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Following the recent Atacama Cosmology Telescope (ACT) results, we consider hilltop inflation
where the inflaton is coupled to a curvaton, simultaneously addressing two main challenges faced by
conventional hilltop inflation models: the initial-value problem; and their viability for sub-Planckian
field values. In standard single-field hilltop inflation, the inflaton must start extremely close to the
maximum of the potential, raising concerns about the naturalness of the initial conditions. We
demonstrate that the curvaton field not only solves the initial-value problem, but also opens up
parameter space through modifying the curvature perturbation power spectrum, reviving the cubic
and quartic hilltop inflation models in the sub-Planckian regime. We find viable parameter space
consistent with the recent cosmological observations, and predict a sizable tensor-to-scalar ratio that
can be tested in the next-generation Cosmic Microwave Background (CMB) experiments.

I. INTRODUCTION

Precision measurements of primordial curvature per-
turbations have established a spectrum that is almost
scale-invariant, predominantly adiabatic and close to
Gaussian, with a small red tilt [1-3]. This strongly fa-
vors the inflationary paradigm, in which a scalar field
(the inflaton) slowly rolls along a very flat region of its
potential [4-7].

Recently, the most up-to-date Atacama Cosmology
Telescope (ACT) DR6 analysis has reported a spec-
tral index of ng = 0.9743 4+ 0.0034 based on a joint
fit with Planck and the Dark Energy Spectroscopic In-
strument (DESI) DR1 data [8]. This value differs from
the original Planck18 (TT,TE,EE+lowE) result ns =
0.9649 +0.0044 [2] by about 20 and has triggered a lot of
discussions on inflationary models, see, e.g., Refs. [9-29].

In the context of inflationary model building, hilltop
inflation [6, 7, 30-32] constitutes an attractive class of
models, in which inflation is driven by a scalar field ¢
rolling down from the vicinity of an unstable local max-
imum of the potential, which can be parametrized near
the hilltop as

V(¢) = A (A— P /ul +---), (1)

where A and p are characteristic energy scales, and p > 2
denotes an integer. Recently, it has been shown that
hilltop inflation can be realized in a modular-invariant
framework if the inflaton is identified with a modulus
field [33, 34]. The quadratic case (p = 2) is viable only as
a large-field inflation model with p 2 Mp;. By contrast,
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for the cubic (p = 3) and quartic (p = 4) hilltop poten-
tials, the entire sub-Planckian regime (u < Mp)) already
lies outside the 95% confidence level (C.L.) region of the
Planck constraints [2].

On the other hand, since the inflation is required to
start extremely close to the hilltop of the potential, hill-
top inflation clearly faces an initial condition problem.
In Ref. [35], this problem was addressed by introducing a
pre-inflationary stage during which a matter field under-
goes classical slow-roll evolution and dynamically drags
the inflaton toward the suitable initial position for the
subsequent hilltop inflationary phase.

In this work, motivated by these problems, we con-
sider a curvaton-assisted hilltop scenario in which the
inflaton is coupled to a light scalar field o, whose dy-
namics in the pre-inflationary era is dominated by quan-
tum diffusion. We track the evolution of ¢ and ¢ during
the pre-inflationary stage by solving the Langevin equa-
tions in the quantum-diffusion region, and derive ana-
lytically attractor-like initial conditions for hilltop infla-
tion, independent of the initial value of . Once hilltop
inflation starts, o becomes effectively frozen and plays
the role of a curvaton [36—40], modifying curvature per-
turbations upon the curvaton decay at later times af-
ter inflation and alleviating the tension of conventional
hilltop models with current Cosmic Microwave Back-
ground (CMB) observations. We perform a comprehen-
sive Bayesian analysis using both the Planck and ACT
results, assessing and comparing how well our model is
supported by each of them. From the resulting poste-
rior distributions, we further present the model predic-
tions for the tensor-to-scalar ratio and primordial non-
Gaussianity. We demonstrate that the curvaton field not
only solves the initial-value problem, but also opens up
parameter space through modifying the curvature per-
turbation power spectrum, reviving the cubic and quartic
hilltop inflation models in the sub-Planckian regime.

The layout of the remainder of this paper is as fol-
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lows. We construct our model in Sec. II. In Sec. III,
we derive the initial conditions for hilltop inflation. In
Sec. IV, we discuss how the curvaton mechanism mod-
ifies the primordial observables in hilltop inflation. In
Sec. V, we show the results of our Bayesian analysis and
discuss their implications. We summarize our main con-
clusions in Sec. VI. In appendices A and B, we provide
additional technical details of Langevin equations and
the 0 N formalism.

II. HILLTOP INFLATION WITH A CURVATON

We consider a two-field scalar potential involving an
inflaton ¢ and a curvaton o. ¢ drives hilltop inflation
during the slow-roll phase, whereas o modifies the power
spectrum of primordial perturbations after inflation. The
scalar potential can be expressed in a general form as

V=Vur+Vs+ V¢, (2)

where Vgt denotes the primary hilltop potential [6, 7]

Var = A (1¢p)2 , (3)

2up

where a factor of two is added in the denominator to
be consistent with eq. (1). In this paper, we focus on
two specific examples: p = 3 (cubic hilltop inflation) and
p = 4 (quartic hilltop inflation).

The soft term in eq. (2) is given by

Vo= —gm3d” + gmlo” (4)
with mg and m, being the bare masses of ¢ and o, re-
spectively. Note that m, should be much smaller than
the Hubble constant H ~ V/(3Mg,) during inflation to
ensure that the curvaton o is effectively frozen.

Finally, we use Vi to represent the cross term between
¢ and o, which is chosen to be

2

V p—
¢ oMg,

(¢20'4+¢40'2) , (5)

where )\ is a dimensionless coupling constant and Mp =
2.435 x 10'® GeV is the reduced Planck mass. Ve con-
tributes to the effective mass of ¢ and modulates the
shape of the potential along the ¢-direction. To be more
specific, we assume that o starts from a sufficiently large
value, so that the effective mass méeﬁ = N0t /M3, —
mi > 0 and ¢ = 0 is a minimum in the ¢-direction. As
o moves close to the critical value o, = (mgMpi/\)'/2,
¢ = 0 transitions from a local minimum to a saddle point,
which naturally sets the stage for the subsequent hilltop
inflation.

Before going to the next section, we shall mention that
the scalar potential discussed above could originate from

supersymmetry. As discussed in Ref. [35], Vgt and V¢
can be derived from the following superpotential

~( »
W:S<

2 B2 ¥2
Mp—2_A>+/\(I)X , (6)
where S , ® and X are the superfields, and M is a
mass parameter. It is straightforward to identify that
Virr = |0W/08|? and Ve = |0W/0®|? + |oW/0X |? given
the relations ¢ = V2Re ®, 0 = v/2|X| (with ® and X be-
ing the scalar components of ® and X , respectively) and
P = 2MP~2A% whereas Vg is attributed to supergravity
corrections.

III. INITIAL CONDITIONS FOR HILLTOP
INFLATION

In the vicinity of ¢ = 0, the evolution of ¢ is dominated
by the quantum fluctuations, giving rise to a quantum
diffusion region whose width depends on the value of o.
Within one Hubble time, the typical displacement of ¢
induced by quantum diffusion is given by d¢q ~ H/(27),
while the displacement due to the classical drift can be
estimated as d¢ ~ |Vy|/(3H?) with V;, = 9V/9¢. The
boundary ¢}, of the diffusion region can be roughly de-
termined by equating d¢q and d¢.1, namely,

H V.
ey Y/ 2 4
b
where
4 p—1
2 (T ) et
Vi, =mg, <a§ 1)(1) pA 7 + , (8)
and “--” denotes higher-order corrections. We identify

the onset of hilltop inflation with the exit of ¢ from the
diffusion region. The first step is therefore to determine
the value of ¢ at which ¢ leaves the diffusion region and
its dynamics becomes classical.

The evolution of ¢ and o inside the diffusion region is
described by the following Langevin equations [41-43]

dp  Vy H

W——@‘f‘gfa&(N) ; 9)

do V, H

— =—_%2 4+ "¢ (N 1

dN 3H? + 27r§0( ) (10)
where V, = 0V/0o, and we use the number of e-

folds N as the time variable. The first terms on the
right-hand sides represent classical drift, and the sec-
ond terms are the stochastic “kicks” from quantum diffu-
sion with £,(IV) and &, (IN) being independent Gaussian
white noise terms with zero mean and unit variance, i.e.,
(&(N)&;(N')) = 6;76(N — N'). It should be mentioned
that, unlike Ref. [35] where the pre-inflationary direction
is taken as a slow-roll direction dominated by classical
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FIG. 1: Comparison between the stochastic paths of

fields using the Markov-chain Monte Carlo (MCMC)
simulation and the root-mean-square (RMS) approxi-
mation in the cubic hilltop model, where we set A =
2.7 x 1072 Mpy, p = 0.5Mp;, A = 1.6 x 1073, my =
2 x 107" Mp; and m, = 107" Mp;. The gray lines de-
pict the field trajectories initialized at the yellow point
(¢o = 0,00 = 20.), and terminated once they cross into
the classical region [M3,|Vy/V| > H/(2n)], indicated by
the orange shading. The solid red line denotes the statis-
tical average of the fastest 50% of all successfully escaped
trajectories. The dashed blue curve represents the RMS-
approximated path, obtained by solving the Langevin
equations in terms of mean-square values of the fields.

drift, the curvaton direction of interest can be dominated
by quantum diffusion since we require m, < H. In this
case, quantum fluctuations may occasionally kick o back
to larger field values, so that in certain Hubble patches in-
flation could keep taking place, leading to the paradigm
of eternal inflation [44]. In the present work, we treat
eternal inflation as an open question, noting that such
behavior is in fact already a generic feature of single-field
hilltop inflation models [45].

The Langevin equations given in egs. (9) and (10) can
be numerically solved using a Markov-chain Monte Carlo
(MCMC) approach. To be specific, we start a large en-
semble of trajectories from an initial point with ¢y9 = 0
and o9 2 o.. We track these trajectories until the first
time they cross the diffusion boundary defined by eq. (7),
with the additional constraint that V;, < 0 to ensure the
onset of the hilltop inflation. Taking the cubic hilltop
model for instance, we show the simulation results in
Fig. 1. All the gray trajectories presented in Fig. 1 start
from the same point (¢9 = 0,00 = 20,), and terminate
once they first reach the diffusion boundary satisfying
eq. (7). Since we are particularly interested in the paths
that cross into the classical region at earlier times, we
take the average over the fastest 50% of all successfully
escaped trajectories. The resulting mean path is shown
in red.
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FIG. 2: The RMS-approximated paths for different start-
ing points in the cubic hilltop model. Model parameters
in the scalar potential take the same values as those in
Fig. 1.

By averaging Langevin equations over many realiza-
tions of the stochastic process, one can obtain equations
for the mean-square values of the fields (¢?) and (0?) as

d(¢?) 2 H\?
=g+ () . )
d(c?) 2 H\?

For our model setup with A = 1.6 x 1073, the covariance
between ¢ and o can be safely neglected. Furthermore,
given that the fields start with ¢g ~ 0 and oy 2 o, the
above equations can be approximated by

d(¢? 2 H\?
§N> ~ o (C1{9?) + C2(¢?)?) + (%> . (12a)
d(c? 2m2 H\?
(§N> ~ — Ve <02> + (277) , (12b)
where
4 8 4 -1
5 (0 27A o
= — -1 === (Z -1
“ m¢<os ) T <a§ > |
(13)
for p = 3, and
4 12A4
Clzmi(;—l), Cr=-—f . (4

for p = 4. A detailed derivation of egs. (11a)—(14) can
be found in appendix A.

In this formalism, the explicit noise dependence can
be removed, and the competition between the diffusive
source term and the classical drift term becomes man-
ifest. We can approximately regard the positions of ¢



and o at a given time as their respective root-mean-

square (RMS) values, namely, ¢ ~ ¢rms = v/ (¢?) and

0 >~ Orms = V/{(0?). Taking the cubic hilltop model as
an example, we numerically solve egs. (12a) and (12b),
and obtain an RMS-approximated path, which is de-
noted by the blue dashed curve in Fig. 1. The RMS-
approximated path agrees well with the mean path ob-
tained from MCMC, indicating that it can be used to
represent the stochastic behavior of the fields in the dif-
fusion region.

We further present the RMS-approximated paths
starting from different points in Fig. 2. It is easy to
see that for starting points with o¢ < o, the fields are
actually trapped in the diffusion region. For the starting
points with o. < 09 < 1.250., ¢ rapidly diffuses to the
boundary, while the value of o at exit remains almost the
same as its value when the rapid ¢-diffusion starts. Nev-
ertheless, if we start at some points where o¢ 2 1.250,
we can clearly observe an “L-shaped” path: when o is
large, ¢ is trapped near ¢ = 0 by its large positive effec-
tive mass, and its evolution is strongly suppressed; once
o approaches 1.250, ¢ starts to diffuse rapidly. It is in-
teresting that such transitions occur before o reaches o,
because the second term on the right-hand side of eq. (8)
can provide a sizable negative contribution for large ¢,
given the large value of A in our model. In this case, even
if the effective mass of ¢ at ¢ = 0 remains positive, large
quantum fluctuations can push the field over the barrier
into the hilltop inflationary region, known as stochastic
tunneling [46-50].

In fact, the “L-shaped” transition can be understood
from the properties of Langevin equations for the field
mean-square values. As for the evolution of o, the first
term on the right-hand side of eq. (12b) is dominant due
to a large 0. As a result, we have o =~ oy exp (—a,N)
with o, = m?2/(3H?). As we focus on the case where
a, < 1, the evolution of ¢ should be slow. Meanwhile,
the slow growth of ¢ in the regime o 2 1.250, indicates
the presence of a stable fixed point of eq. (11a), where the
classical drift and quantum diffusion compensate with
each other. More specifically, we have

3H*

> =0. (15

I ((6%),0) = CL(@%) + Ca{e”)? —
According to the bifurcation theory of differential equa-
tions, the critical condition at which the fixed point
ceases to be stable is given by 9f((¢?),0)/d(¢*) = 0,
which yields the following equation for (¢?)

Cy

(¢*) = 30, (16)

Substituting eq. (16) into eq. (15), we arrive at the value
of o, at which ¢ rapidly exits the diffusion region as

7 = (1 + Bg) : (17)
o, mg

N

with

9A16 3
Ba= ——M— B, =
3 ( 271'2/.1,6M1§1 > ) 4

In cubic hilltop inflation, with the help of eq. (17),
we find that for the parameter values used in Fig. 2, the
transition emerges at o, ~ 1.250,, in excellent agreement
with the numerical result. A similar consistency can also
be observed in the case of quartic hilltop inflation.

Eq. (17) predicts a common value for the exit of ¢
from the diffusion region that is largely insensitive to the
initial field values (apart from the unavoidable stochas-
ticity due to quantum fluctuations), as long as the con-
ditions o¢ 2 0. and ¢g = 0 are satisfied. The result sug-
gests that different pre-inflationary histories converge to
an attractor-like universal onset point of hilltop inflation,
thereby providing its natural initial condition. Therefore,
we regard o, as the field value at which o is effectively
frozen during hilltop inflation.
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IV. PREDICTIONS FOR INFLATIONARY
OBSERVABLES

A. Single-field slow-roll inflation

In the inflationary picture, quantum vacuum fluctua-
tions on sub-horizon scales induce small anisotropies in
the otherwise homogeneous background. During infla-
tion, the comoving Hubble radius ~ 1/(aH) (with a be-
ing the scale factor) decreases and eventually becomes
smaller than the comoving wavelength of a given mode.
As a result, the quantum fluctuations are stretched to
super-horizon scales and become effectively frozen until
the end of inflation. For a mode with comoving wave
number k, its perturbations after horizon exit can be de-
scribed by a classical probability distribution, whose sta-
tistical properties are determined by the power spectrum
evaluated at horizon crossing k = aH. In the single-field
inflationary scenario, the power spectrum for scalar per-
turbations can be expressed as

: H2 H2
inf
‘DC

- 2’/T2 g ) (19)

k=aH

which relates to the primordial curvature perturbations.
For tensor perturbations, we have

inf _ 2 H2

= =— 20
T 71'2 M}%l ( )

k=aH

By convention, the primordial power spectra are usu-
ally parametrized as power laws, namely,

) k ng—14---

e -a(p) 0 ew
. e\ et

PR =ra () (210)



where k. is a chosen pivot scale, A; denotes the ampli-
tude at ks, ns =1+dln Pénf/d In k refers to the spectral
index, r represents the tensor-to-scalar ratio, and n; is
the tensor tilt.

The observational results from Planck [2], ACT [8],
and BICEP /Keck [51] indicate that the scalar spectrum
is nearly scale-invariant with a mild red tilt, and the
tensor-to-scalar ratio is sufficiently close to zero. This
supports the picture that the primordial fluctuations may
be generated during a slow-roll inflationary epoch. One
can define the following parameters

M2 (VN2 %
SU(EYpte
where Vs = 0°V/9¢*. Then the slow-roll conditions
turn out to be ¢ < 1 and |n| < 1. In this case, the
inflationary observables can be derived as

N 1 Vv
- 242 Mp, €,
where €, and 7, are calculated at k.. Meanwhile, the
number of e-folds N, = log(ae/a.) from the time when

the k., mode exits the horizon to the end of inflation can
be computed as

ra 166, , ng— 1~ 2n, —6e,, A, , (23)

1 [V

N, = —
MI%I Pe V¢>

do, (24)
where ¢, denotes the value of ¢ at which either € or |7
becomes greater than one. For the typical CMB pivot
scale k, = 0.05 Mpc ™!, we have N, ~ 50 — 60, depending
on the post-inflationary reheating history. Hereafter, we
take NN, = 55 for definiteness unless specified otherwise.
In the quadratic hilltop inflation model with p = 2,
the slow-roll parameter |n| = 2Mg,/u* is independent
of ¢. The slow-roll condition || < 1 therefore requires
1 2, Mpy, implying that the inflaton field excursion is nec-
essarily trans-Planckian. For p > 2 with sub-Planckian
excursion, the slow-roll inflation terminates when |n| ~ 1,
corresponding to a field value ¢, satisfying

p(p — 1)t~ = p? /Mg, (25)
and the number of e-folds N, during inflation can be
approximated as

104 2—
N, —————— ;7. 26
© p(p—2)Mp, 26)
For a given Ng, this yields

2p

1 2p—23 22
=) (AT
(D@ o

indicating that r =~ 16¢, is negligibly small. Meanwhile,

2p—1) 1
sl - ——"— 28
which leads to ns ~ 0.927 and 0.945 (assuming N, =
55) for the cubic and quartic hilltop models, respectively,
both of which lie outside the 95% C.L. regions in the
latest Planck [2] and ACT [8] results.

B. The curvaton mechanism

The above picture can change if we introduce a curva-
ton field o [36-40]. Since m, < H during inflation, the
curvaton is effectively frozen at o,. Its quantum fluctua-
tions at the horizon exit are promoted to classical pertur-
bations with a nearly flat spectrum. At this stage, how-
ever, its contribution to the total curvature perturbations
is negligible because of its tiny energy density. The curva-
ton energy density reads p,(¢) ~ m2 .z(¢)o /2 (with the
effective mass of o given by m? q(¢) = m2+X*¢* /Mg)).!
After inflation ends, the Hubble parameter H decreases
as the Universe expands. When H 2 (tose) = H, 2~

osc T
m?,’eff, which gives Tose ~ /Mg egMp1, the curvaton
starts oscillating around its minimum and behaves as
non-relativistic matter with an isocurvature density per-
turbation. Using the condition HZ_ ~ m;eﬁ, we have
pr(tosc) =~ 3m2 s Mp). Since o, < Mpi, we see that
at the oscillation time f.s., the ratio of the curvaton
energy density to the radiation energy density satisfies

(Po/pr) = (U*/MP1)2/6 < 1

However, as p, o a~° while p, o« a~*, the curvaton en-
ergy density becomes significant after sufficiently many
Hubble times, provided that the oscillations last long
enough before the curvaton decays. The final curvature
perturbations then depend on the ratio between the cur-
vaton energy density and the radiation energy density at

the curvaton decay time t4e. defined as

2
1 O Tosc
~ — , 29
6 (MP1> (Tdec> ( )

where Tye. denotes the curvaton decay temperature,
which depends on the decay rate of the curvaton 'y
through Teyry >~ H(Tqec). We can in turn get

~ "77’£2T,effa.3 <Tdec)3 (30)
6M}%1 Tose ’

tosc

= 1251
Pr

tdec

1-\2 ~ (1 + R)p'r‘(Tdec)
curv — 3M1%1

where in the second step we have assumed that R > 1
so that the curvaton gives rise to large modifications to
primordial observables in our model. With the help of
eq. (30), Tgec can be written as

(SN

2
jbl’ 3 IﬂCler
Tdec >~ 2\/ma7effMp1 ( Pl) () . (31)

O« Mg eff

! In the presence of the )\2¢2U4/MP2,1 term, the curvaton field does
not behave purely as non-relativistic matter. However, we have
checked that the effective mass term dominates over the quar-
tic contribution in the vicinity of the best-fit parameters of our
model, allowing us to safely neglect the latter. A sizable quartic
term would instead delay the epoch at which p, becomes domi-
nant. In our numerical calculations, we have also checked that at
the end of inflation, when ¢ = ¢., the curvaton energy density
is indeed much smaller than the total energy density.



Meanwhile, using eqs. (29) and (30), we can estimate the
magnitude of I'¢yyy in the large R regime, namely,

3
r o 471000\

ewv gy 10716 ( - ) L3
Mo eff x 1016 GeV R (32)

Substituting this back into Tge., we obtain

Thee =5 % 107 GeV

% (101:&3\/)2 (1(;;)0) (1071108@\/)% - (33)

Assuming an instant energy transfer from the curvaton
to radiation, we obtain a temperature after the decay
Tau ~ RY*Tyee. Taking o, ~ 10'® GeV, R ~ 1000, and
Mot ~ 10 GeV, we obtain Try ~ 3 x 10% GeV, which
is well above Big-Bang Nucleosynthesis (BBN) bound
Tru = 4 — 5 MeV. Apparently, the determination of R
depends on I'cypry, which is rather model-dependent. In
this work, instead of considering specific curvaton decay
models, we regard R as a free parameter for simplicity.

The total curvature perturbation ¢ on super-horizon
scales is conserved for purely adiabatic evolution. In
a mixture of radiation and a pressureless curvaton, (
evolves whenever there is a non-adiabatic pressure com-
ponent, arising from the relative entropy between the two
fluids and from energy transfer during the curvaton de-
cay. This evolution becomes significant once the curvaton
energy fraction grows, typically around equality, when
the curvaton energy density becomes comparable to that
of radiation. Although equality may occur before the
curvaton decays, we adopt the sudden-decay approxima-
tion and, for simplicity, neglect the pre-decay evolution
of . Therefore, before tqec, we have ( = (;, while after
decay ¢ becomes [37]

<_4Cr+3RCa
4+ 3R

where ¢, = _H(Spr/p.r = 5pr/(4pr)a Co = _H(Spa/pa =
0ps/(3ps), and rqec = 3R/(4 4+ 3R). For later conve-
nience, we redefine (ins = (1 — 7dec)r and Ceury = TdecCo-
Then the curvature perturbation power spectrum can be
expressed as

= (1 = 7dec)Cr + TdecCo (34)

P§ _ énf + zpzurv + Pénix
X <Cinf<inf> + <Ccurv§curv> + 2<Cinf<curv> ’ (35)

where (- --) denotes the correlation function.” In the flat
gauge, the last term in eq. (35) is proportional to (§¢do).
Since the mass mixing between d¢ and do is proportional

2 By definition, (CkCr) = (2m)363) (k — k’)P¢(k). After horizon
exit, each mode freezes and becomes effectively classical, so the
power spectrum is given by the squared amplitude of the mode
function at horizon exit P¢ (k) = |¢£*1*|2. Then the dimensionless

power spectrum is given by P¢(k) = kSPC(k)/(2ﬂ2).

to A%, (GntCeurv) should be negligibly small compared
with the diagonal terms. Therefore, we can ignore the
cross term,” which results in P; ~ ’Pénf + P with

. 4 \°/HN\? 1
inf __ *

P = (4+3R) <27r) 2, M2, (362)
curv R ? H* 2

PO = <4+3R> <7r0*) ‘ (36b)

Evaluating the above quantities at the pivot CMB scale
k. gives the amplitudes
Aisnf = rpénf(k*) , A(gzurv = rpgurv(k*) ) (37)
The total amplitude is A, = A" + AV Above, we
see that the total curvature perturbations have different
contributions from the inflaton and the curvaton, both
depending on the ratio R.
With the help of egs. (36a) and (36b), we can derive
the spectral index ng as

1 dfpénf dfpgurv
s—1= — 38
" Pe (dlnk+ dink )| (38)
Ainf g Acurv
— S mb 1 S curv. 1
AS (nS ) + AS (nS ) )
where n™f can be calculated using eq. (23) in the slow-roll

curv
S

regime, whereas n is given by [37]

H 2 m? fF
e —1 a2 H; 3 52 (39)
In the case where m, g < H, and H*/Hf < 1, we
approximately have n{""" ~ 1.
In addition, the tensor-to-scalar ratio r also gets mod-
ified, i.e.,

A, 16¢, 4+ 3R\?
" As 14 Agwv/Aint ( 4 ) ’ (40)

where A; = 2H?/(n*M3,) has been adopted.

In appendix B, we re-derive the above results adopting
the 0N formalism [52, 53]. Moreover, the 0N formalism
could also help us calculate the magnitude of the primor-
dial non-Gaussianity [53-56], which may be significant in
the curvaton scenario, since the final curvature perturba-
tions arise from the nonlinear conversion of the curvaton
isocurvature fluctuations into adiabatic ones after its de-
cay. The local non-Gaussianity can be described by a
dimensionless parameter fni,, which can be estimated as
[cf. eq. (B15)]

Acurv 2 5 5 5
~ (Zs 2 e 41
I (A) (4 ° 6rd> (41)

3 A more explicit form of the cross term is given in appendix B.



V. RESULTS AND DISCUSSIONS

In this section, we test the curvaton-assisted cubic and
quartic hilltop inflation models against the CMB obser-
vations. Before proceeding to the numerical analysis, we
shall make some analytical order-of-magnitude estimates.

We focus on the scenario where the primary inflation-
ary phase can be approximately described by a purely
cubic or quartic hilltop potential, for which the formulae
for the primordial observables remain valid. To achieve
this, we require B, < mi, so that V, is dominated
by the second term in eq. (8). Then from eq. (38),
we know that the total ns can be approximately deter-
mined by the relative contribution of A" and A,
Keeping in mind that A, = A 4+ AV the observ-
able values of ng and A, can roughly constrain the vi-
able ranges of A™ and AS™. Using the best-fit values
ns = 0.9649 and In(10"'"A,) = 3.049 from Plancki8
(TT, TE,EE+lowE) results for illustration, one arrives at
AP~ 1.0 x 1072 and A™Y ~ 1.1 x 1072 for the cubic
hilltop, and A™ ~ 1.3 x 1072 and A" ~ 7.6 x 1071°
for the quartic hilltop.

By adopting the formulae in single-field slow-roll hill-
top inflation, we can rewrite egs. (36a) and (36b) as the
expressions that depend explicitly on the model param-
eters. For A™ we have

; ANAM2E A
inf > Pl . .
Al NW (cubic hilltop) , (42a)
; 128 N3 A%
inf . .
As ~m (quartzc hllltop) s (42b)
and
AA4
A —————— . 43
s 277r2m¢M1§1 ( )

where R >> 1 has been considered. It can be seen that
A exhibits a positive relation with p, whereas it shows
a negative relation with X\. The ratio between A" and
ASM™Y turns out to be

AR 36N mg M,
Agurv - RQ)\,UG

128 N3m, M3,

and B2 ,

(44)

for the cubic and quartic hilltop models, respectively. A
approximately cancels out in the ratio. One can thus see
from eqs. (38) and (40) that the dependence of ng and r
on A is weak. The negative relation between R and p also
indicates that there is a lower bound on R since we are
interested in the sub-Planckian scenario. For instance, if
we set A =2x 1073, Mg = 2 % 10~ " Mp; and < 0.5Mp,
for the cubic and quartic hilltop models we respectively
have R > 1500 and R > 200. As a benchmark, in the
following we will fix R = 2000 for the cubic case and
R = 500 for the quartic case.

In addition, we should require that mq g < H holds
until the end of inflation, giving rise to 3A%¢2 /A* < 1.
Given the expression of ¢, in eq. (25) and the relations

N

between p, A and A shown in eqs. (42a), (42b) and (43),
an upper bound on A can be roughly derived as A <
1072, while the more accurate bound can be computed
numerically.

Moreover, from eq. (40) we approximately have

,LL6R2
"EANAME, fcutic hilton). o
9u*R?
H (quartic hilltop) , (45b)

" T 128NN,

which indicates that large values of R and p can result in
a sizable tensor-to-scalar ratio r, becoming a distinctive
feature that sets this scenario apart from sub-Planckian
single-field hilltop inflation models.

Based on the above discussions, we perform a Bayesian
analysis to assess the consistency of our curvaton-assisted
hilltop inflation model with cosmological observations.
We fix the values of my = 2x 1077 Mpy, m, = 10~ Mpy,
and R = 2000 (500) for the cubic (quartic) case, while
treating the remaining parameters § = {u, A, A\} as the
scanning parameters. A log-flat (uniform-in-log) prior is
imposed on these parameters, such that 7(6) =1 for

— 1 <logyo(p/Mp1) <0,
—5<logjpA < -1,

-3 S logw(A/Mpl) S —2 s
(Moo /H)|, <1.  (46)

Otherwise, 7(0) = 0.

We use the observables D = {A;,ng,r} (with Ay =
In(10'° A,)) to construct the likelihood function. For sim-
plicity, we assume the measurement errors are Gaussian
and uncorrelated, and then the log-likelihood is related
to the x? statistic as log £ = —x?/2, where the total x>
is calculated as the sum of the contributions from each
observable

XQ(G) — (ne(o) - ﬁs)Q N (Ag(e) _ AS)Z N 7'2(0)

2 2 2
Ons A, oy

where ns(0), As(0), and r(0) are the values predicted
by the model for the parameter set 8, the values ns and
A, are the observed central values, and ¢ represents the
corresponding 1o (68% C.L.) uncertainties. As discussed
above, we adopt the Planck18 (TT,TE,EE+lowE) con-
straints and the combination of ACT DR6, Planck,
and DESI Year-1 data, labeled by P-ACT-LB as the ob-
servational baselines for our parameter inference. For
Planck18 (TT,TE,EE+lowE), the central values and the
corresponding 68% C.L. uncertainties for ny and Ay at
the pivot k, = 0.05 Mpc ™' are determined by [2]

ng = 0.9649 +0.0044 , A, = 3.045+0.016, (48)
while for P-ACT-LB, we use” [8]
ns =0.9743+0.0034, A, =3.06070513 . (49)

4 We approximate o4, by the average value 04, = 0.0115 when
constructing the likelihood function for As.
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FIG. 3: Upper panel: The 1D marginalized and 2D
joint posterior probability distributions for the model pa-
rameters {u, A, A\} in the cubic hillbop model, where we
fix R = 2000, my = 2 x 107" Mpy, and m, = 10~ Mp.
Constraints are derived from an MCMC Bayesian anal-
ysis incorporating observational data for n,; and Ag
from Planck18 (TT,TE,EE+lowE) (blue) and P-ACT-LB
(red), as well as the upper limit on the tensor-to-scalar
ratio r < 0.036 at 95% C.L. from BICEP/Keck18 (BK18).
The inner and outer contours in the 2D plots corre-
spond to the 68% and 95% credible intervals, respec-
tively. Lower Panel: The predicted values of r as a
function of p/Mp). Solid lines show the median values
from the posterior distributions using Planck18 (blue)
and P-ACT-LB (red) data, with shaded bands indicating
the 68% credible intervals.

For the tensor-to-scalar ratio r, the most stringent up-
per bound is derived from the BICEP/Keck18 (BK18) re-
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FIG. 4: Upper panel: The 1D marginalized and 2D
joint posterior probability distributions for the model pa-
rameters {u, A, A} in the quartic hilltop model, where we
fix R = 500, my = 2 x 107" Mpy, and m, = 107" Mp,.
We use the same experimental constraints as in Fig. 3.
Lower Panel: The predicted values of r as a function of
1/ Mpy. Solid lines show the median values from the pos-
terior distributions using Planck18 (blue) and P-ACT-LB
(red) data, with shaded bands indicating the 68% credi-
ble intervals.

sult [51], namely,

r < 0.036 (95% C.L.) at k, =0.05 Mpc™'.  (50)
We thereby model the x? function for r as a one-sided
Gaussian distribution with a mean of zero and a standard
deviation o, = 0.036/1.96 = 0.0184.

The posterior probability distribution P(6|D) of the
parameters 6 given the observational data D is propor-



TABLE I: The median values along with 68% credible intervals of model parameters {u, A, A} and the predicted
values of A, ng, 7 and fyr, in the cubic and quartic hilltop models. Planck18 and P-ACT-LB are adopted as the
observational baselines.

Cubic hilltop Quartic hilltop
Parameters
Planck18 P-ACT-LB Plancki18 P-ACT-LB
log,o(u/Mp1)| —0.28770:130 —0.23475101 —0.4717915% —0.37470138
1/ Mpy 0.51675:1%} 0.58315:153 0.33870-159 0.42310:104
log,o(A/Mp1)| —2.56370158 —2.51675 129 —2.56715 154 —2.50470 738
A/Mpy  [(2.7475755) x 1072 (3.057550) x 1072 | (2.717583) x 1072 | (3.13%528) x 1073
log, A —2.798%5552 —2.82970 348 —3.18015 757 —3.21319%54
A (1.597122) x 1073[(1.4872:55) x 1072 (6.6172%%%) x 107*{(6.127}%77) x 1074
N 0.964679:0043 0.974275-0083 0.963971 59045 0.96401 50053
As 3.04515:018 3.06070:011 3.04510018 3.06010:011
r 0.00275:958 0.00375:955 0.00279-09% 0.00315:005
L —0.157954 —0.2579:54 —0.061903 —0.1679:54

tional to the product of the likelihood function £(D|0)
and the prior probability distribution m(8)

P(0|D) x L(D|0)(6) . (51)
We explore the parameter space using an MCMC algo-
rithm. The resulting 1D and 2D marginalized posterior
distributions are displayed as corner plots in Fig. 3 (the
cubic hilltop case) and Fig. 4 (the quartic hilltop case).
The inner and outer contours correspond to the 68% and
95% credible intervals (i.e., approximately 68% and 95%
of the samples fall within the corresponding contours),
while the blue and red shaded regions represent the con-
straints from the Planck18 and P-ACT-LB, respectively.
Meanwhile, we also present the median values along with
68% credible intervals of model parameters {y, A, A} and
the predicted values of Ay, ng, r and fyr, in Table I. Some
remarks are as follows.

Firstly, our analysis demonstrates that our curvaton-
assisted hilltop inflation model is fully consistent with
current observations from both Planck and ACT collab-
orations. The significant overlap of the 68% contours
suggests that the two experiments prefer a consistent re-
gion within the allowed parameter space. Nevertheless,
it is evident that P-ACT-LB yields more compact poste-
rior distributions, providing more stringent constraints
on the model parameters.

Secondly, for both the cubic and quartic hilltop models,
the median values of A from the posterior distributions
are found to be around 3x10'® GeV, implying a potential
origin from Grand Unified Theories (GUTs). Regarding
the parameters p and A, the quartic hilltop model can
accommodate a broader parameter space compared to
the cubic case. The allowed values of p are roughly within
the range 0.1Mp; < pu < Mp;, which is consistent with
the sub-Planckian scenario considered in this work. The

median value of the coupling parameter A is determined
to be of O(1073).

Thirdly, the parameter relations exhibited in the 2D
posterior distributions are well described by the analyt-
ical formulae in eqgs. (42a), (42b) and (43). As for the
1D distributions, we observe that for both the cubic and
quartic cases, A and p display similar, approximately
symmetric distributions. In contrast, the posterior dis-
tributions for A differ significantly between the two mod-
els. Specifically, the cubic case features a distinct peak
around 1073, whereas the quartic case shows a relatively
broad, flat plateau. This discrepancy suggests that the
primordial perturbations in the cubic model are more sen-
sitive to the specific value of the coupling A\, whereas the
quartic model maintains a stronger degeneracy across a
wider range of \.

Finally, as discussed above, our model predicts a
nonzero tensor-to-scalar ratio r. The posterior median
for r is found to be 0.002 when fitting to the Planck18
results, and 0.003 for the P-ACT-LB results. These val-
ues suggest that our model is a promising target to be
tested by next-generation Cosmic Microwave Background
(CMB) experiments, such as LiteBIRD [57] and CMB-
S4 [58]. As illustrated in the r — u profile, r increases
monotonically with . Considering the negative relation
between A and u, a larger A corresponds to a smaller
w and, consequently, a suppressed r. Since the scalar
spectral index ng and amplitude A; can be well fitted,
the likelihood for r, which favors smaller values, drives
the best-fit region towards larger A. However, the viable
parameter space at the upper boundary of A is severely
restricted by the curvaton stability condition meyeq < H.
After accounting for the volume effects in the parameter
space, the posterior medians listed in Table I provide
a robust representation of the most probable parameter
values.



Cubic hilltop inflation
10°F— T T 3
: P-ACT-LB-BK18 e N,=50 ]
L Planck-LB-BK18 ® N,=60 ]
[ —— Single-field (u > Mp) T
1071k Curvaton-assisted .
N L _
1072 .
1073F .
| | |

1.00

10

Quartic hilltop inflation

10%¢ T T T E
3 P-ACT-LB-BK18 e N,=50 ]
[ Planck-LB-BK18 ® N,=60 ]

[ —— Single-field (1t > Mp)
1071 Curvaton-assisted =
. L ]
1072 E
107 E
I | | | ]

0.94 0.96 0.98 1.00
nS

FIG. 5: Relations between the tensor-to-scalar ratio r and the spectral index ng in the cubic and quartic hilltop
models. The pink- and orange-shaded contours are the constraints from the P-ACT-LB-BK18 and Planck-LB-BK18
results, with the darker and lighter colors denoting the 68% and 95% C.L. allowed regions, respectively [59]. Blue lines
correspond to the predicted r —ny relations in the single-field hilltop models (trans-Planckian regime with p > Mp).
The green lines represent the r — ng relations in the curvaton-assisted hilltop models, where p < Mp), A is fixed at
1.6 x 1072 for the cubic hilltop and 6 x 10~ for the quartic hilltop, respectively, and A, is taken to be close to its

best-fit value inferred from the observations.

In Fig. 5, we further plot the relations between r and n
for both the single-field and curvaton-assisted hilltop in-
flation models, in comparison with the experimental con-
straints from the P-ACT-LB-BK18 and Planck-LB-BK18
results. As mentioned above, the single-field cubic and
quartic hillbop models with p < Mp, have already been
excluded, and one should notice that the blue lines corre-
sponding to the predicted relations from the single-field
hilltop models are obtained by considering the trans-
Planckian scenario with p > Mp;. With the inclusion of
ACT data, they face increased tension with observations.
Even for the N, = 60 case, the theoretical prediction
lies almost entirely outside the 68% C.L. region of the
P-ACT-LB-BK18 constraints. By contrast, our curvaton-
assisted hilltop models exhibit distinct » — ns relations.
From Egs. (38) and (40), we know that n, is primarily
determined by the ratio Alnf /As, whereas r depends on
Ais"f/As and €,. €, is mainly a function of p as shown
in eq. (27). Furthermore, in the ratio A" /A,, the de-
pendence on the energy scale A approximately cancels
out. In this sense, if the value of X is given, Afgnf /A also
becomes a function of p. Therefore, to clarify the corre-
lation between r and ng, we fix A close to its posterior
median values listed in Table I (A = 1.6 x 1072 for the
cubic hilltop and A\ = 6 x 10™* for the quartic hilltop).
We further require A to be close to its best-fit value,
allowing us to exclude extreme values of A that may in-
validate eq. (43). The obtained results are represented

by the green lines, which reveal an approximately linear
dependence between r and ng.

Before closing this section, we turn to a brief discus-
sion about the predicted non-Gaussianity in our model.
According to Table I, the preferred local non-Gaussianity
coefficient fnp, is found to be negative with a magnitude
of O(0.1). The up-to-date constraint on the local non-
Gaussianity is fn, = —0.9+5.1 [3]. Hence our prediction
for the non-Gaussianity lies well within current exper-
imental limits, yet still represents a small but distinct
deviation from the standard single-field slow-roll predic-
tion fxr, ~ O(1 — ng).

VI. CONCLUSIONS

Conventional hilltop inflation models face the initial-
condition problem that the inflaton field must start to
roll extremely close to the top of the hilltop potential,
raising a concern about its naturalness. In this work,
we have discussed a solution to this problem involving a
curvaton field. We have focused on the cubic and quartic
hilltop models in particular. The curvaton o couples to
the inflaton field via a cross term given in eq. (5), which
contributes to the effective mass of the inflaton and mod-
ulates the shape of the inflaton potential. All interactions
have a supersymmetric origin.

Given white-noise fluctuations at the Hubble scale for



both inflaton and curvaton fields, we have shown, both
analytically and numerically, that the onset of hilltop
inflation is insensitive to the initial position of the cur-
vaton within a certain region of field space. The dynam-
ics of the field evolution is described by the Langevin
equations. In the numerical simulation, we applied an
MCMC analysis to solve the equations, and in the ana-
lytical derivation, mean-square values of the fields ¢ and
o were taken as observables. Both results match very
well, as shown in Fig. 1, and the insensitivity to the ini-
tial conditions is confirmed in Fig. 2.

The curvaton is assumed to be sufficiently light com-
pared with the Hubble rate during inflation, so that it
does not dominate the Universe until the Hubble rate
decreases to become comparable to the curvaton mass
after inflation. It plays an essential role in modifying
the primordial curvature perturbations via the ratio R of
the curvaton energy density to the critical energy den-
sity at the time of curvaton decay. We have explicitly
derived the expressions for the primordial observables in
the presence of a curvaton.

We further performed a Bayesian analysis to confirm
the consistency of our model with cosmological obser-
vations, taking into account both Planck and the most
recent ACT results. Given a sufficiently large R and suit-
able inflaton and curvaton masses, the overall potential
scale A can be of order the GUT scale, and the inflaton
field value can be of order the sub-Planckian scale, both
remaining consistent with these data. In particular, we
compared our models with single large-field hilltop infla-
tionary models (both cubic and quartic) in terms of the
predicted tensor-to-scalar ratio and spectral index. A
sub-percent level tensor-to-scalar ratio was obtained in
the curvaton-assisted inflation scenario, consistent with
both the Planck and the recent ACT data, and this can
be tested in next-generation of CMB experiments.
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Appendix A: Langevin Equations

In the stochastic inflation formalism, the evolution of
the coarse-grained scalar field is governed by two contri-
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butions: a deterministic drift corresponding to its classi-
cal slow-roll motion, and a stochastic source arising from
the continuous horizon crossing and subsequent freezing
of short-wavelength quantum fluctuations. As a result,
the dynamics of the field can be described by a stochastic
differential equation of Langevin type [60]
Ve H

dp = — 25 dN + Wy, (A1)
where ¢ = ¢,0 and Wy denotes the Wiener stochas-
tic process with increments satisfying (dWyx) = 0 and
((dWn)?) = AN. dWy is related to the white noise &,
via dWpx = {,dN. Then one can immediately note that
eq. (Al) takes the same form as eqgs. (9) and (10).
Taking the expectation value of eq. (Al) and utiliz-
ing (dWx) = 0, we obtain the Langevin equation of the

expectation value () as
dle) _ (V)
dN 3H?

In order to derive the Langevin equation for the field
mean-square values, we consider the stochastic differen-
tial of 2, namely,

(A2)

d(¢?) =2¢dyp + (dp)? (A3)
91, H H\?

where (dp)? cannot be neglected since ((dWy)?) = dN
is of first order in the infinitesimal. Again, taking the
expectation value of eq. (A3) and using (pdWy) = 0,
we obtain Langevin equation for (¢?)

For our model setup with A < 1072, the covariance
between ¢ and o is negligible, which allows us to treat the
Langevin equations for ¢ and o separately. As mentioned
in the main text, the starting point of ¢ is randomly
selected in the range o 2 o, while the initial value of ¢
is very close to zero. In this case, V,, &~ mZ2o and eq. (A4)
reduces to

(A4)

d(c? 2m? H\?
(§1N> N -3 (0?) + (277) , (A5)
which reproduces eq. (12b). As for the field ¢, since Vy
contains higher-order terms in ¢, in general one cannot
reduce the equation for <¢2> into a form analogous to
eq. (A5). In the following, we examine the explicit forms
of Langevin equations for (¢?) for the cubic and quartic
hilltop cases.

Cubic hilltop. In the cubic hilltop case with p = 3,
Vi, is written as

4 2
2 (O 19

1 B (A6)



From eq. (A2), it is not difficult to see that ¢ can develop
a nonzero expectation value due to the ¢* term in V. A
static solution can be reached if d{¢)/dN =~ 0 is satisfied,
which yields

3AYeY) (ot N\
~ Lt — -1 . A
0= s (%-1) (A7)
For the parameter range of interest, (¢) < drms = / (¢?)

holds. Hence, under the condition that ¢ follows an ap-
proximately Gaussian distribution, one can get (¢%) ~
3(¢) - (¢*). Then eq. (A4) can be recast into

d(p? 2 H\?
(L~ g () ) + (1) (as)
with
ot 27AS [ o* -
cv=mi(%-1) 02:_m3u6<0§_1> |

(A9)

Quartic hilltop. Unlike the cubic hilltop potential,
in the quartic hilltop case we have

0.4

Vo =m} ( (A10)

4
Oc

3
_1)¢_4A4i4+... ,

which involves only odd powers of ¢. Therefore, as long
as (¢) is sufficiently close to zero, it will eventually sta-
bilize at (¢) = 0. For an approximate Gaussian distribu-
tion, (¢*) = 3(¢*)? should be satisfied. In this case, the
Langevin equation for (¢?) also takes the form as

9 2
e~ g @l )+ () (aw)
with

4 4
Cy = m? <0—1>, o, — A (A12)

4
Oc

Appendix B: 6N formalism

In this section, we derive the explicit formulae for in-
flationary observables in our model by implementing the
dN formalism [52, 53, 61]. On super-horizon scales, the
curvature perturbation { appears in the spatial part of
the perturbed metric ds? in the form

ds? = —dt? + a?(t)e* 2, dzlda’ . (B1)
Accordingly, the physical volume element dV (x) around
the position x is proportional to a?’(t)esg(t’x). On the
other hand, the expansion of the background volume can
be connected to the number of e-folds as a®(t) ~ 3.
As a result, dV (x) oc 2NN with §N(x) being the
difference between the local number of e-folds in each

12

Hubble patch and the background average. Hence one
can directly identify the curvature perturbation with the
local fluctuation in the number of e-folds, namely, {(x) =
IN(x).

In practice, one can select a spatially flat slice where
the curvature perturbation in the three-dimensional met-
ric vanishes as the initial hypersurface, labeled by “*”,
and a uniform-density slice where §p = 0 as the final
hypersurface, labeled by “f”. Note that the flat hyper-
surface must be evaluated at the horizon exit. Then we
have ¢ = 6N/. In the two-field framework, 6N/ can be
computed with the help of Taylor expanding [61]

1 S
ON{ = N5t + §Nij6<p15<p1 4o, (B2)
with N; = N Jogt, Nij = 0°NY /(0pL0¢7), and ¢ =
¢, 0 in our case. We adopt the sudden—decay approxima-
tion for the curvaton and take the final uniform—density
hypersurface to coincide with the epoch of its decay, and
then Ny and N, can be evaluated by

1-— Tdec 27‘dec
Ny = ———, - = B3
* 7 Mpiy/2e, 30, (B3)
where
3po
Tdec p (B4)

B 4p7"+3p‘7 decay .

The factor rqec enters the expressions for Ny and N, be-
cause, after the curvaton decay, the total curvature per-
turbation (¢ is a weighted combination of the individual
contributions, namely, ¢ = (1 — rqec){r + TdecCo-

Now we can use the above formulae to calculate corre-
sponding inflationary observables.

Power spectrum. The total power spectrum reads

Pe = (CC) = N;N; (5p 507)

H.\?
:( ) (N3 + N2 +26NyN,),  (B5)
2T
where the coefficient of the cross term x =

(6¢.60.)/[H?/(27?)]. Under the assumption that o is
light and the mixing between ¢ and o is weak, K ~
M3\Vyo |V = 403 (¢0> + ¢%0)/V < 1 can be safely ne-
glected. Hence we get

H* ? (]- - Tdec)2 2"Adec ?
~|— , B6
P (277) [ 5. M2\ 30, (B6)
which turns out to be egs. (36a) and (36b).
Tensor-to-scalar ratio. As the introduction of the

curvaton only modifies the scalar perturbation power
spectrum, the tensor-to-scalar ratio becomes

_Pr 8

= e B7
=Rl VEN G (B7)



Substituting eq. (B3) into the above equation, we obtain

16€,
(1 - Tdec)2 + 25*M§1[2TdeC/(3U*)]2 .

(B8)

r =

Spectral index. In the N formalism, the spectral
index can be expressed as

— s (B9)
N¢+N2

where 7(®) = M2,V,,/V has been defined. Since the
curvaton potential is rather flat, 77(”) should be highly
suppressed. Moreover, ¢, should also be negligible in
hilltop inflation models. Hence the expression for ng can
be simplified into

(1 - rdec)g

s~ 14 2n, .
e N e 7 + 817, ME, (30 )2

(B10)

Non-Gaussianity. If the primordial fluctuations
obey a strict Gaussian distribution, all statistical infor-
mation is fully characterized by the two-point function.
To be more concrete, all odd-point correlation functions
vanish, while even-point functions can always be reduced
to products of two-point functions. In this sense, the
presence of a non-vanishing three-point function serves
as a clear indicator of non-Gaussianity. In the § N for-
malism, a non-vanishing quadratic term may generate a
nonzero three-point function. Schematically, one finds
(C3) ~ (60°6¢07)(60%5¢p), which implies that non-linear
dependence of ¢ on the field fluctuations could lead to
non-Gaussianity [53-56].
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The Non-Gaussianity can be described by a dimension-
less parameter fyi,, defined as

P N;N,;N;;
NE =6 (NG Ng )2
5 N§N¢¢ +2NgNsNyo + NiNgg

6 (N2 + N2)?

(B11)

In the case where Ny4 is small and Ny, is negligible, fnt,
is reduced to

5 NENM
L~ -

—— . B12
6 (N2 + N2)? (B12)

To proceed, we need the explicit form of N,,. Keeping
in mind that rge. also depends on o, through p, af ,
we have

(9 2 Tdec 2 7‘21 T'dec
Noo=5— 1|3 = = -—= s B13
0o, <3 O 3\ o o2 (B13)
with 7., = Orqec/d04. Using the definition of rqe. given
in eq. (B4), one finds

27“(1
S (3  Argec — 2r§ec) .

*
Therefore, we eventually arrive at

2
N2 5 5 5
~ i —2 20, 1
Ine <N3+N3> (47“dec 3 6”) (B15)

where we should note that AS™ = HZNZ/(2r)* and
AP = HINZ/(2m)?.

N,y = (B14)
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