3KqrXYpPNjeL0hg2xU1xpp mFxvMxttmRzRTG1Kcdh2ImytrmGd7MLk1Ae6IHuRS1TMMs4IpFt4N8nBgYb2 QicmW2inmEwoH2sSg01VnBgBHV/J1tuzFUE1nNO2knAV2g2M66KgC71SWXPN +nxRFheYVj7zQfPAIBYZJF8kRSxoVlkqvSpYGXSO1DxeLinuFILn4thFUPSo FK6T6p8rMctWSeH2zVJjZg3uuUoUQhZuX4bzZmOb/SrYg5KFbmaA+WyQIhRV 0sF9Gq5ZCY5BxN4JuhSzaQdoG2gDOMMs3HuBFEmujKD1euEUFfhOvMcW6e6+ Wrq6V+G7apQmWs8Bt5ko9W12S729C3DeeHz+DGwTpS+Q2ni7wQHKpdDxTCls XIlHXClLcgg2tJginGgS5AgWHqnFdp3UwiJ3YHOL88F1RkpNPNbWq8WZl+Fd 12CMsLroHnzmfhyrxUArwwjidVdIf6Au+OzuwlX2YyTtlaaW7XFOf1x/jjSv KMN02YXr9kl9vVY4l4Xe2SV+QHAtju/BpGRDzH245gbpuFaEc1pJw4wbsX0F tmsw7faBg9yIe1+D8+swXy+TGnvdgs9gctyC73EL7vlZnH8zpvaV0hCjFdY7 Brfhmluxn3Q76AugOzAPv4Qp+qVMUTD7k3GhTjq4CVyIVeV1SfRGDTV2KHD8 KOY0hbC7V9xp96HwkdXXJparricV+pjTGTDffGXeMBwtjWDqes2+Ir4oXySx jgttMI6airXjopGwGWsMttq6lxPtqnDZIsMDdVWCuLH5Wj3ciiJUFlw1z7au baJfi8+aqOzSKgd2aSqjO45i9Wyvj6JjKaa2lhY9kqJmW9HDiB8Ba1ethFC0 QvSCVVKxk+WzuFwjtFbK36yVHuLrpZ7wKnAMmpfWiVyxUTjIWqneSRljM2bw BimbtVHki21SrXOVdMdhn8Sdoh8vlW5hZdJrkdWyFkoBP/ZcZKVNdgWjyapG 2j+w3yLrCV8sukCdcI+JUj2rUgrrWRnD9h1ntc7x+Ozpwk32uN7j81j5bg5E jGF40rvwQna4Cul+J4gJpkJ6HxynKD9SygeXA3h24P2WSSnhc6VIXhnGA7vg VmJSV+H8KowRXUCvD75CHymuWYPhxLLA1VJGmJ1xWJSzC6i7dMq5DOOzBqO2 BuOyTsQItmYkw2iLZY/gainE2QzbrJLeFcyktVRD34PJk8G4vlZKCKewnY/t NnL8WsZ81QEwm0m14BsxW9kcYi9mHvuQfQZzltWG92OeXit8IyUNIa7GNL4B H/cF3IoF0dkx90bMuy9J7zE2iMgD/2kafAUf+XV8na+BvgH6Ju7Lrg+6s3kB jjULvotpTfof0PdBPwT9CPQTfO2fZtLBkk+oDRXw3ySyoR2OIRVHGVI62mgr Fe00k4shxXNoQyFDytVpJtSGPkJThgaazVhbfFarVq0IpSLtsOu1xM6P1P3L 0RZbyzTpU3WbCXS7mVkfud1MDtsE5tu8iE1Cl/LTUoy2RSx3HbNp7tYtGcJ2 M7olwwbXbmar9HLdqraLDWK72B90uxm/e3YFlizuWeGKfO4G7QJZieVSTMbt WLK/6yZZahsDpRW2ZNiIibne2BbWCH+plh6vVmJZKS0aqsSusERsC6wSXC1m /Wo8bkoqrAg819BkkY6q8KyqRJcZj++Z3blwjPR91S22WQWYFTuHSM/XcrxW v812GcZCGYbJbmk70w3LaKvt3RiJbLN9aaTddjEYl2090wjnFINKcH0x7luM zyvG5xUJVYGqRRIpFKLUUitRNnUYzAVgMAXgIvmgQjChfKHLMbnYjuFKacOQ kuVV2L4Wc/BqTMFrQNfiHNYmvxaT83rQDTj2KUzZG7B+I0j342Ybhrzg08Jl 8oRLket8jiHwn8d8SUoHhtuV7daVlA5dtgXNV3FLdmAgI9KtZ3SrWHbpYtsZ Nj38Pq75MeinoP8FsdEhW8+wZaxueJgMfov73A26B3Qv6D7Q/aA/gf6ciQXr PzbfYrNuPGEwqsU6jjfP794QylBhW5mwOVZWc+m40+lyNceKRa2tp26OFSSy O6TGXF9pr4VM0m8fY/0ZgdbGEpGWDLaWsdbG0s7I6hUvtowqiPrGw4rnhkvp 0oT9sxmV80+cjkllM6hZRj6a64qMzXOtY2gwXWBayNhm00ukJeAKV2d0jahB qyNMagm2l4u/YS3OWSfC0QapM0qBhsVBIRKBH68zvWPWSSPqnRB0doGh7cZy NxgQm0+XgxlViEq12TCmbZiEbDy9A0IOe2FtM/2wNnu9sNZLZeE9zthCIWiF UC1+Qy0YVa0IQReCbFXheVJZuBbPoRYMq1b6As40fQGngs4X8nsC7sEz34Pn vwfvYo8YO/fgvQzHsaGgIdJGldJOhZQN7o4lDSh9sb+3qFO1GC57pDdMB1A7 UKn0i2EJ8lqMRfaDqcVgrcH4rcZorsYA57IWw7sOI76WjAizoVYknQTOi0lD hVpQxok3uv+V3weL2kp27ytZBuQq1wXFKlffq/r9AW+14g0vuyNoo2ybwLw8 MiG/NaBuA+O3B8zLs72qdXvAWIzLHyvbcTWRYKvAsGd1KvVTfsxdkqV6t0qn 2TXQtq6+H4fvjuGef6LQk/dXXM1+q38BPQh6CPR3nPKQSiYfBj2C4/9UBYUP 4zb/BD0BekoVNH1EFTTB/iaPg57MJAq2fXx57K/8z96zedO51sT5k/KjoljC 8bW4i+cMu9LEonzNKyJpqEH+5umIOqDWymVeqS5D8awmgFokixZv98SyQMdB pCOxhT6vcyXbcX1WP2ivSHvuntDgc3HT1SFbD6QYFherUipiVarXGSvl1D+y tVD2mq9LJnZ3jU4Xe53+WG99sVRR1hZnGo0WC5dbI92wWGd9sXhZ14nYtVkK F9PivFG6/O0E91oDkYxNTneJ66cS123H52zEvTfhM6iabRY1byOObzdGoovE Ncra7EuCS/GALsS92IhBd76qwjGeQ3WQTRgoVlXg+9NVUyFuG2sutp395ntd /WaaptDTvGYLFLEmiZm4BlxsD56n5mJjsT0axNYwo8BBRoHDjDxNh9NB4CgD wVEGYHkOqG+wj3L5PuBhb9Mbupd0ctmPEbMf43GPSFZN8BEdsd0ZTKgTmFBH LNuDWkgnl4yobM3EhnMN6Drs132hG2E7H5IUm1rlY70I0pLuB30Ttm/CRLpJ pKg808hKS03SsE9LSwWGf1le9gUjJfk9Tb8qPPBLwSQjMX1bRRv02dbQbNJn 20P/SNmmfbHYz8B+fiaMKy/vF2Azv8Q+27Xvt2BBvwH7ofWaHfv+ALZzj8rP vxfnsmvfX7F+vyouvk/aQ7OudH7+X1STJn8A+3oM20/h/EdUixbkdk9g+yUs n1atW/9ZFRayx/IBfN7Lqk2bv6vGjZ/B576N7Tex/bhq2fJZVVDwFuigalP6 vGrX7jnc96C0h27d/mXVvttzqlWrg6pli8Oqdec3VNt+z6m2ff8FekmV9n8p U1S682NzQjbHxvwD/+tL/jeMa6McT5QyHyXRPtBJVz0n7AMdqqdhC8GYk/US zl5mK2Z7lbEDG5bmR8PY8p6eyczvzJXwOnP5/W9cdevQRBaKffxf38uujfBk h3FfRQ1shKSxjjmKFOlMRzpwWf00qpumXCiKL/JNtW0pki520bOGGTd53LnJ dZQJ22ulhC/aivK2++nqYLVfSN40PsUlG4NLgj9K8ed10rtGBDyxeq2RvjXb IKBdKnb0VcL6LgW7pFBXJtYvetest3u19KihBlsrDU8vlhru28HaLpVmgPNB 80CrxdtdJxrnLFzD+u+0kbPW+zSszwOPuVBbtvAU2IWL2mWFNP+jt3q88VCP Ent3hfOUjZR+M5XS3HSQdL6qkI5Y/aSnDJv+VYCnVYg5q7eYtWrElNVDzFk1 GAw10g2LfWW64fuxnwwbPHfFsov0liHtA10G2i9dsDqBn3UEsclfW+kvcxWI 5q1rQNdKc782oNagfBHc9mKa7MdIZ9O+m0DskvVpbH8aE+RTIsiR/xVguwTM rgRCWgmEtCJQPtbzDPNLQGVMQ1pLg/mlwfhSkNTiWOYJM/yKkdy+mYMBflfp rqXfM9La/xop7Rcipeml3cepb1uU6g7OOhDOtimlkPQ3s/wLGBZltX9g+TDo H2BeDwvDSyYfk47OqdTjqqjon2B2T0g353T6WTC6J0FkjC+Cub2kmjZ9Fszu aZzzGugNMMsXweyeAaN7E9uHcew11aXLM6p584NgtO/j+CF19tnPgUm+g3NO 4Pgx1avXi6pjx0OqWTOF/SdUnz6vqZ49D+I+SnXsdFL1Peeg6j/goOra7aTq 0kOpXkMOq3NGv6l6DvhQde+vVM9R76k+0w+oPtMOqt4zDqqesw9mmveq+Piy JLXxQPJyV5NbSpGfEdwnhQPynVRZ4DhollQZastxpy3HcrSSjkWlyVxNWLVj MxHxM4gMSa6ZirgYPPdCLGSa+T7TjMiQRn7UVVeTEa9Cf5fxIDF+1JILI53B snTk+h1WWzeoG59Jr2g/mMh26lksQUQSfxfEpEtPY6cPW4eB3x+aEuMWMdht g/S33UmNu3Rv6IC9nivwyNhscCfoUllqA912cQJUMBhIdODNwgK1Y+ASCTao xmdSoqyR5oIXg1ZLk8Fqp/8ul445ZSD2Ui2XVhgM7JmH8y7QEmPACPlyvD6f RY43wQSjTACBNcLZvs9sw0Wrfw8xvum+z11d3+cyMcCVmp7PdAc2EwMc+z6T yjD4ykEVoEqOxGoMqBJRdfeAakHs95cB0VK/D3Q5xvBlIC7pIbwSdBXoatC1 oOsw0K/DiCcXvAH0KdCNoJuFKxZAnU2LSnsTJb2bg3Mxaz6HXbeByBS/CLrD aLbappYHRpkEc0xClU0Gd4K+iX1+G+fvYPp9H/RD0I9BP8VxzlrfjvYrwxB/ q3TY0r1maZnjn1S0b/M/lOndDHoU9E+RAIPgGaUzaVgR6kWRAoPgFdBr/Dlv YPzHYm+Aj1IYfAt0EHzzIATJg+B/B8Ej3wHfI697BwLgO+Cdh8EzD4MfHoYA SP54BALlEVVaegT87ojq0IF0THXqdEx17nwMvPJd8M8PVLdux1X37h+ofv3e VT16fKh69/4QfPJDde65R1XfvidV//4n1cCBJ9XQoe9jn1LnnafUsGFKjRnz gRo5UqnRY5QaO06p8RNPqgmTTqpxU7A9A/svUGrcwg/U6AVKjbxIqeFLsFx/ TI3Y8L4atvl9NXTb+5m2w/d8fF5K2IKuCb5ZoWscYO087ity0mjaxXmGvDSR g5fGopbHWDSa5NS8NIi7aBGtnlvzI1irH3Nt4z3BWn1vraeWx7ISe2h71KHU iUi3JBfhuaQhw2O2dyQnQz2VtTFLG69nafStjDaoY6EEcrD/2UV+3zNwVXb8 YCTzStHFV5meZxdD/7a9zuhupeC50TRI3AzOugWC5jZw1R3GkrgDHIacdBc4 JsMry8FW2EWEvcuqwFIqTN+yXdKvLGP6ldleZbWuT5lvSbQdpxcbvXuBCJs1 2Xo3o1ar8dLOlx5k9HJU49FVS/+xkaBhoKESYVWNR1+NV1El8RV9Qb2kb2Gl xFd0xzYbSncGdQC1w88pBbWS7qoVGF2V0mm1sXgtKjA0yzFayzF2y6XORXnQ Ff8rMb4rFW3t7KgaBOzivgdUB8qo0Dh4udIGwitU1EhIX2jYIDo0EFrjYNgc 2ndH+K4IYw0UBftOvK6Qff63sNBY7Lug74klMBajRfCHoB+DwE7z/g887Weg X4B+BfoN6Leg34HuBd0HXvcH0P1i+0sk/gyiHfBvoL+DKEc+Cl74mMiRqdST ojynUs+Cngf9C/SySheQXgW9DjoAegv0NuiQSue/q1JFR1Sy6D3QMdAH2P4Q /PRDVVJyQjUuOamKmijwUwW5ErJjS6WalyrVntQesmNHpTp0UarrWaBuSnU/ G7JjT6V69MXyHKX6QHbsPxDr4JXnDFVqwHClBoFXDhiL5XilhkwED52M5VTw xengizPBT2crNWoOeOd88k2lJlyo1ETwzQnLlZq8Qqkpq5SavhrL9UpN24j1 TUrN2ILldmzvwv5ypSbVYAkavw/3uAL3uxb3uAqfcaNSQ28B7/68ypTOynxs lkubry7/05/s9Tyy125ck3SYgVHmm3KlVNJRU0DCmQJiXlJoRJCNm3xPG8Cn eyXYSHud8Ot3Pshy/3iWUdOtIJbTMkpndX62VdTnv2HyZL7PfrOlWS3L0hba JWILPYUse0pHTzbrze2Bnp/lfV7sRb1A2QfLXSa0UhJHVkhDObacXAv2uw7E SJf12M/Mj/WSDbJKB9ZKdMta6P5rQOwEt1KWjKpl5OxOsNFdEjm7DrQGrHkV aDX41MUuarYGrHyPOHDWSnSsjmCh48ZGyF7ksVx6kim4+hGxUzwv8niv3+NI CV+pkq7XQ0CDsT5Y+O4ecdKw2/U5IEa59pbO16Q9IIab1OHt1uGN10k4inXQ tAffbC9xb/swfPZhMO3FCNuLAbcXA5G0T2LVGoOfUmotBNEznATFsT8Pyzzw 2Tzw2bzgarLFayCwhqz2BsNqP63q+1+s74Uslk6Xr/gsVllvb+jpteq7b7v8 sSehWvX910ZKvctJqrHY78A+fwf2eA/oXtDvQX8A/RH0J4iWD0C0fABskPQX 0IOgh0D/AD0C1vgoRM1HoU4/CjHzMdDjoCdBT4OeBT0PsfN5iJ3PQ+wk/Qv0 EuhV0OugAxBFD6j2HbHsQnoL9DboEOhd0Huqbdejqk3Po6pV36OqZb9joONY hzreG+p7r5PqbLDYVkOgmkMUHTRAqYGDlWoLttp7FNgd2OxILLuArfaFGDoB rHYSWG0fsNVeEEPHYDlhLlgzRNHuYKfDwVZHr8R91irVbTPYMWgEWOqQHUqd XabUuRVgm1XY3oP7Z3Dd5UoNBjsdfDUI7HXg9WDpYKvnfgb3uV6z2L5fBsv/ L7Dfz4OV34brvgNY+AHu+w2w4q/gc36mVKff4Lqfgm3fqdRZ9+D7/0mp0r+q TNHGzMcXhzlUwJFsya8FunYJ1iQBqh+PFjsjQ1pXY7Yu+SzBOObMtLGomdar FKKr1UT8VvVstU5ETmSXYcjpnze8OXTNQ1T2GzB5fLlBsZilFfJ9thwRiSPB QsqGK56WJYf9gesHBvn9PnPZFayv3QYgrpZ+e6FNQffx3ChS8HppCa77da4X H/tWMbteIm3BdbAhExtWCW037JiJDbukLTjbgS8HMcBwiSyZfFcmSXbLQfQ8 sQX4QjHHckkPVBUDfFyiwjzDirM9TpNN5OBYY2K1Lb1pYh0MOhc0AHQOqK8x r/YEsXV3N1AXoUpQlUQHdgFL7gLWyzbdHUDtsF2KZSnYMiMCS4UVX4ZBczmG 0GUYUZdhoF2GcbZfXErNgitBV2PfNRiLV2OIXo0BezVG7jUg32hwI8b1jRjl n8LApyuJ4YI3+y6lLD58ew5RN9vpbfnwD1ToO7L815pQrZWAPiKaTmkl0L4i bTp9QGkrAc2m1jrA/qO0ENBM+k/wam0qzc9/HHz5cTGXFhY+BXoG/Jim0GfA j58BP34GfJf0HOgF0IuqVauXVJs2L6m2bV+C2v8S1P6XoPa/DHoV9DrogDrr rANQ/Q9A7T+gevU6ANX/TdBB0Dugw1D/D0P9Bw0EDQENIx0BHQW9r/qNOK76 jD2uek08rnpMOa66zwDN/AB0Qg2eelKNAR8eeAF4HETZIRBrJ4P3Dl2M7YvB M8F/py4Fn4RIe/Y28MOtEGfXQXyFWNsXfLcXeO54iLQTwH/7gu92gSh7Hnjv aPDePjdB/P4c+CxoCPhsrzuUagee2+Pr2Aee2v2/sf0/SnX+Ie4NPtvjJ6Af gff+HPe5G+uExGbq3P9Tqh9Ycae/4NCfIZHfBfodLnsE9DjYA9jyhN/j6z4N DeAVfHXsn/0H3P4laAOHlWr5Llh2TX1peoHmzqyqYosXB6a2ri0gLGcUnSFn p0AA/gbefRZ590BXHqK3bmgRY9MZHO3j5O98VwgyqdNd68vfsaghOZS/s4wf QdiwzLWsbcAL58nfyWz522TP0f6RjNg/In3kva5fWaZkz/d2Wb3I9NNZPXIE g5qcVdvdbnJOHp9t7chlO7b83fOuObuxjaHKthkzLeVScZ/p7u07hLSFY7tQ OdYrXArKZqxfAtoAYhDnxSJqV0iS2mpJCq2UVJOlkgiqowosb18ImicJ1pW2 TbJzoU01vH1SDt6u7cOh++wccZuV452US3Am7cJdQJ1AHcQ2XIY3X4ZxwFSR MgyWMgyfcgymMhCXTBmpAlWDakC1IMY+1WH8ZUB7QfuMMXi/MQgz0PIqjFnS NRLOnQZvZ7BlOvgUK63dBJE5EdwEuhl0C+gzYgROgKUnwM7pHcuLWDGsiG1j mqx4/U1jvdCBlFq09sXqn3li9V2GrVuWbr1hZOnWE/Z3w87p7n8c9KTSRl/2 q30e9C+lDb6vgl5XdPkHwZtg+2+JtTeZPKjSaW3pLS6me/+gs/Q2a/aOatHi HbD4dyBSvwOR+h2weNJhsHladd9VXbu+C9b+rurZ812w8nfByt9V/fodAR1V AwYcFevu4MFH1XnnHVXDwM5HjDiqRo06Bjquxow5rsaNO64mTDiuJk4GTcX6 TNAFpA/VuLkn1JhFJ9SoJSfUiBUn1LA1J9R568HyN2G5CWwfLHzkdoi8u8DW wb5Hg50PBzsfthfiMNj3cIjOQ68B674BrBwi85BPg8DKB90Ofvwl7AMr7wdx uc+3IeaDjXf6MVj2j7XofNYvlWoNFt4JYnP7+8DmwaOb/hX8+SHw44dB/1Sq 5Ensewbrz2L/cxCvsWwNnt0e1AXU8wXc5zXw8dfxfUADXoVo/wag4yBgCTQU NA7bg4/gN7yL74/lHJyHR6MmvK/U+e+rTNfa+nx/vvxP+s3/XHOAeMj/XX31 gjPk/xy9ukmOtD3qRL5+Pvl6a65JAS5JoOzp+H/a2V8Sjv8nHP+PO/tLlvE7 Fg3FCI3fXr21sFJfbv6flbhkozC0/aWooSiMXDK+sX2PPJ3hpUH2fzqD96ks Lr7r0E93tqzfF+1tevMKCaNdbYzbayU7kaL9Ronx3wzaAghgFMUOsPadaidY /m6wx3KJ66+S6gF0HdYAbsogDpdJ9ISOoNhtDNuXYp2G7S2gTaCNIB0iW4vP rcXn1+L7MCx2D6AgDImdK67BGkBADX5fDWCuBhBQIwFk1po9CjTCWLIHmySg /qB+njjP0NeuoM6gjmDr7UBtQC1BzYXllwnLLwYVgNKgJCgBiuGcPFCAawNn wbbW61qlrdcMb7XWa1qumclD67UNb6VJxZpTaLn2w1pdSCstMF907N5GhlmW H/X3RS0qPxKWn5f3E4n+YuRXXt6vQL8B3Q26B/R70B9AfwQ9APoL6EHQ30EP gx5VsbzHVV4SlHgS9AzoOdALoJdAr4BeU7GEdewxuusQ6AjoKOg46EPQCUj/ JyD9n1QFBSdVUZFSjUoUIEBJQEPLFmBrrRUgQBulO3UEdQZrOwusrTvYXA9Q b7DRvmBt54C1DQCbGww2ex7Y7TCw4eFgdaPB4saBtU1Qauwk0BRI3dOUmjgT 0vpsSOhzQAuUmr5QqZkXKXXBEtByiMGQ3mdDip+9AURDNCT4aTu1EXpyNa6v w30uU2oMJPYxkNxHfwqQADY/HGx+KNj8YLD5c8HmB0Ba7w9pvf93wfIhrfeB tN4LbP7sX4Hd/xa/5V6I4veDbf8RS4jpHcDm24HNtwObbwM23wqsvcW/8Cwo koONNzuA5wP23Qjiecl7ShWDXRd9qFThCWyDmpzE+SA8NoXHpbqAzgbhMSk8 HoXHo/BoFB6LwiNR54Omg6DEKDwKBUVGQWlR+PlqDWgjaAsIaJcZkWkIEiL9 8rjudc2xlaSpJRSeISBw2INP2hLpbVx19wm6uru0RMa+JroeJ87r5qAhFTXN xxuChlgOv2gu848Xqpfw0+qzexFn9RoOciVnWONPUJArWtlPk/cqbY6JYMPp cOFMVIJThZRYk08uTPDVAZtWYdUBa+5ZL7mkG8T6vkbWL4mYejYDGzaCGHC8 Fkvmk17ipU9sB8/cIvlclTEmcrEuBfOyGCpCS7tOlaCTM4PPzuA7ZIAHdcCD OmBWHb5nHb5vLb53BupMBr8jg9+TAd7V4TfW4ffW4bfXSW2JSeDF47EcCxrl BRCHwcN78Zz3Ao/34vlnJPnzbFA3UBfJKt8nUXLMCm+bw6peImJ/RvKu0qAk KI79Ot3hMvEu7heZPJcH8wYVTW3wzeralJOX15BJXQNAPP5NyNv/raLmdJu3 8FMc/wlkcAJCroAPhvbeB6b8a8jq9xlP5V9AD4IeAjHq7VFVWPxXVVTyEOT4 x4wJ50kx3xQWPgd6QRU2eU7lt35apdqRngW9AHoR9DLoVdAbKt32TdWy9dtg 9odA74KOgo6rNm0+BJ0EAJwEAJyE7H9SdQYAdOgKxgkA6AEA6APO1g3MvwdN 5aDBg5TqCw7XaxQY/wgwupFKnTceDBBMfxwAYPJkLMHx+oLhj54PRg4aD643 ABxv5GoABLjeuHW4z2YwSjD90TuwD4x/OBj/MDD+EWD8oyHnj9qH8/djGwAw AgAwDAAw/CYcuxn7P4v12wAEdwCIAALnAgTO/RbOAY0GjQIYjPgBtn+C7wYw GAwwOPcunA8aCRoDYBj5e9wDoDAUoDDkbwA1gMJ5j+A60KhHcZz2m6dx/Hkc fxHHAQ6DIcMPA40EjXgT62/jGsj3I49h+wNsAxjOA0iMw3IyCI9ETQQBC9Ui 0GLQQgMAeATqEtB6s4SqE1PQc8C6yrCJX6+uBEHTUYBBhV+vAH8K8JeZmclh 5Z8XIoLVGwgUifq72WrgTDUHyktgomD7rcn2m2t9AWy/Ddn+SLJ9aYUq5Zol dLtY99zAFV14bWFUmwitSTHnMYjl0CZiDWkTuaxJph2D38eeRXgb9Oa6QJr8 XIYkX4vQ6XtTsr0EDSoRfhhiQxEzp/MPZLtrG1Ielrok4RAoctmMtgIYbJzh Vsmt2y6FB5hrt0HAgiHZu6TYAIFigxQz2g1w2SVuWdqK1kk8oc5CWWUKhy2R DBQWMrswqMJvXoTji1z2CYsKECiiIDELNAP7pwlQZED78LsvA2Dsw/PYh2ez D89oH54Vy5DsA12O57dfyooMwfogU2SIJUX6Cl0Bugrv50q8qSvx6q7Ea7xC wqk7CF0FYkr/dZL53xLElP8mAIESSRuhrf9qjEIm4l6NEcqQaQsQn5K2GjdJ lll2eAtV6i8RX74sWJGd46ZxQee12TSR0M1KXEilfgz6X5z3K2MLsrjwexy/ BwL7Xaqk5Nc4h7YhGwSo7UF5eY8BN/6qmje/TzVq9KCY99Ppp0HPgV6QCOiS xk+rFm0eUS3bPK6at3xONW/2Es5/BfQ66IBq1uY11bTzS6pxjxdUSd8XVNEA 0ougl0Gvgd4AvamK+7+tSvseUj16HVG9eh0FHQcxyg88XhSDk2rAgJOCCwOH YhuYcC6wYSQk4GGQgAdAIRhEbCCBEQ4CHgwEHkwySsGwlbgGTPB84MM8rI+G MtBnN5aXgn8CG0ZUAVvADQeDC44FDaX5/gYI/MCB8+g6/Ty+BxSCPl+GAvB1 rAMLen8T+PTf2vbTA0pBd+DA2f+H/aD+tNkDD3oDA3pAOej5B3w+aBBoKGgU 6U/43L/iu/09xISxoImgqaDpwIcpUB4mQ3mYCOXhfODDdNBs0DzQAi6BF3Oh TFwAZWLOO0rNB10IWgJaAVoG3FgK3FgJ5QJ6kAI0qpXAjI0nBQvUpUYxKCMu 4PeDWdUYXMCvV0BCdZ1ZBxKqL/G0W+W0b2DzOyAuAY7q+yD8aPVzQMeKHCqG Ro5oK8qU3metUNJm6kwxQwrgdCHfb+Ewown5flPy/Rbk+8PJ95twTUr8l7j+ NMW6zKYUsqaBy6FHwqFHUnfeso0ycikcDaNHwkePaCymV8ArS9XQmkYq280c CWjH4Qa0DK1kTM2JG6dSMIgb2QqGxY2GfMqn8ydn+5Kz/QyMT9fFJLa6uPRd wIEyMTKVSyZjmURQ6pj07SAqFZtwzOZkh8UiqiSch3ixwmCGLg5Rje9SJUUm GX8+CzQjqGCCUiUewVQpOFONn0aqAekqVVMACZNBEwEbVqcYLXrFXtBloMsB F/vx6PbjMV6OR3q5qUu3H3QF6Co88qvx+K8GjF+NN3MVEP4qqUXXHSy/O1h+ d+gEZ4E6B9fjRV+Pd68zbtoEnwLdDLoFY+QzGDefwWi6BWPrFgy3WySWPA1K guLGNayhgrak24OEGJMSni5BHeJbhI/v8t//iKFJ6xB5eTrKkemDsRiNR76/ 4HcS5ZhK3Q3Z/7fAiHsk9IbZMhYfmDVTUPCgatz4T+Dz90voTSpFvwHLK7yK +70K7GCozT8h8z8IPeBx1azZCzjvAPa/jfseUk2BD63bvaQ6dHtKdez2nOrQ +RXVvsNbql27w6D3VNvOh1Vpr7dUm4GvqdZDX1YtRr2smo17WTWZ9AroNdAb oLdAb6umkw6pjuOPqD5jjqrhI4+rkSM/lKjvMWOAB+OUmjBB6wwTgQ8TZoHP zgU2UG8ARoyHoDwKuDAOOsMECMzjICiPol8A+sIE0FjIy6P2gHcDF8ZDZxgN aXnkNdonMAz4MNj4BLqDDZ7zNWADcKEPWGMX6Abd6Q/4P+0P6AidoAP9AeD9 bR9Qqg10gtbQCVr9Q6kWjynV7AmlmkMXgJql2oM6P4PzXwC9pFRX+gNA/UDn goaCRoFGgv8PB/8fA5oAmgKaAZoDWgBa9KbGhEWHgAmgFaA1oPWgTaAth7E8 qtTm95XaDtoJKgdVgWpBe0EZYMflRlHAz1aARoWfrT4D+rxZQkVSXwV9zaAB 1CP1XYIFYCEoUT/CJjQk9QtDeBrqdyAgo4KGpPBU1J9BeCIKiJjZ2LDu4TrA iL86FUUV3Xz3DBGEVlzdzkB8041dQ5jG5P2NyfubkfcPI+8v4VqJLquGo4VR LJGIJSnOlu+wJO5STBMOS+JOE4mdUhPRDYxsyn1gu8R5zo0QUNINAYrgia77 uCwXojTk0Mj2ZzdotDqVI8Piia+H5MKThuKT/Ix5q4P49T98x4XVQbaJDhLF kwophFylasDka8Hg6/Da94CqQZWgchAdFzuNw2KrOCxqgS1hFL4NCV1qwkEX SsZ7lRQnnhJJ8awAQLBwUAVLc1QCcodLFGg1qEbKdAzHxw0HlgwFDZGEdtqm MpLQPkAS21nZ8Eo86ivxyK/EK7hSipH1ENXjatC1oOvwqq7Ha7ser/F6vFKN Ix2AHx2Cm0CfBt2C13+LwZJPS8Zm8+CzoM+DbgfdgTF1B8baHRh5d2AwflES kVjcJx58AYOYfug7VJiZeacgy7ekje23DY78UGm/88/FBvYL/vulFNr4DcDi btA9EiYfj9+Pde2BYLYRS2SkUn8FCPwFygfpQYDJIxIiH4s9D/oXtp8BuDyh WrZ8RJWW/kNih4qLX1HJ5CHc530BkebNXwO4PK+6dXtcder0gmrb9oCkEzVu DIba6rhq2/Gw6tzjgOoBhaPngFdUj75vqe5QMLp1O6HO6nlCdRl4THUeflh1 Gv+W6jj1DdV+5huqdO4bqvXCN1TLxbjX4rdAb4MOq1aLj6iui46qAfOPq9Fz TqjpAJGZcyCMz4MADgVjPoBkLoBkDpSL2WuVmsXQ960Q5CFhT2bIezWAJQMw AScdBQ464nptaBryWYAHROsBX9LxmP2oWECpOBuMsydjgf5Xg0dngEdnsMwO AI92D0gcpmoNxaEVlIQWAA48HtUEYNEYSkEJQKEIzL/gbRCYfPo9pZLHlUqc AEHwzweVgNM2U9rD0N7zMPTxPAzDQWOMcWmqMTDNNcYlGplWGO/CBtBm7V0Q pQJ4KVoEfq4DjmuNFuEDxxdAXzaA8Q0DGlQpvgeCPqV+YlQKIgZ0KYVHoO42 qIHHoP4IekAjhgKOKjwO9TAIj0T9E4THop4C4dEo6FDqeRAekcIjyuxqWEWx rg4JgNIAk6Az3AIMrVz5Z4gx9BbqPpnNHcYUExMauaZjjYkJTYkJg4gJjbkm jciKHNoU6KriknBr0aaD01wSLooq7iJlY1FXScxpLmEUlWlnZhpXBZ76koy0 wbPdyzTa5EfqD2ehTcMZDNRdzskJNqczeuUCGr9CQTbQZHvL/QJUvrHLBknZ vIRcHhGjtMRYdhO71wFrNkBvsSUHtgBrWGqA2V+bxQGyU+pIbZO4qEopMUDH eJnDF107agtok6kb5WPMci/lwBbLtBleM6S0gI6BGitF6srxKMolN/bcSG5s hZQN0NUvq1wFzD5SJDsD2odHvg+Pfi9egy4X0A0KTDeATDexbV2N13QNgIVl Uq7Gy7wGdF0WwNyMN34T3v5NGA03CcBQYWkVfA50K4gAcxtG0W0YWqQvgr4E +iroa6A7MQC/ieF4J0bonZLhGg++gbFs41cJMNao9SOax34iuGOz/H9pdJV7 BHf+wH/3izj3gNQ10Wn9D0k6P+uYxOOPY9+T2H5SpdNPinOjpOQJ1aTJ46Cn sP4C8OZV0OvAmNeBH68BR16SmiWdOj2r2tCI1fRdnPcBlseBO8eBO4eAI6+r fv1eUD17HlBduzJtVeF8UFfw7d7HVe9Bh9WAkW+ogSPfUgMYjzr4hOp3Hvg7 FJNe40+ontOOqbPnHVbdL3pbdV3+tuq8+m3Vcf3bqv2mt1XbbaTDoCOq3baj qufm42rIxhNqPBSUsZuAJWC2E4gtu4EtZTr+dFwd+DWUlNFguMOBL+d9Gnz8 8xpfBt5hlBMw2T7Al17/ow1WZ/0cygXwpReWHSCKl/4J+AJRvBfWW4GZNn8c OAEm2utvOlCpKZSORq8BK8BUO76M84EzraBgdH0d94Oy0QUKRSfgDR6H6oX1 3u9ieUypHlAiegB3+hp8GaK0B3sUaLzSHuwZSnuwFxh8Waa0AwM/V+0AAU4V fq6qNthSa/AFSgkGAtAFbOemEFuw74v431Z93WDLt0HQzdQPDLYAWtWPjTby G4MtvzH4cr/Blj8YreQhgy1cPgLCY1FPGozh8jkqOy+IY4UwgyejXjXE9TdA eDrqIL55RYPKjYm+jXRpzuFaIRidKQAxbEVXjG4aBaCw62UxYaKYMNGEMDGI MNGIa4W6K6L0R5TebtI3KgJF4qtv7xSfZBSKEjmMaLFTGtFyKj4pv4umc8LY dDoczgFDoftlSE6d53T6TkPBW77fpaFUuTOxnTWUGmd1Havn+PkXVs/ZHGzB k9kUbJV926TUzRbBoV0mNrcc2+VS1HmDVPYqpyMe22zmskdqF4b4Uz/tzWYZ W/yZ5eHP+V7BVD8Gd5DE3uriqL2kOCprM5TjeZfj+ZfjdZAqJJ24g9QfrAHt AdWBMuJ8Z1pbGyHmU+wHXQG6CnSNqah8Hd68Ls/VIrgBdCPoJtCnQZ8RBacJ qLHQ50G3gb4A+iLoS6CvYLR9BWOP9F+gb4CIQ/8N+h/Q9zFCf4BB+wOprpAX CbAl+PzcA5/fZjlU/IoKDKx9WMDpkYDV+FhJ4Ulg01PAoqeBQ89Cj3kBy5ew TZ3mFZWf/wp0mleAMa8Ak15RLVq8LPoNa2bZYNqWLd+RsjHt2r2tunRhTsTr Ui6htPRDLD8A9nygzjqLpRJ0mYQhQw6oAQOOqD4Q6vv1A98F4x0wSKf6Dhpz XI2YckiNnHJEjZh0Qg0DAx4yHfvBgAeAAfdffEKds+aY6nvJEdV76xHVc+cR 1b0cOlDNEdUlc0R1upwE/eny46rf3hNqOJjxUGDPYGDPeddh/SaNP0NuwT3B kM8FKx7wFXz21zX+iMPkpyDqNxDwO/0O/LPDfQpTrj3k+lZGtemIZVfw3BaA GzwZ1RHL3pDtW2M9BZhpB8Y6ELy341tQdajKYN9gwFM/QFInqDu9oPYMw/oI wBHQVw0FjXkfKs1RpaaAgMBqyodR9Ybwc5HS/vOVIGhz4jsn/OxU4itRlUo7 Sa4zqs1VoBsFcoC1YB+fw/YXPbXmGx70/NSoNz8y0EPY+bVZ/72BnfvN+l88 2HnQQM9TBnYeNev/MmrNM2ZJzHnd4M4rIe6oAwaH8DjUu2Z5UK/H1DGiZ6YW 0BRBkzOCqGRDB1JnCFKMsww6OJAqcZkjhdrWBgAp0hoRAKRIa0kAkIEEkBKu SSvyfAdXKd0oTbowWbjKd3DVjp+WzgFX8Rx2urjX7tz0Lw+yMStaI9PFmaVz QZZXH5MhA9/IxqwzMtKdiYEul8PnTIxzftHeXIkluYIDrGEuV2CAX3zoUlMm Y4eUo9wtSSRUlraLo6cK+6uxXe16l6w3zp01Ugm8xoGVLolRI8qSnxBowWq6 eHW0ssSc7DGm1tpwr9baAEkALMdzZKIIgapMKni3l+rdZdJLpCWI0cJNTdGg RrhGJ4hEk0MaQZFqJO0A9oEuB10hfUGKJeHvGtB1oBsweG6QmmmFUkPyZtAt oM+CPge6FUPNlgT6gpQESgdfBn0V9DXQN5yylISClAy+A/oe6IemnDZLaf8c g/nnGNoWqH5tgMrWRLtfhQl9NgOEHp1HHUgFwTMCXC9IfY4w8yMv7wDA6k2T 9fE26DCUqcNS46y4+LCr69OCBR1bH5aaPq1aHQM4HYOypOv5dOlyDOB0TPXo cVT17v0eAOyk6tWL9c4ANuecAECdUIMGnQBwnVBjxhyR0F/fi8PIr3Fg1WOg KUyc976aNP+EmrAQ+5Zg3wqcezEUn43g8kyO3ol7VR1XA+uOq/6XAaSugkJ2 3XHV88bj6uzPHFfdbj2uut96Qg38LMDOZHT0/i/tvWEydM/vQ8kxINWVCXlg 0Z3AqtuDNZfSc/NQ6Llp+rRSTYBCjcF+S6AgFYPNNgMLbgNqBzRqBkWo9BCu B/UFGy4FKnUCdQMNBwvGY1C9wImB0WoiszlO6NBe/GQ1C2g1+0NPMcKxFR8o tQa0HrTxQx3eu9UoSbsNOtEAB31QwrquMkgFhJLwLvxkuvLFY0PliAY4YLIY 3ohQ3zco9QtBtF+JEnWXUYzuM0oREcoa3h4yy8eMYvSEWX9WK0aCSlx/ySDS q2b9dYNObxl0OkgkwjMCRyU4YU29pymm8FjiCs8iSCrgtvogpExdLoVqbn29 idiUPiVWFfFAKgdCMRsATDqCUEVRhJJ2O4XaegfMKNJqFPCiP+GihGsF3Jd2 WGUahknrMItVaYdVhTpwOqJaJXJgVYOqVSAR0WLkY1D0KbGqIDsmOuJUigZD h60GdTNeWvjUaZ1J2fa90wW05Qpm8wPZsnGqfkBCfbtetlJlAxGY8JgdiFAh 2S6VkvFSLmWcarC/RjJebLZL6DTKrVBZg96FxqDnJ63bhHWNUZUOo4aZRHVd CzRMZmSRu7NMIiML3LUBtQQ1M4Xt2FGiCFQASrtMljKMH5LNZGEdplxZLNn1 lxiR6RcE8aOX/YLsubIVbTGQ7NQVMeapaAEQG3XQUFm67OxEFh1mZuILKixD x6zEN0EHQYdAR0BHQceBWR8As2yKioKSpXR6SiOdntK8OXh4K9bcVFJrkwY8 RiZ37WpSU3oqiUCj8sSo5IHnAleGAF+G6qjkUaOUGjtWqfEs4AFsmgIlato0 pWYAn2bPhjYxR6k5YNpzoE7MWQYeDnViFtSJGVAnpm5T6nyoE5MqcP0e3MdG FpgoZGu8O/cLWnFi1BkzDXuZaLNuRnHq/BtoP78LowpaP+hFFDyJ3wnG2wgq QjEYbyFwKQ0mmwJnTYKrJsBPYyfIWLX2hMeiWoLwOCTtBI9B9TS4hJ+u8LOd wW6yciknQTBWzVdaaaLNjlknvtLEILNyUJXSNjsbdcxgguuVjjIjJFmfkIWm 0/mEqDQRlhhJ8HsDS39SOpKAypL1Bz1i4CjbH0RY+peBImuwIyS9YeDoLQ1J 6m2DRUBxUZyOGFwiDh0TiHxfbI/HDSZ9KPs+JGrJwwW6J7CbClbGU7ASDnE+ hg2Qx8/UBrjDgVdjrQRFwKtA2/bEyicKFEBEgKqAIFKowQsA0pv4IXCSz335 PJrWDW2luxyuNb2pLaClHKCldX8VfIM2TvlKnRLQYmcIaOK2ClJ+C03fWqid VufnQrNPpHWdiaeqISTzc3fq53POkvYoF4jGNc91oVwkoXWLgSRLsL4E2tdy aF+smBVWy9L94TZKL7i1Upplq4RgbwKqbQWqbTeFCbdJOJ2E0bG1dHXwM2nx thnA4Ec++CC2NMsrxc4lTNOcaVI0p5g2sEzRHCMKl67rP0yaPFbj0VRLbzZd aLAKj7JaerF1BXUCtTedSNiwkcUFm5gsfLZCKgClQQmcFxMAsyCWXUiQIOan YfoFBP3igZ/NAjBbRSUbwFhFxaba20r80XT7eJz0c1Mg8C7Q3aY4ICvo/1Hy LaMKlk2tfwHH/gVgesEVAkylXoNSRSXrEOhd0HuqoOAwAIv0HohRDx8AvD6E snVSiv4xv7KFya9s21bnV/oAxtSaXgCw3uDg/foDSFiNaogujDqSADZap9UM ATcfBsVqJIBrzCwwd3D1qfPA4AFeExdDEVmOJdj65DXYz+onmwFe27G9C1SG Y2Dt42t16PQoFvK7QYdND75VAxi9T/2/atLlGTINdn62DY37lY5uYMWTTmDj HeiBgmZRCvbd2kQ3MIeyA6g92Hbbf+kyJ63ApluARTcDa24OttwGLLkUjLjN CR3V0NYAWC/y4b7gvq3VediEOil6FWBbMmcA0wJeTJu0Fj86nRjYwKAGq1Mx sIGOJ8C02q90ygwj4Zgyc4sw/M+InvRFA17UqQDb4nT6rtI6FaBb9CqGwv3S LC2A3WeW93sARuvf3zwAs4ENT/Mn4VGAqT1jMOxlQ1x/zcOw1wyOEcPeMeuH PBw7ZJYGywTXjvH2x/nvfQn1Npgmy+Nm/YRZHifAnRBsq/tYxsNP6N/azP+l xJMmri9zkWvHnq8NgbYPqlG9RAkDngiOFRBLCgglJYSSbkSSYq7JvjSPSv/m tG5UKH1ypLuzVOa1xkbTRaI+3rU6Q7wLpNoN72xJcC+QqpMCewb6zhz11EdG vTPR37IdY37NslxZqzag3BawOVVMxlxpmDpf+i0vBOItkp7KS6QBGGtEEvEu wvJCLNnwa5k0/NLNvthwnV1PVwL5loNWSV3I7dJRnd3UN0qX00osK6QXMu2K F0t3QVK1FC+35Xaz4c4PwpgmjrAaac7FljbjQRruqgXuzhPaA2Izrlo8p1rp Zt4LxOZbXXFuV1nq2o50gLHFaGuc1xzURGyKtXjtdRgFdRgbdRguGQyeTA6d 7UpVP9vUwp2fbWrh7najr33ZgzpbtDFbV/MdX7akeLSyDOGOUeK6UON9pkDj AxLcl0r9TTJL8/KeARHuXpSocFaQycujHfGASqffkJ4JjApn9RhCXX7++6Kr FRcfB8QdBbwdhY5GOg76ULJIra7G+rZdumi4O5u1bXvpbCE6ulgDfNAgQBuY /nksIcBM0jGAN6OrnT9VZwqxlu0IZggB5kYu1XZEZgnNBgCcvwHbW3AOM4QA c6Ogq40FCIzZq2GOUeDMGh0OEBj6aR0JTrgj1EmQxfe0HZGFFRls0fVnoR2x w32uoKLYEkuhs7UFo2/zOOYtGHwLaCdNwdFbAuragjqBur6iAy26vKVtiR3A rTuCW5/FAAvw6j4ndIBFH+pkcVHbAPJU18B6xwoEUmWjGXGuIZskyuQg6m2M tSgzkEe9jTrb5QbyCH00Jd6sIU/0Ni6NvobPwFrQUiCPcPcdA3+MsaC+Rr2N +htj+aiv2XgLrtOU6MdbEPIeNvD3sNz7Kfn+1rxI3Y16G82LQEIxK75hMPBF pfU46/R61eDeYYODBwwWvmdw8KA+hs84KrZHq+e9r0lsj+DJVr07aiDz/axt rQoeP0NHWu44w48Lg5v4v7VrZVnsCsrna8uiqGS2+67AjFHdgC4Cbymt2AFb 8jX4AVoaEVs6ElhKuJbPfXI0yfOSDhoFo5K6RrJVBU3jTKsKmhqeFhrFotmy IWiMnV4V1BGMCRfBaGo9ZKdffUI8pBaYCw9zBYpkB4lk42F24U4fD20gvG/D 9INDWKr+QqP9XSQNMXW9ZNZKXgUMXAntj1i4GHQR1pdCE1wOLXCl4OAWqY+8 AsRu34tluR3HL8UxFuQsdwXaVkjxzQpJul0spItuXuTZL/1gRBsMQvvlWFH7 qk1Ltz347TV4DjV4HjXAwGpgYLXgYD/gWT/gWG9QD6nCUCdVGDp6gSAdgG/t gsslEEQX1NyHt7xPCq8VYDuNY+xJFBMMtLZLi4XWdulX3snGQav2+XZLa7PM rq5mC2f6fYc0BjZUaicef0BwkIWK2VAtP/9voL+D2GDtMeDeMxL8EYsRC98G Hcb6e1D/3sPxI8BBBhu+q5o0eRcYeAT0vtgsqfK1bHkSqt4HUPV0wAd7Y3Tp clJ16xZioA346N9f4+AQq/IZXxptluMmABig9k0ADk6C2jcNitBMIMK0RcA9 oML4lTgPqDB6I64DBo6Fujdlh1b3GGw4IoN7Xq6LXQ5msCEwcMhnTLAhcGDA l8NsKOtPY7BHF3D/Tr/VNssO92p/WlsoPG3+piujNYeC0/Qp7U+j3bIJuHwz cPfm0GSavol972iVrzWoPagLqDuoN6jXEY2DPcGW+4EGfqArJYwgHiYllh2/ XCrmMNhjjjDseaJHLTf4Rxyk6sekWKp+u8zSxrNfZpZU/WyGLJeMab9d6UQo qoD49epOYse3cPv2AoM/NFBIsrEfvzYQSEi03rX7zfqfVehh4zrNmdQAqQlC WBBNkOZMCAsSgvi0cibNGIMQ8YttCIiHivjFwEnoDjY05C1DbyjjgHtHDr+p QsPnIeUUyBjRMabX3pUTD6kwpORweLKcCOTCZqbKoGHj0yChJAB/woj7dQ4J GzuFsCCKhGnX6C8VRcKkQ8K0RjhASpqQkiaiFGgkBKa0I6jIWj73Sby8nJfS rQEtOsb1/aQ4kVUc487zF48qjskoOjY/peIYO7WhNOEbSkOFcX5DCmNDHr8z spGeKpo/Gx2zPX1++nGu1GNrG7Waoo1CyW6ouizSwGWV2EVXAA1XSReB9dD0 NoIuwfZGQcYloItAbJK6XDoHsFT1DqzvwDE2Ud0OxNsuzVEXAyWXAiVXSOlS NkCVZqiYSHPw/3WgdiWoyjVisX3lc0WesF7dIOw/V7qvEBmJiLoDALv6dcf+ 7tjXXToA6PB8W5+oHbbbCO2TctM2PLIliGWmG0vEyZXSA56lSNn3PRZpuZyt IX4cY6hfTtr35NnaQzaHmBEnuuZotPjcQ6B/SAG6ePxhoOTDqqDgYSAeifUm ngA9JbnDhYUvASkPSKRJLPYh6CTWT0qhuaKik0DEk0DIk6p585PQDE86I6gN wz/rrJMSYdKz50nVu/dJ0QwtIg4erL14jDChF4+oSC/exIlAP3rxgIozgYqz gIqz52ov3twLlZq3RHvxZq5VavolQMStQMSduA6a4bga7cUbA11p5NXGCGq1 QmBDf2BCP4uI3wVKGa1Q6oUCCDrfrUPw2/0xjDBpCT2oxT91CL4gIrh40ava k5cPbp0Gk01Aj0lB+ciH6lEAxCsC4jU2BeSgLKuOIDwKHX4PGoDjg07qOkKj QeNPht48aw1lHSH8VJfixfpBVA2tO89GmezxYNF36THShKoh4yBZOMKmetmI E8ZCWsvo9wweEhcZkm8ThX9lsBHCgksWtvhIN59N/aKl9CFV391HfLRh+k8R kJ4RvHpWhUEp1gP4Ig+/JMqfhUwTpxKjBRWwQ33S2FWx9QY9egdklTh5QEMp OMKbvOIA/9m1hLkEN8iUnQYH/XKsNnjSr8l3xqnNF/O/NFQodh6/fNfiJlQH 066/WMqBYMKBYIrIkXAgmCJySCx+WkOfgCCQo5TQUcQ12SdHkzwvoa+Q7gu4 S0qX7Madk7pWn7Woxp3aGHcexIQDxoROpG4AGONnCIwNWFJxp6yAGB8XTdLb 4/Ww8ZNojaeLgPHLcvglObKjX7IjNK3GaKNebNkm286B9V7XeF11tJ+QXXQ3 qw3SQXebdNNZ7bTFLaItLgMOrpAm4buwvhP7dgJ/d0p33DnSJXe3tGq4ENi2 ADTXlNuYDmInXJbwnoz9fmuGXJEujMbsLRGZrOFahedWbbrc7sEzrcEzrsEz J+0B1UknnPbQBtsDC0ul/cLleG9+6wXi4jXSybsJqETaLVwr5bkTWI9FIlxy dRfzMdHHw1yFWX+gQsdgVEuMRrf4LRV0hIstxprHYqx5Ok2AVtNE4hng4zOS Cm3bKDRq9DzoRdDLYjVl9GV+/gfAyfqRLb5j0GKitZQyssVaS4mJAwdqTKSW KPX2RodRl8RE1s6gxXTaLKVmXKDTnmcDE2cBE2ebYqtzoD/N3IBzABJTGNlS rqNbJvjRLQCIoTebtOfbNS4y7bnvneSe0BMxF8/+UVgzQ7RFL7ql1NTMaAlF qPkTJvISHL1E4yLuUXBABY0kwoW4GGPa87EQF4uVjnTBo1GlSke5MP3ZpD7H mJsGkZaOQhvowuxnZqfZ9ADCIy2o1llIeLSWUxuEySUjXugwZBBmVRZE0nno Z0MzKNPPiKZF9SsaKgOtQnYVyKQDkZbVH6rQmWiKLjnL6q8NZNoaG6ytYa2t Nmv6Tx6M/kWFzsa/Gij9h4HTv3mQ+qg59ph8p3+KfvkPFQZ8PqHPAzo9KV7D x0LoFfKgWDswn5DTfA32cbP+lNl+lM7FJ8WguvX0BtWEXwWE6qPnWrRFQ4im Zwqia/hfOlY00u48C6KhJplwIJrUECZantUkkxrqLIgKEIquKOCYIsikiDIp DZ3AmBKCjKBMIddkX5pHpZNcklcknMYZ1/eTVsryGVbjTESBNREF1nhDwNrM AWuYUR47A2BNZgNrmE8Orue1xvtEGqcfkXMmttisXkr1UDW7sYaNxGkoSY/a ptU0bX74WilCss41R9oANN0gVXK3SKXcjdIUaYckh28WHyR70u2UJkgrgZzL QEukGdJuIGwZELcM6F2Gz9uNz94NZNc95tk8eS4QczZouik6Mgk0TvrJl0vR EatlDjFNjmwjjB6gbl4TDCbjdZREvCo852o87xo8+z14FzV4NzV4N7WgjFTA bSH21/3YfwXe4xV4t6QrQVdLYcMSQdUbQDdiJOgGRglQrF7F27Dabf3GRV/P gaa2mqGPqL9UYXVbP5/BT7rz2xfrbhZ5eU+DnvN8kC+LHzKReBWo+aokfhcX vwrkfFU1bUp6A/Sm5DMw4bsYkMGCIgy1Yawoy5jbUBsiKv2PtL1KFds+uoQ5 EZU+SPofbR9ioioRdcIEss9Jk4hS55t40ekzdQnzGTZWFNgyE4g6g4h6MWi9 7qNJ++vEKrDOcRkaFX1QpbJJYB1kALX/fxk35Ld1uChBlUu6IOl+pPlV0hnu 06ZX1hJpbUywTaAoNX5eA2tjqEpFr4myiSn/Jos5MXI070ODre9DF8U6RA7B 1nyDrZ0NtpognEADa76UF2Ek6RgDrgTZscqZY2PMAYc4zPrlVD2ZBc51WmVp kd1g8Jb4yioju7x1a5mlWkpPpU3No/eS1tpbDNYyYOcmg7V3GNz9rMHbbxj8 /YJZJ8beqbTaygSJH5l9xOLvqdCj+V0VmnR/bvD5p/w50F/Bx3jazwwE/847 7W4DzXcprfHeY+DZnnOPgWhqvjYx3TpJ7/K27zf3usds/1Ge+D38ArgcPP1e c4INLrrX3OA+OfEBQdh1p0JYXSA+WnsrLvuStn+UVVK5fcaK6qqGMDatA0jF Qmr9liHGJhzGJqIYm3QYa3BSVFHBTgCO1F5MaWQF5pQQdJoTdYq5JvukCnyS 50nfELk27hTauL6zVWgTTqENcTeeA3cTp8TdplHcTZwp7qYc7nqG3tALmmoI cnXW/K8jqHsmumwuxLVZh74eezrEzVWdJRtxs6uy+BVZbOaGbVW1FSi7VcoO 7wDpWNetQM2tkgpf4VpTbTRtqejxXAVaDloqS11m2Nh1TbnIciBtOSSCcoO4 lfjelfgNFUBcKfGF31kOKaPctRS02YTdDdp2BLXF92htMjVaSDZhOV5JBV5N FV5SNd4Wswj34E3WgGpNiyl6Oi8z7aWulPZS+dJa6mrTWup6tpUStE0DZdPQ WZOgWER3tV2x/Y7YtpZXQ/Zc38uZjba2f5TfOyo7c9DPziDSvgJ6TTIH8/Le UrHY26BD0kQknT4E5D0EdD0EdD0ExD0EfZX0LpD2g3qBrYz06WyahvjRPhZx rU2XaOtnZ1i7LvXXqVPJ7KZPVxi7s6DHzgLgzIQ2N4M67FKtv7J013R2rr4E tMV4PHcDtat1aZVRV+ryXQK5n/J02ds05LIucJ9v6TIrEvXzUw251GclU+Ne rctK9M8DGnZp4yXs0s4rkPuChl96P6nNxlX+WwrzMnFUY27sgxB3C8HEofYr qP8KKr/otNRnGQDLkl7M3iDmUr/FY5IMDpb1ooLL0KBJSiu3E806o2DnmSVt wUuIIZBEwFiY3bHWYDCJpYRtgOylZp14TF2Xei9NxDW8HI8NDIhq8D4DxYRl qsL7DRzTWkx1+BoD05/1oPpWpR2rt5ljurDLl8WU+3kD4Yy1ZeVJE3sbI2bj sC1I+W1DplRxjIFJ4JzfMoe/a0Cd4Ur/H3XvAWbHWZ4Nz87MOVtULFmSZbnI km3JkivuRS6Se5NkS7Jxk9V7WWnb2aJiiY4xJsHUUAMJJF8IIYGEJKSQQkJo KZQvEEISAgSc5CdgG5vEnP++77fMO7MzZ3dl5fqvf6/rOTPv9J3yPPfTP9jM bNJO+P+azvhRHdLWtVSW5G80vQ075iDWlqmWOwX9V+w6PEQekrt/VIfTssMP jC1z28OQINeYhYZiGYRtRK3v1ci/8XpK13nZO7ml7K21lL1pXvamXvamRlt1 slcy1UpXSJ66kbiQPVOo8k2jBNJcncu0VtulXh4nXg9OvB6ceD24TB4neXmc +JDdxBuY07w8bs/L42Sc8jhKw/oAvjpA1PSxSRX25XFpwa18rmU5KcWyz+Ox K09UHtOuXCaPWdJ5H2RxL7RaZlL2Qu71Qub1Qeb1QX72Qe71Qdb1Qeb1Qt7t UzkaJp6wC/uIsvwZifuoSjiPNB9Uuf9hm93PkptDypy81crjZb4MTcOXoXmZ tSWzDM0Cm9k/12ZNUhbPUMZkLx5TLx5brzImO9QDbADPtoGHbJJNEpw/xnXF uM5YEbhHQK9Q1FEMuRzLv8pS/o+D3gBi2943BS173wJyLXuLsjhs2fvLgfbr erwUS860ksWubr/Teplk8o9N07/xX5umJvP3QU+D/tNHHLW1PQv6CWTyT0Ev Kkuyvf3FZlfXi5DLL0Iuvwi5/CLk8IuQwy/mkkyMf7U5KuqIsthpvmGmJO3J LlPS+VghjymNm1ApmitXNpv33guyGvBKyOMV60zzLtqU77Sy+NZe42tdNmLK aXpf6xugZb8p7291JTXPtyU1lTkZyGTZl232pPyuNhJJGZRWLqv82TeMSjzt n42defJ3IXe/L9lsfLD/1WzWnmlKPieQywnkc/IibvW5zdim/tWtmGaCJatu zgpENVVl5qmc0zRFABjAy8hd3EFV4bzSimpXEIDRS7c0s55fVJ1d3y/aplmd kzqzK2HDyCbcSR/dRBlOdy6LBuw0cjumcg2W50R5jxXfDASmGbshkTUkCchA KHp9D1rCQ6C6re4BCSV6VJN5+zWWXmvkOuTR67W/8xA7eqOR/TFnbP02CwnM KKWRHMek7P/5gJ7SNb2Zez7FnzdrK1fd4ClLb9FhntLvW5reCGCzdZLDd7YS wEGDZBehFDbI9EJ3vP3QHi4RuO15gVv3jY/rvkB06r2yBYGb5gVu4gVuakSl lFhIltQothKpEC41Spd2ipcOypd5VPo0p2Up12q7lHto38QcRbpjTggnJUI4 MfFGrYRwQSnOhHAtL4TrXilOSoKDIx1GaTOgqKUk/oeXJInHypUZy8NbjAkO 6/BMRApntXdG1zRYr26eWyCN2clzpwqUUit2HTxN4+YBZYDuh8RkvZ39kHD7 IeH2SxLn6xiwQ9uGUYWvR3At+RjgMNLpWnl1aYMetM2YG4ENOisGd5q6cZoG zKytMwXX1qW6BaZ2QR3razhGiuMmSvscwZsQ1i0opnyOlQMT1iwoq1fgcmB+ tUQKf8JKYUY4ucJvRSn8JSuFne3Z19IB/ZOVwq5WgemgHEWUwj/yUphFrV2U E970XL2CKVMyr+6sWaZegW+neUZmg3ae3TD+13l2qRm7ejpFaWy1Y0li1i24 5x4jjVdDGq+CHLmXtQseDaTxrqB+wYDRjll8NDBIx7RI40tUFqgtY6AgqPfb BjofNoFQTJE552PYfMHHqZOxooEyZP44y5JhPNQpX8B//UVjqlZ1g6+Sh0M6 Aw+zh/IJNlp46r+YSgeTftCktbrZhWn7D03Fg04224S87nwWU9A00GzI7unP 43iQ3SdhOvcZk0R6Kuh06NrzsWw+5udDpp8NOgfLzse257C23Ism4+YqHOeC n+FfuOhnFHDLcIiLrOxmldM7fyQZHjPzFPzn7mcz6zeJ9X1uBUy4zYr1u3DE FS+aYqjLQSuw7uUvuGDleyVD1z9nXNAU9Zxue0bzMWU+2Nz2Z43lnNKfQVw7 njN1GWhR53Qr/on1PzOIgMs24XRbXsTuG3X0TT8z/SAcWOB0/3NYvUWKPBf1 P5PhCGYP9T1r5rfZce9PzPx2u003zrjzZ6YiBJfvxBn3/A+F8g6dcv8LBovs tPsMPKdpzAWQ0pe3ktL361deXjqASXT+ThmnUH6QvzNKhHLNe3kzC3TqteCs jraN9M0J5cQL5TgvlBMvlBOj3UrESthC0KjNaI3ipkZ5006B00mJcxpFjuZq XKa1KbfTHokX2Soql3i9OfZ6c2LSYHIiO24psmOfz2NrC7US2XWTgJuzYydV enOUhKmu0biM2T8at7wOLdll1RzCSOVWOTxl+TtFK3ZYvcFFKOebWBTr5DES a6P1G29VFNYGVW0w3VVdZ1VXyHUvaBdotwq6Dqqj6m4VcR1REfFdY8jqYr2h MALrWh+VPKio5JfZDtqMvmI9vLOsrJ4rGsQrNoh73cD9b+CJNPCoBvD4BiSr 61hXx3FrOE+K8yZWa27z+aqU168oyOuqLtlluTrvaWa+4lBWu9IMYUSyi76i xuwikcPaQp+38poas6sr9PUSrfl7XmM2tYV+2GR9oVBet7Vl8rpWayoKq6ur 6X3GzNehFdvVGCrzGxdzdqhBU2Y7Ddr5jp01u6hFU4OmzKYGrZpDqyAT7ofc hgRYCXmwAhx+OXjyXeCnd9GyvTOT2654ODXp615pLNzXQ4+75nFj2b7qSWPl pkbNnJ6L32Ut3daxTEs3hTnzexZ+3EQzn/NRo2FTs2ZZB2nZf+AleUxVG68H 016pZFOoz/m8UbbZAIlli2gMZwrQCd82fS1OYkrQP5u+FuyizUoQJ7Gk0X8C EjEdFtucSsUcknYahP1ZWHcmxidA4E+DpDobgOA8HouCH5Lm7Kfxb+B4J2E8 GVLpLICCawAgTn/WaOlnYp+lGC/6L6Otz4c0W4b9X/b/GMP6mZBmS7+L2wOA cRr2n8+isjjmDaCFmD8Ly67HutuxzfnYdgG19x+axn2XPG80/WtxratxzGue MVr/1RTpGC/9kTHYX43t1nwHj+iHxhpwBcDHKvwfd+J/ftnPTDHbFWz897Qp ansZlt2NdffjHi35qUEfd7IRII6x9HmDRG7D/ViLa7jlWbP+pufMmAiF65fh 3jyMa17+Q2N1uB7nfIANBnHcq3H8a3Ge1fi/7sN5b/gfU0rjHtyTh76PfX9q rBQr2GQKx7j1eeNowDaH55b02tg2TvF8P39nUqh0GYdpzkid5o3Umc5c8x3B 47x4TqrEc5IXz7EXzwnFSuLFc+LFc0JRXDdCGVKmTjHTSTlzMgVNB+fauUxr U26Xco+U+8Z54R17fdu2k83p23Fe37b5rU6RdUI8rhLiSZUQT1oK8aRE7y4Y vyPhA2ncVusuy8t13dcLddydAPftc7/cUn6XVWJyunZZo8NQ1y6rI1jMvR0t u0OLNyOpw54grvEUqyztUGbRBsxviXZjeTeW7/eNQPaAdoBYhH0b5OY22+SW 1u5tYISu1NK6FsXX7ywpvB7WsnW69vlYtgjTBaAzrew+FTRHNAgaxi0fwmMY wpNheaVBPMZB6do1ye8R0AE87oN47rR4s8t5qGuX1Qh8Y3N0jcCqrCJavMNY L9dFynUzD7OJXOS007Nd5HToff6ald3fDHTtfyno25Td/9U0tQF/3GR9wFB+ t7WVy+8wkpo6N63f1Lld7YnQAq4yS1aGm261WQ0KZwWn7l0mx1mLgro3awZS /1btwJVGjq+CcrdiNRgyZPnydWD26408v3ujkeO0ijMu7I5dJi/35kETcU3Z vvQxyNrrgblmNm84kpUVJFG8Uy+/9O1GnDNtl/XZL7QNDGU4/yX8SxDri3/N iHmJ+N+SiI+psONtoa7O4k2sjnvW79is3j81ejulv9PdaVdnbtOpfwVx/yVT 8eKsPzdFnmZ+xbQZORvbnQ7dfvrXDQw4E9vN/2sbivYtzEPnP+dLxgY/GWJy LiDBBdh/GuYnsULGN/EvYDzrX0y42kyItcswPpV2AUCEmRBJl/2NgQrTOYZY uwTnPQf7zYAInYVlF/49kA1oNuZnY9n5/2D68rKC78kYn4vrWPJ3phLHKRgv wrluAIRZ8B1Th/5silqsX8zrw/gsnOMGnONC1qeHyJyP414LeHMJjnMGxxTd OMdV3zDz87HsMlzf9fjfzv6BGV+CfW/ENSzCOc/E+CIc+2Yc8/zvmvG5mN6M 9S/D8rMxXoRrvfGr2A/36SyMF+I4N+B/uuKfzPoFoGvwPy/BeRf+u2nZciXW LcU9X/S0GV+G/+tmXOf5iqdfxAiEwzMHWmjg45Xlq70sn+RV7bpXtes+oLrm Ve12n9KaGpnm0nYSrxqmxvrs7N+Jr/dQkOVJiSy3UtjJ8sTL8sTIbUjwGgVP nZKng6LnZOqOmtOylGu1nfZIvKSPvaRPbD8syjXakk1TRifzM4U98Qp7JCji CsdHsVfdY4NYnLU99lLf3hehnZy1PW4p9VNvbT+hOdraHk9U6ieh1I+M3v58 S719LG/3WDb2Yqx3mFlcZl8vZhVX29eNzp7Z1zdBx6Zt3dW1N1FnO5U1tUdZ U6yxsUWN7nvUeIUNi13UGetNbYAM3mhr2bPeVFmN4NUl9nVXwz5stuKypi5Q jLfT2Ru4Vw3cu4aarZwCOgk0SzQIGgaN4FmMqH59F6hd+rrR2SnzWWcqhcxP 5Ok+ivch1NldWcVQ7pdlTZXV2KDu/ktW7oe1gJ3Md/b1UGf/TDOfLeXiu109 YCf3XcTZt5uu+7CR+//pdXZTE/g50POQ9z8tlfudnXm57yLQirp7GInmSiy6 OsFF2R9GpDnbu5P/zKxy8p96/G23WY+4xQHKPAYOWA75v5Je8ftMBvI9D5lG k/fajCvWqaJ+f/d2iwWACW7vNhlYt/YZHZ/lGW8cMSUalx0yZRrpOaetns3C WMNKDSmfyGoPEyAQGKi78dtttpYt5UiAcNH7ZAeIiRjwybNvpRoffzgr+UHs QKe7S3Zm/Pk5v2nmz/6EzAQxa4KAmagNmSX5AH7fYAtaDhg3d9anKIvm/RF9 BHOBJRbYKlrKDQPmWPQpgz0UXwdssfCPhD+wz9w/p4H5bNs684zPGJoHOv0v m2D7f0G38TysmveXhs74rOAJT/eXdIrPBWw5B4ec91lDHJ9LmPNX3Gb+Z3l4 rcfy+ZYW8FSfw3+HAfjimdz1c/iPNMKyWLP15nwsXIBznvk5Q/PYee0zXP05 bYnheX+uxZFZVm8uwqG5XLtgupDH/gJ3+TxX6yhfMKtI8808Vn9BJwQmWsA9 v2BoHjDVYt6HM79IMT992/ES89O9mO/wFvV6XmVPvZhPfEnG2Iv5mi9bEXsN MhPzcV5lj71FPRPzcV7MJ3kxn3gxn1DMSJCnRqRDuNcobuqUNx1UNGdT6mgu 5bI61ybcTnsk3DfxICDOg4DYg4DEXAsBgEz+En+WdO2RMICko4cBBemfGe7L pL/NcXaSOYcCEh/4FucN+KnX/QsoIK7S/Qu1KkvKM2cJYB8al7N9IiAgLDFS BAFlTQRCEFDsyuac7KHiX9bcxij+rmnADgh4hp6bbtP7FHK+X2WWtwEAbAZt 9EUnBwACBgEaBjEeVNHJdRDQa0WDoGE1shnLwZ5PmzZJXhcHSV6mQYAx2s+3 CV6ngU62AOBE0DTRoMLOp+E8LDQ5BeCjE1QHJSKj+CcCAUdBJtytzQOAouE+ dLS7ciJhslex0JYzAITKfwgCwqY1rrNamOTlwt2KjvZvFpT/MOQtbA7wjAUD AgJ4RwEF8N4x/K1WM+FvnZ0vNidNerE5ZYoJgZs2jWFwpswIi2/Nnv0zW4Ty Z83TT/9Z84wzfuaLUBIQOCc8AUFo1LegAOcELMBnFiaGBYaBmMiAVXBuzHzz JOID5YrdmdkKiBEUxb7KRLLfDYxw5wPYDhjhNmCEO4ARbl+H+Q041iZMNwMT bMXxgBWWAivcAroJeOGmvabG5U2gZcANy4AZrqMNAXTDIAj44Trgh+tJwBDX AUNcexiXfwRTGhcYGf9K0/ztGmCKazh9Df7lx4EpXoftWCMT8xdZ48OVTxis ceHPYZ54402mYdzFwBxXMKKeUXxvpgS87CnckMvewtkL2cn0reomh3t4yduw 4pK3M96aJoyFQCWXsPLYOyDLLn4n5fbFv2BAyznvseGAHIPOf7fk9vubkIa/ yAPP+0XIwQ+IwNX4i2UfhAAnCdxgDg9sLsaLGL7wXkMXgs76RVwGBtjoQpzn TGs94eqLMOVhNH6fKf9y1gfMbhyzQNoi7f4+nvF8LDqffpX38/Iwh3/hQixb 8AGznHQBrvQUAKzTPsRtTvswRfbUNcdBZK/yIrsrL7JteSonshMfCp54J3gt r5lnVvbYt5eJvWZuZdpokR17zTzOa+ZWiMp6DnEQe5Ftxa4EsESxhDLEc80I asiIOoVEB128sykqapzTshrXJl6gJ16gJ16gxzxH7LX62Av0xNvvYy/QBTgi /SOSZ6bBm/5BZ8SP9P+7jtpR4nV5V7OSpnLbjNtb8gs6fVwlzZMSaT61OdqS n7njI+2sADpKdKPY14uKfb5UylM+gG4i8nyswLmy8PWiPA9D1508b1UmzMnz YuJ2GDCXNarbKYXeyfIeyO0+tUpwDvg+yPE+bN8H+d0nIz6b09GIvxnTDSBX GuwBkSmaGRrxnQO+lRH/IptCFjb7mQc6PTDiU6GfaWX5FNBk0SBoGDQCOgg6 hId5CA/5EJ77oSB0/agNXX8V6DV4McKgudCQXxU4984See4KZ9Ih75zxlOnO EU+ZHhr0nXIvZzz7zH0eb11mz/+KJbVK4Op/xAtqXPKu3c/3rGSXVFeruh9G pzZd2x9j2ic9D6n+QjNNWU76BUj1F9RBYfJkEtO6/8dLeAa5z5jxIqT7i1D3 X1QxMar8Tt13paatuR/nhKyH1ujM/iRKfKj/WHfRRRQWahlkQ+9I1hUQ0w4A KeMsAq7OCoU/52kRWHYTNrvuxibe/xtZoBOC/7rbIThBN0L433S36dFwBYT/ MtAtAABL78VZAACWgm4DLQMQuARA4LqXAwDcj30wf+kjOAbotgexD8DB5etx DNBtWHYrgMIVG3HFBAgADLdj+VWYvwBA4SaAh9ux7hoAh8W7cI4tGANMXL8N shXA4bptphzajZguAoC4EtvchW1uxvjc/TgvtrljGwX1bdv5ezuOeTG2W8zg g51NLN7Bm3k7sMiVWDyvgbvBCjI7KRVv3cm7dfsOYBAsmwcsckmPqbxG3LIQ +OT0IUj804fxc9pQs9Y8bZi7nTrcbJ46JMKhMYJ40Q83wVytOYdp9HOGWVgF s835ONL1u3RBzQtx0acOmqqnN+NMl3U3mydjmyvxj/Dir9pjxvwnOL52t9n+ AlzZbURWOM4Z+C8WMVcBx7sRtBD/7Nn9eDC7zDHPxbq5g6a6+M1YdiH2nTnC Sz+Jv4cnXXccpPq9JVK9npfqqVfEbcqyk+qJD23L7O2Z7zyT6nHe3p5J9Tiv iMfedx7npXqmiMdeqsdeqideqktaJ5QUKSV4SnmRUmDUGb7VTrExi05gzWmZ 1mq7xOyBfWNzFCfzY55DZ4u9Eh97Jd5eH7vcSehLNaU1PxP8mRE/c9zHLWV+ lITee6MlJ7b1OVVnW0clqpT6cYklP/GW/Cl5qV+mw5fGzSehyI9M0Pxbc0Hz 4wnAK9Phi62UijK/WLQllPlVgXeU+a2C5MMSaNTfRzf9M6lq3dDV9ytVrb85 oIZ/Q81+UA9karcC7qi7N7BfQ0WyKfO3QM7SgL9OKWrDKpJ9P2i1aDinv982 DgP+ubYB7VlW3pc3oB1QA1oXdNcuGpQBvx3X0w65365mEY/JiN9mHfc04LdZ /b1NMp/pamX6e9GIH+rvLmC+WBaUgXjFIDynyzvZH6auUfYzEO+zFNp/Jbnv 1Pm/bQYZbFz9Da3+ppX937ZEDPB9rn4aL6yJpJeFXzDgR3gRjYf/GYj+ZyH6 n4XofxZKPeknoOdBL4B+qpppXV3/LSgwdappqjR16ou2nqix/LupjbbHOTAH fBzCgrBjIOGBjerDtgAH+JJdF0EaAkhu3lWJCSP+ABGAHi5u4jsiYmDgwMtA F4AuB1y4CnTJVdgdsOGKa0z/psuWQI6yhxPhA+gqzC9eiuU3QAxhfgmm592I w4OWYv46rLvwZpz6Zl4iDQ0nN18GjHEuMMYN2OZGwI9LboVcB864DtvdxN5Q WHcWMMc1WH4LtrkK4zOXm+ltGF+H/c8CDrkM+OTWm3AejBdgfNFd2P4miFrW ukmaF+AQC1aq5jhAAJfVtPmlONVpgC9X36bDY8ubbqLuy1MtudWsu/gOc+rr cUnzV/DS56zilievwtO5V8Sncy9U+tn8OekewIFZ+lmJe4q5enPmSkCNGSuZ MHAqruzqZeYOLcYpZuG/uYwhlbiD5+MUJy43d2wZ1l+K6Yn4by642Wx/Be7g LPwri28x46sxnoPjnYnLvx7j6wDm5uFOzMUlX8swD9BZWHcytrlyqdnnHOw7 dSWubtoKyvqOc46DrF/pZf0kIwvGlPVZblniNfgk71vPZH2Sl/U2sNz51mOv wVtt2GnwmaxPjP6c0+BjL+vjvKyPvayX5E6MDIc0T4xch7ioUdbXKDQ6GPY1 g6KjnXN1Lku5VttpD7svjhKb4zkkEJuzOe0/QwJxCRKIx0YCZSaASjgQ500A cT6IL1P947FBQJJX/QUC6iWqf9GQXysa8rP+9tFHikF8Ew7BH0vrD8Pvi6ly RQTgWmeEofdFBFAM3XMW/KLG71r+hhp/PyQq2/0OQZqOQJoOgtjqtwfUDWLI /Q7QVrWhH2lukvt+JGhDP4xzO+k/lNP4w5B7Z72/pNDe9+ySojEzfXvffjyH fjybfjwnk6ieghLRoFLkEoXd03p/yFrvKf2PWgTwKosAXmsRgElYbx2655LW ixr/+5utuySGaXMOCYQFwsPybbQChC3pvxSYAkILvwvPd+5+YoLQ0u9sAk8L CPy77AFZ2H5b2381k4T0Y9tZ8Vl1V0yS50EvgH7arNVI/w36H+sJ+JnCApiC x9AAhgUyFY8hAkzHY5gAQ/ynTaPomT6dQs0BBoYLYhozZlCgIWb0ANXSU30c AXYCdiA3mWtiCUF0Oc+j8WDefIMkiChI884SwogFLWrNefQyLLDeBtC8hdx1 4UIe7pyF2AUgY9E5DoTUm2ctMsDD0ULaKxZD/ixezMMtODczY5wLmn8ed+W6 Sc1zsfkZ55vlbj3H59n6sZyeeZ6mdp9E48XmVPRXL9Kyc82peUGpfsHocemn EBMt4DJefqeJqDgbuOocM+WYEZZz8W/NwjFmnss9Z+o8M3D+GYtEzAVchPtz on7OgaSfrlNMx27TDDEgSXdoGg55giFaXRcAG0w9m5l5U3Ce2fMyXDcXOG86 nsIZp9mIT0yn4mnMPdWahjA9cZ6mlAOn8V7OnJutJ2FsnjvuxCkYzznVRJCS TuP+c3HBXA2ZiRejA4fvms/D8Tc5XJt2HKDB8rwZYBzQoGAGSErMAHFLaBDn w+7ivBkgLjEDZNCgYAawKrqUdWcGiI0Ad9Ag9tAgMSIfwiQxMACAIKVMSRkf 1k7JMoeR4XXOaZldi+20h90XR4l5vDgPHOIS4FAwIURCNlJ6QdE40EMkr4cE JxGEiYWXCUWClbXaxgshoiT0IkStcUTsXQg2Py9nTCjDEQVjQqkLoaPKhZDP 5/uYBxMTzeWbiCmhVR5A0X1QNCWMF0gY18HenOvAAIlhAYmDUMeHQQ1QH4Tz ftBe0K6g1fImGwtYFf9flruXBxKNlkBiBq5rOugEzE+2ufYdoBq2SUBtoAj7 RjhmhHNEOHd1i+ViDsBYpoQq94GrghOCiWIefrEXJUFF2IcrBBV/UgAWLnaQ +X5fbGY5+mGNWIKLMP8vzCNwhgeCDOd8+LdmFlbw7wIb/4lX3FghXI5BGGbA mMOfNBluEEXMN3gB+8TxCzExB76fNCXqeIHoAyvq9Z/ie2IDTGOi+CmQx0/l tejq+u+YzZ+xesoU48BgbVrSCSe8wCm0hxP+G1/YtGlc9N+aTp/upj/VPAvr cTpjxguanzHDLJs584WEA8ivWbOex9xPscjQSbOeJ8uZyYudNesFtxzXwd9a uMxsf9JPtP0LWMeunZjzNEvHMlvMnsWOns9h2XPssYBfXsHzuBwRBDN/IcCn c/wTdgIVzPoJk4gwnjYto+nTn+OUd+AnOO20ac9hztDUqc81p099DofDXK05 dfJz4ImTnqWpddJzzSmTn9UILLLrWeyJec6JJnViqnWTsK7LjLm865lmVyeo g9Nn7fSZZmcH6dmEM9Cq2p+Bmtb+DNlj+485h4frSGM+7WfAOTnk4lrN0Y/t 9Ee4Soz0+yO7/Mfgr2n6Y705P2rWsR2Ibw5+k8NJMvTS0cJd/J1WhRbSlmgh 9Ql3x4gWrP6cycIxIQMerTMwW8qsClHis71BUWZaiFIfQWYp9jgi9jgi9jgi NvgAIiWhTEkMeoBkSamnppQv7dRWZ1LKaK7OZYlZi+20R2z21VFwvNgcOYc3 IlkqJMtAUeJBRyTcowB4UJQhj0ghiJKIpNFWi0hJhxKhFnrEVXGIOQfGqCwE 78Fw5dyjY8QclbaLmg9bqJVgjki7CHLQiWEMGO1lBgwHOSITtvCmlgaMser9 VOUfFkMQXf5hGeaoqvNTDFko5iC0qrS3W/V99loXhsEdA5Dfg8ALw8AUByaA O8IchDU2BDHEHWEnM+e+uMS6MM4fw4BB3DHVV9szNX5qoARkcAepYbHHsMUe By32cLUDiD1eUYE9xuri4owZYf/rsCKuwyCuGt+HmgWjBsX8R/F65WGIi1gk DPFtsQUJPi3fRdj0xaUw/hW9Fp/HW5yhEUdf1q5fjZiA6yIgvm4prOn3reZo M4hDKkQp3+VhvoOXlmCFhe5NwXtTijeOvw/k8T1Ij+9i/geYfxrz34cE+i6m PwA9DSnzA2CP72jKJt212tO2Fdv3Mf4PbPvvgCLfATb5PtZx/B8Yfw/b/Jvm 29s5ZlH97/Ajbf8PfGwcn3DCv+K4/w7i+u9DTn8bx/iBtud02rR/0XIzZhH+ f9Fx2QKuo+NprZ8y5bvUMzqexofM47EVDvft6PiB5qdN+2ddV0fH97Htd3CM f8L4exj/m655+vRvYcz/5XucCmB8iz//CDE17ZuMYJ78T1j7ryTysinfAjvo 6Pg2xt/Gum9hyT9i/M8Y/zP+42/hrP+AMffhmbieYzbu+ZbavE6Z8g0s/ybu FJd9E8fg+B8w/qbGXV0cfwPzXPYP9MZ2fh3qVe0b4FkdHV/H8O8xMtTe/vca 1+v/F+P/q2lnp5mm6dew7GvYh+Ov4UBp+lXwxvb2r2H8VfViJ2Xjr7ADH3HI VwlHv4zHVKt9BUMu/ztRmn45GP8txn9nx38L+htNuU+amnEc/w3GX+ZYOPev IWC4D9fH8ZdIvKy/5bov4SvgPlxv1n2RY+3xZYCZON7x0sHMHU1n+uj0YKaW N30keTAT5yvulWUcVkZAFMCM0eRruWA4q9FGiYcyUeJVW8KZzATizAlO6FDY Z3YQg2OSEMdEmTEkSrwuDIpk1Yg9kok9kokNLhFCAVZJDGoBfkkou2q0vqeU YO0UYTOoO9c5p2Vaq+3sHtg3NkdxiCeSiUWquKU4j3wiQR9dK9GPBWAe+ui/ I/rJbC6R4jzdDWlpdomUhBGiH6HIKA1zMX38RlQLTS4yR9DeUsi/KNReGO2x iZIwBSPK8i8ioWYHX/JmlzL3TdrSfWOPZmM4qnoCjKrA8IZKk0tVBkZVk9di mcOyYsNVJQ7LojeqfDdh9MY2m36525pc6L9x8IcRHP2AEI0A/gyNE/6EZZPW BBkYd4JuCaI1r7HRmpdbCHSpjeAI4c/pJfDnhKDYcDsogz99Fv4MWAg0ZCGQ K3VYNL84CBSWPKyCQS4jw/l0QijkTDEOChWjOzwUIpj4sODMrzRLrDJc/ZsR IbtrHfA7zXwux6dCdNQ0hhpfRJFo6M8ErJy95i+b+TpNn7PzXxA6+pKuJOuc Z5CT8kJjQai0mfcdfZUJHl9WXMjXhKna2r4CScP+swZfxfFXJYHM+BsYU4pS IikCVdN6ndLtaxq3tX0dEvRvJUntWIabL/NE34AKwYa23CCOjUnJNLj9axzA HJDisqvri/aA35AY7ur6gqYcJ8lXgFS+oJMS+PECOzu/gGP+tf4J/ANCQF/E d2yaBn4F676IY3xe/xjBY73+RRzjryReOa7VOP4sxqbsVZpy+7/Asr/glJYl /XwGPKTrMzTr1j+r+9zW9nlBuL/gf/c5/Xd/gXP/Oc70WT2YWu0zGP8pjmw8 eWn65xj/CcYG+SbJn2H8aUyNYS6O/xSH+zS2M8a6trY/wTH/GMcxBry2tk9H BD9/BE7U1vbHek/S9I+w5A8xpqHvD3GsP8Q+f4Bj/YHeqyT5A4w/hbF51zit 1T6F5Xzvfg/7/R6O8fsY/57ey7a238X49zDmO/pJjD8ZEQD9rs75O3qPk+ST orY2vtOfwDF/x44/oXc9jn87GP8mph/H+HewnOOPYfxbGP82xh+349/UOjOm h/RjAkgfV3Tzb+hziuPf0vq2No5/nfvgUSTJJ/T78cNtbQ8J4YxqHjshMHRC HgylPi8z8UkecT4vs1B+Ia3Ky8zAUJR68WIpsPCkoYXH23eiJFS6ozKXUJR4 HZy2ncwvZAw7kkrERJlzKEp9UoEVVZldJ0p8tT9QFBtwkoNEsYdEMcVZbKCO QA/gT0LRlhASpRRwNToV2inmTqRrIeFcncu0NuV2dg/sG/MosYdOsYdO9rzO WBR7yGQvl5KWFx9nFqPUW4y8Kcs5qeyNsXgpKnVSGcyZS1a1z8KCpMgEtqRh YEtmJEpDI9Exo6RxGIiScaKjMfJaXGFoi45MjuqaUuPQWMWgxypS8VIdUuM1 DtEpZYpSbbGxrTttbKtBR3RM7QPq6AkQ0hDQxYhFSANAGRNBSGFhSca43moN RK6g5JVRg69xA//iZdY3dW4JQDrZdkU6MQBInR4g9eKp9uIZ9+JhhyCp6J8K QRJtRQ4khTUryoBSmOrigl+qwFLouwoB0/uIOd4vY47DTB+09MuCKx/mz68I lBA10ZZE5PQR2ZP48xvCT/z5LSGbjzczD5cDU58kSPpdbvP7inn1gEqn+EOd 3oErD7B0zk9z1Z9wnz+lQbXNpdP+mRW9n44M/qpD7PxxsO7P3DjWrm71n3rC rjwcV/8JjsFhHCu5x5q/pkoom2sxgI8COAN/f4jx7/p5Xn+a0qP3B9z9U7h4 I5t/3xHhh27B7+l0n5T8xV3R6T6JK4R8bGbY87dxOBYX+W2u/oScJR8D/QZJ o4/yR2a9j+ke/AYO+lFSZEx9PMmv4yR8Wr+uZR/RSdxT/DU90SRRFTOu/lWt ptHwVyx9GLt/yL0DH9JNpG/T0S/hDKQP8vQfpI+97QP2HfqA3qc45jv1i+4V i2NaKd/nKY7fpyt/r3Z9r30j36O3s61NU+76Lt65d3HDX9Ar8Av2VTaEsQ7y Dq17p33dDbW1vUPr3qZ1b7efhKG2trdp3Vt4irdy7iky5DZ+OPyA+CG9mffw rbqTbzkcRXe+NOhyG3+neqdU3TulUm/HiX3lqDifnxrnoUtSAl2ixHN93/S9 1JiTeClgJGMFconSXNnhvFMqzbWvdaYc4+VJfUykBS42CqUEtUCcBKglSnyD AVBkwUQOuljQIfjhoEtMcJJQ/AiwJBRCKfX0GkVRO7X1KRRIHZxLuKzGtYmH OCn31VFiD3HiPMSJSyAOXipebmgcMijMG4ZSbxiy8C32UTjWe+f8YbkYHAsS LbqxdqCatwM5W1AWfJOGwTc+jydKKoxAUeo9YBbdGAihV8uXrh7T+xVXeb8m N3PerwzclHq/JrfyfpWF7pr/YcW4i3BNpPBmsfXjeBtclBXdLLP+0Pllim/t sgE3BtvQ+rMfIIH4hi2mBoBJGL1L59egxTe948A3pt1UPvjG5fDcaPJ3+CoP 4vu7SvE3DRmDnA9soe00dYZN4ZkDOsnG3rDb1BQZgHrwxHrwBHvxTHvxhHtl BGpTDM4AqAEaBA2BhkFFnFP0h7l4nFZYx8Xm5PCOpNqbhRNymIeL3y5QEcIe QR/t8m5xfmcveq+WGVHk3Gi/qGUf4M8H+fNL/PnlRGIwbRrXmpOSvyLhyZ// ww1+jT8fIRL6ddai+Wgi+auFTRNc/BEz0saKTPtI04ArR7+KZf+H2sGvQvTw +G0UwW06dxx9CPTLjviF/RKXfpBzuOAY187x+/HVeeIn+D7+vJc/76E/+t2c exc9FcCDKW6OJX6o7yTAwL2r6f69RfdCcvIpXsVTuma26nxKU9Mq7OfYupOr f06r34Sj/7ztJEZ6EuOf4+on8XGzyViCxTGmhp7A+I2K5+Z8rEZkj2P6OK0a +GVju9fjmh7H6PUiNi1Lo9fzcl9H4IK3pqZFrxUleJNq0Wv5f7wmom3gNZh7 taeapq/k3q/iLXhlREn8CiwP6SinZHNHdYgjdtERS49xSlXtMTG2xzB3mCT1 7TD53CHNHuQcp0paPBjVVJ+2PaPDSXR9dMzVpW9pjjaJ1H2NhMw/lHiTSJwP jW0d7FLwD0WJZ7omqrMVrjC+ivZc+YRCP4Oo0kWE+xR2BrROoiiLcsHLGziI 8u4h7Ox0VVdUkSJbHqIo9bWVbE2G2FtEosTnaoKiDFvE5P8xMUNs0ANwRGIQ BbBFSomQUuXtoFyYQsW3nXMJl9W4VtslHoPoKLHHIHEeg8Qeg0Sy1kjRBkUZ EDH/i6QVvVSZrQX/OkUZMZYzt9B/lsUCW5OS8015r1R70Ss1GoYUo3GsjcUE 4tSLgTgOf2QFwC1ItfAjiicIPqIk9D9FZc6nMgQSlzmfakXnk7XiMHnocCv8 URl5E4KPMuNK6HoKjStlaUMTMa6UVf8sFgtxxpUwdYjGlf0CH6a7FsEH+1z2 Qnr3BwCE7qd+cLAe0L4SALKxYGApApC7AwByg3VDLbGuqKttFLBzQy22nbZc 8RCHREJLy3SLRqZG+f6XnUotGsDzbNgemA1fFTyVS8q4ptpskbDQ8tKWoRKJ u1fIlhFaYLy7iqtfLxHuwYl2eYI/T/LnTdGUZmaScRSaZoomGk11zLfzAO/g 3DsJNH6BP+/iz7t5Qe9hnO57ucl74mCuzcwR17QB1yTCNe/WVb1Lku29WP4u j4Nq2CamXo2TCI9zF64ylqIadqKweLeK5L4b9/fd+CpE/DzeRclBpXsy9plq KGLS5TspQ96hKkDvwAPyRIHy9og9hd6GZ/c2PMO34xt6OwXL28gP3qqEgLfi +b4V3OKtkjBv4c9TUmGewsMXKaHgzZQ4P6+gv5/HdbzOpogfocB6HB8oq8Qw d+wErJoNLJFizHKwUwAxTwXG6MCYGeaTIeHnYjwZIr3TNiw/A9tPw6Ontv0Y Pua5eMIz8RJM1f6H8WHzmK/EsQ+DDuF4r8bL+Wqc+RDoMJjAK/DRvxb7HMa/ dQjjo3iJX4t9DuOf4/gxMILXajobL98cLFuAl+s0nI0W6kNgNgtwvLm4llOx 7hRsczbOdyaOcxrmTwdx/izQXMyfoTGPeYSM+SBLZ+JUGGJ60NIhjB+j8+Gg LOYHQNzkoEzpB5hZhc0WgBZi3UKtP8A1lMEHKJxHqNsfAK9cgO/5THw/52KD 80DnYH4+vqnzohFJ5ZEoOXxSdN1Lj3i5uQTRpCXhu3EJoonzES/xsSGashhe G3Nh817yYby4OwVjSahyWjyTFvFMnEW8OOdOFNhJaqF3x8GZKPPtRKkXFRbP yFZhEQMlB/GDoESU+G7JoCjOI5oo9ZWlLcXEKTElTWywC+RNYvAMpE5KvTel 7Omg9juZ5v12zmmZ1mq7xCMgHcUezyEgXBPPSqnGa4jzMCiSu0lgjOSsMbgp FIsOu/H/JqLLfE5BuI5FQbFBhsRANW+MCQCQCczBEwz8TEUEZEKarEksCMhx ALcQjBMCIJP4hO+s4GRyIGhMDBSZsiZZq7EKK0xcgoHSfCHUIgZ6VXOM6ONx p0636jQaGmCqKqCXRR6P1wBT1vWkWPy0zABj+nzvA67pUdZTr8U/ps/3kDBQ A3wuDMEhBuq2XUbHwkDFSOSwECrDcVy3UYeFLlPfb1MQ9XxbVCUspOaikudY PDTbYqIZCtFhinWfiqqdEBRW67Lp1p04bjsolXWmoZTrmu1MajCRSb8GNhIM OaiIFmetcRRabTSVMeRV/HkNf14n1OTsNo7e4MDRG2STcaacN7r5yAOnN/Ig TyaCUPx11p43RTSlvCn12xlLwsk6SpssCDQwPGnblxtrQk1GiCd0Eakk/5sw fUK1Y2q4qC5sX5e14XUYP47b9SRu0xNqiZ5i2WSe5gSchsjlSdzhJ/H2P4m7 /SRlx5PELG+U7/iN+AreiKfxRjyVN1IX1s8TwihP4It4AuzhCXwVTzBg8gm6 p98gFeoN+DqewJMVsXoUF5+FKzkbqxaAFkZvoOTQz+MKGnw9XojHwa4ex8vx OMXH44wxfH3EqpCvx4vzejCoowLEeAkUXvAKfJCsnDtdjeSP4IN7NS5zUCB6 AR7qJcAfc/HwT9T4EFjoa3ElI/iXeoQGrsT6xcIivRiPYPxqnOewgDkBwJXA J5fguGcJuA+KEx/FORfjHATyV+AcS7DNhXjZFmt8GC/+q7DPCK68H/sfwof9 Siw/gGvj+AA+kFfigziEj2EAjGAEH/0rsM9hfSBXa3wU+zyG+SEqDxIdh3HO Jbieq7HNDfggb8T212G8ROMRbHEI02Esa2i6FNssxfQGjYe0zVJ5gQftxzmk 8U2YX2Y/Vi6/GXRT1IiopjfwkdyM/W/VMQbwMffjA2+AMTWwbT/+hz6M+Rzu xlUmh8+BOD6O4KijBBwlHhwl+SIpcRU4Gq8bKUq9smsV3iwjGu9fARoVImCi 9lwJrdAcT2Rk7A+1XFls60Qy8bRR3Zt6bPiIw0bO5OGsPM6DZFAB7SSpr7xp W1Ybu0oaGnqM4QXYI5I1JgAlstIYtOLCPkGRBTSCNpBDsYE7kEZ81ncnBEMJ BVNK7TyleOqgjj6JQkpzCZdprbbTHnZfHQXHs0fOwSd7GRammevDv8Lr5XWT PIKqFRGUAJTBiPUQPoWGJOeJCwBUVObNGsORFaR0WQNSWTizS+QKPFhhDheu 0nqvisDJRAKnLjLHZW+Zkm+K8wpjcwreq0gahFxRljIbUlKFnyKt5nbyZBWL 0LyqOY608ZYoarw541W9X1sVnymzIo3Voz3rG9faikQ3Fq1IvUJQfUBJBkH1 WyvSABjrAJh60Y1FFLXb9mofD4paFQQ03x6UoV0WWJWutbldlwc95S7yPWay IGdXlvYMi6pMuTqHqvrxPExf9xm2tztzzqeC2OM9K2DTh8ffp0I2taCYjZkK ZQnYNAR6XMyPo2HhmxHhJ+cbE3GXQ1x3mKse488R/hxNhLeSAIG9QkHL+WVH dcSjhGFHuPwxHUq20MO2iq6hBEv52lNupqq0K98FXuPHVHW33VbgnYQxp52g LhBtIZyyQu8U2T0ewzIuP4jbdFB2kFnAAyeBZoNOBs0BnSKbxhH5BY5AHJyO 8VzZXI7gURzBK06jBXHEUbkEjsjgcASv+xG87kfw6I7glT8KZnMUj5LbnIdt 6ni0R/D6H8FjPopP4Cge+VHwraN0AhyRE+AIGNpRvBFHCUzwdhyVWDiKL+sq rLsadA2WLwFdC7oOdD3oBtERfDGko/hqjuJYg3qjCEsIQ64BXW49qNcI1x/U 23e1MP0QvrDDWN7Qm0n4cBeOdR0Dy4AjcNfvwfBGIQqDMji+VbuRBvExHsYu I3rh2TxxJV6Ue3CKuzHPD+EemVkPY/mQVIxVquL0mD6U1fajWYtjrsHLFtMg i9uxHuMH7IfF+s4bcJMSfmpgVhux7zocn9Wg6Ed+FLReY1Mjcq3qRTLRcgjH ewT/Qw3bcN0gqIGjNPy6ATC9h3GbuAwjUD/m+3F9/Xa+D9SL6+jFsl7NPxz1 YN8H8dvJedB+jPaDAezT/EOYPghaA4bzSLQP2z4UdQNVXQBJ/5JR1U15VFX3 SVapNzklVaiq4EQroKrM5BQlnuGbgIxqVBUlYbZVZMwM9So/mgktrudgVRCf Y+wbdY+sgtAcH5lj0qscqDJBOdgl8J35uAgXkIPVFlA5W5NDVM6A41qVWkTl wAqlD0GMxVMFKBXJdCSxBBJ2vjs26Eg4CXIqJnZKDIoCnkoos2pU/dspuSbT AKC5lMu01m6HPey+OgqOF3vcFQl46dygyF0LHS0UlaDIILBaiMCcCcuYryJF Szszm4df3niVeOMVgWlsnZEWeTm7lfNfBs47h7qM8zOqh7670GxlwofqIewK LVYmMjoNI6Oz1LE09NhlDrt6aKvyMUMuGtp2ybX1fvMeO/kQOoIo5gprVZpH W9Ueu3qZxy5r3XekJdQab3X/Yq7YRNLkWxmrWrXoLevUE1b63eUr/XbLWNUn mNUvqNWvaKEhRQzRWNVQ3b9qqLUtiBra4KOGstR5Fxl9j4Vbd1vpc5s1XrnK /w5yXWMdeFcEKfVFI9ZiG1pEQ9ZZNoR6XgC9Tg0MWif5moGjHX2TbPhRJ6hd IUg9eDt68Jr04KXpwduzP6JlqIdusF7O9emd6g8DlLi4X44yF6s0oI0aXDSo FS6AaVCxKoNmtVtmNo2B6/g7wDmN+C4P8Kefy/s418u5Hq3ZjxfaUBrt5zu9 H69uHcN2UAeoE8T/bRJoiv7fHvzfPXiXeyhLetR4uleRWDNBs0AngWbz/zw5 6sUbTgDLu3k6aC7I3GVO+3TXz8T0bBCfwiJZa/rxZPrxhPotQO6XBeZCWSwu wu+p4EEDeKIDYEsDeLoDesqEOFcJ5jQEb2hhuVYWkEEPxpfKSsJxQ1NaTW6z cfZ8kwjg71JxBsIiVpokbliO3xmqPElMc49wzRDeRlOXmpUp71NPimFVqnxA dauHpSg8ZPtPGewyLOyyjg4pvOMjkLkbMd6sipdmukVVMA+oEiYbWG8H7RCN 4Cs5gC+O1TJNxcw9mO61FTT3YtxNj9h++sZ6+NPHn/7oIB7zAL6rRkYxUxRi ZnKCm48onzOjg/LAHeIGh/lzKDqArQ7i+Adw/QdUeGsI+/K+DOu9HMK9HBTx +TSifp6WL3i/KmeQWAS8h9e1n1e4L27ui7pjXPDeGFe+B8fYA4Vttwpv7MQx dkU7Y/y7O2L839tj3IRtMe7GVsKlaMvhSyGF+HfMAc/L8piqlk9cL8NUBTde 1vbe+EcSz9VN8EirhK2xcrXavYJd7O1igl2IqDqqEJUzVFU68LBrAKdyPd0t nIoLkUg521Td26YclLBQyrjrat5dF8AoY5KKFIQkxZ4kKxJhVCLhQz0fFFno AxAUyQ4lxR+EFQ5PxZROMVFUQhmVMKokpVEgpbg6iaaBGucSswxrY7Md9rD7 6ig4XuxxlzllKiFor8XAO2fyiuQydKDLAq56GeDy3kLsEmCtyAZuGz/oKBch GDrvfxCvXQaznHcwMgHtnUWYVTRtZQloeK0KoVGhYStyb2SAsrKo7HoxKrvK qmUtW5VhUZUgi8EjY4VF1atcggZk9U4IZFW1Uyjas8KQ7LHsWS4qaqyQ7PFE RVV5BV1kVCubVhie3W/BlomOMp5Bgq0doK2gzRAdtG2ts3WKHvYquImUcl7C lR5wGRtXCLoyx4Sxc7noqdDe5eoZsSjzBRaAnRdEVTkQZm1giunrxyM/w+a0 nWYhxKnGy8jXtU+vq8FlswxRje3DSzHLW8n6ZCmbZRs7nWgtZzM1bpBPD+Cd wiw2aWDVgIjj2fgHZkiezQCEquN8Q1ruiOOTGLM+y6/mLidhFWkOxnO4erZW Yxaf2iCmDRHnT4+G6HYbwurTNWxYGsB/PQhqMIpjgF9vg21cBvCBnGm7UJ5l TYVnW1/aAPWrfvED553tx+I+3Wve8wt1j3v5DCKqcQ18J4vwHl1mrURXKo9w P6YD8voSQF+I8VU4zg3W0XQF9r+awv2WaBifzrXyie3Hq20i+W/W494nh/JK vDZ3aZe9wuv3ioaw/W6hpvvtK3YNxqux3UNCSAfwOnVj/YCw/3pZlHpwrF5c MtHSHLyOfXj99mKd6Qz2AK7hVnwa67DPBll56OfaiWkflvWD+vCq7pCV5lFc /nrQ3VhPa82jWLYex78X45fj03oUy9bLenN/tAvnWqfz7MW17cZ5d2C8B+M9 +Ex3YbwN2+/CeJemZrwT2+zEsp04wjZcw3aMd2C8A9e5Dfttw3g7xts1/wjw TIwlW/ECPIrPfC1oXbTF0lYu4+rNWL3eLloXbRKtB20wqzeC6a0Hs9iI1Zyu g4a2XgXNtmi6DsyEDIXMZKPWryOT0R3dQIPYI+DZjutQ1SMnct3Zqf6RO9Hi ThUQ87o994PfcxuqiORg5GTclmoj56lCch3H5HQSsFiBF5QC1jFAbmYFraYc 095hgcFhmgxesv1sKX+V3NaeT25L8iFbrbFemf0sSrx4MdWCfdxWmpM1Pg69 XlasKCtV1F6MQG8ZqWWlkrG7dPlqMUHMeZjM5gCeyw8L2/hagBcVvY8W3Rn7 UbugTRiM5ZyOBg4BGOH/s8jO2cjckw1QXRqiOoPBcpguEqjTW8e3TSCOttcH aVR9iBbhhxO+tSlfSJp5H53Od5qf0KNaprXaTnvEHgrG9oDupeXJMjyIC+Pr 5y7MQUJdOda519Qa4owNriO0weleODhooaC7dc70FpjdXOy8iZu3cNt5O33A /PSxgGCZra08QJ7NV/MOziIINBiwVsSAWSnsKAnNbFErO1ukLynogpWLCit4 NTMIOEZU2BgQcG0lBJxIR63xBMaPVZJyvFUHipl5VTDQ1WYqwsAeKdZ9ChAz UNBl6I2oTpOrQtCwVQh6Arvb3hI3p7O9OVfn2gp3573WDrdcHpy75DS80wbT 3yLLwM0CNi6w/gYLD61dzmT61b157vKg7NMlRDsvk3PyQgsWHQEwRqzJRh+O A46LLLnQ/IW58YAdNzBuyHs3gKfO8SKceoGcrgOaZ1TQQix34/Nw5edo3K91 F+C/M9sQYBEcDeNtGNS5zpNlcViRROcpYbGhyIQhRog0IjbOGcLnPIwPeVAm yMswvkIhSrxxV+F3CuaHdC+uwvQarLtGU+Ovu1YJkqZK6PW6pQoBiqh0D+Gj WWZj924RDXJxA6iFT+MO9UgbwCb9eEKDAvK3YrwUSOhOnG61bF0EefvwHPuF ypZjuhTI5y75wkaEyJZhfCfetrWycTGyaC/268ZbMiQ0difGt+Kcj6qf2wjO 042r2I7xgBSPNTj+UmCUh/XGHpT/bClgDH1ntAgTiS3D+AG83YNSToj0NoNL 75JSswfHWYn978GXsN8qPasxfwe+kO04Bq3O92P9LfhyNmIfKkgPYHwTYMrD mDKc8iFgopvxhb0c52GAwCM4/q0YrwYm2i5Utgn/x0M4xyP4Cjbjf92Ae/Ew iL3u1gtbrcT8nYJE/ErXYdsHcZ2UJubLvRdfMcf3WqWO09vxha+0it69mN4J iLQCZODRGtzn1eAKq2iIWAVGdLdg0L3Y5B7sdg9Ofw/GpBVWDq3U+C7MGyG7 wo7vtnomhe5KnOYuq3veifEKjSmgyIiW232tII+MjWOOxmRazlTDeUoutx/1 WkowCjgem2MyPDI7bsMpmSAZILfhmBiD23BbE+MtRx2z2DrFNck9HdekCCRH dQcx+faM9UkOUzy9ZDx4A38nV0Wpxflm3BPDg2mIB/N1K61YdXLHGv4il54W htUEVr+yCLWCsc9aguo5/2kgosy9ay8z9DkQGJU5TQMQaIxZdR9+Fpr4nJfU +iMt/ouKpj2CKIP/akX8J/AlHIb7R1xGWWghYJxHf7FBdfjMYiK9mGIyIfpL KCyl0dQoMrsYDpRScHZyTstob9+Qmu2wh/aNPV5UqIHRfUCRPSVOjuvlV+uu idfHKzWQsb0IGaXZWBOi8Q/jtjnfrbN8WsyodAMgmdBy6ILlAqzozK4u1TIM jvNBcfVSm6Gv9tleihQtSrQW5alFl2wVSix3xrZXOWOzsuVRrWgnrMwaKIt6 6xoHPmxvlTVgr2LtcQGIVZkDgb19XE3XigBxLDth0SE7ut36Dlu/fLcv45Bl EfSpEVtWx3zE91AxQPGQgKIrWeWctGFm5Q4LFp2zlvbDosPWub1ctuV9ysIC dMTzcMBxpaXl1q54V2ZblLtgKErkkrvFtHhVOOkQ3qAbA3ujdfYqg2hQ6dHG /nitAq/xy6CGQX07xijpaEkehYYZn271tQRv3LtLhyT4WmIPf51OO+znCcpu jIZjey0mFHuYmMzjs1ttqdObzX9EbXkYN8P5G+/UDRixU3NT7sGNvFcpD6vw 26Ub52Kn7se6+ywiNzFTB5yfkdzxAPjAWmvTXW9pg7XzbpD7cRjLhtVml0a0 dTKcDeA5DsqIRmMaw582yajWj237cMpubN8H6sWyHlzGbk03ivZjvBPPfy/m 94G6cWk7cTm78H504zh7MW+MYlu0zW6cbwf+Jdbc3431O2UUuwvQbQvmN2Hd RozvILPfBME+CYfZijv1IE65RfNbQMtlqGI8wha9/qtlkHok4j4bwYxeLuR2 Pw69zhqvHsIdX4X5R8ToXw6ktgyfGfUux+OX4tNbDUS2RrQa6+/Ck6D3iT6o E/ESMgbnbmvFWoGHeSce7h04z914je/S/DJ8yndaXn8rINL1+LxvD+wD19Iu wBDpmeL718h/lvH+JbIVLBVyWgoOsQRy4FobC06usQR0jY1qMkJhCd7cJb4W ED6SqyAnrrIGHiPj6XIikurC/NW+9gDJ4S0nQKwTytYroA2iwwsUp/GGtiZt ZkpKczH5nfFP8bdLm7gaCRQ+3I3zTghZwVSsNGkMXvytaxyG5nObrGrlYQKv lwwKr/NGwizILsmnLhQqmRdSFyYKCgMToRU3xkTYXmUiDMpfTaqyEeacwPks hY6c2aLSMJgWDYMGfnQUbYJFLGjATLuzB4ZY0NkBFUWx3LpYKdosDpQjFo95 tVWIrGkuBwEjuXYdPPMoEA+WHzaNJcakLWDnoGBMwUhmsCkhFEzIJBg/sLVG STmDGp/mUi6za7Gd9rD76ig5yBjJxihNj+SsjJE8zmIlATuJjEWz7u3izjZu oaIxLrZ742JgYKx0NAdOZmOcpRrVUbQq6vGNyp04w3/lL8GaeCwYMehxk6/w 5aP1akUrYqFyaZkj+VhRYhKixMiYKx/IZUWUmRHH25Y3zIwYq7NNWMC0ypTY yptcZUosQ4quy00YvhdmSoSe5X51uxkAShwESmTQzwGGBTUPAyUeAh3wiDEr AuY8za4Wh8lFNSbGXYwjAnTELQ+B42YPSgxIWceApbVK/X/Ehk05HPmAgTsm WjwV+lljC3mACJKG8Q6tsnU9nMvxHpknV8rKRpfkChM6qCiT4RpxVqKxZt1a 4dIVQm9mT3O0EXu0ewn1VvFntcK41tjQRINyeXkdATAz9LBFxY+IDpCTHCBj OUAWwwIGGy2M5h3ZYl3z2wzUjhgIxRguwm/eTCb4Ao4zhOoQ3r/99p73WtQ+ YM29g/b5DNtnxWdGpH84ekzP8SC2MSFfB7B+RB0VB4EGGypi25Cm0EdPO14I vP77Ved2n4ivC63QfHWobPA1ouLBV4pKyFYhtC161fjKbZJ/cmMkXoqv3/og cSvW4rYQjRnV27FQh8astm3Z5mqvbfN1X+HYZ2INDMttULa8M8BfUeq9MgZ9 3WJQV4e+pJvyaWlCWlbrziocmdDoNJfXr1oGWXT0lQo/v7wsP82XXEx8mn9l 11OZtRc71htl/U8jtm1f6MtPqRiVijAmpo+rmr2D1Sh7LTGt4MGBFEmtqhAK 11cjMoWbqfOpwnyUwabItMTUPzpMPviSkdS1eSRV8+a1LF0hLukJ09q8Zite U3JYMNUysK4jl/RfLH7kK2OkRRxlgtRPK8bSedNayLIrYFRoVwudq0WbWgii TPZBLXSoOgBl7bLtoTO1CKBMaBz2DxGUlQKRgU+Jh0+QCJHBTqnHTvwcHXLC YgqKjeaLNVBIoAjfc8wPm3GY2xiRuT3hN5/w40/IBWpkB9PJF+qc0zK7dgcD ObWH9t2qQE7HIEBS2TZhGU/J04Mss6h5ZsGrtdArkiEQ2wdMIzLu3fYSxuGZ hjVB1nUHQ7BlzXLGknmCHkIJ1qpy4Yau28iU+pg3niC+/y2kVVYoPhewVyum oRYMcVESpqFGE8JZpZVUH37JOajjRVvFBIli7F6oxpbZ5ZzjtthQp+i8dd9f lQPXfVvOPhfmp4Y2OufMdXY6JlAQeTUUTm3Q15ASKIZV+WNQ8X0HlLfao3i/ A5L2/ZDk+7FuP+AEI78P4X7uw7qd2MbZ8PYIeg05RCbH7wacI7TprcP6rTrG FlVtWov1GxWebgDKWrn7hqkfHcAjXKvsuyGMDloTIKPfBzW/QYcjMBoQyhHg waNdLZNSZpYy4xFvorpP42GPhx7EraCX0eCiQ5pfzQyGNQAmKWZ7QPtFaxhe fl+0H4vvV35ej6b3MeD8/mhflChl7wGTricr/z78jw/g/j9o6SHQw6BHGJ6+ lj+PRHvFK/fKvrUe67bycNuw6xRc8x4M92LUjVvYjevleA/GezA202141NtB O0S7I7LCnTjkDrW33qXXAa+FVFO82XxTHB/cpHivjP9x/uEALPFNc4DJZUaH fI9T8j7nlnBTl8yPj8tFsLiXPNQzuSzkf1wW8kAuMyapJV5dMSEtpgqk81Vk fLEu+RgGOVNu+rLUU7UoZJX8VkOWyeWhourtR4RNWRfXzH5UE3d19iPrQItc XiJZBtlFyG1VT5z4IPEdSo3txaSoOYZsS0pocaLA/bqWhQWvyaV8Gltdq8I+ H9wkqCjAVY6Vu7x7YZrAiehYvOOLmWJt1jk7E3moSeXM4na4n0lPyOxSuVLb +coFdrEqr+LqOLRtaEV2bCRKcpjM/viAxykleRlJHjxWVhDJwGOUhP9ElCW8 4kaFwsXeyMg8hPaihzZEj/YVqI9yBOXg49yydIxSGXSc4KPzxRpLUXvO/laA jRYATfI+WMckCrBRjMRCRg+2ArFmTG2R3K4OL1oQJ7erRB3JAUZsSuWQrA4k lXYns3x2xZSCMcVgQrUyoTBMKA3r1DinUiZqLuUyu3Yvs4awh91XR8HxosQr oaDInDf1yqjFm+YqOz2LXW/jY0M2ay17kTHtXTWGXrqqzPtbBi9zUYLjwZah r7eQijuumMBx4kqTdjR5PLAy5BmxZQyuMlzBeNc60zYuSQIpw5S2sEkGRX1d k7v+VzFl2Ju6rEFj6OsNv+eyNkTuuy1+syGuDK15od83xJaBDldq1bMfnDBm wboX0Vq0D/cmtPDRH7zPVpcbVP5IAx9YP765RnNEdVFGuFsD/4KJJSSMHMT3 NiDYSeNSN7DYduxC6MlCdHuB27ZgzGk/xnsw3YzxLmzXK2MgoWQ/9hnEPrRl jeBL7Mc+PPVBZTTS7bgRxPl9ikkcUBz/LsHbQzheQ1FkO+wxt2LMeP5tOGYf zsljE9JtUQ7yIdyGQUG7TYLWNEwOC+LRfdmPc/TKJbqPkWYm9J+ZYjsV8r9a fIS/tOFvx3JDDPdfgzu9mkrxKoXor8YDWKN4tS2arsZDWU0fwirosly9AYs3 YLWhNWA5q6lzrwI3nYPZR7F4nSLONioqbh02WYupUc8fwvx9eOwPKJrtYfw/ 9HU+BHrQhko/gPkHsM3Lvf/ScapM+aWZ4FQf+uUMx3fZMDGn3vCVdK8nOZcL 6+Jry3lOw1xyTp2YchwsS20jHpzjU9ucaOMnwk/GfSr8dBzc43b8pJyRnOvI 4Rzc4zw/PSdis2KZFL9zvNh13M59thxbfKdlXMdPnZ85uSOnLsyD67itKxrJ eW5rEYFBAgbWzfF8w/FMx0s4Jq9xcSRcR/7jtuHU5aZxW/Ikx6Mc77V8K7Ig kAhtjmdiZGxkcm4nNw7Anodq3IZTMkduwwO7MbdxQNAy0Mh6MIWpyOdne97u WCvHZLvuiByTHXPKbdzYNYRzY+7jjpU5YVhOtNPHjDt2zjGFhzuOiSWXE+cw pcNLRpxLvLmynq+ukuQdv0m+9VGl49fiZxcElc8DTkLRExVtlcUuMTlb5dxx +XzHY6ycCNL02R8nhECzlZd3lIGSPMdEy9VHoUwr0AzArOfsJi62yflxce8C MRcZI2LNizoLLAUDhQjxHJx5hSTI2E11fh+Vd0jBhNBSzo2ERpeEErFO08sU 2l40x/z1/tis7WU1A+2xnzYGB0ZxGucMsQ4Rc/a694kU/CIypOJJOteIM7Q6 KFoCQ8fhGmkNQcvgpynRx5TtM0bBz7JQQwc/q8yaZQ7kcUDPyKW8O+xZ7Tiu FR3HpZGFowyalY7j/5+CzzIXctnnXVZkzymOIQB133HxGy6C0JLv1meqBB+r N3YGbuYoltJX94DUfpH4Ujjt1jeFW7hbdtD91gbaj++rB+Mebw9lG6o9/AT7 lVTBphA7BWcboh5stkNNI5h90aMU1+3YvRvL92v3hsZ7LMTdZ8e7BYMHlFWw A3B4J0+BBbiiXRhuldOzX8h4FzbfIIstIW4fdu3BP7+LNSx68fz3KD+CVj36 SHtA+xXotl3udY6ZdbodLIBWwG4A8g4cbofyER4AvRz37n4BxPW45+sMQFyt oJM1uM2rwRNWKcXgYaYKPERl/kG8TkxBuAe8YSUezQo8Iga93Y3HdRce292g 5SKlGGDZKjzqe8ET7sFjXwliXsDK0K2KZS5YZ7pyCW6VCpupsbcUkt1uLqiz bpoVPlDvOiLBmt5HV9jTvqNR6DklozGeUxoEu7SM73fRIOiYjWU8cdDqz1Sa CmFfEDsvb6ktRBX6VvitSdqaembOwucciL6djPLkVKvDGO2cHS9wQho/K61v ZrXTnUnWZufcM85kZ/GCxQo0WNU95wi5ifAE+V67B3phvIoFdJFJh6t7gOdU c6uqW/SiOTp9655zFUKmnQ7vIJvhqvytezjnql5ZuGaYbuoLw1vV30bykHfW Pe+0TNkhvDA6x66OXN4fdwlLo9qxaUqcehbvq6ZqHd1Rde+OsgVS3Tgx3qrD rKB6fGDkFJ9kXBsnjIwSLzd8gPo4Xd/tOUlSkCaleSWB1dL0DLh63FhyIlbL sSyWheyRUUCywss9ylRZMFMKKZUgyEhRfLgFoWAqWkoMdBR8zHnm9orX7/Ue uv0ipl261EtX34iR9X02bqrfSiyWZhhUIiOtK0OiIZErnjQcN0cYgzTCEKYD 0cgkRuPEnNMyrdV2rLE0lPA4rK/UiHmG2MNTE6OT6pJM26T9BucSobbnwnUK ITtyRm3HNmVhOxaXWk/8LceMS6vMoiWYVG9H0SRajGt0KWNjmUNbJL2U4tEJ uNfzfcLUWOiE0BBq9Nla2B7DGUInZgQdo7hzUtIi7OZjxqEl2meu8mAx/ayK RYTO9bBlhvMRFg2iIUuo8l6UsYIKj0WRFbhIkiI8zRTJ1HMCyw2MQ6HD5lvv ttXJMqZgFD4VL9tLh0R3JHWQc/rozKeXuHFuGbvGZ8u4b91+onv91CuTu+nm oEbZaT/ZvFa5FZdtPl19vhGDdbbgSYWf8CYVC9moaiAbCt6OR2VjpD3xIdzB 8FOmQ5kFPPIRePcqePlepaWuyH3WywUV75S6yU/7DjzJ25n/EDE2nBHMBiYy vfQmJTwsle1QEcw32C5AtiJ8VF2TtG7rI1yeS1q4xDmQ68W+xhk+NA2gHS+o qAhvWUPsy8Ib68tUDxNJ7hMJeUWRZ9ipGh0nvtOgIu0SH59jexvg8xQDUZOd mmmljU+4Zir44sNOgyrxmEvDQJ3QvVI3EMM3IMxrvYWoniTgQJibaoN3Qm7T YaJ6wIY0N9kyJPAmzmnEmpVtsdGYXfUucS8gqyj4O2ZkdXVLZJWV6ourDHRR 4nmhMRiMhazKrHS1Y/MH8+W64SWhqirrXFkeRhmiahE3GCCq+/Sx328dCUU2 +rCSHRh996hS3k1JoQ1iKhvFXMhoNqvkkEnOIjOiyWuHDXap2wCY3WBiu6X2 7wKT201n7h6F4FBT7pau3iOX1D6Aqf0ENlDy8Rr2qPfjgNR80wNp0FY8Y3lZ AKMGIdKg4rGH5LkS4QljNMkXu6xziIXDCnk+oOkwARcGXDqCK3EBVwOqpNGQ U6zPgC0W4OpXoY1+W3Sjl3mVEe0XPda35kKkjTBoGSZtRM+tOcg1XjPgRKBW 0fxXjGwsep4nArPGY/abSBTjqAjGWtHiF+i3tTCP2EGsqDKCcRwGv+oIxnpV VrExQC49pnZkE7H5hYGMVU7nUBUrw1vOY1dM4h+vLb9FxEgxTeth46isTNPK MvYV9VuzAcBZxsAmYZnNSemKXFK/DUOxUcxRltnv4pyDzH7jbnDFoGJfEjRK ws8oMumeNW9RH53Wn5bHDqc5ZQb3OrG1E8IPLLCxm4zNJPzWbKTcrJypvZiz ZdP7/ffH+fAbLEZ/cGqaWStpMlR9ItsLiaIs8a+jqe2fGRHC/sm5sLWad13m o6mylsplJaTy6lPNey7dR25CtkwYl5PeoWHLGbVcMQE7n5pUAhqoMt0rKMue cwlk+hh/ax5JBVYpwwYypStryWPNUM6mZO1KxsoUoCg6EaZ4FBUJvTjsJOIG szgnWFXj3GnHHT5Nyle/y9IxygxT8cThkzVuFnMyWiS2FjTMyBQ6uX2Ug7NM 0zwWx2aZMWo8XLDEmzlWvFygfebhEqsHParpRlvAkRUZt4CZbQV728ZMd4w5 3Y7xDqXCbwVsMPHDuxlPzJi2PUJTe4EkuoEo9ol2AXnspttiF392yxi0Bwhl r/wU9F0MUNNkrVN6Q7qt92OfonBIQwwmV+A4IVR/NKLImH6l4vXbMuI0Oh3U 2oOqJ25Go5ep2nhUV4yQPYoNU2dZ2kO0bB2itetQzBw0bH5IWWoHVLhsgNUR +lU7bEDJaI48GjNILJGNzaCxvsgYwGreAEYEtkcIc0+kKEE8ulaJamHMdRn8 Klq6itCr6HktBv5VBf1NFHaVBfqFCSTH0bJVxFz/q5ArSM6tlbXSsJatxTnL VivEVeZhPRbEVZasW6auBajLxjxNbRmy28IIbjK+6jkQFrAhW62c+CT17MhS bLrKCNSAM9X5rnbYBDDHpQxMY6pUzWsRQXWjyMEh94qXVTtyWNC99r5wO47p tA53+aYaVFYdlP9pUBveBC4HLXhK+wUm4ZdirUNdZe2WXTqBfzhKLWDx+7r/ gFwLR98rkKkDsz18ct+RexVcaJgTS5x3WUfWaZirEMRp2G/YhIuZ6uru2/Ol k7h4lvcCOsHpPIJuGd9s5+5z69zb75BT6AI0gprf62xvlHZxCu4Lct+wQ08c V0VeuXWBry6IxEo9cqo5vER2MMsDJLebGzvtqmbxUOigC2MuSsZRyDOyOWKr bFuLrWKfsYZ/x+EuZ7tqMY4Sb86Kq+aE1qKaP4QjnuxEexBCMLscr4v2FD47 PsDuqhJgl5S0BYvzwC6xfbuDSgdRZb5EUOC40HG1XsVdQ/+56wU2KkXi5lKt djz8tRWmG68prEyjHa9Tscz8tUlJrFtk/iKe26DpVuG5zYr22AGgYbDcZpU3 2onpLkaB2FyxvbSS0Q2wTdllyjBjghmW7gde6aE3opfZDb1KG+vDkLEopAHC mwaTbRucG2RixJCi0oaBgpQPyGYwhEYHU4ZcM6XiIPHSwdjPYfs+NYY57IiO y8MypvkCAlGsX9rJDllsx/aZI3RIsiTDoGoIeOIRhmWAG7Y2tSHvvhRENOiN dcm6GY1HP8jKliazCvekB2xrVU2g3C3pwFpBao1yR4baezE7owjUilkZTlcv ZmRM1DZ2jCDNhsIlowuolCVhWLab+RUnCtSKZrFCHJy5mHnHFAo3FlBrFbFQ UBCNV2hSpZWsxLweqf6DhRwWt0UmCrZWVgM9iktaBSa+v03Kd2waXzbNpbYw ZlAQMipv6Ffoq2yKVtwUOZyUFa5YmtUBmuIZYugzL6YSBeUjFXgVVxWSDKy9 BkQl/qU2laVY48t0b3S+dae0i9czyMREWrl4evcoZXGipEj9a29DoGV0UpUK Wy7fBVa5jMig/5/DSu5r8C2YM/NEkLVoTRd6OTXMS0LzuWThUKGSUxLbFHxR brHDMX6xsQiVwR9ZXEx4UgXyMaahPBDKAZ7Ym5UCoFOvAjYG2aS51ccKcJIM JWmZASwO4MRjzwkbmXY/zQDTZLip1bq6P4KK+M4aN6hq54KuEih1ZR5KZSVL Ci7GShuZa4PkmJ1leAZD1Yv13xzfCyMIS1ifscjeUll1tMo5UBaIMV7nQFXl g6JjoNjEI8xUcxAqzFSrChJ20Ml5DbcpAmOHwhy2CTLtlBlss6a7VC1ym2w6 26O9uMlMvWdFyc2a5nETQ3u3gbaCtmC8VfO9WNaHdX06Rr8wVz+WG9oGVLJd 1GDM8qDSVgc5xKqGdmFvYWae7QCmYXEF24cPT787OngiS53XOMccVhrGXHUm UMQsgkPgJn22xqrDW9m8W35IkWPcljVZCbhGVK0pm7J60yFNWSDqgFr0uSpO DSXCMaCZ/+W+qCdKFFdtLWM2EOVOD7Yc0Koq3+RA1ngsYlWOyDDeq1jKbiIA q5XzcSJWsAmAq2Kbi7HyW1tDq6zNRWWnszgTKknobrQ6/cJxWcAmAq5atJ2Z SHqRaQ+chBwnKus3Y7mPj/JxXMjHisvoI89ZQnYko9B0vi6aS7xfLTbVyUfX 7IqLvjUbbR65KpfulapobBy8ZZGpn5n6t81XnGDx9cSbX1mrq1U0ka025XRi 3/O4nnstA+xvMFASVoRwGrhxs7hX1ZKtcOAqNsS+OEPqAxJj7x6TzUYwpGYa IOHdazf1Tk3ei4MOHE3KAEQOPOCtHG3pqJnqDR4TeCm7p0RQd3i5PEHrxxVe /rebLysnshPf1CnOVxkrYr7M+lELrR/uY4pM5tGkYrGIVh+VDQpaOW6tpcyp XwygrDJ9jOXQH8uN5Yy/ZdnlrnpRVYa5k9XbpaLv8pE9uyVVupXNsxO0A+Pt KpGzVyVydshntZ9pNkrX2SbZvN/L6G2KqKGE7pSsZiOQLaDNdmpk9QAFMqcR M+oGGCvAZsnMI98C8bfVENcNct0g3rLNqiFEGlaHku2gHeqoSwPIzujgNFZC 0hztKfjZTfvIHv6o3mK3ZHgo0WP91nztxT5bB3NA6xoyoQR1GK0JpVO1GI00 P6jU+iEbkOQCj3r1fzH2aQV++3y0kYk4ynxcjDJy5pIy31YrCW7SyLNwojIT iauT5rTVshCiUHpXVJ8dVXa2yoflGGdV8bNWppHS6hRprjqFb06VhgHZ+dYD mePeKmCtBHfiBbf1fmVAgNK7VmYZiYIaNfUq8W2srO3jYDSd45HgUVgfyUrx yJTtrpV1joviMnnubQW+9qVP45KUVcEnVcucxjehxjkts2uxXWwaDDt7Q+yF r2lTUvNvSGBEMxdqjA21sigXXKKp9BRa1lzvs8RE8Xp5m3h5m4W4pMXQXaea OV7veL+VA3E+gjf271viha6gWlpsh1bMTM2nBeC33b+HSRCKlkFJ/Hbxxevi KziTL+PrjqdT4fISsVrz73hBrI43WsTmoQUp8flK6J3jwamRaZF47ah8hGOJ kyuqwcUc2UJhpVFqcDFHtkwFDnNkw2YdxTLMriBgmHq022QXUIxS9OzDW9Mt jk/O36sA2W7QHtBu0C4lrXLaRx9AvxJX++Uk2C6l1im3/U65tcKzIdmpkk0D KqtC0eklZk0NITbmaEjBd0NMyR9i9B5bcpherMMi082eXSu2UJRuZvTtpuhA nXNaxqDXg6wDepAy3laFlsxVSUJb4ziTuvrXTfnCfbYdSVjsuD9TpY3LopN6 s0JNBmwc8JCVsYMKahli7LACXRp4aP22znF/FkviZWxRvobuiFC+OjdEWcxI lXZsMm1X5EJ0y4pDjSVbW8WHlBWBKmrFYTjuMcaFZNlOSRhxF8XHJlaTEn04 iNczRyYLTb1MzXkc2nNKcaF2u9GfcJhCd9ZyJ2ZanjVZz7GegP1kKchR4lXl TNCmXtBair2DIuUDTCkGZX/HN+UerCOfH43fIPHFLKt7AZqOXWm6Wm9tz70i bmohmIkSxZW5V6ZVoGh4WxUASDBzgn+r3Bvl3i73ZjnJEBYgtOENVkvrKs1o dtb6IBA0k03Y3+E8Z813QZ7upXKxCC3iFIzoHW2OrwXxni4lph6o0M5kLnmt IIBXH095fZlPjqmVFNuOxxHdWcslCtq7br3/7VWW6yAxpj5KYOfK1izJhc6U FVE7Flld5vWvUn3DFgnFomplpuqwqVaVnC4W7jU5tz1S2XrxAoYdWY2IGVTK Si+oB8S4S8Zg7gXtobjdq4DHParNO6iCZTtkdh5kUTMKyiHVumFpXqfDDlGf NdIYr/Bm1ct1LZ1MW6f1au1EGo5NzV7NPcpUmbVqbMDqvLbvgkYHprExQc30 YVhPib2Bcxv5s4k/XrSrQcFW2Z4hyvEGbbe9wXZaKjQr8EI8EOBRojrFHWoH 6gJIG5LUB20vsgMmwGCAl9wg4hiE8F5u2xMYce3UYZdwE4pqpwo7Y3ZRVLdS g11YZxjSWRXOOR4xXYwOmKj6G4ZvHoOIjsYho+MSZhZPRFAXc5Kz9ippWOcg 03/Tov5rDG71KoNbsY16QUmIy2r7W2EW+/AjSTs1V0i8xJbATvlA2vlk5OeO Es+Y/GiUBxy/ar2ZetmqgyY+udSeUicfnVlaqpiygEOi307/qJ1IdY/c3ZSs PlLdvwahpiX1NKtL5iIF3RNIAqUtixlR3qmp8hG6ut1jdS9Nq7ob9qXIF1Hi yCzLhKgzNJtXLwvkC+zMdet1Ds3MaeaJ9tLwfI5ecdzl62R/DbV8kF1BvgY6 vr+NgXu4VpSyNgHGJMUEEjYyeOm+Y3LdVJWKGittrFi9Yzwp+kVVuJVl2QXS lVmVxxKvrtKG60rERICGaFAdawYVXjYiK6qxph70GiCTD/pMDJytjb9P7RS7 Md4L2iMDMOvkH8D5jVF4O+a3gbZS5G2JRvDoNqtu6Yj0242qVc9mP+spnNYp +u1RLFybEVPPRmLTkPEh5VQ8aJsZPaQ98ctcuZFJbBPE3mEjbGZh9ogS1ydI vRzVEcl2DFonP68rnO8K5m/SVnnZvE2yme2Dpnm5XCWT96l3QJlSfYhymCZs KONMnV2p+zzsaViVTUJxzOfkrNNV/uVixoUL3mulNYdBe8X6IWOJ4kK8U6Ul uhikF2rLxeTVUFsepxiOnIVsVPfbqKpG3UsWxpmhrkphrohaGbNroRVIRiKn RYkc+wiWTCZL6iW+dWNKmShf6Ym847Le2mWus5HdIycndeTEnENluFx9/djn JMa+3kKUhMW3ooLJNi24CLxgdCaNxPtLxeBT07fI+UtT7y9VsfrJWWRTXizF QTBlbu5Czj12POXVpSXyKnOLxlVB4YE+mBaDC0ww3S3FXL+XHGMwXl2wIstm lBs0zOgr2mxb6YFGUIV6oIv2Xmdrw29QgQMTqrTVVlxRiFLEuOzd+HCdy9MZ aXus/tevmCFof7gXAypVwOCcESk2g1J0Dsk12ChpoeeatnTbxi1h05awYcvW QiNm20/PNFuRUqe+zGslIx5RoNLDmSii5GE+9Ejiu+sxKXqEBQdH2FtlhKWr TcO7iDnSw67lXqT+d9qOyUJmXx0F2wW974ywA2d72Mq0tZYedQ3/eKGzQmFW 1gVvlBCrUCpDi7ANokqkTA4ZYIDRMM53V9DyzmUWmqIOZfrkWGbfYlCUE15V emQYbV4sehUG745l6i3rI1XUIVsJrkLFheMjuMZh6S0ElSdjK5BGe02LDTqD bOQsr9wHbhTLuWRtPtJcmw8JDxd6HJumeRIyaqSHG1gj95qWlQNKwlCeKDGb qA2MpF5ONqV52ZTVAoqNVB1dC6gQvmP/aye4XZZ77MVSUlb1x5RFdH5ECYJO L6WUO7SAc5s5N+14Jpxf4oNps4LaZSpTmQiqeMB4EUIXeUWUmzVIXlBlkCz1 kVe1dCgG0RbVpLCybhiI49Qkl3sUegxbWCEj8uAHcb0PqmwGy+0w1ygvfZgv vt7mFrm8IpcbvlMJ4XttYrhLCO9Vkdqs/q2xPO6DJNqnbO/9YMynSDXqAXfs HUPqjCFxnCXRiRsx+4cLYkapp2xgb0hyY41EBsUKhIwEjZqsqu+qWrDW2JV1 Klu0ak7LmAaLTVwz1kiySr1Y17jj5luxOpH0kG0sa0WRFCu8UOvz+lSpCHLi p8qm2ccgIYb+rJLq1AjMmcYRaYJ8QskTNFpVKlSZJTPMf3KSpyznyalNYSBP VRCPU5mKiejHInXCnKYyqVMM2jlujsXKQFvh78lkRLWW4qbMsVjtIAlAcZT1 d4/zNf6zHElb+s3pSLYFK25GR+ZiTDxMNlmTdKYlYfd3s4W1DVr9Ksp0nigJ BZkZJV4FSgL5x5vtS7JkAif1oSsSOKnXf5Ji6EoWpmIimwqVUgL5X/cWwbDi rktpkSxoz6BBWE2umFjCUbtPHZnm57Jlszk3m3MzOLcmUItHK2Jzj6ecu3hs OReXuN6ikoq/todSSQCqsezefNyy5YrF48vSbcPi8a0KdraKM63qRx4GxKxV rMQ6ibl1AtObbAU5Uz2OIm4jaANok8//YFvFbkaN7IM0Z6rHFqV89GBxr02L ZeegwZwzbSfmd4HjsoPQbnBgZwQL9amiZKuWakZ+eIlW9xItbEquBuH3WjmF V3Kl7S2+3BCLSA0zP3CY5R4gyO6Ihmq4lUOTcU/NnJZprd1OeyzX0VyX8pWm x7nOpHIQw14MlojAEvGXaWBT9d860be1oHWVmQ29yOs3cs9Ugzkg7XZI6iak HV6MYd9Y3Mm6fi/rnJlwLFnnAmvKvHVVnrow1aSVabBVIM1EzIKhnJugd66a 2Y4uFZyV2JySV6gqjYCtWVBS5o7zvR+dhJPcSLyEkx1Q4aknkBl1FbQqK+bL bXCuBGoSqD15D5WlLJoyzYukmk/GTAuVZ3yNZCt5Au+TUUfbc46nYuWHrizT oRa6m3yaY5a+WPcy6BLOLWw6cXOLn9N2czg3x3irDvPAx0fydJXkPrTWsEol T3m4VNZ0ipDh8jFFT5mGVRXv4VIUq2oXOidUWc+S0LZXVtEhrOZQ1pA5iO2I GL24Cec3VbhMBS6jUe1UodJtIFZo2ASutBFTphiyNMM2U5JB8obpCptBm5Ri aFITGF25QwEc7IznIjYGc5kHW+VgqpY1JdqTGHiJkBHnLxMyTr5gMUQIZYno dsqU2/hzK39uoZy5mT83RUPMrhqaBAFv5rRMa7Wd9lB7UR1FxCPeKRrWuSSk 8DIstxdi5RMv0gonI6Dus/9MlWSytkHdkI2BNhYaA0NvVrfRwljM4hCjSg7i hej3ouig8ixMwdcRK4oGvSgay2O1VaU88jkUYeBIaOwrU7lCQ19YcjXMdnwp YqgqSOT/AzFUK0mMqORHidexkiAcQWzfSR61fFKimy5fjXvlmMJ1OQuQg8Zh ICH2r3kBkuTD8dO8T6fmjWc179OJvU+nTCFxiXCBeMCt8klvaTFzveYFhfSP E/1xt3pBUTja6eZo2G6WCaA4jnKj08uNLH6xUm5YzduaHaMyhTgfMXj/ca3v UdbuqmiUK2bHudiFYqursriFUFMpxiyE7a1cOGCYAbfVailbbXEfY4jbI0Pc bluVcTtoq5rCs/noPmW4bQO32Q5RYYLyTVbbRtAGTV0UvhEbTFjbqOD6Ibr+ h3Ar14OBrlf8QaaVFCXFaHXEMOB7LEMOJASZttEw7lDVIPJ08ndwesPyxfxv 0jpIBIoG3NVBUoJbPMgiKfi5LhqsgZcNtuP2D9Y5p2XMzB2MzXbYQ0VLhnQc 0k32+BHrm5hT3qaIRlwEWNodmVjRlVaLlNHixIkS52Zyxr1NFUa9ghihZqPi SLjiXsWQGEOeyohDlOBVMoJk2AqSRiBIekYJEuc5cmEPxQhEZ7sbrz7j7HZh e5Qw4tAl3B0PIVIVaVjtJaqXVYgsiTMsEyKZtS7JW+uSEl0m8UIk8UIkMUYs XFU7L0/SQNlH9SyRvz0Xcxj+I/6fSPOdFzIvSy3v/JfRR8xUcPx0/g8z/f9Q 93P6v2b4//VBLwxmeCZfP57dqF6W1xAyTl8WBlAZtoY7VRIbXsiNXjJuTh8q CGV2qbIaJk5BKCoHYcJWUTmocrsUFYOyqDRyeX6mYQdtfsK7TG6zHP57cR3M a6aLZY+a+vWp1i6zsHaovkgvjtEL7t1rFQKTq8zUZNfaej3oUU0bCtXeKLY+ jGVDYFpDuK4hsAXSsGdmZUrAqhLWHrB1h/hDnk6WS97r+fkyw8/JpsWwwfTA u8nERUu4+Br+XE0+fhV/rowa7XgejRoeDH6uYAE6LIu4usFNSJH2sPsu0XF5 vOssOdGAj55nX5ZJBQkFqRx4Y6xY0H9BTaOVOHCmLycKnFYRahShkcuJglAM 7M1i4uQgOwjm6+LTGzYufcRnbh+wQmBIIQR9QQhBmD1WJgRCBw7fwCpNolg/ JdQkqhw3xYzrYj+slyIAxhdmXh9VfN26CDL+n1Tx/1oV/88ibRPP/1PP/1UT vpPX0sWL6vTQvz1zJGV9Dl3akJVVtbw+kJZ4lzoMUnaaQeaMsJoP5k7J19E6 ySP9E704uJXbne5NQtN4vDn/O6y/7u9jWuWWKGP9tpdu2FXSO7yCIIvMPHSV 3ouXWmy5CuMXPRJlqbrFkK+Q84dtbF2BT8f5i+k+jvPzWzWNv3zj6H04fbfv UcP02z41gTV9YwdVTZ3ZPLtBO9VXVsUpxPS3qRaFydlhRu0G0DrQWtAjIDL9 R8FGHgE9DHoQ9HLQ/Vi+RjQshu8sPq2YfTWj90yenNdzePBlMmjDq/Eqk3eD k4uuYH7w5fy5jD+Xkstfwp+Lo0YHHlCDiYYN1lU2y7RW29k9Llelzyvs4a40 osGc6RyeVWe/NpMHujojDAZDYeD1g8zklOkFoRAo6gNFXWBdiS5Q1AP2qnRH Nxj/3WT/lvn7YGhfgGtYpqURz/z7x8H8W3k0xov+yzwZZblGYYDzRBn/BOPD 8qajWrG2RiGmOfF1C2ue8WdQOfWMP2tQkXqGJTiuzh7tPOFJPHO7P3WnjXMO S5LmWHo9b+KxDmgbqZY3+ugCL+LcJZxTjuWVnnmrY8ds7jGdR5tp4t6OIwfv 9Bw8belYtpVMghIjQcZJUmKhWX5MFpoy3N6q9mAxgXMs60wxWLfYgLyKc4dZ JEXOzQ9wv9qDm/6sfTYh0/UP6xUNgYaVIdKraskj2I8F/UbkLGaRv22ya2+N RvC/brbpH8Tq60BrLct2OP0By7rvA62xDMmw6yExqdDs4rB5yK5DG0sFqyb7 FMy2LJpcluzW8F1x4IvFd8GWyZ9BA3guA0xcG2AO2wBzwQdOAEMYYMLbAHPY zFrmjLMaBPfgnjzCxfao4B6X2hNdZk96RcbUdVFVHL2MmxchfQjnnWWnCOWL zoEiF7dOAdWOAPPuDrJa8gz8cAUDHxgVAOwYeJVLumi+KSL3VqabKvv/sTDv qsqGx515Z1abAvOulaDN1DNvlYkWU57uGbWW1b1VpRC7qlMKfXcY64Wrd5Pl UAh9n8S5a7l2Oucu9SYYmVZmcN+TeJTZPF6XOdFh8v6XzKcv8ki7VlKCbiJ8 Os05YZ3HHa/H8erVW4xurYpsDUN+qsJ9WrHosYznJtFvu8q77lKS316bP9+j T69fZc8aQqIuX2IgYpX5AybA5FyF9oeBqnstbHMBqlsDl+r6IGzHWVBeXmI9 CTlzEUiHIDrkyqM5sgHOlhsLBkcszCEW6pnxhaALLM+NxH7Jh0WLuXgRf87h z0JtsBBCa0FGU/FY+5kz1a+aV/3ciptHdqdF2mlxcFTH4DF7gREERfaua7y0 hK8XeXoeoWf83JloHDJ35pmxeHlonXdO3tAcsyswx9hYIz3+QduT4ID6EoyN xMMsjjI7vEPhVTb4scwvL4WJl5WnnWCs7LGa3TMG3l7CxGqG/2JfiYHZhoGL lTtfabuP5JSVWZB1ng/UzPivLB3i04s8d57urR8zeZSTebyTjyd3vjDPnbPM 7Qlw58AAXlJp1xrAbzimDp+tQHSrvIMidy66N8cLoB9SAMNaBWCu8zkGW2wR 7h2+8DajYJhXsEsN1XrUl7cH31ivySVQOvUQbva+yLQb2Ydvsdt60lyEpYuu JE7bFES6PGqjKR8KDNsusqUVW86D5TxQdizZseMQII/mxQMskNRQZYcGbn8D nygT9harv9wiw1rFbFm/oZ9Zq+S7Z4K/zDcUMTm1nwlAYM1zyZrP4HAeN57P nzPdbmyDYNh4wLYNu1+sxsIUBefnuXTE4lAN3P2QQ5ehbsedx8OZV5TYSkK/ aWgnKePKoZ80g9amxOmI58gHxZEHA2jdV8KRqzyjZV7RicDqMmN4MYMhLI9W lb1QZQg//vaQjCNPzXPkmncOWp6LnefwKJ3GJO4MGp3eqpL6XK8OY2fG8U7m XFfgCxw9N49zN3O7mZ5zz+aRT+M5TjmevPmC48GbO8dTBd0WfFvqm4eMFblY hZxD03TolCzy5TAXrJgHVuTLZc5IZ9hgj6m1UjKpbG72OV9bFZSmXqA2OnGP Qky2q6Ayy0H2yw7djS9vTxb9Tr/lMP6FnfgoTaWL0Sx5XQVSDs3OK8Zgxw4h O5uFQ8chK77UsuICJBbzOy/DwlEiYDsJvw3xywWgs0Fngc4EzQeB0ZLtQsSS 2O3gNNbAPJU/p0R9CZ53XwcefF/ErJg+zmnESOU+Zmaa7ewep2kNjqPj8bhn kH3jJPgXyPHJ+cHMc6zcsnEPuot8PETZIcK+agK8+66CdWR1gKgfKNi3y6L4 x0LSwwWenYVHZllpe4UCyqNZnCmklRPzWBC0q5fVKnplrFKWIYIeM9NsdNPo luGPYtjTPMPOai60G8MF9jiV+3blmX0tqF3kSnsknnV3eWehMtjO8cGAaZ5h zy85Sma1PtVHloSFRJwzc2ZJceGz/eUeLz5/fks+n8X0VIah4PUYb8PXVpbs sUwkZVbsYoxhGZN3ALwKfLuoEwe+q8wim2wj6PVqHsgG0DuU7bSNDZ93RN34 t7cqhLAbmzGccL8a2WxXtlMDNKRoc/oZN4uGVA9wMzOAWBXo3DH5ewi3jTsx s00XoXbI2wtWDw+xLbwWEwx4usfUC8XLDTN1cHqeQc4D+OjOwOq5lk4HnQY6 BZuAX5ONM7mxj5K9T7klfaBevAi90sh6WbWyl47q3rqZm6G2idyG284yZI+B o4H/USzw2KdY+n+Ze+8Au67qavzNm6LeLVmSu+WOjenVmACuuFdJlqzeuzR9 Rt2yDQZMCzWUAAESCElID+kJaaR8+SCFhISOwRiwcbck6/7WWufse/c7c++b JyPx+/44b968NuWeu+7ae6+9Nq4GvBjoUhAvA7rUlF8Dwp/k8b/g8OHf4bm7 4f5rmuD+VS4r7mubo2G+z4RvasLTCz+MQsXYl8jhqzi6T317vK/KmBxrfl41 0vo58HM3IbEjJeiV/Hxqo4p6TOEC2+HhlOsUPjDOzarF69UxOiWHeGnGz8kL jh2N/aRF4/KJ+TsSNfrkksc688/rzD8vuVDEnIypT4q/9sI87+MS8vzumF4Z nldyZeho9JlP7as6U/sqN7xl4Ge+LJRJU/xloUp6zstCWVHTMuYmR0nd4o37 G+8vy5QHu7T1kpivdnNjYxNsPkRlrbqPduC92/EZ7EbioJQ+XQ/W5boTycjx cwq9CS3rTD8+2gXBk/03uCLlpSVEfyTJ78sJvl0I7CJw9siLgNDWSP3JWCeR yM8lE5+Lq8MYHMM+HMs+HNM+HNteHOdeHO8eHPseyZS62c/ezZ3RzX72bp7v 4Z4ei8/qdbhIAAanh8uHll0iZoVLTcOloeqykF4SLCTwlwN/KXipS7C/uuJS cHleIG1M25jO0V8GygqiPl1TRvsH9HWnXPGLS0B/wyVgq6b4bKqUrzSTrlTJ Vp4r3U8H5pZ1O3m635pO8bnw/en5BWBsSHvj2XPT0VkNzUJj8kafAvhVvDwz dInaJxdWSZ35pUXSwTNLQF6fNzeHcaVqLnDzKnHvJcccshNZSlm5s0XIvrZl yG5Fj5IqCX2hM03XpDqUMu24sXjP4H1x09I0Btep9mRT7AQyS57QOLpNjaMb pRUPoznYAUS4Xoa1VF1AfZIIkr4HTXiuB6fZwCD+NEpMfLa8FaQ22v7qJB3z khKUNrru0t8CNo/QAZ0DGJ4UwXFOBMtZAUBFzHnTC8Segc+ZrtWLQ96LQ9+L rdBDXK5RvNvDs7GH26VnEnZOD6W9PcyedvOJbib8etR31kMUz9dkUX6guT62 m2ieY3kVjhuGp7Te8JspHUvnHC12v96JWxhBpYVQo+8LHW57OeIa19m6pYS6 90dP9GAhWGC2FTyfC2aXpdXLUjTNZIaespfZ0DUrcKYqFYfXNZvMl1D2wn7O 7OKcA3WtjLPPyLFLefEX5M8KTuVLV88BvT0HYClKzs5BWXruC6o6QqeFdwiy 8RucxF/mzuMIwO1HBcDOeT3+W294zgBclS9vlkYpA+C0hlkm3/b1yzJlCSNS RqbWrOOFf9uk1WaDzg43JqlHLjGbpNUOYxbYnMO2yxVYS9WY05/PNDJd9h0S 9g3i9xjEBYHtKTQduyBPih8N8ho/9omSC0tQ13ixceLAh0vRVnBHDjw9wiDh cEqASEIlGyF6eNMrvO3Fnugl0MpqsYc3vdw7vdOwi3rlitWL1cMlk/ee/HXk y+PwocBmQrPWxAKP9UM9FjPtYjicYvApCYceDX/TFIrh72sj9l6WpMyrsHex w14rca5NypueL4e5zDujFClMaEzLmoa7JjJpFXdTcUmrqZKUJ6ezj8t4cgtT E0dJk4w+7bg9z1t0hlpiLQ6oOSEHrdNy5C3kg/VGEiyXyue55iDce3H+uiSX oYT5ZH7yJP4K0/n79BxL5L2gSulXbbbdjPoOPyfkLatUVtl6jZbATpF3tAql r076LIXRXm585gtNbt0r72PKafukFtmuiuQAXjMQvbmGJLHm/PR1WPRFYYZi mTITgzhBB2WkvyhKqm+PcuqbJKMmsRrMy5CWpm4dcQuee34Jx/X81rjt7Egi DWnLUHZiBEMCIwESUIk9sUNg2t2eI2kvERbbphf7p4enTS8JS9907Kk+BpC9 OoN6+CyX6EwPiyaUqncAaDqxurDw2fgZO/CzduRgnAJxCsIpEbZERhkAXxCv SlbDfFEJAF+SK7zD/99y15a08OA7PwffQvW3sqJGWfg475KNS2+No/uGNEep twR4NyvcKtR9Brypss9qkj5HnWpIRlP0pWS3mSR7NCuW6i76jgY5n1HdelVm uis0pdSi9k7Z4pPybPXkxjTDi3P8LVTVs/i6aTnWasboBP6MSfxppAVdr3Fk 264Az3fz/Y4h1pax3OOJtc1UIT4r3EqKoQpry1IMvjXdK/SM4Vp7S8pwbSgK cZauenTYC46ywyIpjUNPdmnAxxanxjORtJUFTYVnGWAv9zBm60uBlvlNMdZy CSmj9eW+M3I224ivs4o6njDLsHWScI0YF7BubMS+roiFxMR2rDZgLXsDdjCz 1k1DnR5+28vO3L5puOnnt316TM/yppsv3oHfBu/GdgufVIWyE7AmjoKuzZG1 rxRZ07SCV4RYKvjKBFVvLkFVSwEbnU2rgGG0y664O4axNAw1NkQ1KvQMUdfJ Z7p1RG2W8j1aGlulxmvW4OLQtJa6p0c0bSFzUNh3yFr2vFy7PDVv/psSOkus E/ycnOeOy5PC48K0Znz0BP6cE/gjz+QPPyPcMx31sWocPL+qcbDMh8vNJnfI Gf9ni1uWWowmsxgtN8A90Iyheh1dFUO9DfvwdmnowvSOMLljOfYs7ZpCx8kq 1dKoXtose6atavLq1d7vUwPgEPb+kBoAqWO20VB0i7XWEhPLmXbZhBRpJtaY qc8FpLWyl2M5VsrOu378Oy8MGmT8u6h565fe7Uzp3PpyUQTFECdhzYklsJmx BDZdqw+HrE8J1slYRajfq4xZr67dnoP2knNiz/QKGAmHfe0GlgMsXAyOx82Q 7ukxPcubvrq9o6fGp7vxKd3YeN34xG4SVvyEbvykHsWJ3QCTMY6uGlW1fMGM SK8NROe6PK2BqNXWqnKzL3N52fKcbMgJmJzCpM93OABdUVE/M0oaOkWHYufo gMIbXkB2lEjlvHtgq3kAT0fTelkZeJbR0Z8RPFtLu5YF/x05IZUebnYOnmfx nhy6X8Fn5+YVsM68pe/EoHgz8jk+J5+T+IPewB95Ou/NPeaQObbRKKlMiZxC pkurRsjcclTqtGYSBA+ZZUTTB/VpLStt1kulBz6VulDDatgKYm0gKwSZq2IL yDrsYKrQVurrZrnZbcTZu7nWqzESO9TyMaRgnubaG9QvPYz3BoPT1THAWxZ1 Z9bmYRIDTzDLgnivMXsZlk+ZXiSctHRpP9YA/mcD+N/143/YD8Tox/+1H7u+ H/9nrgH8zwfwvx/AcRjA8ejHsenHceqnEoCdelPxMJUkk7Am4KnxWGP59Bg8 zWhnALthANtiAPtjABtlANtmgGAo90bh4iBvhridh8fhZie3+C7i5049pmf1 unqOpEJcEVehMHahEJlcpLe2KaYBunNOanzUIv7JCXxamrUMPptF9i+NUb2l VMvKWQad1jXiO0Z8NG+8c4vjnWG6FSOSwTiLpE/X3+343beJczaWrqzZukxd nJatWonim6nMjgY2q/rx8l68UShnc9QcG2r6wKR5OULW87a6E0tKTy8K9Syr P03kR03mp07gj5juWilw71zem8d78wIrPYa+Q+eNTj7TuH1LWXXquMJoWUXK YLQsL2oVKS8HSLvpgrd0GGVwZz7KgFrJtXm3BqUAa7FWAUZX6Os22cStVyWK edEhfB2S3cQaKXdtmvew3D6XOgid75qXre5vedDLY3zuc6ABPvtHwCfb3c7P Y/OipeIMPH4G3nM61qlYJws6+/H/7sf/nmuA2tlBzRsexOEZxKEaxCEbFHRO IrhNqg3JRmoIR3gIx3oIR34IW2BQbU9DvBnW5h/GNhnGphk2ZBRG7uTNLgbu u2XDvgfrANbdce2tURm/Ry8gcu6qG9gGiK3nECto7ifE4of0qV7Qx5teXNPq gMe6GGsI+y3kH5dA6/SoJqiC1nkxtK+qWDGsf1UCq75S5WE1VXUZrK6tjVRz 9UYlV58Y6aCsqIItVXe0qdo2IjlqVSnfZOcFvGmzRireTROjx4KJjgKpzQfQ JWlR5/rf7kpRwqWTiVCn53yznjPUeYGh1jV62hWWuM7L06RJ0UlKrkn8CVNy plrr8PkErpNz3OvKw+/zeO80Pjvv+ABwZyMANx93hPsl2VOPwsE3aPFRFala BeF0qKeBcJXphEkCqgpTy2Mrs5n6r1T6akN0Zia9oHn/dg2NWYG1DGul/Dqp xxpoKEhRf7VUhSizZiv6Jizct344K/1flvBXS46a0CqAb1p8KmL8U3PJax97 0kg8A3UdFHWdiTUDa7oW0XS6kHYafp2pWJPxqxB1J8iyaAL7PyZoYvQ4YMRY rC6sTqwOjWfpIHJ2aEJmO8CkDeBS0xSXGl30gbA8UfYSZveJob4J6+1Yb8a6 iwR3fxef06v0emLu7nojItcTRN6UIzIpb1g9Sh/UQhZXXLcrVtFGA+KTIhCf EXOs51bkVy01kMoFroggfG0Cwl4m4HOqG0t4bZjgukv5VPLaLfg9N8scdpum wnoTId9FwU1rXc6+g8KkWFWSgLQy5fOoZTIskwM8xzzq0aZR2xtLU+OCiKoW k6dyuo9tDobC0scms7qKAclF4Ur3Xh00uGYfIbI7Jde9Jk0Lr+ftqTnWnnAs 7fTPy3MHlYAb/j2FIV1MH6Q+myNd2hbpILRapmoVbauMJAxt0ySrR1vrX0ud 11ZH04jVEWnXhL41DaHcFN2RKbpaGx2Rl2Mt1ddeNasFujuci60WSd46qJK/ uaj5xKqVonxS1cpQRnOtBOVRNlDcorxPlGVL2WxlRmdKpjpT2dR+wexMfP4M rGmB26qcOKhBbUPZZEHtThy7nTiGO3FId/Js2Klr6y6s3XHtwfHfg92wO0fZ PbzZq73Owd9atbqh6H7e3MWbA0Jhkt23Yt1b48lyN8+TA3oJn9zPm3187956 CfiKOYtXxzUo+K0rY7HOAXBPDsABfLsbwHdSA/h253raOZEFn+Zys+c1MOC+ EYkFkwqMDrxFMYtZJJMHbHXMtz+2Lg+qoDWIx/vEfDcpS8X862ZZTHnma8mE tICV9iyY/rUZ6JocYDRzn+ege30uoFvP3YmL9OsVOcDKnbg3V1eV6aem5Pqp Ka4PuGG68/m8lVPPKXzd84p2hxxQp/zsYNrR2Cpclj5oWrtKTS/p1BPI67FI wnrimjYTVEFpakDvodRrWE1NtV51quC7syH2eW0Up+jFFg8ew+ux3deoWYAm 8r34rF58HcgzBnfmmtUheQibcur6Chh9jUu2+kr+Ra6Kb5rUEgiNfVjqwcL/ voeq/F4coimqRfVjDcQMwSAO1yAO3aBSA+M1H3680Gq8lKW7cZR34XBz7Vbl aA9v9mq/78OO2IetsU87dx9v9vPmLu3ou4iMXMLOAwJQouU9nYLQ9shg79V3 zMreq2f1Or2jnkOrXryvAaADvgqISZN3RnQ1hI3sdm3Cbg1Yu3NgHeuA1VQE XkEwNwpjy1ILxmjTtILXXxmo3pCAqvUKW4HLqwO6HZMdFrDuUoMBVQHbtPM4 0GZz3JmNqgBLJaRFrVQRYA0FowEqCUuz5q9WndKOao59q5B6VQ6p4rHMKrVN Dm29VrOazDefwE86MU+86uPn8N6MYHSG152eS2GPPSHtyCpSsAJ0/H3eITnC aPznbB41CXss6ljNWmibQWjaCuAhlCUD34MVQq9tcUYHR6HTGqdPQtTt2Nxb VLcKQ/pWSe4/oPZYWrIvjeHfwig+vUUshbm6wQZvhBQ+01jfRFDnRgHUmVH8 ZDL+QviUQ6e6nCZgBRFpD6v2WH0sRmENYA1iWUqVa1g4uVNxj3CTqIljvoeE UwbXe+tCTV5W92PdpQXcJGpqPx/gzd28uaduoHivEJPg+WaaUt2ne8oD8CX3 5q+7uy7C2hHhd39cjpqGlIIhp+B0GEfK8dKWYHN8ApszImzOHiURcHE8IpYE uMSJq0yy6oVVHjKtR8AXtkwPYBx0l2Bzl/poe6UH6Fb2dZOqphtG6AAs8Ldi lmVeUw2ACaisD6CZHLUV8VTVQKfR+2SrJrAXWtSkiHV1DpTJbLvrGtWmE3K1 1ITgYmYF/4v5M6Q7nRYqWXKJxOvOz/sDjtUk73N5O64RN4sxugWAO9x09DPi 5qaWilc/S87U6v+pXKoMN61o5XHT+lfNbsAieMNNll6tdWq7lCw9sUzbr7Lt DkmkdmogwjadCfQR26la/8qcdppovxCSVkXuRYGqEI9eHM/YojAVzuhTlRMN UecstToFBDCB6IQYsY6JqqP2qEQKNR5W1fuw+rEGsAaxhrg5h8Ubdyrz2Sa6 2SawYnDeBv7XJqbZJj7YJrQ8wFWLYFkLYCkkfFO7oeN9vPcW8sS3Mkf6NsLm W3nzlro9++Z6I4oKOxnsH4jrrrpY6BjHQvfElcLoWgej5RDankDoxARCZ40S zpN1vjAJ5S91+gBzq0nhc3GiC/AFrB4Hn7vl5btLCma2VbGV1WtQffiesk0L 38uKVr51dTQlf5ULpGeaz6F1qhYsIDtSC8gy8OzIWeY1BKTTcjH+ybw3j48V AtOxYVqFQabMIKcElokfM533JvMx1aUmh7YovONkvvf8Yw6ezUln0yzo1qMq /Kfm58+13lTmAeBlprwSlzVBLY62uUtUa+LcidXR0Hwj8HCLRgRtqxXjgbbG xqdtqs8Ge1xu/01OiJ9qpG53+igr7lttqRE3GaoPuFC933FN+iT2q6Z0StSL MkynVnRGjd3yPbEJP9eHShfaWehBI4z0RVgZiBAzFGNexr+7akVMvCfC1L64 9huKFZnMewR1Qr08GGcp6c367j4+8Rbeeytv3kZIvJ+6/bfrnh7Ts/UcSuv5 m4u4PuDpmBRPjZNmeTiPI1eAaR7FV3LR9nhlGeNAtBBfjQ6io3FQE1j5dilT AazI1XSsTobJJFtie0evPFx2CUCH5AswICF/qkOtCtd/FgBNhftpG5RZMrYy laJRtN/eWu9p0grVkdPPa4lKV/GeZnJO4b3xOdUscHN8iMnxgRP56bNKcFNV ptl874vyuP9Ygec5OXh2VjFPNQ3mNft8eDaObkW5/qixM5Xqe8urKuxs1tiU +qaksTrtxu/UpZw1+rV5fX4jrgVb8oqRter3aZzaBpwdGxSvBzn+2hLc9HX5 Kty0GP2l0pMOgNYM4G8ckBiKmvuzpR8NtXgTQLEAPyeKn6gZnYo1Gc9Pxtcg Fh3AYRmQQrSzQRlaipkRdfbkSLRPCLY/otQBPXa3GOE9hmrGFsUb79Pr35KF 0tBb9d3b6oaRb+fNO4jI76RI6l38nHfy5h16Vq+r2zsClupn3WdgbD/rXhWQ 7nFAKhCNv/LarGClu7MiHdocQJux0BObBPEXlTBQq+JfnhSSUvBc7gT9wQmt X1KPjdLdDSq0YQGJ7LNfnVAFeG5QMXNk8agKPEcL3Ku6nlpp3G+xf7R50N5e hZrjctS8piRo78iRb3ajSr9ocZrCTz4nD9on5/g5LR8B8aLAXo8hfp5dgp+l 5LNZ5L61FEGbNTulRigp82xmFm7oWRaxm1rfR+xl7aD0i6VX7BL5xa6TKeBa bdftmkTMQhGlpatrPVI2cQjlamz31VI2Det0WBGbmFLkNEV+FXK+JJGRXojH z4/q+3lReX+KU92fhM+Yg887EV9PiPV0yuwnag1GudIwjsswjtQwlaFOE1qK mp5h1kZSzMAB36TH3hyR7b5agXREzbfFdX8Oiu/gzTvbDTLfTQT9Rd68h1zy F/WYntXr8nc4QBUNfmuE5vscpEY4XVcGp1kR4LfGRekNUFVG8jBazkH7cg5q QbzV430Qf4sKh0Hc7wVQVocPCrk+OZcFE+KQWWcN3lrzt2kvjgzgff3dq06t VOS9p9JSkYn4RxPwl/lNtTARLVDProaaeysd+J0BDi1wX5tD5IS8pj4hn2/T kQ88K4pCqrhPLQHLaccSLM/KwbKrhGymJfbeshL7c64NVSGlxejNfPqsrF5m VOKR0nNMP803tH+ux2Pr8dx67NpNeI4jE3Zo527EjuWM9lWxlL5MXwdkRrJM ec3CIvW2BCW96N6USB4lG1VIgV+eVRuQwP7UiJJOWE9dPdYwdukw/q80LxjO ZfTjcX+81EZWJ98taVGQbu6uQsis0M6XBd+GjO0eGfXY/XqMes93cNVy4BME vrtusPge3ryXRhPv0z2+6z16lvferU95F9/LVSuQE/9+/JD4I9+aYOebsyKo rwLN1rhnAMyeBkHTFKcmnR2D9tNLOKfV2l/hAnaT7lsz6U2xkdQKRiPVorvU HrdOF+FubL/tceuFSdI71AHVCJbhAt+8UGRgWdYoamA5WqDezCSqxQJRMeem SHKOmDzW3kg2J+Rkc2leQFfn0sQQcOMdF+fF8ml58rIIwuceR1xsLyGRpcL5 nob2pedS/UndTP1QMB4qy14aMvqqTxkylhnnpciYVso3xGEyNJXmMJnlrj0p RN/UaPYrbFqKtQiP3aGvg9JqLor80TKWVunxrUiXOGGRR0UTFVnr0Wl51yYj 7gGh4gmhSxNrAGtIUvdpOL2m4rSaFLSXODY7pRoaI1Sk6HIv1j4cPomFVMqp QMQIMULDkcF1EyDMYe3dAjnhXd2QTxj4Pt68n0H0BxiJf1D39Fjdnn1v/o5f VLT9bg+V+c96Ow5HI1K2gpK+bmSCpaFREDIIDwq9fc8IhEzppEXlr3Q1IVMh +cYmi8iXuoYmr6UPYgxG5j1qzlgp49ytSgptTWpBVWX0VHXk0bHMSi9Fx9Ga lsqcnFq0zzuqDObEHB4XZuYZPaERHs/JPZ71KdNzoDwhJ5AvzPvujxVQzhsd KEO0Pa4s2k5RUlbtU3FY02i7qkaeGt8ZSlq07VXuVQZMaX0nteI3lDRzu8Jw ibnJbeofYpS9Vj1E27EVdwAde2UjyhEsq52OiCh5O9ZtuH97JAk3R+5ouUlf CzcFu2mHDCF9DTz0BvVGC/z+iJChIWiK8pH90lhOwudPws+bJJTcjf9/kKR3 alEbtFfo2AlE7ARcdAI22kNxuwodI+QIGmsh4G2PsPT25rCox95DuOPSY+/j zfv5+Ad474Mkjr/EQPtD/PbDTBJ9SI/p2bq97v35e9+rUJ4f+otxiZC+S5Wf d0aofnsKm7UA8avj35PCZuvEciRk9qimZm34c6IF1BkRMs93hPLFUbxpScw3 REKZKpAs+jb10Yak9Wi7qkD98hNfp/24RZkgNhx75buHy7LEpbUa+apPKtBM E5ejRd1+KEtZf+dzcuRvb3Tk78zzltcRmC7MzO6unvd4nhCzl65jPhcdjc8R dUqOqB2xgcnLQCcUTU35Y1MaY3VB7YuPN9TW896ixIQvBOz9ZeYkTWlpK0X1 KrD1Is60edOPxfJCJN9K5MGWG9SDrbmI7lAaqUfCzY0xpbkmBupra5x3FTrl l6lBcxCfOSiwvQmLYk0roBsdfV0M0n0q0zTuQXBUCDRPahBnhqL5tFpfLP6E ws94iTELQeZYnJBF/88eqtYpwKT80ukuCbR3Y92DdS+OcF7gSUE2ApcANoTN AtJ3GsBWg6seez9Bk6uWY+gv8fEP8ebDZJsfof3uR3mifESP1Q1/U9RVZvN9 8We8x+FuxNyOFG9VW1KNyJiqZ6k+ji9jqI1KJsoRupSOKqB22gio7c2h9oIS xdIlSnQO5LUiH7cvcEolS3KayNNUSnTL2656EUc3bNdIB1rj0FVsndxKRodZ qw/55KZ3xRtNmdSsi/MYzr1qz+P1AmSLkvpZuRSp8Aodl0vfJ/K9F+Xlcwea 7HOfkFfTT8iN9K85PqDZWRnIV1TT+446w1lVSW8GmF69mZrg+4FRZYBpxvdV gMmcO8uXfdJ/UOE+GIfADuZd7Wu0dqpJaGkMyObHHssba8FWOa39WBe7j91N ZWTNQCfH05Cno1l3TpaSPaiLxku93kcnpbxC3o7Pb8fPasfv047TrV2ZzL15 vN4GeAiSy7spShdQtgFG2gCSbXl5ZQRQRiTKQbKIrQ0j3xfX+2s5wH1QgPlL hD8uPfHhdsPFj/LmlwmBH+PNx8kwP6bH9Kze+xG+g6tWgKhQ84OGwhGRhaKK +tUILxDNiqC/jLX6QP9o2GoKn70j4HNW7EI4tWYGUX05fFqd6FVJYP9G11pU FdRbS5EJPPtlODogw6ctambbEt3F1klBVwWdZXUhb+7Ec6iVsnozdmo1oZbH eY+W5ixgc0zOTaXl1DTUySVKpAm5xfJEft6MHECjAbM8RvCOU/jetS0j5hg+ MH50nKw3Nq5HExO7JFS4NR0NTJaVzEeDSZ/uNKFmK7zSpzqXy6V+tczsNsqh fquE7SxRBrXHkK7sO2rB83OzpHVe1G7uyDvFEry4yMTsjYWfgbz9/MJa4Xw8 rxbMO0+OvZIz4ynIU3Gi0sgmwOzDv74fR6LfiYhMQOTL4GmBp2mwHlKYY8vQ MSLQewyUGpnjB2s5GQxheQ51HxXw1Q0DhYYf580nGID9CvngJ/SY3vExvo5L 7/gobz5SfN6HIvSGn/YBXM4cUmaOa1bApOVDfS60LA+altdDQE+ha0cUv46P glgKY6fXCjtSXx06LzYolFWGythl0MHTSGZITRJr4x7bGhsp6BtS1TpkPngG j1622awS5FVHPs+ZlsyPIauMOvd2j4215uYghVhTEHkq713Ee5NyiBzbKDGa movcI1hKwCkAVZ1do/Dw3v4SiBybI+JRksozeVs0Bx0Nqdw6Klq2Uhiykvlo SDkaobR0p0kyfRvQKtUbV8q3bpUGhzGFtE1tk9sl6hiS6e3WWrD7pNUnhchr sFbKvKMQE93u0pxGJos052BMc1K2Tull8KE7N6IkBURnRNklPedOlOQyWBpP FEnvU9Qd5JaDan/sEIk0wZChpC+DpwWfppG2waPQ6N2CzRwiIyrl+Jijo4Ds wwaOBcz9Mm8+pmc/Tkzk0ne/wic+SZz8FGtDnyZB/RSf+GTdnv0Ebz6uD9BH 6X0fjT8j8kxssQieWUIxK4DTg6bxypFZUPLvOv6FdYBmHf/SOv61oWtqQJ1U 7bEjlYdjUi2M9JsRuwtmx+RJM8A0J7zLsK6OXbUBMIdiGX1YgMla4xIsDuZa q0zngLop6HbXX6P/cq/MQzfLJGFjVHqsrtQZmceHZTurwvBWuKTXtj8HLjnK TKURo6QLyJTQ6KYAcbljEtOcisg1JK7orBzfGJufnUszJ+W4KWopa9GBEtx8 zsH4GTludpZlMCtIZvcxT16mivZUaWQEMzXv8ASzGWwGbdtawOdaPLYe9zdp 0udGdZz35S7JG2t+1NGQlEVL8i7zQC7T+nljwnIAezMo1i+S5jI4xLN2fqoW a+eD+B8M4f8xKP+i6VFraQp1GnEGnWVwguuIcXdbg3LI18hTUjlavN0AlbWQ PBzj4TILhK8RK39ZGcSPRZT8uOGeEPBXhHufJD5y6btP84lf5b1fYwrzM7rX bo99Wq/5VHzXJ2vhUzoi/tpPiKC6zYNq5thoBaCmLNSDaXmOk72kdWWBd8dk x1BMfpDl94l9kv2zpYAZ5hNqYar1nFjuOzX6gBiQ+oq7eX8UzDM4vQQgHRKQ Ltc1ekiTDRcBLJdoUng3rt2hxYKtajv0dbta2NiwTkOvFeADS8U67xzhvMyT wuczLShPte6pn0dZLrNqTtIoGvejqKwnHh48VKmOfXI+OK6zxEWuM7h5mKJd o+am8r1z+CmDxwc2j5puDpbi5tEE5r7gY+rMKh27dZ6XDeiwoNwwk4GLTUu2 UUahL22jKpbLsJYj4DHdEYUgwRJ5WJgZijyDuT/cwlghZQ7qhoRmvrZWdEcW Kkx2+AzgbwoO8WdIox4maLCzZ4406sP4vwzjfxSsNCfVCuPioC8K2iI6a3S4 PGV5EO7pZWVu0uHlCFqZ4mQWQuiPCc0+nqPZrxjKiUrWc2wUBP4asZFL332W N79Otvk5vvjX+brP8uYzvPk1feSv8gPi0qcFOqpMpoGnRfNCzRDGr60ATc9A mwFmY7heAOYu+pSK4HfUBpUW6cAR64wpkymynAozUObWwlwUU72fEyVKLzgq sBwSWK5WmD4ka62lAMtFAMUlWCvAMteIaW6TFmSjrvS84q9RqoljZzh+JlW2 W/EnDdFtoocVfniWNVO0tyJD+lkcPJKonAfDldJn5ErNSQH+8I4Lc926yjrT 8tEeu34ukJigdEg37G1Fe1QahBubLAvC03Sl16yXjS8q0xv5VKUxSaJimQfH RunTt2JvbQHybcH+2ib3zBAFDWnOxmpX+g6OmYO5W6ZpjK6ILDLVF1ngbSyS gfdptTAvY3YkISdIWzQoRDwB5+F0nI9TsCbkXsLmNbRX1mxdQMKOWOJuqwy4 S4PtBA0t0B4VDbMirjYkDCAoxPvViIG/FtBQt8TDz3IJSAWCn+PNb/DJ3ySb /C3d02N6VsD46/a2Ai+7UryMv0AI3nE8R8JlFcFMyeVoOLnf4eTuiJPsnBpS da1TVbZe6ZMmxOh8ZsTIU2Jv67yovL0gdqa/JMFI60i/Pk9ljsTIDUplDmFP 9kkHtxT7dBHI4xKsFbiir5G6OETlK3HV50iuxYicOHfmdpDJW3AelGmQ0qh8 NDKZ2nWUidhdRF6X+HCMoMB4ZDJrcxR4FIvkvq7NyovgE3NQPIvvmJELhORU LNf5PccHFNurmnmK2LrB7q3RLXNI/4ejCa6bNTzyEPnA2uDQLDYsH5naazC2 sMCaJJFw6Gdddisr3q2eCfZOrMJahrUcW3yVVMNDykUurwXny4W1wvXy+ljY tqDaitpGEK1aY5ZD8+IpwiZGn4MsrCwH1ZYzBRA4BaffJFCV8YJBuvwGctgR obADp2xHg9KnLJBuGkRnjcSwZRiMqGQYKNAKFDCgGu/+BpGOS2D4W7z5PB// bd77nQm4+V3dyx/7vF6n9/5mfP/nApAqyv9sBNjPxB+aw2KMwTdnjTSyLPBO +WMZJlq5xzCxEBO1xaxlu3gjMXFQU5u6VFoLM+0nqvwWLEtPcnhoRptW/aZE 7JIGPAzX1aDPDPaqAQ9DV+366MqxVbhIidoOydiXYiPfgQ29BGuFhsI0BtcL EFzf1qSkkwbXVtJpxhebub61GFgfjdubwHB6I0OUY9uJDj7NxW1aLgE6I3/v MYXFsY1csazHEZfRo6GJrQTPzVobvVIyNV635p2qarYlGxk4kyIaJprghzPW t2IVbYy9amNcrn6zMENoieTE4TJ+Uwx9/MgKC5pfHuXJJvI5x4l8TokU4sRI D5mrmqx6TJ9mpQVLX2tR3I1FKr43D5aDAtLUj/divQnrvijmMTz0gbKnhaW1 F4eHR4WFEapI6j5nMNieI6Dg7beJe1yCLsHg7/Hx3+fNH7Bc84ckgH/AJ35f z+p1Uhr9Tnz/5/mRObw6Nmk4yV/mV/nwp9Qc/sn4O38iG502+vDa4JH/t7dV wOM+B4+7IjwOCR4pygr2oqFHcrJEXKx890ZdZZ9CBDPTfKFrILeqdyM0mnR9 WHtvTYTGzVJasOo9LFssXstpWrAS8LgU0HiHQugVuv5bKD0fYdKtCKV5TlxX knOsKt6MlnNs5qtREUaHKLqjQZ1uuGgljWT0UCECOhAwLi/X8LuiSFNwx9nu g9wUoelBpW5Zx9Mzm56RfORbjw+UVjPMe5oxzOdU9W6mOzczomYVb140vY1G qguysg1TkAy2jV3aFPV+V+neVCvMgZepsaeQTd4ed/v1MVAK7Y6hoeNVLtA2 bfnZUaHMM4qe6SfWwtDeaUpkher2OCW3+mIANygrjE4N7NmdN+y057LIA04W GSSRbdgAbZXB9dEE1s8JQSPaEfUCgRTW/S6xMS4B5R/o4T/E+iNbxNQvMDP5 x7onAP6j+KI/rIU3Uc34+/FzfrcMZOOv8bn4a+X4mjWG5834588KrrsjuA5H cB2I4BrE6+Nj4/kJUstaYSfIxC6KgYjF4ZfGvqCropyIW60wNSqAdYM4ZwBW zoHrx/3uWr/mv23U0MENmoNFYL0DRIJk4g4EWvNd/H0tThXjm964qKqRvEyU 7vOTo7VIlqoq2z2o1ppLKvmvD5ZuicvGqXk+clIo6liJ5tPHHBjHtMAxO1JU DH5D+0cA49GE3a12PqaCSd/1mHoLLXWactZlKJTcgR3Uh51JUNyNnT2kEQG7 8Dj1vUHnu9ZN+PV94De47KMJJL2G/CLX2Wj68RNz/XjI7E+MZdEuaZh59psT JettJvXxYkhfg0nD7BQQfYjdanj9nMEwopUhIVHsD4hsBLY/Ehp+gdgX158Q /f6UN3/GGRV/rnt86Z+KXP6Je+kX9AF1oWR3/FSPkSk+GjZ+NsHG0Yjnz4KL eyIu7hQuWjzucXECdtrU6OQ+NzoXnRV7JhmIvFiqoX7lJnmJtV7JmyLZLMPE zWrYGZY75iDWMO73SY2xIxq7bVCSKZDNJaWySstHtlLcHq1e08xQo5XmnFjj qMxGqqZdaMvH55B4RqPYZ2KYm4bX/eGxhESNJ24edmNjHC1XbBZ1t6KObBUS U7s1rx9fKrs1mght1BRfGlTS5qoPm29Io6h2YaMFX2vTjZu12qKohvSa8TQD +dJcCTmAC+uADIJ8eXqmkvf9scE72KaNq4VR5O2CQq8PNxmPVz22Codl3NBD YVVkfTQwOAICs0D0viAQ+2NhIQHuT+MS7v05b/6CN3/J5/+KKPjXuqfH8mf1 uj8TEP5pCpLxZxlAGoE0cCwjjgaMVYTRkpWmDjJQNJllAMXAze+NXP1AbGsK ZLFdvaK7NJyTBk8cjDSxFsxFpyhJGWyFTU5ZVrB5Nb5/LdZl+P5qfH891i2x IHin5BL9uMSHjBAzQ+ui4RUzRt1S9vaqfWxz1JuvjvLJO5WYXJArfnwHoxWx y7oXLSlpkXfZ5B4feTdrDG9avB45azfpDNfEyHo2MkpWYbuIvotk5ZS8cjMx p4/TjyNWJnF1aTn7nrJRPU1FPmUksipHWdac6MU9ZR03nkD6bhtG1aslhWC4 sVZ5nTW61O6IQshBEcjtcXTEuthvuzwKfr29Gi/vVyWCHm+NcZEEPYPYYYPY XYVefJaQsj/Oxx2K9mnBXLKrFowlGzXiJuDxYsdWiKMhZVUO0lAyJYutEMVS hIxoZugYkFGA+RdEwbgEiX/Nmy+SN/4NGeTf8tu/0WP5s38lU96/jO/+c35g /GDjlwabHjI9nzTINC7p4bIqeWm1bq8JalSkhw7PkVDZFmYWK7k8WYW3YTmJ 8kDPUEK6V1B5cvTcSPU/r6rZ9Ml+bOheRCa92Mx9uPTTn6UfG3lAnn8USS7E hr2jtg2bOMyIXoO1XhZE26I2Iziqr4ombYuVqJzf0LFYxR2rbIeqWnE8dyxr w2lIUJI4dqbdiRFLGkzYCi0kmbor3CjH+Lxc0CNpuIQ/f3TMEbCVAPreY0oV TQ1epWy0lGKzVkPGB2XAx8h5nS6f66UCDxqILdg7OwCAvdFoOtDEdXFejs0Y C62FQ7n6+8qKqNmK1FQxnoPnz8JrT8dXOuyeWAuDwcOcxaFYnN6F/9dueUV2 RZ/IRpW3aXS8YnE00OM5bJHyR7LqCJmAl1LCqqh4VLCLGGVI91eEMVHGLypX +DdEOS499ne8+Xsi4z+QKn5J9/SYntU7/ja+62/ipxAN/zp+chUiGolM0dAy j82QMM0yvj8rqtteGVlE0iSNdRyhOo5UPe/H2aVenM5a8EymFx6dQmfVhrQD Zkuy0Juj4LlNSjZX4utVeO5qvPZ6vPYWrAX4fjEWS4eUViwG4s2vbcLjG3B/ A3b7Buz2DcoqWnOizZSgfMMiaC8PT8liGj2nZLGZ2jHNJjapXAdPnA4fPFfp wcUHZwT3IDym8vTpfN2MXNQ4+/8PDMTBt4i5WZ26mXbHQ6BVVixaTsfjpA0x qWbHLHdN2G2Rsm+E2agxOJtlKLlaZpKbo3R2u2zSOMZhS4yUV6m7ejj2DAbT aS/mfn2ULZpOxyzRimHeoVfwNLz+FKzZWJQrTlUUNSjeN1EQuAdrH/5/+yRT bM/NINOEoZcnjgZ/Fh1bZPyJrDE56CPiFPrKkoEtwd5IxPs74dff67F/INhx 6bF/5EP/RP73z/z2n/jtPypZ8KX42r+P6+8cHn6xAgebYaCxwV+vwD8Lmn0J 26t70ixiUDzS96MuNem+aKIUKivtyiCGKcLThHvDuAJyCwyqB4qN9h77ypQ8 1yghw2C5H1uuF1u6B1u6B1uxB1syBMorNad+Kx7bgOfWYIuuwv1V2M6cWrJq RFP2bXmZOlRTTMlo7K9K6e1VjGVZQx8kt4B7lY3X9Ub215WXpYV8sQlQsbNF 0V05Vuq9s3I1oyTeyYSI+jFHyNNyhExcKmJt3FA9dyzfPypTbObjkxaffYic TsEp63/xEGkJRet9MZZofS/MQG9Tu9U2PLZNfS/LFXFsx96iyRk9e8LMp2Uj Cs5DKjhfkUCkl+1YsTk4RvbFCTaDgshZkTdYfwuTT+PEEvdi8X94IOuKbpDl CUQvWRwNHo0hGjv0CcOUGaZJwjJGWMkGPSaOhMR/FCT+k8Llf8b6F1t8+P9Q SvGvev3/5b38u3/Vs7z5FxWe+M5/iusfEyD1IJoCqJHIL2RFFpJ/4O+0CJ6p PPJ9WWMJxhsFBZOgtkgcg6HSbtdGMyCHkYm1YBk6W6A5BPAZUh7lLLUDNALn a6L5jy+73KJWA4bOfSCIPdjo3djo3djE7CvskTUqr/13giQuqK3G65fh9Utw f4kk4N651zzSLGzmyVRGGL2ux8otVTPBfchc1oidgKafAV6kFWPndUcjZpI4 BF9JscVX5GJGqXL+4vggYDVHvHtUjtiK+qaqolKmYfQjwMgRy1Q3Pj9omu6i uLxFZbju2Hu6Sfal1HH3AOx68PpevH5AlZTlct8JhWUDv6I5eiCCX6FZPN8V lYODY6/0ijNrZpMbDMQnK5UUcoKhjWVPbGG5K+P/tEv6RHNmTENj02p7VU0V 8HluaLzQgO83spGc0PPBMi7oAe+LEW/+LmJQinbtDu3+jx4Tov1fPv5l3vsK 3S3+jd9+hd9+WXWkHAP5rvhuQ74U9TxtNMRL6aJHu887tPtME7TzSkdLGPq6 ireuuFt6qHpOEwukY7PgGFlU9Glw2xxFC0S5QSDIIHZ3fx4ee6S7Kja+cMct qIUh8EwQMjS+EztqiajhDjW9rNPapqEiS7HDF4EW3o5w+Cbs/Jtx+b8dy3dO p3UUnkGeHpr1hKeHPiz2KJeGxS0KuvM5YLHgEHFOc+JdSZlJIhcWv5jPzshV 239/zIGuq4TqCehwPTOviFaqx6MZNlY1O5cpDK1ybFrttH/FjCF8LOx12sQ5 Vtj6ZVoSzEtoYsL5c+xbWYZFq/AVGmMYUoG3OJLXWC0eiXOnSU1oI7FDW8NU 6bIHZAM+oTaUD0gI3gNmsmha7HtyHXZjw7LFv15/bUKZKozzBO8zDuOM3HmM M2LnSV0loYto86WIQP9kuCZ+JlL3rxG4vmxYJlT7d977D8bA/6l7dXvs38Tn vhLf8OX45hTtUn5n3I6/Yxmv+/0KlPvVJijnWwB9SaSRz9ViOaTuAuEOKURD q99YuckFE545tTBI42zlSwawnwdyhLvEIdx1tWDiuLAWbMaXxiZ7mu2sVB8B eRzt7bfL83aD2p83qL53J67nC7Hfb8W+vxH7/0Zc773Bjtdom5SQ51PVxAXj caMFvy2iW2oAUSCbQIap71AAVtj7gjzNJ60gj2jtlOwYjsgu4K2Mx8VQ1lnh RErKcs7eHOKazSccDd7SruWydhQTUNscmbRbOY1jTTzNNpRBbKthKVCHJe/f VgszimkRtqo2HL1uduY+N14f+LoIby/PO5NHwttMueuH0U2Fn2x/nLg6pE4v KszacGq0SXG2Lyu8Y00g7b0YymJXX871ope0lGsUzqf1LG41aPPxqsWqKaw1 ULYIOf8SYSjHM9E0Mbl/I3gRxcTkBGhf5c1/scjx33zF14iE/63H9KykMP/J t8T17/FjDPg86Hl6Z9QupXUmq0nB7jcTsPtU/I99vATs0syf1X4btYNtuZ46 GOYYneuMkw8nRx313Ej2z471XnOtvcQFrQZ0C+IuXKW568OykOeFeH2tTzW6 TfjMzRr8ui0msdfnNd5FscZ7M4Du+qTGW5blK+tV9r15VTKYJhm+qAnsTDWB ldm9Quei2u7FuaZlWp6ru/g4wlzK4u59ziyuqqJR1onsR2a1Gq36DuRFuKot 0QDBVdgk67ExNsuyeAc2SF9tUGJSg7hNDuK8isVDnGdwBnEviHY0wb4raP1m K0bpVfdVgLh+53I4rAxOu+DNJM9etVJWvfB9H2Xw5vs8LDr1RVuflkuZG+Ht T7KRUekXs4KxGbTlbC2CTU7TRmKacO6rxC8CmR77Gm/+h4//LzuMv657ekzP ShT+3/Ed/xXf/Z8tQJ3BXBWv419YlqezIq+HOCvw+uLue3Gk3o31Tqy3x84c k7eEiJW5Bg4po6nQWCVhh+RtGczoexzEBfWfz8u9QhDH1Qv46QMU9auYcQve v1AylkGZJi2XNUOvrENWqwa3TT136zVNq7mMxXhcWQG3rP3YJCxWxEhtGNK2 41E4XCWF68yxbXoenJ6f98Z5vV6u+iPIHVOoO5W3Yyqhrt1DXcTt/UeVmBuN zZl+JdWu+MZikziXwdwS9QLxoC/HZmE1i6avm0X0t2LD0GGzN+9lD7bFKyOT KzQrAea8rNmEeqZXuUAeM4P4vQexMQZUiaBIjxP9JrnG4cKVcJdMFNp1/Tdx XpVGxVjcaBBXVXlIg1OrOvjAtIy9pQHpP2cJa/PQFgEph7WAW6Rq/0MsI6hx 8eFvEN2+yaTct3RPePgNe4Xw8H9l+cp3fs0hn5E8Qz2PeP8cf8l/SNDur+If 9yfxD7aSrhE64r+PXquRjjSaSFcH0tVxcOo4SHUgXT2WcNuEcvtwwPfhrN8j YdJU2awNaiOY1/ZJTrZyUWz8eGUU7l0m6UoPNvYOoFI3NnUPkIqVh15ZxIbh vTtwDaZZ12Zs6o2Sq3A8OhvgaAvrpSqBzBVSFXICL9bz+biy+YC+6lDV4GHR aiOJa5whEIlcIdCLLcScWBVXQeaUjZsRig140cxcnifAay8py150fFCv/ejj 2FbqsaMRPGvwsBjWDwjw/q28bPnGjtRKYbncN1YByVZrIvQqsX3WY+knPKhu yk0R9VYA4cx3cH6UqdzoyJ01/HqV3rmqwfYr0TwPn0GJylysmVGeQj/WMDQq DIwaE4dFdSiJHZp7G1GvLC33nqxcjZeSurJUXFpnTRHvL7PyWNXHqYZ2nsg1 IF0EKcFcXQjWGfHsm4S4uL6tLfsdZum+y1d9p64Hd8SnvxnfYjD4vw7+jPCl 0Pev2Uii5+NZgz0fx1YRvI9VQh6vPW2CvLcpgRoSqfdk7VG1Uhex2yPIm4mj OwvU/UTsrBMlVuqPBq898is8vxbGqb4kapV5LQ1KFSbrerHTduD7bdjV2wBb 27ETtwPqdkilsgyXhEWAuwW1tSB/q7HTV+L7Fdjdy2SkkI4N8AoVS9CVEbsq 1+tmcasRuxEGrY2tbA1q5HpeclBibmamAc/WmXFyrr/7fNbI6sJ3uCk6PWaF GoK9bEp4zbFBv1Ny9CvN4t1bhn6jCvZa5Xxes2yhbToaxYe2plVOkc+aNFbI sXqdCvTLJNbbrvF6nBa1VSNQQli7JPocefXJNS6sNeR7QRTnnRPVV1RhnarG DCqzdmK/7wTSs/A6rFanMeJ7u+K05lB47YjmMIVRVhnX88UIno8mwktRL83S pc0VPowtQ72yENY4nud3HvFytItYlUNdLWAaSd93iHNxfY/b9wEi3/f5ggd4 8z1l7b4bX8n17QQJv16CgBbyEouriN8X41/IoN2yeL8X/zNpBs/KFb8c/8Mj kY9HhGYTdVybUuSzQuy4qEIn8p2Cx07Ffe4IFmFPj9ZC58cujbKs3c2ShPbh /g7s6q1Ym7KbsFvng+Qtxvd0ZCXRW4TdfDtQ7xag3a21O7PbgHi3S16yYMQY vlRikhK90TR5rWTrWtLi1fNsXRHRyob/NbnGrp4j2acbcW5MCdUrntW9c48j 9tVbV6I0a9hoJa9XVrpIGzX8pBOjfWUK5XWa1rhBxpSs1wd1MlXKHJ4b1Mmb 1MM7HGV3QzJVNccsk91ZoGvAF5yyguTuZGVsgq30bDVmUJ6/S+apk6JxavB0 2RMHMHP4Ml0CgyNWW2UVNg1yP5wVdM+Dnqd7VYGt5e4ssPVKEqN5KeB9JSsC 2jLA87zu2wZ0tQBpBL4HCHNx/YBb90E++kPee0j3+NIHcSjwtHsp3/Y9h4jN kNCjoOeBHgX/Ov7ZPslnYW8V/+P15UNZoxyl8CRkZakOlk4E5DWMLD4YQe6S FIXXO4a75H6nYp2Fx8/G9+eogTFsH0PA10TfF+ZUbqiFEVJ3SADVD2TrBiJu w+ObsNZja7Irg87pm7CN10mdHKQni3Cdno/XsDBL2cnNOfp5X0EvPfG8ryzM repFq0jmjZhskjehjXTJSqR1qsG+LBfU8d9de35mLtSSGZ93LKHtZN6ObQ5t B0bldL5k8VzVxVaRtWjWN18Yp7NolikM33tGYd1GtXDT82erFMVsulimYQ9B Ubw+9p0FoUm4ul4XxQA2beSSmL8zPne2E9MVo5BpiMreSyqJmcrZo/nyYyQ0 3R0NUM389F4snhtvURK8OZfzUWxVBJtWW8siV1+KsDydr676qNXycxaxVsHZ dyMOCcYIVT/Q9fdBIheXkO4hPfYjrB9z6bsfc+P+RPf4kh+F122N73vQwd0D o8Acfz0Ld6sg7m9bhLgykmctuu/JUstVFtDrukIdkLdtuHrtyi2nWbeYFgXm THYQ3i7EdrsI95/v9CevUSYv+AXeGO1bFsce8CVS2PXgqs2ms82Au/VYa7DV 1ymLdye2+kJseZK7m0DsrsWpcHXtBnwWNSfXVlrsky2k5G60kLaszbbRnqVa L1wGauJ1L8jFc/zH4rezgXfHFMqSCLXWOLi+yopltN7a0QTDaV3C269YXSJV mKTNZN782YTCoRa/XSYCa1XE6lFBa5kKW4PqkLAmsttiA9kbZWo60FB2tcyc xaeGZ9PkydYjy41JslcZkr+9GZh2qutyb+zCvFsnQV0nA6/59yv/05yipQ1i VmIti0t9TFqVhfNY5mPRKhz7egSSnJJ5HIvgYyD2EPFJQCao+glvHiZ8PUL4 +qnu6TE9K6r244h3Dzk8a4Zl/5vgWJqy+8f4Z/JPLqtQWKrOqhO8PJTRNOuR eGfWaC9wrw5ju/y59wrDggY8WERzoN10peb6Va4iRSOGvUQrNNpcGjHsmtgL MV+X1GCEtk5NO4PaoowqGF2wcXYhtvRCNYytxmuX4/JL7dwC0bNrQc2uBH5d htPi8iYjQohhRs+aNYylfQ9NgtNEKxexIvKyWpzbZrGpcnDPy2NT7nX8tm1x rvFxwrBSOnZPS3TMCgy+uFBGx3xxwatHWFY1gVyV/tfomBfHmfaXrjrb5Vvf g+97oz9zP+BtQI6iy+XNXPQ3mO/JlSWiOCsqWIRp0DUBixZqwb+3UIt05mVU G6RubqFBCMfETdAllKlEmpVPLaXmaZiPLNOosllEabD11awoFnjI+paDrEq4 ihj0E4OlRxRs/hTrUVsEr8f46OO8eYyvelT1Bb7qkbgejh9igObJWQpmBmQW d6ZAxj/0S1nrWTeLN42M8Z9fRsas9cF3x+4V5+4UiA0KxMzjfka0mj1dmydM wXqpUhehanW5A7FCG7cT19rg8LhZXYh9anFYLaNmxppr8TpWz5bn3vW34Pp9 A67jJGFX4uR4fe0yfH45gPHkMhKWGjKnZdRm3a6pUKSslaEst3ZeZkOCGW/U rjk++JW0MlS7Ox1oQLHnSsDSgDK1BPW5sjK3+Vs0pm2hDuhyjWjjMKIN0QaU E4B75Re2SULJfokmw1VuKDL3nXnnwnXRualoTS00bxeoJBpmoc+JavXJQq9u zd/uir7HHWrz3qlBDm0NWreycqgPJJsRrzSQtNyYLwb4IDINIA29LHj0uTAj XJb0T4NGQ65S1IoAJMgiNj0mBHsc6wlbRLAnefMUi1tP6gVPxBc9XmDaZodp ZVjmiZnHsZSQWQWBPPO5BJWm+/0QDt8HsLwY7v54AQo+T51qttufhbldu6QD YjA5QWSsW6pvOsOeisVchGl8X4n1WnH8PgR9/dh2Jn4blPhtdS1MD9wmL9B+ TWNdpwaGTcA4BpSrhGF3xuGWt+ZeyNeOaM0y36a0ATUlYWVBpG/JqsCvagLW EfzhrFFfBGxeZtN6eZVGFIV7Fx9LADspazGIbC0plrKwqqRYVQBpSbEq/a61 KNwGFja/dke2qLZUk8xXyZBpo0y7tmPzbIsib07IWK0OlwFsgkF1vdgIXorE Db/e4Frrzcf9wtqAxGzmODdbibAgZDP86qoF3/YwWneP+hLbcqcRw69mArYP VWCXFTQtCebz+lVBow8YU+xKg8U0ULQg0RiX4dYIzCL+EIeIQU8o5fUkkYpL seTTfOgZ3hwkej0jFcjT8SVPxvWEXvq4IOyxEhiz+NJyZQZh/K19+j+NJ7/0 M8EXj0gdR6aOK0xdCrf7Y+jPFMA9omDjcSZMxtcpgLCpuGJN06i8wZgmZQ8y LY0DfF0YVW2vwmJ64kqlX2lJtx1fd4BG7cBO7sYu7pEB01qV5HslTqKfzgqV 64Od+yLZFi/KNbupks3LOsxwKc2B+fiRZ2QaP5b1WyXxY8G+EvSq5/RLE35O 4r2T+JjucacDZ5XrP37o9RzDxzJXOT+oIiVeVRMh+e+3TL5NgkzVuAsAWgsR Pt6B8DEocddJicus1zYRr351qISUAieS0tB1AK8fVBafKtzrS0DrxbXCZ/3c Go2FafMwLKukE2thNvjEWjASDsMmwqCJjtgeWo8hY6MSo5n+zFQYzRQYPlz0 RUivukgzXClgWdHRA5YPEVsCqywQKEOqp3OIIgwdYqvBYdL4tkP81q2DfKFQ TSN7DMKMjBl0WTRpqTFjXx62jHWlug1jXfx/jBY5lkNWLUJWB45VB45ZB44d qzAdqlDepQol5xDMwDoR92fjQjUHx58axZOwb06KVZ9zsS6SKq1PkPU6ecaF kXo34Ps3Aq4uA6N6I/brjVGXcSdY1kr52mxVxMim+MW4IHN/L8A+v622QAGH NcN7PUYqvC1jW1XdU8a2HFylI3tGam3bvda2VjhinhW0FHjwvFxVUc/Lka/n vUuPJWzN5W1lEdI1wDdDrrJpEt4LM0168SJQ1fRuBnDmbJROjrhDVOtO0a3F 8tBfrYsTDX852Il0a4sa3fvxeHAVvAP3F+AxSiq8ivay6HWZotY8SSr65XF5 GpDrZOxQcy+aoMJT6Pz0Ncf2mKNvK0UtX2/0YaKhlk9w+b4ACxGtzmgJLi+Z SHPyKWL5mqJHLB8W/jhBq0qkikB0iBvzMG+exe5s080R7Of6kc5wD0/g9MRr PHplBfsy2HrUwZYFjVWQ5ZNdXmZm4oqqjH1ZosukZSFbX49w1YmD1gm4oqiy E5ehoJMJkzYppD0Z35+Or2eAY/OSRj4+L7YNU0T7UqxXi1URrgawcQclYJyP +zdhc14LqLoCsHQtIPxmrIXYuEujteVSVRyX47XM0NPD43a8n6LZoiPKGj6Z 3EqHMZpo1ne0V1UXU+FEg3VluxfLpooxBYXc4eB8uMerMeAT9646PqiU6P1x kiUObEclePXZ+LJCovVxVs1wILtNha5+dgNFz0vU67Fal5/lOK6rNbi9G6DU r8TmWsV/A/LHvx375RZ8vSnuFRO4MsHwSmetZqB0irLw/TLenYv9NydKHKfi 6/hoVB1cGsxpI0w8rDe0ofvclS8a+sy7B6UyPVca91nOyjLuZUXCFJAsy+7j vR9mjfTJqNPjgJUnsJ7EegrraaxnsA6SKfEK2XYY11sgEeEHK+PCdbSejcu4 c3kPV4jwxBEtQFSLAGXhYBk4WRbLpBG+A8AyWETsP4v/tKpSYjkw1WJzU4eA 6b5sjCroB/L2zTFO53oq1tl47Hx8vQCP06b+wliBDhKIfvD0AQ1ruBHPsafk zih/WIgNegvA6XqA0lXYwNeDN92KmGCRWjT5dRlevxivWYCNGkqHV8esO0tT pmnlyWKWaWnI10zRVdG0VABTqeChnov4Fe0xv4HfxxRbiWBfoCUCddPxhqpk jmLuKr7/qBiUgVVV2dASVl7B5cdeM2GVClPNT2OpklUrAESrVVlZAaBaieO/ So7zLBsOIA4cknqL1iw0obpVnqX98i99Y9RKU7llgtSLHVDR/3G2Zmv14e8Y wN8zhL+L6YndUm2Nj67gwVt6f/Sbvjc28L1V2dpGtVZZidArGzxQVZUGfXLK yoJlJcEUpHwy3UqABlKPZEVsF9gSQapefwqww/UM1kGsQ1iH8fiz+Aq61NHx LLMWHUewMi6KFDszXHe7snbe07MZsYuLcUL9CBgVP6BePxzjQwMtCwZ9IOgB y6feU8CywM/alb4Y/1nWplSWq/LtSb+UNWoeQidmR2RRodK0X+1IY6VCZiMa 25DYnLYT4LALV7jduNruAnAErYOl2C/HuiaqoOfHZjiOuw6bkrmqLdjU67C5 V2JDLsHXJZKhLsaaHxnU9bhCU6d1Ba7Yb1B+6vU6ObwvUBmDMsezdFZrGuxV 9JA3uH4XvUYqz80iYowLiGHR3SreewPvaZLqZby34JjDVHUH5e6mFhmt9A+l ZcHU3IxXBG/y7YUNKZ2ixpQIRU3WSiAUU+qrRKU2i06tkfUdE5RD6hFnzYXp 9IWK78IoIiY3r4hdHV5bekF0+DGEmoGNNF3jUPs1v4AGjZPw/5goV9q9olLB Bd8Q6s2x1fh+1ZUaRQxeS2ppdC9gSBHK60dT4YJPnaeChTIK5dPlPp57NAKD xXHPiDrV60SmZ4hEB3lF7ThMTBIidXYeAQwdYSAw5gid7Mdk2dix+erMxoFT 8V6dT9U2ErMIWQZl+NwjRLmIeIdE00ayq6MBKgv5Uj39n8f/If+XZFW/mZUn 1FNNQzA6qyszFUK9MRGkxotKD8kfgEa1dC8+A9+fh/UC7LWXY3+8Gl8viWKZ K2OLxi3af2EfrpFFy07RfRqMsluI/W7zwaRuBkhdi3DhZqz5+nob9utNOAeu w34NGoZLlZEKphepp0+akUrnnqYCLJ67Iwxn3XiCSKcK7ahY00zChbxmV/De Jbx3f45MS34uyKTYu7S1e1T65GO90VRXRP+yISwmGGXsbWlz0ifvtrgGV581 GkuxWV6cFKywmXG9Cr/DstIOzYyNwneOwHhdVPRZne/C2Mtzmpz0AjBNlvVY L/7WwqyiaNveJ+o0UmFFYHqHCt8jgcnqe6as8rU9D0ymSTDaZHoET5ssPe51 CCkokTKVxXSWYHoygoKSSmI1ZDcEDiJSZ+dh1ny7yJWASMQj4M4RNnmMO1LP xo8/gn0wIeO9jI8RjIhSRCwDJaIZkY2fSRpWrx8UADZWAj0YWdr8gawQXhGM THDlwcgUo38Z/1+knL+XFYzpM1lj3sk387w7KxwXg8q9I+aczJknzObrz0VV J8XpExdI2T6I/TqEvRoSmUXjTrAMWB5tBDbjc3qwemtDMljZoCaNDSr5LFTb 4kIA0K2xkkdV+zUAIuaa3oD9Sab0aly4X65zxI9N8Y06lmsaTQXakgCBCfF6 nmsSEkl2sJT3XsZ7pJqgDfbYMUWixC0xBpsulIu/OFF07zFhSSY+8OZhvhvH O+o0ToIKLCnMT16n2TjrECKw/rFeQNQj0dTG2Fy4DsARZJ878+GgPuHEjmrS 7+fjPedpozHZFKabTZHcs1uTc8ckYoN69D0MY02sbsdkk8Vwac3OZ78JRFaz 8wIpD0R/lhVJJl+n8+zIMt5pfc7HbZ4ZGQhZhttAiPmgZy1OE5NxlCinQoCa gDlAH2yPiROzbNKkfI3NJk/Gc7iHQ8Hn8CotvEVvNYzix3Z2PpvjE8lSIz4Z UXokK9QIP4h/1nfin/k/8U//9/jvMPVBSpIsmrOcuEVyadrJDBKD6LNN3TfM u+6XVUgQSw3JSmSidHScFdqNa2yPiLUpDSwPfo2aIwaAS4PApaA+Xou1OVp2 DmJx1HevXNk5tZG2KBR6UmXAOaCFwiA1jjBxlKWaysiRb50+yugtJL9H+uII mE7IBBkGQi/Mi3SSpi8/PsCUUqSKgSS7SpWdzcQFVW2CRHtfovPzOU3RaQmm Wxs6n62dJlQ3Vkn+tlV2D2ylWYNdslbZ8CD9ZR+Dee1fGw1aC5sHZsLZDzEo QcEZyoDTV79P3sNjtWjKOoR/Q6OYoC13KjT1JkHJwjZfkqsK2bzm3Fpl/jgr QjafUEqFAz6Z9E2c1d/C2f1trO9ifR/rQayHsH6M9TDWT7Eew3pCCSSGaEQD MiICElGCaOGYEHmQUIU4VCfWYEsQhQBA2ZQpWu3Z1KkI2qZNC/fqfAxHhK/g Kw2fPDaRO4XcVIBByziFQI6c6fGsSIuX8aWvO0z6clZ02PhGaJ9h8nW6T+pI tOGItOPItAOT2mu/iPVOrPuj4c29EnBOwpGlAmoqLj/TcNRp9MFJXLPka0lf rx3YLd3gKz3Yxb3g2r2aWXylUpnEph5ZPNyCxeGbS9Xo1Y1d2yPtXrfqNlvU WcHL7BJNElkgrlRm6WDpb8YUZsBaxpNIBdJmZp/6dniUujg0isyFRDMC1uTZ bnoyzM5B6Pk5MCm/tObnA0wHWq7TNRMPWOxWNh3EDGl8o5/XaRpdCp0yC2Sk GzplVstgd3OcFscm9mU4xss1OaZbooEV0pjTi2Fn1GcGfXma8n6h6nMsswzh OLMDdVCzHjgQc5IQqU+dMcFgkM0Se9XF2q6YzWvKDZVSPbmh0q9kIxv4jCZZ M/KfZI3xmk8iWYrb06Qivd3W9j2c5w/gfOd6EOshrB9jPYz1U6zHsJ7Aegrr GaxDDdmiRjQ6Ajw5knOiiER1Yg+2FGAomz5dC5thxgw8gbt1Po6DgtcItjw4 GTAFwlRklwiJbW2HI1kiKJEokduVZZO+EaH4P0sAyae8fQD3uQZAIklqA0nq wCWjE3y2s/YurPux3oL1JgHSWIHRAWzgA9gI+3Fp3SP1yCnaHP3SNs3DJjsX YHMR1ktx/xIAzWVxKjCLwTfiMeqarkEwe7PcteiysElecRvklBnsU6sA6Q0K 3C5tSHH77pd0qEcZQfK1OCNIRxG0CZFOztNHF+Rte/US+5hLebvx5wNLe1uC pWa+CmUtMD7XbemksgiuqMaF3uPgj8U898ropRCc7TdirVbOkGsbVreGEy2R wW6YynabU1/6HHfoN6b36QCO9hCONr0/htUgzyFEE9WrNRCbT3crjdQZPRPa o2P9SEhKq28GSYzcUomA1yyVRW4+fZRW3L6Z+Xx2W9uDONN/iLP+h6AkD2H9 GOthrJ9iPYb1BNZTeP4ZrEMiR0QIIkWM0ERtiCIVMAQAwqY84QQ8MXNmNiab NSvci4/x6Q16YYpMRpkKupSxRBdR6VBEJUstEZVIk0w58O2ISBa6/Vv8n6SI 5FNKv501ppQ+Ho/FB3HM3ofj9x4cy3dhT78d661Yb8a6W3lt9pNPx3Gei/tn 4FjPw/dnI0g4B3vgPLUWsMWgB3u3G2ixA5fTHdiz3dhbPaBJwer0Nlwe6f9y NUj9G2ursIdX47LKpuLVQKI1uZnznerNa0QkypZ8yMaAwjcUlxXcUmVAkz68 hmJbPbaN1APWZLlB1bQck9bz3hk5JkkTsK1l/BnDB8aPjjqplHJv00x2WYyW ulSVyShTEQAZaBqfNVq4LKjsttuMtRaHfrnG0G+P4+h7VfxfFPvNb4rSSRN8 p33CZ+ExzvQ7XYLvXbIeCrLJ4ejZsUssqHCfCjOACouWlAWlWWvrpjPIKVMk lcVlPlGUZqu/mxVJoh/h1P0xYOcngJKf4NT+CU7xh7F+ivUY1hNYTwFinsE6 hPVsA9x41kPIcDgjSMHlEuhCmMlOPFGrPZs9O+vI5swJ93CB5xN8ARdfjLfx /focfp7BkEVunhxh20UV1CGppEIGiSVARmrMxD8Q4eebWVFi86ToH0rg5/cd /Hw2KwRLVlp7H45fEH13AX7G4liOA/yMQ3Q2Dsd5nEx4d+N0Jhki9OzFftmH fbsbkLMTe3dQe+ilitB6cNncgcvmdlmPXot1q2Y8Bn+WW0B+rgfkXAmouRr7 +AbV/Jeo5m8tdbclIm+DnzQ688KkMrVkWkar6EFJZJIFC5pKQDiN99hbFCxC FYi9jvcGSxBnXE0Q8jMznmrsaSUKK7MGbVbaN2c88ysoazoJViuB7qyUddR6 jTrhMNpe4IZ1ya3SHMYeHNNurF6s/mh+HDrkrnDqSOuOO1fJ6j78fv0axnyS 6M7OBmVkmEG2J5pEHhDVCZkELzaynJDHHZ+ktujLcMfTnGaRl88FWXL6O1mh erTE9CM4Z38K7PkpzuVHgT2PAmsexfn9GNYTWE9hPYN1COtZnfcJvRHmRLwR bkSwqRNUagIYIk02dy5pD27HZCedlOkeLgR8hq/gIgil4GMcyPhPGpWFNNFB STQD8Pw0/mEE1u9lRSnta1nRgeJ5z1+VgI7V9L1Kkgfn/ZnZv3fgAHbhQI4F 6IzHgZ2IAzxRoLMLGzv4352G++cKcPZgs+4BGOxS+ezVKsP2ge/04oLZDWCh 4+d2AMh28JgdSgmQhy/Ahr0ZG/c6gM0VAJmravPldXcrlvkb+0Y4Ax3zuLMI zPhOVdmsrG83aSNpT+zs6q7jTcbDpztG06CBLJzsPpDj0L4SHDoGkVc9ibz2 H3Xk1cyfvYoC+cirrIvEnImDbcpyUaANcnzaprGwA/JgZ72MY2DDmMQ7FJf3 4r39Gj9skyde7xJBJtI+M4q0T5IJJydODOFv2Cm3uinYdeOkedwdnZ3uiq2c pih6u1MUlcGQNxOwtPTvZiNT0s2iLZ/88fUxK9JbbSwIrtvbn8DZ/SSg6ElA 0ZOgOE/izH8K6xmsQ1jPCgnKKI+DH6FJxJ4ANu3Enezkk7PslFP4HW7bs1NP zXSvzieAR3wJXpzjkhEjwyQjQyPx6IjkAyz3B5m4paw9Hn03ayyfmSAyJUF/ XIFFVjqzkj6DieAz0IH4uQtHdSyO7ngc5TB+Yrc8qKcpRTiEHTyMuGsn4vWd wKFdwJ/d2FHDKuVfqQ63Po2auFHK7B3AGOYBtquAskIuxOuwk1cCp+7E7l4A snQz3kevzRtHDNFJ/TYt9krHSRgWWSaoanB1maF60tEmDJiUWaCV8Z4iMGV7 7j2WmDMnx5xS7rN7VO5jcddoGehmskZTDqXjbwqbOeM+oVi/ST5NnNHanw1J nRFG3qzH1lgpYf6guoZuVKWi6Ay51NnKXeC6QmarUN+nzPM0vJaXvYniPntk cRGGE+7PwgyoNzml0DvF3ctrYSnvMcAx6eKfZUWs5Ts/0ljLp3YeyIpivAmo rRAfujoomu7sPAjQOQjQOQjQOQiOcxCn+SGsZ3W6l3EdA5pIcOrED1zyIsho AWHq2Wmngfacfnq4B5jBg/kL+OIUcowGGQUi0BncMOvd1XVY6Sdmxlm3owC8 qNoTVH+QwM1Xs8Lu5J+ykdTnd7NGKaOv0hdQEyyA71MM3RWTz0z1UL46RVNu WIno08WInWpsCKHG+hLBzE7sqZ2qtd6I525RN1Iv9mkPoIVTpgkz23Bx3Cbr kuWaML0cr1mM19+O996Ez6BS6Op85qqvgplskVBjlktlmmqLs3yKp6wiP1JL XcxZmJcjzETeqB3tvuODMAmrCQizp6Xo6mehNGXRFQF+pBNcOaXZhd9xALti B9YmoEIwr/S1rdDOYRV3a4Y9R55Jpkek81sf/pZ+JZHHx8FZnXGyc00SIPNK 4v+f+hHvM9IKuvxONlL2Y5mcZhEVAwsTQZPKmMzHxM9B+Ex5D7MjLB+ZpIdn MGtWEyceyaOoMgpjoZPjLUSOWkCRdgJKdsYZWtgBZ56Z4azh93ycC6/KkYbv 5+fw8zyp8QgTSl+sqR1Wpqmri6jIlhK2l5CePZo1JpaJrr7MZd0dX4r/w5TM fC5r7Obw6PKuLGTjgv6nI5olUfI2Xn7yvMIMaOo3JwWeEgehPj+aiV8ah8hc H512KcxfrOJFn0yhqQChVjYMfdumktZqjURaJlnbbTJ2u1HBlEeWVPPD+jqv yL61rKo1f5QMTmP+pj3P35zVCC6iL2/7fwZc0niprPN+NL8QSxlXU5eF8k+g fSgHmlHwvBER8TYcxF4c2CEAQA/WFixqDJcDFKxCZbHSZfh6Kb6+HOuF0ZCN jdOnqD+sVxtpGh6frArVsDbZGFk9Bwfc1oClrKO+rOMipS0ElhAjtbX9O9ZX sb6G9XVJdtraWCD/PtYPcfI9hMX08CNYjyo+Cn1eB6NoeSSoGF0hqKRUhaBC ukEwiIAioIhgAnAhkLRn8+Zl2VlnaeEx3HZkZ5+d6V6dT+LQ4IU53nisMZzh jyrDmVDIOgycOQiceVqhXmcn/6zHpEhqazMW0wxjyPys1ZUs5g8jlvPfH0ro 7Tg07dL0fDBqet6N9XYZtHP+xFglbu6WnmcaDvsMbKeZSt4Maq7FSWAlpwIv zsXXi7H1Xh61PFdh3agsIVkMs4Y7lClerBEtdC7aBGzZkA9VpmTWjNd4/eR2 v0zGkUWQZK5FPlDyjkWGMUmBigqs2kRgSZKwKcsQF/Tl7EaEkTv3238uCNMo ak4G5w2NqEtVxUetshdT5zRqBkNXxSIZES2Rz/oSlRQ3SMi8SUqswawPu2Eb 1noAw0qnF2wUMTMhM4QrxJBUOedFreDcXCtI9jKoFq+JstkOI6A6lYjxOsFm zIUAY50TVKyZwVCZNtBywZaECTFRW9t/4cz6GtbXsb7l9IA/lBawoyPUncaM eQTrUawndGaOGXNQ9aZGcDnSAC7N2IoDFqFFBJV6gJJzzsnGZueem+EUwV0+ pkXU4QsNXgxaLFAqgxUiXlDtHFbSmn9AV9fjSmoTOSl2ZJGtyMNUQYoFRkTs NDD6lGgLIaWz9iEsqnJ+EesdWG+LNh53YxMfwMG/G3T7ADbCPpy+ezQLhT1d 87AxzpZseTs2yzZcmbbnte+r8fhNCoh6ASucfUI1zno1nC6QVcdqbNRVKqSW qXDSmrflgK3wxCuyH+Ppa94JZQnnY2eKKEXWpR7yHiMBZXxOWd51zAGlM+l5 31/WKNFyvSmNiPivMVeOdAqTtZGSEVY5ctioYY4i5EjCO+TIsUEa5PWqdQ8g OqLV8C4Qml15NJTqj2lZ/DLVJ4ek8jtblkADSu5OUyTULzZsLaPjZSl6QFuv 3uC6SEj3jRA+EvpkxBMfBXlVH/HEakuW1LUcS4iC2tr+F6fVN3B6fQvru1jf l3TGyEpn5yPAjUdwWnI9hvUE1tPKrYwf/6wUewFLjpRiSRlJSXBEcAHoqAtF 2rPzzsuy88/XwiWFt+3ZBRckj9X5stpKviWHHQ85xCtjMmVwQ+xjpBRyMYdj bf4xSYQ6Ox9WHb9e/5HIW2AwjBT/pwJq/jprNOr4fMT4T0fc/7AUyYSasTiO Y3F9GIsoaSxIKVO9zL9MxvGfha+nYw/Mw33Wus/D/rpAc0nYXNOLtQNrK+Bm M/bXVlwTt+Eatl1p3jvkw7gZcLMWj9GIYzlgaBmuk0vkDHRH9F0kOec11DwX vfrYmIupj3kepczFR0elM0ZwDidYUzjD1vPk7rk51HB2NNgTvn3//0NQ06ye lKZ2zVMj7cOy1C4R3aiLj40oO1imaeYrpYZarFTZeomKKSbfgMNOV/P1sf9q UZxgPlK9x5J2GPtwvq5OQzhkFLMPKtgerzUs2jJeqi6qu+6R9rSeD28zc5+q hMuvxi3tU7lps6fVjiyVa8mWUDcKbQzfAU35rhMMm1j4MSnzWLKeMOExQMpj CDKewHoa6yDWsxFijpRCTBlVSeBFUBGxpU5Aac+e9zzEQxdeGO7hCDiU0Sv5 DgMWz2N8eGSJXoKKhUWhTeuwNIZBb/gwQOXHigLZvNHWZold8pf/agFQfNrF BDQhHCJ3IaBMwBGcgCM5AUeV3GWCzF3pkrgXJ/I+8If9uBDuww7djZN9Jy6G jKr7cPJ3Y23D2gJQ2YSQZjN2Kg0ytmJHcrDRBuza1XhsKXbxHbhgLgRXma9k 7i3Rg9parFKDjFQ97JXDvl7kW6uSJG4tNcvPVXqSykxsBBPVqV/Fbz96LMFk dlYrrxSNoguuaqKq6uz0HocpafGVad+iYM48TIFRILNC6bC1QJX1QJWNGi+/ Asd4jZx5CtKyoFKUN6C5C7SNPisK8ubKhYdkZVBtCcGQZa8uXGPlTvtmuUzV R4jxqlK3n4183NK2ZZpfKwpZ2tYq0KEgxNYDBj8dHT+IOt8fRY3vo9L3WtV5 4sQngRxPAjm4nsY6hPUsztcjeUYlJSopSSlBEGEFUKNO/KhnF12UdWXPf364 p8dwGPB0Dil8m/EUfqRlXMhRPJTwV/KhUOhIP6wMbmfnY+Im/HPb23+gP5// hlCQ57/mPyLwpiFQCiPWnPDL8fC8V1mVThw28hLCyGQc0snKquwTR52BbXNy NAq7CIf+ZXj8Vbh/CR5/rbrJabbag7UdF6at+LoJkLAB23QjePUmzRXiuO9b wE2uw3alDOYN4NxXCD5uwGPXa1tbE4If720ZW+MkqRmYLztX1YJG6cxsL2Em r+S9Tx5vHCl1qt+VQ8nRxD+m801dCb3AJXUkNJeKoq2gGGm2Ss0iG/JOpyW4 HCzRCPd+zY3ypCTV2AUHwtBOwNjndOnrhjRddlocqd2pvstdaiWgO3+XRpLf pzC8LkLyjqxoI/hgCYyYnve34/626k+q47XqjwlZrK4c9LtsF2A/ZUfHj6J2 tzF/Qu0chSuTJj2Dc/MZQMczOE+fwWX/ENazlRDC85sQYiSkBD6IFIQMYgd2 wsUXZ2OyF7wACIJ7oIV4VM/yVR5NLOoxYsKf5EkJfyPSJB/lBE+Lw7EX6zHR rhDpPaBMUlub5WitscAELWVkpMjPhiNiwjrmZkMiZWwkI0SRqWpv2qOhsrPU 0jSMCx0VvBTTUcCyB7tnN1BhGGhAmzi2Ne3A2ibv02uwC29QAoX0eIMGx94K QnIDyMjVICGXAUF+QU5dV0UPikK560dl+7pP2lOZokjVWOwRUU17IxE5lGPH Z485dnTmJhNRNlOMD2ouWSmb+trMX8JqPtYsafUea5ZMYxpLnZCFrI6NkmtV nNus1AklAcvVKNsjP3grJBcsJHjBX+J0cecryxbG2jGeOTF2Ik2Wmc0w/gvD 8gIsDEvfFIsC98uYt1EPZ8OnP5GNLB4zBcuUyZ9mReHYS3FNA2eSFJP+Bwku M5LMTHZ0PBLlt48DNqh7exrrEC7jh3ASHsLJeEjsY8aMQzhBDwEyuI7k6dZm sFEBGYQJ4kV79sIXAjle9CIgB+7V+RgiyxQ+PBEpgw6CWFksE7y5DseK1WNY D8ek8wNqTG9rM4HKf2aFOIVJp7R0nMLGhzPT49ZU0glupSzpTNCQiv2CDTpA zogtsmfg6wXYBS+Wl9ZOnPq7cPHZjV20UyrLWzR3ugdrOy5qjGM25rnXRjHK fIlRrsAO/gVcCC/BBdE7upvg3/cbETaq4heDjdKuxwQ2CtntBJ7V5/Ae/UNA 9XHv88cHNtLQZU9l6FLGNyx0aaWvyLT9ZZO80tCFSRDyDbYxbsKhWq/ualr1 bVcShEMkVkhQOxgn3I/kG6+oDeS6trOjnv9kPHaidEyDKg6PUx/RMP4RO6Om 7S7nfkUt/9ud85UX0Jqvg9VtvNrEOqe/mBVKExPNmoYtVZkEsSz1+vX6ozi1 Ho9C2VCnIWBQo2951alTj8RQ5QjiA4LFEZyqR/J8ajOwKAEKogNhAlvwxS8G bLzkJaQdL31pxnvxO96u5dN8oRbfxDd7POEPsBxJiiUkQlXBDI1JgzHFU9G0 4mElWdvaHsD6dlbYtv9bRF9PQXx5+DMJjnwg4ghJI68CjEnvieK2EMSQfsyI Ng+cGMHRbhdJejIglcGVErVRdrIzdzhm/+xSXbm2YgOSCIeBNitAQe4EBVkg L75bFcBcic1N+6tLEMC8okn9hlfZJuXgMsurkT4OSa9iPWchk3hvLJ+cwXvs 5QKe4d7vHG9gKY1lhktjmappW1XuDWWxjB87XxbLsGJv8003CVe2AFfYIs0Y pkeODcukLhrU4WZd+MZEpP8Sp2hj2Y81nLl4jsbE06LoZGx0T69hiwU1G0dy eDOrd2ZFYrUMV1IVm9WCLalqMQyFJv+hOjDrNrzsFiITEpGfSHlBgUln5+NS ZDB+GTs29P6wXmM9P6aB5eXetK9MonpMsdRHGaYkeCK4IHDUCSbt2ctelnVk L385mAju6TFEM4QYgxUPKc3gJJSLGWM9C+L0LH7vZ6XlJUZ2dZnLzDNR2cY+ qB8pvVpEM1/LGvMipmj7QiR+v4k9/Bls4U9hfRzrI1gfxHpPnJ/1NjVajFNa tVCZnCDz9GFRkpNleLYD155unOo9gBNTmPRLI7tQ+6tfvYiLcV27U0NnNgJa 1kmzsFTO/+XqEsuF+CiG11ifC/GtQFXKtXKHqkbtfZFRncx7YxohRA56v3fc IaTCAn1wVLOFZp2HvkRTxUxYfGcRPrT6WLfz8ny4O/WGaxXKbJXny7JorsAj u0hW52Ee3zXRV/E10Vjh4miLd4bMg/uxhjSDYWZs76HafqzCmD34f1AP6yVr qZnCBxP0qFLYl6NHUJH8N86a/8Fi1ffbiv/b2x908rRQihk79nGcZWzbeRqo 8YxU9KEM06gascyHT5xWIYdnIg41REAAFNiHwoxXvCLryl75ynAPJwge5NM5 TzEQKQMQH9vw1wkpkcMAkIOKvKZODdEYAbGr61C0zqM01sDj+wKPtjYPHkwe /XP8d/5lJH5W6P0sdvCncPg+gR37USwWelmXeXd0eblPPGQSDulMfDU9ySk4 3KdjC8zDVmGUew6201nYWhdhm70M2+u1AJQr8diNamDulZfH7QCO22sbsNbK E3i+BrMvlcqyzM0lbV624q5Z3VkKxBd2ffrjaDmIAETakWl5ouKEHEBewnt/ eCwB5ETepvnUXS0VedOEiC/LVKnrrSzjjTYtGWJakqCsv01D8u6URYv1LG/J tsl+nG5RoSWL/RJ3SCpEFeKgFM83RLeoX5BLa+hVfl60Hj9F47H7VI6Zi79z pmY37pF+ZKz6k72Zphe8vtuhB6myadG8H0LaEFiOHkEz8nWhR2fnt7C+i/V9 rIeUO2UChCpQ+h1MmPAEUONJFXGnTHlGp9706c/myGG8w5IfPpaxXGmKHJ5v RNQgPNQCVLQTNbJXvUoLR/7VrwaG4G6dj+MqmwKJMRF+chmIEMsKBclh/NbP 4LfnX0NMZGb4afy1TwM82IH0mFJBHkCItY0A8vdZYzBjFZlPYxdT5/pR7NgP 4Wh+AIuF3XfIFWGsdK7BImouWMgZWGfV9mNX7sUJvUsKo4uxW6hvfT5210UI VF4Kxnspdt2VAJUb8NgCMY9Q0KUJy40AD04+uKm2CGuBDMVv1tyo65TaM3VI 2ojs3Q8sGZKarlQ0II/Uy+vkHZdHLWV4Um9EkRfx3h8fcxQpS5GEpGp/S6Vd 07i2Uo8p6/3zDcdBJDIf2LBYI59XyW8ldObskDkv8yL0ttihVvPb8dhtajYe kA7tmljSvSSPX/rzjhy6G87E/ZmKYYghdEAMwxXHahzdgRi/pPoz31jMROqv uNjF61i97qwcP4IYhMzjOzh7vocY5QGsB7F+HLWrTKA+hXjlKeDHU8CNp4Ab T+PMY91lZM3F4hbPPJphRyPjaMQNIAYeu+QSEJDXvCbTvboeXKGn+TIPIoQh AxCGRR5A+KuQgfDXC/KzwyobTZ/+FADkCQBIgEnCJa07Q/jywxjSfV3gwXCv AA/rLv7zGL78blZkVD+RmfFlF8LMcQhfJkgV8jasNyt0mYDDPENK1v3YDndh W9yFcHof2MFuMI5hMAVecnpxwm/H95uxRddje27ApW2jHJwW4LHF+Ho7tuNN 2JZvBHC8EcDxRgDHNQCOa3Dp89IyXh5Zwk2LL+kEgrKGm4qO4RIp/IQ8XtHZ O4f32BJaewHv/dXPBSjkTdRaLjW1hivrFfbFF/NIMa7hp4kX3kwLcWCWgFes 1GSBjfJH2ZH14DzfpOnhvfJGmQ/MuFny5D65mF4fuQb178yhvkD12mBGcFLs 0GLnHlvPGakw7p0miwz2jLLgkpp2m4AsNSAwyYcvtrSGE0Hq8YB0qZ2dxIgf 4qr7ENZPsB6N/ibhasyrMnHihBOexsn2jAosc+Y824ARnmPwJGV0wtKI5TR4 MvuohCc7EMLjAzGB4ACcuPRS4MRrX5vpXl0PLtHTfBlfzrfyIwwrCD+GFfyx xArCFX8lk4IERdlhwR2hb/Lkx/HnPSobKUpAmDVlqiekOb4Ve46YFvq/FTjx e/FfbxnTj2ZtUT3WBZIxDgHmRMD8JBxGRimTgA/Mls4CtTxNBGMftuF+YMN+ XFL2YLvsBOUdwqL7yQ58vwVEYwOwYo2GVF4vh4H10jPeBty8EYH0NbicXQaM uAxblu2/l7v5bzaUMnV3S51OqnAiN7ytKLQU9dkpeVQyk/fY34mfh3tf+vnA RHvJLIC+EUmNZkoxoxO+3OKdI0nY+D9tdI00GyVK25dpMtI6YPpm0YnerA+n NyffrsXpz0bLBVjsYLhORfj+htrsS6JL5NnqwSs8/mnozubeiWqRoYPOXVj3 iri255NtGY6kyjDfe/dr8XqWlle8ttRLOQqICDKO0GfX2fkjwATh4WGEID/F ejx6jxyUlnTatIOAiIPKCMyZcxDn3CHAw7OlCYyURljigvAQQ48cHhw0BDgQ MPzCLwAiXvc65j9xl49p4QV6oYGFEQuLTFJSYXlRK7GYyuOEEw7jD3oG2Eeu 9Lj+YOr1qdsPhOIhacRCNMK8MXPIHiR8ifa3Mt8iwwPUFrVhXYhExgHjJwIk puCAMhKZKonpsAZxn6koZDdO5D0Ag70Agr3Z1XjsGmXEuInYGrMVm3KjQOJy /D+uR2x8OzbjIty/TXPYFuJ1t+C56wEqV+FzKCkNc9csB9qsJJuWUkpAomn+ s57ziQlOOI57nXkIwpZGXJVx71+OOWR05OgUEhnDLScyykzYfBBS1slrxo8+ CEkbYtgwsEgqdZo+rpWL8BYgfjcOaD9+v624CqzTaIYw6ZG192tj4tsXZ1/g UqBzsKYDNSbEqSBj8XzQk+7J9aRjZbD2lhiApAmMVATGoqwZq32hhFSYhtQU HKwvss5IQ5EfRtPGh3XCUPQVFOiPK3FBwdekSYdxFebV+LAYPNMAJ510GFfr wzgZny1Nd3pCkaJFCZEgINSEFNgqgIrs9a/XwlF/wxuydt1dqScMQQw9PM3g D0iRg78MWY5PhhYij8NSs02e/BToBXO9P8U/4GFJ8kOT3Q+yRmXpv0YITlFj ZLdLcHZ8l/p0uwD743BAeTmYAtSYrjBklwqxJyv5ydwFw4+d2IREjD3YfLuB CDuxBiTmuBmXqpsQetwIanGDzNSWATmWa7wsZ17fgMsbVaSXYfO+FpH0K4EY rwBjtuSnL8D63IVpv1IRukeNsm6WJPwYz3uT+Zjynj/JecVXjiNI4NdxCjDD iChT6x+RrBito6WqGdeSFWYjUtaIG7pZfLKz6PIfxCHdjsWRZrTGX6xRU7R4 GIxzFgfyQuuFSnQGZjET7+eImC6sdtxvx2vapfjaExVf96jG394wmjpNUni1 l+nNmaQwpZc1xjXHCBoOBYPFx1RYpbqL/aksjUyadFDKLnanUKgxc+YRqbrm zqVI4wgw4gjw4UgecJBRlAUcFmwYPjgmoVOep37EBhxj4EI9u+yyrCO7/HIg BO7hTMCDgg6PFMYxPEr4pAWJjQUhhDIGISbfCFZph5W7ZR5m/PjH5WdLmT21 suQW4V9E+Ze1sfgyiY1YLLKcBUIEtWibJnO8VbZn9H0lcZwi2+ldqrHPUt6q Xz3ZL4x92pdJ/8M+brYy7AKpZX21V7XVRbhELcQWXCCb6eXYancqj3arZrre BA5yDd5/hUYlvhII8WKnMbfspvccKkOIVF/ufYbKKIViDw1uncYHlaz4cY4R /3E8MaIrS0QZjfN+evMcRSttKmku0/u4Wj3E67zMDORWF3ywPYUDxzYB0bfj 53O63CBO6e1A/A2xR39xhabcDEDOVA2kV5PtJgAa6oCIGu7X8HwN76+pkurr IKNpMKyKajpyq4HwSmd9+F+OJh+mvfhW5NUPxqz/T6VB4LQLtn1R/Bn8x1g1 PRx1XEESxXPLV0x5dW4l2OD566EhgQWd/0SCOkGhnl1xBeDhyisBD7iHUwEP 8ukGmBgNIiz8KMtnBhJBidpBlXiYz2RKhinc0O32w1FIRCiCtAGV2xD3tSH+ a1Mek/mJD8herk1jod/SAA9THTywnZqpqtPjsJ4X4/4l2B6XR/s7Ds9cga20 Eq9bgedZelumdpR1gIyVsn9elLTG+uKH5S/Tttg0f+nVW6lZ0IiqadF2L2TQ EPgZfEw1kB/lyPDV44MMrlbabEhhd6nHfOrlMZpZkIUYZQ5kpA63ywb3DmD0 MmD5as38Wg/6sBkHcgcOHv07rNd+SfTuSDVawRxoCNgwiINDfRZ1n/343fvw VxIX+rGGs6DPoimQr29Yj0kVbfC+zT68+Pus6Kf/D5z7X8WG/1pUVXwn9tE/ pNCCtIG4wH6SlDbw+jpjxpERSgrG+T4JUUUZDBMYCaSYEPGAJ35NcFATHmRX XZWvjuzqqwEVuAeA4HN4VQNQVIGEJTSJUYFDkOIcAYcItIf0Z9asI/rbqNkK iczHABKPKHc7ZgwTNT+Q+iQkcEi5vhppGHW0fxP/138k2kaAaK99FotSi1+O E77eG6d7vVVehlOA9TMQZczSEJ1g2XGachODSlidKRegYNfxKoSxb8Aev06e 4b0AhT5N8eJs+DuwBxfW1og/3A7+cBvo7S3RG/4aeRdekUvFCRAMpctGLPvE pZeIV2iynKyiw5dBG7MSUxspxPm897VjCRQaM5+qsp57LqIsxijrMLEiR0og zJiDgor5IHLzgdiL5Z+yQbNuNmj841DWHQkEm9JMinVtYn7KYYAMNWmqcGbe 1zqokZTtAgma61PIaZaEVtzw8cUvlYCEHyrxR1nRhPZ3WSEKDz2s9fr/AAy+ js3/zSie+IEylsw/hNiiKHyyoMFsJXVLrAgEAXgI462YQZDwhQwjDmlMYQDB eKIEIHTiR3DA1gMqtGdvfCOg4Zprwj382/GgcCPFCZIJfmSakeCPJ3/hr8Rf 7ZxzjoDrPItf/Vn8Cc/iz3kWfMg0nYdjyuVhYMSPgBEPqi7MfxG9SYrJgGUx RqHj7AA+dOHQdNU+okJol3KX94tAcKzNdODDyTisp+P+PBVCg8/G8+T91K/h WucjhrgYJOEV+Pp64ME12Ga3AjfobboE37ML7VaNZF8m9QRbSW6Q9CrYJ6eF DT83IrVwt5xlRVHDYovSfGV7LrcalwslopuPYYRSEfL1+cZxx4jBUTGiqok1 7UJLRVc+yCArs+6zdMR6MAOjkHY5FvX56yXXXAuM2ITfbyswwoiEia2u0mi+ YjDE82V4O6T2RCa156r3iINohvBXDkUiYQFGKtO04qeJrPycKy+S+NOsMPqy wue/ZdacWq9/ExjxLQQS30Eg8QDWD7F+oqEO7GsfWfA8GDvKDuvCS4ZulQxf 6OSF2ghEWVBRhQ1GGgAA2HoEg3biQnbttVo40rxdpsfw7Aig8CDBn8GfZQUP S1lauvLss48or3ryyYel2yTuMVXJIGrChMMSlU2YwMrOD/B/+C5A4tsAiW9I 0lreN8L/tRU3PoM9+0ns048LIMYCy4MhzzvUrjpWg2f2Y08ewD68G8BwD4js AflmvEjFjWHls18GovASGfFswP11ONnX43q1QVP37pRKYj321yqAw1JcgxZi nzI9yeTDdeoR8V4ZVtRIRd1pf0hVQSMCRNUIq3ojRkznkyqD0gA2DJn53nFH hqGmyNCKJ2lZ+sFXMZjoteykF3JbX+qdsvRiwngVEGIN1nrA+Ra1gazT3IaQ eliUiLh9P+oFcTLePLzudOyGudEWYQJWu9IOvv3D2wGaeNuYg691GiqYJML6 T63W+ZWs8NAJln8dHd8DMnwfSPAgmMJDWA9Ha64wX2Hy5GdUEqRYcfbsg0CE QzqbTj31SC5/sGqFpRt8pSJlDKT/lmLgmeyYgs50nvERDerZdddlXdn114d7 gARCRAoLBgkWX3hIsOSDz00yfXraac+q7EKYS2Xc48Y9HvUg38f6FiDhfwEJ VLn7UTGNSYfwj2fV4lPYrB/DBv0wNuYHsSHf64RT7PlgIXsPNuI+XJb249Jw FzbEgQYxxOuk1+3BBtwGCrsRm3EN7nPW1Bpcnthyuk4+cqFj/Q51rF+uasU1 uJQx2VB4Xli1IvXg8rFEWbKhJJZo1EkJA8bn7GA67zE/g9jdYoljhQEzeZv4 huLc8VPHm/luNbO3qPLcsgqFOeSYFNuYAdtMKaVcIq+tNVjrgAcbsbaokWM1 fj/6bC2LPek3RmbwC0l76TnyHx6UgcHJeP1sdSfvxe+/R73ojQ0cFjmYfNLL r33l0iz7zEvL+s+tKvGfWeF8Y643D2qy5dixP8I5/xOF1SzikRWwUYOnB6WS J554SOf/Kaccwil0WOG5RQw+rWCpRp9S8IzA0oueDbjznid7PZz2N9yQdWY3 3hjuAQDwIJ9tAALjBvw0fqrnBRY4kBMwcLDs45lnHlHgEDjBIcVFTKIwyRoM Th+LAlKKSb+J9V8Agf8ACHwlK2ZFNSYVAgLzSHBs+IexQz+A3fke7EoCwP24 1t6HxXHhe2X+OgdHeF40wHk5AOF1AIHLcf8qlS2ZlOrFSc8BdJtwJVqL3bMC 95djJ64AH12JnbUMV6VFuDrdppkrr8cupcjhEqkli14Nr5Y0v0/fp8Gzo8VS ZQIARRViKu+xfoPPNC3UMQWAUgXUQEtNGYYAzQyD07m5Pn/gm0GNAbDBjgLJ 5fLHWofvN8qUyObkrsDvthrHkQbBt8bcwWU1L6Lm2d8LQGYLVxgWdyJez+GE 04QA++I4AyYYfQNGWngwBmB5A1+T9M3kRXKxUDrRdcLMan4ch0w+AgR4NDrm PSmFk9cr8Hzh1f/00w/jzD8sfm06BSs0pAnF9MpvZz4v3HbVd2e+znGc7eG0 v+kmhgc33ZxlN4cFDorb8MQSvkavTXGBn2mY4GMF/i5kJD7ZGOKETGhG5Rbj HqLdlCkHpfLi8JcwbvwxFSrJmDo6voH1VawvAxNsirf3qAhJBFNTh6nd7/// mPsO8DiLc+tVlyz3btzBDRt3udvqsi259957r5ItuQE2xvReQgikh5BGcslN D2k3CVxSKaH3YsCAe8P2/Oe878y3s593ZUFw7s/zDJZWsrz6Zs68/Ryc2jtx Xm/DOaVDcD3O516cz6tFILCBtDBsw7lQKpvBuB+KcR7G4hxoCwO9SXbTbcQd QF695bBMi4D9ebgD5phpIkI5ywqjjMe5HYXzW4JznI/zPARWbUBQnPR1lxwp Jy2ja3hKJFUQaNzGFB7kMsjgR42DwgMrNSp0e/xiXwbA0KfJJyYa0HIRgZ9L DAvaulxBdLRzmngDC2SwgoThy4F9klytwb3A6hBn/VUze6El951gCw4Fdiir t9co3UaIwrcKOw15SupbQt8s6VFwCgTMI/rDFC4acMTgYW/AFRocF96TJsqo +YKJdj0qoYRjn1Hhx6N28OqEFO7JOOP3JZA8om3bc2JPeRcwcU8bG+5X8qMA 3wtwEUD4HvDugIi7BOQCmGTMpEl8bdJkkyofzpUv4FtiLoPqLgJeRi46cC3U dF1cVyR/Ic0oMlnwiVyCdAwo8M3ZLDJt8NJMTn7bsqc/h/UPrCdMlCnPDXW6 Vumv2w2616hK7a0iFpllxymUnGanUBJRLakNDkEXy/hMpaThOAzjcSnMxPfM lao2JQE3wQngECcziEskgzhOdEtmiiDkOEkSjLYdCgVBh0JPW4KMR6TpnALH yFsNeUTCS6AJX6vNj7rwNalI8kngnsFHJz736yBah0wJzWx+1uCA10GYQtPX mHU1SCYIfA4ati6R826RzE4sE8WHxbgKFsmk90ZbNCb/TFWQNhxr+xJy7YR3 D+satJb2RgqTbJVTUc/qBWQKTehVwjkT25Pgz0t8yUQ5veO5Bn660GkCMF3o WpXIUU1/7mDAK6Piiycsdx3N4xkh0PV7ENzclJu55FUQLiH4AUHYJSBSw+6A vQYE4UT6JF4Bk42ZzDXFmClcU1mNxEcwhXyd3+PfCs498G8El0bke+C1xPfl pw9jQ4VzwhvB9CGvQIYK5MGgW6CqTpR0fN+6VC+baHOCnzb8iXEj3m5wQoO4 O4WfMFX6lvbhnO4R968uznF9exs0BdLZ7srZXSaQ2MNSKvRUVcI1skzUtLbK HN8CoZZZKSTQM2Wke7bUxWmuwg0JTIH39m4Dn04mzAERHuOuvpMxK7gNmvE1 KTZ24GuSKuBp1HThqYt+G/x7qQI3TRVWAXCOgd+p5AIFn8LOcT4sFaKfFZb0 Z52t/my2TB6VQaqwTEZhKkX/rI9NE7gOpRZWypWOQT3rGGSKpO0ekxSjGuIX D/wJSxI+u84kfyQimiJMTv4n1rNWGeRVqwqyXxRBeBNwZIgTlUqGe0LSg0wP MECgU3Chm8AFB65Y4IKDeA4Bg/u4twDRTZQD+ZOmIhaYOJ2+wAx8NGm6XAHT 9Frwr4J414BLHfIKqi5bwBwHqwht2pzEL3cSv+gJYQCuU0dnLnk9qsgb223e th7VcyZKE6OpwqTIz2x/0vewHpIh7SRsEMcikuAQZOAar4cNrI+NbIQNbYLN ZU6IBB+tsfltRORsPRyDDTgcGwHhTTh0VGctF33gxfgeepykhCH3+wxhdZgH h2AW4D8V35e4J4kmjp6vnyGIR4dbzSB29AqIOgRi/JsGV8BlfE1YYISXTuYr z170+KDygleAX0dMJC7EKyARKZ2rI7Ja4BPSOWdgOeICDl0vkCzhaskUzsIu zsTucedmiNAqa4jbhDcsT/jUtwrdS2chilKFsiZ4rYnUEHdJY6sOWu8RTpCk oL/AVQn8HIHrL/iOFxeEGxMZxz4FmD9jY9uXpG6o8e77AbM+G48o3MECOweF lMD2EzvPcC7oJ0gEfz8e8LOC8ZyAMPSJZmf4iXKA3kycia/N4nzDhNlsPJo4 S1/j19xNQIfBvwX88IC3gMsb8jpyYYFrNOD71xuAzVSsJZ7ALXAEt8Bh3ALM leiQFJ+PisnSeXrNxlauweCPxuUKkyKP4mj+ACfzYayvWzmye7Ful+Yjzqs0 xj62xGoduRZ7vxvG/0o4o9uBUApKlePP9TBHq2GG1sBUrIWLvw7nbr0M8C8U KiE2FiwH8hfhLJKWQccaqMs8Ks5UtWs6ikcE5RcJLjBN7RoKtJlAxDiyY9MC 7Y2A1PHHiTcg/NgpF+cWSA6lDLf82ykCXpCJuLAZE7iCgZ8uJJGtY34id8ti kc5eA8ivFSaNaULHUyETKq5gWCSRH7Vy2UKwRfjiWoq2MkeeGBNsx7oS73e3 naFWEY6kmHjApQZcf7I/vvCoibYXxetBfB5H+kX4/a9gvSFFQqXFPxhQ4pMO v37947D+J6RAyAKBpgjP1egKCMcB8ay/SwU4+NPqTwSsYfQF5oT7hDmA9ly2 DoyfZ+DvTphreBnI13gNTJoWdQb4c/wrgP+Wyw7wKuJ7ohMQzgpE6ShZNjiB q+4wfucPcQV8iCvgAJ7HB3JNqpwYYyimWZ+x16rrL1KihSQ8/2TbX5SK6zkV cUCqZAUYB1yH87gXVwD7iq7D9b8PXucenIGrYHZ24MxVwfRU4M8N+Hy16Q6Y D4SxL8TZGi2ECmuEX32WtA0skoHpMdI2MBkxwziYF8prRHsO3bC03zIQpnLy U4I+/INMgPQLxPj+tYI+ZGkQaMXXLjGO9C05wH2D/0vcJ1JHjjfyyFyA32Lo 63+5IWl6/4yzwqZ/LfZDGd/WS1pwOq5ryrlNEg6FcqyttkhYJVxNJM/oJRmg rcI/2xz7XR/fRwGeeuL9XynTbzoUTWpS6qi7BgHn+fs6gT63vfP8f2uiY42u pfAF4P5lSW8T85mZb0ljQGbmh7Zd6ITodbFBn61CTZueBA5OydBz69ZnbCow ts84HuZdOYCYq87k02SLuZ9q6NqrqZ8tWDfj5+P7FmAtpOkfu5CZQPkcr+MW kDtBXIHpEiUE2OfPdkGAywPw7nFZQUYnfM8sC4RZm9hj2LTpCTH9jRodAPb3 A/vvSlsVRYii8f+/TDT+d9lAnx+SbUNfEcnAdCFOuA3rBtFPZ48Ae47ZU3gF 7oG+WP3g5g1AxDcYtmEIzgPlAQcIqcpyrCVwF5cC29TDIAekOv40+2OB+5F2 BrooUgqTz1ah83HvU7iFZ5+rmXuOKQsmTAK24WutA8D/+XMHfGgOQQFfcR7g E4X7jmgpXBd04b6f+HNGnr6TqwPQ1ydBrGOrp5FfLwNJm0Tkj4m/WViTpG7D VY6N2erVBCtNDhaF2ToIAagKhdaWgaStWNtFf0lZd66T3jJKIiQFfcT3mNha oCNSCg8a+J1A0YSf9ge+CcC/jYO83+sCOipgr137tEzlsC+QHUAtW56Gcf/E 1gDP1QjsMf49hwVg3MvY7wdDPBZAH89k3WQLVAf0OQpkghrwNmMXAbhLTJoZ s5RYx4fyEr/Eb+GdIHi39j6Md/oTztXn3UO/g2+Rrj7zfbTzjjglSjl9Vnwb uvn16x9AuPMu8M578Q0JjaKziv80fqCvd2y0RTBZbPz9QuWYEbkD6yasa0X3 VfuBVFaLJEoDgf08/FmA14uw9SU4ApwtKIANyRNilCU4Mgtw/BbCrV8kTWgM 8idYGz8cWM9HGDosUgSck+sg2jfsY91vA/B7hi+Q4wthPT2I72sHZr7dxcF6 48C4V1v6q2kbQLyyXzwCFMeTxNCeTUAkP3GZPdr2NbiHN2F/lB+p3PIjlWNP NgvdZpklPomW/FR8/HKrC9wCi7xIWTH0BVcKJ1KmwJ0ysuSTd2QnzrY7f94X 0nP5fd+f59kMN/29A7i/Jw0/tWqx4eeQDNwR6nXrfiJVL/bGtWihzT7t238C W3hGeu790YB4UHf5fGnsI9TZpkN7C5iPAczHAeYTplof3tlzB3OFuBm9FGs5 7fqoFUzojVqOz5cZIt+MWayYp/0XGz/zfLzTt3d+vesJdKE937POD6htZ3uz o5enlJfOFh0Wn7527XdNdvbreE4vSzpEffqnTTSk/42NoehXaV4/CVhPRsyV KrStt0tST/dxjzDzUnCkOfz4y/BxD2B8EPa6GNgfjTUGr3PQkHNEnBMohSlh 3x/bforhx48Tbep5lqVA/Xna9Vycz4EwS/2k509bgOOp0/jzQzXAejSUj6bz o1gXUcwOFxvrYUf++Ro58i6PF09l0+XxmO8I1/cdeaIL4F19n448id9p18uF 5WhrwHI0H4ukqxMB4lFYw/FxiVA2V2JDtuJS3yqcvK2xSJZYR3yTcpMqpQkW K6/CukYCv1SAPRVAT4qp68fr8XHUzI53wDnxrr/Hdfftl6A0PZ0OPG36Yens Yz1fuUh0aKZ5cx2iYWPsZZedhTE8C6Cfi+nm9ft5CKiYgB3OeymBPlaBPhpg HAuQj5+uBtk57QLyxQpkAhrwNmUrsVZhrcbP4Fqjf8prK/V7eAE4g8+fwQA/ DHwG9TTyzqn3S/0uoGcSgv4Kg3kaeQ5Kkn6aVNR8Jux9qlXrgDT/ZmZyZoI5 0H/Z5/o3e6n+zj77R62f9U3ZoyTsVXLkbuzf7eKfZVjQZ4kgc5UEb5d4FCWD sfcluATG4xKYjj85XczhQQ4HTRR6kmXS68feHvb9TwPoSas6GueSQXwBzikN fH+AvpfX6BumU/WD+Bpk8EOgT4+t4V3C1zp+BtBn8IVacaDeKI5ZV6iXx0A9 kX4377JEYz/hXJ3Pk+rmh1kQ8WN258JviGwwWwDZSmzVBmzNSqxFWKzWOcqR EUI54qp1jk9gi/AqNxQytgr8YuVYW7F2YLFuf41RnZibxKYnnRev+zbdd9/9 NL1fr2frjmvjU705kvtphe6krdUrXwA5vtxMMG0foeCP8lQHc2nUJcyZN6ON BeTGTFaYj5shKXiBJeNvseNLFbajLLwJ65Fr2cgzch1zdCPXG35kStfq1wh/ Ql3s/GKJ6+XKmDBTfQXCnDkB+vIubR+u3/uxO1P29OU54kjbrhJUZ2WwgbmM jIwDktOkH89xH1Y9Ywt2btTHtfF91SiH2V2yb25OOB2+eobQTVXJfteH7W4p KfoK8fOGCjVNFfxz0tXoYMgCmQ/eKOM97OdnOy/b96aIZsNUK4NLbpESy1c2 WOw6Id7FQjzMKRL24S/AJxKM84RQLnm7lnytU7UozwxA/SlNe03wXp2Itj/m 5/vwrpU3HLL7XKf04UcJJ/JE4TmdI5ouS4Dt1cJxSrOuVGTb4NtXYZ+qENpX iRTYaCwd/6UPXyX8MZS1bY+/w8p8A+A+CytJRn852uf4AViZ95v3Xbj+FRPN zbl8fLQ/JynpT1hPChGnEnK+ZHlC3hGuHLaikjuHHDoM1ZmL12r8GduiF9Vh obljLsuF6TK2B6z0hT/cH+ZxEGLhoeQSJFUYfOYS67eXMm4G5kbBbx8zBbgG DscBj+PnqP9NP1z89eVqqsV8r1Vcj9iAtVG4AvD/OWb4JsOP9HWH/TXVY56V fvrzfp7e+fOMN7RUdxbx+xm4LGcQv5+RPCRbeDnmRxeHnXukYePIY3o6x6MZ u3MskuoVjh/AlefcLA99eXZMsI/qbpnjqQXMZwPzdUSFkrxCu0Szp6Hc9Rtw FjfAtG+EndmEM1eOs1IBHFPNY6sQhszB11jzmSl8QuQqVD+eJn28lOViZ31z PD8+Ht79vpxwSe4C8/+ZgTcfhbwY9qhc7eOfuzcfN0u3uVoTX5OwnSGOC9t9 XUl68nycOvk/Vkaqpwi18TyhDVoOyJN9sBxbUw64r8JWLpZ2KnphlRKGuWne IdKaR8hvw3ZsA+SrsA0q2ZSF70mSSX/O7IXn9fxGnAdMlOY8zEuqc3pJSU/g WP4V62kpv2lz6Zui8p6c/JF06DMzx3CdPL4svXE2zzXfkPLDwZ3mjyktB3cx 7eQZB2wGwCseTO+YVW+mxGhOGTIDaqUw66Ng1kcDfmNg1sfCcx9nPXdClFAV qK+xMF+vsB6+GfDcbJJNSTltfEmF4Ud8iTfAJgPvit/K24F/3SF+rEP8LJsV mBjryLvCPB15Z+F79jyLX+s0IvhT8GJO4Vc+JQzNfBTUlmFlUgec90sVIy3t ZXHi2dvEGzV22t934h+0W3Wb0Bg3hiPfBNF7U2xnc2EBuVIGNVqJIuBGfLwG HuZaWJt1sAjrYa03SIJ3hnR5Uo1jjYhFToZ1n2gZSceKuFsU7f7gru/A+2gP t+AkQHu8gd2ocW8eIF2Eki4PkP65shXHQ3rkmU+Vo7sQHxDDdkfxEaYR5FMd i6c7AXfqZDxtju/Pl+671Wa1UI1WYm2Hvd8mtp1tNxOxRgHgxVgqW0+9afI3 bBc1jPZYLURdabvoPiYF3D9uZD9s279obfu3TDQN79pt3EjO48Kbq13jzwqN R3Ly61YC9QPRXcvIOCT8u/XqHcLJPgqQH7c19jOi2+jG8t0AnquvBz487PpA ogb2cjD892FAUz5QVQSbPhw2vRRIK4NNH4UQfTTQN2ZOyHdfofbc2XLabyK6 GMgu3oK1FT+Lq1L/5OfyeoVeBrD98nfp+9M/8NE+nj7EVA3b/dy878/TtuuI zln4LacRqxzHxXYc8Qufg/YdMMbRUb0PsFjC4Kzuv2QsJzn5SfGhokg/35fX fOpNMo7TGEhvi31sF7leFFEuw2WuLTdbRU6pI1DeIbLSdMcagPNUCHSPkf6N ddLRSZ7AScJDzHr79FC9vXqkh8UL4rXaJG60ywo86uZBnC6T890CkP/vRQf5 5mp77GpSZPd5Ohiw+xwdYR6f8XDgJyFQYmcj5yDnisD8aljxjQjWK81GbNxy AHWeteastzFYzxduji0iKN8Tr3eTeSuCfJfMYzbAypJAnbw9V8ax5m7y1iXg v20PlQvU/WYadd7ZT5eS8jzWK5bMi/JoHwmRFwP12rWP4DAfQZB6FGbsuBTU L7lEm2jCAGehignsIEgn4TfM41AAfCgAngtHuQDmsxgAHwHnuRQgK4MVHw0r PmYeAOis+HIFJgLyWHBvsYCugiUv3MY6W+F2w490VemX+W38dv41/nXnx0uK bqF1GPDPjp8SG7M7/9235hqvn8WveBr++3HE7Edwv/FxHBGOL/ru2nNEa/4a 1nPA+D+B8SfxaBkj+fj2p22+ZO9j9kTsE83FxtjKtsB3V9zZ3XB3d0d8xp6a ntJvsRl/rheunu6RZbAvy+D8LQeO2UfD8c6VIpM2Ac9kFPA9PKauXvyp8e0s +QVr6vHgLXXvKwJ4P3kR4S20d+cxA8dFeJhzI8zW5fNtsI2GZTZ/ss6n86MK 7hQ85mlCuboQfjtVcldLRX0dtms9EL4U6KW/Ptma8CIx4VsCocRueL0zvucy bHFbQfiVMl2bJZLNZN25OmTCw12z3zDRjln66m50Jto2k5SkvnpKysu2W5at IB/IBF1q6nERPWSnLPvFiW6aLzqsfruMY9Rxs/MsqREe0h1Lgm6WrIHuPKA7 D+gugNksho8+Aj56GUzpKJju0TDdY+KYbvrmPrIJ4wJAumCHSTX5OwFzfIQw lK/70A5gvdKW3Zi5x78zdrqW8PywnOlBmm3XOsffQVvnWE04jd/zuGnZ8ghu toMIyz8WWi5WI5Sp7G1x0NPSnsH6C57Zn/A8f4vnGoa0G5mhg3673bM9Mi7T GLd028hewPpa0w8w7y9l9F2SphmE8zsIjjnptwYCzv0B4TysMqHQWCr8DVNh QcbjGZThzBVbuQBXPo8HaZ/wO153bAJIBw1ymYFX3ixojJW0WI+Lg+hoyi1c Tdt0QQ6deJLKbjzOZ94L03O6dJuTICNtL6k5Zwjj3iLhTOWU7DK8hzWiGbId FpyS7FXikpeKtd4i1prtjhx96ozXL8P3tAWeW1oalQbAcJak1ePF3r61dql1 uuSMvVm2DXfFUM7iOXHHU1Jek853ygSpFOEREefz29+aNTuJc30S55uBqHbD xMMyy+N0aaXNlVy5dHXh8hYCy4XAchHMZAlwNRJueBlM5yg/1rapc4mzN4Vw vMMQwiZ/F372lQy7865iah0fm/wr9Wv8HjHbWz1cr1Vcj1qi94a4/9O0PO+C b+eO01T7bTJMIXbocBau+GncY/RW2Al/EPfbAaHaY1pdPZzXrdfDCfknsH6H 5/oLPF9fGsTHNO/em+19vEvu6Ma4q9tiX7tij/sB0/nAegFeK8IZKMK5KIK3 R0q9ApjmAmmDm48zNx+e4UKcowU4c7Pg+U3Ba+PwfaXwJIvgUeZKxSxRwO0q ZmE3/FNiWirk0tvaO8D0X/4vMF0Ttjz+zvEY+13JzOfC8cddOVbI8UI+6znC hLFSRl2X4D2ssjxYbup9vJUHy/U4sDqLDPpW7HEV8Lwd72Wn8N/UE0zvtiOu F7LPD9vzxHP1S2uf6X1H+W6oacUut5QUtr7sFz7p9PRDMtJK1d7s7E+EPpdU UJT5atWK3W2xLS/x8Mw0tAytkb6S7i3c3BLgeTjs43DgeTi87pHwukfBJR69 RMthYpfXe3Z5q4dl4vgq/NyrsXYDe3uI6Vz8f5Z8zq8FuN6u94BgeqN68qWs puPeKOO/CUyPmqplOrbD0P2OZ6ddRbx9e2oWUcOIfsoR3G8Hcc+xPeg9uQM1 NfGKTVcwR/lHrMewfoLnG8bzfR6e91k/a5ukTxpjn3l/d7XyPvnY71HS+rId i12Rm7DW4bVVWEthkxcCv3NgQ+bgHM2BbZiGr08I2C0G41zmxKmA+263z3pX Azx70ytpseNr4nb3CgD9uar2NAwuEJvDS9FqXcRTD10fkz2rTru8OpZ9wton uGF2wjW8KMUVM2dzAWkqyS8Tt3uxdK+XSxV8paW2mman10usPnlOoC5MlQVS qVfh0XNYbad0rGfjGGTIrGpNzDQr4KzEsCLDoPoP1kxHm1yoQsX0eErKfqmG kfQ2PZ2kt6ewzgHW54Qpv3Hjc5IxI5M0SV4U0ucCSDMKdR1sruItjapkmGNa HBHsSEC6FJAuBaxKAa+yRdqlJq72GjWrgZtdpfAM4KxQNsOuMWlm6F4TmSqf Boje5aG5whbJmF3HbTFysf5zpTM1WSfFONu47qZWw9ZZm1gpVHgaHgqHc47g diOvzwFp5meEopLCL1oBr//F+r143ElJ/4X13QRI5pbxRmZuhA2LFUDVFtnq rtLrxOEFDi+R2GCHFaGmmOx6rNU4WsskFT4JHuBEeIJsuJggSp+jZSAlT0Q0 tNDdPVToDg+kJwigExa5o2DODCbDa/OjLLXYFxnW8ey0InrdBRHtt6fHc7zD qTLXmu4cb86gTRNOfHW851nHezGComXYwhWWP8CnqiqyPS29rdRWO5HR2SpF ryZCVbQLF+lVYqTTpJ/FGWl/9DTMQeHSZK5tjUH0X4yOSKoOBp1G3+kmBQ3l cTIzyctoEDiaoI+FY6YuPcZjL/RTJJ6j1ibHSymJxdFSks1ZNLN3pRQQKgOa y4DmMhpJGkugedSyaEpMjHOFQjIGyYpigtgM3cf+1CHXEc74WF4LYH2lGnQJ qCv0dhhJw49/oxTOQOkc++9Pwr87Vo0zK128fdiuRieDRTs3g8LfU40zZ0+O wNmmcf4Qxpmtfe/ILahD5/+ygcyfbHDj+tAfkr7UVKGlu0daDFOlf2Uv1pVY pGRn//FGQHoTIL0ZkC4HpCskCBuNvSec2eY4XXSi14ry9zQ4fVOF1362JGsm CW91VPHbzZmE69gOzhcInmsA56w4cBYr3dSzpK4a1jyA+N/+gxBff0F+Wt8P T8RL6cfWYT+cN+l0+IhTpT2YOiQcA1oNmG+AP15ulkptO9YPz7N0M93FYJdj S7hY16YWyi6R8a4DeGcB3mmAd5Lc/rQCfgtLPOnuRAZb21fS0kip+rZYItKs siM1O/u40K/Wrq3dmK51he1bLj8WtK0AGn3I00CZS45xFEZr2CPGKLxLp1h4 wf8umx+CtxdHi9+9U+EqRprQvtYQ1Gbw9Vg3YN1oUsygG4lyfjoELw+xaOdt wFtBkF5lXfH1tmmV4TtultEztXNmzHh1w2m48/PPwdc4Bxf8HPyPc/jV1Ceh uBcJtUgx0aLFITyGj/A43gfS38Vjekuy35zOi504+b29Uf/LuuCUvLkfId/9 OGL3Yt2OdRPWtVhXSfd5XWx5PaC4EY5mOxyRbvi4v0yYbAbSOblAQoJNOFpr YKiXYyn59PiAnX6iHL1/F+W2+VRRnmpCteto2rtWgKooxiVJ3SzAXIsA2X// PJEtQbaXCt98wVR4otRZPHi7JnQ+Nz6/eISTnDaZKdabBH/UKST5J1mAKTvE adJy6UpdYNmkfOvdxxLLtcP3NJdVibUT+8G02W4hI83CuUiTblRnvZ0ohZsY f8hEu1HjhdjsRFUSOUrNM51bq9Y7gPR7gPNHsNiHhUiS4XX9+tqJ6dpU/A5U V7nOIYk7q7/5gDcs4rDhWrUuBrRHTFBol84AxuYotBnuMqxm9yixV7JZU12F 1mozlI6BNTA86Casm40ZeDOgPfAWQpuf8mWgXSDObx/m4L0zGmkzo06XX4pc LJjjlhk/SbNmLsLOzT0Hn/yc6d2b/fPkx1R+PIYf5Mfg0GzTph8D3vsB77fx eF7HI+OQ/YvSlKYOkWtK+7WJFq6/ZVRt+17A+x7A9x4cqzuwbsLah3W1hFvN sOUtAN+WcC7bAsLd8Gd/HJUCrNFCNrARx4nDxyvw+UIsFrRmBrzyZTDgzNyy IuMYYtygaLyCVrwh0ZpCO9qVIrmyFgHUoqb6HxcR0Fq6Xh8XzdU1osWbDff7 zPnIfEqYWLrI2dKENgOPnvXEKUDz9MgqIHq96A7OB0rJDUceiFLPUDNh1lGM 9GbcKFyVWKSMvRpovkbE1rNiZsFv9/xwXz7C535wCXBakn9Y/5EWhuHhuyIn wwRQ3brvA8EfAcGHpZDF+TDqOXJuin6431/ql6gHULsFPu1AIHkQLN8whK75 LE9PBFp9JC/AWoIViqbF/94RNdC0uj6KAV4z4FageMBtbDAbcLvhR/IylyD6 BjXYvATyro665WxRETQv16o4G9Am2nK1M9TM7Q0Zooa6R4+zUqbmdIwyR+vk TMOGJ6Sm1bDhO3g0r+JRvYhH9hzQ/Iw0nEXlZdj683PrIz1st+Q+mfSphdUI 29Uaqx18rHZC/bAba4eM/18KNHfA8egENHfFUemPy7/Aaz+Zic8nRZbi83kw HixNkxJ+vFDCF8NIx0OyL3ddXR3LTYgEDWbndZNmxKJZMt91+ZpoXKcGGXL5 qFmA639eTEO9qVpDXR3dS1hdyk2BO9oHhtmsVzvqR8cLT+rHebhJ51pdiBlS VyQDzyrs0Xpheppjid7GW8rHoZ6Rbi8GerOMD9TH6/WF/o+koHvxPqlX6E99 32k0M/OgiT8ZlshIcypM28dZe61V60Oc149wdj/CWT4sbVUc+wyH166P1K9N D6Y8UwEWDPRQGOhh4wBtwLp4KrBTHawrtB7FHDatK60sw+cYSAPD/YHl/ndg 3ckG0n74/zT93GIcsKcBV4uNK2HY3qgzzpw6fXz+m6yhsa1NxsJDlpq58EGD zsHxOCdtZh07nhWeN6V6VCkpClrzGdWt+w7Wy1jP4rn9E/j+m7SYhaldos2k D4gzxf2qBUw3wmqN/euE1RX72RX4Zg68q9D7bMb52gBsrsV5UBWYQvw5Rs7O amkZnyyTYLNwbqbASWSNmuLUSuxaE2zHq2d52E7UKh4Ct5Sq6wTgzoimyz0d Kfy/SQDzz1W0Ol6kjecWj/35Qn0pju3BUTr5sTbTaU4Dxk2DxpI6zoeZXiy9 AxzfmY69Iu3OZNzF04TRrVJ0H8ZYZ3yQZXLrKLSumyXFUlvWVqwdWKQBoB7p 9dKKGB33vtvG2X7t2peV/Y31Ep800TFvjoSRhoRq9Kxbc+qT6aJDwPlhqe00 b35cRrsdUaOLsVkLYoztEuIiDUvmdHq1pdp7kgeM5wPjxQhsR9QA4+KAO7N9 o2KW2CWWgWrT7y7cKXezzpVzDz3xfnfra/y6s+WDwhjfrvE7616M6dl2Jm2l 8MbH4v2N8uw369f9+2ug3bWr2m/23rCNlnKZtWufkfwDdS+ys9/GehnraTyz J4Hxx6XOFdss/n0bFDG1qc3ipNyqJXKR12F/r8NZ2gcs7jN9I3uwdolSYA72 fgA870E4I5R1GYZzUyA2e5kwtc2yki5sHR2Bs5YP2z1YxOfzRXzeUbX6+PZp mqqrVydoDo9m0ZoEFS5BWD3juJsaBzh++qLjONYN93Fc036UeEoOzJmxdh0e 9XRT3QuxB/NFv3el+FH0p6bgTpkMnE4DPqdYUtZ864ZfYZnaW4id3mQyZW2x tA1XWdqG62XsPy2Y5L7XxM5/OBfc7xjlyA3zkqRh4gQ36UXIJEg5aCVe5ZgX 5z4aNjwmvWQtW56QWrU/zum3gbOFmkUtkXGlPNJIrNHac1IIX7cIGC4GbkaG MbxR09aC4V3W9b5Wc2Jio29VO0z8ArtErul7r0k1fb9ACOfcqy8JjG/Xb+df EwhfoxBmfM5/guk4CagX6ajJ6KmawhteFluuzsmhC35OWspYqmaDbOPGKuSW lXVGqgQq2PI21ktYT2H9LyD8e0D4N8ZnYFL4ug5wjufQrdoLCF8DGF0DCO8B hCnUxjay3aLMNBRHIFey4ZtgmtfBLKzGkaJQGyG8CO7eEkB4YdByMkJYWEYA wgU4hoOFd92nWXXm2bEyVFeePq8jNFTNiqbGJJKuz6/WD2DdKIDwM58nhCVe j8oyXcDj9oXhfUsc7kDxaZZ9/QWmxsKcS+pxz5OB7cVWd2Ge5VadaUkVpwCp k4DciTbrPUyGO9Tjbit8qpvFEqfiZk4VMpnttiByDX6f67BuxrrD6JC242L4 pontCvXJ1KIFLS3IkA2YROqHgOJjQPFxGUDWDjKOLSmfUtu2n0gQ7dJhfhDN ghCtmKgmkbEYQXQxvO2Sydo1NhxWeAQQPHKpRfDaahB8g7XAt6mFJXqBXALX 9LkP64v4d++nNcZHeMZ98Rrh7FvkAMp7NDDnv8G0G/9detujF2hhjQE+32ch PQfcPkNt0ze9baa86W0zkuawJi0xu3BSUz8xKSnHsD6Ubh0OZlNzKdpB9nNz /iDH/RbGjIz2SSdgLSx2ErXG6gT49sRiR2ghPO4SOQsk5NlkRsHqjIXnNl70 FpdKfXq6RHBzpaA1FpbYcS0MRtTXF1a4e4grNUya5g9lejA+T3Q1qGZlxMJZ wJ4dZLoFaHUDD7xBAOdnLw6cbQxgu0+iZaw154XQvkkOM6ZW51qHs2OsJTCE diRqy0Q5YQXM82phsmSee5ZUHcvhZm+RaeyxljyNee5eQpJcIYoJjQDoLGxs BN+vSu0cy/QHOfwSlsuMPWSi4bPLijm2BZpkLV8pqydFUkjyexSAPgX7ckom jMmaxDFMupVKpHJOmU9tZToInQcpEPJtjwnt3PCxOqzBdu6RbBlDuFq6RNu5 Sm01WsC8zQPzPutOO1N8lzXDURCb3l9i6NwLfscU0/sB+VwWv07AE/w04XTH 6WLzZ7KmxX+DOXT+u8LKsETb2EoQQhfhfeaP0Wkyhv8Dh7hWMpceU4EophGY 88/KOg3QfiLPSy9CVqpfsOHK4zaE+SkO3iMmSdjSvm6SRCzpHkNKdLrWSdIz pNKYbB9rjdVZRJK2wb3bhnNUJaHWOBFH2iTMmlOEXXeFpGG03Xg+ztBMOWeu Qp0vDSeqksjMbRjQF2g2qQmgJUDO4HdIoToz6PSWLNklgXSaAPpf/1lA/z4h oOPlxHz643hKyvGoj52PvRIbsVissyrazrRM1VMA1okyJk96hW34+2TFqcLG cm5jqzAmNZJOo834bbg4Z+1oFdhyQhUkn/I0kXXWmQ0O/6ak/B3rWWtZ3pDm MZ3GOipyHllZp0TeQynQzoijSSvF3m5ROgOYr+ildeh+A5U6gTFyQYntAWV6 GyAphmUuAZhLYA2HA0DDVwLga73a83bt5aQVZX6aVlWssvWpxSJ/UQELCJte DyI2/zLWV/TPXl/W1/g1gj2w1HfqpUBfXYrUNuct8fJ69RDYj1oMC10AC50H Cz20VIttnAtnAY6eR8+epwDoE/i9T0ifN+ONevWO4fkcA6AJ5o9tfPKKjVn+ Yi/NX8pFmhz5Hs7Vw1hfw/oS1t1WGZmsSLuxduCckQpN5+m7YuVY1qzhQoe7 FdZ5I84Tlc5W4sKn/OkiETmaIsXQGQJmV4h2tAlO8ZBn9NOD+bxSVdTVFiin 8+u1Ym1zFMpR2/zc5wnlULSM6ONCye2a9pD5FWhHnuCC5Xhu9moAeBmsMt3s GXLDUst+IzZls9y+bOAdKQomBLLe0J3weWtsaiPhR6kwEVnbTFTc1Flln8r0 q+b8QNkplbBd8W8A61My66vDQ2/anjEOFR2DVT4d0JZS3pOc5Ez6MHJkp4UI FfdEoEy9H4C4/1AlRGCiq5CawpyRnghrB4tcCBAXAsRFAHERQFy8DmuTJpmZ iJIk9jXqEg+yrrVY43vVpRYAP2iB+1XqFPX4Gl3rHl/V1/i1wCp7AGYZWqLl K9XyS/mZ7AlLtWeNF0wuAvkhCAcGlmjFvC8i5V45TrrglOnS5QgAfAgAPgQA H5Q20Kysj0XiLcpTzlCFtb8/22f8E/GGkuEVZeEyrYu9qCvdJHdh3YK1T9TK yEPdRNgQSGlWKVL3nJ0vwD6XYU3GPo/DRT8Cl//wyGKciwV4nbPR5C6cBks9 WYon9AAZ2rlBKwdeJ0RSHXhtAvvTgDc7iJPrBuBtFdCUC3hfuDjgjdfWDTzV JGntJ7v8mrNPY+gGNfgs43GV0qteC8yuAGYXwKuegcWE9QSEymOl6b5Chq5K JNNBaXqVoewk4jNUHarE+9uKX4drh4kdnnR9nz7RCY2wawhznKTKX8a249TU Z4HTF0xm5iuWZ/x9kdEgewd1uNWjdgMZKjnKwSPXud2zD3BDKU+2QFO6g9ki YLeIyV9mkKZaIwfs5gMz+cBuAbBbAOwW+tjdq8aSYbHzpMX43q/GVYwusNrj 6+z37P4NYrf7143i98v6PcRuYHxvsdh1njTDY/ybI1fZRjTcJ8UwvLlwFAbg /eYgrO+D36Fnf3UseDd17nwKv+sRc+mlH+J3/wDY/QDYfR/P5X0hg9EEPyMS pmWfNNEuMC0uJ8PoZkW+Arw8AIx+EesuYTJpAuyy+0dxWwUDSR5aHbAbglWM NRZR1HRJm3AIY5kpgsEtxBkqBmZHCKfBBLw+VoqfjOCYmskJuMlUVjQet3CC eecLF57S1Nw6H1oQW5tflWJUy1gf+sXPHbupoTT16hqVm+LRFvkkB24E2jGZ 8CnyafKpxiMe3YCbdJW0c26QTpFJkrjYgJ3YBLSXi8tEJsIh2NkcILeHIHcH dpnzFxy9ISMZ1y4TFRF1XSI+0Sjd5+9Zq+sTjKpoKJnIUlOfF6aNrKzXEPu+ bQnDD0lii0kc6oHR6lIqnDLhjAm7dDkrzVAiDY54MYfsXXnaGTIUKMgfraQF nLNg+bgEFq4QFjcPqM0FanM342OgNm9HCLW3eImsL1hra91k2FniNdlc8S0D J6bbQwCYW9/Cl74poBZw0wgnBPFOGw6v15mMUZyYnKFNLORbGADj2zsXPwuO RLc+GiGoahinQo8gevjQtGz5LkD8NkD8Nh7bW0LCrJ5zuGH7v+3jJ2n4g9i2 +3GU7sPlfw8AdSfWTVjXYl1pAVwpRNI9Adz+OAZ5cMRGYjEMno01DRf+ODhu IyNz4SFPxdcnwECQtID0QyOli4GpGBqP8PRUPAA7YsFqJ6cyAtikB9DNDHxm EfqJhsn1AwPc4D8I4rU1buAMM5X4fSEuqeXThfOJunox60x0nSn9sxoXxya4 ymuxK5yPnCPx70a4QxuxO5uwG+Uy05or8h/KNdYV4O0gIKYw7A68Pyaz/IQW pX5cP4iT/XQJrR/Y0/QrE+3F1vpSUtLzQoHHhmKexuzsd4Xums2adeqclKIK k1nMzNJtJq1ep05n4FKeRVx4TqU8B2q8OIg9Ura1q2C8ZqU5KDVyDj6GuSsC YvLhtg4DgIdWYgHAw67W2FSy0bfYmNcmrwhgmlULXkEqkdvt21iwbKbrw6wx 4UMF9Lf02/jtAuL71Yvmj6RFp1fOfJmUjMlYskZza0KZAA+hBOFvLu6fAQX4 p4fA+sJ77gzvuaMdpOJod+vWR3CXfWiaNXsX99rrAPGreGyvyjhk1Ht+3N6V zB/+0EYvZAK/D9t2D47SXQAxW7xuBWhvwtqLRdb/Kgtg0lZU4AhtFrb/0fZ4 zBORuFW47xfjrp8NKzwF3zMG9zwpCsgqVCjtSP1F1zeW9Tvc2uUzg1Y3yhzF b4YmrfDFjMBtrhOY3jaxqH3p80Rtg8D8xzW9Nakt+ewjbgwyzPvtJio4Asnq sNPycOT+FO4px5asBzqXS3OmEvuPwxqBVSh37hZsByv8JA3bJqlJdu5dIqjl JPvOkMPMrJXr7nCt1s5h/qF1mB+zZtfVk56TAanUVBLgvCX81NnZHwCtH+E4 HhFtbnYrsWuJ3Uvk8VZn+ax0LrLmIpKbQzTQHQqblVsGZLI+M0mnlTktUcps 1TJAZTUgsxHfswUQAmIHA7FDHGJvtZXfe22G6oEoYq/4psISIDVdvwO0Xv5d Nm5d/j3Dj/hSgFwxv19Ta80EFn8cLTkTYSxV0cqL78xxyJU6NzVqplKLl8Bb yC3R3lLG7117G9MBfnP7DtrQQoIVcgg1bfqhadz4XdOgwevSmJmV9byQtegj dTy/v7TeznftNpDG+y5s2x1A7a04RmzcugHx6HXw2q7B2iW8r70CxJYLYkuB 1vFA6wx4ZouwlC9ooShyU4OHDR0DI8UwFOTzVe3dcMOWn6yKh1iP7S8wudGK cGpQQsqIhaxEutLe0TbWW37lIkIWyHFpqrCz7KM23qCEP7wcz1l2fAQuTcU8 IMPchXjcjqV/C7ZmIy7WldimhSKWvgU2mSFuBTygcmzbFmzHVqHx7QrUdpDC wg7hIKgvdM67PGfZLxz5LdXOWWbh6OfWAPzZ+EWjpCSnrvMujt8H0mdEO1u/ /jEcy9NC1cupAE4HcEqA6SlWR9mvxL5jVn+H5CpXJ8PbgjGABTzPEvZZzlJv lL0bhEgxPNTCCnzfNkAI8BkExA70EEvDSKhJOgpeL8NYGlBBK+ApMP0+UNvl B7SxXb5vX/qeRe63Y1ErDvPdtih8o/rkdJYl1bxOpx1JRUAq0dHjNT2eW6iX UG/EAF1hZzt0Nqa1JeMn8RmnGxs2/BCPhy4JByNeNJmZbKUmYv9qYociWLP7 lr1A78GhuxXH6mZs3w3C2dkaNvYybF9XRLw9sa29bAvPMEHsZikAE7FTpfN+ nVmGI7sQl/5MoRChms4E2NsyHJVCXO5DEvZw+JQhCdi3q7GxIcCKj1wvAGw7 vlY3AOxrnydg6weA1ZskNQawMr6Btw9LFE4rJ5LHrM4vZn6eeXrm65mWmg1n RmtDK4Vqvwo43AwLulpmFSuFZn+y1IWU14uyZzn4s4fUhqpgYbfh32VwuwOW fxfeLn1icgA5um1XF3J90m6YyfnFvPZ/b/3ifxjN2b8qk/GpqZS6fF/mE0nB SZ3n+vVPCaU0ZxN5WNkbzQKvG16iT8zuBpG2K9CZxMJRGtQOnwIwzFRuH3J0 seGJqVx2TRRWapqIqV4GtCzGSgrKYlUs69c9y/odBSTBCZiazo9g/VD/7PKI vsavEc8E7BXf9Jzj+/RnD7D1ITrGrEPxfYxcY4epZiut/xiY2JLh2oDF36t3 H+0B5+/MfjOVzCHpLr2PD0UqJyuLs50v4vk9Iyn6aErZd4qjfZPJ8IQ4slIf XhEl71rDQ7oMe9nVylwqWCuw/+WIqQjWjTCpClZKqK5CdMvYai5irGkymDhe Up/5kQLx7HpH+gTS9vT+wvTZ8fqhLxDRRtFqP3JVoCz1jZ2v2ijolhbcvn4x DW0C3C6LwW0iWVtf2TrsGUd5+TjCNE6kCWZF5uCSXCxq1qTM3ypsm1X4nEOI lUKpOwE4LbVsmwMlvVgJ+x31jFsIz88uEbBPF8zuTmBjHUW+SyW75gznGTP9 yWwB67hs/IvaWEo40cY2akSjckaGDnluGdSxjsumDNY5XY9kfp4OG5JjL3+8 9keyx3k4+yOB2bLlthljk84PCWb3aJaIMaxLG0v8+pWobaW7S9fXx2qnH7Ex o9N/sTEDH5vOP9LX+T3ENv8O/67DbV+LW8lK7bOucaX2WrOey44r4erm7HPp OVNUdNYMHXoWv9tZIctm8o2lLzamqKTdUeCWz2g/cPsGntlLuO+Y2Pu7cpDD LU6O/Arrx1gsBX0T6wFDdZtk7FFG5Hr4a9fhDF2L87MHvtPVODu7sM87sN/b EFFtwb2/Hn+uQ2S1BoZ0tZkoswwrhH5iKc4mG31YWpwgE4dlQSrZ1W/p87EE FK9++1kwmx7bhFE/wGxd+1dc7YifNYhF7xufO3q9UaUUH73491nPWhY3pxyv x4qPx6ncxHORlRm7FGZ0nBDmco54AeC7HNuxDvDdAthS3WapTB1WigL1GKkC KZVmP6HS3IprlD03OwFfpdFsJCMLV4v6iaaibggFtWHRqh+HTC4HtZn8ZAzy trRhZGXxOH4gk4ZUXGzU6JjwujMN5aYMXYuzG1NwJleYo+FfDgUEcgHdfEC3 kFVSQHf4cjVvAXR3ap8Tc0MC3TtD0P2GZ2q/b2ELiAKwpuOjbI7siF9mMj82 nR41CuFH9Hv5dwLoPqA/10W14h/vUv9YmiWXWEpNsnCz4jz8nMnPP4Pr6DR+ t9O4osh6zeZQFd5kuMDn0qABJzLfwLN6Cc+MVbS/A7pPALqE7WM4Rz/H+hHW d7C+hvVFrDtkMjQL7lHTyD64avuwn9eI4mQO9nMw9rYA0GUdIRfQHQCY5uIc lsC8jsJ5mSiNkQsFtjNFtWKizKi7BLJfAUpUub0AbEOBbLR1KtpvIWWfWuoh O0vbMBarb9YEq1MUl+3q1Kkzv1OnTrv69u0bSeb/63xGEK+JG+uGs1NhEPvZ KV+6Juw3K99HmQgHkP9sRmQuNmKJtGIwn1wBAFOyZonI1VSKnHSZFISUP7O3 8GdSTnob/PNdAPFVAPHVeB+Ujt8jssOambrJ2l9fYvIhE8vtEba/LJfTv2Ef 1Qdif8kb52YKmzY9Zlq0oET0GUnNOLoe1+FM+0suPYo8iAw7UzuT8BoAPAwA zoNPWgAbV7RGU0HSdlFTADu7+0ML3h/Df/1vrJ9g/ZQ2GB9FJslr/Bq/R+yw A/I3tczLn8v0FANdZsD4b9Nv5oVCHk2Rn4X9HTUBNpkU+0XncCmdMQMGnEYc fxIX1kn83idNq1Yn4Ysof2jduh8HM4W1a/8Lz+0fAPL/AsjUAXkMp+pnOEeP Aig/wDl6COvLWPfaHqp9sm8tsG+dsG+9AOr++HwY9rUI+1uGy3qc9FFtAIiX 4yzNx5/zAGZO+pNDbxbOkDZDMuvJ80Vfz5eJjVfG/Qy2Nz3IIGcGtjdUAbJU mY7Hp34snt+qCZ4nRfFMFAt80+T/KYJt91/Wp4a3l31e8amzz367VVinJixD V4Z9GCes9tNFCmwu8L0E+F4DfJcD12uB3cVWsmIcsDxcakWagiQ1QBeZL9wG X34nnIKr8W/vkWEWzhWmC7bpX99iY2InUeF8ayc1x4IveyUfDxlo7sIH0ifJ 9iGe3caNP0YMeBix8DFJt7Zpc0ZmkBxXj2t4Zv6KtFaktxIJp3HA71S8BsM3 BNgeBmznrdVsc+EW7VVkXBqD7Xs9bH9T41rnU9P40hALrgXTl/2MfvVlPzf8 SBbxngjfzIMxzubcoe9f854hP8DYpSp3xWLRSPZ2BgQ+Z8RId+9+AvGESlOQ O5MyHZTiql2bMfFbWC9g/QPPjcNI/wN8PwZ8/wzH6lGcpe/jHH0bTt7XcYa+ hHUX1k1Ye4WspxXu58uxj/2wj/lYJdjX0TDWE+FnT5eG543SXpULfA+AL52H s1MCJ280fv9JttF5uMwI5wbzwYzxeBbDBD1+hTfO8FENsC0WOjXAdlqA7ew4 HnZKMOlQLzbDVSO8T5T/ZxLvj40ePZpf4Xp1xowZzp4/mJ+fn6xXAL8l+FmZ /84VsLzGV0A8zh+nXhOm1XXqNaNF2GKSKNdMx3U9RwabKGqxyWwCtNfgWl+I bZ8uCsFbpVzMrh1273QVGq8t0krbBldASxyf5jLPdi22lCqF13k+upt9cAIW bvbBmXd2WbLf46kY886W35SUwzjKhyW8pkIDqyytWx+TOinLxD6fjz9GTLJK UkoLZTxpAmAuC+YD/stgUgH/oZu02JS/XWk6OIvAbkr6zkEqzJn2b9sU2COe Wf+JQD3FXPoLWvT2vzT8SFbMDfAj66Y/rDcJfySzYiwXS+Fpr95AzIiN4mSx LTrxLZewwk0hnWGspZ3BDXcalv2E6dDhmIhWNGumOh4UrGCjFrNhWVnPYf0N 63+A/seA/p8Jxyaj6jQ8+gwgv1bkQRydL2DdjnW9sK5Rh6QtkN4N2zgQqC/G LTAOr0/B57PwtQU4DtNxLMZFVuLoLADCZ+AGmIDjNB43wLhgxIHHi029DAvj ZcLi6cKGSsOe0Ew86EerTOkB9FMDN12mEtOC6UUBfJ3Ybsu3aw74VILbgZ0g T9WX81u0aOG/fBHMfJgyJFFvV1ihynF6RcVrxok61VS4YDOxcXMRYy1C+LAy stlsFBm67bK504BjKk4WSiqlQhp8OkfKRTG+Db52iZSqrsI9sweHZZ9QB6QL vn0X3tGDuMKyow1wJt6VqV4OTHwkclgG8NjmX7fuMWBczRolHC699BTwfSZg 2/TTZ0wTc16X1BpCIY+YdsRsmP1F2nk5bAO+DyZ1KPA97Cqt8BJw7LjM8VLd Pr7Fbbem/bKfAsww6QR2+18xBm//awH6r/Q1fg3mX0De2YKcaTT+PEmhfUH/ LXHfd+vQ4sgNlpIb99CI6TqsyBHp3HylBenb9wzM+2mY9xNwbY7B1eGdx3LA IUsfTkWaV4XqJz39SZk1Tk//OUD+KECuHdSMvzMQStUSgN8JF/oWrH1YV2Lv tom6WA8Aegjc9hHYz8kA+1ysxfh8pZyFzcIORSHoEXDZcwHyAThHlKgYbvn3 6Er2saluvwMzXEnm2a2ueSs0u5QeW5jKDr5qCT8cipL5/6wA7bWDaeSoUX+3 5hhPcQadxjySrgB3Tj0Xjf6/ZcTPB3iYIz+eeryfJ+eDdlxAjnJXffgyqUFM Esrd2TIQTm4B1ipWYCM3iPTcdry2DTd5FWKxSo9XoNxcJvwgFdg4EmfvEP2D BgA4yRuzAe50AXfYhw9rWvw6ZMDZ7sC6ITeBg4ucrj0JgJ8UuVjWcBifM8nU ocNpgPtMXP+dCTZyapAbS2Tbpmtxd/hSjc3z2N+1Dd9/lXaKsCBMPi72dcUz 3gS3+O1quM2lCmzT7tdYj9GPb/cbAhwfy2v8mljzMMi/rck2dqHw32Jtiz48 Z6tKtlg6X7zH4jma0+fwIltHBge8IGdgxfm7nxBHhjEN6XWzsz8GkD+2ej4v ybgJk2ypqb/B+gnW9wHyh6TVOg0AzxBWvjtwfliAvg6g2yO1yWbY3w62n28Y Pi8D2KcC3IsA9rXY3414bQX2fYFwTywSks0RiANzAfKBiA3z7WhEX8tv7wDu /He/8Oxi8xoCPDoUEY3NpVVEPqql3V1uZKJ2AOb3PgWYCWJnlSMZeluIT05L Hvzt9M8GZ7iqiQahfEQnEol3PWEude4mGV1U7ki0qTU3GZHVDKHEX4ydWonI fD2QXGHWAc0rsINzhTy7KiDsY9q8q6XebIE/m8kA1A659unf1QKiWUVJlYrX rXFc8jBZtt9V4sz1+4a8ApHISSD6E6HBYOcmaTHITud6wMh6E88dZ7aNSi9U cpo8SUUZqfJUulx7nRmN5+0Emq7RLhJmv9juwbaPuGi2brgz04Lc3xjTluu3 xrT5nf7Jzx2qz0P09zR9HkTld9nU+TXawin0nvDLC+BW5M3C65N0AIpdqCQb 7Nv3nBWDPo2I/IRkJ5iFrFv3oEjCJiUdsNz3L1hhbU6F/hrrx8J7n5T0VZws kmTfi/25Q9pJakuFejcQTerUStzO5bAC2o2QL6PH23A2dpil+PomIHsH1ibs OavTC4UJbjZcvklmJKxDPs4VOe7jZdpcNO4ybeFBp7iZtvREaM4IqlwZQQ2s cZBNzw7Q/EFN0DzbQ25MQu2zIndlXOSG9eSqk3tnkcHPl4d1pxgBjbX5tOlA 7mzsBPVpKGSxAruzVvTjduD17didbQE7SB9Led8Gu0wm1SYi8U0BCxa8rhEZ QTraKYHkqz93fL5oRXIyOaT+Lsyuqp/yNtYBrCNYp01a2llTq9ZZ272pBNBO pIJONsec+gC1AyjRDsc0n3PGQG0ZnOyxOP2TyEA7T8UoyN0jPSXbdO6XOTTX T0LU9orjYBN54lz/wtpfD61tfm+STZs/GDxGfGjaWgATvDTXAXB/qOm0wNe+ z/ra12ssLyyeuFBycbEMha89eBouFFw6/eFO5OTpr0f+gG7dTorKa9u2R4X/ ulEjSsV9KK04mn94zV6AbtT4FzauYYmCJviLODp344K9DQC6Edt2LbbvaoCK cmFbcXw2Amyq0D4M7lgZtpd8Eouw9euwzdtwDDbg62whZJ2L7fucoqtJCs0H rUuhefR6Mb1fCTGbHmA2Mw5ma/8fY3ZFtZgNB8dhzLqRxXi6Uk6Ahg+bOu3j 8eCnCJf9YuHlWgjMLpUblRpxO/D69hgCEOXWq5CbubFgdjveA3Wkdkv+O0uC 45vw/p0e+/3VWNo/Ca9jauo/RDQ8NfUVkaSgwExq6hGs07AkZ3Ew2UdxVno3 27Q5J/wAHE0UrfUcHSbIgZUdZDutC3HgR1BXfbrmk6nvVrpKSTbY5swxXya9 OLTAnDezUgRTDF6Z6/7vqL9MCxpg9Q/GtP4fBsat/2gQJOLjALQELC0y/54A 9hHrN7va1j3aI8qgXArU5Xi/qwFUWNmBsLL9cc/kwMr2KcJ7gpXtgTvpim70 LI4CsAcB2I8A2A/wPN7Dc3lXOtS1a8In+vCnm9hmfR/OjrJYczCihUw27cO9 uxtB8U6clUqsTTg3q3FmVgN8a3G3r8PZWI87e6PogG4GiFchOF4opOjaS8K7 P0848wYGQbFr1kyU76a9iQPWcL47itasAK3JcQLizCAgzgoQnB1rdQ/UBMGz 5P+pDHj97NZnDH4jy87D76dJYLveTpfcCse+Tm6Gya3xshdzcbkuQgzMnp91 okOxXGTXlah+FPBbgD0eIM0l5Diml1yOS7RCpNapP1FP6leU7r0Re3OLMHGp p8za9Dfi2lu29Scn/w12lQRwz2G9ivWO6BKqVPjpwN42bXo2ZG/PKesWSegR 8/YFdgfg3A8ht+1kJcChdAvZ39nDyf4rTgYSM8wcS0LrDk02Ebvs24yxtRa7 zjtu6+E22bTCxWNawc8fzw9Nqz8aBfHv1CjTOAuAH9XCFwvcLn3dz6av2ZDG zBbd9+JleFNwDHJgbXvjF+g5HJcJfqlu/fGGeqg4a8eOxxAifAAA7weA3waA 35Su6/R0Fv3cfLFvbX9krS0ziyT0uAMH5Q44ZHdgA2/GAbkOrjE7rnchpKrC oo7MWgBwKS79ZTgwyxEirRRS5IVS3KQO0WJp3mdHSZlQbRUErDxhIg+XsuYB TTTN5HLNIVCmB2hIS1SSDv0NKWDVCmDcJHYCWWD84acIhV2zCZPV8fJafL2m 0I52boeh7dpPqstbx5N95BXplKQc9a3vSnN3JkaminDXREB7kvQDrcBVvE6G oijFHGWtr5Ixxr52urytCIWV4z1U4MrdbnVIrrV0tzdj527D+/cpfL6VIAD+ q1Cqp6U9CxP8AmD8qmhNkMaa1Ji1an2C03sOp1j13miWO3RwZvmc8m8N1lk/ Tt73AyoGAdbDAOvCuYCzlYlh2Zd8WywESVu2C37vUXMpg04PaQk6Bta/UlgT sUSuoPjPZA1oCfs3Vj4PzPJv9Bpgzpo1LJakJfD9sl4fA5z/DLegqELZA0pw 7QxDkN5vIpAMl6Ibgt7L8ft0hjnueDnew6VnJU/dtu0B/O5v4hm8imfxMp7J i6Karr7zX02sOpQzx0wn3oYzcwv26haY3Vtw1d+C8Op6IPca7OWVMMHbZMi4 L/a8F5B8RWQB3LgFphBnYZygeKlZJpLKc4LWkiKRUY7qw8TrD7tAfjpe/SmK 4ejQhFSdUmLrT4LXRoEBrvNZkJvKUnKcqpMPXiatpeqUzc/SawDZpeGm7biQ 9Sej4s0yOhV1x3LrGLgcKz3zVpMjs7HmYy3GWmFmYvvmimwM1ZY1+h0OyA6R obatuAq2wFOiFd6M91KB97Id6yosZqHZsX8r3u8deP+ONsCR9fizi1FRieRk Kns/D8iSWfl1HMd3JKyrU+co1ici0di0aTTypV4KLTFnFkVpdRigUIzFPA+O /gDAdQjgmg+4FltF1Zio93o78XS3jgMzlyRTTt9Vz1ciXgtXwpBwdHAFUNPM Jf9LG9zyCXz6Z7XDDrF0upni6mRTVSwh09C7xPNQ3Bb55OqhyDJukhF4m3lT 8bWxan87w/526Ief0x03RUeVaWTSuWXLA0DrW6ZZsxeB2H/hsbCiRMf57/bm O3+yWDttbxKy4cZY7SI3AJE3wKG6AUHRXtjaq3Aktpt8mVFcjyOyAuhdBOdt NrZ6toiqknB6PhaFfDmYw0CM6U9HNk1nL0wHEO7mTDCXGK9gHBpLTAsAmxLE vPLVpnGyzh/HAWxqgLgYwKb5ZeKglJRMGEfSwv0iNMs17gurH/w+KdWAuDou ED/57Bi4HIgZDof1n0ijR9n0KUJIuhBrKRbp5tcBvJuxe1Ui6zZWqOarYLuV iekygLiF2NvNeE8VHj31tVg3Yt2G93sX3r+jDfAZe/xRRpWPSE5+DiB+CSB+ TWjS69Z9D8DlnN5R4ftIZHM5wii6qvnKGTkUSBg6BSCdDTADwMMA4EL2Zm/Q PJGEwdfa3g8bBtMmslWLOaZEACZKidZLgNpLEL2bFn8hiFs8aQhn4lrwTW9b gPwLBXKQuvq6mnbJN7NEfJXmv0kXQLY8CtUUTMDXSgF4uA9dBgHAiBTawOy2 ao9/owUzAWxXP2CaNHkLj+Ml06DBPwHkv0lpWFvef2fCUm16f5KCZR+2ZC+A vBdg2wsgXwsQXostvVa6vkZGdsCt2oKPN4gyRB7u8qE4EgNwPAoEvNMlAuaR cX0fYSfaj4DjkfJ8NhDLV7ODdFWzOCnmQ5/C1vrBLgFruzgDpPK/T49Wr/q7 pEZw5SUXbt9yk8hOjdHB1XFSO4GnaQhmpslE2iKsZVirhChvOqA4FxB10W8+ oNpf1D+2iMBqE7G1m/H+KvD+tmNdhbUX60Zhkk+DvU0J+AJ8mp7wJCMzzS8C rq8JsVZ29n7pyK5f/6AwxyuzZXx7O3DgORmnKChS2bU8nPk8Es0hkBy2FNBk pXejjjBwjCJwj20bB0ceiCX2VzFIZbDKNHEA1T9YqD6uuARKTfO/khSv+d8M fBZ+TszS+Apef6/BL/FKN1sCX5u54tUg1V6qQpDeY6Py84yZq+0nhWPw3hDB 9xmmtB6XXoF/s4MxzVoZ07QJJ6H4LPhc3jL16r0ErD6FZ/UE8PpHEyUG+LFx fDxO0UWn1PbIdUrxrXZYV2ANiOwGXndLn9aEyE7pwmeHJpXMR+LcleBMFACn w4RTeoKcF7YEOQnFsM6aH/D6ZAAJUsuREFij2aqoi5wVOMbyWvMArLUCsB6p CVil31pzy+k0tv4ghYtxa3/+KPW5eXh7VafX5IsqxmOOnyF68guEuH8GXKPp kTVYG4T6bCbQGQ5k2V/N3oxGIpO7GW+1Amsb1lVYe2WWNVlmWjmIzvzyV0zs vLHfl6FzE8nJrwp1ZWamsnmwr5odhI0anZCZRaeB6uaMmVsm2bLMK8KgFlP3 FKe8EEFsAanuYKny2U/NYkuFVkxjeqmtR0z0MH3EoFMarH6qwWiA0D9ZhD4p 6CQ2TbO/M7fc7B8MZPk5XydaBanWRZbC0M/1Z15uA1rWnFg1HnijNn4V4OYo WaMC6mNnKDFA8UitbeUMVAq8Dl3wM9sZ06g59WDPCu8sbzD2U9eqRSdExR3S 0n5r4ikk6vzorUZJzq4UrtnGoqW2E0jdCaTuBFJ3Ap274ERxVUo35eTIaiB3 KazpfERRM3BmJuH7RgeDTkyKhPPKtAy0Ehci2UmQlkqLg9doLahOrF/cIkhB RfF6tMZ4DXVjNPj88BnmzvIbJMPdFm4OIp5Mok9ZOUPqPwuFwHsGPJ4ZQllJ EniK01bZmm0V/n4lQhU/aq3Aeyo3SjNLrizHuuOT3Tn+jodtSMXQinPqTIxE uywoR56eTsa296Sfv169QziPx6Rnqhlzx7Ak7Tjz4OaJ+8AiuYFEWNDhpTr/ XzwNOJ2rhHYFiFbzN2FV6ZxB0AgZcnYZXjIxJB0Vv1QrGGDzCbWSFpdEpWn6 T+aQmz5lcMc1+6e+zq8LRh/XCFdqQb9Wi8wQlhGxFG1J5EGtJaqe7lCKzJIV 2t/F4cTRo8+Z4uJzZujQcyLEQm+BTn6rVufwLM7BclJH6YgQAWZmvgFsvgBs /hPP73GTlKShaxICCyV4/yqW6h4miVTlbqxtuOO3iqRlW6xu2NcBNqAZJ1mK bWahDKhuFI2eaaKVNF/qhGMkbTwaQVNJjNfreqV45nj+woOIIUqdSDyBpFCh Ni0WnNIqlRF8tY79Ac4k87Nawd+IAvbYpwCsyzxJ6PoZAesFqTWp24b53vn8 XFNzPF00F6SSz2Oa1HwWYlH7kEHqWqyNWCy0V+F7twOz24HZbcBsFX5uJf6d rcDsFrwn4pXUso5zx+e287UOv2fOHyZmqkT7HNPSOM/+Ns7je8JL0aDBIfH0 mjU7JcxYrdvC1nVE5NcVZ59klJYVaxiiuqIRqiHOPsGC2ZphYvNyHoLT3K34 nl06xMveRjY4uDoPMSTB6Y8sXn9hE8EWrwxKxdMlVoFNoNQ0RUxtmjzDILXJ 0/YlC1uBLGLZ1n/Q8i6d5yBYfVgTWj3pbLNUvAdvB3HzsHV6vQyHG1BGneTS s6ao6LQZMuQ0HPvT0uJ46aWn8QhIOXQa7sZJ0WfOzn4Hj+tlQJZJur+Y1FS2 rCiFe0bkERyRh7HIJvtFYcTKkhniPUJFWBvb1hBXbVsZL62QPnXOpIyzdEvz hUl2jSjcTgBcx4rI8GQcgTEiS+oo233tcOZEGHAlYo5NFKTGg2qWfuTmhrOC r14SwDL7M8HSzy99Zlj+JCEsE80axJNhoBsSzh35MmdzxYzOF/nISbg2KfpM XfdJcHUnCctvpTSwlQgsdwCW24XxmeSiDfC1dIFklVHKSVLrOPI6n6ndubms J/jjwZQFYBXxTdEF51mrV+894XdiH32zZuypJ7/iWdPuUnX7uvRQVva+g3Cu 85SRvRiB6EiY0SIEonnz8doynHdSSpbrPMGQ3ZY6x9VoHtDSK7Hi8kUBJH9v Icng86+KN+KOGAQaTeNnsf6lfzZ5Vl8jNn1cOleXLrMLSsXVpUwDzHhPvJfe VwKbcMEHw9znwi0vxHsfMZYzUGdNXt4pM2jQCdO79wmRWGjf/gRc/RO4qk7A hB6zfLqvC1tdRsbf8ez+LGODyck/keecEfkuzsVD2J+vYn0R6w6sG0TTvYFQ Im0RKdnWuHq7YvUXzbJNwvI9U3KGFMdaieuYkqKzEeZMwbkZB+yWCp9kPNFv hlfh1onqmhPjBaNpQTAaGgNOD+ApGaaWcdzc458Cnv44UCRDbGdsv3HGZ4Ts kmprNuHpgfCEv0/T4TTNEkkgzRIruliikfGA7HjRqNqAVS5qKWUie7MdsCdk o1TPDfB6usDVeb77bL7CMcQ6rkl6vi7V68aBoixYVAmm+Hd2NtO87yMaJf3p Iemnbd36lKjkXkYr2k3JF3uwY4J1mkJlqaMKSimi0mJa0cWAKWAwBF7lYHi9 g8lMty/KmsM+X5ZUmdcJckY/U081gOsTFq7/UDgGUH2OXm+j55g7wscC3RjI /lW9X4Gs7Tfmz6fny3+TXZF9cG30hufbC1dJn42w7Mu1vpSH91/Ezq1Csumc Mv37H0cEfsR07nzEtG2r837k3szMPCR8nDSjWVlP28j094DsLwBZJWTPQGRa F8+9aeQrOBNfxLoD6was3VjbcUZYJt+MM7IBZnAd4LdOZAbHRNYLoeQ8EdtY CtM6D+dlGq5r8jiXwRMrxjnKjSnYMMLiefOZruJFpdXANT1O7ihUXo06vllx HN96gYWt/ekgPDkiV4EkfQW5Fx+zfs7XTfz4HYuuy5huis/w7Hu+7EDjbMB0 7NEkuDtjgdkxotC+AascqxJuzzYpyA0AVklH2AmrFT7mlZ0ueN3peb7MXjj1 Xzflw24nl+9lftJlkpQBi5MZaWlkvzogpZmmTT8CXg9JgbFdu1OifMtIlbSL 3dmhOBj4y1cFb9KvD4fbWEbVIpjYAmBg2HrgFF7vQHi9A+D19rfdTRKlfkVN HrM8jFJdjpetD5LftR5vgFfFqmn0PNYLxGzDF5hJks+f068LZv/hYfYPamZ5 F9D1ZcZKskkw8TlwffvC7PeB69sbrm8fuL4DZuJ3Ga/Me7m5Z83Agafg+h5H tHrYdOz4MZ7Dx7jH2FL8MaJ6SoW+KZEqTWxGxh/x7H4NzP43MKv53gwRPnkQ 9/j9MKVfkCantsBsW2C2rTAtbMEessFpPc7HGtzpq4DJ1dhriuOsFgLYqZYA doQQwI42w+CeDUKU2t+rzfhZpDDTRpj4NX5dJi1OXSY1cIgjYmiDoDZqj7M1 KQVs1IvjEJ+sMVy1v5hoFcSmf44Wd3HCAms8nnZfIiVeLpilbaKX+TzHz04H mS1o84DcmUDuFLG2q/A9a4Dy9VibhUunWHJNFFfYgV3bKTw6rbA4qZ0u7M67 PAeZeSan+ev3GTsH2eWZogRYbElJS/tI5s5YqWnalLI9h4HcY6Ik0KnTWXM5 Y1ZY217W2g6geAIsVME4Vduk6uZwxKyFq4AAWtttQCxQ0u96ze9wkD6IV23z EodrmV9ioNk6jNyn1coSocCrafiiSTENXyJw8aGAVwzu0xa4vn/8a/W7pUvi G3aY5077VuAb94Vv3Advs/cCfMx5AITdQ4tIBXTW9Ot3yvTocdx06XIYMetH 0h3RqNEBudhSU9+XwhZ7wNLSnhRDm5b2M7z+QwCXcciXcUS+hGNxH4B7D7bo TlzitwFkN2DtltiG4q/d4Qv3xvb2wzYPBlDzI8sRNy2Xnra5UmOfh0uciifj ZdZ2YKQA3zsEfyfnvNSS84td+rdGsWo8O1sr1hnODEAqMWLtwC3OCkD6SU1A +qn4YFNCmd7FCdEXZrTyZT9d1sgx3jCcIPqYNSL6GJ76wmILgLzZePSslU4U u7kOfs4G4VgfIaJSVSL12Ad2kuygZLm5RKZjySBJ5JFF0mV5XcYorAbILO9v PV+XGSNHbXEQx+gQjthhqcA0bXoU6DuG43ccyDslPOpXdFdxLYpsUXBoMO3M GOVPHzldRblGIDQtgj3KI2867Sb8yr7wc/vcHW0djKmN/lxtHFM9tHkOeYQU oUWIEWoNXsJ6GesVk8wPImPkZYLSubwOgVI2/Z3+aCakOAVPcy1dhbfpW+oP V7cfXN0cmPm+cHX7sMG/FCjM44jgWUSmp0y3bsdhNg+bNm0+Ms2bf4CofT+i 0v1A2TtWPFETvCkpj2H9GOu7+Jq2NHAYtq5oDt0OhNwCBN4I1/Q6YZsjEWgv IDAHCBwEBA7DdhcAgSU4AqNwFKZjzYksAgKppD0ZkeloILAEbtMw/L3+Ir/r Z4pciTSc3K1BVJoeG5VG+xmiqaJa+lX8kFpxotKLD7+F1cLPb9YPu60+oasT 6Iwnc0BdsIVy660STT9qgo0D9MpElGQzIEtGQCbktwHKZIHcAYjvBNx34d8P E7j6w+m+sq7fpsC2wKes20q6Po4zHRHdvuzs44DfCcDvpJBKMWPZufMncOHO mp69dFKsP8NMWIphpVZwhIrxVI5fCBiu1DYAFleGXo3zTGtzO2BrXVa6kFJY +ZEtejqX9U8ho+egZ2FX/xUYvvqvEnaCwpcs9J7Tb5dI80n1fGn4aFNZW2V7 IJNRrLuyxjMItnggPNYBuCH6IyruB481B79CX9wk/YZwevWs6d79lPBJtW9/ GIbvI3isrAu/K50cSUlvSCMW5xuSk/8HSyNMGr7kZG3J59RqXUQPTXATtkIk 0QG3YjdEFX2xTf2whQOkHXATDN56bO0a3LIrcSSWibbmVByHObiRJ8PwkWtw eKQUW1+AvzMYW98HRi8aXbp2QBo9f1o1IW9UehzYRYsptYOYMtpkVIc/JKQe JLA7+3nCrl6sy6mw++EFYcffm/5meD6GV5PjhwjLaYZ1ChYDcozsZwFyUwG5 CZGN2AtavArhPB9qVUWu8HSAGlve5FSBHaPFRKRO5HRzfQdMyLKR71nrb75j lAviOGB3ErA7JVKZFG2m1N6ll56VrqAesHh9qPUDizcoX/mRRahrkop00eKN WapkpiUVtiNor86wsebPhGjQuGcb5ZmBYZ8B65FMwkoC9inrZz5vLd0rhmgz 9V8zph7X6/bzVxSONH2EKP8ea5z8OXQ6+bOlrvlwtEOIdRp2BA+G0zmoHO8N TucAOJ394XT2w+/Sr1D7DjiA2rUro+TjiBQPm2bNSEL7gWgjsUdDs2LP2OuL XsRP7dX2DeOa5zMiNwMHN4jMXqvINR4v8nbRNc7FvjIROwLYIyfyOEnGL5VO sVmR+fCAZgWN87yq3dApPShe5/EGTn0+xhDnQxh3YtBS43QYZARBZLoyMOIH hJrrBXfnLrq5+2GNapSJ4jzH4hCWwXRa1IzzOC+4AGu21JHXWiG9jaZUTF2F sDc4Eb0rgLkOEueRrEcJj1PF1NHTdFlV39NkhkZ5WJKTmbD/k72r/yW9PsnJ 74r0anLyCdznyr/SqNFp06KFCuUpW4MVyaO0Jdyx/iXa+U6p1wKc2RK4a6Ww HWUrdXaU417semcBhGedZ55nX7xMV/xwXub/aCaVmBHM/UuyMYI54sthre4b WG/qnw57xGQYd4wVGTcGGZpve67mrXhf1+BPxKD9NgBj8Iz7wkz3mQibOBJ4 y8X39iVRHIuTR/C7M0NzALjbD9y9LZMClPall55E4UHqd+MuS4IroX0EXzFJ cufdhHNxC87EjaYNXJCO0j27WwZWmB1nD8Ew7K/vZpbiHIyFrZso9epZcj6c jrRjTOtl3cywkFaNix/V407sXWZs8qZuYO8yYt3Mi4+7BefNhLoipN/Angh3 joOBFY1E+ncc9SPRGTNjk4G78XIHboRt3Ozp8VTh5+zA/u0C7qhwqB2W5LpN FY5iupjVsaX8Etj6nUlN/bNw2aemPieKWamp+7EOYp1ECHNKtDyaNj0NW/cJ /KwzMgrZvbvq2lGYsi9tQhlsBXyzIXAv8ygBTSLxFXY4zHa/Do1j61xPnVQw vMiO/XIxmHvZYu51i7W3mBWt8xZ9zAB7r52PO8mO/ln7gejCBsVHO4Yy+Ebc E4g8B8Me914NjMEt7oHotDsi1SvgNncbhLuhJ/sJ6VofBO7eA+7eAe7eAO5e Be5eFFltuuhJnKUVLYCfYz2C9S1hR0mW3p3rRGinDXDXCX5md9yJOdinIdiz Qvgpo2SqaBM+X4G9XQJ/cwHu17m4k2fBvk3H/k/BGRkfdMDyzubdzZAl0YCY 3/1aE8xFQ7uEPmZCzJmL6GPC3Pu1/5oUJcKw86mEWZRgYiWegN06uJZLZFZk LR73WikoMbFCxbJcwG6QcPxXidJzN0COLgtpZ8krSLqTVElpsiDBlGYiqpPH JBxJTSXFLWmsqQ/L1rn3LE/eKVFjZ99Jixbks/8Ex+6MEBNR5oocgpSSpKnL GQtzMQWu2izAi8rNywE3J5Vj21njmTq6fVKEsEVDQkQKhv/U4kI8yNV5G+sd trXio8goeU3MnQc5/n0J7f6kcGZod7kX2vF98BoghQMLJjRz3ebgPcFFvhwR aheY8M45eH9djdCrXXbZQVw57wByrwFyHBJ5DpBj7w0TUn/BEUFYBzOXAtc9 JfI9rK/JjE4Krj22GTcAzNpKJuV67Ns+7P012MurAbdd2HvSYmyGiVsFOM3H mg1zNgNfnyoFiFGAm2tldarNDFV8LpPwhFecNtYQ3KJcgfHglh6AMTM2pIty Cl58uC341DXAeJSermPVJVIY0cVTslqGNcdKNJeKAsoG3H68CcuF6a+3DMbv QDR9JW663RIpcO6nNrY2Ver1rCDcYWJnK2PHoZOTaeH+Cmg9LaPQ7LpUAfXD WKdFPL1x409My5a0cJ/gpieV5Vnhx6JkBjUgB1L2FBauHyK5/qTlQSSXu1q7 P4NRLFunD1s4wkA6xkPJEyYiJYo7H2p4+rXfJcwAOVq7GKgRoowEGcmxCsHE jJQPvqvzJPQomUFhx+xwRHF5NorrCcvWCVdGh2LAH5b70l7a3deu3WnTps1B sWwtW74MqD0r81jZ2WSGYARHb5Is+z81GnV8G+tBrLuxbsS6Whj82mFvemBf hmFfirFHo/H6JOkYJ4tFudT6ihDND4JFGwSIDQPECnAuSuABDfciOHpIYe7d cHtbQpjFq8unVwuzurERXGYszFIvJtYWVou1MEt+PBUqn13TZU/ondNLZ7WO 9QJVU94kLDDzrFTuKJmN24A92ARPcjM8yQpRi6OKckdgrR2w1lJm7PYJp1uq mDVGcY4RyB+B9Bm8nhBvkgpJmZkvwYN807ZoHRHKgXr1zsCbVKVkSp137XpG sgkcfaSyxbBCy1EHkzBwtmb+mIUYskElzd0cVdAF/sVYs8boTTImf/QyJk9r 9rGhjdzoLcJ3NLWBrdr7jcneb5JN9nsGHgE/5cv8cr03LOReUKiyIZUBYZA8 +S/bYfplLfWzOZ1j1aW2u3Qw3n7viWrZ2sGytemHt9VNRyBbtmR36UHTvPk7 eBwvmyZNngLkngTkHgfkOPjyG5wSEt//CEfkO3j8JM68H+t2rH1YFAW7Elfu VbhqdwM6ewC3vQgWdgNuV+KKJc1iBbaaglKLsNUzcUTGY6tHwQpS9K1EOiD9 4M2fXa6hIxmvQhfPsIX4uxryZ2TEyZlcfMTFt27Vcfr4mjM++yUfnZtoZN6E 04yM31giUCXkcrMKyCIpMVWQxwBpxViDgb5++LyXNAJXwmJuB5p3iZ5fc2xh I6CtNmKFVLFsLn57wMROMfr8W38RvlU6kpmZJPlgPzfnf45inZGZoObNleGy Y8ezUh7o0+esTC+SqzaPnFscNJ6qnVyDlmnOfVCF6o/neg2j0sP9ZY2hnGUL 4jaXK7ElAcKG8BG0wXmEPSPITPb7jN1qvU+44WN5jV/zIUcHlFU9yZv82cub PKL/NgvktLQkzGMudfRK7cTh75BjYzdauJawcC064edwihExbJMmB02jRu/A uX4Zce1TuI0eB+RYFGefwc9xTMg2/12ckW/g+X8JZ+RunJGbRfMnHTFaY9mr nbhxd+G2vQp7ejXgtkf4aVfh9aXwWOZIw/BixPWzYN0mwKKNwKJeWx6WctM6 UVTCzbdw8Yg9EjdvpyVKlaTHmj+BW3RYKgS3tP9/4OaqcvGkUTmqQrgxTclm MqZL2PzJuE0ljLeYNYDUIhl5qgAky2EMy0Ujvg9Wd5F9qYQTuR1w3gVDerVp gm0l/XC2ODE3Gy0NhHl1WBb4ldEmsieEnjI1lTpiL4kjySovZwPI/1637lmZ 7b/kknNwqnRYuEcPHQMaMuScEMkWjtRKXB4cyWFwyoauALw2Am622dN3Ihkz sR+Ejh2tDa1OEK/9RXuxBWovauqDTqIPNYDMwPYSbgcMnKxaDm779fv4/XQ+ 6YQStlIR/6MXu31Pi/BsheHgMqWkRiBuG7tYJVo58DxgBCwgrpFOiNvawLo1 gXVr1MxI/MrWnHr1SGBC2aan8KweN1lZj0kPSkRSk98zlEtMEWfyHpyRW3E+ rsO6CmsL9ofcDFVSEsiHRRuLfZsN67YKe0fy2HX4+hJctbPh5FCmqTQyUfpP +sGR7GdnJZw8YljSlNYtQcxW/ehh9aiLFgYaB6iLZ+TSLw7q4FEm63TWecAL 1wfCRBuJtE1dfYC5J+Yp2YnChAlrcozgKoUQlBuxFXfhVnzPFoB0i9RvckRs pRxg3ioaxOwBaybRwjV4D2Rx8Llh7/MiuEdMWD+Notapqc+LiEBm5tviVdau fQigO2Hq1zsnWsOtWqlmKed/WRdgsoTzhcVFqkhSBK+ycJZ2Weet1qGIIbBx g61H2c/zKNkKwjw9EyUEhHRWP2kjt2ej9k1A95YFnQLOZB2AR5n1IdOT+FBe ElO335q517SMwFYx/jjxKv+ggRxxztIAU5R8O/QqmS8hcc8EN6w/SpvHeyM4 vbynBnE0cfUb4ufX4bzSQeH6IolQRsZTwNvjdiZCdcCTgLkkYC45cq/kSlKB uXRsSwa2KBMuSlNsWQdsXV9pJqrEfUu+sh0IJHaa7cAfZWzX4s5dElmKLZ8N 7JGwuVSoJHNCsxB+c3UNer7kEIdiuJRE1e/URGALxXCZFwlsP/hMYHMhnJtK Oh9shSJgOEHavpidZAF8pbDtVuI2XIOnvwg7MwNrPIBGcbOhVtmos+xcpQgH t8RONZUpl70SwmUKqasT+nYsNq4IFx1tSEqihXsaQHtBGGx4kuhQqkjwSdzs 50wzCgRT1JsKoxzmJV36IGWuoRA2RxoKp8FiUJRwOV6H1RhaCbBxnOG6qDPZ 0zmTP9CCNxFAZ9IV3ugE0jqFgSaWDcgCxkzmR1gf65/83CGudghttJSM4aRd 2vZ88d+lhSXoSYPF4mAJLoXRcIInUIR84hlTWHrGDMo7Y3r3P2O6XHHGtEPY 2rzFGVOvPgd5TwijXlYW26Oft+qifzQpKb/Ec/wRzsd38Ny/ibPwICzNvTgP t8pe1AHa6gJV9YC2BrBg7XCR9pDC22bEa+XY2y0IJLaK4iyJW5ku46VLr8dx TzErGR6uD/NOXXCMIeRNpsQZBYwHtYwgrZL1n4HaghpBLVx/S6TZrVwX5GMt AtRGiZDYdDgQ8xEqLxet7k245Kpw4VXita1CfD0aSzVCVWCogwgMVQpPQkts Z1PYNBUXugHv6Wa8Tzc/H8+ZVG6LpKSnpDk3K+sFXNqvCdtbvXoHrKDvSeE4 b9ESx/VSJS3s1tPO4MKm5XFmvgzHdaLyWVD7cxgnh3B8B8OmDWQ9+ebEjiSz kXQkXa2NxojOYBhmHsSwAxkHmZXMPKiQy/rIGjcPapKhfEZ/bqs/e87kd9Wu St3tBiWMHIlrYdQiY8ZM5cDfGZM/4qQZmHvS9Mw5aTp3O2natj9pmjZXDVDN IL2HZ/WqDOCq/ufvALWfioBQEmK2OrjSGuJ5N4IT3xjOfJPI9XIFNoMDySG/ ZoBac0Cpi3Akr0E8vk4yzwsAPe4543b2PbAoNEGYZ0ZIVjInQSNzvOmDfx9m 4oQ2qRZmWZ87zMJF7jlxi9yJ0v9hkEVJjykPQjWv0XFBtkVUvKrMPIBsEsBF 2q48gKsf1hUCsM342ZXSzNUSG9k0ci1Adj3ex00i7poSiApw7CdMUKEyIElJ zwqlIslQ6tZ9DTbsHaEyUsHdk0JK3qqNelEdYcuu6GsnaikgYIfch09RhWwy sDEVySnygbBl/W3PpKuuhZ1GSUM+qZUxF6mxUauuD7ADCiZCK9VkHDI4dPhY gOeDi6lLJkZcpMYGFZYVAo/RVtjYVEai5RGrALB5tGGcCj5jhhWdNP2HHjU9 +h7FZXLUtG531DRpetTUrnMUdv5jcapZHsnIYFXyTwDXrwCu/8Lz0waS2gBW s8gD2Iv7EEndjn3heM8e8TXaY6/aAUxtAa52iMbIX5wrUwIrhYRiJcDGxBgb i1h1ddzFbhTPn5x1BDEJmkfOI5/gEQ4RFkfDs7Sgbys9Fl+ZIteXGvifdiXz hfSgIpAep879n8JeotJbeIQgXA5wyclhQjxBsQAqZU4Wka15uNwohL0OuNoi AltVomQ/UfzICutHluOiK8fP3SxKEC2kf3m3KKE3iNyI93EL3tPtJiXoXf6a iR23ixJNJCUpEyLZh+vVe0OSb02aHBDhqBYtTgqtWtv2wAun2WHcusO49bU9 ywV2kp3Nk0UL4Zut0qbEATAc/fbqWFufezRScqU250NKluRx60M+E5uMjDFs xN0hY9IPs7KdfoRZEnwsBs7hj34ky3KSmHxOsy6XPBGblKRx9ctuRZuVU7xk lk6yFww/YwbnnTR9Bx41V/Q+aDp0OYg756Bp1OSgRGsZGR9gvY71LBbV8X4n 8pcpKT/AM/wGzseX8Nzvxx7cB3zdi4D6Duz3jdina8zl2B/KJ10OQ9YFeOsM /HURkduF2NNFZjI+XwTs0X+cJs3KY6Sq7YSy/LG6sEiWL3Bbfe4/LTb3nxB3 GWrXzkdZKGarfRFRFpl3wZaSRFUAfy7d5xIuERrSscLoPw0AngugLRXF+c2m QoC2DZdfJb7O6Th6keXwIpkZKceFt1mUz5oK89ZuPHwC7Sa8D1JM32lSAvoI x+jidyordURSEjuRmP1/A0B7G8ZtP0BGolx2xp80rVufM5d2gLHoBmPRB4EX DFwO51lh4ArG6Pz5SEpQLsEBXqfyk/0QDPWFgetzh7IeyTzOd7w622+j9Wzx IJ/3PMh3NOURGDeC7AjWUXqRaccItLSjAjw1dtaTJDgJUv4caSn5+/leJING pkZEfXo7jPR61bhiwEn6i9zCM2bAkJOmV85Rc3n3g+bSTgfMJa0PmIaNDpgs RI1pae9KtyRVD0gXobOsjwJs38FzZKfkvXj2VNq4C6C4A+C6HXt1kyjH95YO 5S1YG/DxKry2FF+bjz9n4RzMQXBGKeL54kE6flFHEtwrwTBOmCA4YdY/CrRQ WbtO4F6GgJYZAC0jEdDq/GeAVl2B2+fZ98ttft9WlLOFQnPjhF9/upV+Xwrv Yi2AVC7ygARalRA/FFs9WHqSlwrINuHf2Sricg0QstUD0OoK0G7He7rbKL/v A1649lPrSTqJ9+dwQF7BgXkdQCMR5n4A7QOA7CMZP23T5qTk/Tt0VtWIHv0A nqHR0dNCDo1PUw3V4hU4uBtxiHGA+yNU63MLDjasWY8HlS+fmQnyGEmPls2I EAxs/Wc2g6EWc/jM5wcgOywAI7xM2nECLfU4vUl+TvARhPw+Ado7Nv//klpI 9n+JR+lykA9pmU1IQ/fg/W/V8JLkpnkMOYfj9dwzJmfASdO911HT6fKDpt2l B0zzlvtN/Yb74UmyjfRNSdmmpv5NuJJSU6n3+giA9k08x/txTO7Es78DQLtN OPS7Yi9y4FUOgpc/GEAbgr1iuXQQLtKBsGADYMH6A2gDpUdrunA9cwSgTMTi lB+JZ8WR+LpBcZd79PWmbL5fvclQ50j9OIn9KLDStS0LfzkjyDrGi9EuKrDm JCysOWD5KUe/sBYWVo9yfpbKHNMkuAgzhOp8KYC11qyxwFoOKzYb4BoHYHHe ZoDN7ZOJo7GksbYAUDvwkK+W7qxsbGYWgJURMPEyD/KQF6L9zrqJKpyelMQe dnJWvgtgvQ9gfSTCZq1bHzXt258UzajOlwMcnOkeCAuQF50qLYL1GjVLeTJL 2JXF2jUnSq8DsBAS9YD1uuLrNv/xaGLrJd0hb6nLR5AElktBRX/hhMFzArjE ehFwzI3QnaxjAUVXkz+PYR/dULqIkmb8uhbSBtyI0JHzNZw5h4s4ZJYSfecW UnDjjOnd96TpesVRc1nHg6Z1mwOmabP9pl79t0x6xlt2LuIZLOr2/EYS+snJ HCX9Kp7fvTget+DZ34wDf5NQ3HeNXAdAXItQjI2PV4oGWJEQHLG/fzlAsxBW aza+PhUfT5AQfYwQjhXHWC0XnjmysXjjo4nzHjXAVJoOjTpMRf3IEKbqXkxM fftTpfGJKZfGD6uiRnk6y+ARTMAlNUNmlji5vQxhMgvVm+G2E1OzBFNV+H7V NqYr3xqYaoCLry4+ry2KElfjfVAFldpOt0uxNCUgFHvYpvDZE+KYTjh79TLO xFvi7dTCASW/X+PGB4EphP6tT8i4KHWcmL7nbEnfITh/hdFR0eEwVKPmYi1V iaQCEuftVm7avnfh78BQdX1Iwx8xVL9SQ9XSN1Qva+gUhFwfxeCJaDIpJ7FO 6Z/8PNVh65CGYDRwNHTEZmNbMGNox55+dj3SIxUhGHiEOfAI+9GgwoMdQD22 qcBZGQ0VXu9/xvToedJ07nLUtGt/0FxyCYkS9gtPLg06PeioyumvJH1PzeKk pAew7jTk36wt+cR9wjrfNbIH2GLr1VXY513ATZXMI47CnVkWWWFKEXpRNmIE 7tPhOAOlwNUIK0KeyFDVuMvxU+EqOxZX8ZzA+hcTVw/VCFeOBczVosOapZrS YDqxyOJqouBqJnBF3fClgqstZpP04ezA66p7yAJmPxFXqoANLIeN2oh93Ip7 awfeA4ue+0TvMBW4YkE0KSiNOe7MX5noTChnPV7FeXgXYfp7lj2ITDmHhe2r bVvaqU9Mly44l71wLq022sASYGe0ck+TdJIqCTKTtknz4DIbc6umEKSb8bvK eCB5et9OPa32RZy/d6zz96FihZihXRJMAU/Jp/Hn6VhsCa4ORnFFbDZ8ycvX /1FTiqRCkDkZKsLgffUC7ntvURKSnLkqqtQftncgo8gcOIDdj+Eu+X/MvXdg 19X1///OJCHsGTaElQAhEPbee0/ZG8SNIg5EwI171lqt1Vo77R62H9uvtdra af3U1tE6WhVbFVREmRn393iee1/JK2/fidhPsb8/riAjeXPved7zPOee8zzv 8+9/x+Xnv2U9aRLly8h4hf2ENLN3aYknrKRRz6bK1afBCdIshbvHBlzl46MK wFMf671WfdVOMKMhWdK1lSCflC5OBWNrwdhyMLaI359rtqB0hmwjEuKLR1kf V8qYHh80aj9rWgWpvJqQyqyifycAqab/SUg1qsL7iUCqtgx95KrikPKzyyZy RU1nayW0v5S4ag1x1Wa3AUhpcPcWjmIjcFnCcczEXY211rOLbLBzO5tVtpXv ezGQ2mV6p/VshOjNfL47+LR3W62BL19Mjqn+5PzYy9eA1NsuN/dtky7XLNv8 /IMmxiXq16NHmeutxAVuqg/xVH/iqcG61sPAhYlr/AShqN1MGTjre7ndC4lY dvC7saz8r6qz8sroWWZwbwxOB7yLkisy9wSM0stY5eHHAK0qSEWu6k1PAa2e 6pnqVuuIAlot1Z18nutZ0NNi4r++uNeSZUAMGtt/XBiH2v8wkHqXf7emDf6L vXjd2s30gpGRITg9w97+nvUL1sOsb7IesEHcqmPLsqfIqzibK113rrgSqN8w k3HfYW7qFM5qtsk1bf6Im5qUmGFZ46i1M2ozUz1epGt5AvQvlZfKSuGlaoVU qjqOkwqp5Z8YUnXlA7WFU9jK6WzpHCC12DrWJR5yDqxPE7V38vNLOYpLuc12 mGhIKcfSPYwiagCTyOX/czm6XNiGZ363Ws+FJiakVU1M+F5gfk+4ao07yci+ YfPbc3Mjfbv38FAHMScNsTzqiorKbM5938GYIZFU36nc5HM8Yxq1Ek+1Ae90 RvBQO3zNvXVvftZ3LVu9/Q+9t7Bke1J6oirRHlITSj/IOwXPJBZT7vhPhUtM NVx9BE/7/ReQqxPtqyoFfswnAvUBrKfsVj4Q7rNwO+tsQry1/N4i8AWNLR7F P6xEcvNHXK9e+8HTXjbgVfD0MnjSi+BzpsyTxsZlJn7FBj/K+iHrG6z7bOZT tj3nX26J2U78WMSBDOCek/7vZO5C5Zmk3zzfRJg2WdvmhMQSaMp8a24Za23S NSlf8iiEVJTv38VSlle/+tjsxH8eS8mvWMtq1WqOXrHqKrGvqdM8hb2dBVAW cG8thRKscUsB0xr2XKOuz+Qs1rAWAiRRhlGmmqSRyBfx9S/k+57P999eNdOr npV03273ZXoCem8vWFEY9VG6J9GrtLT3AJOXm2vd+oDJXhQUHHI9ex7FN5VZ uWF/6FA/Qqh+M1hQvcFQvRFQvTGn4Ze2+FdZ+SaNGLGezHv8y5GV0v/E27ZR vT/6yie9Flfl+d4OQDoYQqej3hd5GFUKRolKp5/pl8xFRXDSY5ayGVVR1HM1 031ie/aAdZdXay/dDWS2wUD52N25C3rgZntO5GOq3BA3XFh4xHXv/g5M9zXX ufPfgNPzwEnlvf8LnP7Adj7J1v6cLf4Jd9f3WF9l3Rsk0fcYTWhlzSu7rHt9 MEc3liObzhEt5MhWmQK+2N4GoKS8+kLux9kc61RgN94qdyKlj6giI174VAvT q7ust3GKjpUkVDXUV8qqSqZnpfBQLT5FVJ3Ik1UqWdZISnkK2zmdbZ3J9s6x gpc1NoJrJQGsquhPsx6iS7nZdoDAHSb0UcIRFYCsVqAqB+Yn+WRpWmVbEHWz 3ZiZEPv0xP1G8v27sIIoFfL+pgbjk5ZVWtpBUKW6woMmESyp4G7dDuGejuKe ykxkQIkJDZcunc06hZ+vxhUFVfNx26onz0buSe/BqoewZ6qfhnrC3/vEQRXb e90n+eLBk+Ai2OCTBCM23lWhqsKDTWRQxFA5P8tL7PU5Dkug/8HnP0T2lGfs F9rCNHFr0CU4KchpEV61C4S1C7FgwVj+LP+87j34sauEzd+xQbTt278Aov4X RP0RRP0ORD3JVj7Gtv4P2/t9rPohLtEHWXdbOWEe7KAhx9TG9FcuNdmxYSxp ecwCTadwlOpBkpaEdKumcNSaqjUsMQ2CN9ENsa7LoTVGWCZreJxQT0q1lECo 0lOuQv+X9R+BVsv/MrSSc+mCVqr5PH4Q9DSc1Rz2X/Pdl+Ow1tpgBwkLrAU2 p3JO6orVjI+JwGooSyPAVU+oB6p6/JlMfi3TNHTUfXlz6LaVnoRmwuiB6tsh mPpFLI/umZ/0UdPSDgGtQ0DrkA0P6NRJ6oxS+D1KgFFmtfGDlRebwpoX9NXW 8+MZviHFZu5cXh1IWV38g74pJOr7svrBqMTiJd+/pbxE/eCskmGVoVWJw8pw epdKd8FhBXjJp4koRvCy9MSLIZ0eKi6U8lNqQhVXmnup4ZNDJN9xOqhfxe8v AIb8kzpya3SC+2lWQseOR4DVOxDg19mKv7qWLf8IvJ4EXr8EXuq0fISt/QGm /U3g9WWO/D44ymftbbARvK8JR9OO4+jBj/3DGKUpodVhOUe1kfh3ZeJ0nJdS E+J+czjSyfC9MfCYYRD76iqLSKojLl6c7KxkjKm8VWZNb1WvKkWRClKNqiCV XQWp3E8bUl/+xJBKNVt9olUQKj8xF0+1mH1fYTM6TiF+1air1XYGl/Jzxbc7 2H/N3t4ONLfbiKTmnFUW12AGv5cBpDKAVIalnpRG/wIf90E+d9R28kgsmHq2 iv9J9DQt7SiQOmpV8K1bHwVSx0zwtG/fY3iqMhMLGEYMP1RyONjhkBWsTSEd fSFeKpLBuTkEUvd7T6WKQT1JKZCSG4k/R1W98b7jn5ssvReDUyb4ydICS5ks kOXS45g64jGl1HuDWH5C3lBc0wjg93xuQgMGVFShgG+49Dk28utLIXyz+Hzw 2rZcGW17AfsO/Nj2CHvwDlh63TXnCzZp8rRr1OiXYEpVg2ql/CFn/y0w5avf GyQ+B5ZuC7M3dnP2F7qOYeb9wFD1OY21kLNchbvanDgPTi+R2zWmLTwJpjKS oLqUK7av9XWVpCzHjcdSdfaXZNTEUf3aYqkTwFGrk4ijFHmJuhQWI+kbbUvy /FVfpzSJK2qmTQLTRLD5iZV4pvUm5axZ5yvZ/nXA5BTWDNPgv8RUFQtZ7YGS xtxkclxp/L6fRnYd61YndbE0C6WU2Y10AVQM+KtYKCX94LedBEzT0o4DpTIb h9y6dZnJ3PToUQ6Uyt2gQeWmBTBCEteaS7qYBekbvhl4qfgWNjX8Cl9FLg0A lSlYdXvMM8m085PyEUrPKa2g9J5CKOUiFCtFMMquVF4i21hfFZz49Yxy/2eV DlT4pa9RFUs972OpKM0nuRsRUDW4qHN6Aq5plPQ3VvuQsNdUPuNI/nx/INjd WSNNy5ZHgJDGQ78OhP7qGjR4Ghj9ytWr91NfgIunz8TjZ0Oqc2F9DUy19AZL 8TVP7OQK3WYFuL1NM0UKYedzVW7lDLdylucRHm9xG7gqlydWW9nMNEtLiPmN AEalQLC6VSuekojHUXWzvurgqW4YZVel91IxvPwThlE9/UL9/wh4knWjlOOM ao8+WiKh2qNZ3EcL8EHKQ6yywTNL8P3L2WQFrmsAxiLLQ1xieYhSG922nY29 mA29mE91IZ9REviRHGkkf588qFh5CEnfq+7oryFi2u80fCuNyz03twKDqbDq 9U6dqnuNo5ZHyY+Omou/4f4euY4lEY3zWfig4deE56a7gtLvN6qjJRmycuN6 alK1eZPw1GTlEFFe/Gg1cLIqDDgux1l7iIEHCBmA9HtZ+KCsoz75J+ApjyFe Z2HTX3ziUIAVr9PnEM1UFe3YXX7O+Rj85zCoaekc39bfAx/bWcOJOwO+Fhp5 ethaZho2VC/2Cy4nR0PEfwVwfso+fY/z/zpn/wDnfg/c4w7O/CbO4RouzN02 QrE1AClgFbOGmtbXFsuNL+EyXM86x3JMm6xyXbVG0oRS9KxEr+xDfCUaFh5J /MYHyNSmmpEq8/B/AU+bFOCx2d/Z/wEftOwTw0h3iaKjeDOIf731M5xmWuJh vs1inweMpJiw2CaXbgFKFwClHWy35rhfyt/bYS3gGkfQ1prmtvOpLnZ+ikRc x76mBlRa2sOYwaOsX7OUm/or63XWftYhl5lZ4fLy1LJfYS37BQWVrqiokujI 6z5parDK9kZwbw9f6TWfhm0JzR8SzL7e16Hqiak40nr6sa9MUGRk+fDnq6sg ROMU2oiOWVSkp6QAoXoeQumuviEo19n/GpIyIxd03LstBVYWHb3mo6MaTC6k 8sQulWWU4KkKokZuKHeDl5S7frPKXa9x5a4bLrZjr3KX31ECIeWWf1E1Y8OG r4AiyWRptPdjbNPDbOO3bCRT48SXOObPc8zSqr8ZxrWH47gMurGdW3MrCDjT 9WSVJs7gyM4wsez5rJVQi82sNZZfOqWqf1HBsli+blo9o0QjvE+gqapWBNUd DVlGPLMqI16vJoLankwW91EE1VYDEak8CUG1BUPTrf5hDghaYPqQs0HQPBC0 wKbobDEBDNUVzTcE7eQ4dvI1/OSztiCpMSvdJp9JFzuuE6ri12plp7S0/7EA OSvr1ywN1/ub6TtnZe03Cfpsbn6JXrRsWWEV5ppzq3m3Uk4Tg5ugCWcwuGFL QMvaoCd9vm/hGKwpSTeHNuAHQmX5D/x8FaXs2gQnZEnwV/1jkLG3970zsUdY ZboDTASZ+vrfBpZbyAu/VC8gSEATicsK6TuLhWJvS/qW6ggWiTRFJ3VSXQmC tuGHlG1cVe4GLibWm37MFY455goGHHPteh5zLdsfAznHbBx5o0Z7QdDfLBGe k/Mk2/Mzts+XEWWDnmaJL2Lh97p2iTux9luId6/F8i/norzEhiN1TZyFL9nE kW/iwtzIZbnRkuBLIOjrWPGi8tGmcTHoI92/8VrXEywhSnJASfCxHonGKeCT 81+HT3JHYnLmW6VV0QDB6kaNSebDtY+zE4uAz1LWKn6uAYKn2USHxdaBrbc9 vfEJPir632VDyNqyVOaaXjU0MNL7jKSto9Tcjzh3nf/j2MFvsYc/BfFBjbDf zzoMh6vk5q1MweEqjcNNnuTHFY2E/wwhFh90DkuNGZdxw+N8Bt4Rq2/4jq9v UI5M5XGR81G2W2nqvFhKLgp8ssuroQNqXEPBpxGnOdn+N4KP0gv2RBvSc0pF iBJGmW/RxSg1p7LxUqkz3ejTHePxl5NB/qilwGfuMddn6mHXfeQh16n/Idem +yHXvM0hIHM4KFa9ynoO+PyB7dG2/YTt+zbb+KA9xzYFOh3w8d24qXoAnyK2 vjcxaF+OQr00fRJnE6du4vfWwDlW42BWA5VVplwdp2+i8rpNU43RjTfO11Yp VCt1qxs51dQtuyZyOpxM5HzpY5ETV1+KIydKHdSMftTHO9+ycJpQPIstnsnN JHH+eSBH2ZvFIGeWJbZ38nd3cRS7OZLdIEczUHbxqaLo54ZA21TIGr3Aqpzh xxy5aNuvMAGZgp4W/xakBN9hHYa2VVYpLdWkbZVG26ZOcW7ifJzPSp82GLgV R4PTKb3ad1qU3hUrY/hB0J34VXX2zZzOa9VOJ/tgNWVLhOgmQg2AcY1ZTcLP k6EjJ2WZ7YM+irKs9t98hZBookooVJ2k5PoAeNvQPcAFijleBYIr+PkCoDMD 6Iw/7LoO/8B16HvQte560DVtfZB98E3x9euLt2mffsN+Pcq+qZ3pG+zj/Zz5 3Zzx5+BnnwUen8Hsb+VMrncDOAM9vQ4xoZ5z+LVTOfM1QGoZv76UM19q5CIV Z4t7nShlkMrrfEzmrZqzZaaATpMUmbd6JxE6Das+nHeTS08IOsn9FVHWLZqA GZ9aK6EcZd3mJFbw/2vMuc8EOnPY/nlAZyHQUTXQOI5lKFApMehcZjRb44PS q+bmKeKJZFyirkAv45KW9guO/jeYwNOYwrOYyEvcsCIm79hN26hRpelKfJSv Vbrx8LUZRDyTF3rplpGY4JBtviKg33Ws24HN50O0853qooXoHajK4bwR3oBC pi3zmE8EZISwJoJNE0saNDWP08Q7ICNu9ULyICMksMX5FPJEyWtl9gRXOTzr CLzPz+xTVDbq/DDc/RR+PhvoTAY6o4DOwA9cuz4HXMvOELWWandX2+0/WS+G qZbKuD3Cvn2nqkEpG6LWlCuqvbXb3orp3+yGAx0JSY/mehtr0jtbIBebgcxa ILXM9eOMR7Imc01KwmeaCSONqVK2TeVxUlUspM60NUoR6mTUhE1T/fXMmrDJ +RRhs+RjYROXHYvDJhp+Fz2jauskrbkAnqa61Lk48Tls82yc/CwbxXSO6fzN I5SZCmzGAJvBHEuxiUVfZhp/jVnpNo9diYKbQ5hzn0uWZElL01vg70yTPSdH OuN/D3Is77AO18HTKt0keNqsmc5NUwOq6n3OCg20VwCZm7jZ8TbFUZ4thDiW Z/u99wJW0v1qSFCHBEGWWiEw/+wKD4e84GWaCkXNLcRpGn4pQkxmRc0kgZxX Vb1PEkcrudtTyGGX+kIKiVtopu2oaSBmLIgZCmJKQEzPA65Zx3dcg+b7bQ6s j/7U1P8U63HWj1nfZOu+yBZ+1rpTmsLN2iduAjE3mqMZRZgzCcRM4faamriI n2/hhjsNBK2DIKidbyHHNsvK5UQwoub0eOmpTETk5AQqEqodjSGmYc0nnloR k1Vneq3jp4eY2l5Kk593omGt0bjI+KjlhfCzBVxG8+Fn84yfaczyGTbRQE0q ajiabBnqS7m0pB+wy7SE8w0xV/CpLg+JgVtDdjpq3qsW5ktLk87VU0FW/UUQ 8xqIedMaIpo2PeKaNdMrYbUgX//+riqtNgV+NpfIZsZSzG4DzobIZuR2nI06 YW8BLfdgpl+OpdQe9c0JVhn3rA89zMnsCw1F6ng95iGQ7RMB5mAEkeZCTAtO cZJrFkNMdkCMfFNyVCMKaNRMzbCa1fMAQFZ/kXQCL3Ru9GkghqBsMqAfNaHc DRoBYkpBTC8Q0wXEtIGmNnnbBrBmZPyD9axdLn78o6jZ11nqK7rd9GUlq6H5 cz0Te0DMNeZfpnIMczkWFZjOshGDp4Og9RzzCvzOIo5uFuiZYorfUe9DKuV0 +ZdUM3hqSQZUw6WalyXBxXpf0wW7elWuplbgdDo5wEmvxdWcyPS5qLMoGvYY n7Uq1afFEN6F7LLKTOdbWmAzp3AWAPLzyWcCngmAZzgupz/gKeSUOuJiWlrn q8ATzSWP0gJRl973XSS0l5b2W8tJZ2c/D3heATxiaPssEdus2TFTs+zQQWMw VL7srBBOGTUxtOkwtPnc1bNX+LYHDXEcIxVLdb+JoX2BwCYUwHV9JJYSiArg /uHTX9bdKk2GI56dZcbYmdhYC/1SSyNnzQKe6kcvO8Q09Q4DmgPVMY0Rs6c9 MSuQLspDAOfz3gMO2u2fbkev9826k/U6Nbrcphf3KT7MPxPgtD9gz6D18962 Bis1MEpDxr+C/SzEhnohu8c8eTb3U1MbHnc1Rn8lR3E5wLnM3MwCawDbblL3 87n35hjRXgmoFlslwXiAM5aYdphV53w0Bx2XZYjcTIpKgmpZrwYpvEzIGESw sfZWqcyEbJz+L6vK82TWFuJ0OZkAOuWEAJTcR6T30ehhJxrbGJ+WutgKC1ZY Relcdn4OAFL71kwAJHXD6QYgjfnbCQh3cXq7+brSY77Cxlel2fiqeIgTKVVG CkO/tBZoqS3m5DwPeF4BPG8Anv2A56Br0eKYPay3C8pCvcKIuGFjvG7BtNnO zVsEZ1vjp6Aqxztqd2ht/axvwYuKCaS/YJmBp2KeZ69vbFA9jrXcHfdp6CTw sLOtjajxUVwr74mq3I/Alo3ryQGA9eP56BhZK4CsdVWoBX/scy0eVCPKxS1X Afi5Sq+Lfx4GRR9ySbwPijT/e5+1tUoG3kagJv7Getr50VSaKPBtp6xQutW+ 32j18JLj7cC+F3IGGgU32lrvLrVwdAWEbQmsYaFleNZxjsutDn8qZz0xZAQi neW68tApighSEbVUybSMmp4no6bnqfU95z8PHC9FudQ+eyoBobqecyLcKHMS 1zNXVk2pASUnlxhji6cGNtvoy+ngZhq4mQIVGGe42QVuLgM3l/N1rzAd8wbc gmmWGrgpRYzzY+crsP24ACm85eU9b699TZq8YWp4amFt3fqYa9sOe8fpdCkG AwO5vUeCiwnY2wxY23zn5kB7Zqg5iKBh7MVeG0TPOP0JKPp82beDWy3b40Gz 5BnvGaL4xnLQh0INW6WnYXnVmDGctLG0QFujbPxcKLLfaxL+rNIIYnu5Sgvs C7TtFf9cJEcn2tZNnwMcd4W2FULbiqFt/TfzWfn8I6Bto0dXuuHDD4Gdd8DO PrDzJth5A+y8ZmplaWkvcc7Pcr5PsR4PfXaaxHE/S1Xu1+EZrqzqC+oFbgZZ SsAXTi3mrFaZFv3Z/HwT9+Jq7sEl1mM5LajfxadvRCmBqL+ujnbVlJQtVSqt buDUStlOqsf5eMoWR07UGaQQUMiJ8tFRUi0aWLrMiqxXGXKm2/CFzfz+mTY8 VlMAJnEaozmZIYacy40vdAQ1LcMoqTQbJaVH0M+lpGuR8n+9en9xDRq8AGpe ATVvVGnZtW17zLWHrnXq4ccq9RyGFyHOGTwVz0KcM+kUvI2GkWpC21ZP14ZB 1wbG6JoavruEOEfN2Fa69koszjkYKm8qfF45N3iT5gEhQko7OaL2VcDJD8Bp HKibCkMV7+QAnAaxAmsxQ3sA/QmsEdrW7V7+GYC622WAB3ZZDOBLF/PPIWwb PlyJj0OEc/sBzhsA5zWA83eAI5m/v5rcphxOJpdNtnUBqaHu66wvWHYgm+1u wOXVuqoDaCfHoqJd9StczCV4oVtDiLqc41vCUS6Ets0LM0ejWCcaxvYJG+kS SXUDtQLH/kZGlYCW2Wl2TeCkegL9L1G15CfQ6CEnAo5cc5SNjicJlNhfbvWf q/n/dQacyQBnMjuvHM0ETmE8JzKS01FHfl8DzlUA52qb2iwh67SqJIHinGQh SK9GIuX+evWeBzgvWhtzy5ZvmDad+lE1uL5TZ6ytCACUYm24mz4TAQZX9EgC hQnLnZtJ0DAF2jNeJdSXe5om4cdirvfCb4Vnz8d9KVmUTovqPfXUL3ejhxs9 d9YHPI1AQbPgatp60LCzoJcYsF0MNQp4cio9avRkWiML/YJ/91TpmlJ6RdC0 ntC07tfxb9kBctSKCr0sJk4rVbv6ID1QHXLFxftdUdFeUPMSqPkrqHnOHm4k up6e+K21dGdD03zfnEqn72HdwrqKM95lYpzq8ulrXT7boWAXcQleyAW4zWo9 V5rg6jqb1Ds/JrRa13tnHdnnjI8HTEZNwGT7984IMFk1KVpWTcB0/+94mlSA ifcfRM838cTAfFPjX8oGq+ZzrWXVZuLXpwCY8QBmvCU1z8f/X2TtV6V2tam2 Q4DZA2D8WKc0q/mUanEk6PjtGvxMisWSeJKafIMGrwCY11yrVv80uRppzKnn oEuBVyouHESEPdo3b5cSDwxfQnyD0U2X8ijR9tgdvv1MPdIScOz9FZ/O0otj h5BNk5cxdX3JXr3tI/rswz73nAtgGlR63tUyAAPn4jqyOsnT8BPuk/bB+TSP YUbUTi83egFSaKM8tLJqKlRTmalej5RVK4Ke9eQjdr8IHBOKdQPvRbP4J41x 9qArZZGiov2ue/e9rnPnF8HMn8HM/4KZP4IZTdx9giP+Kcf7g9AZ9yXWXaY+ JtWkphxF1LqjlmBJyknoVq9tKxJb3QaObTVHuALisMQm7dZeXhP3MrXknxP/ F8AkxTSpkgEnFTD3nvB7Z3zAblQqEKWho2mf0XDdVbaz6/j/jabforLACQBm DDs/GsCMMt0rNWzv5Ha63BUAmPYGGOkt3cDHi8oE7nXVIiJx/bhnAMwLAOYl APMPALMXwLxpDV+dOh10XbocszEVPftCs4ZyI4/DsqbjYRb6CYOaBTP1DGjZ NoICpalUWBP0rYq+gUX+KLxx/tYHM/IuODHXWANxJc8tUcWjPiVWv9IjoHkA S7sAFhyc6xJ+7BRAFCGmYeRlyn2HgTyWKJ+Kr62z4HGfiNDjUTG8rDe8rAhe 1hMa2X0jqIFadp/Grw13Npe7qEgKD/tBy1724EWXn/8MiPmdlQakpfmBuZmJ H3G+37Jmtzz2tSEBTUMCmoZcWs1BSQfOpBCvoqmQo0DKVM5pAWhZRSC6yXoY N9lFuMgKqKpfbJQQijflpPIwtRejZXw8YjKrEJN9gojpcTIRc8+/jZjo4Ub3 jFhtfD7uGtzLUmO+m6ywZnriDNzQ2YaYEZzEcE5noHWM7rTqAM1dbQNimhti buLjKQVwZ0gBRBoh8ba2v4AYvXr/HcRIWuZfIGYf1vIeaFED9jHXU2mz/lgU VtUPPjaAO3mw1NRwL6M3e0U4FRerRHKICmo+5xUO9WCj5K9VcIaUWXONJ9P8 Wmn7voM/0GvLMV/z3CA80rRKgZaC8GMyYsTfcqOC6A99Kk457Zax8F8tbSqE 7gcn6wsn64Mr7AUnK+Tzd58Pavg3dR8MagorreG8c2e5172g5UXXosUzNhmw fv1fgBg/9zYz8V3O92tY8P3mXxombrY2AlXStgQpnYMa5iBQMhYeppTNIs5r jem9nOnWc57LjZP5igClfvT2oJtTHD259yZF4vljWkIbVvGrWrMAdQMn51ME zudrffGMzwRMHk0W1QgkD7sVcFTgtxZOthw3s9gebE6Ht53FnzkHXnaeAWcI wOkPcHobib7Mcp6tOcQmACcX0KRbBkCvndE0iR+45Ca29PSXTam9QYM3AM7b AMdr/3bpovbq4/bSqQkS/UYBmsmABl42LPTgaBDzxPP9EFvTALndT23Qg3xU hWaNAxox9jzc7GXcjZTnpUCvHDHGnne8OvJvEUARB01XVrcAngg4ckXN5Zrk osp8vlrZBGkAK/zXq43qEfTS2isIbA/QZ7sK8BB09TmNX1/u+0B7QMy6cTF0 66oZh4f4t+8HNHtxMS8Cmmdsgm29eo9Z6bim12aals4DnO/dnO9t5mYaGzHb zt6fz7lutd6bITaQeIvVdJzCZbeOs4tPPVKmR+etIFb5U73YxPtuIjdTyzNn Ki9zAmCplyLyz0zhZQpPJlgWfyxYUs07EliiF87UYNGcm038/2Y29wxurLMs 6tftNdxusgv5+zvgZLusSF2T16V92dgEkW62rs+aUb9kPh518aa1jIy/u9zc 11yjRv/CQPZhKO+5Dh0+cAUFR1zPnmWudzHGNQSDG4vBwckGLwAscLKRm7wK /fiL/EguNYRZw/QDvt5LhqoHEkXgLUOjWjM8QBNNS5dwlEot4WS5FZ5fNQsp sg4xz9JVAQy8kOC4NqzkHvcZN+WslSpTeZsF/Y/5bJ16t1V/PUDa3VCyYihZ byhZIZSsB5Ss2wi+VbEGrFe4jh0/IIbTffGqa9bsBdew4dNsza9NfD4tTXTs u9jt17Df+znWu9jmWzjWPcSnmuKm4QBbbMJKL7AxiKMaa+8Cp3N8pwX5y41G HhakCPoj7bb4y2bSZLCUU1Wq45gGNVlZRopMWa1xTCq8FP13nUsyXqKKgNqc iyaprwcrS1jz2exZVotxFhfWOfDj82yCuqYClBheVHx2BXi5hu+hy86PKkqz aoB7koL+SAhRz9wS93uVC/R11wSq1LLlPgzmvSCJIwGzMte3H3jBqIoncTnP xvAwtCFrCfyJnEdhfGODlqhE26vEpcKDjB4xrUbzhaBzrUGxIX7JVY0lBp9X Wc3G2genIocCTFwPVs/wY7eAow4BV834ew3LPavTg6hKppUlE/uzBs9HfTWC hDuE48F7AMqOSld4TqXrsRYGtqDSFUzCoQypdB2LKnEqFSxp9L5h49GbNfsL gPk9gFHF2SPW2JlD/NI08XUu/i9i1J/DCdzKeV7Lvl9mI6M64lDacU7dOS+N IxrO2U0CJHPt3lvP/bfGng4ivetonJ7sIKo2ixo6P6asOekpJqu26KUaJzk1 /Uqt0ctJxcndKXGSrHWdrHYYr5yJRy/KJqvFbyN7vYw1l33XBTUJnIwBJ9Vz zy90fcBJIefUNcT6rfApjcNYobSqWP+rKSIXCXK8Ak72ghM9XEoccx8+5T18 ygf4lCOuT58y108TTiBgxVMhMLD9/iu8mMVQIoARF3nRmOGhe9MI2NcDAXvU E7CoBcCyyCEpVu+Qr5KRT2lc6clX20C+CmL4gP+5wvDz7gEn7QOmmgonfI36 R3wjtWqkLTP2Fz/lxLR3v+cJmDA8DN9XckGl6356hStYUeE6z8aRjAUbpRWu bbcKl9+63HyqBEJbtXqB/XganPwanDwKTtSA9E32VBj5Cvb8AIRX44Nugx9c ZwS4h82fP49z0Niu9TiXdZzRWpyLntFWc/etwqksrzELL8qKRVFLcstmigfL JJA0qJN8ZXiixV/PrQ0kOZ8KSExrqebMyRN5rowk10RQowKZCCcisSKz69jn TTjuFSy1yConpiTyKHAiIhwNLC8iWOlu72RXW32gdP1FDHISt/MJowj/666m cOHTToNKpLaRkfEvcPImdvE2d6nEZN+zUquioiOupKTMDZDY7FgvWNiX6L6E 6LgUsj8IXzKMiHnkVV6sJtKlTuZeljz+u3+AV/2kNZdBmnLwBQ0rvF/Ij/mS bgEbwkivGFa6BQLWNiSam+qVBl+Sdyi8urzpC2+s1flJ78/UuiMRKOlTjeSz lm6pdEUbKlynJeWu/fRy13Yk2Ohb7lp1LnctmpfZPIkWLV5jPct+/B6cPA5O /gecfM8aNHMSD5ov6cCedsdPF4KTXuy5kvh9CVb6Eqj0hicX4j96wJ818Wd4 Yhn321J72F8ccmF6mo6IVzwXljwAubbK5U+Ok/r6OlkpCmI+JZzcUwMnqZ71 4+q5wklcPy25kEz3jO4b5Y7Xh1GRK1kLLUY504jvcCPB57LHW21egpQBCsBJ JxM9Fk6UndFQn8+4tKoZrArofxhilLgUoRQBpOW+zwph2rZ9l2D+PXzJByYc K620QdJxH4+NSaR5CTjZAGbwJQMIjgfv/qjYdM8kztU8epF8y9uztYPhB/LK va23qvTZr06Bb/UM+OjN6hPDShwn8j/NwFrjIyGj9p7HofLTFtD/0gcpysrJ z42+En64jZ+fVun6rMKfzC93bSaDj6Flrjncsmn7Mtek8XG457usV1nPsn4D Th4FJz+yKv+0tC+xp5qveq/5kp7sbT/uolL8t2YhDDbhrfMJ0M/k1zeCmVWc 72LOahHnpkE9Ek6ZW/WOr0A+qvCPMmDJ7f8fU6+cl6JqLCMFSPJqgiSjtifJ 4pMEkkWfCCR6kYzSxRFIRE6jqjHVviiVqJTiRjb6NDZ8NWuRVVkqMDkbQJ1j Y8qKAUlPG1h8CaDbbYF8PiBpYSC5nQOVdFNU96JA/uEQmPzOeTlp1eH+02Qz 8vLeASSSkj4ASA7iSD5wffse8epnwwABgcmguQBjOWAgiO93rq9aHBjpc0Z9 lw954+wcEa5nQmVlzJGowkuORJF4C0DSptKTrRhA2NE+VuxSHMBSFEhX5wAS Bf7N+DpN+XqNDvhUsUXyL/gqSz3f6ylSStJSExy307kJ5/BZ11e6klMqXPcZ OJMx5a4Z/77GPcpcw/wy9uC47YMGNufl/YX1a9ZPAcl3AYkGhtzHnt7DOd7F Gd7J3gsgt3Bp3eBGJq60OiQ9fI3gnIYSlAyGaA2APPcDGMMhCKpPjtqURbLl SPRkENUnyzZOpNcylSP5RBipJlxJGOn7X8VIvF856oWJhDIi1WjtndLsyoYo 2SUFnzPAxBqWsouzwMbExBb+7Bb2/VycyFYbxdgFjHQAI22sNuw6vtfNXER3 sMcaDBIluyLhzcdDUPIc6x+st8DIuzbPs1mz98HIB2BEz9eHcSJH3eDBZW74 SOxsCuReAzRWggfIVun52N8ufrwW7NxWLWdmHf3/4x8A2wSypQphcyIhIKl3 3Je0NGG1ZrWv9AFHj4CFPlba0pf/jq9yJBE+8sPTSxPw0QQH0jgMBdH3UOCu gMSI1kOeAI68xk9XmMxnHrGy0pXOq3BFk8pdp2E4keIy16DLcZfb4rirV+8Y az/rHyyV/vzaGivr1fs2+PgS+Ljb7pzm7GsHgvae7HGpYeNazkRtYpdazd4E zmmszRFeDVaWgJV5OJLpkISp/P6kqkxwJFobrzyuRVUzRTCSV1vEXp0JrsZG 5sdntv6j2GiQFLEvrFVFJrmZP94oFpfBiIondcGo5FiZrc1E6mcBBM0mUKn3 HAAxiTWSyLCUVQg4Cmwg8HZr4m/FJdaMw1LEnsch1sN5pFd1Ikev84rYNZs0 0v3bBzjet4b1Zs0+BByHAccRwHEMcBx3Q4eWu1GjMazpsKlFXMBEIoPPABAX YHxE66U3+tJ8k8yMNe2rnkRSF1bztdc7j9yDPqOVW+bLVxSFyHl0rvTGXxic RV9lgPtZBrgkRrS6h6C+VXhlUSDSSPjYX90gpm+pFxPNGxbhM4JFsD4FfzdN Lz2nVLpBMypcH3xHwQCIVk/IVbvjLrvxMZeRfpSt2GfJcU0fkMBzRoaEdr7F uh983GmJkOb4jA4EfD25h0pDU9hkgpG5iZ1uNv58Bsc1zcr11oCVpWBlPqRq Okc8gftvbNXwNgUh0UtJVF0sU0kqX/mY58VUOEkVjJwoTkr+eziJS8/Gnxej SpZ4raQiOmWAV3MJnUa0fja4WGcKS+eCk/PY/PP4s1stYi9idQIn7XEi+SYv d5UNq9dbcS44yQInaVXjRaO5Hb8KEftfLRKRcnNGxofg5EPXvPlhm91bUHDM sr/9+5e7YcMq3ZhxXMZEIiOIRIat91mtwRdjhFf6p4iPjBX4hW811qWuUi9r MyZayP3QZ2xzK72htwyRekEsAhGx6iec9Dec9Au/1CvwsPbhr+mRpcFxH4g0 DPKYqvqPSiQtqfVFn0wQx5p+pnMzVla4cfPK3RB8SN9hZa573+OuHf/UZq2O upz6R9mKI87Lhb4cgrVfBr/7UEh83Mq23sw238ARXoudX2OaFqOsB2yn6dYv AieazDHXZtGvAS9L+b35+JkZNkhsJNdhVEwczZ9P9Upy4srM9WvGI3XjJIlr ZaTASb+TiZNFddav1IaTZIULZc/jGeAziNS3mHzvFrcYnMw0WUWNcd3KhbTV pK7a23D5HeDkMg7wauuAbWgHeiefRZPB7gvT975vMkpqNlaNbFra32yqocZx ZGYeco0afehatjzsOnQ4anUryv4OHFju1SykHzvXvygOORWMnAfhuhSM7IFk 3R4bFBD5kie9soQMV0GCiu5Nq++YL7hX64nqT9oEAtWjJkZcKWuABSX9jXCl Aoqq8PWsaNh7x2cFWj7n61YkC6C2M+knKaOgcSHq75y2tNyNm3/EDZl82PUd fgigHAIoHwKUD1xO3kEnaWqv+v7X4HMfC5kO3TN6cboJP32Da02U3iWxB2O/ iqDjChzGbpzIpYDkEvy+1EfOAiyqOZKozyk2XW1KrFYlymhFryNRRutjevFT ca2645AGJ+hDTio25n9ibMRfEePVkHpFjLK+ZxKkn4vtrwUPC8DHNLChF/fB JkG6la9xPl9PSz7kCrDhZ8E3hBDkQpqzwuyntLRvuPT0H7IeZf2GpSrIl1j/ ZB2AaB822Yr8/MM2lbBnz2M2UGPw4HJrfZqoBtwFXpdYiv8D4Vml8Kz+N4Qx 1FEL5I9j/uMv3n+obMTauA77qsXsQJRahRfBriH4qPIdA6y0fqCHh8Bhv1UU g4bidNO7PO4fRhSH2MPIM75SWR/DHg/v9LM+JmyFa8Gzpiwsd2NmHwYa7wON A0DjPaDxLtB4F2i8Y7TTx2Z6ONJDq5Lk0jBQR6kSg9cBjWutfK47/qME/zEM jjURmjub62lJ4mK3nONYwrEtTGwwuew5luidXaMaJYpBovhcFDy5rL5uWCS5 jBOARa3FKJ8iLOrSqogeDaP5M8nFKHoMUUX9Bvb1bGK9rfjq9UBAPdtTgMUo 1gB+rti8M0vVQq2ARUubxnVtVWyeC63KClOc9OClocheaEEt9n+2IZQZGW+y DrrsbKn3H3Ft2mgA7tEQfpRZ+DF2bKWbPNW5sYQfw7GtgdCq0u2+CqokaFJY cvd7Ya5MlNyNuhvf9lVVpjJZ4a/6ZiEP1SVQqt7BVQwQLAYZLAbzvwPDL0ew KAh/TYX3pkR+3FfSN4wVbKkm2WjVA15tfORuProGIK5izSWamnbYDRp/AFi8 DSzeBhZvAYs3gcW/LJ2XSLzofJ3Or0LEptSf8uRqTrgaWFxlaRB1/JRyE43C W4hWzQtNwas5kuV4eolTLrQ3wmpx5NreP6LKxihtVVtLfSomVe0t0qsiczPC hoJFxsc/E55UWNz5EVjEZ7HHm+ijN8Jodkz09hGldfX2EaV1t+AhtrHXG01W 73x+X7VZ5/J3zuNcziM83AoUzudrXwLsVFR3LbT1Fr7nndY5lBXGMKWlfRtY /BgI/ALW9HvWs6y/s95ifWApm6ZNj1kbY9euYlF+oMWIEeVu/PhKN22Gc+NP kYwwLIoQtx8Uvu+12Cthb+/7/FuclIVsJsxvg27rSyEiJxyAqNnVrrfzRsFT dAzvGb18JG7sSTgQHoaEH+UuotC8MLAusS99DdN9PexTupLqU0pXtSaCplJW SqMNxpsNv4TQXE3+S1kzYIaTDrsBow64PoOFi73g4nVw8Tq4eC3mKpT6VkOO atpUQa1mHYlHXY7tXgYu1Hx9GaHDZZzbLjfdWNR2MHGhdWGtMkF4DShZVuPt XKFG/L0j0meJp6uS6uOrWxazqkBRa7oqwz9t8NcbVfmKjDrfBP9LviJZMjwO iuhBUG8dyXncUxOnQp/OdRfglzex2UtMTeJ8C8H78uvd2Px2/LwpS1N7VGna CFA0BBQN8PcaQ5dlA5Qk8PYdQKG8yxOAQHJWz9sg8KysfSZunJNT5po1IyZt d5zQ4rgrLj7uBg0qc6NGlbtJkyrdDELwicswLsmCS1+SC7j4RgBxF5f4l3z4 bfnbJ3wpvEmBw2ka/dMrPog+8S38Q3mSnygOPCkAIt0NtfB7SPiliEL1DDhS DZYq6SXILykkuaLGoSLe6NPDnj71h9kNlPg/bG/kRvzFQtbkcjd07GHXf9gB 16v/265rL2HiFTDxMph4KclPPBIyfKJPKpRWb85OMOHnj/VkDWSNZ822qOJi 8HAB95eyi5utFyiSk1TUmKpnJC4ckSy9kuL9L1W8nQSIai9RTZ6q3/+SxFgH fPpeoq5Kkvjjn3Yrykmpci3KSW3F2C9itzeHUaQz2XE9MOl1vAuAyGc14ucN AYQ6r/NsBuMtFk/kQJyyRJwSX7OquvT0n5rwambm06bzlp39Gkvab5IrLnfN m5e79u3LXffuflbLkCEQ8DHlbsqUSjdrDoScWHucHgj00qzqJXUrcRP3/Kqv AKzK2f7JM5km3NyN3sRi1XZ4tLq6KoolIg9REryBEAAW3HDWsPDzQcF79Akx eYcoKRUUJKVxpIAiStwqntFnUf9hicZwXu692vC1gHkua1y5GzzisCsZeMAV Fr/tOnff69p0fBlEvAAink/yEIqzvxESUqpck5DAdhuH3YbVkzWQpT7quRZM XMjFtY1zO8cq5ZR/j+sSiyArV5+quuqEgon6VQFBTm0xdio8VMfYSXgYdDLx MO9j8RBJekcykfGHPgVfiq/jVVXKPW1jf7dzA53OOaww9bSLbLxUf369Kzho CR7y+LE+v59rI2H38L1vNrVPBRKZNsNI4rk/AA//zxL0mZle/T47ey9s6V3W UVe/foVr0ULK9xWuR48KV1JSQSBR4caNq3DTplW6ufOdmwYbn0B8PeqiIG4H U+/zhaCy8PBHY2tV5SqBmncwPO6Fitw2wTkUxpzDII8BdhA0EFQNC7/WLwQa 3aO8U4WvOswMPeyWnA3966ZwR5xfdK93Xv134CHOBFfL8RCwvpE4u4GDD7vi EoLrwrddxy57Xeu2L7smzZ4HC3+qxTN8LrAl6aBdwF5vw463gYVtYGEbWNgG FrbZrKnTuKfOJPgT210eKg3FgiO2FLV5JFfjfrLHi9yaoMiuM5RIYk2pQDH4 5IACkpOq4jB5DnlcdTg+6yvSedDexSOJKMC+kLtnB976jMQO9v4ScCM5oYus y1OP361sTPJ5rIttqGsWuNDkyQybOX4vn9BPhlC7gvJOUhnOzHwGXLwELqSk ewDSdMzlNXCmX9cRatITiqLRyMOGxbTrYB0zuGsnneWnTGockaTs+97v9Rys cuqXQQTlhTD9gfs7T28Wh31RiNhOi2Df3YK9x33EiCRcDAxRRlRF1R5MtBD5 Ouarsaxi/R/Vlbidf8Kf+5rXdOjN5yu5EOxu8j2QwyezhpW70tLDrnfvA0RM b1vvYMuWL7tGjZ43Cdna/cO1xpgSdgedCy7OBRfnYutqfzoXXJzL2ZzLGZ1r uULdaUtswocX4Nb7rRiT3qqUbIp6Bj/JY0VGTVxYRFCvJi5OgDylwsWQk4SL hSeEi/g4yUjnsXoGnuQcVIU7lT2e55aCC/Vk6u65AFxsJ4o7HZ+xAlzMxi+M BQPq6OgGNlqCi3r4ixxwk524gm24js9wK59FEmqKsP3Ih/T0H4EHVV5LffsZ 60jPyfknvOkAvuKYa9CYe5eLvIPkGzDYvhjlkFFi4PgJuNO8JeCDCHuihBJ3 +vlC0jnp82CQbXi0JnfSPW5jIT/0GaJGoSo9P0TKhbHIekjgTCNZoxRQ8BO2 I3IZJYFmKfHUgS/VCkg0OlwdTETFt52IZTr8kB+Jb7reDjyu4O+dx7dZx7fB 3Q0ax7cafBxoHAAa+4DGG0DjFaDxAtB4xvT8NR48J/EY60esb1hBoQo1c9jW HI4hx7b7LFz/mVz9Z0JjVRh9phV/Kg+7ydYm63ZSDZyuOuUUdfWJKidP40rh Lj6Rt/hEFCrVE95JQkUyhYo/UQgSdT1R+Oc7KW1LuVHi9PPY2+XWFKg6qfMx /Ys5i9PCoOJZNgryYq6ei/gaF3A2mv19PutS1lXswY18hjv4LCoGVnztp6mm p/+EM/85MPgNMHgGGLzk8vL+6Ro0OOAacvc2htu04A5vC2/vhhEWw+cHY0Nj cBNTFjg3h3Bi6mav0DjyMn7vpqBk8jVfP/iRp4k3fW2URpXkccV3rPRvDF1i bqJ/SC5FcBhtT3ZjLMAeGX49olFR0qk9mGh9yNdJWefsv3zJieJ6wbLzd/gz 9/H9CHcKgG4Pyf+s5N+jgmHwVtq/DHr4Hph4A0z8A0xoCvGfwYT0k3/Nfv2C q+xnXOMPsx5i3c+60zqTmyR2s7axzmZtxrZPhRadSqhwKmd3qlvAWsNSp6zC wqgIXfmTqPuvrlAilmxKqhusBkJuigxsNRAapcjApnqYOFnuYX6t7qE2De1I jbH6uU4ywGPdRLAwyySAl7OnG7B/vUtcCHXaRXgtTdkd7O8lUCwvJ1PA7zUH D1lgIYvfz0pczfLDujOsgUSThZVYVyih4QKcc+5vwcAzYOAlU5hv1OiATZBq 1hwb64QdwVEK4DG9McaBkzTEwA8zmL0GTJzpVReHE0oMvM1rxxU95CWwqt4j AmXS87XqaPOgOO2gTH0qvSsocVXlT0aLhnq6JByku7Ec1FiBoQYU+obIWrmm tkChJVBoesBXkSjHqxdseaZu/8NH+TpwuJtveR1/HnbX5TSgupSPOY2PIP2V PmXA4D1XWLgXKPwVKPzFBnI3avQb2560xE8xzR/Dcr+PJ/8m64usO1k3WLVA PtudT/ScnziNtY5jXIunVs/SWo5uLdfVWnMNUd41eqJLVr6qo4Q2KaTOrWI6 ubX5g4wUMMiqzR8MPWEY1DrnNGb8d1QZf1yONNn44xK+0aNcNOJ0iHUojeUy mWYzGRdh/Ksx/s0Y/7kY+AUY/yaMe4lJW+6wsaYlGH9nnIHGOGfatPqdrGtY t7A+x+e5n8/1VZcWRmGlp/+M0/0lxq/Omz9j8C+5Jk3+6Zo2PWB61y1acZly S3fsgwVJl0Md4VjMSEjFRGnAwYsmbQnCidfye5/x+m89v+O75qIicr06iBdJ Racxxt/pCH8Onj8K4x/nuU+VVQ8OOSRZuiye8MT+zNjYnysNYOkWYo18rL8F 1t84FJPrkVrESEW6PXFI3eFqBXy2TgC0LU6rw0bQQLzTbSLOZKD0RjTn+D0s f6/r0uUFrP+PWP9vsf4nbFxcGg5A2m9NE9/iovoae/wA67OsG1iXs6Q1olbw 0yE66/lxJXHfCjecNZW12JZ3AvF8kuIFEaOowyKuMZKqQLb6xSG3ZtFGrS8O pivCV9BXkwXq/7JqxtO1vlinQsS/Pbw0ho3ba2CjtjqOuh4hfFfSOOKG6TYz Wy+dK8HGqWBjC2dxPtjQ6PlTbOTvDm6bS6xbrLPNyr6Q762x87tYe1iKGYSN B/hcX+cT+mEK6ek/5+yfBBt/BBvqulHH8z9d8+YHqqSs20uSl2u4BwbbewLk JMzFnrCaWHqzlxUZBUEaohzO57zUW/fvY4c/98XjLUOnnvKgGkSVAy5aYcvd KjwhivKpUZFGMi4mxPAxOvx+hI2uIT/Vkq/XFGw0POAfOUSQohxTETgthCB1 hyB12Q1ewHIbHFr7ueADwHUtkaRImSsoUMe7lKtecG1gVy1bPgE2NNDqx+yX NBG/yb5+FWx8CXv+AvHdXawbTbq60FSrzmWdzm2/gbWKny+B6J7iJrDmsuQV osINnW/8NS5qrEjVoZfi5aHaLdSvsrhUwKhXGzBSMaacf9dVfDJg3PGxwEhu 14snX/04UnUijcfFzrB52Iu4eFYmNgKGs905GP5WjH49wFgMKKaaZvUl/N3t 1prfhIPSHOx0G2m1h3WrUzu61yX/Jp/Qj7JKT/+FzU7Mzf1fgCHV3b8DiH+6 Vq0OmFZ1m3YYErykKxZcKFmEyV4HcegyDHU9QfWZXkJEbaymgXivl3Tr+jAX 8xPV1RtW7BeeqaOOCj0gQMbsia0kRANDUoBiYvgxci5xYCjq0NNccwXnih5g ZC0AYf6ffbGhWFsf6FJv6FJP6FK3SwDDGXw2HF6bGTg1/k2d+EKdO5VZi3vb thKoegFQPMUF8TjA+DH7831jmLmAoikXSxtA0YVLpogzLkncxLrCnLW6XPol zsDoN9pwxP6JpSxVjM/Dqc+r4TCijqNojEjUUZHc3l37A8QJ+ItUsMhMkX9N JYsw7CTBYt4JwSLqr4gC6ij36hv0hgOLCZj8DDcnsRDzX1kFi7Mw+fOAxTqT 1t/BPSQNV8lRbbchyhoPn8afSQMWaaatKzWEeyzvmmawUDXCz4DFLzl2qWH8 2cbNqluzRYu3gMQB7kwvRN2FIKLHAC8PWjKVe13KOgSkY08loN7ilUKGX+uV Dvt+Mei2PeLNUuoHSvhEdX4KplXQpJxryxAF9IwFEMOCTwiQYAcnWTA9Mcal hgZYFAZYmZz7cR9FtCKCaEvQ0pFAvuDnvh5XwxCL+Wy9gG4PeFTXTcAAf9ce iOcP9gmDdm3L+Pe+x3Ug+SldD08BiccJrh5mf75peblcIKG5oW3wE12ARBHB Wb/EdZj5layLucak3nIm57CJtYa1lKtqAT/O4nxmVvmKqHJDvDneqXri3dzV PCqvTneRkwIXGbXhIqkxb+R/EhfVBSYpcJH8Vic+maq6SYkm35SnIaITbGzE 3MQi+NIqt4o930gkdxbuYAvxwxpwsQBMTDKh9ks4q+24nu1EaZr1fpHz06o1 VyeSz9V7hCYfPmy59vR0jVz+I7h4FlwovtgLLvaBiw+siKNjZ+yI67QQ+ynG MEu5Yocs4kqHh4zTsE041JjLvNqUGt7UQ6F3YjWpapSBCjj0RlA/cCgboRvk cduE5Gmv4CoGB1cxLuBiouFisiVdJwQXMjLgQu5Fb3XqALeBVcQtrd/E1oll OuOiuuGqClUAi+vqD4fqdws/h0MVgePua/m+88AU36gdbjAfn9O6ldQO3jMl 1EaNXnANGjxlyjnZ2Q+7zMyHrH44h/1rQlyRzx3TGTdRyH3TzzCxC76r/Ld0 DM+yBrxxRNTjEsvceO6z8YnZcKmp5iqUYEpuMIoi62T9Qouqa3mKyPYPECfG pnI/Hh4ZVfDIrAmP0ScJHh8NM04EHlEe1k+nHsFWT4RNzbT64sU2sniT2wA8 zsD0z+FY1lhPy6Vuos1s3WHiIJI2bmSD3AWRK5wvyImm5kRiueqZUeHfr11O zh+5Hp8j/H7Z5he0arWfK/QD6HaZ6wSPLyjxswskwd5/Nma81LkRMKmxZ2PC FwW5z1u80IFaJ1T0pxyshGpF95u9Cv2XYM4Hfu5t/fAk0SEkkIpj4cWYGIMC GA4v5aaE/4/cxuDwdxRiWEEsX685X7s1rqk9368z37cboXfhjzyTGgCTKrmh wvW+tMIVnlXhuq2scF1mVbiOoytc274VrnXHCteSkKp58/3mNhs2fI79+B37 8nOXlaVy+q9xll9gTz/PeX0WF38bZ3Uj7v1awogrbRL4JPZ7SuJ81tlcZxI0 Xkvot5y1yE0HHlMTU6z0PxLKifcVxV1GLaUcieqhUjk1qVS16lr6J8ZEdYSR dRIxYVQqvfpxYs7HgkKPE8mF4lFv0XD82Wh8xiRAMYvN1SSI5YBCfaqnA4oz AcRqDmQ+a6JNkbiUv3+p9RU1AhgJWxolFY3EUXWzHiaqVaUyM39rWuIyhKaQ nhYt3oBi78dffEAcWua6cDF3gbh0xxp7YaEl8+E88Khh8KjR53G3SyVnD4Yq Jan7vUJOlIxVXkg8imvYNQUUDT/wKmuqXs0P4UFRLLQYFfzFJA8ENnKavV9P Db82LvgM5a76BH+TL6lCFRDij1oBiraAoiOgKFCN0498wbqUSUqvBhDby1z3 04mxl5W5jjPKCC/KXOve+Ip2Za6ZDWx8y3IPDRs+Y6IGOTk/BRR6xFE9jIZI 3w1PvYtzuh3DvomL61oTNJgIX51p76bbuLzOtnFfcxLr8POq51jEj7Otbi3Z X0Q9RHXkohJJyaicT0Ki0vXVqkOKzDp9w5iTiYNbTwgHyTFF1Ec0gstkDM5h IjiYYaNwV7ql4MBrC18IFnbiLHax17uscUU+vIhfawcWGtmw9R3OT42OD7hR E6VqE7xqVGbmH8DBnzj/57gcX4YzvWEjByRb2aVLmY1R64bhdcMIC2dyKcPF S+EeQwhXR17AhS0VnBu8ul/fL3nxgoKQl9XjnB4kGmse7Tv+ES0vFL22C7nV PiGWGB5zDHIGIMBNDz9GOJBzGBH+vIXZlV78QAqETYgngLDLBwftn8JBhFo/ YXM4vG7QrgrXZysYOPWY67TkmGs39ZjLH3rMtSw85poSOzUmTm/MB23c+G/g QM7yCXDgZ9ymp3/Rpdmj3J048TvBwB1w25s5n+uw76s4m93GXxeBg0WcjWSI F1v9xgpTh5pu4gVjUiqoxVXSPz6WyPkkqSfzC1kn6A5OKgxm1wqDVFLpcbFB PxV6NBxpEu5gFr52oU2DPgUYrOLKUS34Zkx+OWuOwWA3MNht4rXtWI2s5EZQ 0BRoCdfGhTh9+CBRqMzMP9o4liZNXjDhyTZt3nAdOkhMXyKcZa4H/L4Hd3VP 7LPnXMxvGaa1EbM6B/Pajku4qlp8UwXXCmXVFKE3aoUPeixrtM8/HzQ5zI8V NUPqeJZpXOBF0/QuN8M8QYSEiQElwwKdKgIBnaQjVe4FohsTtTfnW7VSC/ZT PoKRZxI9GnU1UcfFFa7kLP45a4+59ouOuDaTjriWg/AAPY64xq2OuAZ5B03g WqOuGjT4PSjQE/4PTd4mPV2VYLeDgtux3tvw1reBgFuIDK7Hwq/mdrrMnklX JC5gbeFmOg0vvd50BDVdI17FFI3dTO4P+kSeICnNlMSNsnyfNV8tuyrnWg2B VM9z/1EIVLupE4FAqifqqEfIT6odQ+Q12SSCpnOjzLbpTRL+PZtQQZXFO/EM kofYxXnsBjaXAYHLgMBumx6UsHVtLIJWiKBXiOp5Gqp0rV9frxB/AwJ/JzR4 Aya03/Q1e/Qoc4Vc1UUYXhG22Qs21GsVN/5p2BbR89CdmO61QVfzPt+HoypX vY6pmk9VSyqdaKAZFx/66rsmldVsqFew5+EhozQh3PrTBYGZBoEZMQhEDxF6 wChUtYeUopS/Peb10pu+7nXUhT6RMgX0IkNyViO2VrjSU8tc0XIcwewjrtX4 D13zAR+6xl0/dA2IwOtb0dZrthX164sk/gwISOHpy0BAQg43A4GbgcDNQOAm juYmjuQGnPA1HMHlbi23zXqOZD0Q2Jg4nR99IZ8a5VWdEYn/K8+qiDBVdUbK URnVosy1QiDDh9t1QSCpju/ThMBNJwQBBQXJDRBeSnOMTe+dTHAxI7GY214F 9Bu5cqQZfyEw0GPcTgjpLmtwH8gqNAhcxtdXAml3SCKpGFNiHGrv0qQ/iXFI YeIpIPBnzvsFI8OtWr0GBP4FCdIQog9cYWGZ693PV2f0wTb7LMSuNOjrLOyQ CHnw5Z5oDLjLJzGNCD3i23A0PkZVSpJ9rf++l4EVaWlRWV3IWhyi3lEhcTQl ECCs381izQ4/j7uBocFz9Cj31XvNJepxFJiJbAUZZiV25Y0ESyW4JlzM3z2z wg1aU8a/4ZjrOhU3MPJD16QfV3/ngy63yUFXL/vdmIrTk0HF6Vtg4Itg4E6X ZtVJ14OB67Hl68DAdez7ddj/HsjpFeaRFaipmPU0MLAqsdqaHdTRpSLleOd0 cllGitafJA+QlDHKrLKwjNo8QCoSlMoDjD2Z5n9zSvOP9Jsi85dHjGs3RSNj Vaeh/NsUPOlMe9NcbXNilpq42QX2trCIbZ+O+Y9mlWLumhHT1hrhLg851OtD kii1eqy6Q+vX/5s9tym33r79W5j/u6aI2Zt4sVhzYTR2DLvsewox8XoWBKif hP7ELm713Zd9vlZNgNSZKTNUHKCa1ZxQmNSs3MewUb1qv3Cljw1cf1owd5n9 nCTznxRcgOCit4hufK12elPA9OsBrbyoPiP0/OiNQwxICulTtgKvTRVuGLFw yexjrsf4I67DYFxA0UFXv8MBl93ogMvM2M9evML6E+uXrB+zvsH6AuavtxmN DrkG878G878G87+aM7kaEnq1OxXzV9LuXMttn8u1tMmGlHoGNNkYkIhtdP0r Fo7XcdeZHMqsMv/q4rx/kwClquIed3LMnwv7417XhIBI/jJZUUNpUnXAqRpj IhfIVHZyFg5VQ8YXmeb4OTZw178iXMrv7yRk0LjX3aZ13Qbrb2gpUq0bYxmh ZF3YZzjhF0DAyyBAw/f+ZUNOunR5HwQcdsXFWIwGvIzzVRj9l7IIAUrPZcF/ BkgL9jNeqaxX0EtWC6j4jx6bVZ2U/b6vwGh8zHN2yfZFUfCAQP/HB/o/3V/8 7Nxcq82bE0PAhFgkrL/bla/VBgQ0OeJ7o1XtYVUYv/dVUkrZDvqMf+WQBNOk 1RVu5IIyVzrlmCsaccR1LvnQtep60DVsjfXnvYuVvxVURTSU8HGrcLcUafo9 LM0AuRKLvRIEXAECpBFwBQi4HARczsV/ubuQvb8ABJyeOItzWWeD4WdAgMYF ApScHo2kyeoYGF4NgOp25pw66U+2v/U/AQDGnyQA3HzC5UjajHiZngCgtIGu jTF8vgkGAL3aRwDYjAsQAC4k2LqUIGwnLmIXf343f1cDKTRw93K+h4xfbVlq z7rL1ab5mpX1V4I+TZ983bVu/SYx8DsEAAdhP0es7bM/QWo/rK//XC+uX7rZ 61hKqm9A7PnMhJB/5otDTeP1FW+UVpfKNd0UY82v8E/C0fU/JLCaiYH8zwxX P9/KzQs/zgoAGBeCBQuCnQ+CW0r2T0/WH3iwtQjFqRYBPOjj83E7+Lqnql21 zI2ee8wNnHDE9R7yoSvofdDldzrgGjd/12XX28ep/ZP1N9ZTrMesMsV6x03K 7UZ7qm/MPnewaZ/ab7leH4SpXvgiftySOD+Iva/irBZwLlOtFaUUlx5/OksO gGNPZ6kC4KwU5p/qcSCryvzr1TT/Wrt4Jpwk87+xRpl2svnHdTJqu//1Ei/z H4f5T8b8p9tgqDVWAn8K5r8C819p5r+Lbd7NcVzG373c5rG0xuwb2GvAVSET GqWAoieyajnX7OwXXcOGr7jmzV93bdq8Sfz7DuT/oOvV64jr16/clWq8N8y8 ZAEmC/nvx13aD/Lf/0rWrUnPY48FrfznvdqX2I8mo9Y/7rW/80Mmv3e4x6O7 X8R/RjB9mf38JPOfGv7c8BAAK31k2hgVfh6l2iCki6FqDmmBWxb0Pj/3QjKu 09fhX5Ycx/w/wPzfx/zfw/zfwfz3Yf5vYv4y/Vc5pxdYv2c9yvoe68usu1jX c3672NNLuK62Y8rbraJCo9YXstZz72/lRy+7u97u/pkW/E6wiuOoyzl+98ef xk6sszP7pLGgk4WCmz8RCpL72CLNPdUYjU9MhwnNxREsMXHDeaBAeedlsCA1 7czldCaDgBEgQGVgXW3c3VWc2NUhEaqJRPFJK3E9SvX+q5/xH65ly9ddu3Zv woDegQEdhAFJ8LvcDRzhJ6kWEwP0JQbouwVEcLGW7MHS7vCCj9IQkwiGvYf9 r6/PVgZIakbqR1apnWoeFP7qgbgkhLOjA7+fHjh/hIAF4cc4CsaFmKEkhNDS DtD7Qv1DHm0KuVXqZ1nQbwUx46tAz3n8ffVnLzjuRs48CAr2g4K3QcGboOAN UPA6KHiVU3uJc/ozZ/Rb1v9jfZclJXwJtV6LtV5qYiOt2PeuiW2mBapR0HNZ Ukk6hx9PrXIA8zkTdSWMspSGnHsqhaQUGdCkx+HsmuFvRm30Jwyvj8LfE8j+ nCzLn12r5Sd3/Mc7m+PTUvWsPi4xEfozA8tXJe8Sm1Mzx9qgpF58Aa53h+U/ J5rlX8nfvYpTuRrLvxrLl9XvCfnPLyRFv5pbp87dF7H8v2P54v5K/7/punZ9 xxURGZaUHHGDBpW7IZjnAHhJyTJ4NzSiD9FkseRfbgAFd3maIW0uG+j426C8 +g/fxZxz0JdGaIijSiNEfaK854hgzVMC7ZnrrT3dLeRgRpnhR/R/agiSBRbl jKzWVI9qyim9X039FXgLgArGlZYdDkMbexZXP2HLuDnH3fApB92Asfsw/L0Y /msY/j8w/Fcw/Bc5tOc4pqc4ol+ydT9lfZv1RdZnWHs4sh0c10WuLQbemSC3 L0cwkjXDLqGzufrPcesSG3DNS+3qj2h/VF+aKu+ZPFA7Femv+75Pr7L6ejWt vu7ioMkn3eqTSX+y1cc1u+PTG5UqG5+YZO+/k+z+WMKdv9qmac9jmxdj9adY Y9pO/txlbqiV/F6N1V+D1e9hW68NKc8o56OIV7WkevSSKOKfnUR2pfXSqNFe i3g7dnzb9ejxjusNIe7f/4jpvAzD3gbN9oS/7+lYLSyiN4ynt+rRPl+zKdME j17w+i6aMqd8T0alFwqOGE+U6hwdyH5018vMF8rqF33E6ieH2GBwIEwCT1vI TktA1fhdL5AnsEk+wMpIH/CSyENxS6NP49tI8Gj6cTd0Av+sEftc0cDXsfqX sPoXsXpcXr3nOLQ/cUy/4Yh+ztY9jDv+Fut+m5XRmG1tYpNLL4S4aGbAOTYU aKgNBDydozgNru8znQsSC43rR+Wj0ZNvlOmME56Peeyq9a5PYjlW7JBTVfaQ yuqzPh2rn/WJrT55ZpZeyifYW5cqcRU2LXXTYDkzTKH2bLb3AtjODgu3xmL1 UrQtNqvfw/Zey9FdFzKdmpP1xRDmaubiL1x8bIMUXTSftFWrt7D6/dad1bcv l+KAI27YsHI3ApI9hIt44CrP8/tsh0Vcw+Iy7ZVU8SP1YL25tnjNF/trYG+9 ymqGEz3xRhnO+D2/wBQrFpvJLwi/NjOwoFEhNigMX0fjHpTgr/ee5/jWmv+Y 74brQ+zRXzmoC71e33iwM2rScTd4NP5ryD7Xs+R117nwRZff+VlM/s+Y/J84 sT9wRk9wPo+wb9/FLL+KeX6BdSvrKs7pYtfOxmOou+ZsbpfTYaKbuG02cgNt 4JLfiN9dht+dU1XpE3/fjbKbEbtJ0USQ/LhVnd2vvujTU9CbJJPPTBHeJpn8 lE/d5OOKd1GFg7I78X6aaLLPRD6fnnencHtMZUunJ9Zi8qdy2Z/NVm/D7C+x 1OZoe9u6gtvnKhN1bo25NzBzvyGkNpXZ+VYIbTWM4Y/Oj4WToNe/MPm3rPqz Y8d3Mfn3MfkP3eDBR9zIkeVuFLfxcGxwsMbBne1JfW9MqvCzrAf9SNEuIavT FpPPx+RbSYIRk2/yoR8jqqqGzoHaRGHthJC1mROI/CIzeaIHbsiFweRnBGeg P6+Gge4hrG1Q4ZVV1dWsLJJ13vMZenyDz/ZZr9I6EEI/fDXQ4ouMGHfcDRxG sFK6z3Xv/brr2PVF17r9XzD5pzB5qVD8mjMSmf8h+/YQJv8Apv45SPgtrCti N/wWzuhMNyCxmTPaENqMV7uVlnWrWdQTNVpGvCZ+wyc1k1Vbe07VZZ5dJ60J lzlfI7e2Cz5VGHuyrP3GOi/4aJaVrF3gV46rWoplYNWMnkk2y0U1s4ushnZG Yh00ZrPN55ljMlGX8PtK5O82EdoirL0T1t7SdJuVxFdpp0raHnTVo0d+GUJY DXfbi7W/hbXvt0ntHTu+j7VrZtVhrP2YGz263I3lFh6pkSOEsIMIYfvv9ES+ 191Yl2p4oDRdfs4F+xss/k++xDL/dSx+Pxb/oZerk4V2DZQmyl9OCtY8z1u6 rnbZulsSflwYkDA9IENOoW+gRgoM8so8k2/4Lz9AToFEp4cJcUFg0a382V1w mzN9t9toiNGwkcdd6cCDrnfxPte1x+uuPZymZeu/uIZN/oDFP+mkMZHFbZDD PjVIfAXLvNdm8GhIcVt7Id8G9Tyv6oIfzK0zKrGeG2k1Vr7cJHPmhuFtUfuk Lvj46+0Jha9N/f2e+Egrfa23eqqqnSQ7n/oft/NY4doNdb7Z6h+tf3zqojXN ERlvvfVT8I5TE4vZzBUY+nqM/DQ8pgz9AtYlVsM8HEPvh6FLdbkDht6cw6lv hq6E/d0hY/ndkKt5MkSsUun8F4a+D0N/19ojVbep16qSkqNw9zI3ZkylG8/d OxrLG76Rqz0IlpbcxPUJdy/8hn+pKoBFdMbQOj6Dsb+IYe+FXbzjFR80+6BD jMUMj0Wrs8KVHjfypeHn85NyNYOCW1DRm0atC0Qt3mb9w/cpt3mC35PI9hf4 XgCxz8WAUvMbFupax+CHHnP9+mn43NuuoOA117bti645TKZBgz/YO20613o2 UX0ucU5DmF+TxF027E4ZANXEdiJc7WGD8c7iMjrdjYDJjOPimZpYxTksh8Sf UlWmIyaqS0uuWtd6vO8rXqaT6pWqSZWdZ9dWm5BRJ3tJZefTPjX2ksrM46UJ UYly9C41wUr1p2HGc7gjFpkcwTS2dTpmPhMzn4WZzzIz34WZX27tRj0JUTtA 1psDsfp2lysx//mQkvx+SMz8JoSorzjNg9FsMQ2pzM/XDMIPquarDRtW5saN q3QTYM0jl2Mmp/nxUUrKF9+Gyd3npQ5Nu/1J7vGnuccJUVu96s2v2QewlzLf sdslxJeDXHUqMn6XB/Nmx5YZYV8SzH92LDPTP7AX9a3IR4gZNXm7WjKiJT6l DcFDR/xMVwKKwm18znW+g1myYGJj/fop8fRPzPwVzFyl2U9j5r/GzB/jrB7B vH9oekEtYC+t8YPt2D+VIxRwlfTgPh/MnmtA/UTu9BnEqUoRS7B9jT2aLDDt rGgQZ0TWo45fnXdUiVPrXd6k6gEqlTpQ3Zyl1rv8P2/jsbt8Rq1GLkzHG7WS SUs062ay5d3nsBZh8Cu413V3aNq5Ul8SpL6Eu0NGfgVGLgX9PWzqdRj5jWym 7vHbQvYxnofRw+uzziuQ7zeNUQ3abNdO+oKquzlMRHrUjRhR5iZMqHSTsLRR KzESCMAAItISDKjPZzCiL3GPfy8M1gw1N82hy03/5YuO9TDaotzX3XcP9/jQ cC9PDQa8INzby8zAl1vP4rJg9AvDn5kSotKSABbLuVf6iFdZzuYv+lev/Ef4 va/x8zshL1dg6OfyGYmkiwFpKd9YuaWSkn0Y+asY+V8x8mcw8t9h5OrN+Sln 9SPO5XumBNQu8SWM+26M+1aM+xrrcehrBi7N4wsx6K1uGXR9LXRdM+2kAjQ7 9J7oHo/X28QnzX7cPZ5TZTwnEI+atRtgMk6w3vikWvu1dVp7vNpM1h5Vmw0y tUQ/vUYCD5OgfRNhLhPwjpOw9sns7lQbP7eNHy8xDfyhZu3X8DWuxdpvwNpv wtpVan97yDo+FPIvemd9qioYTSRUZPi+jcxs3/59K7IsLj7sBg066kaNKjOp 9alciWMI7Iacg8VcCvW9nuv8c1znX8GilHF83AeEkr5Sib0KH6UUqtGWrct9 mrAoBJQjQoAZv87FVLBzB6DcivDz6EqPcjAjAz3X11LnivI6ORoL+Ea1/lXb H2HxILAV9Lwt9LwT6OwGdIqmeLVHvZz16rUPZvYK1v4s1v4U1v4k1v6oVZdl YOlKN7ZNfB0rfxArvwcrv5Uz2cPe7uJcLuQcZOkX2fvqaey/ry7bYLrqycFo nJrHx/5F13kNZZOsKqZSHUfWmm5Mr2Lpdd/sn6atX1fjXUn/xviLqmw9WcxE eySWPtqUQSdbd/rkxHxsXIoxK7jF17Hfm/n/s8HBNn7vEquqHGwZdtn69Tai UaMa69ut/plYrvEnSaGoJnS9j61rAqZabj8kFP2Q2+8wDP0oDL3MVNSnQ5fH QQOGq54Mht4Hhl4IQ+8GQ+/yk4++pGpCWUNsvUWQeYvXEuiGnhxj56fE7HxV +HF5+PW5sVBUzL5PYOjqblfmPk8F9TD0/KB21eG7fD8YehsYems8ULvNeB3A 1J0v0Au3UFR0hH+fJEBfcZ07P4Ot/xZb/wW2/gi2/n3O6pucy9ew9Qex0y9y Fvdg47dZV6Fad0Zi3zNYyxMXu9NZFye2u7OsjmyNyX5Oio2AjatEn0AVZdJz UrWlp9cWj9bNYVI9op5US59eQ+gwbun6lydbekTUo+FLUsWbBuGfAgHUW9LE xEqz9HFYuobuTsLSJ7LbI/GvAy2rfo3rbpZ+s2WE61vp/J0hxagGKvXS/qpG LJpIaKrMISz9MJZ+GEs4DJk9DEk/Ckkvc9OnV7qZWMuEDdysxKIDL+d25Nbs cT83OiS900/Dy+lfPGFW2k+6Uk2x9HwsvVN5zXoB8ZcotRjd6Fh3hsyc2GRF uNDnxYx8aAhDlVCXdK41pCgMfbFatqrTQxg6jqYd9KoN/Lz1en7OF+k8xkv4 dut2hBhkH+H2K1C1Z4hJnsTI/x9GLingb3NMX8PIH8TI78fIP88x3IWjvN1a BsckLmO7L+Yy15CM7e5cM/DzbKRDRF2UI4uGKenCSm4XrFWmKqlOrNbLPCnl UndqMcnEp386xCWViceVqRSzpBqkpF78afYGtxSTXsVerzcTH4eJj0+cz9oO Rd/pSolFe9nD0fVcIDLx2/heusiVRf9SyCsq3fLrEIf+3WnWdyJxyMYANGt2 FBM/iokrLXEMin7MTZxY5mbOrHSzuVknbSKGxHYGE4eWSDP5AWwLit7h52Gu 9/Negarpm5g7l2w+F3o7TLyg3NtnnLTMDOmU6CLXJQ4vcmvCz1eE34vsXLDQ W6lSNm2Vp8TG89/2MW8rSEuHX/vqgC5fxaYJHzpC0dvjeNryRfPxGu3xBF34 y507H3EdOuzjEn/FtW79jGvR4knXtOkj2Pn3sPOvc1Zfwh7vw87vwc7vwl7v YG99U6BKkKbbaJLt2PZ2txEbX2s2vtY6ojT6QmQzktg5wYbApHKY/zNnqTbz pMKA2SffzFNxlsjMo1pIPR2nGnE/A24+3dIty9jq1dzcG9j208zMx2LmY60u bye+VQp5V+MRruMKuYmtvZ3vpVv8cyGrqAqwn4V0y1+qItFE4ihmftxGIUkm RD2A/fqVWSQ6aVK5mz270s1d6mWax17o3LCr4eiYUpGUMH+AKT/u30XV+9cS /tBG0h3c5p3ex/QO+6aleCXA5BBhRrf4imDia2NmHucsU8PfU/1MD034xsS7 YeIFmHgXoNXpKR8fKI3fDegV3II578TU4ebt4eZtp3pFKamyt2+v0YD7XKtW qv18xjVp8qRr2PARV7/+tzHzL3NW92Hm92DmnzUVhBKui+GY+ET4+Sz2dx57 vRaOuAoTX5o43S3ExOeaic8xr5usgHCCUWjMzKtJdW5NMz+BZ9H0Os18zsk0 8z11volGFe8KzFMN4Z6Bq5mJmavfT69EU6CAkxIb+b3TMfVzMPFt3CDb+TtK CFyOp7waT3kdHuImjus2K9TzyfOvhKzio7GEi4bTa1Loccy8HDOvwAz8QJd+ /SpskLBC0DlzKt187G66RsldzI28xw+kV5e3WlxFy1VqKyGzDq9getzo3d6C unOj9+ZG78uN3r/Sv/JEZEW39GKfaDEqviaY+eoYNV8c6Hv0JjpAKs58vf58 7RLg1JdbvA9epDcmXvQT32/Y416+NyFyAZ+zy6mYP1jqMMELRLWB07dufcSE sZo2fcVU+fPynnQ5OY+4rCwNMXgAC7mbfbsT87wNM78ZM78eM78GM7/CuuuX YuKLElsx7dM5k7WcxxLOYS6hkUx8tA1bUGgVMZZo6nycscRHP0aUvNrCU7V1 fKIKr4wUD/8n1cKn1VnU+HEWPhMfKBXGaVj4FEuyrOHXN7Krp2Pd59g4rxFm 4bvY2Sss/dWRU2nN6aguqZ71cnye0/sq6/thLPDvWM+xXmO969LSjrvsvArX pGWFa9upwnUrqnQlAyvdsNGVbgKX4CyIxTxu12ln+f4IFYqX3o1lfcNzBI1F UaKj1ctY+WtYFHyl8ztY2kH4xVH+XIW/hEeFhImsdmHsEl9j6cR1li+PX+SL Aq+JAs9+WHjvQ6z9WDTfpxBE9fgjF/svfe5ehfXd7q50BXsqXecLKl3HDZWu w/xK125spWvTt9K1hui0avUhFv4mFv4SFv50TMbjIfbiPs7ps4RJn4Fn3Mp5 3AgHlJTNVez95dY7o6BzUWKL5ctnwh2n4GAnEDKNtqF1I2qU7iYXt+hmq/sS T68y8U90iafiKp++iccVxuPSHVEtV1TYogtAlC56GpplKk7z2crFmPdyfm0N HGUjYdDpbKsKR8/n8tjO35GJX8nX2IOJ34iJ34qJf4ZdEE+51/rPMjN/wPo5 S3oFz7FeY73rMjLKXE7DCteoTYXL71rhCjCH4qGVbsj4SjcOG5vBbTpHY6Oh uGN3EQLezEX6BV8VrjYl9cmpR6+FmqYx73zMuz3m3QnzLqjweRU9748NF/jc cEEvD5f2OjPx9RZyrgu/tjzAQPnG8eHvF/O1eh7ha77HBf0GMHoxvLj+1jsT Kej0uKPCdbqq3HXYWu7arS13beeUu/xR5a5V73LXonUF/OQgay8mrtEqf8DE H4tpdHweW7mdM7mdK+cWTPUGro49XCVXwRUvw7QvdasTF0G/zyH83EiouYJf X8C5zDBR3/ir578RclaTlP9zyJlEUuZ++ld4KvuOc3HZt16FZnM9SAh5muUO l2Pbq7HtjRATvTCfw7VxvvXH9LdWsavY2+uw75uw79vM2dYzgnIfZ/d1bPmH NjZFKq/Z2c+HKYzvcrZlrn4jrvB2Fa51zwrXubTS9R5Z6QZNrnRjMMZpGNss ws1JhJujCeWG3Oa7MNSGpy5s0+B4ibWXJTFibLs1tt22wpevlIQreEKw1/nV mRQjJuvNvjdYwdb6YN8iLwtCuDnG+bxjL75eN+y7wwG+J0Ql/+/edagPSZ9F /VFFN1W4LrvKXNstx13+quOu9czjruXw46554XHXtEUZ3PuA9d82afKszYbI y4sEOB5kj+6yMRt61S9gD/viCodi3xO4N2YndtukgnXY9wqrjt4AUVnGNa55 ENNqjAqKz4P4mFDzBCh4EkGpfgk60dv7JFt3/BUolXUnS27UnLE42/SMp1u+ cAW7uAbL3oBln8atfQ6Wfb7NuSzBunth3d3MulVzcQfWfRffU4/693NyD2Hd P8KaH4Nu/571POt11nuuXnaZa9Ck0jXrgCOHnHQaVOmKcOoDple6UVyhUzC3 GWd46YqR1/hOZnVaqNBbGWk9qitXqLfOpu/5XKE67NqFBEipq5kRXxi7uWXN G8y6N/Lf4VXWvTRY95RAv63Tjq/ZBetue8AXDih5o++tQUCahC0NtD57IFgX l7n2p2PVy4+6FtOOumZDjrom3Y+6Rk2PEVW+x3rVZmE0bPgrrPt/sO5IWuMz nNMNnMkNWPf1RIwiJ9cQ3V9hGm+aUbbRGn3Pgoqv5wZfapW3UWGWyElcYy+e Ea+1DLFelaXUatqpHjlTmXb1VzlJpl3tVbxpX53StOPzryLTjipuRUyUc9KW zWXrJEk8g22cnFhpFZ4jMO1hmPYQLpBBRDqlmHYxW1/IBVOAaXfAqbaGlDSG lNSzFjod2zftES87+3GO8g8uN/d51uus91xuTrlr1KzStegET+1d6boMqXQ9 J1a6/rMr3YglXNhSqz8H3n2p591qUYtHliahBxdurMHOB/3DpsZ66oFGOcJB SaTklNiljVk7fIIjEJRx1zDteQEOyi+qFKCrviam3VrNoziI5jiLNpCibkE9 acitOInLK1zPrWWu0wYu7kVHXdPJh13jgYddw4LDLq/REVe//jusv5ucYP36 T7B+xH58HdMWebvVaaxkC1YBJt2PsxttpORyt9DkPJUjlIzJmZi5BqgvqXrC TzXPKi4YkNQvXfP5vvrX7P8yUzzkp7q+81I85FfHl5+OjSempyzN0j83/o4f N/N4z5zeNpV7msfnm2eTYZbx/6us4m0k/GQIZj4IMx+AmWukVW+OoTtm3hkz VzlRSzPzu/me91k6PD1duTCNdXvC5IQllJSX9zrrPZdXv9w1aUH41YWQrLjS dR3GDQ43KSE8G0YMOOFUr7wi/Qnj3vd6jYyuj3ilSHUMqYWn0Tt+YIKEjNqX +SklyhEODdxkZriVl8Vu703qGDrVqMlGT8Xtt5YERERWri/TmS/XFitv9r6v W2/3Z37tiZot0qU7Klyvs8pcAdSk3ZyjrvnYw65B/0OufqdDLifvMA5rH+tl 1tOsx1k/ZH0FK7+bLbqJY1LbxFVY+RWWeh0N7Z5h1ORSrPtid2ZiG5f4GW4N t42e7pMH9qTKgtf1nNm4Zsak7tKUTC+P+lGLzvn/m0VHdViqqdUDjy4BbZMe eBYQTc63Ws3l1g+nB55RBOxqxhqARffDovvaTJid1vvcEYvOtweez3Bp3MP3 lPqL2OR3sOhHbD5VTs7Tpn0k9UPz0Q3KXbNWMFjocSfocXdsqPdULBfyMFS6 8fCRSRfCK67y0nJi20rBiQvocccU72DADbhQm33oza4Aq+6FVZdWeJMUt5gT IskV4dLe6C/sdLfZgslNwchXhrt9TsixKJhUYYvG2baEyLfhW3UkgO1KINnz ES8ZX/o5//EGXVDhik8tc92XHHcdoSOthh92jXp/6Oq1/8Bl5XzIFrzFetE0 MFVfqEf6zMwHWXeyRddxTJdh0Zdh0butGGU026pxYMoGbjKN8vNN5WtNUmdE NMY5udszORNYI09Sbc5ZNS/ouqPH9DrrCuefsDnXOngtZsTT6qyYjRuxcKxS nHjI6PPaM/B6CwKBW2HtbXq+GWO9Jmeyc+dwjW/lSr4I5rITIFwJIK7lTriZ O0E9uPfwL/+i5bXT079rBXMaJJWTIwnHFzFiTRd83zVuVO5a5GN83bnnYLA9 YcHFUIUBGma8zqu7T7gEY7zWk1cbfBDKqlRqogZ6a6RXOAf76IwhF2LI/TDk oRjy2Aof/s2LMY9wJSf8nTxCdmxWvCaW9ZsVWIuyhipGlBBYe6VEIPE9+L69 HgNQhIsD73du2K0hZbOlwvVbW+YK5x93nSccdW1gHk27f+hyW33g0rIOurS0 f7H+xvoD61HWd1kPsO5gXcM57cQCd2LFO7BiP8lxBvfxUvb4VJjHeey3XuBX 4SKTK2RFqpO7N+sup2pcs9Wh1lu51iRIKjNekMKMc6qs9t+5lWtN8iVbdDQq LWrYjLh09UuNt+j5WPQsuPRUy2NvYJe9RQ9IbOFK3sp9cBEkYxd3wlWQlutA yS0mq5yXUOJKFv1Vl5HxPbzpz0x5MDf3TxAMzcuUNPP7rmmTCteCuK6t3qYH YtFjfUnpAEjtMO7Osec6N36nl6SW5Ju637tLiCu80th8TInkYtHtsOiukI0+ WPRALHokFg01rwoRlwWrDVey3cjp7jT+O6zKopcFi54eQkxxaZNnL+d7wqO7 4gZ64g76/AzXAeEZ/HnQdiPuYzuf9+zj/197ZwJeVXXt8ZsJQkKABMickDmE hECAAGEK8zzLPCijIvM8FUQEQXBGnJUrWrXWoba2tmqdXtVa64SK1gGrYhVF ZTCIQJL1fmufc3JPrjchVLH93vf8vi1wk5ybu8/vrP1fa6+9lrQ774S0Gnlc Mnodk8R230pM5lGJaHZYgkIPcVc+Y/yD8ZI52hDs+Q0Df8P0nbiU+7UWa7AG Tbwa5bAK67LSJGaOZ551r32JqUCqFTIn4cKPMMEqR0vrPXRaiDsqw3ERbS3t sdsO/JDmOoT0gk8f0ht7ljTGpac1zw7MThKJE/NQ86xnP3QB07rd5zBxQzDP /U3EWmMec1DW89Eji3gAlqG2VzORFwPzFibzCiZzhzlzEunZxftqAsl9ZjGt X//PgPwCIO8x/Wm0znh09BFpGlMhzfHk4vOBBYmb3ReNoYW1plqHGDR5pKeW Fb0KmLWu4v1Wp1VN3ojVmoqfYp6PWNG8FEDO1p6XgFxs973sbwsGt2lWkLm0 zGXMs/9+vq09JtvqeqAtmTXrNa3S6heYpDv3OIVZwJwHzIUPIjBQ8V22s4Qs 58+530u7ad8C81FgPgzM3wAzDmGzg8D8JffjE7h4h/E3xp8ZDzHuYOxgbAa+ NUC4gnlchrldyjwvAdjFGBStIrQA2TwPJ/GHZURVH/pvNQYoIXoa0xwoVyRQ LrfPNPvBPO4swbylVpjdGVHOITRVXBoIclJF1L8Yz++nzV2HmmyoaUyeRjnm YMHnYQ0W8TN63nW1UXh6yjLRcxUw7+T6twCz15R+0jRuDU+Hhz9p9o2jovaY Zq7R0Z9L06ZHpHmzColLwzJDTQr0ZEJRHma0DWay4wKs6xqrSnrnHYCDr5UP QFl6IgfFGqudiz+zusdok9UUQM4B5EJA7lhphZc1wuGEpafZ0Y05NsTzA8A8 ydYlKrJ17z2f66RUWK6lZkJpk6V0YM55Er3xoLXj2XUzKwCaqOtsYJ58BJi/ AuaDwPwFMB8A5s+A+V/cD/w/z5uA9iLjCcaDDK9Je4/A72vIXEajimOZ20zg LcJolDLXw1DJk5n3C0xR0EnVDim407YDZUAF8v0a1bRb7qcyfNGMQL6fH8rj zxLKm6uh7BYZ/sl9bpQ1a0YXLWsncRhu9HjT63aYyXiajgCZaRqit2N6C5ju XFDONL1yLzbnKBORzM1N74bbQHk3H18PmD0Iyo+a5j9RUX+VJk32SEzMB9Ks 2efSvPkRiYutkETNCmI1T+0BJkNYxCeAI8x1WIytW29VO+94Awv+XaCF35cF RingFPseKB8AZY1i6E4IuOWCcZtKK4qhO4FDbNEwxSUw5toYL7D/dFA+z9/x 4zp5FVbGt9a7jcXxS9RdRN4740krDt1+J78fIqg/z0f3876XDmNBeehBUP4X KH8KyvtB+WNQ/if34x/ch1eZm+ewnY8zNDt7F+MaxiWml20sc5qIHW6BPC5g rruA70CExTjmfgb3YKw5xG3ZZCcG7WyQ15TlVC0G3ehHROWCa8r6OFscX/oD jnWtcXOsn9nh2F3dRE2ytWM4HLdjgumFNxxz3N8zA1djNub4AszxPL5/EeZ4 qen5rAUmEz1bTfyiuedGrn879+ouPr5WsPqNiciFhz8Dx3/DFGuC5gemjk98 /BFJTKgw/YNT21m9djOGoxGArsAu2tn5YqtkeQdtnnUPXD0Cx7heKa/CFeax 0ZdWtRE1mSmnrCy7IvElpQ53aYsZtrZwGF5o/32uzfdUm3n9md5cp0OFlQEY z3Ub8Zw05ZmJ08PuWrFWkz1+yfege3qsxoRz8R4Tv5fikUekoP9Byez+KRx/ CMcfwvEHcPwe9+NN4Pgbc/M03P4BW3I/Qw+6a9xnI3O3knlcCsMLuCdzYHSm FMNuH1M/T8s6TDGH3B2R7F/Swb8/cMCEVB/Hdd1BqYM9nnCWOB5Yqz129gad LFTlWHWy4/RZe4MjWMYmYpPPY+40HWwmNuB85nUO8zfPFBTIZM5T4VibscTD cXPuRwwca9JwpKkoqafDfmvicOHh/wPHf4fjt7DD+2D4c0lMPCLJSRWm3a86 fBkY0Gw0cu652Dq7+qYmWGvtcdWjrbF/uXqe/Tns9+sizT+0osoNtDw+rKVU WtV0im2HbYAdJnY7e3MthoMVYlyCBS6Mz7XDdRqI7qkZeSCcdcqSyJF68Oxz 3vJdK6itRUALdvFWl6FgtOQgj17pOd9Lx8FHpDWqIqvTp5JUuA+M/wHG74Dx Xm7Hq9yG55gaNcUPg+49mJLbTEZjHEtaAhI5FWmciaJoiblojekowt/uYdTd pKq8as2Fd+Jv7jbX7ohyjblKUdUzOOpqjoOrYxz2n8LYnWXq9BZyJ1Nrgotu kDhHYvSxn2LqXKgpmGGWtlLmVjdICpnnbDBOA+NkME4A41gwbmq6gNzIe6jq u5ePrxV3HjGRuPDw58D4FTB+G4z/aQrJ6gHHVORnWh5odrJcvVzkbB7M5YNZ 4TrMHZx0uh6kd/PaQ3wPZjBNDxe+BVMfg/EhkfByq3SC7v9pUpL7CMw5tqSY 6VLGCxXjRSZkscBWFbNsjMc4YQsu14bLpjsNJI5ZXdz1BLHWL9e8jTY386vh ifbkiRsE/z2HfS+d+h6Rwq4HJRtFkdxynzRNexuM94Dx69yOv8HG02Csp3jV Eu8G3xuxAlcaS5CCOM7Au8s1qu18EJ7OLZnCCjnepNydY+p+DajqF+TflPr0 +Uh1MMXBtW70+c79nk2GXQG4/nWCWB9knQ1HF6uLp/EKnTFdwyYzk6Nx7wYx qz2xw52Ni7dActAUqUCcwDoYyx1oanoYXCWNTPBtF+93D59fz3T9HoifBGJ1 8V4zWWbNoS8h4UtJSTkqaWnlkgF52fhUuRjPPBb1fNbn1ujitmjOdldg8LQF yt187Xe4gU9Z/Z214ELTf0GWVsC3m4Om2zGGbraeGGYb1/NsYzvH0hAhsvgH AE92eXdduVxrPeyrBfC/t2qMm9SM132pGe12WrK9NxplCPa+94DvpaTHEWlb fFByCj6VlMx90izhbYls8hoA/51b8RxgPM7UaFG0e5iu20zCVrJnG7dAI/LL zJTm49G1xV4UYzu6YENKTb7oSCPxnDIiTrzN3T7av9PJD4uhRf17iUaBjHC3 qqv4UE48+yj7Z/3793pTaaXhGydaYeVDDzUhHo3CT8YWWyhrK+ILbZQXgv9i g3IcKDcH5RhQbow9boiBaYA9rqcxZHN261EJC3taGjR4EZRfB+V3QVnLxui5 vTLJSK+QrNbIUPRsSwxoK7RsAdy1WYbM3WjVj1RJof1lcx6FJYxh8muWNI7G 7YrEUEaIVdZSdzE0zajUDp+NtCMVM2w37kJHUixh9jsr0FU467dMsJVxP9uk Gw9Py0B9b3Wc1o0Y08zqMWuTRpVxN5RPv+lIEdzJPr2PS5eSw9K27ZeSm7uf j/cBH3WvNIx8VYKDX+RWPMNteJQpeoCn/k4QvAlrchX2VIvI/cJ4zeo9F5ny T7Oxu9OwHpqOPtakpw/2y59zKhc7+XPuM7cGQse9Cw1giwNthtTVFnetitv5 UE44myhvDGiVA6GsXq+zU62PvsowtcrnGZRnIjNmsaadj1S7kDmeZ6oQZYFy Mig3MyhvBOVtoHwt83kz87mb97zP1AbQ8maaFxoZ+aI0bvy6NG36rsTFaYOq g1jkMsnKBOW28AF/OZjRltjHfOBqvRKctTb9DqsTpu5QZ2rQDXkarxVCPrZ6 smlHHu1Oq0diNa2ooytSMcb23pyAm3p1yi+KVmmuYnmOHXibYEcrNF9Dc0I1 v7RZhdX0Kvxra2fckcdtvOiKbegJLtaf33kA9rx37zLp0uUrWP6XqZeQmvoO LO+Rhg31WIPWqnwKhv+ISX4Qhu9i/m42uc5Zni3cA93cWwG/y83xiX7M9WDm fQQeigZAx5hc537VdIWTUuSYZbeu+LfMso/lMzfLSf8Zs+zffM1RGLp8OecN 1SzrFv8Uk1c7G0/5fDzBOdLeRCwWYBMWMY9LudZKhrJ8uTmiopvVDbhP9dCB Iabmtm5WP4tJfhGT/Dr3Vqu/fMJ9PigZGWWSk10hOdjSLADMsj29PKDLXwvP SOQ2N1gN1jRpRysOa5/LZu/B7+dW2TztraN1OtJsddHFtqsjbDbPs02yyuNF FsPBCjMr0JIAKDt71UX2JbVxlZ4Y115ueoJXKw7rY2Xix5tQ4/yqvfnBPvDf o0eZlJQcAOWPQPk9PuKbfNyXQfl5c1InnMc6BomchPBK9fySKbyFqb8GE7uF lW69qeLUxzRXXsb0L8S70/3p2Qi9qVWnxJ12Ou4Kw3XJG6oR5OAzjrl1/+8E 2b8EgvrEKpU1XDkdmTzVFLE9H4NwgdkNKTIhiwUYhEXM4lKMzArGRiC+3BxE aei5nRm9m/d80JQn0hplmjoUFfUSBnmPxMe/i0H+BIOMb59VJi1zK6QlFjAH bZuNc5bFSp+LtcxDh+ZfDpzuXM/nrP1pTWPWsFv0EcsZ0/JK2tqgrR2uUG0x 2g5XTLdJXWAb4qUK8jKjLxbZfF9gRzXGiW+L2uzqaeTtO7sy1GdWix6VynrE Sjuad+NX7K47kBj/UtaULl3KpLj4gLRpsw+Q9wLyq4D8V0B+FpAf5xb8gal/ GAAfQBbfjay7lfXtWqZ0KxCvN5WaBgPzOOzyDKZ2DjDrJsgEU8d/cFWihaMt 6py9HEha1L4DEsgcm4hbj5+b4ourKHb3wnSXZ/KnWKMWSrG1pzfe9BY9D3pH M/qbTAuNWMzlFizgVixiSVtiNlWjeK8oKLbq93t5r3uZit/w/lqW6WmTOxQV 9bIpppiQoHbqE0zxQVOmphVatFUnq+1rrpZ5QQdkQVkuCrnV1VbZaW336pwU bPo2FON9xah9hOK4E1YlPC3a0d5WyP6yYq4VqTCSYjljhf33hfbXzneFLAba Jl2PUumGdzLv0eQrnpqPrcQ7LWbZ5i5kBRK581orK6QLy0jXrlpZr0yKig5I fv4+PtsePudLYPwXMP6zaXGmDT5iQDiF+WnJklWE19cBr0+PmGhRlD5gPBKM pzKn8xhLTNGx6WZp1Ixyp/y1ejW6jDqb0o6s8DteUgdVUbsxDoRx6c+Ncb9q GLuT8J39PHcupxO3UIVs7edNkFmmMOEcpvFCFPKFqLO5YDzPBDkTwTgGjCOZ 7kgwjjR1Ua83jl4D1HE91HGIKf77LBi/aGIWTZvuBeMPpEWL/Rjig9KyZZkU 5FdIQYmVw5mHo5eLacxBHWejjlvusCq6a59ILf6iie/N7QKRsWAcD2KJJ6wa qKqOO9nq1tn/mGYj6ijjZSZRaIWxxMtslaHWWGMaU2wD3t++jj4WmtCvTdHC tdLSB9ZjlPuIpY61onsHfs9irH3HofwMP9SuXZm0bn0AS7yPx/QNSUl5AYyf AuM/gfFvuQcPMGf3gvGdYLwLy3oz+F6HB7cNhDdgcVdjPlaZsyTzsMazmHt1 uDUQqk64mhkNkjqSQk2RmiR34NjG2M8S++Uh13UvOrh6jtDPjnDfanrCbYnd COvC5MQr3FsgEz0TmcpZprbJWNAdCLrdQLctQ3f/41nsGoNwOItfAxAOB+Fw z06TWF/PIPwI7691Zv4Cwi+ZzIqmTd8B4Q9B+F+mmFarVmXSprBCCrFirVnJ 8yeCMQt0y9UgtBWMb7AqtOciilOfwcFCFCdhiZPQE0kHLCuZesIXcutiIzjK 1hIzbC2x0BHEK4wgXmkb5MU2wU7obaSff6e+Y8hJuwIkT06Lv1g9CfL0GPkW 3nKJldXUjqevPauAFp3Py9P+Ovswwm/wUV+QZs2egOBHzHGacOiNgd4U6G0J ve154nsgjAcwdYOZwlGeNSx8a+R802lprgndj7Gr9+oC6dQG89+FDhAzri6I a0ymqDEvKJAN7vnzAewZULX/UZOacIrJOAyryNJAjm7Xa5brKM8omYxzfD6C bKbpZTKPSZ6PKNPMlYU41gv5+UU8/ov51MsZFzM0L3wnw8vnv4+hDGvN3udh +GVzvE2DFAkJH8Hw5zD8jRQUsPq2rZAiVGgbTFlr3YqGqlas0i23wfHNVt11 DQyk/Q+s6lbwW4x9DJy79MNWCr0Ta1MxO8hWBc6+x1yfCTYIByvCLDfLbTN8 of19k2zPrtTW1qbg3SkrPK29I2N53xZP856qbHi2ci4B5gXWc1eInm/TRswz mZ19AL2/z5Qvbd78BWnS5AmJjPyNOaweDsAxAJwCwC0BuD0A9/BcgTO9lTnf CLRrWfZW8ed8OYclcDh2ZKAxwdZxPv9uSac58+TauwuU3VaHLWifGTbsdhFD 2s9C8SU15rk5FDub0Rp2dHbxnPCElX1sRY3noIVnMaPjGUMguBR620FvDvQm MKKwxCFQHMpCGGJKR+7kvXcx7pMgV0uwevVeheK9UPwBFH8CxV9A8WEo/k7a F1VIe9ApQgG0QZgWQkbBOojAq8u7FdP3ayj9E9RgiXP+xsC9ytVM4E8Z31gl APJs89nT1sNOIsUs29QusSl29PBKWxPPt9266bZb5+jhAtutS1WxgksXx1MT +zpiRgvq3cPriJw03LpMHoEcHpmWvHF+vhiNn55+QJKStOf9GxIdrWVJn5D6 9R+G4ru4D7ug+GYovh6Kr4HiK6B4K6RugtqLTP68JmkOw5vWCia9PaOhdyAe dynWo7gqNqG7r+4d6Bry2sICQFyjKQ50CMTPFJfoVSJ/HogvrhVid487hViP pLqz29SpG+cZZ7Jc5yIlZgHveMYQJlfrZLQD3mwD8RKcuKW8zwreR+PT2qXg Bt77Dsb9/Ca+ytJ6Tq9x472Ypg+4wZ9wo79ADR82bTCK21dIu96YP+RoITQV YDdbbQBMnLrcXQD8oNVoRbONU7X253uYRBy7FjhbLY5ZmcF6qE6TK/uKb8vD CUsstAFWcFcxVtt/LrO/5gTZzrF/3ilXp5lGiXpA7zOrJGOs1ubAqYu7E5hx 6pLX8P5I6XTeMAs5lJsrppFNevq/+IzvAbHuWv7FqOH69R+QoKA7gO02VOxN mNKdLH9Xo3Avx3BsMT2rx3vWs/ytxIDMR87NwDxPNN01exiHrntVlrFbS/h3 AQjs0J09M5x8lgjeeNp0Y3eXRiXYndem6kvDEholnoeQmA254xmDTSGjxXyv EryEn1/K9ZbxXit5r02Mqxg38e87GQ/ym/i6demRpujovRIX9wF+zicoxi9Y eA+bmqKdiiukgy7GY6EXu5kPWnmbIAJTl73brofOIh7/isufO8gos6pDZ1Va i3838aUXT3GZ4MW26VVq1/gRvMg2w+faItoJEasaToDg5kes/e447WvxAiQj zKN5qpojdOK5aCJOYwoiKA1/LiMDmtO1qcEnEPw2BGsO1DMQrEdLWZaCbofg m5k3X/W5EpauvhA8gns2yVR10V6A8/DhtFPaeOlvlHBfc2/UyviX5Dptgf+G p5fDdQ1JBLLBZ4vgDXUi2Ok9p/JKCXa7cxqRmIEd0BMHF5jeoosheDFyWAle wh1Yyiwuw6Yv571W2QRfLVo8LVhPlXp+w2/ymDjNt8LDdVF9x45IfIJk/AIR cRgv/jsp6VQhHfHDilj988EpD7xy8Zeyr4fOuyHj93aFC/swnvpXUUeRqaes DODcyuoiQjMsz7OjEU5YeKVN71r7T4dg/bqTmTnClsJOnXPtFBCD3I77CFKx /UnP8nfWg6ZI9CaX8iePRiyPSsIAvoY/l4p+Tkk5bMLfSUlvQrDu7fzZlAnV w9FBQTebmpPx2N8czw7WsquYz22IiEsRDxfLVFO3ZQUkz0VUaIdLrWs5pCqF wkmOD7TnHDj/x8+bO/NwhA/fLgH2nDN+Snx9gT8/CeHe3XDwdbacVU8pvk40 wslk03MFM/EmFiId5oDrJMZQRndGW9DNAt040FV8g9BuwSYx/xrGrYx7Gb/l dafJ0Ovg+5bJnNBohBqo3NwvkA+HpUOH76RrSYV0Hmidvmut0QgYy8HAZYFJ xq8wbn+0Oq44J+80wBV2ErROWYWc9UyGBsF0q3morYEd+bDI1r6rbXR/4cJ3 qe3padRisu3Jdbc1sBZ9iT5lBe4SkA/JL4MnMiaB36f5Tr52MY8PIjqGN2vW B6xhPjGRrycclvj4T1hoFN/n+MyPge9D4KtnSG8wZd7jmacc0O3guRLjug1D uxnJdrEp/Tmb+ZyKbBtvAmnnmC1Td8qEU5RFg2m1nIL22d46hINNyi7fo9dR M6f/Cj69Pf7vAdrJodCNDgVaNzoUaN0PsmpXWKEJPca4CCVxIQBPZgwD4lJT t0JPeywH6BVcc4UNtGboX8u4jfErxiO87rQTegOg3+Hmvm9CE+npn6ImvkBN HJaOHb+T7l0rpMtgkWKoaquhCZy67CuA+TYrFNDicas6uW78RuHM1WeVb4gz 1/yUVba5sLL6fvMk8W1wLLHVxBoX0GsDAD3JtuWaZa9OopZv1tLQ8aiJZNRE i79aD1byXbyGVm/GhRqzdjRESDfBiDdtxe/TnNebHWZ8YjZ1YmIU6EcB+tcA 7QXo60xHmnhAzkELa+393jh1wwF6ImvoLIC+kLnVkOYk+0C03o/udvdyvU/+ eRM1qIlA+xuBrLHJmmhYqzUO+7nhvSigmHDD6+zSOfCqs+DAq80KtJ67xtUW Ix7mMaFTgXW4SU5ZbtrFa9v4WAPvSt5xjeiJvyDgDfLcztCIxO8ZTpugt4D3 XW7kPhORSE//zDQVadfusHTu/J2Udq+QbrpFwIpepBGJixAIOEzpXqB5CEts l6bQnoLaQCIGRy4OMZH8PRa73KpS6+wxO7nEjpBYZoPqgLvOD955NrzjbSlt 6lNwvRzAzTiABf7QciLTETOZmriBFE7cjpVGncTwg42Gi0Ty5DTKwUJHiykC 17ixtqV+k6F77ArvvcB7G/BezXxdDrzbTbHIDsxZb8AdhTM3hXt2gWct4m2Z 2dbQTInRpnV2f5P040hht5Dwz4ev5sjV1RTXQQYbcv1KB6WfJXI3nNbsOuTq Y6zurUOuRoR1xnTmLvBcIEvRDVqz5lzTlXMFbvNKvncljpwmEq9k5lbxjmsZ Wxk7GLsYvzZhiCBXy+Xw8Pe5s5oN/6kJQ7Rq9TXkHpUuXb6TXj0rpAcElKBd O7DwF7JG510DKbuthoDJyM/416zNsTi7Am2GxtFw5PLREx0qrSx4twT21xBK 7Ho/ctUkX2h//1jxHbDrALVteY8CqG35Fk/HS9YBPxMSQdukIIET+OFmPGlN wL1hsUiDdP6MYjQ8LJGRn0hExJvSoIEWltGDhkruTZCr3e4ug9wtULgZci8x jdu1uNt5OHHzsACLWN503qfYB5LULVEnzv/Uvjs1ImAlFR+5wdXJ9ctUMzY3 uNYEn04BQhA/PbmuDbmLas2Fd/q0udF1NjOsPPippg/YMqZyIYiqbzwKTHX7 vgMjhxGPUmjA8LDSeUDX161Ke7M9Ku5uVeHh+0BXc+A/M00/WrU6ZPZgu3T5 Xvr0rpCeml6g+7Mg0fYSkNyB4WN1TtMq+M+B7BtgjGLI3AdO+5HKeHHtDoHa MavohHsvebor9rDcVgtubFfbHt1i2zhX7SdXiPTFmPfEsHflfTohudujVNo8 jYp5lMcJ+ZuJ/G3Bo5WE/I2bwELQF4PbViQiBSUTzqh/mKEVR9+UsLDnzBnZ kJB7TdXNoKBt3INLmTctQr3RVOvtDbKjmL/zTAOT1Wa+dbFTxeYuOKHem0bP /MuB+5VPqb4TV/9H2FxfvnBx1ZPwM5G7vk7k6paO7k/qEa0eOAnqLJxTtYEx R5azfC2E0mnM6ihGH0axKQa0hllcwzXX8L7rGNvE6j2lFa2c3lMad7B6T0VE fIj205T3zyUz86Dk5x+W9u2PSbduJ6Rfn0rpyTrfVdsfg1rbzZB7PUbuHsiF mER0ZhzGLxm5kP4RxvYzDCKSoQjKOn5vHbvQ4xejbCdsti0VltqEqky4yKbX 7bwttDWx6lyzjwy5PTC4XXgqiv/J9ffyhPwdYp+1knla/bJSsnaUS9pF5ZI0 t1zixpVL097l0riwXCISy6G1XOrXOyT1wj6SeqFvSFjIXyQ05PcSEny3BAfd aBam+vghelQgk/tTBLGlzN9w5ncKC9pcM9cLTcxH4+/u43NqXVTaBcqAcG1c ePw2kGs3uHXIqCyuut7ZlwoX1SgV9NM6qWhuatWlLbWTKcd4xpodCy0AthxB uwhKpzG7ukOvTY6KsQ05jHhGBMPDHfCYdvVOq/of9pHSIpLquSQnfy7Z2Qel devDUlx8TLp3PyED+lVKb9bqEoxfB3Aq3AopN0HKfdjYx1iWWapjsbXxEJsM sekQmwOxBd9bBeZV4A52yYQLXDLBsbUbXOSutb02JVs3jifa4QYtfdWea7bG jufhmWW/z3vtsboBahJG69uh9uqT0mL9CUm68ITEjj0hMb1OSKPWJ6D2BPb1 hNQP+0rCwz6U+qGvSf2QZ6VeyO8kLPguCQ263nix4dybJsxZqinws9JktQ/C xo5Hks32LDK7RP4yQbdFtXZCoKyHQEUyfWHeH2NrDbQdA9jas+WZrTsttE6X KIXWynjQ3Ek9LDdExppttmlM4DxZYVoprgHataaNSx/TbeEXQPsLoP0F11SB cBHjCvG1zNFG3Noyx9cZKiLiY9zuTyU19XOTsdOmzWHpxApfWnpCBg2olL6s 7l314L2msV+OELgVDfsAWvLPmFndoMDMxuqptYNW6fl04MqutDIdetrQTbAF woW2dl1lm1YF9WIXuGtsaOfbXllV+i/QttWS9ujmFN4n4WMrlKH13rQcZ9sb KyV3G9Cu/U4S5xyT5mOOSXSvYxLV+pg0SDgmoWHHMLMHgPZ9aRD6ioSHPM14 WOoH75Z6QTu4F5uYr3XM/2pXIZ/FpgvxaM985niuyZTSTSI1s06VQPWc3Qft 3eEE28z6iI2sKZYQSNfWHtkNRGzmWSK27w+IdTaG/YnVSKES29EmdojZGB5v KobOYxZXYgoWQ6VGHUcz+jDjxYwcRjwjwpjYixnaPr7m7jcREfsh9jNp0eKA tGx5UIqKDktJyTHphZkaMqhS+mPrus/FzKI986/CjOKzp/8G+fi0lVnQFJnZ XJPH8cTijvO662h9H/Edq59hS9pltny1TWywIstHdIBdbn+bWmWn8nYXrf8K sC3KrP0IDVuomtaeDa3RKe2vrZRWm05KxnKAnX0UYI9Ik55HpGHBEQmPP4KC PYIm+BQL+w7AviQRIX+WBiEPSYNgr4QHXWNSmRrywOv5qyRzrH6BOQbQE8s6 3Dhhs6v6TjoJvk5/BNUFesvUwvonNNQWQgiuycSeUTS3drN7tiBeXyPE+sg6 iWY+iAuAuJP08vSWoZ5hQDwBaGcA8QJZhfpaYnZ91qF812Ei1gPxemZ2PddY z2yqyd3I0Obwt4rVGP73jGfskMI7jP1A/C8gPgDEX0pe3teo28PStesx6dPn hAwbUikDkKal2MGOYNb6anTCbmhifU7E5DXDR4pBJzT9wkpV1yIOzgk4PYXZ X3yBsFm2Blhha4KLbJO70f7TTbFGcs+1/TITUoDiVlCcrAeTobjJx1ajyexH rVN5HS+vlNbrT0r2wu8kZRoUjzokTUq/lsj8r6V+3Nf4YF+jaj9CI7yJuX0B ih+TyJD7JSL4dokIusrohEaYXK3Tk2Jqx+jpwvNNMfNBnpmY2+mmwIFzZEj1 m+o4d7mpGjIafOEEY3b9mqX6UWzMbpgVTgDisNMb4E5VV/axm/WzsevuheCw q/OhvqqmLXVysTve7ArPlPksZauY66VcbyZjDKMf89+RkcuIx8uIYHg8lzC0 57v2P9BaPX+wYwqvMt4V7QocEaH1pr6E3a9g9xDsHkHjHpN+/U7IiGGVMmiq SK+FVp2eNtdaMYVU7TT9vOuYBfq2aZlVR8c58aY7B4PEd5be0biOXHC4vcSP 3aW2tHDY1W05U6cHduO1hrHuQOy1imm2fNg68lZyaaW0XXVSWs75TtImHZX4 IbDb7aBEtvpC6sV+IcHBX0ho8AdSL/g1CQ/+HyzvHyQy+FfSMPhWiTThsHVY 0JVY0iWmNk8u3m8h3HY0JXHPxfJOMeXr1EPW8KTu1jv1pdTOnGb3weOzwDVu BvsscGgVu/WqB8WCA+TldApgd396dl2hhbVnAG9r4O0svU3RtOFM4ETgnSUL MA6r0brLAHUmQyvv9zNtrTcw8Vqg52ImUpXDJoa2cNcOB05AzAkrvC/a6Dci 4gvg/Qp4vwHeI8D7rfTo8Z0MGHBCRg6vlCGQ10eLpUFZ0XUAczeGV9O4XhSJ fteq99cE5yn2mFXqXRNnNIFGWzoOFV8qmaN1HefsYhvcTfbf19uqQr9HY76a zqDBtFJGW+DN+N7qx5fDe7b8G4b4MeuYW7Eec9tQKe2XnJT8md9J5pijktTv kDTtCLy5n0s9pE1Q0GcSEvSuhAW9LPWDnpYGQb/F4P5SGgbdKFFB2410iMHo JjCv6RjdPIxuWxa4zoDb09R2Hg/Ao6pVXtVcSNW6GsfV+1ZrYbTIAOCGBAA3 pDq4PqMbaB/CCAYTzQUnhS3Ibo5w1jl2uW0Oyu4MSQdlJ71B/ViNHXZ2oTyB aZ1po6ydwZeZ3coNuHQbUGgXmw7iLU2hpI2grPphM0M7tO8Sj6k1pbllz9mx hn2iDX0jIg6C8jegfBiUvzURsh49vpeBA0/J6FGVMmyaSF+MY7fNKM7rQehe hLAda2jygUiUnnoA5QTNijxlZTEW2/ZTd4Eniy+nbJn4ImP+KOvr7tjuBNtt U3teAMqFX4M0orsd7mKHJ3mPB9EWiPISxHnpmkrpOO+kFE79TnKGH5XU0kMS 2/agNEoH5ab7+ZyfMPd7mfMXgeMJUHmI+dnNvF+Het1i9ENTbHASNjgT9duK OW5nFzXpBcaDPOeY/D73kWOnIo+zkRbgdIUfyjVmRPpyekMCqODQACrYzxoH ipjlnCWKf1EjxfowK8VOjpmb4k7VKJ6EQZ4NxYuh+BeyHGJnMzSZZADUdmbk oSASGBFGSWwRa4fCifNqfplGzN4Qqy31QYlo+LU0iz0kqWlHpWV+mbQvPi7d S0/IgEHlcs7oShk+y+oPph2UtM2MlsVRPyrhFevYcUNVEqjghONWowxNpilx qeBzbSoX2pSuswMODsWb7X87EbNFtus3Rnyn3Yq+470x/MWol04vcH0UcFf8 uO43YPj5vXqtqJDOc76XthPLpOXgI5LW9WuJb/2FNEn9l4Q31oatHzLfb0LC C+bwfARz0ZAnu5HpFbiZsRJVsAwyF0LwhRA8G8M7HWq1yP4EjHH16sFO4MEp y+NfPbh6GexACJ+RNQ4kgX9GcC0Z0fsHB4Wcuthuaq0i71ooTY9YaIH34dA5 Ef9tFhp4ERpYba9Su5HXLzENNDsz8pAOCSYMpBJC99V0d8KJ82pamdNl2mq/ 26DRNxKTeEiSs45KbmGZFHU+Ll3x3foNK5dR45ARrOm9MYwlV2D7dlmlFrTq g6aUNfrEKuauGThNKyz9q53snBjvOD8Jsdq2uxstmxusyOIKuU3vAvtHVP5q UrpG3/K1x+mXuI/vcXlMftvHeV3bfd3Kw3Qpv94ioL2gDGgPA+1XQHsAaD8F 2o+Adp+R++EsN1FA2xhom5jjmV6meweu16UM3ZJcgYFYAZhLWMbmYyTmsKTN lHPt4IOGd90KIlClh8CJkIEkxI/WvoFiDrk/JbS+iLQFba/TQqubwQpta9Nh t7OUAu1goB0LtOcB7VygXQm0S4B2loF2E9BuAtrNQLuZa2w2G5wez2UM7Rv9 S7HivJo6plGzt03AweM5BLSHJTr5sCS1PCrZ7cqkTbfjUtL/hPQZVS4jJlXK 4PlWzwrtmqUtPfVEW7Imgb9tnS4Lx8xGaLk9sXSvnovvaVN3nh1AWG4TudZn Yrmr4Mbiu9l+bZ39ffPtn3MS0dUJ1M68OQd5bwRD7qsieU9ZVQXb3cQDwu/W Z26FlMyA2gkHofZzqN0Ptf+E2g+g9h/mIQ33vAJhz0tzz+PQ9iBzdAcC4TpM 7BYItDYlepnzP6tY0pbJNLMpMc9sY+oGsBNscFouBirrEDD5vK7Qhlj29bTB BkNSB98KXl33NqgOcsuzAzI81pZN5rDs5OToU97a1HwoMSwPhGXtF3MuLM9h npfD8mJYngHLYwzLm2H5Uli+lPt0KddVyaDbw9ohWvcsNAKsmWQaPPuHCUB4 PEdg+SgsH5WEVkcls7hMWvc8Lp0Gn5DeY8pl2NRKGcg63gP4ilmi83+FZNAU yJesdrkND4jUP2Z1pTPp6GId41HLOdY2tthtQZ/KFttXs40vs7DZhH8vdgUf 5tn+m+516KEMDcRlwnE6HKd9iOHXDDKMf979WN8d/F48HP1mVUiXKSwc5yjH ++H4n3D8Phy/A8dvGp81nEUn2vMM8/IYi9tDzO9u/LWdMLmVsRopsIr5Wy2T TebYWlkB1xea1MdJZp/CKU+iQTMNbPqfxqypbWhEHSO/odUxDq4p3htahbGf 7W1VZ2RrbHDk0re9Tguqu+ecdRjTAbWvAXUUoGqdKD0/sYwJXYh3Ng1QzwHU fgbULYC6hYncynVVJWwXa3NNtyo0yquJYxope88EGzyebwG1DFDLAPWYZHQ+ Jvl9jkvH4Sek54RyGTK9UvrjWnXbYmlb7etsKjm8bPW9xcGTCECN1S5cGN7W lZa2HWB7Wapfb2fAuFzN2GqMbZVG6Kh219C8ynbPVFJohGKg+Mo4pH5v7aol f2gdmmihtSfv5sm5EvcMM93/3ArpNq5M2g07KHl9ldT3IPVtSH0DUl81q0y4 5y+Q+gQT83tI02I6uxGpOyFvK2MN7tgqGc6fM3AaVnnWQ+pykxw9zvSPH2C2 gJ0QmVoR1Qg1lG6wcmQ8tWyoBYrsGkpDTy9r2weQtYEo/bf7F7l4DWxY3SLB 6SjntAIt9LRFbnUxJ6QGslApr5PhVXfVl5hsJk3I08S8TdIXXjsaXrdyWy4z CXxWBoNuremuhBPZfV00e0EjCh7PMXj9Dl6/g9fj8HpcWvX/XjqMOiE9ppTL oNmV0heWum63eiFq5RFzUu01X9OtcHBqftLyxQpdqnaqbTCV2e129OAi2/+6 1HC7xSDr+GNOcOwCWxH3tQWHloJI1NZxIBvHeyYhEjI0OKY7ElutyPOAiRXS fVSZdBhwUFr12C/pxSBb8AbIvgKyfxOP8cOeAtk/Mje/Adl7wfQO5vd6acs8 tWUue2JYx/DnXM86xgoWr/mmcJFm6mlgTKMJTrURjeg6AqG2AxI+fVBj1kJw 1ZZacBWyNRrWsDNB9ifzxFbVeEbN3QFReW1TxWs//FeL10nwOgteFzO38+D1 XHgdaRJKNyO6tkiu4VWz9lQE6Faw7qL9SnzB3D3Gn9bYgcdzHF6/h9fv4fUE vJ6A15PSfsxJ6XZeuQyYUym9tZjSlVajTOOFPWN1P9aDPfUPM05ZXphyVSQ/ TFpQkepEvzZarKqdlctsceDwusaOHcy2Ywe9bK9Oq+/EwmszeI1/32ock/V7 ng3csE5csDc2eeA5FdJjSJkU9z4oBSX7JaPte5KQA698c3jj5826onGDaMRQ gufXzO9d8HqrtMPEdmKeOmFWB2Be9TyapupPRsxOwA0bhxDQLBt3WXWNfvnH DVxCwJ/W+rWqWUNm/SpaQ+poYBv9LLSaQzWBBYHT8sJJEVNgrSa0Wjyyqw3s SDyEScbAzgTYhUzwXNPOeiNr2SV4CZtRV5oRrW0uFFgVA7rtq1tnuvugIVt3 sOtrxgmAPQmwJwH2FMCeAthygC2XrjMqpP/8Sul5kdVsVrdYtYi5hg00eUBr Q9f7lgGszSqt+np6iNLJWXDOPSy21/t1trHdYsO6zQ/YlTbcM20PrlSs4FmC WC1amqOSE/H80p6ziuK0vZ4HiYv20d7PwyqktF+ZdOx2UFq33y9Zrd6TpPQ3 JDoeYBvpVvefTXG9aON93c387gK+GwD2aunKfPUA2JFmLDPdhYaY+vXaz1rr iAzk693NmQf/DBu/hAXLHlkVa5z7H1KlM2tPxQ2U0xjIvLbTqzQ+i8C6XK0f Klhnu8wNrJOnYAFbZIDt5ekvg6uAnW0s7EIs7ByAnQywwwC2J8C2A9gsbkAc wDYwakD3enW7TPcY/iTW8Ul1PzTO9Q3jFDe0HGDLAbYCYCsAtlLajakEWNTA YrvN5TVWL9nc31ppWSbO9SmwlmFhK61Wmbm26HQis+r6z7FdqFW2m2WFC8AV a7XNtrSbbZidfd7pNvDdbVeruQKLSo7jAUlWVwtFkqfF0/mdunHhfueKDBlY IT17lkmnTgelsFBPM78nycnaP+lv0qDBM+ZhbeB5GGDvwzruNiVNW3l28IBf DrCq/jVhaRnzPBdvQTtRT0S0jsTyDmTVKuX7OppoeU0ZNsYkWmFZWxCYe+8X n60d1jqcMmsXwLrmnyXrWrO75Q+rLjn6JBcCa0dgLcW6DjTtvSfJRGCdAazz sa4XGFgvAdZNwHopsG4F1suYzO3cHM1jvEaCg3cx7mc8xniB8RbjY8Y3jHKp H1MujdPKJa6wQtK6VeBbV0rR+EopQbr2YR3vzZLbFTDaa7eK3yEdgTURWKO1 KaHWx620MsK0S4UeiRxkxwScAw4at3JiW5Zs3WZiW9ttWDfZsKpkcBJqdF9X 4wJ6LFK7YOARSlNgTdhjuXsFv8TbutwuJ4171r+fwqp5mJ8D6z+B9W1gfRVY nwfWPxtXsxGwxgFrC1Ms7xas5XVSYsqDbMYQrMOiLjMV3bRJUx9g7WVKg2hv 2Orl0N2lQWqt0BRRR+1av6Z0sNpVbCAz+99DrprZYsjtAbm6Ro0wPWu0dp5G DrWg2waErZJ7KeRugdzLIHc7d+hyyFURey10eiUk5AHGY4y/Mt5ifMw4xCiX 8Kbl0iizXGKLKiS1tEJyh1VKm8mV0unCSumFGeuJHex+LU4O5BZCbg7kpkBu c8iN0uYn2l+l0ud0DbVFrJMCttI2sZssHcCn3272EdzULrdN8hT75/UJ0PZZ TbTUI9qjySeWs2eqlSKoO3OhnlxcU9v79MLp6n4Iaj+F2veh9g2ofQlqn4Va 3fh7GGofZF5/jdN0J9bgVqzBdaa2mEYBR3rWM5Yzt/NkKNQOhtoBnlGY3oHV WrT5Vyi1zesPT5L5eVu1JzD+GP1a8LNx6n8wx912UA99tGGOOnq68ZT3Y960 n8cknIBZch6cXginmnIwAU6HGk63Mqfb4PRyrnMlnKp23QGnd0ho6IMSFvY4 46+MtxifMA4xKiSieYU0zq6QZh0qJLlPhWSPrJTW51ZKR7RrKaaxB6t3V7Ri 5ztxqOA07y9YOTiNh9MmcBoNT+mVPmdLl3LnIM4i2/HfYDNpBbQuN4EBx+G6 xHbGltp6d6JtpbXjZiacRpWLhNvNJ7Rgvx5rMClfavm1OPQo3rdHhZSUHJIO HfbD6juw+hqsvgCrT8KqBkYegK37YPUeZMBdLO+3seTvxPG/wjzj42B1nGeF Kb40GlZHmq6Yo6qa/wTa7wpQEPpMIq61x7JqjLieTVRdynVNjcrV6Tnhj2rb KlT7m7pV2gZsLKhONTW21+BybZDxoDqE6S7FnLbDnGYx/dpSrIFRrdeB6m5Q fQgstTa/Fr/by9CTgIcZFdIwtkKicyoktmOFJPWvkExUawGqtcPiSumOm9UN skpuBh3NyX5EpDWoZoFqMqg2PWa5Wdm2m9VXfJWWFLsl4suotVE1mwZu1XqJ /T1LbDOsJyX76eEIME0F04hTVnERU3vUPsygmTodsNOdtAA0yqFrlwrp2PGQ tG27X/LzFdW/g+r/gOrjoPpbExtphIuVjElt5fHiDdzGYn895vNK0NxijpZP MTVq5puYwHg7JqAxLM1Q0owYvSdORm0tJ288Ne7MunJKGB6/LYLQmiJZdQi+ Fp4lYFfVmlarwLpbCFotXdsj97ubAmsK7BAm8hyAnQKw5wPsdJPOdYkMAtju AFuEXc3iJsQBawOUq6YUBAffCbC/sfvEvyjh4XsZ+xmHGZUShZ8U07JS4jpX SsqASslAubZCubZbVind1H5djV29DUDuw36yBhc+Z530bgGwccesnj56lkHT wHWTYIytQB03S9f4jbYd3W4De7krNrDRtr/uJBgNZGmBkCSgDT9pdZBo/pbd o+peHho0SdEafid+oNNgBg9bu3aHpKBgv+TmviMZGS8B7NMA+yjAar+5u5nj 3QC7ywSxOntuwm5eD5RXAegWM48zPCtN+2zdNdTUOU3h0qJKerbE2c3y70nl OnXjyiOo615WSHVQa7esRQEsa9uzJAICg+ru5uMPahG+swXqAETAKAOqNqSa BKizzDnHDSxcl5gqVt1MtFtB1UaN1wCq5hzeYEpohoY+DKhPAqpWZHybm7ef cYRRKY0TK6VZXqUklFRK6qBKyZxYKS0RqkWrKqULflHJDqwqArH9g1biSQEL cd5eFmhATTxmlTvSYJPmCA4W3xlyJ4XAsarbbECvdMG6xXa/VtnCVuuYawpB DzsekFhuNbXUDhHxr4uk8f5Zd/FgcIGCFfw+PBHt+wMsZriw8JDk5e2XzMx3 TFn9+PinAPV3fEYN4O1mjncB6q3M642AuhNQr+Uhvwowtxp39QLuz/mAOg3L qpWcB9vHw5wsLad8aKBTuNUTXnygBjqoYC+q+qP2MMCG1dGytg3gXf2kwLos 6+paLatOhLurpfqhCmxnFH6pDexQz2RjWSea482rmeyLAHgjntdm6cLEFyIF MrgJsdyMBia98EaAvRtgfwuwTwHs3wH2HxIR8alERh5hVEoTnPrm+ZWS2LVS 0oZUSvYkLOtcPKy1ldJZO1jeABBAUvQw1k5zTv4OMCzLWUCUeswqL9fGhky3 B/SE2EyXZ2XHAwywTu7AlTawl4ov4qqAO7neCn8rYE0+bpXHa4x3FfcyD8cf rEozmVutziv5vFkbLXnapsIUccjO3i8tWrwjiYkvmQL6jRv/FmDvMYG8Rp5b APZGgN3JnGrp8SsBdjtyaqss8FxsjudfALBTPNNllGcsczoII2AdUHC2spw+ 7jXU6TCKtUEdFWtoAEwDpXiHVNnV/xim7p1XB1MnpUUxbYezXGIwHci0jbYx nY1dXcSitdoorZFg2tdkCmxFWW3HWb1Smhu7qpjeBKb3gOkjpsFf/fovm8JI ehYsMvKoREWJxKSAAIYxuRsLLB54DnIzfz5YsnJ3gqWOqNV2qNU2v8eWaUoJ znjOB6DyBcholoBYyX+9bMdqqvg2BZzdV8XxMhvTq21Mt9uKVe3uMtsZ0+CB qegFoq25dqo6VajVRjhWMX8VieVRScSxSsVQZ/A75mhPTZ6P1vkVkpNzSNLT 97PwvyOxsS9JdPRTpqpivXqa0nOz6d+ZzJy0Ym46M0daIX8si/9MzyZZxhwu BtNZnnmYgPNwrM6RPpgGjXNrxoaqVXc5mRpqcoTVhGlIAEzrYE19aYQGySY/ D6Y/XP79MXWyCBVTFfNavboTmGq0rx+YDgHT0WA6AUynGUw3mA3Xviz/2iGm gOU/DWvaDGuq/R206GVo6D0g+giIPgOiL4PouyD6GYgelUaN8OHTuP2Yw6RS ltcROEnnYckQjW0xcx2vsjZbC1j681h6c1j6M1n60z6x+jno8qx5J5px1c/W mNNsy7jM1qiOQ3W5bUmvtnF1Y+rWqKp1S3CmWrHsJ2kzta/QqdpcDYcuBqcq Fqcqkd8tFSGcgVbI6cLv1rIcTL+StLSPJCnpLVP806mDHxZ2l5FBDUE0EURb 4nh29GxjPreYZKDpWNIlPO7ahmSa53zQnWSyNkvRqB2MRs3/Qdla/wIcVXEq w6hfb4+zYkqLzpJE7Vnjiu/PqG6POIx2hFGtuN7HNOqcbJrzadnlc2F0kmF0 kykV3Jl5L2D+0/CjNPc4nPsSFHQL90irUz1itm8iIrQ73bvw+Rmr4VHuI/cd W9isvUgCK2eL0VYfszycoMJLrCw8k+H6e2sHoAVmNBkzGq9llr+zqnyqlHR2 AMa5VvtVNn/Oan+VpltdbUKpjiV1wqkLxVdpWbdpi0E0h8snHubX075/PBYR T4Ppr/g3blTsWr42C0xRGBk8H9mZ5aYTkLZqSEraA6LP89H+BKIP8PHvMDGQ hqYe4hVM7Ta7pNwlTJ3mAa2TRWYHcFG1xb6r2VotqtYlp5bF3nNGq70xo/UC hFIDidKzjqjLjJbWiqhzesvJs9KdvHY8xh35ua4g2gtEB5rqULN51BfKVBCd wOM/3CC6FUQvB9Gr+PlrQXQn174RRG/lHv0K8/kI90urYr+M6XwXPD9jNTyK lwGeWbjSxWCHN5ICYxksu7l4KAWw1e56q1aAhtq1dmf821Zlbq0nkIQgzSy3 6ti7Dx7Odq30F/tMqMfis6NcY6/2l4kvjDpffMmrpho4jGYds1ICm+3HlO6B 0yfwqH4Jp/xwDCo2FnudyHORitRITys3rQO1d29S0isw+iyM/oHPfB+f/zaz adfQxO22sXLrpp7uRG9g7tbB5RqZj6t/vlnpp+Lmj4TfvubMkZoJp3byaTao /BANrr7Su2KSDE9ITcv9GZnSdmeVU7e7586vUk7dvU41/0w57WRz2hNO+8Pp MJync+B0sumYdRFKdZOpk2pxejU/v4M5vZ7Pf5Op0h4Wdh+c/gFGn4HRl7l/ Wq7zM2na9Kg0a8b9Zr2O64QpHQh7gJamzThWo/YAqegm62CqJlhrdQANu2sr yLhDVr+FnHIr1F9qM6ahficc9QubQ9tpYg4gFM/Z7TRp/HSe/XOqRnUjte1J nhOegxbY0FhVo6/A6aNwegeccrFGXDyGH4hFXyQWwnJSOWwexGHSpigvw+hT fMbfwajKHM3fvZI53gajW2D0EmkDn93hc6hZiqxaWzM9c0zsdLBnqH0Oq13V JqreE13m3BXiaghF1b4f9dMY0Z8fTseIOp0fHTjbezoBZ0/W+UHAqeeBJqNH Z5nOK9qBZSxwDjEGYatpblGAsUhjUWvGGh+OmxAUtIsb9GtTjVKbdjZu/AqG 813A/AzP9yg3EsPYEjBLAHMwazg3vQUWLYvVNw+i2tzKnw9YsUpTjP6fGDVc pSTgzDhmed8a3O9tu0vnii8Etd7Wmtsto8knv9Ys8tdI9TCUGltNS5lka4Wu FRhvvTYaNB3Nm4AObYYGjvkdkPL7REF2JMqg0Xhew+LGIjQS4solLu4gn+cD 02m3adMnAfQhAL2Lz6+nevTU9hYA3QSgGwB0HQ/8ahkEnONN5c3F5ojbGM84 FqpBVY2idaNF74d/B5uA+6UNaj29UkMEysepz4gG2jcNFIFqf9YX+9Nx6nQo VU4725z2sjkdbBpGa/fiVaZj0CA4LYXTDnDayhjRnXB6I5//Fjj1cp/uh9M/ wun/wOmr3MP3TJ2iuLijEh+PIeI+J3W12meksuKmwUAGFi6XtbnQa5WmME0T tHGBJoqy2KfCaTYstS63UqfUX9LUqeniizxtsI2l7Svxqa816VNX2AJgg/19 anRNnWP47Mk1O3LtAgxo5odWz73Y5+AUny3mRp4TwI7iQYjkzRphcWNYAJo3 LeczHeT5+4DF4WU+45MsFg/CqH52DW9sZY43wagWLFzHvK6GwxW49kuMaJrt mW+ql422m5nr5pPTK8zJ+XdOWNV0MqVBdRMaUtPeUx3sqF9IP5BP//Pz6TT6 cPdt1DnqwFx19vRiURoMn+ewyE+xG8QvkHHwORo+9Shrd+6BpqzlwWeq4fMm Pv9tpplQWNiD8Pkn+HyOe6ftRt/H3nzGgnjUdBJILoC57tjP4bCJP5+Bkszc yAKOr1Rwp+UrpeJPZ7DYZr3Dvz+GXURiHiy1La9evmWm+PbyHSGqwvOaKj7b GT632L7UClu8jofN4VyvL2x2OcB1eY8c7GcKz0Q8jlIsQqMZv08M9r0JPxA1 AkY7w2g6/25czuc6CJMfmK7AkZFP4hc+iH+oa4juv21mji+Gs3XwuYZ5XQGf S5lLrfI2zyzwUxChI40I7W2ypBwRqo6ShpsClGzxW9/rkC8dyG7WGLlvE4DL DmeJy57VNvCVS3dOlD+Xmp9b7CmREpvL3jaXQ3CSRjCnY0zX4Yt47RLmeYvZ D82FyxS4jKnicjf35iG4fMx0l2/c+HXTuS429gBMfivJyTCHgGtRajXOysDw ZSHusrVd0k7Yu8c6pZoHG/k4Sa3fxJbugxvsWrsjrO2nLAdJheMEm7Gl9pq9 0XaEnPjSNerHW2hebvvwqk9NNBQsp4DlaLAcCJY9wLI9WObxdi14HBLxj+Lx j2K5VrNV4Mmv2QQ5EoW2iEwRaRhRDo4HwfEDE06rX19bsGuKzS4JCdFcBq3n th4014DmStBcypQtYurmmSbZ00yUeZLZBtXdJU2Fcnp7OQVZaq3l1qA6mr7N JT/nyI/P0JrWdV/entmfj/55+Ox+xnx2gM/OPMvdPUNcdnM2zqfF5whTSegS k5Ou26A56M9k+IxGe9bXXgZBd3KjHsKGPI5N0eDLHhyifazp2nmwzDQQSm0L BL3gczR8YviyMGY5GLbcG63y1erA52qo/u8wyjrb+iN0KQ5SURmM2hXgtdzK FFtHLnc5RtuN7oRMx2huF19WiYI8HTLHf4dnBZl9ILMEMttAZrZmsfCGSX+q kITdFRJ3eYU0W14hMedWSJMBFdKoqEIaJlZIZPgpiWxwUBqEvy/h9SAz7M8S FvqghIbcLiFBV4nWNG8KmamQmQeZxZDZCzKHQuYkDOZMc8rEqnPV1cTnf1hl sNaOcw2q1vYa66uckVP0s0O5rNpiHqhrl5NIau3NFxkoO2E0u2I0S81psimI 9tk83QvNkfThBsrNfF335jWydy3XuB4obzFtLYOCfokF+Q0W5XEWu+cRZHsQ mtpc44CkpJRJWpoVmUntC5hjAfN8FnJW4ixtVnsLQvN+q4JKEnyk7uV7cIrS cYoyv+V7KqwaQH1toTnN9r5X2gv1FstTN04Q67BcZ/95jfgin2vtxV+BHsz1 esFnJ/hsre0P4DP+XQTGCyzqj8DlHSel+faT0nTZSYmeelIa9z8pUbj3EQkn pUH97yWqwRfSMPw9iaz3kkSEPSHhofdL/ZDbpF7Qldz39Vi/i/DCtZDoGrhc wRxqp51FMsNzoUz1nGs68Ti9wZ1Mp1pSnv13js7UGwoUUqqr1Sz+WQF1rKaq GgVUJ0YB1aWlg6cLE9ablX2w9ADQ3gDaH0C1pedIAB3KpPcxgG4D0KtMazTd c4723Gq6gwcF3W36sDZs+DgW83ks5h4spoawD2Axy0zjwDSWxtQBDJblFnga 6Zi8TMjKuh1IXcdKo/FOmgFO7FE8owqrdZxmNw20labuAC20laazol/pgvP6 AICutr2nSbZH1b7C2jlK07puKIfktwAVi532UIUk3npSml12XGKWHpcmk49L VL/jEll4XBrEH5fwsGMSWf8zaVT/H9Ko3t8kKuxxiQz9tUSE3CoNgi5nLtYx L+uY0/Wm2u0wc1Z/BUZzMXDOlomuJd05nud/Tt/trdcEaB18Id/eUR1iSoHo 7PiT02lFHlbUmIvvpDc5hKoOt7bh2/G4d8GEWoR2g9CeENqPGR0EoSNYpgZD aG980RJD6NUQqtU/buJ6t3H93RB6D4T+1nQMjol5Ab25B/O5D/OpfbHLJCvL 2oBJ0yD3ZAa4pGH/0hGKmXewvDrHnN6wyvnUh84G+ECJSlKl5Qs53ZE18XOx bRadw89X2XTu9CP0MttfX2GbXdWsunGkOf3Jeu4PEZr4ibVflY3ozLivQpJv OCmxm6BzSZk0mlQmDfuWSUTrMgmPK5P6oUclot5+iaq3V5rU+6s0DvuTNAq9 T6JCbpaGQdtNafsWnl9A3zpzamQKYybzN9UE5KebiuNO4Smdd/XVnaXdiScF yGm24knhZ5wiUmMcKbi6P+QXR+r8H2VTfUOr7FSBSfvSE06dWXK6oDmVzVLY 7IOvPgBffRhzOwhr0BM29eBuG8PmTti8mevdzvW1a5/ua/4ONp+Ezb9iOfeY Ltda7zojo0xycrCSmMAMAEubCpustamYvjQgSr8LPvHTU54Xac7SHvWZSCiW LRI2UyqsPE4ng8nZMHLyQjfbMaRrXFzeYHN6je3DrxffySY9FaXaVdP49Hhf 7GFrDzUdPyz3Ufi8q0JaXHtSEi46Lk3nl0nUxCMS2fuINCg4IvWaH0FmHpIG YR9Jw7A3pFHYcxId9keJDv2VNAm5SRoHbYOtNcimtczTWrNZNM20bFkKlxfA pfrpo6vy7VXrO5tF/gfxz4zNQA7RmRtPP0BLzg6gVup1t4CnmNx0OpkhFp3d oFMb7A6FzjE82VMQTrNY37Vl90pmdD2vbTLZDq2hM8vQeQvX83L9u6DzV2bX vWFDTZR8ETrfwGruM73Ys7LKpGVLK7siayiEngeVS6wEoVRwSsNbz9AWgC9a Ke8RiM7ow1YVdi0X0bbSl7ik4nGO+JJBt9jr+rXqpV9vdokcOO3KJ1W5S+fb 2tXkg1ZafTTSNI1P0/me4zWMd8tdFZJxxUlJXnNcmp9fJo3HHJGIXt9I/Vbf SFizb/B/vsJ47pOI0NckKvRZaRL6e2kaeo80DUHmBG0FsNVM62qmcC0P9Rpg XIofNF/GM5WjTMLycKM7nQx796n7AEGkgBlLtWeD1DX/M6QKyib/FVBqvoGT /Kn77B1MtnI3luq+PMpDcdXHYDKnAuVsPKMFmMuVLO3reX2T6feYj+DMBMpE A+UdXP+XQKn9IXX/8mlzojcu7i2g/BBzeQBzWSZ5edzxbpAwHAKmAyGYpF0K EbjoqfdZGcKJeEPR71uniFNxz7OOWCX01EV3vKHzXN7Qxa7w0Q510G8wUO7w A9I5+qFMd1PtCoztPrOq8rV8BSuJzi14AChvrpCsLScldflxiZ9eJjEjjkjD bt9IvbyDEtr0IM74F1Iv+D1pEPyyNAx+ShoH/1Zigu+S5sHXS7OgLejFlTjo GnFfZZqW9/HMxamcheXUmma6ig+pVgbCOUVXQ2JyIEt5BnnJodWLQgWKuofU FN2sE5eDbAYTEhK8PXv23NC+fXtPA/NavWk5OTlPDx06VL9bxz8nTpyoX294 xiibTtk1CwCnx5DS7GSNFJvku+7Q3A/bMIxbMZZpn4oYtWgewG3qA816plwP ibaCZi3pFQ/NTQzNd0MzPm79R81ufEzM36F5LzT/E5q/lNzcMsnPF8nDuLWE qZwZVsApA97SboZcUGrxJAvyq5Zvr2X08j8VKTpoodfjhHX+3qkxucB2h5xc e0eY3mgv/jstk2te102mNba7pT87HJwHc82+4FwKzl3AuRi3qe0fEBp6MGRn heRuPCnpi45L0pQyaT7oiDTu9I2EZ4Fz9AFTpjos6B0JD/qbRAY9IVFBD0mT oDukadAOiQ3ajMhUpFdgPxdKkWcOS9IM5m0K8zmO5WqEWfy1hbRzMNTpeOUu Lllj6nL9AGv/j7aw0f8+yUqtQ6unvvVaWlRUlJJrkA0z/w/Rr+vr5jsa/Fik 9ZlVpN25em6kC01VSgvpLtWQPhekzzcdcvpzm7SlXglIF2GgW9p7o3Eg3Rik 63m0kfoDIP1HiYp6FqRflvj4t0H6I4N0y5bHpHVrMO0J1qPRjojS7FXoWHhM v9XuAfsMf38J5PeA1j+shmtdwa7X1yIDy0Cx3NKzs+zQ0y9sPeuP9PUuPXul 7Y85Wfm69z/pW5Exn2OtWQgG8wj1w8frqcV+fy3ScZdIm2vKJW/9Ccmc+52k TPhW4vodlibtv5aItC8lNOpzZng/87qXOf0rZuIxMLyfx3oX1vka5vUSFq3l +FsLUVVzQHsG8zsFfMcxvyPM3nMfV8V1p9+rqrg6ZePXr8lI+5AOrim0Hyjv KZBo6PLjkA51cHaMcrD1stpxx16r7Y44c7CXntZWq9PqBrujyfDrjkbTHmTD uAFjgXsqcM8G6IXArWVCL+KGXArY2wFbk1Nu4Dq3AfadzN29gK2bA3+Uxo2f lWbNXpbExLdx1D5CCn8prVodkzZtWNrx4HPxlrIvwFavxVZfga3eZbeI/Qvj dSB/F1v+kbUh3/4bkZJjVq+2YS4pvEyqx2CvtW30TS64d9hgb7SDCE5iyiSu Of5jkdGsCcNw0AayRvTm/bv/knWBCxRdcQqwyyRz3lHAPgTYXwH2F4D9mYQ2 2s8Mf4iR2MtcaknKx9GxDzAPuwD6WlyMTczLCpyw5cznImz0hczhDFSbbraM MxuqWlJV59udMeX01KyxZVZ4VYTLj+rad61qd9Jq1B3/Ntr1LIbVKjsMK9qh P3xZf+zfsNnLfmCz/U9UKdpOfrXajk4m76oHQ/MshoH3WPCeCt6zuTULwHsF Inu9qbxa5LkCtHdwC28yt7QxXl497eEd9DBo/0maNHlWYmNflqSkt/HyPkJQ fykFBcekqAhcUca5E8AaA5qxHqyRvqm7NbQvkvSCVVkl6UMrUS8bBPPBuqjC SgYcYdtcR1BvcAnqnTbaN9t432DjfoUtvJfbbp7G18YfEpnwgcjY17DbPE5D 8DD73c/j48Vu8zx02HJK8td8C9pfg/aXoP05aH8K2h+D9ofM8HvM5R6QxpsF 7UTPgyDtNcm8maCdzVwVg3Y/7sNQzMIobPc48J4M3tqayCnK7uSx/Duq+oxy BWqsFBwoNtb1x1Ed8DVV3Pqa/vnvaJAf8uzWIGoWHJ6tElcWz509pfzZnzGM v4+F6akwPZv5XwDTK3AQ1/O1SzFDV5rao2nojzjuY2MkdT3W4aCg35l93Ojo v6A/XkZ/vC2ZmR+hP75EfxwTFiYpRBu3xF5moovTAbIF/KRgIpPQAAmYzYS3 YVrbYH1lnQrU7TJNbtX8wdEuSb3KNsHbba1xvW2ib7F53mm/frnNvXqJmjOj Z1nGwPNYZPs49M45mOnhmOmBd4v04WHowQPQ6eJTUrjsW5aTr+D5X/C8H54/ gud98PweM7yXuXwFnp+D4yeYhwfh+A6zS6MVw/NNS84VMsQUClwmM0zBhTky 0TPRtEZ16lc427hOUYBaK1/7THUgTe3KdGJYjScCQV1jPK3JTwu14x7qn/6g G5DrCrXPi/DbZnOMtDtzWw2Dut3qq7Q1hQY7G6g7A3VnDEknoC4B6q5A3R2o S7lJ3Ux/uUvRK1fyMCjUtwL1bqC+l/d4EKgfMSWhoqOfB+pX0B5voz0+Qnt8 ifY4Jh2KEa0D0SCTMcAo4zQUbwo0JuOfJT6Gn/h3az9Wi7MkHLL6cWlpd6fi xVgbTGeL7RIbWrf2uMX++w7beCv0zumXaXboYyTXHgXUo3m/MX/i7xjoIRjo /qjxXgiaLmtPSdGCb6Xl9K+kxZhPgfpDoH4fqP8B1HuZ4T1A/SJQPwPUfwTO h4D5DnzD64BVF7FVaAztl75cpnEvljDcBYadaq0KtZPM5d/P+weVLs4oSHxG +iMQ1N1+IqhNLMTWJG5drUIk/MyN9ZLTnpzx57rEJIX1ZAwwXHfmHnSG6xLu R1e47g7XXeC6PfdND3Zlw3ULNHUcwqMxwqOe5zdw/Qe4fgquX4Dr18xx5xwE ckHBlwiPY9KxI4Z3MAJkKgIE65mBt5eChU3EUYv/s0gszlusRvO08+ZRjPUJ nMsK69ChUz3bqeKyzo5tONvGN9rCw99Yb7PjH3NtTa7aXPNuhsP1CLgeyfM0 +h7+zQ8P4mJ9USrdl5+SDhd8K/mTv5KM4Z9KQq99cP02XL8F13uY4ZeZy+fg +gm4/B18/hqed+MUXmee+06e1SZmNJ45uwC29UysNlR1qhBrOM/dpqCGoliu +PKPVh6BsmdbB4h+/Dieg61wh36h6qcDKGoF/N+AemmtitqBWvfiNZNMk3YU 6i44MSWegYwRjHGmX1pn06pngVlRO5s27ZulFVDrvkkKUMcaqO/nPR4G6j+a 04rR0S8C9R6gfheoP5HCwi9N867OnXH+hqJCzrNOKmZhGFsAU8IDQPy0SPM9 DNR08y8x4IcBv4yHALC7VVhFNCaJL4NMVYXGoK+2AXYM9a0uRX2V/T2qVrTM tkZQ9DqDgXoIUA8F6mFAPZzFYiQXGco3D/gFynrhKek0/VspHPuVZA/8VJK7 7pOYNnuB+jWgfoUZfpG5fBqo/8gcPATUdwP17aaAhmaC9gDqYRjsqYA9yWQw z5TRqI8Rduatu9Kbu/JrgCafRnzUr3Wj2U98GJrr6/0OrtVOG64LAnDd/Sfn OqymL9T7Kcl2OnW4ydaZ1tr7SnYXyNaSpiWe8QyL7M7cnRLj1ms+v3acuQL3 fSem5jaudZeJb9XDbAUFPQbZz0K2llB5A7Lfh2ytA/iVFBcfky5dRIqHi7RF IOeDZzaOXhooJj2EmX5WpOlbDHR10gG+hrZuC91doLsfdI+osA4oujdetrl0 9c0usm+2X1NTvsX+fjXz42yzP0ATeCF7EGQPhuwhkD2UHxiGrhm8Ao0955R0 mfKtFI34Slr2/lRadNwnzfP2SsPkVyH7RWb4OebyCT777yD716bPQRv8Zq20 0cuzVfp41sgY6B7lWQThmo8yGTM9Cv9EK2/2MMujf3pkbYca61WRXXutrbrm lfsy0ExtzZifiOywHxpm/Xr9WrmO1C/YhKfxP689POH6/xCvfl6vft4uXn59 L5/Dy6fyYgS8qGovU+dFxXkTPYleXEVvtiebkcco9GZ52jE6MboyejL6ejM9 g7xpnmHeFM9ob7xnvLeZZwrXmO6N9JzPded5QzyLvUFBK7z16q31RkZu8DZu vNnbtOl2b3z81d6UlOu96em3eLOzvd6Mdl5vix5eb9Jgrzd+nNfbfIbXG7PQ 62281uuN3Or1Nrnc6429yutNudbrzbzO6211g9fb9iavt9NtXm/3XV5vP6/X y496RzL4ce9kxrmMaV5vsHe61+tp4z2Pf05lTGCcwxjEKGUUM1rpuJ6x3evN 3+D1Fiz3elvP8XoL+YHC0V5vm/681v12b07Hm7xphdd5k7Kv8jZP3e5tHHup t0Gjjd7QeuuY2dV85KVM4wJvjOcCpmMG0zKFKRrvzWN6Cj1DvQWe/t5WTF0u 05/t6eDNYFrTPC35vgwvQsOLV8jPxnhZL80tgTWvwVFvWbDevDC9jWH6t8iq v4VaX9VqGvrd9fSump+zX+Or4fp9+foT0fo30b+Z//XwWuC56QytAukn0hP6 9UB6Qqr/b3xdnoqfQsec7n372s8Pl6p6i+Cafhdr98jfR/jpfo1w51L6Nnop fdH9a/j9FiZ+dAaeyul+i36+HwnVawd4ayd05Z4U955EQM+/Tu/rt10X4tuu q7qOfd/dkQb92C4cHB9Of81/5zcZYP4f5p5M/03FarEP+63dM6A/W0v4o9pr uwO8dmcdv6+ur/1gARromy7357M3mNwfXV8ONqiHuhMC9JVaNpj+85/QldxQ dffCfa85j4+bMfMp9b//6g822PomfQCqfmGLtVDn4dGhX4/6b/4ctWRFVXst 57/otdz/0PuuDvDa/0/y/+HX/v9G/h957f9v5P+R1/7/Rv4fee3/b+T/kdcC 30jRF3z/m+z6up/j9xf7OkH/C6aX6Wc=\ \>", "ImageResolution" -> \ 192.],ExpressionUUID->"f95c06e6-35af-4134-a253-9fdb448ab8ad"] }, Open ]] }, Open ]] }, Closed]] }, Closed]] }, Open ]] }, WindowSize->{1440., 742.5}, WindowMargins->{{-4.875, Automatic}, {Automatic, -4.875}}, FrontEndVersion->"13.0 for Microsoft Windows (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"b8fcf49f-848b-4c86-85e4-5b967cedc881" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[576, 22, 141, 3, 160, "Title",ExpressionUUID->"596b3f98-b533-4fd7-80b5-ac81673a7af6"], Cell[CellGroupData[{ Cell[742, 29, 591, 12, 86, "Input",ExpressionUUID->"4bed8f6d-ff13-4ba9-8d7c-ceeb32f60b21"], Cell[1336, 43, 591, 12, 38, "Message",ExpressionUUID->"802f8565-0acc-450f-b98c-70ad9433679a"], Cell[1930, 57, 762, 14, 38, "Message",ExpressionUUID->"3b53f336-e46b-46e6-9a0a-de7eb0d76242"], Cell[2695, 73, 804, 15, 38, "Message",ExpressionUUID->"1b361aee-0f7b-4000-b587-b8bc86612e8a"] }, Open ]], Cell[CellGroupData[{ Cell[3536, 93, 246, 4, 69, "Chapter",ExpressionUUID->"3a87af98-9b5a-4bc8-9d4a-a699ebd02384"], Cell[CellGroupData[{ Cell[3807, 101, 156, 3, 67, "Section",ExpressionUUID->"d974cde5-cc1d-439b-9680-b03cbd9192e5"], Cell[CellGroupData[{ Cell[3988, 108, 1191, 26, 124, "Input",ExpressionUUID->"813f7191-0838-4abb-970f-35695e4e0cde"], Cell[5182, 136, 146, 3, 32, "Output",ExpressionUUID->"6e2b99f4-4b39-424b-b255-e3504348b5c8"], Cell[5331, 141, 146, 3, 32, "Output",ExpressionUUID->"ff4dd70c-63ce-464f-aef9-2a1ea36fd5b5"], Cell[5480, 146, 161, 3, 32, "Output",ExpressionUUID->"a78d7965-0d1b-4797-80da-a6eea601b09f"], Cell[5644, 151, 161, 3, 32, "Output",ExpressionUUID->"948bd2f6-c6f4-4f7e-9b35-fc5345766140"], Cell[5808, 156, 147, 3, 32, "Output",ExpressionUUID->"db9a2236-be01-494e-bbb4-6ebb7a777441"], Cell[5958, 161, 148, 3, 32, "Output",ExpressionUUID->"91233be5-8a2b-4fc7-aab1-25bf4ee49047"] }, Open ]], Cell[CellGroupData[{ Cell[6143, 169, 282, 6, 28, "Input",ExpressionUUID->"990edfdd-7c56-4db8-b3e2-97d1cc781634"], Cell[6428, 177, 149, 3, 32, "Output",ExpressionUUID->"7926b8c8-786a-435f-8ef6-730ed4799de1"] }, Open ]], Cell[CellGroupData[{ Cell[6614, 185, 361, 7, 28, "Input",ExpressionUUID->"29df7a7a-5870-4352-9179-4a244d0ef2f8"], Cell[6978, 194, 164, 3, 32, "Output",ExpressionUUID->"2ba76800-4d4e-4c99-bac9-9bf5e81d149c"] }, Open ]], Cell[CellGroupData[{ Cell[7179, 202, 406, 9, 48, "Input",ExpressionUUID->"137f9588-c565-434b-afef-fbfef6fdab6b"], Cell[7588, 213, 147, 3, 32, "Output",ExpressionUUID->"c0f918b4-76e7-464c-986e-78422c567087"], Cell[7738, 218, 147, 3, 32, "Output",ExpressionUUID->"0d6ec611-ae36-494c-ba38-23b706396087"] }, Open ]], Cell[CellGroupData[{ Cell[7922, 226, 449, 10, 48, "Input",ExpressionUUID->"007cae36-982c-483d-addd-f30549e6295c"], Cell[8374, 238, 145, 3, 32, "Output",ExpressionUUID->"d823b9ac-9f73-41ef-af61-9720ce881195"], Cell[8522, 243, 145, 3, 32, "Output",ExpressionUUID->"5b277726-99b5-41ba-9f1d-6be2a4b8301d"] }, Open ]], Cell[CellGroupData[{ Cell[8704, 251, 400, 9, 48, "Input",ExpressionUUID->"6d442ae3-4172-49c2-a2a9-7402f2a12503"], Cell[9107, 262, 145, 3, 32, "Output",ExpressionUUID->"f960fa8e-ee3d-46f5-9734-42fe72927a98"], Cell[9255, 267, 145, 3, 32, "Output",ExpressionUUID->"025800e3-3018-4027-a0a5-263d08200d92"] }, Open ]], Cell[CellGroupData[{ Cell[9437, 275, 281, 6, 28, "Input",ExpressionUUID->"473904d7-49c2-4a15-9b8c-f3ef7115697d"], Cell[9721, 283, 150, 3, 32, "Output",ExpressionUUID->"882d4be3-a757-4f76-8245-2f360419a14f"] }, Open ]], Cell[CellGroupData[{ Cell[9908, 291, 328, 7, 30, "Input",ExpressionUUID->"48665cf9-bc02-4e4d-9234-1ac3103d903a"], Cell[10239, 300, 149, 3, 33, "Output",ExpressionUUID->"95f7d4ec-860c-4a54-aeeb-69338eeece08"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[10437, 309, 210, 4, 53, "Section",ExpressionUUID->"9c193533-2509-42b3-9dc5-c91fe4806ae0"], Cell[CellGroupData[{ Cell[10672, 317, 150, 3, 54, "Subsection",ExpressionUUID->"15f8c798-271f-4c72-918a-f57016858fa5"], Cell[CellGroupData[{ Cell[10847, 324, 320, 8, 28, "Input",ExpressionUUID->"26671669-7fd0-4f30-b488-bf3616dc02c1"], Cell[11170, 334, 531, 18, 37, "Output",ExpressionUUID->"2125c083-b5b4-4f71-a238-a807a1abb041"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[11750, 358, 213, 4, 54, "Subsection",ExpressionUUID->"7fba926f-2a67-4f67-99d7-ef33a1eb4f15"], Cell[CellGroupData[{ Cell[11988, 366, 529, 14, 28, "Input",ExpressionUUID->"3d8eeb31-07ba-4594-af34-6f4f6fe3e39f"], Cell[12520, 382, 418, 15, 48, "Output",ExpressionUUID->"c09b627a-b48d-4573-afd0-f014d212a5b6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[12987, 403, 259, 4, 54, "Subsection",ExpressionUUID->"e5d8bf69-2aa6-447f-95be-0a07448fc189"], Cell[CellGroupData[{ Cell[13271, 411, 524, 14, 28, "Input",ExpressionUUID->"1f34b7ad-4a9d-46e1-a02b-ed1d0d320d95"], Cell[13798, 427, 418, 15, 48, "Output",ExpressionUUID->"e33dfec0-4e22-4bb7-824e-7277d864c10f"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[14289, 450, 250, 4, 69, "Chapter",ExpressionUUID->"e45e2ad6-4de0-4679-8aa4-7caa332a7a72"], Cell[CellGroupData[{ Cell[14564, 458, 158, 3, 66, "Section",ExpressionUUID->"613d1735-f67e-4aea-8635-ff7306cc36e6"], Cell[14725, 463, 167, 3, 33, "Text",ExpressionUUID->"e5c77566-f2ab-4867-9f38-c0dce8fc2196"], Cell[CellGroupData[{ Cell[14917, 470, 747, 20, 29, "Input",ExpressionUUID->"d30a7fc1-4e8c-4ca3-bab3-9970685cc3f0"], Cell[15667, 492, 889, 32, 70, "Output",ExpressionUUID->"a3ded133-50e3-4d50-99ad-145965a2e8a2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[16605, 530, 206, 4, 52, "Section",ExpressionUUID->"ce6f64c3-6506-4ebd-87a4-cc18c319a522"], Cell[CellGroupData[{ Cell[16836, 538, 244, 5, 29, "Input",ExpressionUUID->"64fb747a-12a8-42bb-b7f4-bdb2c2ae2925"], Cell[17083, 545, 273, 11, 70, "Output",ExpressionUUID->"258bd602-1add-4efd-9571-8f417d309d5b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[17405, 562, 408, 7, 65, "Section",ExpressionUUID->"d1730f92-3983-4832-aba8-a44bac9d3238", Evaluatable->True], Cell[17816, 571, 147, 3, 70, "Output",ExpressionUUID->"b11bd79a-ca94-4a83-8ab5-49fe3bea3d78"], Cell[CellGroupData[{ Cell[17988, 578, 396, 10, 29, "Input",ExpressionUUID->"fa2733dc-e5a7-433b-a1c6-497de33eb155"], Cell[18387, 590, 273, 11, 70, "Output",ExpressionUUID->"2fcbe5e7-6803-4352-a112-d03956e30a72"] }, Open ]], Cell[CellGroupData[{ Cell[18697, 606, 1688, 41, 213, "Input",ExpressionUUID->"fa73271b-9ddf-4381-9193-df73acc3c5ec"], Cell[20388, 649, 316, 10, 70, "Output",ExpressionUUID->"b7149101-23f9-4a11-843b-e732905ececd"] }, Open ]], Cell[CellGroupData[{ Cell[20741, 664, 2146, 53, 213, "Input",ExpressionUUID->"411f1b65-6b57-4e74-8f40-699c3cc10d26"], Cell[22890, 719, 316, 10, 70, "Output",ExpressionUUID->"b0048ae6-c8b3-4857-bc07-68567ecd9299"] }, Open ]], Cell[CellGroupData[{ Cell[23243, 734, 258, 5, 29, "Input",ExpressionUUID->"1fc25a0b-0428-4585-8e84-44af9cd4756e"], Cell[23504, 741, 61147, 1439, 70, "Output",ExpressionUUID->"eb52261b-75a1-4735-9e26-8e8619e29f57"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[84700, 2186, 254, 4, 66, "Section",ExpressionUUID->"e6062482-930d-4498-b881-3e05b4e17d61"], Cell[CellGroupData[{ Cell[84979, 2194, 231, 4, 29, "Input",ExpressionUUID->"082f04fe-dd21-4d0d-b1d7-61ffc5d3476e"], Cell[85213, 2200, 316, 10, 70, "Output",ExpressionUUID->"46440644-2638-43f1-97df-0061e516733e"] }, Open ]], Cell[CellGroupData[{ Cell[85566, 2215, 1174, 30, 49, "Input",ExpressionUUID->"4420a601-f148-48f8-be31-23fe27dc4994"], Cell[86743, 2247, 1473, 42, 70, "Output",ExpressionUUID->"de291e5c-1630-457b-a1db-68f821999cf2"] }, Open ]], Cell[88231, 2292, 166, 3, 33, "Text",ExpressionUUID->"16904800-0572-4da9-a1ae-55ca85272ff5"], Cell[CellGroupData[{ Cell[88422, 2299, 286, 5, 53, "Subsection",ExpressionUUID->"055e82bf-ae9b-4dc1-bd64-6e9c3e70c0ae"], Cell[CellGroupData[{ Cell[88733, 2308, 472, 12, 29, "Input",ExpressionUUID->"852c1e5a-13e1-4f67-af8c-0b9b6b3034f3"], Cell[89208, 2322, 1443, 41, 70, "Output",ExpressionUUID->"d0543a3e-9fee-4b54-a5d9-c9eb4efbdbd9"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[90712, 2370, 587, 9, 66, "Section",ExpressionUUID->"373d2a0f-1a17-4859-8396-8877a52547e5"], Cell[CellGroupData[{ Cell[91324, 2383, 606, 9, 53, "Subsection",ExpressionUUID->"0461d793-eca9-49fc-84b9-728ab886e1c2"], Cell[CellGroupData[{ Cell[91955, 2396, 152, 3, 29, "Input",ExpressionUUID->"1b3d09e0-f0f5-4b5d-97ca-5519c724149f"], Cell[92110, 2401, 1443, 41, 70, "Output",ExpressionUUID->"26fabb24-ee3d-4672-a38c-7d04f7a36674"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[93602, 2448, 590, 9, 53, "Subsection",ExpressionUUID->"1ea731b1-61df-4776-ba0d-0afb91181a15"], Cell[CellGroupData[{ Cell[94217, 2461, 152, 3, 29, "Input",ExpressionUUID->"2f550fb6-d24f-49a2-b30f-827015b9d109"], Cell[94372, 2466, 1443, 41, 70, "Output",ExpressionUUID->"e6e5c75e-a406-4dfd-af91-1d4988d8f5ba"] }, Open ]], Cell[CellGroupData[{ Cell[95852, 2512, 919, 23, 29, "Input",ExpressionUUID->"d688ac99-5e5a-4ae5-8523-0101661a970c"], Cell[96774, 2537, 1633, 49, 70, "Output",ExpressionUUID->"5861f3a6-e429-41d4-8a0b-77f2ca7474c6"] }, Open ]], Cell[CellGroupData[{ Cell[98444, 2591, 2858, 60, 213, "Input",ExpressionUUID->"bf8719c5-dd96-45d8-8fcf-6770b8709cc7"], Cell[101305, 2653, 14973, 294, 70, "Output",ExpressionUUID->"81a2bf4c-d41b-446f-b3e1-486a28287383"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[116351, 2955, 367, 6, 58, "Chapter",ExpressionUUID->"b24105b8-18dc-432f-8fea-854de86b7ecf"], Cell[CellGroupData[{ Cell[116743, 2965, 150, 3, 67, "Section",ExpressionUUID->"6e662062-2339-4065-8135-66d7d1575699"], Cell[CellGroupData[{ Cell[116918, 2972, 154, 3, 54, "Subsection",ExpressionUUID->"1de0ade5-d049-405e-a3d1-fa59e2b57001"], Cell[CellGroupData[{ Cell[117097, 2979, 242, 5, 28, "Input",ExpressionUUID->"d5adb326-b746-4eda-8fd0-ed6d5ba744bd"], Cell[117342, 2986, 273, 11, 32, "Output",ExpressionUUID->"60d31ccb-7828-4ffc-85df-f14dec8e8ac2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[117664, 3003, 154, 3, 54, "Subsection",ExpressionUUID->"a7ed3cb2-bcbc-4eca-b929-6edef2032723"], Cell[CellGroupData[{ Cell[117843, 3010, 600, 17, 48, "Input",ExpressionUUID->"5475811d-1699-4d6a-9bb0-0d4658bc2e7c"], Cell[118446, 3029, 1501, 63, 46, "Output",ExpressionUUID->"ea18d2cb-0761-4204-ae2b-189c8a1e65ed"], Cell[119950, 3094, 273, 11, 32, "Output",ExpressionUUID->"2f4374f4-e8e3-4449-b0da-0fdcd6edac9d"] }, Open ]], Cell[CellGroupData[{ Cell[120260, 3110, 751, 21, 28, "Input",ExpressionUUID->"1585bf75-24b0-4051-9fd8-97e2761e9302"], Cell[121014, 3133, 114, 2, 32, "Output",ExpressionUUID->"9cbe01f1-a1f4-4e8b-8e2a-efda110c6c19"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[121177, 3141, 177, 3, 54, "Subsection",ExpressionUUID->"be0d6166-fba1-4a72-a672-e5301be1ce0b"], Cell[CellGroupData[{ Cell[121379, 3148, 884, 24, 48, "Input",ExpressionUUID->"ce935df3-419f-41aa-850a-2c830a9ab8f5"], Cell[122266, 3174, 3669, 117, 48, "Output",ExpressionUUID->"79d4061e-de41-462f-b7ea-3311feac0538"], Cell[125938, 3293, 981, 41, 34, "Output",ExpressionUUID->"10b2c67b-0a5b-4742-b520-3456c7d5ee71"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[126968, 3340, 203, 4, 54, "Subsection",ExpressionUUID->"95921e5e-d3c5-4b40-8c16-1b8160725355"], Cell[CellGroupData[{ Cell[127196, 3348, 698, 19, 48, "Input",ExpressionUUID->"d34c07da-8e3a-4c14-a848-41b27f8700dc"], Cell[127897, 3369, 5789, 201, 84, "Output",ExpressionUUID->"24110bda-d010-47e4-9460-739b973844bb"], Cell[133689, 3572, 981, 41, 34, "Output",ExpressionUUID->"d84545dc-b91b-4a20-8e11-1b47e6ee8488"] }, Open ]], Cell[CellGroupData[{ Cell[134707, 3618, 457, 12, 28, "Input",ExpressionUUID->"0fdd2cec-e2fd-42b3-b1d8-9809304b4084"], Cell[135167, 3632, 114, 2, 32, "Output",ExpressionUUID->"948c8e61-b203-4d74-b93b-6f32c8186a8c"] }, Open ]], Cell[CellGroupData[{ Cell[135318, 3639, 321, 7, 28, "Input",ExpressionUUID->"14516dce-8f02-4038-8bda-a34a3b9000fd"], Cell[135642, 3648, 140, 3, 32, "Output",ExpressionUUID->"6410fbdc-dceb-4b58-8684-d3a5d236696b"] }, Open ]], Cell[CellGroupData[{ Cell[135819, 3656, 323, 7, 28, "Input",ExpressionUUID->"a76910d8-4066-46cb-9fa0-9e35237c2509"], Cell[136145, 3665, 123, 2, 32, "Output",ExpressionUUID->"64d92d98-ddea-4ce7-9c7a-a853f5897bae"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[136329, 3674, 204, 4, 53, "Section",ExpressionUUID->"f5cc1933-a66f-44b5-be64-fadd3c8fc953"], Cell[CellGroupData[{ Cell[136558, 3682, 154, 3, 54, "Subsection",ExpressionUUID->"797f66ac-4d8c-40ed-b404-85dc0d53961f"], Cell[CellGroupData[{ Cell[136737, 3689, 242, 5, 28, "Input",ExpressionUUID->"d0baed64-b188-4c08-a084-6ed1b0f2df28"], Cell[136982, 3696, 273, 11, 32, "Output",ExpressionUUID->"71845184-d510-4f65-ad64-81b593d8a6b3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[137304, 3713, 154, 3, 54, "Subsection",ExpressionUUID->"5257e732-3956-49c4-89ee-6ec937640921"], Cell[CellGroupData[{ Cell[137483, 3720, 600, 17, 49, "Input",ExpressionUUID->"cf699703-0bd9-4a95-9089-d4e2136030ed"], Cell[138086, 3739, 1501, 63, 70, "Output",ExpressionUUID->"91c3d333-3431-4c5a-a641-1472064920f0"], Cell[139590, 3804, 273, 11, 70, "Output",ExpressionUUID->"ea0d8ed1-c6ab-4b0e-98e3-c3b33f764b55"] }, Open ]], Cell[CellGroupData[{ Cell[139900, 3820, 751, 21, 49, "Input",ExpressionUUID->"e1e63c77-76f5-4e2b-9126-e34537c38ad4"], Cell[140654, 3843, 114, 2, 70, "Output",ExpressionUUID->"0d114524-27da-4464-aca7-e2ad89be3cb8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[140817, 3851, 177, 3, 38, "Subsection",ExpressionUUID->"bab7feda-5a8c-47f2-b6cc-5fc2ceae2a1a"], Cell[CellGroupData[{ Cell[141019, 3858, 439, 12, 29, "Input",ExpressionUUID->"2829c1c7-c150-4d81-80a7-a3ad86acd7b2"], Cell[141461, 3872, 1056, 28, 70, "Output",ExpressionUUID->"ae2fe7f0-32f6-41ce-9f39-f7cb9ca5dd00"] }, Open ]], Cell[CellGroupData[{ Cell[142554, 3905, 448, 9, 49, "Input",ExpressionUUID->"660c61f9-0ef8-4bac-a5d7-6b2feab62811"], Cell[143005, 3916, 4959, 153, 70, "Output",ExpressionUUID->"fc6c26b2-a2f4-4340-b547-e77754ff4f8b"], Cell[147967, 4071, 1000, 42, 70, "Output",ExpressionUUID->"fd81e76e-384e-4561-b37f-38c1ac467691"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[149016, 4119, 203, 4, 38, "Subsection",ExpressionUUID->"8659cb32-0479-448e-a4af-221efd5974cb"], Cell[CellGroupData[{ Cell[149244, 4127, 743, 19, 49, "Input",ExpressionUUID->"36b4f04c-ca6f-46a6-b09c-4d45dd079611"], Cell[149990, 4148, 7079, 237, 70, "Output",ExpressionUUID->"a60962e5-3115-4580-8ac3-15a10c2ae230"], Cell[157072, 4387, 981, 41, 70, "Output",ExpressionUUID->"cf608bdf-150d-4e15-ba66-60efda516b7c"] }, Open ]], Cell[CellGroupData[{ Cell[158090, 4433, 457, 12, 29, "Input",ExpressionUUID->"72aba179-15cf-4933-ba46-1377e6a16246"], Cell[158550, 4447, 114, 2, 70, "Output",ExpressionUUID->"d1665676-41fe-450e-a64a-1853a4cc6ab0"] }, Open ]], Cell[CellGroupData[{ Cell[158701, 4454, 321, 7, 29, "Input",ExpressionUUID->"83db34b4-bd63-4a5a-be70-c5e3ea18eeff"], Cell[159025, 4463, 140, 3, 70, "Output",ExpressionUUID->"29118599-2294-43ed-8c1c-dc06710bdc60"] }, Open ]], Cell[CellGroupData[{ Cell[159202, 4471, 323, 7, 29, "Input",ExpressionUUID->"614909e8-9a27-4edc-a582-d4546a5e19a9"], Cell[159528, 4480, 123, 2, 70, "Output",ExpressionUUID->"0f45030e-acf4-4bf8-a124-99285a73eaa8"] }, Open ]] }, Closed]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[159724, 4490, 303, 5, 69, "Chapter",ExpressionUUID->"fd55361a-209a-4705-a629-b95e0a0eabd6"], Cell[CellGroupData[{ Cell[160052, 4499, 246, 4, 67, "Section",ExpressionUUID->"de9956ce-7ed3-44df-a384-5895531d303f"], Cell[CellGroupData[{ Cell[160323, 4507, 463, 7, 53, "Subsection",ExpressionUUID->"e1da7c73-61ff-4757-9b7d-cd11b61d9170"], Cell[CellGroupData[{ Cell[160811, 4518, 298, 4, 43, "Subsubsection",ExpressionUUID->"7d9036f0-c8c1-4933-929d-d0a9859fd7f5"], Cell[161112, 4524, 1188, 34, 90, "Input",ExpressionUUID->"21e8ecf8-6ef0-4d2e-8d77-f7f4c01ee1d2"], Cell[CellGroupData[{ Cell[162325, 4562, 184, 4, 29, "Input",ExpressionUUID->"17bc6438-fc21-432a-aed8-9b076f3e302f"], Cell[162512, 4568, 3228, 104, 70, "Output",ExpressionUUID->"aa37fdeb-9b3d-4770-8a1f-867915c707cf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[165789, 4678, 311, 5, 43, "Subsubsection",ExpressionUUID->"d86ecef0-20e9-45c9-ac17-f0437acacfab"], Cell[166103, 4685, 366, 11, 29, "Input",ExpressionUUID->"c1d3bd09-7a31-49bf-bcab-24babc5b32e2"], Cell[166472, 4698, 710, 18, 49, "Input",ExpressionUUID->"58676bbd-8408-4f7c-8b9d-c630f8e7855a"], Cell[CellGroupData[{ Cell[167207, 4720, 329, 6, 29, "Input",ExpressionUUID->"f6c5dc62-5839-40aa-a256-45f39f77a958"], Cell[167539, 4728, 115, 2, 70, "Output",ExpressionUUID->"2a1a08c3-e518-4070-9e88-c7f00029fb70"] }, Open ]], Cell[167669, 4733, 1268, 31, 70, "Input",ExpressionUUID->"ffc0238e-f004-4b99-9ed1-638c6b6ab218"], Cell[CellGroupData[{ Cell[168962, 4768, 425, 11, 49, "Input",ExpressionUUID->"2d8a3d2f-ff3c-4706-a18f-c067b6ff83e5"], Cell[169390, 4781, 220, 6, 70, "Output",ExpressionUUID->"5f327b7d-9578-4fe3-8174-5b0ca9c37a48"], Cell[169613, 4789, 196, 5, 70, "Output",ExpressionUUID->"c227ee00-fbb3-4b74-8bef-ac0e4eb95659"] }, Open ]], Cell[CellGroupData[{ Cell[169846, 4799, 455, 12, 49, "Input",ExpressionUUID->"844f98e6-bac8-4545-a546-df23d283d07c"], Cell[170304, 4813, 220, 6, 70, "Output",ExpressionUUID->"7e1cfe10-f152-4ee1-9deb-5bcbb4a86222"], Cell[170527, 4821, 196, 5, 70, "Output",ExpressionUUID->"f09ff701-f44f-4acc-bcc3-48af2ed3e8f8"] }, Open ]], Cell[CellGroupData[{ Cell[170760, 4831, 596, 16, 49, "Input",ExpressionUUID->"9f6e988c-f530-4adc-8ad3-e70f577cb2de"], Cell[171359, 4849, 216, 6, 70, "Output",ExpressionUUID->"31c46a8b-69e3-46a0-acbc-a57f66c9c7db"], Cell[171578, 4857, 194, 5, 70, "Output",ExpressionUUID->"2f9be4ad-46ce-460b-bb33-ef186c8f9573"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[171821, 4868, 158, 3, 43, "Subsubsection",ExpressionUUID->"eb373707-621a-4cb1-9288-d903cf7aa51d"], Cell[171982, 4873, 1356, 36, 111, "Input",ExpressionUUID->"8d314d76-aa99-4520-b554-51ca01ee20ef"], Cell[173341, 4911, 687, 19, 29, "Input",ExpressionUUID->"f53b0572-ae20-40c5-8366-a8810263a703"], Cell[174031, 4932, 711, 20, 29, "Input",ExpressionUUID->"0134bd4e-bf91-4510-8f50-26552473444c"], Cell[174745, 4954, 713, 20, 29, "Input",ExpressionUUID->"960c6d97-ec2c-4ebd-873f-34c80247e0d5"], Cell[CellGroupData[{ Cell[175483, 4978, 247, 5, 29, "Input",ExpressionUUID->"11e578c4-b4af-4486-bb54-c32107e0c475"], Cell[175733, 4985, 1742, 52, 70, "Output",ExpressionUUID->"20510ea2-33f6-4c4d-bf44-450edfb379f9"] }, Open ]], Cell[CellGroupData[{ Cell[177512, 5042, 189, 4, 29, "Input",ExpressionUUID->"e32a3a46-f606-4754-b916-25b53356ca04"], Cell[177704, 5048, 1492, 44, 70, "Output",ExpressionUUID->"419bbf6b-3b14-406f-a76a-4d03b731c627"] }, Open ]], Cell[CellGroupData[{ Cell[179233, 5097, 214, 4, 29, "Input",ExpressionUUID->"c63047ae-37ad-4c5c-86c4-eefa65ca0ad0"], Cell[179450, 5103, 1544, 46, 70, "Output",ExpressionUUID->"3089ac32-e0d0-4673-b2fd-ccfda8f4af71"] }, Open ]], Cell[CellGroupData[{ Cell[181031, 5154, 213, 4, 29, "Input",ExpressionUUID->"d7609959-a560-4776-928f-53a7a7b5b669"], Cell[181247, 5160, 1346, 40, 70, "Output",ExpressionUUID->"a4c7bd05-cca6-47d1-bea2-d95b94e692f3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[182642, 5206, 276, 4, 43, "Subsubsection",ExpressionUUID->"d75b6dbd-3556-49ea-a9de-7e8509b46ddd"], Cell[182921, 5212, 1421, 38, 111, "Input",ExpressionUUID->"b3166afc-2af0-4c05-bc7a-a1e8a728f4cb"], Cell[CellGroupData[{ Cell[184367, 5254, 238, 5, 29, "Input",ExpressionUUID->"af6d8fe5-ada2-4596-bd37-3566dd8305b4"], Cell[184608, 5261, 532, 15, 70, "Output",ExpressionUUID->"b0366428-2b58-4647-9a74-38a6b9373748"] }, Open ]], Cell[CellGroupData[{ Cell[185177, 5281, 470, 14, 29, "Input",ExpressionUUID->"6109cd16-253e-45ed-8974-f87eb7ec9d5e"], Cell[185650, 5297, 468, 14, 70, "Output",ExpressionUUID->"8849468a-b661-47f2-9a86-a90df93a6384"] }, Open ]], Cell[CellGroupData[{ Cell[186155, 5316, 685, 19, 29, "Input",ExpressionUUID->"8ceecdbc-8d20-4e4a-8236-27a7d27519d9"], Cell[186843, 5337, 331, 11, 70, "Output",ExpressionUUID->"482ee2ca-aa26-4db5-b899-2b5fa5d90c33"] }, Open ]], Cell[CellGroupData[{ Cell[187211, 5353, 214, 5, 29, "Input",ExpressionUUID->"55b86a87-09b6-402c-a4f4-cee3b65cb1a4"], Cell[187428, 5360, 135, 3, 70, "Output",ExpressionUUID->"9faaeb5c-3ea6-4bee-bbcd-6f9fec5c72bb"] }, Open ]], Cell[CellGroupData[{ Cell[187600, 5368, 767, 22, 29, "Input",ExpressionUUID->"867545be-3651-4937-9629-d1ae733bac34"], Cell[188370, 5392, 229, 6, 70, "Output",ExpressionUUID->"7451e482-bf53-4728-be77-99a5ec3a3af0"] }, Open ]], Cell[CellGroupData[{ Cell[188636, 5403, 170, 4, 29, "Input",ExpressionUUID->"187550cf-d339-4280-8b18-6346a7bff13b"], Cell[188809, 5409, 153, 4, 70, "Output",ExpressionUUID->"9e769a39-5c1b-4e3f-b727-9f3fdf260929"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[189011, 5419, 334, 5, 35, "Subsubsection",ExpressionUUID->"fe5dbfb7-e47e-464a-8c23-39c249328a7d"], Cell[189348, 5426, 214, 4, 29, "Input",ExpressionUUID->"6e53201c-29ed-4eb8-af1b-589bd3767b2c"], Cell[189565, 5432, 573, 15, 29, "Input",ExpressionUUID->"dea224ad-3b6d-48f7-a975-8b471225f07e"], Cell[CellGroupData[{ Cell[190163, 5451, 767, 22, 29, "Input",ExpressionUUID->"6e9f4202-d8c1-4441-8dfa-a3e52233de18"], Cell[190933, 5475, 229, 6, 70, "Output",ExpressionUUID->"cdc659a5-745e-4316-829d-a6e5f6d3532f"] }, Open ]], Cell[CellGroupData[{ Cell[191199, 5486, 170, 4, 29, "Input",ExpressionUUID->"704b1750-2439-472b-aada-ec05aa8ac734"], Cell[191372, 5492, 153, 4, 70, "Output",ExpressionUUID->"22cec113-374d-43f1-93e2-a4c88d6ccabb"] }, Open ]], Cell[CellGroupData[{ Cell[191562, 5501, 720, 20, 49, "Input",ExpressionUUID->"657f829a-4cab-44bd-a813-24b47268528a"], Cell[192285, 5523, 331, 11, 70, "Output",ExpressionUUID->"62a5f762-5c92-4e4c-ab8f-9e127d77f279"], Cell[192619, 5536, 135, 3, 70, "Output",ExpressionUUID->"b79bfef0-d757-49b5-b10f-5f021e5030c2"] }, Open ]], Cell[CellGroupData[{ Cell[192791, 5544, 1001, 28, 49, "Input",ExpressionUUID->"b857c4af-2ebb-4cdc-b086-c83bf7e9f69c"], Cell[193795, 5574, 245, 8, 70, "Output",ExpressionUUID->"af92bba0-ba6c-4b9f-b7e1-c9895727b191"], Cell[194043, 5584, 111, 2, 70, "Output",ExpressionUUID->"82f09a80-39d3-4ec6-a931-8d466ae78b64"] }, Open ]], Cell[CellGroupData[{ Cell[194191, 5591, 692, 19, 29, "Input",ExpressionUUID->"44da7387-707f-4f22-9c51-69e14a0def02"], Cell[194886, 5612, 245, 8, 70, "Output",ExpressionUUID->"78214764-b3e3-4317-9f98-af5d3c90fa73"] }, Open ]], Cell[CellGroupData[{ Cell[195168, 5625, 253, 5, 29, "Input",ExpressionUUID->"b2c76a4a-477c-4e6f-9ce7-926b58f2e438"], Cell[195424, 5632, 689, 20, 70, "Output",ExpressionUUID->"3e815371-2f47-4562-8322-484ac8a55571"] }, Open ]], Cell[CellGroupData[{ Cell[196150, 5657, 861, 23, 29, "Input",ExpressionUUID->"2d2e2953-12d2-4860-a422-85dde0b7413f"], Cell[197014, 5682, 245, 8, 70, "Output",ExpressionUUID->"8bd9a7b4-ff09-4cd4-9c63-04a8040505cf"] }, Open ]], Cell[CellGroupData[{ Cell[197296, 5695, 307, 8, 29, "Input",ExpressionUUID->"bbbc513e-7693-41ba-b182-4a8af514e38b"], Cell[197606, 5705, 129, 2, 70, "Output",ExpressionUUID->"b582dffc-941b-40c4-9ddd-b87966182e00"] }, Open ]], Cell[CellGroupData[{ Cell[197772, 5712, 337, 8, 29, "Input",ExpressionUUID->"2f25a853-ec55-4b5d-8a4c-93eb00f29832"], Cell[198112, 5722, 111, 2, 70, "Output",ExpressionUUID->"c3314344-b49f-414c-adbf-a03af45b4bc4"] }, Open ]], Cell[CellGroupData[{ Cell[198260, 5729, 719, 20, 29, "Input",ExpressionUUID->"c5063600-cb86-4846-92f6-f401ba34d8e9"], Cell[198982, 5751, 268, 9, 70, "Output",ExpressionUUID->"32aea556-8537-471e-a866-9272c625f299"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[199323, 5768, 292, 5, 53, "Section",ExpressionUUID->"c9a9eab0-2f3f-4aad-9227-a8574dde2c2a"], Cell[CellGroupData[{ Cell[199640, 5777, 157, 3, 54, "Subsection",ExpressionUUID->"7dd09e84-c60c-421c-bbfd-d9fd97d95f5e"], Cell[CellGroupData[{ Cell[199822, 5784, 244, 5, 29, "Input",ExpressionUUID->"2f534a13-74f0-4ca8-978e-fd8183a3e18b"], Cell[200069, 5791, 273, 11, 70, "Output",ExpressionUUID->"b52fb34a-3b3f-42bd-b9bc-1b67e1d3dc16"] }, Open ]], Cell[CellGroupData[{ Cell[200379, 5807, 495, 13, 49, "Input",ExpressionUUID->"76cc1b07-f9d3-4e15-8714-8b86730f241c"], Cell[200877, 5822, 114, 2, 70, "Output",ExpressionUUID->"a4aa7337-0ce1-4e15-a256-f8284224f4fd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[201040, 5830, 157, 3, 38, "Subsection",ExpressionUUID->"884618ee-77bc-47d1-b60a-ccf4a5ce8078"], Cell[CellGroupData[{ Cell[201222, 5837, 242, 5, 29, "Input",ExpressionUUID->"302193a5-eda9-4963-8972-2c5ac626c787"], Cell[201467, 5844, 273, 11, 70, "Output",ExpressionUUID->"00ff5560-f8ba-42ab-9866-8f8138df8ac1"] }, Open ]], Cell[CellGroupData[{ Cell[201777, 5860, 903, 24, 151, "Input",ExpressionUUID->"4103190e-9125-4d5e-acf9-ff5adc379690"], Cell[202683, 5886, 114, 2, 70, "Output",ExpressionUUID->"fffb5c47-f943-430d-b69e-cad085503d10"] }, Open ]], Cell[CellGroupData[{ Cell[202834, 5893, 1023, 27, 151, "Input",ExpressionUUID->"8a26f1cf-e044-4395-8801-befaeaea0556"], Cell[203860, 5922, 114, 2, 70, "Output",ExpressionUUID->"be3ec482-32b7-4e9d-9360-6f87e66e3a01"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[204023, 5930, 159, 3, 38, "Subsection",ExpressionUUID->"fde8a8e5-a356-4f0f-bc67-1c89a670f1d3"], Cell[204185, 5935, 625, 15, 28, "Input",ExpressionUUID->"36ce9884-740f-4097-9795-160c31c2ef16"], Cell[CellGroupData[{ Cell[204835, 5954, 502, 10, 28, "Input",ExpressionUUID->"19b5e9a3-2db7-41de-8905-ea18a1695bcd"], Cell[205340, 5966, 4025, 115, 43, "Output",ExpressionUUID->"9ac97a88-3517-4d21-9800-2d579a25436f"] }, Open ]], Cell[CellGroupData[{ Cell[209402, 6086, 298, 6, 28, "Input",ExpressionUUID->"17c1a6ff-0337-423a-9faf-a86118daefc3"], Cell[209703, 6094, 3525, 151, 48, "Output",ExpressionUUID->"21cfafee-18f2-40cb-93d1-c9695e316d7e"] }, Open ]], Cell[CellGroupData[{ Cell[213265, 6250, 1618, 41, 143, "Input",ExpressionUUID->"6bc68dad-0275-4767-9ca2-637df6befd1e"], Cell[214886, 6293, 114, 2, 32, "Output",ExpressionUUID->"aa6b1635-254b-4050-a89f-7d28e89e7bcc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[215049, 6301, 207, 4, 54, "Subsection",ExpressionUUID->"0a29f736-d1f6-444d-881a-2bb6d82da1ae"], Cell[CellGroupData[{ Cell[215281, 6309, 589, 17, 28, "Input",ExpressionUUID->"a64f6b88-3f0e-4e8f-828a-ee6a425a8bf1"], Cell[215873, 6328, 3449, 149, 48, "Output",ExpressionUUID->"86156fdc-e739-41cb-8093-ab24074a35e6"] }, Open ]], Cell[CellGroupData[{ Cell[219359, 6482, 390, 10, 28, "Input",ExpressionUUID->"8bef9de1-6e76-465a-bda9-747cbb21fcdc"], Cell[219752, 6494, 217, 6, 48, "Output",ExpressionUUID->"24b3ceb9-0d8f-4542-b768-b7a95922f0df"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[220018, 6506, 307, 5, 54, "Subsection",ExpressionUUID->"3060a8e6-b9fa-4c2f-ab98-fc95459fc11a"], Cell[CellGroupData[{ Cell[220350, 6515, 431, 10, 28, "Input",ExpressionUUID->"be87a9ed-4b00-460b-93b3-d1615d3d45c4"], Cell[220784, 6527, 247, 7, 48, "Output",ExpressionUUID->"635d7d5b-81b3-45d9-a71d-e402a7b44366"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[221080, 6540, 336, 6, 54, "Subsection",ExpressionUUID->"c8876369-2611-4290-bba7-a0dc660b870d"], Cell[CellGroupData[{ Cell[221441, 6550, 392, 10, 28, "Input",ExpressionUUID->"d5203839-a195-4c17-af0e-8232460fb3db"], Cell[221836, 6562, 192, 5, 48, "Output",ExpressionUUID->"b5547ead-aaae-4f93-9c3a-44906b8e318f"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[222101, 6575, 348, 6, 58, "Chapter",ExpressionUUID->"9d2c13cf-f861-464b-be20-690d742dae44"], Cell[CellGroupData[{ Cell[222474, 6585, 203, 4, 67, "Section",ExpressionUUID->"d6a50bd8-483d-424c-91f7-b2539929fc74"], Cell[CellGroupData[{ Cell[222702, 6593, 270, 9, 54, "Subsection",ExpressionUUID->"b70492a0-3773-4dae-9b95-cfc01e2cbcb5"], Cell[222975, 6604, 631, 19, 29, "Input",ExpressionUUID->"d33d70e5-3310-4e71-94da-f6af61d80009"], Cell[CellGroupData[{ Cell[223631, 6627, 203, 4, 29, "Input",ExpressionUUID->"8c5158e8-8d4f-43d3-a6f2-2f6aa15841a7"], Cell[223837, 6633, 1900, 71, 70, "Output",ExpressionUUID->"0c72ee74-b6c6-4966-b3f9-5ed17e67ed70"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[225786, 6710, 363, 10, 38, "Subsection",ExpressionUUID->"4498393b-2bb5-4a41-8513-565bf79c624f"], Cell[226152, 6722, 441, 10, 29, "Input",ExpressionUUID->"37577eb7-834b-46d0-b6c0-76b89e8cbffd"], Cell[CellGroupData[{ Cell[226618, 6736, 199, 4, 29, "Input",ExpressionUUID->"a73509e6-f422-43ac-966d-90bccdd3a0de"], Cell[226820, 6742, 7892, 266, 70, "Output",ExpressionUUID->"db7200e5-cd3e-4e84-846b-327b2e7c6251"] }, Open ]], Cell[CellGroupData[{ Cell[234749, 7013, 906, 25, 49, "Input",ExpressionUUID->"e9db4b91-db27-49fb-8687-aab5b81a75a1"], Cell[235658, 7040, 2460, 62, 70, "Output",ExpressionUUID->"37320978-8218-4156-be1e-57a2e65efe4a"] }, Open ]], Cell[CellGroupData[{ Cell[238155, 7107, 241, 5, 29, "Input",ExpressionUUID->"5e5dbffb-5137-4d50-ad3f-40a9e51c51f9"], Cell[238399, 7114, 1442, 45, 70, "Output",ExpressionUUID->"4559c35f-3bab-4c1e-a947-d1aed4fb18d9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[239890, 7165, 366, 10, 38, "Subsection",ExpressionUUID->"0c9d9692-d1fc-47fe-907c-50a7f1127b34"], Cell[240259, 7177, 439, 10, 29, "Input",ExpressionUUID->"4e0ecad8-db4b-4c60-9fac-548042a9d8f7"], Cell[CellGroupData[{ Cell[240723, 7191, 221, 4, 29, "Input",ExpressionUUID->"2af70cb5-4322-4063-82f3-f44a5cc00638"], Cell[240947, 7197, 7892, 266, 70, "Output",ExpressionUUID->"14dc2ea4-2621-466e-ae5a-9f3f13337152"] }, Open ]], Cell[CellGroupData[{ Cell[248876, 7468, 751, 20, 49, "Input",ExpressionUUID->"83b377aa-b69d-471f-b2c9-59d7f95fbe35"], Cell[249630, 7490, 2064, 52, 70, "Output",ExpressionUUID->"bf9c9644-072b-4a0a-a3aa-cd11106c2606"] }, Open ]], Cell[CellGroupData[{ Cell[251731, 7547, 241, 5, 29, "Input",ExpressionUUID->"93bfcbe8-3f27-4e5d-b3e1-8cb137f9e2ab"], Cell[251975, 7554, 1233, 34, 70, "Output",ExpressionUUID->"e81091bd-1bc3-4974-9060-74a633b10e1d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[253257, 7594, 351, 10, 38, "Subsection",ExpressionUUID->"f222a4cd-baf2-45c3-b0bf-3fb7dcb0fe85"], Cell[CellGroupData[{ Cell[253633, 7608, 541, 13, 29, "Input",ExpressionUUID->"23390f0b-c907-4ff0-a49e-f62794ce7a4e"], Cell[254177, 7623, 1399, 42, 70, "Output",ExpressionUUID->"f87ce154-cd56-4758-8320-504ca727548a"] }, Open ]], Cell[CellGroupData[{ Cell[255613, 7670, 215, 4, 29, "Input",ExpressionUUID->"ae18be47-eace-4cd6-8a7b-2a28b9570ac3"], Cell[255831, 7676, 2101, 79, 70, "Output",ExpressionUUID->"6d3663fe-cc85-44dc-8a91-2174a6d25bf8"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[257993, 7762, 203, 4, 67, "Section",ExpressionUUID->"8d114983-35de-441b-bf11-bffc88503ef5"], Cell[CellGroupData[{ Cell[258221, 7770, 440, 10, 45, "Subsubsection",ExpressionUUID->"d65e5790-3b35-4685-ac72-1a20d540b418"], Cell[CellGroupData[{ Cell[258686, 7784, 387, 9, 28, "Input",ExpressionUUID->"ef3eeb52-9cf6-41c6-b90d-314acdde48b4"], Cell[259076, 7795, 1501, 63, 46, "Output",ExpressionUUID->"f8d329bc-a680-4efb-8ada-41bc3330f5a3"] }, Open ]], Cell[CellGroupData[{ Cell[260614, 7863, 219, 4, 28, "Input",ExpressionUUID->"984c986e-25dd-4074-9d10-3da2c394c23c"], Cell[260836, 7869, 273, 11, 32, "Output",ExpressionUUID->"1a4d4454-065e-41ea-bdf7-0151bbc763cf"] }, Open ]], Cell[CellGroupData[{ Cell[261146, 7885, 745, 21, 28, "Input",ExpressionUUID->"e4a66a2d-1361-4113-8cc3-9e756c6510bc"], Cell[261894, 7908, 114, 2, 32, "Output",ExpressionUUID->"a2b00cda-9b49-40c0-8aae-de72fd01172e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[262057, 7916, 543, 11, 45, "Subsubsection",ExpressionUUID->"4af4c8ec-be67-460f-99a8-fffcd4936eab"], Cell[CellGroupData[{ Cell[262625, 7931, 723, 19, 28, "Input",ExpressionUUID->"a320ea03-71d3-48d6-952d-6f88cf198da5"], Cell[263351, 7952, 1050, 28, 43, "Output",ExpressionUUID->"d93167db-f460-4160-86ad-d1455fab097f"] }, Open ]], Cell[CellGroupData[{ Cell[264438, 7985, 946, 26, 67, "Input",ExpressionUUID->"7b4ef71b-ab08-4430-b5cc-0073ae19e59a"], Cell[265387, 8013, 383, 13, 48, "Output",ExpressionUUID->"64e763d6-258a-4c3b-b9f5-827fdc2ad433"] }, Open ]], Cell[CellGroupData[{ Cell[265807, 8031, 1096, 31, 67, "Input",ExpressionUUID->"a678c525-aff5-4b47-b9d7-ba0a5c3bb430"], Cell[266906, 8064, 212, 7, 36, "Output",ExpressionUUID->"7be8dbe9-ab79-4ab1-a49b-d773decee9f7"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[267167, 8077, 535, 11, 45, "Subsubsection",ExpressionUUID->"6948a782-29ce-48b5-9cac-5e443c2d22f1"], Cell[CellGroupData[{ Cell[267727, 8092, 520, 12, 28, "Input",ExpressionUUID->"e185dd7d-525a-4c56-867e-aa5e22687c44"], Cell[268250, 8106, 11367, 377, 93, "Output",ExpressionUUID->"8d50ac19-d453-4adc-9cfc-2446a6c06e72"] }, Open ]], Cell[CellGroupData[{ Cell[279654, 8488, 538, 14, 28, "Input",ExpressionUUID->"40fbbfb9-12ea-4ff5-a1d4-ab8241514ef0"], Cell[280195, 8504, 340, 10, 48, "Output",ExpressionUUID->"326474a0-8708-4aeb-8393-7f920049c90d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[280584, 8520, 536, 11, 45, "Subsubsection",ExpressionUUID->"de92f839-59a7-49b9-8a4e-94740ea39da7"], Cell[CellGroupData[{ Cell[281145, 8535, 541, 14, 28, "Input",ExpressionUUID->"246e9b05-bf8c-4dfd-a1ea-d233c0b8a3ba"], Cell[281689, 8551, 334, 9, 48, "Output",ExpressionUUID->"20547b1f-83f5-4a4a-aec5-376f98684b58"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[282084, 8567, 229, 4, 67, "Section",ExpressionUUID->"381cf675-c970-44c2-b531-c6e6ce4fc73c"], Cell[282316, 8573, 180, 3, 35, "Text",ExpressionUUID->"f55f9a49-9671-4f9b-8c1b-77d8a96cb12b"], Cell[CellGroupData[{ Cell[282521, 8580, 667, 18, 28, "Input",ExpressionUUID->"409246af-207b-43d9-95ec-306c5c85917f"], Cell[283191, 8600, 13487, 461, 127, "Output",ExpressionUUID->"12153ec8-e1a5-4067-82d2-c1ecf462c1ae"] }, Open ]], Cell[CellGroupData[{ Cell[296715, 9066, 486, 13, 28, "Input",ExpressionUUID->"3fd64bbe-3f8b-4688-a541-186120f02fd5"], Cell[297204, 9081, 340, 10, 48, "Output",ExpressionUUID->"75ee9092-417c-4f5e-af88-71b61a4cb803"] }, Open ]], Cell[CellGroupData[{ Cell[297581, 9096, 562, 14, 28, "Input",ExpressionUUID->"b2ea2d78-6b83-41d8-9c39-0ae7d83d9120"], Cell[298146, 9112, 334, 9, 48, "Output",ExpressionUUID->"2979d014-d49f-4433-8bed-2f2dcfe5a69a"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[298553, 9129, 147, 3, 98, "Title",ExpressionUUID->"057bfdac-6ed8-41f6-8b13-9024673a3f2a"], Cell[CellGroupData[{ Cell[298725, 9136, 348, 6, 69, "Chapter",ExpressionUUID->"c098ec99-bdb1-418c-98b3-6016f378934d"], Cell[CellGroupData[{ Cell[299098, 9146, 154, 3, 67, "Section",ExpressionUUID->"c5083c23-9b3f-45cd-948b-c8b68fe69dfa"], Cell[CellGroupData[{ Cell[299277, 9153, 166, 3, 54, "Subsection",ExpressionUUID->"cce3e464-a190-4537-a4e3-818422b05d3c"], Cell[299446, 9158, 631, 19, 29, "Input",ExpressionUUID->"49325eca-2b25-4b73-b817-c55f0d9bef8b"], Cell[CellGroupData[{ Cell[300102, 9181, 203, 4, 29, "Input",ExpressionUUID->"3d175cf1-2c16-4a0e-a716-ae4c282a28c9"], Cell[300308, 9187, 1900, 71, 70, "Output",ExpressionUUID->"fed5c4c0-7075-471f-b306-55435db90c2a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[302257, 9264, 245, 4, 38, "Subsection",ExpressionUUID->"5a83f04d-83d2-473e-812f-f884d9ecd109"], Cell[302505, 9270, 441, 10, 29, "Input",ExpressionUUID->"e20bd37b-7218-4ab5-9cb1-c765e3e31adf"], Cell[CellGroupData[{ Cell[302971, 9284, 199, 4, 29, "Input",ExpressionUUID->"2030d1dc-9811-4f8c-89ef-679ccc51d203"], Cell[303173, 9290, 7892, 266, 70, "Output",ExpressionUUID->"b9a5a761-e4ed-4d46-aa89-36f83b44a0ec"] }, Open ]], Cell[CellGroupData[{ Cell[311102, 9561, 906, 25, 49, "Input",ExpressionUUID->"a502baf4-8552-440c-95c5-e550843f0b19"], Cell[312011, 9588, 2460, 62, 70, "Output",ExpressionUUID->"b7229691-a282-41ce-ab42-01a2e7924671"] }, Open ]], Cell[CellGroupData[{ Cell[314508, 9655, 241, 5, 29, "Input",ExpressionUUID->"edfc3fff-0243-4cb4-867c-e001cf76e2f8"], Cell[314752, 9662, 1442, 45, 70, "Output",ExpressionUUID->"ff92f746-1a5b-4a7a-9d6e-20213e21e341"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[316243, 9713, 246, 4, 38, "Subsection",ExpressionUUID->"2c666ce3-a266-4222-9a2d-d8c70c6ed520"], Cell[316492, 9719, 439, 10, 29, "Input",ExpressionUUID->"10be30f4-a859-4d14-9198-227a072350ae"], Cell[CellGroupData[{ Cell[316956, 9733, 221, 4, 29, "Input",ExpressionUUID->"df102cbb-0231-4075-b2c5-16a94a78f070"], Cell[317180, 9739, 7892, 266, 70, "Output",ExpressionUUID->"052b8d7d-e86e-4c80-a800-57c3013a8490"] }, Open ]], Cell[CellGroupData[{ Cell[325109, 10010, 751, 20, 49, "Input",ExpressionUUID->"c8b7cdb4-6199-45fa-b31e-b81a6915912f"], Cell[325863, 10032, 2064, 52, 70, "Output",ExpressionUUID->"1f98ad50-a7a0-4c2c-b5ea-0bb1a73ca6d1"] }, Open ]], Cell[CellGroupData[{ Cell[327964, 10089, 241, 5, 29, "Input",ExpressionUUID->"34c9bc82-0e0c-41b4-8777-ca130233f1a9"], Cell[328208, 10096, 1233, 34, 70, "Output",ExpressionUUID->"94408f33-cf2a-424d-a6f8-fca9dfe5b34e"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[329502, 10137, 225, 4, 67, "Section",ExpressionUUID->"6ccec5f3-aada-455d-a5ea-22c429aab9d1"], Cell[CellGroupData[{ Cell[329752, 10145, 275, 4, 53, "Subsection",ExpressionUUID->"e1110006-15d0-4720-a09a-4b9dcecbdcda"], Cell[CellGroupData[{ Cell[330052, 10153, 383, 9, 29, "Input",ExpressionUUID->"dd4d3008-74ef-484f-a7c8-efe72c2d2b76"], Cell[330438, 10164, 273, 11, 70, "Output",ExpressionUUID->"42c815d5-c7de-461e-8078-79168dd0703d"] }, Open ]], Cell[CellGroupData[{ Cell[330748, 10180, 748, 20, 49, "Input",ExpressionUUID->"fbc287f2-8b5a-434e-bc18-bb08b8825eea"], Cell[331499, 10202, 182, 6, 70, "Output",ExpressionUUID->"78942ece-81e5-4e03-ab85-1893da3e3b93"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[331730, 10214, 324, 5, 37, "Subsection",ExpressionUUID->"a0a415a7-db8d-4982-ad20-6d2b352d9880"], Cell[CellGroupData[{ Cell[332079, 10223, 276, 7, 29, "Input",ExpressionUUID->"94d37d06-bcef-4b99-956b-6c932a7cae51"], Cell[332358, 10232, 155, 4, 70, "Output",ExpressionUUID->"f5b742fc-b02d-4672-86d7-fbf253f38c04"] }, Open ]], Cell[CellGroupData[{ Cell[332550, 10241, 828, 23, 29, "Input",ExpressionUUID->"0cca5390-7e5b-44fc-b366-1af541b36fc6"], Cell[333381, 10266, 1000, 42, 70, "Output",ExpressionUUID->"2d107eb1-4907-43c2-bb94-ea727abb0a72"] }, Open ]], Cell[CellGroupData[{ Cell[334418, 10313, 748, 20, 49, "Input",ExpressionUUID->"08053377-b1fd-4f81-a3b9-9ba341da6e47"], Cell[335169, 10335, 202, 7, 70, "Output",ExpressionUUID->"65f8434b-fcb3-4cfc-a27f-8df13cdb687d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[335420, 10348, 453, 7, 37, "Subsection",ExpressionUUID->"a7099b0d-b428-42e5-8521-36577a080d74"], Cell[335876, 10357, 214, 4, 29, "Input",ExpressionUUID->"4d5b9290-8a5f-4390-a4e7-5052ed10d9d4"], Cell[CellGroupData[{ Cell[336115, 10365, 895, 25, 49, "Input",ExpressionUUID->"ab9e026e-85cf-43f2-8850-4d1d8e20280c"], Cell[337013, 10392, 20117, 724, 70, "Output",ExpressionUUID->"8620d825-ed4c-4fe3-b1e2-0691a612f10f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[357179, 11122, 467, 7, 37, "Subsection",ExpressionUUID->"49619ec3-94bc-4700-bfef-dd47a2075a71"], Cell[CellGroupData[{ Cell[357671, 11133, 624, 15, 49, "Input",ExpressionUUID->"b291cb48-894d-4a64-8fc4-0eb3a1be4675"], Cell[358298, 11150, 636, 17, 70, "Output",ExpressionUUID->"53fad9c0-e5f3-4cb8-864d-17e106f3da2f"] }, Open ]], Cell[CellGroupData[{ Cell[358971, 11172, 213, 4, 29, "Input",ExpressionUUID->"d8aa4034-7df4-4688-8426-086371e1d0b1"], Cell[359187, 11178, 919, 27, 70, "Output",ExpressionUUID->"e2666bc5-addb-4078-9f16-7ffa11fc04bf"] }, Open ]], Cell[CellGroupData[{ Cell[360143, 11210, 212, 4, 29, "Input",ExpressionUUID->"c4509247-b6fb-4696-839d-9c671b12894b"], Cell[360358, 11216, 370, 11, 70, "Output",ExpressionUUID->"51ad1756-fe93-49b9-af21-94e533c0a7bd"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[360789, 11234, 274, 4, 53, "Section",ExpressionUUID->"2b4f993d-9150-4aa3-95be-984a2ae5c02e"], Cell[CellGroupData[{ Cell[361088, 11242, 161, 3, 54, "Subsection",ExpressionUUID->"42223077-4cd2-4ed1-bf73-558e34e755bc"], Cell[CellGroupData[{ Cell[361274, 11249, 596, 14, 28, "Input",ExpressionUUID->"dd58011b-19df-48c6-8022-183ca22ebc4f"], Cell[361873, 11265, 1399, 42, 52, "Output",ExpressionUUID->"51774364-036d-463b-a996-0af4c9585107"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[363321, 11313, 275, 4, 54, "Subsection",ExpressionUUID->"1e16a656-2f4e-45a8-9ec4-ed22bbf72cbf"], Cell[CellGroupData[{ Cell[363621, 11321, 383, 9, 28, "Input",ExpressionUUID->"e9cbfb57-5ae1-4773-b44b-e62509b393a0"], Cell[364007, 11332, 273, 11, 32, "Output",ExpressionUUID->"e3d3f8b0-db0d-4df8-857c-7b9cb9e429b7"] }, Open ]], Cell[CellGroupData[{ Cell[364317, 11348, 748, 20, 48, "Input",ExpressionUUID->"d096d7d5-ab61-4da7-8b7d-bbfc30c31f41"], Cell[365068, 11370, 182, 6, 36, "Output",ExpressionUUID->"44c797b4-b9b6-44d5-ac9a-e842b3ac9c08"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[365299, 11382, 400, 6, 54, "Subsection",ExpressionUUID->"88e21436-e921-4a1e-9b5d-c1ff8ce062df"], Cell[CellGroupData[{ Cell[365724, 11392, 617, 14, 28, "Input",ExpressionUUID->"1d53b9e1-8ac3-4834-af5e-03342649afba"], Cell[366344, 11408, 287577, 8406, 2533, "Output",ExpressionUUID->"82dc4295-ab82-4dd7-b684-7c60f037d889"] }, Open ]], Cell[CellGroupData[{ Cell[653958, 19819, 201, 4, 28, "Input",ExpressionUUID->"a6a9ae54-d2cf-4859-992b-e0694d61369f"], Cell[654162, 19825, 287577, 8406, 2533, "Output",ExpressionUUID->"19b4e6ff-54fc-4193-96e1-603aa371b61f"] }, Open ]], Cell[CellGroupData[{ Cell[941776, 28236, 250, 5, 28, "Input",ExpressionUUID->"50d0e3fe-ade7-4528-880a-1ccf3b805487"], Cell[942029, 28243, 2352, 70, 70, "Output",ExpressionUUID->"23611957-215e-498e-ba90-6a3fa07a66da"] }, Open ]], Cell[CellGroupData[{ Cell[944418, 28318, 305, 6, 28, "Input",ExpressionUUID->"79f5e644-8fa1-49c9-b516-eea762beec0d"], Cell[944726, 28326, 417, 12, 37, "Output",ExpressionUUID->"3a987436-3897-4cea-800a-e7a3762e3225"] }, Open ]], Cell[CellGroupData[{ Cell[945180, 28343, 375, 8, 28, "Input",ExpressionUUID->"7afe5b87-1332-4892-9411-e006793e669c"], Cell[945558, 28353, 397, 11, 33, "Output",ExpressionUUID->"17cc79a9-f823-4599-8ff9-f5ecd8a316c0"] }, Open ]], Cell[CellGroupData[{ Cell[945992, 28369, 731, 18, 48, "Input",ExpressionUUID->"8a80e523-57c3-405a-a0dc-e669afb5511b"], Cell[946726, 28389, 2055, 64, 74, "Output",ExpressionUUID->"b51bd2e5-bec0-4c1b-86de-a89c076a2fd3"], Cell[948784, 28455, 1768, 54, 66, "Output",ExpressionUUID->"b72cfdfb-a3b7-4229-a6df-dc06d5027a1f"] }, Open ]], Cell[CellGroupData[{ Cell[950589, 28514, 763, 19, 48, "Input",ExpressionUUID->"be854397-f2e7-468a-ac0d-965f1ea7005f"], Cell[951355, 28535, 242593, 7371, 2430, "Output",ExpressionUUID->"952f791b-aca8-48b3-a9e4-df245f72e32d"], Cell[1193951, 35908, 199169, 5899, 1646, "Output",ExpressionUUID->"bfbe649b-3dd2-4974-90b4-ad1b91db17f9"] }, Open ]], Cell[CellGroupData[{ Cell[1393157, 41812, 298, 6, 28, "Input",ExpressionUUID->"28636ee9-515a-4dea-b5a7-dfafb9ba7aa6"], Cell[1393458, 41820, 1791, 55, 66, "Output",ExpressionUUID->"fb8eff2d-72de-405d-867f-43e5655f77e1"] }, Open ]], Cell[CellGroupData[{ Cell[1395286, 41880, 251, 5, 28, "Input",ExpressionUUID->"2ee53243-59f6-4835-8188-b525717ba246"], Cell[1395540, 41887, 1838, 55, 66, "Output",ExpressionUUID->"3e76e7bf-973e-4b88-af8b-656be5cb0177"] }, Open ]], Cell[CellGroupData[{ Cell[1397415, 41947, 323, 8, 28, "Input",ExpressionUUID->"b56eded9-c725-400a-8659-4c52b96f7214"], Cell[1397741, 41957, 32113, 858, 195, "Output",ExpressionUUID->"e7c5ca9a-0f0a-409c-b95e-13a4752ce75b"] }, Open ]], Cell[CellGroupData[{ Cell[1429891, 42820, 235, 5, 28, "Input",ExpressionUUID->"b6d4191e-6b36-4149-a3cf-8adbdccd783b"], Cell[1430129, 42827, 21601, 665, 195, "Output",ExpressionUUID->"4000466c-d9a6-47e6-9174-193fe85ecc0b"] }, Open ]], Cell[CellGroupData[{ Cell[1451767, 43497, 383, 9, 28, "Input",ExpressionUUID->"a24bb6bf-8776-4e2f-9664-d84385b06738"], Cell[1452153, 43508, 138885, 4442, 1501, "Output",ExpressionUUID->"7e4393ae-1618-4340-81b2-315f6f62a70a"] }, Open ]], Cell[CellGroupData[{ Cell[1591075, 47955, 314, 6, 28, "Input",ExpressionUUID->"a25e8ce0-e203-4f5f-b03f-abe5dd5c8d05"], Cell[1591392, 47963, 8527, 214, 153, "Output",ExpressionUUID->"5f264d4a-8a05-4c75-a1f0-ef09c1173f80"] }, Open ]], Cell[CellGroupData[{ Cell[1599956, 48182, 242, 5, 28, "Input",ExpressionUUID->"5296d557-c4f6-4b1b-9757-8be76bf13926"], Cell[1600201, 48189, 4721, 128, 122, "Output",ExpressionUUID->"f9278b6b-f199-4a2f-bfd6-a4c6bdfb9208"] }, Open ]], Cell[CellGroupData[{ Cell[1604959, 48322, 366, 10, 28, "Input",ExpressionUUID->"8b638a54-3396-4ac0-bf12-a507c1d9dac4"], Cell[1605328, 48334, 7062, 196, 130, "Output",ExpressionUUID->"eb8811c0-a57f-4ecb-8fea-14ac8cdb99be"] }, Open ]], Cell[CellGroupData[{ Cell[1612427, 48535, 214, 4, 28, "Input",ExpressionUUID->"77fffa16-313f-4d6e-a645-03a84aa84a88"], Cell[1612644, 48541, 5259, 149, 122, "Output",ExpressionUUID->"aef5e4aa-fc5b-43e5-9e31-996a5c7d6be2"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1617988, 48699, 147, 3, 72, "Title",ExpressionUUID->"79b906df-9280-4d3c-aef1-4a3dd94dc191"], Cell[CellGroupData[{ Cell[1618160, 48706, 246, 4, 69, "Chapter",ExpressionUUID->"2cd953eb-35a5-450f-9cf8-13e2fec76b87"], Cell[CellGroupData[{ Cell[1618431, 48714, 159, 3, 53, "Subsection",ExpressionUUID->"65b61f37-5e71-4aae-a4f1-f5cc4fc5ea34"], Cell[CellGroupData[{ Cell[1618615, 48721, 1191, 26, 131, "Input",ExpressionUUID->"ffbe4f2d-b007-4d37-8083-1deef3338ae8"], Cell[1619809, 48749, 146, 3, 70, "Output",ExpressionUUID->"c3a73b36-8b5a-4086-96ad-989729a12b87"], Cell[1619958, 48754, 146, 3, 70, "Output",ExpressionUUID->"fdbfbace-64bb-47e9-97b5-c37896f765a5"], Cell[1620107, 48759, 161, 3, 70, "Output",ExpressionUUID->"62864254-5fee-4ac1-82e0-a1c4bf8b0b94"], Cell[1620271, 48764, 161, 3, 70, "Output",ExpressionUUID->"3b29afa8-6c95-4969-9a3a-830202f391ad"], Cell[1620435, 48769, 147, 3, 70, "Output",ExpressionUUID->"71a51c65-7a3b-482d-91ac-cbaa71556f8e"], Cell[1620585, 48774, 148, 3, 70, "Output",ExpressionUUID->"443e4327-5d55-4f93-a849-2f8238fda7d6"] }, Open ]], Cell[CellGroupData[{ Cell[1620770, 48782, 282, 6, 29, "Input",ExpressionUUID->"36d405c7-12fe-4f31-9bf9-6152bb6b6759"], Cell[1621055, 48790, 149, 3, 70, "Output",ExpressionUUID->"dffe266f-41b3-4bf9-8c47-1f7e64ed636d"] }, Open ]], Cell[CellGroupData[{ Cell[1621241, 48798, 361, 7, 29, "Input",ExpressionUUID->"d60723a0-6046-4cee-be23-890945a62555"], Cell[1621605, 48807, 164, 3, 70, "Output",ExpressionUUID->"531011a0-18de-4ab2-b19e-3c867eaa3f0d"] }, Open ]], Cell[CellGroupData[{ Cell[1621806, 48815, 406, 9, 49, "Input",ExpressionUUID->"6d30885d-3f10-4abe-b7bd-c27ae04b37ba"], Cell[1622215, 48826, 147, 3, 70, "Output",ExpressionUUID->"796eb420-a7e9-4232-93fb-43cf7d832e59"], Cell[1622365, 48831, 147, 3, 70, "Output",ExpressionUUID->"c7cfb2fd-36a9-46bd-8106-14732e72127c"] }, Open ]], Cell[CellGroupData[{ Cell[1622549, 48839, 449, 10, 49, "Input",ExpressionUUID->"b3d691d0-37c3-4d20-aa84-7bf8cde85ed8"], Cell[1623001, 48851, 145, 3, 70, "Output",ExpressionUUID->"2ad30d1f-f387-48e8-a3ba-131908762c25"], Cell[1623149, 48856, 145, 3, 70, "Output",ExpressionUUID->"f220baa1-fdd9-4472-8ece-68f0cc97b622"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1623343, 48865, 292, 5, 37, "Subsection",ExpressionUUID->"cd3e0ee6-686e-4c12-a119-1fd5bf1ab9c2"], Cell[CellGroupData[{ Cell[1623660, 48874, 1725, 43, 90, "Input",ExpressionUUID->"5c72753a-bced-4c6d-852e-5cb690cfcf43"], Cell[1625388, 48919, 341, 9, 70, "Output",ExpressionUUID->"ae2499a7-3380-4fe5-8332-280c6c10d1b6"], Cell[1625732, 48930, 340, 9, 70, "Output",ExpressionUUID->"892be656-77a5-4cf3-88aa-83c29c569835"], Cell[1626075, 48941, 536, 14, 70, "Output",ExpressionUUID->"3bc89f02-4f41-4b66-9e5b-02b8c71bc0e2"], Cell[1626614, 48957, 586, 16, 70, "Output",ExpressionUUID->"056d93c9-a304-4601-9545-858c6eec0e43"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1627261, 48980, 234, 4, 58, "Chapter",ExpressionUUID->"b2cfed8e-2863-49fa-a912-a4d4db0e60bf"], Cell[CellGroupData[{ Cell[1627520, 48988, 161, 3, 53, "Subsection",ExpressionUUID->"9130ca91-13eb-4b09-8802-f6bdc9387367"], Cell[1627684, 48993, 167, 3, 33, "Text",ExpressionUUID->"413c9513-49f3-41a9-96a9-7a83837b112a"], Cell[CellGroupData[{ Cell[1627876, 49000, 747, 20, 29, "Input",ExpressionUUID->"421b529d-4d24-4160-aa8c-754b62c11d96"], Cell[1628626, 49022, 889, 32, 70, "Output",ExpressionUUID->"d431d125-919f-411e-a344-49d9614205cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1629564, 49060, 209, 4, 37, "Subsection",ExpressionUUID->"d2bd65e1-68a5-44aa-995e-51fbd2ea35a6"], Cell[CellGroupData[{ Cell[1629798, 49068, 244, 5, 29, "Input",ExpressionUUID->"3ef7a798-d851-4153-b9d4-855c4cda6523"], Cell[1630045, 49075, 273, 11, 70, "Output",ExpressionUUID->"932be947-75cc-4dc4-9e10-8336b7cd7c5c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1630367, 49092, 313, 5, 37, "Subsection",ExpressionUUID->"42cd2ab2-31fb-4834-ace5-c015e7937b27"], Cell[CellGroupData[{ Cell[1630705, 49101, 305, 4, 43, "Subsubsection",ExpressionUUID->"9b089666-8b4a-4b5c-b903-2bb1066c2802"], Cell[CellGroupData[{ Cell[1631035, 49109, 1772, 44, 233, "Input",ExpressionUUID->"86e47304-8925-4db0-a91c-24e5a33d52e0", Evaluatable->False], Cell[1632810, 49155, 18475, 639, 389, "Output",ExpressionUUID->"37c0691d-5779-4d7a-8338-f039486a1974"] }, Open ]], Cell[1651300, 49797, 405, 8, 49, "Input",ExpressionUUID->"17c549d3-224f-44d5-a79e-23954183356a", Evaluatable->False] }, Closed]], Cell[CellGroupData[{ Cell[1651742, 49810, 169, 3, 35, "Subsubsection",ExpressionUUID->"68f9fe2a-f1cb-44d7-925f-ec34e7f31d37"], Cell[CellGroupData[{ Cell[1651936, 49817, 407, 9, 49, "Input",ExpressionUUID->"dc0ef314-1da0-4259-89e3-dfaf0c48c6cb"], Cell[1652346, 49828, 328, 8, 70, "Message",ExpressionUUID->"cbf1f42a-1a1c-409f-9538-7741719aa86e"], Cell[1652677, 49838, 117, 2, 70, "Output",ExpressionUUID->"dc846133-fc5c-4c17-848a-8ead1f232fc5"] }, Open ]], Cell[CellGroupData[{ Cell[1652831, 49845, 120, 2, 25, "Input",ExpressionUUID->"3d40fa8e-560f-44ac-a9a4-9068c126a487"], Cell[1652954, 49849, 121, 2, 70, "Output",ExpressionUUID->"bcfa5fa1-0b3a-4235-b3b2-1a8004961ac3"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1653136, 49858, 257, 4, 37, "Subsection",ExpressionUUID->"4ff86564-c053-4269-9b27-15640a8f00f0"], Cell[CellGroupData[{ Cell[1653418, 49866, 186, 3, 29, "Input",ExpressionUUID->"ca64886b-257f-40a0-9903-a583c1a2d7b3"], Cell[1653607, 49871, 121, 2, 70, "Output",ExpressionUUID->"9906803f-4309-4b94-987e-d16dc6f4e609"] }, Open ]], Cell[CellGroupData[{ Cell[1653765, 49878, 796, 18, 29, "Input",ExpressionUUID->"e805d489-5bd0-43e8-b05a-b91fda513dd6"], Cell[1654564, 49898, 576, 20, 70, "Output",ExpressionUUID->"abad768d-e571-4039-a8b1-25ea571eea68"] }, Open ]], Cell[CellGroupData[{ Cell[1655177, 49923, 371, 8, 29, "Input",ExpressionUUID->"29ec939e-6cc2-4f24-a436-aee189978c5e"], Cell[1655551, 49933, 576, 20, 70, "Output",ExpressionUUID->"1d11843e-c014-4181-8e06-904c6442613f"] }, Open ]], Cell[CellGroupData[{ Cell[1656164, 49958, 719, 15, 29, "Input",ExpressionUUID->"dc47ee90-3cac-4850-9bf9-84205814737a"], Cell[1656886, 49975, 576, 20, 70, "Output",ExpressionUUID->"ca4407ef-903e-4372-a04e-7e85ec8e8e47"] }, Open ]], Cell[CellGroupData[{ Cell[1657499, 50000, 204, 4, 29, "Input",ExpressionUUID->"46cd4d8c-06ad-43ef-bd15-5545204b509f"], Cell[1657706, 50006, 576, 20, 70, "Output",ExpressionUUID->"1db4983a-64c2-4d01-87d6-21897311b996"] }, Open ]], Cell[CellGroupData[{ Cell[1658319, 50031, 532, 12, 29, "Input",ExpressionUUID->"1f11779d-9d5d-428a-a50d-a987e99188f8"], Cell[1658854, 50045, 576, 20, 70, "Output",ExpressionUUID->"5ca27074-f73c-491f-9d6a-cd9c9ed9abdc"] }, Open ]], Cell[CellGroupData[{ Cell[1659467, 50070, 362, 9, 29, "Input",ExpressionUUID->"2b654f1d-b85c-4b81-961f-f8cf3ac93017"], Cell[1659832, 50081, 576, 20, 70, "Output",ExpressionUUID->"ee0165ea-1aa1-4052-8aeb-9d2916575dee"] }, Open ]], Cell[CellGroupData[{ Cell[1660445, 50106, 120, 2, 29, "Input",ExpressionUUID->"c88bbad3-ab4f-4c40-9779-246543e4bfcd"], Cell[1660568, 50110, 121, 2, 70, "Output",ExpressionUUID->"2f5d7005-3886-458b-a9d5-9ebb60d3db09"] }, Open ]], Cell[CellGroupData[{ Cell[1660726, 50117, 1000, 23, 131, "Input",ExpressionUUID->"c3b4f6d5-61d0-43b7-ba5a-ad953a0c902b"], Cell[1661729, 50142, 386, 9, 70, "Message",ExpressionUUID->"3f09ace3-fff0-4131-9a89-4672482fa16e"], Cell[1662118, 50153, 450, 10, 70, "Message",ExpressionUUID->"8956801d-a9f9-4ef5-a764-322e1742d2f8"], Cell[1662571, 50165, 206, 4, 70, "Output",ExpressionUUID->"6195f073-ba10-4845-b1bb-a8ab0d844088"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1662826, 50175, 384, 6, 53, "Subsection",ExpressionUUID->"f25c1114-d83d-450b-bf10-a003a0fdba15"], Cell[CellGroupData[{ Cell[1663235, 50185, 428, 8, 29, "Input",ExpressionUUID->"0431d140-e686-4850-99a1-db592d286f41"], Cell[1663666, 50195, 576, 20, 70, "Output",ExpressionUUID->"07e51dc8-d848-42ae-bfde-f781ea86de4d"] }, Open ]], Cell[CellGroupData[{ Cell[1664279, 50220, 700, 18, 29, "Input",ExpressionUUID->"4d14a8c0-a7ed-4a82-95b6-8a368246d6f7"], Cell[1664982, 50240, 466, 12, 70, "Output",ExpressionUUID->"d3434c93-93f0-4639-9517-d9d3126cd9da"] }, Open ]], Cell[CellGroupData[{ Cell[1665485, 50257, 266, 5, 29, "Input",ExpressionUUID->"527e5500-195b-4b4c-a139-efa2dcb81ce8"], Cell[1665754, 50264, 576, 20, 70, "Output",ExpressionUUID->"5b77dbca-74e3-45b1-9186-43a50fc0d3cb"] }, Open ]], Cell[CellGroupData[{ Cell[1666367, 50289, 876, 19, 131, "Input",ExpressionUUID->"118570d3-8e1f-437c-85f5-4e899c6fb32a"], Cell[1667246, 50310, 1788, 50, 70, "Output",ExpressionUUID->"0c1c5ba5-bbc4-4f32-9f24-3455bd9a0fcb"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1669083, 50366, 429, 6, 53, "Subsection",ExpressionUUID->"c7e5ed86-6fc0-4d1f-afc3-9b760f8f5cb1"], Cell[CellGroupData[{ Cell[1669537, 50376, 143, 3, 29, "Input",ExpressionUUID->"e87b15e6-bb7f-414f-be4c-5f538b61bf8f"], Cell[1669683, 50381, 802, 29, 70, "Output",ExpressionUUID->"1b505ca3-2bbe-463e-a885-09a5c1b519e3"] }, Open ]], Cell[CellGroupData[{ Cell[1670522, 50415, 1719, 43, 151, "Input",ExpressionUUID->"66e16caf-888c-4e31-bb24-eb1d36320651"], Cell[1672244, 50460, 432, 9, 70, "Message",ExpressionUUID->"c8bd4799-58f1-4e6b-b8e6-14885765c88c"], Cell[1672679, 50471, 337, 8, 70, "Message",ExpressionUUID->"96c45fdc-519b-4f3a-94b3-af956285dc74"], Cell[1673019, 50481, 151, 3, 70, "Output",ExpressionUUID->"ff954c4e-d016-4310-b947-6e8545acaafa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1673219, 50490, 435, 6, 37, "Subsection",ExpressionUUID->"88b20ac3-6e6a-41b8-aa0e-481bcfbca6ed"], Cell[CellGroupData[{ Cell[1673679, 50500, 534, 13, 29, "Input",ExpressionUUID->"974691c6-0b2f-4cc2-a78b-039e41144a22"], Cell[1674216, 50515, 576, 20, 70, "Output",ExpressionUUID->"a2a8a2d1-4a0f-462e-905e-4f06e2be7edc"] }, Open ]], Cell[CellGroupData[{ Cell[1674829, 50540, 1292, 30, 172, "Input",ExpressionUUID->"d951fd06-cc1f-40c2-a508-f001494c9346"], Cell[1676124, 50572, 1150, 34, 70, "Output",ExpressionUUID->"c7dd717e-c4c1-4dfc-bc52-60f94efb531e"] }, Open ]], Cell[CellGroupData[{ Cell[1677311, 50611, 1243, 29, 172, "Input",ExpressionUUID->"a44e5292-ae5b-4fd1-8d73-0f1dbaf55d23"], Cell[1678557, 50642, 1155, 34, 70, "Output",ExpressionUUID->"4e32aecc-1209-4904-b4cd-de2e6f7159bb"] }, Open ]], Cell[CellGroupData[{ Cell[1679749, 50681, 183, 3, 35, "Subsubsection",ExpressionUUID->"e948220a-884a-4325-8784-9c7b8e0869fa"], Cell[CellGroupData[{ Cell[1679957, 50688, 693, 17, 29, "Input",ExpressionUUID->"630c47d5-dcf0-4da2-9212-0369d95d80ad"], Cell[1680653, 50707, 576, 20, 70, "Output",ExpressionUUID->"28da42a2-c690-40e0-8efd-671cbec44b2c"] }, Open ]], Cell[CellGroupData[{ Cell[1681266, 50732, 6317, 150, 397, "Input",ExpressionUUID->"ba94c135-d3c6-4510-8f91-0900815b4fea"], Cell[1687586, 50884, 3178, 81, 70, "Output",ExpressionUUID->"42d4d41a-3aeb-4879-b347-4714230e14ce"] }, Open ]], Cell[CellGroupData[{ Cell[1690801, 50970, 559, 11, 90, "Input",ExpressionUUID->"45788cec-ed12-4e71-9c9d-49e005107cfa"], Cell[1691363, 50983, 181, 3, 70, "Output",ExpressionUUID->"c2c94302-b7cf-4ed5-8f06-784d5fb0bc77"], Cell[1691547, 50988, 168, 3, 70, "Output",ExpressionUUID->"be849a24-7a23-4877-a5f4-ac6aba8c6c86"], Cell[1691718, 50993, 151, 2, 70, "Output",ExpressionUUID->"b9d7a376-5d33-40cd-9ff7-89aced364ae2"], Cell[1691872, 50997, 361, 9, 70, "Message",ExpressionUUID->"3ed7ad55-838e-4683-9aae-f3031a70437f"], Cell[1692236, 51008, 117, 2, 70, "Output",ExpressionUUID->"3435c40e-0a3d-4aa3-a1b0-c3d30d26e921"] }, Open ]], Cell[CellGroupData[{ Cell[1692390, 51015, 324, 7, 29, "Input",ExpressionUUID->"f80fd435-cdc4-492e-b255-00c67f138f55"], Cell[1692717, 51024, 140, 2, 70, "Output",ExpressionUUID->"01d365b4-22a1-4642-8753-a2adbb4be3ba"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1692930, 51034, 180, 3, 58, "Chapter",ExpressionUUID->"9ed58ae5-f662-42a6-960f-f76d64b77b4f"], Cell[CellGroupData[{ Cell[1693135, 51041, 161, 3, 53, "Subsection",ExpressionUUID->"af6f25f0-7ec2-41ad-b4c7-8540c8bf7914"], Cell[1693299, 51046, 167, 3, 33, "Text",ExpressionUUID->"5ecb3334-ef7a-4e1c-8eb9-03eaf29a6ccf"], Cell[CellGroupData[{ Cell[1693491, 51053, 1102, 29, 29, "Input",ExpressionUUID->"ef2a3539-a5ae-4a19-96b4-7260b9ae7f89"], Cell[1694596, 51084, 1219, 45, 70, "Output",ExpressionUUID->"5f6843b1-32b7-4eec-8fbc-165e31987554"] }, Open ]], Cell[CellGroupData[{ Cell[1695852, 51134, 253, 5, 29, "Input",ExpressionUUID->"0b4ad165-6932-46a9-ab89-8d8988af2c7d"], Cell[1696108, 51141, 762, 14, 70, "Message",ExpressionUUID->"52f64239-95f5-4f62-955b-241bc009fd97"] }, Open ]], Cell[CellGroupData[{ Cell[1696907, 51160, 259, 6, 29, "Input",ExpressionUUID->"67469f7d-c1c8-4b4b-8285-d33537496a75"], Cell[1697169, 51168, 1892, 51, 70, "Output",ExpressionUUID->"6c1e56f8-e8d2-4075-8333-4f8050b4860d"] }, Open ]], Cell[CellGroupData[{ Cell[1699098, 51224, 1490, 40, 151, "Input",ExpressionUUID->"9767f6cd-639b-4591-91d7-2d44c59b323d"], Cell[1700591, 51266, 1892, 51, 70, "Output",ExpressionUUID->"89171b73-0260-4fde-813d-c00354f833f1"] }, Open ]], Cell[1702498, 51320, 1494, 41, 90, "Input",ExpressionUUID->"21f0cf1c-017d-4867-9892-384cab0bcaa5"], Cell[CellGroupData[{ Cell[1704017, 51365, 645, 16, 90, "Input",ExpressionUUID->"fc066e74-c857-4f37-be8d-556d212eb90d"], Cell[1704665, 51383, 1496, 45, 70, "Output",ExpressionUUID->"7cf95290-b8ec-4bb4-ab17-cb7cc9deb1f2"] }, Open ]], Cell[CellGroupData[{ Cell[1706198, 51433, 480, 12, 49, "Input",ExpressionUUID->"52feecc6-394e-48a6-bac6-40d69f666d8b"], Cell[1706681, 51447, 114, 2, 70, "Output",ExpressionUUID->"55fdda2a-71af-4f2e-81d4-0eac0e656a5c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1706844, 51455, 159, 3, 37, "Subsection",ExpressionUUID->"2b729682-2a36-4927-a8e7-a6aa91db48de"], Cell[CellGroupData[{ Cell[1707028, 51462, 666, 18, 49, "Input",ExpressionUUID->"131c69ca-3347-46db-a86d-e526ca4f86ca"], Cell[1707697, 51482, 840, 25, 70, "Output",ExpressionUUID->"60ead8c5-b931-45d4-96de-04c2f0bb00d2"], Cell[1708540, 51509, 885, 29, 70, "Output",ExpressionUUID->"7e8166c9-e159-4105-8185-eb3ee5de5456"] }, Open ]], Cell[CellGroupData[{ Cell[1709462, 51543, 715, 19, 49, "Input",ExpressionUUID->"9fd64289-882a-4644-920b-b8334a3671e8"], Cell[1710180, 51564, 176, 3, 70, "Output",ExpressionUUID->"1e0590f7-2648-472c-912c-915315cbe558"], Cell[1710359, 51569, 645, 22, 70, "Output",ExpressionUUID->"88780ba5-f895-48fd-b7a4-4cdc988e6380"] }, Open ]], Cell[CellGroupData[{ Cell[1711041, 51596, 764, 20, 49, "Input",ExpressionUUID->"d6843155-2428-4618-b67e-86951a1311a1"], Cell[1711808, 51618, 840, 25, 70, "Output",ExpressionUUID->"c5659187-9537-468c-bbdd-b2d5c39988d8"], Cell[1712651, 51645, 859, 28, 70, "Output",ExpressionUUID->"7bc0739f-332d-467c-b472-4bfae119fa48"] }, Open ]], Cell[CellGroupData[{ Cell[1713547, 51678, 812, 20, 49, "Input",ExpressionUUID->"471c33aa-4702-42ca-8036-a2eaacada9be"], Cell[1714362, 51700, 174, 3, 70, "Output",ExpressionUUID->"2bfa438d-ec31-44c7-949d-d7d52a3dc108"], Cell[1714539, 51705, 645, 22, 70, "Output",ExpressionUUID->"f6e80e34-ac72-479e-be10-127a43bc3c6a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1715233, 51733, 210, 4, 37, "Subsection",ExpressionUUID->"385b97a8-4979-4cee-976d-831a65ead5fb"], Cell[CellGroupData[{ Cell[1715468, 51741, 158, 3, 43, "Subsubsection",ExpressionUUID->"67623474-88cb-4323-b940-29426d2c9751"], Cell[CellGroupData[{ Cell[1715651, 51748, 400, 8, 29, "Input",ExpressionUUID->"38acb584-bdad-4e12-a00f-93754e733a24"], Cell[1716054, 51758, 265, 7, 70, "Output",ExpressionUUID->"4491ab7b-311b-44a4-a517-e38a4568ff5f"] }, Open ]], Cell[CellGroupData[{ Cell[1716356, 51770, 541, 12, 70, "Input",ExpressionUUID->"2e704966-59ca-457c-82ac-c15742d94b60"], Cell[1716900, 51784, 176, 4, 70, "Output",ExpressionUUID->"67d18546-7b9e-4daf-9c6c-5557e33c6b40"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1717125, 51794, 181, 3, 35, "Subsubsection",ExpressionUUID->"a2415342-58f7-46d6-bab8-083b73ab5d48"], Cell[CellGroupData[{ Cell[1717331, 51801, 387, 8, 29, "Input",ExpressionUUID->"fd0f152c-0f2e-4502-a431-6fd28c123f15"], Cell[1717721, 51811, 227, 6, 70, "Output",ExpressionUUID->"6b592b01-f11d-4f34-9723-5575dc0e7a89"] }, Open ]], Cell[CellGroupData[{ Cell[1717985, 51822, 589, 12, 70, "Input",ExpressionUUID->"d7fd5b30-c7d9-45f6-adce-821da68acb1b"], Cell[1718577, 51836, 176, 4, 70, "Output",ExpressionUUID->"4fd36687-fd84-4e31-bac1-072672fdd93d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1718802, 51846, 181, 3, 35, "Subsubsection",ExpressionUUID->"a965c8d7-190b-4f73-b928-957410a775a2"], Cell[CellGroupData[{ Cell[1719008, 51853, 470, 10, 29, "Input",ExpressionUUID->"93c514bb-f864-47df-9c82-89430a7694ea"], Cell[1719481, 51865, 265, 7, 70, "Output",ExpressionUUID->"911c85d8-77c6-4599-9dee-e87bbc43e85e"] }, Open ]], Cell[CellGroupData[{ Cell[1719783, 51877, 642, 13, 70, "Input",ExpressionUUID->"49dcc5b7-950b-43d2-8afe-efc363444995"], Cell[1720428, 51892, 176, 4, 70, "Output",ExpressionUUID->"4ed2a98a-a145-4578-8779-4e377c15c76e"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1720665, 51903, 261, 4, 37, "Subsection",ExpressionUUID->"0211436d-d03f-441e-83ce-f8c8a4078919"], Cell[CellGroupData[{ Cell[1720951, 51911, 158, 3, 43, "Subsubsection",ExpressionUUID->"d4b6dc8c-626f-4492-bd1e-bb76e8a17aef"], Cell[CellGroupData[{ Cell[1721134, 51918, 114, 2, 29, "Input",ExpressionUUID->"ae4ceea1-fae8-40db-a3ce-be08adbfa147"], Cell[1721251, 51922, 115, 2, 70, "Output",ExpressionUUID->"cb448f54-3408-4c3a-a2fc-987ee14e1eb2"] }, Open ]], Cell[CellGroupData[{ Cell[1721403, 51929, 481, 12, 29, "Input",ExpressionUUID->"df2f142e-479d-45e1-b53c-1c9ae101954d"], Cell[1721887, 51943, 115, 2, 70, "Output",ExpressionUUID->"8348152c-9df8-44e5-a3fc-356998de5e5f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1722051, 51951, 181, 3, 35, "Subsubsection",ExpressionUUID->"7fb0bb11-13aa-4e5e-a5f6-f03cddbd5785"], Cell[CellGroupData[{ Cell[1722257, 51958, 156, 3, 29, "Input",ExpressionUUID->"9112d0f6-5679-4a1a-9e60-9c49ca071dba"], Cell[1722416, 51963, 265, 7, 70, "Output",ExpressionUUID->"b8a2077e-80a6-4702-854b-f163d1a70019"] }, Open ]], Cell[CellGroupData[{ Cell[1722718, 51975, 388, 10, 29, "Input",ExpressionUUID->"7d87126f-6d38-4d9e-9b57-b4dc69cc8052"], Cell[1723109, 51987, 265, 7, 70, "Output",ExpressionUUID->"ccc8ad09-edb5-4353-939a-9cb076e33abe"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1723423, 52000, 206, 4, 35, "Subsubsection",ExpressionUUID->"3ae34c6c-6fdf-46a9-a2c4-911109a991ba"], Cell[CellGroupData[{ Cell[1723654, 52008, 180, 3, 29, "Input",ExpressionUUID->"03bc0c63-e431-49df-892b-02c307c9899d"], Cell[1723837, 52013, 227, 6, 70, "Output",ExpressionUUID->"83ad5c8f-3dc1-4c7f-bfad-7f26f60cefbe"] }, Open ]], Cell[CellGroupData[{ Cell[1724101, 52024, 483, 12, 29, "Input",ExpressionUUID->"7bf6a8ed-a57b-4dee-a0fd-b6e7a045b2c3"], Cell[1724587, 52038, 338, 9, 70, "Output",ExpressionUUID->"125561be-4ae3-437f-a7f7-5e0805c8b3cd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1724974, 52053, 230, 4, 43, "Subsubsection",ExpressionUUID->"4630f0ad-95a6-488d-8de9-61e7e4c599bf"], Cell[CellGroupData[{ Cell[1725229, 52061, 206, 4, 29, "Input",ExpressionUUID->"5cfafd71-35cb-41fe-b1be-91a0add54f86"], Cell[1725438, 52067, 265, 7, 70, "Output",ExpressionUUID->"ab0c6bae-5655-4921-a509-11606fcc36cf"] }, Open ]], Cell[CellGroupData[{ Cell[1725740, 52079, 483, 12, 29, "Input",ExpressionUUID->"42690e7f-c757-4042-8c43-2291d788b4e2"], Cell[1726226, 52093, 265, 7, 70, "Output",ExpressionUUID->"19c7a247-a865-4a68-8683-0e7a9bb7a3de"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1726564, 52108, 228, 4, 58, "Chapter",ExpressionUUID->"d04f8965-650e-4443-9a15-c8c409073e1b"], Cell[CellGroupData[{ Cell[1726817, 52116, 150, 3, 66, "Section",ExpressionUUID->"e8a25ab5-f023-4689-94bb-c295ee3cadee"], Cell[CellGroupData[{ Cell[1726992, 52123, 157, 3, 53, "Subsection",ExpressionUUID->"41445d7a-eaab-4772-9c80-72398bd5a23f"], Cell[CellGroupData[{ Cell[1727174, 52130, 244, 5, 29, "Input",ExpressionUUID->"b03e9cf1-7904-44bb-9946-7e2be88704fa"], Cell[1727421, 52137, 273, 11, 70, "Output",ExpressionUUID->"3ce2b3c1-9c34-49e4-8a7a-2421f331c597"] }, Open ]], Cell[CellGroupData[{ Cell[1727731, 52153, 495, 13, 49, "Input",ExpressionUUID->"16146b05-4c44-4f73-a20e-11b036274b66"], Cell[1728229, 52168, 114, 2, 70, "Output",ExpressionUUID->"92294814-df24-4bc2-ac76-66d3227bf396"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1728392, 52176, 157, 3, 37, "Subsection",ExpressionUUID->"eb85df0d-e6be-46a8-9573-e881bf9a6674"], Cell[CellGroupData[{ Cell[1728574, 52183, 242, 5, 29, "Input",ExpressionUUID->"96b327af-4a98-4583-8b16-f5141f6075ed"], Cell[1728819, 52190, 273, 11, 70, "Output",ExpressionUUID->"808b085e-1be0-4849-aab8-8338e8a819a7"] }, Open ]], Cell[CellGroupData[{ Cell[1729129, 52206, 903, 24, 151, "Input",ExpressionUUID->"5e92a15a-f4a9-46ca-bf69-a83f0a7c00aa"], Cell[1730035, 52232, 114, 2, 70, "Output",ExpressionUUID->"46237eac-5692-490d-9d5a-6d8f45ff224a"] }, Open ]], Cell[CellGroupData[{ Cell[1730186, 52239, 1023, 27, 151, "Input",ExpressionUUID->"b37d0854-de0d-4eb2-8b67-3b8424ceb8b5"], Cell[1731212, 52268, 114, 2, 70, "Output",ExpressionUUID->"040cd890-347b-4a95-b9fb-9b3fb3eef65a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1731375, 52276, 159, 3, 37, "Subsection",ExpressionUUID->"9c976353-9a7f-446c-b945-d15635f3a936"], Cell[CellGroupData[{ Cell[1731559, 52283, 448, 12, 29, "Input",ExpressionUUID->"08333290-93e6-4e81-ae31-049ca732bd50"], Cell[1732010, 52297, 566, 14, 70, "Output",ExpressionUUID->"d1b8219e-9108-402b-bc98-5260970d418b"] }, Open ]], Cell[CellGroupData[{ Cell[1732613, 52316, 305, 6, 29, "Input",ExpressionUUID->"6032e6d6-d002-4992-a0ef-e451abf55220"], Cell[1732921, 52324, 2609, 75, 70, "Output",ExpressionUUID->"58daf6f5-3c43-4d73-8aaa-570ea96c4073"] }, Open ]], Cell[CellGroupData[{ Cell[1735567, 52404, 952, 25, 151, "Input",ExpressionUUID->"29ceb05f-711b-4ce6-ac58-f5c6ee0e25c4"], Cell[1736522, 52431, 114, 2, 70, "Output",ExpressionUUID->"0aa00bd1-8822-4cba-98e5-9d4472368689"] }, Open ]], Cell[CellGroupData[{ Cell[1736673, 52438, 1104, 29, 151, "Input",ExpressionUUID->"ba875d81-ce5b-4a70-9f86-26b595150ee3"], Cell[1737780, 52469, 114, 2, 70, "Output",ExpressionUUID->"a6afe1c2-799a-457c-8c55-9076d2939ae5"] }, Open ]], Cell[CellGroupData[{ Cell[1737931, 52476, 625, 17, 49, "Input",ExpressionUUID->"fe8be6b2-5228-472f-95c6-3a8aa4b07b86"], Cell[1738559, 52495, 695, 15, 70, "Output",ExpressionUUID->"573982ee-a306-498d-a3e1-687c2b58c8ab"], Cell[1739257, 52512, 842, 27, 70, "Output",ExpressionUUID->"f074df2e-8b48-44f4-b630-e702ec687ea2"] }, Open ]], Cell[CellGroupData[{ Cell[1740136, 52544, 1484, 43, 151, "Input",ExpressionUUID->"51d17233-9c89-4d3e-a4ca-f2d2376ffbf5"], Cell[1741623, 52589, 114, 2, 70, "Output",ExpressionUUID->"8c66bd05-f28a-4e9c-ad1a-7b65e87e35a0"], Cell[1741740, 52593, 114, 2, 70, "Output",ExpressionUUID->"16a3c557-4030-4322-82b1-42e81d7763dd"] }, Open ]], Cell[CellGroupData[{ Cell[1741891, 52600, 1557, 45, 151, "Input",ExpressionUUID->"e5ee5266-9b48-48f7-9041-3ec62ceae799"], Cell[1743451, 52647, 114, 2, 70, "Output",ExpressionUUID->"f8171ec1-de47-416d-ab65-9a2f39123108"], Cell[1743568, 52651, 114, 2, 70, "Output",ExpressionUUID->"425f10c1-dd5b-45c4-abd4-bf4e084a7402"] }, Open ]], Cell[CellGroupData[{ Cell[1743719, 52658, 301, 6, 29, "Input",ExpressionUUID->"7ec7fbf3-3477-4840-8f27-1b48509d482d"], Cell[1744023, 52666, 981, 41, 70, "Output",ExpressionUUID->"e2b65037-d445-45bd-8d7d-e10e83ac9c23"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1745053, 52713, 159, 3, 53, "Subsection",ExpressionUUID->"1f998b72-565d-4127-a3b5-69764b06dad5"], Cell[CellGroupData[{ Cell[1745237, 52720, 573, 17, 29, "Input",ExpressionUUID->"e51ff073-8c04-4155-bf7b-459ae8fd043a"], Cell[1745813, 52739, 981, 41, 70, "Output",ExpressionUUID->"73bb259d-8062-412d-9e35-12f0a6024926"] }, Open ]], Cell[CellGroupData[{ Cell[1746831, 52785, 293, 6, 29, "Input",ExpressionUUID->"d0bc7005-1a4e-4c50-aa2b-ee549428b061"], Cell[1747127, 52793, 945, 37, 70, "Output",ExpressionUUID->"9d358018-09f0-42c0-a117-82110740ed39"] }, Open ]], Cell[CellGroupData[{ Cell[1748109, 52835, 687, 17, 131, "Input",ExpressionUUID->"33f390e8-7ace-43da-89f8-06e29544c2bb"], Cell[1748799, 52854, 114, 2, 70, "Output",ExpressionUUID->"9ba9cebc-6398-4879-9b1a-74a227b7661f"] }, Open ]], Cell[CellGroupData[{ Cell[1748950, 52861, 321, 7, 29, "Input",ExpressionUUID->"25897d00-4a79-4e07-b2b8-feac53b2ec9c"], Cell[1749274, 52870, 140, 3, 70, "Output",ExpressionUUID->"05bacf99-0c27-4798-b67f-d58cecf2c692"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1749475, 52880, 153, 3, 52, "Section",ExpressionUUID->"5363bd46-e06e-4bd0-abe5-2ee72be39f89"], Cell[CellGroupData[{ Cell[1749653, 52887, 157, 3, 53, "Subsection",ExpressionUUID->"92e64746-aca8-4e28-9b68-2057b709b0dc"], Cell[CellGroupData[{ Cell[1749835, 52894, 244, 5, 29, "Input",ExpressionUUID->"c9cfa385-b234-4a1f-aaf6-7f6e2988705f"], Cell[1750082, 52901, 273, 11, 70, "Output",ExpressionUUID->"1e69004e-b55c-4395-9908-6d75332f5c87"] }, Open ]], Cell[CellGroupData[{ Cell[1750392, 52917, 495, 13, 49, "Input",ExpressionUUID->"c4f661d1-7b00-4039-89a7-1430a9f46f93"], Cell[1750890, 52932, 114, 2, 70, "Output",ExpressionUUID->"0db41106-93df-49d9-b84d-dfc95bc26e35"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1751053, 52940, 157, 3, 37, "Subsection",ExpressionUUID->"5d6e1bb3-daf2-41f2-b73c-b5058b9e336e"], Cell[CellGroupData[{ Cell[1751235, 52947, 242, 5, 29, "Input",ExpressionUUID->"23e216a3-6203-4ca9-8153-932bc0c5939f"], Cell[1751480, 52954, 273, 11, 70, "Output",ExpressionUUID->"31006cf9-4398-482a-98f5-e59f80326a27"] }, Open ]], Cell[CellGroupData[{ Cell[1751790, 52970, 903, 24, 151, "Input",ExpressionUUID->"e6187137-13f1-4b49-b9f8-db40e429b5b1"], Cell[1752696, 52996, 114, 2, 70, "Output",ExpressionUUID->"99430236-e08e-4730-b549-fc78a6ff3866"] }, Open ]], Cell[CellGroupData[{ Cell[1752847, 53003, 1023, 27, 151, "Input",ExpressionUUID->"cef1415e-ec98-491f-978e-6543ba79c0dc"], Cell[1753873, 53032, 114, 2, 70, "Output",ExpressionUUID->"9a120f49-20d3-445d-84b0-73c6d95d2f70"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1754036, 53040, 159, 3, 37, "Subsection",ExpressionUUID->"9c50e73e-d278-471b-a50a-7ac113e49d41"], Cell[CellGroupData[{ Cell[1754220, 53047, 495, 13, 29, "Input",ExpressionUUID->"47145851-9875-47d0-b45f-c5923501028c"], Cell[1754718, 53062, 1056, 28, 70, "Output",ExpressionUUID->"8c69799d-b50f-423e-bf6f-c440c6988b6b"] }, Open ]], Cell[CellGroupData[{ Cell[1755811, 53095, 332, 7, 29, "Input",ExpressionUUID->"ce01a6cd-a9a5-45ab-b911-be936ee62f3a"], Cell[1756146, 53104, 3899, 111, 70, "Output",ExpressionUUID->"bc0370dd-1bd6-4c53-896d-d006e448af9a"] }, Open ]], Cell[CellGroupData[{ Cell[1760082, 53220, 1029, 27, 151, "Input",ExpressionUUID->"2f6d2e3a-caa1-4e95-bf99-9bee9d82d09b"], Cell[1761114, 53249, 114, 2, 70, "Output",ExpressionUUID->"8d956524-aa51-4f0c-9e2c-f2ea72b5c7d4"] }, Open ]], Cell[CellGroupData[{ Cell[1761265, 53256, 1148, 30, 151, "Input",ExpressionUUID->"baa46526-b76a-4839-8be4-cd6d0067be20"], Cell[1762416, 53288, 114, 2, 70, "Output",ExpressionUUID->"1aed2e77-46ee-42d2-9ff8-e1ac5b4e472d"] }, Open ]], Cell[CellGroupData[{ Cell[1762567, 53295, 301, 6, 29, "Input",ExpressionUUID->"d219f69f-0485-4750-8586-f5df02c67245"], Cell[1762871, 53303, 1000, 42, 70, "Output",ExpressionUUID->"cd29d088-998b-4a17-a3db-56b764aa82b3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1763920, 53351, 159, 3, 37, "Subsection",ExpressionUUID->"b83b57a5-a9a6-4d0d-b467-bb003ea6d4af"], Cell[CellGroupData[{ Cell[1764104, 53358, 624, 18, 29, "Input",ExpressionUUID->"f13817a8-3d60-463c-a52d-c481d12160df"], Cell[1764731, 53378, 981, 41, 70, "Output",ExpressionUUID->"abd101be-48e5-4ecf-84f2-85dd7d21bf86"] }, Open ]], Cell[CellGroupData[{ Cell[1765749, 53424, 293, 6, 29, "Input",ExpressionUUID->"3305a488-9738-4aa7-8692-0dd4e842aefc"], Cell[1766045, 53432, 945, 37, 70, "Output",ExpressionUUID->"40ec4b42-7b95-4b41-82d8-4b84219d998f"] }, Open ]], Cell[CellGroupData[{ Cell[1767027, 53474, 687, 17, 131, "Input",ExpressionUUID->"7a0480d1-b275-4fd3-870c-978795ad9618"], Cell[1767717, 53493, 114, 2, 70, "Output",ExpressionUUID->"8e70d584-2a25-4ca3-84ce-a52a705dc114"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1767904, 53503, 259, 4, 58, "Chapter",ExpressionUUID->"42fdae1a-3e38-4e56-91df-c4ef3f4cd629"], Cell[CellGroupData[{ Cell[1768188, 53511, 246, 4, 66, "Section",ExpressionUUID->"32a54e41-00d1-4b7f-bf7e-ab9f1e73e09c"], Cell[CellGroupData[{ Cell[1768459, 53519, 335, 5, 53, "Subsection",ExpressionUUID->"0bd6e015-2a35-40d6-ad36-38e583c4e57c"], Cell[CellGroupData[{ Cell[1768819, 53528, 181, 3, 43, "Subsubsection",ExpressionUUID->"df1fb622-6ba5-4183-a412-e78e59111068"], Cell[CellGroupData[{ Cell[1769025, 53535, 1003, 32, 29, "Input",ExpressionUUID->"1ac300ea-f6bc-498a-9c07-1469ee3bef33"], Cell[1770031, 53569, 465, 14, 70, "Output",ExpressionUUID->"cc6ec879-2f84-4d29-b88a-c795abbe67c4"] }, Open ]], Cell[CellGroupData[{ Cell[1770533, 53588, 1018, 34, 29, "Input",ExpressionUUID->"9e83e24a-dd92-47ee-a3dd-e10b7eebc671"], Cell[1771554, 53624, 465, 14, 70, "Output",ExpressionUUID->"69debc39-198f-48be-9ac5-06598fc819cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1772068, 53644, 170, 3, 35, "Subsubsection",ExpressionUUID->"96dab93a-b205-4d89-85b0-be2ccd431eaf"], Cell[CellGroupData[{ Cell[1772263, 53651, 473, 12, 49, "Input",ExpressionUUID->"125fe485-0a4f-4c54-8703-715e0275199c"], Cell[1772739, 53665, 395, 13, 70, "Output",ExpressionUUID->"2e1c9e73-6020-444f-b1e0-ba75876c2d85"], Cell[1773137, 53680, 223, 5, 70, "Output",ExpressionUUID->"98ff58c5-ad2e-462a-9c9d-26e2139753a2"] }, Open ]], Cell[CellGroupData[{ Cell[1773397, 53690, 207, 4, 29, "Input",ExpressionUUID->"348d9ea9-c620-4900-9ee9-028d3a7a924e"], Cell[1773607, 53696, 129, 2, 70, "Output",ExpressionUUID->"4a8eb8d6-29c3-46c0-a6e5-24a4e2d14894"] }, Open ]], Cell[CellGroupData[{ Cell[1773773, 53703, 459, 12, 29, "Input",ExpressionUUID->"7e2630e7-49b3-4fd5-b8c7-5a7859ec30fa"], Cell[1774235, 53717, 158, 4, 70, "Output",ExpressionUUID->"442b7a70-b9e1-4181-97b7-d72d1ce20f0e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1774442, 53727, 172, 3, 35, "Subsubsection",ExpressionUUID->"9c72effc-cc53-4e60-b5f8-998ab23db644"], Cell[CellGroupData[{ Cell[1774639, 53734, 564, 15, 49, "Input",ExpressionUUID->"e1e8064b-1b25-4c0c-a999-f5e3739cbff4"], Cell[1775206, 53751, 395, 13, 70, "Output",ExpressionUUID->"a771880a-b9f6-40f9-b8e4-686e8d2de89e"], Cell[1775604, 53766, 226, 4, 70, "Output",ExpressionUUID->"7f1c9f41-bef2-43ae-a289-6c43fac120cb"] }, Open ]], Cell[CellGroupData[{ Cell[1775867, 53775, 205, 4, 29, "Input",ExpressionUUID->"d3423205-755e-4127-84c7-3919980a317f"], Cell[1776075, 53781, 129, 2, 70, "Output",ExpressionUUID->"fce1f9b0-8d75-4c88-8375-89d2ae730117"] }, Open ]], Cell[CellGroupData[{ Cell[1776241, 53788, 501, 14, 29, "Input",ExpressionUUID->"50f02380-5276-4ae2-ba33-1483e476b0d8"], Cell[1776745, 53804, 135, 3, 70, "Output",ExpressionUUID->"d1821cfa-3992-4642-9413-1e2a0430607b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1776929, 53813, 260, 4, 35, "Subsubsection",ExpressionUUID->"4647fa7f-459e-44c7-b584-f8a8ba5abc9b"], Cell[1777192, 53819, 306, 7, 33, "Text",ExpressionUUID->"0669d2b2-97f0-48ec-aec8-39ada24e5455"], Cell[1777501, 53828, 282, 6, 55, "Text",ExpressionUUID->"641399c9-4037-4708-b354-76411c668b4a"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[1777832, 53840, 463, 7, 53, "Subsection",ExpressionUUID->"d874ecd0-00fc-4ab5-9879-7620a265f17f"], Cell[CellGroupData[{ Cell[1778320, 53851, 298, 4, 43, "Subsubsection",ExpressionUUID->"74897943-01e7-4379-864f-169c88946300"], Cell[1778621, 53857, 1188, 34, 90, "Input",ExpressionUUID->"77b3ef64-dd5c-48b9-b1e5-99d9d6ce2af2"], Cell[CellGroupData[{ Cell[1779834, 53895, 184, 4, 29, "Input",ExpressionUUID->"4801c505-180d-434a-a04b-089ddfacf66f"], Cell[1780021, 53901, 3228, 104, 70, "Output",ExpressionUUID->"99318d27-beea-4b93-b8ec-58bd6a9c5d28"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1783298, 54011, 311, 5, 43, "Subsubsection",ExpressionUUID->"8d5f1e8c-73e3-4638-83f3-43b44412a648"], Cell[1783612, 54018, 366, 11, 29, "Input",ExpressionUUID->"29c4fcd5-8353-48e0-b310-9d5fb0ce36bd"], Cell[1783981, 54031, 710, 18, 49, "Input",ExpressionUUID->"801a9bed-e941-4900-8e40-c956e95ba799"], Cell[CellGroupData[{ Cell[1784716, 54053, 329, 6, 29, "Input",ExpressionUUID->"c4df22b2-f7b7-4ce6-a4ed-af2f48905189"], Cell[1785048, 54061, 115, 2, 70, "Output",ExpressionUUID->"a5afe357-75ba-4c83-9d40-668bd752926c"] }, Open ]], Cell[1785178, 54066, 1268, 31, 70, "Input",ExpressionUUID->"cb97814f-c04d-4d18-85ac-ab7ee761ad37"], Cell[CellGroupData[{ Cell[1786471, 54101, 425, 11, 49, "Input",ExpressionUUID->"b9a222a0-5511-47f3-ab3d-a3ba68729200"], Cell[1786899, 54114, 220, 6, 70, "Output",ExpressionUUID->"703e38d9-3790-4548-bad6-0f110299ae13"], Cell[1787122, 54122, 196, 5, 70, "Output",ExpressionUUID->"57cf5eaf-aa5e-41e1-91af-45efc6fa3539"] }, Open ]], Cell[CellGroupData[{ Cell[1787355, 54132, 455, 12, 49, "Input",ExpressionUUID->"6a15e46b-cf01-48a1-98d9-ef50f29d1cca"], Cell[1787813, 54146, 220, 6, 70, "Output",ExpressionUUID->"c900c5f9-fc8a-4dd6-b4dc-bbd1ac7cea8f"], Cell[1788036, 54154, 196, 5, 70, "Output",ExpressionUUID->"797b18d5-f566-4c29-b3c3-09eb0e07621d"] }, Open ]], Cell[CellGroupData[{ Cell[1788269, 54164, 596, 16, 49, "Input",ExpressionUUID->"dff6a241-c6ef-40f0-907c-7c1be4cf4fcd"], Cell[1788868, 54182, 216, 6, 70, "Output",ExpressionUUID->"31cdacf7-a7ad-4730-9ad0-656a5ed8ca44"], Cell[1789087, 54190, 194, 5, 70, "Output",ExpressionUUID->"b920efd3-00bc-47a7-9926-538881b1dabf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1789330, 54201, 158, 3, 43, "Subsubsection",ExpressionUUID->"507feb41-f5e0-4fba-9122-1ae25860a3d4"], Cell[1789491, 54206, 1356, 36, 111, "Input",ExpressionUUID->"30fba79c-a223-46da-acd6-a2c66892915c"], Cell[1790850, 54244, 687, 19, 29, "Input",ExpressionUUID->"e2d4cfeb-b150-4dd3-85dc-674c6c7473d1"], Cell[1791540, 54265, 711, 20, 29, "Input",ExpressionUUID->"f9c0bcac-e61d-476e-846b-5332279f39fe"], Cell[1792254, 54287, 713, 20, 29, "Input",ExpressionUUID->"b9ed6b06-a06e-44ce-b843-5f695f2924d4"], Cell[CellGroupData[{ Cell[1792992, 54311, 247, 5, 29, "Input",ExpressionUUID->"eae92dda-85f4-4153-82cf-87738dd3449a"], Cell[1793242, 54318, 1742, 52, 70, "Output",ExpressionUUID->"7355cf38-bd48-4d2a-89e2-7d5ed29e5f38"] }, Open ]], Cell[CellGroupData[{ Cell[1795021, 54375, 189, 4, 29, "Input",ExpressionUUID->"7c03dce0-4986-4ae0-a835-4e63501e0fca"], Cell[1795213, 54381, 1492, 44, 70, "Output",ExpressionUUID->"9e7ec4e6-1a27-4b39-804d-707d45a8e3e8"] }, Open ]], Cell[CellGroupData[{ Cell[1796742, 54430, 214, 4, 29, "Input",ExpressionUUID->"2d9de5bd-bad1-4259-892f-6788a56ea134"], Cell[1796959, 54436, 1544, 46, 70, "Output",ExpressionUUID->"a96d3a1d-1427-493d-b429-022b55de85ba"] }, Open ]], Cell[CellGroupData[{ Cell[1798540, 54487, 213, 4, 29, "Input",ExpressionUUID->"ca12c07b-db9a-4cd9-bf5d-824e547fe643"], Cell[1798756, 54493, 1346, 40, 70, "Output",ExpressionUUID->"1342418b-8ea6-4058-b77d-906c7a0fa818"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1800151, 54539, 216, 4, 43, "Subsubsection",ExpressionUUID->"448dcf8e-2e8b-4b63-9352-73eb5d9855f5"], Cell[1800370, 54545, 1421, 38, 111, "Input",ExpressionUUID->"990c43b2-ea47-4f20-8f54-b52181edf1f6"], Cell[CellGroupData[{ Cell[1801816, 54587, 238, 5, 29, "Input",ExpressionUUID->"c7aca1f0-89d2-4845-be1d-cdeef9d4571a"], Cell[1802057, 54594, 532, 15, 70, "Output",ExpressionUUID->"4a86c216-9baf-44e5-b3db-7e1f672600a5"] }, Open ]], Cell[CellGroupData[{ Cell[1802626, 54614, 470, 14, 29, "Input",ExpressionUUID->"74cccc8e-66f7-499d-afb5-9c5942cf3204"], Cell[1803099, 54630, 468, 14, 70, "Output",ExpressionUUID->"803746b5-6302-4531-a640-fb5a891d6d4b"] }, Open ]], Cell[CellGroupData[{ Cell[1803604, 54649, 685, 19, 29, "Input",ExpressionUUID->"f392ebeb-d963-4c31-9901-1ad9746aea5b"], Cell[1804292, 54670, 331, 11, 70, "Output",ExpressionUUID->"3a60fe2c-d14e-4e1f-afd5-331e5487da2c"] }, Open ]], Cell[CellGroupData[{ Cell[1804660, 54686, 214, 5, 29, "Input",ExpressionUUID->"62dbe546-f7aa-40a4-a4e3-ebb37958d800"], Cell[1804877, 54693, 135, 3, 70, "Output",ExpressionUUID->"aa4528ce-f499-454c-96ea-a9a721f812b5"] }, Open ]], Cell[CellGroupData[{ Cell[1805049, 54701, 767, 22, 29, "Input",ExpressionUUID->"438d585d-1694-4549-88eb-b95f9aecdf35"], Cell[1805819, 54725, 229, 6, 70, "Output",ExpressionUUID->"a5a8525c-bfd6-4a4e-8f37-0dbac2b01969"] }, Open ]], Cell[CellGroupData[{ Cell[1806085, 54736, 170, 4, 29, "Input",ExpressionUUID->"c826b566-0766-4ba5-b3d3-5ba566321c84"], Cell[1806258, 54742, 153, 4, 70, "Output",ExpressionUUID->"f3e9058f-e140-486f-ae36-3a75afafc265"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1806460, 54752, 269, 4, 35, "Subsubsection",ExpressionUUID->"5324d4fc-cd57-4a0b-9d43-2ed748fa7921"], Cell[1806732, 54758, 214, 4, 29, "Input",ExpressionUUID->"94e5a018-6aad-4aac-8875-964915bac613"], Cell[1806949, 54764, 573, 15, 29, "Input",ExpressionUUID->"f687e771-f16d-41ff-9c3b-e933dd708ff8"], Cell[CellGroupData[{ Cell[1807547, 54783, 767, 22, 29, "Input",ExpressionUUID->"78e38f66-b1bd-4a7c-ac81-c7dd92b0eee3"], Cell[1808317, 54807, 229, 6, 70, "Output",ExpressionUUID->"34472f3e-c718-4af9-b568-f37c347be1d0"] }, Open ]], Cell[CellGroupData[{ Cell[1808583, 54818, 170, 4, 29, "Input",ExpressionUUID->"bf5a76f3-d1f4-4918-814c-3e9aa17f7cf9"], Cell[1808756, 54824, 153, 4, 70, "Output",ExpressionUUID->"a94b0222-cd12-420b-a3ec-b45c94344975"] }, Open ]], Cell[CellGroupData[{ Cell[1808946, 54833, 720, 20, 49, "Input",ExpressionUUID->"a6b9cea0-3caf-48d9-bf46-4812063c5e32"], Cell[1809669, 54855, 331, 11, 70, "Output",ExpressionUUID->"98a76930-c113-4092-9430-5f41066bb228"], Cell[1810003, 54868, 135, 3, 70, "Output",ExpressionUUID->"bcedb23e-9b2c-4b9b-b940-551f1792dad6"] }, Open ]], Cell[CellGroupData[{ Cell[1810175, 54876, 1001, 28, 49, "Input",ExpressionUUID->"e556789d-a25b-4830-9d15-8e70d2caaaca"], Cell[1811179, 54906, 245, 8, 70, "Output",ExpressionUUID->"07cf005a-a908-4f1a-b9f7-6e4c574c3680"], Cell[1811427, 54916, 111, 2, 70, "Output",ExpressionUUID->"e9344d23-c07b-45db-8a11-efe61a36ec43"] }, Open ]], Cell[CellGroupData[{ Cell[1811575, 54923, 692, 19, 29, "Input",ExpressionUUID->"a9ead313-02a3-4431-9a10-2c534784717c"], Cell[1812270, 54944, 245, 8, 70, "Output",ExpressionUUID->"95dcd2bd-302b-4d95-9ada-a4486699f423"] }, Open ]], Cell[CellGroupData[{ Cell[1812552, 54957, 253, 5, 29, "Input",ExpressionUUID->"a269aafa-27f4-45fb-8926-bcdadb992c37"], Cell[1812808, 54964, 689, 20, 70, "Output",ExpressionUUID->"89a64ff0-093b-4c4e-846e-576529cb8086"] }, Open ]], Cell[CellGroupData[{ Cell[1813534, 54989, 861, 23, 29, "Input",ExpressionUUID->"febe7675-dcc4-4c46-9348-e949808b7361"], Cell[1814398, 55014, 245, 8, 70, "Output",ExpressionUUID->"16d208b8-ae7c-4f1b-baa9-ee382a5c54ea"] }, Open ]], Cell[CellGroupData[{ Cell[1814680, 55027, 307, 8, 29, "Input",ExpressionUUID->"6a383aae-accd-4361-9f58-fbd27c6730d3"], Cell[1814990, 55037, 129, 2, 70, "Output",ExpressionUUID->"bc4164af-46c5-4841-9d5b-4d9ecf524a2f"] }, Open ]], Cell[CellGroupData[{ Cell[1815156, 55044, 337, 8, 29, "Input",ExpressionUUID->"71d9ea1f-bed2-4a39-a173-0df6c96ed952"], Cell[1815496, 55054, 111, 2, 70, "Output",ExpressionUUID->"60421545-ea9d-4fae-9548-faa7a208ffc8"] }, Open ]], Cell[CellGroupData[{ Cell[1815644, 55061, 719, 20, 29, "Input",ExpressionUUID->"e6479515-7c8d-409e-b50e-00aacfb32b1e"], Cell[1816366, 55083, 268, 9, 70, "Output",ExpressionUUID->"39d3bf73-131a-4e91-8584-676fe57195ac"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1816683, 55098, 284, 4, 35, "Subsubsection",ExpressionUUID->"5af77aba-4b22-4d84-9f6d-05cb2fd739af"], Cell[1816970, 55104, 1421, 38, 111, "Input",ExpressionUUID->"a6589f1e-af2f-4775-a860-2500d63edddf"], Cell[CellGroupData[{ Cell[1818416, 55146, 238, 5, 29, "Input",ExpressionUUID->"211a17bc-3c4c-478b-9b4a-74e9ab05597c"], Cell[1818657, 55153, 532, 15, 70, "Output",ExpressionUUID->"3a18a03d-7f7a-43d8-af48-86fddea403c6"] }, Open ]], Cell[CellGroupData[{ Cell[1819226, 55173, 553, 15, 29, "Input",ExpressionUUID->"21c1651d-726d-4330-ae28-58e4cb7e298e"], Cell[1819782, 55190, 339, 10, 70, "Output",ExpressionUUID->"b0fba8d0-b090-454b-9eb6-3f711cdd4a5f"] }, Open ]], Cell[CellGroupData[{ Cell[1820158, 55205, 928, 26, 29, "Input",ExpressionUUID->"e206427d-aecd-45ef-8d14-2bd6965df3d6"], Cell[1821089, 55233, 468, 14, 70, "Output",ExpressionUUID->"bf614f08-721d-49ae-9a10-759b5d91bace"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1821606, 55253, 339, 5, 43, "Subsubsection",ExpressionUUID->"e63212ac-d05f-4698-8d9c-23afee72aa81"], Cell[1821948, 55260, 214, 4, 29, "Input",ExpressionUUID->"368e59e1-fde0-4153-975f-dd68aaeaf926"], Cell[1822165, 55266, 573, 15, 29, "Input",ExpressionUUID->"47ce04ef-1dea-48e4-bd88-0d3014f0f00c"], Cell[CellGroupData[{ Cell[1822763, 55285, 678, 20, 29, "Input",ExpressionUUID->"c93b9b44-ba4b-41cf-85eb-7d64e9f7000b"], Cell[1823444, 55307, 251, 7, 70, "Output",ExpressionUUID->"9c66bf2e-ca5e-41b9-920e-20f056e1a077"] }, Open ]], Cell[CellGroupData[{ Cell[1823732, 55319, 1621, 40, 131, "Input",ExpressionUUID->"8eb7db4e-228b-447d-b0c1-3de085456fcc"], Cell[1825356, 55361, 785, 25, 70, "Output",ExpressionUUID->"80c5ddd1-5d80-4f4e-ba08-3ae18c417a49"] }, Open ]], Cell[CellGroupData[{ Cell[1826178, 55391, 562, 13, 90, "Input",ExpressionUUID->"85e7689e-bafe-4e76-951d-8b701a5702ec"], Cell[1826743, 55406, 289, 9, 70, "Output",ExpressionUUID->"198f66ee-03b4-4340-8ef2-0d0c77690abe"], Cell[1827035, 55417, 357, 11, 70, "Output",ExpressionUUID->"85f35ee2-7e29-4f4f-b9ff-685d3d2242d7"], Cell[1827395, 55430, 357, 11, 70, "Output",ExpressionUUID->"86fd1622-457b-4532-a117-ca19f413383f"], Cell[1827755, 55443, 129, 2, 70, "Output",ExpressionUUID->"e3450651-a1f1-4509-9920-c13727f0a266"] }, Open ]], Cell[CellGroupData[{ Cell[1827921, 55450, 307, 8, 29, "Input",ExpressionUUID->"3e279452-ed5a-4ea4-8544-77a7439c4c14"], Cell[1828231, 55460, 186, 4, 70, "Output",ExpressionUUID->"ca976df5-a5f3-4384-8538-21669898c63b"] }, Open ]], Cell[CellGroupData[{ Cell[1828454, 55469, 337, 8, 29, "Input",ExpressionUUID->"6f371806-6d1e-490e-a262-408c5a8e2654"], Cell[1828794, 55479, 186, 4, 70, "Output",ExpressionUUID->"2eeda0e9-5de5-4b2f-869f-026c9cf57afd"] }, Open ]], Cell[CellGroupData[{ Cell[1829017, 55488, 719, 20, 29, "Input",ExpressionUUID->"99e84b2e-41e6-40cd-b905-77bd4ef8364d"], Cell[1829739, 55510, 268, 9, 70, "Output",ExpressionUUID->"6231f418-00a8-474d-b232-c8f5b7503256"] }, Open ]], Cell[CellGroupData[{ Cell[1830044, 55524, 1747, 43, 131, "Input",ExpressionUUID->"670e241d-b897-46a6-82ca-35ca824343ff"], Cell[1831794, 55569, 828, 26, 70, "Output",ExpressionUUID->"6a1cccb9-7a74-4483-989c-a7b3330eb591"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1832695, 55603, 292, 5, 66, "Section",ExpressionUUID->"3ad6c166-ec09-4e36-bbfe-c1b177adc027"], Cell[CellGroupData[{ Cell[1833012, 55612, 157, 3, 53, "Subsection",ExpressionUUID->"e117bad1-5761-4b52-9b7e-9547656a199a"], Cell[CellGroupData[{ Cell[1833194, 55619, 244, 5, 29, "Input",ExpressionUUID->"a4a4d2cd-7aa2-4163-a015-2569984b7d55"], Cell[1833441, 55626, 273, 11, 70, "Output",ExpressionUUID->"ad2be3ec-b157-453d-ab12-07a62684342f"] }, Open ]], Cell[CellGroupData[{ Cell[1833751, 55642, 495, 13, 49, "Input",ExpressionUUID->"0eff672a-9269-4c09-ad05-3bc1db35bf1c"], Cell[1834249, 55657, 114, 2, 70, "Output",ExpressionUUID->"c1d4f330-fab7-472b-b081-815bcc1e5e3d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1834412, 55665, 157, 3, 37, "Subsection",ExpressionUUID->"2acf890d-baaa-47bc-8f0a-d22689d3f6d1"], Cell[CellGroupData[{ Cell[1834594, 55672, 242, 5, 29, "Input",ExpressionUUID->"7151fb4b-7619-4d75-9ffa-ad67d3c9d4a2"], Cell[1834839, 55679, 273, 11, 70, "Output",ExpressionUUID->"59775056-8b8e-4206-8f5f-d24753a5ba6a"] }, Open ]], Cell[CellGroupData[{ Cell[1835149, 55695, 903, 24, 151, "Input",ExpressionUUID->"34ebc0fb-6c72-492f-b134-d8f77cf93b11"], Cell[1836055, 55721, 114, 2, 70, "Output",ExpressionUUID->"db4693aa-4562-47c8-92d9-4e2c39cc42a5"] }, Open ]], Cell[CellGroupData[{ Cell[1836206, 55728, 1023, 27, 151, "Input",ExpressionUUID->"13359ea9-6658-4311-81fd-6bf8aef363bd"], Cell[1837232, 55757, 114, 2, 70, "Output",ExpressionUUID->"351f9ed7-0b10-4d7e-9250-210063484a20"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1837395, 55765, 159, 3, 37, "Subsection",ExpressionUUID->"08fd1ade-1721-47f8-8ca0-1227e3d892f2"], Cell[1837557, 55770, 625, 15, 29, "Input",ExpressionUUID->"14c0e74f-6179-46ae-ac6f-22d22da3678f"], Cell[CellGroupData[{ Cell[1838207, 55789, 502, 10, 29, "Input",ExpressionUUID->"c280cb80-86f2-4c47-821d-334361d8c70d"], Cell[1838712, 55801, 4025, 115, 70, "Output",ExpressionUUID->"387566c6-47a2-45b3-9195-995a3ad6fe43"] }, Open ]], Cell[CellGroupData[{ Cell[1842774, 55921, 298, 6, 29, "Input",ExpressionUUID->"e5494495-081a-41fa-9570-15c3ec3a2236"], Cell[1843075, 55929, 3525, 151, 70, "Output",ExpressionUUID->"f860b7eb-0db7-463e-a251-da4be2f6a74c"] }, Open ]], Cell[CellGroupData[{ Cell[1846637, 56085, 1618, 41, 151, "Input",ExpressionUUID->"fff07f9a-715b-49ef-998d-d0aa38499b05"], Cell[1848258, 56128, 114, 2, 70, "Output",ExpressionUUID->"83f5da31-4785-4cf1-969f-d333a36c608b"] }, Open ]], Cell[CellGroupData[{ Cell[1848409, 56135, 249, 6, 29, "Input",ExpressionUUID->"f6832917-7543-4cf2-9b43-68a6015565d8"], Cell[1848661, 56143, 129, 2, 70, "Output",ExpressionUUID->"63abd00c-df22-4b93-8675-7e1b05462b5e"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1848851, 56152, 347, 5, 52, "Section",ExpressionUUID->"9fa76e92-b9ff-409d-8fab-f456cc89f8c5"], Cell[CellGroupData[{ Cell[1849223, 56161, 397, 10, 49, "Input",ExpressionUUID->"4069344b-be97-4ed2-ac71-f4d8b869b8ae"], Cell[1849623, 56173, 1529, 63, 70, "Output",ExpressionUUID->"e84dd6fd-181a-4667-9efc-78a304c1cb37"], Cell[1851155, 56238, 852, 26, 70, "Output",ExpressionUUID->"eeeb9bb2-c146-49ca-b8cd-774280a24c47"] }, Open ]], Cell[CellGroupData[{ Cell[1852044, 56269, 558, 16, 49, "Input",ExpressionUUID->"47808c61-5a1a-4c58-b9f2-b377567f9f4a"], Cell[1852605, 56287, 2497, 103, 70, "Output",ExpressionUUID->"4ae1a52d-ceca-4621-9a13-c12ae6effeca"], Cell[1855105, 56392, 804, 26, 70, "Output",ExpressionUUID->"aa83f7c9-aba5-4d37-9125-42ad25c14eba"] }, Open ]], Cell[CellGroupData[{ Cell[1855946, 56423, 376, 9, 49, "Input",ExpressionUUID->"0aece0ee-3eda-46f8-ae7c-c849a86c1694"], Cell[1856325, 56434, 511, 21, 70, "Output",ExpressionUUID->"1db2b888-de7d-46e6-9a02-2e529c1a4bc9"], Cell[1856839, 56457, 804, 26, 70, "Output",ExpressionUUID->"451f38c8-d254-4057-9653-316962367637"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1857704, 56490, 304, 5, 58, "Chapter",ExpressionUUID->"2bcf8a1c-b5be-4532-9457-b0c642d3a5c8"], Cell[CellGroupData[{ Cell[1858033, 56499, 245, 4, 53, "Subsection",ExpressionUUID->"18a8d758-1bc9-46eb-9f40-5dac2b48e9dd"], Cell[CellGroupData[{ Cell[1858303, 56507, 177, 3, 29, "Input",ExpressionUUID->"9d54b8f8-32e7-4fe3-9580-19b2b75c70a6"], Cell[1858483, 56512, 1219, 45, 70, "Output",ExpressionUUID->"ac259be2-ef51-4178-bca0-952befb76d57"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1859751, 56563, 227, 4, 53, "Subsection",ExpressionUUID->"8f6d4b67-a0f7-439b-a607-067aa6b72cd5"], Cell[CellGroupData[{ Cell[1860003, 56571, 412, 9, 29, "Input",ExpressionUUID->"4694b63d-4d0b-4ac5-ab9d-c71902393717"], Cell[1860418, 56582, 1505, 57, 70, "Output",ExpressionUUID->"e280292c-a222-4258-a785-3d55768f6541"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1861972, 56645, 204, 4, 53, "Subsection",ExpressionUUID->"30aba3d1-047f-4438-92d8-a62d0867d918"], Cell[CellGroupData[{ Cell[1862201, 56653, 164, 3, 43, "Subsubsection",ExpressionUUID->"64c3e5a7-ad66-4d9f-bd9d-5625f1b483db"], Cell[1862368, 56658, 602, 19, 29, "Input",ExpressionUUID->"e279598f-65db-42e4-a005-78d419d014f7"] }, Closed]], Cell[CellGroupData[{ Cell[1863007, 56682, 157, 3, 43, "Subsubsection",ExpressionUUID->"ec2e31ad-e4ca-44e5-ab41-85f188c6742e"], Cell[CellGroupData[{ Cell[1863189, 56689, 388, 8, 29, "Input",ExpressionUUID->"0e43d3fc-c22e-4aba-b0d5-38b21a2993c6"], Cell[1863580, 56699, 2587, 103, 70, "Output",ExpressionUUID->"4757fc5e-d41f-42bb-99ef-86ebb9ccde76"] }, Open ]], Cell[CellGroupData[{ Cell[1866204, 56807, 261, 6, 29, "Input",ExpressionUUID->"fccb3f33-7f50-4034-aa25-c194e61c363f"], Cell[1866468, 56815, 3318, 90, 70, "Output",ExpressionUUID->"dcaa5bd5-2622-4306-a2fe-f335d5f7b5aa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1869835, 56911, 217, 4, 43, "Subsubsection",ExpressionUUID->"faa7c67f-e36a-4eb5-a495-72b51857390e"], Cell[1870055, 56917, 2002, 52, 70, "Input",ExpressionUUID->"ab7043e9-c549-42db-aa07-7788591424f3"], Cell[1872060, 56971, 1869, 49, 70, "Input",ExpressionUUID->"5baae279-131f-43a6-8604-37e06f072fe7"], Cell[CellGroupData[{ Cell[1873954, 57024, 546, 11, 29, "Input",ExpressionUUID->"a2057b5b-7948-484e-9412-52727d76742d"], Cell[1874503, 57037, 4907, 133, 70, "Output",ExpressionUUID->"f1b54a59-1e3e-4761-a544-62d10114702c"] }, Open ]], Cell[CellGroupData[{ Cell[1879447, 57175, 577, 14, 29, "Input",ExpressionUUID->"21d1e411-eacd-41b2-a057-ab691680de10"], Cell[1880027, 57191, 4197, 114, 70, "Output",ExpressionUUID->"2a7d5292-7cf3-4fca-accc-9dc5fa8c78e3"] }, Open ]], Cell[CellGroupData[{ Cell[1884261, 57310, 937, 25, 49, "Input",ExpressionUUID->"d82cd257-bb85-4081-aa90-a10d7b49a456"], Cell[1885201, 57337, 653, 20, 70, "Output",ExpressionUUID->"1687f07f-4364-4fef-935d-c59efda4508e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1885903, 57363, 174, 3, 43, "Subsubsection",ExpressionUUID->"2a375ef4-8bc9-4e5c-b26d-eedfdaa3887b"], Cell[CellGroupData[{ Cell[1886102, 57370, 319, 8, 29, "Input",ExpressionUUID->"9bed0a2c-0803-4bf9-b1d7-f9405716f20e"], Cell[1886424, 57380, 717, 22, 70, "Output",ExpressionUUID->"aa3a2884-d250-4da9-a754-287d002f3345"] }, Open ]], Cell[CellGroupData[{ Cell[1887178, 57407, 319, 8, 29, "Input",ExpressionUUID->"1038c56f-4d21-49da-b58f-61f863dced60"], Cell[1887500, 57417, 717, 22, 70, "Output",ExpressionUUID->"a9fed6c8-2241-4c44-b98a-d488e04fce6d"] }, Open ]], Cell[CellGroupData[{ Cell[1888254, 57444, 319, 8, 29, "Input",ExpressionUUID->"f1f544e4-a669-4d8f-8a8e-2dfb3ea798dd"], Cell[1888576, 57454, 717, 22, 70, "Output",ExpressionUUID->"68f1b489-bf08-4ec5-b2f6-b982e88ef4b3"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1889354, 57483, 278, 5, 37, "Subsection",ExpressionUUID->"c48761f5-3e13-43f1-8d27-9707fbda64fc"], Cell[CellGroupData[{ Cell[1889657, 57492, 294, 6, 29, "Input",ExpressionUUID->"aa3e174a-0891-4531-a625-46c1bdd619ed"], Cell[1889954, 57500, 295, 12, 70, "Output",ExpressionUUID->"1ff7eb74-9297-4954-a139-3421a144520b"] }, Open ]], Cell[CellGroupData[{ Cell[1890286, 57517, 261, 6, 29, "Input",ExpressionUUID->"349531e3-fff5-496d-b453-fd11855d3c53"], Cell[1890550, 57525, 1100, 37, 70, "Output",ExpressionUUID->"26f8a05e-5c5c-4a29-9f5a-e5ee37837184"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1891699, 57568, 227, 4, 37, "Subsection",ExpressionUUID->"4a73fd47-5160-4ea3-925c-a8a13e8fb06e"], Cell[CellGroupData[{ Cell[1891951, 57576, 174, 3, 43, "Subsubsection",ExpressionUUID->"b5d5625f-036d-4706-a8de-1ee01ea2e5ba"], Cell[CellGroupData[{ Cell[1892150, 57583, 476, 13, 49, "Input",ExpressionUUID->"e4a84204-46a3-416e-85d2-768ecf3c85d1"], Cell[1892629, 57598, 2206, 65, 70, "Output",ExpressionUUID->"d6c010e0-d15c-47e9-83c9-cd65d81a05c7"] }, Open ]], Cell[CellGroupData[{ Cell[1894872, 57668, 426, 12, 49, "Input",ExpressionUUID->"29c492e0-c80c-4922-96ab-993b4e483f68"], Cell[1895301, 57682, 1326, 37, 70, "Output",ExpressionUUID->"0f66684b-8417-47d8-8f84-cf8da1692b75"] }, Open ]], Cell[CellGroupData[{ Cell[1896664, 57724, 426, 12, 49, "Input",ExpressionUUID->"eafd480c-5f0d-4842-85b6-587d76d9736d"], Cell[1897093, 57738, 2601, 70, 70, "Output",ExpressionUUID->"abc7245a-fd9f-4802-847a-9207bb4811b7"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1899743, 57814, 223, 4, 43, "Subsubsection",ExpressionUUID->"7b8f3ed7-75d4-4cef-86d9-02eb5b380c5d"], Cell[CellGroupData[{ Cell[1899991, 57822, 358, 8, 49, "Input",ExpressionUUID->"c21da02f-7aec-4674-a66b-17812e848085"], Cell[1900352, 57832, 4099, 105, 70, "Output",ExpressionUUID->"9f6a549f-e711-44d4-9315-fc7b984c4db5"], Cell[1904454, 57939, 2743, 83, 70, "Output",ExpressionUUID->"94e195e2-6fc7-483a-b1b4-a23d02125a02"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1907246, 58028, 247, 4, 35, "Subsubsection",ExpressionUUID->"cf499657-ef44-4bd2-84e3-bdf131ad5ad2"], Cell[CellGroupData[{ Cell[1907518, 58036, 358, 8, 49, "Input",ExpressionUUID->"b520c189-63fd-48a8-86e2-078e611256f4"], Cell[1907879, 58046, 4767, 121, 70, "Output",ExpressionUUID->"71f617d7-a4f7-4d17-8ef7-94d6aa1f41ec"], Cell[1912649, 58169, 2205, 64, 70, "Output",ExpressionUUID->"49bc915c-5393-473f-992d-a9d3c78bab1e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1914903, 58239, 269, 4, 35, "Subsubsection",ExpressionUUID->"30d96f09-49f6-4fc6-8e1c-a9c55d6e1ef1"], Cell[CellGroupData[{ Cell[1915197, 58247, 409, 9, 49, "Input",ExpressionUUID->"34026ad0-7581-4ed8-bd84-c43f29cd328a"], Cell[1915609, 58258, 4619, 121, 70, "Output",ExpressionUUID->"3e36c3e0-4612-405a-879b-1ff210bebed5"], Cell[1920231, 58381, 2066, 60, 70, "Output",ExpressionUUID->"b305b804-ae3d-4c56-8be6-7a3372aef8bd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1922346, 58447, 340, 5, 35, "Subsubsection",ExpressionUUID->"b557e846-e6e5-4859-920f-c6b04c7bf863"], Cell[1922689, 58454, 175, 3, 33, "Text",ExpressionUUID->"6acc1c6d-bca3-4f5a-8520-33d4705ca7e6"], Cell[CellGroupData[{ Cell[1922889, 58461, 852, 22, 49, "Input",ExpressionUUID->"89284fa4-9741-441b-9f5e-3720ff8e5146"], Cell[1923744, 58485, 6275, 156, 70, "Output",ExpressionUUID->"bf1461fc-fbbd-46e1-a6da-c9818ec341af"] }, Open ]], Cell[CellGroupData[{ Cell[1930056, 58646, 425, 10, 29, "Input",ExpressionUUID->"99013cbe-1b93-4aca-be0b-251cfc661326"], Cell[1930484, 58658, 1187, 34, 70, "Output",ExpressionUUID->"ba20a0f8-2371-46bd-9314-13649dec6e08"] }, Open ]], Cell[CellGroupData[{ Cell[1931708, 58697, 476, 11, 29, "Input",ExpressionUUID->"04f48f90-26a3-4db1-9692-27c0a4d69319"], Cell[1932187, 58710, 1016, 29, 70, "Output",ExpressionUUID->"0b42a073-6968-4cf6-a1bc-1247b18ed5a9"] }, Open ]], Cell[CellGroupData[{ Cell[1933240, 58744, 448, 10, 29, "Input",ExpressionUUID->"f01850b7-411f-42cf-b7f7-d3064853626b"], Cell[1933691, 58756, 1188, 35, 70, "Output",ExpressionUUID->"12509a3a-b029-4643-93b8-07dab4d8272c"] }, Open ]], Cell[CellGroupData[{ Cell[1934916, 58796, 497, 11, 29, "Input",ExpressionUUID->"0a91c5b4-b1e3-466c-99b0-434848158276"], Cell[1935416, 58809, 1165, 34, 70, "Output",ExpressionUUID->"f152cba3-afaf-4bf7-83ab-dd7bd43982af"] }, Open ]], Cell[CellGroupData[{ Cell[1936618, 58848, 498, 11, 29, "Input",ExpressionUUID->"66b16e1c-8670-4b8c-b01a-42b790f66d5e"], Cell[1937119, 58861, 1060, 30, 70, "Output",ExpressionUUID->"36efa303-298a-4d29-b0b8-0fad51180364"] }, Open ]], Cell[CellGroupData[{ Cell[1938216, 58896, 547, 12, 29, "Input",ExpressionUUID->"e03a253b-4654-45c7-b87a-8b41d5815cea"], Cell[1938766, 58910, 1213, 34, 70, "Output",ExpressionUUID->"5aa21731-890c-4a22-b80c-af19aad87643"] }, Open ]], Cell[CellGroupData[{ Cell[1940016, 58949, 470, 12, 29, "Input",ExpressionUUID->"0b0bf7d8-5f21-4b9c-9761-9d32f70d4452"], Cell[1940489, 58963, 546, 16, 70, "Output",ExpressionUUID->"0a9099c5-0624-43b8-852f-9293b306ec53"] }, Open ]], Cell[CellGroupData[{ Cell[1941072, 58984, 468, 12, 29, "Input",ExpressionUUID->"2b2d1bc0-230e-4802-ab94-642fb0eb3385"], Cell[1941543, 58998, 546, 16, 70, "Output",ExpressionUUID->"f998c03d-b6eb-4d57-aec6-95e25adb5c9a"] }, Open ]], Cell[CellGroupData[{ Cell[1942126, 59019, 517, 13, 29, "Input",ExpressionUUID->"7812330e-8abb-4df6-8ba0-8ebe8f8112d2"], Cell[1942646, 59034, 565, 17, 70, "Output",ExpressionUUID->"48f1fd2c-8242-4042-acf2-6208fd5f6c3c"] }, Open ]], Cell[CellGroupData[{ Cell[1943248, 59056, 517, 13, 29, "Input",ExpressionUUID->"5b546351-d08b-4af6-b36b-f6581ea6ce62"], Cell[1943768, 59071, 563, 16, 70, "Output",ExpressionUUID->"a1d2dc49-f64b-4882-9f17-f7f533f5a4d9"] }, Open ]], Cell[CellGroupData[{ Cell[1944368, 59092, 468, 12, 29, "Input",ExpressionUUID->"3e36e4d3-5167-46f6-9cdb-6aa25872476e"], Cell[1944839, 59106, 264, 8, 70, "Output",ExpressionUUID->"641b0c9d-74b2-42ea-8820-07f96b2df15b"] }, Open ]], Cell[CellGroupData[{ Cell[1945140, 59119, 468, 12, 29, "Input",ExpressionUUID->"9bfedb40-2247-4df0-a885-d30dac3c8fc6"], Cell[1945611, 59133, 264, 8, 70, "Output",ExpressionUUID->"82e1399d-6634-4cd6-bb20-59f41823d8e1"] }, Open ]], Cell[CellGroupData[{ Cell[1945912, 59146, 333, 8, 29, "Input",ExpressionUUID->"ed214497-d5fc-4b1c-88b2-93e5a9356d27"], Cell[1946248, 59156, 3545, 95, 70, "Output",ExpressionUUID->"bcd7319c-8cd7-4560-9d6a-d7f14964a9f8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1949842, 59257, 366, 5, 35, "Subsubsection",ExpressionUUID->"08c92f4c-230a-4ae6-be21-5d5012f7cf26"], Cell[1950211, 59264, 605, 18, 29, "Input",ExpressionUUID->"27af38e8-c7c3-4ece-bd65-0391dfb8137c"], Cell[CellGroupData[{ Cell[1950841, 59286, 405, 10, 29, "Input",ExpressionUUID->"10a158b1-e1f2-46a3-a7d8-308dcaf37bab"], Cell[1951249, 59298, 3316, 88, 70, "Output",ExpressionUUID->"853c2466-cc60-4309-a22b-5bf48fd56c1d"] }, Open ]], Cell[CellGroupData[{ Cell[1954602, 59391, 405, 10, 29, "Input",ExpressionUUID->"c0025cc9-ccfd-427d-9c4a-65ade8e3268f"], Cell[1955010, 59403, 3345, 89, 70, "Output",ExpressionUUID->"9eecb59f-d52d-4006-a332-632b4a70f314"] }, Open ]], Cell[CellGroupData[{ Cell[1958392, 59497, 554, 15, 29, "Input",ExpressionUUID->"657b7595-3886-4ee7-a134-41e01991e354"], Cell[1958949, 59514, 1025, 41, 70, "Output",ExpressionUUID->"7fbe0afe-0ec9-4b85-9da9-3163af6cb895"] }, Open ]], Cell[CellGroupData[{ Cell[1960011, 59560, 645, 18, 29, "Input",ExpressionUUID->"b9bb63f5-bce8-408b-9f2f-d4fbb014df01"], Cell[1960659, 59580, 1068, 31, 70, "Output",ExpressionUUID->"0930eb2c-7f46-4976-882b-5465091545d8"] }, Open ]], Cell[CellGroupData[{ Cell[1961764, 59616, 601, 16, 29, "Input",ExpressionUUID->"265c4ed1-23c3-4d8c-9548-48b24e39ef25"], Cell[1962368, 59634, 819, 37, 70, "Output",ExpressionUUID->"df3b563e-2b85-48b2-84a4-dadd0ba143b3"] }, Open ]], Cell[CellGroupData[{ Cell[1963224, 59676, 698, 20, 29, "Input",ExpressionUUID->"d8e2d741-ffbf-49f9-8b1c-d8f8917381fc"], Cell[1963925, 59698, 1068, 31, 70, "Output",ExpressionUUID->"51538737-11ce-4441-9c97-4236b944bd01"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[1965054, 59736, 355, 5, 37, "Subsection",ExpressionUUID->"f5203c3a-1aa7-4048-8f33-167920288244"], Cell[1965412, 59743, 605, 18, 29, "Input",ExpressionUUID->"10d6dd18-d2c7-4429-b834-938e3acd3a78"], Cell[CellGroupData[{ Cell[1966042, 59765, 264, 6, 29, "Input",ExpressionUUID->"d48e5ea1-85cf-4b63-a778-62616eef0ea8"], Cell[1966309, 59773, 85356, 1976, 70, "Output",ExpressionUUID->"6bea787c-21c5-4a62-a5e8-10527c1b6a2b"] }, Open ]], Cell[CellGroupData[{ Cell[2051702, 61754, 348, 8, 29, "Input",ExpressionUUID->"75db9687-4fb5-4fe2-b5ed-5c230d46ed4d"], Cell[2052053, 61764, 7077, 197, 70, "Output",ExpressionUUID->"fd1e4574-2300-4293-911e-37c321a2a285"] }, Open ]], Cell[CellGroupData[{ Cell[2059167, 61966, 362, 9, 29, "Input",ExpressionUUID->"1135b830-739d-4205-8fa2-e9be43f7b3e5"], Cell[2059532, 61977, 1069, 30, 70, "Output",ExpressionUUID->"4dd68d97-f68e-40bb-8522-6cb9017dc6a3"] }, Open ]], Cell[2060616, 62010, 652, 13, 31, "Input",ExpressionUUID->"2e9f45a5-3292-4a4e-88cf-4930a50eff85"], Cell[CellGroupData[{ Cell[2061293, 62027, 184, 3, 29, "Input",ExpressionUUID->"f33dd6f9-7eb7-4f40-9739-6401f113c867"], Cell[2061480, 62032, 117, 2, 70, "Output",ExpressionUUID->"36b3b15d-2521-4585-92a9-a1c0a5ca937f"] }, Open ]], Cell[CellGroupData[{ Cell[2061634, 62039, 209, 4, 29, "Input",ExpressionUUID->"9f57dc13-a180-40a4-960e-084f417f6b15"], Cell[2061846, 62045, 118, 2, 70, "Output",ExpressionUUID->"98d6d97f-6370-402f-9b72-d8d034ca23cf"] }, Open ]], Cell[CellGroupData[{ Cell[2062001, 62052, 273, 6, 29, "Input",ExpressionUUID->"61a60d42-c258-4edf-9395-1aebfb1e6f50"], Cell[2062277, 62060, 267, 8, 70, "Output",ExpressionUUID->"fbdd43a6-fcfe-4eb4-965e-4f9244d4d88d"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[2062605, 62075, 360, 6, 58, "Chapter",ExpressionUUID->"6f65c6d3-3eaa-4685-856b-56b85be9a520"], Cell[CellGroupData[{ Cell[2062990, 62085, 301, 5, 66, "Section",ExpressionUUID->"64739643-d703-4d3e-8986-127a1f6ada6a"], Cell[2063294, 62092, 536, 14, 29, "Input",ExpressionUUID->"30c46f00-4596-4d6a-8e24-6b68da366b32"], Cell[2063833, 62108, 670, 17, 29, "Input",ExpressionUUID->"6c97843d-64db-49ac-b829-9cfbd08c605e"], Cell[2064506, 62127, 558, 12, 29, "Input",ExpressionUUID->"147f1ded-ab77-4f5f-a2e0-f740cc7a89b6"], Cell[2065067, 62141, 884, 21, 49, "Input",ExpressionUUID->"3592c172-6fdf-4d11-8372-373abf1ae05b"] }, Open ]], Cell[CellGroupData[{ Cell[2065988, 62167, 242, 4, 66, "Section",ExpressionUUID->"7ec1419c-0961-4629-8e49-fe9ec5822102"], Cell[CellGroupData[{ Cell[2066255, 62175, 178, 3, 29, "Input",ExpressionUUID->"379d2628-68aa-4004-a0ee-4642eaa2bee9"], Cell[2066436, 62180, 1220, 45, 70, "Output",ExpressionUUID->"183b3bf7-4925-4beb-92d2-6bba30f45367"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2067705, 62231, 224, 4, 66, "Section",ExpressionUUID->"7c483b2b-96d2-4ee3-a530-0515d26c7538"], Cell[CellGroupData[{ Cell[2067954, 62239, 413, 9, 29, "Input",ExpressionUUID->"40f2a478-2378-436e-b71a-e653e87b7792"], Cell[2068370, 62250, 1506, 57, 70, "Output",ExpressionUUID->"411e401b-7ebc-4f6b-a23c-37b8fb16b1d8"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2069925, 62313, 201, 4, 52, "Section",ExpressionUUID->"83f8558d-7901-4bee-9ca1-7089a3b0f3d3"], Cell[CellGroupData[{ Cell[2070151, 62321, 161, 3, 53, "Subsection",ExpressionUUID->"3647bea8-c8cc-4c8c-bf04-c337185160c2"], Cell[2070315, 62326, 198, 3, 33, "Text",ExpressionUUID->"71789219-9d7f-49c8-9071-9d24ce86f808"], Cell[2070516, 62331, 683, 20, 29, "Input",ExpressionUUID->"e6a3ccb4-64d6-469b-8639-e0460de04298"] }, Closed]], Cell[CellGroupData[{ Cell[2071236, 62356, 154, 3, 37, "Subsection",ExpressionUUID->"56d00ce6-edc3-4040-9453-3f8f424dbd39"], Cell[CellGroupData[{ Cell[2071415, 62363, 394, 7, 29, "Input",ExpressionUUID->"ead65e25-7c8d-4dbf-8d2c-4a7a00be1b92"], Cell[2071812, 62372, 2588, 103, 70, "Output",ExpressionUUID->"57d53a06-be5e-48ad-848d-541607c25fb3"] }, Open ]], Cell[CellGroupData[{ Cell[2074437, 62480, 262, 6, 29, "Input",ExpressionUUID->"f5a23f9d-2664-412b-9f24-492d997a6c5d"], Cell[2074702, 62488, 3211, 86, 70, "Output",ExpressionUUID->"dfc37299-f519-4230-afb2-7ae849064264"] }, Open ]], Cell[CellGroupData[{ Cell[2077950, 62579, 191, 3, 43, "Subsubsection",ExpressionUUID->"935965a2-9d8b-466c-acf9-cb2dd5f31d79"], Cell[CellGroupData[{ Cell[2078166, 62586, 356, 9, 29, "Input",ExpressionUUID->"96f75ff7-7c32-477d-bbd3-cc9d93f3101f"], Cell[2078525, 62597, 3087, 84, 70, "Output",ExpressionUUID->"4f375abb-d41e-4d96-9eeb-a421a027f4df"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[2081673, 62688, 374, 6, 53, "Subsection",ExpressionUUID->"b904f301-b584-49d4-8529-89fb6f46f3e3"], Cell[2082050, 62696, 3773, 92, 274, "Input",ExpressionUUID->"b46b0e13-2dae-4912-8396-8ff7e4d7d520"], Cell[CellGroupData[{ Cell[2085848, 62792, 260, 6, 29, "Input",ExpressionUUID->"164262ea-c6b8-439b-9fcb-7c8e7c2de1e4"], Cell[2086111, 62800, 4591, 122, 70, "Output",ExpressionUUID->"50c63552-6e37-46fe-9f9c-da08e2265861"] }, Open ]], Cell[CellGroupData[{ Cell[2090739, 62927, 362, 9, 29, "Input",ExpressionUUID->"f0588421-8df9-4757-b2b2-ad4e5f8f885a"], Cell[2091104, 62938, 3435, 93, 70, "Output",ExpressionUUID->"35f8124e-bae5-4fbf-be77-d947a22616cb"] }, Open ]], Cell[CellGroupData[{ Cell[2094576, 63036, 713, 20, 29, "Input",ExpressionUUID->"cafcb216-f86b-4ac0-a429-6de583b381a6"], Cell[2095292, 63058, 654, 20, 70, "Output",ExpressionUUID->"87880ff3-0d22-49a0-9ffe-4c888856293e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2095995, 63084, 433, 7, 53, "Subsection",ExpressionUUID->"4144d05f-753a-4813-9cb4-ec2d9182358f"], Cell[2096431, 63093, 953, 26, 90, "Input",ExpressionUUID->"d8edb813-b064-452e-ab15-6a3ac3a42242"] }, Closed]], Cell[CellGroupData[{ Cell[2097421, 63124, 456, 7, 53, "Subsection",ExpressionUUID->"5eb07f3c-f74c-4e9c-b0c0-e5323826d778"], Cell[2097880, 63133, 1228, 25, 29, "Input",ExpressionUUID->"a67dcac6-ed27-4c07-a34d-b9d4a4f26534"] }, Closed]], Cell[CellGroupData[{ Cell[2099145, 63163, 457, 7, 53, "Subsection",ExpressionUUID->"3d2f924b-01aa-423a-a064-0577566afcbf"], Cell[CellGroupData[{ Cell[2099627, 63174, 1524, 34, 49, "Input",ExpressionUUID->"e96ef96e-507a-4502-8d2f-72b71773a318"], Cell[2101154, 63210, 933, 22, 70, "Output",ExpressionUUID->"abeef835-8128-488f-b69c-b6d7c1b00496"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2102136, 63238, 478, 7, 53, "Subsection",ExpressionUUID->"b882987f-fd85-4c01-835e-aea7ed6d5eff"], Cell[2102617, 63247, 1387, 30, 29, "Input",ExpressionUUID->"9457f1b4-0b21-434c-afca-93660fdff667"] }, Closed]], Cell[CellGroupData[{ Cell[2104041, 63282, 506, 8, 53, "Subsection",ExpressionUUID->"8200507a-d08d-4b82-8f04-ee859dc958b9"], Cell[2104550, 63292, 1218, 25, 29, "Input",ExpressionUUID->"1a762324-32b1-4c32-8ebc-d91b0b658524"] }, Closed]], Cell[CellGroupData[{ Cell[2105805, 63322, 557, 8, 53, "Subsection",ExpressionUUID->"52a4d554-4583-413a-97d2-13ce01d2ffeb"], Cell[CellGroupData[{ Cell[2106387, 63334, 159, 3, 43, "Subsubsection",ExpressionUUID->"bc512593-daf1-4540-82f2-b1efc8ad0fd1"], Cell[CellGroupData[{ Cell[2106571, 63341, 965, 23, 29, "Input",ExpressionUUID->"59f1e14b-9d3e-40d6-81ca-21b9125ede65"], Cell[2107539, 63366, 2348, 73, 70, "Output",ExpressionUUID->"a84c691f-57c9-459b-80f9-7ddabd2c7a1c"] }, Open ]], Cell[CellGroupData[{ Cell[2109924, 63444, 760, 20, 29, "Input",ExpressionUUID->"4fe2569f-47b8-4979-b647-06572e0d47a6"], Cell[2110687, 63466, 654, 20, 70, "Output",ExpressionUUID->"8bc06de5-55b6-42a4-bd07-d334e7c29b72"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2111390, 63492, 228, 4, 35, "Subsubsection",ExpressionUUID->"d104ec62-fdcd-4895-9336-fd7e50ac0c48"], Cell[CellGroupData[{ Cell[2111643, 63500, 320, 8, 29, "Input",ExpressionUUID->"3f464569-41b3-4d7a-b3f4-3cb1266e572f"], Cell[2111966, 63510, 718, 22, 70, "Output",ExpressionUUID->"79eea29a-2677-4a3a-8713-2942cfa0505e"] }, Open ]], Cell[CellGroupData[{ Cell[2112721, 63537, 320, 8, 29, "Input",ExpressionUUID->"784ad62b-0199-4d51-b0b4-e75892e96720"], Cell[2113044, 63547, 718, 22, 70, "Output",ExpressionUUID->"d42013d2-5c3b-4f2f-ad95-b7bb5cfa4b73"] }, Open ]], Cell[CellGroupData[{ Cell[2113799, 63574, 320, 8, 29, "Input",ExpressionUUID->"4d88eb02-85bd-4652-aec6-9641bfda81f1"], Cell[2114122, 63584, 718, 22, 70, "Output",ExpressionUUID->"9fdf8707-dae2-44fe-b0d4-6a382179d0a0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2114889, 63612, 234, 4, 35, "Subsubsection",ExpressionUUID->"16f4c296-1756-4326-a8a9-a739aef99b5b"], Cell[CellGroupData[{ Cell[2115148, 63620, 260, 6, 29, "Input",ExpressionUUID->"890a2f24-4b54-4001-b98e-27d7672567db"], Cell[2115411, 63628, 1601, 46, 70, "Output",ExpressionUUID->"54320b49-dc4d-46f5-8199-402ab66bdce5"] }, Open ]], Cell[CellGroupData[{ Cell[2117049, 63679, 2225, 58, 151, "Input",ExpressionUUID->"d4d78097-01a7-4ef9-bb81-884fd31f5f49"], Cell[2119277, 63739, 1195, 37, 70, "Output",ExpressionUUID->"249b5fbb-7ced-44ee-ba3e-68df86fc1a12"] }, Open ]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[2120545, 63784, 224, 4, 52, "Section",ExpressionUUID->"fc3db0bb-b2f2-4801-b7c9-53caf19590fd"], Cell[CellGroupData[{ Cell[2120794, 63792, 174, 3, 53, "Subsection",ExpressionUUID->"99b08a2a-8b56-4a77-b97d-0b71f74636c6"], Cell[CellGroupData[{ Cell[2120993, 63799, 1665, 47, 111, "Input",ExpressionUUID->"99e88b3d-8865-4aae-ad70-9d245fd6376e"], Cell[2122661, 63848, 2082, 58, 70, "Output",ExpressionUUID->"413bbf09-6ed1-4235-95d8-ace3dbbf010a"] }, Open ]], Cell[CellGroupData[{ Cell[2124780, 63911, 211, 4, 43, "Subsubsection",ExpressionUUID->"9ae8d8e9-a56e-4e88-a463-c0774e77d293"], Cell[CellGroupData[{ Cell[2125016, 63919, 418, 9, 29, "Input",ExpressionUUID->"db92ba86-e81d-4b96-9690-ec657a2b7c18"], Cell[2125437, 63930, 1089, 31, 70, "Output",ExpressionUUID->"d2c8b8d9-1f3c-44a7-b637-6e7c2803f6c7"] }, Open ]], Cell[CellGroupData[{ Cell[2126563, 63966, 338, 8, 29, "Input",ExpressionUUID->"c61f4cb3-7961-44f8-bf81-9e6eb3bc200c"], Cell[2126904, 63976, 2082, 58, 70, "Output",ExpressionUUID->"8f8e76cf-44e3-47c2-aa4a-866bc9626d7b"] }, Open ]], Cell[CellGroupData[{ Cell[2129023, 64039, 422, 11, 29, "Input",ExpressionUUID->"f47c81fa-da3b-46aa-b103-aaa071455805"], Cell[2129448, 64052, 654, 20, 70, "Output",ExpressionUUID->"6a80ea6c-19f3-48bc-8962-a9f0fd902038"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2130163, 64079, 202, 4, 37, "Subsection",ExpressionUUID->"c46d4258-b1fb-4db7-bac4-5af4ff76b0ba"], Cell[CellGroupData[{ Cell[2130390, 64087, 407, 11, 49, "Input",ExpressionUUID->"c1e8a03a-6a74-49f8-a7b4-430e9d9e9a49"], Cell[2130800, 64100, 1110, 25, 70, "Output",ExpressionUUID->"ecf26187-0bed-4125-8e8f-b6eedb0e1bc1"], Cell[2131913, 64127, 1531, 42, 70, "Output",ExpressionUUID->"0f2c6a75-6ddd-4528-801c-af461c92e7bf"] }, Open ]], Cell[CellGroupData[{ Cell[2133481, 64174, 211, 4, 43, "Subsubsection",ExpressionUUID->"22747da7-0cfd-45ed-b1b3-fdb853ab37ce"], Cell[CellGroupData[{ Cell[2133717, 64182, 397, 9, 29, "Input",ExpressionUUID->"ba7429a0-d380-4c4e-a5a5-2ad6fe9b88ba"], Cell[2134117, 64193, 1189, 33, 70, "Output",ExpressionUUID->"bfd8fc9c-6dfd-4108-bf27-54236936a053"] }, Open ]], Cell[CellGroupData[{ Cell[2135343, 64231, 252, 5, 29, "Input",ExpressionUUID->"ec15dd74-3970-4dbe-bb10-6922b58d7db8"], Cell[2135598, 64238, 975, 25, 70, "Output",ExpressionUUID->"ef5c7c96-d223-4429-a9dd-89f120dbaf8c"] }, Open ]], Cell[CellGroupData[{ Cell[2136610, 64268, 466, 11, 29, "Input",ExpressionUUID->"4816a6a4-0ddb-497d-a531-1ee45e927456"], Cell[2137079, 64281, 1033, 29, 70, "Output",ExpressionUUID->"8a8897b9-60e3-4cf4-bbf2-88abc8ada6ec"] }, Open ]], Cell[CellGroupData[{ Cell[2138149, 64315, 471, 12, 29, "Input",ExpressionUUID->"5867d46c-73b7-4367-a064-554863a6835d"], Cell[2138623, 64329, 1033, 29, 70, "Output",ExpressionUUID->"76fcab83-0b97-4d4a-8127-dc79a2072913"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2139717, 64365, 200, 4, 37, "Subsection",ExpressionUUID->"f769baa6-4a19-424b-b827-2716fd05ffd8"], Cell[CellGroupData[{ Cell[2139942, 64373, 455, 12, 49, "Input",ExpressionUUID->"79b3f439-f131-4298-bc43-d86fc6ec5b59"], Cell[2140400, 64387, 990, 22, 70, "Output",ExpressionUUID->"217139d4-8e43-4015-a725-bddcb8a4b5f9"], Cell[2141393, 64411, 2887, 73, 70, "Output",ExpressionUUID->"07498ff6-24ac-4b26-8d83-4afc7f2b2750"] }, Open ]], Cell[CellGroupData[{ Cell[2144317, 64489, 211, 4, 43, "Subsubsection",ExpressionUUID->"b01c8d9b-4243-449b-8b0f-a5ed6888f773"], Cell[CellGroupData[{ Cell[2144553, 64497, 448, 10, 29, "Input",ExpressionUUID->"91188862-b487-444f-bfdd-cf0b1ea40348"], Cell[2145004, 64509, 1848, 50, 70, "Output",ExpressionUUID->"2c36b6d7-bbeb-428d-b1de-e3e15d8eb548"] }, Open ]], Cell[CellGroupData[{ Cell[2146889, 64564, 483, 10, 29, "Input",ExpressionUUID->"00235911-0da2-44c2-85f2-8ade34046350"], Cell[2147375, 64576, 1412, 38, 70, "Output",ExpressionUUID->"b4cb351d-7418-4422-ae1d-d1888e5b3a60"] }, Open ]], Cell[CellGroupData[{ Cell[2148824, 64619, 519, 13, 29, "Input",ExpressionUUID->"e67f30d5-5a57-44e7-987f-b39033a4491c"], Cell[2149346, 64634, 1412, 38, 70, "Output",ExpressionUUID->"f219dda9-84a2-46a4-b01b-8671b6da4b41"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2150819, 64679, 154, 3, 37, "Subsection",ExpressionUUID->"4d832011-15b1-43e6-a6ed-468a084aa0a6"], Cell[CellGroupData[{ Cell[2150998, 64686, 439, 10, 29, "Input",ExpressionUUID->"d8227029-0f2d-4c60-9210-dee6a435d984"], Cell[2151440, 64698, 317, 10, 70, "Output",ExpressionUUID->"3a77dfcd-5bca-4d78-b0fc-e8a35cb1694d"] }, Open ]], Cell[CellGroupData[{ Cell[2151794, 64713, 260, 6, 29, "Input",ExpressionUUID->"12633efd-ada9-4e70-8f13-dd5b0115d2cb"], Cell[2152057, 64721, 4485, 115, 70, "Output",ExpressionUUID->"7e35c8be-ab04-48bb-823a-71a4bf61d790"] }, Open ]], Cell[CellGroupData[{ Cell[2156579, 64841, 211, 4, 43, "Subsubsection",ExpressionUUID->"8851721c-e66c-418b-b7e6-fd53d875a2c2"], Cell[CellGroupData[{ Cell[2156815, 64849, 474, 10, 29, "Input",ExpressionUUID->"a454b6de-d05a-4722-afa9-5bd543f0605a"], Cell[2157292, 64861, 1630, 44, 70, "Output",ExpressionUUID->"d245868d-4f2d-4208-a7fa-a2ae0030e3c9"] }, Open ]], Cell[CellGroupData[{ Cell[2158959, 64910, 513, 11, 29, "Input",ExpressionUUID->"d662186a-f580-4d81-a18b-fa98b6b40e6c"], Cell[2159475, 64923, 3406, 90, 70, "Output",ExpressionUUID->"f2109ccb-af94-4317-a476-55ae9373c091"] }, Open ]], Cell[CellGroupData[{ Cell[2162918, 65018, 545, 13, 29, "Input",ExpressionUUID->"0026852c-375f-42aa-acf9-76806ef6af05"], Cell[2163466, 65033, 1412, 38, 70, "Output",ExpressionUUID->"f4d84103-8e7e-41d2-ac48-0ef9d718324e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[2164951, 65079, 275, 5, 66, "Section",ExpressionUUID->"a2d6af6e-ead1-4efa-bcd3-0f8e6819f118"], Cell[CellGroupData[{ Cell[2165251, 65088, 295, 6, 29, "Input",ExpressionUUID->"f7b3a169-fcb1-464d-90e2-c6699f835aa9"], Cell[2165549, 65096, 274, 11, 70, "Output",ExpressionUUID->"ca081bbd-6a85-44de-bc96-c4ca6814818b"] }, Open ]], Cell[CellGroupData[{ Cell[2165860, 65112, 262, 6, 29, "Input",ExpressionUUID->"007b2a9f-9d5c-4f21-81f1-fd2c4dfb23de"], Cell[2166125, 65120, 999, 33, 70, "Output",ExpressionUUID->"64b6bb45-f143-43c0-82fb-683fd7e78f2d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2167173, 65159, 353, 6, 52, "Section",ExpressionUUID->"8efb5fa1-26c5-4c93-bfe9-db1f4302a5cd"], Cell[CellGroupData[{ Cell[2167551, 65169, 163, 3, 53, "Subsection",ExpressionUUID->"4ca85a63-4e21-46ff-a869-47846e981df5"], Cell[CellGroupData[{ Cell[2167739, 65176, 846, 16, 151, "Input",ExpressionUUID->"df4a6c71-b555-41aa-ac2b-0a889b33dd0e"], Cell[2168588, 65194, 317, 10, 70, "Output",ExpressionUUID->"b1528369-d4d4-4ede-89e7-739020ed39e2"] }, Open ]], Cell[CellGroupData[{ Cell[2168942, 65209, 342, 7, 29, "Input",ExpressionUUID->"92429419-d67a-4439-92ff-1615c7da8852"], Cell[2169287, 65218, 4786, 127, 70, "Output",ExpressionUUID->"60415b10-fe62-44aa-8bcf-bb46e50dbd4a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2174122, 65351, 172, 3, 37, "Subsection",ExpressionUUID->"cbeb2d66-0f24-44cf-8a69-cd8cb9835fd2"], Cell[CellGroupData[{ Cell[2174319, 65358, 450, 10, 29, "Input",ExpressionUUID->"040bc1a3-7376-4720-ba81-aa5dcb168868"], Cell[2174772, 65370, 1764, 50, 70, "Output",ExpressionUUID->"2fef7f4e-d472-4610-9ae2-1349930f532e"] }, Open ]], Cell[CellGroupData[{ Cell[2176573, 65425, 369, 9, 29, "Input",ExpressionUUID->"f512178d-d52c-4430-9882-9ce0c52e9ab9"], Cell[2176945, 65436, 3556, 98, 70, "Output",ExpressionUUID->"fa929679-cde5-4f27-8fa9-09a01125d91a"] }, Open ]], Cell[CellGroupData[{ Cell[2180538, 65539, 454, 12, 29, "Input",ExpressionUUID->"6846be88-ea83-4872-9581-f3b525121de9"], Cell[2180995, 65553, 1444, 42, 70, "Output",ExpressionUUID->"843eeb5f-604f-4597-a2a3-69951fc8a40a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2182488, 65601, 258, 4, 37, "Subsection",ExpressionUUID->"926c5e76-c1d6-4c51-bb1f-968612f2bde3"], Cell[CellGroupData[{ Cell[2182771, 65609, 251, 4, 43, "Subsubsection",ExpressionUUID->"252d141f-05d6-4e13-9566-5865ead766eb"], Cell[CellGroupData[{ Cell[2183047, 65617, 586, 17, 29, "Input",ExpressionUUID->"256433de-0c01-45af-a3d1-2b69d243a27c"], Cell[2183636, 65636, 982, 41, 70, "Output",ExpressionUUID->"d289ae44-1c74-44e9-941d-d4586f471395"] }, Open ]], Cell[CellGroupData[{ Cell[2184655, 65682, 526, 11, 29, "Input",ExpressionUUID->"3007e3a5-a224-414b-a9f8-0c8db43f9d5b"], Cell[2185184, 65695, 188, 6, 70, "Output",ExpressionUUID->"9a478231-b7b4-4701-baa0-c4683be66dad"] }, Open ]], Cell[CellGroupData[{ Cell[2185409, 65706, 514, 11, 29, "Input",ExpressionUUID->"bffb03a3-8988-49fc-a710-d1ef7436fe8b"], Cell[2185926, 65719, 893, 28, 70, "Output",ExpressionUUID->"68c2720a-1e86-4f7a-b444-1eec6e930956"] }, Open ]], Cell[CellGroupData[{ Cell[2186856, 65752, 598, 14, 29, "Input",ExpressionUUID->"47af7536-3c44-4b1d-af29-35416d492a4e"], Cell[2187457, 65768, 188, 6, 70, "Output",ExpressionUUID->"4a22274c-9af1-47dc-8289-06c1ab448040"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2187694, 65780, 171, 3, 35, "Subsubsection",ExpressionUUID->"1ab2db26-48ff-45ec-868f-0c06cd58f4a9"], Cell[CellGroupData[{ Cell[2187890, 65787, 426, 10, 29, "Input",ExpressionUUID->"ef8b00d9-134a-441e-b54b-b47c484904e0"], Cell[2188319, 65799, 632, 17, 70, "Output",ExpressionUUID->"4a7beef3-7705-4de0-b246-16f3a513875f"] }, Open ]], Cell[CellGroupData[{ Cell[2188988, 65821, 477, 11, 29, "Input",ExpressionUUID->"ee7022a7-30e6-47cc-9737-315e93562401"], Cell[2189468, 65834, 687, 19, 70, "Output",ExpressionUUID->"bfcc7d32-2480-40b2-bcb8-8c16464ddf5f"] }, Open ]], Cell[CellGroupData[{ Cell[2190192, 65858, 449, 10, 29, "Input",ExpressionUUID->"644a48b8-c389-4a43-889e-04c6c9c995d6"], Cell[2190644, 65870, 849, 24, 70, "Output",ExpressionUUID->"1d721d65-10d0-4221-8be1-012cf77ff27b"] }, Open ]], Cell[CellGroupData[{ Cell[2191530, 65899, 498, 11, 29, "Input",ExpressionUUID->"2661ddb3-e3ae-4a7b-ae3a-8b1b06e8eba3"], Cell[2192031, 65912, 871, 25, 70, "Output",ExpressionUUID->"8062962c-eca6-421c-9605-b7a2600f737e"] }, Open ]], Cell[CellGroupData[{ Cell[2192939, 65942, 499, 11, 29, "Input",ExpressionUUID->"8d51187e-5238-46ad-819c-875cef41dcb8"], Cell[2193441, 65955, 342, 9, 70, "Output",ExpressionUUID->"1daf365a-dd88-4059-b441-f402556d649c"] }, Open ]], Cell[CellGroupData[{ Cell[2193820, 65969, 548, 12, 29, "Input",ExpressionUUID->"08425118-d107-4771-9e55-1d59c59ec2fb"], Cell[2194371, 65983, 362, 10, 70, "Output",ExpressionUUID->"52189815-e458-4345-97d3-bc5dcfab9a86"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2194782, 65999, 218, 4, 35, "Subsubsection",ExpressionUUID->"6b6a7af5-5f25-4206-8f34-3b1b472468e4"], Cell[CellGroupData[{ Cell[2195025, 66007, 471, 12, 29, "Input",ExpressionUUID->"a5ae07d4-bcf1-41a7-b49e-5cadb7a70ce5"], Cell[2195499, 66021, 576, 17, 70, "Output",ExpressionUUID->"a82e3efd-93c6-4dbf-91d1-c754e271cc93"] }, Open ]], Cell[CellGroupData[{ Cell[2196112, 66043, 408, 11, 29, "Input",ExpressionUUID->"be609d3b-4c35-4570-a5ac-668a7375402a"], Cell[2196523, 66056, 602, 18, 70, "Output",ExpressionUUID->"828fc5ba-9d5d-45c3-ab6c-b42602fbab43"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2197174, 66080, 242, 4, 43, "Subsubsection",ExpressionUUID->"26c2ba11-4065-4b46-a290-b672e033215a"], Cell[CellGroupData[{ Cell[2197441, 66088, 469, 12, 29, "Input",ExpressionUUID->"32cb9010-0913-4ed4-8659-b451bee3e4c5"], Cell[2197913, 66102, 576, 17, 70, "Output",ExpressionUUID->"a151a0b4-a946-482a-9b8a-f98ddd79a337"] }, Open ]], Cell[CellGroupData[{ Cell[2198526, 66124, 408, 11, 29, "Input",ExpressionUUID->"4209226b-c499-4cf8-88b2-eaad98655d92"], Cell[2198937, 66137, 602, 18, 70, "Output",ExpressionUUID->"5ae6eac7-1a91-4a81-8752-4138854d9973"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2199588, 66161, 264, 4, 43, "Subsubsection",ExpressionUUID->"e4f19691-aeda-4cd4-a7c3-28cd2edc845b"], Cell[CellGroupData[{ Cell[2199877, 66169, 518, 13, 29, "Input",ExpressionUUID->"8a666b93-e30a-4707-9840-0653534da5ed"], Cell[2200398, 66184, 314, 9, 70, "Output",ExpressionUUID->"6e934184-f300-4bd4-80ae-9242256ed083"] }, Open ]], Cell[CellGroupData[{ Cell[2200749, 66198, 408, 11, 29, "Input",ExpressionUUID->"920bdc29-0f00-49c2-9ac8-e64b2f2bb2f2"], Cell[2201160, 66211, 246, 7, 70, "Output",ExpressionUUID->"a236b38e-f5f5-42b3-8d5d-44e4d2eb6968"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2201455, 66224, 266, 4, 43, "Subsubsection",ExpressionUUID->"f6b84d99-9e51-4a7b-8d9b-22c22c851036"], Cell[CellGroupData[{ Cell[2201746, 66232, 518, 13, 29, "Input",ExpressionUUID->"aa38d8dc-0f05-4dd5-8c4a-e36b38fc0520"], Cell[2202267, 66247, 333, 10, 70, "Output",ExpressionUUID->"95f7aff7-0a48-4b69-b25e-88a55d638fff"] }, Open ]], Cell[CellGroupData[{ Cell[2202637, 66262, 408, 11, 29, "Input",ExpressionUUID->"13fc5873-e302-4e07-a425-848dd37fa569"], Cell[2203048, 66275, 265, 8, 70, "Output",ExpressionUUID->"ef158daa-cfda-4e98-8c4e-f6c4db5881ae"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2203362, 66289, 314, 5, 43, "Subsubsection",ExpressionUUID->"326197be-2b7f-40f3-b67f-240d473dfb7c"], Cell[CellGroupData[{ Cell[2203701, 66298, 469, 12, 29, "Input",ExpressionUUID->"c883e2c5-847a-456f-94fc-fb9a65d8ad3f"], Cell[2204173, 66312, 2226, 62, 70, "Output",ExpressionUUID->"4841c195-5bf3-44a0-aee8-630ae8fab900"] }, Open ]], Cell[CellGroupData[{ Cell[2206436, 66379, 410, 11, 29, "Input",ExpressionUUID->"89b822e6-0691-44fb-8889-4176ec29a30f"], Cell[2206849, 66392, 1236, 35, 70, "Output",ExpressionUUID->"aa97640f-4175-4065-ba69-2e29222811e8"] }, Open ]], Cell[CellGroupData[{ Cell[2208122, 66432, 217, 4, 29, "Input",ExpressionUUID->"782ca74d-1bb9-46bf-b858-545cdc82648a"], Cell[2208342, 66438, 1236, 35, 70, "Output",ExpressionUUID->"7f2656bb-9181-46e9-a4bc-4569962d65d4"] }, Open ]], Cell[CellGroupData[{ Cell[2209615, 66478, 1068, 33, 42, "Input",ExpressionUUID->"7dc9ba28-a3f7-4a8a-a3ed-133c825a8dcc"], Cell[2210686, 66513, 1059, 31, 70, "Output",ExpressionUUID->"7d48dd02-d123-4809-be06-0e14909256c9"] }, Open ]], Cell[CellGroupData[{ Cell[2211782, 66549, 207, 4, 29, "Input",ExpressionUUID->"16b7ff1d-a108-4f13-a80f-c082542dee0b"], Cell[2211992, 66555, 1095, 33, 70, "Output",ExpressionUUID->"c4501a3f-06d0-4de9-9e69-1c0f9b26a857"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2213136, 66594, 315, 5, 43, "Subsubsection",ExpressionUUID->"df498970-3cd5-4111-826e-ca120a859528"], Cell[CellGroupData[{ Cell[2213476, 66603, 469, 12, 29, "Input",ExpressionUUID->"168a0e63-678f-4000-aa79-581db661733c"], Cell[2213948, 66617, 2226, 62, 70, "Output",ExpressionUUID->"5893cf49-ac28-4433-b5a1-2a7cc358bbf3"] }, Open ]], Cell[CellGroupData[{ Cell[2216211, 66684, 410, 11, 29, "Input",ExpressionUUID->"08ef1419-dd6e-4ce3-9800-90da925b12b2"], Cell[2216624, 66697, 1114, 34, 70, "Output",ExpressionUUID->"0f5ce436-466a-4563-8c9d-eae91948412b"] }, Open ]] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[2217811, 66739, 352, 5, 66, "Section",ExpressionUUID->"27d106c9-5041-4eb6-9425-86f6158d5422"], Cell[2218166, 66746, 606, 18, 29, "Input",ExpressionUUID->"73f51992-1632-4c45-ab97-be9414d52e0c"], Cell[CellGroupData[{ Cell[2218797, 66768, 265, 6, 29, "Input",ExpressionUUID->"8c3bc671-e7f2-41aa-9523-bfdca0581b43"], Cell[2219065, 66776, 29603, 708, 70, "Output",ExpressionUUID->"967bb102-daf3-4361-95dd-bc1352a55740"] }, Open ]], Cell[CellGroupData[{ Cell[2248705, 67489, 349, 8, 29, "Input",ExpressionUUID->"bd022190-03a1-4086-b6a2-61e8cf86daee"], Cell[2249057, 67499, 2611, 72, 70, "Output",ExpressionUUID->"b5f96f76-b5cd-4f6b-906d-c115462eb6ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2251717, 67577, 370, 6, 52, "Section",ExpressionUUID->"65f4ace4-11bf-44ab-971f-eea92c7e428b"], Cell[CellGroupData[{ Cell[2252112, 67587, 714, 18, 29, "Input",ExpressionUUID->"a7a2ad36-e814-4b56-beca-75d1cb64c909"], Cell[2252829, 67607, 1242, 36, 70, "Output",ExpressionUUID->"ae6baf48-e23b-4e8c-a166-dcde632672b9"] }, Open ]], Cell[CellGroupData[{ Cell[2254108, 67648, 257, 4, 53, "Subsection",ExpressionUUID->"3a6c8b92-0969-4f32-b4fe-01d396ec9b82"], Cell[CellGroupData[{ Cell[2254390, 67656, 454, 12, 29, "Input",ExpressionUUID->"cd43bb87-7878-496e-aa5f-66f5d03bab6e"], Cell[2254847, 67670, 112, 2, 70, "Output",ExpressionUUID->"9279b923-c68d-4809-92e8-c4d8ad12206b"] }, Open ]], Cell[CellGroupData[{ Cell[2254996, 67677, 787, 20, 70, "Input",ExpressionUUID->"d26d7b6e-6e50-4889-b554-3a130ba89d7b"], Cell[2255786, 67699, 466, 13, 70, "Output",ExpressionUUID->"5191ee0e-04a9-4d2d-8dac-77a09fcb1d80"] }, Open ]], Cell[CellGroupData[{ Cell[2256289, 67717, 902, 24, 70, "Input",ExpressionUUID->"aacefc23-4dba-40b7-a378-a4d1380597d6"], Cell[2257194, 67743, 112, 2, 70, "Output",ExpressionUUID->"2f188419-2c56-440c-9b97-70c494d1fb4f"] }, Open ]] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[2257379, 67753, 388, 6, 58, "Chapter",ExpressionUUID->"16b6a252-e86e-431d-8042-76c32efa2fe3"], Cell[CellGroupData[{ Cell[2257792, 67763, 348, 6, 67, "Section",ExpressionUUID->"7cb18a4c-dc3f-4bfb-927d-6f59e67863c3"], Cell[CellGroupData[{ Cell[2258165, 67773, 178, 3, 28, "Input",ExpressionUUID->"b6c20595-516b-4ea4-9fe3-9751cb2b2d04"], Cell[2258346, 67778, 1247, 46, 48, "Output",ExpressionUUID->"29ab23b3-1aea-42ff-a303-ad03c474c599"] }, Open ]], Cell[CellGroupData[{ Cell[2259630, 67829, 321, 8, 28, "Input",ExpressionUUID->"302c987c-b491-4495-8ee6-08db0ccbdbf3"], Cell[2259954, 67839, 532, 18, 37, "Output",ExpressionUUID->"752fd200-9def-4bb5-96c2-53f33c7d0e5c"] }, Open ]], Cell[CellGroupData[{ Cell[2260523, 67862, 275, 6, 28, "Input",ExpressionUUID->"f992bf21-f681-44fd-9b06-577096551b20"], Cell[2260801, 67870, 376, 14, 32, "Output",ExpressionUUID->"2a8e40c2-c90a-46f8-9011-ff25df0b4fc4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2261226, 67890, 385, 6, 67, "Section",ExpressionUUID->"822839cf-ae8f-413f-9087-63f8bce55750"], Cell[2261614, 67898, 249, 7, 28, "Input",ExpressionUUID->"a6ccefb4-7a64-4220-a4eb-5546efea91dd"] }, Open ]], Cell[CellGroupData[{ Cell[2261900, 67910, 341, 6, 67, "Section",ExpressionUUID->"8c98371d-f397-4826-8db8-698c8e8f6ccd"], Cell[2262244, 67918, 461, 14, 28, "Input",ExpressionUUID->"8f3b667a-1da1-4260-915c-8d5b4db68101"], Cell[CellGroupData[{ Cell[2262730, 67936, 286, 6, 28, "Input",ExpressionUUID->"0d215710-f237-47eb-8fa9-901eb69e4ce3"], Cell[2263019, 67944, 1813, 47, 135, "Output",ExpressionUUID->"faf6e4fc-3a5c-401a-80da-0089b72dbed7"] }, Open ]], Cell[CellGroupData[{ Cell[2264869, 67996, 243, 5, 28, "Input",ExpressionUUID->"e1441345-028a-4d85-9a5f-a74db5a47738"], Cell[2265115, 68003, 1301, 46, 36, "Output",ExpressionUUID->"0c6eede3-177e-4fc9-af3c-ddd41f1e444b"] }, Open ]], Cell[CellGroupData[{ Cell[2266453, 68054, 325, 8, 28, "Input",ExpressionUUID->"0a1bfdb2-8725-42db-abc9-94828cbb5930"], Cell[2266781, 68064, 1812, 47, 135, "Output",ExpressionUUID->"5798f2ce-c25d-495d-84a0-c819c174274b"] }, Open ]], Cell[CellGroupData[{ Cell[2268630, 68116, 386, 10, 28, "Input",ExpressionUUID->"91e9a05c-839b-439e-b527-cae724e909b8"], Cell[2269019, 68128, 754, 24, 95, "Output",ExpressionUUID->"f41f0a18-4382-4cf4-a868-57e863a99f24"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2269822, 68158, 519, 8, 71, "Section",ExpressionUUID->"c7054e38-c3ed-476e-bc60-b069cb811771"], Cell[2270344, 68168, 453, 12, 29, "Input",ExpressionUUID->"8f41af19-ed0f-4e69-84b5-e4be2f48ef3a"], Cell[CellGroupData[{ Cell[2270822, 68184, 204, 4, 29, "Input",ExpressionUUID->"32de12a4-e940-4840-8021-d18576ca3678"], Cell[2271029, 68190, 1855, 69, 70, "Output",ExpressionUUID->"3b3bbf64-c8f9-4de4-b7ad-c04501c5b7ce"] }, Open ]], Cell[CellGroupData[{ Cell[2272921, 68264, 336, 7, 29, "Input",ExpressionUUID->"0ade86f9-0ee5-446d-ab99-107d1a544155"], Cell[2273260, 68273, 3865, 103, 70, "Output",ExpressionUUID->"35e78df0-610a-4fbf-9c83-ff8565116c87"] }, Open ]], Cell[CellGroupData[{ Cell[2277162, 68381, 268, 6, 29, "Input",ExpressionUUID->"37ce915e-9470-431a-8ce1-188099b6f49f"], Cell[2277433, 68389, 1833, 68, 70, "Output",ExpressionUUID->"3441b44a-0d09-4af0-963c-a5ee441f056f"] }, Open ]], Cell[CellGroupData[{ Cell[2279303, 68462, 349, 9, 29, "Input",ExpressionUUID->"322b82c8-2e49-44b3-a51d-d32185b2c31c"], Cell[2279655, 68473, 3834, 102, 70, "Output",ExpressionUUID->"20262e66-8a4b-49d9-bd35-15da71eae29c"] }, Open ]], Cell[CellGroupData[{ Cell[2283526, 68580, 448, 10, 49, "Input",ExpressionUUID->"ad97d3c4-c233-402a-b770-ae50f01d1830"], Cell[2283977, 68592, 10047, 211, 70, "Output",ExpressionUUID->"d00a9ed4-d133-4517-bbc9-f1765a3d35da"], Cell[2294027, 68805, 809, 24, 70, "Output",ExpressionUUID->"056a06ab-6046-4fe8-b48c-7e4866c2900a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2294885, 68835, 472, 7, 53, "Section",ExpressionUUID->"1b33f294-a33d-4edb-a8a1-b02a2ebebf67"], Cell[CellGroupData[{ Cell[2295382, 68846, 179, 3, 54, "Subsection",ExpressionUUID->"49683bf2-4a72-480a-a859-75f55d4aa050"], Cell[CellGroupData[{ Cell[2295586, 68853, 397, 10, 28, "Input",ExpressionUUID->"be8b8a75-e3c2-417c-ad79-227b16fa6d36"], Cell[2295986, 68865, 1780, 68, 34, "Output",ExpressionUUID->"b955b70a-0240-42b3-9322-fa0f0479157b"] }, Open ]], Cell[CellGroupData[{ Cell[2297803, 68938, 423, 8, 67, "Input",ExpressionUUID->"381ae24d-6417-4cb9-baa0-18a92e8fcd93"], Cell[2298229, 68948, 9085, 192, 66, "Output",ExpressionUUID->"fc15b99c-f266-41b9-a445-d230d2138a5b"], Cell[2307317, 69142, 9085, 192, 66, "Output",ExpressionUUID->"709c0f86-9fe2-4357-9856-203915a7ff5d"], Cell[2316405, 69336, 115, 2, 32, "Output",ExpressionUUID->"c5ce9f18-ce7d-45b7-a2d0-8475167a721b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2316569, 69344, 225, 4, 54, "Subsection",ExpressionUUID->"aa5ad3ee-afbe-44b2-95aa-3b237f1a8b75"], Cell[CellGroupData[{ Cell[2316819, 69352, 413, 10, 28, "Input",ExpressionUUID->"19b08be8-ee39-41bc-8d4f-33979f0a5351"], Cell[2317235, 69364, 799, 33, 34, "Output",ExpressionUUID->"789bcce4-a480-4510-bc4d-32a20fa979a8"] }, Open ]], Cell[CellGroupData[{ Cell[2318071, 69402, 484, 10, 67, "Input",ExpressionUUID->"496057f3-fd27-456a-9693-f8424a6091df"], Cell[2318558, 69414, 10797, 226, 66, "Output",ExpressionUUID->"317f84c0-c158-4aa6-ae24-24b35339030f"], Cell[2329358, 69642, 10797, 226, 66, "Output",ExpressionUUID->"a7f7d9b4-d397-41fc-bd81-6e70ceecbf12"], Cell[2340158, 69870, 115, 2, 32, "Output",ExpressionUUID->"27f0d959-b678-4e07-b434-3b1505648766"] }, Open ]], Cell[CellGroupData[{ Cell[2340310, 69877, 362, 9, 28, "Input",ExpressionUUID->"03df4f51-8490-4ff0-9125-c3b13e1f56d1"], Cell[2340675, 69888, 3317, 122, 38, "Output",ExpressionUUID->"3c2ca800-384c-4d6d-bcda-68fe81e53edc"] }, Open ]], Cell[CellGroupData[{ Cell[2344029, 70015, 291, 5, 48, "Input",ExpressionUUID->"7e15e290-9247-4673-b1b4-1df2b6907a7a"], Cell[2344323, 70022, 12943, 270, 66, "Output",ExpressionUUID->"f9e67e31-f048-4983-ae4a-7f5382cdecd1"], Cell[2357269, 70294, 5773, 156, 142, "Output",ExpressionUUID->"90248029-bfcd-4b6e-b32e-8dc37f21d328"] }, Open ]], Cell[CellGroupData[{ Cell[2363079, 70455, 571, 14, 48, "Input",ExpressionUUID->"07e75111-37e4-47a0-ba94-68547f2eb1d4"], Cell[2363653, 70471, 11537, 241, 66, "Output",ExpressionUUID->"2be2912c-75f9-4699-9902-1d83692415b1"], Cell[2375193, 70714, 3194, 88, 147, "Output",ExpressionUUID->"c5693ac4-ae31-40b2-b231-100d4b0ad51c"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2378448, 70809, 569, 10, 67, "Section",ExpressionUUID->"0a48def0-ac2f-4d70-857a-002dceafaaac"], Cell[CellGroupData[{ Cell[2379042, 70823, 367, 6, 54, "Subsection",ExpressionUUID->"f85b0018-e152-4551-90c9-a6a2446db648"], Cell[2379412, 70831, 310, 7, 29, "Input",ExpressionUUID->"449c2004-4c38-4eaf-b550-cfac1df83bed"], Cell[CellGroupData[{ Cell[2379747, 70842, 313, 7, 29, "Input",ExpressionUUID->"6afc1b30-3bef-4d8c-b804-6e3f2de3aa7b"], Cell[2380063, 70851, 1813, 47, 70, "Output",ExpressionUUID->"85a34317-e787-4e53-97d6-2b8057383255"] }, Open ]], Cell[CellGroupData[{ Cell[2381913, 70903, 270, 6, 29, "Input",ExpressionUUID->"e5bc6ec2-06a0-4d3e-93c7-38baf01f49e7"], Cell[2382186, 70911, 1301, 46, 70, "Output",ExpressionUUID->"b621edb8-e8bb-4ebb-b3d9-8817303d17cc"] }, Open ]], Cell[CellGroupData[{ Cell[2383524, 70962, 352, 9, 29, "Input",ExpressionUUID->"5257fe55-9549-4908-b6ec-182703911c1a"], Cell[2383879, 70973, 1812, 47, 70, "Output",ExpressionUUID->"0a94b555-72c5-423e-aeec-0f6091273650"] }, Open ]], Cell[CellGroupData[{ Cell[2385728, 71025, 437, 11, 29, "Input",ExpressionUUID->"6eb1ade3-9361-4865-a15e-11ec010c1016"], Cell[2386168, 71038, 754, 24, 70, "Output",ExpressionUUID->"83821af8-e3d5-43ab-a8bf-97bf3ad91aa8"] }, Open ]] }, Closed]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2386995, 71070, 410, 6, 58, "Chapter",ExpressionUUID->"1c0bea02-defd-40bc-8cd1-cb685d69b670"], Cell[CellGroupData[{ Cell[2387430, 71080, 637, 9, 67, "Section",ExpressionUUID->"21f8b3d1-d1ad-4f8d-9238-d93e9a342e92"], Cell[2388070, 71091, 370, 12, 28, "Input",ExpressionUUID->"c9afce2e-e3fe-4a9c-8898-58bbe71ff512"], Cell[CellGroupData[{ Cell[2388465, 71107, 139, 3, 28, "Input",ExpressionUUID->"a3aa29df-c78f-4551-bc05-052e7a7f6104"], Cell[2388607, 71112, 1369, 49, 36, "Output",ExpressionUUID->"f1eb2e1e-84cc-4ed2-87a1-7b671ba27685"] }, Open ]], Cell[CellGroupData[{ Cell[2390013, 71166, 148, 3, 45, "Subsubsection",ExpressionUUID->"147d7803-5be1-4286-94be-911dfa71fb1f"], Cell[2390164, 71171, 717, 19, 28, "Input",ExpressionUUID->"598cb6da-5847-4800-833b-0a06c79d4cc1"], Cell[CellGroupData[{ Cell[2390906, 71194, 200, 4, 28, "Input",ExpressionUUID->"bb2b85d9-a22a-4ffa-83b0-fabd8eb294b1"], Cell[2391109, 71200, 6177, 203, 48, "Output",ExpressionUUID->"f5b26267-164d-453b-9a29-e4be8d91edc4"] }, Open ]], Cell[CellGroupData[{ Cell[2397323, 71408, 310, 7, 28, "Input",ExpressionUUID->"17c04832-91d6-4a62-952c-0cdaa915903b"], Cell[2397636, 71417, 2158, 60, 132, "Output",ExpressionUUID->"4747b198-a13e-4118-a977-c5ca11a4f0e3"] }, Open ]], Cell[CellGroupData[{ Cell[2399831, 71482, 482, 12, 28, "Input",ExpressionUUID->"d3366058-adf0-41e6-91e9-4f12eaf1e461"], Cell[2400316, 71496, 281, 8, 35, "Output",ExpressionUUID->"d0f6b76b-00c7-4084-b331-b868ef087365"] }, Open ]], Cell[CellGroupData[{ Cell[2400634, 71509, 485, 12, 28, "Input",ExpressionUUID->"24e207c4-62dd-457f-ab88-f7e7656f388c"], Cell[2401122, 71523, 112, 2, 32, "Output",ExpressionUUID->"4d10ce3b-99b2-4252-8737-1c4881d9dd55"] }, Open ]], Cell[CellGroupData[{ Cell[2401271, 71530, 561, 14, 28, "Input",ExpressionUUID->"e8fc3c4e-3e49-43b7-a790-a9eac934770e"], Cell[2401835, 71546, 391, 11, 35, "Output",ExpressionUUID->"77f67bd7-d656-4530-a08d-9204adafd96f"] }, Open ]], Cell[CellGroupData[{ Cell[2402263, 71562, 564, 14, 28, "Input",ExpressionUUID->"0ad11bdb-fc10-4173-8487-9fc304dd29bc"], Cell[2402830, 71578, 391, 11, 35, "Output",ExpressionUUID->"a7bc6a1c-c871-4737-9c1a-a2bfdad587fe"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2403270, 71595, 172, 3, 45, "Subsubsection",ExpressionUUID->"17742d82-5b2b-4b87-bdbf-572b5fc4e3b8"], Cell[2403445, 71600, 766, 20, 28, "Input",ExpressionUUID->"fc7d9cf2-da00-47f0-acdb-028fd7530cf9"], Cell[CellGroupData[{ Cell[2404236, 71624, 222, 4, 28, "Input",ExpressionUUID->"faacebb7-2094-4007-b29c-5e19a365cf84"], Cell[2404461, 71630, 6177, 203, 48, "Output",ExpressionUUID->"d648bd33-5c87-4e47-8580-038fb5a425fc"] }, Open ]], Cell[CellGroupData[{ Cell[2410675, 71838, 336, 8, 28, "Input",ExpressionUUID->"7608b111-34ae-4afb-9f14-9515dbf333ea"], Cell[2411014, 71848, 2581, 70, 137, "Output",ExpressionUUID->"d294cc7f-0e35-4d68-950c-c8f01dac8210"] }, Open ]], Cell[CellGroupData[{ Cell[2413632, 71923, 608, 15, 28, "Input",ExpressionUUID->"df81a57f-ff17-40fa-b587-650ceb01c943"], Cell[2414243, 71940, 381, 11, 35, "Output",ExpressionUUID->"274faf66-ccf1-431b-9ba6-72543a097102"] }, Open ]], Cell[CellGroupData[{ Cell[2414661, 71956, 608, 15, 28, "Input",ExpressionUUID->"30331923-e353-448c-a23e-ef7229f91cd7"], Cell[2415272, 71973, 381, 11, 35, "Output",ExpressionUUID->"07d88dd8-50e0-4511-9dcd-4817c2fd59cc"] }, Open ]], Cell[CellGroupData[{ Cell[2415690, 71989, 608, 15, 28, "Input",ExpressionUUID->"f2c75daa-9597-40b2-8383-5eafe4d07b5e"], Cell[2416301, 72006, 381, 11, 35, "Output",ExpressionUUID->"0de5c66f-44ec-4043-94c3-2c3b6cb5535e"] }, Open ]], Cell[CellGroupData[{ Cell[2416719, 72022, 608, 15, 28, "Input",ExpressionUUID->"5460a154-8485-458f-bbce-489ec4b2aa9b"], Cell[2417330, 72039, 381, 11, 35, "Output",ExpressionUUID->"07397424-3067-49b1-aa43-f45fd8196e70"] }, Open ]], Cell[CellGroupData[{ Cell[2417748, 72055, 522, 14, 28, "Input",ExpressionUUID->"89e13d47-cc22-4621-bc40-a1c8d438216d"], Cell[2418273, 72071, 428, 17, 35, "Output",ExpressionUUID->"1dee1bff-2884-45a4-86a6-8c7a7470dc47"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2418750, 72094, 225, 4, 45, "Subsubsection",ExpressionUUID->"3eaca01f-bd9b-4d5c-b54a-93c9ecd7d8a6"], Cell[2418978, 72100, 432, 13, 28, "Input",ExpressionUUID->"1d43291e-0a96-4627-b677-8b365cd453a1"], Cell[CellGroupData[{ Cell[2419435, 72117, 206, 4, 28, "Input",ExpressionUUID->"25654b89-7a78-4b6e-81f5-d10ed34246ee"], Cell[2419644, 72123, 1963, 73, 38, "Output",ExpressionUUID->"0ce9dc1e-74f7-434b-982f-e1dd22997f52"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2421656, 72202, 210, 4, 45, "Subsubsection",ExpressionUUID->"8bd5baa2-6677-4418-a6d2-0d24be6365b3"], Cell[CellGroupData[{ Cell[2421891, 72210, 976, 27, 28, "Input",ExpressionUUID->"bbf793dd-650f-463e-a2c1-2d3b6ac36fe3"], Cell[2422870, 72239, 11556, 381, 111, "Output",ExpressionUUID->"3956f8b7-8545-42c5-b9a4-8f2cb47f2fc8"] }, Open ]], Cell[CellGroupData[{ Cell[2434463, 72625, 261, 5, 28, "Input",ExpressionUUID->"8e11557a-fe5e-4d66-9b5b-e4a3564d7f12"], Cell[2434727, 72632, 21831, 772, 158, "Output",ExpressionUUID->"7eb65dff-1c24-43fa-afba-65474013fdae"] }, Open ]], Cell[CellGroupData[{ Cell[2456595, 73409, 433, 11, 28, "Input",ExpressionUUID->"a8373304-6401-4d94-b7fc-8d17e1b0411f"], Cell[2457031, 73422, 112, 2, 32, "Output",ExpressionUUID->"d6d6e11a-c3f4-4665-bc8d-a774f0140b68"] }, Open ]], Cell[CellGroupData[{ Cell[2457180, 73429, 557, 14, 28, "Input",ExpressionUUID->"1763a76b-fa53-4613-9d5c-dc4e7f5863fd"], Cell[2457740, 73445, 346, 10, 32, "Output",ExpressionUUID->"6144e79c-a855-4000-93c6-824448330039"] }, Open ]], Cell[CellGroupData[{ Cell[2458123, 73460, 553, 14, 28, "Input",ExpressionUUID->"39ec5bc9-5325-4448-890c-6a8a26944bad"], Cell[2458679, 73476, 340, 9, 32, "Output",ExpressionUUID->"9ee35487-1460-47a0-8b0f-32374ada716d"] }, Open ]], Cell[CellGroupData[{ Cell[2459056, 73490, 412, 10, 28, "Input",ExpressionUUID->"3477ba7b-9d55-4900-8567-6b50685bffcd"], Cell[2459471, 73502, 5793, 163, 160, "Output",ExpressionUUID->"95cb1d57-c93d-4541-8c5f-e6545a33a62d"] }, Open ]], Cell[CellGroupData[{ Cell[2465301, 73670, 696, 19, 67, "Input",ExpressionUUID->"e0a52c38-4f8d-4e56-8eb3-5f840f37e226"], Cell[2466000, 73691, 2277, 73, 160, "Output",ExpressionUUID->"97ec9518-f3b0-4358-b6a4-9da10309450a"] }, Open ]], Cell[CellGroupData[{ Cell[2468314, 73769, 743, 20, 67, "Input",ExpressionUUID->"b6a97fb7-e42d-4430-87bd-1dd5330ad195"], Cell[2469060, 73791, 2277, 73, 160, "Output",ExpressionUUID->"6253e8c0-9982-43e7-85ce-d660aa3d2aa0"] }, Open ]], Cell[CellGroupData[{ Cell[2471374, 73869, 742, 20, 67, "Input",ExpressionUUID->"8d216311-48c5-40c9-9efb-f2f67889470e"], Cell[2472119, 73891, 2277, 73, 160, "Output",ExpressionUUID->"78a6ecaa-7a18-4e2c-9b0e-cf3a65394216"] }, Open ]], Cell[CellGroupData[{ Cell[2474433, 73969, 398, 10, 28, "Input",ExpressionUUID->"0edb1304-d612-4046-a3c3-b3ec59cd8211"], Cell[2474834, 73981, 634, 16, 32, "Output",ExpressionUUID->"6343ec1c-c49c-4cb0-8f0e-78629a99ce78"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2475541, 74005, 209, 4, 69, "Chapter",ExpressionUUID->"cb1f292a-3af2-4bb8-96e3-83c6168b74a2"], Cell[CellGroupData[{ Cell[2475775, 74013, 590, 9, 54, "Subsection",ExpressionUUID->"0003ea1a-ec10-4145-9a02-07f9571329b2"], Cell[CellGroupData[{ Cell[2476390, 74026, 2247, 53, 181, "Input",ExpressionUUID->"8b06b61e-7301-4499-8384-bdacbb9c1827"], Cell[2478640, 74081, 2024, 32, 28, "Message",ExpressionUUID->"f49ad752-871a-4e80-91e4-c829cac352bc"], Cell[2480667, 74115, 118, 2, 32, "Output",ExpressionUUID->"aa83dd20-4cb3-41aa-a085-e2742240457e"] }, Open ]], Cell[CellGroupData[{ Cell[2480822, 74122, 286, 6, 28, "Input",ExpressionUUID->"893011e2-6f82-4b71-8165-b2e411a9aa02"], Cell[2481111, 74130, 1691, 49, 32, "Output",ExpressionUUID->"bffa48d7-2842-4f06-a0fb-7f267ae656ba"] }, Open ]], Cell[CellGroupData[{ Cell[2482839, 74184, 491, 13, 28, "Input",ExpressionUUID->"198cf943-e5f6-4237-afc8-a6c87f6d4910"], Cell[2483333, 74199, 633, 13, 28, "Message",ExpressionUUID->"5a70eb22-f725-44e4-bf84-2479c9620b5c"], Cell[2483969, 74214, 118, 2, 32, "Output",ExpressionUUID->"99129378-b8d9-4556-b119-cd84c57154f6"] }, Open ]], Cell[CellGroupData[{ Cell[2484124, 74221, 261, 6, 28, "Input",ExpressionUUID->"046ec13d-2e5d-498c-aac9-46b1bca04a5b"], Cell[2484388, 74229, 1582, 45, 35, "Output",ExpressionUUID->"889ede33-e961-41bc-a253-fc5fee5c421f"] }, Open ]], Cell[CellGroupData[{ Cell[2486007, 74279, 2117, 44, 181, "Input",ExpressionUUID->"a38fa502-ab79-4fba-b877-eb1d2178e972"], Cell[2488127, 74325, 15271, 306, 399, "Output",ExpressionUUID->"1ca673ab-70c2-4485-bcbd-7d92282a663e"] }, Open ]], Cell[CellGroupData[{ Cell[2503435, 74636, 2142, 44, 181, "Input",ExpressionUUID->"80b4eb01-8b5d-4d1b-a716-dd90b8789864"], Cell[2505580, 74682, 15272, 306, 403, "Output",ExpressionUUID->"18ddcdec-443e-4e9b-95c7-678375781e34"] }, Open ]], Cell[CellGroupData[{ Cell[2520889, 74993, 2769, 59, 219, "Input",ExpressionUUID->"1d489997-9f05-4901-832d-7af6a512c88f"], Cell[2523661, 75054, 16585, 342, 388, "Output",ExpressionUUID->"64f15644-3b43-491f-a91d-ff1736d157de"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2540295, 75402, 559, 9, 54, "Subsection",ExpressionUUID->"260aa715-92bb-42ae-9560-424783704ee8"], Cell[CellGroupData[{ Cell[2540879, 75415, 1506, 37, 131, "Input",ExpressionUUID->"0e551822-89bf-4d68-90d5-ae6b629e10a6"], Cell[2542388, 75454, 401, 9, 70, "Message",ExpressionUUID->"122791aa-a153-4db9-b86a-387af746c86f"] }, Open ]], Cell[CellGroupData[{ Cell[2542826, 75468, 283, 6, 29, "Input",ExpressionUUID->"dc335a27-bf29-47ae-bbda-9039383162e0"], Cell[2543112, 75476, 1504, 42, 70, "Output",ExpressionUUID->"bcdeb9c8-c196-4122-b732-eca83b865bbd"] }, Open ]], Cell[2544631, 75521, 664, 16, 29, "Input",ExpressionUUID->"0f628092-8c0b-40b9-bd20-c47303649527"], Cell[CellGroupData[{ Cell[2545320, 75541, 532, 14, 29, "Input",ExpressionUUID->"d5dbc7b6-185c-4f97-86fd-994ea346d218"], Cell[2545855, 75557, 1667, 45, 70, "Output",ExpressionUUID->"6e3d28cd-5d38-42d3-bb86-c9ccac847fb8"] }, Open ]], Cell[CellGroupData[{ Cell[2547559, 75607, 2835, 61, 233, "Input",ExpressionUUID->"8ecbb31d-e101-4c51-8088-a5e818e48e33"], Cell[2550397, 75670, 16598, 342, 70, "Output",ExpressionUUID->"075ea708-6e6d-4953-aee7-f7b87025930e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2567044, 76018, 656, 10, 38, "Subsection",ExpressionUUID->"d1697033-51cc-4906-ba3f-e2041d52f813"], Cell[CellGroupData[{ Cell[2567725, 76032, 1654, 40, 151, "Input",ExpressionUUID->"c903c93b-33f9-4013-b5a5-81725828f677"], Cell[2569382, 76074, 2025, 32, 70, "Message",ExpressionUUID->"187213b0-9486-44f7-bf75-2ff727632db2"] }, Open ]], Cell[CellGroupData[{ Cell[2571444, 76111, 313, 7, 29, "Input",ExpressionUUID->"4ce46660-ab61-4555-9383-146d244f6984"], Cell[2571760, 76120, 1508, 42, 70, "Output",ExpressionUUID->"952b3597-68bd-43c5-af58-6d82651b5f1b"] }, Open ]], Cell[CellGroupData[{ Cell[2573305, 76167, 721, 17, 29, "Input",ExpressionUUID->"f1083b83-aaa4-4d9e-b451-36958a742df0"], Cell[2574029, 76186, 611, 12, 70, "Message",ExpressionUUID->"31c6027b-d49a-417e-84d0-bf281e809f0d"], Cell[2574643, 76200, 118, 2, 70, "Output",ExpressionUUID->"2df749d1-3b2d-4949-8100-5354d6ab846f"] }, Open ]], Cell[CellGroupData[{ Cell[2574798, 76207, 558, 14, 29, "Input",ExpressionUUID->"d2aff45d-50e1-42f3-a5db-23f38090b319"], Cell[2575359, 76223, 311, 9, 70, "Output",ExpressionUUID->"8c336d6b-d46c-48f5-bf3e-a73c12f055d5"] }, Open ]], Cell[CellGroupData[{ Cell[2575707, 76237, 3013, 64, 233, "Input",ExpressionUUID->"d9f32874-8c4a-4616-ad20-4e7245095f88"], Cell[2578723, 76303, 16875, 350, 70, "Output",ExpressionUUID->"ae3ed98a-ec67-47c8-9a89-c69cdd83bf77"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2595647, 76659, 628, 9, 38, "Subsection",ExpressionUUID->"778cf154-0773-4d02-b793-7cf9c4a542b5"], Cell[CellGroupData[{ Cell[2596300, 76672, 251, 5, 29, "Input",ExpressionUUID->"5290ac33-34f2-4c70-8ae9-86aaced5f069"], Cell[2596554, 76679, 767, 15, 70, "Message",ExpressionUUID->"f911faf2-50c3-46b7-8281-46a5342bd39d"] }, Open ]], Cell[CellGroupData[{ Cell[2597358, 76699, 3011, 74, 356, "Input",ExpressionUUID->"66b605e6-348a-4f5d-9d52-7c3929c9a637"], Cell[2600372, 76775, 401, 9, 70, "Message",ExpressionUUID->"88c4b6e7-199f-4ea3-9a7a-64dd0ba3d26f"] }, Open ]], Cell[CellGroupData[{ Cell[2600810, 76789, 568, 14, 29, "Input",ExpressionUUID->"abbe3974-1566-4ef3-b290-7a95ee1e3e90"], Cell[2601381, 76805, 1576, 44, 70, "Output",ExpressionUUID->"3e55a67e-7209-4929-a284-b4e7e60de503"] }, Open ]], Cell[CellGroupData[{ Cell[2602994, 76854, 2817, 59, 254, "Input",ExpressionUUID->"0cf68543-4c2d-4964-ac22-77b0fd1c631a"], Cell[2605814, 76915, 14868, 299, 70, "Output",ExpressionUUID->"a7cff107-6dcc-435a-b9e5-4dd01f8eaadc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2620731, 77220, 666, 10, 38, "Subsection",ExpressionUUID->"207ac694-3ec1-43cb-8912-7285e1aa4057"], Cell[CellGroupData[{ Cell[2621422, 77234, 271, 6, 28, "Input",ExpressionUUID->"f5a23d14-9f92-4aca-91ed-b9134c0ed518"], Cell[2621696, 77242, 1604, 24, 90, "Output",ExpressionUUID->"6a2263d3-fcf4-4685-b546-944787749a29"] }, Open ]], Cell[2623315, 77269, 371, 9, 28, "Input",ExpressionUUID->"2de953ed-dbbe-4175-9ca8-a1b7383c04d3"], Cell[CellGroupData[{ Cell[2623711, 77282, 492, 12, 31, "Input",ExpressionUUID->"93a0da4d-ac25-43cd-8807-94e1ad5791fa"], Cell[2624206, 77296, 166, 4, 32, "Output",ExpressionUUID->"599a9831-4f83-4695-88a0-8458ad817ef3"] }, Open ]], Cell[CellGroupData[{ Cell[2624409, 77305, 394, 9, 28, "Input",ExpressionUUID->"93894482-de64-4fb1-b247-ee1c66f94105"], Cell[2624806, 77316, 12375, 233, 81, "Output",ExpressionUUID->"50fedc35-c875-4e5b-b7aa-11da865f2578"] }, Open ]], Cell[CellGroupData[{ Cell[2637218, 77554, 4999, 102, 352, "Input",ExpressionUUID->"28852584-f3d5-46e6-8d15-b292cc932dac"], Cell[2642220, 77658, 23521, 490, 392, "Output",ExpressionUUID->"af187061-9e46-4bde-b49b-ca463daa26d1"] }, Open ]], Cell[2665756, 78151, 371, 9, 28, "Input",ExpressionUUID->"0812c6be-1541-4932-81d6-7dc5295d244f"], Cell[CellGroupData[{ Cell[2666152, 78164, 599, 13, 31, "Input",ExpressionUUID->"eff51670-d406-44a4-b438-2d2a1bbe78bb"], Cell[2666754, 78179, 167, 4, 32, "Output",ExpressionUUID->"3c15dfd9-ec0e-41eb-8de1-8c0fb26c4b6f"] }, Open ]], Cell[CellGroupData[{ Cell[2666958, 78188, 4418, 94, 352, "Input",ExpressionUUID->"fc06c197-67a0-461f-baec-57fd988a1f9b"], Cell[2671379, 78284, 23543, 491, 392, "Output",ExpressionUUID->"d7771f15-5b0a-4960-b2e4-90e55b1c27bc"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2694983, 78782, 265, 4, 69, "Chapter",ExpressionUUID->"8bfc1f6d-9bbd-40c3-99ce-caf92ea230ba"], Cell[CellGroupData[{ Cell[2695273, 78790, 441, 9, 67, "Input",ExpressionUUID->"64b54d4a-e7c1-460a-8c84-59b1ff36bb7e"], Cell[2695717, 78801, 593, 12, 28, "Message",ExpressionUUID->"648128dd-1e1d-4753-b138-baddc5b02b42"], Cell[2696313, 78815, 806, 15, 28, "Message",ExpressionUUID->"eea16c3b-aea4-4fd5-88e4-add7bdbe5132"] }, Open ]], Cell[CellGroupData[{ Cell[2697156, 78835, 1090, 29, 105, "Input",ExpressionUUID->"3d6b61f5-0623-41d0-a6bb-edc9cb869886"], Cell[2698249, 78866, 2855, 77, 56, "Output",ExpressionUUID->"b295bafc-fdd2-4f22-ab1d-cc111e933c83"] }, Open ]], Cell[CellGroupData[{ Cell[2701141, 78948, 264, 6, 28, "Input",ExpressionUUID->"d15ac049-a2d7-4f1d-bebc-c8dfafc84bed"], Cell[2701408, 78956, 1747, 53, 162, "Output",ExpressionUUID->"ab137841-f602-49bc-b7d1-b4a88f5bdb43"] }, Open ]], Cell[CellGroupData[{ Cell[2703192, 79014, 435, 11, 28, "Input",ExpressionUUID->"3e54c84b-bc7f-4aa7-852a-32c7e418aee5"], Cell[2703630, 79027, 16489, 547, 114, "Output",ExpressionUUID->"7c33528c-a17d-482a-acf9-394b31dedcec"] }, Open ]], Cell[CellGroupData[{ Cell[2720156, 79579, 269, 6, 28, "Input",ExpressionUUID->"6083a1e9-87bd-4005-80ba-57267ba87d2b"], Cell[2720428, 79587, 3553, 103, 160, "Output",ExpressionUUID->"a0f95b91-56fc-474a-969a-75aa11125a20"] }, Open ]], Cell[CellGroupData[{ Cell[2724018, 79695, 393, 10, 28, "Input",ExpressionUUID->"14e769e7-8299-4897-a0b8-f2b950edde62"], Cell[2724414, 79707, 220, 6, 32, "Output",ExpressionUUID->"9b07aff5-a1d5-44ae-b8db-7c704eee64b9"] }, Open ]], Cell[CellGroupData[{ Cell[2724671, 79718, 340, 8, 28, "Input",ExpressionUUID->"b626b9a1-26df-4d92-bf0d-22ddaa63af7f"], Cell[2725014, 79728, 250, 7, 32, "Output",ExpressionUUID->"bce573c0-354b-4435-a053-d188503fbecc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2725313, 79741, 107, 0, 69, "Chapter",ExpressionUUID->"7256d7f6-f390-4a88-89ab-3d9d888a5cf0"], Cell[CellGroupData[{ Cell[2725445, 79745, 79, 0, 67, "Section",ExpressionUUID->"a8deb5a2-029f-4c82-ab1c-252865415769"], Cell[2725527, 79747, 162, 3, 28, "Input",ExpressionUUID->"b4b287b5-bf88-4fac-b895-8ab02babcaa4"], Cell[CellGroupData[{ Cell[2725714, 79754, 150, 3, 28, "Input",ExpressionUUID->"88c00b8a-9145-4c20-b610-7cf847f7de77"], Cell[2725867, 79759, 593, 12, 28, "Message",ExpressionUUID->"8d4056d2-791d-437e-8832-33bf3e6cf09d"] }, Open ]], Cell[CellGroupData[{ Cell[2726497, 79776, 186, 4, 28, "Input",ExpressionUUID->"874987bd-4252-4d58-94cf-141c90560ddc"], Cell[2726686, 79782, 767, 15, 28, "Message",ExpressionUUID->"173a5a52-2188-45b1-9b77-9248ad288c39"] }, Open ]], Cell[CellGroupData[{ Cell[2727490, 79802, 204, 4, 28, "Input",ExpressionUUID->"548a80d2-31da-4120-a439-610384b92269"], Cell[2727697, 79808, 806, 15, 28, "Message",ExpressionUUID->"64fc7885-3596-4a59-95b6-9444df11b51e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2728552, 79829, 91, 0, 53, "Section",ExpressionUUID->"8c2824e4-8ff8-4dd4-96f1-18e4e25e5797"], Cell[CellGroupData[{ Cell[2728668, 79833, 263, 7, 28, "Input",ExpressionUUID->"1fad59b4-3da4-44cb-b5fd-98fdedbfacfd"], Cell[2728934, 79842, 532, 18, 37, "Output",ExpressionUUID->"a837428e-8084-4f03-8cd6-c1cd76bd30c3"] }, Open ]], Cell[CellGroupData[{ Cell[2729503, 79865, 343, 9, 28, "Input",ExpressionUUID->"134c50f4-0b65-4f14-ac76-d0db88290ed1"], Cell[2729849, 79876, 560, 14, 32, "Output",ExpressionUUID->"9c2b0054-0629-4126-9876-c4398de0b614"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2730458, 79896, 116, 0, 53, "Section",ExpressionUUID->"9026b92a-4f42-4807-ad7f-f5fdc98dc114"], Cell[CellGroupData[{ Cell[2730599, 79900, 332, 9, 28, "Input",ExpressionUUID->"8467fe8b-6d48-4a09-861d-0b71fb6bfc58"], Cell[2730934, 79911, 473, 15, 32, "Output",ExpressionUUID->"24e7d3ba-9bf9-423e-966c-ed7158df7089"] }, Open ]], Cell[CellGroupData[{ Cell[2731444, 79931, 1188, 34, 28, "Input",ExpressionUUID->"75ea49f1-cdf4-4da4-9b07-bf2a55b6bfca"], Cell[2732635, 79967, 2094, 60, 83, "Output",ExpressionUUID->"2eab889e-c941-4058-94cf-9134ea7ec6c0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2734778, 80033, 109, 0, 53, "Section",ExpressionUUID->"3ee80749-a68e-49a4-850c-7ffa8b1fdb22"], Cell[2734890, 80035, 110, 2, 28, "Input",ExpressionUUID->"de24e827-a692-45e4-bc60-6eba9d3aa668"], Cell[CellGroupData[{ Cell[2735025, 80041, 878, 18, 48, "Input",ExpressionUUID->"c9ed90ad-1c7b-4576-a61e-5c780c0017f2"], Cell[2735906, 80061, 1450, 51, 32, "Output",ExpressionUUID->"c31cf74a-d72d-4e13-b72d-7a6a664529a6"] }, Open ]], Cell[CellGroupData[{ Cell[2737393, 80117, 102, 0, 54, "Subsection",ExpressionUUID->"ef526673-76b4-4470-8326-5ebf6da35860"], Cell[2737498, 80119, 1085, 30, 48, "Input",ExpressionUUID->"3299f6c3-e4e7-4f7d-850f-554c5cfb0a60"] }, Open ]], Cell[CellGroupData[{ Cell[2738620, 80154, 106, 0, 54, "Subsection",ExpressionUUID->"9708921a-c863-46b7-8324-a5a652df63ca"], Cell[2738729, 80156, 462, 12, 28, "Input",ExpressionUUID->"e7a27f82-0c53-43ef-a2ea-a5dbf909d6d3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2739240, 80174, 99, 0, 53, "Section",ExpressionUUID->"0f1e027f-c92c-495c-a1ed-632185adbe2a"], Cell[CellGroupData[{ Cell[2739364, 80178, 121, 0, 54, "Subsection",ExpressionUUID->"ff915701-9d9c-4fa0-a54c-d6957a84e4b2"], Cell[2739488, 80180, 1565, 44, 67, "Input",ExpressionUUID->"9f5f60c9-1888-4f8c-82c1-6b1f5f559f01"] }, Open ]], Cell[CellGroupData[{ Cell[2741090, 80229, 138, 1, 54, "Subsection",ExpressionUUID->"e04cbba1-65ae-4317-b9d5-e2899d912de3"], Cell[2741231, 80232, 210, 3, 35, "Text",ExpressionUUID->"94027e3a-ab41-4b1d-bded-628c806cb662"], Cell[CellGroupData[{ Cell[2741466, 80239, 327, 9, 28, "Input",ExpressionUUID->"80c2f67f-9fdd-4406-a994-016cde5dc714"], Cell[2741796, 80250, 473, 15, 32, "Output",ExpressionUUID->"001aa639-52bb-4db7-8c08-da56c410630d"] }, Open ]], Cell[2742284, 80268, 110, 2, 28, "Input",ExpressionUUID->"b5db8db2-bcc6-4ff9-8b00-67d145410448"], Cell[CellGroupData[{ Cell[2742419, 80274, 917, 28, 28, "Input",ExpressionUUID->"b9760c07-af22-4232-b6e3-cdba8f8d6fbe"], Cell[2743339, 80304, 3911, 108, 57, "Output",ExpressionUUID->"e139ae52-408e-4cf3-bbf7-b9d2aa583f2f"] }, Open ]], Cell[2747265, 80415, 900, 23, 81, "Text",ExpressionUUID->"87a164cd-8c60-40d7-b7e9-832800db7d1e"], Cell[CellGroupData[{ Cell[2748190, 80442, 567, 16, 28, "Input",ExpressionUUID->"8b3850c4-2eed-4fe9-83e4-1b7b1d9eaf91"], Cell[2748760, 80460, 420, 10, 28, "Message",ExpressionUUID->"bf750b47-ce7f-497a-9b30-caf1b8372c80"], Cell[2749183, 80472, 118, 2, 32, "Output",ExpressionUUID->"70dcdce5-af5e-4dc8-8851-604ebda46316"] }, Open ]], Cell[2749316, 80477, 152, 2, 35, "Text",ExpressionUUID->"8b0af256-7a68-4482-94c2-4ddde7c9fdf0"], Cell[2749471, 80481, 319, 9, 28, "Input",ExpressionUUID->"f303de7b-7996-449e-a575-e4eff8a4fc42"], Cell[2749793, 80492, 111, 0, 35, "Text",ExpressionUUID->"0b364137-59c8-4067-bd89-ce8c734c8b58"], Cell[CellGroupData[{ Cell[2749929, 80496, 1361, 42, 28, "Input",ExpressionUUID->"e89b3388-eaef-49b6-936c-ed6c86080a92"], Cell[2751293, 80540, 1192, 37, 35, "Output",ExpressionUUID->"1ed32bbb-73a1-43ed-a3a8-3d8fab7b2a75"] }, Open ]], Cell[2752500, 80580, 109, 0, 35, "Text",ExpressionUUID->"b2233143-2d51-4c11-8e7c-10c0f21514cd"], Cell[CellGroupData[{ Cell[2752634, 80584, 1404, 40, 48, "Input",ExpressionUUID->"e7f0fd22-8015-4ebf-92de-3d03a41a52a2"], Cell[2754041, 80626, 115, 2, 32, "Output",ExpressionUUID->"298d83a3-24e5-4952-8fb5-9feae7b67c01"] }, Open ]], Cell[2754171, 80631, 176, 3, 35, "Text",ExpressionUUID->"f9f2b27f-49ea-4fd8-bfe6-35356fc2f6fa"], Cell[CellGroupData[{ Cell[2754372, 80638, 291, 9, 28, "Input",ExpressionUUID->"16050db9-b893-4adb-afb7-ebd8d55b678d"], Cell[2754666, 80649, 653, 20, 35, "Output",ExpressionUUID->"7fb1c5dd-e958-46dd-be89-61b1f902366d"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2755380, 80676, 239, 3, 53, "Section",ExpressionUUID->"8901f20a-c127-46ba-8a83-73b91c34be96"], Cell[2755622, 80681, 161, 3, 35, "Text",ExpressionUUID->"12427661-a969-47d1-81e0-e372e14fa407"], Cell[2755786, 80686, 155, 3, 28, "Input",ExpressionUUID->"22afdbfa-ced4-4ad7-8d18-b2702a867f22"], Cell[CellGroupData[{ Cell[2755966, 80693, 519, 10, 67, "Input",ExpressionUUID->"e5a1f9a4-3fd8-4e7d-94c6-74eb3b1907d8"], Cell[2756488, 80705, 66031, 1128, 44, "Output",ExpressionUUID->"079fee98-5f96-4f0f-8d11-29b8fd9f13bb"] }, Open ]], Cell[2822534, 81836, 84, 0, 35, "Text",ExpressionUUID->"40c7379c-e536-4241-8c11-c32efffbc57d"], Cell[CellGroupData[{ Cell[2822643, 81840, 1956, 53, 67, "Input",ExpressionUUID->"db2052b5-74c6-42c7-8486-357d986cb2c3"], Cell[2824602, 81895, 115, 2, 32, "Output",ExpressionUUID->"f628f1cd-efd6-4554-8d85-16a8c9c8857e"] }, Open ]], Cell[2824732, 81900, 119, 0, 35, "Text",ExpressionUUID->"ef3f5e6c-ec02-4557-886f-652242bb9fd5"], Cell[2824854, 81902, 199, 4, 28, "Input",ExpressionUUID->"6daeb10c-48ed-4be7-a45d-1f8955718fcc"], Cell[CellGroupData[{ Cell[2825078, 81910, 2659, 74, 86, "Input",ExpressionUUID->"a1dc8c01-ed03-4725-a03e-af5ecf65c5ed"], Cell[2827740, 81986, 359, 11, 32, "Output",ExpressionUUID->"6a4396ad-e105-4f44-8367-4388c52aaac0"] }, Open ]], Cell[2828114, 82000, 131, 0, 35, "Text",ExpressionUUID->"2ac38956-29d3-4acf-99e8-6f10c25407cf"], Cell[CellGroupData[{ Cell[2828270, 82004, 2512, 67, 105, "Input",ExpressionUUID->"28d326f8-1282-4b5e-aa21-7a948d01ba88"], Cell[2830785, 82073, 399, 12, 32, "Output",ExpressionUUID->"b3b900f0-34e0-4375-b8bb-38d05fa1a822"] }, Open ]], Cell[CellGroupData[{ Cell[2831221, 82090, 115, 0, 54, "Subsection",ExpressionUUID->"27bb3f23-651a-4c5b-93a6-02484f2b7ada"], Cell[2831339, 82092, 257, 4, 35, "Text",ExpressionUUID->"5e8613be-5f8e-4d4c-8db1-c8578513f84a"], Cell[2831599, 82098, 109, 0, 35, "Text",ExpressionUUID->"efb18a65-cbf9-4508-b3b2-5a39defbdc8d"], Cell[CellGroupData[{ Cell[2831733, 82102, 494, 15, 28, "Input",ExpressionUUID->"7a132c39-fc15-42cf-a75d-38ef71b53613"], Cell[2832230, 82119, 937, 29, 32, "Output",ExpressionUUID->"7068545f-413d-49bd-915f-f0a0c7e21035"] }, Open ]], Cell[2833182, 82151, 100, 0, 35, "Text",ExpressionUUID->"b0fa6fdb-76c2-43c7-be55-7e8a2ef316b6"], Cell[CellGroupData[{ Cell[2833307, 82155, 496, 14, 28, "Input",ExpressionUUID->"f4f45426-3090-4f35-ab32-e5872870ebb0"], Cell[2833806, 82171, 300, 8, 32, "Output",ExpressionUUID->"f5475d75-59ea-40fa-81dd-8c34f2c2bbc4"] }, Open ]], Cell[2834121, 82182, 120, 0, 35, "Text",ExpressionUUID->"9b89d6b1-a2b1-491b-9e74-17498ed80493"], Cell[CellGroupData[{ Cell[2834266, 82186, 799, 22, 31, "Input",ExpressionUUID->"b48d122d-a11e-4b47-b98f-05ea4d51210a"], Cell[2835068, 82210, 1572, 45, 35, "Output",ExpressionUUID->"d3c9ae28-32dc-45e9-b17c-ef7e8de4bbde"] }, Open ]], Cell[2836655, 82258, 100, 0, 35, "Text",ExpressionUUID->"36ea68e9-951e-45e1-acb3-3977dc66a1f0"], Cell[CellGroupData[{ Cell[2836780, 82262, 303, 8, 28, "Input",ExpressionUUID->"83f1e442-cde6-4f20-ab97-b3034482ceb0"], Cell[2837086, 82272, 731, 22, 35, "Output",ExpressionUUID->"49107492-b2a9-4ee9-af9b-89ab461baf77"] }, Open ]], Cell[2837832, 82297, 130, 0, 35, "Text",ExpressionUUID->"f5c37117-541b-4bda-bd3c-5ef3cd6f2183"], Cell[CellGroupData[{ Cell[2837987, 82301, 868, 26, 31, "Input",ExpressionUUID->"ee40a0e9-e8f3-4bbb-9c01-57dad22142b8"], Cell[2838858, 82329, 69312, 1160, 400, "Output",ExpressionUUID->"3fbae12a-d535-4987-8b55-302dff9f0997"] }, Open ]], Cell[CellGroupData[{ Cell[2908207, 83494, 1638, 46, 48, "Input",ExpressionUUID->"6161fd34-738a-4137-898e-0d9d56270ecd"], Cell[2909848, 83542, 124819, 2080, 390, "Output",ExpressionUUID->"adebdc11-ec8e-4370-b947-6ef880d737e1"] }, Open ]], Cell[3034682, 85625, 119, 0, 35, "Text",ExpressionUUID->"eb2c4ceb-4c0d-46f6-af8b-5be2eba6e1c7"], Cell[CellGroupData[{ Cell[3034826, 85629, 358, 11, 28, "Input",ExpressionUUID->"99599ac0-7a45-4ba2-b62e-c9af85a24981"], Cell[3035187, 85642, 1169, 35, 36, "Output",ExpressionUUID->"91086f45-9645-443f-93c8-51d1c323a0b3"] }, Open ]], Cell[CellGroupData[{ Cell[3036393, 85682, 992, 25, 49, "Input",ExpressionUUID->"b1f586df-a519-4422-843f-ede5f89e806f"], Cell[3037388, 85709, 20920, 367, 410, "Output",ExpressionUUID->"77fa7880-db78-4d38-8c42-0fa7f720cdf6"] }, Open ]], Cell[3058323, 86079, 122, 0, 35, "Text",ExpressionUUID->"017a968a-44e4-45dc-9efa-dda463b04b89"], Cell[CellGroupData[{ Cell[3058470, 86083, 433, 13, 31, "Input",ExpressionUUID->"86711d21-4bd0-45dc-a556-ca2618053ea3"], Cell[3058906, 86098, 2855, 81, 36, "Output",ExpressionUUID->"821f4253-02fb-43a8-ad37-ac74aea2425a"] }, Open ]], Cell[CellGroupData[{ Cell[3061798, 86184, 2221, 59, 91, "Input",ExpressionUUID->"4aca8e49-3ccd-4e3a-aeed-0b9a9ddec013"], Cell[3064022, 86245, 331067, 5490, 529, "Output",ExpressionUUID->"e55f4135-fe5b-415b-9f27-342ed37bfc32"] }, Open ]], Cell[CellGroupData[{ Cell[3395126, 91740, 1788, 50, 53, "Input",ExpressionUUID->"ab880d17-1a5d-4829-804c-d616454724ad"], Cell[3396917, 91792, 1054125, 17301, 369, 630708, 10359, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"f95c06e6-35af-4134-a253-9fdb448ab8ad"] }, Open ]] }, Open ]] }, Closed]] }, Closed]] }, Open ]] } ] *)