

The Nutrition Society Conference 2025 was held at the Loughborough University on 1st-2nd July 2025

Symposium One: Closing the gap between healthspan and lifespan

Review Article

Cite this article: Godfrey KM, Costello P, and El-Heis S (2026). Nutrition in early life, epigenetics and lifelong health – evidence from cohort and intervention studies. *Proceedings of the Nutrition Society*, page 1 of 6. doi: [10.1017/S0029665125102061](https://doi.org/10.1017/S0029665125102061)

Received: 4 October 2025
Revised: 11 December 2025
Accepted: 16 December 2025

Keywords:
Nutrition; Early life environment; Epigenetics

Corresponding author:
Keith M. Godfrey; Email: kmg@mrc.soton.ac.uk

Nutrition in early life, epigenetics and lifelong health – evidence from cohort and intervention studies

Keith M. Godfrey^{1,2} , Paula Costello¹ and Sarah El-Heis^{1,2}

¹MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK and ²NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK

Abstract

This review summarises evidence from cohort and intervention studies on the relationships between nutrition in early life, epigenetics and lifelong health. Established links include maternal diet quality with conception rates, micronutrient sufficiency before and during pregnancy with preterm birth prevention, gestational vitamin D intake with offspring bone health, preconception iodine status with child IQ, adiposity with offspring obesity and maternal stress with childhood atopic eczema. Animal studies demonstrate that early-life environmental exposures induce lasting phenotypic changes via epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, with DNA methylation of non-imprinted genes most extensively studied. Human data show that nutrition during pregnancy induces epigenetic changes associated with childhood obesity risk, such as Antisense long Non-coding RNA in the INK4 Locus (ANRIL, a long non-coding RNA) methylation variations linked to obesity and replicated across multiple populations. Emerging insights reveal that paternal nutrition and lifestyle also modify sperm epigenomics and influence offspring development. Although nutritional-randomised trials in pregnancy remain limited, findings from the NiPPer trial showed widespread preconception micronutrient deficiencies and indicated that maternal preconception and pregnancy nutritional supplementation can reduce preterm birth and early childhood obesity. The randomised trials UPBEAT and MAVIDOS have shown that nutritional intervention can impact offspring epigenetics. Postnatal nutritional exposures further influence offspring epigenetic profiles, exemplified by ALSPAC cohort findings linking rapid infant weight gain to later methylation changes and increased obesity risk. Together, these studies support a persistent impact of maternal and early-life nutrition on child health and development, underpinned by modifiable epigenetic processes.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Nutrition in early life plays a crucial role in shaping lifelong health outcomes. The early life period, spanning from conception to early childhood, is a critical window of susceptibility during which environmental factors can influence developmental processes and establish a trajectory of health or disease⁽¹⁾. Nutrition, including micronutrient status and body composition, is foremost among such environmental factors, which also include exposure to parental smoking, endocrine-disrupting chemicals, biological and psychosocial stress. The concept of developmental origins of health and disease (DOHaD) proposed that early life exposures can have lasting impacts on health and disease risk later in life⁽¹⁾. The DOHaD concept emerged from epidemiological studies in the UK during the 1980s, which revealed a clear relationship between lower birth weight and an increased risk of death from non-communicable diseases (NCD) in adulthood, including CVD⁽²⁾ and chronic obstructive airways disease⁽³⁾. Impaired fetal development has been linked to a higher risk of a range of adult NCD that increase premature mortality risk, including type 2 diabetes, metabolic syndrome, osteoporosis, sarcopenia and CHD⁽⁴⁾, and to negative outcomes in childhood, such as stunted growth and reduced cognitive function^(4,5). These associations have been consistently replicated and are recognised as being exacerbated by environmental risk factors encountered in the postnatal environment.

To date, fixed genomic variations such as SNP and copy number variations have been found to explain only a modest proportion of the risk associated with NCD, and it is increasingly believed that the developmental environment plays a significant role in shaping later-life phenotypes by modifying epigenetic regulation of genes⁽⁶⁾. Epigenetic processes including DNA methylation, histone modifications and non-coding RNA (ncRNA) regulate gene expression by modulating the packaging and expression of the DNA without a change in genomic sequence. These changes can be maintained over multiple divisions in somatic cells. Environmental and lifestyle influences such as nutrition and stress can induce epigenetic modifications, effectively making the epigenome a molecular record holding the 'memory' of past exposures. During

development, epigenetic processes contribute to phenotypic plasticity, allowing the fetus to adapt to predicted postnatal environments⁽⁷⁾. However, when the phenotype is mismatched to the later environment, for example, from inaccurate nutritional cues from the mother or placenta or rapid socioeconomic shifts, this 'mismatch' can increase the risk of NCD in adulthood⁽⁸⁾.

The impact of developmental epigenetic changes may not become apparent until later in life. Epigenetic biomarkers may therefore serve as indicators of previously undocumented developmental exposures and as predictors of future disease risk, enabling early intervention strategies to improve both early development and later health. Discovery and validation of perinatal epigenetic biomarkers, with both replication in independent cohorts and *in vitro* validation, is therefore an important and growing field. Recent advances in enzymatic approaches and high-throughput sequencing have enabled epigenetic biomarker discovery on a genome-wide scale⁽⁹⁾. The expanded coverage provided by these platforms is likely to uncover many new disease-related epigenetic modifications located outside well-known candidate regions such as CpG islands and gene promoters, complementing traditional candidate gene and array-based approaches that only interrogate small regions of the genome.

Epigenetic changes can be tissue-specific and can have tissue-specific consequences. Skeletal muscle has a lower priority in nutrient partitioning in the developing fetus, compared with the brain and heart, thus making it particularly vulnerable to nutrient deficiency. Epidemiological studies have consistently linked negative early-life environmental exposures to reduced muscle mass and function in later life^(10–12), with epigenetic changes proposed as mediators. Recent research measuring CpG methylation across the genome (the 'methylome') of cultured myoblasts isolated from older individuals has shown associations with birthweight, growth during infancy and childhood illnesses⁽¹³⁾, with some of the differentially mediated regions associated with later-life grip strength and sarcopenia. In this review, we will summarise the evidence from cohort and intervention studies on the relationships between nutrition in early life, epigenetics and lifelong health.

Maternal diet and fetal development

A mother's preconception and pregnancy diet, micronutrient status, body composition, metabolism, mood and lifestyle are all implicated in maternal pregnancy outcomes and offspring body composition, cardiometabolic, neurobehavioural and allergic outcomes. Examples include maternal diet quality and conception rates⁽¹⁴⁾, micronutrient intake and preterm birth⁽¹⁵⁾, vitamin D supplementation and infantile atopic eczema⁽¹⁶⁾, iodine status and child IQ⁽¹⁷⁾, maternal adiposity and offspring obesity⁽¹⁸⁾ and maternal stress and offspring atopic eczema⁽¹⁹⁾.

Maternal diet during pregnancy is a critical determinant of fetal development and has been linked to a range of health outcomes in offspring^(20–22). A maternal diet rich in fruits, vegetables and whole grains has been associated with improved fetal growth and development, as well as a reduced risk of adverse birth outcomes, such as preterm birth and low birth weight⁽²³⁾. In contrast, maternal diets high in sugar, salt and unhealthy fats have been linked to an increased risk of adverse outcomes⁽²⁴⁾, and maternal diets with a high inflammatory potential have been associated with increased offspring adiposity during childhood⁽²⁵⁾.

The Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study, a prospective mother–offspring cohort

study, has made significant contributions to our understanding of the relationships between maternal diet, fetal development and lifelong health⁽²⁵⁾. In this study, maternal diet was assessed using a 24-h recall and food diary at 26–28 weeks of gestation⁽²⁶⁾. Associations were identified between a high-quality dietary pattern during pregnancy and lower risks of preterm birth and excessive offspring adiposity during childhood^(27,28). The findings of this study have highlighted the importance of a healthy maternal diet in promoting optimal fetal growth and development.

Epigenetics and early life nutrition

Epigenetics encompasses a variety of heritable modifications that regulate gene expression without altering the underlying DNA sequence. These modifications can be stably maintained through multiple somatic cell divisions, thereby contributing to long-term gene regulation. The most widely studied form of DNA methylation is where a methyl group is added to the cytosine base of a CpG dinucleotide, primarily to regulate gene expression. This methylation can alter gene expression by either directly blocking the binding of transcription factors to DNA or by recruiting repressive protein complexes that induce local chromatin remodelling⁽²⁹⁾. Patterns of DNA methylation are usually studied within CpG-rich islands in gene promoter regions⁽³⁰⁾, but gene body and intergenic region DNA methylation are also thought to influence cell physiology. Histone modifications such as acetylation, methylation, ubiquitination and phosphorylation can directly affect chromatin structure and therefore the accessibility of the underlying genomic sequence, while also providing binding sites for proteins involved in gene regulation. Other mechanisms include the ncRNA, which are functional RNA molecules that are not translated into proteins. They can mediate mRNA degradation or translational repression and, when targeted to the promoter region of a gene, induce both DNA methylation and repressive histone modifications⁽³¹⁾.

Studies in animal models have shown that maternal diet can induce lasting metabolic changes in offspring by modifying the epigenetic regulation of key metabolic genes. For example, when pregnant rats were fed a protein-restricted diet, their offspring showed reduced DNA methylation of the glucocorticoid receptor (GR) and PPAR α genes in the liver⁽³²⁾. This epigenetic change was associated with increased expression of GR and PPAR α and a persistent change in metabolic pathways, specifically enhanced gluconeogenesis and fatty acid β -oxidation, which are regulated by these nuclear receptors. With growing concern over the widespread consumption of energy-dense Western diets, many studies have turned their attention to the effects of maternal high-fat intake. In rats, maternal high-fat feeding during pregnancy has been shown to reduce expression of Fatty Acid Desaturase 2 (FADS2), the rate-limiting enzyme in PUFA synthesis in the liver of offspring, and this reduction is accompanied by altered DNA methylation at CpG sites within the gene's promoter region⁽³³⁾. Similarly, in mice, maternal obesity and diabetes have been linked to widespread changes in DNA methylation in the liver of offspring⁽³⁴⁾. Notably, the window of epigenetic plasticity may extend beyond the prenatal period into postnatal life. For example, overfeeding in rat pups led to hypermethylation at two CpG sites in the promoter of proopiomelanocortin (POMC), a gene critical for appetite regulation. This hypermethylation prevented the up-regulation of POMC expression in response to elevated plasma leptin and insulin levels⁽³⁵⁾.

Evidence from human cohort studies

Evidence from human cohort studies suggests a similar important role for epigenetic processes in holding the 'memory' of developmental exposures, with long-term consequences for the risk of NCD. For example, these have linked nutritional exposures during pregnancy to epigenetic changes that increase offspring susceptibility to childhood obesity⁽³⁶⁾.

The prevalence of childhood obesity is rising rapidly, posing immediate health risks for children and increasing their likelihood of developing obesity and related metabolic disorders in adulthood⁽³⁷⁾. The National Child Measurement Programme (NCMP) has also shown the disparity gap in child obesity widening each year, mostly driven by rising obesity rates in the most deprived areas and a relatively stable prevalence among the least deprived children. The gap in obesity prevalence between the most and least deprived areas in 2022–23 has reduced compared to 2020–21 from 19.5 to 17.1 percentage points but is still much larger than that seen in pre-pandemic years⁽³⁸⁾.

Several early-life risk factors have been identified that significantly increase the likelihood of childhood obesity. In the prospective Southampton Women's Survey (SWS) parent-offspring cohort, five key risk factors were defined: maternal obesity, excessive gestational weight gain, low maternal vitamin D levels, smoking during pregnancy and a short duration of breastfeeding. At both 4 and 6 years of age, there was a positive graded association between the number of these early-life risk factors and increased childhood adiposity and obesity. After adjusting for potential confounders, children exposed to four or five risk factors had a relative risk of being overweight or obese of 3.99 (95% CI 1.83, 8.67) at age 4 and 4.65 (95% CI 2.29, 9.43) at age 6, compared to children with no risk factors⁽³⁹⁾. Similarly, in the GUSTO prospective cohort study, six key risk factors were examined: maternal pre-pregnancy overweight/obesity, paternal overweight/obesity at 24 months post-delivery, excessive gestational weight gain, raised maternal fasting glucose during pregnancy (≥ 5.1 mmol/L), breast-feeding duration <4 months and early introduction of solid foods (<4 months). The adjusted relative risk of overweight/obesity in children with four or more risk factors was 11.1 (95% CI 2.5, 49.1) at age 4, compared to children with no risk factors⁽⁴⁰⁾. Early interventions to change these modifiable risk factors could therefore make a significant contribution to the prevention of childhood obesity. These findings have paved the way for a new series of systematic genome-wide epigenetic investigations to find epigenetic biomarkers associated with child adiposity. Higher methylation of the Retinoid X Receptor Alpha (RXRA) gene promoter at birth was associated with child's later adiposity, and associations were also observed between levels of RXRA methylation and mothers' carbohydrate intake⁽³⁶⁾. Further observational studies have characterised perinatal DNA methylation variations related to Antisense long Non-coding RNA in the INK4 Locus (ANRIL) that mark obesity risk, replicated across three populations and with relevant physiological effects of altering ANRIL methylation *in vitro*⁽⁴¹⁾. Decreased methylation of the SLC6A4 promoter region, a transport protein responsible for reuptake of serotonin and which may play a role in appetite and energy balance, was associated with higher maternal gestational weight gain as well as increased adiposity in infancy, early childhood and adolescence⁽⁴²⁾. Additionally, obese adults had lower methylation levels and decreased gene expression in adipose tissue compared to lean individuals⁽⁴²⁾. These findings suggest that altered SLC6A4 promoter methylation may provide a consistent marker of adiposity throughout the life course.

In the GUSTO cohort study, associations of maternal nutrition with pregnancy outcomes, fetal growth and childhood outcomes were examined, and DNA methylation was assessed at birth. Dietary patterns rich in vegetables, fruits and white rice were associated with lower risk of preterm birth and larger birth size, suggesting beneficial effects on developmental and growth outcomes⁽²⁷⁾. Associations between low-quality maternal diet and night-eating behaviours with higher insulin in the offspring were demonstrated and interact synergistically, especially in boys⁽⁴³⁾. Additionally, in epigenome-wide association studies, higher maternal dietary glycaemic index and glycaemic load in pregnancy were associated with offspring cord blood DNA methylation at multiple CpG sites, with some relating to genes expressed in tissue relevant to metabolic health; associations were seen particularly in overweight and obese mothers⁽⁴⁴⁾. The findings of this study highlighted the importance of maternal nutrition in shaping the epigenetic landscape of the newborn and suggested that these early-life epigenetic modifications may have lasting impacts on health and disease risk later in life.

Emerging evidence supports a further influence of postnatal nutritional status on epigenetic processes. For example, a study in the ALSPAC cohort identified associations between rapid weight gain in infancy and small increases in childhood methylation at two CpG sites, one of which was replicated in the SWS and was also associated with subsequent overweight and obesity⁽⁴⁵⁾.

The importance of preconception health

Epidemiological, clinical and basic science research has identified the period around conception as being critical in the processes mediating parental influences on the next generation's phenotype and health. During this time, from the maturation of gametes through to early embryonic development, the nutrition of mothers and fathers can adversely influence the offspring's long-term risks of cardiovascular, metabolic, immune and neurological morbidities. Such 'developmental programming' has been demonstrated for exposures including maternal overnutrition and obesity, maternal undernutrition, related paternal factors and the use of assisted reproductive treatment⁽⁴⁶⁾. Human studies and animal models demonstrate the underlying biological mechanisms, including epigenetic, cellular, physiological and metabolic processes.

Paternal influences on epigenetic processes

While the main focus has been on mechanisms driven by maternal nutrition and other exposures, emerging evidence suggests that paternal nutrition and lifestyle also influence sperm epigenomics and transcriptomics, with consequences for the development of the offspring^(46,47). Meta-analysis of mouse paternal and maternal protein undernutrition indicates distinct parental periconceptional contributions to postnatal outcomes⁽⁴⁶⁾. A 6-week paternal dietary intervention modified the small non-coding RNA (sncRNA) profile of human sperm in a subset of participants from the PREPARE trial⁽⁴⁷⁾. sncRNA sequencing revealed that supplementation with olive oil, vitamin D and *n*-3 fatty acids altered the expression of 3 tRF, 15 miRNA and 112 piRNA, which target genes related to fatty acid metabolism and transposable elements in the sperm genome.

Evidence from human intervention studies

While nutritional-randomised controlled trials before and during pregnancy with offspring phenotyping are sparse, several such trials have reported findings of potential importance. For example, the UK Pregnancies Better Eating and Activity Trial (UPBEAT) of a nutritional intervention in women living with obesity⁽⁴⁸⁾ showed that a low glycaemic behavioural intervention can indeed change epigenetic processes in the offspring, with potential effects on adiposity in infancy. A pregnancy low-GI diet reduced infant subscapular skinfold thickness at the age of 6 months by 0.26 SD, and this beneficial effect of a prenatal nutritional intervention was also dependent on breast-feeding for ≥ 3 months⁽⁴⁹⁾. Maternal GDM, fasting and 1-h and 2-h glucose levels from the oral glucose tolerance test were associated with numerous differentially methylated CpG sites in the infant's cord blood DNA. Notably, the methylation changes linked to GDM and 1-h glucose were attenuated by the lifestyle interventions during pregnancy⁽⁴⁸⁾.

Maternal vitamin D insufficiency is highly prevalent in many populations worldwide, and this can alter fetal bone growth and have lasting effects on the child's bone health. In vitamin D-insufficient mothers, splaying of the metaphysis (similar to childhood rickets) is present as early as 19 weeks of gestation⁽⁵⁰⁾ and reduced concentration of 25(OH)-vitamin D in mothers during late pregnancy is associated with lower childhood bone-mineral content at age 9 years⁽⁵¹⁾.

Subsequent to the above observational studies, in the MAVIDOS trial, supplementation of 1000 IU/day cholecalciferol during pregnancy did not affect the primary outcome of offspring neonatal bone mineral content (BMC), but did show a significant increase in infant bone mass for winter births⁽⁵²⁾. In the same cohort, effects of gestational supplementation became more apparent over time; the intervention was positively associated with bone mineral density (BMD) at age 4 years⁽⁵³⁾ and BMC and BMD at age 6–7 years⁽⁵⁴⁾, suggesting a sustained beneficial effect of supplemental vitamin D supplementation in pregnancy on offspring bone health. Furthermore, significantly reduced DNA methylation at several CpG sites near the RXRA gene, known to play a role in bone metabolism, was observed in umbilical cord DNA⁽⁵⁵⁾, suggesting a potential epigenetic mechanism by which maternal vitamin D supplementation may influence fetal bone development. Supplementation with 1000 IU/day cholecalciferol did not reduce the incidence of preterm birth but was associated with a greater likelihood of a spontaneous vaginal delivery⁽⁵⁶⁾. MAVIDOS also provided the first randomised controlled trial evidence for the role of antenatal vitamin D supplementation in reducing the risk of infantile atopic eczema. The protective effects were seen in infants who breastfed more than one month but not in those who breastfed less than one month⁽¹⁶⁾.

In our multicentre NiPPeR randomised controlled trial, we have reported that a maternal nutritional supplement taken preconception and during pregnancy substantially decreased the incidence of preterm birth, particularly cases associated with preterm pre-labour rupture of membranes⁽⁵⁷⁾. Moreover, nutritional intervention before and during pregnancy halved the incidence of obesity in the offspring at age 2 years⁽⁵⁸⁾. At recruitment preconception, over 90% of the trial participants had marginal or low concentrations of one or more of folate, riboflavin, vitamin B₁₂ or vitamin D during, and many developed markers of vitamin B6 deficiency in late pregnancy⁽⁵⁹⁾. Current work is examining the influence of the nutritional intervention on offspring epigenetics in the NiPPeR trial.

Evidence now points to the opportunity to reduce maternity disparities through intervention before and between pregnancies. In 2024 the NIHR launched its first 'Challenge' funding call, focused on new ways to tackle inequalities in maternity care. The resulting NIHR Maternity Disparities Consortium (2025–2030) will bring together a diverse range of organisations, including nine lead UK universities who will collaborate with local councils, NHS trusts, charities, industry and other health organisations. The Consortium will focus on inequalities before, during and after pregnancy⁽⁶⁰⁾.

Conclusion

In conclusion, the evidence from cohort and intervention studies highlights the critical importance of nutrition in early life for shaping lifelong health outcomes. Maternal diet during pregnancy is a key determinant of fetal development and has lasting impacts on health and disease risk later in life. Epigenetics is a key mechanism by which early life nutrition can influence lifelong health, and interventions during early life have been shown to improve health outcomes later in life. Further research is needed to fully understand the relationships between nutrition in early life, epigenetics and lifelong health and to develop effective interventions to promote optimal health outcomes.

Collectively, the evidence supports lasting effects of maternal and infant nutrition on offspring health and human potential, with epigenetic processes likely to be an important underpinning mechanism.

Acknowledgements. We thank the participants and their families for their enthusiastic involvement in the MAVIDOS and NiPPeR studies.

Author contributions. Keith M Godfrey: Conceptualisation and writing original draft

Paula Costello: Co-drafting review and editing

Sarah El-Heis: Writing review and editing

Financial support. KMG is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health and Care Research (NIHR Senior Investigator (NF-SI-0515-10042) and NIHR Southampton Biomedical Research Centre (NIHR203319)), and the Wessex Medical Trust, the Gerald Kerkut Charitable Trust and the Rosetrees Trust. For the purpose of Open Access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Competing interests. KMG has received reimbursement for speaking at conferences sponsored by companies selling nutritional products and is part of an academic consortium that has received research funding from Bayer, Boehringer Ingelheim, Nestec, BenevolentAI Bio Ltd and Danone.

References

- Godfrey KM, Gluckman PD, Hanson MA (2010) Developmental origins of metabolic disease: life course and intergenerational perspectives. *Trends Endocrinol Metab* **21**, 199–205.
- Barker DJP, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. *The Lancet* **327**, 1077–81.
- Barker DJ, Godfrey KM, Fall C, *et al.* (1991) Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. *BMJ* **303**, 671–5.
- Poston L, Godfrey KM, Gluckman PD, Hanson MA, editors (2022) *Developmental Origins of Health and Disease*. 2nd ed. Cambridge University Press
- Castany-Muñoz E, Kennedy K, Castañeda-Gutiérrez E, *et al.* (2017) Systematic review indicates postnatal growth in term infants born small-

for-gestational-age being associated with later neurocognitive and metabolic outcomes. *Acta Paediatr* **106**, 1230–8.

6. Kong D, Kowalik O, Garratt E, *et al.* (2025) Genetics and epigenetics in gestational diabetes contributing to type 2 diabetes. *Trends Endocrinol Metab*. Published online: 24 April 2025. doi: [10.1016/j.tem.2025.03.014](https://doi.org/10.1016/j.tem.2025.03.014)
7. Godfrey KM, Lillycrop KA, Burdge GC, *et al.* (2013) Non-imprinted epigenetics in fetal and postnatal development and growth. *Nestle Nutr Inst Workshop Ser* **71**, 57–63.
8. Godfrey KM, Lillycrop KA, Burdge GC, *et al.* (2007) Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. *Pediatr Res* **61** (5 Pt 2) 5R–10R.
9. Füllgrabe J, Gosal WS, Creed P, *et al.* (2023) Simultaneous sequencing of genetic and epigenetic bases in DNA. *Nat Biotechnol* **41**, 1457–64.
10. Patel HP, Jameson KA, Syddall HE, *et al.* (2012) Developmental influences, muscle morphology, and sarcopenia in community-dwelling older men. *J Gerontol A Biol Sci Med Sci* **67**, 82–7.
11. Jensen CB, Storgaard H, Madsbad S, *et al.* (2007) Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. *J Clin Endocrinol Metab* **92**, 1530–4.
12. Sayer AA, Syddall HE, Gilbody HJ, *et al.* (2004) Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. *J Gerontol A Biol Sci Med Sci* **59**, M930–934.
13. Garratt ES, Sharkh HY, Burton MA, *et al.* (2025) Early life environment is associated with differential dna methylation of primary myoblasts from older individuals. *JCSM Commun*. Published online: 13 April 2025. doi: [10.1002/rco2.70005](https://doi.org/10.1002/rco2.70005)
14. Lim SX, Loy SL, Colega MT, *et al.* (2022) Prepregnancy adherence to plant-based diet indices and exploratory dietary patterns in relation to fecundability. *Am J Clin Nutr* **115**, 559–69.
15. Samuel TM, Sakwinska O, Mäkinen K, *et al.* (2019) Preterm birth: a narrative review of the current evidence on nutritional and bioactive solutions for risk reduction. *Nutrients* **11**, 1811.
16. El-Heis S, D'Angelo S, Curtis EM, *et al.* (2022) Maternal antenatal vitamin D supplementation and offspring risk of atopic eczema in the first 4 years of life: evidence from a randomized controlled trial. *Br J Dermatol* **187**, 659–66.
17. Robinson SM, Crozier SR, Miles EA, *et al.* (2018) Preconception maternal iodine status is positively associated with IQ but not with measures of executive function in childhood. *J Nutr* **148**, 959–66.
18. Dalrymple KV, El-Heis S, Godfrey KM (2022) Maternal weight and gestational diabetes impacts on child health. *Curr Opin Clin Nutr Metab Care* **25**, 203–8.
19. El-Heis S, Crozier SR, Healy E, *et al.* (2017) Maternal stress and psychological distress preconception: association with offspring atopic eczema at age 12 months. *Clin Exp Allergy* **47**, 760–9.
20. Abdollahi S, Soltani S, de Souza RJ, *et al.* (2021) Associations between maternal dietary patterns and perinatal outcomes: a systematic review and meta-analysis of cohort studies. *Adv Nutr* **12**, 1332–52.
21. Loo EXL, Ong L, Goh A, *et al.* (2017) Effect of maternal dietary patterns during pregnancy on self-reported allergic diseases in the first 3 years of life: results from the GUSTO study. *Int Arch Allergy Immunol* **173**, 105–13.
22. Borge TC, Aase H, Brantsæter AL, *et al.* (2017) The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. *BMJ Open* **7**, e016777.
23. Chia AR, Chen LW, Lai JS, *et al.* (2019) Maternal dietary patterns and birth outcomes: a systematic review and meta-analysis. *Adv Nutr* **10**, 685–95.
24. Chen LW, Aubert AM, Shivappa N, *et al.* (2021) Maternal dietary quality, inflammatory potential and childhood adiposity: an individual participant data pooled analysis of seven European cohorts in the ALPHABET consortium. *BMC Med* **19**, 33.
25. Soh SE, Chong YS, Kwek K, *et al.* (2014) Insights from the growing up in Singapore towards healthy outcomes (GUSTO) cohort study. *Ann Nutr Metab* **64**, 218–25.
26. Chong MFF, Godfrey KM, Gluckman P, *et al.* (2020) Influences of the perinatal diet on maternal and child health: insights from the GUSTO study. *Proc Nutr Soc* **79**, 253–8.
27. Chia AR, de Seymour JV, Colega M, *et al.* (2016) A vegetable, fruit, and white rice dietary pattern during pregnancy is associated with a lower risk of preterm birth and larger birth size in a multiethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. *Am J Clin Nutr* **104**, 1416–23.
28. Chen LW, Aris IM, Bernard JY, *et al.* (2016) Associations of maternal dietary patterns during pregnancy with offspring adiposity from birth until 54 months of age. *Nutrients* **9**, 2.
29. Bird A, Macleod D (2004) Reading the DNA methylation signal. *Cold Spring Harb Symp Quant Biol* **69**, 113–8.
30. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. *Genes Dev* **25**, 1010–22.
31. Kaikkonen MU, Lam MTY, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. *Cardiovasc Res* **90**, 430–40.
32. Lillycrop KA, Phillips ES, Jackson AA, *et al.* (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. *J Nutr* **135**, 1382–6.
33. Hoile SP, Irvine NA, Kelsall CJ, *et al.* (2013) Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. *J Nutr Biochem* **24**, 1213–20.
34. Li CCY, Young PE, Maloney CA, *et al.* (2013) Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. *Epigenetics* **8**, 602–11.
35. Plagemann A, Harder T, Brunn M, *et al.* (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. *J Physiol* **587**, 4963–76.
36. Godfrey KM, Sheppard A, Gluckman PD, *et al.* (2011) Epigenetic gene promoter methylation at birth is associated with child's later adiposity. *Diabetes* **60**, 1528–34.
37. Reilly JJ, Kelly J (2011) Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. *Int J Obes (Lond)* **35**, 891–8.
38. Obesity Profile: November 2023 update [Internet]. GOV.UK [cited 2025 Sept 9]; Available from: <https://www.gov.uk/government/statistics/obesity-profile-november-2023-update>
39. Robinson SM, Crozier SR, Harvey NC, *et al.* (2015) Modifiable early-life risk factors for childhood adiposity and overweight: an analysis of their combined impact and potential for prevention. *Am J Clin Nutr* **101**, 368–75.
40. Aris IM, Bernard JY, Chen LW, *et al.* (2018) Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: significance of parental overweight status. *Int J Obes (Lond)* **42**, 44–51.
41. Lillycrop K, Murray R, Cheong C, *et al.* (2017) ANRIL promoter DNA methylation: a perinatal marker for later adiposity. *EBioMedicine* **19**, 60–72.
42. Lillycrop KA, Garratt ES, Titcombe P, *et al.* (2019) Differential SLC6A4 methylation: a predictive epigenetic marker of adiposity from birth to adulthood. *Int J Obes (Lond)* **43**, 974–88.
43. Chen LW, Loy SL, Tint MT, *et al.* (2025) Maternal pregnancy diet quality, night eating, and offspring metabolic health: the GUSTO study. *Pediatr Res* **97**, 1528–36.
44. Küpers LK, Fernández-Barrés S, Mancano G, *et al.* (2022) Maternal dietary glycemic index and glycemic load in pregnancy and offspring cord blood DNA methylation. *Diabetes Care* **45**, 1822–32.
45. Robinson N, Brown H, Antoun E, *et al.* (2021) Childhood DNA methylation as a marker of early life rapid weight gain and subsequent overweight. *Clin Epigenetics* **13**, 8.
46. Fleming TP, Watkins AJ, Velazquez MA, *et al.* (2018) Origins of lifetime health around the time of conception: causes and consequences. *The Lancet* **391**, 1842–52.
47. Vaz C, Burton M, Kermack AJ, *et al.* (2025) Short-term diet intervention comprising of olive oil, vitamin D, and omega-3 fatty acids alters the small non-coding RNA (sncRNA) landscape of human sperm. *Sci Rep* **15**, 7790.
48. Antoun E, Kitaba NT, Titcombe P, *et al.* (2020) Maternal dysglycaemia, changes in the infant's epigenome modified with a diet and physical activity intervention in pregnancy: secondary analysis of a randomised control trial. *PLOS Med* **17**, e1003229.
49. Patel N, Godfrey KM, Pasupathy D, *et al.* (2017) Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. *Int J Obes (Lond)* **41**, 1018–26.

50. Mahon P, Harvey N, Crozier S, *et al.* (2010) Low maternal vitamin D status and fetal bone development: cohort study. *J Bone Miner Res* **25**, 14–9.
51. Javaid MK, Crozier SR, Harvey NC, *et al.* (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. *The Lancet* **367**, 36–43.
52. Cooper C, Harvey NC, Bishop NJ, *et al.* (2016) Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. *Lancet Diab Endocrinol* **4**, 393–402.
53. Curtis EM, Moon RJ, D'Angelo S, *et al.* (2022) Pregnancy vitamin D supplementation and childhood bone mass at age 4 years: findings from the maternal vitamin D osteoporosis study (MAVIDOS) randomized controlled trial. *JBMR Plus* **6**, e10651.
54. Moon RJ, D'Angelo S, Curtis EM, *et al.* (2024) Pregnancy vitamin D supplementation and offspring bone mineral density in childhood follow-up of a randomized controlled trial. *Am J Clin Nutr* **120**, 1134–42.
55. Curtis EM, Krstic N, Cook E, *et al.* (2019) Gestational vitamin D supplementation leads to reduced perinatal RXRA DNA methylation: results from the MAVIDOS trial. *J Bone Miner Res* **34**, 231–40.
56. Moon RJ, D'Angelo S, Crozier SR, *et al.* (2023) Does antenatal cholecalciferol supplementation affect the mode or timing of delivery? Post hoc analyses of the MAVIDOS randomized controlled trial. *J Public Health (Oxf)* **45**, 738–47.
57. Godfrey KM, Barton SJ, El-Heis S, *et al.* (2021) Myo-Inositol, probiotics, and micronutrient supplementation from preconception for glycemia in pregnancy: NiPPeR international multicenter double-blind randomized controlled trial. *Diabetes Care* **44**, 1091–1099.
58. Lyons-Reid J, Derraik JGB, Kenealy T, *et al.* (2024) Impact of preconception and antenatal supplementation with myo-inositol, probiotics, and micro-nutrients on offspring BMI and weight gain over the first 2 years. *BMC Med* **22**, 39.
59. Godfrey KM, Titcombe P, El-Heis S, *et al.* (2023) Maternal B-vitamin and vitamin D status before, during, and after pregnancy and the influence of supplementation preconception and during pregnancy: prespecified secondary analysis of the NiPPeR double-blind randomized controlled trial. *PLOS Med* **20**, e1004260.
60. NIHR Challenge: Maternity Disparities Consortium | NIHR [Internet]. [cited 2025 Sept 10]; Available from: <https://www.nihr.ac.uk/nihr-challenge-maternity-disparities-consortium>