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Abstract

It is well-known that the expectation values of null polygonal Wilson loops computed in
planar N = 4 super Yang-Mills theory are dual to MHV amplitudes in that theory, and moreover
that the duality can be extended to higher helicity sectors through the introduction of super
Wilson loops. In this first of a series of papers, we investigate the natural generalisation posed
by correlation functions of multiple light-like loop operators, both in the bosonic case and in the
case of super Wilson loops. Explicit calculations are presented in several cases and we verify
that, in the Abelian theory, these objects obey a natural generalisation of the Q̄-equation which
relates different loop orders, kinematic configurations and Grassmann sectors.
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1 Introduction

Light-like Wilson loops have been studied in great detail in planar N = 4 super Yang-Mills
theory. These investigations were primarily driven by the duality of such objects with maximally-
helicity-violating scattering amplitudes [1, 2, 3, 4, 5, 6]. These objects provide a perfect testing
ground to investigate fundamental aspects of quantum field theory, many of which are much
more widely applicable. Examples include the analytic structure of perturbative loop amplitudes
and loop integrals [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], the interplay between amplitudes,
Wilson loops and correlation functions [19, 20], aspects related to field theory at strong coupling
via the AdS/CFT correspondence [1, 21, 22, 23, 24] and the integrable systems which arise in
the planar limit of N = 4 super Yang-Mills theory [25, 26, 27]. The study of Wilson loops
and amplitudes has also inspired fascinating connections between quantum field theory and
positive geometry [28], leading to a geometric formulation of loop integrands in terms of the
Amplituhedron [29, 30], whose introduction has inspired many further connections to geometry
and combinatorics [31, 32, 33, 34, 35, 36, 37].

Based on the duality, a wealth of techniques have been developed to study Wilson loops
and amplitudes, some most naturally arising in the amplitude setting, and some more obviously
based on the Wilson loop formulation. There are several examples of direct relevance here. First,
we have the extension of Wilson loops to super Wilson loops [38, 39], necessary to extend the
duality to amplitudes beyond the MHV sector and the twistorial formulation of the theory [40] to
develop techniques to calculate both amplitudes and Wilson loops [41, 42, 43]. Second, there are
the BCFW recursion relations [44], used to compute tree-level amplitudes and loop integrands
[45]. Third, we have the Q̄ equation which applies to super Wilson loops and relates these
quantities at different perturbative loop orders [46, 47].

Given the depth and breadth of the connections revealed in the above studies, it has been
of significant interest to generalise the objects involved. One generalisation that has been well-
studied involves replacing the Wilson loop with a correlator of a light-like loop operator and
a local operator, specifically the (chiral) Lagrangian of the theory [48, 49, 50, 51, 52, 53, 54].
Such an observable is related to the original Wilson loop - it may be thought of as the object
obtained by performing all but one of the loop integrations needed to obtain the L-loop Wilson
loop/amplitude from the integrand.

Here we aim to generalise the setting to include correlation functions of multiple light-like
loop operators. These objects are not immediately dual to scattering amplitudes in the same
way as a single light-like loop. However, they do provide a natural setting to study many of
the same connections and questions described above. Here we will first focus on the general
structure expected of these objects, including their colour structure, the nature of their ultra-
violet divergences, as well as their anomlaous conformal symmetry. We will then investigate
perturbative aspects of their computation. We will employ the same super twistor formalism
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mentioned above to generalise these objects and construct a supersymmetric completion. Then
we will use these techniques to make some explicit perturbative computations. We also propose
a natural extension of the Q̄ equation to the correlators of multiple loops and we will show that
this has a non-trivial consequence even in the simple case of Abelian loops which we can test.
In forthcoming work we will discuss the generalisation of the BCFW recursion relations to such
objects and we will also explore some deeper consequences of the Q̄ equation.

2 Multiple Wilson loop correlators

We would like to consider four-dimensional N = 4 super Yang-Mills theory with gauge group
G = SU(N) or G = U(N). We refer the reader to Appendix A for our conventions. The objects
we would like to consider here are loop operators

L(C) =
1

N
trP exp i

∮
C

dxµAµ , (2.1)

where we take a closed n-sided piecewise light-like contour C, familiar from the study of the
duality between amplitudes and Wilson loops in planar N = 4 super Yang-Mills theory [1, 2, 3,
4, 5, 6, 55]. Note that here we will take the trace in the fundamental representation of G.

We recall that in the N = 4 theory, the expectation values of such Wilson loop operators
take the form [4, 55, 56, 57, 58, 59]

Wn = ⟨L(C)⟩ =
[ n∏
i=1

Di

]
FnRn . (2.2)

Here Di is a UV divergent factor (see eq. (A.24)), associated to the corner at xi. The factor
Fn (see eqs. (A.35), (A.28) and (A.22)) is a particular choice of finite part which is constrained
by the anomalous conformal Ward identity [4, 59] given in (A.36). Finally, Rn is a finite and
conformally invariant piece (whose logarithm in the planar limit is the ‘remainder function’, much
studied in the literature in relation to scattering amplitudes [5, 55, 59, 60, 61, 62]).

It is convenient to expand perturbatively in the ’t Hooft coupling,

g2 ≡ g2YMN

16π2
. (2.3)

Note that we have normalised the operator (2.1) so that at weak coupling we have

Wn = 1 +O(g2) . (2.4)

2



Note also that our choice of Fn fully captures the order g2 result and hence factor Rn has a
leading correction of order g4 in perturbation theory.

Rn = 1 +O(g4) . (2.5)

In the Abelian theory we simply have Rn = 1 and the entire expression for the Wilson loop
is given by exponentiating the O(g2) result (see equations (A.24), (A.25) and (A.35)). We
provide a review of the leading perturbative Wilson loop computations in Appendix A, including
expressions for the divergent and finite integrals which arise at leading order.

Here we are interested in considering correlation functions of multiple such operators1. Such
objects are also UV divergent and the divergences should factorise over the corners on each loop.

Wn1,...,nm = ⟨L(C1) . . .L(Cm)⟩ =
m∏
r=1

[[ nr∏
i=1r

Dir

]
Fnr

]
Rn1,...,nm . (2.6)

Again, our choice of normalisation of the loop operators means

Wn1,...,nm = 1 +O(g2) . (2.7)

In (2.6) Dir and Fnr are the same divergent and finite factors appearing in the equation (2.2) for
the expectation value of the single light-like loop operator L(Cr). The function Rn1,...,nm is a new
finite function of the data defining all of the loops Cr. Alternatively, we can consider the ratio

⟨L(C1) . . .L(Cm)⟩
⟨L(C1)⟩ . . . ⟨L(Cm)⟩

=
Rn1,...,nm

Rn1 . . . Rnm

(2.8)

Objects such as Rn1...nr or the ratio (2.8) should be finite and conformally invariant.

Note that one contribution to the multi-loop correlator is just the product of the individual
Wilson loops and in fact, at large N , this is the leading contribution. For example, for a correlator
of two Wilson loops we can define a connected part as follows,

Wn1,n2 = Wn1Wn2 +W conn
n1,n2

. (2.9)

The connected part is suppressed in the large N limit by 1/N2 compared to the disconnected
part. The factorisation of divergences and conformal anomalies implies that the connected part
also obeys

W conn
n1,n2

=
2∏

r=1

[[ nr∏
ir=1

Dir

]
Fnr

]
Rconn

n1,n2
. (2.10)

Equivalently, we can therefore write

Rn1,n2 = Rn1Rn2 +Rconn
n1,n2

. (2.11)

1These are no longer dual to amplitudes but we study them as interesting objects in their own right.
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Figure 1: Feynman diagram contribution to the correlator of two squares in the Abelian theory.

For correlation functions with more loop operators we can similarly define fully connected
pieces, e.g. for three Wilson loops we have

Rn1,n2,n3 = Rn1Rn2Rn3 +Rn1R
conn
n2,n3

+Rn2R
conn
n1,n3

+Rn3R
conn
n1,n2

+Rconn
n1,n2,n3

. (2.12)

The fully connected piece Rconn
n1,n2,n3

is now suppressed by two powers of 1/N2 at large N .

The connected parts of the correlators W conn
n1,...,nm

require at a minimum (m− 1) propagators
to connect all the loop operators.

We will write perturbative expansions in the following general form,

Wn1,...,nm =
∑
l

g2lW (l)
n1,...,nm

, Rn1,...,nm =
∑
l

g2lR(l)
n1,...,nm

,

W conn
n1,...,nm

=
∑
l

g2lW (l),conn
n1,...,nm

, Rconn
n1,...,nm

=
∑
l

g2lR(l),conn
n1,...,nm

. (2.13)

Note that, although we use the ’t Hooft coupling g2 as the expansion parameter, we are not
taking the large N limit here, so that each coefficient in the expansion in g2 is itself a function
of N . The above statements about the low orders in the expansion translate into

W (0)
n1,...,nm

= R(0)
n1,...,nm

= 1 , R(1)
n = 0 ,

W (l),conn
n1,...,nm

= R(l),conn
n1,...,nm

= 0 , (l = 0, . . . ,m− 2 , m ≥ 2) . (2.14)

As we will shortly see, the connected parts are even more suppressed for small g2 in the SU(N)
theory for colour reasons and we then have in addition,

W (m−1),conn
n1,...,nm

= R(m−1),conn
n1,...,nm

= 0 , G = SU(N) . (2.15)

2.1 Rn1,n2
at order g2

For the case of two loop operators, the disconnected contribution, from diagrams where a gluon
propagator begins and ends on the same loop, is well known [2, 3]. Therefore we just consider
the extra piece from the connected diagram where the propagator G1,2

µ1µ2,a1a2
(given in eq. (A.12))
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crosses between the two loops,

⟨L(C1)L(C2)⟩conn = − 1

N2
tr(ta1) tr(ta2)

∫ 1

0

dt1ẋ
µ1(t1)

∫ 1

0

dt2ẋ
µ2(t2)G

1,2
µ1µ2,a1a2

+O(g4) .

The order g2 contribution vanishes for G = SU(N) as it comes with a colour factor of the form
tr(ta) tr(ta). It is non-vanishing for G = U(N) however, in which case it is given as a sum over
finite diagrams Iij where the propagator is between the edge (xi, xi+1) on loop C1 and the edge
(xj, xj+1) on C2, as illustrated in Fig. 1,

⟨L(C1)L(C2)⟩conn = W conn
n1,n2

=
g2

N2
fn1,n2 +O(g4) , fn1,n2 =

∑
i,j

Iij . (2.16)

The finite diagram in question is given by

Iij = Li2

[
(x2

ij − x2
i,j+1)(x

2
i,j+1 − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
+ Li2

[
(x2

ij − x2
i+1,j)(x

2
i+1,j − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
−Li2

[
(x2

ij − x2
i,j+1)(x

2
ij − x2

i+1,j)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
− Li2

[
(x2

i,j+1 − x2
i+1,j+1)(x

2
i+1,j − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
, (2.17)

which is the same formula as found in [3] and quoted in (A.22) but the interpretation is different:
here xi lies on loop C1 while xj lies on C2.

Since order g2 is the leading order contribution to the connected part W conn
n1,n2

, the same
contribution can also be written as the leading contribution to the conformally invariant finite
factor Rconn

n1,n2
,

Rconn
n1,n2

=
g2

N2
fn1,n2 +O(g4) . (2.18)

As explained in more detail in Appendix A.3, by studying the total derivative dfn1,n1 one can see
that fn1,n2 is indeed conformally invariant.

To write an expression for fn1,n2 in a manifestly conformally invariant form we can define
conformal cross-ratios via

ui,j,k,l =
x2
ijx

2
kl

x2
ilx

2
kj

, vij = ui,j,i+1,j+1 . (2.19)

The cross-ratios vij are not all multiplicatively independent due to the relations∏
i

vij = 1
∏
j

vij = 1 . (2.20)

In terms of these cross-ratios we have

fn1,n2 =

n1,n2∑
i,j

Li2(1− vij) +
∑
k≤i
j≤l

log vij log vkl . (2.21)
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More details on the derivation of (2.21) are also given in Appendix A.3.

Note that the function fn1,n2 behaves as expected under collinear limits. For instance, we
may introduce twistor variables to describe the geometry of both loops. Let us label them as
{Z1, . . . , Zn1} for the first loop and {Z̃1, . . . , Z̃n2} for the second. If we take fn1,n2+1 and send
the momentum twistor Z̃n2+1 collinear with Z̃n2 , e.g. via the limit

Z̃n2+1 → Z̃n2 − ϵZ̃ñ2−1 +
⟨ñ2 − 1 ñ2 2̃ 3̃⟩

⟨ñ2 1̃ 2̃ 3̃⟩
ϵτZ̃1 +

⟨ñ2 − 2 ñ2 − 1 ñ2 1̃⟩
⟨ñ2 − 2 ñ2 − 1 2̃ 1̃⟩

ϵ2Z̃2 (2.22)

where ϵ → 0 parametrises the collinear limit and τ is the longitudinal momentum fraction, the
resulting function is simply fn1,n2 after sending ϵ → 0.

In the Abelian theory we obtain the full result from exponentiation of the order g2 correction

WU(1)
n1,n2

= Wn1Wn2 exp
{
g2fn1,n2

}
. (2.23)

This Abelian result generalises straightforwardly to a correlator of any number of Wilson loop
operators,

WU(1)
n1,...,nm

=
[∏

r

Wnr

]
exp

{
g2

∑
r>s

fnr,ns

}
. (2.24)

2.2 Leading contributions for the SU(N) theory

Although the result (2.16) is for the U(N) theory while the corresponding order g2 term vanishes
in the SU(N) theory, we may still make use of our result for fn1,n2 in the SU(N) theory. In
the SU(N) theory one cannot have a single field contribution from any given loop operator due
to the tracelessness of the generators ta. The minimal contribution to the connected part of a
correlator of multiple Wilson loops is therefore one with exactly two fields from the expansion of
each loop operator. An example diagram is given in Fig. 2.

We therefore find (recall CF = N2−1
2N

)

W conn
n1,...,nm

= ⟨L(C1) . . .L(Cm)⟩conn

=
(−1)m

Nm

〈∏
r

∫
tr,1>tr,2

dtr,1dtr,2ẋ
µr

r,1ẋ
νr
r,2A

ar
µr

(
xr(tr,1)

)
Abr

νr

(
xr(tr,2)

)
tr(tartbr)

〉conn

+O(g2m+2)

=
2NCF

2mNm

[[∏
r

1

2

g2YM

4π2

∫
dtr+1,1

∫
dtr,2

ẋr+1,1 · ẋr,2

[−(x(tr+1,1)− x(tr,2))2 + iε]

]
+ . . .

]
+O(g2m+2)

=
2NCFg

2m

2mN2m

[[∏
r

fr,r+1

]
+ . . .

]
+O(g2m+2) , (2.25)
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Figure 2: Feynman diagram contribution to the connected part of the correlator of two squares
and one pentagon in the non-Abelian theory.

where the omitted terms are the other possible ways of making the contractions. There are
2m−1(m− 1)! such terms in total but only (m−1)!

2
are inequivalent for m > 2. For m = 2 there is

one inequivalent set of contractions. We therefore find

W conn
n1,...,nm

= g2m
2NCF

N2m

m∏
r=1

fnr,nr+1 + (non-dihedral permutations) +O(g2m+2) (2.26)

for m > 2. For example, for m = 3 we have

W conn
n1,n2,n3

= g6
2NCF

N6
fn1,n2fn2,n3fn3,n1 +O(g8) , (2.27)

while for m = 4 we have

W conn
n1,...,n4

= g8
2NCF

N8
[fn1,n2fn2,n3fn3,n4fn4,n1 + fn1,n2fn2,n4fn4,n3fn3,n1 + fn1,n3fn3,n2fn2,n4fn4,n1 ]

+O(g10) . (2.28)

For m = 2 we have an extra factor of 1
2
which can be thought of as a symmetry factor between

the two propagators,

W conn
n1,n2

= g4
NCF

N4
(fn1,n2)

2 +O(g2m+2) . (2.29)

2.3 Configurations involving triangles

Note that, at least formally, one may consider expressions involving triangles. Since a light-like
triangle must be collinear in real kinematics, this requires allowing complex kinematics. If one
takes fn1,4 and takes the collinear limit described in (2.22) (for which purpose one may replace
the appearances there of Z̃2 with e.g. Z1) then the result does not vanish. Instead, looking at eq.
(A.43) we see that if n2 = 3 and we label the three twistors describing the loop C2 as (Z̃1, Z̃2, Z̃3)

7



then we have

dfn1,3 =
∑
i,j

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

d log
[
⟨i− 1 i i+ 1 ȷ̃⟩⟨i 1̃ 2̃ 3̃⟩

]
=

∑
i,j

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

d log⟨i− 1 i i+ 1 ȷ̃⟩ , (2.30)

where the factor ⟨i 1̃ 2̃ 3̃⟩ in the d log in the first line disappears via telescoping in the sum over j
as it no longer depends on j. If we also have n1 = 3, the same happens for the remaining factor
in the d log and we conclude that df3,3 = 0, i.e. that f3,3 is constant. Under a collinear limit on
C1, f3,3 reduces to f2,3 which vanishes as C1 becomes a backtracking loop and we conclude that
in fact f3,3 = 0, even in complex kinematics.

For n1 > 3, fn1,3 is a non-zero function in complex kinematics. In real kinematics, fn1,3

vanishes for all n1 owing to the fact that a closed light-like triangle in real Minkowski space is
necessarily degenerate and the loop C1 becomes a backtracking loop. To see this we may impose
reality at the level of twistors by setting

Z̃2 = Z̃1 + ϵ(Zr1 + aZr2 + bZr3) Z̃3 = Z̃1 + ϵ(Zr1 + cZr2 + dZr3) (2.31)

and taking the ϵ → 0 limit. Note that here Zri are three twistors other than the three defining
the triangle, which can be taken from C1. It is then straightforward to check that in this limit
the derivative (2.30) vanishes and again reduction to n2 = 2 implies fn1,3 = 0 in real kinematics.
It is also worth noting that if one computes a one-loop integrand for a triangle-polygon correlator
in the twistor Wilson loop formalism (as will be shortly reviewed), such functions vanish even at
the level of the integrand, diagram by diagram, in real kinematics.

3 Correlators of Super Wilson loops

We can extend the definition of multiple Wilson loop correlators to multiple super Wilson loop
correlators Wn1,...,nm following [38, 39]. We can describe the kinematic dependence of these
objects with supertwistors Zr,ir = (Zr,ir |χr,ir) with r = 1, . . . ,m and ir = 1, . . . , nr, where χr,ir

are Grassmann variables and nr is the number of supertwistors describing the contour Cr. We
make use of the supertwistor Wilson loop formulation of Mason and Skinner [38] in order to
perform computations for these objects.

The super Wilson loops decompose into sectors of degree 4k in Grassmann variables,

Wn1,...,nm =
∑
k

W(k)
n1,...,nm

. (3.1)
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For a single loop operator, these sectors correspond to the NkMHV sectors of the corresponding
super-amplitude. For correlators of multiple loop operators we will sometimes employ the same
terminology here (MHV, NMHV etc.), although these sectors no longer correspond to helicity
amplitudes.

The first term W(0)
n1,...,nm = Wn1,...,nm is just the correlator of bosonic Wilson loops discussed

above. Note that the factorisation of the divergent and anomalous conformal finite parts should
be just as for the bosonic Wilson loop correlators,

Wn1,...,nm =

[∏
r

[ n∏
i=1

Di

]
Fnr

]
Rn1,...,nm , . (3.2)

Here the finite conformally invariant factor R has an expansion into terms of Grassmann degree
4k,

Rn1,...,nm =
∑
k

R(k)
n1,...,nm

(3.3)

with R(0)
n1,...,nm = Rn1,...,nm being the conformally invariant part of the bosonic Wilson loop corre-

lator introduced in eq. (2.6).

We will also use the same notation introduced in Sec. 2 to denote connected contributions
to correlators of multiple super Wilson loop operators, e.g.

Wn1,n2 = Wn1Wn2 +Wconn
n,n2

, Rn1,n2 = Rn1Rn2 +Rconn
n,n2

. (3.4)

Finally, each term in the expansion in Grassmann variables admits a perturbative expansion in
g2 which we write as follows,

W(k)
n1,...,nm

=
∑
l

g2lW(k,l)
n1,...,nm

, R(k)
n1,...,nm

=
∑
l

g2lR(k,l)
n1,...,nm

,

W(k),conn
n1,...,nm

=
∑
l

g2lW(k,l),conn
n1,...,nm

, R(k),conn
n1,...,nm

=
∑
l

g2lR(k,l),conn
n1,...,nm

. (3.5)

3.1 Review of the twistor formulation of N = 4 SYM

Let us briefly recall the details of the reformulation of maximally supersymmetric Yang-Mills
theory in twistor space. These developments were originally inspired by Witten’s twistor string
theory [63], in which (at the perturbative level) the self-dual sector of N = 4 Super-Yang Mills
theory emerges from the open string sector of a topological B-model on supertwistor space CP3|4.
Historically, this gave rise to many important developments such as the MHV formalism for tree
amplitudes [64].
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While Witten’s original procedure of supplementing the action of a holomorphic Chern-
Simons theory with D1-instantons to recover the full theory also introduces conformal super-
gravity [65], in [40], it was shown that (at least at the perturbative level) N = 4 Super-Yang
Mills theory may be perfectly captured in twistor space using the twistor action

S(A) = S1(A) + S2(A) (3.6)

where S1(A) is the action of a holomorphic Chern-Simons theory on CP3|4, and S2(A) provides
the interaction terms which allow us to expand about the self-dual sector and recover the full
theory. Explicitly, we have (here we choose a convenient normalisation to facilitate a precise
match in the prefactors for amplitudes and single Wilson loop correlators in the large N limit2)

S1(A) =
iN

8π3

∫
D3|4Z ∧ tr

(
A ∧ ∂A+

2

3
A ∧A ∧A

)
, (3.7)

and

S2(A) =
g2N

π2

∫
d4|8X log det

(
∂ +A

)
X

(3.8)

where in S2, the integral is to be taken over all lines X in supertwistor space, and g2 is the t’Hooft

coupling,
g2YMN

16π2 . Here the (0, 1)-form connection A may be expanded in terms of components as

A(Z, χ) = a(Z,Z) + χA′
γ̃A′(Z,Z) +

1

2!
χA′

χB′
ϕA′B′(Z,Z) (3.9)

+
1

3!
ϵA′B′C′D′χA′

χB′
χC′

γD′
(Z,Z) +

1

4!
χ1χ2χ3χ4g(Z,Z).

The space-time component fields are then constructed from the components of the partial con-
nection via the Penrose transform [66, 67].

Note that in order to obtain the self dual sector from S1(A), a gauge choice must be made
to reduce the symmetry to the spacetime gauge group, as explained in detail in [40]. For the
purpose of perturbative calculations, the log-det term may be straightforwardly expanded as a
power series in A to give an infinite tower of interaction terms. Keeping only those terms which
saturate the fermionic integration we have

S2(A) = −g2N

π2

∫
d4|8X

∞∑
r=2

1

r
tr(−∂̄−1

X A)r . (3.10)

The operator ∂̄−1
X acts on (0, 1)-forms on the line X (a copy of CP1, parametrised here by the

complex variable s′) as follows,

(∂̄−1
X ω)(s) =

∫
X

G(s, s′) ∧ ω(s′) . (3.11)

2In principle there remains a freedom of a change in the normalisation of the two terms in the action which
becomes unity in the large N limit. We have not written this explicitly here.
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The Green’s function G is given by

G(s, s′) = − 1

2πi

ds′

(s− s′)
. (3.12)

With these definitions we have

tr(∂̄−1A)r = tr

{∫
Xr

G(sr, s1) ∧ A(Z(s1)) . . . G(sn−1, sr) ∧ A(Z(sr))

}
. (3.13)

Under these identifications, after extracting the space-time field components via the Penrose
transform and integrating out an auxiliary field, the action S aligns with the ordinary space-time
formulation of N = 4 super Yang-Mills theory at the perturbative level,

S =
1

g2YM

∫
d4x

[
−1

2
trF µνFµν + . . .

]
. (3.14)

3.2 Review of twistor super Wilson loop calculations

Here we provide a quick review of some of the formalism described in [38] for the computation of
Wilson loop expectation values in twistor space. In twistor space, the contour can be represented
by a sequence of intersecting lines Xi (really each a copy of CP1) with the intersection points of
Xi−1 and Xi given by twistors Zi. We can parametrise the line Xi via

Zi(s) = sZi−1 + Zi , (3.15)

so that Zi(0) = Zi and Zi(∞) = Zi−1.

Given a (0, 1)-form Chern-Simons connection a(Z) and given a line X, we can find a frame
H(x, λ) such that

H−1(∂̄ + a)|XH = ∂̄X , (3.16)

or equivalently
(∂̄ + a)|XH = 0 . (3.17)

The frame H(x, λ) is unique up to multiplication by a gauge transformation g(x) (independent
of λ),

H(x, λ) → H(x, λ)g(x) . (3.18)

For the sequence of intersecting lines Xi, with some choice of frame H(xi, λ) for each, we define
(writing ∂̄−1

Xi
as ∂̄−1

i )

Hi(λ) ≡ H(xi, λi)H(xi, λi−1)
−1 =

∞∑
li=0

(
−∂̄−1

i a(Zi(s))
)li (3.19)
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which then obeys the differential equation

(∂̄ + a)Xi
Hi(λ) = 0 (3.20)

on the line Xi with the boundary condition that Hi(λi−1) = 1 .

The twistor formulation of the loop operator (conventionally path-ordered so that i increases
from right to left) is then

L(C) =
1

N
trP

n∏
i=1

Hi(λi) =
1

N
trP

n∏
i=1

H(xi, λi)H(xi, λi−1)
−1

=
1

N
trP

n∏
i=1

∞∑
li=0

(
−∂̄−1

i a(Zi(0))
)li . (3.21)

This has a natural supersymmetric extension

L(C) =
1

N
trP

n∏
i=1

∞∑
li=0

(
−∂̄−1

i A(Zi(0))
)li , (3.22)

where A is the supersymmetric extension of a as given in (3.9).

When we expand we obtain from each edge

Hi(λi) =
∞∑

li=0

(
−∂̄−1

i A(Zi(0))
)li = 1−

∫
Xi

G(0, s′) ∧ A(Zi(s
′))

+

∫
Xi

G(0, s′) ∧ A(Zi(s
′))

∫
Xi

G(s′, s′′) ∧ A(Zi(s
′′)) + . . .

= 1−
∫

1

2πi

ds′ ∧ A(Zi(s
′))

s′

−
∫

1

2πi

ds′ ∧ A(Zi(s
′))

s′

∫
1

2πi

ds′′ ∧ A(Zi(s
′′))

(s′ − s′′)
+ . . . (3.23)

We now want to consider the expectation value of the loop operator. For now we consider the
expectation value in holomorphic Chern-Simons theory without the interaction terms given by
S2. We will denote such an expectation value as WCS

n = ⟨L(C)⟩CS. These contributions to the
Wilson loop expectation value correspond to tree-level amplitudes in N = 4 super Yang-Mills
theory [38]. We recall that A = Aata and make use of the propagator

⟨Aa(Zi(s))Ab(Zj(t))⟩CS = −8π2

N
δab∆∗

(
Zi(s), Zj(t)

)
= −8π2

N
δabδ̄

2|4(Z∗, Zi(s), Zj(t)
)

= −8π2

N
δab

∫
D2c

c1c2c3
δ̄4|4

(
c1Z∗ + c2Zi(s) + c3Zj(t)

)
. (3.24)
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Here the measure is given by D2c = 1
3
(c1dc2 ∧ dc3 + cyc). Note that appearance of the reference

twistor Z∗ is a consequence of our having chosen to work in an axial gauge in order to eliminate
the cubic term in S1. While e.g. individual twistor Wilson loop diagrams can and do depend on
the value of Z∗, this should cancel out overall in a well-defined observable and this provides a
very useful cross-check when performing computations.

We then obtain

WCS
n = 1 +

∑
i>j

∫
ds

s

dt

t
β1∆

ij
∗ (s, t)

+
∑

i>j>k>l

∫
ds

s

dt

t

du

u

dv

v
[β2∆

ij
∗ (s, t)∆

kl
∗ (u, v) + β3∆

ik
∗ (s, u)∆jl

∗ (t, v) + β2∆
il
∗ (s, v)∆

jk
∗ (t, u)]

−
∑
i>k>l

∫
ds1
s1

ds2
(s1 − s2)

du

u

dv

v
[β3∆

ik
∗ (s1, u)∆

il
∗ (s2, v) + β2∆

il
∗ (s1, v)∆

ik
∗ (s2, u)]

−
∑
i>j>l

∫
ds

s

dt1
t1

dt2
(t1 − t2)

dv

v
[β2∆

ij
∗ (s, t1)∆

jl
∗ (t2, v) + β3∆

ij
∗ (s, t2)∆

jl
∗ (t2, v)]

−
∑

i>j>k

∫
ds

s

dt

t

du1
u1

du2
(u1 − u2)

[β3∆
ik
∗ (s, u1)∆

jk
∗ (t, u2) + β2∆

ik
∗ (s, u2)∆

jk
∗ (t, u1)] + . . . (3.25)

Here we have factors β1 = (N2 − α)/N2, β2 = (N2 − α)2/N4 and β3 = (N2 − 2αN2 + α2)/N4,
where α = 0 in the U(N) theory and α = 1 in the SU(N) theory. Here, to obtain the β’s we have
absorbed into the colour factors the powers of 2 which remain after cancelling powers of (− 1

2πi
)

from the Green’s function with powers of −8π2 and 1
N

from the propagators. We also take care
to remember the normalisation 1

N
of the loop operator.

In the SU(N) theory in the large N limit (in which case only β2 survives and β3 is sup-
pressed), the boundary terms above are the origin of shifted N2MHV R-invariants which are
Grassmann degree 8 Yangian invariants. In the Abelian case however we have β1 = β2 = β3 = 1,
and the third, fourth and fifth lines in (3.25) simplify e.g.

−
∫

ds1
s1

ds2
(s1 − s2)

du

u

dv

v
[∆ik

∗ (s1, u)∆
il
∗ (s2, v) + ∆il

∗ (s1, v)∆
ik
∗ (s2, u)]

=−
∫ [

ds1
s1

ds2
(s1 − s2)

+
ds2
s2

ds1
(s2 − s1)

]
du

u

dv

v
[∆ik

∗ (s1, u)∆
il
∗ (s2, v)]

=

∫
ds1
s1

ds2
s2

du

u

dv

v
∆ik

∗ (s1, u)∆
il
∗ (s2, v) . (3.26)
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Thus in the Abelian case these terms simply factorise and we find

WCS
n = 1 +

∑
i>j

∫
ds

s

dt

t
∆ij

∗ (s, t)

+
∑

i≥j≥k≥l

∫
ds

s

dt

t

du

u

dv

v
[∆ij

∗ (s, t)∆
kl
∗ (u, v) + ∆ik

∗ (s, u)∆
jl
∗ (t, v) + ∆il

∗ (s, v)∆
jk
∗ (t, u)]

+ . . . , (3.27)

where the summation in the second line allows the boundary terms i = j or j = k or k = l, but
not multiple boundary terms of the form i = j = k or i = j and k = l which vanish. Note that
the first line gives a sum over R-invariants since we have [38]∫

ds

s

dt

t
∆ij

∗ (s, t) = [∗, i− 1, i, j − 1, j] , (3.28)

with the usual notation for the superconformal invariant (R-invariant),

[a, b, c, d, e] =
δ0|4(χa⟨bcde⟩+ cyc.)

⟨abcd⟩⟨bcde⟩⟨cdea⟩⟨deab⟩⟨eabc⟩
. (3.29)

Here we make the usual definition

⟨ijkl⟩ = det(ZiZjZkZl). (3.30)

Note also that the square of an R-invariant vanishes for Grassmann reasons. In the Abelian
theory, we again have exponentiation of the expectation value (without including contributions
from the log det contribution to the action) of the loop operator,

WCS
n = exp

{∑
i>j

[∗, i− 1, i, j − 1, j]

}
. (3.31)

The expansion (3.27) shows the first three orders in expanding out this exponential. Although
it is not manifest term by term, the above expressions are independent of the choice of reference
supertwistor (denoted by ∗) once the sum over i and j is performed.

Note that above we have omitted any terms where the propagator joins two adjacent lines.
Such terms require a prescription and, depending on the prescription, could lead to divergences
[68]. Here we take the prescription that, after evaluating all colour factors, we tilt the lines slightly
so that they do not intersect. In other words we introduce a copy Z ′

i of each supertwistor. Then
we interpret line i as being the line (Zi−1,Z ′

i). We then evaluate the diagrams before taking
the take the limit Z ′

i → Zi back to the intersecting configuration in a way which respects Q-
supersymmetry. The resulting R-invariants obtained then simply vanish due to the antisymmetry
of their arguments.
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Note that an alternative formulation of the chiral supersymmetric Wilson loop operators
was presented in [69] within the Lorentz Harmonic Chiral (LHC) superspace formalism of [70].
This formulation of the Wilson loop is quite close to the twistor formulation we have summarised
here and a dictionary between the two formulations is given in [69]. It was argued in [69] that
the twistor formulation of the Wilson loop omits certain edge factors which are required in order
to ensure gauge invariance. The diagrams contributing to the expectation value of a single
Wilson loop in the LHC superspace formalism then fall into two classes: cusp diagrams, and
edge diagrams. Cusp diagrams correspond precisely to the the diagrams which arise in Mason
and Skinner’s twistor formulation, while edge diagrams are omitted. While edge diagrams with
external legs play a vital role for Wilson loop form factors (namely, in the cancellation of spurious
poles), in the absence of external legs they simply evaluate to zero after evaluation in Euclidean
signature and thus we believe they may safely be omitted from our calculations here.

3.2.1 Interaction terms

To expand the full theory around the self-dual sector, one must also include the interaction term
S2. In terms of path integrals we have

⟨L(C)⟩ =
∫
[dA]e−(S1+S2)L(C) . (3.32)

To treat the contributions from S2 we expand perturbatively in g and compute the coefficient at
each order in the holomorphic Chern-Simons theory with action S1,

⟨L(C)⟩ =
∫

[dA]e−S1L(C)

[
1 +

g2N

π2

∫
d4|8X

∞∑
r=2

1

r
tr(−∂̄−1

X A)r +O(g4)

]
= ⟨L(C)⟩CS +

g2N

π2

∞∑
r=2

1

r

∫
d4|8X⟨L(C) tr(−∂̄−1

X A)r⟩CS +O(g4) . (3.33)

Note that contributions corresponding to diagrams which are related to each other only by a
cyclic permutation on the order of the insertions on the Lagrangian line X are clearly identical,
and by choosing only one representative from each such class we may drop the factor of 1

r
in the

integral expressions involving an r-vertex.

Let us briefly remark on a simplification of the interaction terms in the Abelian case, namely
that we only receive contributions from the two-vertex. This is to be expected since the Abelian
theory should be a free theory, as in the case of non-supersymmetric loop operators discussed
in Sec. 2. To see this, let us consider the relation between two diagrams which differ only by
permuting the order of the insertions on the Lagrangian line X. For simplicity we will consider
one-loop diagrams but the argument generalises in the obvious way.
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ZBZAZin

Zin−1

Zin−1

Zin−1−1 Zi2

Zi2−1

Zi1

Zi1−1

tn,k̃n

un

tn−1,k̃n−1

un−1

...

t2,k̃2

u2

t1,k̃1

u1

tn,kn

...
...

tn,1

tn−1,1

. . .
. . .tn−1,kn−1

t2,k2. .
.

. .
.

t2,1

t1,k1

..
.

..
. t1,1

Figure 3: A general twistor Wilson loop diagram with n propagators attached to the Lagrangian
line X = (ZA, ZB); here we label the integration variables associated to the insertion point of
the propagators on the twistor lines.

Let us label by wn−vertex the general diagram given in Fig. 3, which involves n propagators
attached to the Lagrangian line X (labelled by two twistors ZA and ZB).

We label the insertion positions on the line X by u1, . . . , un. The u-dependent part of the
integrand for this diagram is

Integrand(wn−vertex)

∼ du1

u1 − u2

du2

u2 − u3

. . .
dun−1

un−1 − un

dun

un − u1

D2a1
a1,1a1,2a1,3

. . .
D2an

an,1an,2an,3

× δ
4|4
(an,1Z∗ + an,2ZA + an,2unZB + an,3Zin−1 + an,3tn,k̃nZin)

× δ
4|4
(an−1,1Z∗ + an−1,2ZA + an−1,2un−1ZB + an−1,3Zin−1−1 + an−1,3tn−1,k̃n

Zin−1)

× . . .× δ
4|4
(a1,1Z∗ + a1,2ZA + a1,2u1ZB + a1,3Zi1−1 + a1,3t1,k̃1Zi1) (3.34)

Here, the integration measures associated with the propagators not attached to the La-
grangian line are omitted as they have no dependence on the u variables. Now consider the same
diagram but with an arbitrary permutation, σ, of the attachments of the propagators to the
Lagrangian line, as given in Fig. 4. We label this as wσ

n−vertex. Let us relabel the u integration
variables such that the propagator attached to (im − 1 im) still attaches to the point on L as-
sociated to um, as is the case in Fig. 3. Each propagator precisely matches those of Fig. 3 but
the measure associated to the u variables will differ by a simple factor depending on the u’s, as
a result of relabelling the integration variables. The rest of the integral will be the same as Fig.
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ZBZAZin

Zin−1

Zin−1

Zin−1−1 Zi2

Zi2−1

Zi1

Zi1−1

tn,k̃n

un

tn−1,k̃n−1

un−1

...

t2,k̃2

u2

t1,k̃1

u1

tn,kn

...
...

tn,1

tn−1,1

. . .
. . .tn−1,kn−1

t2,k2. .
.

. .
.

t2,1

t1,k1

..
.

..
. t1,1permutation σ

Figure 4: A general twistor diagram with n insertions on the Lagrangian line X = (ZA, ZB),
which differs from Fig. 3 by some arbitrary permutation of the attachments to the Lagrangian
line.

3 because the other propagators and the ordering of propagator attachments is unchanged. The
u-dependent part of this permuted integral is

Integrand(wσ
n−vertex)

∼
duσ(1)

uσ(1) − uσ(2)

duσ(2)

uσ(2) − uσ(3)

. . .
duσ(n−1)

uσ(n−1) − uσ(n)

duσ(n)

uσ(n) − uσ(1)

D2a1
a1,1a1,2a1,3

. . .
D2an

an,1an,2an,3

× δ
4|4
(Z∗ + an,2ZA + an,2unZB + an,3Zin−1 + an,3tn,k̃nZin)

× δ
4|4
(Z∗ + an−1,2ZA + an−1,2un−1ZB + an−1,3Zin−1−1 + an−1,3tn−1,k̃n

Zin−1)

× . . .× δ
4|4
(Z∗ + a1,2ZA + a1,2u1ZB + a1,3Zi1−1 + a1,3t1,k̃1Zi1) . (3.35)

In the Abelian theory, since all permutations come with the same colour factor, the full
contribution comes from summing over all permutations modulo cyclic permutations3, which can
be simply implemented by using only those permutations which keep u1 in a fixed position. For
n = 2 there are no non-cyclic permutations and we have a single contribution. For any n > 2,
we can see that such contributions cancel in the sum, although the mechanism of cancellation is
different for odd versus even n.

After having fixed u1, it is clear that for permutations which amount to reflecting the order
of insertions from u2 to un, the factor pulled out of the integral will reduce to (−1)n. For odd

3Cyclic permutations, as described above, merely cancel the factor of 1
n accompanying the n-vertex.
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n we therefore see immediately that the contributions from permutations which are related by
reflection will cancel pairwise, and so the contribution for odd n cancels out to zero.

For even n > 2, the contributions no longer cancel pairwise, but rather cancel out in cyclic
classes i.e. the sum over all permutations which are related by cyclic permutations on labels 2
to n will cancel out. This amounts to the simple observation that the expression

1

(x1 − x2)(x2 − x3)(x3 − x4)...(xn − x1)
(3.36)

when summed over cyclic permutations on labels 2 to n will be zero for all n > 2 (though
we needn’t invoke this argument for odd n given the simpler pairwise cancellation observed).
Although this is straightforward to algebraically verify for specific cases, it is also easy to see
that this vanishes in general by considering residues. In particular, if we consider the sum to be
a function of complex variable x1, it is clear that the only possible residues are at xi for i = 2 to
n, and that these residues cancel pairwise. For example, for the case n = 4 our sum reads

1

(x1 − x2)(x2 − x3)(x3 − x4)(x4 − x1)
+

1

(x1 − x3)(x3 − x4)(x4 − x2)(x2 − x1)

+
1

(x1 − x4)(x4 − x2)(x2 − x3)(x3 − x1)
(3.37)

and the poles are at x1 = x2 (coming from the first and second term), x1 = x3 (coming from the
second and third terms) and x1 = x4 (coming from the first and third terms). For each apparent
pole, the residue in the two terms giving rise to it are equal except for a sign difference, and so
in fact the residue on every pole is zero. Since there is also no pole at infinity, by Liouville’s
theorem the sum must be a constant with respect to x1. As |x1| → ∞ the sum decays to zero,
and thus in fact the sum must be zero as claimed. The pairwise cancellation of residues on each
pole, and thus the argument, follows identically for larger n. We therefore see that, as expected,
only the two-vertex is able to contribute in the Abelian theory.

3.3 Tree-level correlators of multiple super loop operators

Now let us turn to the calculation of correlators of multiple super loop operators within the
twistor formalism. First we consider such correlators where the calculation is carried out in
holomorphic Chern-Simons theory (i.e. with g = 0). For such contributions the divergent and
anomalous conformal factors in (3.2) are simply given by Di = 1 and Fn = 1. For a single Wilson
loop operator, such contributions are equivalent to the tree-level amplitudes of planar N = 4
super Yang-Mills theory. We will therefore refer to such contributions as ‘tree-level’ even for
correlators of multiple loop operators,

⟨L(C1) . . .L(Cm)⟩CS = Wtree
n1,...,nm

= W(0,0)
n1,...,nm

+W(1,0)
n1,...,nm

+ . . .

= Rtree
n1,...,nm

= R(0,0)
n1,...,nm

+R(1,0)
n1,...,nm

+ . . . (3.38)
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Here we use the notation with superscript (k, l) introduced in (3.5). The first (‘MHV’) term

in the expansion in Grassmann variables is W(0,0)
n1,...,nm = R(0,0)

n1,...,nm = 1, while the second term

W(1,0)
n1,...,nm = R(1,0)

n1,...,nm is of Grassmann degree four and is the ‘NMHV’ contribution, with later
terms referred to as N2MHV etc. Here, we present some explicit results at low MHV degree. Up
to N2MHV, all of the integrals which feature have already appeared in the literature, e.g. in [38],
and so we omit the details of their evaluation here.

Note that if we expand (3.4) in Grassmann degree we have at tree level,

Wtree
n1,n2

= Wtree
n1

Wtree
n2

+Wtree,conn
n1,n2

= (W(0,0)
n1

+W(1,0)
n1

+ . . .)(W(0,0)
n2

+W(1,0)
n2

+ . . .) +W(0,0),conn
n1,n2

+W(1,0),conn
n1,n2

+ . . .

= 1 +W(0,0),conn
n1,n2

+W(1,0)
n1

+W(1,0)
n2

+W(1,0),conn
n1,n2

+ . . . (3.39)

and we conclude that
W(0,0),conn

n1,n2
= 0 , (3.40)

which is also apparent when considering the possible twistor diagrams.

3.3.1 NMHV Contribution

For NMHV tree-level correlators the answer is very simple, as it receives contributions only from
a diagram with a single propagator between two distinct, non-adjacent twistor lines. In general
we have

W(1,0)
n1,...,nm

=
∑
r

W(1,0)
nr

+
∑
r<s

W(1,0),conn
nr,ns

(3.41)

where the disconnected part is known from the literature and quoted in eq. (3.28) for the Abelian
theory (as in Sec. 2, here one sets α = 0 in the case of the U(N) theory, and α = 1 for SU(N)),

W(1,0)
n =

N2 − α

N2

∑
i<j

[∗, i− 1, i, j − 1, j] (3.42)

and the connected part is given similarly as (note that this colour factor vanishes in the SU(N)
theory)

W(1,0),conn
nr,ns

=
1− α

N2

∑
i,j

[∗, i− 1, i, j − 1, j]; (3.43)

where in this second sum, i runs over the indices of loop r and j runs over the indices of loop
s. Once again, the above expressions are independent of the choice of reference supertwistor
(denoted by ∗) and this provides a useful sanity check on these calculations.
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Note also that (at least formally) the above expression allows non-zero expressions when the
loops have three twistors defining them (but not two - due to antisymmetry). For example we
could consider the case of two triangles. Let us denote the twistors defining the first loop by
Z1,2,3 and those for the second by Z4,5,6. Using independence of the result on Z∗ we can choose
Z∗ = Z1. This leaves only three non-zero terms

W(1,0),conn
3,3 =

1− α

N2

[
[1, 2, 3, 4, 5]− [1, 2, 3, 4, 6] + [1, 2, 3, 5, 6]

]
. (3.44)

Note that symmetry between the two three-point loops is respected due to the basic identity
obeyed by the R-invariants,

[1, 2, 3, 4, 5]− [1, 2, 3, 4, 6] + [1, 2, 3, 5, 6]− [1, 2, 4, 5, 6] + [1, 3, 4, 5, 6]− [2, 3, 4, 5, 6] = 0 . (3.45)

3.3.2 N2MHV Contribution

We can also consider the contribution at N2MHV, for which we consider diagrams with two
propagators each running between a pair of non-adjacent twistor lines. For a correlator of two
Wilson loops at N2MHV we have

W(2,0)
n1,n2

= W(2,0)
n1

+W(2,0)
n2

+W(1,0)
n1

W(1,0)
n2

+W(2,0),conn
n1,n2

. (3.46)

For three Wilson loops, we similarly have

W(2,0)
n1,n2,n3

= W(2,0)
n1

+W(2,0)
n2

+W(2,0)
n3

+W(1,0)
n1

W(1,0)
n2

+W(1,0)
n1

W(1,0)
n3

+W(1,0)
n2

W(1,0)
n3

+W(2,0),conn
n1,n2

+W(2,0),conn
n1,n3

+W(2,0),conn
n2,n3

+W(1)
n1

W(1,0),conn
n2,n3

+W(1,0)
n2

W(1,0),conn
n1,n3

+W(1,0)
n3

W(1,0),conn
n1,n2

+W(2,0),conn
n1,n2,n3

. (3.47)

The disconnected contributions are of course known from the literature. Other than those given
in the previous section, we have

W(2,0)
n =

(N2 − α)2

N4

∑
1≤i<j≤k<l<n+i

[∗, i− 1, î, j − 1, j][∗, k − 1, k̂, l − 1, l]

+
(1− 2α)N2 + α2

N4

∑
1≤i<k≤j<l<n+i

[∗, i− 1, î, j − 1, j][∗, k − 1, k̂, l − 1, l] (3.48)

where we define

î =

{
îk i = l

i i ̸= l
(3.49)
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k̂ =

{
k̂i k = j

k k ̸= j
(3.50)

Here we make use of the notation

Ẑk,j = (k − 1 k) ∩ (∗ j − 1 j) (3.51)

which can be written more explicitly as

Ẑk,j = ⟨∗ j − 1 j k − 1⟩Zk − ⟨∗ j − 1 j k⟩Zk−1. (3.52)

Here the first sum captures the contribution from planar diagrams and the second sum
corresponds to the non-planar diagrams.

Let us now focus our attention on the two types of connected contribution. Note that all
of the integrals which arise here are the same as those appearing in the existing literature for
W(2,0)

n , and so we omit the details of the integration here.

Connected part for two loop operators, W(2,0),conn
n1,n2

At N2MHV, the connected parts of the correlator of two Wilson loops receives contributions from
diagrams where both propagators cross from one Wilson loop to the other, and also those where
one propagator crosses between the Wilson loops while another stays within the same Wilson
loop. Diagrams in the former category all come with an identical factor (including here some
powers of 2 from propagators and Green’s functions, and the 1

N
factors from the propagators and

normalisations of the loop operators)

4

N4
δacδbdtr(tatb)tr(tctd) =

N2 − α

N4
(3.53)

and supply the only contribution in the SU(N) theory.

Note that we must include those diagrams which include two propagators ending on the same
twistor line (although diagrams where two propagators run between the same pair of twistor lines

will vanish for Grassmann reasons). In the case of W(2)
n , it is precisely such diagrams which give

rise to the appearance of shifted twistors inside R-invariants; note that only one of the two
orderings of the two insertions on one twistor line would be planar in that case.

However, in the case of the connected contribution to the correlator of two loop operators,
both the versions of a diagram with two field insertions on one twistor line come with an identical
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Zi1−1

Zi1

Zi2−1

Zi2

Zj−1

Zj

Zi1−1

Zi1

Zi2−1

Zi2

Zj−1

Zj

Figure 5: Two N2MHV tree diagrams where the propagators run between the same twistor lines
but with the order of insertion on the lines switched. While one of these diagrams would be colour
suppressed in the SU(N) theory for a single Wilson loop, for two Wilson loops both diagrams
are planar and can be combined as a single integral, resulting in the disappearance of shifted
twistors.

(leading) colour factor. Consider for example the diagram where we have propagators from Xi1

and Xi2 on one Wilson loop, both ending on the same line Xj on the other Wilson loop, as shown
in Fig. 5. It is helpful to combine the contributions from these two diagrams into one integral,
and in doing so we see that the integral simplifies exactly as we saw for a single Wilson loop in
the Abelian case in (3.26), giving an overall contribution of

N2 − α

N4
[∗, i1 − 1, i1, j − 1, j][∗, i2 − 1, i2, j − 1, j]. (3.54)

In the case where no twistor line has a double field insertion, and the propagators run from
Xi1 to Xj1 and Xi2 to Xj2 (the i-labels being drawn from the first Wilson loop and the j-labels
from the second), we simply have

N2 − α

N4
[∗, i1 − 1, i1, j1 − 1, j1][∗, i2 − 1, i2, j2 − 1, j2] . (3.55)

Summing over all the contributions from this class of diagram, the disappearance of shifted
twistors means we have the simple contribution

N2 − α

N4

∑
i1<i2

∑
j1<j2

[∗, i1 − 1, i1, j1 − 1, j1][∗, i2 − 1, i2, j2 − 1, j2] , (3.56)

which simplifies (using the nilpotence of the R-invariants) to

W(2,0),conn
n1,n2,(a)

=
1

2N4
(N2 − α)

(∑
i,j

[∗, i− 1, i, j − 1, j]
)2

. (3.57)
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The sum being squared is of course nothing other than the NMHV contribution in the Abelian
theory.

In the U(N) theory, we must also account for diagrams in which one propagator stays within
the same Wilson loop, with only one propagator crossing over. These all come with a factor of
the form

4

N4
δabδcdtr(tatbtc)tr(td) = (1− α)

N2 − α

N4
= (1− α)/N2 =

{
0 G = SU(N) ,

1/N2 G = U(N) ,
, (3.58)

which of course vanishes entirely in the SU(N) theory (α = 1). The overall contribution from
such diagrams is given by

W(2,0),conn
n1,n2,(b)

=
1− α

N2

n2∑
j

∑
i1<i2≤i3≤i1+n1

[∗, i1 − 1, i1, i2 − 1, i2][∗, i3 − 1, i3, j − 1, j]+

+ (n1 ↔ n2) . (3.59)

Note that shifted twistors cancel out via exactly the same mechanism spelled out for the previous
class of diagram. The full expression for W

(2),conn,tree
n1,n2 is then given by adding the contributions

given in equations (3.57) and (3.59),

W(2,0),conn
n1,n2

= W(2,0),conn
n1,n2,(a)

+W(2,0),conn
n1,n2,(b)

. (3.60)

Connected part for three loop operators, W(2,0),conn
n1,n2,n3

For a correlator of three Wilson loops, the N2MHV contribution also includes diagrams where all
three Wilson loops are connected, which means there are two propagators ending on one Wilson
loop, each running to a different Wilson loop. All such diagrams come with identical factor of
the form

4

N4
δacδbdtr(tatb)tr(tc)tr(td) =

1− α

N4
(3.61)

which of course vanishes in the SU(N) theory. Shifted twistors from diagrams with two propa-
gators ending on the same twistor line cancel out via exactly the same mechanism as we saw for
W(2,0),conn

n1,n2 and overall we find

W(2,0),conn
n1,n2,n3

=
1− α

N4

n1∑
i1≤i2

n2∑
j

n3∑
k

[∗, i1 − 1, i1, j − 1, j][∗, i2 − 1, i2, k − 1, k] + cyc(n1, n2, n3) ,

(3.62)

where i-, j-, and k-labels are drawn from the first, second and third Wilson loops respectively.
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3.3.3 N3MHV Contribution: W
(3,0),conn
n1,n2 in the SU(N) theory

We may perform the same analysis for the N3MHV contribution, which will similarly decompose
into various connected and disconnected parts. For simplicity, let us focus our attention on the
contribution W(3,0),conn

n1,n2 which provides the most non-trivial piece of the answer, although the
integrals which we will present suffice for the computation of any N3MHV correlator. Moreover,
let us restrict our attention to the SU(N) theory, so that diagrams in which one Wilson loop has
only a single propagator ending on it will come with vanishing colour factor.

Subject to these constraints, the diagrams which arise naturally partition into two categories:
those for which all three propagators cross from one Wilson loop to the other, which we will refer
to as ‘Class 1’, and those for which one propagator stays within the same Wilson loop, which we
will refer to as ‘Class 2’.

Colour factors

Within each class, diagrams can come with one of two colour factors, only one of which contributes
to the planar limit. The simple heuristic to determine whether a diagram is planar is to imagine
a cylinder for which the Wilson loops are the plane caps; planar diagrams are those for which
the propagators can be drawn without crossing on the cylinder.

For Class 1 diagrams, colour dominant diagrams come with a factor of the form (note that
these formulae are specifically for the SU(N) theory)

8

N3
δadδbeδcf tr(tatbtc)tr(tdtetf ) =

N4 − 3N2 + 2

N4
(3.63)

and colour subdominant diagrams come with a colour factor of the form

8

N3
δaeδbdδcf tr(tatbtc)tr(tdtetf ) = −2(N2 − 1)

N4
. (3.64)

Similarly, for Class 2 diagrams we have colour factors of the form

8

N3
δadδbeδcf tr(tatbtctd)tr(tetf ) =

(N2 − 1)2

N4
(3.65)

for dominant diagrams and

8

N3
δacδbeδdf tr(tatbtctd)tr(tetf ) = −N2 − 1

N4
(3.66)

for subdominant diagrams. Note that, at leading order in N , dominant diagrams in Class 1 and
Class 2 both come with the same colour factor of 1.
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Integrals for N3MHV computations

While the cases investigated thus far have only required the very simple integrals which had
already appeared in e.g. [38], for N3MHV calculations we now have a number of more complicated
integrals which feature. Here we provide a catalogue of their evaluations in terms of R-invariants;
note that as the integrals themselves are unaffected by which twistor line is on which Wilson
loop (this only affects the trace structure), the same integrals suffice for N3MHV calculations

even beyond the present case of W(3),conn,tree
n1,n2 in the SU(N) theory.

Here we simply quote the results for each integral; in Appendix B, we provide explicit details
on the evaluation of some illustrative examples.

Let us use the notation4

I
(
∆ij

∗ (s, t),∆
kl
∗ (u, v),∆

mn
∗ (w, x)

)
(3.67)

to denote an integral stripped of its numerical prefactors (including the colour trace and also
e.g. powers of N and 2 coming from the propagators) where the superscripts on the ∆∗’s label
the twistor lines on which the associated propagator ends, and explicitly giving the variables
associated to each end of the propagator allows us to distinguish between integrals where the
order of the insertions on a twistor line has been switched. In the case that multiple propagators
end on the same twistor line, we use the same letter for the associated variable, with a subscript.
So for instance an example with a single double insertion would be

I
(
∆ij

∗ (s1, t),∆
ik
∗ (s2, u),∆

lm
∗ (v, w)

)
(3.68)

and an example with a triple insertion would be

I
(
∆ij

∗ (s1, t),∆
ik
∗ (s2, u),∆

il
∗ (s3, v)

)
. (3.69)

Recall that of course the dependence on the integration variables associated to a multi-
insertion in the measure is asymmetric; for instance for a double insertion we have

ds1
s1

ds2
s2 − s1

(3.70)

and for a triple insertion we have
ds1
s1

ds2
s2 − s1

ds3
s3 − s2

. (3.71)

This pattern would continue for e.g. a quadruple insertion, but these will not arise for the case
we presently consider.

4Of course, if we swap the order of the three propagators in the argument, we still refer to the same integral.
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ZiZi−1

Zm−1

Zm

Zj Zj−1

Zk−1

Zk

Zl−1

Zl

Figure 6: An example of a diagram with a single double-insertion which is relevant for W(3),conn
n1,n2

in the SU(N) theory. In our nomenclature, this would be a ‘Class 2’ diagram and moreover would
be colour-dominant. As an integral, this corresponds to I

(
∆ij

∗ (s2, t),∆
ik
∗ (s1, u),∆

lm
∗ (v, w)

)
.

No multi-insertion

The simplest integral which may arise is the one where there are no multi-insertions on any
twistor line. The result for such a case is simply

I
(
∆ij

∗ (s, t),∆
kl
∗ (u, v),∆

mn
∗ (u, v)

)
= [∗, i−1, i, j−1, j][∗, k−1, k, l−1, l][∗,m−1,m, n−1, n]. (3.72)

One double-insertion

Next, we have the case where two propagators end on one twistor line, with all other twistor lines
involved in the integral only having a single propagator ending on them. Such a case is shown
in Fig. 6; for its evaluation, we have

I
(
∆ij

∗ (s2, t),∆
ik
∗ (s1, u),∆

l,m
∗ (v, w)

)
= [∗, l − 1, l,m− 1,m][∗, i− 1, i, k − 1, k][∗, i− 1, i, j − 1, ĵk].

(3.73)

If we swap the order of the insertions on the line Xi, i.e. take the above integral with s1 ↔ s2,
the result is obtained by simply swapping over j and k in the given expression.

Two double-insertions

Next, we have the case where there are two double-insertions; an example of such a diagram is
shown in Fig. 7.
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Zi−1

Zi

Zj−1

Zj

Zk−1

Zk

Zl−1Zl

Figure 7: A diagram with two double insertions. In our nomenclature, this would be a colour
dominant Class 2 diagram, corresponding to I

(
∆ij

∗ (s1, t2),∆
ik
∗ (s2, u),∆

jl
∗ (t1, v)

)
.

For a fixed choice of twistor lines, such an integral comes in four varieties due to the freedom
to switch the order of the two pairs of double insertions. The four results which arise are

I
(
∆ij

∗ (s1, t1),∆
ik
∗ (s2, u),∆

jl
∗ (t2, v)

)
= [∗, i− 1, i, j − 1, j][∗, i− 1, îj , k − 1, k][∗, j − 1, ĵi, l − 1, l]

I
(
∆ij

∗ (s2, t1),∆
ik
∗ (s1, u),∆

jl
∗ (t2, v)

)
= [∗, i− 1, i, k − 1, k][∗, j − 1, ĵi, l − 1, l][∗, i− 1, îk, j − 1, j]

I
(
∆ij

∗ (s1, t2),∆
ik
∗ (s2, u),∆

jl
∗ (t1, v)

)
= [∗, j − 1, j, l − 1, l][∗, i− 1, i, j − 1, ĵl][∗, i− 1, îj , k − 1, k]

I
(
∆ij

∗ (s2, t2),∆
ik
∗ (s1, u),∆

jl
∗ (t1, v)

)
= [∗, j − 1, j, l − 1, l][∗, i− 1, i, k − 1, k][∗, i− 1, îk, j − 1, ĵl]

Three double-insertions

We can also have the case where there are three twistor lines with a double-insertion; note that
this means every twistor line which enters into the integral has a double-insertion on it. Such an
example is depicted in Fig. 8.

For this case, we really have eight different integrals as a result of the freedom to swap the
order within the three pairs of double-insertions. The cases which arise are

I
(
∆ij

∗ (s2, t1),∆
jk
∗ (t2, u1),∆

ki
∗ (u2, s1)

)
= [∗, j − 1, ĵi, k − 1, k][∗, k − 1, k̂j , i− 1, i][∗, i− 1, îk, j − 1, j]

I
(
∆ij

∗ (s1, t1),∆
jk
∗ (t2, u1),∆

ki
∗ (u2, s2)

)
= [∗, j − 1, ĵi, k − 1, k][∗, k − 1, k̂j , i− 1, îj ][∗, i− 1, i, j − 1, j]

I
(
∆ij

∗ (s2, t2),∆
jk
∗ (t1, u1),∆

ki
∗ (u2, s1)

)
= [∗, j − 1, j, k − 1, k][∗, k − 1, k̂j , i− 1, i][∗, i− 1, îk, j − 1, ĵk]

I
(
∆ij

∗ (s2, t1),∆
jk
∗ (t2, u2),∆

ki
∗ (u1, s1)

)
= [∗, j − 1, ĵi, k − 1, k̂i][∗, k − 1, k, i− 1, i][∗, i− 1, îk, j − 1, j]

I
(
∆ij

∗ (s1, t2),∆
jk
∗ (t1, u1),∆

ki
∗ (u2, s2)

)
= [∗, j − 1, j, k − 1, k][∗, k − 1, k̂j , i− 1, îj ][∗, i− 1, i, j − 1, ĵk]

I
(
∆ij

∗ (s1, t1),∆
jk
∗ (t2, u2),∆

ki
∗ (u1, s2)

)
= [∗, j − 1, ĵi, k − 1, k̂i][∗, k − 1, k, i− 1, îj ][∗, i− 1, i, j − 1, j]

I
(
∆ij

∗ (s2, t2),∆
jk
∗ (t1, u2),∆

ki
∗ (u1, s1)

)
= [∗, j − 1, j, k − 1, k̂i][∗, k − 1, k, i− 1, i][∗, i− 1, îk, j − 1, ĵk]

I
(
∆ij

∗ (s1, t2),∆
jk
∗ (t1, u2),∆

ki
∗ (u1, s2)

)
= [∗, j − 1, j, k − 1, k̂i][∗, k − 1, k, i− 1, îj ][∗, i− 1, i, j − 1, ĵk].
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Zi

Zj−1

Zj

Zk−1

Zk

Figure 8: A diagram with three double insertions. This would be a colour-dominant Class 2
diagram and would specifically correspond to the integral I

(
∆ij

∗ (s1, t2),∆
jk
∗ (t1, u2),∆

ki
∗ (u1, s2)

)
.

Zi−1

Zi

Zj−1 Zj

Zk−1

Zk

Zl−1Zl

Figure 9: A diagram with a triple-insertion on the twistor lineXi. In our language, this would be a
colour-dominant Class 1 diagram corresponding to the integral I

(
∆ij

∗ (s3, t),∆
ik
∗ (s2, u),∆

il
∗ (s1, v)

)
.

One triple insertion

Finally, we can have the case with a single triple insertion, with each propagator on the line with
a triple insertion running to a distinct twistor line. An example is depicted in Fig. 9. For such
diagrams we have

I
(
∆ij

∗ (s3, t),∆
ik
∗ (s2, u),∆

il
∗ (s1, v)

)
= [∗, i− 1, i, l − 1, l][∗, îl, k − 1, k][∗, i− 1, îk, j − 1, j] (3.74)

Cases which amount to permuting the orders of the insertions, i.e. permuting {s1, s2, s3}, are
generated by subjecting {j, k, l} to the same permutation that has been applied to {s1, s2, s3}.
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Figure 10: All integral topologies which enter into the N3MHV, connected contribution to the
tree-level correlator of two Wilson loops in the SU(N) theory. For each class of diagram, we must
account for all ways of choosing which twistor lines to involve in each Wilson loop, and moreover
all possibilities for re-ordering the multiple insertions of the propagators on any twistor lines with
a double or triple insertion.

Generating the correlator

All of the integrals which arise for N3MHV correlators are of one of the forms given above. To
generate W(3,0),conn

n1,n2 , one simply generates all diagrams (which amounts to all the possible choices
of three distinct propagators between non-adjacent lines, such that at least two cross from one
Wilson loop to the other, and accounting for the different possible orderings of propagators in
cases with multiple insertions on the same twistor line), dresses them with the appropriate powers
of 2 and N from the propagators and also the colour factor as spelled out in the above section,
and evaluates them using the above formulae. In practice this is a very straightforward process
to automate. In the ancillary files, we provide a Mathematica-readable expression for W(3,0),conn

n1,n2

for all 4 ≤ n1 ≤ n2 ≤ 6. All of the integral topologies which arise for W(3,0),conn
n1,n2 are shown in

Fig. 10.

3.4 Feynman rules in R-invariant form

While we have enumerated all of the integrals which arise in the case of tree-level N3MHV
computations, it is helpful to automate the evaluation of these integrals for the purpose of
higher MHV tree-level computations, and also the computation of loop integrands. Wilson loop
diagrams may be straightforwardly evaluated in terms of products of R-invariants by relating to
the dual MHV diagram, using a procedure spelled out in [38]. In particular, it was identified
in that reference that the momentum twistor space MHV diagrams of an n-gluon scattering
amplitude in planar N = 4 SYM are in one-to-one correspondence with the twistor diagrams of
an n-sided light-like Wilson loop correlator. The rule for a propagator in a Wilson loop diagram

29



is the same as the rule for the equivalent propagator in the corresponding MHV diagram of the
dual amplitude. For an MHV diagram and Wilson loop (colour-stripped) Feynman diagram with
a single propagator, we have the following correspondence [43],

xi

xj

i− 1 i

j j − 1

= = [∗, i− 1, i, j − 1, j] .

ZiZi−1

Zj Zj−1

Here Zi is the momentum twistor associated to the i-th external particle with momentum pi,
and, along with the (i− 1)-th external particle and the propagator, forms the external region xi.
For loop diagrams there will also be internal regions formed by internal propagators (see section
5.3 of [43] for more examples of dual diagrams). The rule for the general propagator separating
regions xi and xk in the following MHV diagram [43] is

xi xj

xkxl

= [∗, i− 1, îj, k − 1, k̂l] . (3.75)

where îj is as defined in 3.51. xi, xj, xk, xl may be internal regions (loop regions) or external

regions. If xi does not have an adjacent region in the clockwise direction, then îj is replaced by

i and if xk does not have an adjacent region in the clockwise direction, then k̂l is replaced by k.
[∗, i, j, k, l] is antisymmetric in the twistors, so [∗, i−1, îj, k−1, k̂l] is invariant under a reordering

of the pairs {i− 1, îj} and {k − 1, k̂l}.

Using the amplitude-Wilson loop duality (detailed in [42, 43]), this rule is equivalent to that
of the general propagator connecting the lines (i− 1 i) and (k− 1 k) in the following Wilson loop
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diagram,

Zl Zl−1 Zk Zk−1

ZiZi−1 ZjZj−1

. . .. . . . . .. . .

... ... ... ...

= [∗, i− 1, îj, k − 1, k̂l]

(3.76)

If (i − 1 i) is a line on a Wilson loop and there is no other propagator in the direction of i
on the line (i− 1 i), then îj is replaced by i and similarly, if (k − 1 k) is a line on a Wilson loop

and there is no other propagator in the direction of k on the line (k − 1 k), then k̂l is replaced
by k. If (i − 1 i) is a loop line (Lagrangian line), then there is cyclic symmetry in the ordering
of propagators on that line, so if there is no other propagator in the direction of i on the line
(i− 1 i), then j in îj is the twistor in (j − 1 j) which the next propagator in the cyclic ordering
of propagators attached to (i− 1 i) goes to.

Although the rule above originates from the amplitude-Wilson loop duality, which holds for
the expectation value of a single Wilson loop, the expression in (3.76) does not depend on the
Wilson loop which the lines are part of. Thus, this rule can be used to obtain the kinematic part
of diagrams appearing in our more general Wilson loop correlators involving multiple Wilson
loops.

As an illustrative example, consider the following diagram appearing in the one-loop, N2MHV
contribution to a pentagon-square correlator. By following the rules we have spelled out, its eval-
uation is given by
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Z1

Z2

Z3Z4

Z5

ZA ZB

Z9

Z6

Z8

Z7

= [∗, 5, 1, 3, 4][∗, 3, 4̂1, A, B̂9][∗, 3, 4̂B, 9, 6][∗, A, B̂4, 8, 9]

(3.77)

where (AB) is the Lagrangian line and so B − 1 = A.

In contrast to the computations presented in Appendix B, the expression for each diagram
obtained using (3.76) does not require one to manually integrate out the bosonic parts of the
delta functions in order to arrive at the simple, R-invariant form for the diagram. Using (3.76),
any Wilson loop correlator loop integrand/tree level expression (any number of Wilson loops,
number of sides, loop order, MHV degree) can be expressed in terms of a sum over products of
R-invariants (dressed with the appropriate colour factors).

4 Super Wilson loop correlators at order g2

4.1 Review for a single loop operator

We can also apply the twistor super Wilson loop formalism to the computation of g2 corrections
which, in the case of a single Wilson loop, can be related to MHV diagrams [41]. If we now
include the interactions from the second term in the action, including the MHV vertices we have
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Zi−1

Zi

Zj−1

Zj

(AB)

Figure 11: The single type of twistor diagram which contributes to the one-loop, MHV contri-
bution to a single Wilson loop. Here, (AB) is the Lagrangian line.

contribution to a single Wilson loop given by the sum over terms of the form

Dij =
4

N3
tr(ta1ta2) tr(tb1tb2)δa1b1δa2b2

g2N

π2
×∫

d4|8xAB

∫
ds

s

dt

t

du1du2

(u1 − u2)(u2 − u1)
∆ix

∗ (s, u1)∆
jx
∗ (t, u2). (4.1)

Diagrammatically, these contributions come from those diagrams where two propagators run
from the Lagrangian to two distinct lines of the Wilson loop, as shown in Fig. 11. Note that
an x in the superscript of a ∆∗ denotes that the correpsonding end of that propagator is on
the Lagrangian line. Note that we omit the factor of 1

2
which appears in the expansion of S2

(3.1) because we have two identical diagrams corresponding to interchanging u1 ↔ u2, which
diagrammatically means cycling through the order of field insertions on the Lagrangian line
XAB. In performing diagrammatic computations, we will simply omit the 1

n
factors but identify

diagrams differing by such cyclic permutations as indistinct.

Simplifying, the contribution Dij in (4.1) reduces to [38]

Dij = g2
(N2 − α)

N2

∫
d4|8xAB

π2

∫
ds

s

dt

t

du1du2

(u1 − u2)(u2 − u1)
∆ix

∗ (s, u1)∆
jx
∗ (t, u2)

= g2
(N2 − α)

N2
Kij , (4.2)

where we define the ‘Kermit’ diagram

Kij =

∫
d4|8xAB

π2

∫
ds

s

dt

t

du1du2

(u1 − u2)(u2 − u1)
∆ix

∗ (s, u1)∆
jx
∗ (t, u2)

=

∫
d4|8xAB

π2
[∗, i− 1, i, A,B′][∗, j − 1, j, A,B′′]. (4.3)
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This expression can be derived either by integrating out the support of the bosonic delta functions,
or using the ‘Feynman rules in R-invariant form’ outlined in Section 3.4.

In the expression (4.3) we have

Z ′
B = ZA⟨B ∗ j − 1 j⟩ − ZB⟨A ∗ j − 1 j⟩ ,

Z ′′
B = ZA⟨B ∗ i− 1 i⟩ − ZB⟨A ∗ i− 1 i⟩ , (4.4)

We can write each contribution after performing the fermionic integration as

Kij = −
∫

d4xAB

π2

(⟨∗ i− 1 i [A⟩⟨B] j − 1 j ∗⟩)2

⟨AB i− 1 i⟩⟨AB j − 1 j⟩⟨AB i− 1 ∗⟩⟨AB i ∗⟩⟨AB j − 1 ∗⟩⟨AB j ∗⟩
. (4.5)

Each contribution Kij exhibits spurious poles involving the reference twistor Z∗ but these
cancel in the sum over i, j. One way to make this explicit is to rewrite the full expression at
the level of the integrand (i.e. before performing any integration over xAB) in terms of chiral
pentagon integrals [8],

W(0,1)
n =

N2 − α

N2

∑
i<j

Kij = −N2 − α

N2

∑
i<j

PX
ij . (4.6)

The chiral pentagon integral PX
ij is given by

PX
ij =

∫
d4xAB

π2

⟨AB ī j̄⟩⟨i j X⟩
⟨i− 1 i AB⟩⟨i i+ 1AB⟩⟨j − 1 j AB⟩⟨j j + 1AB⟩⟨ABX⟩

. (4.7)

Here X is an auxiliary spacetime point (or twistor line). The equivalence of the Kermit and
pentagon expressions shows that the final answer depends on neither the reference twistor Z∗ nor
the auxiliary point X.

The expression (4.6) is formal in the sense that the remaining integral over xAB is divergent.
In the case of the pentagon expression this can be seen to be the case when i = j − 1. Such
divergences are expected since this result of the twistor Wilson loop calculation should reproduce
the result at order g2 presented in Sec. 2 and described in detail in Appendix A.2 for the bosonic
(non-supersymmetric) Wilson loop operators.

In the Abelian case exponentiation still occurs, and the tree-level NMHV and order g2 MHV
results can be combined to give the full Abelian result for the super Wilson loop,

⟨L(C)⟩ = Wn = exp

{∑
i<j

[
g2Kij + [∗, i− 1, i, j − 1, j]

]}
, G = U(1) . (4.8)
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We can identify the Kermit contribution with the regularised contribution from the spacetime for-
mulation of the Abelian Wilson loop, responsible for the exponentiated divergent and anomalous
conformal finite factors Di and Fn,

exp

{∑
i<j

g2Kij

}
=

[∏
i

Di

]
Fn . (4.9)

The remaining conformally invariant factor for G = U(1) is then simply given by (3.31),

Rn = exp

{∑
i<j

[∗, i− 1, i, j − 1, j]

}
= expR(1,0)

n =
n−4∑
k=0

1

k!

[∑
i<j

[∗, i− 1, i, j − 1, j]

]k
(4.10)

and we see that it is independent of g. At degree 4k in the Grassmann variables we have

R(k,0)
n =

1

k!

[∑
i<j

[∗, i− 1, i, j − 1, j]

]k
=

1

k!

(
R(1,0)

n

)k
. (4.11)

4.2 Multiple loop operators

Generalising to the correlators of multiple Wilson loops, the simplest one-loop case is the MHV
correlator of two Wilson loops where we can compute the connected part. We obtain a sum over
diagrams very similar to (4.1). The diagram is the same as the one shown in Fig. 11, except that
the edges i and j are now interpreted as parts of different loops. The resulting diagram differs
only in the colour structure,

D̃ij =
4

N4
tr(ta1) tr(ta2) tr(tb1tb2)δa1b1δa2b2

g2N

π2
×∫

d4|8xAB

∫
ds

s

dt

t

du1du2

(u1 − u2)(u2 − u1)
∆ix

∗ (s, u1)∆
jx
∗ (t, u2). (4.12)

The colour factor vanishes for the SU(N) theory. For the U(N) theory, the expression thus
obtained is again a sum over Kermit diagrams,

D̃ij =
g2

N2
Kij . (4.13)

Summing over diagrams we then have

W(0,1),conn
n1,n2

=
1

N2

∑
i,j

Kij , (4.14)

where now i runs over the indices of the first Wilson loop and j runs over the indices of the
second Wilson loop.
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Note that, as is the case a for a single Wilson loop, only the first two factors in the de-
nominator of the Kermit expression are physical poles. The remaining four factors are spurious
poles which must cancel in the sum over terms (which must also be independent of the reference
twistor Z∗). For example, if we consider the sum of two terms Ki,j +Ki+1,j we find after ignoring
some common factors and the prefactor of π2,

− (⟨∗ i− 1 i [A⟩⟨B] j − 1 j ∗⟩)2

⟨AB i− 1 i⟩⟨AB i− 1 ∗⟩⟨AB i ∗⟩
− (⟨∗ i i+ 1 [A⟩⟨B] j − 1 j ∗⟩)2

⟨AB i i+ 1⟩⟨AB i ∗⟩⟨AB i+ 1 ∗⟩
. (4.15)

Combining denominators we find a numerator of the form

num = −(⟨∗ i− 1 i [A⟩⟨B] j − 1 j ∗⟩)2⟨AB i i+ 1⟩⟨AB i+ 1 ∗⟩
−(⟨∗ i i+ 1 [A⟩⟨B] j − 1 j ∗⟩)2⟨AB i− 1 i⟩⟨AB i− 1 ∗⟩ . (4.16)

If we now consider Zi, ZA, ZB, Z∗ to be coplanar we may write

Zi = Z∗ + αZA + βZB (4.17)

We then find

num = (β⟨∗ i− 1BA⟩⟨B j − 1 j ∗⟩ − α⟨∗ i− 1AB⟩⟨Aj − 1 j ∗⟩)2⟨AB ∗ i+ 1⟩2

−(β⟨∗B i+ 1A⟩⟨B j − 1 j ∗⟩ − α⟨∗A i+ 1B⟩⟨Aj − 1 j ∗⟩)2⟨AB i− 1 ∗⟩2 , (4.18)

which vanishes identically. We therefore see that the pole at ⟨i AB ∗⟩ = 0 is absent in the sum
of the two terms. This is sufficient to show that all such spurious poles in the Kermit expression
cancel in the sum over i and j. The resulting sum therefore has only the local poles of the form
⟨AB i − 1 i⟩ and ⟨AB j − 1 j⟩. The argument above shows that by using Plücker relations on
the minors one can cancel the spurious poles and obtain an expression which manifestly has only
local poles. Since the reference twistor cannot appear in the denominator of such an expression,
it also cannot appear in the numerator, and hence the sum over diagrams Kij above is also
correctly independent of Z∗.

Just as for the case of a single loop operator, the expression for the integrand obtained above
is equal to a purely local expression in terms of chiral pentagon integrands [8].

Each of the chiral pentagons has unit residue on a single physical quad-cut

⟨ABi− 1 i⟩ = ⟨ABj − 1 j⟩ = ⟨ABi i+ 1⟩ = ⟨ABj j + 1⟩ = 0 , (4.19)

which should therefore match the residue on the same singularity from the sum of the four Kermit
diagramsKi,j+Ki+1,j+Ki,j+1+Ki+1,j+1. Indeed it is straightforward to check that the associated
residue for that sum is −1 and thus we conclude that indeed

− 1

N2

∑
i,j

PX
ij (4.20)
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has all the right physical poles to match the expression (4.14). We still need to show that it
does not depend on the choice of X. We may make use of the explicit expression for the finite
pentagon integral [8],

PX
ij = log u log v + Li2(1− u) + Li2(1− v) + Li2(1− w)− Li2(1− uw)− Li2(1− vw) , (4.21)

where

u = ⟨X i−1 i⟩⟨i i+1 j j+1⟩
⟨X i i+1⟩⟨i−1 i j j+1⟩ , v = ⟨X j j+1⟩⟨i−1 i j−1 j⟩

⟨Xj−1 j⟩⟨i−1 i j j+1⟩ , w = ⟨i−1 i j j+1⟩⟨i i+1 j−1 j⟩
⟨i−1 i j−1 j⟩⟨i i+1 j j+1⟩ . (4.22)

Taking the total derivative we have

dPX
ij = log u[d log v − d log(1− u) + d log(1− uw)]

+ log v[d log u− d log(1− v) + d log(1− vw)]

+ logw[d log(1− uw) + d log(1− vw)]

= log u d log
v(1− uw)

1− u
+ log v d log

u(1− vw)

1− v
+ logw d log[(1− uw)(1− vw)] (4.23)

Note that

uw =
⟨X i− 1 i⟩⟨i i+ 1 j − 1 j⟩
⟨X i i+ 1⟩⟨i− 1 i j − 1 j⟩

= u|j→j−1

vw =
⟨X j j + 1⟩⟨i i+ 1 j − 1 j⟩
⟨Xj − 1 j⟩⟨i i+ 1 j j + 1⟩

= v|i→i+1 (4.24)

Thus the second and fifth terms in (4.21) cancel in the sum over j while the third and sixth
terms cancel in the sum over i. The fourth term is independent of X and can be written as

Li2(1− w) = Li2(1− 1/vij) = −1

2
(log vij)

2 − Li2(1− vij) . (4.25)

The first term in (4.21) can be written[
log⟨X i− 1 i⟩+ log⟨i i+ 1 j j + 1⟩ − log⟨X i i+ 1⟩ − log⟨i− 1 i j j + 1⟩

]
×
[
log⟨X j j + 1⟩+ log⟨i− 1 i j − 1 j⟩ − log⟨Xj − 1 j⟩ − log⟨i− 1 i j j + 1⟩

]
. (4.26)

All terms involving X cancel in the sums over i or j and we see that the expression (4.20) is
indeed independent of X. We can write the resulting expression as

W(0,1),conn
n1,n2

=
1

N2

∑
i,j

Kij = − 1

N2

∑
i,j

PX
ij , (4.27)

= − 1

N2

∑
i,j

[
1

2
(log vij)

2 − Li2(1− vij) + log
⟨i i+ 1 j j + 1⟩
⟨i− 1 i j j + 1⟩

log
⟨i− 1 i j − 1 j⟩
⟨i− 1 i j j + 1⟩

]
,
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which is conformally invariant but not manifestly homogeneous. Alternatively, choosing X as
the infinity bitwistor, we can write it as

W(0,1),conn
n1,n2

= − 1

N2

∑
i,j

[
1

2
(log vij)

2 − Li2(1− vij) + log
x2
i+1,j+1

x2
i,j+1

log
x2
ij

x2
i,j+1

]
. (4.28)

If we now eliminate x2
ij in favour of vij and xkl with k > i or l > j for i ≤ n1 − 1 and j ≤ n2 − 1,

all remaining xkl cancel and we are left with a manifestly conformally invariant expression which
agrees exactly with the expression (2.21) for fn1,n2 ,

−
∑
i,j

PX
ij = fn1,n2 . (4.29)

Hence we have

W(0,1),conn
n1,n2

=
1

N2
fn1,n2 , (4.30)

exactly as it should be, since the twistor calculation at Grassmann degree zero (MHV level)
should match the purely spacetime calculation presented in Sec. 2 in eq. (2.16). We remind the
reader that both (2.16) and (4.30) are for the U(N) theory, while the corresponding quantities
both vanish for the SU(N) theory.

If we consider the Abelian theory and look at the correlator of multiple loop operators we
again expect an exponentiation of the form

⟨L(C1) . . .L(Cm)⟩ = Wn1,...,nm = exp

{∑
r

∑
ir<jr

[
g2Kirjr + [∗r, ir − 1, ir, jr − 1, jr]

]
+
∑
r<s

∑
ir,js

[
g2Kirjs + [∗rs, ir − 1, ir, js − 1, js]

]}
. (4.31)

The first line here is a product over the expression (4.8) for each individual loop operator. The
second line accounts for the connected parts. We have used the notation ∗r and ∗rs for the
reference twistor here since each part is gauge invariant individually and so one can choose
different reference twistors for each part if wanted.

As above, the first term in the first line in (4.31) accounts for the divergent and anomalous
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conformal factorsDir and Fnr in (3.2). Therefore we have for the conformally invariant remainder,

Rn1,...,nm = exp

{∑
r

∑
ir<jr

[∗r, ir − 1, ir, jr − 1, jr]

+
∑
r<s

∑
ir,js

[
g2Kirjs + [∗rs, ir − 1, ir, js − 1, js]

]}
= exp

{∑
r

∑
ir<jr

[∗r, ir − 1, ir, jr − 1, jr]

+
∑
r<s

[
g2fnr,ns +

∑
ir,js

[∗rs, ir − 1, ir, js − 1, js]
]}

. (4.32)

Let us note that, as already discussed for the spacetime calculation in Section 2.2, the one-
loop Abelian MHV result fn1,n2 supplies the basic ingredient for the first non-zero contributions
in the SU(N) theory. For instance, we depict the leading contributions for two Wilson loops
at MHV (O(g4)) in Fig. 12; diagrammatically, it is clear from the twistor diagrams that (after
computing the correct colour factors)

W(0,2),conn
n1,n2

=
NCF

N4
(fn1,n2)

2 (4.33)

exactly as we deduced in the case of the space-time calculation in Section 2.2, because each
relevant twistor diagram is essentially the product of two of the one-loop diagrams which enter
into fn1,n2 .

We can apply similar logic beyond the MHV case, e.g. noting that the leading order contri-
bution in the SU(N) theory for two Wilson loops (for which we depict the diagrams in Fig. 13)
is given by

W(1,1),conn
n1,n2

=
2NCF

N4
fn1,n2

∑
i,j

[∗, i− 1, i, j − 1, j]. (4.34)

Note that the sum is nothing more than the Abelian NMHV tree-level result for the connected
part of the correlator of two Wilson loops.

Finally we have the connected tree-level contribution at N2MHV level quoted in (3.57) which
we repeat here in the case of the SU(N) theory,

W(2,0),conn
n1,n2

=
NCF

N4

(∑
i,j

[∗, i− 1, i, j − 1, j]
)2

. (4.35)
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Zi−1

Zi

(AB)

Zj−1

Zj

Zi1−1

Zi1

Zi2−1

Zi2

(A1B1)

(A2B2)

Zj1−1

Zj1

Zj2−1

Zj2

Figure 12: On the left, we depict the type of diagram which supplies the leading order in
contribution in g, for the correlator of two Wilson loops computed in the SU(N) theory and for
the MHV sector. By comparison with the diagram on the right which depicts the diagram entering
into the U(N) (including Abelian) case, it is clear that (up to colour factors) we essentially have
the square of the O(g2) Abelian, MHV result.

Zi1−1

Zi1

Zi2−1

Zi2

(AB)

Zj1−1

Zj1

Zj2−1

Zj2

Figure 13: The type of diagram which contributes for NMHV at leading order (O(g2)) in the
SU(N) theory for the correlator of two Wilson loops.
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We see that the three contributions (4.33), (4.34) and (4.35) to Wconn
n1,n2

can be packaged
together into a perfect square,

NCF

N4

(
g2fn1,n2 +

∑
i,j

[∗, i− 1, i, j − 1, j]
)2

. (4.36)

The object in parentheses is the sum of the Abelian MHV order g2 and NMHV tree-level results.
Indeed, the combination

g2Kij + [∗, i− 1, i, j − 1, j] (4.37)

which, when summed over i and i, produces the combined Abelian result, can be thought of
as a combined propagator which includes the standard twistor propagator together with the
two-insertion vertex from the non self-dual interaction Lagrangian in S2.

5 Q̄ equation:

Just as for a single Wilson loop [46, 47], there should be an equation relating the action of the
operator

Q̄A′

A =
∑
i

χA′

i

∂

∂ZA
i

(5.1)

to the integral over a correlator of Wilson loops with an additional point inserted on each edge
of each loop. The equation should be a generalisation of the equation for a single Wilson loop
presented in [46] which reads,

Q̄A′

A R(k)
n =

1

4
Γcusp

∫
[d2|3Zn+1]

A′

A

[
R(k+1)

n+1 −R(k)
n R(1,0)

n+1

]
+ cyc . (5.2)

This equation has been extensively tested and used to calculate new results in the planar limit,
with particular focus on the relevance to planar scattering amplitudes (see e.g. [46, 71, 72, 73]).
The natural generalisation of (5.2) equation for correlators of m light-like loop operators would
be

Q̄A′

A R(k)
n1,...,nm

=
1

4
Γcusp

∑
r

[∫ [
d2|3Znr+1

]A′

A

[
R(k+1)

n1,...,nr+1,...,nm
−R(k)

n1,...,nm
R(1,0)

nr+1

]
+ cycr

]
. (5.3)

Here, as for the Q̄ equation for a single Wilson loop, we define the integration measure as∫
d2|3Znr+1 = C(nr − 1nr1r)a

∮
ϵ=0

ϵdϵ

∫ ∞

0

dτ(d3χnr+1)
A (5.4)

where by 1r we mean the first twistor on loop Cr i.e. the twistor which follows nr in the cyclic
ordering.
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As in the case of a single Wilson loop, since at each order in g2 the Q̄ equation relates (for the
SU(N) theory) the Q̄ of the l-loop NkMHV result to a collinear integral of the l−1-loop Nk+1MHV
result, this equation should in principle provide a useful means for obtaining results at high order
in powers of g2. While we leave a more detailed exploration of this point to forthcoming work,
let us now verify the Q̄ equation (5.3) in the simple case of the Abelian theory.

5.1 Q̄ equation in the Abelian case

5.1.1 Review for a single Wilson loop

We can consider the Q̄ equation in the Abelian case. The equation for a single Wilson loop reads
(note that as Γcusp = 4g2 in the Abelian theory, the factor of 1

4
Γcusp is simply g2)

Q̄A′

A R(k)
n = g2

∫
[d2|3Zn+1]

A′

A

[
R(k+1)

n+1 −R(k)
n R(1,0)

n+1

]
+ cyc . (5.5)

Note that the LHS is manifestly zero since Q̄ annihilates each R-invariant (upon setting the
reference twistor to e.g. Z1).

As we have just seen, in the Abelian case we have R(1,0)
n+1 = R(1)

n+1. Furthermore we may
exploit the independence on the reference supertwistor Z∗ to write (setting Z∗ = Z1)

R(1)
n+1 =

n+1∑
i>j

[∗, i− 1, i, j − 1, j]

=
n∑

i<j

[1, i− 1, i, j − 1, j] +
n−1∑
i=3

[1, i− 1, i, n, n+ 1] = R(1)
n +Xn+1 , (5.6)

where the final step defines Xn+1 as the second term in the penultimate expression. It follows

that if we write the integrand on the RHS of the Q̄ equation in terms of R(1)
n and Xn+1, the term

linear in Xn+1 precisely cancels,

R(k+1)
n+1 −R(k)

n R(1)
n+1 =

[
1

(k + 1)!
− 1

k!

](
R(1)

n

)k+1
+

1

2(k − 1)!
X2

n+1

(
R(1)

n

)k−1
+O(X3

n+1) . (5.7)

Now we recall that the measure of integration on the RHS of (5.5) contains an integral [d0|3χn+1]
A′

and the factor ϵdϵ with instruction to keep the residue of the simple pole 1/ϵ. The first term in the
expansion (5.7) then integrates to zero as it does not depend on χn+1 at all. Poles in ϵ can only
arise from vanishing denominator factors in the R-invariants in Xn+1. Each such R-invariant has
three denominator factors which vanish linearly as ϵ is taken to zero. However each of the four
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Grassmann odd factors from the delta function in the numerator vanishes linearly. The threefold
Grassmann integral removes three of these zeros. Accounting for the factor of ϵ from the measure
we find that terms linear in Xn+1 would indeed have a residue upon integration. However, terms
with higher powers of Xn+1 have no residue. Since the linear terms in Xn+1 cancelled in (5.7), we
find the whole of the expression on the RHS of (5.5) integrates to zero, matching the vanishing
of the LHS.

More compactly, we can consider the Q̄ equation obtained by summing over k on both sides,

Q̄A′

A Rn = g2
∫

[d2|3Zn+1]
A′

A

[
Rn+1 −RnR(1),tree

n+1

]
+ cyc . (5.8)

The integrand on the RHS of (5.8) simplifies as follows

Rn+1 −RnR(1),tree
n+1 = exp

{
R(1)

n+1

}
− exp

{
R(1)

n

}
R(1)

n+1

= exp
{
R(1)

n +Xn+1

}
− exp

{
R(1)

n

}[
R(1)

n +Xn+1

]
= exp

{
R(1)

n

}[
exp

{
Xn+1

}
−Xn+1 −R(1)

n

]
. (5.9)

Again we see that the terms linear in Xn+1 have cancelled and we may repeat the argument as
above for the vanishing of the integral.

5.1.2 Multiple Wilson loops

If we consider the contribution to a correlator of multiple loop operators we have the exponentia-
tion given in (4.32). The Q̄ equation we wish to understand is as follows (again written summing
over all Grassmann degrees and noting that Γcusp = 4g2 in the Abelian theory),

Q̄A′

A Rn1,...,nm = g2
∑
r

[∫ [
d2|3Znr+1

]A′

A

[
Rn1,...,nr+1,...,nm −Rn1,...,nmR

(1,0)
nr+1

]
+ cycr

]
. (5.10)

Recall that in the Abelian case we have R(1,0)
nr+1 = R(1)

nr+1 and that Rn1,...,nm is given in eq. (4.32).
The LHS of (5.10) is given by

Q̄A′

A Rn1,...,nm = g2Rn1,...,nm

∑
r>s

Q̄A′

A fnrns , (5.11)

with

Q̄A′

A fnrns =

{nr,ns}∑
{i,j}

log
x2
ijx

2
i+1,j+1

x2
i,j+1x

2
i+1,j

Q̄A′

A log
[
⟨i− 1 i i+ 1j⟩⟨i j − 1 j j + 1⟩

]
, (5.12)
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which follows from (A.43). Now let us note that we can write (choosing Z∗r = Z∗rs = Z1r in eq.
(4.32)),

Rn1,...,nr+1,...,nm = Rn1,...,nmexp

{
Xnr+1 + g2fϵ +

∑
s̸=r

X̃s,nr+1

}
(5.13)

where
X̃s,nr+1 =

∑
is

[1r, is − 1, is, nr, nr + 1] , fϵ ≡
∑
s̸=r

(fnr+1,ns − fnrns) . (5.14)

Note that the collinear limit of fnr+1,ns is smooth and hence we have fϵ = O(ϵ).

By a similar argument to the one above for a single Abelian Wilson loop, the only terms
which can contribute to the integral on the RHS of (5.10) are those which are linear in X or
X̃. The term linear in X again cancels between the two terms in the integrand, leaving only
the term linear in X̃. The term fϵ never contributes since it is higher order in ϵ. Thus the Q̄
equation holds if ∑

r<s

Q̄A′

A fnrns =
∑
r

[∫
[d2|3Znr+1]

A′

A

∑
s̸=r

X̃s,nr+1 + cycr

]
. (5.15)

The integral is over R-invariants of the form [1r, is − 1, is, nr, nr + 1]. The result of integrating
such R-invariants is given in [46]. We have∫

[d2|3Znr+1]
A′

A [1r, is − 1, is, nr, nr + 1] =

∫
d log

⟨Xis − 1is⟩
⟨X1r2r⟩

Q̄A′

A log
⟨n̄r is⟩

⟨n̄r is − 1⟩
, (5.16)

where

X(τ) = Znr ∧ (Znr−1 − CτZ1r), C =
⟨nr − 1nr 2r 3r⟩
⟨nr 1r 2r 3r⟩

. (5.17)

In total for the RHS of (5.15) we have∑
r,s
r ̸=s

∑
jr,is

log
⟨jr − 1 jr jr + 2 jr + 3⟩⟨jr jr + 1 is − 1 is⟩
⟨jr jr + 1 jr + 2 jr + 3⟩⟨jr − 1 jr is − 1 is⟩

Q̄A′

A log
⟨jr − 1 jr jr + 1 is⟩

⟨jr − 1 jr jr + 1 is − 1⟩

=
∑
r,s
r ̸=s

∑
jr,is

log
⟨jr jr + 1 is − 1 is⟩⟨jr − 1 jr is is + 1⟩
⟨jr − 1 jr is − 1 is⟩⟨jr jr + 1 is is + 1⟩

Q̄A′

A log⟨jr − 1 jr jr + 1 is⟩

=
∑
r,s
r ̸=s

∑
jr,is

log
x2
jr+1,isx

2
jr,is+1

x2
jr,is

x2
jr+1,is+1

Q̄A′

A log⟨jr − 1 jr jr + 1 is⟩

=
∑
r<s

∑
jr,is

log
x2
jr+1,isx

2
jr,is+1

x2
jr,is

x2
jr+1,is+1

Q̄A′

A log
[
⟨jr − 1 jr jr + 1 is⟩⟨is − 1 is is + 1 jr⟩

]
, (5.18)

which precisely matches the LHS of (5.15) upon making use of (5.12).
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Note that, by having proved the validity of the Q̄ equation in the Abelian theory, we have
also proved the validity at MHV and leading order in g in the SU(N) theory, as a consequence
of the analysis presented in Section 2.2. Specifically, the equations (5.2) and (5.3) together can
be used to write an equation for the connected part of the correlator of multiple loop operators.
We then have

Q̄A′

A R(k),conn
n1,n2

=
1

4
Γcusp

[∫ [
d2|3Zn1+1

]A′

A

[
R(k+1),conn

n1+1,n2
−R(k),conn

n1,n2
R(1,0)

nr+1

]
+ cyc1

]
+ (n1 ↔ n2) . (5.19)

Taking the large N limit, we can see that this equation is compatible with the results combined
in (4.36). The steps essentially follow the analysis of the Abelian case presented above. We will
present more sophisticated checks in the SU(N) theory in forthcoming work.

6 Conclusion

The correlators of multiple light-like Wilson loop provide a rich class of observable to explore.
Although these are kinematically complicated objects, we have demonstrated that in simple cases
the calculations are tractable. We have also verified that the symmetry properties of individual
Wilson loops carry over to the correlators of multiple loop operators in the form of the Q̄ equation.

Having introduced these objects and the basic tools for their computation, we will turn in a
series of forthcoming papers to the study of the properties and mathematical structure enjoyed
by these objects. Firstly, the story of holomorphic linking presented in [74] generalises very
naturally to more general nodal curves, including the case of multiple Wilson loops, and by
following the same procedure as in that reference we are able to derive a version of the BCFW
recursion relation (for tree level contributions and also for loop integrands) for multiple Wilson
loops. This generalised BCFW equation, its derivation, and the verification of the equation in
simple cases, will appear in forthcoming work.

The study of O(g2) correlators in the SU(N) theory also warrants further exploration. It is
straightforward to write down loop-level integrands in the twistor Wilson loop formulation by
using the Feynman rules we have outlined here, and by probing the leading singularities of these
integrands it should be possible to use the chiral box expansion [75] for one-loop local integrands
in order to perform the loop integration and arrive at integrated answers. In work to appear,
we carry out these calculations for loop-level correlators of multiple Wilson loop and use the
integrated answers to perform more sophisticated checks on the Q̄-equation in the SU(N) theory.
We will also show that the O(g2) leading singularities may be expressed quite generally in terms
of tree-level objects, as is the case for a single Wilson loop.
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There are a range of other exciting questions to ask about these objects which we have only
begun to explore. For instance, in the case of the expectation value of a single Wilson loop there
is a Grassmannian integral which generates the tree-level answer as well as leading singularities
[76, 77, 78]; to what extent can this integral be modified to generalise to our case here? An
answer in the affirmative may hint at some version of Yangian-type symmetry for these objects
[79, 80, 81] and might plausibly lead to a generalisation of the amplituhedron [29] to the case of
correlators of multiple loop operators.

The Q̄-equation which we have presented here should provide a useful tool for calculating
correlators at higher loop orders, and it would be fascinating to follow the procedure used in [73]
to e.g. integrate up from N2MHV one-loop expression to an MHV three-loop expression. There
are many interesting questions to ask about the analytic structure of such objects, such as their
symbol alphabets, and whether there any interesting constraint on the consecutive branch cuts
such as Steinmann-like relations [11] or a link to cluster algebras [10, 12].
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A Perturbative Wilson loop computations

Here we set out our conventions and collect some standard textbook facts about Wilson loops in
(super) Yang-Mills theory. We then briefly recap some known results on expectation values of a
single light-like loop.

A.1 Preliminaries

We consider four-dimensional N = 4 super Yang-Mills theory with gauge group G. The theory
has the action

S =
1

g2YM

∫
d4x

[
−1

2
trF µνFµν + . . .

]
, (A.1)

where we have omitted the fermionic and scalar fields. The gauge connection Aµ = Aa
µt

a has
curvature Fµν = F a

µνt
a with F a

µν = ∂µA
a
ν − ∂νA

a
µ + fabcAb

µA
c
ν . The ta are the generators of the

gauge group in some representation and obey

tr(tatb) =
1

2
δab , [ta, tb] = ifabctc . (A.2)

Note that we have normalised the fields so that the Yang-Mills coupling only appears as a
prefactor of 1/g2YM in front of the action. Here we are mostly interested in the case of G = SU(N),
but it is also instructive to consider G = U(N) and in particular the Abelian case G = U(1), in
which case the theory is really a free theory although we will not rescale the field to remove gYM.

Recall that a Wilson line operator between two points x0 and x can be defined via a path-
ordered exponential. We define a curve from x0 to x1 via a map xµ : [0, 1] → R1,3 with x(0) = x0

and x(1) = x1. We then have

U(x1, x0, A) = P exp i

∫ x1

x0

A

= 11 + i

∫ 1

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

)
−
∫ 1

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

) ∫ t1

0

dt2ẋ
ν(t2)Aν

(
x(t2)

)
+ . . .

Recall that under a gauge transformation V (x) ∈ SU(N) we have

Aµ(x) 7→ AV
µ (x) = V (x)

[
Aµ(x) + i∂µ

]
V †(x) . (A.3)

If we then consider U(x(s), x0, A), we should consider a reparametrisation x̃ of the curve described
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by a map t : [0, 1] → [0, s] (with t(0) = 0 and t(1) = s) such that x̃(t̃) = x(t(t̃)). Then

U(x(s), x0, A) = 11 + i

∫ 1

0

dt̃1 ˙̃x
µ(t̃1)Aµ

(
x̃(t̃1)

)
−

∫ 1

0

dt̃1 ˙̃x
µ(t̃1)Aµ

(
x̃(t̃1)

) ∫ t̃1

0

dt̃2 ˙̃x
ν(t̃2)Aν

(
x̃(t̃2)

)
+ . . .

= 11 + i

∫ s

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

)
−
∫ s

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

) ∫ t1

0

dt2ẋ
ν(t2)Aν

(
x(t2)

)
+ . . . .

We then find
d

ds
U(x(s), x0, A) = iẋµ(s)Aµ(x(s))U(x(s), x0, A) (A.4)

and hence [
∂µ − iAµ(x)

]
U(x, x0, A) = 0 . (A.5)

Now consider V (x)U(x, x0, A)V (x0)
†. We have[

∂µ − iAV
µ (x)

][
V (x)U(x, x0, A)V (x0)

†]
=

[
∂µ − iV (x)

[
Aµ(x) + i∂µ

]
V †(x)

][
V (x)U(x, x0, A)V (x0)

†]
=∂µV (x)U(x, x0, A)V (x0)

† + V (x)
[
∂µ − iAµ(x)

]
U(x, x0, A)V (x0)

†

+ V (x)∂µV (x)†V (x)U(x, x0, A)V (x0)
† . (A.6)

The first and third terms cancel while the second vanishes due to (A.5). On the other hand,
simply rewriting (A.5) we know that[

∂µ − iAV
µ (x)

]
U(x, x0, A

V ) = 0 . (A.7)

Thus we find
U(x, x0, A

V ) = V (x)U(x, x0, A)V (x0)
† (A.8)

since both sides obey the same first order differential equation with same boundary condition,

U(x0, x0, A
V ) = V (x0)U(x0, x0, A)V (x0)

† = 11 . (A.9)

It follows that if we take a closed loop C and then take the trace, the resulting loop operator,

L(C) =
1

N
trP exp i

∮
C

A , (A.10)

is gauge invariant. The analysis holds for any gauge group and choice of representation, but
here we are interested in G = SU(N) or G = U(N) and the trace taken in the fundamental
representation, hence our normalisation so that L(C) = 1 + . . ..

Let us remind ourselves how to expand the Wilson loop operator to perform perturbative
computations. We parametrise the curve C via a map xµ : [0, 1] → R1,3 (with xµ(0) = xµ(1) for
a closed loop),

L(C) =
1

N
tr

[
11 + i

∫ 1

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

)
−
∫ 1

0

dt1ẋ
µ(t1)Aµ

(
x(t1)

) ∫ t1

0

dt2ẋ
ν(t2)Aν

(
x(t2)

)
+ . . .

]
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If we compute the expectation value of this operator we find the term linear in A gives nothing
as there is nothing to contract with the field. The remaining powers in A all contribute however,

⟨L(C)⟩ = 1− 1

N

∫
t1>t2

ẋµ
1 ẋ

ν
2

[
G1,2

µν,ab tr(tatb) + . . .
]

− i

N

∫
t1>t2>t3

ẋµ
1 ẋ

ν
2ẋ

ρ
3

[
V 1,2,3
µνρ,abc tr(tatbtc) + . . .

]
+

1

N

∫
t1>t2>t3>t4

ẋµ
1 ẋ

ν
2ẋ

ρ
3ẋ

σ
4

[[
G1,2

µν,abG
3,4
ρσ,cd +G1,3

µρ,acG
2,4
νσ,bd +G1,4

µσ,adG
2,3
νρ,bc

]
tr(tatbtctd) + . . .

]
+ . . . . (A.11)

In perturbation theory the diagrams typically exhibit UV divergences. Here we employ dimen-
sional regularisation with d = 4− 2ϵ with the Green’s function and vertex given by

Gi,j
µν,ab = −g2YM

4π2
ηµνδab

(πµ̃2)ϵΓ(1− ϵ)

[−(xi − xj)2 + iε](1−ϵ)
,

V i,j,k
µνρ,abc =

1

g2YM

fa′b′c′µ̃
−2ϵ

∫
d4−2ϵx0Dijk

µ′ν′ρ′ [G
i,0
µµ′,aa′G

j,0
νν′,bb′G

k,0
ρρ′,cc′ ] ,

Dijk
µνρ = ηµν(∂iρ − ∂jρ) + ηνρ(∂jν − ∂kν) + ηρµ(∂kµ − ∂iµ) . (A.12)

In (A.11) we have written the leading contributions in gYM to each power in A appearing in
the path-ordered exponential up to A4. Higher order terms in gYM will come from the various
interaction vertices in the Lagrangian, including the coupling of the Yang-Mills field to the matter
content of the theory.

The colour factors from the various terms can be deduced from the relations

[ta, tb] = ifabctc , (ta)
j
i (ta)

l
k =

1

2

(
δliδ

j
k −

α

N
δji δ

l
k

)
,

tatbta =
1

2

(
tr(tb)11−

α

N
tb

)
, tr(ta) tr(ta) =

N

2
(1− α) , (A.13)

where α = 1 for G = SU(N) and α = 0 for G = U(N). The various terms in (A.11) are then as
follows,

δab tr(tatb) =
1

2
δabδab =

1

2
(N2 − α) ≡ NCF ,

δabδcd tr(tatbtctd) =
1

4N
(N2 − α)2

δacδbd tr(tatbtctd) =
1

4N
(N2 − 2αN2 + α2)

δadδbc tr(tatbtctd) =
1

4N
(N2 − α)2

ifabc tr(tatbtc) = tr(tatb[ta, tb]) = −1

4
N(N2 − 1) . (A.14)
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Note that the third term above (which contributes to the crossed diagram) is suppressed with
respect to the second and the fourth at large N .

In the Abelian theory only even powers of A contribute as we only have free propagators
to use to contract the field insertions. Note we have a single generator t but we will keep our
convention that tr(tt) = CF = 1

2
. In the Abelian case we therefore find

⟨L(C)⟩ = 1− 1

2

∫ 1

0

dt1

∫ t1

0

dt2 ẋ
µ
1 ẋ

ν
2 G

1,2
µν

+
1

4

∫ 1

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 ẋ
µ
1 ẋ

ν
2ẋ

ρ
3ẋ

σ
4

[
G1,2

µνG
3,4
ρσ +G1,3

µρG
2,4
νσ +G1,4

µσG
2,3
νρ

]
+ . . .

(A.15)

with the Green’s function Gij
µν given by the first line of (A.12) with the factor of δab removed.

The combinatorics of the expansion rearrange the series into the form

⟨L(C)⟩ = exp

{
−1

2

∫ 1

0

dt1

∫ t1

0

dt2 ẋ
µ
1 ẋ

ν
2 G

1,2
µν

}
≡ exp

{
−1

2

∫
t1>t2

ẋµ
1 ẋ

ν
2 G

1,2
µν

}
, (A.16)

i.e. the first non-zero correction actually exponentiates to give the whole result.

A.2 Light-like loops

We review here the computations at one-loop (order g2) for light-like Wilson loops presented in
[2, 3] as well as the anomalous conformal Ward identity of [4, 59].

For a piecewise light-like loop with x2
i+1,i = 0 we parametrise each edge of the loop via

xµ
i (t) = xµ

i (1− t) + xµ
i+1t = xµ

i + txµ
i+1,i . (A.17)

It is convenient to expand the Wilson loop in the ’t Hooft coupling,

g2 =
g2YMN

16π2
. (A.18)

The O(g2) contribution in (A.11) decomposes into a sum of contributions Iij,

⟨L(C)⟩ = 1 + g2 · 2CF

N

∑
i≤j

Iij +O(g4) . (A.19)

There are three distinct types of contributions. Those with the propagator beginning and ending
on the same segment vanish due to the light-like nature of the edges,

Iii = 2(πµ2)ϵΓ(1− ϵ)

∫ 1

0

dt1

∫ t1

0

dt2
xi+1,i · xi+1,i

[−(xi(t1)− xi(t2))2 + iε](1−ϵ)
= 0 . (A.20)
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Those diagrams with the propagator crossing between adjacent segments (including the first and
the last) are divergent,

Ij−1,j = 2(πµ̃2)ϵΓ(1− ϵ)

∫ 1

0

dt1

∫ 1

0

dt2
xj,j−1 · xj+1,j

[−(xj−1(t1)− xj(t2))2 + iε](1−ϵ)

= −(πµ̃2)ϵΓ(1− ϵ)

∫ 1

0

dt1

∫ 1

0

dt2
(−x2

j−1,j+1)

[−(xj−1,j(1− t1)− xj+1,jt2)2 + iε](1−ϵ)

= −
(
πµ̃2(−x2

j−1,j+1)
)ϵΓ(1− ϵ)

ϵ2

= −
(
µ2(−x2

j−1,j+1)
)ϵ[ 1

ϵ2
+

1

2
ζ2 +O(ϵ)

]
, (A.21)

where we have made a slight redefinition of the dimensional regularisation scale µ2 = µ̃2πeγ

with γ the Euler gamma constant. Finally, the diagrams with the propagator between two
well-separated edges are finite and can be evaluated for ϵ = 0,

Iij = 2

∫ 1

0

dt1

∫ 1

0

dt2
xi+1,i · xj+1,j

[−(xi(t1)− xj(t2))2 + iε]

= Li2

[
(x2

ij − x2
i,j+1)(x

2
i,j+1 − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
+ Li2

[
(x2

ij − x2
i+1,j)(x

2
i+1,j − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
−Li2

[
(x2

ij − x2
i,j+1)(x

2
ij − x2

i+1,j)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
− Li2

[
(x2

i,j+1 − x2
i+1,j+1)(x

2
i+1,j − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
. (A.22)

Recall the factorised form of the Wilson loop given in (2.2),

Wn = ⟨L(C)⟩ =
[ n∏
i=1

Di

]
FnRn . (A.23)

From (A.21) we have the first contribution to the divergent factor

Di = exp

{
−1

4

∞∑
l=1

g2l(−µ2x2
i−1,i+1)

lϵ

[
Γ
(l)
cusp

(lϵ)2
+

Γ
(l)
sub

lϵ

]}
. (A.24)

We see that we have

Γ(1)
cusp = 4 · 2CF

N
, Γ

(1)
sub = 0 . (A.25)

Note that for G = U(N), and hence in both the large N limit and the Abelian case G = U(1)

we have 2CF

N
= 1. In the Abelian case, all higher coefficients Γ

(l)
cusp and Γ

(l)
sub are vanishing and we

have simply
Γcusp = 4g2 ,

(
G = U(1)

)
. (A.26)
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In the non-Abelian case, both Γcusp =
∑

l g
2lΓ

(l)
cusp and Γsub =

∑
l g

2lΓ
(l)
sub are non-trivial functions

of the coupling g2 and N . In the large N limit they are given by

Γcusp(g
2) = 4g2 − 4π2

3
g4 +O(g6) ,

Γsub(g
2) = −28ζ3g

4 +O(g6) . (A.27)

Writing fn for the leading correction to Fn, we have

Fn = 1 + g2 · 2CF

N
fn +O(g4) , fn =

∑
{i,j}

Iij −
n

2
ζ2 , (A.28)

where the sum is over all non-adjacent pairs of edges {i, j}.

By inspecting the total derivative of Iij, we may verify that the function fn obeys the
anomalous conformal Ward identity of [4, 59]. Recall that the total derivative of the dilogarithm
can be written as dLi2(x) = − log(1− x)d log x. Applying this we find for the first term in dIi,j:

log

[
(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)− (x2

ij − x2
i,j+1)(x

2
i,j+1 − x2

i+1,j+1)

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1

]
×
[
d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)− d log(x2

ij − x2
i,j+1)− d log(x2

i,j+1 − x2
i+1,j+1)

]
. (A.29)

The numerator of the argument of the logarithm factorises so we find that the above is equal to[
log x2

i,j+1 + log(x2
i+1,j + x2

i,j+1 − x2
ij − x2

i+1,j+1)− log(x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1)

]
×
[
d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)− d log(x2

ij − x2
i,j+1)− d log(x2

i,j+1 − x2
i+1,j+1)

]
. (A.30)

Similar factorisation occurs for the other three terms in dIij and this leads to cancellation among
the four terms. In the end only contributions of the form of the first term in the first line above
remain and we find the four terms contribute the following to dIij:

dIij =

log x2
i,j

[
d log(x2

ij − x2
i,j+1) + d log(x2

ij − x2
i+1,j)− d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)

]
+ log x2

i+1,j+1

[
d log(x2

i,j+1 − x2
i+1,j+1) + d log(x2

i+1,j − x2
i+1,j+1)− d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)

]
− log x2

i,j+1

[
d log(x2

ij − x2
i,j+1) + d log(x2

i,j+1 − x2
i+1,j+1)− d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)

]
− log x2

i+1,j

[
d log(x2

ij − x2
i+1,j) + d log(x2

i+1,j − x2
i+1,j+1)− d log(x2

i,j+1x
2
i+1,j − x2

ijx
2
i+1,j+1)

]
(A.31)

We may write the sum of non-adjacent pairs {i, j} as 1
2

∑
i

∑i−2
j=i+2 (or the equivalent swapping i

and j). Note that in (A.31), even with i, j separated edges, there appear to be some logarithms
which diverge, e.g. log x2

i,j+1 for j = i− 2. These terms all have vanishing coefficients however.
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Now note that in the sum over i and j many terms cancel. For example the second term
in the first line cancels the second term in the third line after summation over j, except for a
boundary term. Similarly the first term in the the first line cancels the second in the fourth line,
the first in the second line cancels the first in the fourth and the second in the second cancels
the first in the third, again all up to boundary terms. The third terms in each line all combine
with the same d log. In total we then have

dfn =
∑
{i,j}

dIij

=
∑
i

log x2
i−1,i+1d log x

2
i−1,i+1 +

∑
{i,j}

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

d log(x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1) . (A.32)

If we apply the generator of special conformal transformations,

Kµ =
∑
i

(2xµ
i xi · ∂ − x2

i∂
µ
i ) , (A.33)

we find, again after a similar use of telescoping for the second term,

Kµfn = 2
n∑

i=1

(xµ
i−1 − 2xµ

i + xµ
i+1) log x

2
i−1,i+1 . (A.34)

If we define Fn consistently with (A.28) as follows,

Fn = exp

{
1

4
Γcusp(g,N)fn

}
, (A.35)

we have the anomalous conformal Ward identity,

Kµ logFn =
1

2
Γcusp

n∑
i=1

(xµ
i−1 − 2xµ

i + xµ
i+1) log x

2
i−1,i+1 . (A.36)

The remaining factor Rn in (2.2) is finite and conformally invariant and since the order g2

terms are all accounted for by Di and Fn, receives non-trivial corrections from order g4 onwards,

Rn = 1 +O(g4) . (A.37)

In the Abelian theory, since the full result is obtained by exponentiating the order g2 term, we
have Rn = 1 simply.
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A.3 Details on multiple light-like loops

If we consider multiple loops, we parametrise each one via xµ
r : [0, 1] → R1,3, with 1 ≤ r ≤ m for

m loops. Let us consider the order g2 contribution to the connected part of the correlator for
m = 2. We have

⟨L(C1)L(C2)⟩conn = − 1

N2
tr(ta1) tr(ta2)

∫ 1

0

dt1ẋ
µ1(t1)

∫ 1

0

dt2ẋ
µ2(t2)G

1,2
µ1µ2,a1a2

+O(g4) .

For piecewise light-like contours, all diagrams are finite and can be evaluated for d = 4,

⟨L(C1)L(C2)⟩conn = g2
1− α

N2
fn1,n2 +O(g4) , fn1,n2 =

∑
i,j

Iij , (A.38)

where Iij is given by the same formula as (A.22) but where xi lies on C1 while xj lies on C2 and
the sum runs over all possible pairs (i, j). As is clear from the colour factor, this contribution
vanishes for G = SU(N) (α = 1) and is subleading in N for G = U(N) (α = 0).

By inspecting the total derivative of fn1,n2 , it is straightforward to see that the function
Gn1,n2 is indeed conformally invariant as expected. Following very similar steps as outlined in
equations (A.29) to (A.31), we find a form for the total derivative dGn1,n2 very similar to that
for the anomalous conformal part given in eq. (A.32)

dfn1,n2 =
∑
i,j

dIij =
∑
i,j

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

d log(x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1) . (A.39)

This is almost manifestly conformally invariant. The argument of the logarithm is a conformal
cross-ratio while the argument of the d log is conformally covariant. Note that (A.39) implies
that if we apply the special conformal generator Kµ to the sum over all terms we find

Kµfn1,n2 =
∑
i,j

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

(xµ
i + xµ

i+1 + xµ
j + xµ

j+1) = 0 (A.40)

where the cancellation again happens for each xµ by telescoping in the sum. So we indeed find
conformal invariance.

Another way to see conformal invariance is to make use of twistor variables. Let us label
them as {Z1, . . . , Zn1} for the first loop and {Z̃1, . . . , Z̃n2} for the second. Then we have

x2
ij =

⟨i− 1 i ȷ̃− 1 ȷ̃⟩
⟨i− 1 i⟩⟨ȷ̃− 1 ȷ̃⟩

. (A.41)
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We then have

x2
i,j+1x

2
i+1,j − x2

ijx
2
i+1,j+1 =

⟨i− 1 i ȷ̃ ȷ̃+ 1⟩⟨i i+ 1 ȷ̃− 1 ȷ̃⟩ − ⟨i− 1 i ȷ̃− 1 ȷ̃⟩⟨i i+ 1 ȷ̃ ȷ̃+ 1⟩
⟨i− 1 i⟩⟨i i+ 1⟩⟨ȷ̃− 1 ȷ̃⟩⟨ȷ̃ ȷ̃+ 1⟩

= − ⟨i− 1 i i+ 1ȷ̃⟩⟨i ȷ̃− 1 ȷ̃ ȷ̃+ 1⟩
⟨i− 1 i⟩⟨i i+ 1⟩⟨ȷ̃− 1 ȷ̃⟩⟨ȷ̃ ȷ̃+ 1⟩

, (A.42)

making use of a Plücker relation. Hence

dfn1,n2 =
∑
i,j

log
x2
i,j+1x

2
i+1,j

x2
ijx

2
i+1,j+1

d log
[
⟨i− 1 i i+ 1ȷ̃⟩⟨i ȷ̃− 1 ȷ̃ ȷ̃+ 1⟩

]
, (A.43)

with the two-brackets ⟨i−1 i⟩ etc. cancelling by summing over i or j. Thus the expression (A.43)
is manifestly conformally invariant, though not manifestly homogeneous.

To write an expression for fn1,n2 in a manifestly conformally invariant form we can define
conformal cross-ratios via

ui,j,k,l =
x2
ijx

2
kl

x2
ilx

2
kj

, vij = ui,j,i+1,j+1 . (A.44)

The cross-ratios vij are not all multiplicatively independent due to the relations∏
i

vij = 1
∏
j

vij = 1 . (A.45)

Then we can write

dfn1,n2 = −
∑
i,j

[
log vijd log(1− vij) + log vijd log(x

2
i,j+1x

2
i+1,j)

]
=

∑
i,j

dLi2(1− vij)−
∑
i,j

log vijd log(x
2
i,j+1x

2
i+1,j) , (A.46)

In the second term of (A.46) we can use these relations to eliminate vn1,j and vi,n2 in the first
slot. For i ≤ n1 − 1 and j ≤ n2 − 1 we can also eliminate x2

ij in favour of vij and xkl with k > i
or l > j in the second slot. Doing so, all remaining xkl cancel and we are left with a manifestly
conformally invariant expression which can be written as

dfn1,n2 =

n1,n2∑
i,j

dLi2(1− vij) +
∑
i<n1
j<n2

log vij

[ ∑
1≤k≤i
j≤l<n2

d log vkl +
∑

i≤k<n1
1≤l≤j

d log vkl

]

=

n1,n2∑
i,j

dLi2(1− vij) +
∑

k≤i<n1
j≤l<n2

d
[
log vij log vkl

]
(A.47)
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Note that the second term in this expression is not manifestly invariant under cyclic shifts of
either loop. Up to a possible constant term, this shows that

fn1,n2 =

n1,n2∑
i,j

Li2(1− vij) +
∑

k≤i<n1
j≤l<n2

log vij log vkl . (A.48)

Regarding fn1,n2 as a function of the square distances x2
ij, we may consider kinematics where

x2
ij = r2 + ϵ∆r2ij and take the limit ϵ → 0. We see that the finite diagram Iij given in eq. (2.17)

vanishes, as does the expression (A.48) and we conclude that (A.48) is correct as it stands with
no constant term added.

Finally, we may notice that we can include the terms where i = n1 or l = n2 in the sum at
no cost due to the relations (2.20) and hence we have

fn1,n2 =

n1,n2∑
i,j

Li2(1− vij) +
∑
k≤i
j≤l

log vij log vkl , (A.49)

justifying (2.21) .

Note that under a cyclic shift i → i+ 1 on the first loop the second term in (A.48) becomes

cyc1 :
∑

k≤i<n1
j≤l<n2

log vij log vkl −→
∑

2≤k≤i≤n1
j≤l<n2

log vij log vkl =
∑
k≤i
j≤l

log vij log vkl , (A.50)

where the final equality with the second term of (2.21) again follows from the relations (2.20).
A check of cyclic invariance for the second loop follows similarly.

B Details on N3MHV Integrals

Here we present some explicit details on the computation of some of the integrals which arise for
tree-level N3MHV Wilson loop correlators. In each instance it is also possible to arrive at the
final, R-invariant form by inspection by using the Feynman rules outlined in Section 3.4.
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B.1 Example: Two Double Insertions

For instance, for W(3),conn
n1,n2 , one of the integrals which contributes to an N3MHV diagram with

two double insertions on one twistor line is (here we recall the notation introduced in Eq. 3.3.3)

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
. (B.1)

Here, we have explicitly that

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
=

∫
du

u

dv

v

ds1
s1

ds2
s1 − s2

dt1
t1

dt2
t1 − t2

∆i1j1
∗ (u, s1)∆

j1i2
∗ (s2, t1)∆

i2j2
∗ (t2, v)

=

∫
du

u

dv

v

ds1
s1

ds2
s1 − s2

dt1
t1

dt2
t1 − t2

∫
D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + a2uZi1−1 + a2Zi1 + a3s1Zj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2s2Zj1−1 + b2Zj1 + b3t1Zi2−1 + b3Zi2)

× δ̄4|4(c1Z∗ + c2t2Zi2−1 + c2Zi2 + c3vZj2−1 + c3Zj2). (B.2)

Changing variables to y1 = u, y2 = v, y3 = s1, y4 = s1 − s2, y5 = t1, and y6 = t1 − t2, we
have

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
=

∫ 6∏
i=1

dyi
yi

D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + a2y1Zi1−1 + a2Zi1 + a3y3Zj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2(y3 − y4)Zj1−1 + b2Zj1 + b3y5Zi2−1 + b3Zi2)

× δ̄4|4(c1Z∗ + c2(y5 − y6)Zi2−1 + c2Zi2 + c3y2Zj2−1 + c3Zj2). (B.3)

Rescaling y1 → y1
a2

and y3 → y3
a3
,

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
=

∫ 6∏
i=1

dyi
yi

D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + y1Zi1−1 + a2Zi1 + y3Zj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2(
y3
a3

− y4)Zj1−1 + b2Zj1 + b3y5Zi2−1 + b3Zi2)

× δ̄4|4(c1Z∗ + c2(y5 − y6)Zi2−1 + c2Zi2 + c3y2Zj2−1 + c3Zj2). (B.4)
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The first ¯δ4|4 clearly gives an R-invariant after integrating out the bosonic part, upon which we
find

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
= [∗, i1 − 1, i1, j1 − 1, j1]

∫
dy2dy4dy5dy6

y2y4y5y6

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(b1Z∗ + b2(−
⟨∗ i1 − 1 i1 j1⟩

⟨∗ i1 − 1 i1 j1 − 1⟩
− y4)Zj1−1 + b2Zj1 + b3y5Zi2−1 + b3Zi2)

× δ̄4|4(c1Z∗ + c2(y5 − y6)Zi2−1 + c2Zi2 + c3y2Zj2−1 + c3Zj2). (B.5)

Then, rescaling y4 → −y4
b2
, then b2 → ⟨∗ i1 − 1 i1 j1 − 1⟩b2 as well as y5 → y5

b3
,

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
= [∗, i1 − 1, i1, j1 − 1, j1]

∫
dy2dy4dy5dy6

y2y4y5y6

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(b1Z∗ + b2Ẑj1,i1 + y4Zj1−1 + y5Zi2−1 + b3Zi2)

× δ̄4|4(c1Z∗ + c2(
y5
b3

− y6)Zi2−1 + c2Zi2 + c3y2Zj2−1 + c3Zj2). (B.6)

Integrating out the bosonic part of the first δ̄, we get another R-invariant, though this time with
a shift:

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
= [∗, i1 − 1, i1, j1 − 1, j1][∗, ĵ1i1 , j1 − 1, i2 − 1, i2]

∫
dy2dy6
y2y6

D2c

c1c2c3

× δ̄4|4(c1Z∗ + c2(−
⟨∗ ĵ1i1 j1 − 1 i2⟩

⟨∗ ĵ1i1 j1 − 1 i2 − 1⟩
− y6)Zi2−1 + c2Zi2 + c3y2Zj2−1 + c3Zj2). (B.7)

Rescaling y6 → −y6
c2
, then c2 → ⟨∗ ĵ1i1 j1 − 1 i2 − 1⟩c2 and y2 → y2

c3
, we have

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
= [∗, i1 − 1, i1, j1 − 1, j1][∗, ĵ1i1 , j1 − 1, i2 − 1, i2]

∫
dy2dy6
y2y6

D2c

c1c2c3

× δ̄4|4(c1Z∗ + c2

(
⟨∗ ĵ1i1 j1 − 1 i2 − 1⟩Zi2 − ⟨∗ ĵ1i1 j1 − 1 i2⟩Zi2−1

)
+ y6Zi2−1 + y2Zj2−1 + c3Zj2).

(B.8)

Let us inspect the coefficient of c2 more closely. Indeed, substituting the formula for the shifted
argument it becomes

⟨∗ i1 − 1 i1 j1 − 1⟩Ẑi2j1
(B.9)

so that overall we have

I
(
∆i1j1

∗ (u, s1),∆
j1i2
∗ (s2, t1),∆

i2j2
∗ (t2, v)

)
= [∗, i1 − 1, i1, j1 − 1, j1][∗, i2 − 1, i2, j1 − 1, ĵ1i1 ][∗, j2 − 1, j2, i2 − 1, î2j1 ]. (B.10)
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B.2 Example: Triple Insertion

Next, let us consider an example of a diagram with a triple insertion on one twistor line, e.g.

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
. (B.11)

Following the same procedure as in the last example,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
=

∫
ds1
s1

ds2
s1 − s2

ds3
s2 − s3

du

u

dv

v

dw

w
∆i,j1

∗ (s1, u)∆
i,j2
∗ (s2, v)∆

i,j3
∗ (s3, w)

=

∫
ds1
s1

ds2
s1 − s2

ds3
s2 − s3

du

u

dv

v

dw

w

∫
D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + a2s1Zi−1 + a2Zi + a3uZj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2s2Zi−1 + b2Zi + b3vZj2−1 + b3Zj2)

× δ̄4|4(c1Z∗ + c2s3Zi−1 + c2Zi + c3wZj3−1 + c3Zj3). (B.12)

Changing variables to y1 = s1, y2 = s1 − s2, y3 = s2 − s3, y4 = u, y5 = v, and y6 = w,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
=

∫ 6∏
i=6

dyi
yi

∫
D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + a2y1Zi−1 + a2Zi + a3y4Zj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2(y1 − y2)Zi−1 + b2Zi + b3y5Zj2−1 + b3Zj2)

× δ̄4|4(c1Z∗ + c2(y1 − y2 − y3)Zi−1 + c2Zi + c3y6Zj3−1 + c3Zj3). (B.13)

Rescaling y1 → y1
a2

and y4 → y4
a3
,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
=

∫ 6∏
i=6

dyi
yi

∫
D2a

a1a2a3

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(a1Z∗ + y1Zi−1 + a2Zi + y4Zj1−1 + a3Zj1)

× δ̄4|4(b1Z∗ + b2(
y1
a2

− y2)Zi−1 + b2Zi + b3y5Zj2−1 + b3Zj2)

× δ̄4|4(c1Z∗ + c2(
y1
a2

− y2 − y3)Zi−1 + c2Zi + c3y6Zj3−1 + c3Zj3). (B.14)
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Integrating out the bosonic part of the first δ̄,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
= [∗, i− 1, i, j1 − 1, j1]

∫
dy2dy3dy5dy6

y2y3y5y6

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(b1Z∗ + b2(−
⟨∗ i j1 − 1 j1⟩

⟨∗ i− 1 j1 − 1 j1⟩
− y2)Zi−1 + b2Zi + b3y5Zj2−1 + b3Zj2)

× δ̄4|4(c1Z∗ + c2(−
⟨∗ i j1 − 1 j1⟩

⟨∗ i− 1 j1 − 1 j1⟩
− y2 − y3)Zi−1 + c2Zi + c3y6Zj3−1 + c3Zj3). (B.15)

Rescaling y2 → −y2
b2

followed by b2 → ⟨∗ i− 1 j1 − 1, j1⟩b2 and y5 → y5
b3
,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
= [∗, i− 1, i, j1 − 1, j1]

∫
dy2dy3dy5dy6

y2y3y5y6

D2b

b1b2b3

D2c

c1c2c3

× δ̄4|4(b1Z∗ + b2Ẑij1 + y2Zi−1 + y5Zj2−1 + b3Zj2)

× δ̄4|4(c1Z∗ + c2(−
⟨∗ i j1 − 1 j1⟩

⟨∗ i− 1 j1 − 1 j1⟩
+

y2
⟨∗ i− 1 j1 − 1, j1⟩b2

− y3)Zi−1 + c2Zi + c3y6Zj3−1 + c3Zj3).

(B.16)

Integrating out the bosonic part of the first δ̄ above,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
= [∗, i− 1, i, j1 − 1, j1][∗, îj1 , i− 1, j2 − 1, j2]

∫
dy3dy6
y3y6

D2c

c1c2c3

× δ̄4|4(c1Z∗ + c2(−
⟨∗ i j1 − 1 j1⟩

⟨∗ i− 1 j1 − 1 j1⟩
− ⟨∗ îj1 j2 − 1, j2⟩

⟨∗ i− 1 j2 − 1, j2⟩⟨∗i− 1j1 − 1j1⟩
− y3)Zi−1

+ c2Zi + c3y6Zj3−1 + c3Zj3). (B.17)

Rescaling y3 → −y3
c2

followed by c2 → ⟨∗ i− 1 j1 − 1 j1⟩⟨∗ i− 1 j2 − 1 j2⟩c2 and y6 → y6
c3
,

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
= [∗, i− 1, i, j1 − 1, j1][∗, îj1 , i− 1, j2 − 1, j2]

∫
dy3dy6
y3y6

D2c

c1c2c3

× δ̄4|4(c1Z∗ + ⟨∗ i− 1 j1 − 1 j1⟩c2Ẑij2 + y3Zi−1 + c2Zi + y6Zj3−1 + c3Zj3) (B.18)
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where the coefficient of c2 follows from a simple calculation. Integrating out the bosonic part
of the final δ̄, we arrive at

I
(
∆i,j1

∗ (s1, u),∆
i,j2
∗ (s2, v),∆

i,j3
∗ (s3, w)

)
= [∗, i− 1, i, j1 − 1, j1][∗, j2 − 1, j2, i− 1, îj1 ][∗, j3 − 1, j3, i− 1, îj2 ]. (B.19)
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