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ABSTRACT: In AdS3/CFT, duality, there are large families of smooth, horizonless microstate
geometries that correspond to heavy pure states of the dual CEFT. The metric and fluxes are
complicated functions of up to five coordinates. There are also many duals of heavy pure states
that cannot be described in supergravity, but only admit a worldsheet description. Extracting
the physical properties of these solutions is technically challenging. In this paper, we show
that there are much simpler effective descriptions of these solutions that capture many of
their stringy and geometrical features, at the price of sacrificing supergravity smoothness. In
particular, the effective description of some families of superstrata, and of certain worldsheet
solutions, is given by easy-to-construct three-center solutions. For example, the effective
description of a superstratum with a long AdSs throat is a scaling, three-center solution in
which the momentum wave is collapsed to a singular source at one of the three centers. This
also highlights how momentum migrates away from the supertube locus in the back-reacted
geometry. Our results suggest that effective descriptions can be extended to more general
microstates, and that many singular multi-center solutions can in fact correspond to effective
descriptions of smooth horizonless microstructure.
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1 Introduction

The fuzzball paradigm calls for replacing the classical black hole of General Relativity with a
non-singular, strongly-coupled quantum system, in which no region is causally disconnected
from any other; this system is postulated to emerge as matter collapses to the horizon scale
of a would-be black hole (for a review, see [1]). There are many arguments in favor of this



paradigm, not the least of which is that it would resolve the information paradox [2]. String
theory has also led to notable advances towards resolving this paradox and, more broadly,
to the holographic description of quantum gravity in terms of strongly coupled quantum
field theories. Thus string theory is the ideal framework for implementing and describing
fuzzballs. However, it is extremely challenging to put detailed computational flesh onto the
generic stringy fuzzballs that are proposed to replace black holes having macroscopic horizons.
Thus was born the microstate geometry programme [3].

At the most basic level, microstate geometries can be viewed as highly coherent states of
a fuzzball that can be given a geometric description in a low energy limit of string theory,
namely supergravity. These geometries are thus sourced by the same constituents as the
corresponding black hole, and are required to be horizonless and smooth (except for possible
physical singularities, such as orbifold singularities), and to closely approximate the black-hole
solution, both in terms of charges and exterior geometry. They are thus smooth, horizonless,
solitonic solutions of supergravity whose sources are confined to a region, at high red-shift,
with surface area very close to that of the black-hole solution.

From the fuzzball perspective, General Relativity (GR), despite its incredible successes,
is a rather blunt effective field theory that breaks down at the horizon scale. All the attendant
no-hair theorems simply inform us that microstructure is completely invisible to GR. Higher-
dimensional supergravity is also a low-energy effective field theory but, with its greater
number of degrees of freedom, it is far more successful at resolving at least some of the
ingredients of black-hole microstructure. One of the imperatives of the microstate geometry
program is to determine the range of states that can be resolved by supergravity. This task,
however, will not be the focus of this paper (see [4] for a recent discussion).

Our goal here is somewhat in the opposite direction: the current state of the art has
resulted in extremely complex microstate geometries [5-15] with a great deal of structure that
can be probed and verified by precision holography [16-20]. However, for some purposes, this
level of complexity is unnecessary and a simpler effective description of the microstructure
might suffice to reveal the essential physics of microstructure.

Black-hole microstructure has also been very successfully explored at the quantum level
using string worldsheet methods in relatively simple (pure NS sector) backgrounds [21-29].
While much of this work has been intrinsically perturbative around two-charge and certain
special three-charge backgrounds, it has given us remarkable insights into the phase transitions
that are expected to lead to the complex quantum state of a typical fuzzball. In the context
of microstates involving NS5-branes, the exact worldsheet constructions show that the throat
sourced by the fivebrane caps off at the scale of the fivebrane separation, in a geometry seen
as smooth by perturbative string theory (non-perturbatively in «'). See [30] for a recent
discussion. While these results arise from a study of highly coherent backgrounds that make
an exact solution possible, an effective description suggests that these features persist for
generic two-charge states [30-32] as well as a large class of three-charge microstates [33] (in
a construction that in part builds on and complements our analysis here). In all of these
examples, precisely when the throat becomes deep enough that a horizon would naively
begin to form in classical supergravity, non-abelian brane excitations become light enough to
compete with and overwhelm supergravity excitations (see also [34]).



Thus our goal in the present work is to take a step back from more detailed explorations
of microstructure and find effective ways to reveal some of the physics of microstructure in
simpler, more universal terms. In this way, we will also make direct connections between
results from world-sheet and supergravity techniques.

We will work with two-charge and three-charge supersymmetric geometries in five and
six dimensions, and we will primarily consider solutions with D1, D5 charges, @1, @5 (or the
S-dual solutions based on F1, NS5), and a momentum charge, @ p. The corresponding classical
supersymmetric black hole geometry has a horizon area proportional to /Q1Q5Qp — J%,
where J, is an angular momentum. The black hole solution has an AdSs throat of infinite
proper length, and an infinite redshift as one approaches the horizon. The corresponding
three-charge microstate geometries come in two broad, overlapping varieties:

¢ Deep, or scaling, microstate geometries that have very long AdS, throats that ultimately
cap off smoothly at a finite but usually very large red-shift. In five dimensions the
throat geometry is AdSs x S3, and in six dimensions the throat geometry is capped
extremal BTZ x S3. The microstructure is concentrated in the cap, or at its boundary,
at the bottom of the AdSs throat. This means that such geometries represent tightly
bound states of the system [35-37].

e Shallow microstate geometries that have either short, or non-existent, AdSy throats and
cap off at small redshift. Some of these correspond to black holes with small horizon
areas as a result of either at least one small charge [38, 39|, or very large angular
momentum [35, 40].

In six dimensions one can choose the microstate geometries to be asymptotic (at infinity)
to either flat space (with at least one spatial dimension compactified to a circle), or to AdSs
%53, The latter boundary conditions mean that one can apply the holography of the D1-D5
CFT, and try to identify the CFT states dual to these microstate geometries.

The five-dimensional microstate geometries were first constructed 20 years ago [3, 41, 42].
These solutions replaced the singular charge sources by smooth magnetic cohomological fluxes
on 2-cycles, or “bubbles.” These bubbles are (orbifolds of) two-spheres created by a U(1)
fibration over curves between “centers” in an R? base at which the U(1) fiber pinches off. For
n bubbles there are (n + 1) centers and the locations of centers in R? are defined by 3(n + 1)
vector components, which reduce to 3n components once one has removed overall translations.

An essential part of these five-dimensional solutions are the “Bubble Equations” [3, 41, 42]
(which are equivalent to the “integrability conditions” of four-dimensional multi-center
solutions [43-46]). These equations impose constraints on the relative distances between
the centers, and are required in order to preserve supersymmetry and avoid closed time-like
curves. For a selection of state-of-the art constructions, see [47-49].

Furthermore, one can show that when reducing a five-dimensional smooth solution to
four dimensions, each center becomes a D-brane with Abelian world-volume fluxes, which
locally preserves 16 supercharges [50].

The five-dimensional solutions are relatively simple, and even though they can have
large moduli spaces, they encode rather little microstructure. If we set all the charges
to be of order Q, such that the black-hole entropy scales as ~ Q%/2, the five-dimensional



solutions account for an entropy at most of order ~ Q! [51]. However, as we will discuss,
these geometries enable us to exhibit some interesting, universal aspects of microstructure
physics. The six-dimensional solutions, and stringy probes, are more intricate and encode a
much higher level of detail. In particular, six-dimensional microstate geometries can have
an entropy of order, at most, ~ Q%4 [52-54].

Superstrata are the most analyzed and best understood families of six-dimensional
microstate geometries [5—15, 55-57]. They start from a circular two-charge supertube
solution [58-63], which, from a four-dimensional perspective, may be viewed as a singular two-
center solution: one center is just the center of space around which the stationary supertube
circulates, and the other center is the supertube locus. When seen in five-dimensional
supergravity, the center of space becomes smooth, while the supertube center corresponds
to a circular singular object — the supertube itself. In six-dimensional supergravity,' the
supertube locus becomes smooth as well, and the full solution has two U(1) isometries, one
pinching off at the center of the space and the other at the supertube locus, giving rise to a
topological S3 (or orbifold thereof). Superstrata are fully back-reacted geometries created by
particular families of supersymmetric momentum waves traveling around this supertube.

If one puts a momentum wave along a circle at the location where this circle pinches off,
then the resulting geometry is singular. Hence, one expects this wave to move away from
the supertube locus, and become a shape mode on the non-trivial S* cycle [64], which is
exactly what happens in the superstratum solutions [5].

Precision holography shows that this harmonic wave on S is indeed the dual of the
original supertube momentum wave. As we will discuss in this paper, in the back-reacted
geometry the momentum wave “migrates” off the supertube locus and, at high frequencies,
it once again localizes at a particular position in the geometry. We will show that this
position is exactly described by using an effective five-dimensional description in which the
localized momentum wave is treated as a (singular) primitive center, whose position can
be determined by a five-dimensional bubble equation.

Indeed, we will show how this momentum migration appears in multiple approaches
to probing black-hole microstructure. For shallow microstate geometries, high-frequency
wavefunctions of string probes localize at a position determined by the quantum numbers of the
state. As one might expect from WKB, or geometric-optics approximations, this localization
is also evident from geodesic motion. Indeed, some simple geodesic analysis of superstrata
can be found in [65]. One of the nice aspects of using string probes is that one can use probes
that also carry perturbative F1 charge as well as momentum charge. Once again, the location
of the excitation can be determined from the appropriately modified bubble equations.

One of the interesting aspects of this localization story is how it works for the complete
range of throat depths in superstrata. One can start with the two centers that correspond
to the circular supertube solution which, in the AdSs decoupling limit, is a rotating global
AdS3 x S2 solution. Adding small amounts of a momentum wave at high enough frequency
localizes the momentum wave in the AdS3 x S2. Increasing and back-reacting the momentum
charge causes a capped AdSs xS; (or capped BTZ) throat to open up. The diameter of the

!Corresponding to a ten-dimensional duality frame in which the supertube has D1 and D5 (or F1-NS5)
charges and KKM dipole charge.
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Figure 1. Single-mode superstratum features. Here 7 is a radial coordinate in the R* transverse to
the brane sources, while a is the radius of the underlying two-charge (D1-D5) supertube, upon which
the superstratum is built by adding a momentum wave. The latter is supported at the scale /n/k a
and has charge radius \/n/k b. The quantum numbers n and k are explained in sections 2.6.2, 5.1.2
and 7.

S is set and centrifugally stabilized by the momentum charge carried by the wave. Crudely,
the geometry resembles a global AdS3 with a long AdSs x S region inserted into it, like
a plumbing fixture, as follows. From the original global AdSs3, imagine that a “bowl,” or
cap, is cut out. A long, vertical pipe (the AdSy x S7) is glued into the hole, and the cap
that has been cut out is now glued to the bottom of this long pipe. This is the capped BTZ
geometry; see figure 1. The boundary between the cap and the lower end of the AdSs x S!
throat is defined by the location of the momentum wave (or by the location of the supertube
center, whichever is larger).

In this work we shall demonstrate that in both shallow and deep scaling superstrata,
the locus of the momentum wave is determined relative to the cap by bubble equations that
are adapted to describe singular momentum-carrying centers. Our “effective geometries”
technique thus provides a powerful tool that reveals the features of smooth horizonless
solutions without having to handle the details of the exact geometry. The price one pays
is to replace some of the detailed microstructure with an averaged, effective but singular
source. The result is a geometry that reliably captures the location of the source, and yields
a background that is reliable on scales larger than the details that have been averaged over.

In section 2 we provide an extended review of the salient details of five-dimensional
and six-dimensional microstate geometries. We apply this technology first in section 3 to
obtain “averaged superstrata,” where one of the centers gives the location of the massless
particle, which is the WKB limit of the wave excitation. In section 4, we review geodesic
motion and wavefunctions of string probes in backgrounds that can be described by exact
world-sheet methods, and show how to use worldsheet spectral flow symmetry to relate
particle geodesics to winding string worldsheets. Then, in section 5, we apply the knowledge
of wavefunctions and geodesics to the description of pure momentum, D1-P, or F1-P probes
of two-charge circular supertubes and three-charge supersymmetric spectral flowed circular
supertube backgrounds [66-69], where the bubble equations determine the location of the
probe. Completing the circle of ideas, in section 6 we match the latter result to a worldsheet



analysis of F1-P probes in the S-dual F1-NS5-P backgrounds, where the solution to the bubble
equations is reproduced by an analysis of the worldsheet physical state constraints, using the
exact worldsheet formulation of these backgrounds in terms of gauged Wess-Zumino-Witten
(WZW) models [21-25]. This shows that the fundamental string vertex operators have center-
of-mass wavefunctions related to the linearized momentum excitations of supergravitons, thus
tying back to the superstratum discussion that begins our analysis. Section 7 contains an
application of our effective geometry framework: we calculate the depth of the AdSy throat
and compare the result to other microstates, and a recent analysis of extremal black holes in
Jackiw-Teitelboim (JT) gravity [70]. Section 8 contains concluding remarks.

2 Supergravity BPS equations and solutions

As outlined in the Introduction, the story of microstate geometries started in five dimensions
by creating smooth structures that had rather limited phase spaces. This work progressed
to ever more sophisticated, six-dimensional solutions, with much larger phase spaces, that
could be tested and probed with precision holography. Despite the limitations of the five-
dimensional solutions, they contain important information about the essential physics of
their more sophisticated, higher-dimensional counterparts. We therefore start this review
section with five-dimensional supersymmetric solutions.

2.1 Five-dimensional BPS equations and solutions

The five-dimensional BPS solutions have a metric of the local form [71-74]:
ds? = —Z"2(dt +k)* + Z ds3(B), (2.1)

where B is some four-dimensional (possibly ambi-polar?) hyper-Kéhler base space.
The five-dimensional electromagnetic fields have potentials:

. 1 -
Al = _52—30”K ZyZk (dt + k) + BT, (2.2)
where the Z; are scalars and C/K is the totally symmetric tensor that encodes the couplings

of the gauge fields. Note that we have introduced tildes on five-dimensional electromagnetic
fields because, as discussed in [6] the normalizations of these fields are slightly different in
five and six dimensions (2.36).

To get the correctly normalized five-dimensional BPS equations, we use the approach
of [5] and introduce five vector fields whose only non-zero structure constants are:

Csyrc = Crx = Cx J,K €{1,2,4,5} (2.3)
where
01 0 O
~ 10 0 O
Cig = 2.4
M7 100-1 0 24
00 0 -1

2As discussed in, for example, [3, 5, 8, 41, 42], the signature is allowed to change from +4 to —4 on
hypersurfaces.



We will ultimately reduce to four vector multiplets by setting A®) = A® as in [74], however
when applying formulae involving structure constants we will apply them using the full index
range I, J, K =1,...,5, and then set all quantities with index 5 equal to their counterparts
with index 4.

The cubic invariant, which becomes the warp factor in (2.1), is given by:

- ((le2 - % 72 - % Z§> Zg,>é = (212, - 23) Zg)% . (2.5)

To write the BPS equations in their canonical linear form (see, for example, [73, 74]),

1
7= <6 CUKZIZJZK>

one introduces magnetic field strengths:

ol =dB’. (2.6)
and then one has
~ ~ 1 ~ ~ ~
ol =x0e!l, Vz = 5 CLiK 4 (07 nefy,  dk+xdk =707, (2.7)
More explicitly, the five-dimensional BPS equations are:
éI = %4 éI N VQZl = %4 (é2 A ég) y V2ZQ = *4((:)1 A 63) s
o~ 1 ~ ~ 1~ ~ ~ ~ ~ ~
V3273 = %4 (@1/\@2—2@4/\@4—295/\@5) =% (0'A0% -0t rOY), 2.5
VQZ4 = — %4 ((:)3 A é4), VQZ5 = — X4 (ég A 65),
dk + x4dk = Z; 01 = 2,0 + 2, 0% + 730 + 22, 6*.
Note that the equation for Z5 is compatible with setting Zs = Z, and ©° = ©%. Also observe
that this identification leads to the factor of two for the Z, ©% in the source of the last BPS
equation. This factor will also reappear in the six-dimensional formulation.

Having obtained these BPS equations, the fifth vector multiplet will henceforth be
dropped from our discussion.

2.2 Multi-center solutions

A very convenient, non-trivial choice for the base-space metric, ds2(B), is a multi-center
Gibbons-Hawking (GH) metric:

ds? =Vt (d) 4+ A)? +Vdi - dz, (2.9)

where & € R? are the Cartesian coordinates of the flat three-dimensional base and zﬁ = 1& + 4.
The BPS equations lead to the following solutions [75, 76]:

1 N
Z[ZQC[JKV_lKJKK+L[, k:,LL(dﬂJjLA)er (2.10)
where the K7 and L; are harmonic functions on the R? defined by # (now I,.J = 1,2,3,4).

The pieces of the angular momentum vector, k, are then determined by:

1 K'K/KE 1



and ;

- - - (K
Vx@=(VVu—pVV)—V Y Z1V<V>
I (2.12)

. . 1 . .
=VVM = MVV + 5 (K'VL; — L;VKY),
where M is also harmonic on R3.

The solution is thus determined by ten harmonic functions, which one typically chooses
to have the form:

. " 0 (2.13)
(0) Q _ .~ (0) m
Li=1 +Z|f 7o M= +Z|f_f@|

In the D1-D5 frame, Q1, Qs, and Qs correspond to D1, D5, and momentum charges,
respectively, while Q4 correspond to a certain combination of NS5 and F1 charges. In the
F1-NS5 frame, Ql, Qg, and Qg correspond to F1, NS5, and momentum charges, respectively,
while Q4 correspond to a certain combination of D5 and D1 charges. In both frames, m
corresponds to the left-moving angular momentum Ji, in five dimensions. In the standard,
bubbled microstate geometries, ¢*) and the /%gi) can be chosen at will (but with appropriate
quantization), while the Qy) and M are fixed by smoothness and the absence of closed
time-like curves (CTCs). For effective superstrata we are going to relax the smoothness
conditions but we will still require the absence of CTCs.

These solutions have a set of gauge invariances in which the functions can be shifted

according to:
Kl - Kl +dv,
1
Ly — L[—C[JKCJKK—*C]JKCJCKV,

1
M — M—gc L[+12C[JK(VCIC c +3010JKK), (2.14)

where the ¢! are arbitrary constants. The fluxes and metric are invariant under these
transformations.

We also recall the fact that the ¢ € Z are not necessarily positive: negative G
create a singular, “ambi-polar” base geometry, but, as has been noted elsewhere (see, for
example, [3, 5, 8, 41, 42]), this can lead to smooth Lorentzian geometries and well-behaved
cohomological Maxwell fluxes in five dimensions.

Based on (2.13) we introduce the charge vector:

ro = (a5, Q) m®) (2.15)
and define the symplectic product:

T — (10 TGy = §Om0) — gDm@ 4 = Z(,g O\ _,ggﬁ@g“), (2.16)



While superstrata necessarily involve all four Maxwell fields, our examples of effective
geometries will only be sensitive to the fundamental brane charges with I = 1,2,3 and so we
will drop the I = 4 fields from our discussions of charges and their interactions. In particular,

this means that from now on, Crjx = CI/E =

lerKl-

We use (2.14) to impose a gauge choice in which >R A(] ) = 0 for all I. Then the sum
of all the bubble equations implies that the constant in the M harmonic function vanishes,
m(® = 0. Having done so, we introduce the following vector containing the moduli that are

given by the asymptotic values of the harmonic functions in eq. (2.13):
h = (0,(0,0,0), (1,1, 157, 0, (2.17)

where we have dropped the I = 4 fields as described above.
Regularity at each center was analyzed in [41, 42] and requires that

Q) (1) ( )

Ow = _ el 35 &S () _ x| A

= 5 q(z) , mY =7 ( (z)) (2.18)
Or, more generally, (because some of the ¢ could be zero), we impose:
Q6% = ¢ = QW cos agi) cos agi) cos ozgi) , (2.19a)
Q4§ = /%f,l Z ‘E”K| ) sin aI cos ag) cos ag() , (2.19Db)
Q2§i) = Qy) = _ Z |€I;K‘ Q" cos agi) sin a?) sin a&? , (2.19¢)
JK
—Q0™ = 2 = QW sin al” sin ol sin o, (2.19d)

where Q) and the ay) are to be determined. If one reduces the solution to Type ITA String
Theory along the Gibbons-Hawking fiber, @, then the charges Q0®, Q2 Q4™ and Q6
are the DO, D2, D4 and D6 (Page) charges® of the center (i).

Supersymmetric centers with these charges preserve sixteen supercharges and are said to
be “primitive” [50], since they are simple T-duals of Q(*) D3 branes that have been first tilted
by ozgi), af,i), ag?, then smeared and then T-dualized along three orthogonal directions. The
primitivity condition is preserved by gauge transformations (2.14) and generalized spectral
flow transformations [77]. One can also see that supertube centers (discussed in detail in
section 2.4.1), which give rise to smooth solutions in six-dimensional supergravity but lead to
singular solutions in five-dimensional supergravity, are also primitive centers. Furthermore,
bound states of one type of D2 branes and D0 branes, as well as DO branes alone, are also
primitive, although the corresponding geometries are singular. One can also generalize the
primitivity condition to centers carrying other charges and dipole charges [78], but we shall
not use such centers in this paper.

The absence of closed time-like curves requires the bubble or the integrability equations [41,
42, 45, 79]:

P — (O (2.20)
—D( ) _ —»(Z) < )
i 1B =2

3The sign conventions are chosen such that the mass of a four-dimensional supersymmetric black hole is

=(Q6+>,Q2,)*+(Q0+ 3, Q4))?




which are independent of the conditions imposing smoothness or primitivity on the centers [50].
The angular momenta are given by:

Jp =3 m®, Jr =" (h,TV);, Jr = |Jrl. (2.21)
i i
Solutions with five-dimensional-flat-space asymptotics have an asymptotic moduli vector:

h = (0,(0,0,0),(1,1,1),0) , (2.22)

and this will be used in section 3.2. In the majority of this paper, we use the AdS3 decoupling
limit for which the asymptotic moduli vector is (for a discussion of this, see, for example, [37]):

h = (0, (0,0,0), (0,0,1),0) . (2.23)

Scaling microstate geometries arise when the bubble equations (2.20) admit a solution
in which some subset, S, of the centers can get arbitrarily close:

20— 29 - 0, ijes, (2.24)

while the charges of the solution remain large. This limit appears to be singular in the R3
base space of the solution, but in the full geometry it simply corresponds to the opening of a
long, macroscopic, capped AdS, throat, whose cap remains smooth [35-37, 46].

The condition for scaling is most simply described for the coincidence of three centers.
Suppose that S = {4, j, k}, then the magnitudes of the three fluxes involved must satisfy
the triangle inequalities:

‘Fij] < ]F2k| + ]ij‘ , and cyclic permutations. (2.25)
One can satisfy the bubble equations by arranging the I' to have the correct signs and taking:
|70 — 2D = £ATY + 0(A2), A —0. (2.26)

For the correct signs of '/, the divergent terms in (2.20) cancel, and finite terms on the
right-hand side come from the O(\?) terms in (2.26).
One can also verify that a scaling cluster, S, gives a vanishingly small contribution to

Jr in the limit (2.26) [3, 36].

2.3 Six-dimensional BPS equations and solutions

The structure and equations that govern superstrata have been given in many places (see, for
example [5, 6, 8, 80]), and are based on extensions of the most general classes of supergravity
solutions in six dimensions [81-83]. Since we are going to be concerned about reducing the
effective superstratum to five dimensions, we will follow the discussion in [6].

The superstratum is defined in IIB supergravity compactified to six dimensions on a T%,
or K3. The six-dimensional geometry has a time coordinate, ¢, and a compact y-circle with

y~y+ 2rRy. (2.27)

,10,



The remaining four spatial dimensions define the “base,” B, with metric, ds3, and coordinates,
x#. In one of the simpler classes of superstrata, the metric, ds3, is required to be independent
of (t,y), however it must be hyper-Kéhler and it is allowed to be ambi-polar. The six-
dimensional metric then takes the form:

_\ZFP (dvo + ) (du +w+ L F(dv + B)) + VP ds3(B), (2.28)

where (u,v) are related to ¢ and y by:

2 _
dsg =

u:\}ﬁ(ty), v:\}i(ter). (2.29)

The functions F and P, and the one-forms /3 and w can depend on (v, x*), but supersymmetry

requires that all fields be independent of u. They will be further constrained by the BPS
equations.

For future reference, we write this metric in a form that is adapted to compactification

to five dimensions:*

1 Z3 _ 5—w2
ds? = ———— (dt+k)? + == [d +(1—=2Z7Y) (dt +k) + +VPds3(B), (2.30
§ o= I Ty (1= 257 @+ T 3(8), (2.30)
where r
P=tZ-7F,  Z=1-7, kz“\j;, (2.31)

In the simpler class of superstrata, the 2-form, df, is independent of both (u,v), and
must be self-dual:

dB = %4d3, (2.32)

where %4 is the Hodge dual on B.

The full six-dimensional solution involves three independent 3-form field strengths, G,
whose potentials, BY), are determined® in terms of electrostatic potentials, Z; and 2-forms,
©! on B. For historical reasons that will soon become clear, the index I takes the values

1,2,4. The BPS equations impose the following linear differential equations®:
x4DZ; = DO?, Dxy,DZ; = —O% A df3, 0% = x,6?, (2.33a)
x4 DZy = DO, DxyDZy = —O' Ndf, 0! = x,0!, (2.33b)
x4DZy = DO*, Dy, DZy =—-0*Ndj3, 0t = +,06". (2.33¢)
where the dot denotes %, D is defined by
DE(J—B/\Q, (2.34)
v

and d denotes the exterior differential on the spatial base B.

“In [6] this was referred to as “Reduction 2.”
5See [5, 8, 80] for more details.
SWe define the d-dimensional Hodge star 4 acting on a p-form to be

1
ML AL mpY) — n1 oA L ng_ my...m
xq (dz™" A ANdz™?) = (d—p)!dm A ANdx" 7P €nyny_, ®?,

—1234 _ 1234 1234
+ 3:Evu3:€3

where we use the orientation e = 1. These are the conventions used in [81] and note

that they differ from the typical conventions for the Hodge dual.
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The equations for the function, F, and the 1-form, w, are also linear:”

Dw + #4Dw = 7,0 + Z,0% — Fdp — 2 Z,6*, (2.35a)
1 .. . 1
#4D %4 (0 — 5 DF) = 02(Z1Zo — 73) — (2129 — (Z4)?) — 5 s (0 hn0r—0the?).
(2.35b)
When the six-dimensional solution is v-independent, one can reduce it to five dimensions

using reduction (2.29), (2.30). In this reduction, the five-dimensional field-strengths are
related to the six-dimensional ones via (see [6, appendix B.2])

1

V2

Upon flipping the sign of Z; [5], these equations reduce to those of five-dimensional su-

of of, I1=1,24, and ©°%=+2d3. (2.36)

pergravity (2.8).

2.4 The two-charge circular supertube solution

The two-charge circular supertube solution [58-63] is the fundamental seed solution upon
which all explicitly constructed superstrata have been built. There are also two standard sets
of coordinates for defining superstrata: one based on the GH formulation and the other based
on the spheroidal coordinates that are frequently used to describe black rings. The description
of the supertube gives us a natural setting for the introduction of these two coordinate systems.

2.4.1 The GH formulation of the supertube

The two-charge circular supertube is a two-center solution with a flat four-dimensional base
metric. We start by using the GH form in (2.9). We also introduce spherical polar and
cylindrical polar coordinates:

z1 = 7sinf cos ¢ = p cos ¢, T9 = Fsinfsin ¢ = p sin @, 23 =rFcosl =z (2.37)

where we put hats on f,é to distinguish them from r, 6 that will be introduced later.
In terms of these coordinates, V and A in (2.9) are given by
) A=cosfdop =

V= do. (2.38)

| =
| N

The two-charge circular supertube solution [58-63], in the AdS3 decoupling limit, is given
by the following charge and moduli vectors (see for example [84]):

I = (L (07 0, _"%3)3 (0’070)7 0)>

Iy = (0, (0,0,%3),@1,@5,0),7%), m o= Q1Q5, (2.39)
h = (0, (0,0,0), (0,0,1),0).

The charge vectors I'j, I'y each satisfy the primitivity condition (2.19).

"Note that there is a sign error on the left-hand side of the second equation in [6].
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Center 1 is located at # = 0. Center 2, the supertube center, is located at Zs = (0,0, —a).
Writing the distance from the supertube center as

Ps = |Z—Ts| =1/p*+ (2 +a)?, (2.40)

the harmonic functions are

vl KO_Kg®_g KO-z, (1_1)
7’ ’ s )7
A 0 R (2.41)
=9 =9 Ly=1, M="
Ts Ts Ts
The one-form, (3, is given by:
K® ——

where V x { = —6[((3), which is solved by

¢ = /%3<'f _ (= &)) dé. (2.43)

T fs

2.4.2 The spheroidal form of the supertube

Let us take (w1, ws, w3, ws) to be Cartesian coordinates on R*. Then spheroidal coordinates
(r,0,¢,1) are defined, and related to GH coordinates, by:

wy + iwy = V12 + a2 sinfe'® = 2/ sin (2> eiv=9)/2

P (2.44)
wg +iwy =1 cosf e = 27 cos <2> ei(w'“b)/?,

for a parameter a which will be related to @ momentarily. The coordinates have the ranges

and identifications

A

r,#€[0,00), 6€0,7/2], beclon], ¢el0,2m), P e0,4n),

A N N « N 2.45
¢~ dp+2m, p~vp 2, (Y,0) ~ (Y A+ 4w, Q) ~ (Y + 2, ¢ + 2m). 249

Recall that the R? base coordinates for the multi-center solutions are defined in (2.37).
The locus r = 0 thus describes a disk of radius a lying in the wi-plane at wy = 0,
parameterized by @ and ¢ with the origin of R* at (r = 0,0 = 0). The supertube lies at
the perimeter of this disk, at (r = 0,0 = 7/2).
In these coordinates the flat R* metric is

2
ds? =% < zdr 5 +d"2> + (r? + a®) sin® 0 d¢® + 1° cos® 0 di)? (2.46)
r“ 4+ a

where
Y =r?4a®cos?f. (2.47)
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The AdS3 decoupling limit of the supertube solution has © =0 for I = 1,2,4, and

1 Qs
= —_— Zzi
y Ty

where we use Q5 and @2 interchangeably, and where the conversion between GH charges

Z Zy=0, (2.48)

@ and six-dimensional supergravity charges Qg is

Qr = % : (2.49)
The one-form S is given by
Ryra® 2

= sin“ 0 d¢ — cos* 0di ). 2.50
5= TR (sin® o v) (2:50)

The remaining six-dimensional ansatz quantities are then:

2

F=0, w= Ity ra (sin” Odep + cos® O drp) . (2.51)

V2E

For future reference, we note that (2.44) imply the following identities:

1 1 1 1
7=z = 1 (r?4a*sin? 6), Fg = |Z— Tg| = ZE =1 (r24a” cos? 0), a= 1a2,
(2.52)
a—1* a2 + 72 + 247 cos 0 ~
cos?g = 2TV 2f e, r2:2<—&+f+\/&2+f2+2dfcos0>. (2.53)
a

One can also match the proper radius of the y-circle to the normalization of K. One
must remember that in making the reduction to five dimensions, there is a relative factor
of v/2 between O3 and df (2.36). We therefore have:

R, /1 1 R
K<3>:M<A_A> L ke, (2.54)
2 rg T

where & is the winding number of the supertube (taken to be positive, as usual). Furthermore,
regularity requires

s @1Qs
a® = oy (2.55)
Defining the rescaled coordinates
. t 5 Y r
R, VTR Smhe=o (2.56)

the six-dimensional metric then takes the form of rotating orbifolded global AdS3xS3,

1 o 1 2 42 2, L .9 .o
mds ——Ecosh pdt® +dp +?Slnh pdj

1.\? 1 \?
+ df* + cos? 0 (ahb + %d?]) +sin? 9 (dgb - ndt> . (2.57)
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In the D1-D5 frame, the supergravity charges Q7 and angular momenta Jr, Jr (2.21) are
related to integer quanta n; € Z, (Jr, Jg) € 3Z via (see e.g. [69])

95(0/)3 ' g2(a/)4
Q1 Vi ni, Q2 =Q5 = gste s, Q3 = Qp = SR;V4 Ny, (2'58>
2014 20 1\4

4 Gs (a ) 7 Gs (O[ )
Jr = Jr, Jr = Jr. 2.59
L 8ViR, L R 8ViR, R ( )

Thus the quantized angular momenta take the values
nin

JL=Jr= ;;’ , (2.60)

implying the known fact that x must divide nyns for this configuration to have correctly

quantized angular momenta.

2.5 Three-charge supersymmetric spectral flowed supertube solutions

If one performs a fractional spectral flow with parameter s/x with s € Z on the circular
supertube solution with winding number &, one obtains the GLMT solution [69], the most
general two-center solution with smooth GH centers and R* asymptotics. We take s > 0
without loss of generality. We work in the AdS3 limit, in which we have two centers with
the charge vectors and the asymptotic moduli:®

PP a1 P ds m
Iy = 1.(— — — — — — —
1 <3+ 7( R1, —R2, K’3)7< 8—1—1’ 8—1—17 8+1)7 2(8+1)2>,

Iy = (-S, (R1, R, Rg), (ql, ® q3> e ) (261)

s’ s 252

h = (0,(0,0,0),(0,0,1),0) .
The primitivity condition (2.19) requires the relations
q I% /%3, q =K /%3, q =k /%2, m = /%1%2,‘%3. (2.62)

The charges & are related to the quantized charges, xr, as follows (see e.g. [69]). In the
D1-D5-P duality frame, when )1 denotes the D1 charge, Q2 denotes the D5 charge, and
(3 denotes the momentum charge, we have:

gsa/
K1,
2R,

k1= ko =

N3
gs(a ) A %,{3

R
kg = —=
2R,V 3 2

Vi, kr € Z. (2.63)

On the other hand, in the NS5-F1-P duality frame, when ()7 denotes the F1 charge, (02
denotes the NS5 charge, and Q)3 denotes the momentum charge, we have

/ N3
k1 = Lml, Ry = g;]g ‘/)21 1%3 = —K3 = yK, Ky € Z. (264)

2

R, _R,
2

8If the spectral flow is an integer, such that s (or s — 1) is a multiple of &, this solution reduces to that
of [68]; see also [66, 67].
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The charge vectors of the two-charge circular supertube, (2.39), can be obtained by
taking the combined scaling limit s — 0, 41, ke — 0 with &1/s and R2/s held fixed; cf. (2.19).
To match onto the circular supertube in this limit, we place I'y at ¥ = 0 and I'y at ¥ = Zs.

If we were working in asymptotically flat space, the relation controlling the distance a
between the centers, (2.55), would be modified compared to that of the two-charge supertube.
However, since we are working in the AdSs limit, the relations (2.52) and (2.55) from the
two-charge circular supertubes carry over unchanged to the GLMT configurations.’ Note
however that since this configuration involves two GH centers, the 4D base is not flat [85].

The six-dimensional metric then takes the form of a more general rotating orbifolded
global AdS3xS3,

1 1 - 1
—ds? = — = cosh®pdi? + dp® + — sinh? pdi*
ns K2 K2

~ 1 \? 1. 2
+d62+c0s29(dw+sdt+s+d;g) +sin29<d¢—s+dt—8dgj) . (2.65)
K K K KR

The following large coordinate transformation maps this decoupled geometry to an orbifold
of global AdS3xS?, and is known as (fractional) spacetime spectral flow [69], see also [66-68]:

s~ s+1_ s+1-
wNS:¢+Et+7y7 Pxs = ¢ — t—

S
K K K

j. (2.66)

Flux quantization in the bulk, and quantization of momentum per strand (symmetric group
cycle) in the holographic CFT, impose the requirement that [69]

s(s+1)

€. (2.67)

Then, for k > 1, the coordinate identification § ~ 4§ + 27 induces orbifold singularities via
the identification [69, 86]

1
(gu Pxs, ¢Ns) ~ (Qa Pxs, ¢Ns) + 27 (17 i : ) _S> . (2.68)

K
Although the s — 0 limit of the multi-center charge vectors requires a careful combined scaling
limit, at the level of the six-dimensional geometry the limit can be taken straightforwardly.
2.6 Superstrata
2.6.1 General superstrata

The superstratum [5-15, 87, 88] involves adding excitations on the S% and left-moving on the
AdS3. The most general mode dependence consistent with supersymmetry involves

V20
Ry

U = (m ) 2 4 (k= m) 6 —m (2.69)

for some quantum numbers k, m,n that are non-negative integers with 0 < m < k.

9The parameter 7 in [69, 85] becomes equal to 1 in the AdSs limit in which we work.
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To perform the harmonic analysis one also needs the functions that govern the r and
f dependence:

n k
r a
Apn = | —— ) sin®=™ @ cos™ 0. 2.70

o, (\/r2+a2> (\/7"2—1-0,2 ( )

To describe the two-form fluxes we define an unnormalized basis of self-dual 2-forms on R*:

dr N do rsin 0

oW = do A d

(r?2 + a?) cos 0 x oY, (2.71)

dr Nd '

OO = " g ndp+tanddonde. 0 =T odondy.

r? + a?

The complete set of modes are then:
A m,n
Zymon = 1ty 7’“’2 = COS Vg, (2.72)
~ by
Ven = — 2Akmn{<(m+n)rsin9+n (m — 1> - ) QW sin vy, pn
[LAAS] ) 110y k TSlnH 3110y

+ <m (Z + 1) 0% 4 (7: — 1) nQ(3)> cos vk,m,n] , o (273)

d
an >

T sin

ﬁkm’n = \/§Ak7m7n [ OW sin Vkomn + (Q(Q) + 9(3)) cos vk7m7n} . (2.74)

These modes satisfy:
*4D 2Jk,m,n = D{ék,m,na Dx,D Ek,m,n = _{gk,m,n A d67 5k,m,n = *41§k,m,n7 (275)

and
Dﬂk,m,n = 07 ﬁk,m,n A d/B = 07 ﬁk,m,n = *479k,m,n7 (276>

and so the general solution to the first layer of the BPS system, (2.33), can be built out
of superpositions of the modes.
In particular, the superstratum involves using the Ansatz [11]:

@, R 1 ~ (4) -
Zl = i + QQy Z b’(ﬂl)»mlynl Zk17m17n1 ’ Z4 = Z bklymhnl zkl,ml,nl )
5 kimim k1i,ma,n
ZQ = % R @1 _ 0,
4 _ (4) 3 (4) -~
@ - Z |:bk1,m1,n1 19’“1””1:”1 + Ck1,m1,n1 ﬁklaml)nl} ’
k1,m1,m1
R ~ ~
2 _ 1y (2) (2)
@ o 2 Q5 Z |:bk1,m1,n1 ﬂkl»mlynl + Ckhmlynl 79k1,m1,n1} ) (277)
k1,mi,n1

The final layer of BPS equations, (2.35a) and (2.35b), can then be solved provided that
some of the Fourier coefficients are locked to one another through “coiffuring conditions” [7,
8, 10, 11, 87]. These conditions determine the modes of (Z1,©?%) in terms of the modes
of (Z;,0%), and the latter are unconstrained [11]. Thus the most general superstratum is
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parametrized by two arbitary functions of three variables that are encoded in the Fourier
(4) (4)

k1,m1,n k1,mi,ny”
that the function, F, and angular momentum vector, w, are determined in terms of quadratics

coefficients b and ¢ The end result of solving the last layer of BPS equations is
in these two sets of Fourier coefficients.

We have been rather cursory in our discussion here because the details of all the actual
modes are going to wash out of the effective superstrata, and the only details that will
survive are the components that are independent of all three Fourier angles: (v, ¢, ). Such
terms appear as the “zero modes” in the squares of each of the Fourier series that contribute
to the sources in (2.35a) and (2.35b). These feed into the zero-modes of the momentum
function, F, and angular momentum vector, w. We will not need the detailed solutions for
these quantities: what is important is how they localize within the geometry and this can be
inferred from their sources in (2.35a) and (2.35b). From our discussion it should be evident
that this localization is controlled by appropriate squares of (2.70).

Indeed, because the effective superstratum reduces to the contribution from the sum of
the squares of the Fourier modes, the essential features are well-illustrated by focusing on a
“single-mode” superstratum. As we will see, the effective superstratum reduces all the details
of the two arbitrary functions of three variables to a few quantum numbers. This is essentially
why the semi-classical entropy drops from Q%% to Q! in going from six to five dimensions.

2.6.2 Single-mode superstrata

Our primary focus is to see how high-frequency superstratum modes localize within the
geometry, and this is most easily demonstrated by restricting to a single Fourier mode. Here
we summarize the results of one of the analyses in [11]. The basic single-mode superstratum
starts from:

R, b1 3
7, = Q1 + Zokomon, Zo = %7 Zy = by Zlymn
» 205 b (2.78)
- R )
e =0, o2 — fuba 0! = by D -

= 2k,2m,2n>
2Qs

Note that the mode numbers of (Z3, ©!) are twice those of (Z,©%). Indeed the coiffuring
constraint requires:

by =b2. (2.79)

This constraint removes all the source terms in (2.35a) and (2.35b) that depend on vay 2m.2n,
leaving only terms that are independent of (v, ¢, ). In general, coiffuring removes all terms
that involve sums of frequencies, leaving the “beat,” or difference, frequencies.'®

The canonical normalization of the Fourier modes is given by defining:

—1 —1
b = (Z) (k“:_l) B2, (2.80)

One then finds that regularity at the original supertube locus requires:

QlQE):CLQ—i—}bQ

2
ag , (2.81)
R2 2

'9This has a nice characterization in terms of the holomorphic forms of superstratum waves [87].
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where we have introduced ag for later convenience. The conserved charges are given by:

m-—+n
2k

.1 .1
v, Jr=g R’ Ji—Jr=3R 2, (2.82)

QP: yk

The general expressions for F and w are complicated but can be found in several places (see,
for example [11]), however, all we will need is to observe is that, apart from overall constants,
the sources in (2.35a) and (2.35b) are proportional to

2 n 2 k
r a . (ke
A%,m,n = Aopom2n = (r2 n a2> <r2 n a2> sin?®=m) g cos?™m g . (2.83)

It is useful to note here that for b = 0, one has @p = 0, and the solution reduces to
the AdSs x 52 of the supertube. As one increases b, and hence @Qp, one must decrease a in
accordance with (2.81). In the dual CFT this reflects the “strand budget” constraint that the
total strand length must be equal to nins. As b increases, the geometry develops a capped
AdSs x S throat as studied in [7, 8] and depicted in figure 1. For b >> a, this throat becomes
very long and there can be a large redshift between the top and bottom of the throat. The
story is the same in general superstrata with b? replaced by a weighted (as in (2.80)) sum
of squares of all the Fourier coefficients of the momentum modes. The AdS, scaling of the
geometry as a function of b/a is the superstratum analog of the scaling solutions discussed
at the end of section 2.2. This structure will be important throughout this paper and we
will return to the issue of the depth of the throat in section 7.

3 Effective superstrata

3.1 The averaged geometry

One can, in principle, average over all the fluctuations of a superstratum, but if one wants
to preserve the generic five-dimensional structure of the solution one can start by averaging
over the y-dependence, or, equivalently, the v-dependence. To that end, define:

X L™ v ! VAt Xd 3.1
= = vU. .
= 5w, /0 Y= V2R, /0 (31)

Since everything is periodic in v, such averaging of equations of motion kills the terms that

are pure v-derivatives, and the BPS equations (2.33) and (2.35) reduce to:

(©h), =+ (®" . d(e) =0, I=12/4
J*4 CZ<ZI>U :_<@2>v/\d’8’ d~*4 J<Z2>v = —<@1>U/\d5, d*4 J<Z4>v = —<@4>v/\d6,
(3.2)

and
dw + *4dw = <Z]@1 + 22@2 —2 Z4@4>U - <‘F>'U dﬁ’

>I<4Ci *q Ci ( - % <I>U> == *<Z.122 - (2.4)2>U — % *4<@1 VAN @2 - @4 VAN ®4>1} . (33)

Note that we average over harmonic functions, and their sources, rather than over metric
coefficients or gauge potentials, which involve non-linear combinations of harmonic functions.
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This prescription for averaging preserves the BPS property, and guarantees that the averaged
geometry is a solution of the field equations. As we described in section 2.6, the equations
for the Z; and ©! are all linear and homogeneous, the solutions are all expressed as Fourier
modes in v, and hence the averages of Z; and ©! reduce to the zero modes with respect to v.

Similarly, the expansions on the right-hand sides of the equations for F and w can be
expressed in terms of Fourier modes, and the procedure replaces these by their averaged
values. It is these averaged sources that create the non-trivial angular momentum in w,
and the non-trivial momentum charge in F. In general, these sources will involve factors of
Az’m’n, which will act as bump functions, reflecting the distributed sources of momentum and
angular momentum. As we will explain in section 3.4, for large values of k, these functions
become highly localized and in such effective superstrata one can replace the bump-function
sources by d-functions that carry the corresponding charges.

As described in section 2.6, the standard superstratum [5, 8, 11] has R* as the base
geometry and ©! = 0, 9,75 = 0, while ©2 is purely oscillatory. The BPS equations (3.3)
can then be recast as

dw + *4JUJ = —2 <Z4@4>U B <‘F>v g,

~ ~ 1 . 2 1 4 4 (3'4)
adegd (=5 (F),) = ((Za)), + 5 = (0" nOY), .
From this one can see that the only non-trivial averaged sources in (3.4) come from Z4 and
©4, which encode the NS-NS fluxes sourced by the open-string excitations.
If one uses the five-dimensional expressions (2.31) and (2.32) and the relation between
five-dimensional and six-dimensional self-dual fluxes in (2.36), one can recast (3.3) as

dk + +4dk = —= (210" + 2,0 + 2 Z5dB — 2 2,0%)

Sl

(3.5)
< sy . 1
V%4) <Z3>v = — ¥ d *y d<Z3>v — <Z(1)Z(2) _ (Z4)2>v 4 5 *4<@1 A @2 o @4 A ®4>v’

and we can see that the equations governing averaged solutions reproduce (upon flipping
the sign of Z4) the five-dimensional BPS equations (2.8).

Finally, note that we have focused on reducing the geometry to an effective superstratum
in five dimensions by smearing over the v-circle. However, if we consider a solution in which
the base metric, ds?, is actually a Gibbons-Hawking (GH) metric, it can also be convenient
to average fields over both v and the GH fiber, 1). We therefore define:

1 4T ﬁTrRy
_ d / dv X . 3.6
4\/§7T2Ry /0 v 0 Y (36)

The result may then be thought of as an effective multi-centered solution defined on the

(X)yi

three-dimensional base of the GH metric.

3.2 Five-dimensional effective superstrata

Since one has averaged over the v (or y) circle, the effective superstratum can be realized in
five-dimensional supergravity but not as a smooth solution: there will be singular sources
for the supertube and the momentum. This means that we need to carefully analyze the
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regularity of the solution from scratch. We start from the harmonic functions that define the
five-dimensional solution and then show how they are obtained as an effective description
from the six-dimensional solution.

The five-dimensional solution starts from the two-charge supertube solution described
in section 2.4, with V and K®) given in (2.38) and (2.43), and we now add a third center

with a singular momentum source:

L1:1+@, L2:1+92, L3:1+C?P, L,=0, (3.7)
Ts Ts Tp
where we define
Fp =17 — Tpl, Zp = (po cos o, po sin gy , 20) - (3.8)

The charges, Ql and Qg, when suitably normalized, will be the D1 and D5 charges associated
with the supertube, while QP will be the singular source of the momentum charge of an
effective superstratum placed at a separate point Z». The constants in L; have been chosen
so that the eleven-dimensional geometry goes to R*! x TS at infinity.

In the same vein, we take the angular momentum harmonic function to have possible
sources at the supertube and at the momentum source:

M = 4 [s T (3.9)
s 7p
With K given by (2.41) and K* = 0, and using the foregoing L; and M, we have:
Zi=1+9 . z= 1+ L Zy= 1+ %

s s . o (3.10)

Zy=0, uzﬂ‘g(f—1)<1+€2‘°)+ﬂfs+%+m(°’-

2 \7g Tp T Tp
For regularity at infinity, we require p — 0 as # — oo, and this means that

m© = 0. (3.11)

One can use the bubble equations (2.20) to ensure appropriate regularity conditions,
but it is also easy to follow [79] and check directly. At the origin, the absence of CTCs
requires ¢ — 0 as # — 0, and hence:

—@(@3+1>+%+”}P:0. (3.12)
2 \[Z5] a |Zp|
We use this to solve for mp:

. R3 A T Rsa

hp = ?3QP 4! &P‘ (; - m5> . (3.13)

Regularity of the metric at the original supertube locus means that the coefficient of
(di) + A)? must be regular as #s — 0. This requires:

lim 72 [Z3 (K@) -2, VK® £ PV] =0. (3.14)

rs—0
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Finally, if the solution to (2.12) leads to Dirac strings in w then the solution will have CTCs.
Removing the Dirac strings at the supertube requires:

lim 7g [Vyp—2Zs K®]=0. (3.15)
'IA’sﬁ)O
These two equations are precisely the constraints imposed by the bubble equations, and
they give:
A A ) 20
Q1Q5=2/%3ms=/%3&[%3<cgp+l>— e (3.16)
|Zp| |Zp|
and . o
91
_Or My @iy (3.17)
|Zp —&s|  Rsa k3 a

While we are allowing a singular momentum source, we must make sure that there are no
CTCs at this source, which means that there must be no Dirac strings ending at the source.
Using the second expression in (2.12), the absence of ﬁ% sources leads to the condition:

i g Q 1 1
me | FsQr ( ) ~0. (3.18)

| 2 \|Zp —Z| ||

This last equation, which is the third bubble equation, is satisfied as a consequence of (3.16)
and (3.17), which is to have been expected as a Dirac string must begin and end somewhere,
and we have already eliminated all other possible ends for the Dirac string.

We will satisfy all these regularity conditions by taking &3, Ql, Q5 and Q p as fundamental
parameters with g and mp determined by (3.13) and (3.16):
Q1 Qs . k3 { A <Q1Q5 _1”

) mp = 9 Qp — |-TP‘ /%%d

(3.19)

and where the positions of the charges, @ and ¥p, must satisfy the constraint (3.17).

3.3 Charges, positions and peaks

The supergravity charges of the solution can be read off using the results in section 6.4
of [3].1' First, the electric charges are given by:

Qi=4Q:1, Qs=4Qs, Qp=4Qp. (3.20)
The angular momenta can then be read off from the expansion of u at infinity:
1 . N X~
,LLNQ(JL—FJRCOSH)—%.... (3.21)

where cosf = % in the cylindrical polar coordinates (2.37).

One then finds:

Jr=4ksa,  Jp=8(mp+ihs). (3.22)

"Note that in that paper J;, denotes the angular momentum along the R® base of the solution, which is
denoted by Jr here.
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Using (2.52), (2.54), (3.19) and (3.17) we therefore obtain:

-1 9 1 Q1 Qs
JRzﬁmRya , JinnRy m2R§

(el - 7n - 7)) (1- 22 )] (323)

a K2 R2 a?
and the constraint in (3.17) becomes:

Qp 105

4|Zp —Zs|  K2R2a? a

1. (3.24)

From (2.52), one sees that
4(|Zp — 5| — |¥p|) = a® cos(20p), (3.25)

where 0p is the coordinate of the singular source. It follows that

s s 2 @1Qs 2
—Jrp= -1 Op . 2
JL JR /{Rya (52R§a2 > cos™ Up (3 6)
The constraint, (3.24), can be written
@Q1Qs5 ) 2 2 2
= -1 0p). 3.27
Qp (HZRZZJ a2 (rP +a” cos P) ( )

The important point is that these last two equations determine the location, (rp,0p) of
the singular source in terms of the conserved charges, Q1, @5, Qp, J L Jr and the positive
integer k3.

We now equate these charges to those of the single-mode superstratum with winding
number one (kg = k = 1) and use (2.81) and (2.82). One then obtains:

1 m

1 A N
5 1ty b? cos®Op = J, — Jp = 3y 7 b?, (3.28)
b s o (m+mn) o
9 a2 (rp+a“cos”p) = Qp = TR (3.29)
and hence
m n
cos? Op = T r2 = T a’. (3.30)

Note that, from the five-dimensional viewpoint, the quantum number & is not something
directly visible as the coefficient in the harmonic functions (3.7), (3.9) but a parameter
inherited from the six-dimensional modes and introduced via (2.82). In five-dimensions one
can only see the coarse-grained data 7 and 7.

On the other hand, the function that localizes the superstratum excitations, and gets
squared in the averaged source function, is:

n k
r a
Apn = | — ) sin® =™ @ cos™ 0. 3.31

o, (\/r2+a2> (\/7"2—1-(12 ( )

Differentiating this with respect to 6 and setting the result to zero gives

cos? 0, = % . (3.32)
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Similarly, locating the peak in r gives

(3.33)

Comparing (3.30) with (3.32) and (3.33), one sees that the regularity conditions of the
effective superstratum localizes the singular source exactly at the peak of the bump function
of the superstratum wave in the exact solution. In particular, we see that the momentum
and angular momentum of the superstratum are effectively moving away from the actual
supertube locus. This is what we mean by momentum migration.

The foregoing analysis is, in principle, sufficient for showing that, upon averaging over
the v direction, the six-dimensional superstratum reduces to the five-dimensional multi-center
solution, giving effective localized source terms for momentum and angular momentum. In
the next section 3.4, we explicitly demonstrate that the six-dimensional superstratum solution
gives a delta-function source with the correct strength on the right hand of the second-layer
equation (3.5) in the limit where k ~ m ~ n > 1.

It is useful to underline the change in perspective created by going from the full six-
dimensional superstratum to the five-dimensional effective superstratum. In scaling solutions
in five dimensions, we require (2.24), which for the superstratum means a — 0. This
necessarily implies that Jr = % /-aRya2 is becoming small. On the other hand @ p and J, can
remain large. Indeed, recall that J;, is given by (3.22) and note that we can re-write (3.19) as

. 1 o [ Q1Q5 . 1 2 [ @1Qs5
8m5:§HRya (/W)’ SmP:§/£Rya (KW—1> COS20P. (334)

In scaling superstrata, the quantities in parentheses are large, ~ Z—z. Thus, from the
five-dimensional perspective, the supertube center has a very large Jy, (compared to Jg), that
grows with 2—2. However, one also has 0 < 0p < g, which means that the momentum center
has a Jp, that can be positive or negative. Indeed, for fp = 7 this angular momentum almost
cancels the angular momentum of the supertube, as is evident from (3.28) and (3.30).

From the six-dimensional and CFT perspectives, Jr and J r of the supertube are being
modified by trading maximally spinning modes (| ++) states) with density modes (|00) states).
One therefore would expect J;, = Jp for such a supertube. However, the momentum-carrying
density modes can be non-spinning (L™, |00) states), or spinning even more strongly (J,"|00)
states). This leads to the dependence on fp, or 7.

In the scaling solution, the five-dimensional supertube center, somewhat counter-intuitively,
has J;, > Jg, while the momentum center also carries a large Jr, that can add to, or almost
cancel the total J, of the system. The six-dimensional picture is faithfully reproducing the
CFT, while the five-dimensional effective theory migrates the momentum excitations, and

creates a somewhat counterintuitive split of Jr, between the centers.

3.4 Delta function sources for the effective superstratum

It is instructive to see how the v averaging, and the large mode number limit, of the
superstratum solution gives rise to a delta-function source with the correct strength on the
right hand of the second-layer equation in the large quantum number limit.
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If we substitute the six-dimensional single-mode superstratum data given in (2.78) into
the averaged second-layer equation (3.5), we find

. 1
Vig(Zs)y = —((Za)"), = 5% (O NOY) = —bl 0 n AL (r0),  (3.35)

where we used the fact that ©! = 0, 9,7, = 0 in the standard superstratum [5, 8]. The

function f(r,#) is found to be

(k —m)?n2% + k(m + n)(k(m —n) + 2mn)r? sin® 0
k2r2 (r2 + a2) Y sin? 6 cos? 6 )

f(r,0) =2 (3.36)

As we saw in section 3.3, the function Ay, ,, appearing in (3.35) has a maximum at (7, 6)
satisfying (3.32) and (3.33). The expansion of Ay, »(r,8) around that point is

« 1 1
Ak (r,0) 2 Ak eXP | =3 yr— (r=r)? =3 Bro (0 —0.)?], (3.37)
where
k—m m n
(k—m) 2 mz2n2 E+n , 1
i = A mmn — " a79 9 B mn — <3 - .
b em 0 e Tyt ko = op (3.38)

S0, Akmn is very sharply peaked (Ag ., < a2, Bimn < 1), and can be regarded as a
delta function if

k~m~mn>1, (3.39)

where k ~ m ~ n is required for the position (r,,6,) to remain finite.
In order to find the strength of the delta function, one can integrate the right-hand
side of (3.35) over RY. We find
—(27)%b3 1, [ (r, 0) S 7 sin 0 cos 0]

k,mmn

, / drdf Aok om 2n(1,0) = —472Qp, (3.40)

Ty

where (27)2 is from the ¢, integrals and X rsinfcosf is from the volume form of the
metric (2.46). We also used relations such as

2k? .
f(re,04) = e /de@ Aok omon & 27T\/A2k,2m,2n32k,2m,2n A5k om,2n
3.41
R~ Qp k2 (k + n)ktn (3:41)
,m,n

/(& — m)(k + i (m + ) (b — m)=mmmp”

where we can derive the last expression from (2.82) and (2.80) using Stirling’s formula.
Comparing (3.35) and (3.40), we find

/R4 d'w Vi (Zs), = —47°Qp. (3.42)

Because of the relation (2.9) between four-dimensional and three-dimensional bases, this
implies that Z3 has a pole with the correct coefficient:

QP:@

4fp rp '

(Z3), ~ (3.43)
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Namely, in the large k, m,n limit, the superstratum wave localizes in r, 0, and is effectively
described by a pointlike center in a five-dimensional multi-center solution.

To be more precise, because the superstratum wave is a plane wave delocalized along
the ¢, directions, the center in the three-dimensional base is also delocalized along the
azimuthal direction ¢. To obtain a harmonic function localized in the ¢ direction as in (3.43),
in six dimensions, one would have to take a superposition of the superstratum wave (2.78)
with different values of £ and m to localize the wave, which should be possible for k,m > 1.

4 Geodesics and wavefunctions

In the WKB limit, supergraviton wavefunctions localize along null geodesics. We can
understand the localization of the modes Ay, ,, of (2.70) at large k, m,n by studying BPS
null geodesics in the underlying supertube geometry. Similarly, the F1-P solutions of section 6
will follow from the underlying group symmetry.

In section 2.5, we reviewed the fact that in the AdSg limit, the GLMT geometry is an
orbifold of the group manifold SL(2,R) x SU(2), together with a spacetime spectral flow
large coordinate transformation, (2.65)—(2.68).

The null geodesics in the AdS3 GLMT solutions can therefore be studied by first
performing an analysis of null geodesics in SL(2,R) x SU(2), then implementing the orbifold
quotient, and then making the fractional spectral flow coordinate transformation to go back
to the rotating spacetimes (2.65).

In this section, we consider such null geodesics on the SL(2,R) x SU(2) group manifold
and reproduce the features (3.32), (3.33) of the Ay, . We then show that these functions
are simply the BPS harmonics (Wigner d;p,»-functions) on the group manifold, from which
it is straightforward to understand the localization in the large k limit.

Passing to fundamental strings on the group manifold, a classical worldsheet spectral
flow transformation in the WZW model on the group turns the BPS geodesic trajectories of a
massless particle into primitive winding strings, which are the classical limit of the quantized
string worldsheet states analyzed in section 6.2 These transformations “spin up” the string
along a combination of the worldsheet coordinates, typically yielding a string trajectory that
winds around a particular cycle in the (y, ¢, 1) torus of the target SL(2,R) x SU(2) spacetime.

These solutions will be reproduced by yet another approach in the S-dual R-R flux
background in section 5, by considering the bubble equations that arise when the back-
reaction of the string is taken into account.

4.1 BPS geodesics and classical strings on SU(2)

At high momentum, string wavefunctions are concentrated along semi-classical trajectories,
which are geodesics on the group manifolds SL(2,R) and SU(2). We follow the recent

2Thus we consider the NS5-F1 duality frame S-dual to that of the previous and following sections, so that
we can use string worldsheet methods. The round NS5-F1 supertube admits an exact worldsheet description
as a gauged Wess-Zumino-Witten model [21], or as a group orbifold [89], and so we can compare classical
probe properties to corresponding string vertex operators, as we do in section 6.
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discussion in [29]. Consider SU(2), parametrized by Euler angles
L ilo—b)as/2 i [2-0)0s —ilorwios2 _ (€ OsinO  eVeosh) (4.1)
—e W cosf e?sind
(4.2)

gsu =
Classical solutions to the WZW model take the form
9(2,2) = ge(2)gr(2) ,

(4.3)

where 2,z = £y £ & are worldsheet coordinates. The classical solution
,iz//zo'g/27 gr(z) _ 6—iy’20’3/2

9e(2) =
describes geodesic motion along the ¢ circle at § = 7. One can then rotate this to some
(4.4)

= —iv'zZos /2 e—iaﬁ.a1/2

/ 2 3 12 5o /2
¢ / € v 3/ 9 g7 (2)

ge(z) = e
The SU(2) conserved charges of this geodesic motion are

£="07y [0g0g~1] + %Tr (0909~ 15 (V)2

S Te[(9g)g 03] = 7 v/ cos(ar),

g3 = U
5
- ins 1,53 ns
J3 = —TTr[g Y(9g)o3] = ——=2 1/ cos(al);
in the quantum theory, these quantities are related to the (half) integer quanta j',m’ m’
(4.6)

of SU(2) representation theory via
!/
/
Qy), N
@. 7

m
le—COS
J

(4.7)

/
/

We will be interested in BPS trajectories associated to lowest weight states on the right,

and so we set a). = 0. One then finds the geodesic motion
o o . 4 .
e" W cos It —ietC0sin

o o |-

et'% cos St

’
. g ) . «
—ie 2”5081117"

9(&o) = (

Comparing this matrix to (4.1), one finds a trajectory that sits at a fixed value of
(4.8)

—cos B, = cos(ay/2),
(4.9)

1
)
Z and corresponds to waveforms

or in other words
2

The geodesic (4.3) with o) = o, = 0 sits at the pole § =
4

with m" = m’ = —j
o7 -



The unitary range of allowed values is 0 < v/ < 1,3 while 0 < O‘Z,r < m code m’';m’ (or
rather coherent states).'* In particular, a) = 0 corresponds to m" = —j’, and the solution (4.3)
corresponds to the lowest weight state. Holding o = 0 and dialing ) coherently excites
larger values of m’, resulting in circular trajectories concentrated at fixed latitude lines (4.9).

Combining (4.9), (4.6), and using m’ = —j" + m, one identifies

/!

1
%, =3 (r;, + 1> = cos b,. (4.10)

4.2 BPS geodesics and classical strings on SL(2,R)

Similarly, for AdS3 one has the Euler angle parametrization in terms of global coordi-
nates (7,0, p)

g = ei(r+0)os/2 jpor i(r—0)o3/2 _ ( eTcoshp € sinhp ) _ (4.11)

e “sinhp e " coshp
Highest weight states in the discrete series representation of SL(2,R) correspond to geodesics
ge(z) = B2 g(2) = L, (4.12)

The matrix gq is diagonal, and thus the geodesic sits at p = 0, the center of AdSs, running
up the time axis at a velocity v.
The boost transformation

ge(Z) _ ea401/2 6@'1/203/27 gr(g) _ eiu203/2 ea70'1/27 (413)
leads to a geodesic trajectory with the SL(2,R) conserved quantum numbers

£ = —%Tr[@g@g_l] - %Tr[égég_l] S V2,

2
3 — %Tr[(ag)gflﬁ] = % v cosh(ay,.), (4.14)
J3 = %Tﬁf[g‘l(ég)%] = % v cosh(ay);
Again we have
j= @;4 E ~ cosh ay, @ ~ cosh ay , (4.15)
2 J J

with a, = 0 for BPS geodesics. Multiplying out the group elements (4.13)

HV Gosh % ¢~ ginl 2 ) 7 (4.16)

9(&) = <6+i1/§0 sinh & e~ cosh &

13The unitarity bound for quantized strings on the SU(2) and SL(2,R) group manifolds is seen in the
classical theory as a bound on stationary solutions — when the momentum exceeds a particular value,
the Lorentz force of the background B-field exceeds the string tension and pulls the string apart. See for
instance [24] section 5 for a discussion.

Y The classical solution corresponds to the limit of large ns, with v/ held fixed, and so does not distinguish

between (v/)? = (%)2 and (/)2 = %;ﬂ
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one finds that the geodesic sits at the fixed radial position

1
cosh p, = cosh(ay/2) = p. = 5 o (4.17)
To compare to (3.33), we recall from (2.56)
" — sinh p. (4.18)
a
Combining (4.17), (4.15), one identifies (for D representations with m = j + n)
n 1 /m
— — (= —1) =sinh?p,. 4.19
2 2 (j ) =sus (419

4.3 Wavefunctions

The eigenfunctions of the scalar Laplacian on the SU(2) group manifold (Wigner functions)
reflect the foregoing semi-classical features. These (unnormalized) wavefunctions are

Djrmi (0, ¢, 4p) = =™ (O40) =i O=0) g, s (6),

djrev (0) = (cos 6)*(sin H)qu(a’b)(H), (4.20)
q
Pq(a,b)(e) _ Z <q + a> (q + b) (sin 0)2;)( cos 9)2q—2p7
—\a—p/\ p

where a = |m" —m'|, b = |m' + m’|, ¢ = j' — p, with g = max(|m’|, |m’]).

For the BPS states, one has m’ = —j' (o} = 0) and thus p = j/, and the sum over
p in the Jacobi polynomial Pq(a’b) collapses to a constant since p = ¢ = 0. One then has
a=m'+j" =m, b= j—m' = k—m; the trigonometric polynomial d;/mm (#) has a single
peak at 0, = 0, = 0_ determined the value of m’ given by o} via (4.9), (4.5).15 The
resulting wavefunctions are simply the §-dependent factors in Ay, eq. (2.70). At large
j', these are just the WKB wavefunctions associated to the classical trajectories (4.4), (4.8).
A representative such wavefunction is plotted in figure 2.

The eigenfunctions of the scalar Laplacian on AdS3 again reflect the properties of the
geodesics. The S3 and AdSs metrics are related (up to an overall sign) by the analytic
continuation

(g —0)— —ip, ¢— -1, Yoo+ g (4.21)

The discrete series representations of SL(2,R) result from the continuation of the SU(2)

representations if we let

j—=—=j, m—=m m—=m m-—=n (4.22)

(in particular m" = —j' + m maps to m = j + n). The lowest weight state wavefunction
of the SU(2) representation of spin j’ continues to the lowest weight state wavefunction
of the positive discrete series Dj+,

e_Qij,‘f’(sin 9)2j/ . e—QijT(COSh p)—2j’ (423)

'51f one were to consider non-BPS waveforms, the Jacobi polynomial would be non-trivial, having several
nodes corresponding to a standing wave that oscillates back and forth in the effective potential for  (similarly
for p).
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Figure 2. Example of the #-dependent part of a Wigner function, d;j/mms(6), for SU(2). For |m’| = j’
or |m’| = j/, the wavefunction is peaked at a particular polar angle ,, and has a width of order 1/+/7’.

and the fact that the raising operators map from those of SU(2) to those of SL(2,R)
guarantees that the rest of the wavefunctions (4.20) continue appropriately from SU(2) to
SL(2,R). The continuation of j means that the representation has no highest weight. In
particular, for j—1 = j' = 2k, m = j and m = j+n, one finds, using (4.18), the r-dependent
contribution to Apgpy,, defined in (2.70).

The highest weight wavefunctions (4.23) exhibit the narrowing of the spread of support
as j,j grow large. The width is of order 1/4/j in units of the AdS3 curvature radius for
the SL(2,R) harmonics, and 1/4/57 in units of the S3 radius for SU(2) harmonics, as one
sees for instance from (3.37), (3.38).

With the identification (4.18), and the mass shell condition j ~ j’ for massless wave-
functions (with O(1) shifts depending on the polarization state that are irrelevant in the
semi-classical limit), the wavefunctions (2.70) are none other than the Wigner functions (4.20)
(and their SL(2,R) continuations) that are BPS on the right, m" = —j" and m = j. The
spectral flow (2.66) that maps the factorized SL(2,R) x SU(2) group manifold to the AdS3
limit (2.57) of the GLMT geometry only mixes the coordinates 7,0, ¢, 1, hence does not
alter the location of the wavefunctions/geodesics in p, 6.

These wavefunctions are then related to the massless geodesics with v ~ v/ for the classical
solutions (4.4), (4.13) in the WKB limit of large j, ’. The BPS condition sets o, = . = 0,
and thus from (4.17) p, = 2oy, and from (4.9) 0, = 3(7—|}|); the wavefunctions are thus
strongly peaked at these values. From (4.5), (4.14) we identify

m = %V/(l — cos 042)7 n = %I/(COShO@ — 1) (424)

Of course, these values are none other than those found by differentiating the waveforms
to find their peaks, equations (3.32) and (3.33).
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4.4 Spectral flow to generate winding strings

The classical version of SU(2) spectral flow spins the string trajectory around the center-
of-mass geodesic motion (4.2) according to [24]

g (2, 2) = e 702G, (2) g, (2)e T E 08/, (4.25)

This transformation creates a string winding along the various Euler angles ¢, (and
correspondingly o for SL(2,R) spectral flow). In general w’ # @', in which case spectral flow
extends the string along both Euler angles ¢ and 1 in a correlated manner; for w’ = w’, the

string winds only along ¢; while for w’ = —w’, the string winds only along 1. For BPS states
on the right, we have m’ = —j’ and so a/. = 0; the spectrally flowed matrix gy, is
e—il2V/ '+ ) o+ (w' —0)61]/2 g % il —w! + Yo — (w'+3")€1]/2 gy %
—e_i[(QV/_wl+w/)£0_(w/+w/)£1]/2 Sin %2 ei[(2’/,+w/+w/)£0+(w/_“7l)§1]/2 CcoS %2 ’ <426)

where again z = & + &1,z = & — &1.
Similarly, spectral flow in SL(2,R) is the transformation

g(w)(z,z) _ eiwz03/2g£(z) gr(z)eiwéagﬂ; (4.27>

the left /right transformations are equal because the timelike direction is non-compact. The
result is the matrix (4.26) with the primes dropped, w = w, and trigonometric functions
replaced by hyperbolic functions according to (4.21).

Processing this solution through the coordinate transformation (2.66) and noting that

16

the BPS condition also imposes w’ = w,'® recalling that the Euler angles in section 4.1 are

actually ¢ys, ¥ns, one finds the classical string trajectory

¢ =+((2s +Dw +w') (& + &),

Y =—(2s+ 1w +w)(& + &), (4.28)
o= —v§ +wéi,
7= (v +w).

Strings with w # 0 are AdSs giant gravitons which puff up along the azimuthal direction
parametrized by o as they evolve along the cap time coordinate 7, which because of the
mixing of coordinates (2.66) in the background also extends along S2, while those with w’ # 0
puff up along S2. A key feature of these spectral flow transformations is that, while they puff
up the string by making it wind the various Euler angles in the geometry, they do not move
its location in p, 0; it remains at the location py, 0., given respectively by (4.19) and (4.10).

Furthermore, the center-of-mass wavefunctions don’t change under spectral flow, and
thus wavefunctions of the quantized winding string states remain the same Ag,,, as one
has for the unwound strings.

16The latter follows from the worldsheet physical-state constraints, to be discussed in section 6.1.
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Figure 3. There are three centers corresponding to the center of space,“(1)”, a supertube center,
“(2)?, and the momentum center, “(3)”.

5 Effective description of momentum waves and supertube probes

In section 3 we saw that averaging the superstratum led to a five-dimensional effective
description with three Gibbons-Hawking centers: the two background centers which describe
the seed two-charge circular supertube, and a momentum center coming from the superstratum
mode. The position of the momentum center in the Gibbons-Hawking base exactly matches
the position of the maximum of the function that describes the superstratum mode in the
full six-dimensional solution.

One can also use this philosophy to obtain effective descriptions of the string excitations
on AdSsz x S% x T* geometries. We will treat both F1-P probes in the GLMT geometry
sourced by purely NS-NS fluxes, and the S-dual situation of D1-P probes in the geometry

sourced by R-R fluxes.!”

We will also take the three-dimensional perspective developed
in [43—46] in which the bubble equations are integrability conditions of four-dimensional
multi-center solutions. In more practical terms, this means we will focus on the geometry

of the R? of the GH base space.

5.1 Adding a momentum center to the round supertube

In order to explain the philosophy of the computation in a simple context, we first revisit the
solution analyzed in section 3.2, which amounted to adding a momentum center to the round
supertube. The conventions for the distances between the centers are given in figure 3.
We add to the round supertube solution, described by the two-center solution of (2.41),
a third center with a charge vector given by:
Tp = (0,(0,0,0),(0,0,Q%),7) . (5.1)

This center corresponds to the center (with a slightly different notation) at #p = 0 in (3.7)
and (3.9). In all, the charge vector of the centers at # = 0, #¢ = 0 and #p = 0, and the
asymptotic moduli vector are

T = (1,(0,0,—#3), (0,0,0),0),

r'® = (0,(0,0, 43), (Q1,Q2,0),m),

I'® =Tp = (0,(0,0,0), (0,0, Q%), ),
h = (0,(0,0,0),(0,0,1),0),

where we have dropped the 1’s in L and Ly because we are interested in AdSs asymptotics.

(5.2)

1"The NS-NS duality frame tends to be more appropriate in the regime n; > ns, while the R-R frame tends
to be more appropriate when ni = ns.
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5.1.1 A probe approximation

Let us first employ a probe approximation in which the momentum center with charge r'® is
much lighter than the other centers, and determine its position. Namely, we treat primed
charges ngm’ to be much smaller than other, unprimed charges. This corresponds to a
superstratum in the b/a < 1 regime discussed in section 2.6.2, where a light momentum center
sits in the AdS3 x S% background created by I'M) T(?), We will discuss the opposite regime
b/a > 1, where the momentum center is heavy and creates a long AdSs throat, in section 5.1.2.

In this probe approximation, the distance & between the two background centers is close
to its unperturbed value dg. We denote the change in a from the unperturbed value by
a@' = a — ag, which is of the order of the primed charges.

The bubble equations are given by:

1‘\12 1‘\/13 o F/13 F123
N =0 (5.3)
a b 2 b ¢

We put primes on symplectic products that are proportional to primed charges and are thus
small. The leading terms in (5.3) gives the unperturbed separation

o2 Qi
ao = — =

5.4
R R (54)
while the subleading terms lead to
s (a’> NG B 1 R LU (5.5)
2 \ap b C b
The asymptotic charges (3.20) are given by
Qu=4Q1, Qr=4Q%,  Q5=40Qs. (5.6)
The angular momenta (2.21) are given by
Jo=mait,  Ja=az o Jp=3,-0%  Fy 5.7
L =m+m, R= 0% =50 32R3+2a, (5.7)
where Z = (0,0,1). The (small) change in Jp by the addition of the probe center is
g =B (5.8)

which we interpret as the angular momentum of the probe. Then the bubble equations (5.5)
allow us to express the distances 13, ¢ in terms of the probe charges as follows:

b=ap—2, é=ap—2. (5.9)

Note that these distances are of order one, the numerator and denominator containing
primed quantities.
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Setting # — b in (2.53) and using the relation é = \/&2 + 02 + 2abcosf, we find the
position of the new center in terms of the six-dimensional coordinates r, 6:

a—bteé ) )

cos? 0, = r o Te=2-atb+e). (5.10)
a

Substituting (5.9) into these relations, we obtain the expression for the position of the
momentum center as a function of the physical charges:

1 Al Al A A
cos?f, =~ [1- 2 , r2 =2ay [ -1+ mAiﬂ?’QS . (5.11)
2 IR TR

It will be useful to express these in terms of quantized numbers. We thus convert the coefficients
of the poles from hatted quanties to unhatted quantized parameters, using (2.58) and (2.59).
We also replace ag by a, which is valid to leading order in the probe approximation, and
use 44 = a®. We thereby obtain

1 J! r2 1 J, —kn!
2 L * L D
0, = — , —=—--14——+. 5.12
CcoS 9 ( 7 > 5 5 < + 77 ( )

Importantly, we observe that all the moduli have canceled out of these equations, and the
position of the momentum-carrying center is fixed only in terms of quantized numbers.

To connect explicitly to the superstratum analysis, we now specialize to the background
of AdS3 x S3 with no orbifold singularities, and therefore set x = 1. Since we are in the
probe limit, we must specify the charges carried by the third center to be those of the single-
particle wavefunction on global AdS3xS? that arises in the small b/a limit of a single-mode
superstratum with mode dependence (2.69). The quantized charges of such a single-particle
wavefunction are (see [8, egs. (3.8)—(3.9)])

np=m+n, (5.13)
k k
J,=m 5 %:—5 (5.14)

Upon substituting these into (5.12), we find
cos? 0, = % , (5.15)

in precise agreement with (3.32). Similarly, substituting for the radial position, we obtain

n
—- = - 5.16
=2, (516)

in precise agreement with (3.33).
Thus, we see that for small b/a, the bubble equations determine the location of the third
center to be exactly at the location determined in section 3, as they should.
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5.1.2 The deep AdS; scaling regime

Next, we consider the regime of large b/a, in which the y-momentum and angular momenta
carried by the third center are no longer taken to be small parameters. We keep AdSs
asymptotics, but arrange a sufficiently large @ p so that there is a long AdSy throat in the
deep interior of the solution.

When the AdS, throat is very long, we have the hierarchy of scales (recall that ag
was defined in (2.81))

m-+n

’ b ~ al =440 > a, (5.17)

Q1 ~ Qs > Qp=

where the hierarchy between Q1 5 and @ p is to have an AdS3 region, we have taken m ~n ~ k

as in (3.39), and the remaining relations are to have an AdSy throat which is as long as it

can be, as predicted by the holographic CFT. We will discuss this further in section 7.
We make a mild genericity assumption that, in I''3, given by:

kQpR
= — @, (5.18)
2
we assume there is no cancellation between the two terms on the right-hand side. This is
to ensure that the ratio I''3/I'?3 is of order one, as we shall use momentarily.

The bubble equations (5.3) can be written as

2F12 2F13 I‘\lS F23
— — =1, — = =0. (5.19)
K3a k3b b &

We recall from (5.4) that ag = 2I'*2/#3. The first bubble equation then becomes

~ A~ 21‘\13
0 4 90 _ g NS, (5.20)
a b agk3

where v ~ 1 follows from the mild assumption above.

To have a long AdSs throat, we require a@ < dg. Then the first bubble equation implies
that b < @p. Then both terms on the left-hand side are much bigger than one, and we are in
a scaling regime in which the leading-order solution is obtained by setting the right-hand
side to zero. In particular, this imposes that:

a~b. (5.21)

Examining now the second bubble equation in (5.19), recall that the mild assumption
above implies that I''® ~ I'?3, This equation is already homogeneous. Then we see that

i ~bn~e<a, (5.22)

so all of the centers lie deep inside an AdSs throat. It is still possible to have a modest
hierarchy between any of the distances a, B, ¢, provided that any such hierarchies do not
compete with the hierarchy between a (say) and ao.

We now demonstrate that the expressions for the position of the momentum center
relative to the cap, (5.12), (5.15), and (5.16), are valid also in the scaling regime of large
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b/a. Physically, even though the solution is now scaling with a deep AdSs throat, the
microstructure is deep inside the AdSo throat in a region in which the cap can be described
as a deformation of global AdSzxS3.

In the scaling regime, the total right-moving angular momentum is small. It is useful
to write this as the sum of two large contributions of opposite sign, from the original two
centers and the momentum-carrying center respectively,

_ QIAQS L fs
2/<&3 2

A

R3 .
Jp="2
R=50

(@ — ao), (5.23)

such that the (large) angular momentum assigned to the momentum-carrying center is

L VP
Jéz;(a—ao)z

%(—&0) | (5.24)

Note that this quantity is not any contribution of the superstratum wave to the right angular
momentum, but is rather a book-keeping device.
To leading order, the scaling solution is given by:

R AF13 . AF23 AF23
b:—aﬁ, C:_bﬁ:‘f—aﬁ (525)

Also, remember that, by definition:
R3 .

r“:§%:—%, (5.26)

where we used the approximation d < dp. Then a direct specialization of (5.10) leads to:

%_1<_1+W>_1<_1+W>7
a 2 iz 2 —J!
1 s 42 1 !
2, _ _
(:030*2(1—1-1112 =3 l—j—/ ,

which are exactly the same formulae as (5.11). We reiterate that, since b/a is now large,

(5.27)

the primed quantities are now generically large. Using the results of [7], we have, in the

. 2 5
regime where % ~ a} = Q}g“’:
Y

m—+n
k
n1n5R§ a? B n1n5R§ 9 . n1n5R§ ( b2>

np = nins,

i = Qs 2 201Qs @0 201Q5 2 (5.28)

2 2 2
TSI () st st 1)
2Q1Qs k 2Q1Qs 20105 \ k2

where we extensively used a3 = % + a? and wrote the expressions to make explicit the round
supertube contributions plus the superstratum ones. To first non-trivial order, the relations
for the primed angular momenta and momentum are:
k
_m+tn m-3 / 1

np =~ —mns, Jp = s, Jp = —gmns . (5.29)
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Figure 4. The 3-center configuration with GLMT centers and a D1-P center. Here “(1)”, “(2)”, and
“(3)” label the centers; the quantities s + 1 and —s associated to the first two centers refer to their V
charges.

Using these relations, the position of the momentum center relative to the cap can be written
in terms of (k,m,n) so that we again have:
2
9 m r:e on
cos” O, = —, - =—.
Tk a2 k

We have thus obtained exactly the same relations in the deep AdSs regime as in the probe

(5.30)

approximation. This is as it should be, since the analysis leading to eq. (3.30) is valid for
general values of the ratio a/b. It is nevertheless satisfying to see how the result emerges from
a direct multi-center analysis, in both the probe regime and the deep AdSs scaling regime.

5.2 Adding a D1-P center to the GLMT background

There are two natural ways to generalize the foregoing analysis. The first is to take the
probe to be a two-charge D1-P supertube center. The second is to generalize the background
from the circular supertube to the GLMT solution (2.61). The analysis is similar, so we
shall proceed directly to the most general D1-P probe in the GLMT background. At the
end of the section, we shall specialize the analysis to the D1-P probe in the two-charge
circular supertube background.

As described in section 2.5, the supersymmetric three-charge spectral flowed supertubes
are the general two-centered bubbling solutions, with charge vectors given in (2.61). As
in the previous subsection, we add a third center, but now we take it to be a two-charge
supertube center with D1-brane and momentum charges (or F1 and momentum charges,
in the F1-NS5-P duality frame). We call this the D1-P center. This center is a singular
center in supergravity, but again this corresponds to a physical source in string theory. Our
conventions for the distances between the centers are given in figure 4.

We will be interested in matching to the worldsheet analysis in the NS5-F1-P frame in
section 6. For this purpose, it suffices to restrict the analysis in this subsection to the probe
approximation, in which the charges of the third center are small, as was done in section 5.1.1.
We write the charge vector of the D1-P probe center as

FDl—P = (07 (07 ’%/2) 0)7 (QAID 0) Qé)u m/) ) (531)

where the primed quantities are small. The primitivity condition for this center is

m = , (5.32)




or in terms of quantized charges, using eqgs. (2.63)—(2.59),

!
1
Jh = ”21:,2P € 5L (5.33)

Adding a third probe center (5.33) can back-react on the background charges (2.61) by
changing them. Part of the change can be determined by requiring that the total charges
in K! remain unchanged by the addition of the third center. This is because these charges,
given by the sum of pole residues in these harmonic functions, are quantized Page charges
that cannot change under smooth physical processes [90]. This fixes the charge vectors
', 1® to the following form:

) = <s +1, ( — Ry, —ho — (s + 1)), —%3>,

(_ (A]1+(S+1)/23/2/%3 do ds + (8+1)I2:/2/231) m—f—(s—i-l)Aél%ll?&g)
y P} )

I

s+1 Cs4+1 s+1 2(s + 1)
N N N N éll + S/%/ /%3 €|2 Q3 + 8/%1 /%/ m + 8/%1 I%, /%3
r® — <s, (ﬁl,ﬁg +s;~;’2,/§3>, ( . 2 o - 2>7 52 2 ,
I® =Tpip = (07 (0, 5,0, (Q1,0, Qé),m’>, (5.34)

h = (0,(0,0,0),(0,0,1),0),

where the §; were defined in (2.62). In fact, there is an apparent arbitrariness to shift the
second dipole charge in I'1 2 above so that the total dipole charge vanishes, but this has been
fixed by the following argument. Between the two background centers, there is a non-trivial
S? through which there are fluxes

L(1 (2

II; = £ — £ (5.35)

) 42
that cannot change by the continuous process of bringing in a third center. Requiring that
these fluxes remain unchanged fixes the arbitrariness. Alternatively, one can require that
we should compensate the addition of the D1-P center by a gauge transformation of the
initial centers, which also fixes the arbitrariness.

Let us determine the position of the probe center using the bubble equation (2.20) in the
probe approximation (see figure 4 for our convention for the distances a, 13, ¢ between centers).
As before, we write a = ag + @’ where @’ is the small change in the distance by the addition
of the probe from the unperturbed value dg. The bubble equations are

F12 F/12 F/13 i F/13 1‘\/23
LA N A Syt (5.36)
a a b 2 b c

where we have split the inner product into the zeroth and first order terms in the probe charges,

as I'?2 = <I‘(1),F(2)> = T'{? + T"'2. Note that I''® and I'"*® have no zeroth order term. By

comparing the zeroth and first order terms of the equations, we find the unperturbed distance
R1 ko

@ = s2(1+ )2’

(5.37)
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and the relations

%3(&’)_1—‘,13
2 \ao/) b’

LA o oA Robo . Lo A oA R5HG .
2 (mQ’1+m3Q§— 23 —2m's> —1—3 (—mQ’l — R3 Q5 + 12+8 +2m’(1+3)> =0.
(5.38)
The asymptotic charges are
a1 Al 98(0/)3 < Kok /)
= 4 _— =
@ (s(s+1) +Q1) Vi s(s+1) tms
42 1 R1K
/N (R A R _ MR
s (s(s + 1)) Jsct s(s+1)’ (5.39)
g 20 1\4
g5 (@) ( K1k2 /)
=4 + ) = +ny ).
@r ( (s+1) % R2Vy \s(s+1) 7
The angular momenta (2.21) are given by
N (1 1 R1Rb R3
Jr = — w4 o2 5.40
L m<232 2(s+1)2)+m+3(3+1)’ (5:40)
7 R3 . . s Ry, @Q1Qs A3 s YR
Jrp = = = Jp=—a= — — 5.41
k= 50z 2T 3% T2 T (s D) (5.41)
where 2 = (0,0,1). The change in Jr caused to the addition of the probe is
3 "%3 Al 2 "%1
Jp=—= 5.42
2 @ 2s(s + 1) (5:42)
Using the linearized bubble equations we obtain
- I I
JR+Q18R3 JR+Q1%

5.2.1 Position of the D1-P center

As before, setting # — b in (2.53) and using the resulting relation (5.10), we find the position
of the D1-P center in terms of the quantized charges:

1 At RyQs 1 J _ KhN5
cos?0, == [1- mingl =1, (5.44)
2 + SNSQ 2 ‘]I/% + ;nl

where the second term is given only in terms of (half) integer quantities. Again, the position

is independent of spacetime moduli and depends solely on the quantized numbers of the
probe. Likewise, we find

. W (25 + 1) + /(25 + 1)% — (R3Qf + L5 Q)
2&0 -1 +

ry =
Q/

25+ 1) (J, + K552 ,m’+w
o (_1 P T +)n5£1 - : (5.45)
R
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where we recall that the hatted quantities are the dimensionful charges, while the un-hatted
quantities are the integer or half-integer quantum numbers. Thus, again, the result is
independent of spacetime moduli.

The result exactly matches that obtained from the worldsheet in the next section: the
peak of the wavefunction of the momentum excitations is exactly at the same distance, and
that was the main goal of this subsection.

Although we considered one probe D1-P center above, it can be straightforwardly gener-
alized to solutions with an arbitrary number of probe centers. We discuss such generalization
in appendix A.

5.2.2 A D1-P excitation of the two-charge circular supertube background

As a byproduct of the above analysis, we can obtain a configuration involving a D1-P center
added to a two-charge circular supertube by taking the appropriate vanishing-s limit: s — 0,
K1, k2 — 0 holding fixed the finite ratios %, %, as described below (2.64). Denoting the
finite limit of q;/s by @1, and the finite limit of §2/s by @2, we obtain:

Iy =(1,(0,— R3), (—RY R3,0,0),0),
A A A al
= Oa 0 0 /<53 Ql +"€2"€37Q2a0)7 QI/QQ + Q2/€2> 5
2/€3 2
I_‘Dl (Oa 0 H27 (Ql?o QS) ) ) (546>

(0,(0,0,0), (0,0,1),0).

Let us summarize the resulting relevant quantities for the s — 0 limit. The charges of
the solution are

Q1 =4(Q1 + Q). Qs =4Q> , Qr=40Q%, (5.47)

and the position of the third center is given by:

1 J — fans Jj KQ% — kn!
cos29:§ (1—”), r? = 24 (—1+ ( L ) — | (5.48)

non1 nsny
T+ Jr+ ot

6 Worldsheet description of F1-P probes

The GLMT background of section 2.5 in the NS-NS flux duality frame admits an exactly
solvable worldsheet description in terms of gauged Wess-Zumino-Witten (WZW) models
for the group coset [21]

G SL(2,R) x SU(2) xR, x S}

H U, xU(1)g

(6.1)

times T* or K3, where H gauges a pair of null isometries of G. The null currents generating
these isometries can be parametrized as

T =J3+ 0J3 +1sidt +14idy , T = J3+raJ3, + raidt + ryidy. (6.2)
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The general three-charge spectral flowed circular supertube solutions of [69] correspond

to the coset models with parameters'®

L nss(s + 1))

ol (6.3)

The circular NS5-F1 supertube background of [91] corresponds to s = 0.

6.1 Constraints on the string spectrum

Reparametrization invariance and local supersymmetry on the string worldsheet, together
with the local gauge symmetry, lead to a set of physical state constraints on the string Hilbert
space. We adopt the notation of [21-24, 28, 29], which we will relate below to that of section 5.

We focus on the AdS3 limit of these solutions, which sends the y-circle radius R, — oo,
holding fixed the rescaled energies ER, and y-momenta P,R,. One can take this limit of
the background solutions by defining

t=—, j=—= (6.4)

and sending R, — oo at fixed #, §. The resulting solution is asymptotically AdS3 x S3 x T4,
and the six-dimensional part of the metric is given by (2.57).

We consider states with nonzero winding around the various circles — the azimuthal
direction in SL(2,R), the Euler angles in SU(2), and the y-circle.!? In this limit, we write
the asymptotic energy F and y-circle momenta P, Py as

€

Ny
)
Ry

Ry

Ny

i (6.5)

E =wyR, + P, =w,Ry, + Py = —wyR, +

At leading order in large Ry, the zero-mode null gauging constraints on the left- and right-
moving sector, J = J = 0, are respectively [22, 29]

2s(s+1)
5(5 - ny) = 2|\_/|sl,tot + (2_3 + 1)2Msu,tot - T”Exwya (6.6)
"‘7(6 + ny) = 2Msl,tot + 2I\/Isu,tot )
where we have defined
n n
Msl,tot = Mg + ?510517 Msu,tot = Mg, + ?swsu (67)

to be the eigenvalues of the zero mode of the total J3 and J32, currents, including both bosonic
and fermionic contributions, as well as worldsheet spectral flows parametrized by w,w’; and

18Tn an NS5-brane decoupling limit, where the geometry is asymptotically that of the linear dilaton throat
of NS5-branes.
9Since we work on the universal cover of SL(2,R), there is no winding in its timelike coordinate, so w = .
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similarly for Mg tot, Mgy tot- The large-R, Virasoro constraints are

—761(7s1 — 1) + Jsu(Jsy + 1 n w

0= Js1(Jst ) + Jsu(Jsu ) — Mywy + Maywey — j(wgl_(wsu)2> _ J(E—ny) +hy,
ns 4 2
CiaGid — 1) + e (en + 1 ~ _ n ) w

0= Js (]s )n5 ]Su(]su ) — Mgwg + Mg, Wey — ZS (wsl_('wsu)2> _ Ty({j—l—ny) + hR?

(6.8)

where jg, jsu are the spins of the bosonic highest weight states for SL(2,R) and SU(2), and
hy,hg specify the non-zeromode excitation levels (for details, see [22, 24, 28, 29]).

6.2 “Primitive” winding string states

We now analyze the parts of the string spectrum that are of interest in the present work. We
look for a solution of the worldsheet constraints that is right-BPS, and has no excitations
other than those required by the GSO projection: hy = hp = 0. The BPS condition on
the right imposes

jsl = jsu + 177 Jsl = jsu> Msl = Jsh Msu = _Jsm Wg] = —Wsy- (69)

We are going to ignore various subtleties having to do with polarization states of the string,
as subleading effects in the semi-classical limit of large j; thus for instance will ignore
the distinction between the total spins Jy, Jg, obtained from the tensor products of the
center-of-mass bosonic spins jg, jsu and those of the polarization states.

The right null constraint (6.6) then implies ¢ = —n,;, and thus that the right Virasoro
constraint (6.8) is also satisfied. Substituting the left null constraint into the left-moving
Virasoro constraint and regrouping terms, one finds

5
4

s(s+1
_ (ny — n ( - )wsl> (wy + nwsl) = ((23+1)wsl + wsu) (l\/lSu + —((2s+1)wg + wsu)>
(6.10)
where we have written the result in terms of quantities that are invariant under large gauge

transformations [22]: the #H spectral flow transformations, whose effect is to shift

dwg = q, Wy = _(25 + 1)(]7 0Wgy = —q,
nss(s+ 1)

OF = —
(KIRy + <R,

>q, ony = —n5%q, dwy = —Kgq, (6.11)
where ¢ € Z. The oscillator modes, T* excitations, etc., that we have set to zero in the
Virasoro constraints constitute additional terms in (6.10) that when included result in a
non-primitive probe solution.

Comparing to (5.33), we see that the worldsheet constraints imply the primitivity
condition, with the identifications

s(s+1
ny = Wy + Kwgl, n'p = —(ny —ns ( )wsl) )
1 n
wy = 5 (28 + wa + we), Jh = Mg, + f((23+1)w51 + we) (6.12)
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where the 1L.h.s. refers to the probe quantities defined in section 5, and the r.h.s. are the
factors in (6.10).29

The relations cos20 = —Mg,/Js, and cosh2p = Mg /Jq (see egs. (4.6), (4.8), (4.15),
and (4.17)) are properties of classical solutions of the SU(2) and SL(2,R) WZW models, as we
saw from the analysis of section 4. To use these relations in the gauged WZW model, however,
we need to write gauge invariant expressions for the corresponding quantities. We have

Ji = Msu"‘E <wsu_ (254-1)1?) R

2
- ns _ w
lelz = Mg, + ? <wsu - :) ) (613)
where again the Lh.s. refers to the probe quantities defined in section 5, and the r.h.s. are
the corresponding gauge-invariant worldsheet expressions.?!
The map of quantum numbers (6.12) shows that
Mg, = J7 — %/@'2; (6.14)

using the BPS conditions (6.9) in the second line of (6.13), we have

! 1 !
MSU o JL - §n5/§2

(6.15)

—cos 20, = —
N
K

which matches (5.44).
On the other hand, the left SL(2,R) spin, Mg, is determined in terms of other data
by the left null constraint,

n K s(s+1
—Msl = (28+1)Msu + ?5(“’51 + (2S+1)wsu) B 5(8 B ny) a n5(’€)wy7
1
= (25+1) (J’L + 7;5142) — rnp = n5s(s+ )nﬁ , (6.16)
K

where we have again used the BPS condition. We thus find the radial position of an F1-P
probe in the GLMT background to be given by

M 254+1)(J! + 1 k1) — knly — ng 2By
cosh 210* _ Jsl _ ( )( L 2 / 2) - n/1P 57 g 1 . (617)
o Jpt T

Using the identification (4.19), we find a match with (5.45).

Note that there are many possible wound string states located at the same point in the
radial coordinate p and polar angle 6. The positions in these coordinates are determined
by Mg, Mg, J and is independent of the windings wy, ws, wsy, Wsu, subject only to the
constraint (6.10). As we see from (4.26) (and its corresponding version for SL(2,R)), these
strings wrap different cycles of the y-¢-1 torus.

2OWe can use the large gauge transformation (6.11) to shift away w, in multiples of k, and in particular to
then restrict wy to the range {0,1,...,k—1}; w, then labels twisted sectors of the orbifold (2.68).

2While it might appear that this expression violates angular momentum quantization in twisted sectors
wy ¢ KZ, this is an artifact of the definition, in which the angular momentum of individual strings is compared
to the angular momentum per winding of the background. For further details, see [29].
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The relation between the bipolar coordinates associated to the underlying SL(2,R) x
SU(2) geometry, and the Gibbons-Hawking coordinates used for the bubble equations of
section 5, is obtained by combining (2.44), (2.52) and the relation between p and r in (2.56),

A

2 ~ 2A A
Tr cos § = cosh2p cos 20 — 1, TT sin § = sinh 2p sin 26. (6.18)
a a

These relations connect the quantum numbers of the unexcited wound string to the geometry
of figure 4, as follows. Using (4.6), (4.9), (4.15), (4.17) and (6.9), we identify the ratio between
the separation b between centers 1 and 3 and the separation a between centers 1 and 2 to be

1 Msl - Msu
= (—="=1), 1
2( . ) (6.19)

| T

Similarly, the angle fy between the Taub-NUT /supertube axis and the Taub-NUT /probe
axis is
A MslMsu - J2

= TV VL) (6.20)

We can also determine the separation ¢ between the supertube and probe centers using

b\> b 121 Mg+ Mg,
=11 - 2( - 0, = —7). 6.21
1+ (3) w25) =t () 21
Using (6.17), (6.15), and (4.18), we thus reproduce eq. (5.10).22
It is quite remarkable that two quite disparate approaches lead to the same result. On

the law of cosines,

| o

the one hand, the worldsheet calculation considers only the physical state constraints of a
perturbative string, without regard for its back-reaction on the ambient spacetime. On the
other hand, the D1-P probe calculation considers only the geometry sourced by the probe,
without regard to the effective theory on the brane. Yet each consideration is sufficient
to fix the probe location.

7 Superstrata, quantum effects and black holes

Our technique to approximate the superstratum with a three-center solution allows us to
see clearly some of the features of the superstratum geometry that are harder to see in the
full smooth solution. For example, one can try to estimate the length of the AdSs throat
of the superstratum, and to compare the result with the length of the AdSs throat of the
corresponding extremal black-hole solutions.

22A simple example illustrates how the choice of quantum numbers specifies the location of the probe:
turning on n = J — Mg but setting m = Mg, + J = 0 in the single-mode superstratum yields 0, = 7; the
centers are all collinear, with the probe at the supertube for n = 0 and then moving away toward larger
radius along the line passing through the center of space (the origin in the Gibbons-Hawking R3 base), and
the supertube center. Turning off n and dialing 0 < m < 2J, the probe remains collinear with the other two
centers but runs between them, until at Mg, = +J (corresponding to m = 2J) and n = 0, the probe is at the
center of space. If we then start dialing up n with Mg, = +J, the centers again remain collinear, and the
probe now moves away from the origin in the direction opposite to the supertube center.
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In the classical extremal black-hole geometry this length is infinite, but it was shown
that quantization of the moduli of microstate geometries [35, 36, 51, 92] limits the depth
of throats. This leads to the correct mass-gap for the dual CFT but also suggests that,
despite the macroscopic scales of the geometries, quantum effects are becoming dominant
in such deep throats.

More recently, a similar conclusion was reached [70] using an Euclidean calculation in
JT gravity, which also implies that below a certain maximal depth quantum effects become
important and invalidate the extremal black-hole solution.

An alternative to comparing throat lengths is to calculate the ratio of the redshifts
between the top and the bottom of the AdSs throat, both in superstrata and in the “corrected”
black-hole solution [70], and in the deepest multi-center solutions.

We focus on “deep superstrata” which have a long AdS, throat and exist when Jgp < N.
We also consider large values of k and n, so that the supergravity wave is highly localized
and the effective description is accurate. The top of the AdSsy throat of superstrata is where
the superstratum radial coordinate is

Tt20p ~ QP ~ b2*- (71)

When n > k, the location of the momentum wave that supports the AdSs throat is far
away from the other centers, at

n
T%ottom ~ QQE‘ (72)

However, when n is of the same order as k or smaller, this equation needs to be changed. The
distance from the momentum center to the other two centers of the effective superstratum
solution becomes of order a or smaller, so the AdSy region of the superstratum throat
terminates when:?

T%ottom ~ CL2 . (73)

Hence, one can write concisely the expression for the location of the bottom of the superstratum
AdSs throat as:

2 iiom R G2 max (Z, 1) . (7.4)

To compute the length of the AdSy portion of the throat we need to use the AdS, radial
coordinate, r o 72, and we obtain

2

Ttop
2
dr Tt
dags, ~ / — ~log 52—. (7.5)
2 T "bottom
bottom

2The intuition behind this is very simple: the location in the R?® base of the multi-center solution where the
solution ceases being spherically-symmetric is where the AdS2 region of the throat ends and the cap region
begins.
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Alternatively, we can compute the ratio of the redshifts between the top and the bottom
of the AdSs throat

top top 2
_ 900 ~ Tads,  Tiop
A= |0 _ . (7.6)
ottom rbottom ,,n2
900 AdS» bottom

When b > a, the ratio of b and a in the superstratum solution can be expressed in terms
of the integer fivebrane and onebrane charges, ny and ns, and the half-quantized right-moving
angular momentum, Jgr. Using (2.81), (2.82), (2.58), and (2.59), one has:

b QiQs _ mns (7.7)

Note that for superstrata, the holographic dictionary can be extrapolated to small Jg,
however when one approaches Jr = 1/2, the extrapolation of the dual coherent states in the
holographic CFT becomes a quantum superposition over a small number of states. Therefore,
the holographic CFT indicates that Jgp = 1/2 sets the maximum length of the AdSy throat
of superstrata. (See also the related discussion in [37]).

Since the quantized momentum charge of the superstratum is n, = ninsz, we can
express the length of the throat as

dAdSz =~ log < 7;1%571}7) (\/7 \/7) (78)

Alternatively, we can express the redshift difference as

L (1)

We can now compare this AdSy length with the length of the AdSs throat of the
supersymmetric black-hole solution where quantum effects are supposed to invalidate the
classical extremal black-hole geometry [70]

dRdls, ~log S ~ log/ninsn, , (7.10)

where S ~ \/ninsn, is the entropy of the BPS black hole with these charges. The redshift
difference corresponding to this throat length is simply

AxS. (7.11)

Our result indicates that superstrata have AdSo throats that are always shorter than
or equal to the AdSs throat length suggested by the calculations of [70] using JT gravity.
The equality happens only when n/k = O(1) and Jg = O(1).

It is not hard to see that the quantum effects that cut off the deepest scaling multi-center
solutions also come in at a similar scale. This happens when Jr ~ 1 [35, 36, 51, 92] and
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the distance between the GH centers of a scaling solutions, using the coordinates of the
R3 base of the solution is [35]%*

1 | Q
GH 4
Tbottom l3 Ql Q5 (7 )

Using the fact that 71 ~ Qp and that the AdS, radial variable is the same as rqy, this gives

top
dzcdaé;ng ~ logy/ninsn, , (7.13)

We thus have a remarkable convergence of the results of three calculations:

(i) The maximal AdSy throat length computed in a superstratum classical solution that is
horizonless and smooth in ten-dimensions, (7.8);

(ii) The maximal AdSy throat length computed by estimating quantum effects in a classical
Euclidean black-hole background in a two-dimensional effective theory;

(iii) The maximal AdSsy throat length computed by quantizing multi-center solutions.

These calculations are done in different theories: (1) superstrata, which keep all the
bulk degrees of freedom of six-dimensional supergravity, but throw away all information
about excitations that depend on the internal T* coordinates, as well as stringy modes (in
particular those associated to the underlying fivebranes); (2) JT gravity, which throws away
almost all information about the theory in which the black hole is constructed and keeps only
one light mode; (3) quiver quantum mechanics, which throws away all information about
higher dimensions and keeps only degrees of freedom corresponding to multi-center dynamics.
Hence, a priori, it was possible that these three different approximations could have given
different estimates of the location where quantum effects become important, such that one
cannot trust the classical solution. It is quite remarkable that they all indicate that classical
solutions that have an AdSs throat longer than log S are problematic.

8 Discussion

The deep tension between General Relativity and Quantum Mechanics is strong evidence
for the view that GR is an effective field theory, and the black-hole uniqueness theorems
are a testament to the failure of GR to resolve black-hole microstructure. The fact that
GR has been stunningly successful in describing large-scale structure of both the universe
and black-hole mergers is equally a testament to just how powerful an effective field theory
can be when applied in its appropriate domain of validity. In this context, the microstate
geometry program may be regarded as a milestone along the journey to finding much better
effective field theories that can describe black-hole microstructure.

We take it as a given that one needs to use the full force of string theory to resolve the
quantum properties, and structure, of a black hole. This is also one of the starting points of

24We use the fact that the charges are proportional to the square of the dipole fluxes, d;, and that in the
D1-D5-P decoupling limit @1, Qs are larger than Qp, so d3 > di, d2.
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the fuzzball paradigm, which posits that a complete description of the structure of a black
hole must involve a complex, chaotic set of quantum string states, and that horizons and
singularities are artifacts signaling the failure of effective field theory. Supergravity, as the
low-energy limit of string theory, affords a much richer and more powerful effective field
theory, as is evident from the huge range of microstate geometries, many of whose microscopic
interpretations in the dual CFT have passed precision holographic tests.

Much of the research into microstate geometries has been driven by the desire to see, and
account for, as much of the microstructure as possible. This has led to supergravity solutions
with less and less symmetry and more and more intricate detail. This has given us a deeper
understanding of the physical underpinnings and consequences of microstructure, ranging
from energy gaps and brane fractionation, through tidal scrambling to our current discussion
of momentum migration. However, some of these solutions are so complex, and so lacking in
symmetry, that it can be very hard to probe them, or analyze their excitations.

In this paper, we have tried to address this challenge by developing a more system-
atic approach to effective supergravity descriptions of the intricate families of black-hole
microstructure by simplifying, or averaging over, unnecessary detail while retaining the
physics of interest. This simplification and averaging will typically introduce singularities,
or horizons, but one accepts them, knowing that a full supergravity solution can resolve
this behavior into microstructure.?®

In particular, we have shown how several different detailed descriptions of black-hole
microstructure can be reduced to a much simpler five-dimensional supergravity description.
These five-dimensional geometries have some singular sources but we know how they can be
resolved, in different limits, by the detailed descriptions of black-hole microstructure. The
five-dimensional description is much simpler but provides a more intuitive description of
how the brane and momentum sources interact and how they are bound together in the
gravitational back-reacted solution.

Momentum migration provides a very good example of this. Many microstate geometries
correspond to brane systems that carry momentum as transverse waves, or in fluctuating
charge densities. From the brane perspective, and in terms of the dual holographic CFT,
these momentum waves lie on the underlying branes. However, the back-reaction of the
branes on a compact locus typically pinches-off that locus, creating a geometric transition to a
geometry with a non-trivial cohomological cycle. As has been noted elsewhere, trying to keep
the momentum localized on the original brane locus would create a singular geometry [64].
What happens instead is that the back-reacted geometry remains smooth, the momentum
wave “detaches” from the brane locus, and its peak amplitude moves to a point some distance
away from the original brane locus. We refer to this as “momentum migration,” and we have

251n this respect, our philosophy resembles that in earlier work on two- and three-charge solutions [28, 93-97]
in which certain high-frequency details of the solution were averaged over to simplify their description, at
the expense of generating a singular profile or shockwave in the effective description. In fact, although
our discussion of a D1-P center in the GLMT background in section 5.2 did not involve such additional
coarse-graining because we imposed the primitivity condition (5.33), it is a simple generalization to relax
it so that 7’ is a free parameter satisfying the bound ' < Q}Q%/(24%). The non-primitivity parameter
6 = Q1Q4/(2k%) — ' is related to the amount of high-frequency, small-amplitude fluctuations of the D1-P
profile about the circular shape which have been coarse-grained.
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shown how the location of the peak amplitude can be determined by the bubble equations of
five-dimensional supergravity. That is, the location of the peak of the momentum wave is
typically bound to the other sources in the background, and can be determined by its charges
and the charges and locations of the other sources. Moreover, if a particular quantum number
of the momentum wave source becomes large, the source itself becomes highly localized.

A very natural question arises out of our work: what information is being retained and
what is being lost in our effective descriptions? For superstrata, we have shown how the
averaging of momentum modes washes out all the detailed oscillations along commuting
isometry directions (the Cartan subalgebra directions), replacing the mode details by the
mean-square “bump-functions” on the sphere and AdS directions. These functions retain
details of the mode numbers (k, m,n) and the amplitude b, and the position of the peak on the
sphere and AdS are determined by the ratios m/k and n/k respectively. The value of k then
determines the width of the bump, or the extent to which the wave is localized. Our effective
description thus seems to retain most of the information about the wave. However, in the
large-mode-number limit, where the bump function becomes a delta function, the individual
values of (k,m,n) are lost and we only see their ratios (see for example, (2.82)) in the effective
multi-center solution. Furthermore, one should remember that the basic superstratum has two
independent classes of waves (the two holomorphic functions or three variables), corresponding
to the |00) and G*1G+2|00) strands in CFT [10, 11], as well as their generalizations built on
|(AB)) strands [9]. Moreover, the newer vector superstrata [13, 15, 28, 98], corresponding to
excitations built on Gt4|Ad) or Gt4|aB) strands in CFT, add yet more modes with similar
bump functions. In principle, one could consider superstrata based on other strands [10, 88].
These details, and all the information about which particular fields are actually carrying
the momentum, are lost. Moreover, it would prove rather challenging to de-convolve all the
individual mode contributions in an effective geometry of a complex multi-mode superstratum.

Some of the major threads in our work here are the universal aspects of the localization
of charge and momentum sources. We have seen how it comes about in microstate geometries
(section 3), in wave-functions (section 4), for string probes (section 5), and in the exact
description of string wavefunctions (section 6). At a mundane mathematical level, this is
because all these analyses devolve into some aspect of harmonic analysis on AdS3 x S3,
and this leads inexorably to the bump functions Ay, ,,. However, this observation misses
the essential physical point that all of these approaches start from different approaches to
black-hole microstructure, and the fact that they converge on the same results is remarkable.
For example, in microstate geometries, sources localize as a result of the bubble equations,
which enforce the absence of CTCs; in the string worldsheet analysis, the same localization
is the result of imposing the physical state conditions.

There is another remarkable aspect of this convergence of ideas which reinforces a very
useful, and yet simple, physical picture of deep, scaling superstrata.

As the standard pictures of deep scaling superstrata (see figure 1) suggest, one can think
of these geometries as if one had taken a smooth, global AdSs and cut a circular disk out
of the bottom of the AdS3 bowl, and then glued a vertical, cylindrical pipe (the AdSs x S*
throat) to the hole, and then capped it off at the bottom by gluing that cut-out disk to
the bottom of the pipe. The edge at which the cut is made is defined by the outermost of
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the momentum wave or the original supertube locus. Indeed, this outermost feature defines
the edge of the bottom of the vertical pipe.

Our effective microstructure analysis can be applied to any depth of throat. The fact that
the “geographic” features of all the charge sources are identical for shallow and deep geometries
means that all this structure simply remains unmodified as it descends the throat, and that
the outermost feature, whether it be the momentum wave or the singular momentum center of
the three-center effective description, defines the edge of the cap at the bottom of the throat.

These considerations also lead to the results of section 7, which confirm another universal
aspect of the geometrization of black-hole microstructure: AdSsy throats longer than log S
are problematic.

Another place in which effective superstrata have already been used implicitly is in
studies of tidal disruption [99-103] where the phenomenon depends on ultra-relativistic
motion through non-trivial multipole moments. The details of the microstructure were not
needed to reveal this effect.

Apart from revealing some of the essential physics of microstructure, there is an obvious
practical importance in finding simpler effective solutions: it makes analysis easier. However,
in passing to effective microstructure we have may also appear to have “let the genie out of
the bottle”: we are once again allowing singular geometries, which begs the question, what
singularities are now allowed, and what singularities must be still be forbidden?

While this is a very interesting general question, it goes far beyond the scope of the
present work. For the present, we can offer a simple, practical prescription. One will always
get effective microstructure with allowable singularities if one performs an average of an
existing microstate geometry. (As we did in section 3.) This will yield a simpler geometry
but has the advantage that one knows how to resolve the singularities and this will reveal
the limitations of the effective geometry. It would obviously be extremely interesting to
find a much broader “singularity repair kit” that would allow a far broader definition of
allowed effective geometries.

We hope, and expect, the ideas of effective microstructure to be important in the future.
For example, in the classification of [104], it has recently been suggested that many microstate
geometries, like superstrata, are “monotone” BPS states and that stringy excitations around
them could be “fortuitous”. For a recent analysis of the role of boundary gravitons in the
monotone/fortuitous classification, see [105]. It would be interesting to explore these ideas
using both superstrata and effective superstrata to find such fortuitous stringy excitations
and determine the extent to which coarse graining into effective microstructure configurations,
is compatible with fortuity.

More broadly, characterizing effective microstructure could be immensely important in the
construction of templates, and the extraction of universal observable signals of microstructure.
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A Multiple D1-P light centers in the GLMT background

In this appendix, we generalize the discussion in section 5.2 by considering multiple D1-P light
centers in the GLMT background and show that they can be regarded as independent centers.

When two D1-P centers are present, the charge vectors and the asymptotic moduli
vector are

T = (8 +1, (—%1, —fa — (s + 1)(Ryq) + Rya)), —f%:s) :

LD (Ry ) HRY ) )Rs g, Qat(sFD(RY ) FRY )R M (sH1)(Ryy) +RY o) )RR
s+1 »s+10 s+1 ’ 2(s+1)? ’

(Q1+s(/%’2(1)+1%/2<2))/%3 G, Qatski (%(1)+a/2(2))> sk (%(1);&/2(2))@3)
) 25 )

5 e = (0, (07 Ry 0) : (Qll(l)v 0, Qéu)) am/u)) :
Phie = (0, (02, 0) Qe 0. Qi) 1))
h = (0, (0,0,0), (0,0,1),0) . (A1)

D1-P, (4)
D1-P, (3)
The relevant bubble equations are
F12 F/l? F/13 F/14 /%3
4=,
a b 2
F/Sl F/32 F/34 I‘ll41 Fl42 F/43 (Az)
— +—+ ——=0, —+—+—=0,
b ¢ f d € f

where the notation follows that in (5.36). We assume the charges of the D1-P centers to
be much smaller than those of the background. Then the zeroth-order terms in the first
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equation give

F612 A3
= — A.3
a’ 2 (A.3)
while the first-order terms give
i d/ F/12 F/13 F/14
S 4+ =0. (A.4)
2a0 ao b d

From the above equations, we find the angular momentum added by presence of the
extra D1-P centers:

¥ ’%3A/ A/ Al ’%1’%3
Jr = 54 (@) + Q1(2))2S

ey (A.5)

We can naturally split the change in @ as G’ = a{;, + G{y). Then the bubble equation (A.4)
can be nicely separated into independent equations:

Rl (D kel I (A.6)
2 Qg b ’ 2 ap d

It is important to note that, at the order we are working in, I'* does not receive contributions
from the first D1-P center and I'"'3 does not get contribution from the second D1-P center.
This means that the equations for the two centers completely decouple:

K3 .y K3 . A/ R1R3

5 A 5
JR(l) - ?a(l) - Ql(l)Ma JR(Q) = ?G(Q) - Ql(g)m . (A?)

Since all the equations can be split as if we had two independent centers, we obtain exactly
the same equations for the positions as (5.44) and (5.45):

cos? 9~*@ =—1|1-

, (A.8)

~ A A A Qs55(s+1) A

oo [ (28 1) Ry (25 + )% - (R3Q3(;) + 54%3 ) 16))

Tl =200 | 1+ Jr Qs  (A9)
RG) T 85 @10

where ¢ = 1,2. The same analysis would work for an arbitrary number of light D1-P centers.
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