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ABSTRACT

The Anthropocene is characterised by a continuous human-mediated reshuffling of the distributions of species globally.
Both intentional and unintentional introductions have resulted in numerous species being translocated beyond their
native ranges, often leading to their establishment and subsequent spread – a process referred to as biological invasion.
Biological invasions are associated with profound changes in the composition, structure, and functioning of recipient eco-
systems, plus substantial financial losses and disruptions to society, culture, and human well-being. These ecological, eco-
nomic, and socio-cultural impacts are interrelated, ubiquitous, and detrimental, yet they are often subjectively perceived
or inaccurately quantified. Persistent knowledge gaps remain, however, which limit our understanding of the complex
and multifaceted causes and mechanisms of invasion impacts. To overcome these gaps and comprehensively capture
all related facets pertaining to the nature and diversity of invasion impact, this scoping review of academic studies, grey
literature, and expert reports provides a conceptual model for interpreting invasion impacts, structured around three
interrelated pillars: impact domains, challenges in the study of impacts, and available risk- and impact assessments.
We initially explore the various mechanisms and consequences of ecological, economic, and socio-cultural invasion
impacts and their temporal dynamics, substantiating these with relevant empirical examples. We then review common
challenges and fallacies in studying invasion impacts, including context specificity and inter-comparability of impact
magnitudes, challenges associated with quantifying non-ecological impacts, and research biases, before synthesising
how risks are analysed and impacts assessed, and how these assessments ultimately inform management decisions. Our
review underscores the multifaceted and complex nature of invasion impacts, and that effectively addressing biological
invasions requires more than isolated, reactive interventions; it calls for globally coordinated, proactive action under-
pinned by reliable scientific knowledge, sincere political commitment, and broad public engagement. Drawing on nearly
a century of literature and global expert contributions, this work offers a comprehensive, nuanced, and timely overview of
the potential consequences of biological invasions, providing a valuable foundation for informing future research direc-
tions, management interventions, and policy development.

Key words: biological invasions, invasion impacts, ecological effects, impact assessment, risk analysis.
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I. INTRODUCTION

The concept of biological invasions has been far from static
over time, evolving in response to changing human perspec-
tives in ecology, biogeography, and socio-economics. At the
global level, by fundamentally eroding many biogeographi-
cal barriers that kept organisms isolated, humans have facili-
tated an unprecedented interchange of species (Briski
et al., 2013; Capinha et al., 2015). This exchange has contrib-
uted to the alteration of recipient ecosystems, resulting in
notable modifications and impacts ranging from biodiversity
loss to changes in ecosystem functions (Charles & Dukes,

2007; Bellard, Bernery & Leclerc, 2021). Biological invasions
are recognised as a growing concern worldwide due to their
extensive ecological, economic, and socio-cultural impacts
(Blackburn, Bellard & Ricciardi, 2019; Roy et al., 2023c;
Turbelin et al., 2023). Increasing introduction rates over past
decades and growing impacts became of great interest for
many naturalists throughout human history (Seebens
et al., 2017; Haubrock et al., 2023a). What began as a collec-
tion of early anecdotal observations by Charles Darwin and
others has developed into a rigorous scientific discipline
that integrates insights from multiple established fields
(e.g. ecology, economics, sociology) focused on predicting,
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managing, and mitigating the consequences of biological
invasions (Darwin, 1889; Ricciardi & MacIsaac, 2008; Vaz
et al., 2017). Today, the threat posed by non-native species
introductions is recognised by stakeholders and politicians
alike, with biological invasions being explicitly mentioned
in national (Banerjee et al., 2021; Mayer et al., 2023)
and international agreements and conservation targets
(McGeoch et al., 2023) like the Convention on Biological
Diversity’s (CBD) Aichi biodiversity target 9 (CBD, 2010)
and target 6 of the Kunming–Montreal Global Biodiversity
Framework (www.cbd.int/gbf/targets/6).

The impacts of biological invasions, however, are often
nuanced and context dependent, and in many cases, chal-
lenging to quantify (Crystal-Ornelas & Lockwood, 2020;
Grimm et al., 2020). For instance, certain non-native species
present measurable benefits alongside their harmful ecologi-
cal impacts (Sax, Schlaepfer & Olden, 2022; Carneiro
et al., 2024a), complicating legislative changes and the appli-
cation of management measures (Kourantidou et al., 2022).
Some introduced plants, such as the black locust (Robinia pseu-
doacacia), provide valuable ecosystem services, including soil
stabilisation and nectar provision (Zhang et al., 2016), despite
negatively affecting native biodiversity (Kato-Noguchi &
Kato, 2024). Introduced honeybees (Apis mellifera) and bum-
blebees (Bombus spp.) play an important role in crop pollina-
tion worldwide (Russo, 2016) and, at the same time, are
known to threaten native insects and disturb the pollination
of native plants while enhancing that of non-native plants
(Goulson, 2003; Goulson, Lye & Darvill, 2008). Similarly,
non-native fishes like the dusky spinefoot (Siganus luridus)
and the marbled spinefoot (S. rivulatus) have devastating
impacts on Mediterranean reefs, transforming algal forests
into rocky barrens (Sala et al., 2011), yet rank first in both
catch volume and value in Cyprus’ commercial and recrea-
tional fisheries, where they are considered a high-quality
resource (Michailidis, Katsanevakis & Chartosia, 2020). Fish
species like the North American rainbow trout (Oncorhynchus
mykiss) sustain significant aquaculture production and recrea-
tional fisheries in Europe (Lyach, 2022), whereas the
European brown trout (Salmo trutta) sustains major recrea-
tional fisheries but also causes notable ecological impacts in
North America and New Zealand (Budy & Gaeta, 2017;
Jones & Closs, 2017). In Japan both species are considered
established non-native fishes serving similar roles
(Hasegawa, 2020), while simultaneously threatening native
communities (Miyamoto, Fukuda & Michita, 2024; Peterson
et al., 2024). Beyond these examples, the ecological, eco-
nomic, or socio-cultural impacts of non-native species remain
uncertain due to limited, difficult-to-obtain empirical data
(Simberloff et al., 2013; Latombe et al., 2023), complexity of
interactions (Essl et al., 2020), long time lags before effects
become apparent (e.g. ‘sleeper populations’; Spear
et al., 2021), or an inherent inability to quantify socio-cultural
effects (e.g. on cultural identity, recreation, or traditional
practices; Simberloff et al., 2013; Read et al., 2020).

Despite considerable recent advances in the conceptual
understanding of biological invasions (e.g. Roy et al., 2023a;

Haubrock et al., 2025c), critical knowledge gaps persist in
our understanding of the multifaceted impacts that result
from introductions of non-native species. These include,
but are not limited to, (i) the measurement of impacts, (ii)
the complex interplay of ecological, economic, and socio-
cultural factors, (iii) the variability in ecosystem responses to
biological invasions, and (iv) the underlying context-
dependent nature of impacts. Furthermore, we introduce a
three-pillar conceptual framework that distinguishes ecologi-
cal, economic, and socio-cultural impacts and explicitly links
them to methodological challenges and management impli-
cations. The aim of this review is thus to examine the nature
and diversity of invasion impacts, emphasising the con-
ceptual and methodological challenges inherent in their
assessment, and to build upon them. By addressing these
challenges and exploring future research directions, we seek
to clarify the understanding of the impacts of biological inva-
sions, leveraging past efforts that have greatly advanced this
knowledge, and to guide management strategies and policy
decisions better. Accordingly, we synthesise insights from a
broad body of literature based on the collective expertise of
the authors, including peer-reviewed studies, grey literature,
and expert reports. This approach seeks to offer a compre-
hensive and conceptually grounded overview of the current
knowledge on the impacts of biological invasions.

II. THE STUDY OF IMPACTS

(1) What are invasion impacts?

In the context of biological invasions, ‘impact’ generally
refers to any measurable ‘change’ or ‘effect’ (negative, neu-
tral, or positive) on biodiversity, ecosystems, economies, or
human society caused by the introduction of non-native spe-
cies (Larson & Kueffer, 2013; Barney & Tekiela, 2020).
Definitions and perceptions of impacts can vary widely
depending on ecological perspective, economic consider-
ations and interests, and cultural contexts, leading to signifi-
cant debate and inconsistencies (Lockwood, Hoopes &
Marchetti, 2013; Pereyra et al., 2024, 2025). Past studies have
revealed a diversity of effects associated with non-native spe-
cies introductions (Schlaepfer, Sax & Olden, 2011; Simberl-
off et al., 2013; Sax et al., 2022) and therefore used impacts as
a practical and immediate approach to define the invasive-
ness of a non-native species. This is especially the case from
a management and legislative point of view (Ricciardi &
Cohen, 2007; Pearson et al., 2016) as in the European Union
Regulation on Invasive Alien Species (EU Regulation
No. 1143/2014 hereafter), which defines ‘invasive alien spe-
cies’ as alien species whose introduction or spread has been
found to threaten or adversely impact upon biodiversity
and related ecosystem services (Martín-Forés et al., 2024).
This approach presents several shortcomings, such as the fre-
quent absence of conducted impact assessments and the dif-
ficulty of attributing impacts to the introduction of some
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species due to confounding effects (e.g. habitat alteration,
pollution, climate change; Soto et al., 2024a). Rather, as the
term ‘invasive’mainly relates to a species’ capacity to spread
into a new area (sensu Soto et al., 2024a), impacts should not
be the principal element used to define the invasiveness of a
non-native species, especially as a form of impact occurs at
every stage of the invasion (Blackburn et al., 2011). Neverthe-
less, assessing the impacts of non-native species remains
equally important because they determine the urgency and
necessity of selective pre-invasion biosecurity measures
and post-invasion management interventions, thus helping
prioritisation (Robertson et al., 2021).

Invasion impacts are usually categorised as ecological, eco-
nomic, or socio-cultural. Ecological impacts focus on changes
in native biodiversity (Dorcas et al., 2012), habitat structure,
or physico-chemical composition (Sousa, Gutiérrez &
Aldridge, 2009), species interactions [e.g. predation and
competition (Kamaru et al., 2024), community structure
alterations (Everts et al., 2024)], and ecosystem functioning
(Sousa et al., 2011). Economic impacts centre on the valua-
tion of the monetary costs incurred due to non-native species,
such as agricultural losses, infrastructure damage, or man-
agement expenses (Farnsworth et al., 2017; Diagne
et al., 2021; Ahmed et al., 2023; Tambo et al., 2023). Socio-
cultural impacts encompass effects on human health, cultural
values, recreational activities, and general well-being and
quality of life (Jones, 2017; Mazza & Tricarico, 2018),
although sometimes they are merged with economics as in
the Socio-Economic Impact Classification of Alien Taxa
(SEICAT) framework (Bacher et al., 2018). Overarching cat-
egories of invasion impacts focus on different but comple-
mentary aspects that are often largely interconnected
(e.g. ecological economy; Cook et al., 2007). Economic and
social costs are increasingly acknowledged, often through
ecosystem services and Nature’s Contributions to People
frameworks (Katsanevakis et al., 2014; Bacher et al., 2018;
Tsirintanis et al., 2022), whereas the assessment of socio-
cultural impacts generally still lags behind ecological and
economic dimensions, partly due to limited interdisciplinary
integration. The recent focus of invasion scientists on asses-
sing economic and socio-cultural impacts, however, only fol-
lowed after the investigation of ecological impacts due to
their difficult assessment and quantification (Diagne
et al., 2021). These impact categories are also more immedi-
ately understandable to stakeholders, policymakers, and the
public, which has made them especially effective for raising
awareness about biological invasions and securing funding
for research and management (McGeoch et al., 2010;
Scalera, 2010). However, no impact categories can be con-
sidered a proxy for all impacts as, for example, a non-native
species can have detrimental ecological impacts but benign
or even positive impacts on human economy or health, and
vice versa.

A central challenge in assessing invasion impacts lies in
determining what constitutes a ‘significant’ ecological, eco-
nomic, or socio-cultural impact (Fig. 1). Any such assessment
is inherently subjective and conceptually challenging as

perceptions of significance vary across different perspectives
and disciplinary frameworks (Carlton, 2002; Simberloff
et al., 2013). The absence of a ‘significant’ effect, for instance,
does not equate to a lack of impact. An impact that is consid-
ered substantial or intolerable by one individual, scientist,
stakeholder, or policymaker may be perceived as negligible
or even beneficial by another, highlighting the subjectivity
inherent in impact assessments. The scale of impacts may
occur at individual, local, or broader levels as a localised
non-native species might cause socio-economic harm, such
as property damage or health issues, without posing a
national concern. Similarly, small populations of non-native
species can prey on individuals of native species, without
affecting overall populations, raising questions about
whether such localised impacts are significant or if thresholds
should apply. Should assessments focus on the greatest
impact, possibly neglecting other effects? The deeply subjec-
tive nature of evaluating the impacts of biological invasions
thus depends on both the epistemological and cultural con-
texts (Moon, Blackman & Brewer, 2015), reflecting deeper
societal values and trade-offs between economic gains, eco-
logical integrity, and competing interests (Löfqvist
et al., 2023).

(2) The history of studying invasion impacts

From the moment that humans began relocating species,
whether intentionally or unintentionally, the consequences
of these movements have attracted the attention of natural-
ists. Among the earliest human migrations, the Austronesian
expansion (�3000–1500 BC) was a well-documented large-
scale migration that introduced various species to previously
uninhabited remote Pacific Islands (Chang et al., 2015;
Kirch, 2017). Some of these introductions (e.g. the Pacific
rat, Rattus exulans) persist today and have profound, lasting
ecological impacts that have permanently altered the
ecological trajectories of these islands (Matisoo-Smith &
Robins, 2004). During the reign of Augustus (27 BC–14 AD),
the Roman Empire launched one of the earliest recorded
eradication efforts after European rabbits (Oryctolagus cunicu-
lus) devastated crops and food supplies on the Balearic
Islands, contributing to famine (Brunel et al., 2013). From
the late 19th century, with the acceleration of the trade in
plants and plant products among continents, several harmful
non-native plant pests started to threaten the survival of
entire agricultural sectors, such as the cottony cushion scale
(Icerya purchasi) threatening the citrus industry in California,
the grapevine Phylloxera (Viteus vitifoliae) devastating the wine
industry in Europe, and the Colorado potato beetle (Leptino-
tarsa decemlineata) seriously affecting potato production in
Europe (Planchon, 1874; Riley, 1887; Perpillou, 1933).
While, at that time, quantified economic impacts were not
properly assessed, the problems were considered sufficiently
severe to generate long and expensive management pro-
grammes, including extensive studies in the area of origin
of the pests to select natural enemies for introduction in the
newly invaded regions (Clausen, 1978). For most other
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non-native species, biological invasions and the study of their
impacts were long viewed more as anecdotal events rather
than one of the greatest threats to global biodiversity and eco-
systems (Brunel et al., 2013). It was not until the studies of nat-
uralists such as Charles Darwin, Joseph D. Hooke, and
Alfred R. Wallace, among others, that biological invasions
and associated impacts on native species were recorded in
detail (Hooker, 1864; Brunel et al., 2013; Barnard, 2015). A
major turning point came with British ecologist Charles
S. Elton and his seminal work The Ecology of Invasions by

Animals and Plants published in 1958, which is considered
the starting point of invasion science as a scientific discipline
(Richardson & Pyšek, 2008).

Elton warned that ‘ecological explosions’ (i.e. invasions)
were escalating in impact and could fundamentally alter eco-
systems, calling for the conservation of native diversity. The
growing interest in biological invasions (and their impacts)

precipitated the publication of the Scientific Committee on
Problems of the Environment (SCOPE) volumes, which
highlighted the threat posed by non-native species
(Lockwood et al., 2013). Numerous books and journal articles
followed and inspired a new generation of researchers dedi-
cated to understanding this ‘new’ environmental concern
(Vitousek et al., 1996; Lockwood et al., 2013), although the
broader recognition that impacts of non-native species
extend beyond the ecological realm is a relatively recent
development in the historical timeline (i.e. 1980s). The inter-
est in the ‘impact’ of non-native species (Figs 2 and S1, see
online Supporting Information, Appendix S1, for details of
construction of these figures) has driven the development
of conceptual frameworks and classification systems (such as
the framework of Parker et al., 1999) aimed at comparing
and quantifying impacts across taxa and ecosystems
(Ricciardi, 2003). These include models linking impact to

Fig. 1. Conceptual framework for understanding invasion impacts rests on three interrelated pillars: impact domains, challenges in
the study of impacts, and available risk- and impact assessments. First, impacts can manifest across ecological, economic, and socio-
cultural domains (individually or in combination) producing distinct yet interconnected consequences. Second, evaluating the impacts
of biological invasions faces practical andmethodological challenges, including confounding factors, data deficiencies, and often a lack
of empirical evidence. Third, the significance and perception of impacts are deeply subjective, shaped by spatial and temporal scales,
stakeholder values, and socio-cultural context. This tripartite, hierarchical structure provides a foundation for the more detailed
analysis in the following sections, where we explore specific dimensions and examples of invasion impacts.
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species traits and distribution, as well as standardised classifi-
cations like the Environmental Impact Classification for
Alien Taxa (EICAT; Hawkins et al., 2015) and SEICAT,
which assess ecological and socio-economic effects, although
notably excluding monetary costs (Soto et al., 2023d). As the
issue continues to escalate, the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services
(IPBES) released the Invasive Species Assessment in 2023,
which recognises that biological invasions pose a global
threat to biodiversity and ecosystems, affecting local,
regional, and national economies, food and water security,
and human health, while further exacerbating social inequal-
ities (Linders et al., 2020; Diagne et al., 2021; Bacher
et al., 2023a).

III. TYPES OF INVASION IMPACTS

Biological invasions generate a wide range of ecological, eco-
nomic, and socio-cultural impacts that differ in severity, visi-
bility, and measurability (Simberloff et al., 2013; Shackleton
et al., 2019b; Diagne et al., 2021). While some non-native spe-
cies cause rapid or drastic biodiversity loss and ecosystem dis-
ruptions, others primarily exert financial burdens on specific
industries or sectors like agriculture, forestry, and fisheries
(Gallardo et al., 2024) or affect human well-being by trans-
forming cultural landscapes, traditions, or public health
(Pejchar & Mooney, 2009). These different types of impacts
are complex and can have far-reaching consequences, but
do not occur in isolation; rather, they are highly intercon-
nected. Ecological changes can lead to economic losses, while
socio-cultural values may shape how humans perceive and
respond to biological invasions (Pfeiffer & Voeks, 2008).

(1) Ecological impacts

Invasion science first recognised ecological effects, which rap-
idly generated different perceptions (Davis, 2011; Tassin &
Kull, 2015; Sax et al., 2022). Ecological impacts extend across
multiple levels of biological organisation, including the indi-
vidual (e.g. fitness, behaviour or growth), population
(e.g. population size), species (e.g. species range change),
community (e.g. community structure), and ecosystem level
(e.g. primary and secondary production, decomposition,
nutrient cycling), with complex, bidirectional feedbacks
between these levels (Vilà et al., 2024; Carneiro et al., 2025).
The mechanisms by which biological invasions disrupt the
natural equilibrium are multifaceted (Buckley &
Catford, 2016) and can manifest in diverse ways, including
predation, parasitism, herbivory, and competition (Doherty
et al., 2016), the spread of infectious diseases (Hulme, 2014),
behavioural alterations in native species (Ruland &
Jeschke, 2020), disruption of ecosystem services such as polli-
nation (Russo, 2016) and even modifications to the abiotic
environment (Doherty-Bone et al., 2019). Moreover, invasion
impacts may act synergistically with other stressors, such as
climate change, habitat fragmentation, overexploitation, or
pollution (Bellard, Cassey & Blackburn, 2016; Ricciardi
et al., 2021).

The extent to which non-native species affect recipient
environments depends on a range of factors, including the
species’ traits, local population abundance, density, biomass,
distribution, functional role in the trophic web (e.g. its tro-
phic guild or position) and the ecosystem (e.g. keystone,
hinge, or ecosystem engineer species), functional distinctive-
ness, as well as the biotic and abiotic characteristics of the
invaded habitat (Strayer, 2012; Thomsen et al., 2014a; Everts
et al., 2024; Rilov, Canning-Clode & Guy-Haim, 2024). In
naturally diverse ecosystems, biological resistance from
native species may constrain the ability of non-native species
to establish, proliferate, and cause significant ecological
impacts (‘biotic resistance hypothesis’; Stachowicz,
Whitlatch & Osman, 1999; but see Jeschke et al., 2012;
Jeschke & Heger, 2018). Conversely, degraded habitats or
stressed native communities tend to be more vulnerable to
invasion impacts (Byers, 2002; Cadotte et al., 2017; Liu
et al., 2023), whereas relatively pristine ecosystems charac-
terised by high habitat or environmental heterogeneity may
buffer the impacts of non-native species (Melbourne
et al., 2007; Boon et al., 2023).

Ultimately, ecological invasion impacts can be portrayed
from a number of different angles (Cucherousset &
Olden, 2011; Lockwood et al., 2013). In this review, we adopt
the Britton (2023) framework for ecological impacts, which
offers a distinct approach compared to more traditional
models by categorising impacts across hierarchical levels of
biological organisation, and by clearly distinguishing
between the ecological process or pathway by which change
is mediated (i.e. the mechanism) and the level of biological
organisation that is affected (i.e. the consequence) (Figs 3
and 4). While often conflated, distinguishing between

Fig. 2. Annual rate of publications related to the study of the
impact of non-native species out of all publications listed in
the Web of Science highlighting the rise of invasion biology in the
context of overall science output. A comparison against all
publications within the field of Ecology in the Web of Science is
provided in Fig. S1. Details on data extraction can be found in
Appendix S1. Since its explosion in the 1980s, the relative rate
of publications grew exponentially until 2010.
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mechanisms and consequences is essential for accurately
assessing and clearly communicating ecological impacts
(Carneiro et al., 2025). In what follows, we explore the most
common mechanisms by which non-native species influence
ecosystems – often arising from direct or indirect biotic inter-
actions (Table 1), although the boundaries between these
mechanisms can be ambiguous – accompanied by several
exemplary case studies, and their ecological consequences.
These mechanisms are organised thematically, while broadly
following the dominant ecological level at which their
impacts manifest. We then proceed to review the ecological
consequences (i.e. impacts) of these mechanisms across the
different levels of biological organisation. Finally, we exam-
ine the distinct ecological impact dynamics of non-native spe-
cies and their co-introduced symbionts, given their unique
characteristics and the ways in which they differ from other
types of ecological impacts.

(a) Ecological impact mechanisms

(i) Competition, mutualism, and beyond. The introduction of
non-native species can affect native species through the direct
effects of these novel interactions, or by modifying pre-
existing interspecific relationships (Čuda et al., 2015;
Sarabeev et al., 2022). Non-native species can, for instance,
affect native species through competition for shared and lim-
ited resources, including food, shelter, breeding or nesting
sites in animals (Savvides, Louca & Sfenthourakis, 2015;
Charter et al., 2016), and light, pollinators, space, or nutrients
in plants (Dybzinski & Tilman, 2007). Competition can
either take the form of interference competition, where the
non-native species directly affects one another’s access to
resources, exploitative competition, in which species indi-
rectly compete by depleting shared resources (Human &
Gordon, 1996; Byers, 2000; Damas-Moreira et al., 2020;
Ficetola et al., 2024), or behavioural interference, by modify-
ing the behaviour of the native species at the expense of the
latter (Liu et al., 2007). While competition for food is a form

of intraguild (i.e. within the same trophic level) impact
(Revilla, 2002), competition for other critical resources can
involve species from different trophic levels but sharing simi-
lar traits (e.g. nesting in similar environments; Sergio,
Marchesi & Pedrini, 2003).
The outcome of competition strongly depends, among

other factors, on the availability of shared resources and
prevailing disturbance regimes. Nutrient availability and
abiotic stress often regulate the intensity of competition
and competitive hierarchies among species (Emery,
Ewanchuk & Bertness, 2001). Additionally, niche parti-
tioning may occur in nutrient-poor conditions, thereby
reducing or preventing direct competition (Chesson,
2000). Nonetheless, niche partitioning can still have nega-
tive consequences for native biodiversity (e.g. Guerin
et al., 2019), as it often forces native species to shift towards
suboptimal resources in response to the presence of non-
native species (Curtis et al., 2017). For instance, an
increased reliance of native species over a less-profitable
food source can reduce the energy intake and thus affect
the fitness of the population (Sih et al., 2010). Similarly,
the shift of native species’ shelters or breeding or nesting
sites towards more exposed or environmentally less suit-
able areas can directly negatively affect the survival prob-
abilities of the native species and its offspring (Robertson &
Chalfoun, 2016), thus reducing fitness. In extreme cases,
such fitness reductions can even culminate in regional spe-
cies extinctions (Bertolino et al., 2014). Stable conditions,
on the other hand, allow populations to increase in abun-
dance with minimal disruption, thereby intensifying com-
petitive interactions. Conversely, high disturbance
regimes continually reduce population densities and, by
creating unoccupied niches, may shift the balance from
competition towards facilitation (Zhang & Wang, 2016).
Under stable, nutrient-rich conditions, fast-growing spe-
cies often monopolise available resources, leading to
intense competitive exclusion. In nutrient-poor environ-
ments subjected to frequent disturbances, competition is

Fig. 3. Conceptual illustration of the order and scaling of mechanisms and consequences of how non-native species exert ecological
effects.
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generally reduced, as species either buffer harsh environ-
mental conditions or facilitate nutrient acquisition
(He, Bertness & Altieri, 2013).

Although the competitive impacts of non-native species
are frequently examined in terms of nutrient and energy

uptake or microhabitat use, other outcomes may also mani-
fest. For example, the calling activity of invasive American
bullfrogs (Lithobates catesbeianus) can induce sympatric native
frog species to adjust the spectral properties of their adver-
tisement calls, thereby influencing mate attraction and

Fig. 4. Conceptual illustration of how non-native species exert ecological, economic, and socio-cultural effects (negative, positive, or
neutral) through biotic interaction mechanisms (see Table 1). The non-native species is placed at the centre, surrounded by direct and
indirect biotic interactions and functional changes (inner ring), which mediate impacts across three broad domains (outer ring;
highlighting example categories). Arrows indicate that the underlying impact mechanisms and effects are interconnected, and that
boundaries between mechanisms and domains are often fluid or overlapping. Categories (e.g. ‘biodiversity loss’) are used as
shorthand for clusters of well-recognised consequences such as species declines, community shifts, or altered ecosystem processes,
and are intended as illustrative rather than exhaustive. Examples of species and known associated impacts, reflecting only their
most widely recognised or primary impacts, include: Boiga irregularis (ecological – bird loss), Dreissena polymorpha (ecological &
economic – ecosystem disruption and pipe clogging), Agrilus planipennis (economic – tree damage), Anthonomus grandis
(economic – crop loss), Myiopsitta monachus (socio-cultural – noise), Eichhornia crassipes (socio-cultural – blocked waterways), Trachemys
scripta (ecological – competition), Rhinella marina (ecological & socio-cultural – predator poisoning, food chain disruption), Sus scrofa
(economic & socio-cultural – crop and cultural site damage), Cyprinus carpio (ecological, economic & socio-cultural – vegetation
uprooting, fishery decline, cultural waterway degradation), Felis catus (ecological, economic & socio-cultural – wildlife predation,
poultry/tourism impact, indigenous species relations), Passer domesticus (ecological, economic & socio-cultural – native bird
competition, crop/building damage, cultural symbolism), and Fallopia japonica (ecological, economic & socio-cultural – native plant
displacement, infrastructure damage, diminished cultural landscape value).
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Table 1. Direct biotic interaction mechanisms and consequences through which non-native species can affect native populations and
ecological communities. The listed categories represent functional pathways rather than outcomes, describing how non-native species
engage with, alter, or displace native species and their ecological roles.

Biotic
interaction type

Definition Typical consequence (example) Key reference

Predation Consumption of native species by non-
native predators, often leading to
population declines or local extinctions.

Mortality of native species ! reduced
recruitment ! community
simplification ! trophic cascade

Doherty et al. (2016)

Herbivory, feeding,
and grazing

Feeding on native plants by non-native
herbivores, which can alter plant
communities and reduce native plant
fitness.

Loss of native biomass ! reduced
recruitment of palatable species !
dominance of tolerant taxa ! altered
nutrient cycling

Courchamp et al. (2003)

Competition Non-native species may compete with
natives for shared resources such as food,
shelter, or breeding sites. This can occur
through (i) exploitative competition,
where resources are depleted before
others can access them; and (ii)
interference competition, where direct
interactions prevent access to resources.

Reduced growth of native species !
population decline ! altered
community structure ! ecosystem
function change

Bertolino et al. (2014)

Mutualism
formation and
disruption

Non-native species may interfere with,
replace, or form new mutualistic
relationships, affecting key ecological
functions. Examples include (i) disruption
or monopolisation of pollination and seed
dispersal, (ii) alteration of microbial or
mycorrhizal associations, and (iii)
formation of novel and disruption of
existing facilitative interactions with
native species.

Disrupted pollination/seed dispersal !
reduced regeneration of natives !
decline of dependent fauna! collapse
of mutualistic networks

Kamaru et al. (2024)

Commensalism Asymmetric interactions in which non-
native species benefit from native species
without reciprocation or negatively affect
natives without direct benefit to
themselves.

Benefit to invader without reciprocal
effect ! increased invader success !
competitive disadvantage for natives
! shifts in community structure

Hulme-Beaman et al. (2016)

Hybridisation and
genetic pollution

Interbreeding between non-native and
native species, which can lead to loss of
genetic integrity, reduced fitness, or
outbreeding depression in native
populations.

Reduced fitness of native lineage !
genetic swamping ! loss of local
adaptations ! decreased resilience

Blackwell et al. (2021)

Allelopathy Release of biochemicals by non-native
species (primarily plants) that inhibit
germination, growth, or reproduction of
native species. This can also include
chemical signalling disruption (e.g.
olfactory crypsis) or palatability in
animals.

Inhibition of native germination/growth
! reduced native abundance !
altered community composition !
reduced ecosystem resilience

Kalisz et al. (2021)

Trophic cascades Indirect ecological effects resulting from
changes in species abundances across
multiple trophic levels, often initiated by
non-native predators or herbivores.

Changes in abundance at one trophic
level ! secondary population
responses! restructuring of food web
! altered ecosystem processes

Walsh et al. (2016)

Ecosystem
engineering

Physicochemical alteration of the
environment by non-native species
through activities such as burrowing,
digging, dam-building, vegetation, or soil
and water modifications. These changes
can restructure habitats, influence
resource availability, and affect the
distribution and interactions of native
species.

Physico-chemical habitat alteration !
community reassembly ! long-term
ecosystem state shift

Rilov et al. (2024)

(Continues on next page)
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territorial signalling (Both & Grant, 2012). Similar subtle
changes can also occur in non-native plant species with signif-
icant impact on plant–animal interactions and biotic rela-
tionships at higher trophic levels. For instance, introduced
entomophilous plants depend on resident pollinators for
reproduction, thereby competing with native flora for polli-
nation services (Brown, Mitchell & Graham, 2002;
Morales & Traveset, 2009). This can disrupt the structure
and stability of entire plant–pollinator networks (reviewed
in Parra-Tabla & Arceo-G�omez, 2021). Nevertheless, non-
native plants often attract more pollinators, even during early
stages of invasions, potentially lowering the reproductive suc-
cess of native plants and disrupting long-established eco-
evolutionary dynamics (Kandori et al., 2009; Vilà
et al., 2009). In some cases, plant–pollinator interactions
may shift and non-native plants may act as ‘magnet species’,
enhancing pollinator visitation to nearby native plants
(Aizen, Morales & Morales, 2008; Bartomeus, Vilà &
Santamaría, 2008).

Non-native species can also gain competitive advantages
by introducing traits or interactions that are unfamiliar to
the invaded ecosystem (i.e. the ‘novel weapons’ hypothesis;
Callaway & Ridenour, 2004), which can take various
different forms. Allelopathy is a common trait in this regard,
pervasive in non-native plants (Kalisz, Kivlin & Bialic-
Murphy, 2021), referring to plants releasing biochemicals
that inhibit the growth or reproduction of native species, dis-
rupting plant community dynamics (Callaway &
Ridenour, 2004). In animals, invasive red lionfish (Pterois voli-
tans) in the western Atlantic have been shown to use a form of
chemical camouflage, or ‘olfactory crypsis’, to avoid detec-
tion by native prey species, allowing them to hunt more effec-
tively and outcompete native predators (Lönnstedt &
McCormick, 2013). Similarly, the unpalatability of non-
native American bullfrogs to native predators is thought to
contribute to their invasion success (Szuroczki &
Richardson, 2011).

Competitive and chemical mechanisms may also interact
synergistically with other types of biotic interactions in ways
that exacerbate ecological impacts. One such process is pos-
ited in the ‘invasional meltdown’ hypothesis (Simberloff &
Von Holle, 1999), where the presence of one non-native spe-
cies facilitates the establishment, spread, or ecological effects
of another. For example, the presence of a non-native plant,
Conyza canadensis, facilitated the increase in aboveground
biomass of other non-native plants over native species in

high-nutrient substrates – an effect not observed in the
absence of C. canadensis – possibly promoting establishment
success of other non-native species and overcoming biotic
resistance (Sun et al., 2024). Related to this are secondary
invasions, which differ from the concept of invasional melt-
down in that only the success of one non-native species
(i.e. the secondary invader) is dependent on the presence or
impact of another non-native species (i.e. the primary
invader; O’Loughlin & Green, 2017). Apparent competition
is another mechanism that occurs when the presence of one
species indirectly affects another species at the same trophic
level through the increased presence of a shared enemy
(Holt & Bonsall, 2017). Apparent competition between
non-native and native species has been observed primarily
in plants (Dangremond, Pardini & Knight, 2010), but also
occasionally in other taxonomic groups and trophic levels,
such as herbivorous insects (Settle &Wilson, 1990) or aquatic
molluscs (Castorani & Hovel, 2015).

Beyond competition, non-native species can also establish
or disrupt other biological interactions with notable conse-
quences for native ecosystems. Mutualisms, for instance, are
widely affected. In East African savannas, whistling thorns
(Vachellia drepanolobium) maintain a mutualistic relationship
with native acacia ants (Crematogaster spp.), offering food and
shelter in exchange for protection against herbivores. How-
ever, this mutualism is disrupted when native ants are dis-
placed by the non-native big-headed ant (Pheidole
megacephala), which fails to provide effective chemical defence
for the trees, leading to cascading ecological consequences
(Kamaru et al., 2024). By contrast, some invasions create
new mutualisms, such as the facilitative relationship between
an invasive seaweed and a native tubeworm (Kollars, Byers &
Sotka, 2016). Non-native species may also engage in com-
mensal or amensal relationships, where one species benefits
or is harmed while the other remains unaffected. Though
often subtle and difficult to detect, these asymmetrical inter-
actions can alter species distributions, resource use, or popu-
lation dynamics over time (Mougi, 2016; Northfield
et al., 2018). Finally, it is important not to assume that compe-
tition is the primary mechanism driving impacts among spe-
cies within the same ecological guild (i.e. those using similar
resources), as direct interactions such as intraguild predation
can play a more significant role (Polis, Myers & Holt, 1989).
For example, many crustacean invaders kill and consume
native ones, with predation being a more accurate explana-
tion for species displacement than resource competition

Table 1. (Cont.)

Biotic
interaction type

Definition Typical consequence (example) Key reference

Parasitism and
disease
transmission

Introduction or amplification of parasites
and pathogens by non-native species,
which can infect native hosts and disrupt
population dynamics through novel or
intensified disease pressures.

Infection of native species ! population
crash ! community turnover !
altered ecosystem functioning

Crowl et al. (2008)
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(Dick & Platvoet, 2000). Similarly, the invasive Harlequin
ladybird (Harmonia axyridis) has caused the decline of some
native ladybird species both in Europe (Kenis et al., 2020),
North America (Bahlai et al., 2015), and South America
(Grez et al., 2016). However, it is not clear whether the main
mechanism explaining the decline is competition for food or
intra-guild predation.
(ii) Consumer–resource interactions. An increasing number of

studies have demonstrated the immediate direct or indirect
top-down effects of non-native predators (Snyder &
Evans, 2006; Martin-Albarracin et al., 2015). Notorious in
this regard causing decline and extirpation of native species
is the introduced predatory rosy wolfsnail (Euglandina rosea)
in Pacific islands (Régnier, Fontaine & Bouchet, 2009), the
brown tree snake (Boiga irregularis) on Guam (Savidge, 1987;
Fritts & Rodda, 1998), the California kingsnake (Lampropeltis
getula) in the Canary Islands (Piquet & L�opez-Darias, 2021)
or the Nile perch (Lates niloticus) introduced into Lake
Victoria (Pringle, 2005). Observed population declines and
extirpations caused by non-native predators represent exten-
sive shifts in biodiversity and ecosystem functioning, with cas-
cading effects at several trophic levels (Rogers et al., 2017).
For example, Kurle, Croll & Tershy (2008) found that inva-
sive brown rat (Rattus norvegicus) reduced glaucous-winged gull
(Larus glaucescens) and black oystercatcher (Haematopus bach-

mani) populations, releasing intertidal invertebrates from pre-
dation pressure. This shifted the community from algal to
invertebrate dominance due to increased grazing by snails
and limpets and space from algal decline. Similar effects
can arise from the introduction of non-native herbivores
(e.g. goats, rabbits, and deer), which may affect native plants
either directly through consumption or also by disrupting
their pollinators or seed dispersers, ultimately resulting in
the loss of vegetation and, potentially, increased erosion
(Courchamp, Chapuis & Pascal, 2003; Gormley
et al., 2012). Non-native herbivorous arthropods and plant
pathogens, such as the emerald ash borer (Agrilus planipennis),
the hemlock woolly adelgid (Adelges tsugae), the chestnut blight
(Cryphonectria parasitica), and others, have caused severe
declines of North American forest ecosystems (Anagnosta-
kis, 1987; Herms & McCullough, 2014; Ellison et al., 2018),
with various consequences across all trophic levels and eco-
system functions (Kenis et al., 2009).

Consumer–resource interaction impacts can have far-
reaching ecological consequences, especially when the non-
native predators or herbivores become firmly established
and when the prey/host species are already rare or endan-
gered, making early detection and rapid response critical in
management interventions (Taillie et al., 2021; Guzy
et al., 2023). In some cases, the eradication of non-native
predators and herbivores is followed by a rapid recovery of
the impacted native species (Schreiner & Nafus, 1993;
Chapuis et al., 2011; Prior et al., 2018). In other cases, recov-
ery can be a long process (Guzy et al., 2023). Moreover, the
removal of non-native species may also lead to the co-
extirpation of associated pathogens (Hossack et al., 2023), fur-
ther facilitating the recovery and resilience of native species.

Eradication programmes may result in unexpected changes
in population sizes and community composition of native
species (Prior et al., 2018), such as sudden population growth
in non-native plants that are no longer under such herbivory
pressure (Courchamp et al., 2003). Following the eradication
of non-native apex predators on islands, smaller-bodied
predator species often increase in abundance. This type of
trophic cascade, known as ‘mesopredator release’, can unex-
pectedly amplify negative impacts on native prey species,
potentially undermining the effectiveness of implemented
management efforts (Courchamp, Langlais & Sugihara,
1999). Such dynamics are clearly demonstrated by Rayner
et al. (2007), who investigated the long-term impacts of feral
cats (Felis catus) and an introduced mesopredator, the Pacific
rat, on the breeding success of a small burrowing bird
(Cook’s petrel, Pterodroma cookii). They revealed that removing
apex predators actually resulted in a decline in the nesting
success of their bird prey due to increased predation pressure
from rats, and that removal of the meso-predator resulted in
increased success to a level above that when both non-native
species were present. In a similar fashion, the eradication of
feral cats rapidly precipitated increases in European rabbits
on Macquarie Island, Australia (Bergstrom et al., 2009). Col-
lectively, these examples underscore the complexities
involved in managing biological invaders that exert top-
down trophic effects on the recipient ecosystems through pre-
dation and herbivory (Prior et al., 2018).
(iii) Hybridisation and genetic pollution. An often-overlooked
yet insidious ecological consequence of non-native species
introductions is their impact on native species through hybri-
disation and introgression (Huxel, 1999; Largiadèr, 2007;
Todesco et al., 2016; Porretta & Canestrelli, 2023). Hybridi-
sation refers to the successful reproduction between geneti-
cally distinct lineages, regardless of their taxonomic status
(e.g. species, subspecies, or distinct populations). Introgres-
sion involves the transfer of genes between these genetically
distinct forms through repeated backcrossing of hybrids with
the parent species or populations. Approximately one-
quarter of plant and one-tenth of animal species are involved
in natural interspecific hybridisation and potential introgres-
sion (Mallet, 2005). Although the exact frequency of hybridi-
sation between native and non-native species is uncertain, it
is expected to occur more frequently than between native
species, as human activities increase the likelihood of inter-
specific interactions leading to hybridisation (Olden
et al., 2004; Todesco et al., 2016). Additionally, multiple
non-native species within overlapping invaded ranges may
hybridise, leading to unpredictable consequences for co-
occurring native species (Brys et al., 2025).
Over successive generations, the genetic material of the

native species becomes progressively diluted, while certain
genes from both hybridising parent are retained
(Largiadèr, 2007). Genetic pollution occurs when the gene
pool of native species is diluted or altered, resulting from
hybridisation with non-native species (Butler, 1994). While
introgression and genetic pollution following hybridisation
are bidirectional processes, their outcomes are frequently
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asymmetrical (Orive & Barton, 2002). These asymmetries
can result not only from competitive interactions between
species, where the native species is displaced by the invader,
but also in the absence of direct competition in sympatric
regions. Indeed, asymmetric genetic pollution may arise from
demographic imbalances at the invasion front, where the
invading species occurs at lower densities (Currat
et al., 2008). Notably, hybridisation and introgression are not
necessarily interlinked. Hybridisation can occur without intro-
gression, particularly when F1 hybrids (i.e. first-generation off-
spring) are sterile (Konishi & Takata, 2004). However,
empirical evidence for this scenario remains limited, poten-
tially due to its infrequent occurrence or the rapid replacement
of local populations when the loss of reproductive value
enhances a demographic decline for one (or both) parental
species, making detection of this scenario challenging (Wolf,
Takebayashi & Rieseberg, 2001; Largiadèr, 2007). Hybridisa-
tion without introgression can also occur with fertile F1
hybrids, when offspring are clonal or hemiclonal, transmitting
a single parental genome (Quilodr�an, Montoya-Burgos &
Currat, 2020). A striking example is sperm theft, as seen in
the Gibel carp (Carassius gibelio), where females use sperm from
males of other species to trigger egg development without
incorporating the male’s genetic material (Docherty, 2016).

Hybridisation and introgression between native and non-
native species affects genetic diversity at both inter- and intra-
specific levels. While such intraspecific changes can be neutral
or even beneficial (e.g. introducing adaptive traits or the evolu-
tionary rescue of small, inbred populations), they can also neg-
atively affect native species in several ways, depending on the
ecological context (Seehausen et al., 2008; Quilodr�an
et al., 2020). First, introgression can reduce genetic diversity
within native populations, potentially homogenising their gene
pools and limiting the genetic variation available for future
allopatric speciation or adaptation to changing environmental
conditions (Kirkpatrick & Ravigné, 2002; Reed et al., 2024).
An example of this occurs during the invasion of tilapia species
in African lakes, where the non-native Nile tilapia (Oreochromis
niloticus) and blue-spotted tilapia (Oreochromis leucostictus) fre-
quently hybridise with native tilapia species such as the Wami
tilapia (Oreochromis urolepis), resulting in significant changes in
gene pools and morphological traits (Shechonge et al., 2018),
potentially leading to irreplaceable loss of genetic resources
(Blackwell et al., 2021).

Second, gene pool mixing can result in the expression of
maladapted genes or the disruption of co-adapted gene com-
plexes, leading to reduced fitness in individuals known as out-
breeding depression (Waser & Price, 1994; Rius &
Darling, 2014). Indeed, hybridisation between non-native
rainbow trout and native westslope cutthroat trout (Oncor-
hynchus clarkii lewisi) has led to significant declines in the repro-
ductive fitness of the native trout (Muhlfeld et al., 2009).
Simultaneously, hybridisation was found to lead to an
enhanced dispersal rate, further driving the expansion of
maladaptive hybridisation (Bourret et al., 2022).

Third, hybridisation may unpredictably disrupt the
behaviour of wild animals, particularly when involving

domesticated species that have been artificially selected for
traits aligned with human lifestyles. When these domesti-
cated animals spread their genes in natural environments,
they can influence entire networks of ecological interactions
(Ellington & Murray, 2015). Similarly, hybridisation may
introduce intraspecific variability in species behaviour,
enhancing the hybrid species’ ability to adapt to diverse envi-
ronments, thereby increasing its invasive potential
(D’Amore, Popescu &Morris, 2019; Fournier & Aron, 2021).

Fourth, hybridisation may reduce the effective population
size of the interacting species with major consequences for
rare or threatened species, which often already have a
reduced number of breeders (Palstra & Ruzzante, 2008).
An example is the non-native Oriental weatherfish (Misgurnus

anguillicaudatus) that, largely due to the pet trade, was intro-
duced outside its native range (Cano-Barbacil, Haubrock &
Radinger, 2025), where it may potentially hybridise with
the threatened European weatherfish (Misgurnus fossilis). The
latter species is experiencing dramatic population collapses
across its native range (Wanzenböck et al., 2021), and hybri-
disation exacerbates the prevailing negative effects of land-
use change (Meyer & Hinrichs, 2000) and pollution
(Schreiber et al., 2017). Moreover, introgression may cause
European weatherfish to lose their legal protection status
upon in situ occurrence of hybridisation, hampering ongoing
conservation efforts (Wayne & Shaffer, 2016).

Overall, hybridisation can threaten genomic integrity and
fitness, interact with non-reproductive processes (e.g. preda-
tion, competition, parasitism, mutualism, and commensal-
ism) with broad implications for community structure and
ecosystem functioning, and may in the most extreme cases
lead to extinctions of the parental species (Ellington &
Murray, 2015; Todesco et al., 2016; Reed et al., 2024); a pro-
cess known as ‘hybrid swarm phenomenon’ (Campbell et al.,
2024). Despite growing awareness of the eco-evolutionary con-
sequences of hybridisation, much remains to be understood
(Porretta & Canestrelli, 2023).

(iv) Physical ecosystem engineering. Some non-native species
modify the abiotic and physical structure of the environment
to varying degrees when entering a new ecosystem. Conse-
quently, these species may induce changes to ecosystem
properties that lead to the creation or destruction of habitats
for other species, alter the regimes of physical disturbances,
or influence the transport and distribution of resources across
ecosystems (reviewed in Rilov et al., 2024). Such species are
commonly referred to as ecosystem engineers (see Jones,
Lawton & Shachak, 1994, 1997). Non-native ecosystem engi-
neers can also modify the environment for entire biological
communities by providing novel habitats for other species,
including other non-native species (Simberloff, 2006),
representing a key mechanism that can drive changes in bio-
diversity and ecosystem functioning (Crooks, 2002; Emery-
Butcher, Beatty & Robson, 2020; Rilov et al., 2024). These
effects can vary along environmental gradients and are often
more pronounced in stressful environmental conditions,
where ecosystem engineers may either ameliorate or worsen
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conditions for other species (Bruno, Stachowicz & Bertness,
2003; Crain & Bertness, 2006; Byers, 2024).

One of the primary mechanisms by which non-native eco-
system engineers influence ecosystems is through the creation
of novel physical structures (Burlakova, Karatayev & Kara-
tayev, 2012; Harvey et al., 2019). Although many examples
involving non-native species focus on biodiversity loss result-
ing from habitat modification (Crooks, 2002), some invasions
may instead increase or alter patterns of diversity – directly
through habitat provision and indirectly by offering shelter
from predation or competition, or by modifying abiotic con-
ditions (Crooks, 2002; Katsanevakis et al., 2014). For exam-
ple, non-native bivalves such as Asian clams (Corbicula spp.),
Pacific oyster (Magallana gigas), zebra mussel (Dreissena polymor-
pha), golden mussel (Limnoperna fortunei), Asian date mussel
(Musculista senhousia), andMediterranean mussel (Mytilus gallo-

provincialis) are a well-known faunal group capable of increas-
ing habitat complexity and heterogeneity (Burlakova
et al., 2012). The main mechanism by which non-native
bivalves can influence invaded habitats involves the provision
of colonisable substrate and refuges through their shells,
which can alter the abundance and diversity of macrozoo-
benthic species (Sousa et al., 2009). However, changes in sed-
iment chemistry, grain size, and organic matter content
through sediment reworking, increased water transparency
resulting from filter feeding, and alterations in near-bed flow
dynamics and shear stress caused by the presence of shells can
also play important roles (Sousa et al., 2009). Similarly, the
non-native reef-building polychaete Ficopomatus enigmaticus

and the ascidian Pyura praeputialis contribute additional struc-
tural complexity to invaded aquatic ecosystems. By modify-
ing the physical environment, both species influence habitat
structure, alter sediment transport, and affect water current
dynamics. These new substrates can cover extensive areas,
leading to significant impacts on community composition
(Castilla, Lagos & Cerda, 2004; Schwindt, Iribarne &
Isla, 2004; Bruschetti et al., 2009). Collectively, these exam-
ples point to the potential changes mediated by non-native
ecosystem engineers in both the abiotic and biotic compo-
nents of the invaded ecosystem. Furthermore, in some cases,
their influence extends to surrounding areas. For instance,
reefs formed by non-native oysters can have effects far
beyond the reef structure itself (Ruesink et al., 2005). Simi-
larly, dams built by non-native beavers (Castor
canadensis) can impact downstream areas and adjacent terres-
trial areas due to changes in river flow (Henn, Anderson &
Martínez Pastur, 2016). In many cases, native species may
be negatively affected (e.g. species displaced by the new struc-
ture), while others may benefit from the introduction of eco-
system engineers (e.g. species that increase in abundance and
biomass due to the presence of the new structure or new envi-
ronmental conditions; Ilarri et al., 2012).

Some non-native species can remove physical structures
through their engineering activities or as they become domi-
nant, leading to changes in ecological properties at the land-
scape scale (Crooks, 2002). Examples include the nutria
(Myocastor coypus), the muskrat (Ondatra zibethicus), and the

red swamp crayfish (Procambarus clarkii), which through graz-
ing and burrowing activities can weaken riverbanks, acceler-
ating erosion, and increasing the risk of flooding of dykes, as
well as river and lake embankments (Gherardi, 2006;
Bertolino &Genovesi, 2007; Bertolino et al., 2012; Haubrock
et al., 2019). In extreme cases, invasions can alter erosion
regimes, thereby altering habitat suitability for other species.
Species such as Sphaeroma quoyanum, a small burrowing isopod
native to Australia but introduced to the saltmarshes of San
Diego and San Francisco bays, USA, create galleries that
reduce sediment stability, increase erosion rates, and alter
the sediment dynamics and flow (Talley, Crooks &
Levin, 2001). In the marine environment, the burrowing
activity of several non-native invertebrates, such asMarenzel-

leria spp.,Mya arenaria, Anadara kagoshimensis, Anadara transversa,
and Ruditapes philippinarum, can enhance sediment oxygena-
tion and promote the exchange of dissolved substances
between the sediments and the overlying water column.
These processes ultimately influence nutrient cycling, and
can lead to increased sediment erosion and resuspension,
resulting in significant alterations to both benthic and pelagic
habitat structure and function (Katsanevakis et al., 2014).
In particular cases, non-native species can also either

introduce, enhance, or suppress disturbance regimes in both
disrupted and intact systems, with cascading effects in ecosys-
tem processes that influence community composition and
structure (Vitousek, 1990; Mack & D’Antonio, 1998). For
example, fire is a natural form of disturbance in many ecosys-
tems and native plants often have a suite of characteristics
that allow them variously to promote, resist, and thrive after
fire. In addition to being resilient to losing much
above-ground biomass to fire, many plants have seeds whose
germination success is increased after exposure to elevated
temperatures or scarring. However, the establishment of
non-native plants can often alter the fire regime – affecting
both the intensity and frequency of fires – or the introduced
plants may be better adapted to fire than the species they
are replacing (D’Antonio & Vitousek, 1992). Non-native spe-
cies can also influence geomorphological disturbance
regimes (Mack &D’Antonio, 1998). Non-native plant species
such as Acacia spp. increase geomorphological disturbances
through their uprooting during high flow periods
(Macdonald & Richardson, 1986), while species with exten-
sive root systems (e.g. stolon- or rhizome-forming species)
decrease geomorphological disturbances such as landslides
and hill erosion (Mack & D’Antonio, 1998). In South African
fynbos ecosystems, substrate stabilisation has driven up to a
tenfold increase in above-ground biomass, and the resulting
rise in transpiration has reduced streamflow in affected
catchments by approximately 50% (Van Wilgen &
Richardson, 1985). The introduction of earthworms has also
received attention in this regard, principally in North
America where temperate and boreal forests previously
lacked these organisms (Holdsworth, Frelich & Reich,
2007). Major alterations in geomorphological properties
can result from the different strategies employed by earth-
worm species, which include: (i) physically disrupting the
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organic layer by consuming and mixing soil layers, leading to
an homogenised organic forest floor, as seen in epigeic earth-
worms; (ii) mixing organic material with underlying minerals,
as exhibited by endogeic earthworms; and (iii) removing sur-
face litter by pulling it into the mineral layer and depositing
casts of mixed organic and mineral material on the soil sur-
face, a behaviour characteristic of anecic earthworms
(Addison, 2009).
(v) Engineering of ecosystem functioning and biogeochemical

processes. Ecosystem function refers to the capacity of natu-
ral processes and components to generate goods and services
that support human needs, either directly or indirectly
(De Groot, Wilson & Boumans, 2002). Ecosystem functions
are considered a subset of broader ecological processes and
encompass key processes such as primary and secondary pro-
duction, nutrient cycling, pollination, and water regulation.
These ecological processes arise from complex interactions
between biotic and abiotic components of ecosystems, gov-
erned by the fundamental flows of matter and energy
(Gutiérrez, Jones & Sousa, 2014). The introduction and
establishment of non-native species can substantially alter
these functions and processes, underlining the far-reaching
consequences of the ecological disturbances brought about
by non-native species (reviewed in Ehrenfeld, 2010). Primary
and secondary production (i.e. the formation of biomass by
autotrophic or heterotrophic organisms), for instance, can
be profoundly altered by non-native species, either directly
through the replacement of native autotrophs and hetero-
trophs, or indirectly by modifying other ecosystem compo-
nents that, in turn, influence these organisms
(Ehrenfeld, 2010). An increase in primary production in
aquatic ecosystems can occur alongside seasonal blooms of
non-native phytoplankton species. For instance, Coscinodiscus
wailesii, a large diatom invading the Atlantic brackish and
marine waters from France to Norway, can constitute up to
90% of the total protist plankton biomass during blooms.
Similarly, the invasion of the common reed (Phragmites austra-
lis) can lead to a significant increase, by an order of magni-
tude, in marshland aboveground primary production
(Meyerson, Chambers & Vogt, 1999). The presence of non-
native plants in terrestrial ecosystems can also increase pri-
mary production (Ge et al., 2015; South et al., 2015; Helsen
et al., 2018). For instance, North American mixed-grass frag-
ments invaded by the Eurasian perennial grass (Agropyron cris-
tatum) exhibit increases in above-ground biomass and litter
production by 63% and 89%, respectively (Henderson &
Naeth, 2005). Research on secondary production demon-
strates that non-native molluscs can contribute substantially
to ecosystem biomass and alter ecosystem processes and func-
tions. Examples include the New Zealand mud snail (Potamo-
pyrgus antipodarum) (Hall Jr, Dybdahl & VanderLoop, 2006),
the Pacific oyster and theManila clam (Ruditapes philippinarum)
(Ruesink et al., 2006), and the Asian clam (Corbicula fluminea;
Sousa et al., 2008). These high rates of secondary production
contribute to alterations in food webs, providing a new prey
source for predators, although much of the production may
enter the detritus food web (Sousa et al., 2008).

Other types of ecosystem engineers include chemical and
light engineers (Berke, 2010). Chemical engineers modify
the chemical properties of their environment. For example,
the grasses Spartina alterniflora and S. anglica enhance sediment
oxidation and microbial mineralisation in vegetated marshes
(Gribsholt & Kristensen, 2002), the green alga Caulerpa cylin-
dracea can form dense mats that promote anoxic conditions
(Piazzi et al., 2007) and the gastropod Crepidula fornicata,
through its mucous-rich pseudofaeces, transforms sandy sub-
strates into oxygen-depleted mud with high organic content,
which rapidly becomes anoxic (Thieltges, Strasser &
Reise, 2006). Collectively, these species act as drivers of
chemical transformation in marine sediments, reshaping
benthic communities, trophic structures, and ecosystem func-
tioning (Katsanevakis et al., 2014). The impact of non-native
species on chemical properties may also occur indirectly,
e.g. when non-native herbivores defoliate trees and modify
tree composition, causing temporary or permanent modifica-
tions in ecosystem functions, such as carbon allocation and
nitrogen cycling, or hydrological processes (Lovett
et al., 2002, 2006; Ford & Vose, 2007). Several non-native
species act as light engineers, either reducing or enhancing
light penetration and thereby altering ecosystem structure
and function, primarily through biogeochemical processes
related to energy flow and photosynthesis, although some-
times involving physical changes in water clarity. Many
non-native seaweeds, such as Caulerpa taxifolia, Sargassum muti-

cum, Lophocladia lallemandii, and Womersleyella setacea, and non-
native freshwater floating plants, such as Pontederia crassipes

and Azolla filiculoides, act as light competitors, restricting light
to understorey native producers. Conversely, non-native fil-
ter feeders, such as the Pacific oyster and zebra mussel, the
gastropod C. fornicata, and the reef-forming polychaete F. enig-
maticus, can increase water transparency by reducing sus-
pended particulates, thereby enhancing light penetration
and supporting deeper colonisation by macrophytes
(e.g. Fahnenstiel et al., 1995). Zebra mussels are known to fil-
ter feed large quantities of plankton from the water column in
North American and European rivers and lakes. This both
enhances water clarity and also mediates the transfer of
pelagic resources into the benthos (Strayer et al., 1999; Gergs,
Rinke & Rothhaupt, 2009). Other non-native species can
potentially modify the nutrient inputs (nitrogen and phos-
phorus) of invaded ecosystems, such as the aquatic fern A. fili-
culoides, which grows over the surface of the invaded fresh
waters inducing a depletion in water quality (Pinero-Rodrí-
guez et al., 2021), or the tree Cinnamomum verum, which may
accelerate nutrient cycling in the nutrient-poor soils of the
Seychelles, to the detriment of the less-competitive native
species (Kueffer et al., 2008). By contrast, the benthic foraging
activities of non-native common carp (Cyprinus carpio) result in
the resuspension of sediments and uprooting of aquatic mac-
rophytes, increasing turbidity, nutrient levels, and phyto-
plankton production (Britton, 2023) whereas massive
aggregations of non-native animals, such as the wels catfish
(Silurus glanis), can create biogeochemical hotspots promoted
through nutrient excretion (Boulêtreau et al., 2011).
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(b) Ecological consequences of invasion impacts

(i) Individual level. Biological invasions can induce rapid
and often maladaptive changes in the behaviour, feeding
rates, growth, and reproduction of native species at the indi-
vidual level, as they respond to novel pressures imposed by
non-native organisms (Carneiro et al., 2025). One of the most
widely observed consequences is the alteration of antipreda-
tor behaviour in response to biological invasions (reviewed in
Ruland & Jeschke, 2020). Native prey may either overreact
to harmless non-native species, resulting in unnecessary
energy expenditure or reduced energy uptake, or underreact
to real threats due to predator naïveté, increasing their vul-
nerability to predation (Carthey & Banks, 2014). Such
responses may include changes in vigilance, escape tactics,
or risk-assessment strategies (Sih, Ferrari & Harris, 2011)
and can not only alter the behaviour of native species, but
also directly reduce their survival rates and reproductive suc-
cess, ultimately leading to reduced individual fitness
(e.g. Burns, 2013). Similarly, foraging behaviour can shift
dramatically in the presence of non-native competitors or
predators, often leading to reduced foraging efficiency
or increased shelter usage (Preisser, Bolnick &
Benard, 2005). In the same vein, non-native species can alter
their behaviour in the presence of native competitors. For
example, the non-native American mink (Neogale vison) con-
sumed less fish and more terrestrial prey and shifted its activ-
ity pattern from nocturnal to diurnal when coexisting with
native competitors such as Eurasian otters (Lutra lutra) and
polecats (Mustela putorius) (Harrington et al., 2009). Similar
trophic shifts by native species in the presence of non-native
species have been observed for freshwater fishes
(Rogosch & Olden, 2020).

Non-native species can also disrupt habitat selection pat-
terns, forcing native species into suboptimal environments
and reducing shelter availability, increasing exposure to
stressors, or elevating interspecific interactions (Sih et al.,
2010; Carthey & Banks, 2014). Moreover, some behavioural
responses to invasions, such as shifts in activity patterns or
temporal niche use, reflect attempts by native species to min-
imise spatiotemporal overlap with non-native species,
whether competitors or predators (Gaynor et al., 2018). For
instance, diurnal species may become more nocturnal to
avoid non-native predators with fixed activity cycles (Daly
et al., 1992). Learning and behavioural plasticity play a criti-
cal role in mediating these responses, as species with higher
cognitive flexibility may be better able to adapt to rapidly
changing ecological contexts brought about by invasions
(Sol et al., 2011). However, plasticity has limits, and when
behavioural adaptation is insufficient or too slow, it can lead
to population declines or local extinctions (Mooney &
Cleland, 2001). Overall, behavioural shifts are a key dimen-
sion of invasion impacts, with consequences that ripple
through population dynamics, community interactions, and
ecosystem functioning.

(ii) Population level. At the population level, non-native
species can induce substantial shifts in abundance, density,

biomass, and demographic structure of native populations
(Carneiro et al., 2025), with cascading effects on their viability
and ecological functions. These changes often result from
direct mechanisms such as predation, herbivory, interspecific
competition, parasitism and diseases, and hybridisation, as
well as indirect mechanisms including apparent competition,
habitat modification, and consequent changes in environ-
mental factors or altered resource dynamics (Simberloff
et al., 2013). Population declines may be gradual or abrupt,
with some native species experiencing numerical reductions
without local extinction, i.e. population suppression (Sax &
Gaines, 2008). Such declines can impair key ecological func-
tions, particularly when the affected species are dominant,
keystone, or ecosystem engineers (Côté, Darling &
Brown, 2016) resulting in cascading effects that lead to the
decline or local extirpation of numerous other species
belonging to different trophic levels (Rabenold et al., 1998;
Mitchell et al., 2016). Some native populations may experi-
ence increases in abundance, either through release from
competition or predation (enemy release effect) or due to
facilitative interactions with non-native species, which can
also disrupt ecosystem balance (Keane & Crawley, 2002;
Ilarri et al., 2012; Novais et al., 2015). Altered population den-
sities can shift species’ roles in trophic networks, for instance,
by weakening top-down or bottom-up controls (Estes
et al., 2011). Additionally, demographic changes, such as
skewed age structures, reduced genetic diversity or reproduc-
tive output, or sex-ratio imbalances, can further destabilise
populations and reduce resilience to other stressors like cli-
mate change or habitat fragmentation (Salguero-G�omez
et al., 2015; Sousa et al., 2019). Non-native species may also
cause evolutionary shifts in life-history traits (e.g. body size,
dispersal ability, phenology), potentially leading to rapid
but maladaptive responses (Phillips & Shine, 2004).
Ultimately, population-level changes serve as critical early
indicators of broader community and ecosystem disruptions,
underscoring their importance in both impact assessment
and conservation prioritisation.
(iii) Community level. Non-native species can drive signifi-
cant changes in biodiversity at the community level (encom-
passing both individual species and species assemblages),
causing range changes in native species and thereby affecting
alpha (local), beta (compositional dissimilarity), and gamma
(regional) diversity in complex and often contradictory ways
(Haubrock & Soto, 2023; Carneiro et al., 2025). The intro-
duction and establishment of non-native species may initially
increase local species richness (alpha diversity) by adding
novel taxa, creating an illusion of biodiversity gain
(Simberloff et al., 2013). However, these species richness
increases, sometimes referred to as pseudo-richness, can mask
underlying ecological degradation, particularly when the
arrival of non-natives does not immediately lead to declines
or extinctions of native species (i.e. invasion debt; Rouget
et al., 2016). Such native species losses reduce true local diver-
sity and homogenise community composition across sites,
resulting in decreased beta diversity (McKinney &
Lockwood, 1999). Even seemingly subtle changes in alpha
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and beta diversity can lead to profound ecological effects, such as
altered soundscapes that may impair the reproductive fitness of
native species (Hopkins, Edwards & Schwarzkopf, 2022). At the
regional level, gamma diversity may increase, decline, or remain
stable in response to biological invasions, depending on the bal-
ance between extinctions and introductions, especially when
non-native species become widespread and ecologically domi-
nant (Sax & Gaines, 2008). For example, while many oceanic
islands have doubled their plant gamma diversity following
human colonisation due to introductions (Sax & Gaines, 2008),
invasive predators such as snakes, rats, and cats have caused
severe declines in endemic vertebrate species, often reducing
alpha diversity and in some cases driving global extinctions
(Blackburn et al., 2004;Clavero&García-Berthou, 2005;Dueñas
et al., 2021). Similarly, worldwide introductions of cosmopolitan
fish species like largemouth bass (Micropterus nigricans) and com-
mon carp have led to amarked decline in beta diversity, with his-
torically distinct river basins now sharing many of the same
species (Rahel, 2000; Villéger et al., 2011; Marr et al., 2013).

Beyond taxonomic changes, invasions also affect the func-
tional and phylogenetic dimensions of biodiversity. Non-
native species may occupy novel or redundant ecological
roles relative to displaced native species, potentially leading
to functional homogenisation and reduced phylogenetic dis-
tinctiveness, even in cases where overall species richness
remains stable or increases (Olden et al., 2004; Winter,
Devictor & Schweiger, 2013). For example, the global intro-
duction of non-native bird species has not compensated for
the lost functional space caused by the extinction of insular
birds; instead, these introductions have often resulted in the
loss of functionally complementary species (Sobral, Lees &
Cianciaruso, 2016). Non-native species can also establish a
higher number of interactions within the invaded community
network than their native counterparts, therefore acting as
keystone species; a role that can be difficult to identify, poten-
tially exacerbating the threat they pose, and complicating
management and eradication efforts (de Miguel et al., 2016;
Rio-Hortega et al., 2022). In addition to observed diversity,
non-native species may also influence dark diversity—the sub-
set of species that are ecologically suitable for a region but
are currently locally absent (Pärtel, Szava-Kovats &
Zobel, 2011; Pärtel et al., 2025). While non-natives may
increase observed gamma diversity, they can simultaneously
widen the gap between the observed and potential species
pools by displacing natives or modifying habitats, thus reduc-
ing the ecological suitability for previously present species
(Lewis & Maslin, 2015). In this context, the discrepancy
between observed diversity and dark diversity – shaped by
the concurrent losses of native taxa and additions of non-
native ones – offers a nuanced lens to assess the legacy of
invasions. Integrating taxonomic, functional, and phyloge-
netic aspects of both observed and dark diversity is crucial
for revealing hidden biodiversity erosion beneath apparent
gains and underscores the importance of multiscalar, multi-
dimensional approaches in ecological impact assessments.
(iv) Ecosystem level. The introduction of non-native species

can result in profound changes at the ecosystem level

(Carneiro et al., 2025; reviewed in Ehrenfeld, 2010), includ-
ing the alteration of functions and services (Jeschke
et al., 2014), the availability of habitat or refugia (Gallardo
et al., 2016), and the abiotic environment (Zedler &
Kercher, 2004). While changes in ecological functions and
primary and secondary productivity can be considered as
both an impact mechanism (i.e. a non-native species intro-
duces a new function or increases or decreases productivity;
Simberloff et al., 2013) and an ecological impact (i.e. the pres-
ence of a non-native species alters provided functions or
decreases the productivity of an ecosystem; Estes
et al., 2011), trophic cascades (i.e. changes in food webs; Sih
et al., 2010) are a common consequence of biological inva-
sions and can affect entire ecosystems. There are many
examples of how invasion by non-native predatory species
results in strong top-down effects, especially in cases with
high ecological novelty. These impacts can be particularly
devastating when the non-native predator is a generalist
capable of exploiting a wide range of prey, or when the prey
species are small-bodied, have low reproductive rates, or are
behaviourally ill-equipped to avoid novel predation pres-
sures (Doherty et al., 2016).

Non-native species can induce trophic cascades, where the
effects of changes in the abundance of a species at a high tro-
phic level affect multiple trophic levels (Terborgh &
Estes, 2013). However, trophic cascades can also originate
from bottom-up impacts, where invasions affect lower tro-
phic levels and subsequently influence higher levels of the
ecosystem, potentially leading to major ecological changes.
An interesting and intriguing example is the establishment
of the zebra mussel and round goby (Neogobius melanostomus)
in the Laurentian Great Lakes, where integration of these
two species in the system is introducing biotoxins into the
food web (Hebert et al., 2014; Essian et al., 2016). Zebra mus-
sels filter water and accumulate toxins produced by the natu-
rally occurring bacteria Clostridium botulinum. The toxin is
consequently transferred to molluscivorous birds or first
eaten by round goby and then transferred to piscivorous
birds, most probably causing die-offs of large numbers of
waterbirds. Bottom-up effects can profoundly influence
entire ecosystems when foundation species, i.e. those that
are spatially dominant and highly connected within ecologi-
cal networks, are affected by non-native species. By outcom-
peting and preying upon native ants, non-native ants
increased the vulnerability of trees to browsing by African
elephants (Loxodonta africana), thus altering predator–prey
dynamics (i.e. lions Panthera leo were less effective in killing
zebra Equus quagga, due to an increase in landscape visibility)
and resulting in ecosystem-level impacts (Kamaru
et al., 2024). A well-documented case of a bottom-up trophic
cascade caused by a marine invasive species is the introduc-
tion of the ctenophore Mnemiopsis leidyi into the Black Sea
during the 1980s via ballast water. It reached very high den-
sities, primarily feeding on zooplankton, ichthyoplankton,
and pelagic fish eggs, leading to a dramatic decline in zoo-
plankton populations. This reduction in zooplankton dis-
rupted the food web by decreasing the availability of prey
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for small pelagic fishes, which suffered massive population
declines. The collapse of small pelagic fish stocks had cascad-
ing bottom-up effects on higher trophic levels, including
piscivorous fish and marine mammals, also severely impact-
ing fisheries (Katsanevakis et al., 2014).

Non-native species can also drive bottom-up processes by
providing a novel trophic subsidy for native species at higher
trophic levels, such as non-native crayfish species being an
abundant food source for many native bird and mammal
species (Beja, 1996; Tablado et al., 2010) or when non-native
crayfish were the main prey of native snakes in a pond com-
munity (Stellati et al., 2019; Bissattini et al., 2021). Trow-
bridge (2004) also reported two introduced subspecies of
the alga Codium fragile being preferred over native Codium spe-
cies by herbivorous sea slugs after a few years of introduction.
Similarly, non-native cane toads (Rhinella marina) exert signif-
icant impacts on native predator populations through the
production of bufotoxins – potent chemical compounds to
which many vertebrates lack evolutionary exposure, resulting
in high mortality upon ingestion (Shine, 2010).

The disruption of green food webs (ecological networks
based on plants or algae; Odum, 1969) by altering plant–her-
bivore–predator interactions, outcompeting native species,
or introducing new predators and diseases, is very well stud-
ied and quantified (Ehrenfeld, 2010). By contrast, the influ-
ence of non-native species on brown food webs (ecological
networks based on dead organic matter or detritus;
Odum, 1969), which involve decomposition and nutrient
cycling, is largely overlooked (Van der Putten, Klironomos
&Wardle, 2007; Ehrenfeld, 2010). These belowground terres-
trial and aquatic networks, driven by fungi, bacteria, and det-
ritivores, are equally crucial for ecosystem health (Grossart
et al., 2019). Non-native species can significantly alter brown
food webs by changing the quality or quantity of organic mat-
ter input, outcompeting native decomposers, or introducing
novel interactions. For example, non-native plants may pro-
duce litter that decomposes more slowly or releases allelo-
pathic compounds, inhibiting microbial activity (Van der
Putten et al., 2007), non-native earthworms can change
decomposition rates leading to nutrient imbalances and shifts
in soil communities (Bohlen et al., 2004c), and non-native
microbes can also change decomposition processes although
with possibly low impact due to their limited specificity and
great functional redundancy (Van der Putten et al., 2007).
Invasions by nitrogen-fixing species like the firetree (Morella

faya) and Acacia spp. can dramatically alter nutrient cycling
and native forest structure by increasing soil nitrogen
(Yelenik, Stock & Richardson, 2007; Marchante et al., 2008;
Castro-Díez et al., 2009, 2014), while non-fixing invaders such
asMonterey pine (Pinus radiata) and beach rose (Rosa rugosa) can
indirectly affect soil properties through changes in land use
and vegetation structure (Amiotti et al., 2000; Vanderhoeven,
Dassonville & Meerts, 2005; Helsen et al., 2021; Woch
et al., 2023). Similarly, dense mats of the ice plant (Carpobrotus
edulis) can alter ecosystem function by increasing litter accumu-
lation, modifying soil chemistry (e.g. pH and calcium levels),
and reducing light and water availability, which impairs native

plant growth and seedling establishment (D’Antonio &
Mahall, 1991; D’Antonio, 1993;Molinari et al., 2007). Despite
their possible ecological significance, the impact of non-native
species on brown food webs remains under-researched and
requires future attention.
A prominent ecosystem consequence of non-native species

is a change in the availability of habitats or refugia. These
encompass both declines, when, for instance, non-native
crayfish outcompete native crayfish for shelter
(Twardochleb, Olden & Larson, 2013), but also cases where
species such as zebra mussel create dense mussel beds,
thereby providing habitat and shelter for other Ponto-
Caspian species like killer shrimp (Dikerogammarus villosus;
Gergs & Rothhaupt, 2008). More complex are ecosystem-
level impacts, including changes in the fire regime, hydrol-
ogy, nutrient availability, microclimate, and soil structure
(Brooks et al., 2004; Gaertner et al., 2014; Catford, 2017;
Garcia & Clusella-Trullas, 2025). Non-native species can
alter or even eliminate the soil structure, leading to cascading
effects on nutrient cycles that influence the distribution and
retention of carbon, nitrogen, and phosphorus (Bohlen
et al., 2004a,b), and change the community composition
(Bohlen et al., 2004c; Peltzer et al., 2010). It is also important
to note that boreal forests, for instance, contain significant
amounts of dead organic matter, making them a key carbon
sink (Peltzer et al., 2010). Therefore, the potential for non-
native earthworms to release nutrients or reduce soil carbon
storage in the topsoil layers could have substantial implica-
tions for the global carbon cycle (Alban & Berry, 1994).
Grasses, such as cheatgrass (Bromus tectorum) in the western
USA, and Colombian bluestem (Schizachyrium condensatum)
and molasses grass (Melinis minutiflora) in Hawai’i have
increased fire frequency and intensity, resulting in drastic
changes in the structure and species identity of the invaded
ecosystems (D’Antonio & Vitousek, 1992; Brooks
et al., 2004). The addition of non-native trees into South Afri-
can fynbos shrublands has also influenced the fire regime,
increasing fuel load and fire intensity (Richardson &
Higgins, 2000). Conversely, non-native species can also
decrease fire frequency and intensity in fire-maintained eco-
systems (Doren & Whiteaker, 1990). Changes in water
regimes may also take place after the introduction of non-
native plants. For example, the introduction of salt cedar
(Tamarix spp.) has replaced much of the native riparian vege-
tation of the western USA, where it consumes large quanti-
ties of water, narrows river channels, increases soil solutes,
enhances productivity, and increases surface litter and salts
(Zavaleta, Hobbs & Mooney, 2001). Additionally, the
introduction of non-native plants could substantially alter
micro-climatic conditions, with severe consequences for
other species (Garcia & Clusella-Trullas, 2025).

(c) Co-invasive symbionts: impacts of commensals, parasites and
pathogens

Symbiotic organisms remain a relatively understudied
dimension of biological invasions. As invaders in their own
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right, but also as potential forces of impact, we include them
here in a stand-alone subsection to emphasise their indepen-
dent agency, while recognising that their effects also perme-
ate the broader ecological mechanisms discussed in this
review. We chose this structure deliberately to highlight that
co-invasive symbionts can generate impacts through multiple
pathways: sometimes directly as invasive entities, sometimes
indirectly via interactions with their hosts. Accordingly, we
treat their dynamics, negative effects, and positive effects in
separate subsections below, to reflect both their complexity
and their distinct role in invasion processes.
(i) Dynamics behind parasite introductions leading to impact.

Biological invasions will, in all cases, be associated with
microbial species (Bojko, Dunn & Blakeslee, 2023), and
microbes themselves can also be considered non-native
organisms (Nuñez, Pauchard & Ricciardi, 2020). Species
generally house a vast symbiotic microbial diversity, collec-
tively referred to as its ‘microbiome’, ‘symbiome’, or ‘patho-
biome’, which includes bacteria, archaea, viruses, and other
microorganisms that can act as mutualists, commensalists, or
parasites (Bass et al., 2019). The microbial diversity housed by
a given host is not static and may undergo shifts in its micro-
biome composition depending on diet (Zmora, Suez &
Elinav, 2019), habitat (Holt et al., 2020), and susceptibility
to infection by a parasite or pathogen (Bass et al., 2019).
Because organisms evolve alongside their microbiomes in
natural settings, understanding how this relationship changes
during biological invasions has become an important area of
research. This has implications for pathogenic risks to
humans (Juliano & Philip Lounibos, 2005; Roy et al.,
2023c), cultured species (Wood et al., 2023), and wildlife
(Roy et al., 2017; Bezerra-Santos et al., 2023), as well as for
advancing core concepts in disease ecology (Ogden
et al., 2019). As a non-native species travels, arrives, and
establishes in a new location, it will carry with it a symbiotic
complement. However, it is unlikely that this complement
will house all of the co-evolved symbionts that it would natu-
rally interact with in its own native range. If co-evolved mem-
bers of the native symbiosis are left behind in the native
range, but were pathogenic to the invader, it will have
escaped their negative influence and have undergone ‘enemy
release’ (Miura & Torchin, 2023). Arrival of symbionts with
the non-native propagule can have several outcomes: (i) the
co-non-native symbiont may persist in the non-native host;
(ii) the symbiont may not persist and instead be lost from
the new population over time; (iii) the co-non-native symbi-
ont may be replaced by a native microbial species in the
newly invaded environment; (iv) if parasitic, the co-
non-native symbiont may transmit to congeners or native
species (spillover) in the newly invaded environment; and (v)
if capable of infecting native species, it may also ‘spillback’
into the non-native population (Dunn et al., 2012; Hatcher,
Dick & Dunn, 2012). Some variations of the above hypothe-
sis are expected, since different symbionts have different driv-
ing factors influencing their transmission and persistence.

Once a non-native species has established and its popula-
tion begins to grow, there are further opportunities for

symbionts from the native range to utilise it as a resource,
often increasing the abundance of a native parasite beyond
what typically would be expected (Dunn et al., 2012; Hatcher
et al., 2012). Pathogen spillover and spillback can play a key
role in the establishment, spread, and impact of a non-native
species (Roy et al., 2017). For instance, pathogen spillover
facilitated the success of the non-native Eastern grey squirrel
(Sciurus carolinensis), which introduced a pox virus (largely
asymptomatic in the invader) as a biological weapon against
the native red squirrel (Sciurus vulgaris), causing native
population declines up to 25 times faster in areas where the
co-introduced squirrel pox virus was present, as it is
largely resistant to this virus (Rushton et al., 2006). Similarly,
amphibian invasions are often associated with increased
pathogen diversity, higher prevalence and infection intensity,
as well as reduced host fitness due to pathogen exposure and
infection (Atkinson & Savage, 2023). The introduction of two
fungal species causing chytridiomycosis through the amphib-
ian pet trade has caused the decline of at least 501 amphibian
species over the past half-century, including 90 presumed
extinctions (Scheele et al., 2019). In addition, ranaviruses
(highly infectious pathogens affecting amphibians, reptiles,
and fish) have been increasingly linked to the presence of
non-native amphibian species that act as reservoirs and vec-
tors for disease transmission (Sharifian-Fard et al., 2011; Price
et al., 2014; Peñafiel-Ricaurte et al., 2023; Campião
et al., 2024). Co-introduced symbionts are therefore increas-
ingly recognised as unavoidable components of the ecologi-
cal impact of biological invasions, with consequences
manifesting across all levels of biological organisation
(Carneiro et al., 2025), leading to either a negative or positive
influence upon their host’s invasion success and potential for
impact.
(ii) Negative effects. The negative influence of parasites on

invaded ecosystems is a commonly observed phenomenon
and can manifest in several ways. These include direct com-
petition with native microbial flora (including both patho-
genic and innocuous species) for resources, direct infection
of native species resulting in mortality and consequent loss
of ecosystem services, and indirect effects by affecting their
invasive non-native hosts or infecting native hosts without
imposing mortality. Alternatively, all of the above can take
place at once, or an invasive symbiont may only affect its
non-native host.

The introduction of co-invasive parasites can alter local
host abundance and overall species diversity, with the capa-
bility to impact the structure and functioning of ecosystems
(Britton, 2013). Several examples have been reported, where
dramatic change to host species diversity is evident after the
arrival of an infectious disease, such as ash dieback,
the American chestnut blight, Dutch elm disease, chytridio-
mycosis, avian pox, avian malaria, rinderpest virus, canine
distemper virus, and crayfish plague. For instance, the Afri-
can rinderpest epidemic decimated approximately 90% of
East African domestic cattle and 95% of the African buffalo
(Syncerus caffer) and wildebeest (Connochaetes taurinus)
(Spinage, 2012). Following rinderpest control, wildlife
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populations rapidly recovered, leading to increased densi-
ties of carnivores such as lions and hyenas (Crocuta crocuta).
Conversely, decreases in the abundance of gazelle
(e.g. Eudorcas thomsonii) was evident, resulting from a higher
predation pressure and the almost extirpation of wild dogs
(Lycaon pictus), possibly driven by intensified competition
with lions and hyenas.

Negative effects can also result from the infection of one or
more native species, incurring higher mortality rates in the
population, as observed with the crayfish plague caused by
the oomycete Aphanomyces astaci (Svoboda et al., 2017). This
aetiological agent was introduced to Europe in the second
half of the 19th century, triggering massive outbreaks in
native crayfish populations (Holdich et al., 2009). The result-
ing population declines and the accompanied collapses of
fisheries stimulated introduction of mainly North American
crayfish species, which were later discovered to be asymp-
tomatic carriers of the disease (Jussila et al., 2021). To sustain
itself, the parasite reduced in virulence, and at least some
populations of native species partly adapted. As a result,
chronically infected native crayfish populations have been
recently documented, albeit these reports remain rare
(Ungureanu et al., 2020; Mojžišov�a et al., 2022). On the con-
trary, under certain conditions, crayfish plague can re-
emerge as a deadly disease even in North American crayfish
populations that were temporarily free of this parasite and
thus lost their originally strong immunity (Thomas
et al., 2020; Boštjanči�c et al., 2022). The ecological impact of
a non-native host can be exacerbated when it carries a non-
native disease, the so-called ‘novel weapon hypothesis’ (Call-
away & Ridenour, 2004), where the invasive host acts as a
vector, introducing the parasite to native species and causing
their decline, thereby reducing competition and amplifying
its negative ecological impact.
(iii) Positive effects. Non-native hosts are often considered

to have an overall negative impact on an ecosystem
(Carneiro et al., 2024b); however, this is not necessarily the
case for the parasites and pathogens they may carry. In many
instances, a symbiont carried by a non-native host can induce
behavioural changes, cause the death of the host, or regulate
the non-native host population, which can lead to an overall
reduction in its impact and therefore mitigate damage to the
ecosystem (a phenomenon likened to ‘natural biological con-
trol’; Torchin & Mitchell, 2004). Examples include demon
shrimp (Dikerogammarus haemobaphes), which is regulated by a
combination of microsporidian and viral pathogens, where
the viruses appear specific to this host (Bojko et al., 2019). This
mitigating factor is considered a strong positive effect, linked
to biological control, where parasites and pathogens are used
to control pests, for example insects in agriculture (Lacey
et al., 2015). Similarly to biological control, an overall positive
effect must balance with the capacity for the parasite to infect
and harm other species. In instances where a parasite is intro-
duced alongside an invasive host, and it reduces the host’s
impact but does not cause other direct or indirect impacts
(e.g. infecting native species and therefore reducing the eco-
system services it provides), one may consider the parasite

to have an overall positive controlling effect on its invasive
host. In the case of a non-competent or less competent non-
native host, dilution may occur, potentially benefiting native
species by reducing infection prevalence in the principal host.
This has been observed with Lyme disease in North America,
where diverse vertebrate communities lower Borrelia trans-
mission from the highly competent white-footed mouse
(Peromyscus leucopus), and in Ireland, where the invasive bank
vole (Myodes glareolus), likely a non-competent host, reduced
Bartonella prevalence in native wood mice (Apodemus sylvaticus)
(Ostfeld &Keesing, 2000; Telfer et al., 2005; Levi et al., 2016).
There are several examples throughout nature where a co-

introduced parasite has mitigated the behaviour or population
size of its host. In aquatic systems, studies with the non-native
amphipodD. haemobaphes have shown that this invader translo-
cated a wide array of symbiotic species during its invasion
(Hatcher et al., 2019). Further study into the effects of these
parasites on the activity and survival of this host highlighted
a reduction in both activity and survival (Bojko et al., 2019).
In detail, the microsporidian parasite Cucumispora ornata

(Bojko et al., 2015) infects the musculature of the host, among
other tissues, and causes a significant decrease in the infected
amphipods’ capacity for movement and activity. A viral path-
ogen carried byD. haemobaphes, identified as ‘Dikerogammarus
haemobaphesmininucleovirus’ has been shown to cause rapid
mortality (Bojko et al., 2019; Subramaniam et al., 2020). This
combination of reduced activity and survival is considered to
limit the impact of this invader, therefore helping to conserve
the natural ecosystem into which the host and parasite were
introduced. This is relative to the high ecological impact
caused by the sister species, the killer shrimp, which carried
few parasites to the UK and remains largely parasite-free
(enemy release; Bojko et al., 2013), while populations of
D. villosus on continental Europe have maintained their rela-
tively high parasite diversity (Wattier et al., 2007).
In terrestrial ecosystems, examples exist of parasites and

pathogens affecting non-native plants (Roberts et al., 2022),
vertebrates (Chinchio et al., 2022), and invertebrates (Hajek,
Gardescu & Delalibera, 2021). A lucrative area of pest control
lies within the invasive weed control sector, where pathogens
of invasive plants are commonly used to reduce their impacts
on crops or native vegetation; plant viruses, for example, can
reduce plant competitiveness, growth, and survival (Roberts
et al., 2022). Outside of direct pest control by reintroducing
parasites to invasive populations that have escaped them, an
example of an invasive terrestrial species that has carried a
parasite alongside its invasion is the tawny crazy ant (Nylanderia
fulva), and its microsporidian parasite (Myrmecomorba nylander-

iae), which reduces the development rate of pupae, altering
the speed at which ant colonies grow, and indirectly slowing
the environmental impacts imposed by the ants (Plowes
et al., 2015; LeBrun, Ottens & Gilbert, 2018).

(2) Economic impacts

Among the known types of non-native species impacts, eco-
nomic consequences have historically been under-quantified
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and inconsistently assessed by invasion scientists. This is
despite the recognition of substantial economic damage
caused by non-native pests to key agricultural and forestry
sectors in the late 19th century (Planchon, 1874;
Perpillou, 1933; Clausen, 1978; Brunel et al., 2013).
Economic impact assessments for plant health (Wightman,
1979; Hare, 1980; Kingsolver, Melching & Bromfield,
1983) and forestry sectors (White & Schneeberger, 1981)
have since become routine for actual (Farnsworth
et al., 2017; Eschen et al., 2021; Tambo et al., 2023) and pro-
spective impacts (Soliman et al., 2010; Kenis et al., 2017).
However, the first widely cited work that addressed damages
incurred by non-native species in monetary terms more
broadly was Pimentel, Zuniga & Morrison (2005), which
was deemed biased due to methodological inconsistencies,
speculative extrapolations, and weak traceability of estimates
(Hoffmann & Broadhurst, 2016). Several types of impacts,
such as loss of native biodiversity, reduction in ecosystem ser-
vices (e.g. pollination, water purification), and shifts in cul-
tural values tied to landscapes, remain difficult if not
impossible to quantify in monetary terms, and non-market
costs thus remain underrepresented due to valuation difficul-
ties and methodological constraints that limit our ability to
quantify these costs fully (Ahmed et al., 2023). Yet, these
impacts can erode natural capital in ways that impose long-
term liabilities on societies and economies, manifesting as
increased costs for water treatment, reduced agricultural
productivity, and heightened vulnerability to natural
disasters – effects with downstream economic implications.
Over time, these liabilities can accumulate, placing substan-
tial financial burdens on future generations. Moreover, if
these introductions are not addressed promptly, the costs
can escalate exponentially, as outlined in Ahmed et al.
(2022) and Henry et al. (2023).

In recent years, methodological advancements have
enhanced our capacity to assess and quantify the economic
impacts of non-native species. Notably, the application of
choice experiments has allowed for more precise valuation
of non-market costs, proving particularly helpful in gaug-
ing public willingness to pay for the preservation of ecolog-
ical functions or for measures to prevent non-native
species introductions (e.g. Rajmis, Thiele &
Marggraf, 2016). With the recent development of the Inva-
Cost database (Diagne et al., 2020), a first standardised,
traceable, and global synthesis of the monetary costs asso-
ciated with non-native species was created, allowing
researchers and policymakers to access sources of data
(from peer-reviewed to grey literature) on the monetary
burden of invasions across spatial, sectoral, and taxonomic
scales. From this database, economic impacts were
assessed for numerous taxonomic groups, including
e.g. fish, crustaceans, and bivalves (Haubrock
et al., 2022b,d; Kouba et al., 2022), aquatic macrophytes
(Macêdo et al., 2024), trees (Fernandez et al., 2023), ants
(Angulo et al., 2022), birds (Evans et al., 2023), feral animals
(Soto et al., 2024b), and, among others, herpetofauna
(Soto et al., 2022). Notably, the cumulative global cost of

biological invasions documented in InvaCost already sur-
passes USD $2 trillion (in 2017 values). Yet, this number
is likely a conservative estimate due to underreporting
and gaps in data availability, especially from the Global
South (Henry et al., 2023; Soto et al., 2025). This compiled
estimate included both damage costs and monetary
losses – such as those affecting agriculture, fisheries, infra-
structure, and forestry – and management costs (e.g. for
surveillance, control, containment, and eradication
efforts), which have been shown to reduce damage costs
significantly when implemented early and strategically
(Leung et al., 2002), as delays in intervention often escalate
damages and require exponentially higher expenditures
later (Ahmed et al., 2022).

While the bulk of the literature (and all information com-
piled in InvaCost) focuses on negative economic impacts, cer-
tain non-native species can generate positive economic
outcomes in specific sectors (Kourantidou et al., 2022). These
include timber (Castro-Díez et al., 2019), aquaculture, and
commercial harvesting (Oficialdegui et al., 2025), but also
tourism (Subalusky et al., 2023) and benefits to recreation.
However, such benefits are highly context specific, often
short term, and tend to accrue to different stakeholders than
those bearing the costs (Carneiro et al., 2024a). For instance,
while the aquaculture industry may profit from the farming
of species such as Atlantic salmon (Salmo salar) or red swamp
crayfish outside their respective native ranges, the environ-
mental and economic burdens (e.g. on local fisheries,
ecosystems, and water management) if these species escape
are disproportionately borne by local communities
(Oficialdegui et al., 2025). This disconnect highlights a funda-
mental issue of distributional injustice: the economic ‘win-
ners’ (i.e. those benefiting from non-native species) are
often corporations or actors located far from the invaded
ecosystems, whereas the economic ‘losers’ include local
populations, public budgets, and biodiversity itself (Reaser
et al., 2007). Moreover, benefits are frequently path depen-
dent, emerging predominantly because ecosystems have
already been altered or degraded, masking deeper systemic
costs such as lost ecosystem functions or services (Lant,
Ruhl & Kraft, 2008). In the eastern Mediterranean Sea, a
hotspot of climate-driven local extinctions and native biodi-
versity decline (Givan et al., 2018; Albano et al., 2021;
Nikolaou & Katsanevakis, 2023), thermophilic Suezian
(‘Lessepsian’) species introduced from the tropical Red Sea
are thriving and sustaining key ecosystem functions and ser-
vices (Tsirintanis et al., 2022), including constituting approx-
imately three-quarters of the catches in Israeli trawl fisheries,
with several species regarded as a boon to the fishing industry
(Katsanevakis et al., 2025).

Finally, the socioeconomic context significantly influences
the economic impacts of non-native species. Regions with
limited financial resources, weak governance or lower levels
of biodiversity awareness are often less equipped to manage
and mitigate these impacts effectively (Bradshaw
et al., 2024). Such economic disparities can lead to uneven
abilities to respond to non-native species and invest in
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management or biosecurity, often exacerbating the chal-
lenges faced by vulnerable human communities.

(3) Social, cultural, and human health impacts

Human societies and biodiversity are deeply intertwined.
Biodiversity sustains human well-being in numerous ways,
from food production and regulation services to recreational
activities, artistic inspiration, and spiritual practices (Haines-
Young & Potschin-Young, 2018). Biological invasions can
therefore affect social and cultural practices in both negative
and positive ways. For example, non-native species may pose
risks to human health and displace culturally important
native species (Nuñez, Dimarco & Simberloff, 2018; Nuñez
et al., 2020). The non-native box treemoth (Cydalima perspectalis)
causes the decline of box trees (Buxus spp.), which had impor-
tant cultural and religious consequences in the Eastern Black
Sea region (Mitchell et al., 2018). At the same time, non-
native biodiversity can foster positive cultural shifts, such as
creating new ways of interacting with nature. An example
could be sport fishing in Patagonia (Argentina and Chile)
for non-native salmonids like rainbow trout, which negatively
affect native fish through predation and competition, but also
generate significant revenues through the tourism (including
ecotourism) industry in the region and thus, affect local tradi-
tions and livelihoods (Pascual et al., 2007). A recent example
from Northern Norway demonstrates how the spread of pink
salmon (Oncorhynchus gorbuscha) is reshaping local fishing cul-
tures traditionally centred on the iconic Atlantic salmon, by
making salmon fishing more accessible. While their ecologi-
cal impacts remain under scrutiny, their presence is already
sparking debates about species belonging, cultural identity,
and the future of recreational fisheries in the region (Guay
et al., 2024). Additionally, over time, species perceptions
can shift, fostering naturalisation and cultural integration
(Gaertner et al., 2017). For instance, the little owl (Athene noc-
tua) in Great Britain shifted from being perceived as a threat
in the 1930s to a cherished species among ornithologists
today (Rotherham, 2021). Similar dynamics occur globally,
where introduced species have become culturally central:
bananas in Ecuador, coffee in Colombia, and cannabis in
Jamaica exemplify how non-native species can be recast as
cultural keystone species (Nuñez & Simberloff, 2005).

Historically, several non-native species were intentionally
introduced for cultural and societal purposes, such as
enhancing the aesthetics of gardens (as perceived by coloni-
sers upon their return; Hoyle, Hitchmough &
Jorgensen, 2017) or establishing new lines of food or fibre
production. This is the case, for example, with numerous
plants and birds introduced into European gardens or to
the Americas during colonial times (Crosby, 2003, 2004).
Some of these species eventually escaped and became estab-
lished in natural ecosystems, leading to long-term ecological
transformations that remain measurable today (Lenzner
et al., 2022). Cultural impacts are also often linked to tradi-
tional human foraging activities and cuisine. For instance,
several non-native marine species can affect traditional

fisheries and other sectors (e.g. tourism) by reducing the
occurrence and abundance of native species, including their
economic viability. A recent example is the arrival of two
Portunidae blue crab species, Callinectes sapidus and Portunus

segnis, in theMediterranean, which affected traditional fisher-
ies, especially small-scale ones (Marchessaux et al., 2023;
Gavioli et al., 2025). In response to its rapid spread, the Italian
government has promoted its consumption, so both species
are increasingly incorporated into traditional Italian cuisine
with a positive attitude toward blue crab consumption in
Apulia (Frem et al., 2024) but with no tangible return in the
northern Adriatic, where the invasion had catastrophic
effects on e.g. Manila clam farming (Chiesa et al., 2025). Sim-
ilarly, recent invasions of pelagic Sargassum spp. in the tropical
Atlantic show diverse socio-cultural impacts. Excessive
blooms and beaching events significantly disrupt tourism
and local livelihoods due to their unpleasant smell and poten-
tial health impacts (e.g. skin irritation from decomposition;
Dominguez Almela et al., 2023b). However, there are emerg-
ing economic and cultural opportunities through the valori-
sation of Sargassum biomass in products like fertilisers or
biofuel, reflecting adaptation and innovative responses to
non-native species (Dominguez Almela et al., 2023a). Nowa-
days, many ‘Cultural keystone species’, i.e. species that are
culturally outstanding and that characterise the identity of a
cultural group, are indeed non-native species (Nuñez &
Simberloff, 2005). For example, cattle (Bos taurus) introduced
into Latin America during European colonisation, is now
deeply embedded in regional identities, being a core symbol
in the Amazonian ‘Boi Bumb�a’ folk festival as a symbol of
cultural and spiritual heritage (Silva, 2022). Similarly, mango
(Mangifera indica) trees introduced from southeastern Asia to
many colonial cities are not only key species for landscaping,
but also defining urban identity: Belém, an Amazonian city
in northern Brazil, is known as the ‘City of the mango trees’
(Loureiro & Barbosa, 2010). Additionally, religious practices,
such as Buddhist ‘mercy release’ ceremonies, have histori-
cally contributed to the intentional introduction of non-
native species, as adherents release captive animals into the
wild for spiritual merit – a tradition widespread across East
and Southeast Asia and increasingly practiced in Western
countries by migrant communities (Liu, McGarrity &
Li, 2012; Liu et al., 2013; Stringham & Lockwood, 2018).
Despite their ecological harm, numerous non-native spe-

cies have been embraced in cultural narratives, sometimes
making their removal controversial (Oficialdegui
et al., 2019), leading to changes in how people engage with
nature for recreational and artistic purposes. This inter-
section between ecology and culture highlights how non-
native species, even as ecological threats, can become embed-
ded in human identity and artistic expression (Nuñez &
Simberloff, 2005), sometimes even obscuring their status as
non-native (Cordeiro et al., 2020; Jari�c et al., 2024). For exam-
ple, old introductions could be culturally accepted, poten-
tially resulting in the disregard of scientific evidence
concerning their potential long-term negative impacts
(Florencio, Lobo & Bini, 2019) or even leading to their
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inclusion as targets for conservation efforts (Clavero, 2014).
Colourful birds, even if non-native, can attract the attention
of birdwatchers and nature enthusiasts, potentially enriching
local wildlife experiences and generating income through
tourism. Similarly, urban parks dominated by non-native,
fast-growing tree species can provide valuable and accessible
green spaces within densely built environments. These parks
may significantly enhance human well-being by offering aes-
thetic and recreational benefits, mitigating urban heat island
effects, and improving air quality (Almas, 2017). Moreover,
non-native species can influence artistic endeavours by shap-
ing cultural landscapes and inspiring artistic movements. For
instance, Eucalyptus trees, introduced from Australia to
California in the 19th century, became a defining feature of
the state’s environment and even gave rise to the Eucalyptus
School, a major artistic movement that depicted landscapes
dominated by these trees (Moure, 1982). Similarly, the
European periwinkle snail (Littorina littorea), introduced to
North America in the 19th century, initially transformed
the coastal ecosystems of Maine and has since extended its
range, which subsequently became a central theme in local
paintings and literature. Cultural representations of non-
native species also extend to national media, including
movies, toys, video games, and memes, possibly shaping pub-
lic perception. The red-eared slider turtle (Trachemys scripta
elegans), a non-native species associated with the pet trade,
was normalised in Japan through widespread cultural expo-
sure as toys (Lovich & Yamamoto, 2016;Wong, 2024). Many
non-native species have also been incorporated into local
pharmacopoeias, frequently being used as remedies, tonics,
and herbal treatments (Stepp & Moerman, 2001; Siqueira
et al., 2018). For instance, the painted nettle (Coleus barbatus)
is widely used in Brazilian traditional communities for dis-
eases in the digestive system (Baptista et al., 2013; Siqueira
et al., 2018) and the Madagascar periwinkle (Catharanthus
roseus) is used to treat sexually transmitted diseases in
South Africa (Semenya, Potgieter & Erasmus, 2013).

There are also less-positive sides to these phenomena.
Biological invasions have significant and multifaceted
impacts on human health; the range of effects can include
both direct physical suffering through to effects upon mental
health, along with the facilitation of disease transmission
(Donovan et al., 2013). The range expansion of species that
evoke biophobia, such as spiders, snakes, and other animals
often perceived as threatening, may lead to psychological dis-
comfort and heightened fear of nature, a seemingly growing
phenomenon in recent times, often hyperbolised by media
reports (Mammola et al., 2020; Correia & Mammola,
2024). This, in turn, could contribute to a growing sense of
disconnection from the natural world, further exacerbating
the human–nature divide (Soga et al., 2023). Problematic
non-native species, such as the zebra mussel, can cause inju-
ries to swimmers and fishers, while venomous marine
invaders like the striped eel catfish (Plotosus lineatus) and the
silver-cheeked toadfish (Lagocephalus sceleratus) present serious
health risks (Galanidi, Zenetos & Bacher, 2018; Galil,
2018). Additionally, allergenic and toxic plants, such as the

common ragweed (Ambrosia artemisiifolia) and the giant hog-
weed (Heracleum mantegazzianum), trigger severe allergic reac-
tions and dermatitis, affecting humans in newly invaded
regions (Déchamp, 1999; Klimaszyk et al., 2014). Further-
more, aggressive non-native insect species can have severe
direct impacts on human health, including death (Nentwig,
Mebs & Vilà, 2017). For example, the red imported fire ant
(Solenopsis invicta) is responsible for numerous cases of painful
stings and life-threatening anaphylaxis, particularly in North
America and China (Jemal & Hugh-Jones, 1993; Prahlow &
Barnard, 1998; Zhang et al., 2007; Xu et al., 2012). Similarly,
non-native species like the lionfish Pterois miles not only
threaten native fish populations with the consequent cascad-
ing economic impacts on local fisheries and communities
dependent on marine resources but also present a threat to
humans (Mitchell & Dominguez Almela, 2025). In the
Levantine Sea, massive swarms of the jellyfishRhopilema noma-
dica have caused numerous hospitalisations of swimmers and
fishers due to their painful stings, negatively impacting tour-
ism revenues by threatening swimmer safety and deterring
coastal visitation (Tsirintanis et al., 2022). Beyond direct inju-
ries, biological invasions play a crucial role in the spread of
infectious diseases. Non-native mosquitoes (e.g. Aedes spp.,
Anopheles stephensi, Culex quinquefasciatus) have facilitated the
transmission of malaria, dengue, chikungunya, and Zika
virus, among others, in newly invaded areas (Juliano & Philip
Lounibos, 2005; Romi et al., 2018; Roy et al., 2023a; Yan,
Mackay & Stone, 2024). Similarly, non-native gastropods
like the giant African land snail (Lissachatina fulica) serve as
intermediate hosts for rat lungworm (Angiostrongylus cantonen-
sis), a parasite that can cause severe neurological damage in
humans (Iwanowicz et al., 2015; Barratt et al., 2016).
Non-native plants such as mesquite (Prosopis juliflora) and the
parthenium weed (Parthenium hysterophorus) further exacerbate
the problem by providing suitable habitats for malaria-
carrying mosquitoes, thereby increasing transmission poten-
tial (Nyasembe et al., 2015; Tyagi et al., 2015; Muller
et al., 2017).

(4) Temporal dynamics of impacts

Invasion impacts are not necessarily static; rather, they can
be subject to substantial variability in their magnitude and
trajectories over time, complicating their assessment. Tem-
poral changes often reflect shifts in human perception or
values (Strayer et al., 2006), but also in population densities
and biomass, which can strongly influence impact strength
(Yokomizo et al., 2009; Jackson, Ruiz-Navarro &
Britton, 2015). Since invasion impacts stem from the conse-
quences of individuals within a population, it is the inter-
twined nature of ecological interactions, environmental
factors, and species-specific traits that modulate invasion
impacts (Haubrock et al., 2024b). As modern viewpoints rec-
ognise these numerous contextual factors influencing biolog-
ical invasions, it is increasingly acknowledged that invasion
processes may be more accurately described as components
of an ‘adaptive network’ – a system in which populations of
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non-native species and their interactions co-evolve in
response to ecological change (Blackburn et al., 2011; Soto
et al., 2024a). A critical shortcoming of impact-based classifi-
cation of non-native species is therefore that it disregards the
population level, as established populations might not cur-
rently cause significant harm but could do so under different
environmental conditions (i.e. ‘sleeper populations’; Spear
et al., 2021). For example, species whose impact is presently
considered to be benign could become a threat when they
spread or due to climate change, altered land use, or ecosys-
tem degradation (Crooks, 2005). The failure to account for
potential time lags associated with impacts further under-
mines the effectiveness of enacted policies, making them
reactive rather than proactive (Crooks, 2005).

Ecological impacts are often accumulated over a long time
and go unnoticed until surpassing a critical threshold, at
which point the consequences become apparent and poten-
tially irreversible. Initially, non-native species may have neg-
ligible or even positive effects on recipient communities at
low abundance. However, over the long term, their presence
often leads to profound disruptions, resulting in catastrophic
consequences for both the compositional and functional
structure of ecosystems (Soto et al., 2024c). Notably, the same
is true for economic or socio-cultural impacts, albeit being
substantially less studied and more dependent on the respec-
tively impacted economy or society (Turbelin et al., 2024).
Indeed, because the magnitude of impacts has traditionally
been associated with the abundance of the invader (Parker
et al., 1999; but see non-linearities in Sofaer, Jarnevich &
Pearse, 2018) or the extent of the area it occupies
(Katsanevakis, Tempera & Teixeira, 2016), it follows that
impact can either increase over time until plateauing (trajec-
tory a in Fig. 5) while often fluctuating over time in response
to changes in the invader’s population dynamics (trajectory
b in Fig. 5; Le Hen et al., 2023; Soto et al., 2024c). ‘Boom–
bust’ dynamics, a recurring cycle of the rise of a population
to outbreak levels, followed by a sharp decline (trajectory
f in Fig. 5; Strayer et al., 2017), challenge the assumption that
non-native species and their impacts will persist, suggesting
that some may naturally decline over time (Haubrock
et al., 2022a; Santamaría et al., 2022; Soto et al., 2023a). Some
impacts may show a steady increase over time as the non-
native population gradually adapts to the new conditions
(trajectories a, d, and e in Fig. 5), expanding their range,
and integrating into the ecosystem. Alternatively, impacts
may exhibit a time lag before suddenly increasing in magni-
tude (trajectory c in Fig. 5; Crooks, 2005).

Although non-native species often are released from their
natural enemies (e.g. predators, competitors, parasites, and
diseases; ‘enemy release hypothesis’) in the invaded range
and can consequently reach high densities (Torchin
et al., 2003; Colautti et al., 2004; Roy et al., 2011), the manifes-
tation of their impacts may be delayed due to initially low
population densities, often resulting from strong biotic
resistance (Haubrock et al., 2022a), inadequate colonisa-
tion pressure that hinders successful establishment, or sub-
optimal environmental conditions. Subsequently, when

environmental conditions shift or density-dependent fac-
tors facilitate exponential population growth, impacts
can intensify rapidly following an initial time lag (Crooks,
Soulé & Sandlund, 1999; Spear et al., 2021). For instance,
an analysis of 197 non-native plants found lag-phase dura-
tions ranging from 3 to 140 years before a species became
markedly invasive (Larkin, 2012). Similar to being subject
to an initial change, populations of non-native species
exhibit dynamic impact patterns over time as they are
influenced by periodic environmental changes such as
natural hazards (e.g. droughts, fires, etc.; Doubledee,
Muller & Nisbet, 2003), fluctuations in resource availabil-
ity (Yang et al., 2017), or simply seasonality (trajectory b in
Fig. 5; Everts et al., 2024). Finally, not all non-native popu-
lations will cause persistent or severe negative impacts, as
they may be constrained by predation, competition, or
unfavourable habitat conditions, preventing large-scale
ecological consequences. Thus, the impact may temporar-
ily diminish during unfavourable conditions but may
(or may not) resurge when conditions ameliorate (Spear
et al., 2021).
One of the first large-scale and long-term assessments of

biological invasions using true time series was by Haubrock
et al. (2022a), who analysed abundance and environmental
data (e.g. runoff, temperature, precipitation) for the non-
native New Zealand mud snail across 306 European sites
from 1979 to 2020 to assess its large-scale ecological impact.
The number of non-native populations was found to increase
steadily over time, with impacts peaking approximately two
decades after the first detection, leading to significant ecolog-
ical consequences influenced by local abiotic conditions.
Similarly, Soto et al. (2023a) analysed 96 European time
series from 1994 to 2019 with meta-regression modelling to
assess trends in the relative abundance of killer shrimp and

Fig. 5. Temporal dynamics of the magnitude of non-native
species impact over time following different potential
trajectories. Lines of different colours and shapes represent
distinct classes of temporal dynamics. The green lines (a, c, d, e)
depict unidirectional increases in impact over time; the orange
dashed line (b) illustrates cyclical fluctuations in impact,
characterised by repeated increases and decreases; and the
blue dot-dashed line (f ) captures a sharp initial rise in impact
followed by a subsequent decline.
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identify invasion drivers, estimate invasion speed, and exam-
ine its impact on recipient community metrics. The results
revealed that killer shrimp has become dominant in
European waters, with amultidecadal lag phase of�28 years
before spatial expansion (resembling trajectory e in Fig. 5),
while its increasing abundance was linked to declines in taxa
richness, community turnover, and Shannon diversity index.
Despite the importance of long-term studies for the detection
of non-native species (Haubrock et al., 2023b) and study of
invasion effects over time (Haubrock & Soto, 2023), assess-
ments of impacts over multiple years or even decades are rare
(Pergl et al., 2019). Consequently, inferences of cumulative
impacts (i.e. the joint effects of all present non-native species
collectively) are often based on the (questionable) assumption
that ecological, economic, or socio-cultural impacts will
increase gradually with the number of cumulatively reported
non-native species (Seebens et al., 2017).

Society’s subjective perceptions of impacts, along with
how they are assessed, valued, and managed over time, ulti-
mately shape what data are collected, where they are gath-
ered, and the temporal scale of monitoring efforts. While
long-term biodiversity monitoring data have facilitated nota-
ble insights into the spatial and temporal dynamics of biolog-
ical invasions and, thus, ecological impacts (Haubrock
et al., 2023c; Soto et al., 2023a), economic and socio-cultural
impacts are assessed using fundamentally different measures.
It is therefore difficult to assess temporal trajectories of these
types of impacts associated with biological invasions. Yet,
recent studies of the monetary burdens presented by biolog-
ical invasions concluded generally increasing monetary costs
(Cuthbert et al., 2021), potentially affected by a mixture of
factors as reported costs followed introduction rates and
reflected research and awareness (Haubrock et al., 2022c).

IV. CHALLENGESANDFALLACIES IN STUDYING
IMPACTS

(1) The context specificities of invasion impacts

Biological invasions are context-dependent population-level
phenomena (Haubrock et al., 2024b; Sousa, Nogueira &
Padilha, 2024), where the interplay between a non-native
species’ traits and the characteristics of the recipient ecosys-
tem can influence its success and impacts (Vilà et al., 2024).
Understanding these dimensions is needed to inform impact
assessment and strategic management (Novoa et al., 2020). In
particular, impacts exerted by non-native species typically
co-occur with other environmental changes, such as habitat
modification, overexploitation, climate change, and pollu-
tion, creating myriad multiple stressor interactions and
potential emergent effects (Ricciardi et al., 2021; Haines
et al., 2024). This co-occurrence can create challenges when
inferring the prevailing driver of ecological, economic and
socio-cultural impacts, as combinations of drivers can
interact antagonistically or synergistically, with effects
difficult to predict based on the sum of single stressors

(Gissi et al., 2021). Specifically, aggression and resource com-
petition by invasive mosquitofish (Gambusia holbrooki) increase
with temperature (Carmona-Catot, Magellan & García-
Berthou, 2013) and climate change is predicted to favour
many similar non-native fishes at the expense of native spe-
cies (Radinger & García-Berthou, 2020). Cane toads and
the signal crayfish (Pacifastacus leniusculus) have similarly
shown rapid evolutionary changes through space and time
(alongside changes in affected natives) that influence their
impacts and complicate management strategies (Shine,
2012; Alves et al., 2025). Whether non-native species are
drivers rather than ‘passengers’ of ecological change has thus
been a topic of interest in the field (Didham et al., 2005;
MacDougall & Turkington, 2005), with individual study sys-
tems or species having multidirectional outcomes (Vilà
et al., 2024). For instance, wels catfish show negative preda-
tion impacts on native fish communities only in habitats dis-
turbed by human activities (Cucherousset et al., 2018;
Lenhardt et al., 2021), which are the rule in large European
rivers (Moncada et al., 2025). Sport fishes, such as peacock
basses of the Cichla genus and the common carp, often are
mainly problematic in artificially modified systems like reser-
voirs or impoundments (Benito et al., 2015; Franco
et al., 2022), with habitat simplification exacerbating ecolog-
ical vulnerabilities to fish invasions (Alexander et al., 2015).
Under specific circumstances, impacts of non-native red
swamp crayfish are only marginal on macrophyte commu-
nities unless occurring in the presence of substantial nutri-
ent pollution (Dercksen et al., 2025; but see Arribas,
Díaz-Paniagua & Gomez-Mestre, 2014). Similarly, terres-
trial invasions, such as the spread of cheatgrass in the west-
ern USA, illustrate how anthropogenic disturbances,
particularly frequent fires and overgrazing, facilitate
spread and exacerbate ecological impacts through positive
feedback mechanisms (D’Antonio & Vitousek, 1992). We
note, however, that alternative perspectives, such as the
‘novel ecosystems’ debate and critiques of invasion alarm-
ism (e.g. Larson, 2007; Davis et al., 2011), also form part of
the discourse around invasion impacts, although a full
treatment of these debates is beyond the scope of this
review (but see Section (5)).

Ecological impacts can be highly variable, as a species that
exerts strong negative effects in one systemmay generate pos-
itive effects in another (Vilà et al., 2024). Nevertheless, in a
global meta-analysis, interactions between invasions and
environmental changes were no worse than impacts of inva-
sions alone (Lopez et al., 2022), suggesting that the manage-
ment of invasions should be a primary objective to improve
environmental outcomes in the face of multiple global
changes (Keck et al., 2025b). This perspective is reinforced
by conservation interventions aimed at the control of biolog-
ical invasions being highly effective when compared to other
types of interventions (Langhammer et al., 2024). However,
impacts from individual populations of single non-native spe-
cies can be triggered by rapid environmental changes
(Ricciardi et al., 2021; Spear et al., 2021; Haubrock
et al., 2022a), thus the same species may shift from beneficial
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to harmful (and vice versa) over time, depending on interac-
tions with climate, land-use or socio-political changes
(de Carvalho-Souza et al., 2024). A species classified as low
risk in one area may become a significant invader in another,
especially if its spread continues unchecked into more vulner-
able ecosystems (Soto et al., 2024a). This in turn complicates
management in the context of ‘invasion debts’ (Essl
et al., 2011a), as future impactful non-native species could
already be present, but remain undetected or unmanaged
owing to an absence of impact under current conditions
(Spear et al., 2021). These changes to impacts at the
population-level can be influenced by several factors, such
as the arrival of novel genetic material, adaptations and plas-
ticities, as well as creation of more favourable environmental
conditions through processes such as habitat disturbance,
ecosystem engineering, niche construction, climate change
or the prior invasion of a facilitating species (cf. ‘invasional
meltdown hypothesis’). The invasion of the green crab (Carci-
nus maenas) exemplifies this, with invasion impacts differing
substantially between invaded regions in Canada and the
USA where it had substantial negative effects on shellfish ver-
sus in South Africa where ecological impacts have rarely been
observed (Howard et al., 2018).

In particular, it is probable that future global warming will
exacerbate the impacts of thermophilic biological invasions
(particularly for poikilothermic animals), should conditions
approach their thermal optima and possibly provide longer
temporal windows of activity. For example, effects of a non-
native mysid Hemimysis anomala have shown strong impact
variations along thermal gradients, suggesting that tempera-
ture is a key mediator of impact in inland waters (Iacarella
et al., 2015a). This species has shown strong spatial variations
in individual performance towards the ‘invasion front’
(Iacarella, Dick & Ricciardi, 2015b), suggesting that spatio-
temporal structuring of populations according to their traits
further mediates impact propensities. In the eastern Mediter-
ranean, rising sea surface temperatures have accelerated the
decline and local extinctions of cold-affinity species and
the concurrent ‘tropicalisation’ of the marine community,
which is increasingly dominated by warm-affinity non-native
species originating from the Red Sea [Suezian (‘Lessepsian’)
migrants (Givan et al., 2018; Albano et al., 2021)]. This region
has become an extinction hotspot, with climate change being
the primary driver of local marine extinctions (Nikolaou &
Katsanevakis, 2023). This process is further exacerbated by
extreme summer temperatures, which have been shown
experimentally to drive key native species loss (Yeruham
et al., 2015; Rilov, 2016). Additionally, competition with
non-native Suezian species has further reduced the resilience
of native populations (Yeruham et al., 2020). With continued
climate warming and intensifying marine heatwaves in the
Mediterranean (Garrabou et al., 2022), native species are
increasingly being pushed beyond their thermal limits, lead-
ing to irreversible biodiversity shifts (Albano et al., 2021).
Consequently, even the most effective conservation measures
are unlikely to halt the ongoing dominance of thermophilic
non-native species, rendering further tropicalisation of the

Mediterranean an inevitable trend over coming decades
(Schickele et al., 2021). In such profoundly altered ecosys-
tems, where entire food webs and ecological interactions
have been reshaped (Corrales et al., 2017), assessing the spe-
cific impacts of individual non-native species on native biodi-
versity becomes increasingly complex, as their effects are
embedded within a broader framework of systemic change.
The connectivity or complexity of the landscape is also

important in understanding the extent to which invasion
impacts will propagate, with higher connectivity between
complex ecosystems facilitating spread of invaders and their
effects (Radinger & García-Berthou, 2020; Dolan et al.,
2025). Furthermore, impacts often cross ecosystem bound-
aries in unexpected ways that might only be apparent later.
For example, introductions of fishes that consume aquatic
invertebrate larvae can reduce the insect emergence into ter-
restrial environments that subsequently limits prey availabil-
ity for riparian taxa (Baxter, Fausch & Saunders, 2005).
Introductions of freshwater fishes for sport angling, which
can alter the trophic web and fish population structure, can
disrupt the interconnectedness of freshwater and terrestrial
compartments, emphasising the often-overlooked cross-
system consequences of invasions (Britton et al., 2024).
Trophic niche shifts may also be functional in contrast to
structural changes as non-native species may force native
taxa into constricted trophic niches or increase trophic niche
overlap, thus reducing ecological resilience without necessar-
ily changing abundance or richness (Balzani et al., 2016;
Dominguez Almela, South & Britton, 2021).
The potential vulnerability of insular freshwater habitats

to non-native species impacts was further evidenced in a
meta-analysis (Faria et al., 2025), with resource-use efficiency
by insular invaders particularly exacerbated compared to
their trophically analogous native comparators. For plants,
enemy release following invasion can lead to the evolution
of increased competitive ability and heightened resource
use (Callaway &Ridenour, 2004), whereas ecological novelty
linked to defence and selective foraging could alter biotic
resistance levels from native herbivores (Verhoeven
et al., 2009). Importantly, changes through adaptive
(e.g. selection) and non-adaptive (e.g. plasticity, drift, species
sorting, etc.) processes could rapidly alter impact across inva-
sion stages and ecological interactions within trophic net-
works (Zenni et al., 2014). Even pre-introduction processes
affect invasions (Sinclair et al., 2020), with urban environ-
ments and transport conditions potentially selecting for more
robust ‘bridgehead’ populations that exacerbate their inva-
siveness and potential impact (Briski et al., 2018, 2025). Over-
all, the success and impacts of biological invasions are
mediated by a plethora of biotic and abiotic context depen-
dencies, meaning that effects among populations are highly
variable depending on the traits and characteristics of the
recipient environment or economy. Cryptic invasions repre-
sent an additional layer of complexity. The brown seaweed
Rugulopteryx okamurae was initially misidentified (overlooked
due to morphological similarities with a native species) in
the Strait of Gibraltar and its invasive potential went
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unnoticed until favourable conditions (e.g. high tempera-
tures) facilitated an explosive bloom (García-G�omez
et al., 2020). The case of this seaweed also illustrates the diffi-
culty of predicting the invasion and strong impacts of some
non-native species (Williams & Smith, 2007), given the very
limited invasion history of this species (García-G�omez
et al., 2020). This problem of detection is not limited to spe-
cies misidentification (Brys et al., 2025), but often species go
under-monitored due to spatially fragmented and methodo-
logically inconsistent methods (Dominguez Almela
et al., 2023b), with this situation especially true for less-
charismatic taxonomic groups (Mammola et al., 2023).

Eco-evolutionary contexts between non-native species and
recipient communities must also be considered to understand
fully impact magnitude and its variations (Penk et al., 2017).
In particular, naïveté towards non-native species, especially
concerning non-native predators that are often linked to
severe impacts, can render native populations highly suscep-
tible to impacts. For instance, the introduction of the non-
native brown tree snake to the island of Guam led to the
extinction of numerous species of birds, mammals, and rep-
tiles, given that they were maladapted in the absence of anal-
ogous native predators (Fritts & Rodda, 1998). Impacts have
often been more severe on islands owing to higher levels of
ecological novelty (Blackburn et al., 2004; Haines et al.,
2024); however, similar impact variations according to insu-
larity can be seen across habitat types. In a global meta-
analysis of prey naïveté, Anton et al. (2020) found that effects
were strongest in aquatic habitats, with limited overall evi-
dence for the phenomenon in terrestrial ecosystems. They
further found that time since introduction influenced naïveté,
with around 200 generations required for anti-predator
responses to develop sufficiently (Anton et al., 2020). How-
ever, there are examples of faster development of effective
biotic resistance mechanisms, such as the case of the non-
native green seaweed Caulerpa cylindracea in the Mediterra-
nean. Previously considered as the most impactful non-native
species in the basin (Katsanevakis et al., 2016), it soon col-
lapsed in most areas as Mediterranean herbivores adapted
and began consuming the invader (Santamaría et al., 2022).

(2) Interpreting and comparing ecological impacts

Non-native species impacts are shaped by environmental fil-
tering, biotic resistance, ecosystem resilience, and human dis-
turbance, often varying across regions despite similar
abundances. The analysis of 160 time series of non-native
crayfish in Europe sampled between 1983 and 2019 by Soto
et al. (2023b) demonstrated the problem with extrapolating
species-level impacts at small spatial scales to wider impacts
at broader scales (e.g. geographical region), and may also
be the case when comparing different habitats, such as
islands and mainlands, where islands might be more isolated
with smaller habitat areas and more endemic species than
mainland areas, and thus be more susceptible to invasion
impacts (Reaser et al., 2007). Recognising these differences
at which impact mechanisms manifest is crucial in defining

and measuring impacts, particularly when comparing and
considering management implications. Not all impacts are
equally apparent and those at the population and community
levels may be easy to detect and measure (e.g. shifts in popu-
lation abundances and species diversity). By contrast, lower-
level impacts are likely to be more widespread but harder
to detect and measure, such as lower physiological condition
(B�odis, T�oth & Sousa, 2014; Ferreira-Rodríguez, Sousa &
Pardo, 2018) or short-term dietary shifts caused by interspe-
cific interactions between the invader and native populations
(Amaral et al., 2021). This ambiguity of defining impacts and
impact thresholds results in indirect or cascading impacts of
biological invasions being difficult to quantify and predict,
despite having the potential to be even more damaging
(and costly) than direct impacts (Walsh, Carpenter & Vander
Zanden, 2016). The invasion of yellow crazy ants (Anoplolepis
gracilipes) on Bird Island (Seychelles) exemplifies the cascading
effects of non-native species, promoting coccid infestations in
Pisonia grandis, leading to tree mortality, defoliation, and
reduced invertebrate diversity, key prey for insectivorous
birds (Hill et al., 2003). Similarly, the introduction of Burmese
pythons (Python molurus bivittatus) in the Florida Everglades
caused major declines in small- to mid-sized mammals
(Dorcas et al., 2012), triggering food web restructuring and
degrading ecosystem function (Guzy et al., 2023). Rodents,
more resistant to predation, became dominant, shifting host
use by Culex cedecei mosquitoes towards hispid cotton rats
(Sigmodon hispidus) and increasing Everglades virus transmis-
sion to humans (Burkett-Cadena et al., 2021).

Beyond ecological complexity and other modulating fac-
tors, impact severity is also shaped by cultural, economic,
and social perceptions, which influence whether a non-native
species is perceived as harmful, neutral, or even beneficial
(Bacher et al., 2018; Kapitza et al., 2019). InWestern cultures,
impacts are often framed through economic and biodiversity
loss metrics, with greater emphasis on provisioning and reg-
ulating ecosystem services, whereas in other parts of the
world, cultural ecosystem services may be valuedmore highly
and the disruption of spiritual or cultural relationships with
native species and landscapes may constitute the most signif-
icant invasion impact (Reo & Ogden, 2018). Moreover,
socio-economic disparities shape how the effects of biological
invasions are perceived and managed as wealthier nations
often have greater resources for biosecurity and mitigation
(Reaser et al., 2007; Bacher et al., 2018). They may tolerate
ecological impacts if economic gains from, for example, com-
mercial fisheries (Acevedo-Lim�on et al., 2020) or forestry
(Dickie et al., 2014) are substantial and/or ecosystem function
is maintained despite the biodiversity loss (Gozlan, 2008).
Poorer regions, however, often bear disproportionate costs
from non-native species introductions due to their reliance
on subsistence agriculture and local ecosystems, underscor-
ing that those suffering the most from invasions are rarely
the ones who eventually benefit from and are equipped to
deal with them (Reaser et al., 2007). For example, the recent
invasion of pelagic sargassum (Sargassum fluitans and S. natans)
in Ghana has caused ecological and livelihood disruptions.
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However, communities frequently misattribute the cause of
these events to offshore oil and gas activities, with this misper-
ception resulting from the limited access of communities to
trusted scientific information coupled with pre-existing ten-
sions with extractive industries (Atiglo et al., 2024). This is
in contrast to communities in the Caribbean and Central
America, where early warning systems and re-use strategies
have emerged from biological invasion (Dominguez Almela
et al., 2023a).

Ecological impacts are also not equal in significance across
different levels of biological organisation. For instance, while
a reduction in individual fitness may seem to be relatively
straightforward to evaluate, particularly if it affects reproduc-
tively important individuals, the consequences of a minor
change in community structure could have far-reaching con-
sequences by altering future ecosystem resistance and resil-
ience, making comparisons between the two levels of
impact much more complex. Invasions are often con-
trolled at the population level, yet management is typically
directed at the ecosystem level where invasion impacts
may be better understood and thus addressed (Gutiérrez
et al., 2014). Correctly scaling the multitude of different
direct and indirect impacts may also be further com-
pounded by temporal factors acting on the strength and
direction of ecological impacts (Soto et al., 2023a). These
issues are then further compounded by differences in sam-
pling methodologies and metrics, but also detection prob-
abilities (e.g. in aquatic environments; Katsanevakis &
Moustakas, 2018), and a lack of standardisation that make
consistent impact assessments difficult (Barney et al., 2013),
as well as various generalised ethical and conceptual con-
siderations that can make properly defining and measur-
ing impacts extremely difficult (Haubrock et al., 2025a).
In many cases, the impacts of non-native species are
entirely unknown, as exemplified by a recent comprehen-
sive breakdown of impacts within Germany identifying
‘unknown impacts’ for 97.9% of 1,962 established species
(Haubrock et al., 2025b).

(3) Challenges in quantifying social and cultural
impacts

Assessing the socio-cultural impacts of biological invasions is
often challenging due to the difficulty of quantifying non-
material values, such as cultural identity, traditional ecologi-
cal knowledge, and aesthetic appreciation of landscapes,
often leading to biases and misconceptions (Table 2). Infor-
mation on non-material values from indigenous communities
and tribes whose lives are intrinsically intertwined with their
surrounding natural resources can be difficult to access, due
to linguistic barriers and lack of accessibility. Unlike eco-
nomic losses or biodiversity declines, which rely on measur-
able indicators (respectively, money and loss of biodiversity
as measured through different proxies), socio-cultural
impacts often lack clear metrics and standardised methodol-
ogies, making them harder to integrate into management
decisions. For instance, non-native tree species like Acacia

spp. have altered landscapes in regions such as
South Africa, where they threaten native fynbos ecosystems
and alter microbial communities (Le Roux et al., 2011,
2018), yet they are also culturally valued for their use in fire-
wood and charcoal production, creating conflicts between
conservation priorities and local livelihoods (Shackleton
et al., 2014). Invasive cacti such as Opuntia spp. and Cylin-

dropuntia spp. are some of the most damaging plant inva-
sions worldwide, yet at the same time are valued as a
nutritious and healthy fruit crop, for cochineal produc-
tion, and are promoted as an option to minimise the
impacts of global climate change and land degradation
on food security in developing countries (Novoa
et al., 2016). Islands often endure significant environmental
degradation, species extinction, and high levels of social
poverty, stemming from colonial settlement and extensive
exploitation of natural resources, which have led to the
development of fragile economies (Cronk, 1989). A nota-
ble example is New Zealand flax (Phormium tenax), intro-
duced to St. Helena, which initially brought prosperity
due to high demand for flax rope during the World Wars.
However, by the 1960s, the industry’s decline was trig-
gered by the rise of cotton, synthetic fibres, and increased
shipping costs. Today, New Zealand flax has overrun large
areas of the island’s endemic cloud forest, dominating the
vegetation and elevating the risk of soil erosion on steep
cliffs. This has necessitated substantial conservation
efforts, involving local communities, focused on its
removal and the repatriation of endemic species
(Maunder et al., 1995).
Conservation frameworks emphasising scientific data

over local knowledge will thus likely overlook important
cultural dimensions, often creating conflicts. For example,
variations in how impacts can be perceived by different
cultural groups often result in conflicts over management
applications, particularly when eradication efforts target
species that have become socially or economically inte-
grated (Shackleton et al., 2019a). A striking example is
the European rabbit in Australia, where its devastating
impact on native vegetation and agricultural systems led
to large-scale control measures, including the introduction
of viral biocontrol agents (Strive & Cox, 2019). However,
the same species is also non-native to part of Europe, but
remains deeply embedded in European cultural traditions,
with a long history of hunting and farming (Lloveras
et al., 2016; Delibes-Mateos et al., 2018). Similarly, debates
over the culling of feral cats and horses (Equus ferus caballus)
in North America, Eastern grey squirrels in the UK, or
monk parakeets (Myiopsitta monachus) in Spain highlight
how biological invasions intersect with ethical and psycho-
logical concerns, as some groups advocate for their
removal due to ecological damage, while others view them
as symbols of heritage and freedom (Dunn et al., 2018;
Deak et al., 2019). In Italy, attempts to control the non-
native Eastern grey squirrel led to animalist associations
stopping the activity and even bringing scientists and man-
agers to court, due to the perception of these activities as
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unethical and familiarity with this introduced mammal
species (Bertolino & Genovesi, 2003).

(4) Assumptions and fallacies in impact studies

Compounding the challenges around context specifics of
impacts is the difficulty of standardising impact assessments.
Methodologies vary widely across taxa, ecosystems, and
management frameworks, leading to inconsistencies in
impact quantification. This inconsistency is further exacer-
bated by the advent of novel monitoring approaches
(Fricke & Olden, 2023), such as environmental DNA
(Everts et al., 2024), ecoacoustics (Chhaya et al., 2021), or
the use of drones (Ribeiro-Silva et al., 2018), for which no
baseline or pre-invasion data exist. Extrapolating data from
one region or ecosystem to another is often problematic
due to an array of context dependencies associated with envi-
ronmental conditions and the species involved in the interac-
tions. Impact assessments are further complicated by the
reliance on data inferred from experimental laboratory stud-
ies. While these experiments can provide indications of
potential effects (Alexander et al., 2014), they often lack the
ecological complexity of real-world environments, including
natural species interactions (Britton, 2018). Additionally,
many invasion impact assessments focus on short-term or
highly visible consequences, while more subtle, long-term
effects, such as genetic homogenisation, trophic disruptions,
or gradual ecosystem shifts, remain underrepresented in the
literature.

The assumption that a non-native species’ impact will be
consistent across different regions is a common fallacy, as
invasion outcomes are highly context dependent (Haubrock
et al., 2024b; Sousa et al., 2024). A species that causes ‘signif-
icant’ ecosystem disruptions in one area may be able to inte-
grate more seamlessly in another if it has adequate traits that
benefit establishment (Mahoney et al., 2015), despite differ-
ences in habitat structure, biotic interactions, or local distur-
bances (Vilà et al., 2024). For example, the recorded impacts
of many marine non-native species occur predominantly
within their thermal niche of origin and the severity of
impacts displays a hump-shaped relationship with tempera-
ture (Bennett et al., 2021). Highlighting how the severity of
non-native species impacts is shaped by factors like ecosystem
resilience, i.e. the ability of an ecosystem to absorb distur-
bances and maintain functionality (Chaffin et al., 2016), sys-
tems that have already been degraded by human activities
are often prone to experience exacerbation of existing prob-
lems, whereas in more intact ecosystems, native species and
processes may buffer against their effects (Hou, Bai &
Si, 2023).

The ‘invasional meltdown’ hypothesis describes how mul-
tiple non-native species can facilitate each other’s spread and
intensify their respective ecological impacts, further compli-
cating impact assessments (Simberloff & Von Holle, 1999).
In many freshwater systems, non-native bivalves such as the
zebra mussel provide a hard substrate that facilitates
the establishment of other non-native species, often from its

native region, the Ponto Caspian (Ricciardi, 2001; Soto
et al., 2023c). These include non-native macrophytes and
predatory fish and this facilitative process creates cascading
effects that amplify ecological disruptions (Britton
et al., 2010). Another example is the pumpkinseed sunfish
(Lepomis gibbosus), which preys on odonate larvae, thereby
reducing predation pressure on non-native American bull-
frog tadpoles in Europe and indirectly aiding its establish-
ment (Adams, Pearl & Bruce Bury, 2003). Importantly, not
all invasion impacts are purely additive; some interactions
may lead to non-linear effects, where the introduction of
one species mitigates or even counterbalances the effects
of another. For example, the non-native red swamp crayfish
limits the predatory effects of American bullfrogs on native
amphibians by serving as an alternative prey, yet this preda-
tion pressure triggers increased reproductive output in red
swamp crayfish, potentially leading to higher population
densities and greater overall ecosystem impact (Bissattini,
Buono & Vignoli, 2018).

(5) Biases in invasion impact research

Research on the impacts of non-native species is influenced
by various biases. The field has long debated the conceptua-
lisation, methodology, and ethical implications of biological
invasions, with increasing awareness of taxonomic, geo-
graphic, methodological, and even emotional biases. Such
biases can lead to inaccurate assessments of the effects of
non-native species, ultimately affecting conservation policies
and management strategies.

One of the key conceptual biases in invasion science (see
Table 2) arises from the definition of ‘invasive’ itself
(Appendix S2). It is crucial to note that even the inclusion
of ‘impact’ in the definition of invasive species remains sub-
ject to considerable debate within the field. While some inva-
sion scientists argue against including impact in the definition
of invasiveness, preferring the link to a non-native species’
ability to spread, others argue that impact is the criterion that
ultimately matters (Soto et al., 2024a). Policymakers and
managers, however, rely on empirical data on impacts to jus-
tify biosafety measures and management programmes, as
interventions may be difficult to implement without demon-
strable harm (Davis et al., 2011; Davidson & Hewitt, 2014).
Public awareness and political support for non-native species
management also tends to be stronger when tangible nega-
tive effects, such as biodiversity loss or economic damage,
are documented (Crystal-Ornelas & Lockwood, 2020). Addi-
tionally, impact-driven research is more likely to secure fund-
ing, influencing the focus of invasion science studies (Wilson
et al., 2007; Pyšek et al., 2008). However, some authors cau-
tion that an exclusive focus on demonstrated impacts may
underestimate long-term or subtle ecological effects, particu-
larly in marine systems where impacts are more difficult to
assess (Ojaveer et al., 2015) and could bias research towards
species already known to cause harm while overlooking
potentially problematic ones (Crystal-Ornelas &
Lockwood, 2020; Watkins et al., 2021). Social and ethical
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biases also shape the field of invasion science. The terminol-
ogy used, such as ‘invasion’, ‘war’, and ‘enemy’, evokes
emotional responses that can influence public perception
and management policies (Larson, 2011; Ahmed et al.,
2025). Furthermore, decisions regarding non-native species
management are often based on underlying value judgments,
whether instrumental (focused on human utility) or intrinsic
(emphasising the inherent worth of species and biodiversity)
(Cassini, 2020). The way researchers frame non-native spe-
cies and their impacts thus has significant ethical and policy
implications. Currently, some argue that non-native species
are framed negatively in published literature, often associ-
ated with harmful impacts (Pereyra et al., 2024, 2025; Sim-
berloff et al., 2024), with the recent surge in studies about
economic costs of non-native species highlighting the bias
towards emphasising detrimental effects, often neglecting
cases where such species provide ecosystem services or eco-
nomic benefits (Schlaepfer et al., 2011; Sax et al., 2022;
Boltovskoy et al., 2022).

Methodological biases also pervade impact studies, partic-
ularly in distinguishing correlation from causation
(Gurevitch & Padilla, 2004; Hulme et al., 2013). Many studies
document correlations between non-native species presence
and ecological changes without establishing direct mecha-
nisms and causal links (Cassini, 2020). Moreover, studies
reporting negative impacts are more likely to be published
and cited, leading to a publication bias that overemphasises
detrimental effects while underreporting neutral or positive
outcomes (Davidson & Hewitt, 2014; Katsanevakis
et al., 2014; Tsirintanis et al., 2022). Statistical limitations fur-
ther compound these biases, as ecological studies often suffer
from low statistical power due to small sample sizes and short
time series, increasing the risk of Type II errors (Rosnow &
Rosenthal, 1992; Davidson & Hewitt, 2014). Taxonomic,
geographic, and accessibility biases significantly skew impact
assessments in invasion science. Research disproportionately
focuses on specific taxonomic groups, such as primary
producers in marine invasion studies, even though they
represent only a fraction of introduced species

(Watkins et al., 2021). Similarly, invasion studies are heavily
concentrated in Europe and North America, while megadi-
verse regions such as Africa, Asia, and other parts of the
Southern Hemisphere remain underrepresented (Hulme
et al., 2013; Bellard & Jeschke, 2016; Crystal-Ornelas &
Lockwood, 2020; Munro et al., 2024; Prestes et al., 2024).
This imbalance limits the understanding of invasion mecha-
nisms in unique ecosystems, hinders the development of glob-
ally applicable ecological principles, underestimates the
impacts of biological invasions in less-studied areas, weakens
management and conservation strategies, and results in
resource allocation based on incomplete data (Pyšek
et al., 2008; Florencio et al., 2019; Watkins et al., 2021). More-
over, accessibility biases lead studies to be conducted in easily
reachable locations, such as areas near roads or research
institutions, which may distort perceptions of invasion sever-
ity (Munro et al., 2024). Marine invasion research also
exhibits biases in species selection and geographic focus,
often overrepresenting invasions in English-speaking regions
and favouring well-known non-native species, while poten-
tially overlooking other impactful non-native species
(Watkins et al., 2021). Similarly, plant invasion research tends
to focus on species with demonstrated impacts, neglecting
earlier invasion stages, such as naturalisation, which are cru-
cial for understanding long-term ecological consequences
(Pyšek et al., 2008).
Finally, broader critiques of invasion science question the

extent to which non-native species’ impacts are exaggerated.
Some scholars argue that invasion science has historically
placed disproportionate emphasis on negative effects, often
neglecting cases where non-native species contribute posi-
tively to ecosystems (Davis et al., 2011). A systematic review
of competition studies in invasion science suggests the pres-
ence of context bias, where the framing of studies, particu-
larly the use of ‘boilerplate’ (i.e. formulaic or standardised)
introductions emphasising the negative impacts of non-
native species, might influence the interpretation of results,
especially in observational studies (Warren et al., 2017).
While the use of such biased language has shown a declining

Table 2. Common biases and misconceptions in assessing invasion impacts.

Bias/misconception Description Implication

Publication bias Studies with strong or negative impacts are more
likely to be published

Overestimation of impact severity and
frequency

Geographic bias Research is concentrated in Europe/North
America

Under-representation of impacts in e.g. the
Global South

Taxonomic bias Focus on well-known groups (e.g. vertebrates) Neglect of under-studied taxa and many
impacts

Temporal bias Short-term studies dominate Failure to detect lag phases or long-term
cumulative effects

Negativity bias Impacts (and species) assumed detrimental by
default

Positive or neutral effects are overlooked,
skewing interpretation

Mechanism versus consequence bias Pathways of impacts are conflated with system-
level outcomes

Reduced clarity on causality and scaling of
impacts

Single-driver assumption Invasions are assessed in isolation from other
stressors

Over-simplification of interacting mechanisms
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trend over time, it still warrants consideration in the evalua-
tion of invasion science literature. This debate has even led to
accusations of ‘invasion denialism’ (Ricciardi & Ryan, 2018).
Invasion denialism, however, goes beyond academic critique
and encompasses the systematic rejection of empirical evi-
dence, often employing questionable (rhetorical) tactics simi-
lar to those found in other forms of science denialism
(Simberloff & Meyerson, 2024). These tactics include
cherry-picking data, misrepresenting scientific findings, and
discrediting experts through accusations of bias or conspiracy
(Ricciardi & Ryan, 2018). Some critics dismiss invasion sci-
ence as ‘pseudoscience’ or a form of ‘green xenophobia’,
despite strong empirical evidence demonstrating the ecolog-
ical and economic harms of biological invasions. While it is
important to acknowledge biases in invasion research and
foster a more nuanced discussion, these efforts should not
be conflated with denialism, which seeks to manufacture
doubt about well-established scientific consensus. Recognis-
ing and addressing both research biases and denialist rhetoric
in invasion science is difficult, but remains crucial for improv-
ing the accuracy and relevance of impact studies. A more
nuanced, evidence-based approach that accounts for concep-
tual, methodological, social, taxonomic, and geographic
biases will lead to more effective conservation and manage-
ment strategies (Jari�c et al., 2020; Vimercati et al., 2020). By
refining research methodologies and adopting a more critical
perspective, the field can move beyond overly simplistic nar-
ratives and towards a more objective assessment of non-
native species in ecosystems.

V. NON-NATIVE SPECIES RISK ANALYSIS AND
IMPACT ASSESSMENT

In invasion science, non-native species risk analysis is a proac-
tive framework that consists of three sequential components:
risk identification (or screening), risk assessment, and risk
management (e.g. Vilizzi et al., 2022a,b). Risk analysis aims
to detect potentially invasive species, assess their likelihood
of introduction, establishment and spread, assess the magni-
tude of actual or potential ecological, socio-economic and
health impacts, and identify options to prevent or mitigate
such impacts. Risk analysis therefore acts as the umbrella
under which impact assessments are implemented following
a full evaluation of the potential risks posed by (invasive)
non-native species, which are generally prioritised in terms
of their risk ranking (e.g. low, medium, and high risk) as part
of the screening phase. While risk analysis is a proactive pro-
cess, impact assessment is reactive, focusing on evaluating
and quantifying the ecological, economic, and socio-cultural
consequences of an already established non-native species
(Roy et al., 2018). While risk analysis helps in anticipating
and preventing biological invasions, impact assessment is
crucial for quantifying the damage caused by species that
have already spread (Andersen et al., 2004). The two pro-
cesses are closely linked, as impact assessment provides

empirical data that can improve future risk analysis, refining
predictions and enhancing management strategies. This
aligns with the dynamic nature of non-native species risk
analysis (Vilizzi et al., 2022a), which involves a periodic
review-and-revision approach concerning both the risk anal-
ysis process and the management strategy in the light of
impact assessment for the non-native species of concern
(Mumford et al., 2010).

(1) Non-native species risk analysis

To evaluate the risks posed by non-native species in terms of
their likelihood of introduction, establishment, spread, and
impact, several risk identification and assessment schemes
have been developed (reviewed in Srėbalienė et al., 2019).
The currently available schemes and, in some cases, related
decision support tools, differ in their focus, scope, and meth-
odological approach, with some designed for (early-stage)
risk identification and others for (follow-up) risk assessment
(and risk management). Overall, these schemes are essential
for prioritising management actions and ensuring that
conservation resources are allocated efficiently once impact
assessments have been fully implemented (Britton
et al., 2011). Risk screening and assessments have historically
been applied at the species level, focusing on general traits
and invasion potential (D’hondt et al., 2015). However, this
approach can overlook critical population-level differences,
leading to inaccurate predictions (Haubrock et al., 2024b).
This is because many populations remain undetected until
they enter an exponential growth phase (i.e. sleeper popula-
tions), making them difficult to control before significant eco-
logical and economic damage occurs (Soto et al., 2023a).
Additionally, societal, economic, and regulatory constraints
often limit management capacity, particularly in low- and
middle-income regions where funding and ecological data
are scarce (Bradshaw et al., 2024). These challenges highlight
the need for robust, accessible, easily deployable, and adapt-
able decision support tools that consider both species- and
population-level variation in invasion dynamics (Haubrock
et al., 2024b).

One of the earliest and most widely applied decision sup-
port tools for risk identification is the Australian Weed Risk
Assessment (WRA), originally developed for non-native ter-
restrial plants (‘weeds’) and then adapted to aquatic plants
(Pheloung, Williams & Halloy, 1999; Gordon et al., 2010).
The WRA’s derivatives, comprising the first-generation
Invasiveness Screening Kit (ISK) tools, namely the freshwa-
ter Fish Invasiveness Screening Kit (FISK) (Copp,
Garthwaite & Gozlan, 2005a,b; Lawson et al., 2013) and its
‘sister’ toolkits (Copp, 2013), have been employed for the risk
identification of some aquatic taxonomic groups (Vilizzi
et al., 2019). More recent advancements have led to the devel-
opment of the second-generation ISK tools, which include
the Aquatic Species Invasiveness Screening Kit (AS-ISK:
Copp et al., 2016b, 2021) applicable to all aquatic organisms
(i.e. freshwater, brackish, and marine animals and plants),
the Terrestrial Animal Species Invasiveness Screening Kit
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(TAS-ISK: Vilizzi et al., 2022b), and the Terrestrial Plant
Species Invasiveness Screening Kit (TPS-ISK: (Vilizzi
et al., 2024) applicable to terrestrial animals and plants,
respectively (Vilizzi et al., 2025). These second-generation
WRA-type decision support tools incorporate climate
change scenarios, confidence levels, multilingual support,
and structured decision-support methodologies to improve
predictive capacity and comply with the ‘minimum stan-
dards’ for screening non-native species under EURegulation
No. 1143/2014 on the prevention and management of the
introduction and spread of ‘invasive alien species’
(EU, 2014; Roy et al., 2018).

These assessments, and those that have evolved in the last
decade, follow strictly the provisions of the Commission
Delegated EU Regulation No. 2018/968 of 30 April 2018
supplementing Regulation No. 1143/2014 of 22 October
2014 with regard to risk assessments in relation to non-native
species (European Commission, 2022b). As turnkey decision
support tools, they have been widely used worldwide in a
broad range of applications (Vilizzi et al., 2021, 2024),
exceeding those of the other screening tools available in a
semi-automated workbook format. These tools include: (i)
Harmonia+, which integrates ecological, economic, and
human health risks, and the related Pandora+, which
assesses the threats posed by pathogens and parasites associ-
ated with biological invasions, a feature not available in the
other screening tools (D’hondt et al., 2015, 2025); (ii)
the Canadian Marine Invasive Screening Tool (CMIST;
Drolet et al., 2016), originally designed for marine inverte-
brates and more recently adapted to freshwater invertebrates
(Brown & Therriault, 2022); (iii) the lesser-known Fish Inva-
siveness Screening Test (FIST; Singh & Lakra, 2011); and
(iv) the recently developed Non-Indigenous Species Screen-
ing Tool (NISST) for plants, invertebrates, and fish, which
also accounts for climate change predictions and provides
assessors with additional flexibility when screening species
by the incorporation of Monte Carlo procedure-generated
scores (Wilcox et al., 2025). Most of these tools include an
evaluation of the ‘potential’ impacts posed by the species
under screening. Further, the ISK tools, Harmonia+, and
CMIST comply with all the key principles (except for com-
prehensiveness) of risk assessment tools identified by
Srėbalienė et al. (2019), namely effectiveness, transparency,
consistency, risk management, precautionary, science-based,
and continuous improvement.

For risk assessment, the European Non-Native Species in
Aquaculture Risk Analysis Scheme (ENSARS) offers a struc-
tured, modular approach that evaluates a species’ introduc-
tion pathways, establishment potential, and socio-economic
consequences (Copp et al., 2016a; Tarkan et al., 2020; Li
et al., 2025). The ENSARS consists of eight modules, with
seven being the (core) assessment, namely entry, pre-
screening (cf. ISK tools), pathway, facility, organism, infec-
tious agent, and socio-economic. The eighth module serves
as a risk summary and risk management component, inte-
grating the outcomes of the preceding assessments to inform
decision-making. Beyond a trial evaluation of the 24 non-

native species listed in Annex IV of European Council Regu-
lation No. 708/2007 concerning use of non-native and
locally absent species in aquaculture (Copp et al., 2016a),
the ENSARS has since been applied in Türkiye, Brazil, and
China (Tarkan et al., 2020; De Camargo, Cunico &
Gomes, 2022; Li et al., 2025). For risk management, the
Modular Management Tool for non-native aquatic species
and population risks has been developed to prioritise intro-
duced species by risk and then assess the potential impacts
of management options and their impacts for the control or
eradication of the target populations (Britton et al., 2011).
This scheme comprises four modules: (i) prioritisation of
introduced species; (ii) species risk to the receiving water
body; (iii) impact of the management action; and (iv) cost of
the management action.
Similar to impact assessment, these tools for non-native

species risk analysis are instrumental in shaping regulatory
policies, guiding decisions on species trade restrictions, quar-
antine measures, and early warning systems. However,
despite their advantages, these tools face some limitations.
Some rely heavily on expert judgement, which may intro-
duce subjectivity and potential biases in species rankings
(Gonz�alez-Moreno et al., 2019; Tarkan et al., 2024b;
Bło�nska et al., 2024). Additionally, most of these schemes
do not account fully for population-level differences, mean-
ing that local adaptations and genetic variability within spe-
cies are often overlooked (Haubrock et al., 2024b). Another
significant challenge is the lack of integration of economic
and socio-cultural factors, particularly in tools primarily
focused on ecological impacts (Tarkan et al., 2024a). More-
over, the quantification of uncertainty remains a major lim-
itation in many frameworks (Gonz�alez-Moreno et al., 2019).
This variability often stems from differences in assessor
expertise, protocol structure, and scoring criteria, indicat-
ing that many tools struggle to produce reliable and replica-
ble outcomes. Without robust methods to quantify and
manage these uncertainties, such as clearer scoring guide-
lines, better training, and collaborative decision-making,
the accuracy and credibility of impact assessments may be
compromised.

(2) Evolution of quantitative impact assessments

One of the earliest formalised approaches to assessing inva-
sion impacts was proposed by Parker et al. (1999), who intro-
duced the simple formula (henceforth, the Parker–Lonsdale
equation): Impact = Range size × Abundance × Per-capita

effect. This equation was appealing due to its intuitive struc-
ture, offering a straightforward way to estimate ecological
impact based on key invasion parameters. However, its limi-
tations quickly became apparent, as it failed to account for
context-dependent variation, species interactions, and the
challenges of defining per-capita effect in a standardised way.
The term encapsulates the ecological, economic, or socio-
cultural consequences of an invasion, yet varies depending
on species traits, environmental conditions, and the scale at
which impacts are observed.
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While biomass, abundance, and range are useful proxies
for impact assessment, their applicability varies widely across
taxa and ecosystems. Biomass, for instance, may be an effec-
tive metric for certain organisms, particularly within the
same trophic level or functional group (Dickey et al., 2020),
but it is inadequate for plants, pathogens, or microorganisms
for which density, area occupied, or number of affected hosts
may be more relevant (Cowan et al., 2011). Additionally, for
many aquatic species, biomass alone does not necessarily
reflect impact severity, as different species with similar bio-
mass can exert vastly different ecological pressures (García-
Berthou et al., 2005; Ricciardi et al., 2013). Density, in some
cases, may offer a better metric, but even this can be mislead-
ing when comparing different life stages or functional roles
within ecosystems (Jeschke et al., 2014). The challenge of
using simplistic measures becomes particularly evident in sys-
tems with multiple non-native species interacting, where
direct and indirect effects alter impact dynamics, while envi-
ronmental conditions can mediate impact severity. For
instance, certain species may only exert strong effects in
degraded or human-altered ecosystems, making it difficult
to generalise impact predictions based on range or abun-
dance or biomass alone. Thus, while the Parker–Lonsdale
equation (Parker et al., 1999) laid the groundwork for impact
quantification, it fails to capture the complexity of biological
invasions.

Impact assessment frameworks have since evolved to con-
sider not only species abundance and distribution but also
temporal and spatial variations in impact severity, ecological
resilience, and broader socio-economic consequences. Since
Parker et al. (1999), several methods have been put forward
that retain the ‘pillars’ of the Parker–Lonsdale equation.
For example, Nentwig, Kühnel & Bacher (2010) proposed
‘potential’ and ‘actual impact scores’, with the former
accounting for documented ecological and economic
impacts, and the latter accounting for the percentage of area
occupied in Europe. Narščius et al. (2012) proposed the
Biological Invasion Impact/Biopollution Assessment System
(BINPAS), an online application for non-native species
impact assessment based on a classification of the abundance
and distribution range of non-native species related to the
magnitude of their impacts on communities, habitats, and
ecosystem functioning. Based on the Parker–Lonsdale equa-
tion, Latombe et al. (2022) developed GIRAE (Generalised
impact = Range size × Abundance × Per-unit effect), which
extends the Parker–Lonsdale equation by allowing model-
ling for both single and multi-species scenarios, as well as
non-linear, context-dependent relationships between these
components to reflect real-world ecological complexity
better.

Another method, aiming to retain the relative simplicity of
the Parker–Lonsdale equation while addressing some of its
shortcomings, is the Relative Impact Potential (RIP) metric
(Dick et al., 2017; Laverty et al., 2017; Dickey et al., 2020).
This method, focused solely on ecological impacts, assesses
the potential impact of a non-native species relative to that
of a trophically analogous native species or other non-native

species, based on its per capita feeding rate and a proxy of
numerical response, such as abundance, density, fecundity,
or catch per unit effort. This approach is a logical extension
of the proposal that the Comparative Functional Response
(CFR) method be used as a universal, per capita measure of
the Parker–Lonsdale equation’s ‘effect’ (Dick et al., 2014;
Iacarella et al., 2015a) The CFR method has proved effective
and popular for assessing and, crucially, predicting non-
native species impacts over the past decade (Faria
et al., 2023, 2025). Indeed, the simplicity and flexibility of
the CFR method means that it can be applied to any con-
sumer and resource interaction, under myriad biotic and abi-
otic contexts, and calculated based on laboratory or field
observations. While effective at highlighting a damaging
non-native species by itself (resource acquisition rates are at
the core of many invasion ecology hypotheses), accounting
for some numerical response proxy converts this per capita
effect into an ecosystem-level impact, while allowing the ben-
efits of the former to be retained. Ultimately, it allows the
potential relative impact of a non-native species to be quan-
tified in a simple manner, with scores above 1 indicating a
non-native species exerting greater impact than its control
reference (e.g. the native species), those equal to 1 predicting
similar impacts, and those less than 1 predicting less-severe
impacts. RIP scores have also been shown to correlate posi-
tively with actual ecological impacts of non-native species in
the field (Laverty et al., 2017).

Furthermore, through its modular nature, the RIP is capa-
ble of being fine-tuned depending on the assessment type
required. For example, the Relative Invasion Risk metric
combines species impact with their availability within the
pet trade (Dickey et al., 2022), a common proxy for propagule
pressure (e.g. Montgomery et al., 2023), while the Resource
Reproduction Qualifier accounts for resource abundance
dynamics under different abiotic contexts (South
et al., 2022). While these provide a straightforward method
of assessing and predicting the impacts of non-native species
to facilitate effective prioritisation, there remain limitations.
Ultimately, the per capita nature of the CFR does not account
for synergies or antagonisms emerging from multiple con-
sumers interacting. Although efforts have been made to
address this through the Relative Total Impact Potential
(Dickey et al., 2021) – a method for assessing the combined
impact on a system as trophically analogous native and
non-native species fluctuate across different invasion stages
(Dick et al., 2017) – the role of inter- and intraspecific interac-
tions in influencing per-capita consumption rates remains
understudied (Augustyniak et al., 2025).

Tools such as InvaCost have introduced monetary valuation
into impact assessments, providing estimates of the financial
burden that non-native species have imposed on economies
by causing damages or requiring management efforts
(Diagne et al., 2020). However, economic impact assessments
come with their own challenges, as they often fail to capture
long-term, indirect, or cascading effects that extend beyond
immediate financial losses. Additionally, recent studies have
emphasised the importance of temporal scales, recognising

Biological Reviews (2025) 000–000 © 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

The impacts of biological invasions 33

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brv.70124 by Southam

pton U
niversity H

artley L
ibrary, W

iley O
nline L

ibrary on [02/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



that invasion impacts may change over time as some species
exhibit ‘boom–bust’ population dynamics, where initial high
impacts diminish as populations stabilise, while others gradu-
ally accumulate more severe effects over decades (Haubrock
et al., 2022a; Soto et al., 2023a). A further advancement in
quantitative impact assessment is the Cumulative IMPacts
of invasive ALien species calculator (CIMPAL), which spa-
tially integrates species distributions, habitat data, and
impact scores to identify cumulative invasion hotspots
(Katsanevakis et al., 2016). Still, it requires robust data and
may overestimate impacts due to assumed spatial homogene-
ity and a uniform impact magnitude across individuals of a
given species (Magliozzi et al., 2020; Polce et al., 2023).

(3) Types of impact assessments

With biological invasions globally rising, standardised impact
assessment protocols (Table 3) have become essential tools
for prioritising management actions. These frameworks
evaluate the ecological and/or socio-economic impacts of
non-native species, providing structured approaches for
comparing risks across taxa and regions (Gonz�alez-Moreno
et al., 2019; Roy et al., 2023a). Protocols vary in scope and
focus. Some emphasise ecological effects, while others also
incorporate socio-economic dimensions (Blackburn et al.,
2011; Hawkins et al., 2015; Nentwig et al., 2016; Bacher
et al., 2018), offering a more comprehensive view of species
invasion impacts. EICAT, adopted by the IUCN, categorises
and assesses species by the severity of their negative impacts
on native biodiversity (Blackburn et al., 2011; Hawkins
et al., 2015), further expanded into EICAT+ to offer a stan-
dardised method of classifying positive impacts on the indi-
vidual performance, population size, and area of occupancy
of a native species (Vimercati et al., 2022). Its counterpart
SEICAT assesses resulting disruptions to human activities
and livelihoods (Bacher et al., 2018). Other commonly used
protocols are the Generic Impact Scoring System (GISS),
which assigns numerical scores to quantify ecological and
economic impacts, Harmonia+, and the Invasive Species
Environmental Impact Assessment (ISEIA), which integrate
invasion potential with policy-relevant risk criteria
(Branquart, 2009; D’hondt et al., 2015; Vanderhoeven
et al., 2015). National schemes such as the Great Britain
Non-Native Risk Assessment (GB-NNRA) (Baker
et al., 2008; Mumford et al., 2010) and the Norwegian
Generic Ecological Impact Assessment of Alien Species
(NGEIAAS) (Gederaas et al., 2012; Sandvik et al., 2013) offer
tailored approaches that account for country-specific conser-
vation priorities. The recently proposed Dispersal-Origin-
Status-Impact (DOSI) framework (Soto et al., 2024a) adds
nuance by assessing invasions at the population level, consid-
ering dispersal methods (assisted or independent), origin
(native or non-native), status (expanding, stationary, or
shrinking), and impact type, enabling flexible and context-
sensitive evaluations (Tarkan et al., 2024b; Bło�nska et

al., 2024; Haubrock et al., 2025c). These impact assessment
protocols play a crucial role in the management of biological

invasions, offering structured approaches to evaluating risks
(Gonz�alez-Moreno et al., 2019). One of their main strengths
is standardisation, which enables comparisons across regions
and taxa. By providing a clear classification system, protocols
such as EICAT and GISS help identify high-risk species and
guide resource allocation for management interventions
(Blackburn et al., 2011; Hawkins et al., 2015; Nentwig
et al., 2016). Many of these assessments also have direct policy
relevance, informing biosecurity regulations, blacklists, and
early warning systems that support conservation planning
(Essl et al., 2011b; Gederaas et al., 2012). Additionally, protocols
likeHarmonia+ and theGB-NNRA, primarily comprehensive
risk assessment frameworks, also offer scalability for impact
assessments, allowing their application at different spatial levels,
from local conservation areas to national policy contexts (Baker
et al., 2008; Branquart, 2009; Mumford et al., 2010).
However, despite their widespread use, these protocols dif-

fer in their approaches, data requirements, and applicability,
which can lead to inconsistencies in how species are ranked
and managed (Essl et al., 2011b; Gonz�alez-Moreno
et al., 2019). Assessor subjectivity and context dependency
remain persistent limitations, often leading to conflicting out-
comes. As a result, different protocols may yield different
rankings for the same species (Vilà et al., 2019). A key chal-
lenge is subjectivity and assessor bias, as many impact assess-
ments rely on expert judgment, which can lead to
inconsistencies in scoring (Gilovich, Griffin & Kahneman,
2002; Cano-Barbacil, Radinger & García-Berthou, 2020).
This can be mitigated by assessments involving multiple
experts working jointly (e.g. Dodd et al., 2022) – an approach
that has been shown to increase the level of confidence
(Vilizzi et al., 2022a). Additionally, many protocols do not
account fully for uncertainty, making it difficult to evaluate
species with limited impact data or those whose effects vary
depending on environmental conditions (Molnar
et al., 2008). Differences in assessment scope and criteria
can also lead to discrepancies between protocols, as some
prioritise ecological impacts while others incorporate socio-
economic dimensions (Blackburn et al., 2011; Bacher
et al., 2018). Also, the rigidity and oversimplification of these
tools often fail to capture cascading effects, ecosystem-level
interactions, or long-term consequences. Exerted impacts
can be highly variable across different contexts, including
ecosystems and environmental conditions, meaning that a
species classified as harmful in one region may have negligi-
ble effects or even beneficial effects in another (Green &
Crowe, 2014; Kuebbing, 2020). For instance, context-
dependent impacts like those observed in the pumpkinseed
sunfish highlight the challenges of species-level classifications
(Jackson et al., 2016; Copp et al., 2017) depending on biotic
pressures and habitat structure (Top et al., 2016; Santamaría
et al., 2022). The reliance on species-level assessments also
disregards the role of ‘invasion syndromes’, where multiple
invaders interact in ways that amplify or mitigate impacts
(Novoa et al., 2020).
Impact assessments guide species prioritisation, resource

allocation, and the development of biosecurity measures,
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including blacklist and early warning systems (Essl
et al., 2011b; Leung et al., 2012). For example, EICAT and
GISS have been instrumental in identifying species that pose
significant ecological threats, enabling proactive manage-
ment before widespread damage occurs (Blackburn
et al., 2011; Hawkins et al., 2015; Nentwig et al., 2016). In
addition to species prioritisation, impact assessments inform
regulatory measures such as restrictions on trade and trans-
port, quarantine protocols, and eradication programmes
(Schrader et al., 2012), including numerous national and
international policies (Turbé et al., 2017). They are integral
to horizon scanning exercises that predict emerging threats
before establishment by evaluating the species-specific likeli-
hood of introduction, establishment, spread, and impact
(Roy et al., 2014; Peyton et al., 2019, 2020). Although fore-
casting impacts is inherently more difficult than predicting
arrival or establishment, structured expert elicitation can
help address knowledge gaps (Cano-Barbacil et al., 2023).
Finally, impact assessments support transparent stakeholder
communication and science-informed decision-making, but
further harmonisation and integration of uncertainty remain
key areas for improvement (Vanderhoeven et al., 2017). By
presenting non-native species impacts in a structured man-
ner, these assessments help facilitate discussions among scien-
tists, decision-makers, and the public, ensuring that
conservation strategies are both scientifically informed and
socially acceptable. Despite their influence, inconsistencies
across frameworks can lead to challenges in policy implemen-
tation. Different methodologies may produce conflicting
assessments for the same species, resulting in varying man-
agement recommendations and highlighting the need for
greater harmonisation between frameworks (Gonz�alez-
Moreno et al., 2019) and future directions of assessment-
related research (Appendix S3).

(4) Challenges in standardising impact assessments

The integration of socio-cultural impacts into impact assess-
ment frameworks remains a developing field, as these
impacts are often subjective and difficult to quantify. How-
ever, accounting for these impacts can make non-native spe-
cies management more democratic and socially legitimate,
whereas failing to account for these can lead to inequity,
and distrust and resentment from stakeholders who are
affected by unwanted legislation or eradication projects
(Crowley, Hinchliffe & McDonald, 2017b). The SEICAT
protocol focuses on how non-native species affect human
well-being, using the impact categories of (i) safety, (ii) mate-
rial and immaterial assets, (iii) health, and (iv) social, spiritual
and cultural relations. Bacher et al. (2018) give the example of
non-native species such as wasps, mosquitos, and jellyfish that
can render outdoor recreation areas unsuitable for activities
due to the threats they pose to human health. Even though
application of the SEICAT is dependent on available data,
human perceptions of data-deficient non-native species can
be acquired through interviews and questionnaires with the
general public, specific communities, business owners, and

wildlife managers (e.g. Moesch et al., 2024). Although not
strictly qualifying as impact assessments, newer multi-factor
frameworks such as EICAT and SEICAT aim to incorporate
multiple dimensions of impact while accounting for regional
and ecosystem-specific variability. Further, they attempt to
assess the ‘contextual severity’ of invasions by incorporating
factors such as trophic interactions, ecosystem feedback
loops, and environmental degradation levels.
The increasing complexity of impact assessment protocols

has therefore highlighted the inherent trade-off between sim-
plicity and accuracy. While simple metrics like biomass or
abundance offer ease of use and broad applicability, they
often fail to capture the nuanced effects of non-native species,
especially when interactions with other species, functional
distinctiveness, or environmental factors play a crucial role
(Parker et al., 1999). Conversely, multi-factor approaches
provide a more detailed assessment but require substantial
data input and can introduce subjectivity in scoring impact
severity (Hawkins et al., 2015). A major unresolved issue is
how to value social and cultural impacts, as these dimensions
are shaped by human perception and vary across regions and
cultures (Shackleton et al., 2019c). This is further complicated
in scenarios where social, cultural, and economic benefits are
derived from a species known to be ecologically damaging,
thereby complicating management decisions. Additionally,
differences in spatial scale further complicate impact classifi-
cation, i.e. what is deemed a severe impact at a local level
might be negligible when considered globally, and vice versa.
The need for more standardised, context-sensitive methodol-
ogies remains critical, yet finding a balance between broad
applicability and site-specific relevance continues to be a
challenge. Future impact assessment protocols must aim for
greater adaptability, integrating ecological, economic, and
socio-cultural factors while ensuring that assessments remain
practical for management and policy applications.

VI. HOW IMPACTS AFFECT MANAGEMENT
DECISIONS

(1) Policy frameworks and legislative measures

Political actions are central to managing the spread and
impact of non-native species, as they shape regulatory frame-
works, allocate resources, and drive international coopera-
tion (Early et al., 2016). Strong legislative measures, trade
regulations, and enforcement mechanisms are essential to
mitigating the ecological, economic, and social impacts
posed by biological invasions (Genovesi et al., 2015; Banerjee
et al., 2021). A common problem related to any political
action against biological invasions is that institutions respon-
sible for non-native species management vary by region and
jurisdiction, but typically include governmental environment
agencies, international regulatory bodies, and non-
governmental organisations (Shine, Williams & Gündling,
2000). These institutions assess non-native species impacts
based on scientific studies, risk assessments, and economic
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analyses. However, their effectiveness is often inadequate due
to inconsistent criteria, political considerations, and a lack of
coordination and enforcement of the already existent law
across regions and larger political entities (Haubrock
et al., 2024a). For example, the European Union’s list of Inva-
sive Alien Species of Union Concern is a legally binding doc-
ument for Member States, with its selection process being
based on a review of documented impacts and potential
spread (i.e. evidence: Genovesi et al., 2015). By contrast,
national and local agencies may have differing criteria, lead-
ing to inconsistencies or even contradictions in how species
are managed (Balzani et al., 2022). Additionally, economic
and political interests frequently influence these decisions,
with certain species being overlooked or downplayed due to
their commercial value or lack of immediate economic harm.
Therefore, policymakers must prioritise science-based
decision-making, strengthen biosecurity protocols, and foster
global and intersectoral collaboration to prevent the intro-
duction and establishment of non-native species (Perrings
et al., 2005). Additionally, integrating public awareness
campaigns, stakeholder engagement, and adaptive gover-
nance strategies can enhance policy effectiveness, ensuring
long-term ecological resilience and sustainable manage-
ment of non-native species (Novoa et al., 2017;
Hulme, 2024). Nevertheless, 83% of countries globally
do not have national legislation or regulations specifically
on invasive non-native species (Roy et al., 2023b). In addi-
tion, invasion management increasingly interacts with cli-
mate adaptation and mitigation strategies, which may
create both conflicts (e.g. afforestation with non-native
species) and synergies (e.g. ecosystem restoration improv-
ing resilience to invasions and climate extremes). Recog-
nising these overlaps is important to avoid contradictory
policy goals and to harness opportunities where biodiver-
sity protection and climate adaptation align.

Among the countries with specific legislation on the issue,
the European Union (EU) has established comprehensive
policy frameworks and legislative measures to address the
threats posed by non-native species. A cornerstone of these
efforts is EU Regulation No 1143/2014 ‘on the prevention
and management of the introduction and spread of invasive
alien species’ (EU, 2014). Member States are obligated to
implement measures to prevent the introduction and spread
of these species, conduct monitoring, and, where considered
feasible, eradicate or manage populations to mitigate their
impact (Tsiamis et al., 2017). To support these legislative
measures, the EU has developed tools such as the
European Alien Species Information Network (EASIN)
(https://easin.jrc.ec.europa.eu/easin; Katsanevakis et al.,
2015), which facilitates access to data on non-native species
reported in Europe, aiding in the implementation of this
Regulation by providing information crucial for risk assess-
ments, monitoring, and management strategies. Also,
Australia and New Zealand have established comprehensive
biosecurity frameworks, including Australia’s Biosecurity Act
2015 and New Zealand’s Biosecurity Act 1993, supported by
targeted programmes such as the National Pest Plant Accord

and species-specific initiatives to prevent and manage non-
native species (Newfield & Champion, 2010; Durant &
Faunce, 2018). Similarly, the USA has implemented strin-
gent biosecurity measures and management strategies target-
ing non-native species (Burkett et al., 2021; U.S. Department
of the Interior, 2021).

(2) Species-based ‘black lists’, challenges, and
limitations

Management decisions often rely on assessments of
impact, reflecting a shift in priorities from preventing spe-
cies spread to minimising damage, especially when limited
resources demand careful prioritisation. One approach to
identify priorities for management actions is the compila-
tion of lists of potentially problematic species. Impact-
based non-native species lists, often referred to as ‘black
lists’ or ‘deny lists’, are widely used by stakeholders and
invasion scientists to identify and regulate species deemed
as problematic due to their potential ecological, economic,
or socio-cultural impacts (Essl et al., 2011b; Appendix S4).
These lists serve as important tools for policy and conser-
vation, allowing for targeted prevention, early detection
(i.e. biosecurity), and control and containment strategies
(Simberloff, 2006), and can be implemented at various
administrative levels, despite administrative complexities
(see Appendix S5). The Japan Invasive Alien Species Act,
enacted in 2004, provides a noteworthy example of such
a blacklist-based approach. By restricting the importation,
possession, rearing, and release of approximately 100 des-
ignated invasive species, it has been associated with
marked declines in the importation of listed taxa, includ-
ing mammals, birds, amphibians, reptiles, and ornamental
fish (Goka, 2010).

A first attempt to create a black list of non-native species
in Europe was compiled by Genovesi & Scalera (2007) and
was formally approved by the Standing Committee of the
Bern Convention through Recommendation No. 125
(Council of Europe, 2007) of the Standing Committee on
trade in invasive and potentially invasive non-native species
in Europe. Another prominent example is EU Regulation
No. 1143/2014, which requires EU Member States to
ban the trade, use, transportation, breeding, and possession
of non-native species in the Union list (Genovesi et al., 2015;
Tollington et al., 2017). As of August 2025, this list includes
114 species (European Commission, 2022a). While no
blacklists exist at the regional level as defined by the EU
(i.e. covering multiple Member States), specific lists of spe-
cies of national concern are being developed in accordance
with EU Regulation No. 1143/2014. Cerri et al. (2022)
noted that even before the Regulation, 25 EU countries
had established some sort of national blacklists, and four
have also adopted subnational (within-country) lists. It is
also worth noting that other types of lists exist, always for
the purpose of prioritising efforts for management and sur-
veillance, for example watch lists and alert lists which have
been developed through screening, including dedicated
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horizon scanning exercises (see Roy et al., 2019) or similar
prioritisation exercises (Carboneras et al., 2018).

VII. CONCLUSIONS

(1) Biological invasions are a global threat to biodiversity
and human well-being. Governance responses, however,
remain largely fragmented across scales, sectors, and bor-
ders. Addressing biological invasions and their impacts there-
fore requires more than isolated interventions: it demands a
globally coordinated framework rooted in scientific informa-
tion, political will, and public engagement (Li et al., 2024).
(2) The transboundary nature of biological invasions and
their impacts challenge existing legal and institutional archi-
tectures, which often resemble a patchwork of reactive and
regionally limited measures. Strengthening international
agreements and fostering sustainable, transdisciplinary net-
works such as INVASIVESNET provide a pathway toward
effective, long-term solutions through shared knowledge,
resource pooling, and harmonised strategies (Lucy
et al., 2016). Such networks must explicitly integrate ecology,
economics, social sciences, and policy to generate actionable,
context-sensitive solutions that transcend disciplinary silos.
(3) Global integration must remain responsive to the com-
plexity and context dependencies that define invasion
impacts. These impacts vary by the numerous contexts,
including species, ecosystems, and cultural settings; what is
ecologically harmful in one region may be ecologically
benign in another with potentially differing socio-economic
implications that might be beneficial or detrimental.
(4) As such, coordinated actions and assessments must
embrace flexibility and be locally informed, rather than
applying a one-size-fits-all mandate globally (Haubrock
et al., 2024b; Sousa et al., 2024).
(5) The fragmentation of methodologies and persistent data
asymmetries across regions hinder cross-comparability and
strategic foresight. A key pillar of coordination must there-
fore involve standardising monitoring and impact assess-
ments, enhancing data interoperability, and investing in
open-access, global databases that equitably represent
diverse geographies (Pergl et al., 2019).
(6) Societal perceptions – deeply rooted in cultural, economic,
and historical contexts – profoundly shape how invasion
impacts are defined, interpreted, and acted upon. Effective gov-
ernance cannot rely solely on scientific consensus; it must also
engagewith pluralistic values, local knowledge systems, and par-
ticipatory decision-making (Kapitza et al., 2019).
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Kumschick, S., Markov�a, Z., Mrugała, A. & Nentwig, W. (2014). A unified
classification of alien species based on the magnitude of their environmental
impacts. PLoS Biology 12, e1001850.
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Jarošı́k, V., Wilson, J. R. U. & Richardson, D. M. (2011). A proposed unified
framework for biological invasions. Trends in Ecology & Evolution 26, 333–339.

Blackwell, T., Ford, A. G. P., Ciezarek, A. G., Bradbeer, S. J., Gracida
Juarez, C. A., Smith, A. M., Ngatunga, B. P., Shechonge, A.,
Tamatamah, R., Etherington, G., Haerty, W., Di Palma, F.,
Turner, G. F. & Genner, M. J. (2021). Newly discovered cichlid fish biodiversity
threatened by hybridization with non-native species. Molecular Ecology 30, 895–911.

*Bliss, C., Visseren-Hamakers, I. J. & Liefferink, D. (2023). Most (un) wanted:
explaining emerging relationships between “invasive alien” species and animal
governance. Global Environmental Politics 23, 26–51.

Bło�nska, D., Grabowska, J., Tarkan, A. S., Soto, I. & Haubrock, P. J. (2024).
Prioritising non-native fish species for management actions in three polish rivers

using the newly developed tool—dispersal-origin-status-impact scheme. PeerJ 12,
e18300.

B�odis, E., T�oth, B. & Sousa, R. (2014). Impact of Dreissena fouling on the
physiological condition of native and invasive bivalves: interspecific and temporal
variations. Biological Invasions 16, 1373–1386.

*Boggero, A., Paganelli, D., Zaupa, S., Garzoli, L., Vilizzi, L. &
Kamburska, L. (2025). An integrated evaluation of the invasiveness risk posed by
non-native crayfish in Lake Maggiore (Northwest Italy). Management of Biological

Invasions 16, 135–152.
Bohlen, P. J., Groffman, P. M., Fahey, T. J., Fisk, M. C., Su�arez, E.,
Pelletier, D. M. & Fahey, R. T. (2004a). Ecosystem consequences of exotic
earthworm invasion of north temperate forests. Ecosystems 7, 1–12.

Bohlen, P. J., Pelletier, D. M., Groffman, P. M., Fahey, T. J. & Fisk, M. C.

(2004b). Influence of earthworm invasion on redistribution and retention of soil
carbon and nitrogen in northern temperate forests. Ecosystems 7, 13–27.

Bohlen, P. J., Scheu, S., Hale, C. M., McLean, M. A., Migge, S.,
Groffman, P. M. & Parkinson, D. (2004c). Non-native invasive earthworms as
agents of change in northern temperate forests. Frontiers in Ecology and the Environment
2, 427–435.

Bojko, J.,Dunn, A. M.& Blakeslee, A. M. H. (2023). Parasites and Biological Invasions.
CABI, Wallingford, Oxfordshire, UK.

Bojko, J., Dunn, A. M., Stebbing, P. D., Ross, S. H., Kerr, R. C. &
Stentiford, G. D. (2015). Cucumispora ornata n. sp. (Fungi: Microsporidia)
infecting invasive ‘demon shrimp’ (Dikerogammarus haemobaphes) in the
United Kingdom. Journal of Invertebrate Pathology 128, 22–30.

Bojko, J., Stebbing, P. D., Bateman, K. S., Meatyard, J. E., Bacela-

Spychalska, K., Dunn, A. M. & Stentiford, G. D. (2013). Baseline
histopathological survey of a recently invading Island population of ‘killer shrimp’,
Dikerogammarus villosus. Diseases of Aquatic Organisms 106, 241–253.

Bojko, J., Stentiford, G., Stebbing, P.,Hassall, C.,Deacon, A., Cargill, B.,
Pile, B. & Dunn, A. (2019). Pathogens of Dikerogammarus haemobaphes regulate host
activity and survival, but also threaten native amphipod populations in the UK.
Diseases of Aquatic Organisms 136, 63–78.

Boltovskoy, D., Guia‚su, R., Burlakova, L., Karatayev, A.,
Schlaepfer, M. A. & Correa, N. (2022). Misleading estimates of economic
impacts of biological invasions: including the costs but not the benefits. Ambio 51,
1786–1799.

Boon, J. S., Keith, S. A., Exton, D. A. & Field, R. (2023). The role of refuges in
biological invasions: a systematic review. Global Ecology and Biogeography 32, 1244–
1271.
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Pyšek, P., ET AL. (2018). A prioritised list of invasive alien species to assist the
effective implementation of EU legislation. Journal of Applied Ecology 55, 539–547.

Carlton, J. T. (2002). Bioinvasion ecology: assessing invasion impact and scale. In
Invasive Aquatic Species of Europe. Distribution, Impacts and Management, pp. 7–19.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

Carmona-Catot, G., Magellan, K. & Garcı́a-Berthou, E. (2013).
Temperature-specific competition between invasive mosquitofish and an
endangered cyprinodontid fish. PLoS One 8, e54734.

Carneiro, L.,Hulme, P. E., Cuthbert, R. N., Kourantidou, M., Bang, A.,
Haubrock, P. J., Bradshaw, C. J. A., Balzani, P., Bacher, S.,
Latombe, G., Bodey, T. W., Probert, A. F., Quilodr�an, C. S. &
Courchamp, F. (2024a). Benefits do not balance costs of biological invasions.
Bioscience 74, 340–344.

Carneiro, L., Leroy, B., Capinha, C., Bradshaw, C. J. A., Bertolino, S.,
Catford, J. A., Camacho-Cervantes, M., Bojko, J., Klippel, G.,
Kumschick, S., Pincheira-Donoso, D., Tonkin, J. D., Fath, B. D.,
South, J., Manfrini, E., ET AL. (2025). Typology of the ecological impacts of
biological invasions. Trends in Ecology & Evolution 40, 563–574.

Carneiro, L., Miiller, N. O. R., Cuthbert, R. N. & Vitule, J. R. S. (2024b).
Biological invasions negatively impact global protected areas. Science of the Total
Environment 948, 174823.

Carthey, A. J. R. & Banks, P. B. (2014). Naïveté in novel ecological interactions:
lessons from theory and experimental evidence. Biological Reviews 89, 932–949.

Cassini, M. H. (2020). A review of the critics of invasion biology. Biological Reviews 95,
1467–1478.

Castilla, J. C., Lagos, N. A.&Cerda, M. (2004). Marine ecosystem engineering by
the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Marine Ecology

Progress Series 268, 119–130.
Castorani, M. C. N. & Hovel, K. A. (2015). Invasive prey indirectly increase

predation on their native competitors. Ecology 96, 1911–1922.
Castro-Dı́ez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. (2014).

What explains variation in the impacts of exotic plant invasions on the nitrogen
cycle? A meta-analysis. Ecology Letters 17, 1–12.
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Narščius, A., Olenin, S., Zaiko, A. & Minchin, D. (2012). Biological invasion
impact assessment system: from idea to implementation. Ecological Informatics 7,
46–51.
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Nuñez, M. A. & Simberloff, D. (2005). Invasive species and the cultural keystone
species concept. Ecology and Society 10, r4.

Nyasembe, V. O., Cheseto, X., Kaplan, F., Foster, W. A., Teal, P. E. A.,
Tumlinson, J. H., Borgemeister, C. & Torto, B. (2015). The invasive
American weed Parthenium hysterophorus can negatively impact malaria control in
Africa. PLoS One 10, e0137836.

Odum, E. P. (1969). The strategy of ecosystem development. Science 164, 262–270.
Oficialdegui, F. J., Clavero, M., S�anchez, M. I., Green, A. J., Boyero, L.,

Michot, T. C., Klose, K., Kawai, T. & Lejeusne, C. (2019). Unravelling the

global invasion routes of a worldwide invader, the red swamp crayfish (Procambarus
clarkii). Freshwater Biology 64, 1382–1400.

Oficialdegui, F. J., Soto, I., Balzani, P., Cuthbert, R. N., Haubrock, P. J.,
Kourantidou, M., Manfrini, E., Tarkan, A. S., Kurtul, I., Macêdo, R. L.,
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Soto, I.,Macêdo, R. L.,Carneiro, L.,Briski, E.,Kouba, A.,Cuthbert, R. N.&
Haubrock, P. J. (2024c). Divergent temporal responses of native macroinvertebrate
communities to biological invasions. Global Change Biology 30, e17521.

Sousa, R., Gutiérrez, J. L. & Aldridge, D. C. (2009). Non-indigenous invasive
bivalves as ecosystem engineers. Biological Invasions 11, 2367–2385.

Sousa, R., Morais, P., Dias, E. & Antunes, C. (2011). Biological invasions and
ecosystem functioning: time to merge. Biological Invasions 13, 1055–1058.

Sousa, R., Nogueira, A. J. A., Gaspar, M. B., Antunes, C. & Guilhermino, L.

(2008). Growth and extremely high production of the non-indigenous invasive
species Corbicula fluminea (Müller, 1774): possible implications for ecosystem
functioning. Estuarine, Coastal and Shelf Science 80, 289–295.

Sousa, R., Nogueira, J. G., Ferreira, A., Carvalho, F., Lopes-Lima, M.,
Varandas, S. & Teixeira, A. (2019). A tale of shells and claws: the signal
crayfish as a threat to the pearl mussel Margaritifera margaritifera in Europe. Science of
the Total Environment 665, 329–337.

Biological Reviews (2025) 000–000 © 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

The impacts of biological invasions 53

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brv.70124 by Southam

pton U
niversity H

artley L
ibrary, W

iley O
nline L

ibrary on [02/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Sousa, R., Nogueira, J. G. & Padilha, J. (2024). Moving from the species to the
population level in biological invasions. Global Change Biology 30, e17396.

South, J., Dickey, J. W. E., Cuthbert, R. N. & Dick, J. T. A. (2022). Combining
resource population dynamics into impact assessments of native and invasive
species under abiotic change. Ecological Indicators 142, 109260.

South, P. M., Lilley, S. A., Tait, L. W., Alestra, T., Hickford, M. J. H.,
Thomsen, M. S. & Schiel, D. R. (2015). Transient effects of an invasive kelp on
the community structure and primary productivity of an intertidal assemblage.
Marine and Freshwater Research 67, 103–112.

Spear, M. J.,Walsh, J. R., Ricciardi, A. & Zanden, M. J. V. (2021). The invasion
ecology of sleeper populations: prevalence, persistence, and abrupt shifts. Bioscience
71, 357–369.

Spinage, C. (2012). Cattle Plague: A History. Springer Science & Business Media, Berlin,
Germany.

Srėbalienė, G.,Olenin, S.,Minchin, D. &Narščius, A. (2019). A comparison of
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Jari�c, I., Jöhnk, K., Jones, C. G., Lambin, X., Latzka, A. W., Pergl, J.,
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progress of interdisciplinarity in invasion science. Ambio 46, 428–442.

Verhoeven, K. J. F., Biere, A., Harvey, J. A. & Van Der Putten, W. H. (2009).
Plant invaders and their novel natural enemies: who is naive? Ecology Letters 12,
107–117.
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Vilà, M., Gallardo, B., Preda, C., Garcı́a-Berthou, E., Essl, F., Kenis, M.,
Roy, H. E. & Gonz�alez-Moreno, P. (2019). A review of impact assessment
protocols of non-native plants. Biological Invasions 21, 709–723.

Vilà, M., Trillo, A., Castro-Dı́ez, P., Gallardo, B. & Bacher, S. (2024). Field
studies of the ecological impacts of invasive plants in Europe. NeoBiota 90, 139–159.

Vilizzi, L., Copp, G. H., Adamovich, B., Almeida, D., Chan, J., Davison, P. I.,
Dembski, S., Ekmekçi, F. G., Ferincz, Á., Forneck, S. C., Hill, J. E.,
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