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Abstract: Following the recent Atacama Cosmology Telescope (ACT) results, we revisit

chaotic inflation based on a single complex scalar field with mass term M2|Φ|2, which usu-

ally predicts a spectral index ns ≈ 0.96 but a too-large tensor to scalar ratio r ≈ 0.16.

With radiative corrections, the potential M2|Φ|2 ln
(
|Φ|2/Λ2

)
induces spontaneous symmetry

breaking near the scale Λ, yielding a Pseudo Nambu-Goldstone boson which can play the

role of a quintessence field, hence radiative inflation and dark energy (RIDE). Including a

non-minimal coupling to gravity ξ|Φ|2R2 with ξ ∼ 0.1 reduces the tensor to scalar ratio to

r ≲ 0.03, allowing a good fit of the RIDE model to Planck data. Allowing a small additional

quartic coupling correction λ|Φ|4 allows a good fit to ACT data sets for ξ ∼ 1 and λ ∼ 10−5.
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1 Introduction

Dark energy, the simplest example being Einstein’s cosmological constant Λ, together with

cold dark matter (CDM) form part of the standard cosmological model, often referred to as

ΛCDM (for a pedagogical introduction see e.g. [1]). Despite its many successes, ΛCDM pro-

vides no understanding of either dark matter or dark energy, and also leaves many underlying

theoretical questions unanswered (see e.g. [2]).

Cosmic inflation [3] remains an important extension of the ΛCDM, capable of explaining

the flatness and homogeneity of the universe as well as adiabatic perturbations by postulating

an exponential expansion of space at very early times. Slow-roll inflation [4, 5], with a slowly

rolling scalar inflaton field, predicts an approximately scale invariant and Gaussian spectrum

[6], which has been confirmed by observations of the large scale structure of the universe and

the cosmic microwave background (CMB) [7].

Chaotic inflation is one of the earliest and simplest form of slow roll inflation since, avoid-

ing the initial condition problem by allowing the scalar field to take some random (chaotic)

large initial value. The simplest example of chaotic inflation, based on the mass term M2ϕ2,

where ϕ is a real scalar field, and M is its mass [8], predicts a tensor to scalar ratio of around

0.16 which is too large to account for current observations. This is unfortunate, because it

would permit a very simple interpretation in terms of right-handed sneutrinos (see e.g. [9]

– 1 –



and references therein). However, if the scalar field couples to gravity with a non-minimal

coupling ξϕ2R2, where R is the Ricci scalar, then consistency with data may in principle be

achieved for some non-minimal coupling ξ [10, 11], as discussed recently as part of a general

study [12].

In this paper, we consider chaotic inflation with a complex scalar field Φ, and include the

effect of radiative corrections, via the phenomenological potentialM2|Φ|2 ln
(
|Φ|2/Λ2

)
[13, 14].

A notable feature of having a complex scalar field with such radiative corrections is to change

the shape of the potential to a Mexican hat type of potential. This leads to chaotic inflation

for large values of |Φ|, together with spontaneous symmetry breaking at the minimum of

the potential, resulting in a pseudo Nambu-Goldstone boson (PNGB), which can then be

used as a quintessence field. 1 The resulting scheme was dubbed radiative inflation and dark

energy (RIDE) [13, 14]. The RIDE model is particularly attractive since both inflation and

dark energy energy emerge from a single complex scalar field Φ. Although the radiatively

corrected potential has been studied before [13, 14], we shall show that a non-minimal coupling

to gravity ξ|Φ|2R2 allows a good fit to Planck data. In order to obtain the best fit to the

recent ACT data [16], we also consider a small additional quartic coupling λ|Φ|4, and perform

a detailed analysis of the parameter space in terms of ξ and λ.

The layout of the remainder of the paper is as follows. In section 2 we review the original

RIDE model, and its predictions for inflation and quintessence, comparing its predictions to

recent data. In section 3 we show how the prospects for the RIDE model may be considerably

improved by including a non-minimal coupling to gravity, which gives consistency with recent

Planck data, and an optional small quartic coupling in order to allow a better fit to recent

ACT results. Appendix A details the conformal transformation from the Jordan frame to the

Einstein frame. Appendix B includes the definition of data sets used in the analysis of the

ACT collaboration.

2 The original RIDE model

2.1 The model

The starting point of the model is the simple chaotic inflation mass term, but involving a

complex scalar field Φ, which as usual is a gauge singlet. In the absence of radiative corrections

the potential has a simple quadratic form

V0 ≈ M2|Φ|2. (2.1)

As in chaotic inflation, the quartic coupling is assumed to be negligibly small. 2 The effect

of introducing quartic couplings in the potential is studied in Section 3.2.

1The quintessence potential generated from gravitational effects was discussed in general terms in [15].
2For example, the potential could arise from a supersymmetric Wess-Zumino model with a superpotential

W = MΦ2 where cubic terms are forbidden by a discrete symmetry and non-renormalisable quartic terms are

suppressed by some high scale.
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The RIDE model assumes that radiative corrections, arising from some unspecified Planck

scale interactions, lead to a modified potential which may be parameterised as [13, 14],

V ≈ M2|Φ|2 ln

(
|Φ|2

Λ2

)
(2.2)

leading to spontaneous symmetry breaking which occurs around the scale Λ. Examples of

models with radiative symmetry breaking can be found in Refs. [17–22] where the focus is on

the corrections due to the renormalization group evolution which is the dominant contribution

of the Coleman-Weinberg correction [23] in the case of broken supersymmetry [24]. See also

Ref. [25] for experimental constraints on such corrections. 3

The complex scalar field Φ has two components which may be parameterised in terms of

the radial field σ and the angular field φ,

Φ =
1√
2
σ eiφ/vσ . (2.3)

The inflationary potential arises purely from the radial field and is of the form

V (σ) =
1

2
M2σ2 ln

(
σ2

2Λ2

)
. (2.4)

This leads to a vacuum expectation value (VEV) of vσ =
√

2
eΛ for σ, and inflation can take

place in a region where σ ≫ Λ, in which the ln-term in Eq. (2.2) is well behaved and the

inflaton field σ only feels a potential that is very similar to the one used for quadratic inflation.

Later on, the field will settle at its VEV. As the potential is symmetric under a global

U(1), either imposed or accidental, the VEV will break this global symmetry, thereby gen-

erating a massless Nambu-Goldstone boson φ = vσ arg(Φ). This field has no mass term and

in fact no potential at all. Gravitational effects, i.e. gravitational instantons, can break this

symmetry and generate a tiny mass m [15].

The angular part of the complex scalar field φ, can play the role of a quintessence field,

with a potential of the form 4

V (φ) = m4

[
1 + cos

(
φ

vσ

)]
, (2.5)

where the value of the mass scale m is assumed to be set by the cosmological constant [15].

We will discuss the resulting quintessence model in Section 2.3.

3The radiatively generated spontaneous symmetry breaking can also be interpreted as dynamical symmetry

breaking, due to the effective mass squared of the scalar field being driven negative at “low” energies, although

in practice this may be at a scale Λ, not too far below the Planck scale. This mechanism of radiative symmetry

breaking is well-known in the minimal supersymmetric standard model [17], where the Higgs mass squared

is driven negative at the TeV scale. Similarly, radiative symmetry breaking can play an important role in

different contexts [18, 19], where a mass-squared is driven negative at a much higher scale.
4Radiative corrections to the quintessence potential may also be important, see Refs. [26, 27]
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Note that the dynamics of both sectors can be easily disentangled, as the kinetic term

simplifies to

(∂µΦ
∗)(∂µΦ) =

1

2
(∂µσ)(∂

µσ) +
σ2

2 v2σ
(∂µφ)(∂

µφ), (2.6)

with the φ-part being negligible during inflation and σ already sitting at its (constant) VEV

vσ during quintessence. Due to this separation of the dynamics of the two fields, the model

is basically a single-field inflationary model and is safe from iso-curvature fluctuations.

In Fig. 1, we show the inflationary potential in Eq. (2.4) scaled by the (M2M2
pl) factor

V (σ)/(M2M2
pl) and the quintessence potential in Eq. (2.5) scaled by the m4 factor V (φ)/m4

for the value of Λ = Mpl, where Mpl is the reduced Planck mass. In Fig. 2 we plot the

inflationary potential for different values of Λ, which controls the field value at the minimum.
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Figure 1. The schematic shape of the (scaled) inflationary potential V (σ)/(M2M2
pl) (left panel) and

the (scaled) quintessence potential V (φ)/m4 (right panel) for the value of Λ = Mpl.

2.2 Inflation in the RIDE model

For completeness, in this section, we work out the slow-roll parameters of the original RIDE

model, which are

ϵV =
M2

pl

16π

(
V ′

V

)2

=
M2

pl

4π σ2

1 +
1

ln
(

σ2

2Λ2

)
2

(2.7)

ηV =
M2

pl

8π

(
V ′′

V

)
=

M2
pl

4π σ2

1 +
3

ln
(

σ2

2Λ2

)
 (2.8)
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Λ=10-3Mpl
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Figure 2. The inflationary potential at different values of Λ. Note that its minimum occurs near the

value of Λ in each case.

During inflation, both parameters are assumed to satisfy ϵ, η ≪ 1 which satisfies the slow roll

condition.

To calculate the values of σ at the beginning and end of inflation, σi and σf , respectively,

one needs to calculate the number of e-folds Ne, i.e. the number of times the universe

expanded by e times its own size. Ne is calculated to be

Ne =
8π

M2
pl

∫ σi

σf

V

V ′dσ = 2π

[
σ2

M2
pl

− 2

e

(
Λ

Mpl

)2

Ei

(
1 + ln

(
σ2

2Λ2

))]
(2.9)

where Ei(z) is the exponential integral Ei(z) = −
∫∞
−z

e−t

t dt. One can calculate σf by setting

ϵ = 1 at the end of inflation. We solve the ϵ(σf ) = 1 equations numerically and find the σf
solution at the end of inflation for different Λ values. We then plug this σf into the Eq. (2.9)

to find the start of inflation, i.e. σi, assuming inflation has lasted for 60 e-folds.

Next we calculate the amplitude of the scalar power spectrum, As, the tensor to scalar

ratio, r, and the scalar spectral index, ns are given by

As =
1

24π2

1

ϵV

V

M4
pl

,

r = 16ϵV ,

ns = 1− 6ϵV + 2ηV . (2.10)
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The Planck 2018 limits are [28]

ln
(
1010As

)
= 3.044± 0.014 (2.11)

ns = 0.9649± 0.0042 (2.12)

r < 0.06 (2.13)

For an estimate, we take the central vale of As = 2.1× 10−9. The predictions of the original

RIDE model for the spectral index ns and tensor to scalar ratio r are within 95% confidence

level agreement with the WMAP 7-year data. However, faced with the Planck 2018 data,

the original RIDE model is not a viable inflationary model, as shown in Fig. 3. However, as

discussed later in Section 3.1, a similar analysis including a non-minimal coupling to gravity

ξ = 0.1 reduces r and gives a good fit to Planck data, and this is also shown for comparison in

Fig. 3. The definition of data sets used in the analysis of the ACT collaboration are detailed

in Appendix B.
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ξ=0.1, Λ=Mpl (Ne=46, 50, 55, 60)

Figure 3. The predictions of the original RIDE model (square points) and the RIDE model with a

non-minimal coupling to gravity (circle points) for the spectral index ns and tensor to scalar ratio r as

compared to the WMAP 7-year, Planck 2018 and ACT-BK18 data (the lighter and darker shades refer

to the 95% and 68% confidence level regions, respectively). The red (black) points are for Λ = Mpl

(Λ = 0.01Mpl) for values of Ne = 46-60.

2.3 Quintessence in the RIDE model

In the RIDE model, the quintessence potential is as shown in Eq. (2.5) with vσ = ⟨σ⟩ =
√

2
e Λ

as mentioned before. Here dark energy is represented by the scalar field φ that evolves in the

potential V (φ) as in Eq. (2.5). The energy density and pressure of the field come from its
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Figure 4. The time evolution of the quintessence field φ(t), scale factor a(t), equation of state w(t)

and energy densities scaled by the critical density Ωi(t), in the original RIDE model. The time t = 1

corresponds to the present day.

kinetic energy, φ̇2/2 and potential energy, V (φ). The equation of state parameter, w = p/ρ,

is not fixed like in ΛCDM (w = −1) but varies with time.

The dynamics of the quintessence field are governed by the Klein-Gordon equation in an

expanding universe:

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.14)

where H is the Hubble parameter and V ′(φ) = dV/dφ represents the slope of the potential.

The energy density and pressure are:

ρφ =
1

2
φ̇2 + V (φ), (2.15)

pφ =
1

2
φ̇2 − V (φ). (2.16)

The equation of state parameter is:

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (2.17)

which varies over time depending on the field dynamics as shown in Fig. 4. There is no

appreciable difference between the RIDE model predictions for dark energy and that of the
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cosmological constant as in the standard ΛCDM model up to the present day, although the

future fate of the universe is predicted to be quite different.
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Figure 5. The ns-r plot for various ξ values as compared to Planck 2018 data (with the zoomed in

view only showing the most constraining Planck 2018 data near the bottom). Two values of Λ = Mpl

(red points) and Λ = 0.01Mpl (black points) are considered.

3 The RIDE model with extra couplings

3.1 The RIDE model with a non-minimal coupling to gravity

Thus far, we have considered the original RIDE potential as in Eq. (2.2). Henceforth, we

allow the complex field Φ = 1√
2
σ eiφ/vσ with vσ = ⟨σ⟩, to couple to gravity. The action of

the model in the Jordan frame is:

SJ =

∫
d4x

√
−g

[
1

2
M2

plR+ ξ |Φ|2R−DµΦ
∗DµΦ− V (Φ)

]
, (3.1)

where R is the Ricci scalar and the parameters ξ is the dimensionless coupling of the Φ field

to gravity. Expanding the action to show the explicit dependence on the inflaton field σ:

SJ =

∫
d4x

√
−g

[
M2

pl

2

(
1 + ξ

σ2

M2
pl

)
︸ ︷︷ ︸

Ω2

R − gµν

2

(
∂µσ∂νσ +

σ2

vσ2
∂µφ∂νφ

)
︸ ︷︷ ︸

kinetic terms

− M2

2
σ2 ln

(
σ2

2Λ2

)
︸ ︷︷ ︸

VJ

]
,

(3.2)
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where Ω2 is the conformal factor. We show the details of the conformal transformation to the

Einstein frame in the Appendix A.

For the purpose of our discussion below and presentation of our results, let us keep

working with the inflaton field in the Jordan frame, i.e. σ, and write the potential in the

Einstein frame as

VE =
VJ

Ω4
=

1

2

M2 σ2

Ω4
ln

(
σ2

2Λ2

)
=

1

2
M2 σ2

(
1 + ξ

σ2

M2
pl

)−2

ln

(
σ2

2Λ2

)
(3.3)

Using the potential in Eq.(3.3), we now repeat the inflation analysis in Section 2.2, for

various non-minimal couplings to gravity parameterised by ξ. Good fits to the Planck data

are obtained for values of ξ = 0.1, as shown earlier in Fig. 3. The general behaviour of the

predictions in the ns-r plane as a function of ξ is shown in Fig. 5.

3.2 The RIDE model with a quartic coupling

We now consider the additional effect of a quartic coupling, λ |Φ|4, leading to the following

potential,

V ≈ M2|Φ|2 ln

(
|Φ|2

Λ2

)
+ λ |Φ|4. (3.4)

The inflationary potential then becomes,

V =
1

2
M2σ2 ln

(
σ2

2Λ2

)
+

1

4
λσ4 (3.5)
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Figure 6. The shape of the inflationary potential for the RIDE model with a non-minimal coupling

to gravity for varying ξ couplings (left panel) and the RIDE model with a quartic term for varying λ

coupling (right panel) for Λ = Mpl, for a typical value of M ≃ (10−4 − 10−3)Mpl.

The RIDE inflationary potential with the quartic and non-minimal coupling then be-

comes: 5

VE =

[
1

2
M2 σ2 ln

(
σ2

2Λ2

)
+

1

4
λσ4

](
1 + ξ

σ2

M2
pl

)−2

. (3.6)

5The quintessence potential V (φ) is unaffected by the introduction of the λ quartic coupling or the non-

minimal coupling to gravity, so the previous results discussed in Sec. 2.3 are unchanged.
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The resulting potential is shown in Fig. 6 for a different values of ξ with λ = 0 (left panel)

and different values of λ with ξ = 0 (right panel), for fixed Λ = Mpl. The effect of increasing

ξ (with λ = 0) is both to flatten and distort the potential, leading to the results shown

previously in Fig. 5. Conversely, the effect of increasing λ (with ξ = 0) is to steepen the

potential significantly, even for very small values of λ. The original RIDE model potential

(orange curve) with ξ = λ = 0 is common to both panels in Fig. 6.

Allowing both non-zero ξ and λ at the same time, thus leads to a complex and subtle

change in the shape of the potential, leading to the predictions shown in Fig. 7 for two different

values of Λ = Mpl (right panel) and Λ = 0.01Mpl (left panel), as compared to recent Planck

and ACT data. To increase the spectral index ns prediction, as suggested by ACT results, it

is necessary to increase the gravitational coupling, for example to ξ = 1, in the presence of a

small quartic coupling λ.
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Figure 7. The predictions for the RIDE model in the ns-r plane, including a non-minimal coupling

to gravity ξ and a quartic coupling λ, as compared to the recent Planck and ACT data combined

with LB-BK18 (see legends and Appendix B for details). The left (right) panel is for Λ = 10−2Mpl

(Λ = Mpl). In each panel, a ladder of predictions is shown for each of ξ = 0.1 and ξ = 1.0, with the

rungs of the ladder corresponding to increasing values of λ, for two different values of the number of

e-folds Ne. The value of ξ = 1.0, for small values of λ ∼ 10−5, is preferred by the ACT data sets.

4 Conclusions

We have studied the simplest form of inflation, namely chaotic inflation with a quadratic

potential M2|Φ|2, but generalized to include radiative corrections as parametrized by phe-
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nomenological potential M2|Φ|2 ln
(
|Φ|2/Λ2

)
. This radiatively corrected potential allows both

inflation and dark energy to emerge from a single complex gauge singlet scalar field Φ, and

so is given the name RIDE (radiative inflation and dark energy). The RIDE potential has

the classic Mexican hat shape which gives rise to spontaneous symmetry breaking at its mini-

mum, and hence a PNGB which can act as a quintessence field controlling dark energy. Thus

inflation arises from the radial component of Φ, while dark energy arises from its angular

component, thereby unifying inflation and dark energy within a single field.

We have introduced additional couplings to the RIDE model in order to achieve con-

sistency with current data. We have firstly considered a non-minimal coupling to gravity

ξ|Φ|2R2, which allows a good fit to Planck data for ξ ∼ 0.1, decreasing the tensor to scalar

ratio to r ≲ 0.03. We have also studied the effect of adding a small additional quartic cou-

pling λ|Φ|4, which could in principle also be radiatively generated. By performing a detailed

analysis of the available parameter space involving ξ and λ, we have shown that small values

of λ ∼ 10−5 together with ξ ∼ 1 can serve to increase the value of the spectral index, while

maintaining r ≲ 0.03, as preferred by the recent ACT and BK18 experiments. Since both of

these new couplings ξ|Φ|2R2 and λ|Φ|4 only depend on the radial field |Φ|, the behaviour of

the axial quintessence field is therefore independent of ξ and λ, and hence the dark energy

predictions remain consistent with the standard ΛCDM cosmological model, as in the original

RIDE model.
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A The conformal transformation

Here, we show the details of the conformal transformation from the Jordan frame, whose

quantities are denoted without a tilde, to the Einstein frame in which quantities are denoted

by a tilde, namely

√
−g =

1

Ω4

√
−g̃ , gµν = Ω2 g̃µν , R = Ω2

(
R̃− 3

2
g̃µν ∂µÃ ∂νÃ

)
, (A.1)

where we have introduced a new parameter Ã defined as Ã =
√

2
3

A
Mpl

= lnΩ2. The conformal

factor can now be written as

Ω2 = 1 + ξ

(
σ

Mpl

)2

= eÃ , (A.2)

allowing us to define the inflaton field σ in the Jordan frame, in terms of Ã,(
σ

Mpl

)2

=
1

ξ

(
eÃ − 1

)
, (A.3)
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which will turn out to be the reparametrised inflaton field in the Einstein frame.

Let us now write the action in the Einstein frame

SE =

∫
d4x

√
−g̃

[
M2

pl

2

(
Ω2R

Ω4

)
− 1

2

(
gµν

Ω4

)(
kinetic terms

)
− V

Ω4

]
=

∫
d4x

√
−g̃

[
M2

pl

2

(
R̃− 3

2
g̃µν ∂µÃ ∂νÃ

)
− 1

2

(
Ω2 g̃µν

Ω4

)(
kinetic terms

)
− V

Ω4

]
=

∫
d4x

√
−g̃

[
M2

pl

2
R̃− 1

2
g̃µν

(
∂µA∂νA+

(
1

Ω2

)
kinetic terms

)
− V

Ω4

]
=

∫
d4x

√
−g̃

[
M2

pl

2
R̃− 1

2
g̃µν

(
∂µA∂νA+

(
1

Ω2

)
kinetic terms

)
︸ ︷︷ ︸

new kinetic terms

− V

Ω4︸︷︷︸
Ṽ

]
, (A.4)

with the “kinetic terms” are as defined in Eq. (3.2) and

new kinetic terms = ∂µA∂νA +

(
1

Ω2

)
∂µσ∂νσ +

(
1

Ω2

)
σ2

vσ2
∂µφ∂νφ , (A.5)

and need to be re-written in a canonical form:(
1

Ω2

)
∂µσ∂νσ =

1

6 ξ

(
1

1− e−Ã

)
∂µA∂νA . (A.6)

Recall that φ does not contribute to the inflation process, as discussed in Sec. 2, and is

not a dynamical field during inflation. Therefore, the kinetic terms in the Einstein frame in

Eq. (A.5) reduce to

new kinetic terms =

[
1 +

1

6 ξ

(
1

1− e−Ã

)]
∂µA∂νA , (A.7)

which is canonical in the usual 6ξ ≫ 1 limit [29, 30]. The potential in the Einstein frame in

Eq. (3.6) can be written as

Ṽ =
V

Ω4
=

[
1

2
M2 σ2 ln

(
σ2

2Λ2

)
+

1

4
λσ4

](
1 + ξ

σ2

M2
pl

)−2

=
M2

2

(
M2

pl

ξ

)(
eÃ − 1

e2Ã

)
ln

[(
M2

pl

ξ

)
eÃ − 1

2Λ2

]
+

λ

4

(
M2

pl

ξ

)2 (
1− e−Ã

)2
.(A.8)

B Datasets definitions in the plots

For completeness, we show the definition of data sets used in the analysis of the ACT collab-

oration [16] which appear in our plots.

• Planck: Low-ℓ and full-sky CMB spectra from Planck’s final public release (PR4),

which includes TT, TE, EE with updated Sroll2 low-ℓ likelihood.
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• TT: Temperature-temperature power spectra.

• TE: Temperature-E mode polarization power spectra.

• EE: Polarization-polarization power spectra.

• Sroll: A map-making algorithm and likelihood framework designed to improve the

analysis of large angular scales (low multipoles ℓ < 30) CMB polarisation data from

the Planck High Frequency Instrument. Sroll1 was introduced to address instrumental

systematics that limited the accuracy of earlier Planck low-ℓ polarisation measurements.

An improved version, Sroll2 (low-ℓ Planck likelihood, providing large-scale E-mode

information), includes better calibration, de-striping, and foreground modelling, leading

to tighter constraints on parameters such as the reionisation optical depth τ . Low-ℓ E-

mode polarisation is crucial for constraining the optical depth to reionisation τ , which

in turn affects the amplitude of the scalar perturbations As and indirectly the inferred

value of the Hubble constant H0. The Sroll likelihoods provide an independent and

more robust handle on these large-scale modes compared to previous Planck analyses.

• CMB Lensing: Power spectra lensing reconstruction likelihoods used to break degen-

eracies in cosmological parameters.

• BK15 (BK18): BICEP/Keck 2015 (2018) B-mode polarisation likelihood, used to

constrain the primordial tensor-to-scalar ratio r.

• BAO: Baryon Acoustic Oscillation data from DESI Year 1, a collection of 12 mea-

surements from galaxy, quasar, and Lyα tracers spanning 0.1 < z < 4.2, occasionally

replaced by Baryon Oscillation Spectroscopic Survey (BOSS) BOSS/eBOSS for robust-

ness tests. To ensure that the data is not solely driven by DESI, and in light of some

2.5σ deviations between the DESI luminous red galaxy (LRG) data points and previous

measurements at the same redshifts, analyses with DESI replaced by BOSS/eBOSS

BAO data, including both BOSS DR12 LRGs and eBOSS DR16 LRGs is also con-

sidered, used usually for models in which BAO data have a significant impact on the

parameter constraints.

• ACT: High-ℓ temperature and polarisation spectra and high-resolution CMB power

spectra from the Atacama Cosmology Telescope (ACT) DR6 which includes TT, TE,

EE spectra and Sroll2 (low-ℓ) likelihood.

• LB: Adding CMB lensing and BAO. The ACT-LB-BK18 dataset combination is usually

used when investigating primordial gravitational waves (models with a free tensor-to-

scalar ratio r). Including BK18 allows a joint constraint on r alongside the scalar sector

parameters, strengthening bounds on r beyond what ACT or Planck can achieve alone.

• P-ACT: The combination of ACT DR6 and Planck primary anisotropies. The P-ACT-

LB combination is used as the default “baseline” data combination, since it provides the
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tightest constraints in most extended models. The joint best-fit ΛCDM model, P-ACT-

LBS, which also includes SNIa Pantheon+ is an excellent fit, shown to improve over

Planck-alone or ACT-alone constraints due to complementarity in multipole coverage.

• SNIa Pantheon+: 1550 spectroscopically confirmed SNe Ia from 18 subsamples,

0.001 < z < 2.26, used when exploring models that affect the late-time expansion.
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