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Abstract

The final state with four b-quarks has generally the largest event rate in
Standard Model (SM)-like Higgs (hsy) pair production, but also the largest
backgrounds. We study such a final state using the gg — hgnhsgy production
mechanism and Benchmarks Points (BPs) derived from the Next-to-Minimal
Supersymmetric SM (NMSSM) in the boosted case, leading to two (fat) 'Higgs
jets’. To suppress the backgrounds we use a combination of both kinematical cuts
and jet substructure features exploiting Machine Learning (ML) analysis. We
simulate the signal BPs both with and without the interference of the resonant
s-channel diagram with the non-resonant topologies emerging from both the
SM and NMSSM. The ML architecture of choice here is based on a multi-
modal Transformer, which performs significantly better than traditional ML
algorithms, in two respects: firstly, it enables to achieve higher significances
and, secondly, it adapts better to the analysis dataset with interferences even if
it was trained on one without these. However, neglecting the effect of the latter
in experimental searches could lead to grossly mistaken results.
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1 Introduction

The discovery of Standard Model (SM) Higgs pair production is one of the main goals of the
experimental collaborations at the Large Hadron Collider (LHC). At Leading Order (LO)
Higgs pairs can be produced at one loop through the so called triangle and box diagrams
with top quarks running in the loops. Higgs pair production is the most straightforward
way to measure the trilinear Higgs self-coupling. It is also a probe of new physics including
new colored particles in the loop [1-4] or heavy Higgs bosons [5-8] leading to modifications
of non-resonant and resonant di-Higgs production, respectively. Recently also the impor-
tance of the interference effects in resonant di-Higgs production has been recognized in
phenomenological studies [4, 9-12], while experimental searches typically assume a Breit-
Wigner (BW) distribution! [13, 14].

A single Higgs boson has been observed in several decay channels (bb, WW*, 77, ZZ*,
~vv and evidence in pp), which means that the di-Higgs signal can be split into several
possible final state topologies, each having their advantages and disadvantages. In this work
we concentrate on the final state of four b-quarks, which has the highest event rate. The
downside is that it also suffers from the highest background arising from QCD. Nevertheless,
this channel is the most sensitive one for the SM signal hypothesis at high invariant masses
[13], where the event rate is the lowest.

In the region of high invariant masses the Higgs bosons become boosted, so that indi-
vidual b-jets cannot be resolved. Instead one will have to look at so-called fat jets, i.e., jets
with a large jet radius containing the decay products of the Higgs boson [14, 15]. Such a, so
to say, ‘Higgs jet’ is thus characterized not only by a jet mass near the actual Higgs mass,
125 GeV or so, but also a substructure arising from the presence of two initial b-partons.
For our chosen decay pattern, there would then be two such Higgs jets.

The substructure patterns can be extracted from the tracks belonging to the fat jet
and used to separate Beyond the SM (BSM) signals from QCD backgrounds. In this
respect, it should be noted that, recently, traditional methods have been surpassed by new
techniques using advanced Machine Learning (ML) approaches [16-20]. Furthermore, the
study of kinematic properties of such fat jets is also of relevance [21-33]. Furthermore, such
a kinematics (i.e., encoding the global features of the final state jets), possibly together
with the knowledge of the properties of possible new intermediate particles is insensitive to
the (local) dynamics occurring inside the jet themselves. Therefore, the global and local
properties of the hadronic final state offer complementary insights into the underlying Higgs
dynamics.

A possible way to profitably combine information from both jet substructure and jet
kinematics is to concatenate the two inputs through a multi-modal network, as done in
Refs. [34-39]. However, a simple concatenation leads to an imbalance of the extracted
knowledge, in such a way that global kinematics generally dominates local substructures
[40]. Therefore, in a previous paper [41], some of us presented a new method for incor-
porating information extracted from both global and local dynamics emerging from jets
in a Transformer encoder with a cross-attention layer, extracting the most relevant infor-
mation from each dataset individually using first self-attention layers. Such a method was
proven to offer a sizable improvement in classification performance compared to the simple
concatenation approach.

It is the purpose of this paper to adopt such a ML approach for the case of gg —
H — hgyhsy — bbbb production and decay, where H is a heavy Higgs state with mass
mpy > 2myg,,, but for a different modeling of the signal. While in [41] a simplified approach

!Neglecting the interference is justified if the new scalar is extremely narrow, but many realistic scenarios
lead to significant widths, for which the interference is large.



was adopted, whereby the box diagrams were neglected and the triangle ones where com-
puted through factorization in Narrow Width Approximation (NWA) of the H state, here,
we retain both diagram topologies, crucially generating interference of the resonant diagram
with both of the above. For comparison we also simulate the corresponding events with a
pure BW description, 7.e., without interferences. We do so as it has been demonstrated that
such interferences can be significant, e.g., in the case of the Next-to-Minimal Supersymmet-
ric SM (NMSSM) [12], which we adopt here as illustrative example of an underlying Higgs
scenario strongly affected by such effects. We will show the phenomenological relevance of
all such interferences, normally neglected in experimental analysis, including highlighting
the response of our multi-modal Transformer with respect to the one induced by simpler
ML methods.

The plan of the paper is as follows. In the next section we describe the Benchmark
Points (BPs) used in the context of the NMSSM. Then, in Sect. 3, we discuss our ML
infrastructure. Results of our Monte Carlo (MC) analysis and conclusions will follow in
turn.

2 The NMSSM Signal Scenarios

We study here the BPs introduced in [12], which were derived from the NMSSM spectrum
enabling resonant (heavy) Higgs production and decay (see also Ref. [3] for the non-resonant
case). In [12] only a very basic event selection was performed and no backgrounds were
considered. We aim now to estimate, what kind of prospects would a realistic analysis have
to observe some of the BPs against the QCD background in the 4b final state.

For resonant di-Higgs production the most important part is the Higgs sector, which
in the NMSSM consists of two Higgs doublets and a singlet. The scalar potential of the
CP-even sector at tree-level has the form
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Here g and ¢’ are the electroweak gauge couplings, A and x are the superpotential cou-
plings between the three Higgs superfields and the cubic singlet term, respectively and Ay
and A, are couplings for the corresponding soft supersymmetry breaking scalar interactions.

Furthermore, we add a quartic term arising from the top-stop loops, which we parametrize
in the form

Vioop = 5‘H3‘4 (2)

We assume here that the 125 GeV Higgs boson is the lighter doublet scalar. In gen-
eral the heavy doublet scalar has large couplings to third generation fermions, while the
fermionic couplings of the singlet are induced by mixing with the doublets. Since the mixing
is small unless the states are close in mass, the singlet is usually a narrow resonance with
I'/m ~ 1073 while the heavy doublet has a larger width I'/m ~ 10~2. Trilinear couplings
with vector bosons are nearly always small for both BSM Higgs states.

The resonant di-Higgs production proceeds through top and bottom quark loops. For
the doublets the coupling to quarks is of the order of the largest Yukawa couplings, while
for the singlets it is controlled by the mixing with doublets. The event rates also depend



on the trilinear Higgs couplings, which read in the alignment limit

2 2
AHRR = (3(‘(];;2)\) sin 48 + 128 sin® 3 cos ,6’) v, (3)
2
>\Shh = %US + (414\1/)\§ + /1)\215) sin Qﬁ. (4)

Here v = 246 GeV is the vacuum expectation value (VEV) of the SM Higgs and vg is the
VEV of the singlet. Equation (3) also shows why we are not considering the MSSM: in
the MSSM a high value of tan 3 is required to achieve a 125 GeV Higgs and at high tan 3
this expression goes to zero suppressing any resonant di-Higgs production. The parameter
region with the largest resonant di-Higgs signal is that of moderate tan 8 and large .

ATLAS performs di-Higgs searches in the 4b channel in both the resolved [42] and
boosted [43] case. The limits for the boosted case were derived for my = 1...5 TeV, but
the onset of the boosted signal starts already at slightly lower invariant masses. Therefore
we analyse BPs starting from my = 800 GeV, which has a higher overall event rate than
the BP with mpg > 1 TeV, but for which the boosted selection efficiency is not yet maximal.

We set up two BPs with opposite interference patterns having heavy scalars around
800 GeV. The most important parameters for the BPs are given in table 1. These are
BP4 and BP5 of [12], where the effects of squarks and the singlet scalar have been left
out. BP1 has destructive interference when my, < mpyg and constructive interference when
mpr, > mpg. This leads to an overall reduction of the cross section as the differential
cross section of the continuum is larger in the region of destructive interference. BP2
has the opposite pattern, constuctive interference when my; < mpyg and destructive when
mpp > mp. This leads to a slight enhancement of the cross section compared to the case
without the interference.

Parameter BP1 BP2

tan 3 231 7.00

A 0.65 0.21

K 0.68 0.16

Ay (GeV) 220 —550

vs (GeV) 1280 943

mu (GeV) 800 845

Ty (GeV) 133 24
o(pp — hh) (fb) 149 183
o(pp — hh)pw (fb) | 17.8 174

Table 1: The most important parameters for the BPs and the LO cross sections for di-Higgs
production with and without interferences of the resonant production with the SM-like di-
Higgs continuum.

The left panels of figure 1 show the impact of interference effects for a heavy doublet
scalar. At parton level the destructive interference for BP1 can result locally up to a 70%
reduction in the differential cross section. Detector effects will smear this out somewhat,
but an overall reduction in the event rate can be substantial. For BP2 the effect is not as
large, since the decay width of the heavy scalar is smaller. Even in this case the interference
is not negligible.

To quantify the difference between two histograms bin by bin, we utilize the Poisson
likelihood ratio. Let O; be the observed number of events in bin i (e.g., from signal with
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Figure 1: Left: Invariant mass distribution of the heavy mediator reconstructed at parton
level, normalized to the expected number of events at an integrated luminosity of 1000 fb~*.
Middle: Invariant mass distribution of the heavy mediator reconstructed from the fat jet
final state, normalized to the expected number of events at an integrated luminosity of
1000 fb~!. Right: Poisson likelihood per bin quantifying the difference between the two
distributions shown on the left, including systematic uncertainties of 5% (black) and 20%
(red).

interference) and E; the expected number of events (e.g., from signal without interference).
Assuming Poisson statistics, the per-bin likelihood ratio is defined as
O;
AlnL;, =2 |E;— O; + O;jIn — | , (5)
E;
where the logarithm is taken to be zero if O; = 0. The total test statistic is obtained
by summing over all bins, A = >, Aln £;, which asymptotically follows a x? distribution
with degrees of freedom equal to the number of bins. Systematic uncertainties can be
included by combining them in quadrature with the statistical uncertainty: if o4y ; denotes

the systematic uncertainty in bin ¢, the total uncertainty becomes o; = /F; + Js2ys,i‘ An
approximate way to include the systematic effect in the Poisson likelihood is to replace E;
by E; + 0gys; in the likelihood ratio, giving Aln £; = 2 [(EZ + 0gys;i) — O; + O;In E++Zy“} )
A more rigorous treatment introduces the systematic as a nuisance parameter in a profile
likelihood. This approach provides a per-bin statistical measure of the difference between
the two distributions while accounting for both statistical and systematic uncertainties.
The right panels of figure 1 shows the Poisson likelihood for uncertainty of 5% (black) and
20% (red) for the two signal scenarios.

3 ML Analysis

In addition to global kinematic observables, jet substructure information provides a powerful
means of distinguishing signal from background events. This stems from the fact that jets



initiated by different parent particles exhibit distinct internal patterns. For example, heavy
boosted particles such as the W*, Z and Higgs bosons typically decay into multiple par-
tons, producing jets with a multi-prong structure. In contrast, quark- and gluon-initiated
QCD jets usually display a simpler, single pronge structure. These differences imply that
the features of the parent particle can be inferred from the internal organization of jet con-
stituents. By exploiting this substructure, one can recover localized event information that
is otherwise inaccessible through kinematic observables alone, making jet substructure a key
discriminant between processes of different physical origins. The concept of utilizing ML
methods to identify the particle initiating a jet, and thereby distinguish jets from boosted
heavy objects and those from QCD processes, was first introduced in [44-61].

Building on these methods, we utilize a multi-modal Transformer encoder with multi-
head self-attention (hereafter, ‘Transformer’ for short) to analyze jet contents that has
already been introduced in [41]. The model architecture incorporates three distinct pro-
cessing streams designed to capture information at different energy levels. The first and
second streams independently analyze the constituents of the leading and sub-leading Higgs
jets, each employing a Transformer encoder with self-attention layers. After extracting
the salient jet features, their outputs are combined through an addition layer. The third
stream processes the high-level kinematic variables, using another Transformer encoder with
self-attention heads. Finally, the jet-based and kinematic features are merged via a cross-
attention layer, which allows the network to learn correlations between the jet substructure
and global event kinematics.

3.1 Data Preprocessing

We begin by preprocessing the data sets corresponding to the leading and second-leading
jets, each containing up to 50 constituents. The constituents are ordered in descending
transverse momentum (pr), and for events with fewer than 50 particles, the remaining
entries are padded with zeros to ensure a uniform input size. An attention mask is applied
so that the network performance remains unaffected by the zero-padded entries [62].

For each jet constituent, we store seven input features [63]:

- An =1 — jet : pseudorapidity difference
- AP = ¢ — Pjet : azimuthal angle difference
- AR =/(An)? + (A¢)? : angular distance from jet axis
- log(pr) : transverse momentum (GeV)
- log(E) : energy (GeV) (6)
- log (I)T) : normalized pr (GeV)

pj}et

B .

- log ( > : normalized energy (GeV)

Ejet

Proper preprocessing of the jet contents is crucial for enhancing the discriminative capa-
bility of the network, especially for highlighting the multi-prong substructure characteristic
of signal events. We adopt the preprocessing strategy originally developed for jet image
analysis, which allows the model to learn effectively from relatively small datasets and sig-
nificantly accelerates convergence during training.In principle, one may train the network
directly on raw inputs, but this requires a substantially larger dataset and longer training
times. Accordingly, we preprocess the input datasets for and efficient network training.

The following geometric transformations are applied to each jet prior to network input.



o Translation: Jet constituents are shifted in the n—¢ plane such that the jet axis is
centered at the origin.

e Rotation: To reduce stochastic variations due to random decay orientations, each
jet is rotated to align its principal axis vertically. This is achieved by computing the
covariance matrix of the constituent positions in the (7, ¢) plane and determining its
leading eigenvector. The rotation angle is defined as § = arctan(z1,x2), where (x1, z2)
are the components of the principal eigenvector. The jet constituents are then rotated
to new coordinates (7, ¢'), ensuring consistent alignment across events.

o Flipping: Finally, jets are reflected about the vertical axis so that the region with
the highest momentum is always positioned on the right-hand side of the n’ axis. This
ensures that the hardest radiation appears consistently in the same region, improving
classification performance.

After these preprocessing steps, the jet constituent data for the leading and second-
leading jets acquire the dimensions (n,50,7), where n is the number of events, 50 the
number of constituents and 7 the number of features per constituent.
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Figure 2: Accumulated average transverse momentum of hadrons for the leading jet, after
preprocessing, computed over 50,000 events.

Figure 2 shows the cumulative average of 5 x 10* transverse momentum distributions
for the leading Higgs jets for signal events (upper row) and background events (bottom
row), after applying all the selection cuts. The preprocessing transformations clearly reveal
the multi-prong structure characteristic of signal events, where subjets appear localized in
distinct regions of the (7, ¢) plane. In contrast, QCD multi-jet backgrounds exhibit a broad,
featureless energy distribution without a clear prong structure, whereas tt events display
a three-prong topology associated with hadronic top decays. Although tt events represent



only about 10% of the background sample, their distinct structure plays a useful role in
evaluating the signal discriminability.

In addition to constituent-level information, we include high-level kinematic variables
describing the reconstructed objects: the leading jet, second-leading jet, and heavy Higgs
candidate. The corresponding kinematic dataset has dimensions (n,3,5), where the five
features per reconstructed object are:

{mvavnv ¢a E} :

Figure 3 displays the normalized kinematic distributions for the signal benchmarks and
for the main background processes. We also include the rotation angles 6; of the leading
and second-leading jets (but not the Higgs candidate) to capture correlations between jet
orientation and event topology.

For the Transformer network, the processed datasets are fed into three Transformer
encoders. The first and second encoders receive inputs of shape (n,50,7) corresponding
to the leading and second-leading jets, respectively, while the third encoder processes the
kinematic inputs of shape (n, 3,5). Signal and background events are stacked into separate
datasets, labeled Y = 1 for signal and Y = 0 for background.

For comparison we take a Multi-Layer Perceptron (MLP) architecture, which is a type
of artificial Neural Network (NN) with one input layer, (at least) one hidden layer and
one output layer, connected by weighted nodes, a setup which is typical of experimental
approaches at the LHC. For its inputs the kinematic distributions are reshaped into (n, 15),
where n is the number of training events with 15 kinematic variables. Therefore the MLP
input layers is adopted with 15 neurons, corresponding to the size of the input distributions.
Importantly, during the structure of the MLP layers we use only the kinematic information
while it is not feasible how to include the jet-substructure information into a single network.

During training, the model minimizes a categorical cross-entropy loss function, opti-
mizing the difference between predictions and true labels. We employ balanced datasets
of equal size for signal and background, with 10% events used for training and 10 events
reserved for testing.?

3.2 Signal and Background Events Generation

The primary background contamination in this analysis arises from QCD multijet processes,
specifically pp — 7774, which contribute approximately 90% of the total background. The
di-top process pp — tt contributes at the 10% level, while other background processes,
including SM h, hh, and EW di-boson production, have been found to make negligible
contributions to the selected event yields and are therefore not included in our analysis.
For event generation, we use MADGRAPHb [64] to compute multi-parton amplitudes and
to simulate both signal and background processes. The QCD background pp — bbbb and
the pp — tt background are computed at Leading Order (LO). The di-Higgs production via
gluon-gluon fusion is calculated at one-loop, which is LO for this process, using the UFO
model file from [65]. In the signal generation only the SM contribution, the heavy Higgs
contribution and their interference were simulated. Given the experimental constraints
on squarks [66, 67], any squark entering the loop would be off-shell at myp, = mpg so
the contribution around the resonance would be minimal and hence neglecting squarks
in the production of the heavy Higgs is justified. The couplings were calculated with a
private modification of SPHENO [68, 69]. PYTHIA [70] is employed for parton showering,

2A key characteristic of attention-based Transformer models is that their classification performance gen-
erally improves with the size of the training dataset.
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Figure 3: Kinematic distributions used for training.

hadronization, heavy-flavor decays, and the inclusion of the soft underlying event. The
tt background is further simulated at LO with up to two additional jets using the MLM
matching scheme [71, 72] with a matching scale of 20 GeV.

3.3 Cut-based Analysis

The analysis began by applying a set of preselection cuts to the generated events. The
resonance is heavy, so fat jet analysis is considered, with hh — bbbb being reconstructed as



two fat jets. A Higgs tagging was performed, where the fat jet closest (next closest) to the
Higgs mass was labelled as ‘fat jet 1’ (‘fat jet 2’). Events were required to have at least two
fat jets, and additional cuts were placed on total hadronic transverse momentum (THT),

as well as jet masses and transverse momenta (pr). A summary of the cuts applied can be
found in table 2.

THT Fat Jet 1 Mass Fat Jet 1 pr Fat Jet 2 Mass Fat Jet 2 pr

Ny >2 THT >300 100<m <150  pr > 250 m < 150 pr > 200

Table 2: Preselection cuts applied to the resonant di-Higgs benchmark points. All units are
in GeV.

A fully hadronic event arising from a heavy Higgs boson should contain a lot of hadronic
activity and therefore we require THT > 300 GeV. As a result of the Higgs tagging, the
first fat jet mass has a well-defined peak very close to 125 GeV. Therefore, a cut was placed
such that the mass had to be between 100 and 150 GeV. The second fat jet mass had
a less defined peak and the peak itself was at a lower mass. This difference is reflected
in the cut, with only an upper bound placed on this jet. Many signal events were killed
when attempting to introduce a lower bound. The BPs have a sharp resonant peak at
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Figure 4: Kinematic variables used in the preselection cuts.

My, ~ 800 GeV at the parton level. At the detector level, the peak spreads out and shifts
to the left, but a BSM di-Higgs excess can still be seen. The previous cuts reduced mainly
the QCD background, but the final cuts on jet pr focus on emphasizing the BSM di-Higgs
excess. The kinematics for the BSM di-Higgs and SM di-Higgs processes are similar, so the
pr curves follow each other closely. There is a point where the py begins to deviate for the
BSM di-Higgs events compared to the SM di-Higgs events, so this was the region chosen
to define the pp cuts. The BSM di-Higgs excess (as compared to the SM di-Higgs events)
becomes more defined in the signal region as a result of the application of preselection cuts.

The number of events before and after the preselection cuts are applied can be seen in

10
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Figure 5: The 4b invariant mass before (left) and after (right) the preselection cuts.

Process Before Cut After Cut
BSM di-Higgs 66 33

SM di-Higgs 39 18
Signal 27 15
QCD 4b 383,012 15,401
i 0.0426 0.118

VB

Table 3: Signal and background events in the signal region before and after the preselection
cuts. A generator-level cut on the total transverse momentum was applied for the QCD
background. The integrated luminosity is Ly = 300 fb~ 1.

table 3. The signal S is defined as the difference in the number of BSM di-Higgs events and
SM di-Higgs events. The background B is the sum of QCD 4b background events and SM
di-Higgs events. The signal significance can be estimated by %, and can be found in table
3. The selection efficiency e is defined by ng/n;, where n; is the initial number of events,
and ny is the final number of events after the preselection cuts are applied. The selection
efficiencies that the mentioned cuts yield are e = 55.6% and eg = 4.0%, but it is to be
noted that a generator level cut on THT was applied to the background. Hence the actual
background rejection probability is better. The values used in the cuts were first chosen
from the kinematic variable plots (see figure 4), and later optimized to achieve the highest
signal significance possible. We may notice that without ML methods the significance of
the signal in the 4b channel remains low.

4 Results

Once the datasets are prepared, the NNs are trained to capture the non-linear correlations
between the input features and their corresponding class labels. As described earlier, sig-
nal events are assigned the label Y = 1 while background events are assigned ¥ = 0. To
eliminate any dependence of the training upon the ordering of the samples, signal and back-
ground events are merged into a single dataset and randomly shuffled together with their
labels. Training is carried out in epochs, where one epoch is defined as a complete pass over

11



the entire training dataset. During each epoch, the NN updates its trainable parameters
through back-propagation, iteratively adjusting the weights to reduce the discrepancy be-
tween the predicted and true labels. The optimization procedure aims to minimize a chosen
loss function by approaching its global minimum. For the architectures considered in this
work, the NNs are trained for 30 epochs using a batch size of 256. The final output of each
model is a probability vector Y of dimension 1 x 2, Y = (Psig> Pokg), where both compo-
nents lie within the interval [0,1]. An event is classified as signal if P, > 0.5 (equivalently,
Prig < 0.5), and as background if Pgjz < 0.5 (or Ppig > 0.5).

10"

— Signal [ (AUC= 97.04%) 10! [ Signal [ (TPR) [ Signal I (FPR) [ Signal [ (TPR) [ Signal [ (FPR)
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Figure 6: Signal I: NN trained on signal+interference and tested on the same dataset.
Signal IT: NN trained on resonance only and tested on the signal+interference dataset.

In this analysis, we consider two training strategies. The first scenario, Signal I, in-
volves training and testing the NN on signal events that include interference effects. This
corresponds to the physically accurate situation of the NMSSM being realized in Nature.
The second scenario, Signal II, trains the network on signal events without interference
but evaluates it on events with interference. This setup reflects the procedure commonly
used in experimental analyses, in which the NN is trained on an idealized resonance signal
sample but applied to real data that inherently contains interference effects. We then test
the HL-LHC sensitivity for the two BPs in table 1, with the two mentioned scenarios, using
both the MLP and Transformer.

The discriminating power of each network reflects how effectively it can separate signal
from background events by exploiting their distinct underlying characteristics, which are
intertwined across various kinematic distributions and jet structures. Figure 6 illustrates the
Transformer (solid lines) and MLP (dashed lines) outputs, together with the corresponding
Receiver Operating Characteristic (ROC) curves, for BP1 in the upper row and BP2 in
the lower row. In both BPs, we compare the two training strategies using the correctly
and incorrectly constructed training datasets. For BP1, where the negative interference
significantly distorts the invariant mass distribution of the 4b, the Transformer demonstrates
greater robustness than the MLP. In contrast, for BP2, where the positive interference does
not alter the shape of the invariant mass distribution, both the Transformer and the MLP
show comparable sensitivity across the two training scenarios, although the Transformer
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still achieves notably better overall classification performance.
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Figure 7: Signal significance as a function of the integrated luminosity. Left: BP1, and
right: BP2, with Transformer results shown in solid lines and MLP results in dashed lines.

Optimization of the signal significance, as a function of the NN output, is performed by
varying the cut on the NN score to maximize the signal-to-background yield. For BP1, the
optimized Transformer cuts correspond to True Positive Rates (TPRs) of 0.22 and 0.25 for
Signal I and Signal II, respectively, while the optimized MLP cuts yield TPR values of 0.16
and 0.21, correspondingly. For BP2, the optimal Transformer TPR values are 0.31 and 0.28
for Signal I and Signal II, respectively, whereas the MLP achieves TPR values of 0.22 and
0.18, respectively.

Once the cut on the NN output is considered, we compute the signal and background

events at a certain integrated luminosity as well as the signal significance using the following
formula [73-75]:

1/2
(Ns + Np) (N + 02) N7 o2 N,
= [2( (Ns+ Np)1 — (1 + 2 , (7
7 l <( b) In NZ+ (No+ Np)oZ o2 n( No(N, + 02) (7)

with Ng, Ny being the number of signal and background events, respectively, and o, pa-
rameterizing the systematic uncertainty on the latter.

Figure 7 shows the signal significance as a function of the integrated luminosity, ranging
from 100 fb~! (approximately Run 2) to 3000fb~! (the expected HL-LHC value). The left
panel corresponds to BP1 while the right panel corresponds to BP2. For both BPs, the
Transformer achieves a substantial improvement over the MLP in significance, a factor of 2,
indicating that a potential discovery at the CERN machine may be achievable much sooner
in the presence of the former ML environment as opposed to the latter. Furthermore, notice
that the separation between the two sets of curves in each case (Transformer and MLP)
indicates that training on the wrong MC data (Signal II) will induce a clear bias in the real
data analysis with respect to the true results (Signal I). Finally, the Transformer appears
to better the MLP at controlling this effect as, on the one hand, the corresponding spread
between the two curves is less (BP1) or comparable (BP2) and, on the other hand, such
a bias is always in the same direction (i.e., the color ordering in the solid lines does not
change with BP unlike the case of the dashed lines).
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5 Conclusions

In summary, we have shown that there is significant scope in assisting current LHC analyses
aimed at isolating SM-like di-Higgs signals (hgnhgy) in their dominant decay mode into
four b-quarks when produced resonantly via a heavier CP-even Higgs boson (H), crucially
including distortion effects of the ensuing BW resonance due to interference effects which
are not customarily modelled in experimental analyses and which have been proven to be
significant in many theoretical scenarios. This has been based on a sophisticated MC study
emulating as close as possible the experimental conditions existing in the LHC multi-purpose
experiments. A combination of preselection cuts, aimed at defining datasets enriched by
signal events without excessively sculpting the relevant backgrounds, and advanced ML
architectures, either an MLP or a Transformer, enabled us to achieve a twofold result. On
the one hand, the advocated preselection helps to improve the signal-to-background ratio
in resonant searches beyond the current state-of-the-art while, on the other hand, the ML
environment renders such searches less sensitive to the aforementioned interference effects
even if the algorithm used was trained on MC datasets not including the latter, with the
Transformer narrowly outperforming the MLP in classification tasks.

In order to illustrate the above, we have adopted BPs from the NMSSM, which cor-
responding signals in the process gg — H — hgnhsy — bbbb had been previously shown
to be greatly affected by a variety of distortion effects due to interferences between the
resonant s-channel Higgs diagram and the SM ones and to a lesser extent also with dia-
grams involving light stops as well as possibly another Higgs state propagating in a similar
Feynman topology. For such BPs, the ensuing signature is constituted by two fat b-jets,
inevitably accompanied by some additional hadronic activity. Our analysis proved stable
against the jet definition procedure and effective in extracting such signature whichever the
kinematic characteristics of the BPs used.

We therefore advocate the deployment of our approach in actual experimental searches
at the LHC, so as to enable one to thoroughly test a variety of theoretical scenarios in the
quest to extracting the shape of the underlying scalar potential from di-Higgs analyses, as
the process tackled here is the dominant one at the LHC.
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