The University of Southampton
University of Southampton Institutional Repository

Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures

Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures
Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures
We investigate interactions between Mott-Wannier (MW) and Frenkel excitons in a family of hybrid structures consisting of thin organic (polyfluorene) films placed in close proximity (systematically adjusted by GaN cap layer thickness) to single inorganic [(Ga,In)N/GaN] quantum wells (QWs). Characterization of the QW structures using Rutherford backscattering spectrometry and atomic force microscopy allows direct measurement of the thickness and the morphology of the GaN cap layers. Time-resolved photoluminescence experiments in the 8–75 K temperature range confirm our earlier demonstration that nonradiative energy transfer can occur between inorganic and organic semiconductors. We assign the transfer mechanism to resonant Förster (dipole-dipole) coupling between MW exciton energy donors and Frenkel exciton energy acceptors and at 15 K we find transfer efficiencies of up to 43%. The dependence of the energy transfer rate on the distance R between the inorganic QW donor dipole and organic film acceptor dipole indicates that a plane-plane interaction, characterized by a 1/R2 variation, best describes the situation found in our structures.
gallium compounds, indium compounds, excitons, III-V semiconductors, semiconductor quantum wells, organic semiconductors, semiconductor heterojunctions, organic-inorganic hybrid materials, polymer films, semiconductor thin films, rutherford backscattering, atomic force microscopy, time resolved spectra, photoluminescence, surface morphology
1550-235X
035344-[7pp]
Itskos, G.
f7531078-6e8d-4825-ae91-4d7bccd89369
Heliotis, G.
57f503c3-abae-4b2b-8962-a6cfe2e74ff4
Lagoudakis, P.G.
ea50c228-f006-4edf-8459-60015d961bbf
Lupton, J.
d38e018f-d6f3-4e18-88bb-c3afdd8fe22e
Barradas, N.P.
8408c4b4-b978-4b33-be8a-99eaf6add1ca
Alves, E.
690fff18-b1ff-43a3-85fa-15f04a997f0c
Pereira, S.
c82bea79-6e3c-4e25-bbe4-041df8838e24
Watson, I.M.
c3629250-7774-41d8-9141-1531e7ee3d83
Dawson, M.D.
a9219ebb-2d50-4f0b-b0ef-48ae158515a0
Feldmann, J.
98d048f6-c77d-47b1-827c-256b8f04ee70
Murray, R.
e7095c26-2531-4a0d-888e-aa55b759cec3
Bradley, D.D.C.
8521937a-d8df-4a6d-aa43-44c11456f61f
Itskos, G.
f7531078-6e8d-4825-ae91-4d7bccd89369
Heliotis, G.
57f503c3-abae-4b2b-8962-a6cfe2e74ff4
Lagoudakis, P.G.
ea50c228-f006-4edf-8459-60015d961bbf
Lupton, J.
d38e018f-d6f3-4e18-88bb-c3afdd8fe22e
Barradas, N.P.
8408c4b4-b978-4b33-be8a-99eaf6add1ca
Alves, E.
690fff18-b1ff-43a3-85fa-15f04a997f0c
Pereira, S.
c82bea79-6e3c-4e25-bbe4-041df8838e24
Watson, I.M.
c3629250-7774-41d8-9141-1531e7ee3d83
Dawson, M.D.
a9219ebb-2d50-4f0b-b0ef-48ae158515a0
Feldmann, J.
98d048f6-c77d-47b1-827c-256b8f04ee70
Murray, R.
e7095c26-2531-4a0d-888e-aa55b759cec3
Bradley, D.D.C.
8521937a-d8df-4a6d-aa43-44c11456f61f

Itskos, G., Heliotis, G., Lagoudakis, P.G., Lupton, J., Barradas, N.P., Alves, E., Pereira, S., Watson, I.M., Dawson, M.D., Feldmann, J., Murray, R. and Bradley, D.D.C. (2007) Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures. Physical Review B, 76 (3), 035344-[7pp]. (doi:10.1103/PhysRevB.76.035344).

Record type: Article

Abstract

We investigate interactions between Mott-Wannier (MW) and Frenkel excitons in a family of hybrid structures consisting of thin organic (polyfluorene) films placed in close proximity (systematically adjusted by GaN cap layer thickness) to single inorganic [(Ga,In)N/GaN] quantum wells (QWs). Characterization of the QW structures using Rutherford backscattering spectrometry and atomic force microscopy allows direct measurement of the thickness and the morphology of the GaN cap layers. Time-resolved photoluminescence experiments in the 8–75 K temperature range confirm our earlier demonstration that nonradiative energy transfer can occur between inorganic and organic semiconductors. We assign the transfer mechanism to resonant Förster (dipole-dipole) coupling between MW exciton energy donors and Frenkel exciton energy acceptors and at 15 K we find transfer efficiencies of up to 43%. The dependence of the energy transfer rate on the distance R between the inorganic QW donor dipole and organic film acceptor dipole indicates that a plane-plane interaction, characterized by a 1/R2 variation, best describes the situation found in our structures.

Full text not available from this repository.

More information

Published date: July 2007
Keywords: gallium compounds, indium compounds, excitons, III-V semiconductors, semiconductor quantum wells, organic semiconductors, semiconductor heterojunctions, organic-inorganic hybrid materials, polymer films, semiconductor thin films, rutherford backscattering, atomic force microscopy, time resolved spectra, photoluminescence, surface morphology

Identifiers

Local EPrints ID: 50864
URI: http://eprints.soton.ac.uk/id/eprint/50864
ISSN: 1550-235X
PURE UUID: 4e09d7f3-c091-428b-9433-86ab3f30026a

Catalogue record

Date deposited: 08 Apr 2008
Last modified: 13 Mar 2019 20:49

Export record

Altmetrics

Contributors

Author: G. Itskos
Author: G. Heliotis
Author: P.G. Lagoudakis
Author: J. Lupton
Author: N.P. Barradas
Author: E. Alves
Author: S. Pereira
Author: I.M. Watson
Author: M.D. Dawson
Author: J. Feldmann
Author: R. Murray
Author: D.D.C. Bradley

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×