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Abstract Resistance training (RT) is an effective
intervention for improving muscle health and metab-
olism in ageing, but the degree of responsiveness
(hypertrophy) to RT varies substantially. We exam-
ined muscle metabolomic profiles before and after
10-weeks RT in older adults classified into upper
(UPPER) and lower (LOWER) tertiles of hyper-
trophy to identify key metabolic adaptation differ-
ences. Fifty older adults (23 males, 27 females, mean
68.2 years old) completed 10 weeks of RT combined
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with whey protein supplementation. Quadriceps
cross-sectional area (CSA) was assessed via magnetic
resonance imaging before and after RT. Participants
were grouped into UPPER (n=25, 10.3+2% CSA
increase) or LOWER (n=25, 3.3 +2% CSA increase)
based on ranked CSA changes. We profiled skeletal
muscle tissues from the UPPER and LOWER groups
using a metabolomics platform. Over 2,500 metabo-
lites were mapped to 104 metabolic pathways. In the
UPPER group, upregulation of tryptophan-indole
metabolites and the kynurenine pathway suggests a
potential role of gut function and anti-inflammatory
effect on RT-induced hypertrophy. Also, leucine,
isoleucine and valine were significantly upregu-
lated in the absence of their catabolites. Enrichment
of urea cycle/amino group metabolism alongside
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mitochondria-matrix metabolites in the UPPER group
indicates improved amino acids and energy homeo-
stasis. Our findings highlight distinct RT-induced
skeletal muscle metabolic profiles between UPPER
and LOWER in older adults, underscoring the value
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of metabolic data. These metabolic pathways are
important for understanding what contributes to the
heterogeneity of hypertrophic response to RT in older
adults.

Results and findings

Statistical analysis comparing UPPER and
LOWER group according to muscle hypertrophy

© LOWER - UPPER
100 *

._H.‘ -

=) P
Muscle biopsy Muscle biopsy
(N=50) (N=50a)

Changes in quadriceps cross- l
sectional area was assessed via L

\ magnetic resonance imaging J \

Identifcation of metabolites

Quadricps CSA (cm?)
3
o ..+++_ 0%
% Change in CSA

5 LOWER UPPER

Pre Post
Absolute and percent change in CSA after 10 weeks of RT

S

S

-

Metabolomics functional analysis revealed significant
differences between UPPER and LOWER

Keywords Ageing muscle metabolism - Resistance
training - Muscle hypertrophy

Introduction

The age-related loss of skeletal muscle mass is
closely linked to frailty, loss of independence, and
increased risk of comorbidities [1]. Thus, maintain-
ing or increasing muscle mass is critical to support
healthy ageing and extend healthspan. Among non-
pharmacological strategies, resistance training (RT)
combined with adequate protein intake is the most
effective intervention for promoting muscle hypertro-
phy [2]. In particular, RT provides a potent anabolic
stimulus by activating a range of endogenous skeletal
muscle processes that lead to hypertrophic adapta-
tions [3].

Although RT is effective in mitigating muscle loss,
it is increasingly recognised that interindividual dif-
ferences in endogenous responses play a critical role
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in determining the magnitude of hypertrophy [3].
Indeed, hypertrophic responses to RT vary widely
among individuals, including those observed in
older persons [4, 5]. Previous studies have reported
that individuals exhibiting greater hypertrophy show
higher androgen receptor content [6], greater satel-
lite cell proliferation [7], and ribosome biogenesis
following RT [8]. Moreover, transcriptomic analyses
indicate that lower hypertrophy responders display
differential transcriptomic responses in muscle fol-
lowing RT [9], reflecting altered molecular respon-
siveness, as well as substantial baseline differences
in transcriptomic profiles among those with differing
hypertrophic responses [10]. These findings highlight
the importance of understanding the molecular and
metabolic determinants underlying this variability in
RT adaptations.

The skeletal muscle metabolome is an individu-
alised reflection of both endogenous factors, includ-
ing the transcriptome and proteome, and their inter-
action with exogenous influences, such as RT [11,
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12]. Circulating metabolites have also been identified
as strong predictors of ageing and disease [13, 14].
Thus, metabolomics may provide an approach to cap-
ture metabolic changes that may explain variability
in hypertrophic responsiveness. Untargeted metabo-
lomics, in particular, enables comprehensive profil-
ing of small molecule metabolites, offering insights
into pathways that regulate muscle adaptation. While
prior studies have reported broad metabolic shifts
with RT [12, 15], the effects of longer-term RT
combined with protein supplementation on skeletal
muscle metabolome in older adults remain poorly
understood. Addressing this gap is critical, as it may
provide insight into the underlying heterogeneity of
response to RT, which could be used to gain insight
into improve muscle health.

Therefore, we investigated skeletal muscle meta-
bolic profiles before and after 10 weeks of RT in
older adults, with participants classified as the upper
(UPPER) and lower tertiles (LOWER) of RT-induced
muscle hypertrophy. We hypothesised that UPPER
and LOWER would exhibit distinct metabolic adapta-
tions to RT.

Methods
Participants

We included 67 healthy older adults from our paren-
tal trial [16], comprising 30 males (68+4 years;
BMI=26.4+3.0 kg/mz) and 37 females (68 +5 years;
BMI=26.4+4.3 kg/m®). Participants were gener-
ally healthy but had not engaged in regular exercise
(resistance or aerobic training) for at least six months
prior to the study. Exclusion criteria included type I
diabetes, ischemic myocardial disease, arrhythmia,
uncontrolled hypertension, and any major ortho-
paedic issues or musculoskeletal disorders. All par-
ticipants provided written informed consent prior to
enrolment and agreed to have their tissue samples
stored and analysed after completion of the main
study for secondary analysis.

Ethics statement
The study was approved by the Human Research Eth-

ics Committee of the University of Sao Paulo. All
participants provided written, informed sent prior to

taking part in the study, and agreed to have their tis-
sue samples stored and analyzed after the main study.
The main trial was registered at ClinicalTrials.gov
(NCT number: NCT06718712). The ethical approval
for muscle biopsy analysis was obtained from the
University of Liverpool Central University Research
Ethics Committee, reference number 12689.

Experimental design

Participants completed 10 weeks of unilateral RT,
with three supervised leg extension sessions per week
(see Resistance exercise training). Quadriceps cross-
sectional area (CSA) was measured by magnetic
resonance imaging (MRI) pre- and post-training to
assess hypertrophy. Muscle biopsies from the vastus
lateralis were obtained pre- and post-RT, following
MRI scans, and used for untargeted metabolomics
analyses to compare UPPER vs. LOWER. During the
RT intervention, participants consumed 20 g of whey
protein twice daily (after breakfast and before sleep)
to support muscle growth (> 1.2 g/kg/day) [17]. Par-
ticipants were classified based on the technical error
(TE) of MRI-derived changes in quadriceps CSA (see
Classification of responders).

1 repetition maximum test

Unilateral 1RM for knee extension was assessed
according to established guidelines [9]. Briefly, fol-
lowing a 5 min cycle warm-up, participants com-
pleted 8 repetitions at 50% estimated 1RM and 3 rep-
etitions at 70%, each separated by 1 min rest. After
a 3 min recovery, up to 5 attempts were permitted
to achieve 1RM, with 3 min rests. A repeated IRM
test was conducted 72 h later; the highest load was
recorded as the final 1 RM.

Resistance exercise training

As described in the parental study, participants
trained one leg with 1 set and the contralateral leg
with 4 sets of knee extensions (8—15 repetitions per
set; 60-90 s of rest between sets). The trained leg was
randomly assigned to minimise bias. For this study,
only the multiset condition (4 sets) was analysed, as it
is most strongly associated with hypertrophy [18]. All
exercise sets were performed to volitional failure, and
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loads were adjusted to maintain the 8—15RM range. A
certified exercise physiologist supervised all sessions.

Quadriceps cross-sectional area

Quadriceps CSA was assessed using MRI (Sigma
LX 9.1, GE Healthcare, Milwaukee, WI). Partici-
pants were positioned supine in the MRI scanner with
their knees fully extended and secured using Velcro
straps to ensure consistent positioning. Images were
acquired at 50% of thigh length, defined as the mid-
point between the greater trochanter and lateral epi-
condyle of the femur. Muscle CSA was analysed
using ImageJ software (version 1.53c, National
Institutes of Health, Bethesda, MD) by a blinded
researcher. The reproducibility of MRI-derived CSA
was assessed in 20 participants who underwent two
scans, 7 days apart, prior to training [16]. The TE of
the measurement was calculated as the standard devi-
ation (SD) of repeated measures [19] and expressed
as a coefficient of validation (1.63%).

Classification of response

Hypertrophic responses were defined using the TE
from repeated CSA scans. A change of greater than
2% in CSA was required to exceed measurement
error. Higher responses (i.e., UPPER) were defined as
persons showing>7.7% CSA increase (greater than
3-times the TE), and lower responses (i.e., LOWER)
as<5.6%. (less than 2-times the TE). This classi-
fication led to the creation of two response groups,
one with a higher response and the other with a
lower response, each encompassing 25 participants,
or~37% (or one tertile) of the total participant sam-
ple from which muscle samples were taken, and for
which muscle tissue was still available for analysis.
The participants in the intermediate response range
(5.6-7.7%) were classified as mid-range and were
not analysed. Due to tissue and resource constraints,
many of these participants were also excluded. This

approach may have, we acknowledge, led to some
bias; however, as a pragmatic first step in identifying
metabolomic profiles associated with response het-
erogeneity, we viewed our method of comparing two
distinct groups with a threefold difference in hyper-
trophic responses to RT as a reasonable preliminary

@ Springer

investigative step, especially given our tissue and
resource constraints.

Muscle biopsy

Vastus lateralis biopsies were collected after an over-
night fast (>10 h) pre- and post-RT (48 h after the
final training session). Participants were instructed
to avoid vigorous physical activity for at least 72 h
and to refrain from consuming alcohol and caffeine
for 24 h prior to sampling. Biopsies were performed
using a 5-mm Bergstrom needle adapted for manual
sectioning under local anaesthesia (1% Xylocaine).
A small incision was made, and~150 mg of muscle
tissue was collected. The muscle tissue was divided
into aliquots (~25 mg), immediately (less than 60 s)
frozen in liquid nitrogen, and stored at —80 °C until
analysis.

Untargeted liquid chromatography-mass spectrometry
(LC-MS) metabolomics analysis

Muscle samples (~10 mg+1 mg) were suspended
in 216 pL of pre-chilled MeOH:H,O (2.86:1) and
homogenised in 2 mL Precellys™ tubes using a Qia-
gen PowerLyzer® 24 (5000 rpm, 2% 10 s). Homoge-
nates were transferred to 2 mL Eppendorf tubes,
mixed with 240 uL of pre-chilled CHCl;:H,O (2:1),
and incubated on ice for 10 min. Samples were vor-
texed for 30 s and centrifuged (3500 g, 4 °C, 5 min)
to achieve phase separation. Aliquots (200 uL) of the
polar (upper) and non-polar (lower) phases were col-
lected into separate tubes and dried by evaporation
in a cold-trap vacuum centrifuge. The dried extracts
were stored at—80 °C until UHPLC-MS analysis.
Optima® LC-MS grade MeOH, CHCI;, ACN, IPA
and H,0O were used for sample preparation, with
LiChropur™ ammonium formate and formic acid
(=99.0%) as solvent buffers, and HPLC-grade abso-
lute ethanol (99.8% v/v) was used for maintenance
and cleaning.

Quality control and assurance (QA/QC)

A fixed volume of homogenised tissue extract from
each sample was pooled to generate both quality con-
trol (QC) and conditioning QC samples, following
established protocols [20]. Pooled QC samples were
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analysed to monitor data quality, while extraction
blanks, solvent blanks, QC samples, and system suit-
ability test (SST) samples were prepared in parallel
with study samples using the same preparation pro-
cedures [20].

UHPLC-MS analysis

Untargeted metabolomics data were acquired using
a ThermoFisher Scientific Vanquish UHPLC system
coupled to an Orbitrap ID-X Tribridge MS (Ther-
moFisher Scientific Inc., UK). Dried polar extracts
were reconstituted in 100 uL ACN:H20 (90:10), and
the non-polar extracts in 100 uL H,0:MeOH (80:20),
before transfer to glass vials. Polar extracts were
separated on a Hypersil GOLD™ aQ C18 column
(2.1x100 mmx1.9 pm), while non-polar extracts
were separated on a Hypersil GOLD™ Vanquish C18
column. During analysis, columns were maintained at
50 °C with a 15 min gradient elution at a flow rate
of 0.4 mL/min. Samples were stored at 4 °C in the
LC autosampler, and 5 pL. was injected for both posi-
tive and negative electrospray ionisation (ESI). Data
were acquired in full-scan mode. Each analytical
batch was bracketed with blank and conditioning QC
injections and included periodic pooled QC sample
injections [21]. For compound annotation and iden-
tification, ddMS2 data were acquired from 3 pooled
QC samples across four m/z ranges: (a) 66.7-1000,
(b) 66.7-300, (c) 300-600, and (d) 600-900 [22].
Detailed gradient elution profiles, solvent composi-
tions, and MS parameters are provided in Supplemen-
tal Tables 1 and 2, respectively.

Quantification and statistical analysis

Normality was tested using the Shapiro—Wilk test.
Baseline characteristics between the UPPER and
LOWER groups were compared using an unpaired
t-test, and nominal variables (i.e., clinical condi-
tions) were compared using the Chi-square test.
Absolute quadriceps CSA changes were analysed
by linear mixed models (group x time), with Tukey
post hoc test. Percent CSA changes were compared
using an unpaired t-test. Statistical significance was
set at P <0.05, and results are reported as mean+SD.
Analyses were performed in R (version 4.3.2). The
LC-MS data were deconvolved using Compound
Discoverer 3.2 (Thermo-Fisher), with tentative anno-
tation based on MS/MS spectral matching. Decon-
volved data were imported into MATLAB (2023a,
Mathworks, MA) for multivariate analysis. Partial
least squares—discriminant analysis (PLS-DA) was
used to assess separation (UPPER vs. LOWER; pre-
vs. post-RT). The number of PLS components was
determined by using a sevenfold cross-validation on
the training set. The optimal number of PLS compo-
nents was set to the ones that had the best classifica-
tion accuracies on the validation sets. The exact opti-
mal number of components varied, depending on the
combination of training and test set, with most PLS
models selecting 2-3 PLS components as optimal.
Variable Importance in Projection (VIP) scores iden-
tified key discriminating metabolites (VIP> 1). Path-
way enrichment was performed using the Mummic-
hog algorithm and the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) database in MetaboAnalyst
(version 6.0). Full metabolite lists are provided in
Supplemental Data 1. These data also included results

Table 1 Baseline

o LOWER (n=25) UPPER (n =25) P
characteristics
Sex (M/F) 10/15 13/12
Age (yr) 69+5 67+4 0.086
Body mass (kg) 71+13 72+13 0.745
Height (m) 1.62+0.1 1.66+0.1 0.363
Body mass index (kg/m?) 27+4 26+3 0.829
Data are expressed as mean 1 repetition maximum (kg) 42+16 51+21 0.224
(SD) Clinical conditions
LOWER lower tertile Type 2 diabetes, n (%) 14 2(8) 0.837
response, UPPER upper Hypertension, n (%) 7 (28) 4(16) 0.579
tertile response; 72DM type Cholesterol, 1 (%) 7(28) 5(20) 0.264

2 diabetes

@ Springer
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«Fig.1 A Absolute quadriceps muscle CSA pre- and post-
intervention (each dot is an individual value; shown with mean
and 95% confidence interval), B and percent change in CSA
after 10 weeks of RT (each dot is an individual value; shown
with mean and 95% confidence interval), Partial Least-Squares
Discriminant Analysis (PLS-DA) results are shown for C polar
positive mode and D non-polar positive mode in pre- and
post-intervention from all participants, and for E polar posi-
tive mode and F non-polar positive mode comparing UPPER
and LOWER groups. LOWER, lower tertile response; UPPER,
upper tertile response. * P <0.05, significant difference from
pre-intervention within groups; (A), and * P<0.001, signifi-
cant difference between groups (B)

from N-way ANOVA, and p-values for the baseline
and pre-post comparisons in the UPPER and LOWER
groups, and were not adjusted for covariates. Model
performance was validated through 1,000 bootstrap-
ping iterations (23), and statistical significance was
further confirmed via permutation testing. Metabolite
lists were manually curated to distinguish biological
relevant signals from noise. Finally, N-way ANOVA
was applied to log-transformed features to detect
group (UPPER vs. LOWER) and time (pre- vs. post-
RT) effects, with Benjamin-Hochberg false discovery
rate (FDR) correction for multiple testing.

Results
Participant characteristics

Baseline characteristics are presented in Table 1.
No significant differences were observed between
LOWER and UPPER in anthropometric measures,
clinical conditions (type 2 diabetes, hypertension, and
hypercholesterolemia) prior to the intervention.

Quadriceps muscle cross-sectional area

In the LOWER group, absolute quadriceps CSA
increased from 53.6+12.1 cm® to 55.4+12.8 cm?
after 10 weeks of RT (3.3+1.7%, P<0.001; Fig. 1A).
In the UPPER group, CSA increased from 53.7+12.5
cm? to 59.2+13.6 cm® (10.3+2.0%, P<0.001;
Fig. 1A). Regarding changes in CSA between pre
and post, LOWER and UPPER increased by 3.3%
and 10.3%, respectively (Fig. 1B). UPPER showed a
significantly greater percentage change in CSA com-
pared with the LOWER group (P <0.001; Fig. 1B).

Metabolic profile of skeletal muscle

Untargeted LC-MS analysis detected >2,500 metab-
olites across skeletal muscle samples, which were
mapped to 104 metabolic pathways. PLS-DA using
polar extracts provided the highest discrimination
between UPPER and LOWER, with an average cor-
rect classification rate (CCR) of 75% (Fig. 1C). The
empirical P-value was 0.006, indicating that only 6
out of 1,000 permutation tests produced null models
with better performance. Non-polar extracts achieved
a slightly lower CCR at 72% (P=0.0163; Fig. 1D).
In general, classification performance was higher
for pre- vs. post-RT than for UPPER vs. LOWER
(Fig. 1E and F).

Mummichog functional enrichment analysis

For the functional analysis, we focused on the com-
parison between UPPER and LOWER responses to
intervention as the most significant model (Fig. 2)
(Supplemental Data 2). Pathway enrichment analy-
sis using Mummichog identified several signifi-
cantly altered metabolic pathways following RT. The
most significantly enriched pathway was tryptophan
metabolism (P (Fisher) <0.0001), followed by aspar-
tate and asparagine metabolism (P (Fisher) <0.0001)
and urea cycle/amino group metabolism (P
(Fisher) <0.0001). Additional pathways showing
significant enrichment included alanine and aspar-
tate metabolism (P (Fisher)=0.0010, FDR =0.0448),
histidine metabolism (P (Fisher)=0.0021), biopterin
metabolism (P (Fisher)=0.0087), arginine and pro-
line metabolism (P (Fisher)=0.0128), and butanoate
metabolism (P (Fisher)=0.0133). Other enriched
pathways included drug metabolism—cytochrome
P450 (P (Fisher)=0.0233), propanoate metabo-
lism (P (Fisher)=0.0441), and tyrosine metabolism
(P(Fisher)=0.0488).

Differential metabolites between UPPER and
LOWER

We have provided results for all four possible com-
parisons in Supplemental Data 2, which includes
pre- and post-RT comparisons between the UPPER
and LOWER groups. Here we present the results
and interpretation for the most statistically sig-
nificant model, in line with the functional analysis.

@ Springer
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Fig. 2 Results from the Mummichog functional analysis based
on UPPER compared with LOWER groups to the intervention.
Unique identified m/z values, t scores, and p values derived
from two-way ANOVA were utilised to generate the enriched
pathways. A total of 105 metabolic pathways were mapped

Compared with the LOWER, the UPPER group
showed broad upregulation of amino acid- and
peptide-related metabolites (Supplemental Data
2). Tryptophan-related metabolites were upregu-
lated in the UPPER, including tryptophan, indole
derivatives, kynurenine, kynurenic acid, as well as
SHT (Fig. 3). In addition, several metabolites from
vitamin and cofactor metabolism (e.g., riboflavin
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based on the MFN human genome-scale metabolic model. The
most enriched pathways are displayed, with nodes distributed
across the enrichment factor and a heatmap illustrating the sig-
nificance level

and nicotinamide), and histidine metabolism were
upregulated in the UPPER compared with the
LOWER group (Supplemental Data 2). From the
BCAA pathway, valine, leucine and isoleucine
were upregulated in the UPPER compared with
the LOWER, whereas no BCAA catabolites were
identified (Fig. 4A). Among the TCA intermedi-
ates, citrate was upregulated in UPPER compared
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with LOWER, while other intermediates, including
succinate, fumarate, malate, oxaloacetate, succinyl-
CoA, and aconitate, were not detected. Itaconate
and ATP were detected but showed no significant
changes. Furthermore, amino acids linked to the
TCA cycle (glutamic acid, glutamine, proline, and
arginine) were elevated in UPPER. Additionally,
energy-related metabolites, including adenosine
diphosphate, adenosine monophosphate, were
increased (Fig. 4B), contributing to enriched urea
and amino acid group metabolism (Supplemental
Data 1).

Discussion

We identified and mapped metabolic pathways and
potential metabolic signatures of RT-induced skeletal
muscle hypertrophy in older adults. We observed dis-
tinct muscle metabolic adaptations between UPPER
and LOWER after 10 weeks of RT, with UPPER
characterised by enhanced amino acids, especially
tryptophan pathways, implicating the potential meta-
bolic signatures associated with hypertrophic respon-
siveness in older adults. Importantly, the participants
showed no baseline differences in phenotype or
metabotype that distinguished the groups.

Our metabolomic profiling data extend the main
study findings [16] by providing biochemical con-
text to the variability in hypertrophic responsive-
ness among older adults. In the original study, higher
training volume effectively mitigated nonresponse,
demonstrating that some older adults require a greater
stimulus to activate anabolic pathways. For that rea-
son, we chose to classify response in the leg that
completed 4 sets and not 1. The companion transcrip-
tomic study [9], revealed that robust hypertrophy in
high responders was accompanied by upregulation
of genes involved in amino acid metabolism, protein
turnover, and protein folding, whereas low responders
exhibited minimal molecular plasticity. The current
metabolomic analysis complements these findings [9]
by showing that individuals with greater hypertrophy
displayed elevated intramuscular levels of trypto-
phan—kynurenine metabolites, branched-chain amino
acids, and urea-cycle intermediates, consistent with
efficient amino acid utilization and mitochondrial
energy regulation. These overlapping molecular sig-
natures suggest that enhanced amino acid metabolism
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and improved mitochondrial energetics may be key
features associated with hypertrophic responsiveness.
Together, the converging metabolomic and transcrip-
tomic data reinforce the concept that higher RT vol-
ume promotes metabolic and molecular adaptations
that favour anabolic efficiency in older adults[9],
offering mechanistic insight into how RT variables
can offset age-related heterogeneity in muscle growth.
This interpretation is broadly consistent with large
scale scoping analyses of RT wvariables that affect
hypertrophy[18]. Collectively, our and the previ-
ous studies also show that with aging there is still a
retention of the capacity[9, 18], with a sufficient RT
stimulus, to achieve robust hypertrophy that is not
characterized by non-response, but still a pronounced
variability in response to RT.

Functional analysis and pathway mapping
highlighted significant enrichment of tryptophan
metabolism in UPPER compared with LOWER
(Fig. 3). Tryptophan is an essential amino acid that
is degraded by enzymes into kynurenines [23]. Con-
sistent with our findings, previous work reported
higher muscle kynurenine levels in active than with
sedentary older adults [24]. Importantly, downstream
metabolites such as kynurenic acid and nicotinamide
adenine dinucleotide (NAD™) have been associated
with improved respiratory fitness and enhanced mus-
cle oxidative capacity [25]. Moreover, tryptophan
catabolism is influenced by the gut microbiome,
particularly via indole-derived metabolites [26-28].
Indole metabolites, such as indole-3-propionic acid
and indole-3-acetic acid, have been shown to protect
against inflammation and promote nerve regeneration
in vitro [28, 29], and to contribute to muscle growth
and metabolic function in vivo [30-33]. The abun-
dance of gut-derived indoles may imply an associa-
tion of the gut-muscle axis with hypertrophic regula-
tion in older adults. However, the mechanism of
action of indoles in human muscle remains unclear,
and further mechanistic studies are warranted.

Enrichment of aspartate and asparagine metabo-
lism, along with the urea cycle, reflects robust amino
acid and TCA cycle activity, given that key metabo-
lites from these pathways include glutamic acid,
a-ketoglutaric acid, proline, aspartic acid, spermi-
dine, carnitine, arginine, carnosine, acetylcarni-
tine, and lysine. A comprehensive interpretation of
all metabolites within these pathways is beyond the
scope of this study; therefore, we focus on those that
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are most biologically relevant and central to meta-
bolic adaptations to exercise. Carnosine was elevated
in UPPER compared with LOWER (Supplemental
Data 1). Carnosine is synthesised from f-alanine and
histidine and found in high concentrations in skel-
etal muscle. Alongside carnitine, it contributes to pH
buffering, ATP regeneration, and energy availability
[34, 35], all of which are essential for adaptation to
RT and may partly explain the greater hypertrophic
capacity of UPPER. Supporting this thesis, Hoetker
et al. [36] reported dynamic changes in mitochondrial
carnitine homeostasis and ATPDG1 expression dur-
ing exercise, implying a role for carnosine in regulat-
ing carnitine balance. Our findings suggest enhanced
carnosine synthesis may stabilise carnitine levels
in UPPER, potentially improving energy efficiency,
which is essential for muscle protein synthesis in
UPPER.

RT also altered muscle acylcarnitine levels, with
higher acetylcarnitine (C2) and other short- and
medium-chain acylcarnitines in UPPER. These
metabolites are central to transporting acyl groups
(organic acids and fatty acids) from the cytoplasm
into mitochondria, where they undergo oxidation
to produce energy [24, 37]. Our findings are con-
sistent with previous reports, showing that exercise
induces the upregulation of acylcarnitines, thereby
modulating muscle bioenergetics and acetyl group
balance during and after exercise [38]. Key acylcar-
nitines identified in this study include C2, a short-
chain metabolite central to energy metabolism, and
3-hydroxyoctanoylcarnitine, a medium-chain hydrox-
ylated acylcarnitine indicative of incomplete fatty
acid p-oxidation (Supplemental Data 1). Additionally,
medium-chain acylcarnitines such as O-heptanoyl
carnitine and octanoyl-carnitine play crucial roles in
the carnitine shuttle [37].

Further, the metabolic mapping of BCAAs
(Fig. 4A) showed an upregulation of leucine, valine,
and isoleucine in the UPPER. However, BCAA cat-
abolites were not detected. This absence may reflect
an overall improvement in BCAA metabolism, pre-
venting the accumulation of downstream catabolites.
Notably, as the majority of BCAA-derived carbons
ultimately enter the TCA cycle, our finding showed
an increase in citrate, a- Ketoglutaric acid, glutamic
acid, glutamine, proline, and arginine. These inter-
connected findings, although observational, may
suggest that BCAA- and TCA-related intermediates

were not accumulating excessively. This interpreta-
tion is further supported by increases in adenosine
diphosphate and adenosine 5-monophosphate, indi-
cating robust energy production [39]. Neverthe-
less, validation of this interpretation would require
targeted metabolomic analysis, and serial muscle
biopsies to enable metabolic flux assessment. In
addition, cross-sectional analyses integrating metabo-
lomics and transcriptomics have suggested impaired
BCAA catabolism as a potential mechanism under-
lying ageing-related muscle loss [40]. Overall, the
downstream BCAA degradation in response to RT
remains an understudied pathway and warrants fur-
ther investigation.

Muscle biopsies were collected 48 h post-training,
reflecting medium- to longer-term adaptations rather
than an acute response [41]. Limited tissue avail-
ability prevented confirmatory targeted analyses.
Sex-specific effects could not be examined due to
sample size, although both sexes were represented in
the UPPER and LOWER groups. Future work incor-
porating analyses of circulating metabolomes and
faecal microbiota could provide a more comprehen-
sive view of RT adaptations. Hypertrophic responses
were defined using the TE from repeated MRI scans
to determine muscle CSA. Both the UPPER and
LOWER groups showed significant (versus baseline)
hypertrophy, so there was no true ‘non-response’ to
RT. By analysing only these groups, we acknowledge
that this approach may have introduced bias; however,
as an ancillary analysis of the original study data, it
represented a reasonable first step toward identify-
ing metabolic pathways associated with variability
in hypertrophic responses. Regrettably, tissue avail-
ability and resource constraints prevented analysis of
the complete participant sample and may limit robust
comparison with the parent data. Clearly, larger stud-
ies encompassing the full spectrum of metabolomic
responses and relating changes across the entire range
will be required to validate and extend our findings.

We identified distinct skeletal muscle metabo-
lomic signatures between UPPER and LOWER in
older adults, highlighting enhanced metabolic path-
ways related to essential amino acids, mitochondrial
metabolism, and the gut in UPPER. These findings
offer insight into the molecular determinants that may
underpin interindividual variability in RT-induced
hypertrophy in older adults, informing strategies to

@ Springer
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optimise training outcomes and mitigate age-related
muscle decline.
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