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Antibiotic susceptibility tests (ASTs) often fail to predict treatment outcomes because they do not
account for biofilm-specific tolerance mechanisms. In the present study, we explored alternative
approaches to predict tobramycin susceptibility of Pseudomonas aeruginosa biofilms that were
experimentally evolved in physiologically relevant conditions. To this end, we used four analytical
methods – whole-genome sequencing (WGS), matrix-assisted laser desorption/ionization-time of
flight mass spectrometry (MALDI-TOF MS), isothermal microcalorimetry (IMC) and multi-excitation
Raman spectroscopy (MX-Raman). Machine learningmodels were trained on data outputs from these
methods to predict tobramycin susceptibility of our evolved strains and validated with a collection of
clinical isolates. For minimal inhibitory concentration (MIC) predictions of the evolved strains, the
highest accuracy was achieved with MALDI-TOF MS (97.83%), while for biofilm prevention
concentration (BPC) predictions, Raman spectroscopy performed best with an accuracy of 80.43%.
Overall, all analytical methods demonstrated comparable predictive performance, showing their
potential for improving biofilm AST.

Antibiotic susceptibility tests (ASTs) guide the selection of antimicrobial
agents for treating infections1,2. TheseASTs typically evaluate the response
to antibiotics of planktonic bacteria in suspension (e.g., broth micro-
dilution test3) or bacteria grown on agar surfaces (e.g., disk diffusion test4).
However, the conditions of these in vitro tests do not represent the in vivo
microenvironment, where bacteria often occur as biofilms, i.e., aggregates
encased in extracellular matrix derived from either the bacteria or the
host5. Biofilm-growing bacteria exhibit distinct physiological character-
istics that confer increased tolerance and resistance to antibiotics com-
pared to their planktonic counterparts6,7 and they canwithstand antibiotic
concentrations up to 100-1,000 times higher than those effective against

planktonic cells8–11. As a result, conventional ASTs frequently fail to
predict treatment success, as the biofilm phenotype is not considered8,12,13.
To improve in vitro ASTs, culture media that more closely mimic the
in vivo microenvironment can be used. An example of such a medium is
synthetic cystic fibrosis medium 2 (SCFM2), which simulates the lung
environment of cystic fibrosis (CF) patients14. In SCFM2, Pseudomonas
aeruginosa forms biofilm microaggregates that closely resemble those
found in the sputum of CF patients15 and exhibit similar gene expression
profiles16. P. aeruginosa biofilm growth in SCFM2 was found to be highly
reproducible15,17–20 and this medium can be used to determine biofilm
susceptibility10.
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However, biofilm-based ASTs remain challenging to implement and
are timeconsuming. In thepresent studyweexplored alternativemethods to
predict the antibiotic susceptibility of P. aeruginosa biofilms, using whole-
genome sequencing (WGS), matrix-assisted laser desorption/ionization-
time of flight mass spectrometry (MALDI-TOF MS), isothermal micro-
calorimetry (IMC) and multi-excitation Raman spectroscopy (MX-
Raman). Each of these analytical techniques provides unique insights into
different bacterial properties. WGS allows the prediction of antibiotic sus-
ceptibility by confirming the presence of known resistance genes or
mutations21–23; however, it may be less suitable to detect poorly understood
and/or novel tolerance and resistance mechanisms. MALDI-TOF MS,
widely used in clinical microbiology laboratories for rapid pathogen iden-
tification, also holds potential for antibiotic susceptibility testing24–26.
Machine learning algorithms trained on large MALDI-TOF MS datasets
have been successfully used to classify isolates as susceptible or resistant27.
IMC measures heat production associated with metabolic processes.
Microbial metabolism plays an important role in antimicrobial
susceptibility6,28, andmeasuringmetabolic activity with IMC can be used to
evaluate the activity of antibiotics29–31. Lastly, Raman spectroscopy (RS)
measures the inelastic scatteringof lightdue tomolecular vibrations, thereby
offering information about themolecular compositionof a sample32. InMX-
Raman, multiple wavelengths are used to excite the sample, providing a
more comprehensive fingerprint of bacterial cells33. Several studies have
demonstrated the potential of RS to differentiate between resistant and
susceptible bacteria34–36. Combined, these approaches allow to interrogate
complementary aspects of bacterial biology, i.e., genomic differences
(WGS), proteomic fingerprints (MALDI-TOF), metabolic activity (IMC),
and overall biochemical composition (RS) and as such provide independent
and machine learning–ready datasets for susceptibility prediction.

Using WGS, MALDI-TOF MS, IMC and MX-Raman data obtained
from experimentally evolved P. aeruginosa strains, we developed an ordinal
regressionmodel topredict theminimal inhibitory concentration (MIC, as a
measure of susceptibility of planktonic cells) and the biofilm prevention
concentration (BPC) of tobramycin. For this study we focused on the
aminoglycoside antibiotic tobramycin, as it is frequently used to treat

exacerbations of P. aeruginosa infections in people with CF. In addition,
several formulations are available for inhalation therapy, which means that
high local concentrations of this antibiotic can be achieved at the site of the
infection37,38, The BPC was defined as the lowest concentration of anti-
microbial agent that prevented at least 90% of biofilm growth compared to
the growth control in SCFM213. For MIC predictions, all techniques
achieved an accuracy±1 > 89% (allowing a margin of error of one dilution),
withMALDI-TOFMS achieving the highest performance by predicting the
MIC with an accuracy±1 of 97.83%. For BPC predictions, all techniques
showed an accuracy±1 > 73%; the best BPC predictions were obtained with
Raman spectroscopy at 532 nm, achieving an accuracy±1 of 80.43%. After
training, the model was validated with a set of P. aeruginosa isolates
recovered from CF patients. For tobramycin MIC predictions, IMC and
MALDI-TOFMS scored above randompredictions, with IMC showing the
best performance. ForBPCpredictions, only IMCperformedabove random
predictions. An overview of the workflow is presented in Fig. 1.

Results
Antibiotic susceptibility of experimentally evolved P. aeruginosa
biofilms in SCFM2
We used an experimental evolution approach to generate a collection of
evolved P. aeruginosa isolates derived from six reference strains. For each P.
aeruginosa strain, eight independent cultures were set up in SCFM2 (except
for CF1 with six cultures), resulting in 46 lineages that were maintained for
15 cycles.Half of the lineageswere exposed to tobramycin and the other half
served as untreated controls.While the amount ofCFU/mL remained stable
in control lineages, it significantly increased over time in all tobramycin-
exposed lineages (except forAA2-1) (Supplementary Fig. 1). At cycle 15, the
experiment was concluded and the MIC and BPC of tobramycin were
determined (Fig. 2). The strains exposed to tobramycin during evolution
showed significantly higher BPC values compared to those evolved without
antibiotic exposure, indicating that exposure during evolution led to a
reduced susceptibility to tobramycin in biofilms (Supplementary Fig. 2;
increase in median BPC from 4 to 16 µg/mL). There was also a higher
median MIC in tobramycin-exposed strains (median MIC of 2 µg/mL)

Fig. 1 | Overview of the workflow of the present study. The minimal inhibitory
concentration (MIC) and the biofilm prevention concentration (BPC) of tobra-
mycin were determined for 46 experimentally evolved P. aeruginosa strains (derived
from six P. aeruginosa reference strains). These isolates were characterised using
four analytical approaches, i.e. whole-genome sequencing (WGS), matrix-assisted
laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS),

isothermal microcalorimetry (IMC) and multi-excitation Raman spectroscopy
(MX-Raman). The resulting data were used to train ordinal regression machine
learning models to predict MIC or BPC values. Model performance was assessed by
evaluating the accuracy ( ± 1) and the concordance index ( ± 1). After developing the
prediction model, it was validated with an independent dataset of clinical P. aeru-
ginosa isolates. Created in BioRender.
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compared to those evolved without antibiotic exposure (median MIC of
1 µg/mL), but this difference was not statistically significant.

Development of a machine learning model to predict anti-
microbial susceptibility
A machine learning model was developed to predict the MIC or BPC of
experimentally evolved strains based on WGS, MALDI-TOF MS, IMC or
MX-Raman data. In what follows, a single sample denotes one evolved
lineage, for which one prediction wasmade. Given the ordinal nature of the
prediction targets (MIC or BPC values), an ordinal regression model was
used. Prediction plots that visualise the probability at which each ordinal
classwas predicted, canbe found in Supplementary Fig. 3. Predictionquality
was assessed in terms of accuracy and concordance index (C-index). The
accuracy measures the percentage of samples for which the correct MIC or
BPC was predicted. The C-index measures the probability that two ran-
domly chosenpredictions are ranked correctly. For both of thesemetrics, an
additional version is computed that allows misprediction up to one 2-fold
dilution step: accuracy±1 and C-index±1, respectively (for more information,
see Methods). To assess the prediction quality of the machine learning
models, performances are compared to ‘random’ predictions. Here, ‘ran-
dom’ performance consists of the score obtained when every prediction
would be the MIC or BPC category that occurred the most often in the
training dataset. More formally, the predictions P y ¼ kjx� �

correspond to
theprobabilityP y ¼ k

� �
, unconditionedonx.Hence, the scoreof a random

prediction model corresponds to the setting where no relevant signal is
present in the input data. This score was computed for both the accuracy
and the accuracy±1. For the C-index and C-index±1, this random score is
always 0.5, making these metrics more useful when comparing scores
betweenMIC andBPCpredictions.Models trained onMICandBPCvalues
have different ‘random’ performances as there are only four different MIC
values present in our dataset (i.e., four ordinal categories), whereas the BPC
dataset consists of six ordinal categories. A higher number of ordinal
categories generally results in a more challenging prediction scenario and a
lower random performance. Furthermore, the distribution of values also
affects the random performance; evenly distributed categories make it
harder to guess the correct value, whereas skewed distributions can increase
the random performance score. It is therefore mandatory to compare a
model’s performance to the random performance score and a model’s
performance should be judgedbyhowmuch it exceeds the performance of a
random model.

Statistical tests typically require repeated measurements of perfor-
mance obtained from independent test data sets. Given the nature of the
evaluationmetrics (which delivers a single estimate of performance on the
whole data set), it is impossible to test for statistically significant differ-
ences between the different methods without violating test assumptions39.
Instead, in what follows, model performances for different data sources
are compared using the aforementioned notion of random predictions.
Informally, a (higher) performance level above random indicates themore

Fig. 2 | Antibiotic susceptibility of experimentally evolved P. aeruginosa.
aMinimal Inhibitory Concentration (MIC) and (b) Biofilm Prevention Con-
centration (BPC) of tobramycin (µg/mL) for all evolved strains (blue squares:

control, red triangles: exposed to tobramycin during evolution) and their respective
wild-types (WT) (green dots). Data points represent the median value of three
biological replicates per sample.

Fig. 3 | Performance of machine learning predictions based on various analytical
approaches. (a) Scatterplot showing the performance for predicting the MIC
(squares) or theMICwith an allowedmargin of error of one 2-fold dilution (dots) (b)
Scatterplot showing the performance for predicting the BPC (squares) or the BPC

with an allowedmargin of error of one 2-fold dilution (dots). The blue lines indicate
scores based on random predictions. Horizontal blue dashes: random accuracy
performance. Horizontal blue full line: random accuracy±1 performance. Vertical
blue full line: random C-index and C-index±1.
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obvious presence of signals indicative of antimicrobial resistance in
the data.

Whole-genome sequencing
Whole-genome sequences were obtained for 46 experimentally evolved
P. aeruginosa strains. By comparing these sequences to that of the
unevolved WT, the mutational landscape could be mapped (Supple-
mentary Data 1). Next, a machine learning model was developed to
predict the MIC and BPC values based on the detected DNA variants.
This unbiased approach integrates all observed DNA variants, enabling
the model to estimate which mutations affect MIC and BPC values,
without requiring prior knowledge of determinants of susceptibility.
While this approach is effective for experimentally evolved strains with a
knownWT ancestor, it is not directly applicable to clinical isolates as the
choice of a ‘WT’ reference genome is inherently ambiguous (or even
impossible) in that case. The model predicted the MIC from WGS data
with an accuracy±1 of 89.13% (random performance: 82.61%), while the
BPC was predicted with an accuracy±1 of 76.09% (random performance:
69.57%). The C-index±1 was 71.77% and 80.16%, for MIC and BPC
predictions, respectively (Fig. 3, Supplementary Table 1), indicating that

the model is slightly better in predicting the BPC than the MIC from
WGS data.

WGS has been widely used to predict antimicrobial susceptibility,
typically by screening for well-studied, known resistance genes22,40–43. For
instance, Eyre et al. used this approach to predict the MIC and MIC ± 1
2-folddilutionof several antibiotics inNeisseria gonorrhoeaewithaccuracies
of 53%and93%, respectively40.However, focusingonly onknown resistance
genes poses a major limitation, as many tolerance and resistance mechan-
isms remain poorly understood. To address this challenge, we included all
detectedDNA variants as input for our machine learningmodel, regardless
of prior knowledge on the role of specific gene products. Other studies have
tackled these limitations by using entire genome sequences as input for
prediction algorithms44–46. For example, Nguyen et al. used this method to
predict MIC values ± 1 2-fold dilution for several antibiotics in Salmonella,
achieving an accuracy±1 of 95%, which is comparable to our results44. In the
present study, using entire genome sequences as input for the machine
learning model was not possible due to the high-dimensional nature of this
approach,which required a large sample size to be effective. Instead,weused
DNA variants detected by mapping the entire genome sequences against a
reference genome as input for the machine learning model. Nonetheless,

Fig. 4 | Examples of data input for the machine learning model. Data is shown of
evolved P. aeruginosaAA2-1 L26 (orange) and L32 (green), and LES B58 L08 (blue).
(a)MALDI-TOFmass spectra (b) Thermogramsmeasuring the heatflow (µW) over

time. Several parameters can be derived from thermograms, such as the time to peak
(TTP) and the maximum metabolic rate (MMR) (c) Raman spectra obtained at
excitation wavelength 532 nm (d) and 785 nm.
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integrating entire genome sequences with machine learning models would
be an ideal strategy for future studies with larger datasets.

MALDI-TOF MS
MALDI-TOF mass spectra were collected for 46 experimentally evolved
strains (Fig. 4a), and a machine learning model was developed to predict
MIC or BPC values directly from these spectra, using them as unique
spectral fingerprints. The model predicted the correct MIC with an
accuracy±1 of 97.83% (random performance: 82.61%), while the BPC was
predictedwith an accuracy±1 of 73.91% (randomperformance: 69.57%).The
model obtained a C-index±1 of 86.12% and 76.92% for MIC and BPC pre-
dictions, respectively (Fig. 3, Supplementary Table 1). These results indicate
thatMALDI-TOFmass spectra allow amore precise prediction of theMIC
than of the BPC. Overall, these results demonstrated that MALDI-TOF
mass spectra can provide valuable insights into antibiotic susceptibility.
Recent studies have demonstrated the potential ofmachine learningmodels
in classifying isolates as susceptible or resistant based onmass spectra27,47–49.
For example, Weis et al. classified Staphylococcus aureus isolates as sus-
ceptible or resistant with an area under the receiver operating characteristic
curve (AUROC) of 80%27. Similarly, Nguyen et al. classified P. aeruginosa
isolates resistant to ceftazidime/avibactam and ceftolozane/tazobactam,
achievingAUROCs of 86.9% and 85.6%, respectively47. TheAUROCmetric
is equivalent to the C-index used in our study, but is specific to binary
predictions. These studies predict whether the MIC is above or below a
certain breakpoint (EUCAST or CLSI), but as such breakpoints are not yet
established for biofilms, it is currently not possible to translate a BPC value
into a classification as ‘resistant’ or ‘susceptible’. Our study addresses this
limitation by trainingmachine learningmodels to predict exact BPC values
from the mass spectra, enabling compatibility with potential future biofilm
breakpoints based on epidemiological cut-off values or other measures13.
Using this approach, our models obtained a C-index±1 of 86.12% for MIC
predictions, comparable to the aforementioned studies, and a C-index±1 of
76.92% for BPC predictions. Optimizing MALDI-TOF MS for AST could
offer several advantages, as these devices are alreadywidely used in hospitals
for pathogen identification. Additionally, the technique has a high
throughput, allowing the analysis of up to 96 samples in just minutes,
making it a fast and efficient tool in clinical settings.

Isothermal microcalorimetry
In IMC, the heat produced by microbial metabolic processes is measured
in real time. Using this method, we determined the metabolic profiles of
24 h old biofilms in SCFM2 for all experimentally evolved strains (Fig. 4b).
A machine learning model was trained to predict MIC and BPC values
based on thermograms obtained with IMC. The model predicted the
correct MIC with an accuracy±1 of 93.48% (random performance: 82.61%)
and the BPC with an accuracy±1 of 76.09% (random performance: 69.57%).
The model obtained a C-index±1 of 83.25% and 64.78%, for MIC and BPC
predictions, respectively (Fig. 3, Supplementary Table 1). These results
suggested that IMC data were more predictive for the MIC than for the
BPC. Nonetheless, both MIC and BPC predictions outperformed random
predictions, indicating that even without antibiotic exposure, metabolic
profiles of biofilms can reveal meaningful insights into their antibiotic
susceptibility. Previous studies that explore the use of IMC for AST typi-
cally measured the metabolic activity of planktonic cultures or biofilms
exposed to antibiotics29–31,50. These approachesmirror the principle of broth
microdilution MIC determination, but benefit from IMC’s high sensitivity
(detection limit: 104 CFU/mL51) leading to faster results. Using this
approach, Tellapragada et al. predicted the MIC of amikacin in planktonic
P. aeruginosa with an essential agreement (number of results that were
within one doubling dilution of the matching MIC determined by refer-
ence methods) of 97.4%29. In contrast, our setup measures untreated bio-
films, eliminating the need to test multiple antibiotic concentrations and
increasing throughput. To our knowledge, this is the first study that
combines IMC data from untreated biofilms with machine learning
algorithms to predict the MIC or BPC.

Raman spectroscopy
Raman spectroscopy provides a rapid and label-free method to obtain
specific molecular fingerprints. In the present study, biofilms were grown
overnight in SCFM2, and the resulting pellet from that overnight culture
was applied to a fused quartz slide for analysis under a Raman micro-
scope at two different excitation wavelengths, i.e., 532 and 785 nm
(Fig. 4c, d). The spectral data from these individual wavelengths were also
combined to create multi-excitation Raman spectra (MX-Raman)33.
Using both single-wavelength (RS 532 nm or RS 785 nm) and MX-
Raman spectra, a machine learning model was trained to predict MIC
and BPC values. For MIC predictions, all three input types – RS 532 nm,
RS 785 nm and MX-Raman – achieved an accuracy+-1 of 91.30% (Fig. 3,
Supplementary Table 1). However, RS 785 nm yielded the highest
C-index±1 (86.60%), followed by RS 532 nm (81.34%), and MX-Raman
with the lowest C-index±1 (69.06%). While Lister et al. previously
reported that combining multiple wavelengths improved bacterial strain
identification using a support vector machine (SVM) model, our results
do not show a clear advantage for MX-Raman in susceptibility
predictions33. For BPC predictions, values for accuracy±1 were similar
across methods; i.e., 80.43% for RS 532 nm and 76.09% for RS 785 nm
and MX-Raman. Likewise, C-index±1 scores were similar across methods
(85.63%, 84.01% and 81.16% for RS 532 nm, RS 785 nm andMX-Raman,
respectively). Overall, the C-index±1 scores for both MIC and BPC pre-
dictions were quite comparable, except for MX-Raman’s notably lower
performance on MIC predictions (69.06% vs. 81.16% for BPC). None-
theless, this score is still substantially above random (50%), suggesting
that Raman spectroscopy is a good predictor for both MIC and BPC.
When the Raman spectra from samples sharing the same MIC or BPC
value were averaged, distinct differences in peak intensities emerged
among the resulting group averages, correlating with the respective MIC
or BPC values (Supplementary Fig. 4). Previous studies have demon-
strated the potential of Raman spectroscopy for differentiating resistant
and susceptible bacteria based on unique spectral signatures34,35. Lister
et al. classified resistant bacterial strains with 100% accuracy and sus-
ceptible strains with 98.89% accuracy using an SVM model34. Similarly,
Lu et al. distinguished a susceptible Acinetobacter baumannii strain from
five resistant strains with 99.92% accuracy using a random forest model,
though their approach could not identify to which antibiotics the strains
were resistant35. Our study is the first to combine Raman spectroscopy
with machine learning to predict BPC values, demonstrating its potential
as a valuable tool in biofilm susceptibility testing.

Combining data from different analytical approaches does not
increase the performance of MIC or BPC predictions
To evaluate if there is an added value in combining results from multiple
analytical approaches, a stacking model that integrated data from all
sources was used. This stacking approach used predictions based on the
different types of data as inputs for a final model52,53. Using the stacking
model, MIC values were predicted with an accuracy±1 of 91.30% (random
performance: 82.61%), while the highest individual performance was
achieved with MALDI-TOF (accuracy±1 of 97.83%). A C-index±1 of
82.30% was obtained with the stacking model, while the best-performing
individual technique (RS 785 nm) had a C-index±1 of 86.60%. For BPC
predictions, the stacking model achieved an accuracy±1 of 71.74% (ran-
dom performance 69.57%), whereas the highest accuracy±1 was obtained
with RS 532 nm (80.43%). The C-index±1 for BPC predictions with the
stacking model was 80.57%, while the best-performing method (RS
532 nm) achieved a C-index±1 of 85.63% (Fig. 3, Supplementary Table 1).
Overall, these results showed that combining data sources through
stacking did not lead to a higher performance than the best-performing
individual data source alone (Fig. 3). Nonetheless, the stackingmodel can
provide insights into complementary data sources by analysing learned
ordinal model coefficients β 2 Rf × 1 (Supplementary Fig. 5). For both
the MIC and BPC predictions, we observed highly positive coefficients
for MALDI-TOF MS and WGS. The fact that both techniques showed a
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high variable importance indicated that they provided complementary,
non-overlapping information. This finding suggested that, while we
could not establish a performance gain with this combination in this
study, future work with different datasets or additional refinement may
reveal that combining WGS and MALDI-TOF MS data can further
enhance prediction accuracy.

Differences in prediction accuracy depending on the MIC or
BPC value
We subsequently addressed the question whether predictions are equally
accurate regardless of whether the MIC or BPC is high or low. For this we
used the RS 785 data, as our predictionmodels consistently performwell for
this data set. In order to do so, we constructed two ‘confusionmatrices’ (one
for theMICandone for theBPC) inwhich theprobability that a true value is
correctly predicted for every MIC or BPC value is shown (Supplementary
Fig. 6). This representation allows to estimate the accuracy for different
MICs and BPCs; in case of no or limited differences in accuracy, the highest
valueswouldbe on the diagonal. This analysis suggests thatMICpredictions
might be better for cases in which the actual MIC is 1 or 2 µg/ml. For the
prediction of theBPC, differences in accuracy are less pronounced, although
there might be a slight trend towards ‘overpredicting’ higher BPC values (≥
8 µg/ml). There are however some caveats with this type of analysis on this
particular dataset. First of all, the size of the datasets for the individual
subsets becomes quite small. Secondly, this type of analysis is inherently
biased by the number of cases in each group. In theMICdataset the number
of cases withMIC = 2 µg/ml is highest and in the BPCdataset this is the case
for the groups with BPCs between 8 and 32 µg/ml. This uneven distribution
of isolates over different categories at least partially explains the bias in
accuracy observed. Finally, this type of analysis does not take into account
the generally accepted variability of the assays (e.g., replicate MIC mea-
surements can differ by a two-fold dilution54). So while there may be dif-
ferences in accuracydependingonwhether isolates have ahighora lowMIC
(and to a lesser extent, a high or a low BPC), the current dataset does not
allow to distinguish between a real bias, and a bias related to the uneven
distribution of values and/or small numbers in each subgroup.

Validation of machine learning model with clinical isolates
The prediction model was initially trained on data from experimentally
evolved strains.Toevaluate its ability topredict theMICorBPCof clinicalP.
aeruginosa isolates, we analysed MALDI-TOF MS, IMC and MX-Raman
data obtained from 30 CF isolates. For MIC predictions, the best perfor-
mance was observed for IMC, with an accuracy±1 of 80% (random perfor-
mance: 60%) and a C-index±1 of 86.90% (Fig. 5, Supplementary Table 2).

Predictions based on MALDI-TOF MS achieved an accuracy±1 of 76.67%
andaC-index±1 of 58.93%.UsingRS532 nm, the accuracy±1was 63.33%,but
the C-index±1 of 10.71% was far below the random predictions of 50%. RS
785 nmhad an accuracy±1 of 60% - equal to randomperformance –while its
C-index±1 reached 53.57%, only slightly exceeding the randomperformance
of 50%. MX-Raman achieved an accuracy±1 of 60% - equal to random
performance – and a C-index±1 of 47.02%, which fell below random pre-
dictions. For BPC predictions, IMC again performed best, achieving a very
high accuracy±1 of 95.24% (randomperformance: 80.95%) and C-index±1 of
97.73%. Meanwhile, MALDI-TOF MS, RS 532 nm and MX-Raman all
performedat or below randomperformance levels, with accuracy±1 scoresof
66.67%, 76.19% and 80.95%, respectively, and C-index±1 scores of 43.18%,
31.82% and 45.45%. RS 785 nm achieved the second-highest C-index±1 of
77.27% (well above the 50% random prediction level), although its
accuracy±1 of 80.95% was the same as that of random predictions. In
summary, for MIC predictions, IMC and MALDI-TOF MS were the only
techniques scoring above random predictions for both accuracy and C-
index, with IMC showing the best performance. For BPC predictions, only
IMC performed above random predictions for both accuracy and C-index.
These results indicate that IMCdata have thehighest predictive powerwhen
it comes to predicting antimicrobial susceptibility, particularly for predict-
ing the BPC. In contrast, the other techniques showed reduced performance
whenmodels trained on data from evolved strains were externally validated
with clinical isolates. This discrepancy highlights the challenges of trans-
lating model performances across different datasets, a limitation also
observed in other studies. For instance, Weis et al. and Ren et al. reported
reduced performance when isolates from one dataset were tested onmodels
that were trained on another dataset27,48. We hypothesize that the IMC data
were easier for the model to interpret because the thermograms displayed
clear trends (Supplementary Fig. 7). As theMIC or BPC increased, the time
to peak (TTP) also increased, while the maximum metabolic rate (MMR)
generally decreased. This particularly resulted in a high C-index, as this is a
ranking-based metric and the thermograms exhibited a clear ranking pat-
tern.Despite visual differences between thermogramsof clinical isolates and
those of the experimentally evolved strains (Supplementary Fig. 7), the
model was still able to interpret them effectively. Furthermore, the observed
IMC changes related to susceptibility are consistent with recent findings
linking changes in bacterial metabolism to reduced susceptibility28,55.

Does the MIC allow to predict the BPC?
When data for all isolates (controls, evolved isolates, clinical isolates) are
pooled, a significant correlation between MIC (determined in MH) and
BPC(determined in SCFM2) (Kendall’sTau correlation coefficient of 0.695,

Fig. 5 | Performance of machine learning model trained on evolved strains and
tested with clinical isolates. a Scatterplot showing the performance of predicting
MIC (squares) or the MIC with an allowed margin of error of one 2-fold dilution
(dots). b Scatterplot showing the performance of predicting BPC (squares) or the

BPC with an allowed margin of error of one 2-fold dilution (dots). The blue lines
indicate scores based on random predictions. Horizontal blue dashes: random
accuracy performance. Horizontal blue full line: random accuracy±1 performance.
Vertical blue full line: random C-index and C-index±1.
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p < 0.001) is found (Fig. 6), which is in line with results of an earlier smaller-
scale study10. While the data seems to suggest that higher MIC values
typically translate into higher BPC values, the analysis also illustrates that
predicting the BPC based on the MIC is not obvious. For example, isolates
with MIC value of 1 µg/ml show BPC values between 1 and 32 µg/ml and
isolateswithMICvalue of 8 µg/ml showBPCvalues between16 and 128 µg/
ml. Sowhile there is a positive correlationbetweenMICandBPC, it does not
allow for accurate prediction of BPC based on theMIC. This observation is
in linewith observations in several other studies that show that theremay be
an overall positive correlation betweenplanktonic and biofilm susceptibility
measurements, but that inmany cases the reduced susceptibility observed in
biofilms is independent of resistance in planktonic cells13.

Learnedmodelcoefficientssuggestan important role forAnrand
NppA1A2BCDmutations in tobramycin susceptibility
All experimentally evolved strains were genome-sequenced and com-
pared to their ancestral wild-type (WT) strain. The observed mutations
are listed in Supplementary Data 1. Overall, we found that many global
regulators and two-component systems (TCS), such as lasR, pqsR, bfmR/
bfmS and gacS/gacA56,57 acquired mutations. Additionally, numerous
mutations were observed in proteins involved in 3’,5’-cyclic diguanylic
acid (c-di-GMP) metabolism, including wspF, dipA, morA and rbdA, all
of which play a role in biofilm formation58. Interestingly, only one gene
that has a known association with tobramycin resistance, i.e., the efflux
pump regulator mexZ59, was mutated in two tobramycin-evolved
lineages. Learned model coefficients can provide valuable insights into
which genes might be correlated with increased MICs and BPCs.
However, these correlations should be interpreted with caution, as some
strongly correlated mutations may not directly correspond to causal
biological mechanisms. For instance, two mutations might occur toge-
ther within a single isolate with a high MIC. In such cases, it is possible
that only one mutation is the actual causal (i.e., biologically relevant)
factor driving the higherMIC value, while the othermutationmerely co-
evolved. Despite this, the model might estimate both mutations as being
correlated with an increased MIC, even though only one exerted a true
biological effect. Therefore, careful consideration is necessary when
interpreting these results. Nevertheless, in large datasets, learned model
coefficients can serve as valuable tools for identifying candidate genes
that merit further investigation. The model assigned a highly positive
coefficient to mutations in anr, an anaerobic transcriptional regulator
that controls the expression of genes essential for survival in low-oxygen
environments. Previous studies have shown that regulation of the
anaerobic respiratory pathway can reduce intracellular accumulation of

aminoglycosides, contributing to adaptive resistance in P. aeruginosa60.
In the present study,mutations in anrwere identified in CF1 populations
evolved in the presence of tobramycin. Isolates with the amino acid
substitution Phe→ Ser 107 show a reduced susceptibility to the ami-
noglycosides tobramycin, gentamicin and amikacin. Compared to the
CF1WT (with an MIC of 1, 2, and 2 µg/mL for tobramycin, gentamicin
and amikacin, respectively), the CF1 anr mutant displayed increased
MICs of 4, 8 and 16 µg/mL for these antibiotics. Several genes within the
same cluster, encoding the ABC transporter NppA1A2BCD, also
exhibited highly positive coefficients (Supplementary Fig. 8). A previous
study has shown that in P. aeruginosaNppA1A2BCD is required for the
uptake of peptidyl nucleoside antibiotics61. However, while we hypo-
thesized that mutations in the Npp transporter also reduce uptake of the
aminoglycoside tobramycin, we observed no differences in MIC or BPC
of tobramycin between PA14 WT and the ΔnppBCD knockout mutant
(MIC = 2 µg/mL, BPC = 8 µg/mL). When evaluating the minimal bio-
film inhibitory concentration (MBIC) of tobramycin, a two-fold increase
was observed in the knockout mutant (16 µg/mL in the PA14 WT vs.
32 µg/mL in the ΔnppBCD strain). Other mutated genes with high
positive coefficients include rbdA (PA0861), bfmR (PA4101) and pmrA
(PA4776), although these were not experimentally investigated in the
present study. The rbdA gene encodes a regulator of biofilm dispersal
with phosphodiesterase (PDE) activity, and its inactivation in PAO1 has
been demonstrated to lead to hyperbiofilm formation62. The bfmR gene
encodes a two-component system response regulator (TCS RR) that
regulates genes involved in biofilm maturation and mediates the tran-
sition from acute to chronic virulence63. Mutations in bfmR may indir-
ectly influence antibiotic susceptibility by altering biofilm development
or virulence pathways. The TCSRR pmrA regulates genes responsible for
modifying the bacterial outer membrane (OM). Mutations in pmrA
confer resistance to polymyxins by promoting OM modifications that
reduce binding of cationic antibiotics64. Furthermore, mutations in the
PmrAB TCS have been shown to elicit cross-resistance to
aminoglycosides65.

Discussion
UsingWGS,MALDI-TOFMS, IMCandRSdata obtained froma collection
of experimentally evolved P. aeruginosa strains, we were able to train
machine learning algorithms that allowed to predict the MIC and BPC of
tobramycin. All analytical approaches used demonstrated a predictive
power that was higher than that of random predictions, confirming that
each data type contained relevant information about antimicrobial sus-
ceptibility. We showed that an unbiased approach to predict susceptibility
was possible with MALDI-TOF MS, IMC and MX-Raman data, as these
methods do not require prior knowledge of mechanisms of susceptibility.
Machine learning models successfully identified patterns in spectral data
and thermograms, evenwithout exposing the bacterial strains to antibiotics.
This proof-of-concept study highlights the potential of alternative methods
for predicting MIC and BPC values.

While our study provides evidence that several innovative analytical
approaches can be used to predict biofilm susceptibility, not all of these
approaches are currently available outside the research setting, which
precludes their implementation in clinical susceptibility testing at this
point. In addition, the present study focused on a single species and a
single antibiotic and conclusions from our work can at present not be
extrapolated to other species and/or antibiotics, especially when con-
sidering antibiotics with other another mode of actions and/or organisms
in which inducible resistancemechanisms are important. In addition, this
study focused on P. aeruginosa biofilms formed in SCFM2, and while
there is ample evidence that thismediumallows formation of biofilms that
closely resemble those found in vivo14–16, translation of findings obtained
with SCFM2 to other experimental settings and/or to real-world settings
may be difficult. Finally, future research should focus on expanding
datasets to includemore strains and awider range ofMIC andBPC values
to further validate our results.

Fig. 6 | XY-scatter plot showing the correlation between tobamycin MIC (deter-
mined in MH broth) and BPC (determined in SCFM2 medium) for all isolates
investigated in the present study.
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Methods
Bacterial strains, culture conditions and chemicals
The following P. aeruginosa strains were used: AA2-1 (a lasR+ isolate
derived from strain AA2; LMG 27630), LES B58 (LMG 27622), LES 431
(LMG27624),UCBPP-PA14 (LMG27639), IST27 (LMG27643)66 andCF1
(a Danish CF isolate belonging to sequence type 560). Strains derived from
these wild type (WT) strains through experimental evolution are listed in
Supplementary Data 2. In addition, isolates recovered from chronically
infected CF patients at Ghent University Hospital were used (Supplemen-
tary Data 2); the collection of these strains was approved by the Ethics
Committee of Ghent University Hospital, registration number
B670201836204. The PA14 ΔnppBCD knockout mutant was previously
described in ref. 61. The CF1 anrmutant (Phe→Ser 107) was isolated in the
present study from an experimentally evolved CF1 strain (Supplementary
Data 2). Bacteria were stored at−80 °C in 8% DMSO or using Microbank
vials (Pro LabDiagnostics, Canada) andwere cultured at 37 °C onTryptone
Soy Agar (TSA) plates and in Tryptone Soy Broth (TSB) (Neogen, UK).
Stock solutions of tobramycin (TCI Europe, Belgium), gentamicin (Sigma-
Aldrich, USA) and amikacin (Sigma-Aldrich, USA) at 10mg/mL were
prepared in MilliQ water (filter sterilized, PES, 0.22 µm, VWR, Belgium).
Synthetic cystic fibrosis medium (SCFM2) was prepared as described
before14, with the modification that mucin (a solution of 25mg/ml) was
sterilized by autoclaving (121 °C, 15min) instead of UV exposure. Previous
work has shown that this does not meaningfully alter mucin structure or
function67,68.

Experimental evolution
Six P. aeruginosa reference strains were experimentally evolved under
biofilm conditions for 15 cycles, with or without exposure to tobra-
mycin (Fig. 7). For each strain, four control lineages and four
tobramycin-treated lineages were included (except for CF1, three
lineages each), resulting in 46 independently evolved lineages. To this
end, overnight cultures of P. aeruginosa were diluted in SCFM2 to
approximately 5 × 107 CFU/mL. 100 µL of the resulting suspension
was added to a flatbottom 96-well plate (VWR, USA) and incubated
for 24 h at 37 °C under aerobic conditions (without shaking). After
24 h, biofilms were treated with 100 µL of tobramycin solution or
100 µL of SCFM2 medium (for untreated controls). Tobramycin
concentrations were selected based on preliminary experiments that

resulted in a 2–3 log reduction in the number of CFU in a 24 h old
biofilm; i.e., 16 µg/mL for CF1, 32 µg/mL for UCBPP-PA14 and
IST27, 64 µg/mL for AA2-1 and LES 431 and 128 µg/mL for LES B58.
After an additional 24 h incubation at 37 °C, biofilm aggregates were
disrupted by vortexing (5 min, 900 rpm) (Titramax 1000, Heidolph
Scientific Products GmbH, Germany) and sonication (40 kHz, 5 min)
(Branson 3510, Branson Ultrasonics, USA) and the number of CFU/
mL was quantified by plating on TSA. A frozen stock of each lineage
was stored at −80 °C in cryovials with 8% DMSO in TSB. An over-
night culture was prepared by inoculating 5 mL TSB and incubating
for 24 h at 37 °C while shaking. The next day, a new cycle was initiated
by inoculating with 5 × 107 CFU/mL from that overnight culture. This
process was repeated for 15 cycles.

Antibiotic susceptibility testing
MICs of tobramycin, gentamicin and amikacin were determined
following the EUCAST guidelines using the broth microdilution
method3. MICs were defined as the lowest concentration of an anti-
microbial agent that inhibited at least 90% of microbial growth after
24 h of incubation. The BPC of tobramycin was determined using
serial dilutions of the antibiotic in SCFM2 medium and inoculating
bacteria at a final concentration of 5 × 107 CFU/mL in SCFM210. After
24 h incubation at 37 °C, the contents of the wells were plated and
after 24 h of incubation colonies were counted. The BPC was defined
as the lowest concentration of antimicrobial agent that prevented at
least 90% of biofilm growth compared to the growth control after 24 h
of incubation. For selected isolates, the minimal biofilm inhibitory
concentration (MBIC) of tobramycin was determined. The MBIC is
the lowest concentration of tobramycin that resulted in at least 90%
reduction of biofilm growth compared to the growth control). To this
end, 50 µL of a 5 × 107 CFU/mL bacterial suspension in SCFM2 was
added to round bottom 96-well plates. After 24 h incubation at 37 °C,
double concentrated tobramycin solutions prepared in SCFM2 were
added to each well. After 24 h of treatment at 37 °C, biofilms were
disrupted by vortexing and sonicating (40 kHz, Branson 3510,
Branson Ultrasonics, USA) the plate for 5 min each. The contents of
the wells were plated on TSA, and after 24 h incubation at 37 °C,
colonies were counted. All experiments were performed in biological
triplicate.

Fig. 7 | Experimental set-up of the biofilm evolu-
tion model in SCFM2. 100 µL of a P. aeruginosa
culture is added to the well of a 96-well plate. After
24 h, suspended biofilm aggregates are formed and
these are either treated with 100 µL of tobramycin,
or 100 µL fresh SCFM2medium is added. After 24 h,
the biofilm is disrupted and a part of the bacterial
suspension is used to inoculate an overnight culture
to allow the start of a new cycle. The number of
surviving cells after each cycle is quantified by
plating on TSA. The samples are stored at −80 °C.
Created with BioRender.
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Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics (version 29).
The normality of the data was verified with a Shapiro-Wilk test. If the data
were normally distributed, a two-sided independent samples t-test (to
compare differences between two timepoints or two treatment groups) or
ANOVA with Bonferroni correction for multiple testing (to compare dif-
ferences between multiple groups) were performed. If the data were not
normally distributed, a two-sidednonparametricMann-WhitneyU testwas
performed. Kendall’s Tau correlation was calculated to assess the relation-
ship between MIC and BPC values. Graphs were constructed using
GraphPad Prism (version 10.6.0).

DNA extraction
Overnight liquid cultures were centrifuged to obtain a pellet. The pellet was
resuspended in 200 µL 10mM TE-buffer (10mM Tris-HCl pH 8, 1mM
EDTA pH 8), after which 100 µL was transferred to a 2mLmicrocentrifuge
tube containing approximately 500 µL acid-washed glass beads ( ≤ 106 μm;
Sigma Aldrich, USA) and 500 µL lysis buffer (50mM Tris-HCl pH 8,
70mMEDTA pH 8, 1% SDS) with 0.5mg/mL Pronase (Roche, Germany).
Samples were vortexed vigorously for 5–10 s, incubated at 37 °C for
30–60min, and centrifuged at 13,000 rpm for a short spin. Following the
addition of 200 µL of saturated ammonium acetate, samples were vortexed
vigorously for 5–10 s and centrifuged again at 13,000 rpm for 2min. To
separate phases, 600 µL chloroform was added, and samples were vortexed
horizontally for 5–10 s, and centrifuged for 5min at 13,000 rpm. Then,
400 µL of clear aqueous top phase was transferred to an Eppendorf LoBind
microcentrifuge tube (Eppendorf AG, Germany) containing 1mL 100%
ethanol. The tubes were mixed by inversion to precipitate the DNA, fol-
lowed by centrifugation at 13,000 rpm for 5min. Afterwards, the super-
natant was discarded and the pellet was washed with 500 µL 70% ethanol.
After a short spin, the ethanol was removed by pipetting and the pellet was
air-dried. The dry pellet was dissolved in 300 µL low EDTA TE-buffer
(10mMTris-HCl pH8, 0.1mMEDTA, 0.5 µg/mLRNase) and incubatedat
37 °C for 60min. DNA concentrations were determined using the BioDrop
µLITE (BioDrop, UK).

Whole-genome sequencing and data analysis
A PCR-free library preparation was performed using the NEBNext Ultra
II Library Prep Kit for Illumina, following a size selection protocol using
AMPure XP beads after adapter ligation. Samples were sequenced on the
Illumina NextSeq 500 System, generating 75 bp single-end reads. The
reads were analysed with CLC Genomics Workbench and mapped to
reference genomes of P. aeruginosa AA2 (NZ_CP051547.1), LES B58
(NC_011770.1), LES 431 (NC_023066.1), UCBPP-PA14
(NZ_CP034244.1) or to the 28 contigs of IST27 (whole genome shot-
gun sequencing project MCMX01000001 to MCMX01000028), or the 36
contigs of CF1. Reads were mapped using a local alignment and filtered
based on a 50% length fraction and 80% similarity fraction. The basic
variant detection tool was used to detect single nucleotide polymorph-
isms (SNPs) with a minimum frequency of 10%, minimum count of 5,
minimum quality of 20 andminimum forward/reverse balance of 0.3. All
SNPs were manually screened to remove false positives. Insertions and
deletions were detected using the InDels and Structural Variants tool,
with a minimum sequence complexity of 0.2 and a minimum count of 5.
Entries meeting minimum requirements were further manually filtered
for false positives derived from sequencing and mapping errors. The raw
reads generated in this study are available in the ArrayExpress database
under the accession number E-MTAB-11894.

MALDI-TOF mass spectrometry
Pure cultures were plated in biological duplicate on TSA. Confluent
growth was collected with a sterile loop and suspended in 300 µL MQ.
After vortexing, 900 µL of 100% ethanol was added and the tubes were
homogenized by inversion. After centrifuging for 3 min at 4 °C, the
ethanol was discarded and evaporated. Next, the cell pellet was

suspended in 40 µL formic acid and the samples were vortexed. Then,
40 µL acetonitrile was added and the samples were vortexed. After cen-
trifugation, 1 µL supernatant (containing the protein extract) was spotted
in duplicate on the target plate. Subsequently, 1 µL matrix solution
(10 mg/mL alpha-cyano-4-hydroxycinnamic acid) was spotted on the
plate. A bacterial test standard (BTS) was included for calibration. Mass
spectra were obtained using the Biotyper Microflex LT/SH MALDI-TOF
MS system (Bruker Daltonik GmbH, Germany). The experiments were
performed in biological and technical duplicate.

Isothermal microcalorimetry
Overnight cultures were diluted in SCFM2medium to a final concentration
of 5 × 107 CFU/mL, and 100 µL of the bacterial suspension was transferred
to plastic inserts (calVials, Symcel, Sweden) for biofilm growth over 24 h at
37 °C. The next day, 100 µL of fresh SCFM2 medium was added to the
biofilms. The plastic inserts were then transferred to titanium cups and
microcalorimetric measurements were conducted using the calScreener
device (Symcel, Sweden). The resulting thermograms (in which heat pro-
duction is plotted over time) were analysed with calView 2.0 software
(Symcel). All experiments were performed in technical duplicates.

Raman spectroscopy
Bacterial cultures were grown overnight at 37 °C in SCFM2 medium and
were centrifuged for 10min at 4000 rpm. Pellets were washed with ddH2O,
and after another round of centrifugation the resulting pellet was applied to
a fused quartz microscopic slide (UQG Optics, UK) and dried on a heater.
Samples were excited with a 532 nm or a 785 nm lasers using the Renishaw
InVia Raman Microscope (Renishaw, UK). Spectra were acquired over
three accumulations with a 5 s exposure time. Three biological repeats of
each evolved lineage were prepared, with 50 spectra collected for each
biological repeat such that 150 Raman spectra were obtained for each strain
and experimental condition. Cosmic rays were removed from all spectra
using the Renishaw WiRe 5.5 software. Multi-excitation spectra were
obtained by manually merging the 532 nm spectrum to the end of the
785 nm spectrum.

Data preprocessing for machine learning
Four different data types were collected, i.e., DNA variants, MALDI-TOF
mass spectra, thermograms, and Raman spectra. To prepare these data for
machine learning modeling, data were preprocessed to fixed-length feature
vectors. In what follows, a ‘sample’ denotes a single evolved lineage. For all
data sources – aside from DNA variants –multiple technical replicates per
sample were generated. In data preprocessing, technical replicates were
considered independently, every technical replicate becoming a separate
row in the final machine learning input matrix. All preprocessed data are
available at the following GitHub repository: https://github.com/gdewael/
biofilm-amr. Considering all possible variants in the genome constitutes an
infeasibly big feature space, and for that reason DNA variant data were
collated on a per-gene basis. The DNA variant input for the machine
learning model, hence, was defined as ‘whether a variant was found in gene
X’, for any gene X. The feature spacewas further reducedby eliminating loci
for which no variant was found in any sample. Further, asmachine learning
cannot learn generalizing patterns for features present in a single sample,
genes with variants in a single sample were similarly eliminated. The
resulting feature vector for every sample was of binary nature, with every
feature consisting of a single gene, indicating whether a variant in it was
found in said sample. For MALDI-TOF data, spectra were preprocessed
according to standard practices27: (1) square-root transformation of inten-
sities, (2) smoothingwith a Savitzky-Golay filter using a half-window size of
10, (3) baseline correction with the 20 iterations of the SNIP algorithm, and
(4) trimming to the 2000–20,000Da range. To reduce the feature space,
peaks were detected using the persistence transformation algorithm, keep-
ing only the top 128 for every spectrum69. A fixed-length feature vector was
then obtained by placing the detected peaks in 3Da-interval bin features
(ranging from 2000 to 20,000 Da, 6000 bins overall). To retain congruence
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withDNAvariant data, binswere binarized, hence, each feature in the input
vector indicates whether a peak was found in a bin. Features were similarly
eliminated if they were found in either no spectra, or only one spectrum in
the entire dataset. Raman spectra were preprocessed similarly to the
MALDI-TOF mass spectra, using iRootlab70. Briefly, the following steps
were performed: (1) square-root transformation of intensities, (2)
smoothing with a Savitzky-Golay filter using a half-window size of 10, (3)
baseline correction with the 20 iterations of the SNIP algorithm, and (4)
trimming to the 600–1700 cm−1 range. After, peaks were similarly detected
using the persistence transformation algorithm, keeping only the top 128
peaks for every spectrum. Peaks were then binned in 1 cm−1 intervals and
binarized. Features were eliminated if they were found in either no, or only
one spectrum in the entire dataset. For MX-Raman, the final feature
representation constitute the features for the 532 nm and 785 nm spectra,
taken together by concatenation. Microcalorimetry data are presented as
thermograms, i.e., heatflow (µW) over time. Heatflow measurements were
taken at regular intervals in time (every 10min), so these data are already in
fixed-length feature format (every feature being the heatflow in µW at a
specific time point). Data were normalized to a range between zero and one
by dividing all heatflow numbers by 250 (the highest heatflow number
encountered rounded up to ten).

Machine learning modeling
The prediction targets (MIC or BPC values) are of ordinal nature: 1, 2, 4,…
(µg/mL). For this reason, an ordinal regressionmodel is used to predictMIC
or BPC values based on one of the data types described above. More for-
mally, let us denote an input data sample as x 2 Rf , with f number of input
predictors. Its correspondingMIC or BPC value is given by y 2 2njn2Zf g.
The cumulative logistic link function71, then, models y as a function of x as
follows (Eqs. 1–3):

P y ¼ kjx� � ¼ σ c0 � xβ
� �

; if k ¼ 1 ð1Þ

P y ¼ kjx� � ¼ σ ck � xβ
� �� σ ck�1 � xβ

� �
; if1 < k <K ð2Þ

P y ¼ kjx� � ¼ 1� σ cK�1 � xβ
� �

; if k ¼ K ð3Þ
Where k denotes the ordinal classes numbered 1 toK. These ordinal classes
map to the distinct MIC or BPC values in the data. For MIC, these corre-
spond to: {1, 2, 4, 8}. For BPC values, these correspond to: {1, 2, 4, 8, 16, 32}.
In essence, this model linearly transforms the input data to one dimension
via learnable coefficients β 2 Rf × 1. This one-dimensional space is then ‘cut
up’ into ordinal classes via learned (strictly increasing) cutpoints c 1;...;K�1f g.
The ordinalmodel can be used to eitherpredict the probability that a sample
will have a certainMICorBPC:P y ¼ kjx� �

, or predict a singleMICorBPC
value for a sample: arg m axk P y ¼ kjx� �

. Both the coefficients β and
cutpoints c 1;...;K�1f g were jointly optimized to minimize the negative log-
likelihood (Eq. 4):

� logL β; c 1;...;K�1f gjx; y
� � ¼ �

XK

i¼1

y ¼ k
� �

log P y ¼ i
� �� � ð4Þ

Models were trained using gradient descent. Every training iteration
considered the full training data set as batch. All code to train models and
fully reproduce all experiments is available at https://github.com/gdewael/
biofilm-amr.

Hyperparameter tuning
Models were tuned separately for every data source and target type (MIC or
BPC). Hyperparameter tuning was performed through nested leave-one-
out cross validation (CV). In case of technical replicates (present for all data
sources, except DNA variant data), this data splitting scheme was adjusted
to leave-one-group-out CV, with a group constituting all replicates corre-
sponding to one sample. The outer CV loop served to obtain predictions.
Hyperparameter tuning is performed for every iteration in the outer loop

through an additional CV inner loop. Optimal hyperparameters are found
through grid search, using the following possible values for hyperpara-
meters: learning rate: {0.1, 0.5, 1}, number of iterations: {250, 750}, L2
regularization of coefficients: {0.0001, 0.001}. Quality of every hyperpara-
meter configuration was determined using the concordance±1 index on
every held-out sample of the inner CV. After every inner CV loop, a final
model was re-trained using the optimal hyperparameters on the full vali-
dation and training set. This final model was used to make predictions for
the sample left out of the outer loop. For theRaman spectroscopy dataset, an
exception wasmade to this procedure because of the size of the dataset (150
replicates per sample).Whereas other data sources used leave-one-(group)-
out CV both in the inner and outer CV loops, for Raman spectroscopy, the
inner (tuning) CV loop used 5-fold CV. In total, 347 760machine learning
modelswere trained toproduce themain resultsof the study shown inFig. 3.
This number is derived as follows: for both MIC and BPC, separate models
were trained for each data type. To produce performance estimates for each
of these, nested CV was performed, consisting of iteratively setting one of
46 samples aside for evaluation, andusing the other 45 for training. For each
of these 46 iterations, an inner CV loop was performed using the same
procedure to search for optimal hyperparameters (out of 12 possible dif-
ferent combinations). In total, these numbers add up to: 2 (MICor BPC) * 7
(data obtained with different analytical approaches) * 46 (outer CV loop) *
45 (inner CV loop) * 12 (different hyperparameter configurations) (equals
347 760).

Model evaluation
Model prediction quality was evaluated using the outer loop of a nested
leave-one-out CV. To evaluate predictions for data sources with differing
number of technical replicates on equal footing, predictions for technical
replicates were collated to a single sample-level prediction. To obtain
predicted probabilities at the sample level, a prediction was made for
every technical replicate, and their probabilities for each ordinal category
were averaged across replicates. All model evaluations occurred on these
sample-level predictions. Model prediction quality was assessed through
the accuracy score, the accuracy±1 score, the concordance index, and the
concordance±1 index. The accuracy score indicates how often the MIC/
BPC category with the highest predicted probability was the correct one.
The accuracy±1 score indicates how often a predicted MIC/BPC belonged
to the correct ordinal category or one category higher or lower (i.e. the
correct MIC/BPC or within one 2-fold dilution step, which is the
accepted variability of phenotypic AST)2,44,72. The concordance index
evaluates the overall ranking quality of predictions. It evaluates every pair
of samples with different MIC/BPC values and counts the proportion of
pairs for which the higher MIC/BPC value also had a higher predicted
MIC/BPC value. Because of its pairwise evaluation, it is numerically more
stable in small sample sizes than the accuracy score. The concordance±1

extends this metric by only evaluating pairs of samples with MIC/BPC
values differing by at least two 2-fold dilution steps. Here, the variant of
the concordance index was applied that does not count ties as ‘half-
correct’73. To test how much information the machine learning models
learned from data, performances are compared to ‘random’ predictions.
Here, ‘random’ performance consists of the score obtained when every
prediction would be the MIC or BPC value that occurred most often in
the training data set. This score was computed for both the accuracy and
accuracy±1. For the concordance and concordance±1 indices, this score
always corresponds to 0.5.

External validation of models with clinical isolates
To externally validate the trained models, data obtained with 30 CF-
derived P. aeruginosa isolates were used. The same training and tuning
procedures as described above were used, the only difference being that
in this case an external test set was used. Because of this, it was not
necessary to perform nested cross validation to obtain unbiased estimates
of model performance. Instead, only the previously described inner
cross-validation loop was used to obtain optimal hyperparameters. To
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establish random predictions for the clinical isolate test set, the same
procedure as previously described was used, i.e., ‘random’ predictions are
taken as the most frequently occurring class in the training data set
(consisting of evolved strains).

Combining data sources through stacking
To combine information from various data sources, stacking models were
used. In stacking models, predictions from previous models are used as
input for a secondmodel. Per sample, to construct a single feature for every
data source, the weighted sums of predicted probabilities of their previously
trained models were computed:

xj ¼
XK

i¼1

i � Pj y ¼ i
� � ð5Þ

where j denotes one of the four used data sources. After data set construc-
tion, all stacking models were trained and tuned identically as previously
described (i.e., using nested leave-one-(group)-out CV). As all previously
trainedmodels used leave-one-(group)-outCVas their splitting strategy, no
specialized strategieswere necessary to prevent leakage of information from
training to evaluation sets.

Data availability
All data necessary for supporting the findings of this study are enclosed
in this manuscript. The raw sequencing reads generated in this study are
available in the ArrayExpress database under the accession number E-
MTAB-11894. The reference genomes used during sequencing analysis
can be found in the GenBank database with the accession numbers
NZ_CP051547.1 (AA2), NC_011770.1 (LES B58), NC_023066.1 (LES
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