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Abstract

The IC industry’s growth has heightened attention to hardware security, particularly in

the last decade. Major IC companies, aiming to cut costs, have begun outsourcing parts

of their supply chain instead of managing it entirely in-house. This cost-saving strategy

increases vulnerability to malicious attacks. To counter this, various defence mechanisms

like logic locking have been proposed, o!ering protection against unauthorized IP access

and supply chain threats with minimal design flow alterations.

Despite logic locking’s many advantages in hardware defence, it confronts two major

challenges. Firstly, significant e!orts in the field have aimed at extracting secret keys

from encrypted designs, particularly to clone IP. The SAT attack [1] notably undermines

the e”cacy of logic locking. To mitigate this, various techniques like point function-

based logic locking (PFB) [2, 3, 4] have emerged, balancing SAT attack resilience with

minimal product overhead. However, PFB’s fixed mechanism inherently exposes specific

properties, making it vulnerable to targeted attacks. [5, 6] Secondly, traditional logic

locking presumes the design house’s trustworthiness. However, internal malicious actors

are a real threat in practice, against which current logic locking methods are ine!ective.

This thesis introduces Dynamic Logic Locking (DLL), a new logic locking strategy to

address the aforementioned security concerns. DLL’s dynamic mechanism, unlike tradi-

tional methods, uses randomly generated locking blocks to counter SAT and other logic

locking attacks. Its unique mechanism for each design eliminates structural vulnera-

bilities, unlike conventional fixed-mechanism blocks. Moreover, DLL’s random block

generation allows for zero-knowledge implementation by designers, who need not know

the block’s structure or secret key details. This makes DLL robust even against internal

malicious attacks within the design house.

This thesis also introduces DLL-se, a sequential variant of DLL, expanding its application

to sequential circuits for increased utility. Additionally, it presents a Python-based logic

locking tool capable of integrating various logic locking types, including DLL, into Verilog

netlists and simulating attacks on logic locking. With its clear GUI, the tool is accessible

to designers and students and is suitable for hardware design and educational research.
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Chapter 1

Introduction

Since the beginning of the 21st century, the Integrated Circuit (IC) supply chain has

undergone significant transformations. These changes are reflected in various aspects:

the rising cost and complexity of IC manufacturing, increasing operational and trou-

bleshooting expenses of chip factories, the market’s growing demand for rapid response,

acceleration of supply chain processes, the involvement of multiple third-party Intel-

lectual Property (IP) providers, the introduction of cutting-edge technologies, and the

influence of maintaining a leading position in the semiconductor market [11]. These fac-

tors have collectively driven the horizontal development of the IC supply chain, where

di!erent entities are responsible for the design, manufacturing, testing, packaging, and

integration stages, forming a globalised supply chain.

In this context of a globalised supply chain, to cope with the complexity of designing

key chip components, design teams increasingly acquire third-party IPs from numer-

ous owners to expedite product launches. Furthermore, considering the total cost of

manufacturing, wafer sorting, cutting, packaging, and package testing, along with the

necessity of employing the latest technologies, many design companies opt to complete

these stages in overseas facilities. The involvement of outsourcing and multiple stake-

holders not only reduces the cost of chips but also shortens their time to market.

Since the beginning of the 21st century, the rapid expansion of the chip market has led

to a significant growth of semiconductors industry, while also dramatically increasing

the market value of major manufacturers such as TSMC, UMC, and SMIC [11]. The

surge in demand has driven Original Equipment Manufacturers (OEMs) to continuously

1
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advance their technologies in design, implementation, manufacturing, and testing in

order to remain competitive. At the same time, global collaboration has deepened

significantly. The acceleration of globalisation has made the supply chain more open

and e”cient, improving overall productivity.

While globalisation of the supply chain has brought benefits, it has also increased risks.

The involvement of multiple entities, lack of trust, and insu”cient monitoring have

decreased the control of original manufacturers and IP owners/suppliers over the supply

chain, leading to various hardware security threats such as IP piracy, overproduction

of ICs, and counterfeiting[12, 13]. Hardware security issues have become increasingly

serious, thereby attracting growing attention in this field. There is much work to be

done in this field to ensure that IC products are not plagiarized or attacked by malicious

entities.

To counter the upcoming hardware threats, the academic community has proposed var-

ious design trust countermeasures, ranging from passive to active strategies, such as

watermarking, IC metering, IC camouflaging, and hardware obfuscation[12, 13]. Par-

ticularly, logic locking, as an active IP protection technique, has garnered widespread

attention over the past two decades, with robust solutions developed at various levels of

abstraction.

The structure of this thesis is organised as follows: Section 1.1 presents the problem

statement of this research. Section 1.2 outlines the motivation behind the study. Sec-

tion 1.3 presents the main research objectives. Section 1.4 summarises the key contri-

butions of this work. Section 1.5 provides an overview of the overall thesis structure.

Finally, Section 1.6 lists the papers published by the author during this doctoral research.

1.1 Problem Statement

1.1.1 Hardware Security Threats and Defence Techniques

In today’s complex integrated circuit (IC) supply chains, a wide range of security threats

have emerged, creating significant challenges for both industry stability and technological

integrity. The rapid expansion of these supply chains has introduced numerous security

vulnerabilities. Key threats include intellectual property (IP) piracy [14], overbuilding
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[15], hardware Trojans [16, 17, 18, 19], reverse engineering [20, 21], and counterfeiting

[22, 23], whose potential threat is labeled in the supply chain shown in figure 1.1.

Figure 1.1: Di!erent Threat Models at Di!erent Stages of IC Design Flow [7].

In order to thwart emerging hardware security threats, various defence techniques have

been developed, including watermarking and fingerprinting [24, 25], camouflaging [26],

split manufacturing[27], and logic locking [9].

1.1.1.1 Watermarking and fingerprinting

Watermarking is a defence technique where the designer inserts a digital signature into

the circuit; this signature could be a design constraint [24]. In fingerprinting, the user’s

digital signature is also embedded in the design, along with the designer’s signature.

Techniques like watermarking and fingerprinting are referred to as passive techniques,

which can only detect malicious operations on the hardware but cannot protect the

circuitry from malicious attacks [25]. Both techniques are employed at the logic design

and physical design stages of the design flow.

1.1.1.2 Camouflaging

Camouflaging, as its name, in selected part of the circuitry, designer replaces the gates

with their camouflaged counterparts. Compared to normal logic gates, camouflaged

gates are much harder for the reverse engineering attackers to tell their function. With

a trusted foundry, camouflage is able to protect the circuit from reverse engineering in

certain level [26].
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1.1.1.3 Split Manufacturing

In order to address the issue of an untrusted foundry, split manufacturing divides the

manufacturing of the product into two stages: back-end-of-the-line (BEOL) and front-

end-of-the-line (FEOL). The two parts of the product are then manufactured separately

in two di!erent foundries to ensure that no single foundry has full access to the design

[28, 29, 30, 31, 32].

Split manufacturing and camouflaging are both layout-level techniques that are applied

to the product after the physical design stage.

1.1.1.4 Logic Locking

Logic locking refers to the ability to introduce post-fabrication programmability through

additional gates, known as key-gates, which are controlled by a secret key. These key-

gates enable the locking of the circuit’s functionality, ensuring that the circuit behaves

correctly only when the correct key is provided. In other words, hardware designers

of logic locking will implant a serious of logic gates [9] or other structures such as

eFPGA [14, 33, 34], which will cause primary output of the protected circuit to distort.

The only way for the protected circuit to perform functional correctness is to input a

preset key sequence which only hardware designer has access to and is used to activate

the product after fabrication. The correct key sequence is then stored in a tamper-proof

memory in the system.

3rd IP owner

Design Team
Logic synthesis

Design netlist

Physical synthesis Fabrication

Physical synthesis Wafer

Testing/Packing

System

End-user

Functional IC

Logic locking protect IC against both untrusted foundries and end-users

Logic locking Activation

Rouge Insider Counterfeiting and 
Overbuilding Reverse Engineering

Figure 1.2: IC Supply Chain, Threat Modelling, and Logic Locking Engagement
(Injecting in Netlist and Activating after Fabrication)

In the standard design flow, locking gates are implanted in the chip during the logic

synthesis stage, as depicted in figure 1.2, and only the designer knows the correct key.

This mechanism ensures that even if a malicious foundry obtains the design in the
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subsequent stages, the attacker cannot make the chip function correctly without the

right key. The chip is activated by the secret key after the design flow is completed,

and the key is stored in tamper-proof memory, ensuring that malicious attackers cannot

access it. This logic locking mechanism ensures the design’s security throughout the

design flow and at the end-user stage. Compared to other defence strategies, as shown

in table 1.1, logic locking o!ers a broader range of protection across the supply chain.

Table 1.1: Hardware defence strategies comparison

DfTr technique SoC integrator Foundry Test facility End-user

Watermarking N N N N
Camouflaging N N N Y
Split manufacturing N Y N N
Logic Locking Y Y Y Y

One of the critical challenges in logic locking is enabling e!ective functional verification

without disclosing the secret key to potentially untrusted parties involved in the design

or testing process. To address this issue, several practical and secure strategies have been

developed. The most widely adopted approach involves the use of encrypted simu-

lation modules compliant with the IEEE 1735 [35] standard for IP encryption. By

encrypting the key-related modules and controlling access rights through license-based

restrictions, third-party verification teams are able to simulate the design and verify

functionality without accessing the actual RTL or the embedded key. In addition, com-

mercial EDA tools such as Synopsys VCS, Cadence Xcelium, and Mentor Questa provide

support for encrypted RTL simulation, enabling secure key encapsulation throughout the

verification flow.

Another secure alternative is the use of formal equivalence checking tools such as Ca-

dence Conformal or Synopsys Formality, which allow designers to verify the equivalence

between the locked and unlocked versions of the circuit using symbolic representations

of the key. In this setting, the key remains an abstract symbolic variable during verifica-

tion, thereby preventing its exposure. These approaches collectively ensure that robust

design verification can be conducted without compromising the confidentiality of the

secret key—an essential requirement for secure hardware IP delivery and validation.

Hardware designers can implement logic locking at various levels of abstraction. Fig-

ure 1.3 illustrates a simple example of logic locking across di!erent abstraction levels.

For instance, at the layout level, as shown in Figure 1.3, the metal-insulator-metal
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(MIM) structure, which connects two adjacent metal layers, can be used as a key-based

programmable unit for routing-based locking [36]. Compared to other abstract levels,

Gate-level logic locking technique is often the easiest to implement, and cause acceptable

overhead.

Currently, most existing logic locking techniques are implemented at the gate-level,

typically as a post-synthesis operation on the synthesized gate-level netlist in the supply

chain. In this Phd project, all the work, including Zeki and Locklab, is focused on

gate-level logic locking.

Figure 1.3: Logic Locking Examples at Di!erent Levels of Abstraction: (a) Layout-

level Key-based Routing, (b) Transistor-level Key-based Basic Gates, (c) Key-based

Logic/Routing Gate-level, (d) RTL-level Keybased FSM, (e) HLS-level Key-based Shift

Register.
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1.1.2 Basic Working Principle of Logic Locking

Logic locking[9] stands out for its ability to safeguard the supply chain and end-users

with minimal design flow modifications.

Logic locking protects a chip by inserting locking gates, typically XOR/XNOR gates.

The chip with implanted locking gates requires the user to input a correct secure key to

function properly; otherwise, it will produce incorrect outputs.

Figure 1.4 shows why this is the case.
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Figure 1.4: Basic working principle of logic locking.

1.1.3 Threat Model in Attacks on Logic Locking

The threat models for attacks on logic locking are usually divided into two categories:

oracle-guided and oracle-less, where the oracle refers to a functional IC (or golden model)

that provides correct input–output pairs. The work of this project is focused on oracle-

guided threat model.

In the threat model for oracle-guided attacks, it is assumed that attackers have access

to two critical entities:

1. A functional IC: Attackers can readily acquire a functional IC from the market.

During the attack process, this functional IC provides valid input/output pairs as

golden references;

2. A gate-level netlist file of the locked circuit: This file is obtained through

reverse engineering or from an untrusted foundry.
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1.1.4 Existing Challenges

1.1.4.1 Limitation of Single Locking Mechanism

Logic locking is a widely adopted hardware security technique due to its ease of im-

plementation and relatively low overall hardware cost. It o!ers broad protection for

integrated circuits (ICs) and other hardware products. However, its development has

faced significant challenges, particularly from attacks designed specifically to bypass

logic locking mechanisms or extract the secret key. One such attack, the SAT attack [1],

involves converting a locked circuit’s netlist into an SAT(satisfiability) problem and

then using specialised SAT solvers to e”ciently break the protection, making the attack

process quick and e!ective.

In response to SAT attacks, numerous defence-oriented logic locking techniques have

been proposed. Among them, Point-Function Based (PFB) logic locking [4, 2, 37, 3]

provides relatively balanced performance: acceptable overhead and resilience against

malicious attacks. However, since each PFB locking strategy relies on a single locking

mechanism, it has inherent structural vulnerabilities. Once these vulnerabilities are

published, they become exposed to attackers. If an attacker identifies these weaknesses,

any circuit protected by that particular PFB strategy becomes susceptible to attacks.

1.1.4.2 Insider Threat

Compared to other hardware security techniques, logic locking provides extensive pro-

tection throughout the entire IC design flow. Typically, its protection spans from post-

synthesis all the way to the product’s market deployment. To enhance the security of

the implementation, the secret key used to activate the product is typically introduced

after the fabrication phase. However, this approach still carries potential risks. Insider

threats may steal information about the locking block structure or the positioning of

key-gates, as personnel must intervene during the insertion of locking gates or blocks.

If the locking mechanism of a locked product is leaked, malicious attackers may exploit

the structural characteristics of the corresponding locking block to develop targeted

attacks that compromise the circuit’s protection. For example, sensitization attacks [5]
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have been designed specifically against SFLL [3], while SPS attacks [6] target Anti-

SAT [2]. Furthermore, the leakage of other information—such as the location of key

gates or the arrangement of key bits—can significantly lower the di”culty for attackers

attempting to break the locking scheme.

This necessity for human intervention introduces the possibility of leakage, creating

a security vulnerability for the protected product. This risk is especially concerning

given that nearly all logic locking strategies rely on a single locking mechanism. If

the information regarding the locking mechanism leaks, the entire design flow becomes

susceptible to threats, severely compromising the integrity of the protection.

1.1.4.3 Easy-to-use Simulation Tool

The rapid development of the IC industry in the 21st century has led to an increasing

demand for hardware security technologies. However, while logic locking stands out as

a key player in hardware security, its development has not kept pace with the industry’s

growth. One of the reasons for this slower progress is the lack of a simple, easy-to-use,

and comprehensive simulation tool. This gap in tools hampers the broader adoption

and refinement of logic locking techniques, limiting their e!ectiveness in meeting the

growing security demands of the industry.

1.2 Motivation

To address the challenges outlined above, this project introduces a novel logic locking

strategy, Zeki, and presents a related paper, Zeki: A Zero-Knowledge Dynamic Logic

Locking. Compared to traditional logic locking techniques, Zeki introduces two key in-

novations. First, it employs a dynamic logic locking mechanism that randomly generates

a locking block for each product based on di!erent locking mechanisms. This approach

avoids the inherent structural vulnerabilities present in single-locking mechanisms, which

attackers could exploit to break the circuit’s defences.

Second, unlike single-locking mechanisms, Zeki ensures that even if one product is com-

promised, all other products using the same locking strategy remain secure. Although

the same locking mechanism is used for di!erent chips within the same product line,
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Zeki generates unique locking blocks for di!erent products. This ensures that an at-

tacker who successfully cracks one product’s defence cannot apply the same method to

other products protected by Zeki.

Additionally, the dynamic locking mechanism prevents insider involvement in the logic

locking implementation, enabling the realization of zero-knowledge locking. Zeki is the

first locking strategy to achieve zero-knowledge locking, significantly reducing internal

participation and thus mitigating the risk of insider attacks or leaks.

In response to the current lack of e!ective automatic simulation tools in the logic locking

field, I developed LockLab, an automated tool for simulating logic locking and associ-

ated attacks. LockLab provides a convenient and e”cient platform for researchers and

learners in the logic locking domain, greatly enhancing research productivity by enabling

fast simulations of various locking strategies and corresponding attacks.

1.3 Research Objectives

The primary objective of this research is to enhance the security and robustness of logic

locking strategies in the face of increasingly sophisticated hardware attacks. In light of

the limitations of existing single-mechanism logic locking approaches and the practical

risks posed by insider threats and structural vulnerabilities, this project aims to address

these gaps through both theoretical development and practical tooling. The specific

objectives are as follows:

• To design and implement a novel logic locking strategy, that leverages dynamic

and randomized locking mechanisms to eliminate structural vulnerability caused

by single mechanism and enable zero-knowledge protection.

• To develop a secure framework in which the locking process is resistant to insider

threats by minimizing designer involvement during the locking phase.

• To ensure that the proposed method provides strong resilience against a broad

range of attacks, including SAT-based, sensitization-based, and AI-based attacks.

• To develop an easy-to-use, automated simulation platform, which is capable of

modelling various logic locking strategies and attacks, thereby accelerating research

and enabling comparative evaluation.
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• To evaluate the e!ectiveness, scalability, and robustness of the logic locking strat-

egy and simulation platform developed in this work through extensive experiments

using industry-standard benchmarks.

1.4 Contributions of This Project

The contributions of this project are listed below:

1. The introduction of the first zero-knowledge locking strategy significantly reduces

the involvement of internal designers in the logic locking implementation, thereby

minimizing the risk of internal attacks and information leaks. This reduction in

insider participation enhances the overall security of the product by preventing

potential malicious exploitation and safeguarding sensitive product information.

2. The proposed locking strategy, Zeki, employs a dynamic locking mechanism. Un-

like traditional single-locking mechanisms, dynamic locking inherently avoids the

structural vulnerabilities present in static locking blocks. Additionally, it prevents

the issue where, once a product is compromised, all other products protected by

the same mechanism can be attacked using the same exploited vulnerability.

3. Extensive simulations were conducted to evaluate Zeki’s resilience against various

types of attacks. The simulation results demonstrate that Zeki provides strong

defence capabilities against a wide range of attacks targeting logic locking.

4. Furthermore, the LockLab tool was developed as an automated simulation plat-

form for logic locking strategies and related attack simulations. LockLab is user-

friendly and significantly enhances the e”ciency of researchers and learners in the

logic locking field. It supports simulations for multiple locking strategies, includ-

ing RLL, FLL, SLL, Zeki, SFLL, Anti-SAT, and SARLock, as well as simulations

for various attacks such as SAT, SPS, sensitization, and AI-based attacks. These

simulations validate LockLab’s e!ectiveness in practical applications.

1.5 General Structure of the Thesis

The structure of the remaining chapters in this thesis is as follows:
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• Chapter 2: Literature Review

This chapter provides a detailed examination of various logic locking strategies

and the associated attack techniques targeting logic locking. Special emphasis will

be placed on SAT attacks and the di!erent types of PFB (Point-Function Based)

logic locking, as these techniques have been extensively studied in the field of logic

locking. Moreover, they are fundamental to understanding the core principles of

this project, particularly in relation to Zeki’s operational framework. Other logic

locking strategies and corresponding attacks will also be discussed, providing a

comprehensive overview of the current landscape in this area of research.

• Chapter 3: Zeki

This chapter focuses on the Zeki technique, detailing the motivation behind its

design and its contributions to the field. A thorough explanation of Zeki’s mech-

anism will be presented, followed by a comparison with other PFB logic locking

techniques that rely on a single locking mechanism. Additionally, simulations us-

ing various benchmarks will be conducted to demonstrate Zeki’s resilience against

di!erent attacks, providing empirical evidence of its e!ectiveness. Furthermore,

this chapter will explore Zeki’s role as the first zero-knowledge logic locking tech-

nique, highlighting its advantages in defending against insider threats compared

to other locking mechanisms.

• Chapter 4: Zeki for Sequential Circuits

This chapter introduces the sequential version of Zeki, addressing the fact that,

in the IC market, sequential circuits are more prevalent than combinational ones.

While Zeki was originally designed for combinational circuits, its adaptability to

sequential circuits will be discussed in this chapter. The implementation process

of applying Zeki to sequential circuits will be explained, demonstrating how the

technique can be used in a broader range of IC designs.

• Chapter 5: LockLab and Lockit

This chapter presents an in-depth discussion of LockLab and Lockit, two automa-

tion tools for implementing logic locking. These tools significantly simplify the

workflow for logic locking implementation, allowing designers to more easily inte-

grate logic locking into their work or conduct experiments with various gate-level

locking strategies. Additionally, LockLab proves to be an excellent educational
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tool, making it a valuable resource for teaching hardware security and logic lock-

ing concepts.

• Chapter 6: Conclusion

The final chapter will summarize all the work presented in this thesis, including the

key contributions and findings. It will also discuss the limitations of the current

research and outline potential future directions for further exploration in the field

of logic locking and hardware security.

1.6 Publication during PhD

Zhang Y, Halak B, Wang H. ZeKi: A Zero-Knowledge Dynamic Logic Locking Im-

plementation with Resilience to Multiple Attacks[C]//2024 IEEE 37th International

System-on-Chip Conference (SOCC). IEEE, 2024: 1-6.

Kajtez N, Zhang Y, Halak B. Lockit: A Logic Locking Automation Software[J]. Elec-

tronics, 2021, 10(22): 2817.





Chapter 2

Literature Review

2.1 Introduction

Logic locking has evolved into one of the most prominent hardware security techniques

for protecting integrated circuits (ICs) against a wide spectrum of threats, including IP

piracy, overproduction, counterfeiting, and reverse engineering. Over the past decade,

the research community has proposed numerous locking schemes and corresponding

attacks, leading to a highly dynamic arms race between defenders and adversaries. In

particular, the emergence of the SAT attack has fundamentally reshaped the design

goals of logic locking, shifting the focus from simple output corruption towards rigorous

SAT-resilient constructions.

This chapter provides a structured review of existing logic locking strategies and their

associated attack methodologies. It begins with pre-SAT (section 2.2) schemes such as

Random Logic Locking (RLL), Fault-analysis-based Logic Locking (FLL), and Strong

Logic Locking (SLL), together with early attacks like the sensitisation attack. It then in-

troduces SAT-based attacks and explains how they exploit distinguishing input patterns

to recover the secret key e”ciently in section 2.3. Subsequently, Point-Function based

(PFB) locking schemes, including SARLock, Anti-SAT, ANDTree, TTLock, and SFLL

are discussed as representative post-SAT countermeasures in section 2.4. The section will

also introduce advanced approaches such as FSM/sequential locking, cyclic-based and

routing-based locking, scan-chain locking, and higher-level or timing-based techniques,

15
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as well as eFPGA-based IP-level locking. After that, recent machine-learning-based at-

tacks are reviewed in section 2.5. In section 2.6 merits and drawbacks of di!erent logic

locking approaches are given and compared to show that Point-function based logic

locking provides the most balanced performance. This literature review establishes the

technical context and motivates the need for the new locking strategy and automation

framework proposed in this thesis.

This chapter reviews the main developments in logic locking and related attack tech-

niques. It first discusses pre-SAT logic locking schemes and early attacks, then explains

the working principle of the SAT attack as a key turning point in the field. Afterwards,

it surveys post-SAT logic locking strategies, including point-function-based locking, FS-

M/sequential locking, cyclic-based and routing-based approaches, scan chain locking,

and other advanced techniques. Finally, recent machine-learning-based attacks are re-

viewed. The chapter concludes with a comparative discussion of the merits and lim-

itations of these strategies, highlighting why point-function-based logic locking o!ers

a relatively well-balanced solution and thereby motivating the choice of this family of

techniques as the basis for the new strategy proposed in this thesis.

2.2 Pre-SAT Logic Locking and sensitisation Attack

Before the advent of SAT-based attacks, logic locking techniques were mainly designed

to introduce functional corruption under incorrect key values. Early schemes such as

Random Logic Locking (RLL) and Fault-analysis-based Logic Locking (FLL) focused

on inserting XOR/XNOR key-gates to maximise output corruption, while Strong Logic

Locking (SLL) was later proposed to resist sensitisation attacks. This section reviews

these pre-SAT techniques and the first generation of attack against them, providing the

historical background for the later shift towards SAT-resilient designs.

2.2.1 Random Logic Locking(RLL)

The original version of logic locking was introduced by [9] to protect IC products from

threats such as overproduction, counterfeiting, and other malicious attacks. The concept

of basic logic locking is illustrated in Figure 2.1. In this scheme, XOR/XNOR gates are
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Table 2.1: Output of circuit in Figure 2.1(3) with di!erent key-bit when the input
bit x1=0, x2=1

cccc
gray!50 [x1,x2] k1 k2 y1 y2

01 0 0 1 1
gray!50 01 0 1 1 0

01 1 0 0 1
01 1 1 0 0

embedded into the circuit to obscure its functionality. For example, when an XOR key-

gate (KG) is inserted into the protected circuit (see Figure 2.1(3)), if the K1 bit is 0,

KG1 functions as a simple wire. If K1 is set to 1, KG1 behaves as an inverter. In the

case of XNOR gates, the logic is reversed.
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Figure 2.1: Basic working principle of logic locking

This mechanism enables the integration of N key-gates, comprising a mix of XOR and

XNOR gates, to e!ectively generate a N -bit security key. The circuit will only function

correctly when the correct key sequence is applied.

Table 2.1 presents an example of the input/output combinations for the circuit depicted

in Figure 2.1, where the primary input pattern [x1, x2] is set to ’01’. The correct key for

this circuit is ’01’, and the corresponding output is ’10’, which is highlighted in gray in

the table. As shown, injecting an incorrect key leads to output distortion, emphasizing

the security provided by the locking mechanism.

In this original logic locking approach, the locking gates (XOR and XNOR) are inserted

randomly into the circuit, a technique known as Random Logic Locking (RLL).

2.2.2 Fault-analysis based logic locking(FLL)

RLL inserts key gates randomly into the circuit; as a result, the inserted key gates’

impact on the output has significant uncertainty. Ideally, 50% of the output bits should

exhibit output corruption when an incorrect key is applied to the circuit. This metric can



18 Chapter 2 Literature Review

be expressed as the Hamming distance (the bitwise di!erence) between the output bits

produced with the correct and incorrect keys. A 100% output corruption is e!ectively

equivalent to 0% at some level, since each bit can only be either 1 or 0. Based on

this principle, 75% output corruption provides similar protection to 25%, while 50%

o!ers the highest possible level of protection. For RLL, the output corruption rate is

uncontrollable, and in the case of small circuits, this value may be relatively low.

Rajendran et al. suggest that the impact of an incorrect key is similar to a stuck-at

fault, where a signal is stuck at ’0’ or ’1’. FLL (Fault-analysis-based Logic Locking)

aims to increase the output corruption caused by an incorrect key by inserting key gates

at locations with the largest fault impact [38, 39]. A concept of a fault impact metric

was proposed in [38, 39] to determine the optimal key gate insertion locations. Here,

fault impact refers to the degree to which a selected location can propagate a detectable

fault from the input to the output.

FaultImpact = (No.of.TestPatternss→a→0 →No.of.Outputss→a→0)

+(No.of.TestPatternss→a→1 →No.of.Outputss→a→1)
(2.1)

According to the fault impact metric defined in [38], the fault impact of a certain location

in the circuit is the sum of the products of the number of test patterns that detect a stuck-

at fault and their corresponding output bit numbers. In the process of FLL insertion, the

hardware designer computes the fault impact of the logic gates in the circuit to identify

the insertion spots with the highest fault impact. The key gates are then inserted at

those selected positions.

Compared to RLL, fault-analysis-based logic locking achieves a higher level of output

corruption for incorrect key values. The Hamming distance (the bitwise di!erence)

between the correct and corrupted outputs is approximately 50% when using the FLL

algorithm.

2.2.3 sensitisation attack

sensitisation attack is the first powerful attack against logic locking. The threat model

for sensitisation attack is also used for simulation of other attacks strategies against logic

locking. [40, 41, 42]
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1. The hardware designer is trusted.

2. End-user and the foundry is no trusted.

3. The attacker has access to a functional product, which can be bought from the

market.

4. The attacker has access to the netlist of locked circuit of the product.
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Figure 2.2: sensitisation Attack

Instead of applying brutal force decryption, the attackers in a sensitisation attack tries

to sensitise the key bit to output, in another word, the key bit will be propagated to the

output with no corruption.

Take the circuit in Figure 2.2 above as an example, when the input pattern of I1, I2,

and I3 is 110, the output of G1, G3 is 1, 0, and the XOR key gate works as wire, hence

the output of key gate 1 is key bit K1. Also, the output of G4 is 0, so the G6’s output

is key bit K1. Such attack is achievable since the attacker has access of functional IC

and locked netlist of the product (able to deduce the input pattern needed for sensitise

attack).
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2.2.4 Strong Logic Locking

In response to the sensitisation attack, Strong Logic Locking (SLL) was developed.

When a circuit is secured using the SLL algorithm, an attacker cannot sensitise a single

key bit to the output without accessing other key bits [40, 41].
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Figure 2.3: Strong logic locking

In SLL, the sensitisation of a key gate is obstructed by the presence of other key gates,

a mechanism known as pairwise security. If the inserted key gates are pairwise secured,

an attacker attempting a sensitisation attack cannot propagate a key bit to the pri-

mary output simply by controlling the primary input. They would also need to control

the output of the pairwise-secured key gate, which in turn also requires access to its

corresponding secured key.

For example, in Figure 2.3, to sensitise key bit K1, the attacker must ensure that the

output of key gate 2 is ’0’. However, without access to key bit K2, which is securely

stored in tamper-proof memory, the attacker cannot manipulate the output of key gate

2. Similarly, other key bits cannot be sensitised to the primary output. In this way, the

inserted key gates not only protect the circuit but also reinforce one another, making

malicious attacks significantly more di”cult.

In summary, prior to the development of SAT attacks, logic locking techniques pre-

dominantly focused on inserting individual key gates into the protected circuit. Various

insertion strategies were explored to maximize output corruption or to enhance resilience

against sensitisation attacks.



Chapter 2 Literature Review 21

2.3 SAT Attack

This section provides a brief introduction to the SAT attack. The SAT attack is a game

changer in logic locking, where a SAT-solver, a specialised software tool, is used for

extracting the correct key bits e”ciently. In an SAT attack, the SAT-solver is employed

to iteratively refine the key search space, which requires access to a functional product.

As such, the attack is referred to as an oracle-guided attack, with the term oracle rep-

resenting the functional IC sample that the attacker obtains from the market. All logic

locking strategies developed before the emergence of the SAT attack are easily broken by

it, and SAT resilience has become the primary objective for subsequent countermeasures

[1].

2.3.1 SAT Attack Background Knowledge

2.3.1.1 Boolean Satisfiability (SAT) problem

Boolean satisfiability (SAT) problem determines the satisfiability of a Boolean formula,

in another word, whether there is any assignment to the Boolean formula variables which

make it equal to 1 [43]. For example assignment (a, b, c) = (0, 0, 1) makes Boolean

formula ((a + !b) & c) equal to 1.

2.3.1.2 Miter Circuit

In SAT attack, attackers transfer the problem into circuit equivalent checking, which

is accomplished by a Miter circuit. The Miter circuit contains the two circuits whose

equivalence is checked, and xors all the output bits of the two circuits. The outputs of

all the XOR gates will be presented as input to an OR gate, and inputs of both circuits

are the same [44]. If all the output bits of both circuits are the same, OR gate will

produce 0, otherwise 1.

2.3.2 Working Principle of SAT Attack

During an SAT attack, the process is carried out on a Miter circuit, as illustrated in

the figure 2.4. The Miter circuit operates by applying identical input patterns to two
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Figure 2.4: Miter Circuit

circuits while using di!erent key values. If the outputs of the two circuits match, the

’di!’ signal outputs a 0; otherwise, it outputs a 1.

In the SAT attack procedure, the netlist file of the Miter circuit undergoes a Tseitin

transformation, converting it into CNF form, which represents a SAT problem. Once

in CNF form, the ’di!’ output is used as a constraint, where a value of 1 indicates a

mismatch between the circuits’ outputs.

If the SAT solver identifies an input pattern that satisfies the constraint (i.e., where the

’di!’ output is 1), the input pattern is classified as a distinguishing input pattern (DIP).

Distinguishing input patterns (DIPs) are the core of SAT attack. DIP refers to an input

pattern, with whom there is at least one pair of di!erent key values cause the circuit to

produce di!erent output. Take figure 2.4 as an example, with input pattern I1 and two

di!erent key values Ka and Kb applied to the Miter circuit, if the circuit produces 1 as

output, I1 is a DIP of the circuit.

2.3.2.1 Attack Algorithm

SAT attack is an iterative process, the procedure of which is shown in figure 2.5 and

explained below:

• Attacker feeds the CNF of Miter circuit to SAT solver to get DIP which will later

be fed to the functional IC to get the correct corresponding output.

• And then DIP and the corresponding output is served as a constraint of locked

circuit CNF.

• The SAT solver will then eliminate wrong key values that does not produce correct

output of this DIP.
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The eliminated incorrect key value will be added as a constraint for further SAT solver

execution. This procedure will be repeated until no more DIP can be found which means

that all the wrong keys have been ruled out.

Figure 2.5: SAT attack flow chart [8]

a

a

b
b

c
c

K1
K1

K2
K2

K3
K3

G3

G2

G1

G4
G5

Y

Figure 2.6: Circuit Sample for SAT Attack
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Table 2.2: SAT attack example (K0-K7 represent all the key bit combination (000,
... , 111) of the three key-bits, K1-K2-K3, combination)

abc Y K0 K1 K2 K3 K4 K5 K6 K7 Incorrect keys identified
000 0 1 1 1 1 1 1 0 1
001 0 1 1 1 1 1 1 0 1
010 0 1 1 1 1 1 1 0 1 iter3: other wrong keys
011 1 1 1 1 1 0 1 1 1
100 0 1 1 1 1 1 1 0 1
101 1 1 1 1 1 1 1 1 0
110 1 1 0 1 1 1 1 1 1 iter1: k2
111 1 0 1 1 1 1 1 1 1 iter2: k1

2.3.2.2 An Simple Example of SAT Attack

The circuit in figure 2.6 is used as the attacked circuit in the example SAT attack. Table

2.2 represents the attack procedure, K0 to K7 represent all the key bit combination (000,

... , 111) of the three key inputs, column Y stands for output bit of the circuit and abc

stands for the input pattern.

In the first iteration DIP 110 is applied to the circuit, and the correct output bit produced

by functional IC is 1. Among all the key values only K2(010) produces incorrect output,

hence K2(010) is eliminated in this iteration. In iteration 2, DIP 111 is applied to the

circuit, and K1(001) is eliminated. In the third iteration 010 is served as DIP and ruled

out all the remaining incorrect keys. As there is no more DIPs (only 1 key value left),

the SAT attack is successfully achieved.

2.3.2.3 SAT Attack Discussion

After the introduction of SAT attacks, nearly all pre-SAT logic locking techniques (RLL,

FLL, SLL) became vulnerable. SAT attacks e!ectively transform the brute-force search

for the secret key into a solvable mathematical problem for SAT solvers, which can solve

it with high e”ciency. During a SAT attack, each distinguishing input pattern (DIP) can

eliminate a large number of incorrect keys, reducing the computational e!ort needed to

extract the correct key. The relationship between the key length and the time required

for decryption changes from exponential to linear. For example, extracting a 10-bit key

no longer requires 1000 attempts but only a few dozen or fewer. This advantage becomes

more pronounced as the key length increases, making longer keys easier to break using

SAT attacks.
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Because SAT problem in SAT attack is definitely solvable (at least one correct answer

exists, the correct key), the only way to thwart SAT attack is to increase the execution

time. The time consumption for an SAT attack is the sum of execution time of each

iteration (DIP).

1. Increase the number of DIP needed to accomplish an SAT attack. This approach

is used by many post-SAT logic locking strategies, which will be introduced later.

2. Increasing the execution time required for each individual DIP decryption, which

is commonly referred to as an iteration, is the other approach. Some strategies

modify the circuit structure of the design to make the netlist SAT-hard, making it

more di”cult for SAT solvers to resolve.

After SAT attack was developed, di!erent countermeasures against SAT attack are pro-

posed to protect hardware. In the following part some major Post-SAT logic locking

strategies will be introduced.

2.4 Post-SAT Logic Locking Strategies

Following the introduction of the SAT attack, a new generation of logic locking strategies

was developed with explicit SAT resilience as a primary design goal. These post-SAT

schemes adopt di!erent mechanisms to either increase the number of iterations required

by the SAT solver or make each iteration computationally expensive. Among them,

point-function-based locking, FSM/sequential locking, cyclic-based locking, routing-

based locking, scan chain locking, and several other advanced approaches have been

proposed. This section surveys these strategies, with particular emphasis on point-

function-based locking, which forms the basis for the new technique introduced later in

this thesis.

2.4.1 Point-Function Based Logic Locking

Following the advent of SAT attacks, many logic locking strategies have been developed

to defend against them. Among these, Point-Function-Based (PFB) logic locking [4, 2,
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37, 3] strikes the best balance between ease of applying locking mechanisms to a design

and strong resistance to SAT attacks.

Point-function-based logic locking (PFB) derives its name from its functional behaviour,

which mimics that of a point function: it produces the correct output only for one or a

small amount of specific combination of inputs and key. For all other combinations, the

circuit yields incorrect outputs, thereby increasing resistance to SAT attack.

As discussed in the last section, designer need to increase either number of DIP needed

to accomplish an SAT attack or execution time needed for single iteration. Of the two

primary approaches to defending against SAT attacks, PFB logic locking adopts the

second approach, which focuses on increasing the number of iterations required to break

the locking mechanism. PFB significantly reduces the number of input patterns that

trigger erroneous outputs in the presence of incorrect keys. In other words, when a key

is incorrect, the circuit will only generate faulty outputs for a highly limited set of input

patterns. As a result, PFB locking restores the relationship between the time required

to execute a SAT attack and the number of key bits to an exponential scale, making a

successful SAT attack impractical.

2.4.1.1 SARLock

SARLock (SAT Attack Resistant Logic Locking) is the first logic locking strategy specif-

ically designed to protect against SAT attacks [4].

In contrast to previous logic locking techniques, where the locking unit is integrated

within the circuit, SARLock places the locking unit externally, as represented by the

blue blocks in Figure 2.7. This external unit compares the key input with both the pri-

mary input of the circuit and the correct hardcoded key bits. If the key input matches

the circuit’s primary input but does not match the correct key bits, a flip signal is trig-

gered, resulting in corrupted circuit output. For example, if the correct key is ’000’ and

the primary input is ’111’, the circuit will produce output corruption only when the

key input is ’111’. Other incorrect key patterns do not cause output distortion. This

mechanism ensures that the primary output is a!ected only when the key input is incor-

rect and coincides with the circuit’s primary input, e!ectively preventing unauthorised

access while maintaining correct functionality when the proper key is applied.
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Figure 2.7: SARLock locking strategy

In a SARLocked circuit, each input pattern and its corresponding output value (DIP) is

only able to eliminate one correct key. For a circuit with n-bit locking key, SAT attack

needs to apply 2n ↑ 1 iterations to find correct key value.

Vulnerability of SARLock

The security of SARLock is compromised by the AppSAT attack [45], which is designed

to byoass its logic locking protection. To defeat SARLock, AppSAT introduces random

incorrect inputs to the circuit, with each DIP restricted to at most one incorrect input.

Since SARLock produces output corruption only when the input pattern matches the

incorrect key sequence, the attacker adds an additional logic block to invert the corrupted

outputs, thereby restoring the correct functionality of the circuit.

2.4.1.2 Anti-SAT

Anti-SAT leverages the complementary properties of circuits to enhance security. In

an Anti-SAT locked circuit, identical input bits are fed into two complementary blocks.

The key bits are split into two equal parts, which are then directed to an AND gate and

a NAND gate, with their outputs subsequently fed into another AND gate. When the

correct key is applied, the two key sequences are identical, causing the outputs of the

AND and NAND gates to be complementary. As a result, the Anti-SAT block remains

1, and the circuit functionality remains una!ected. However, when incorrect key bits
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are used, the outputs of the Anti-SAT blocks no longer remain complementary, leading

to output corruption [2].

While Anti-SAT produces a stronger Distinguishing Input Pattern (DIP) than SARLock,

it is still significantly weaker compared to pre-SAT locking strategies. The number of

iterations required to break the logic locking in Anti-SAT is shown in the formula below.

In the formula below, 2k represents the total number of key bits, as shown in Figure 2.8.

AntiSAT produces the correct output when the two sets of key bits match each other, so

the number of incorrect keys is 22k↑2k. The variable p refers to the number of incorrect

keys that would induce output corruption for a single input pattern. This value can be

adjusted between 1 and 2k ↑ 1 by modifying circuit g(x, kl1).

22k ↑ 2k

p↓ (2k ↑ p)
(2.2)

Vulnerability of Anti-SAT

The Anti-SAT locking mechanism has been found to be vulnerable to the Signal Prob-

ability Skew (SPS) attack [6]. The SPS attack measures the probability skew of a gate

outputting a logic ’1’. The Anti-SAT locking mechanism consists of a multiple input

AND gate and a multiple input NAND gate. As a consequence of this design, the ab-

solute di!erence of the probability skew (ADS) of a flipping gate, denoted as gate G in

Figure 2.8, is much higher than all the other gates in the circuit. By locating and attack-

ing gate G, the attacker is able to prevent the circuit from producing output corruption

when an incorrect key is applied.



Chapter 2 Literature Review 29

OI Original Circuit

g(X, !!")

g(X, !!#)
YTamper-proof 

memory
!!"
!!#

X

G

!!"_%
""

!!#_%
"%

!!#_%
""

!!"_%
"%

…
…

…
…

g(X, !!")

#&

#'
g(X, !!#)

Y

Figure 2.8: Original circuit with Anti-SAT block and An instance of Anti-SAT circuit

2.4.1.3 ANDTree

Similar to SARLock and Anti-SAT, ANDTree aims to enhance SAT resilience by in-

creasing the number of iterations required for a successful attack. However, unlike

these strategies, ANDTree adopts a di!erent approach by inserting key gates—similar

to pre-SAT logic locking methods—instead of incorporating an additional comparison

block [37].

ANDTree utilizes a non-decomposable tree structure that outputs either ’1’ or ’0’ for a

specific input pattern. Typically, an AND tree produces a ’1’ output only when all input

bits are ’1’. However, ANDTree logic locking does not necessarily require an AND tree;

other non-decomposable structures, such as an OR tree, can also be employed. An OR

tree operates similarly, outputting ’0’ only when all input bits are ’0’. Importantly,

all input signals in a non-decomposable tree must have a single fan-out, as shown in
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Figure 2.9: (a) non-decomposable ANDTree (b) decomposable ANDTree

Figure 2.9.a. Additional fan-outs compromise the security of the system, as they may

allow attackers to extract more information and reduce the SAT resilience of ANDTree.

During the ANDTree locking process, designers must identify the largest non-decomposable

tree in the circuit and insert key gates at all of its inputs. When a SAT attack is launched,

the attacker can eliminate multiple incorrect keys only if a specific input pattern is used

as a DIP, such as ’1111...1’ for the AND tree. When other input patterns are applied,

eliminating incorrect keys becomes more challenging, as the non-decomposable tree may

produce the same output for multiple patterns. This characteristic provides ANDTree

with high SAT resilience but results in lower output corruption.

Vulnerability of ANDTree

Compared to other post-SAT logic locking strategies, ANDTree exhibits significant ad-

vantages, including lower overhead and strong SAT attack resilience. However, there are

two main disadvantages associated with ANDTree. First, the locking strategy requires

the circuit to contain a su”ciently large ANDTree structure to achieve adequate SAT

resilience. Second, the ANDTree structure is easily identifiable, which enables attackers

to locate and remove the inserted key gates once the corresponding structure is detected

in the circuit. This compromises the overall security of the locking strategy.
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2.4.1.4 TTLock

TTLock (Tenacious and Traceless Logic Locking) adopts a similar approach to SAR-

Lock in enhancing SAT resilience. It compares the key input with the primary input

of the circuit, introducing output distortion only when the two bit sequences match.

Furthermore, in TTLock, slight modifications are made to the original circuit to ensure

that output distortion occurs only under specific input patterns [46].

For example, in the logic cone shown in Figure 2.10, gate G1 is modified from an OR

gate to an XOR gate, causing the output Y to be distorted only when the input pattern

is ’110’. This selective output corruption strengthens the defence while preserving the

circuit’s correct functionality under normal conditions.
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Figure 2.10: (a) Original logic cone. (b) Modified logic cone

When the input pattern is ’110’, a flip signal is activated to cancel the distortion, but

only when the correct key is applied to the circuit. For all other input patterns, the

circuit produces distorted output only if the key sequence matches the input sequence.

The modification of the original circuit prevents attackers from recovering the correct

functionality, even if they succeed in removing the restore logic.

Table 2.3: TTlock truth table

Ymod IN K0 K1 K2 K3 K4 K5 K6 K7

↭ 0 X ↭ ↭ ↭ ↭ ↭ ↭ ↭
↭ 1 ↭ X ↭ ↭ ↭ ↭ ↭ ↭
↭ 2 ↭ ↭ X ↭ ↭ ↭ ↭ ↭
↭ 3 ↭ ↭ ↭ X ↭ ↭ ↭ ↭
↭ 4 ↭ ↭ ↭ ↭ X ↭ ↭ ↭
↭ 5 ↭ ↭ ↭ ↭ ↭ X ↭ ↭
X 6 X X X X X X ↭ X

↭ 7 ↭ ↭ ↭ ↭ ↭ ↭ ↭ X
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Figure 2.11: TTLock architecture and corresponding truth table

2.4.1.5 SFLL

SFLL stands for Stripped-functionality logic locking. The strategy strip some part of

circuit functionality when wrong key is applied [3, 47, 48]. The basic version of SFLL

is the same as TTlock, where specific input pattern is protected and every other input

pattern produce output distortion only for one incorrect key.

SFLL stands for Stripped-Functionality Logic Locking. This strategy removes a portion

of the circuit’s functionality when an incorrect key is applied [3, 47, 48]. The basic version

of SFLL operates similarly to TTLock, in which a specific input pattern is protected,

and all other input patterns produce output distortion only for one incorrect key.

There are two variants of SFLL: SFLL-HD and SFLL-flex.

HD stands for Hamming Distance and is applied to both the protected input pattern and

the incorrect keys. Unlike TTLock, which protects only a single input pattern, SFLL-

HD protects an input cube whose Hamming distance to a specific input pattern is h.

SFLL-HD0 functions similarly to TTLock, while SFLL-HD1 is illustrated in Figure 2.12.

Input patterns ’2’, ’4’, and ’7’, which are at a Hamming distance of 1 from ’6’, are

protected. For each of these inputs, incorrect keys with a 1-bit Hamming distance

generate output distortion.
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Figure 2.12: SFLL architecture

SFLL-flex allows users to select specific input patterns to protect, which is useful for

IPs with critical inputs such as specific addresses, instructions, or data [49, 50, 51]. The

protected input patterns are compressed and stored in LUTs. Compared to SFLL-HD,

SFLL-flex incurs higher overhead but achieves greater output corruption.

Vulnerability of SFLL

The SFLL technique aims to prevent removal attacks by stripping a part of the function.

However, this approach leaves a single protected input pattern in one input cube that

produces output corruption for all incorrect keys. Sensitivity attacks uses input pattern

sensitivity to break the SFLL. If the number of all the bit sequences of Hamming distance

1 from specific input pattern Is is k0, and among them there are k1 bit sequences produce

di!erent output from Is, the value k1/k0 is defined as sensitivity of input pattern Is [52].

In SFLL-protected circuits, the protected input pattern exhibits much higher sensitivity

than others. Attackers can use sensitivity quantification circui to detect the protected

input pattern based on this characteristic and use it to remove the SFLL protection.

2.4.2 FSM/Sequential Logic Locking

2.4.2.1 Working Principle

Most early logic locking techniques focus on protecting combinational logic. In contrast,

FSM or sequential logic locking aims to protect the entire circuit by modifying its state
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behavior. Instead of locking a single logic stage, FSM locking operates on the state

transition level and a!ects the sequential execution of the design.

Existing FSM-based logic locking techniques modify the original state transition graph

in several di!erent ways. One common approach is to add extra states, such as locking

or authentication states, which must be correctly traversed before normal operation

is enabled [53]. Another approach introduces trap states that force the circuit into

incorrect behavior when an invalid sequence is applied [54]. Fake states can also be

added to confuse attackers and hide the real functional states [55]. Some techniques

modify critical state paths, which increases timing complexity and makes analysis more

di”cult [56]. In more recent work, key-controlled transitions are introduced so that

the connection between states depends on secret key bits, combining FSM locking with

traditional key-based logic locking [57].

Figure 2.13: Examples of FSM-based logic locking strategies [7]

2.4.2.2 Advantages

FSM logic locking can reduce the need for explicit key storage, since the locking in-

formation is embedded in the state behavior of the circuit. This helps lower hardware

overhead and reduces the risk of key exposure through dedicated key inputs.
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2.4.2.3 Disadvantages

The main drawback of FSM logic locking is the significant overhead introduced by addi-

tional states and transitions. This increases circuit complexity and places extra pressure

on synthesis and verification tools. To address these issues, several recent approaches

[57, 58, 59] combine FSM-based locking with key-based logic locking in order to balance

security and implementation cost.

2.4.2.4 Corresponding Attacks

Several attacks have been proposed to break FSM-based logic locking. One of the

earliest is the two-stage attack [60], which analyzes the structure of the locked FSM

and reconstructs the original design using its behavioral information. Other attacks,

including RANE [61], Fun-SAT [62], and ORACALL [63], as well as more recent methods

[64, 65, 66, 67, 68], specifically target the trap states introduced by FSM locking.

2.4.2.5 Summary

In summary, FSM logic locking provides strong protection against SAT-based and other

key-recovery attacks by exploiting the sequential nature of the circuit. However, this

security comes at the cost of high overhead. Although dedicated attacks against FSM

locking exist, their impact is mainly limited to sequential locking schemes and does not

significantly a!ect conventional key-based logic locking.

2.4.3 Cyclic-based Logic Locking

2.4.3.1 Working Principle

Cyclic-based logic locking protects a circuit by deliberately introducing feedback loops

into the logic design [69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. These cycles are controlled by

key-dependent gates, so that correct functionality is only achieved when the correct key

is applied. Although most commercial CAD tools are designed for acyclic logic and do

not support combinational cycles, such structures can still be created through manual

intervention during the design process.
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2.4.3.2 Advantages

Cyclic-based logic locking is typically applied at the gate level, which makes it relatively

straightforward to integrate into existing designs. It has shown strong resistance to

SAT-based attacks and produces severe output corruption when the circuit is activated

with an incorrect key.

2.4.3.3 Disadvantages

A major limitation of this technique is the lack of support for cyclic logic in most EDA

tools. Even when cycles are inserted manually, they may lead to synthesis, timing, or

verification issues, increasing the risk of design errors.

2.4.3.4 Corresponding Attacks

From an attack perspective, cyclic structures complicate the application of SAT attacks

because standard CNF conversion assumes a directed acyclic graph representation. To

address this, CycSAT [79] introduces cycle-avoidance clauses that restrict the SAT solver

from generating cyclic assignments. More recent attacks further monitor the solver

runtime to prevent it from being trapped in repeated cyclic explorations [80, 81].

2.4.3.5 Summary

Cyclic-based logic locking provides strong protection by exploiting the di”culty of

analysing cyclic structures, resulting in high output corruption and good resistance to

SAT-based attacks. However, practical adoption is limited by poor EDA tool support

and the increased likelihood of design complexity and implementation errors. As a re-

sult, despite its security benefits, cyclic-based locking remains challenging for large-scale

industrial deployment.
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2.4.4 Routing-based logic locking

2.4.4.1 Working Principle

Routing or LUT-based logic locking leverages Look-Up Tables (LUTs) as key gates for

circuit protection. Theoretically, an N -input LUT can implement up to 22
N

possible

functions. In this form of logic locking, certain gates in the original circuit are replaced

by LUTs with the same number of inputs, as shown in Figure 2.14. The correct configu-

ration for the LUT, which ensures it performs the same function as the original gate(s),

serves as the correct key. Various approaches have been developed to enhance the attack

resilience of LUT-based locking. [82]

Figure 2.14: LUT-based logic locking [7]

Increasing the size of the LUT significantly escalates the complexity of the circuit. In

LUT-based locking, larger LUTs (with additional inputs acting as key bits) are intro-

duced to make the protected circuit more di”cult for attackers to break. Naturally,

adding more LUTs increases overall resilience. The specific placement of these LUTs

within the circuit also greatly impacts its robustness. Recent research has explored the

use of alternative gates, such as multiplexers (MUX) and FPGAs, within routing-based

logic locking to further improve protection.

2.4.4.2 Advantages

LUT/routing-based logic locking strategies can be applied across di!erent abstraction

layers of the design. Additionally, this method provides substantial protection and high
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output corruption rates when incorrect keys are used.

2.4.4.3 Disadvantages

However, one major drawback of LUT/routing-based logic locking is the significant

overhead introduced by the LUTs. To enhance protection, more complex and larger

LUTs must be incorporated, leading to substantially higher overhead compared to

XOR/XNOR-based locking techniques.

2.4.4.4 Corresponding Attacks

Due to its unique structure, routing-based logic locking is di”cult to solve when con-

verted into Conjunctive Normal Form (CNF). To bypass its protection, attackers have

developed methods such as the Bounded Variable Addition (BVA) approach, which re-

duces the complexity of the resulting SAT problem, making the time required for solving

more manageable.

2.4.4.5 Summary

In summary, while routing-based logic locking o!ers strong resilience against attacks and

ideal output corruption, techniques like BVA have made it vulnerable to SAT attacks

once again. Moreover, the considerable overhead introduced by LUTs diminishes its

appeal compared to other logic locking strategies.

2.4.5 Scan Chain Logic Locking

Working Principle

In IC industry, scan chains are extensively used to facilitate testing and debugging by

providing full controllability and observability of internal registers and states, which,

however, poses significant security risks. Scan Chain Logic Locking addresses this issue

by securing the scan chain architecture itself [83, 84, 85, 86, 87, 88]. This technique

modifies the scan chain to restrict unauthorised access to scan pins such as scan-in (SI),

scan-enable (SE), and particularly scan-out (SO) [36, 89, 90, 91, 92]. By limiting access to
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these pins, attackers are prevented from isolating and analysing smaller combinational

logic blocks, forcing them to confront the complexity of the entire sequential circuit.

Figure 2.15 illustrates a typical scan chain logic locking implementation.

Scan Chain Key TPM

SI

SFF ... SFF SO
scan chain
structure

PI0
Combinational Logic

(Locked)

PO0

PIn-1

Functional Key

POm-1

TPM

scan chain structure
SI

SFF
...

SFF SFF SO

PI0
Combinational Logic

(Locked)

PO0

PIn-1

Functional Key

POm-1

TPM

SO is blocked using a blockage circuitry

(a) Scan-based Locking (b) Scan Blockage

Figure 2.15: An illustration of Scan Chain Logic Locking

Scan chain logic locking techniques can operate in either static or dynamic modes. Static

methods maintain a fixed locking configuration, while dynamic methods utilize compo-

nents like Linear Feedback Shift Registers (LFSRs) or Pseudo-Random Number Gener-

ators (PRNGs) to change the locking configuration at runtime [83, 85, 93, 94]. Dynamic

approaches increase the di”culty for attackers by invalidating any previously gathered

information during the attack process.

Advantages

Scan chain logic locking is orthogonal to functional logic locking techniques and can

be combined with them to enhance overall security. This combination significantly

increases the complexity of potential attacks, particularly those based on satisfiability

(SAT) solvers, by expanding the problem space from small combinational sub-circuits

to the entire sequential circuit.

Disadvantages

One of the main drawbacks of scan chain logic locking is the potential negative impact on

testability metrics such as test coverage. Modifying the scan chain can lead to reduced

fault coverage and increased test time and complexity. Additionally, implementing scan
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chain locking after Design-for-Testability (DFT) synthesis may introduce area and per-

formance overheads. In some cases, after scan chain locking is applied, extra test pins are

added to maintain high test coverage[36, 89, 90, 91], but this can significantly increase

the die size of the chip.

Corresponding Attacks

Recent studies have revealed vulnerabilities in scan chain logic locking techniques. The

ScanSAT attack[95] models locked scan chains as combinational circuits, allowing SAT-

based methods to recover the key even in dynamic schemes like DOS [83]. DynUnlock[96]

targets dynamic scan locking mechanisms such as EFF-Dyn [85] by reverse-engineering

the PRNG to find its seed, thereby defeating dynamic key updates. Moreover, leakage-

based attacks exploit flaws in scan blockage architectures like R-DFS[91]; attacks like

shift-and-leak[89] and glitch-based shift-and-leak[90] can extract the key through pri-

mary outputs, even when shift operations are disabled.

Summary

In summary, scan chain logic locking enhances the security of ICs by protecting the scan

chain architecture from unauthorised access. When combined with functional logic lock-

ing techniques, it provides a robust defence against various attacks. However, designers

must carefully consider the trade-o!s between security and testability, ensuring that the

implementation does not significantly degrade test coverage or introduce new security

flaws.

2.4.6 Other Logic Locking Techniques

Besides the locking strategies mentioned, other approaches like Behavioural Timing-

based Locking, High-level Logic Locking, and eFPGA-based IP-level Locking have emerged

also o!er unique mechanisms to enhance circuit security against unauthorised access and

tampering.

2.4.6.1 Working Principle

Behavioural Timing-based Locking
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Behavioural Timing-based Locking secures both the functional and timing aspects of a

circuit. Techniques such as Delay Logic Locking [97] introduce tunable delay elements

whose delays depend on key values, creating ambiguity for attackers using standard CAD

tools. Recent methods manipulate circuit timing through key-controlled clock gating and

asynchronous latch-based designs [98, 99, 100, 101, 102, 103]. For example, latch-based

approaches use key-controlled elements to asynchronously manage data storage timing

in flip-flops. Without the correct key, data flow timing is disrupted, leading to functional

corruption or system halts.

High-level Logic Locking

High-level Logic Locking secures design semantics by applying locking at higher ab-

straction levels, such as Register Transfer Level (RTL) or High-Level Synthesis (HLS)

[104, 105, 106, 107, 108, 109, 110, 111, 112]. Methods include:

• Locking before Synthesis: Applying locking directly to high-level code (e.g.,

C/C++) before HLS [108].

• HLS Extension: Integrating locking mechanisms into HLS intermediate steps

[105, 107, 112].

• RTL Locking: Applying locking to RTL code post-HLS or directly on designer-

written RTL [106, 110, 111].

• Compound Locking: Combining high-level and gate-level locking techniques for

enhanced security [109].

These methods target higher-order elements like constants, arithmetic operations, con-

trol flow, and memory access, providing comprehensive protection.

eFPGA-based IP-level Locking

eFPGA-based IP-level Locking employs embedded Field Programmable Gate Arrays

(eFPGAs) within a System on Chip (SoC) to protect intellectual property modules

[113, 114, 115, 116]. Selected modules are replaced with reconfigurable eFPGAs pro-

grammed by a secret bitstream. Attackers must recover the complete bitstream to

replicate functionality, significantly enhancing security.
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Advantages

The behavioural timing-based Locking obscures data capture timing[1], complicating

circuit analysis while allowing the scan chain to remain accessible for testing and de-

bugging. The approach of high-level logic locking protects against a broader range of

threats, including insider attacks within the design house. Early-stage locking leverages

synthesis optimisations to intertwine the locking mechanisms with the original design,

increasing di”culty for attackers. As for eFPGA-based locking, it makes structural at-

tacks are di”cult due to the uniform architecture of eFPGAs. The large bitstream size

and full configurability increase resilience against I/O query-based attacks, making it an

SAT-hard problem.

Disadvanges

Implementation of behavioural timing-based Locking challenges arise due to limited

EDA tool support for asynchronous designs. Replacing flip-flops with latches increases

design complexity, making it less practical for large-scale SoCs. Challenges of high-level

locking include tool immaturity and increased design complexity. Integrating locking at

higher abstraction levels may impact performance and require adjustments to the entire

design workflows, causing unacceptable financial burden. And the primary drawback of

e-FPGA approach is substantial overhead in area, power, and performance compared to

traditional methods.

Summary

Behavioural Timing-based Locking, High-level Logic Locking, and eFPGA-based IP-

level Locking represent advanced strategies that extend protection beyond traditional

methods. Behavioural Timing-based Locking secures timing properties, introducing am-

biguities that challenge adversaries but faces practical implementation issues due to lim-

ited EDA tool support. High-level Logic Locking protects designs at higher abstraction

levels, targeting semantic elements to enhance security against a wider range of threats,

though it may complicate design workflows. eFPGA-based IP-level Locking provides

robust protection by replacing critical modules with reconfigurable eFPGAs, making

attacks exceedingly di”cult but incurring significant overhead. Collectively, these tech-

niques o!er enhanced security features but require careful consideration of trade-o!s in

implementation complexity, design overhead, and practical feasibility.
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2.5 ML-Based Attacks

In recent years, machine learning (ML)-driven attack and defence strategies have ad-

vanced rapidly, with ML-based attacks mainly targeting the recovery of the correct key

or the restoration of a circuit’s original gate-level structure by removing inserted locking

gates.

SAIL [117, 118] is the first ML-based attack introduced against logic locking, aiming to

remove locking gates and restore the circuit to its original unlocked state. SAIL only

requires the locked gate-level netlist and does not necessitate access to a functional IC

product. During the logic locking process, after locking gates are inserted into the circuit,

it undergoes resynthesis to disguise the locked gates. While di!erent CAD tools use

varying synthesis rules in this process, the creators of SAIL discovered that only a small

subset of these rules is commonly used, adhering to the 80/20 rule . This predictable

behaviour can be learned and predicted by AI models. In an SAIL attack, the locked

circuit serves as training data, closely resembling the original unlocked circuit. The

attacker inserts additional locking gates to train a neural network capable of removing

these gates, e!ectively restoring the original circuit. In benchmark tests, SAIL achieved

an accuracy rate of up to 95%.

However, SAIL has two main limitations. First, it is e!ective only against XOR/XNOR-

based logic locking techniques and fails to work with other locking methods, such as

MUX-based locking or logic locking using locking blocks. Second, the attacker must be

familiar with the specific synthesis rules of the CAD tool used by the designer, as this

knowledge is crucial for successfully training the neural network. Subsequent attacks,

such as Snapshot [119] and GNNUlock [120], overcame these limitations. Snapshot elim-

inates the need for CAD tool synthesis rules and directly targets the secret key, broad-

ening its scope to include MUX-based logic locking. In contrast, GNNUlock employs

Graph Neural Networks (GNNs) to reconstruct the original circuit’s netlist connections

and functionality, making it e!ective not only against traditional gate-based locking

methods but also against more advanced techniques like SFLL and AntiSAT, which use

locking blocks.

An alternative ML-based attack targets routing-based logic locking [121, 122, 123]. Un-

like structural ML-based attacks that focus on recovering hidden gate structures, this



44 Chapter 2 Literature Review

method uses GNNs to predict connections between concealed locking gates, such as those

used in D-MUX-based locking [124].

2.6 Summary

Various state-of-the-art logic locking strategies and corresponding attacks are introduced

in this chapter. Among all the logic-locking-targeted attacks, the SAT attack has played

a pivotal role in shaping the development of logic locking techniques. Since its intro-

duction, nearly all newly developed locking strategies have prioritized resilience against

SAT-based attacks. However, each of these techniques comes with certain limitations.

Some impose significant overhead, others introduce errors during the testing phase, and

many lack full compatibility with existing Electronic Design Automation (EDA) tools.

Additionally, certain methods may disrupt the overall design flow or lead to a consid-

erable increase in die size. A comparative analysis of post-SAT locking strategies is

provided in Table 3.1, highlighting their respective advantages and drawbacks.

2.6.1 Logic Locking Strategies Comparison

Term Merits Drawbacks

PFB Low overhead; easy to implement Vulnerable to Bypass attack

FSM Lock-

ing

No memory needed for key-

storage

Increased complexity of circuit;

high overhead caused by flip-

flops added

Cyclic-

based

Locking

Easy to implement on gate-level;

high output corruption

Not supported by EDA tools;

manual implementation might

cause errors

Routing-

based

Locking

Can be implemented at di!er-

ent abstract levels of design; high

output corruption

Bring significant overhead
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Scan-chain

Locking

Work well with other locking

techniques; significantly increase

the complexity of design for at-

tackers to break

Potential negative impact on

testability by reducing fault cov-

erage, increasing test time and

complexity; high overhead; intro-

duce extra test pins

Behaviour

Time-based

Locking

High resilience against attack

while not a!ecting scan chain

Limited EDA tool support; in-

creased circuit complexity

High-level

Locking

Wider range of protection in sup-

ply chain

Might cause problem to the en-

tire design flow, leading to unac-

ceptable financial burden

eFPGA-

based

Locking

High resilience against gate-

targeted attacks

High overhead caused by FPGA

insertion; harder to implement

Table 2.4: Merits and Drawbacks of Locking Strategies

Among these approaches, Point-Function-Based (PFB) logic locking stands out as one

of the most balanced techniques. Although it may not o!er the highest resilience against

every form of attack, it demonstrates strong defence capabilities against SAT and related

attacks. PFB logic locking is relatively straightforward to implement and has minimal

impact on the overall system performance, making it a practical and well-rounded solu-

tion in modern hardware security.
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ZeKi: A Zero-Knowledge

Dynamic Logic Locking

Implementation with Resilience

to Multiple Attacks

Although logic locking emerged as a solution to safeguard the vast majority of general

ICs, traditional logic locking methods, including some state-of-the-art approaches, are

vulnerable to Satisfiability (SAT) attacks [1, 125] which iteratively deduce the correct

keys to break the logic locking. While the latest Point Function-Based (PFB) logic

locking techniques [2, 3, 4] can defend against SAT attacks, they are susceptible to

various structural attacks [6, 5] due to its own defects. A structural attack targets the

specific vulnerabilities of a given logic locking strategy. These vulnerabilities typically

arise from the unique structure of the locking block introduced by logic locking schemes

that rely on a single locking mechanism.

Additionally, there is a potential threat from internal IC designers who are well-versed

in logic locking.

To address these threats by dynamic way with less overhead, I propose a comprehensive

logic locking design and implementing framework called ZeKi: Dynamic Logic Locking

(DLL) by ’Zero-Knowledge’ implementation, an adaptive approach that customises the

47
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implementation of diverse locking mechanisms with the lower overhead for each unique

design. The implemented DLL provides defence against all attacks mentioned above. To

our best knowledge, ZeKi is the first logic locking strategy to implement ’zero-knowledge’

feature which e!ectively safeguards the design against potential malicious attacks from

the design team. I demonstrate the e!ectiveness of DLL and its resilience against dif-

ferent attacks through experimental evaluations.

ZeKi’s DLL matches SFLL-HD0 in SAT attack resistance, with logarithmically increas-

ing DIPs; and a superior average Hamming di!erence of 89.5 compared to zero in other

schemes on structural attack resistance. It also o!ers five times the resistance of RLL

against sensitisation attacks. Zeki’s DLL incurs lowest average power and area overheads

of 4.27% and 4.48%, respectively.

This chapter introduces the implementation of Zeki in combinational circuits. The

following chapter will address its application to sequential circuits. The structure of

this chapter is organized as follows: Section 3.1 presents the motivation behind the

proposed Zeki logic locking strategy. Section 3.2 outlines the key contributions of Zeki.

Section 3.3 explains the working principles of the Zeki strategy. Section 3.4 summarizes

the workflow for implementing Zeki in a protected circuit. Section 3.5 presents the

experimental setup and results for Zeki-locked circuits. Finally, Section 3.6 provides a

summary of the chapter.

Parts of this chapter are based on our previously published work [126]. Some text and

figures are reused with permission.

3.1 Motivation

In this section the motivation of Zeki (Zero-Knowledge Dynamic Logic Locking) will be

introduced including DLL (dynamic logic locking) block, which is proposed to thwart

the threat from various present and future attacks and zero-knowledge locking which

prevents attack from malicious insiders.
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3.1.1 Logic Locking Strategies Comparison

As introduced in section 2.4, di!erent logic locking techniques are proposed as hardware

security strategies. As shown in table 3.1, various logic locking techniques have been

developed to counter SAT attacks and other threats targeting logic locking. However,

each of these techniques has its drawbacks. Some introduce significant overhead, others

may cause errors during the testing phase, and many are not fully supported by existing

EDA tools. Additionally, some techniques can negatively impact the overall design flow

or substantially increase the die size.

Term Merits Drawbacks

PFB Low overhead; easy to implement Vulnerable to Bypass attack

FSM Lock-

ing

No memory needed for key-

storage

Increased complexity of circuit;

high overhead caused by flip-

flops added

Cyclic-

based

Locking

Easy to implement on gate-level;

high output corruption

Not supported by EDA tools;

manual implementation might

cause errors

Routing-

based

Locking

Can be implemented at di!er-

ent abstract levels of design; high

output corruption

Bring significant overhead

Scan-chain

Locking

Work well with other locking

techniques; significantly increase

the complexity of design for at-

tackers to break

Potential negative impact on

testability by reducing fault cov-

erage, increasing test time and

complexity; high overhead; intro-

duce extra test pins

Behavioural

Time-based

Locking

High resilience against attack

while not a!ecting scan chain

Limited EDA tool support; in-

creased circuit complexity

High-level

Locking

Wider range of protection in sup-

ply chain

Might cause problem to the en-

tire design flow, leading to unac-

ceptable financial burden
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eFPGA-

based

Locking

High resilience against gate-

targeted attacks

High overhead caused by FPGA

insertion; harder to implement

Table 3.1: Merits and Drawbacks of Locking Strategies

Among these approaches, Point-Function Based (PFB) logic locking stands out as the

most balanced technique. Although it may not o!er the strongest resilience against all

forms of attacks, it e!ectively defends against SAT attacks and other threats. PFB logic

locking is relatively easy to implement and has a minimal impact on the design’s overall

performance, making it one of the most practical and well-rounded options available.

3.1.1.1 Vulnerability of PFB

However, Point-Function Based (PFB) logic locking also has its limitations.

There are two countermeasures for mitigating SAT attacks: increasing the number of

iterations or extending the duration of each iteration. PFB logic locking adopts the first

strategy, aiming to increase the overall computing time required for the SAT attack.

Functionally, PFB logic locking incorporates a judgment module into ICs. For each

input pattern, only one or a small number of incorrect keys will cause the circuit to

malfunction; in other cases, incorrect keys do not result in erroneous outputs. Since

each iteration of a SAT attack can only eliminate the keys that cause output errors for

a specific input pattern, each iteration discards only a small number of incorrect keys.

Consequently, this significantly prolongs the time required for a SAT attack to succeed,

thereby enhancing the ICs’ security.

The locking mechanism of three PFB logic locking strategies: SARlock, Anti-SAT and

SFLL are shown in Figure 3.1. The figure clearly shows that the structures of the three

presented Point-Function Based (PFB) logic locking techniques are highly similar. In

each case, the functionality of the logic locking is provided by a locking block, represented

by the light blue box in the diagram. This locking block receives both the circuit’s input

bits and the key bits as inputs.
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Within the locking block, a validation mechanism, which can be temporarily referred

to as ”mechanism V,” is applied. The purpose of this mechanism is to ensure that for

each input pattern, only one or a very limited number of incorrect keys will result in

erroneous outputs. In other words, ”mechanism V” is designed to maintain the security

of the circuit by minimizing the number of input patterns that can identify and eliminate

multiple incorrect keys during SAT attacks.

By focusing on restricting the e!ectiveness of incorrect keys to as few input patterns

as possible, PFB logic locking enhances its resilience against attacks. This approach is

central to PFB’s e!ectiveness, as it complicates the attacker’s ability to identify cor-

rect keys through systematic testing of inputs. Thus, the core principle behind these

techniques is to create a mechanism that restricts the propagation of errors, making it

extremely di”cult for attackers to use distinguishing input patterns (DIPs) to break the

locking.
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Figure 3.1: PFB locking with Di!erent Validation Mechanisms

As illustrated in Figure 3.1, the defensive strength of PFB locking relies on its locking

block, each operating based on a specific mechanism. These mechanisms confer inher-

ent structural or parameter characteristics upon the locking block, which can easily be
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exploited by attackers to develop targeted attacks. For instance, SARLock, which gener-

ates function distortion based on the equality of input and key, cannot resist approximate

attacks [45]. Similarly, Anti-SAT’s flip gate, which produces a high ABS value, becomes

vulnerable to SPS attacks [6]. Likewise, the high sensitivity value generated by the pro-

tected input cube in SFLL renders it susceptible to sensitive attacks, potentially leading

to the leakage of the secure key [5].

However, these attacks are only e!ective against their respective PFB locking tech-

niques, as they exploit the properties specific to each locking mechanism. This raises

the question: Could a PFB technique employing a variable or dynamic locking

mechanism, rather than a fixed one, circumvent these types of attacks?

Optimistically, the attacks mentioned earlier specifically target individual PFB (SAR-

Lock vs bypass attack; Anti-SAT vs SPS attack; SFLL vs sensitivity attack) locking

strategies rather than the entire class of PFB techniques. They exploit structural weak-

nesses unique to each PFB implementation. Therefore, in theory, if a new PFB locking

strategy is developed based on an entirely novel validation mechanism, existing attacks

that target specific PFB vulnerabilities should become ine!ective against it. However,

can this truly be considered a definitive solution?

Unfortunately, it would be highly unlikely. Introducing a new validation mechanism may

simply initiate a familiar cycle: a new locking strategy is developed, research papers are

published, and attackers then analyse the specific structure and validation mechanism,

eventually finding its weaknesses within weeks, thereby breaking its defences. This cy-

cle is almost inevitable with PFB locking strategies that rely on a single validation

mechanism. Such a mechanism often reveals specific structural vulnerabilities that at-

tackers can exploit. Once these weaknesses are identified, all products that employ this

particular locking strategy risk losing their protection.

This brings us to an important question: if relying on a single validation mecha-

nism inherently poses security risks, what about PFB locking strategies that

use multiple validation mechanisms? By incorporating diverse mechanisms, these

strategies may be able to distribute the locking validation across di!erent structural

components, potentially making it more challenging for attackers to identify and exploit
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a single point of weakness. A multi-mechanism approach could introduce a level of un-

predictability and complexity, thereby enhancing resilience and reducing the likelihood

of universal vulnerabilities that a!ect all implementations of the locking strategy.

Untrusted Insider Additionally, one of the advantages of logic locking is its broad

protection scope, extending from the logic synthesis stage to the final end-user. However,

the initial design phase remains uncovered, as designers are responsible for integrating

logic locking into the design. Expanding the scope of protection to include the design

phase would significantly enhance the overall security of the system.

Traditional logic locking approaches presume the trustworthiness of the design house.

However, in practical scenarios, the risk of rouge insider within the design house itself

cannot be disregarded. Currently, none of the logic locking techniques su”ciently ad-

dress this type of insider threat. Due to this threat, the victim IC could be compromised

from the very beginning of the supply chain, potentially a!ecting every stage from IC

design to manufacture.

3.2 Contribution

In this thesis, I introduced Dynamic Logic Locking (DLL) with a Zero-Knowledge

Implementation (ZeKi) as a novel approach to address the security concerns mentioned

above. ZeKi utilizes a dynamic locking mechanism that diverges from conventional tech-

niques, such as PFB logic locking, by employing randomly generated locking blocks to

counter SAT attacks and other attacks targeting logic locking. Unlike traditional meth-

ods that rely on locking blocks based on singularly specific mechanisms, DLL generates

locking blocks using a unique mechanism for each design, thereby eliminating specific

structural vulnerabilities targeted by attackers. Additionally, the dynamic generation of

locking blocks enables hardware designers to achieve zero-knowledge locking implemen-

tation, as they are not required to access the knowledge of the locking block’s structure

or secret key bits. ZeKi can e!ectively resist attacks, even if they originate from within

the design house. This further enhances the confidentiality and security of the protected

circuit. This chapter will concentrate on the work of Zeki in the combinational circuit.

The contributions of ZeKi are listed below.
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1. I propose Zero-Knowledge Implementation of Dynamic Logic Locking (ZeKi, DLL),

which e!ectively safeguards IP from multiple attacks, including sensitisation at-

tacks, SAT attacks, and structural attacks, ML-based attack, bypass attack and ap-

proximate attack. ZeKi also enables hardware designers to achieve zero-knowledge

logic locking implementation, further enhancing the security of logic locking pro-

tection.

2. I present successful implementations of DLL in various benchmarks, demonstrating

the feasibility and practicality of integrating generated logic locking into digital

designs.

3. I also provide a comprehensive evaluation of the resistance capabilities of ZeKi’s

DLL against various attacks, as well as the power and area overhead incurred by

DLL in protected designs.

3.3 Working Principle of Zeki

Zeki mainly consists of three components: the insertion of SLL locking gates, which

ensures that the circuit has a su”ciently high Output Error Rate (OER); the Key

Verification Unit, which guarantees that the circuit will generate the correct output

when the correct key is input; and the DLL block, which provides resilience against

SAT attacks and other types of attacks. In the subsequent part of this section, I will

elaborate on the working principles of these three components.
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Protected Circuit

Key Verification Unit

SLL

DLL Block

Input

OutputKey-bit

Figure 3.2: Main Architecture of Zeki

3.3.1 Dynamic Logic Locking

Dynamic Logic Locking (DLL) is proposed as a solution to overcome the limitations of

PFB while providing enhanced resistance against SAT and other attacks. The locking

block, which serves as the core component of PFB, can be regarded as a function. This

function should ensure that each input pattern leads to output corruption for a small

number of incorrect keys. Theoretically, as long as these criteria are met without causing

excessive overhead or adverse e!ects on the design, the locking block does not need to

adhere to a specific structure. DLL is precisely designed based on these principles.
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Figure 3.3: Conventional PFB locking(a) vs DLL(b)

Unlike applying a locking block of the same structure to all designs, DLL incorporates

a randomly generated locking block for each unique design, as shown in Figure 3.3.

Hardware designers only need to specify the length of the key bits and the desired level
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of output corruption to ensure that the randomly generated locking block meets their

security requirements. Due to the utilisation of a dynamic locking block, DLL exhibits

two distinctive characteristics:

1. Absence of specific structural vulnerabilities: The lack of a fixed structure

eliminates specific structural vulnerabilities that may arise in the locking block of

Point function-based logic locking techniques. This enhances the overall security

of DLL by making it impossible for attackers to break the protection by finding

vulnerability of single locking mechanism.

2. Protection against cross-design attacks: Even if an attacker identifies weak-

nesses in a protected design, they cannot exploit these vulnerabilities to attack

other designs. This is because the locking block for each protected design is unique

and di!ers from one another. Consequently, the security of di!erent designs re-

mains intact even if one design is compromised.

3. Zero-knowledge locking: Due to randomly generated locking mechanism, the

IP designers do not need to know its specifics, making ZeKi the first known logic

locking technique that operates without locking knowledge. This extends the pro-

tection of the design flow to stages before logic synthesis, enhancing overall security.

In the subsequent sections of this chapter, I will demonstrate the working principle of

DLL and its resilience against attacks. DLL primarily comprises three key components:

inserted key gates, a locking block (DLL block in figure 3.2), and a mask.

The core component of ZeKi that enhances logic locking security is the Dynamic Logic

Locking (DLL) technique. The locking block (DLL block in figure 3.2) in DLL consists

of two primary components. The first is the mask, which connects to the key-bit input.

Its primary function is to ensure that the circuit operates correctly when the correct key

is inputted. The second part, referred to as the locking block for simplicity, is designed

to ensure that the circuit exhibits a malfunction when an incorrect key is inputted. This

component is crucial for DLL’s resilience against SAT attacks, sensitisation attacks, and

structural attacks.

PFB logic locking employs locking blocks to validate a predefined relationship between

the input and key-bits, determining whether the circuit should produce an erroneous
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output. This ’validation operation’ checks for the uniqueness or near-uniqueness of the

key concerning the input, ensuring that the protected circuit generates incorrect outputs

for only one or a few incorrect keys for each input pattern, thereby enhancing resistance

to SAT attacks. Take SARLock as an example, where the flip bit indicates whether

functional corruption will be generated:

flip = (input[0 : 8] == key[0 : 8]) ↔ (key! = correctkey)

In this case, SARLock has a 9-bit input and a 9-bit key, with the predefined relationship

being bitwise equality between the two. The incorrect key disrupts the output only when

this condition is met. This mechanism can be equivalently represented as:

flip = (input[0 : 2] = key[0 : 2])↔

(input[3 : 5] = key[3 : 5])↔

(input[6 : 8] = key[6 : 8]) ↔ (key! = correctkey)

In the formula above, the input/key sequence is divided into three groups of 3-bit chunks.

Each block performs a bitwise equality check, and the overall validation is successful only

when all three groups satisfy this condition.

Both operations are equivalent. Thus, it can be concluded that the validation func-

tion for a set of input/key can be broken down into a sum of validation operations of

shorter input/key sequences. If these subdivided bit sequences simultaneously meet the

validation operation, then the original input/key satisfies the validation operation.

Upon further consideration, it becomes apparent that the validation operations for each

group in a logic locking mechanism do not need to be identical. The critical requirement

is maintaining the uniqueness of the input/key relationship. Additionally, the number

of bits allocated to each group does not need to be equal; it is su”cient if their total

equals the length of the original input/key sequence. See the following example:

flip = (input[0 : 1] = key[0 : 1]) ↔ (input[2]! = key[2])

↔ (input[3 : 5] = key[4 : 5][3])(shift↑ 1↑ bit)↔

(input[6 : 8] + key[6 : 8] == 5) ↔ (key! = correctkey)
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This principle underpins the workings of DLL, which randomly generates its locking

mechanism. DLL divides the key/input sequence into several smaller chunks of 2-bit or

3-bit, shown in Figure 3.4. These chunks are then subjected to distinct random valida-

tion operations. The circuit only malfunctions when all these validation operations are

simultaneously satisfied. This mechanism allows a fixed-length key to generate countless

variations of validation operations, achieving dynamic logic locking.

𝐼1 𝐼3𝐼2 𝐼6𝐼5𝐼4

𝐾1 𝐾2 𝐾3 𝐾4 𝐾6𝐾5

Flip Signal

Valiadation op1 Valiadation op2 Valiadation op3

Figure 3.4: DLL breaks input/key sequence into chunks and assigns di!erent valida-
tion operations to them.

DLL generates locking blocks that exhibit significant randomness in both functionally

and structurally. Functionally, even for a 2-bit input/key chunk, there are 24 di!erent

validation operations that can ensure the uniqueness of the input/key relationship. For

a 3-bit chunk, the possibilities increase even further. Structurally, even with identical

validation operations, they can be implemented using various combinations of logic gates,

as shown in Figure 3.5.

Figure 3.5: Di!erent implementation for XOR operation

Thanks to the locking blocks mechanism, DLL can not only perform high resilience to

SAT attack as PFB but also avoid su!ering from structural attacks targeting its inherent

structure or parameter characteristics. In addition, the circuit is also modified to ensure
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that the primary output is influenced by a few randomly selected input bits and the

flip signal, which prevents attackers from removing the locking block by setting the flip

signal to a constant value. Ultimately, the flip signal generated by the locking block

is connected to the design output. When an incorrect key and its corresponding input

are applied to the circuit, the flip signal contaminates the final output, indicating the

presence of output corruption.

3.3.2 Strong Logic Locking (SLL) Insertion

In this section, the insertion of SLL (strong logic locking) will be explained. Before the

explanation of SLL insertion, however, the concept of OER will be introduced. Out-

put Error Rate (OER) is closely related to the Output Corruption (OC) metric.

While OC measures the average Hamming distance between the reference and observed

outputs, OER quantifies the proportion of input patterns that result in incorrect out-

puts. Unlike OC, which accounts for the number of incorrect output bits, OER simply

considers whether any of the M output bits are incorrect.

In the context of logic locking, the output error rate (OER) is a critical parameter. If

the OER is too low, it means that even if an incorrect key is input into the circuit, the

primary output is unlikely to exhibit errors. This significantly reduces the e!ectiveness

of logic locking and allows malicious attackers, who may not have high accuracy require-

ments in their attacks, to exploit ICs they have illegally obtained. To defend against

SAT (Satisfiability) attacks, many PFB (Point-function based) logic locking techniques

adopt a strategy of increasing the number of iterations. This approach primarily focuses

on reducing the e!ectiveness of DIP (Distinguishing input pattern), meaning that each

DIP only generates output distortion for a single incorrect key. However, this strategy

can result in the OER of a locked circuit becoming too low.

To prevent this issue and improve the overall OER of the locked circuit, Zeki integrates

Strong Logic Locking (SLL) key-gates into the circuit. The number of key-bits dedicated

to SLL is determined by user-defined parameters, allowing flexibility in the design.

LSLL = LIN →RSLL
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During the implementation of logic locking, Zeki randomly selects LSLL of the key-bits

from all available key-bits to serve as the SLL key-bits. These selected key-bits are used

simultaneously in the Dynamic Logic Locking (DLL) block and as the key for the SLL

gates.

By combining DLL and SLL, Zeki ensures that the protected circuit not only achieves

high SAT resilience, but also maintains a su”ciently high OER, thereby preventing

the issues associated with low output error rates. This dual approach strengthens the

security of the circuit while preserving the integrity of its functionality.

3.3.3 Key Verification Unit

The incorporation of SLL (Strong Logic Locking) ensures that the protected circuit

attains a su”ciently high OER (Output Error Rate). Meanwhile, the DLL (Dynamic

Logic Locking) endows the circuit with defences against various attacks. Nevertheless,

it should not be overlooked that it is of paramount importance to guarantee that the

circuit can generate the correct output when the correct key is input. In Zeki, the Key

Verification Unit (KVU) undertakes this crucial task.

To further enhance the security of the overall defence mechanism, the KVU solely utilizes

the circuit’s primary inputs rather than key-bits as its inputs. This approach e!ectively

thwarts malicious external attackers from pinpointing the location of the KVU via key-

bits, thereby precluding attacks such as removal attacks.

Based on the description of the working principle of the DLL in section 3.3.1, in order

to withstand SAT attacks, for each input pattern, only one incorrect key will trigger an

erroneous output. Similarly, for a correct key, there exists a corresponding input pattern

that will prompt the DLL block to output a flip signal, resulting in output distortion of

the circuit. In light of this fact, when the input is the input pattern I1 corresponding

to the correct key, the KVU intervenes to prevent the DLL block from generating the

flip signal, thus ensuring that the circuit does not produce output distortion when the

correct key is input.
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Protected Circuit

I1
I2

I3
I4

Flip

DLL Block

Key-bit

𝑂Key Verification Unit

Figure 3.6: Key Verification Unit

I1 I2 I3 I4K1 K2 K3 K4

Flip Signal

Figure 3.7: DLL Block of Key Verification Unit

Taking the Figure 3.6 and Figure 3.7 as an example, in this Zeki, according to the

structure of the DLL block in Figure 3.7, if the correct key is ’0000’, the input pattern

that generates the flip signal is ’1100’. As depicted in the Figure 3.6, the KVU of the

circuit will generate a flip signal when the input pattern is ’1100’ to prevent the DLL

block from corrupting the circuit output.
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3.3.4 Zero-Knowledge Locking Strategy

ZeKi is the first technique to achieve ’zero-knowledge locking’ in logic locking. In pre-

vious logic locking techniques, although participants in the design flow post-logic syn-

thesis were unaware of the locking information, personnel within the design house were

informed. Moreover, once a logic locking technique was published, attackers could ma-

liciously analyse its structural weaknesses for exploitation. However, ZeKi eliminates

these risks. Since its locking blocks are randomly generated for each individual product,

even personnel within the design house lack pertinent information, making it impossi-

ble for attackers to identify structural weaknesses in DLL based on existing knowledge.

Therefore, the random locking block generation mechanism e!ectively realises ’zero-

knowledge locking’. This approach fosters a higher level of trust and security throughout

the product’s lifecycle. Figure 3.8 illustrates the ’zero-knowledge’ concept.

Designer input bit length

Automatically generate key-bit 

Locking block generated in random 
base

Randomly select primary input bit 
interfere with locking block

Implement logic locking

ZeKi Flow chart of logic locking 
implementation

Other Locking strategies

Only step where 
participation of 

designer is needed

No designers involved

No designers involved; 
Structure of locking 

unknown to designer

Key-bit kept secret 
until activation of cell

No designers involved

Need designer to input

Need designer to input

Designer decides the correct key

Designer will have a full knowledge 
of the structure of locking block

Participation of designers is 
needed in some locking strategies

Figure 3.8: Implementation flow: ZeKi versus Other Logic Locking

As shown in figure 3.8, in the process of ZeKi’s DLL, the only input required from

the designer is the key-bit length for the lock. All other procedures will be carried

out automatically, which means the potential rouge insider has no access to the detail

of locking block structure, primary input selected for locking or the correct key value,

which e!ectively proves the implementation of ’zero-knowledge locking’.

As discussed in Section 1.1.1.4, hardware designers can perform verification without

revealing the secret key by using encrypted simulation modules compliant with

the IEEE 1735 [35] standard for IP encryption, or by employing formal equivalence
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checking tools such as Cadence Conformal or Synopsys Formality. These approaches

enable secure verification within the supply chain while maintaining zero-knowledge

locking.

3.4 Implementation of Zeki

3.4.1 Parameter Input

Before applying Zeki to the product, the designer must first input some basic parameters.

1. Key-bit length: This refers to the number of key bits included in Zeki. Typically,

64-bit or 128-bit key lengths are the standard choices. However, if the circuit is

small or if higher security is required, the designer may adjust the key-bit length

accordingly, either by decreasing or increasing it.

2. c: To ensure the output corruption rate of the locked circuit, that is, the rate at

which su”cient primary output bits produce erroneous results when an incorrect

key is provided, the circuit will use a combination of SLL (strong logic locking)

and Zeki blocks. A portion of the key bits will be used as the key input for the

SLL. The designer can adjust the proportion of these key bits relative to the total

key-bit length, with the default value set at 25

3.4.2 Implementation Flow of Zeki

1. Generate a Key Sequence:

The first step is to randomly generate a key sequence that matches the specified

key-bit length.

2. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-

bit length, the number of SLL gates to be inserted, denoted as SN , is calculated.

From this, SN key-bits are randomly selected to serve as inputs for the SLL gates.

According to the selected key values, and following the principles of Strong Logic

Locking (SLL), XOR or XNOR locking gates are inserted into the circuit.



64
Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

Resilience to Multiple Attacks

3. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

4. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,

and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

5. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

6. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical

relationship, such as relationship a and relationship b. These validation logic

relationships are predefined in the Zeki validation logic library, which is part of

the tool’s functionality. The library provides a variety of logic relationships, which

are randomly chosen during the generation of the Dynamic Logic Locking (DLL)

block.

7. Generate Correct Key and DLL Block:

Using the validation logic calculated from the generated key-bit and input-bit

combinations, the correct key is derived. Based on this, the DLL block is generated

and connected to the fan-in of the protected circuit’s output.

8. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-

ated using the same random logic method as the DLL generation. This verification

unit is connected to the flip signal of the DLL output, ensuring that when the cor-

rect key is input, the circuit will not produce incorrect results.
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3.5 Experiment Results and Discussion

3.5.1 Experimental Setup

The experiments were carried out on an 8 core M1 Mac processor with 8GB of RAM.

Combinational benchmarks from EPFL combinational suite [127] and ITC99 suite [128]

and the combinational benchmarks from parts of sequential benchmark circuits from the

ISCAS89 [129] were locked in the experiments. To evaluate Zeki on a larger benchmark,

a new benchmark named sha256x10 was created in this work by instantiating ten parallel

SHA-256 modules. This composite design contains over 500,000 logic gates. Table 3.2

presents data on circuits; the number of gates in the benchmarks ranges from 3,448 to

510,190, demonstrating a diverse array of circuit sizes. MiniSAT [130] was utilized as an

SAT solver to implement SAT attacks. The Synopsys Design Compiler was used in this

project to determine the area and power overhead introduced by DLL, and the Global

Foundries 65nm LPe library is used in the simulation. I implemented ZeKi using Python

scripts to automatically lock benchmark circuits via the DLL approach, which required

between 1.3 and 161.7 seconds to process and lock each circuit across all benchmarks, as

shown in table 3.2. The subsequent subsections provide an evaluation of attack resilience

and DLL overhead.

Table 3.2: Benchmarks and corresponding time consumption to implement Zeki

Benchmark Input Number Output Number Gate Number ZeKi Running Time (s)

b21 522 512 20,027 6.7

b18 3,357 3,343 111,421 32.2

s38354x 38 304 11,448 4.2

s38417x 28 106 8,709 3.2

s15850x 77 150 3,448 1.3

sha256 678 258 51,019 15.2

sha256x10 6780 2580 510,190 161.7

3.5.2 Resilience Against Multiple Attacks

Before delving into further details, I describe the terminology used in the remainder of

the paper.
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3.5.2.1 SAT attack resilience

As discussed in Chapter 2, there are two ways to mitigate the threat from the SAT attack:

increasing the average execution time for each iteration and increasing the number of

iterations, and Zeki takes the latter approach to achieve SAT resilience. The same

approach is also taken by PFB logic locking to achieve maximum iteration number for

SAT attack.
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(c)ZeKi’s DLL.
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Definition 1 If a technique, denoted as L, requires at least a↑k+b
2k

iterations of a SAT attack

to be compromised when using a k -bit key, indicating that the di”culty of breaking it

is exponentially related to the key length, then L is considered k -secure relative to SAT

attacks.

The resilience analysis of the SAT attack is shown in Figure 3.9, which compares SAT

attacks between DLL and other logic locking strategies. This experiment selected Ran-

dom Logic Locking (RLL) and SFLL-HD0 [3] as reference techniques for DLL, as they

exhibit the highest resistance to SAT attacks.

I sample protected designs with key lengths of 11, 12, 13, and 14 bits, albeit shorter

than typical real-world key sizes, usually 128 or 64 bits. This limitation was due to

computational and time constraints. However, it should be noted that the underlying

principles for SAT attack resilience comparison remain consistent across varying key

lengths.

Figure 3.9 illustrates that conventional logic locking, such as RLL in Figure 7.a, has low

SAT attack resilience, showing limited improvement even with increased key lengths.

Conversely, SAT resilient methods of PFB logic locking like SFLL-HD0 (Figure 7.b)

demonstrate exponential growth in the required iterations of SAT attacks as key lengths

increase. Similarly, DLL, as seen in Figure 7.c, also shows an exponential increase in SAT

resilience with increasing key lengths. A successful SAT attack on DLL necessitates 2k

Deterministic Independent Pairs (DIPs), where k is the key length, thereby confirming

its k -secure status against SAT attacks.

Table 3.3: Benchmarks and corresponding SAT-solver Running Time

Benchmark Gate number SAT-solver(MiniSAT) Running Time (s)

b21 20027 2.12

b18 111421 10.4

s38354x 11448 0.6

s38417x 8709 0.22

s15850x 2448 0.13

sha256 51019 6.78

sha256x10 510190 77.3

In this project, the time consumption of the SAT solver (MniSAT) to complete a single

iteration is also simulated. In the experiment, the Verilog netlist files of various bench-

marks used in this study are duplicated to form a Miter circuit in CNF format, which
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is then used in the SAT attack. The Miter circuit is subsequently loaded into the SAT

solver for evaluation. As demonstrated in Table 3.3, circuits with higher complexity

(i.e., a greater number of gates) result in longer solving times. For instance, consider

s15850x, the least time-consuming circuit. The average cracking time for this circuit is

approximately 0.13 seconds per attack. Based on this, an attacker attempting to break a

32-bit key (noting that 64- or 128-bit keys are more common in practice) would require

approximately 17.7 years to crack the secret key using the SAT attack. For circuits

with higher complexity, the required time would be considerably longer. Thus, it can

be concluded that DLL e!ectively achieves SAT-resilience.

3.5.2.2 Sensitisation attack resilience

The Sensitisation attack, initially proposed in [40], involves sensitising key bits to the

output of the circuit to deduce their values. However, if the relationship between a key

bit and the circuit’s output is influenced by other key bits, preventing it from being

easily sensitised, it is termed ”pair-wise” as discussed in section 2.2.3. This designation

e!ectively thwarts the sensitisation attack.

Definition 2 In a locked circuit, if k% key gates are pairwise secure, meaning the circuit

is k -secure against sensitisation attacks, with the ideal scenario being 100-secure. When

a circuit is 100-secure against sensitisation attack, all of its key-bits will not able to be

propagated to the primary output bit by controlling input of the circuit.

In DLL, the gates within the locking block can be considered key-gates. Due to the

interdependence of the outputs of all key-gates in DLL, attackers cannot sensitise key

bits by controlling the input and observing the output. Consequently, all gates in the

DLL locking block are e!ectively ’pair-wise’ related to each other, rendering the system

k -secure against sensitisation attacks.
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Figure 3.10: Process diagram of sensitisation attack resilience simulation

In order to prove this, an experiment is designed and implemented in this project, the

process of which is shown in Figure 3.10. This simulation is implemented on circuit

locked by DLL and RLL, the result shows di!erent sensitisation attack resilience of

the two strategies. Figure 3.11 illustrates the percentage of ’pair-wise’ gates in DLL,

achieving 100-secure against sensitisation attacks. Conversely, Random Logic Locking

(RLL) exhibits only a limited number of pair-wise key gates against sensitisation attacks.

On average, DLL performs six times better than RLL.
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Figure 3.11: ZeKi sensitisation attack resilience vs RLL[9]

3.5.2.3 Structural attack resilience.

Structural attacks exploit inherent weaknesses in certain logic locking techniques, par-

ticularly those using PFB. The SAT resilience of PFB is achieved through locking blocks

with a consistent topological structure, which remains unchanged even as the number of

key-bits and the block’s size increases. This uniformity allows attackers to exploit vul-

nerabilities in the locking block’s structure, rendering all products using that technique

susceptible. For example, Anti-SAT’s locking block is vulnerable to SPS attacks [6] due

to its output gate’s excessive signal skew. Similarly, SFLL [3] is susceptible to sensitive

attacks that detect key-bits through sensitive input pattern values [5]. The issue can be

addressed by DLL, as it generates a random locking mechanism each time. This results

in significant variations among the locking blocks of di!erent products.

Definition 3 From this inference, it follows that the greater the variability in the locking

blocks of a logic locking technique, the less likely they are to exhibit a common structural

weakness, thereby harder to break. In the structural attacks resistance testing, I first

locked a selected benchmark with a locking block named LB0. I then executed 100

separate lockings on the benchmark, generating additional locking blocks labeled LB1-

LB100. When the same input is fed to the locking block, LB0 ’s output is compared with

the outputs of LB1-LBN, and the average Hamming distance (HDM ) is calculated. The

value of x is determined by calculating 100*HDM/OutputLength %, which defines the

technique’s security level against structural attacks as x-secure, where the ideal value

is 100-secure. In this experiment, Anti-SAT and SFLL were used as references. The
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average secure value of DLL-generated locking blocks exceeded 80, while both Anti-SAT

and SFLL had secure values of 0.
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Figure 3.12: ZeKi structural attack resilience comparison with SARLock[4] and

SFLL[3]

In this thesis, a comparative analysis was conducted on the resilience of DLL against

structural attacks in Figure 3.12. DLL utilises random generation for its locking blocks,

creating significant variability in the locking blocks for each design. This approach

has shown to be highly e!ective in simulations, with DLL achieving over 80-secure

resilience in the simulation results against structural attacks across di!erent benchmarks.

This level of randomness of the generated locking block makes it extremely di”cult to

find common inherent structural or parameter characteristics of the DLL locking block,

making it highly resilient to structural attacks.

3.5.3 Power, Delay, and Area overhead

Results from Figure 4.4 indicate that a 128-bit key significantly increases overhead in

smaller benchmarks as S38417x (11.1% power, 12.2% area overheads) but is less in larger

benchmarks, e.g., b21 benchmark with 2.1% power, and 1.7% area overheads; sha256x10

benchmark with 0.13% power, and 0.15% area overheads. In larger benchmarks, power

and area overheads remain below 10% for 128-bit key. From the overhead data it can

be found that DLL’s overhead is linearly related to the number of key bits. Overall, the

average power and area overhead is 2.4% and 2.46% respectively for a 64-bit key; and

5.1% and 5.45% for 128-bit key.
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Figure 3.13: Power, and Area overhead of DLL protected circuit with 64-bit and
128-bit key

3.6 Summary

In summary, this chapter introduced a ZeKi which generate Dynamic Logic Locking

(DLL) security circuit by ’Zero-Knowledge’ Implementation. ZeKi’s DLL demonstrated

resilience against SAT attacks and other mainstream attacks targeting logic locking

while maintaining lowest power and area overhead. The security performance of ZeKi

has achieved 1 to 89 times than the state-of-the-art logic locking techniques depend-

ing on di!erent attacks and locking structures. By employing a dynamic locking block,

ZeKi ensures that each circuit is protected with a randomly generated and unique lock-

ing mechanism, thereby enhancing overall security and reducing the risk of attacks ex-

ploiting specific vulnerabilities. It enables hardware designers to achieve zero-knowledge

locking for their designs, further strengthening the confidentiality. Overall, the proposed

ZeKi logic locking tool contributes to advancing logic locking techniques and e!ectively

protects integrated circuits.

Attacks on logic locking can be categorized into two types based on the attacker’s ac-

cess to a functional IC: oracle-based and oracle-less attacks. Current research, including

this thesis, predominantly focuses on oracle-based attacks. In the threat model for

oracle-based attacks, it is assumed that attackers have access to two critical entities: A

functional IC: Attackers can readily acquire a functional IC from the market. During

the attack process, this functional IC provides valid input/output pairs as golden refer-

ences; A gate-level netlist file of the locked circuit: This file is obtained through
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reverse engineering or from an untrusted foundry.





Chapter 4

ZeKi: The Sequential version

In the previous chapter, we introduced the fundamental principles and implementation

flow of Zeki, focusing primarily on its application to combinational circuits. While the

previous chapter concentrated on combinational logic, it is important to note that in

the IC industry, the majority of products utilise sequential circuits, ranging from micro-

processors to memory units and communication devices. (While combinational circuits

are those where the output is purely dependent on the current inputs, sequential cir-

cuits involve memory elements (such as flip-flops or latches) that store state information,

making their outputs dependent not only on the current inputs but also on the circuit’s

past history.)

In fact, Zeki can also be applied to sequential circuits. The ability to apply Zeki to

sequential circuits expands its utility, allowing designers to implement security features

across a wider range of applications. In this chapter, we will explore the operational

principles and implementation flow of Zeki when applied to sequential circuits.

Two approaches of Zeki implementation will be introduced in this chapter ZekiA and

ZekiB, the first approach is relatively simple by placing the entire locking block in the

last stage of the sequential circuit and placing the entire Key verification unit in the first

stage. In the second approach, locking block and Key verification unit will be randomly

put in di!erent stages in the sequential circuit to make it harder for malicious attackers

to trace the inserted gates of Zeki.

In this chapter the power and area overhead of Zeki will also be given.
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Parts of this chapter are based on our previously published work [126]. Some text and

figures are reused with permission.

4.1 Implementation of SLL

This chapter will introduce two approaches of Zeki sequential implementation, however,

in both strategies, SLL (Strong Logic Locking) is inserted in the same manner. In the

insertion process of SLL, corresponding key-bits are first selected, and then logic gate in

the circuit are randomly selected. And then SLL gates are inserted in the circuit. The

working flow of this implementation is listed as follows:

1. Randomly select K gates from all the gates, where K corresponds to the key-bit

length.

2. For each selected gate, determine the position Kn where the output key-gate will

be inserted.

3. Rename the output of each key-gate to match the name of key-gate input 1 (e.g.,

KGi1).

4. Based on the value of the key-bit, insert the corresponding key-gate at the selected

position Kn. If the key-bit value is 0, insert an XOR gate; if the key-bit value is 1,

insert an XNOR gate. One input of the key-gate will be the node renamed in the

previous step, the other input will be the key-bit, and the output will correspond

to the original node before renaming. The output will have the original name of

the node at position Kn.

5. Add the new node to the wire list.

6. Add the new key-bit to the input list.
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Figure 4.1: Add SLL(strong logic locking) to Sequential Circuit

4.2 ZekiA: Implement Zeki in Sequential Circuit in Single

Stage

ZekiA is a foundational version of Zeki implemented on sequential circuits. In ZekiA, in

addition to the previously mentioned SLL (Strong Logic Locking), which is distributed

across all stages, the DLL (Dynamic Logic Locking) block and the key verification unit

are placed within a single stage. Both the DLL block and the key verification unit are

positioned in the final stage, the stage closest to the primary output, to ensure that the

flip signal can directly impact the output. The circuit’s primary and key-bit signals are

fed directly into these two blocks.

The detailed implementation flow of ZekiA is as follows:

1. Parsing Netlist

The first step is to parse the netlist of sequential circuit, and the process of this

is similar to combinational circuit but with extra information the flip-flop list and

the stage attribution. All the gate and wire variables will be labeled which stage

they belong to.
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2. Generate a Key Sequence:

Randomly generate a key sequence that matches the specified key-bit length.

3. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-

bit length, the number of SLL gates to be inserted, denoted as SN , is calculated.

From this, SN key-bits are randomly selected to serve as inputs for the SLL gates.

According to the selected key values, and following the principles of Strong Logic

Locking (SLL), XOR or XNOR locking gates are inserted into the circuit. In this

step the program also need to make sure inserted SLL key-gates belong to the

same stage to avoid sequential problem.

4. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

5. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,

and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

6. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

7. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical

relationship, such as relationship a and relationship b. These validation logic

relationships are predefined in the Zeki validation logic library, which is part of

the tool’s functionality. The library provides a variety of logic relationships, which

are randomly chosen during the generation of the Dynamic Logic Locking (DLL)

block.

8. Generate Correct Key and DLL Block:

Using the validation logic calculated from the generated key-bit and input-bit

combinations, the correct key is derived. Based on this, the DLL block is generated
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and connected to the fan-in of the protected circuit’s output. In sequential circuit,

the output of DLL block is connected to the input of primary output flip-flop, and

the DLL block is put in the final stage to decrease the overall number of flip-flops.

9. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-

ated using the same random logic method as the DLL generation. This verification

unit is connected to the flip signal of the DLL output, ensuring that when the cor-

rect key is input, the circuit will not produce incorrect results. In sequential circuit,

the key verification unit is put in the final stage, which is the stage closest to the

primary output.
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Figure 4.2: (a) Original Circuit; (b) Circuit Locked with ZekiA
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4.3 ZekiB: Implement Zeki in Sequential Circuit in Mul-

tiple Stages

Implementing Zeki in a single stage of a sequential circuit is straightforward and min-

imizes the risk of errors. However, this approach has its drawbacks. Since both the

DLL (Dynamic Logic Locking) block and the key verification unit are placed within a

single stage, it becomes easier for attackers to identify and target these locking blocks.

This centralized placement of the blocks also reduces randomness, which contradicts the

dynamic nature of Zeki, thereby undermining its intended security purpose.

To address this issue, an alternative approach, ZekiB, allows users to distribute the DLL

block and key verification unit across multiple stages of the circuit. The initial steps of

ZekiB’s implementation mirror those of ZekiA, beginning with the insertion of SLL and

the generation of DLL blocks and the key verification unit using a random validation

formula. Once these blocks are created, the system traverses the gates starting from

the block’s output and moving towards its input. The system then randomly assigns

whether the gate, along with its fan-out, should belong to the same stage. This process

ensures that the DLL block and key verification unit are distributed randomly across

various stages of the circuit.

The implementation flow of ZekiB is as follows:

1. Parsing Netlist

The first step is to parse the netlist of sequential circuit, and the process of this

is similar to combinational circuit but with extra information the flip-flop list and

the stage attribution. All the gate and wire variables will be labeled which stage

they belong to.

2. Generate a Key Sequence:

Randomly generate a key sequence that matches the specified key-bit length.

3. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-

bit length, the number of SLL gates to be inserted, denoted as SN , is calculated.

From this, SN key-bits are randomly selected to serve as inputs for the SLL gates.
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According to the selected key values, and following the principles of Strong Logic

Locking (SLL), XOR or XNOR locking gates are inserted into the circuit. In this

step the program also need to make sure inserted SLL key-gates belong to the

same stage to avoid sequential problem.

4. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

5. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,

and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

6. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

7. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical

relationship, such as relationship a and relationship b. These validation logic

relationships are predefined in the Zeki validation logic library, which is part of

the tool’s functionality. The library provides a variety of logic relationships, which

are randomly chosen during the generation of the Dynamic Logic Locking (DLL)

block.

8. Generate Correct Key and DLL Block:

Using the validation logic calculated from the generated key-bit and input-bit

combinations, the correct key is derived. Based on this, the DLL block is generated.

9. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-

ated using the same random logic method as the DLL generation. This verification

unit is connected to the flip signal of the DLL output, ensuring that when the cor-

rect key is input, the circuit will not produce incorrect results.
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10. Locate DLL block and Key Verification Unit in Stages

Select all the output gates in DLL block and Key Verification Unit and locate

them to the last stage of the circuit, which is the closest stage to the primary

output, and name this group of gates G1. Use random number generator planted

in software to decided whether the gates whose fan-out gates are included in G1,

and name this group of gates G2. Repeat this procedure until all the gates in DLL

block and key verification unit are located to their stages. Add DLL block and

key verification Unit to the circuit according to the stage location and connect the

output flip signal to the primary output of circuit.
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Figure 4.3: (a) Original Circuit; (b) Circuit Locked with ZekiB

Compared to ZekiA, ZekiB exhibits higher uncertainty, which in turn enhances over-

all security. The increased unpredictability makes it more challenging for attackers to
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trace the specific characteristics of the locking block. However, ZekiB also introduces

a greater number of flip-flops, leading to additional overhead. This trade-o! requires

designers to carefully select between the di!erent solutions based on their specific needs

and application requirements.

In the context of logic locking and integrated circuit (IC) design, ZekiB’s higher uncer-

tainty is advantageous in countering attacks such as reverse engineering and hardware

trojans. However, the additional flip-flops introduce complexity and may impact per-

formance, particularly in terms of power consumption and circuit area. As a result,

designers must consider the balance between security and performance, choosing the

appropriate locking scheme based on the security threat level and the constraints of the

target system.

4.4 Power, Delay, and Area overhead

Figure 4.4 shows the overhead caused by Zeki in both combinational benchmarks (b21,

b18) and sequential benchmarks(s15850x, s38354x...), where ZekiA is used as implemen-

tation approach for sequential benchmarks in Figure (a) and (b), and ZekiB is used in

(c).

Results from Figure 4.4 indicate that a 128-bit key significantly increases overhead in

smaller benchmarks as S15850x (18.5% power, 17.2% area overheads) but is less in

larger benchmarks, e.g., b21 benchmark with 2.1% power, and 1.7% area overheads.

In larger benchmarks, power and area overheads remain below 10% for 128-bit key.

Sequential circuits show reduced time overhead due to distributed locking block and

mask components, with time overheads under 3% for all 128-bit key configurations.

DLL’s overhead is linearly related to the number of key bits. Zeki in benchmarks in

Figure 4.4 (a) and (b) is implemented by ZekiB for sequential circuit, while in Figure 4.4

(c), ZekiA is used. It is obvious ZekiA introduces much lower overhead in both power and

area for all the sequential benchmarks compared to its counterpart. Overall, the average

power and area overhead is 4.27% and 4.48% respectively for a 64-bit key; and 9.2% and

9.28% for 128-bit key. Because LUTs and flip-flops are not used in the implementation of
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ZeKi’s locking blocks, the area overhead is significantly lower compared to LUT/FPGA-

based locking strategies or those with high overhead, as shown in Table 4.1. It achieved

the lowest area and power overhead compared to the state-of-the-art locks.
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Figure 4.4: Power, and Area overhead of DLL protected circuit with 64-bit and 128-
bit key: (a) Power Overhead; (b) Area Overhead; (c) Power and Area Overhead of

ZekiB Implemented Benchmarks

Table 4.1: Area and Power Overhead
Locking Strategy Cross-lock [131] Logic locking with Camouflage [132] RTLock[133] ZeKi (64-Bit Key)

Area 18.6% 31.78% 19.88% 4.27%

Power 14.42% 26.52% 2.2% 4.48%
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4.5 Summary

This chapter extends the ZeKi logic locking strategy from combinational circuits to

sequential circuits, addressing a broader range of practical applications in integrated

circuit (IC) design. Two implementation approaches are proposed: ZeKiA, which places

the Dynamic Logic Locking (DLL) block and key verification unit within a single stage of

the sequential circuit, and ZeKiB, which distributes these components across multiple

stages to enhance resistance against structural attacks and improve security through

increased randomness.

Both implementations incorporate Strong Logic Locking (SLL) to insert key-gates through-

out the design. ZeKiA o!ers simplicity and lower overhead, while ZeKiB introduces

higher security at the cost of additional flip-flops and increased complexity. The chap-

ter outlines the detailed implementation flows for both approaches and discusses the

trade-o!s between security and design overhead.

Experimental results demonstrate that ZeKi maintains low area and power overhead

across a variety of combinational and sequential benchmarks. Specifically, ZeKi achieves

average overheads of 4.27% (area) and 4.48% (power) with a 64-bit key, significantly out-

performing existing state-of-the-art locking strategies, as shown in table 4.1. Overheads

remain acceptable even with 128-bit keys, especially for large-scale benchmarks, show-

casing ZeKi’s scalability and practicality for real-world sequential circuit protection.

Because the gate number of locking block is regardless of the gate number of circuit

to be locked, the gate number Zeki brings can be considered as constant on some level.

However, as Zeki applies dynamic logic locking mechanism, the locking block is generated

randomly, the gate number also changes with di!erent implementation, but at the same

order of magnitude.





Chapter 5

LockLab

Despite its potential, the adoption of logic locking has been slow, partly due to the lack

of integration with standard IC design flows and the complexity of existing algorithms.

Automating the logic locking process and integrating it into existing design tools are

crucial steps toward wider adoption.

This chapter presents two software tools developed to automate logic locking: Lockit

and LockLab. Lockit is a Python-based tool that implements the Stripped Functionality

Logic Locking with Hamming Distance (SFLL-HD) algorithm [3] to perform locking

on gate-level netlists. LockLab extends this by supporting multiple locking strategies

and simulating various attack methodologies, providing a comprehensive platform for

designers to implement and evaluate logic locking techniques.

In the course of this PhD project I designed LockLab, an automated logic locking simula-

tion tool. LockLab facilitates the seamless application of various logic locking techniques

to circuit netlists, as well as the simulation of di!erent attacks on locked circuits. This

tool o!ers significant convenience for designers employing logic locking in their work, as

well as for students learning about logic locking concepts.

LockLab was inspired by Lockit, an automation tool designed for SFLL (Strong Fault

Logic Locking) insertion, for which I served as the second author. The introduction of

Lockit greatly simplified processes related to the implementation and testing of SFLL,

including integrating SFLL into netlist files and performing subsequent security tests.

With Lockit, users could easily insert SFLL into circuits that required protection or

testing, significantly improving the e”ciency of these tasks.
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During my exploration of various logic locking techniques, I encountered a recurring

issue: many of the logic locking methods that needed testing either lacked available

software tools or, if tools existed, they were no longer maintained or usable due to

various reasons. Furthermore, no simple, user-friendly automated simulation tools were

available that could handle multiple logic locking schemes and simulate corresponding

targeted attacks. I developed LockLab to fill this gap. LockLab aims to provide an

easy-to-use, flexible, and comprehensive solution for logic locking simulation and attack

testing. Besides automatic SFLL implementation (the main function of Lockit), Locklab

can also achieve multiple logic locking strategies implementation and attack simulation

which are listed below:

1. Logic Locking Insertion: LockLab can automatically insert logic locking into Verilog-

format netlist files, with the output files preserving the same format as the original.

Users can choose from a range of logic locking techniques, including RLL (Reverse

Engineering Logic Locking), FLL (Functional Logic Locking), SLL (Strong Logic

Locking), SARLock, AntiSAT, Andtree, SFLL, and Zeki. The resulting files can

be used for subsequent design iterations or for functional testing in related fields.

2. Attack Simulation: Once logic locking is applied to a circuit, LockLab can simulate

various types of attacks on the locked circuit, including SAT (Satisfiability) attacks,

SPS (Single Point of Secret) attacks, sensitization attacks, brute-force attacks, and

an assessment of AI attack feasibility. LockLab provides detailed results, including

the total time required for the attack and whether the key has been successfully

cracked. Additionally, it verifies whether the attacked key or the modified circuit

maintains the original circuit’s functionality.

Parts of this chapter are based on our previously published work [10, 126]. Some text

and figures are reused with permission.

5.1 Contributions

LockLab, a novel software tool introduced by this work specifically is developed to

address the limitations in the current landscape of logic locking implementation. The
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source code of LockLab is shown in Appendix A. The contributions of this software are

outlined as follows:

1. Multi-Strategy Logic Locking Implementation: The tool provides the capability

to implement a wide variety of gate-level logic locking strategies: RLL, FLL, SLL,

Zeki, AntiSAT, SARlock, and SFLL. This allows hardware designers to evaluate

di!erent locking techniques on their circuit designs without the need for extensive

manual intervention.

2. Comprehensive Attack Simulations: The software is designed to simulate multiple

attacks including SAT attack, SPS attack, Sensitization attack and evaluate AI-

based attack availability on the locked circuits, enabling users to test the resilience

of their designs against various threat models. By simulating real-world attack

scenarios, the tool allows for a more robust evaluation of the circuit’s security.

By addressing the challenges and limitations in the current state of logic locking tools,

LockLab provides a comprehensive solution that enhances the security design process

while remaining easy to use and versatile for both logic locking learners and researchers.

Learners of logic locking or hardware security can generate netlist of circuit locked

with di!erent locking strategies by LockLab. They can compare the original circuit

and locked circuit netlist to learn the di!erence between the two. In addition, they

can run functional tests on the generated locked circuit. Power, area and other post-

synthesis simulations can also be done to the generated netlist file to see the overhead

introduced. For researchers, not only can they do the tests on locked circuits generated

as introduced, but also can they test di!erent attacks on locked circuit on LockLab to

test their resilience against various attacks.

The remainder of this chapter will introduce and discuss LockLab’s setup before simu-

lation, basic operation, output formats, as well as the design principles and workflow of

its di!erent modules.

5.2 Introduction to LockLab

The GUI(Graphical User Interface) of LockLab is shown in figure 5.1, which is user-

friendly.
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Figure 5.1: GUI of LockLab

For attack simulations specifically, users must save the names of the key-gates and key-

bits in a CSV file and place it in the same directory as LockLab. This file facilitates the

identification and tracking of key-related components during the simulation.

After each simulation, LockLab generates a corresponding output.log file that summa-

rizes and compares the original file, the newly generated file, or the attack results. This

log file serves as a detailed record of the simulation process and its outcomes, providing

critical insights for evaluation and debugging.

Typically, the output.log includes the following information:

1. Name of the original file

2. Name of the newly generated file

3. Total number of logic gates in the original circuit

4. Total number of logic gates in the newly generated circuit
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5. Locking strategy used

6. Type of attack performed

7. Key sequence

8. List of key-gates

9. Whether the attack was successful

10. The key derived from the attack (if successful)

11. Total runtime

12. Additional details relevant to the simulation

The inclusion of this comprehensive data ensures that users can analyze the e!ectiveness

of the logic locking strategy and assess the resilience of the locked circuit against di!erent

types of attacks. A detailed example of the output log structure is provided below.

Example of Output Log File

file name: b18.v

new file name: b18locked.v

locking strategy: RLL

attack strategy:

original gate number: 111421

new gate number: 111433

key -gate number: 12

key -bit sequence: 000000111111

...

other:

5.3 Netlist Parsing

I build a parser for Locklab to understand verilog netlist file. Before each simulation

start, the netlist file will be parsed before used by LockLab to organize its data. In

terms of Parsing, LockLab takes similar approach with Lockit[10].

The process of netlist parsing, as illustrated in Figure 5.2, is designed to extract es-

sential elements from a netlist—such as gates, registers, wires, inputs, and outputs—to
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construct a graph-based representation of the circuit. This representation facilitates

further analysis and manipulation.

The parsing process begins by dividing the netlist into segments using semicolons as de-

limiters. These segments typically fall into categories: those that contain comprehensive

lists of inputs, outputs, or wires, and those that describe individual gates or registers.

Each segment is subsequently broken down into smaller tokens using delimiters such

as spaces, commas, parentheses, and newlines. However, the parsing of gate inputs

and outputs is handled with special care to ensure their relationships are accurately

preserved. These tokens serve as the foundation for identifying the key attributes of the

netlist.

The module name of the circuit to be locked is extracted from the segment that begins

with the keyword module. The string following this keyword is assigned as the module’s

name, which also serves as the name of the graph. Segments starting with input, output,

or wire provide lists of input, output, and wire names, respectively. Each name is

represented as a node in the graph and is assigned a type attribute corresponding to its

classification.

The remaining segments contain descriptions of individual gates and state elements.

For each gate, the second token in the segment acts as a unique identifier and is used

as the node’s name in the graph. The first token identifies the gate or state element

type, which is validated against a predefined list obtained from the technology file. This

token is stored as the gate attribute, while a type attribute is assigned based on its

classification. The subsequent tokens in the segment describe the connections between

the gate and various wires, inputs, and outputs. These connections are used to define

the edges in the graph, and the tokens collectively form a pinout attribute, detailing the

gate’s connectivity.

5.4 Verilog-CNF Transfermation

LockLab is able to transfer netlist file of a cricuit in Verilog into CNF file, which can be

recognised and solved by SAT-solver. This approach not only plays a significant role in

SAT attack simulation, as discussed in 2.3, but also enables LockLab to automatically



Chapter 5 LockLab 93

Netlist
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Figure 5.2: Parsing process of the netlist [10]

test the function correctness of generated locked circuit. The working principle of this

operation will be explained in the following part of this section.

5.4.1 CNF transfer

In general, SAT solver takes Boolean formula in CNF (conjunctive normal form). In

simple terms, a formula in CNF is a conjunction of disjunction of literals.[134]

• Conjunction: can be understood as AND.

• Disjunction: can be understood as OR.

• Literal: a variable or its negation.

• Clause: disjunction of literals. CNF is formed by conjunction of clauses.

The following is a example of CNF formula:

T = ((!a+ b+!c)&(a+!b+!c)&c) (5.1)

In order for a CNF form to be satisfied, all the disjunction clauses must be satisfied. In

recent decades powerful SAT solvers have been developed. [135, 136] Before applying

SAT solver to the circuit, the researcher must use Tseitin transformation to transform

the netlist into CNF. [137]
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Table 5.1: CNF formulas for AND, NAND, OR, NOR, INV, BUFFER gates generated
using the Tseitin transformation [8]

Gate type Gate function ωy

AND y = AND(w1, . . . , wj)
)︄[︄j

i=1 (wi + ¬y)
]︄
·
⌊︄⌋︄j

i=1 ¬wi + y

⌈︄

NAND y = NAND(w1, . . . , wj)
)︄[︄j

i=1 (wi + y)
]︄
·
⌊︄⌋︄j

i=1 ¬wi + ¬y
⌈︄

OR y = OR(w1, . . . , wj)
)︄[︄j

i=1 (¬wi + y)
]︄
·
⌊︄⌋︄j

i=1wi + ¬y
⌈︄

NOR y = NOR(w1, . . . , wj)
)︄[︄j

i=1 (¬wi + ¬y)
]︄
·
⌊︄⌋︄j

i=1wi + y

⌈︄

NOT y = NOT(w1) (y + w1) · (¬y + ¬w1)
BUFFER y = BUFFER (w1) (¬y + w1) · (y + ¬w1)

5.4.2 Tseitin Transformation

For the SAT-solver to solve CircuitSAT problem, Tseitin transformation transfers circuit

netlist to CNF where both input and output port serve as literals. Tseitin transformation

achieves this by generating CNF for individual logic gates in the circuit. The formula

below is an example of AND2 gate transformation.

z ↗ a&b

= (z ↘ a&b)&(a&b ↘ z)

= (!z + a&b)&(!(a&b) + z)

= (!z + a)&(!z + b)&(z+!a+!b)

= (!z + a)(!z + b)(z+!a+!b)

(5.2)

The Tseitin transformation then puts together the entire circuit as a conjunction of CNF

clauses of all the individual logic gates.

During the conversion of the netlist file into a CNF file, each gate is transformed ac-

cording to its corresponding Tseitin transformation formula, as illustrated in the table

5.1.

Once all logic gates have been transformed into CNF, they are placed alongside each

other, as shown in figure 5.3, to serve as constraints for the SAT solver.
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A

B
C

E

D F

(F+!D)(F+!E)(!F+D+E)

(A+!D)(B+!D)(D+!A+!B)

(C+E)(!C+!E)

Figure 5.3: Application of the Tseitin transformation to a circuit with three gates

Within this framework, all circuit nodes, along with the input and output bits, are

treated as literals. After these transformations are completed, the original Verilog gate-

level netlist is converted into a ’.cnf’ file, as demonstrated in the code example below,

where each number represents a literal and each line represets a single clause in CNF.

This file is then ready for use in SAT-solver-based analysis.

p cnf 63 31

1 0

-34 2 0

-34 3 0

-2 -3 34 0

-35 4 0

-35 5 0

...

5.5 Locked circuit Self-test

When users apply a locking strategy to a netlist file using LockLab, the tool automati-

cally performs a functionality test on the generated locked circuit netlist. This ensures

that when the correct key is applied, the locked circuit produces outputs identical to the

original circuit. The detailed procedure for this functionality test is as follows:

1. Merge Netlists: The netlist of the original circuit and the locked circuit are

combined into a single file.
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2. Share Primary Inputs: The inputs of both circuits are converted into wires,

and a new input list is added to the combined netlist, allowing both circuits to

share the same primary inputs.

3. Compare Outputs: The output bits of the two circuits are paired and connected

to 2-input XOR gates. The outputs of these XOR gates are then fed into an N-

input OR gate.

4. Transform to CNF: The new combined circuit is converted into a CNF file, and

a constraint is added to ensure that the correct key sequence results in the output

of the N-input OR gate being 0.

5. Generate Input Patterns: A set of 100 random input patterns is generated as

constraints. The CNF file is then solved using a SAT solver. If solutions are found

for all 100 patterns, the locked circuit is deemed functionally correct. Otherwise,

it is considered faulty.

If the results indicate that the locked circuit is not functionally equivalent to the original

circuit when the correct key is applied, the locking process is deemed unsuccessful. In

such cases, the system automatically retries the locking process. If the process fails three

consecutive times, the locking procedure terminates, and the results are logged in the

output.log file.

This functionality significantly enhances the usability of LockLab by eliminating the need

for external hardware simulation tools, such as ModelSim, for validating the netlist’s

functionality. Additionally, users are not required to manually write testbench files,

simplifying the overall workflow.

1. Selection of an Input Cone to Lock SFLL-HD locks a single input cone,

selecting the largest cone by default or one matching the user-specified key size. If

the cone is larger than the key size, only a subset of inputs equal to the key size is

protected. The cone must exceed the Hamming distance H; otherwise, users must

adjust H. The algorithm identifies logic cone outputs recursively, grouping module

outputs, state element inputs, and preceding wires, with recursion terminating at

module inputs or state elements.
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5.6 Implementation of logic locking strategies

5.6.1 Random Logic Locking (RLL)

is one of the most basic forms of logic locking. LockLab supports the insertion of RLL

into a netlist, generating output files that are ideal for learning purposes or for use as

benchmark references when comparing others, more advanced locking strategies. In RLL

XOR and XNOR gates are inserted in the circuit based on the corresponding key-bit to

randomly selected position in the protected circuit. The working flow of Random logic

locking is shown in the flowchart:

Prepare 
gate list

Select random gate

Change the name of 
output signal of the gate

Add key gate 
Add wire signal and key 

input to wire list and input 
list

Set output signal of 
key gate

All key gate 
inserted

Implementation 
finished

No

Yes

Figure 5.4: Working Flow of RLL in LockLab

The time consumption of RLL insertion on di!erent benchmarks: b21(20027 gates),

b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure

5.5, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.
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Figure 5.5: Execution Time of RLL

5.6.2 Fault-based Logic Locking (FLL)

In FLL (Fault-based Logic Locking), key-gates are strategically inserted at positions in

the circuit that maximize the output corruption rate caused by an incorrect key. To

achieve this, the fault impact is calculated for each gate, which is a numerical value

derived from a combination of the gate’s fan-in and fan-out. The fault impact serves as

a metric for evaluating the e!ectiveness of a key-gate insertion position in terms of its

potential to disrupt the circuit’s functionality. By targeting gates with the highest fault

impact, FLL increases the likelihood that an incorrect key will cause significant distortion

in the circuit’s output, thereby enhancing the circuit’s security against unauthorized

access or tampering. The working flow of Fault-based logic locking is shown in the

flowchart:



Chapter 5 LockLab 99

Prepare input 
list

Fan-in of 
all gates 

calculated

Create I1 gate list

Create fan-in list for I1 gates

Create I2 gate list

Create fan-in list for I2 gates

Create IN gate list

Create fan-in list for IN gates

…

Fan-in list

Prepare output 
list

Fan-out of 
all gates 

calculated

Create O1 gate list

Create fan-out list for O1 gates

Create O2 gate list

Create fan-out list for O2 gates

Create ON gate list

Create fan-out list for ON gates
…

Fan-out 
list

Calculate FI for each 
gate

Insert key gate to the 
gate with maximum FI

Enough 
gate 

inserted

Fault-analysis 
based logic locking 

finished

Figure 5.6: Working Flow of FLL in LockLab

The time consumption of FLL insertion on di!erent benchmarks: b21(20027 gates),

b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure

5.7, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.
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Figure 5.7: Execution Time of FLL

5.6.3 Strong Logic Locking (SLL)

SLL (Strong Logic Locking) is a locking strategy designed to defend against sensitiza-

tion attacks. It achieves this by ensuring that all inserted key-gates are pairwise-secure,

meaning that each key-gate is mutually protected, preventing one key-gate from be-

ing ”muted” or bypassed by another. This pairwise security mechanism ensures that

malicious attackers cannot exploit sensitization attacks to extract confidential informa-

tion from the locked circuit. By maintaining the interdependence of the key-gates, SLL

strengthens the integrity of the circuit, making it more resilient to attempts at reverse

engineering and unauthorized access. The working flow of Strong logic locking is shown

in the flowchart
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Figure 5.8: Working Flow of SLL in LockLab

The time consumption of SLL insertion on di!erent benchmarks: b21(20027 gates),

b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure

5.9, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.
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Figure 5.9: Execution Time of SLL

5.6.4 SARLock

SARLock is one of the earliest locking strategies proposed to counter SAT (Satisfiability)

attacks. SARLock significantly increases the number of iterations required for a SAT

attack by ensuring that each Distinguishing Input Pattern (DIP) can eliminate only a

single incorrect key. This approach e!ectively raises the di”culty of cracking the pro-

tected circuit, thereby enhancing its resilience against SAT-based attacks. By limiting

the impact of each input pattern on the key space, SARLock forces attackers to explore

a much larger key space, making it more computationally expensive and time-consuming

to break the lock. The working flow of LockLab for SARLock simulation is shown in

the flowchart:
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Figure 5.10: Working Flow of SARLock Simulation in LockLab

The execution time of SARlock simualtion is as Figure 5.11 shows, it can be seen that the

overall execution time of SARlock increases as key-bit length grows. Another significant

source of execution time is netlist parsing. In the simulation result benchmark b18 has

total gate number of 111421, and s15850x has 3480. From the figure it can be seen

that the total gate number of protected circuit does cause extra execution time, but not

significant.
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Figure 5.11: Execution Time of SARLock Simulation in LockLab
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5.6.5 AntiSAT

Anti-SAT is another post-SAT locking strategy after the propose of SARLock, which

performs higher output corruption rate than SARLock. The working flow of Anti-SAT

attack is shown in the flowchart:

Parsing Netlist

Link Flip Signal to 
Output

Connect the XOR 
Gate to AND Gate

Randomly Select K 
Primary Input

Insert XOR Gates into 
Netlist

Add Key-bits to Input 
List

Generate output
file

Figure 5.12: Working Flow of Anti-SAT Simulation in LockLab

The execution time of Anti-SAT simualtion is as Figure 5.13 shows, it can be seen that

the overall execution time of SARlock increases as key-bit length and overall logic gate

number in the circuit grow.
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Figure 5.13: Execution Time of Anti-SAT Simulation in LockLab
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5.6.6 SAT attack

LockLab is able to e!ectively simulate SAT attacks on a input protected circuit, as

SAT is one of the most critical attacks against logic locking, understanding its impact is

crucial. Users simply need to provide the netlist file of the circuit they wish to analyze.

The software automatically detects the circuit’s input and output bits, streamlining the

simulation process. However, the key bits need to be manually inputted by the user.

These key bits should be placed in a CSV file, which must be stored along with the

Verilog netlist file in the ’datafile’ folder located within the root directory of LockLab.

As highlighted in the previous section, the initial step in launching a SAT attack involves

converting the gate-level netlist file into a CNF (Conjunctive Normal Form) file, which

is then used by the SAT solver to initiate the attack simulation. This step ensures the

attack framework can operate e”ciently on the locked circuit.

5.6.6.1 SAT-solver and Output File

LockLab implement SAT attack using an open-source tool named ’MiniSAT’, which is

e!ecient and easy to use. After the attacking process is finished, an output file will

be generated storing the output data. In the output file the following data are stored:

whether the attack is successed, time consumption (in second), iteration number of the

attack, average time consumption per iteration, all the key-bits and its corresponding

key-bit in the original Verilog netlist file are listed.

5.6.6.2 Working Flow of SAT Attack

The working flow of SAT attak in LabLock is as follows:

1. Parse the Netlist

The first step is to parse the netlist of the locked circuit. This involves extract-

ing the structure and components of the circuit, such as gates, connections, and

input/output pins, which are essential for performing the subsequent analysis and

attack simulations.

2. Input Key Input List
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Prior to conducting a SAT attack simulation, the user must provide the list of key

inputs. This list contains the key bits that are used in the locked circuit, which

are critical for generating the constraints needed for the SAT solver.

3. Construct a Miter Circuit

The next step is to construct a Miter circuit by combining two identical locked

circuits. These two circuits share the same primary input, and their outputs are

compared. The outputs of the two circuits are XORed bit by bit, and all XOR

gate outputs are then fed into an N-input OR gate, which generates a di! signal.

This signal will indicate any discrepancies between the outputs of the two circuits,

which is crucial for evaluating the success of the attack.

4. Convert Verilog to CNF File

After generating the Miter circuit, it is converted into a Conjunctive Normal Form

(CNF) file. CNF is a standard format used for encoding logical formulas, which is

necessary for solving satisfiability problems using SAT solvers.

5. Generate a Random Input Pattern as the DIP

A random DIP (Distinguishing Input Pattern) is generated, which is used to dif-

ferentiate between the correct and incorrect keys. The DIP is then converted into

a constraint that can be incorporated into the CNF file, adding complexity to the

SAT attack.

6. Apply Constraints to the CNF File

An additional constraint is applied to the Miter circuit’s CNF file, which ensures

that the keys used in the two protected circuits cannot be identical. This constraint

is added to the CNF formula to make the attack more challenging by eliminating

the possibility of the two circuits using the same key.

7. Input the CNF File with Constraints into MiniSAT

The CNF file, now containing the constraints, is input into MiniSAT[130], a SAT

solver. If a solution is found, proceed to Step 8. If no solution is found, proceed

to Step 9.

8. Add new constrain
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If a solution is found in Step 7, repeat Steps 1-6 to generate a new CNF file with

additional constraints. The CNF file from the previous step is also incorporated

into the new CNF file, applying the relevant input pattern and requiring the two

key inputs to be identical as an additional constraint. Proceed to Step 7 to resolve

the updated CNF file.

9. Modify the Constraints

If no solution is found in Step 7, modify the constraints in the CNF file to require

the two key inputs to be identical. Use MiniSAT to solve the modified CNF, and

the output will provide the correct key.

10. Output the Log File

Finally, output the log file, which contains the results of the SAT attack simulation,

including whether the key was successfully found, the time taken for the attack,

and any relevant details about the attack process. Additional Context:

5.6.7 SPS (Signal Probability Skew) Attack

LockLab can also allow users to simulate SPS attack, a kind of gate-level structure

attack, which aims to find the gate with the largest ADS(Absolute di!erence of the

probability skew). In PFB locking blocks such as AntiSAT [2, 138, 139], the logic gate

with the highest ADS is often the locking gate that produces the flip signal. SPS attack

helps the malicious attacker to locate that gate and mute the output flip signal, disabling

the protection provided by the locking block.

The working flow of SPS attack is shown in the flow chart:
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Figure 5.14: Working Flow of SPS Attack Simulation in LockLab

The execution time of SARlock simualtion is as Figure 5.11 shows, it can be seen that the

overall execution time of SARlock increases as key-bit length grows. Another significant

source of execution time is netlist parsing. In the simulation result benchmark b18 has

total gate number of 111421, and s15850x has 3480. From the figure it can be seen

that the total gate number of protected circuit does cause extra execution time, but not

significant.
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Figure 5.15: Execution Time of SPS Attack Simulation in LockLab
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5.6.8 Sensitization Attack

The implementation is shown in the flow chart:
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Figure 5.16: Working Flow of Sensitization Attack Simulation in LockLab

The execution time of Sensitization attack simualtion is as Figure 5.17 shows, it can be

seen that the overall execution time of sensitization attack increases as key-bit length and

overall logic gate number grow. In the simulation netlist of two benchmarks, b18 (111421

gates) and s15850x (3480 gates) are first locked with RLL and attack by sensitization

attack.
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Figure 5.17: Execution Time of Sensitization Attack Simulation in LockLab

5.6.9 AI-based Attack Evaluation

AI-based attacks are among the fastest-growing threats to logic locking in recent years.

Due to the rapid advancements in artificial intelligence (AI), AI-based attacks are ex-

pected to become a key research area in the future of hardware security. Currently,

the primary AI-based attacks, such as Snapshot [119] and Sail [117, 118], target locking

strategies like RLL (Random Logic Locking) and SLL (Strong Logic Locking), which

rely on individual key-gates, rather than strategies like Anti-SAT and SFLL that are

based on locking blocks. These AI-based attacks focus on inserting a single key-gate

into a locked circuit, then learning the variations caused by the insertion of an unknown

gate. By analyzing these changes, the AI model learns the synthesis tool’s rules to infer

the optimal placement of key-gates in the protected circuit.

Although LockLab does not directly simulate AI-based attacks, it can be used to eval-

uate a locked circuit’s resistance to such attacks. This evaluation is achieved through

assessing the positioning of the key-gates, thereby determining the overall resilience of

the protected circuit to AI-based attacks.

The workflow for evaluating AI-based attack resistance is shown in the flow chart:
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Figure 5.18: Execution Time of AI-based Attack Evaluation in LockLab

The execution time of AI-based Attack Evaluation in LockLab is as Figure 5.18 shows,

it can be seen that the overall execution time increases as key-bit length and overall gate

number grow. It can be seen that for the locking stratetgies that protect circuit with

locking block, the key-gate often mixed with other inserted key-gates, which makes it

harder for AI-based attack to distinguish the inserted key-gate. On the other hand, for

approaches such as RLL or FLL which protect the circuit by single key-gates, AI-based

attack has much higher threat.
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5.6.10 Zeki implementation

LockLab can also implement Zeki on netlist file, the time consumption of di!erent bench-

marks with gate number ranging from 3k to 500k are shown in the table 5.2. And the

detailed implementation working flow as explained in chapter 3.

Table 5.2: Benchmarks and corresponding time consumption to implement Zeki

Benchmark Input Number Output Number Gate Number ZeKi Running Time (s)

b21 522 512 20,027 6.7

b18 3,357 3,343 111,421 32.2

s38354x 38 304 11,448 4.2

s38417x 28 106 8,709 3.2

s15850x 77 150 3,448 1.3

sha256 678 258 51,019 15.2

sha256x10 6780 2580 510,190 161.7

5.7 Summary

In this chapter, I introduced LockLab, an automated tool designed to facilitate the

implementation and evaluation of logic locking techniques for IC industry and can also be

used for educational purpose. LockLab enables users to apply various locking strategies

including RLL, FLL, SLL, Anti-SAT, SFLL, Zeki and SARLock, and o!ers an easy-

to-use platform for testing the resistance of locked circuits against common attacks,

including SAT-based, sensitization attack, SPS attack, and AI-based attacks evaluation.

The benchmarks used in the simulation has gate number ranging from 3k to 500k, and

the simulation time consumption never exceed 200 second, so it is safe to say that

Locklab is an e!ective tool.

LockLab provides users with a simple and intuitive automated tool for simulating a

wide range of locking strategies and attacks. The tool features a clean and user-friendly

interface (UI), making it easy to use. After each simulation, LockLab generates a detailed

output log file, which allows users to review the results, including whether the newly

inserted key-gates have been successfully applied or whether an attack was successful.

Upon inserting the locking mechanism into the circuit’s netlist, LockLab also o!ers an

automatic verification function. This function checks whether the circuit’s functionality
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remains intact when the correct key is applied, and whether the circuit produces out-

put corruption when an incorrect key is provided. This process helps ensure that the

logic locking mechanism is e!ectively securing the circuit while maintaining its intended

operation under normal conditions.

The chapter outlined the detailed functionality of LockLab, including its ability to parse

netlist files, insert key-gates, and perform functionality tests on the locked circuits to

ensure that they maintain their intended output under correct key inputs.

Through these features, LockLab provides significant value for both academic and indus-

trial users. For researchers, it serves as an educational tool for studying the fundamentals

of logic locking and the impact of di!erent strategies on circuit security. For engineers

and designers, it o!ers a practical solution for testing and refining logic locking tech-

niques to protect intellectual property (IP) from reverse engineering and unauthorized

access.

Furthermore, LockLab’s integration of automated testing and simulation reduces the

need for external hardware simulators and manual testbench writing, significantly stream-

lining the verification process. By making the evaluation of logic locking more e”cient

and accessible, LockLab contributes to the ongoing e!ort to enhance hardware security

in an era of increasing threats to integrated circuit design and hardware piracy.

As the IC industry continues to evolve with emerging attack methods and advanced

reverse engineering techniques, tools like LockLab will play a crucial role in ensuring

that hardware security remains a priority in the design and manufacturing processes.

Future enhancements to LockLab, such as improved AI-based attack simulations and the

incorporation of new locking strategies, will further strengthen its capabilities and help

safeguard the integrity of semiconductor designs in a rapidly advancing technological

landscape.
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Conclusions

6.1 Reflective Summary

This project focuses on two main objectives: the development of Dynamic Logic Locking

and Zero-Knowledge Logic Locking through Zeki, and the creation of a simulation tool

capable of supporting various gate-level locking strategies and attacks.

In contrast to traditional logic locking strategies, Zeki does not rely on a single locking

mechanism. Instead, it employs a dynamic locking mechanism. For the circuit to be

protected, Zeki randomly generates locking blocks based on di!erent validation mecha-

nisms, thus avoiding the structural vulnerabilities inherent in single-mechanism locking.

Additionally, the dynamic nature of the locking mechanism further enhances isolation

between di!erent protected products. Even if an attacker successfully breaches one

product’s defence, they cannot use the same strategy to compromise other products, as

each product’s locking mechanism is uniquely generated.

Moreover, Zeki is the first logic locking strategy to implement zero-knowledge locking.

Zero-knowledge logic locking takes security a step further by ensuring that no one,

not even those with physical access to the locked circuit, can discern the key or the

details of the locking mechanism. By minimizing the exposure of sensitive design details,

this strategy strengthens defence against internal threats such as insider attacks, where

trusted personnel might attempt to compromise the circuit’s security. This approach,

combined with the random generation of locking blocks, significantly reduces the threat

from insider attacks, as no one knows the details of the locking blocks.

115
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LockLab is a gate-level logic locking and attack simulation tool based on the concept

behind Lockit. It allows users to insert various logic locking strategies into netlist files

or simulate di!erent types of attacks on locked circuits. The process is simple and user-

friendly, making it highly convenient for researchers and students in the logic locking

field. This tool greatly facilitates the study and exploration of logic locking techniques.

6.2 Main Contributions

6.2.1 Chapter 3

This chapter provides a comprehensive explanation of the motivation, operational princi-

ples, and implementation flow of Zeki. It compares the working principles of various PFB

(Point-Function Based) locking validation formulas, from which the common character-

istics of these strategies are derived. Using these characteristics, the chapter introduces

the dynamic locking block, a randomly generated validation mechanism in Zeki. To fur-

ther enhance the output corruption rate, SLL (Strong Logic Locking) is incorporated,

along with a Key Verification Unit that also relies on a random mechanism to verify the

correctness of the key.

Additionally, Zeki has been evaluated through various simulations, demonstrating its

exceptional resilience against a range of attacks, including SAT attacks, SPS attacks,

and sensitisation attacks.

6.2.2 Chapter 4

Given that the majority of products in the IC industry are based on sequential circuits

rather than combinational circuits, Zeki has been adapted to include a version suitable

for sequential circuits. This section discusses the implementation of Zeki in sequential

circuits and evaluates the overhead incurred by Zeki in both combinational and sequen-

tial circuit benchmarks.
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6.2.3 Chapter 5

The chapter also introduces LockLab and Lockit. Lockit, which I co-authored as the

second author, is an SFLL (Strong Fault Logic Locking) automation tool described in

my published paper. Building on this idea, I later developed LockLab. While Lockit

primarily focuses on the SFLL locking strategy, LockLab o!ers users the flexibility to

apply seven di!erent logic locking strategies (RLL, FLL, SLL, Anti-SAT, SARLock,

SFLL, and Zeki) to Verilog-format netlist files. Furthermore, LockLab enables the sim-

ulation of SAT attacks, sensitisation attacks, SPS attacks, and even AI-based attack

evaluations. LockLab also features a user-friendly GUI and provides clear output logs

after simulations, making it an accessible and valuable tool for researchers and learners

in the field.

6.3 Limitations and Future Work

While the contributions of this thesis mark significant progress in the field, there are

important limitations and directions for future exploration:

• Overhead for small designs: Zeki’s area and logic overhead becomes dispro-

portionately large for small-scale circuits (typically below 1,000 gates). The 64-bit

and 128-bit locking blocks, while secure, can introduce more than 10% overhead

in such designs, making them less practical for resource-constrained applications.

• Benchmark limitations: The current evaluation is based on established aca-

demic benchmarks (e.g., ITC’99, MCNC), which are relatively small and out-

dated. Future work should explore Zeki’s scalability and performance on modern

industrial-scale circuits, especially those derived from open-source SoC platforms

or RISC-V cores.

• Abstraction level: LockLab currently operates at the gate-level. Integrating

support for High-Level Synthesis (HLS) would align better with modern design

practices and facilitate early-stage locking exploration.

• Hybrid and advanced locking: Future versions of Zeki may integrate with

other advanced locking paradigms such as FSM-based locking, embedded FPGA
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(eFPGA) security primitives, or runtime reconfigurable locking mechanisms, to

provide broader protection coverage.

6.4 Achievement of Objectives

1. To design a novel, dynamic logic locking mechanism.

This PhD project introduces ZeKi, a logic locking technique that generates Dy-

namic Logic Locking (DLL) security circuits through a zero-knowledge implemen-

tation. By employing a dynamic locking block, ZeKi ensures that each circuit is

protected using a randomly generated and unique locking mechanism, thereby en-

hancing security and mitigating the risk of structural attacks. It enables hardware

designers to implement logic locking without disclosing sensitive information, thus

strengthening confidentiality. Overall, the proposed ZeKi framework contributes

to the advancement of logic locking techniques and o!ers e!ective protection for

integrated circuits.

2. To reduce the risk of insider threats by minimizing key exposure.

The mechanism of ZeKi allows hardware designers to implement logic locking on

protected circuits without revealing any locking information, including the secure

key, locking block structure, key-bit arrangement, or locking mechanism—achieving

true zero-knowledge locking. ZeKi’s zero-knowledge property ensures that no party

involved in the design or verification process gains access to the locking key or

mechanism, significantly reducing the risk of insider threats.

3. To develop a practical simulation platform for logic locking research.

LockLab, a novel software tool developed in this work, addresses current limitations

in logic locking research by providing a practical simulation environment. The tool

allows users to apply multiple logic locking strategies to gate-level netlist files,

including RLL, FLL, SLL, ZeKi, Anti-SAT, SARLock, and SFLL. In addition,

it supports the simulation of various attacks, such as SAT attacks, SPS attacks,

sensitisation attacks, and the evaluation of AI-based attack methodologies.

4. To ensure that the proposed locking strategy provides strong resilience

against a broad range of attacks.
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This PhD work extensively evaluates the resilience of ZeKi against a range of

attack types, including SAT attacks, sensitisation attacks, and structural attacks,

using a diverse set of benchmark circuits. ZeKi demonstrates exponential resilience

against SAT attacks, meaning that the number of DIPs (Distinguishing Input Pat-

terns) required by an attacker grows exponentially with key length. In terms of

sensitisation attacks, all logic gates introduced by ZeKi are ’pairwise-secured’, a

configuration defined in this thesis as ’100-secure’, ensuring that sensitisation at-

tacks cannot compromise the circuit. For structural attacks, ZeKi uses randomly

generated locking blocks, introducing significant variability across designs. Simu-

lation results show that ZeKi achieves over 80% structural security across di!erent

benchmarks, validating its robustness.

5. To evaluate the performance of the proposed mechanism.

ZeKi’s performance has been evaluated using benchmark suites including ISCAS85,

ITC’99, EPFL, and OpenCores, covering circuits with gate counts ranging from

3,000 to over 100,000. To test scalability on larger designs, a custom benchmark

named sha256x10 was created by parallelizing ten SHA-256 modules, resulting in

a circuit with over 500,000 logic gates.

Although the overhead introduced by ZeKi is more noticeable in smaller circuits

(e.g., S15850x with 18.5% power and 17.2% area overhead), it becomes significantly

lower in larger circuits. For example, in the b21 benchmark, ZeKi incurs only 2.1%

power and 1.7% area overhead. Compared to LUT/FPGA-based logic locking

methods and other high-overhead approaches, ZeKi achieves the lowest area and

power overhead among state-of-the-art techniques. These results demonstrate not

only ZeKi’s e”ciency but also its excellent scalability for larger designs.

6.5 Final Remarks and Broader Impact

This thesis contributes to the ongoing evolution of logic locking by introducing Zeki,

a zero-knowledge, dynamic locking framework that prioritizes both structural unpre-

dictability and minimal key exposure. Through the development of LockLab, it also

provides the research community with a powerful and accessible platform for simulating

diverse locking strategies and attacks.
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Together, these contributions demonstrate that logic locking can be made both more

secure and more adaptable to the complex needs of modern IC design. Although limita-

tions remain, especially in overhead for small designs, the proposed methods represent a

step toward scalable and trustworthy hardware protection. Future work can build upon

this foundation by integrating Zeki with emerging paradigms such as reconfigurable

logic, post-quantum security primitives, and high-level synthesis flows.

The broader implication of this work lies in reinforcing the security of the semiconductor

supply chain in an era of increasing globalization and design outsourcing.
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Source code of LockLab

#!/ user/bin/env python3

# -i- coding: UTF -8 -*-i-

import re

import random

import copy

import readverilog

def read_user(filename ):

user_in = [None] * 3

with open(filename , ’r’) as f:

user_in [0] = (str(f.readline ())). strip(’\n’)

user_in [1] = int(f.readline ())

user_in [2] = list((str(f.readline ()). strip(’\n’)))

if len(user_in [2]) == user_in [1]:

print(’length fit ’)

else:

print(’length not fit ’)

return user_in

# output key input name list

def key_inputs(key_no ):

key_input_name = [None] * key_no

for ki in range(key_no ):

key_input_name[ki] = str(’keybit ’ + str(ki + 1))

return key_input_name

# output key wire name list

121
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def key_points(key_no ):

key_point_name = [None] * key_no

for ki in range(key_no ):

key_point_name[ki] = str(’keypoint ’ + str(ki))

return key_point_name

##############

def modi_module(circuit1 , filename , key_input_name ):

module_symbol = circuit1.inputlist + circuit1.outputlist

with open(filename , ’a+’) as f1:

print(’module output opened successfully ’)

i2 = 1

f1.write(’module ’ + circuit1.name + ’ (’)

for l1 in module_symbol:

if i2 == 1:

f1.write(l1)

elif (i2 > 9) and (i2 % 10 == 1):

f1.write(’,’ + ’\n’ + l1)

else:

f1.write(’,’ + l1)

i2 += 1

f1.write(’,’ + ’\n\n’)

i3 = 1

for l2 in key_input_name:

if i3 == 1:

f1.write(l2)

elif (i3 > 9) and (i3 % 10 == 1):

f1.write(’,’ + ’\n’ + l2)

else:

f1.write(’,’ + l2)

i3 += 1

f1.write(’);’ + ’\n\n\n’)

print(’module list output finished ’)

# filename1 is the name of netlist file

# filename2 is the name of output file

# key_input_name is the list of key input name

# ln is the end line number after reading of module finished

def modi_input(input_symbol , filename1 , key_input_name ):

with open(filename1 , ’a+’) as f2:

print(’input opened successfully ’)

i1 = 1

f2.write(’input ’)

for l in input_symbol:
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if (i1 > 9) and (i1 % 10 == 0):

f2.write(l + ’,’ + ’\n’)

else:

f2.write(l + ’,’)

i1 += 1

f2.write(’\n’)

i2 = 1

for l1 in key_input_name:

if i2 == 1:

f2.write(l1)

elif (i2 > 9) and (i2 % 10 == 1):

f2.write(’,’ + ’\n’ + l1)

else:

f2.write(’,’ + l1)

i2 += 1

f2.write(’;’ + ’\n\n\n’)

print(’input list finished ’)

def modi_wire(wire_symbol , filename , key_gate_name ):

with open(filename , ’a+’) as f2:

print(’wire opened successfully ’)

i1 = 1

f2.write(’wire ’)

for l in wire_symbol:

if (i1 > 9) and (i1 % 10 == 0):

f2.write(l + ’,’ + ’\n’)

else:

f2.write(l + ’,’)

i1 += 1

f2.write(’\n’)

i2 = 1

for l1 in key_gate_name:

if i2 == 1:

f2.write(l1)

elif (i2 > 9) and (i2 % 10 == 1):

f2.write(’,’ + ’\n’ + l1)

else:

f2.write(’,’ + l1)

i2 += 1

f2.write(’;’ + ’\n\n\n’)

print(’wire list finished ’)

def modi_output(output_symbol , filename ):

with open(filename , ’a+’) as f2:
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print(’output opened successfully ’)

i2 = 1

f2.write(’output ’)

for l1 in output_symbol:

if i2 == 1:

f2.write(l1)

elif (i2 > 9) and (i2 % 10 == 1):

f2.write(’,’ + ’\n’ + l1)

else:

f2.write(’,’ + l1)

i2 += 1

f2.write(’;’ + ’\n\n\n’)

print(’output list finished ’)

def write_gate(filename , gate_list ):

with open(filename , ’a+’) as f:

for g1 in gate_list:

f.write(g1)

f.write(’\n’ + ’endmodule ’)

#######################################################################

def modi_gate(userin , keynamelist , keywirelist , gate_symbol , gate_data , input_symbol ):

randnolist = []

print(gate_data)

for ir in range(userin [1]):

while 1:

temprand = random.randint(0, len(gate_data) - 1)

if gate_data[temprand ][3][0] not in input_symbol:

randnolist.append(temprand)

break

ranlen = set(randnolist)

if len(ranlen) != len(randnolist ):

return ’’, 1

print(randnolist)

keygatelist = []

for gr in range(userin [1]):

keyinput = copy.deepcopy(gate_data[randnolist[gr ]][3][0])

gate_data[randnolist[gr ]][3][0] = keywirelist[gr]

if userin [2][gr] == ’0’:

gatetype = ’xor ’

elif userin [2][gr] == ’1’:
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gatetype = ’xnor ’

else:

print(’gatetype error ’)

gatetype = ’xor ’

keygatelist.append ([ gatetype + ’ ’ + ’keygate ’ + str(gr) + ’ (’ + keywirelist[gr] +

’, ’ + keynamelist[gr] + ’, ’ + keyinput + ’);’])

newlist = []

for gg1 in gate_data:

inlist = ’’

for il in gg1 [3]:

inlist += ’, ’ + il

newlist.append ([gg1 [0] + ’ ’ + gg1 [1] + ’ ’ + ’ (’ + gg1 [2] + inlist + ’);’])

newlist += keygatelist

# print(newlist [10])

print(newlist [-1])

newtxt = ’\n’

for nn1 in newlist:

newtxt = newtxt + nn1[0] + ’\n’

return newtxt , 0

def unill(userfile , filein , fileout ):

userin = read_user(userfile)

print(userin)

keynamelist = key_inputs(userin [1])

keywirelist = key_points(userin [1])

readline1 = modi_module(filein , fileout , userin [0][:-2], keynamelist)

readline2 , input_symbol = modi_input(filein , fileout , keynamelist , readline1)

readline3 , output_symbol = modi_output(filein , fileout , readline2)

readline4 , wire_symbol = modi_wire(filein , fileout , keywirelist , readline3)

gate_no , gate_symbol , gate_data = read_gate(filein , readline4)

keygatelist , failflag = modi_gate(userin , keynamelist , keywirelist , gate_symbol , gate_data , input_symbol)

if not failflag:

write_gate(fileout , keygatelist)

return input_symbol , output_symbol , wire_symbol , gate_symbol , failflag
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import z3

import benchmarks

import circuit

import dip_finder

import sat_model

import oracle_runner

class SatAttack:

""" The main class for conducting the SAT attack ."""

def __init__(self , locked_filename , unlocked_filename ):

self.locked_filename = locked_filename

self.unlocked_filename = unlocked_filename

self.iterations = 0

def run(self):

""" Run the SAT attack ."""

print(" Reading in locked circuit ...")

self.nodes , self.output_names = benchmarks.read_nodes(self.locked_filename)

print(" Reading in unlocked circuit ...")

self.oracle_ckt = benchmarks.read_ckt(self.unlocked_filename)

key_inputs = [node.name for node in self.nodes.values () if node.type == "Key Input"]

primary_inputs = [node.name for node in self.nodes.values () if node.type == "Primary Input"]

print ("\n# Primary Inputs: %i" % (len(primary_inputs )))

print ("# Key Inputs: %i" % (len(key_inputs )))

finder = dip_finder.DipFinder(self.nodes , self.output_names)

runner = oracle_runner.OracleRunner(self.oracle_ckt)

oracle_io_pairs = []

while finder.can_find_dip ():

dip = finder.find_dip ()

oracle_output = runner.run(dip)

finder.add_constraint(dip , oracle_output)

oracle_io_pairs.append ((dip , oracle_output ))

self.iterations += 1

key = self._find_key(oracle_io_pairs , key_inputs)

expected_key = benchmarks.get_expected_key(self.locked_filename)
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#print ("\ nExpected key: %s" % (self._key_string(expected_key )))

#print (" Found key: %s" % (self._key_string(key )))

print ("\ nChecking for circuit equivalence ...\n")

self._check_key(key)

if self._check_key(key):

print(" Locked and unlocked circuits match")

else:

print("Key found does not match oracle ")

def _find_key(self , oracle_io_pairs , key_names ):

"""

Find a key that satisfies all DIPs found during the SAT attack.

This key will be in the set of correct keys.

oracle_io_pairs: array of dip/output pairs in the form of (dip , output)

returns: key that satisfies all dip constraints

"""

s = z3.Solver ()

for io_pair in oracle_io_pairs:

dip = io_pair [0]

output = io_pair [1]

constraint_ckt = circuit.Circuit.specify_inputs(dip , self.nodes , self.output_names)

output_constraints = [constraint_ckt.outputs ()[ name] == output[name] for name in output.keys ()]

s.add(* output_constraints)

s.check()

model = s.model()

key = sat_model.extract_from_model(model , key_names , completion=True)

return key

def _check_key(self , key):

"""

Check that the key returned from the SAT attack is correct. It

does this by creating a miter circuit with a locked version

and an oracle. If the diff signal returned from the miter circuit

cannot be True , then the circuits are equivalent.

key: the key returned from the SAT attaack

"""

locked_ckt = circuit.Circuit.specify_inputs(key , self.nodes , self.output_names)

miter = circuit.Circuit.miter(locked_ckt , self.oracle_ckt)
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s = z3.Solver ()

s.add(miter.outputs ()[" diff"] == True)

return s.check() == z3.unsat

def _key_string(self , key):

ordered_names = sorted(key.keys(), key=lambda name: str(name [8:]))

key_string = ""

for name in ordered_names:

if key[name]:

key_string += "1"

else:

key_string += "0"

return key_string

def read_user(filename ):

user_in = [None] * 3

with open(filename , ’r’) as f:

user_in [0] = (str(f.readline ())). strip(’\n’)

user_in [1] = int(f.readline ())

user_in [2] = list((str(f.readline ()). strip(’\n’)))

print(’Locking key: ’+str(user_in [2]))

from node import Node

from token_type import TokenType

class Parser ():

def parse(self , tokenizer ):

"""

Parses circuit nodes given a list of tokens from an input verilog file.

tokenizer: Tokenizer object for the Verilog input file

returns: the nodes of the circuit , the names of the output nodes

"""

self.outputs = []

self.nodes = {}

while True:

token_type = tokenizer.get_token_type ()
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if token_type == TokenType.EOF:

break

elif token_type == TokenType.INPUT:

self._parse_inputs(tokenizer)

elif token_type == TokenType.OUTPUT:

self._parse_outputs(tokenizer)

elif token_type == TokenType.WIRE:

self._parse_wires(tokenizer)

elif token_type == TokenType.AND:

self._parse_gate(tokenizer , "And")

elif token_type == TokenType.XOR:

self._parse_gate(tokenizer , "Xor")

elif token_type == TokenType.OR:

self._parse_gate(tokenizer , "Or")

elif token_type == TokenType.NOT:

self._parse_gate(tokenizer , "Not")

elif token_type == TokenType.NAND:

self._parse_gate(tokenizer , "Nand")

elif token_type == TokenType.XNOR:

self._parse_gate(tokenizer , "Xnor")

elif token_type == TokenType.NOR:

self._parse_gate(tokenizer , "Nor")

else:

tokenizer.skip_token ()

return self.nodes , self.outputs

def _parse_inputs(self , tokenizer ):

"""

Parses input nodes , both key and primary inputs

tokenizer: the Tokenizer object with the verilog input

"""

tokenizer.skip_token () # input token

while True:

# This check is NOT robust and could be improved probably

if "key" in tokenizer.id_value ():

self.nodes[tokenizer.id_value ()] = Node(tokenizer.id_value(), [], "Key Input ")

else:

self.nodes[tokenizer.id_value ()] = Node(tokenizer.id_value(), [], "Primary Input ")

tokenizer.skip_token ()

if tokenizer.get_token_type () == TokenType.SEMICOLON:

tokenizer.skip_token ()

break

else:
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tokenizer.skip_token ()

def _parse_outputs(self , tokenizer ):

"""

Parses output nodes

tokenizer: the Tokenizer object with the verilog input

"""

tokenizer.skip_token () # output token

while True:

self.outputs.append(tokenizer.id_value ())

self.nodes[tokenizer.id_value ()] = Node(tokenizer.id_value(), [], "Output ")

tokenizer.skip_token ()

if tokenizer.get_token_type () == TokenType.SEMICOLON:

tokenizer.skip_token ()

break

else:

tokenizer.skip_token ()

def _parse_wires(self , tokenizer ):

"""

Parses wire nodes

tokenizer: the Tokenizer object with the verilog input

"""

tokenizer.skip_token () # wire token

while True:

if tokenizer.get_token_type () == TokenType.SEMICOLON:

tokenizer.skip_token () # semicolon

break

elif tokenizer.get_token_type () == TokenType.COMMA:

tokenizer.skip_token () # comma

elif tokenizer.get_token_type () == TokenType.LEFT_BRACKET:

self._parse_bus(tokenizer)

else:

self._parse_single_wire(tokenizer)

def _parse_bus(self , tokenizer ):

"""

Parses wire nodes that are buses

tokenizer: the Tokenizer object with the verilog input

"""

tokenizer.skip_token () # left bracket

low_number = tokenizer.int_value ()
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tokenizer.skip_token () # low number

tokenizer.skip_token () # colon

high_number = tokenizer.int_value ()

tokenizer.skip_token () # high value

tokenizer.skip_token () # right bracket

bus_name = tokenizer.id_value ()

tokenizer.skip_token () # bus name

for i in range(high_number - low_number + 1):

wire_name = bus_name + "__index" + str(i)

self.nodes[wire_name] = Node(wire_name , [], "Wire")

def _parse_single_wire(self , tokenizer ):

"""

Parses a single wire node

tokenizer: the Tokenizer object with the verilog input

"""

self.nodes[tokenizer.id_value ()] = Node(tokenizer.id_value(), [], "Wire")

tokenizer.skip_token ()

def _parse_gate(self , tokenizer , gate_type ):

"""

Parses a gate node

tokenizer: the Tokenizer object with the verilog input

"""

tokenizer.skip_token () # gate token

tokenizer.skip_token () # gate identifier token

tokenizer.skip_token () # left paren token

output_name = self._parse_id(tokenizer)

tokenizer.skip_token () # comma

inputs = []

while True:

if tokenizer.get_token_type () == TokenType.RIGHT_PAREN:

tokenizer.skip_token () # right paren

break

elif tokenizer.get_token_type () == TokenType.IDENTIFIER:

input_name = self._parse_id(tokenizer)

inputs.append(input_name)

elif tokenizer.get_token_type () == TokenType.COMMA:

tokenizer.skip_token () # comma

else:

print("Error: unexpected token type " + tokenizer.get_token_type ())

raise
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tokenizer.skip_token () # semicolon

self.nodes[output_name ]. inputs = inputs

self.nodes[output_name ].type = gate_type

def _parse_id(self , tokenizer ):

"""

Parses an identifier name

tokenizer: the Tokenizer object with the Verilog input

"""

id_name = tokenizer.id_value ()

tokenizer.skip_token () # id

if tokenizer.get_token_type () == TokenType.LEFT_BRACKET:

tokenizer.skip_token () # left bracket

index = tokenizer.int_value ()

tokenizer.skip_token () # number

tokenizer.skip_token () # right bracket

return id_name + "__index" + str(index)

else:

return id_name

from z3 import *

class CircuitBuilder ():

def build_miter(self , ckt0 , ckt1):

"""

Builds a miter circuit z3 representation from two smaller circuits ."

ckt0: the first half of the miter circuit

ckt1: the second half of the miter circuit

returns: a miter circuit z3 representation

"""

output_xors = [Xor(ckt0.outputs ()[ name], ckt1.outputs ()[ name]) for name in ckt0.outputs ()]

diff = Or(* output_xors)

return {"diff": diff}

def build(self , nodes , output_names , key_suffix = "", spec_inputs = None):

"""

Builds a circuit z3 representation from a list of nodes in the circuit.

nodes: the nodes in the circuit

output_names: the names of the output nodes

key_suffix: suffix to apply to all key names
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spec_inputs: inputs to be replace by a value

returns: a z3 representation for the outputs of the circuit

corresponding to the nodes passed in

"""

self.visited_nodes = []

self.inputs = []

self.specified_inputs = spec_inputs

outputs = {}

for name in output_names:

outputs[name] = self._build_node(nodes , name , key_suffix)

return outputs , self.inputs

def _build_node(self , nodes , name , key_suffix ):

"""

Returns the z3 representation for a single node.

nodes: a list of all nodes in the circuit

name: the name of the node to build

key_suffix: the suffix to apply to key names

"""

node = nodes[name]

if name in self.visited_nodes:

return node.z3_repr

self.visited_nodes.append(name)

if node.type == "Key Input ":

self._build_key(node , name , key_suffix)

elif node.type == "Primary Input ":

self._build_input(node , name)

else:

fanin = [self._build_node(nodes , child_name , key_suffix) for child_name in node.inputs]

self._build_gate(node , fanin)

return node.z3_repr

def _build_gate(self , node , fanin ):

"""

Sets the z3 representation for a logic gate node.

node: the node to find the z3 representation for

fanin: the input nodes the the node

"""

if node.type == "And":

node.z3_repr = And(* fanin)
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elif node.type == "Xor":

node.z3_repr = Xor(*fanin)

elif node.type == "Or":

node.z3_repr = Or(*fanin)

elif node.type == "Not":

node.z3_repr = Not(*fanin)

elif node.type == "Nand":

node.z3_repr = Not(And(*fanin ))

elif node.type == "Xnor":

node.z3_repr = Not(Xor(*fanin ))

elif node.type == "Nor":

node.z3_repr = Not(Or(*fanin ))

else:

print(" Unknown node type " + str(node))

raise

def _build_key(self , node , name , key_suffix ):

"""

Sets the z3 representation for a key input node

node: the node to find the z3 representation for

name: the name of the key

key_suffix: the suffix to apply to the key

"""

key_name = name + key_suffix

if self.specified_inputs is not None and name in self.specified_inputs:

node.z3_repr = self.specified_inputs[key_name]

else:

self.inputs.append(key_name)

node.z3_repr = Bool(key_name)

def _build_input(self , node , name):

"""

Sets the z3 representation for a primary input node

node: the node to find the z3 representation for

name: the name of the key

"""

if self.specified_inputs is not None and name in self.specified_inputs:

node.z3_repr = self.specified_inputs[name]

else:

self.inputs.append(name)

node.z3_repr = Bool(name)
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