University of
@Southampton

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any
accompanying data are retained by the author and/or other copyright owners. A
copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This thesis and the accompanying data
cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder/s. The content of the thesis and
accompanying research data (where applicable) must not be changed in any way
or sold commercially in any format or medium without the formal permission of

the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic

details must be given, e.g.

Thesis: Zhang Yue (2025) "Advancing Logic Locking: A New Strategy Combining
Dynamic and Zero-Knowledge Techniques", University of Southampton, name of

the University Faculty or School or Department, PhD Thesis, pagination.

Data: Zhang Yue (2025)

Research Thesis: Declaration of Authorship

Print name: Yue Zhang

Advancing Logic Locking: A New Strategy Combining Dynamic and Zero-

Title of thesis:

Knowledge Techniques

| declare that this thesis and the work presented in it is my own and has been generated by me as the

result of my own original research.

| confirm that:

1.

This work was done wholly or mainly while in candidature for a research degree at this University;

Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

Where | have consulted the published work of others, this is always clearly attributed;

Where | have quoted from the work of others, the source is always given. With the exception of

such quotations, this thesis is entirely my own work;

I have acknowledged all main sources of help;

Where the thesis is based on work done by myself jointly with others, | have made clear exactly

what was done by others and what | have contributed myself;

Parts of this work have been published as:

Y. Zhang, B. Halak and H. Wang, ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

Resilience to Multiple Attacks, 2024 IEEE 37th International System-on-Chip Conference (SOCC),

Dresden, Germany, 2024, pp. 1-6, doi: 10.1109/SOCC62300.2024.10737800.

Signature:

Date: 2026-02-02

UNIVERSITY OF SOUTHAMPTON

Advancing Logic Locking: A New
Strategy Combining Dynamic and

Zero-Knowledge Techniques

by
Zhang Yue ORCID: 0009-0002-9275-1989

Supervisor: Dr Basel Halak

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy
in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

January 2026

http://www.soton.ac.uk
mailto:yz7g14@ecs.soton.ac.uk
https://orcid.org/0009-0002-9275-1989
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

Abstract

The IC industry’s growth has heightened attention to hardware security, particularly in
the last decade. Major IC companies, aiming to cut costs, have begun outsourcing parts
of their supply chain instead of managing it entirely in-house. This cost-saving strategy
increases vulnerability to malicious attacks. To counter this, various defence mechanisms
like logic locking have been proposed, offering protection against unauthorized IP access

and supply chain threats with minimal design flow alterations.

Despite logic locking’s many advantages in hardware defence, it confronts two major
challenges. Firstly, significant efforts in the field have aimed at extracting secret keys
from encrypted designs, particularly to clone IP. The SAT attack [1] notably undermines
the efficacy of logic locking. To mitigate this, various techniques like point function-
based logic locking (PFB) [2, 3, 1] have emerged, balancing SAT attack resilience with
minimal product overhead. However, PFB’s fixed mechanism inherently exposes specific
properties, making it vulnerable to targeted attacks. [5, 6] Secondly, traditional logic
locking presumes the design house’s trustworthiness. However, internal malicious actors

are a real threat in practice, against which current logic locking methods are ineffective.

This thesis introduces Dynamic Logic Locking (DLL), a new logic locking strategy to
address the aforementioned security concerns. DLL’s dynamic mechanism, unlike tradi-
tional methods, uses randomly generated locking blocks to counter SAT and other logic
locking attacks. Its unique mechanism for each design eliminates structural vulnera-
bilities, unlike conventional fixed-mechanism blocks. Moreover, DLL’s random block
generation allows for zero-knowledge implementation by designers, who need not know
the block’s structure or secret key details. This makes DLL robust even against internal

malicious attacks within the design house.

This thesis also introduces DLL-se, a sequential variant of DLL, expanding its application
to sequential circuits for increased utility. Additionally, it presents a Python-based logic
locking tool capable of integrating various logic locking types, including DLL, into Verilog
netlists and simulating attacks on logic locking. With its clear GUI, the tool is accessible

to designers and students and is suitable for hardware design and educational research.

Contents

Acknowledgements

1 Introduction

1.1 Problem Statement L L o
1.1.1 Hardware Security Threats and Defence Techniques
1.1.1.1 Watermarking and fingerprinting

1.1.1.2 Camouflaging

1.1.1.3 Split Manufacturing

1.1.1.4 Logic Locking

1.1.2 Basic Working Principle of Logic Locking
1.1.3 Threat Model in Attacks on Logic Locking
1.1.4 Existing Challenges
1.1.4.1 Limitation of Single Locking Mechanism

1.1.4.2 Insider Threat

1.1.4.3 Easy-to-use Simulation Tool

1.2 Motivation e
1.3 Research Objectives
1.4 Contributions of This Project
1.5 General Structure of the Thesis
1.6 Publication during PhDo oo oL

Literature Review
2.1 Introduction L e
2.2 Pre-SAT Logic Locking and sensitisation Attack
2.2.1 Random Logic Locking(RLL)
2.2.2 Fault-analysis based logic locking(FLL)
2.2.3 semsitisation attack o o oo
2.2.4 Strong Logic Locking oL
2.3 SAT Attack
2.3.1 SAT Attack Background Knowledge
2.3.1.1 Boolean Satisfiability (SAT) problem
2.3.1.2 Miter Circuit
2.3.2 Working Principle of SAT Attack
2.3.2.1 Attack Algorithmo
2.3.2.2 An Simple Example of SAT Attack
2.3.2.3 SAT Attack Discussion,
2.4 Post-SAT Logic Locking Strategies

13

CONTENTS

2.4.1 Point-Function Based Logic Locking 25
2.4.1.1 SARLock 26

2.4.1.2 Anti-SAT 27

24.1.3 ANDTree o o 29

2414 TTLock o o o o 31

2415 SFLL e 32

2.4.2 FSM/Sequential Logic Locking 33
2.4.2.1 Working Principle o oL 33

24.22 Advantages 34

2.4.2.3 Disadvantageso 35

2.4.2.4 Corresponding Attacks 35

2425 SUmMmMary . . . oo ..o e e e 35

2.4.3 Cyclic-based Logic Locking 35
2.4.3.1 Working Principleo L. 35

2.4.3.2 Advantages 36

2.4.3.3 Disadvantages oo 36

24.3.4 Corresponding Attacks 36

2435 SUMMATY . . .« v vt e e e e e e e e e 36

2.4.4 Routing-based logic locking 37
2.4.4.1 Working Principleo oL 37

2.4.4.2 Advantages 37

2.4.4.3 Disadvantageso 38

2.4.4.4 Corresponding Attacks 38

2445 Summary ol e e e 38

2.4.5 Scan Chain Logic Locking, 38
2.4.6 Other Logic Locking Techniques 40
2.4.6.1 Working Principle 0oL 40

2.5 ML-Based Attacks 43
2.6 SUMMATY o v et e e e e e e e 44
2.6.1 Logic Locking Strategies Comparison 44

ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

Resilience to Multiple Attacks 47
3.1 Motivation L 48
3.1.1 Logic Locking Strategies Comparison 49
3.1.1.1 Vulnerability of PFB 50

Untrusted Insider oo 53

3.2 Contribution 53
3.3 Working Principle of Zeki oo o oo 54
3.3.1 Dynamic Logic Locking 55
3.3.2 Strong Logic Locking (SLL) Insertion 59
3.3.3 Key Verification Unit 60
3.3.4 Zero-Knowledge Locking Strategy 62

3.4 Implementation of Zeki o oo 63
3.4.1 Parameter Input o oo 63
3.4.2 Implementation Flow of Zeki 63

3.5 Experiment Results and Discussion 65

CONTENTS 7
3.5.1 Experimental Setup oo 65
3.5.2 Resilience Against Multiple Attacks 65

3.5.2.1 SAT attack resilience 66

3.5.2.2 Sensitisation attack resilience 68

3.5.2.3 Structural attack resilience.o 70

3.5.3 Power, Delay, and Area overhead 71

3.6 SUMMATY . . . o v e e e e e 72
4 ZeKi: The Sequential version 75
4.1 TImplementation of SLL oo 76
4.2 ZekiA: Implement Zeki in Sequential Circuit in Single Stage 7
4.3 ZekiB: Implement Zeki in Sequential Circuit in Multiple Stages 80
4.4 Power, Delay, and Area overhead 83
4.5 SUMMATY « . v v v v et e et e e e e e e e e e 85
5 LockLab 87
5.1 Contributions e 88
5.2 Introduction to LockLab 0 L 89
5.3 Netlist Parsing 91
5.4 Verilog-CNF Transfermation. 92
5.4.1 CNF transfer e 93
5.4.2 Tseitin Transformation 94

5.5 Locked circuit Self-test L 95
5.6 Implementation of logic locking strategies 97
5.6.1 Random Logic Locking (RLL) 97
5.6.2 Fault-based Logic Locking (FLL) 98
5.6.3 Strong Logic Locking (SLL) 100
5.6.4 SARLock e 102
5.6.5 AntiSAT 104
5.6.6 SAT attack 105
5.6.6.1 SAT-solver and Output File 105

5.6.6.2 Working Flow of SAT Attack 105

5.6.7 SPS (Signal Probability Skew) Attack 107
5.6.8 Sensitization Attack 109
5.6.9 Al-based Attack Evaluation 110
5.6.10 Zeki implementation Lo o000 112

D7 Summary ... e e e e e e 112
6 Conclusions 115
6.1 Reflective Summary L oL 115
6.2 Main Contributions e 116
6.2.1 Chapter 3 e e 116
6.2.2 Chapter4d 116
6.2.3 Chapter b e 117

6.3 Limitations and Future Work 117
6.4 Achievement of Objectives 118
6.5 Final Remarks and Broader Impact 119

8 CONTENTS

A Source code of LockLab 121

Bibliography 135

List of Figures

1.1
1.2

1.3

1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

3.10
3.11

Different Threat Models at Different Stages of IC Design Flow [7]. 3
IC Supply Chain, Threat Modelling, and Logic Locking Engagement (In-

jecting in Netlist and Activating after Fabrication) 4
Logic Locking Examples at Different Levels of Abstraction: (a) Layout-

level Key-based Routing, (b) Transistor-level Key-based Basic Gates, (c)

Key-based Logic/Routing Gate-level, (d) RTL-level Keybased FSM, (e)

HLS-level Key-based Shift Register. 6
Basic working principle of logic locking., 7
Basic working principle of logic locking 17
sensitisation Attack L 19
Strong logic locking 20
Miter Circuit o 0 o 22
SAT attack flow chart [8] Lo L 23
Circuit Sample for SAT Attack 23
SARLock locking strategy 27
Original circuit with Anti-SAT block and An instance of Anti-SAT circuit 29
(a) non-decomposable ANDTree (b) decomposable ANDTree 30
(a) Original logic cone. (b) Modified logic cone 31
TTLock architecture and corresponding truth table 32
SFLL architecture 33
Examples of FSM-based logic locking strategies [7] 34
LUT-based logic locking [7], 37
An illustration of Scan Chain Logic Locking 39
PFB locking with Different Validation Mechanisms 51
Main Architecture of Zekio 55
Conventional PFB locking(a) vs DLL(b) 55
DLL breaks input/key sequence into chunks and assigns different valida-

tion operations to them. L o o 58
Different implementation for XOR operation 58
Key Verification Unit o o 61
DLL Block of Key Verification Unit 61
Implementation flow: ZeKi versus Other Logic Locking 62
SAT attack simulation on design locked with (a) RLLI[9], (b) SFLL]3],

(€)ZeKi's DLL. oo 66
Process diagram of sensitisation attack resilience simulation 69
ZeKi sensitisation attack resilience vs RLL[9] 70

10

LIST OF FIGURES

3.12 ZeKi structural attack resilience comparison with SARLock[4] and SFLL[3] 71

3.13 Power, and Area overhead of DLL protected circuit with 64-bit and 128-
bit key e e

4.1 Add SLL(strong logic locking) to Sequential Circuit
4.2 (a) Original Circuit; (b) Circuit Locked with ZekiA
4.3 (a) Original Circuit; (b) Circuit Locked with ZekiB
4.4 Power, and Area overhead of DLL protected circuit with 64-bit and 128-
bit key: (a) Power Overhead; (b) Area Overhead; (c) Power and Area
Overhead of ZekiB Implemented Benchmarks

5.1 GUIof LockLab
5.2 Parsing process of the netlist [10]
5.3 Application of the Tseitin transformation to a circuit with three gates . .
5.4 Working Flow of RLL in LockLab
5.5 Execution Time of RLL
5.6 Working Flow of FLL in LockLab
5.7 Execution Time of FLL
5.8 Working Flow of SLL in LockLab
5.9 Execution Time of SLLo
5.10 Working Flow of SARLock Simulation in LockLab
5.11 Execution Time of SARLock Simulation in LockLab
5.12 Working Flow of Anti-SAT Simulation in LockLab
5.13 Execution Time of Anti-SAT Simulation in LockLab
5.14 Working Flow of SPS Attack Simulation in LockLab
5.15 Execution Time of SPS Attack Simulation in LockLab
5.16 Working Flow of Sensitization Attack Simulation in LockLab
5.17 Execution Time of Sensitization Attack Simulation in LockLab
5.18 Execution Time of Al-based Attack Evaluation in LockLab
5.19 Al-based Attack reslience of RLL, FLL, SARLock, and Anti-SAT

List of Tables

1.1

2.1

2.2

2.3
24

3.1
3.2
3.3

4.1

5.1

5.2

Hardware defence strategies comparison

Output of circuit in Figure 2.1(3) with different key-bit when the input
bit x1=0, x2=1 e
SAT attack example (KO-K7 represent all the key bit combination (000,
... , 111) of the three key-bits, K1-K2-K3, combination)
TTlock truth table o
Merits and Drawbacks of Locking Strategies

Merits and Drawbacks of Locking Strategies
Benchmarks and corresponding time consumption to implement Zeki . . .
Benchmarks and corresponding SAT-solver Running Time

Area and Power Overhead

CNF formulas for AND, NAND, OR, NOR, INV, BUFFER gates gener-
ated using the Tseitin transformation [8]
Benchmarks and corresponding time consumption to implement Zeki . . .

11

Acknowledgements

I would like to begin by expressing my deepest gratitude to my supervisor, Dr. Basel,
whose guidance, understanding, and constant support were instrumental in the comple-
tion of this PhD project. His mentorship has been invaluable, and I truly believe he is

one of the best mentors in the world.

I am also immensely grateful to my parents for their endless love, which has been my
driving force throughout this journey. I sincerely hope they continue to enjoy good

health and live strong and happy lives.

I would like to give special thanks to my dear friend and brother, Dr. Wang Haoyu, who
generously helped me in rewriting parts of my dissertation. His assistance, encourage-

ment, and belief in me were pivotal to my progress.

Lastly, I would like to take a moment to acknowledge myself. Despite the challenges, 1
made it to the finish line. Only I truly understand the significance of this achievement.

I am proud of the journey and the person I have become. Keep pushing forward.

13

Chapter 1

Introduction

Since the beginning of the 21st century, the Integrated Circuit (IC) supply chain has
undergone significant transformations. These changes are reflected in various aspects:
the rising cost and complexity of IC manufacturing, increasing operational and trou-
bleshooting expenses of chip factories, the market’s growing demand for rapid response,
acceleration of supply chain processes, the involvement of multiple third-party Intel-
lectual Property (IP) providers, the introduction of cutting-edge technologies, and the
influence of maintaining a leading position in the semiconductor market [1]. These fac-
tors have collectively driven the horizontal development of the IC supply chain, where
different entities are responsible for the design, manufacturing, testing, packaging, and

integration stages, forming a globalised supply chain.

In this context of a globalised supply chain, to cope with the complexity of designing
key chip components, design teams increasingly acquire third-party IPs from numer-
ous owners to expedite product launches. Furthermore, considering the total cost of
manufacturing, wafer sorting, cutting, packaging, and package testing, along with the
necessity of employing the latest technologies, many design companies opt to complete
these stages in overseas facilities. The involvement of outsourcing and multiple stake-

holders not only reduces the cost of chips but also shortens their time to market.

Since the beginning of the 21st century, the rapid expansion of the chip market has led
to a significant growth of semiconductors industry, while also dramatically increasing
the market value of major manufacturers such as TSMC, UMC, and SMIC [11]. The

surge in demand has driven Original Equipment Manufacturers (OEMs) to continuously

2 Chapter 1 Introduction

advance their technologies in design, implementation, manufacturing, and testing in
order to remain competitive. At the same time, global collaboration has deepened
significantly. The acceleration of globalisation has made the supply chain more open

and efficient, improving overall productivity.

While globalisation of the supply chain has brought benefits, it has also increased risks.
The involvement of multiple entities, lack of trust, and insufficient monitoring have
decreased the control of original manufacturers and IP owners/suppliers over the supply
chain, leading to various hardware security threats such as IP piracy, overproduction
of ICs, and counterfeiting[12, 13]. Hardware security issues have become increasingly
serious, thereby attracting growing attention in this field. There is much work to be
done in this field to ensure that IC products are not plagiarized or attacked by malicious

entities.

To counter the upcoming hardware threats, the academic community has proposed var-
ious design trust countermeasures, ranging from passive to active strategies, such as
watermarking, IC metering, IC camouflaging, and hardware obfuscation[!2, 13]. Par-
ticularly, logic locking, as an active IP protection technique, has garnered widespread
attention over the past two decades, with robust solutions developed at various levels of

abstraction.

The structure of this thesis is organised as follows: Section 1.1 presents the problem
statement of this research. Section 1.2 outlines the motivation behind the study. Sec-
tion 1.3 presents the main research objectives. Section 1.4 summarises the key contri-
butions of this work. Section 1.5 provides an overview of the overall thesis structure.

Finally, Section 1.6 lists the papers published by the author during this doctoral research.

1.1 Problem Statement

1.1.1 Hardware Security Threats and Defence Techniques

In today’s complex integrated circuit (IC) supply chains, a wide range of security threats
have emerged, creating significant challenges for both industry stability and technological
integrity. The rapid expansion of these supply chains has introduced numerous security

vulnerabilities. Key threats include intellectual property (IP) piracy [14], overbuilding

Chapter 1 Introduction 3

[15], hardware Trojans [16, 17, 18, 19], reverse engineering [20, 21], and counterfeiting

[22, 23], whose potential threat is labeled in the supply chain shown in figure 1.1.

Direct access
Illeggl Ilire%ch to the Resources
x Y Insider (RTL, netlist, Layout)
- Untrusted
Design Hou
Design Hous Factory Untrusted

Design Original ~ Physical Tester
Spegc — Design Svnthesls Layout wlgfer Packaging
"
Design and Q? E
Integration _ Ic
System

Fabrlcatmn

Rouge Insider

Layout received
by contract for
Manufacturing

lllegal
reuse

Netlist
reconstuction

Physical - - v
Reverse Netist Yo Imaging per Depackaging Acquiring IC DA
Engineering reconstuction from images yering metals field/market Malicious

End-user

F1GURE 1.1: Different Threat Models at Different Stages of IC Design Flow [7].

In order to thwart emerging hardware security threats, various defence techniques have
been developed, including watermarking and fingerprinting [24, 25], camouflaging [20],

split manufacturing[27], and logic locking [9].

1.1.1.1 Watermarking and fingerprinting

Watermarking is a defence technique where the designer inserts a digital signature into
the circuit; this signature could be a design constraint [24]. In fingerprinting, the user’s
digital signature is also embedded in the design, along with the designer’s signature.
Techniques like watermarking and fingerprinting are referred to as passive techniques,
which can only detect malicious operations on the hardware but cannot protect the
circuitry from malicious attacks [25]. Both techniques are employed at the logic design

and physical design stages of the design flow.

1.1.1.2 Camouflaging

Camouflaging, as its name, in selected part of the circuitry, designer replaces the gates
with their camouflaged counterparts. Compared to normal logic gates, camouflaged
gates are much harder for the reverse engineering attackers to tell their function. With
a trusted foundry, camouflage is able to protect the circuit from reverse engineering in

certain level [20].

4 Chapter 1 Introduction

1.1.1.3 Split Manufacturing

In order to address the issue of an untrusted foundry, split manufacturing divides the
manufacturing of the product into two stages: back-end-of-the-line (BEOL) and front-
end-of-the-line (FEOL). The two parts of the product are then manufactured separately
in two different foundries to ensure that no single foundry has full access to the design

[28, 29, 30, 31, 32].

Split manufacturing and camouflaging are both layout-level techniques that are applied

to the product after the physical design stage.

1.1.1.4 Logic Locking

Logic locking refers to the ability to introduce post-fabrication programmability through
additional gates, known as key-gates, which are controlled by a secret key. These key-
gates enable the locking of the circuit’s functionality, ensuring that the circuit behaves
correctly only when the correct key is provided. In other words, hardware designers
of logic locking will implant a serious of logic gates [J] or other structures such as
eFPGA [14, 33, 34], which will cause primary output of the protected circuit to distort.
The only way for the protected circuit to perform functional correctness is to input a
preset key sequence which only hardware designer has access to and is used to activate

the product after fabrication. The correct key sequence is then stored in a tamper-proof

Rouge Insider & & cog:,t::;iliﬁ:;i i Reverse Engineering
O O Fg— * &

memory in the system.

System Design netlist Physical synthesis Wafer Functional IC
S T YY)
@, = s I :[=):
3rd IP owner = (@] =t s I ﬁ
Desig;%am Logic synthesis) a) Physical synthesis Fabrication Testing/Packing a End-user
Logic locking Activation

FiGure 1.2: IC Supply Chain, Threat Modelling, and Logic Locking Engagement
(Injecting in Netlist and Activating after Fabrication)

In the standard design flow, locking gates are implanted in the chip during the logic
synthesis stage, as depicted in figure 1.2, and only the designer knows the correct key.

This mechanism ensures that even if a malicious foundry obtains the design in the

Chapter 1 Introduction 5

subsequent stages, the attacker cannot make the chip function correctly without the
right key. The chip is activated by the secret key after the design flow is completed,
and the key is stored in tamper-proof memory, ensuring that malicious attackers cannot
access it. This logic locking mechanism ensures the design’s security throughout the
design flow and at the end-user stage. Compared to other defence strategies, as shown

in table 1.1, logic locking offers a broader range of protection across the supply chain.

TABLE 1.1: Hardware defence strategies comparison

DfTr technique SoC integrator Foundry Test facility End-user
Watermarking N N N N
Camouflaging N N N Y
Split manufacturing N Y N N
Logic Locking Y Y Y Y

One of the critical challenges in logic locking is enabling effective functional verification
without disclosing the secret key to potentially untrusted parties involved in the design
or testing process. To address this issue, several practical and secure strategies have been
developed. The most widely adopted approach involves the use of encrypted simu-
lation modules compliant with the IEEE 1735 [35] standard for IP encryption. By
encrypting the key-related modules and controlling access rights through license-based
restrictions, third-party verification teams are able to simulate the design and verify
functionality without accessing the actual RTL or the embedded key. In addition, com-
mercial EDA tools such as Synopsys VCS, Cadence Xcelium, and Mentor Questa provide
support for encrypted RTL simulation, enabling secure key encapsulation throughout the

verification flow.

Another secure alternative is the use of formal equivalence checking tools such as Ca-
dence Conformal or Synopsys Formality, which allow designers to verify the equivalence
between the locked and unlocked versions of the circuit using symbolic representations
of the key. In this setting, the key remains an abstract symbolic variable during verifica-
tion, thereby preventing its exposure. These approaches collectively ensure that robust
design verification can be conducted without compromising the confidentiality of the

secret key—an essential requirement for secure hardware IP delivery and validation.

Hardware designers can implement logic locking at various levels of abstraction. Fig-
ure 1.3 illustrates a simple example of logic locking across different abstraction levels.

For instance, at the layout level, as shown in Figure 1.3, the metal-insulator-metal

6 Chapter 1 Introduction

(MIM) structure, which connects two adjacent metal layers, can be used as a key-based
programmable unit for routing-based locking [36]. Compared to other abstract levels,
Gate-level logic locking technique is often the easiest to implement, and cause acceptable

overhead.

Currently, most existing logic locking techniques are implemented at the gate-level,
typically as a post-synthesis operation on the synthesized gate-level netlist in the supply
chain. In this Phd project, all the work, including Zeki and Locklab, is focused on

gate-level logic locking.

e AL
pg
'CI..)
S
=
[&]
Silicon Substrate p%laatlgty
(@) (b) ()
case STATE is void shift_reg
when “0000” => (dp <4>in, cp <4> key, dp <4> out) {
if (key[0] = ‘1") then volatile reg<4> shift_temp;
STATE<=*%1010"; for(i=4;i>0;i-){
else STATE <= “0110"; #pragma HLS unroll
when “0001" => shift_templi-1] =
if (key[1] = ‘0’) then shift_temp[i] ™ key[i]
STATE<=*%1110" }
else STATE<=“0111"; out[3] = shift_temp[3];
when “0110" => out[2] = shift_temp[2];
if (key[2] = ‘1") then out[1] = shift_temp[1];
STATE<=“1011"; out [0] = shift_temp[O];
else STATE <= “0010"; }
(d) (e)

FIGURE 1.3: Logic Locking Examples at Different Levels of Abstraction: (a) Layout-

level Key-based Routing, (b) Transistor-level Key-based Basic Gates, (¢) Key-based

Logic/Routing Gate-level, (d) RTL-level Keybased FSM, (e) HLS-level Key-based Shift
Register.

Chapter 1 Introduction 7

1.1.2 Basic Working Principle of Logic Locking

Logic locking[9] stands out for its ability to safeguard the supply chain and end-users

with minimal design flow modifications.

Logic locking protects a chip by inserting locking gates, typically XOR/XNOR gates.
The chip with implanted locking gates requires the user to input a correct secure key to

function properly; otherwise, it will produce incorrect outputs.

Figure 1.4 shows why this is the case.

} g d— ar v o

| .l 2 || s> 2 Vi

£ 3 s1

>

& Locked =

gy U B S 2 s2

e T | LD—2 | | 2
k1-

(1) Logic locking structure (2) Original circuit (3) Protected circuit

FIGURE 1.4: Basic working principle of logic locking.

1.1.3 Threat Model in Attacks on Logic Locking

The threat models for attacks on logic locking are usually divided into two categories:
oracle-guided and oracle-less, where the oracle refers to a functional IC (or golden model)
that provides correct input—output pairs. The work of this project is focused on oracle-

guided threat model.

In the threat model for oracle-guided attacks, it is assumed that attackers have access

to two critical entities:

1. A functional IC: Attackers can readily acquire a functional IC from the market.
During the attack process, this functional IC provides valid input/output pairs as

golden references;

2. A gate-level netlist file of the locked circuit: This file is obtained through

reverse engineering or from an untrusted foundry.

8 Chapter 1 Introduction

1.1.4 Existing Challenges

1.1.4.1 Limitation of Single Locking Mechanism

Logic locking is a widely adopted hardware security technique due to its ease of im-
plementation and relatively low overall hardware cost. It offers broad protection for
integrated circuits (ICs) and other hardware products. However, its development has
faced significant challenges, particularly from attacks designed specifically to bypass
logic locking mechanisms or extract the secret key. One such attack, the SAT attack [!],
involves converting a locked circuit’s netlist into an SAT(satisfiability) problem and
then using specialised SAT solvers to efficiently break the protection, making the attack

process quick and effective.

In response to SAT attacks, numerous defence-oriented logic locking techniques have
been proposed. Among them, Point-Function Based (PFB) logic locking [1, 2, 37, 3]
provides relatively balanced performance: acceptable overhead and resilience against
malicious attacks. However, since each PFB locking strategy relies on a single locking
mechanism, it has inherent structural vulnerabilities. Once these vulnerabilities are
published, they become exposed to attackers. If an attacker identifies these weaknesses,

any circuit protected by that particular PFB strategy becomes susceptible to attacks.

1.1.4.2 Insider Threat

Compared to other hardware security techniques, logic locking provides extensive pro-
tection throughout the entire IC design flow. Typically, its protection spans from post-
synthesis all the way to the product’s market deployment. To enhance the security of
the implementation, the secret key used to activate the product is typically introduced
after the fabrication phase. However, this approach still carries potential risks. Insider
threats may steal information about the locking block structure or the positioning of

key-gates, as personnel must intervene during the insertion of locking gates or blocks.

If the locking mechanism of a locked product is leaked, malicious attackers may exploit
the structural characteristics of the corresponding locking block to develop targeted

attacks that compromise the circuit’s protection. For example, sensitization attacks [7]

Chapter 1 Introduction 9

have been designed specifically against SFLL [3], while SPS attacks [0] target Anti-
SAT [2]. Furthermore, the leakage of other information—such as the location of key
gates or the arrangement of key bits—can significantly lower the difficulty for attackers

attempting to break the locking scheme.

This necessity for human intervention introduces the possibility of leakage, creating
a security vulnerability for the protected product. This risk is especially concerning
given that nearly all logic locking strategies rely on a single locking mechanism. If
the information regarding the locking mechanism leaks, the entire design flow becomes

susceptible to threats, severely compromising the integrity of the protection.

1.1.4.3 Easy-to-use Simulation Tool

The rapid development of the IC industry in the 21st century has led to an increasing
demand for hardware security technologies. However, while logic locking stands out as
a key player in hardware security, its development has not kept pace with the industry’s
growth. One of the reasons for this slower progress is the lack of a simple, easy-to-use,
and comprehensive simulation tool. This gap in tools hampers the broader adoption
and refinement of logic locking techniques, limiting their effectiveness in meeting the

growing security demands of the industry.

1.2 Motivation

To address the challenges outlined above, this project introduces a novel logic locking
strategy, Zeki, and presents a related paper, Zeki: A Zero-Knowledge Dynamic Logic
Locking. Compared to traditional logic locking techniques, Zeki introduces two key in-
novations. First, it employs a dynamic logic locking mechanism that randomly generates
a locking block for each product based on different locking mechanisms. This approach
avoids the inherent structural vulnerabilities present in single-locking mechanisms, which

attackers could exploit to break the circuit’s defences.

Second, unlike single-locking mechanisms, Zeki ensures that even if one product is com-
promised, all other products using the same locking strategy remain secure. Although

the same locking mechanism is used for different chips within the same product line,

10 Chapter 1 Introduction

Zeki generates unique locking blocks for different products. This ensures that an at-
tacker who successfully cracks one product’s defence cannot apply the same method to

other products protected by Zeki.

Additionally, the dynamic locking mechanism prevents insider involvement in the logic
locking implementation, enabling the realization of zero-knowledge locking. Zeki is the
first locking strategy to achieve zero-knowledge locking, significantly reducing internal

participation and thus mitigating the risk of insider attacks or leaks.

In response to the current lack of effective automatic simulation tools in the logic locking
field, I developed LockLab, an automated tool for simulating logic locking and associ-
ated attacks. LockLab provides a convenient and efficient platform for researchers and
learners in the logic locking domain, greatly enhancing research productivity by enabling

fast simulations of various locking strategies and corresponding attacks.

1.3 Research Objectives

The primary objective of this research is to enhance the security and robustness of logic
locking strategies in the face of increasingly sophisticated hardware attacks. In light of
the limitations of existing single-mechanism logic locking approaches and the practical
risks posed by insider threats and structural vulnerabilities, this project aims to address
these gaps through both theoretical development and practical tooling. The specific

objectives are as follows:

e To design and implement a novel logic locking strategy, that leverages dynamic
and randomized locking mechanisms to eliminate structural vulnerability caused

by single mechanism and enable zero-knowledge protection.

e To develop a secure framework in which the locking process is resistant to insider

threats by minimizing designer involvement during the locking phase.

e To ensure that the proposed method provides strong resilience against a broad

range of attacks, including SAT-based, sensitization-based, and Al-based attacks.

e To develop an easy-to-use, automated simulation platform, which is capable of
modelling various logic locking strategies and attacks, thereby accelerating research

and enabling comparative evaluation.

Chapter 1 Introduction 11

e To evaluate the effectiveness, scalability, and robustness of the logic locking strat-
egy and simulation platform developed in this work through extensive experiments

using industry-standard benchmarks.

1.4 Contributions of This Project

The contributions of this project are listed below:

1. The introduction of the first zero-knowledge locking strategy significantly reduces
the involvement of internal designers in the logic locking implementation, thereby
minimizing the risk of internal attacks and information leaks. This reduction in
insider participation enhances the overall security of the product by preventing

potential malicious exploitation and safeguarding sensitive product information.

2. The proposed locking strategy, Zeki, employs a dynamic locking mechanism. Un-
like traditional single-locking mechanisms, dynamic locking inherently avoids the
structural vulnerabilities present in static locking blocks. Additionally, it prevents
the issue where, once a product is compromised, all other products protected by

the same mechanism can be attacked using the same exploited vulnerability.

3. Extensive simulations were conducted to evaluate Zeki’s resilience against various
types of attacks. The simulation results demonstrate that Zeki provides strong

defence capabilities against a wide range of attacks targeting logic locking.

4. Furthermore, the LockLab tool was developed as an automated simulation plat-
form for logic locking strategies and related attack simulations. LockLab is user-
friendly and significantly enhances the efficiency of researchers and learners in the
logic locking field. It supports simulations for multiple locking strategies, includ-
ing RLL, FLL, SLL, Zeki, SFLL, Anti-SAT, and SARLock, as well as simulations
for various attacks such as SAT, SPS, sensitization, and Al-based attacks. These

simulations validate LockLab’s effectiveness in practical applications.

1.5 General Structure of the Thesis

The structure of the remaining chapters in this thesis is as follows:

12

Chapter 1 Introduction

e Chapter 2: Literature Review

This chapter provides a detailed examination of various logic locking strategies
and the associated attack techniques targeting logic locking. Special emphasis will
be placed on SAT attacks and the different types of PFB (Point-Function Based)
logic locking, as these techniques have been extensively studied in the field of logic
locking. Moreover, they are fundamental to understanding the core principles of
this project, particularly in relation to Zeki’s operational framework. Other logic
locking strategies and corresponding attacks will also be discussed, providing a

comprehensive overview of the current landscape in this area of research.

Chapter 3: Zeki

This chapter focuses on the Zeki technique, detailing the motivation behind its
design and its contributions to the field. A thorough explanation of Zeki’s mech-
anism will be presented, followed by a comparison with other PFB logic locking
techniques that rely on a single locking mechanism. Additionally, simulations us-
ing various benchmarks will be conducted to demonstrate Zeki’s resilience against
different attacks, providing empirical evidence of its effectiveness. Furthermore,
this chapter will explore Zeki’s role as the first zero-knowledge logic locking tech-
nique, highlighting its advantages in defending against insider threats compared

to other locking mechanisms.

Chapter 4: Zeki for Sequential Circuits

This chapter introduces the sequential version of Zeki, addressing the fact that,
in the IC market, sequential circuits are more prevalent than combinational ones.
While Zeki was originally designed for combinational circuits, its adaptability to
sequential circuits will be discussed in this chapter. The implementation process
of applying Zeki to sequential circuits will be explained, demonstrating how the

technique can be used in a broader range of IC designs.

Chapter 5: LockLab and Lockit

This chapter presents an in-depth discussion of LockLab and Lockit, two automa-
tion tools for implementing logic locking. These tools significantly simplify the
workflow for logic locking implementation, allowing designers to more easily inte-
grate logic locking into their work or conduct experiments with various gate-level

locking strategies. Additionally, LockLab proves to be an excellent educational

Chapter 1 Introduction 13

tool, making it a valuable resource for teaching hardware security and logic lock-

ing concepts.

e Chapter 6: Conclusion

The final chapter will summarize all the work presented in this thesis, including the
key contributions and findings. It will also discuss the limitations of the current
research and outline potential future directions for further exploration in the field

of logic locking and hardware security.

1.6 Publication during PhD

Zhang Y, Halak B, Wang H. ZeKi: A Zero-Knowledge Dynamic Logic Locking Im-
plementation with Resilience to Multiple Attacks[C]//2024 IEEE 37th International
System-on-Chip Conference (SOCC). IEEE, 2024: 1-6.

Kajtez N, Zhang Y, Halak B. Lockit: A Logic Locking Automation Software[J]. Elec-
tronics, 2021, 10(22): 2817.

Chapter 2

Literature Review

2.1 Introduction

Logic locking has evolved into one of the most prominent hardware security techniques
for protecting integrated circuits (ICs) against a wide spectrum of threats, including IP
piracy, overproduction, counterfeiting, and reverse engineering. Over the past decade,
the research community has proposed numerous locking schemes and corresponding
attacks, leading to a highly dynamic arms race between defenders and adversaries. In
particular, the emergence of the SAT attack has fundamentally reshaped the design
goals of logic locking, shifting the focus from simple output corruption towards rigorous

SAT-resilient constructions.

This chapter provides a structured review of existing logic locking strategies and their
associated attack methodologies. It begins with pre-SAT (section 2.2) schemes such as
Random Logic Locking (RLL), Fault-analysis-based Logic Locking (FLL), and Strong
Logic Locking (SLL), together with early attacks like the sensitisation attack. It then in-
troduces SAT-based attacks and explains how they exploit distinguishing input patterns
to recover the secret key efficiently in section 2.3. Subsequently, Point-Function based
(PFB) locking schemes, including SARLock, Anti-SAT, ANDTree, TTLock, and SFLL
are discussed as representative post-SAT countermeasures in section 2.4. The section will
also introduce advanced approaches such as FSM /sequential locking, cyclic-based and

routing-based locking, scan-chain locking, and higher-level or timing-based techniques,

15

16 Chapter 2 Literature Review

as well as eFPGA-based [P-level locking. After that, recent machine-learning-based at-
tacks are reviewed in section 2.5. In section 2.6 merits and drawbacks of different logic
locking approaches are given and compared to show that Point-function based logic
locking provides the most balanced performance. This literature review establishes the
technical context and motivates the need for the new locking strategy and automation

framework proposed in this thesis.

This chapter reviews the main developments in logic locking and related attack tech-
niques. It first discusses pre-SAT logic locking schemes and early attacks, then explains
the working principle of the SAT attack as a key turning point in the field. Afterwards,
it surveys post-SAT logic locking strategies, including point-function-based locking, FS-
M /sequential locking, cyclic-based and routing-based approaches, scan chain locking,
and other advanced techniques. Finally, recent machine-learning-based attacks are re-
viewed. The chapter concludes with a comparative discussion of the merits and lim-
itations of these strategies, highlighting why point-function-based logic locking offers
a relatively well-balanced solution and thereby motivating the choice of this family of

techniques as the basis for the new strategy proposed in this thesis.

2.2 Pre-SAT Logic Locking and sensitisation Attack

Before the advent of SAT-based attacks, logic locking techniques were mainly designed
to introduce functional corruption under incorrect key values. Early schemes such as
Random Logic Locking (RLL) and Fault-analysis-based Logic Locking (FLL) focused
on inserting XOR/XNOR key-gates to maximise output corruption, while Strong Logic
Locking (SLL) was later proposed to resist sensitisation attacks. This section reviews
these pre-SAT techniques and the first generation of attack against them, providing the

historical background for the later shift towards SAT-resilient designs.

2.2.1 Random Logic Locking(RLL)

The original version of logic locking was introduced by [9] to protect IC products from
threats such as overproduction, counterfeiting, and other malicious attacks. The concept

of basic logic locking is illustrated in Figure 2.1. In this scheme, XOR/XNOR gates are

Chapter 2 Literature Review 17

TABLE 2.1: Output of circuit in Figure 2.1(3) with different key-bit when the input

bit x1=0, x2=1
ceec
gray!50 [x1,x2] k1 k2 yl y2
01 0 0 1 1
gray!50 01 0 1 1 0
01 1 0 0 1
01 1 1 0 0

embedded into the circuit to obscure its functionality. For example, when an XOR key-
gate (KG) is inserted into the protected circuit (see Figure 2.1(3)), if the K1 bit is 0,
KG1 functions as a simple wire. If K1 is set to 1, KG1 behaves as an inverter. In the

case of XNOR gates, the logic is reversed.

5] H Ayl ki

P e | OO
>

£~ Lc?rccﬁf ::)E >—.V2)jsz v2

hind & kz@

(1) Logic locking structure (2) Original circuit (3) Protected circuit

FI1GURE 2.1: Basic working principle of logic locking

This mechanism enables the integration of N key-gates, comprising a mix of XOR and
XNOR gates, to effectively generate a N-bit security key. The circuit will only function

correctly when the correct key sequence is applied.

Table 2.1 presents an example of the input/output combinations for the circuit depicted
in Figure 2.1, where the primary input pattern [x1, x2] is set to ’01’. The correct key for
this circuit is '01’, and the corresponding output is '10°, which is highlighted in gray in
the table. As shown, injecting an incorrect key leads to output distortion, emphasizing

the security provided by the locking mechanism.

In this original logic locking approach, the locking gates (XOR and XNOR) are inserted

randomly into the circuit, a technique known as Random Logic Locking (RLL).

2.2.2 Fault-analysis based logic locking(FLL)

RLL inserts key gates randomly into the circuit; as a result, the inserted key gates’
impact on the output has significant uncertainty. Ideally, 50% of the output bits should

exhibit output corruption when an incorrect key is applied to the circuit. This metric can

18 Chapter 2 Literature Review

be expressed as the Hamming distance (the bitwise difference) between the output bits
produced with the correct and incorrect keys. A 100% output corruption is effectively
equivalent to 0% at some level, since each bit can only be either 1 or 0. Based on
this principle, 75% output corruption provides similar protection to 25%, while 50%
offers the highest possible level of protection. For RLL, the output corruption rate is

uncontrollable, and in the case of small circuits, this value may be relatively low.

Rajendran et al. suggest that the impact of an incorrect key is similar to a stuck-at
fault, where a signal is stuck at '0’ or '1’. FLL (Fault-analysis-based Logic Locking)
aims to increase the output corruption caused by an incorrect key by inserting key gates
at locations with the largest fault impact [38, 39]. A concept of a fault impact metric
was proposed in [38, 39] to determine the optimal key gate insertion locations. Here,
fault impact refers to the degree to which a selected location can propagate a detectable

fault from the input to the output.

FaultImpact = (No.of TestPatternss_q—o * No.of.Outputs,_,_) 2.1)
2.1

+(No.of TestPatternss_q—1 * No.of.Outputs,_,_;)

According to the fault impact metric defined in [38], the fault impact of a certain location
in the circuit is the sum of the products of the number of test patterns that detect a stuck-
at fault and their corresponding output bit numbers. In the process of FLL insertion, the
hardware designer computes the fault impact of the logic gates in the circuit to identify
the insertion spots with the highest fault impact. The key gates are then inserted at

those selected positions.

Compared to RLL, fault-analysis-based logic locking achieves a higher level of output
corruption for incorrect key values. The Hamming distance (the bitwise difference)
between the correct and corrupted outputs is approximately 50% when using the FLL

algorithm.

2.2.3 sensitisation attack

sensitisation attack is the first powerful attack against logic locking. The threat model
for sensitisation attack is also used for simulation of other attacks strategies against logic

locking. [10, 41, 42]

Chapter 2 Literature Review 19

1. The hardware designer is trusted.
2. End-user and the foundry is no trusted.

3. The attacker has access to a functional product, which can be bought from the

market.

4. The attacker has access to the netlist of locked circuit of the product.

X4
K1 X

N\

[— K1
3 |Gly

4 T62) | 02
15 -

5 =7 |65 Jp JoD

8/

FIGURE 2.2: sensitisation Attack

Instead of applying brutal force decryption, the attackers in a sensitisation attack tries
to sensitise the key bit to output, in another word, the key bit will be propagated to the

output with no corruption.

Take the circuit in Figure 2.2 above as an example, when the input pattern of 11, 12,
and I3 is 110, the output of G1, G3 is 1, 0, and the XOR key gate works as wire, hence
the output of key gate 1 is key bit K1. Also, the output of G4 is 0, so the G6’s output
is key bit K1. Such attack is achievable since the attacker has access of functional IC
and locked netlist of the product (able to deduce the input pattern needed for sensitise
attack).

20 Chapter 2 Literature Review

2.2.4 Strong Logic Locking

In response to the sensitisation attack, Strong Logic Locking (SLL) was developed.
When a circuit is secured using the SLL algorithm, an attacker cannot sensitise a single

key bit to the output without accessing other key bits [10, 11].

E:jG 1 G3)° @—01
K1 ,

2 3 B’

14— @O

= Tos) Jap-e

FIGURE 2.3: Strong logic locking

In SLL, the sensitisation of a key gate is obstructed by the presence of other key gates,
a mechanism known as pairwise security. If the inserted key gates are pairwise secured,
an attacker attempting a sensitisation attack cannot propagate a key bit to the pri-
mary output simply by controlling the primary input. They would also need to control
the output of the pairwise-secured key gate, which in turn also requires access to its

corresponding secured key.

For example, in Figure 2.3, to sensitise key bit K1, the attacker must ensure that the
output of key gate 2 is '0’. However, without access to key bit K2, which is securely
stored in tamper-proof memory, the attacker cannot manipulate the output of key gate
2. Similarly, other key bits cannot be sensitised to the primary output. In this way, the
inserted key gates not only protect the circuit but also reinforce one another, making

malicious attacks significantly more difficult.

In summary, prior to the development of SAT attacks, logic locking techniques pre-
dominantly focused on inserting individual key gates into the protected circuit. Various
insertion strategies were explored to maximize output corruption or to enhance resilience

against sensitisation attacks.

Chapter 2 Literature Review 21

2.3 SAT Attack

This section provides a brief introduction to the SAT attack. The SAT attack is a game
changer in logic locking, where a SAT-solver, a specialised software tool, is used for
extracting the correct key bits efficiently. In an SAT attack, the SAT-solver is employed
to iteratively refine the key search space, which requires access to a functional product.
As such, the attack is referred to as an oracle-guided attack, with the term oracle rep-
resenting the functional IC sample that the attacker obtains from the market. All logic
locking strategies developed before the emergence of the SAT attack are easily broken by

it, and SAT resilience has become the primary objective for subsequent countermeasures

[1]-

2.3.1 SAT Attack Background Knowledge

2.3.1.1 Boolean Satisfiability (SAT) problem

Boolean satisfiability (SAT) problem determines the satisfiability of a Boolean formula,
in another word, whether there is any assignment to the Boolean formula variables which
make it equal to 1 [13]. For example assignment (a, b, ¢) = (0, 0, 1) makes Boolean

formula ((a + 'b) & ¢) equal to 1.

2.3.1.2 Miter Circuit

In SAT attack, attackers transfer the problem into circuit equivalent checking, which
is accomplished by a Miter circuit. The Miter circuit contains the two circuits whose
equivalence is checked, and xors all the output bits of the two circuits. The outputs of
all the XOR gates will be presented as input to an OR gate, and inputs of both circuits
are the same [141]. If all the output bits of both circuits are the same, OR gate will

produce 0, otherwise 1.

2.3.2 Working Principle of SAT Attack

During an SAT attack, the process is carried out on a Miter circuit, as illustrated in

the figure 2.4. The Miter circuit operates by applying identical input patterns to two

22 Chapter 2 Literature Review

Oa
— diff
K B =7 LB
Op

FIGURE 2.4: Miter Circuit

circuits while using different key values. If the outputs of the two circuits match, the

'diff’ signal outputs a 0; otherwise, it outputs a 1.

In the SAT attack procedure, the netlist file of the Miter circuit undergoes a Tseitin
transformation, converting it into CNF form, which represents a SAT problem. Once
in CNF form, the ’diff’ output is used as a constraint, where a value of 1 indicates a

mismatch between the circuits’ outputs.

If the SAT solver identifies an input pattern that satisfies the constraint (i.e., where the
"diff” output is 1), the input pattern is classified as a distinguishing input pattern (DIP).
Distinguishing input patterns (DIPs) are the core of SAT attack. DIP refers to an input
pattern, with whom there is at least one pair of different key values cause the circuit to
produce different output. Take figure 2.4 as an example, with input pattern I1 and two
different key values Ka and Kb applied to the Miter circuit, if the circuit produces 1 as

output, I1 is a DIP of the circuit.

2.3.2.1 Attack Algorithm

SAT attack is an iterative process, the procedure of which is shown in figure 2.5 and

explained below:
e Attacker feeds the CNF of Miter circuit to SAT solver to get DIP which will later
be fed to the functional IC to get the correct corresponding output.

e And then DIP and the corresponding output is served as a constraint of locked

circuit CNF.

e The SAT solver will then eliminate wrong key values that does not produce correct

output of this DIP.

Chapter 2 Literature Review 23

The eliminated incorrect key value will be added as a constraint for further SAT solver
execution. This procedure will be repeated until no more DIP can be found which means

that all the wrong keys have been ruled out.

Construct 5‘-_)
miter N\
- D’

Locked netlist

A

SAT solver

I/0 pair

Query
functional IC

No

Return correct
key value

FIGURE 2.5: SAT attack flow chart [8]

K1
a—
G1
= K2 Y
b -
G2 G4
= K3
C —
G3
a —

FIGURE 2.6: Circuit Sample for SAT Attack

24 Chapter 2 Literature Review

TABLE 2.2: SAT attack example (KO-K7 represent all the key bit combination (000,
... , 111) of the three key-bits, K1-K2-K3, combination)
KO K1 K2 K3 K4 K5 K6 K7 Incorrect keys identified

<

abc
000
001
010
011
100
101
110
111

iter3: other wrong keys

iterl: k2
iter2: k1l

e i e e W e R es B)
el e T e
— O R = R e
e e e e
e e i e
— R RO~
e e i i
= =0 kO 00
_= = O = = =

2.3.2.2 An Simple Example of SAT Attack

The circuit in figure 2.6 is used as the attacked circuit in the example SAT attack. Table
2.2 represents the attack procedure, K0 to K7 represent all the key bit combination (000,
... , 111) of the three key inputs, column Y stands for output bit of the circuit and abc

stands for the input pattern.

In the first iteration DIP 110 is applied to the circuit, and the correct output bit produced
by functional IC is 1. Among all the key values only K2(010) produces incorrect output,
hence K2(010) is eliminated in this iteration. In iteration 2, DIP 111 is applied to the
circuit, and K1(001) is eliminated. In the third iteration 010 is served as DIP and ruled
out all the remaining incorrect keys. As there is no more DIPs (only 1 key value left),

the SAT attack is successfully achieved.

2.3.2.3 SAT Attack Discussion

After the introduction of SAT attacks, nearly all pre-SAT logic locking techniques (RLL,
FLL, SLL) became vulnerable. SAT attacks effectively transform the brute-force search
for the secret key into a solvable mathematical problem for SAT solvers, which can solve
it with high efficiency. During a SAT attack, each distinguishing input pattern (DIP) can
eliminate a large number of incorrect keys, reducing the computational effort needed to
extract the correct key. The relationship between the key length and the time required
for decryption changes from exponential to linear. For example, extracting a 10-bit key
no longer requires 1000 attempts but only a few dozen or fewer. This advantage becomes
more pronounced as the key length increases, making longer keys easier to break using

SAT attacks.

Chapter 2 Literature Review 25

Because SAT problem in SAT attack is definitely solvable (at least one correct answer
exists, the correct key), the only way to thwart SAT attack is to increase the execution
time. The time consumption for an SAT attack is the sum of execution time of each

iteration (DIP).

1. Increase the number of DIP needed to accomplish an SAT attack. This approach

is used by many post-SAT logic locking strategies, which will be introduced later.

2. Increasing the execution time required for each individual DIP decryption, which
is commonly referred to as an iteration, is the other approach. Some strategies
modify the circuit structure of the design to make the netlist SAT-hard, making it

more difficult for SAT solvers to resolve.

After SAT attack was developed, different countermeasures against SAT attack are pro-
posed to protect hardware. In the following part some major Post-SAT logic locking

strategies will be introduced.

2.4 Post-SAT Logic Locking Strategies

Following the introduction of the SAT attack, a new generation of logic locking strategies
was developed with explicit SAT resilience as a primary design goal. These post-SAT
schemes adopt different mechanisms to either increase the number of iterations required
by the SAT solver or make each iteration computationally expensive. Among them,
point-function-based locking, FSM/sequential locking, cyclic-based locking, routing-
based locking, scan chain locking, and several other advanced approaches have been
proposed. This section surveys these strategies, with particular emphasis on point-
function-based locking, which forms the basis for the new technique introduced later in

this thesis.

2.4.1 Point-Function Based Logic Locking

Following the advent of SAT attacks, many logic locking strategies have been developed

to defend against them. Among these, Point-Function-Based (PFB) logic locking [4, 2,

26 Chapter 2 Literature Review

, 3] strikes the best balance between ease of applying locking mechanisms to a design

and strong resistance to SAT attacks.

Point-function-based logic locking (PFB) derives its name from its functional behaviour,
which mimics that of a point function: it produces the correct output only for one or a
small amount of specific combination of inputs and key. For all other combinations, the

circuit yields incorrect outputs, thereby increasing resistance to SAT attack.

As discussed in the last section, designer need to increase either number of DIP needed
to accomplish an SAT attack or execution time needed for single iteration. Of the two
primary approaches to defending against SAT attacks, PFB logic locking adopts the
second approach, which focuses on increasing the number of iterations required to break
the locking mechanism. PFB significantly reduces the number of input patterns that
trigger erroneous outputs in the presence of incorrect keys. In other words, when a key
is incorrect, the circuit will only generate faulty outputs for a highly limited set of input
patterns. As a result, PFB locking restores the relationship between the time required
to execute a SAT attack and the number of key bits to an exponential scale, making a

successful SAT attack impractical.

2.4.1.1 SARLock

SARLock (SAT Attack Resistant Logic Locking) is the first logic locking strategy specif-

ically designed to protect against SAT attacks [1].

In contrast to previous logic locking techniques, where the locking unit is integrated
within the circuit, SARLock places the locking unit externally, as represented by the
blue blocks in Figure 2.7. This external unit compares the key input with both the pri-
mary input of the circuit and the correct hardcoded key bits. If the key input matches
the circuit’s primary input but does not match the correct key bits, a flip signal is trig-
gered, resulting in corrupted circuit output. For example, if the correct key is 2000’ and
the primary input is 111’ the circuit will produce output corruption only when the
key input is >111°. Other incorrect key patterns do not cause output distortion. This
mechanism ensures that the primary output is affected only when the key input is incor-
rect and coincides with the circuit’s primary input, effectively preventing unauthorised

access while maintaining correct functionality when the proper key is applied.

Chapter 2 Literature Review 27

Input (Original
| Circuit

Output

Tamper-proof
memory

Key

FicUre 2.7: SARLock locking strategy

In a SARLocked circuit, each input pattern and its corresponding output value (DIP) is
only able to eliminate one correct key. For a circuit with n-bit locking key, SAT attack

needs to apply 2" — 1 iterations to find correct key value.
Vulnerability of SARLock

The security of SARLock is compromised by the AppSAT attack [15], which is designed
to byoass its logic locking protection. To defeat SARLock, AppSAT introduces random
incorrect inputs to the circuit, with each DIP restricted to at most one incorrect input.
Since SARLock produces output corruption only when the input pattern matches the
incorrect key sequence, the attacker adds an additional logic block to invert the corrupted

outputs, thereby restoring the correct functionality of the circuit.

2.4.1.2 Anti-SAT

Anti-SAT leverages the complementary properties of circuits to enhance security. In
an Anti-SAT locked circuit, identical input bits are fed into two complementary blocks.
The key bits are split into two equal parts, which are then directed to an AND gate and
a NAND gate, with their outputs subsequently fed into another AND gate. When the
correct key is applied, the two key sequences are identical, causing the outputs of the
AND and NAND gates to be complementary. As a result, the Anti-SAT block remains

1, and the circuit functionality remains unaffected. However, when incorrect key bits

28 Chapter 2 Literature Review

are used, the outputs of the Anti-SAT blocks no longer remain complementary, leading

to output corruption [2].

While Anti-SAT produces a stronger Distinguishing Input Pattern (DIP) than SARLock,
it is still significantly weaker compared to pre-SAT locking strategies. The number of
iterations required to break the logic locking in Anti-SAT is shown in the formula below.
In the formula below, 2k represents the total number of key bits, as shown in Figure 2.8.
AntiSAT produces the correct output when the two sets of key bits match each other, so

22k _ 9k The variable p refers to the number of incorrect

the number of incorrect keys is
keys that would induce output corruption for a single input pattern. This value can be

adjusted between 1 and 2¥ — 1 by modifying circuit g(z, k;1).

22k o 2k

px (28 —p) 22

Vulnerability of Anti-SAT

The Anti-SAT locking mechanism has been found to be vulnerable to the Signal Prob-
ability Skew (SPS) attack [6]. The SPS attack measures the probability skew of a gate
outputting a logic ’1’. The Anti-SAT locking mechanism consists of a multiple input
AND gate and a multiple input NAND gate. As a consequence of this design, the ab-
solute difference of the probability skew (ADS) of a flipping gate, denoted as gate G in
Figure 2.8, is much higher than all the other gates in the circuit. By locating and attack-
ing gate G, the attacker is able to prevent the circuit from producing output corruption

when an incorrect key is applied.

Chapter 2 Literature Review 29

I Original Circuit D 0]
Tamper-proof
memory
4
1

F1GURE 2.8: Original circuit with Anti-SAT block and An instance of Anti-SAT circuit

2.4.1.3 ANDTree

Similar to SARLock and Anti-SAT, ANDTree aims to enhance SAT resilience by in-
creasing the number of iterations required for a successful attack. However, unlike
these strategies, ANDTree adopts a different approach by inserting key gates—similar

to pre-SAT logic locking methods—instead of incorporating an additional comparison

block [37].

ANDTree utilizes a non-decomposable tree structure that outputs either 1’ or >0’ for a
specific input pattern. Typically, an AND tree produces a >1’ output only when all input
bits are >1’. However, ANDTree logic locking does not necessarily require an AND tree;
other non-decomposable structures, such as an OR tree, can also be employed. An OR
tree operates similarly, outputting 0’ only when all input bits are >0’. Importantly,

all input signals in a non-decomposable tree must have a single fan-out, as shown in

30

Chapter 2 Literature Review

PO, PO, PO
(a) (b)

FIGURE 2.9: (a) non-decomposable ANDTree (b) decomposable ANDTree

Figure 2.9.a. Additional fan-outs compromise the security of the system, as they may

allow attackers to extract more information and reduce the SAT resilience of ANDTree.

During the ANDTree locking process, designers must identify the largest non-decomposable

tree in the circuit and insert key gates at all of its inputs. When a SAT attack is launched,

the attacker can eliminate multiple incorrect keys only if a specific input pattern is used

as a DIP, such as >1111.. .1’ for the AND tree. When other input patterns are applied,

eliminating incorrect keys becomes more challenging, as the non-decomposable tree may

produce the same output for multiple patterns. This characteristic provides ANDTree

with high SAT resilience but results in lower output corruption.

Vulnerability of ANDTree

Compared to other post-SAT logic locking strategies, ANDTree exhibits significant ad-

vantages, including lower overhead and strong SAT attack resilience. However, there are

two main disadvantages associated with ANDTree. First, the locking strategy requires

the circuit to contain a sufficiently large ANDTree structure to achieve adequate SAT

resilience. Second, the ANDTree structure is easily identifiable, which enables attackers

to locate and remove the inserted key gates once the corresponding structure is detected

in the circuit. This compromises the overall security of the locking strategy.

Chapter 2 Literature Review 31

2.4.1.4 TTLock

TTLock (Tenacious and Traceless Logic Locking) adopts a similar approach to SAR-
Lock in enhancing SAT resilience. It compares the key input with the primary input
of the circuit, introducing output distortion only when the two bit sequences match.
Furthermore, in TTLock, slight modifications are made to the original circuit to ensure

that output distortion occurs only under specific input patterns [4(].

For example, in the logic cone shown in Figure 2.10, gate G1 is modified from an OR
gate to an XOR gate, causing the output Y to be distorted only when the input pattern
is 110°. This selective output corruption strengthens the defence while preserving the

circuit’s correct functionality under normal conditions.

IN2®7 IN2
INl: e Y IN1:> G2 Ymod
T R e s S
[& G3
(b)

(a)

FIGURE 2.10: (a) Original logic cone. (b) Modified logic cone

When the input pattern is 110, a flip signal is activated to cancel the distortion, but
only when the correct key is applied to the circuit. For all other input patterns, the

circuit produces distorted output only if the key sequence matches the input sequence.

The modification of the original circuit prevents attackers from recovering the correct

functionality, even if they succeed in removing the restore logic.

TABLE 2.3: TTlock truth table
Yooda IN Ky Ki Ky Ky Ky Ky Kg Ky
o W v v v

N ENENENENENEN
N O U = W N~
N ANENENENEN
SN NN NENENEN
Bl < < << <

32 Chapter 2 Literature Review

Modified Ymod Y

IN Logic Cone)

Restore Logic

Tamper-proof K

Memory

FiGURE 2.11: TTLock architecture and corresponding truth table

2.4.1.5 SFLL

SFLL stands for Stripped-functionality logic locking. The strategy strip some part of
circuit functionality when wrong key is applied [3, 17, 18]. The basic version of SFLL
is the same as TTlock, where specific input pattern is protected and every other input

pattern produce output distortion only for one incorrect key.

SFLL stands for Stripped-Functionality Logic Locking. This strategy removes a portion
of the circuit’s functionality when an incorrect key is applied [3, 17, 18]. The basic version
of SFLL operates similarly to TTLock, in which a specific input pattern is protected,

and all other input patterns produce output distortion only for one incorrect key.
There are two variants of SFLL: SFLL-HD and SFLL-flex.

HD stands for Hamming Distance and is applied to both the protected input pattern and
the incorrect keys. Unlike TTLock, which protects only a single input pattern, SFLL-
HD protects an input cube whose Hamming distance to a specific input pattern is h.
SFLL-HDO functions similarly to TTLock, while SFLL-HD1 is illustrated in Figure 2.12.
Input patterns ’2’, 4, and ’7’, which are at a Hamming distance of 1 from ’6°, are
protected. For each of these inputs, incorrect keys with a 1-bit Hamming distance

generate output distortion.

Chapter 2 Literature Review 33

Functionality
stripped circuj

IN

Restore Logic

HD(IN, K) ?=

restore

0

FIGURE 2.12: SFLL architecture

SFLL-flex allows users to select specific input patterns to protect, which is useful for
IPs with critical inputs such as specific addresses, instructions, or data [19, 50, 51]. The
protected input patterns are compressed and stored in LUTs. Compared to SFLL-HD,

SFLL-flex incurs higher overhead but achieves greater output corruption.
Vulnerability of SFLL

The SFLL technique aims to prevent removal attacks by stripping a part of the function.
However, this approach leaves a single protected input pattern in one input cube that
produces output corruption for all incorrect keys. Sensitivity attacks uses input pattern
sensitivity to break the SFLL. If the number of all the bit sequences of Hamming distance
1 from specific input pattern I is kg, and among them there are k1 bit sequences produce
different output from I, the value ki /kq is defined as sensitivity of input pattern I, [52].
In SFLL-protected circuits, the protected input pattern exhibits much higher sensitivity
than others. Attackers can use sensitivity quantification circui to detect the protected

input pattern based on this characteristic and use it to remove the SFLL protection.

2.4.2 FSM/Sequential Logic Locking

2.4.2.1 Working Principle

Most early logic locking techniques focus on protecting combinational logic. In contrast,

FSM or sequential logic locking aims to protect the entire circuit by modifying its state

34 Chapter 2 Literature Review

behavior. Instead of locking a single logic stage, FSM locking operates on the state

transition level and affects the sequential execution of the design.

Existing FSM-based logic locking techniques modify the original state transition graph
in several different ways. One common approach is to add extra states, such as locking
or authentication states, which must be correctly traversed before normal operation
is enabled [53]. Another approach introduces trap states that force the circuit into
incorrect behavior when an invalid sequence is applied [51]. Fake states can also be
added to confuse attackers and hide the real functional states [55]. Some techniques
modify critical state paths, which increases timing complexity and makes analysis more
difficult [56]. In more recent work, key-controlled transitions are introduced so that
the connection between states depends on secret key bits, combining FSM locking with

traditional key-based logic locking [57].

(c) Hardware Active Metering (d) Interlocking Obfuscation

FIGURE 2.13: Examples of FSM-based logic locking strategies [7]

2.4.2.2 Advantages

FSM logic locking can reduce the need for explicit key storage, since the locking in-
formation is embedded in the state behavior of the circuit. This helps lower hardware

overhead and reduces the risk of key exposure through dedicated key inputs.

Chapter 2 Literature Review 35

2.4.2.3 Disadvantages

The main drawback of FSM logic locking is the significant overhead introduced by addi-
tional states and transitions. This increases circuit complexity and places extra pressure
on synthesis and verification tools. To address these issues, several recent approaches
[57, 58, 59] combine FSM-based locking with key-based logic locking in order to balance

security and implementation cost.

2.4.2.4 Corresponding Attacks

Several attacks have been proposed to break FSM-based logic locking. Omne of the
earliest is the two-stage attack [00], which analyzes the structure of the locked FSM
and reconstructs the original design using its behavioral information. Other attacks,
including RANE [61], Fun-SAT [62], and ORACALL [63], as well as more recent methods

[64, 65, 66, 67, 68], specifically target the trap states introduced by FSM locking.

2.4.2.5 Summary

In summary, FSM logic locking provides strong protection against SAT-based and other
key-recovery attacks by exploiting the sequential nature of the circuit. However, this
security comes at the cost of high overhead. Although dedicated attacks against FSM
locking exist, their impact is mainly limited to sequential locking schemes and does not

significantly affect conventional key-based logic locking.

2.4.3 Cyclic-based Logic Locking

2.4.3.1 Working Principle

Cyclic-based logic locking protects a circuit by deliberately introducing feedback loops
into the logic design [69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. These cycles are controlled by
key-dependent gates, so that correct functionality is only achieved when the correct key
is applied. Although most commercial CAD tools are designed for acyclic logic and do
not support combinational cycles, such structures can still be created through manual

intervention during the design process.

36 Chapter 2 Literature Review

2.4.3.2 Advantages

Cyclic-based logic locking is typically applied at the gate level, which makes it relatively
straightforward to integrate into existing designs. It has shown strong resistance to
SAT-based attacks and produces severe output corruption when the circuit is activated

with an incorrect key.

2.4.3.3 Disadvantages

A major limitation of this technique is the lack of support for cyclic logic in most EDA
tools. Even when cycles are inserted manually, they may lead to synthesis, timing, or

verification issues, increasing the risk of design errors.

2.4.3.4 Corresponding Attacks

From an attack perspective, cyclic structures complicate the application of SAT attacks
because standard CNF conversion assumes a directed acyclic graph representation. To
address this, CycSAT [79] introduces cycle-avoidance clauses that restrict the SAT solver
from generating cyclic assignments. More recent attacks further monitor the solver

runtime to prevent it from being trapped in repeated cyclic explorations [30, 81].

2.4.3.5 Summary

Cyclic-based logic locking provides strong protection by exploiting the difficulty of
analysing cyclic structures, resulting in high output corruption and good resistance to
SAT-based attacks. However, practical adoption is limited by poor EDA tool support
and the increased likelihood of design complexity and implementation errors. As a re-
sult, despite its security benefits, cyclic-based locking remains challenging for large-scale

industrial deployment.

Chapter 2 Literature Review 37

2.4.4 Routing-based logic locking
2.4.4.1 Working Principle

Routing or LUT-based logic locking leverages Look-Up Tables (LUTSs) as key gates for
circuit protection. Theoretically, an N-input LUT can implement up to 22" possible
functions. In this form of logic locking, certain gates in the original circuit are replaced
by LUTs with the same number of inputs, as shown in Figure 2.14. The correct configu-
ration for the LUT, which ensures it performs the same function as the original gate(s),
serves as the correct key. Various approaches have been developed to enhance the attack

resilience of LUT-based locking. [32]

LUT2x2 | 0

— (G 2l
oo s il
Sirs

Is

ls

(a) Stripped-based Point Function (b) Compound (SFLL+RLL)

FIGURE 2.14: LUT-based logic locking [7]

Increasing the size of the LUT significantly escalates the complexity of the circuit. In
LUT-based locking, larger LUTs (with additional inputs acting as key bits) are intro-
duced to make the protected circuit more difficult for attackers to break. Naturally,
adding more LUTSs increases overall resilience. The specific placement of these LUTs
within the circuit also greatly impacts its robustness. Recent research has explored the
use of alternative gates, such as multiplexers (MUX) and FPGAs, within routing-based

logic locking to further improve protection.

2.4.4.2 Advantages

LUT /routing-based logic locking strategies can be applied across different abstraction

layers of the design. Additionally, this method provides substantial protection and high

38 Chapter 2 Literature Review

output corruption rates when incorrect keys are used.

2.4.4.3 Disadvantages

However, one major drawback of LUT/routing-based logic locking is the significant
overhead introduced by the LUTs. To enhance protection, more complex and larger
LUTs must be incorporated, leading to substantially higher overhead compared to

XOR/XNOR-based locking techniques.

2.4.4.4 Corresponding Attacks

Due to its unique structure, routing-based logic locking is difficult to solve when con-
verted into Conjunctive Normal Form (CNF). To bypass its protection, attackers have
developed methods such as the Bounded Variable Addition (BVA) approach, which re-
duces the complexity of the resulting SAT problem, making the time required for solving

more manageable.

2.4.4.5 Summary

In summary, while routing-based logic locking offers strong resilience against attacks and
ideal output corruption, techniques like BVA have made it vulnerable to SAT attacks
once again. Moreover, the considerable overhead introduced by LUTs diminishes its

appeal compared to other logic locking strategies.

2.4.5 Scan Chain Logic Locking

Working Principle

In IC industry, scan chains are extensively used to facilitate testing and debugging by
providing full controllability and observability of internal registers and states, which,
however, poses significant security risks. Scan Chain Logic Locking addresses this issue
by securing the scan chain architecture itself [83, 81, 85, 86, 87, 88]. This technique
modifies the scan chain to restrict unauthorised access to scan pins such as scan-in (SI),

scan-enable (SE), and particularly scan-out (S0) [36, 89, 90, 91, 92]. By limiting access to

Chapter 2 Literature Review 39

these pins, attackers are prevented from isolating and analysing smaller combinational
logic blocks, forcing them to confront the complexity of the entire sequential circuit.

Figure 2.15 illustrates a typical scan chain logic locking implementation.

scan chain
structure

Combinational Logic
(Locked)

Combinational Logic
(Locked)

(a) Scan-based Locking (b) Scan Blockage

FIGURE 2.15: An illustration of Scan Chain Logic Locking

Scan chain logic locking techniques can operate in either static or dynamic modes. Static
methods maintain a fixed locking configuration, while dynamic methods utilize compo-
nents like Linear Feedback Shift Registers (LFSRs) or Pseudo-Random Number Gener-
ators (PRNGs) to change the locking configuration at runtime [33, 85, 93, 94]. Dynamic
approaches increase the difficulty for attackers by invalidating any previously gathered

information during the attack process.
Advantages

Scan chain logic locking is orthogonal to functional logic locking techniques and can
be combined with them to enhance overall security. This combination significantly
increases the complexity of potential attacks, particularly those based on satisfiability
(SAT) solvers, by expanding the problem space from small combinational sub-circuits

to the entire sequential circuit.
Disadvantages

One of the main drawbacks of scan chain logic locking is the potential negative impact on
testability metrics such as test coverage. Modifying the scan chain can lead to reduced

fault coverage and increased test time and complexity. Additionally, implementing scan

40 Chapter 2 Literature Review

chain locking after Design-for-Testability (DFT) synthesis may introduce area and per-
formance overheads. In some cases, after scan chain locking is applied, extra test pins are
added to maintain high test coverage[36, 89, 90, 91], but this can significantly increase

the die size of the chip.
Corresponding Attacks

Recent studies have revealed vulnerabilities in scan chain logic locking techniques. The
ScanSAT attack[95] models locked scan chains as combinational circuits, allowing SAT-
based methods to recover the key even in dynamic schemes like DOS [%3]. DynUnlock[96]
targets dynamic scan locking mechanisms such as EFF-Dyn [35] by reverse-engineering
the PRNG to find its seed, thereby defeating dynamic key updates. Moreover, leakage-
based attacks exploit flaws in scan blockage architectures like R-DFS[91]; attacks like
shift-and-leak[39] and glitch-based shift-and-leak[90] can extract the key through pri-

mary outputs, even when shift operations are disabled.
Summary

In summary, scan chain logic locking enhances the security of ICs by protecting the scan
chain architecture from unauthorised access. When combined with functional logic lock-
ing techniques, it provides a robust defence against various attacks. However, designers
must carefully consider the trade-offs between security and testability, ensuring that the
implementation does not significantly degrade test coverage or introduce new security

flaws.

2.4.6 Other Logic Locking Techniques

Besides the locking strategies mentioned, other approaches like Behavioural Timing-
based Locking, High-level Logic Locking, and eFPGA-based IP-level Locking have emerged
also offer unique mechanisms to enhance circuit security against unauthorised access and

tampering.

2.4.6.1 Working Principle

Behavioural Timing-based Locking

Chapter 2 Literature Review 41

Behavioural Timing-based Locking secures both the functional and timing aspects of a
circuit. Techniques such as Delay Logic Locking [97] introduce tunable delay elements
whose delays depend on key values, creating ambiguity for attackers using standard CAD
tools. Recent methods manipulate circuit timing through key-controlled clock gating and
asynchronous latch-based designs [9%, 99, , , ,]. For example, latch-based
approaches use key-controlled elements to asynchronously manage data storage timing
in flip-flops. Without the correct key, data flow timing is disrupted, leading to functional

corruption or system halts.
High-level Logic Locking

High-level Logic Locking secures design semantics by applying locking at higher ab-

straction levels, such as Register Transfer Level (RTL) or High-Level Synthesis (HLS)

[104, , , , , , , ,]. Methods include:

e Locking before Synthesis: Applying locking directly to high-level code (e.g.,
C/C++) before HLS [105].

e HLS Extension: Integrating locking mechanisms into HLS intermediate steps

[105, 107, 112].

e RTL Locking: Applying locking to RTL code post-HLS or directly on designer-
written RTL [106, 110, 111].

e Compound Locking: Combining high-level and gate-level locking techniques for

enhanced security [109].

These methods target higher-order elements like constants, arithmetic operations, con-

trol flow, and memory access, providing comprehensive protection.
eFPGA-based IP-level Locking

eFPGA-based IP-level Locking employs embedded Field Programmable Gate Arrays
(eFPGAs) within a System on Chip (SoC) to protect intellectual property modules
[113, ,)]. Selected modules are replaced with reconfigurable eFPGAs pro-
grammed by a secret bitstream. Attackers must recover the complete bitstream to

replicate functionality, significantly enhancing security.

42 Chapter 2 Literature Review

Advantages

The behavioural timing-based Locking obscures data capture timing[l], complicating
circuit analysis while allowing the scan chain to remain accessible for testing and de-
bugging. The approach of high-level logic locking protects against a broader range of
threats, including insider attacks within the design house. Early-stage locking leverages
synthesis optimisations to intertwine the locking mechanisms with the original design,
increasing difficulty for attackers. As for eFPGA-based locking, it makes structural at-
tacks are difficult due to the uniform architecture of eFPGAs. The large bitstream size
and full configurability increase resilience against 1/O query-based attacks, making it an

SAT-hard problem.
Disadvanges

Implementation of behavioural timing-based Locking challenges arise due to limited
EDA tool support for asynchronous designs. Replacing flip-flops with latches increases
design complexity, making it less practical for large-scale SoCs. Challenges of high-level
locking include tool immaturity and increased design complexity. Integrating locking at
higher abstraction levels may impact performance and require adjustments to the entire
design workflows, causing unacceptable financial burden. And the primary drawback of
e-FPGA approach is substantial overhead in area, power, and performance compared to

traditional methods.
Summary

Behavioural Timing-based Locking, High-level Logic Locking, and eFPGA-based IP-
level Locking represent advanced strategies that extend protection beyond traditional
methods. Behavioural Timing-based Locking secures timing properties, introducing am-
biguities that challenge adversaries but faces practical implementation issues due to lim-
ited EDA tool support. High-level Logic Locking protects designs at higher abstraction
levels, targeting semantic elements to enhance security against a wider range of threats,
though it may complicate design workflows. eFPGA-based IP-level Locking provides
robust protection by replacing critical modules with reconfigurable eFPGAs, making
attacks exceedingly difficult but incurring significant overhead. Collectively, these tech-
niques offer enhanced security features but require careful consideration of trade-offs in

implementation complexity, design overhead, and practical feasibility.

Chapter 2 Literature Review 43

2.5 ML-Based Attacks

In recent years, machine learning (ML)-driven attack and defence strategies have ad-
vanced rapidly, with ML-based attacks mainly targeting the recovery of the correct key
or the restoration of a circuit’s original gate-level structure by removing inserted locking

gates.

SAIL [117, | is the first ML-based attack introduced against logic locking, aiming to
remove locking gates and restore the circuit to its original unlocked state. SAIL only
requires the locked gate-level netlist and does not necessitate access to a functional IC
product. During the logic locking process, after locking gates are inserted into the circuit,
it undergoes resynthesis to disguise the locked gates. While different CAD tools use
varying synthesis rules in this process, the creators of SAIL discovered that only a small
subset of these rules is commonly used, adhering to the 80/20 rule . This predictable
behaviour can be learned and predicted by Al models. In an SAIL attack, the locked
circuit serves as training data, closely resembling the original unlocked circuit. The
attacker inserts additional locking gates to train a neural network capable of removing
these gates, effectively restoring the original circuit. In benchmark tests, SAIL achieved

an accuracy rate of up to 95%.

However, SAIL has two main limitations. First, it is effective only against XOR/XNOR-
based logic locking techniques and fails to work with other locking methods, such as
MUX-based locking or logic locking using locking blocks. Second, the attacker must be
familiar with the specific synthesis rules of the CAD tool used by the designer, as this
knowledge is crucial for successfully training the neural network. Subsequent attacks,
such as Snapshot [119] and GNNUlock [120], overcame these limitations. Snapshot elim-
inates the need for CAD tool synthesis rules and directly targets the secret key, broad-
ening its scope to include MUX-based logic locking. In contrast, GNNUlock employs
Graph Neural Networks (GNNs) to reconstruct the original circuit’s netlist connections
and functionality, making it effective not only against traditional gate-based locking
methods but also against more advanced techniques like SFLL and AntiSAT, which use

locking blocks.

An alternative ML-based attack targets routing-based logic locking [121, ,]. Un-

like structural ML-based attacks that focus on recovering hidden gate structures, this

44 Chapter 2 Literature Review

method uses GNNs to predict connections between concealed locking gates, such as those

used in D-MUX-based locking [12].

2.6 Summary

Various state-of-the-art logic locking strategies and corresponding attacks are introduced
in this chapter. Among all the logic-locking-targeted attacks, the SAT attack has played
a pivotal role in shaping the development of logic locking techniques. Since its intro-
duction, nearly all newly developed locking strategies have prioritized resilience against
SAT-based attacks. However, each of these techniques comes with certain limitations.
Some impose significant overhead, others introduce errors during the testing phase, and
many lack full compatibility with existing Electronic Design Automation (EDA) tools.
Additionally, certain methods may disrupt the overall design flow or lead to a consid-
erable increase in die size. A comparative analysis of post-SAT locking strategies is

provided in Table 3.1, highlighting their respective advantages and drawbacks.

2.6.1 Logic Locking Strategies Comparison

Term Merits Drawbacks

PFB Low overhead; easy to implement | Vulnerable to Bypass attack

FSM Lock- | No memory needed for key- | Increased complexity of circuit;

ing storage high overhead caused by flip-
flops added

Cyclic- Easy to implement on gate-level; | Not supported by EDA tools;

based high output corruption manual implementation might

Locking cause errors

Routing- Can be implemented at differ- | Bring significant overhead

based ent abstract levels of design; high

Locking output corruption

Chapter 2 Literature Review

45

Scan-chain | Work well with other locking | Potential negative impact on
Locking techniques; significantly increase | testability by reducing fault cov-
the complexity of design for at- | erage, increasing test time and
tackers to break complexity; high overhead; intro-
duce extra test pins
Behaviour High resilience against attack | Limited EDA tool support; in-
Time-based | while not affecting scan chain creased circuit complexity
Locking
High-level Wider range of protection in sup- | Might cause problem to the en-
Locking ply chain tire design flow, leading to unac-
ceptable financial burden
eFPGA- High resilience against gate- | High overhead caused by FPGA
based targeted attacks insertion; harder to implement
Locking

Table 2.4: Merits and Drawbacks of Locking Strategies

Among these approaches, Point-Function-Based (PFB) logic locking stands out as one
of the most balanced techniques. Although it may not offer the highest resilience against
every form of attack, it demonstrates strong defence capabilities against SAT and related
attacks. PFB logic locking is relatively straightforward to implement and has minimal
impact on the overall system performance, making it a practical and well-rounded solu-

tion in modern hardware security.

Chapter 3

ZeKi: A Zero-Knowledge
Dynamic Logic Locking
Implementation with Resilience

to Multiple Attacks

Although logic locking emerged as a solution to safeguard the vast majority of general
1Cs, traditional logic locking methods, including some state-of-the-art approaches, are
vulnerable to Satisfiability (SAT) attacks [, 125] which iteratively deduce the correct
keys to break the logic locking. While the latest Point Function-Based (PFB) logic
locking techniques [2, 3, 4] can defend against SAT attacks, they are susceptible to
various structural attacks [0, 5] due to its own defects. A structural attack targets the
specific vulnerabilities of a given logic locking strategy. These vulnerabilities typically
arise from the unique structure of the locking block introduced by logic locking schemes

that rely on a single locking mechanism.

Additionally, there is a potential threat from internal IC designers who are well-versed

in logic locking.

To address these threats by dynamic way with less overhead, I propose a comprehensive
logic locking design and implementing framework called ZeKi: Dynamic Logic Locking

(DLL) by "Zero-Knowledge’ implementation, an adaptive approach that customises the

47

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
48 Resilience to Multiple Attacks

implementation of diverse locking mechanisms with the lower overhead for each unique
design. The implemented DLL provides defence against all attacks mentioned above. To
our best knowledge, ZeKi is the first logic locking strategy to implement ’zero-knowledge’
feature which effectively safeguards the design against potential malicious attacks from
the design team. I demonstrate the effectiveness of DLL and its resilience against dif-

ferent attacks through experimental evaluations.

ZeKi’s DLL matches SFLL-HDO in SAT attack resistance, with logarithmically increas-
ing DIPs; and a superior average Hamming difference of 89.5 compared to zero in other
schemes on structural attack resistance. It also offers five times the resistance of RLL

against sensitisation attacks. Zeki’s DLL incurs lowest average power and area overheads

of 4.27% and 4.48%, respectively.

This chapter introduces the implementation of Zeki in combinational circuits. The
following chapter will address its application to sequential circuits. The structure of
this chapter is organized as follows: Section 3.1 presents the motivation behind the
proposed Zeki logic locking strategy. Section 3.2 outlines the key contributions of Zeki.
Section 3.3 explains the working principles of the Zeki strategy. Section 3.4 summarizes
the workflow for implementing Zeki in a protected circuit. Section 3.5 presents the
experimental setup and results for Zeki-locked circuits. Finally, Section 3.6 provides a

summary of the chapter.

Parts of this chapter are based on our previously published work [126]. Some text and

figures are reused with permission.

3.1 Motivation

In this section the motivation of Zeki (Zero-Knowledge Dynamic Logic Locking) will be
introduced including DLL (dynamic logic locking) block, which is proposed to thwart
the threat from various present and future attacks and zero-knowledge locking which

prevents attack from malicious insiders.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 49

3.1.1 Logic Locking Strategies Comparison

As introduced in section 2.4, different logic locking techniques are proposed as hardware
security strategies. As shown in table 3.1, various logic locking techniques have been
developed to counter SAT attacks and other threats targeting logic locking. However,
each of these techniques has its drawbacks. Some introduce significant overhead, others
may cause errors during the testing phase, and many are not fully supported by existing
EDA tools. Additionally, some techniques can negatively impact the overall design flow

or substantially increase the die size.

Term Merits Drawbacks

PFB Low overhead; easy to implement | Vulnerable to Bypass attack

FSM Lock- | No memory needed for key- | Increased complexity of circuit;

ing storage high overhead caused by flip-
flops added

Cyclic- Easy to implement on gate-level; | Not supported by EDA tools;

based high output corruption manual implementation might

Locking cause errors

Routing- Can be implemented at differ- | Bring significant overhead

based ent abstract levels of design; high

Locking output corruption

Scan-chain | Work well with other locking | Potential negative impact on

Locking techniques; significantly increase | testability by reducing fault cov-

the complexity of design for at- | erage, increasing test time and
tackers to break complexity; high overhead; intro-

duce extra test pins

Behavioural | High resilience against attack | Limited EDA tool support; in-

Time-based | while not affecting scan chain creased circuit complexity

Locking

High-level Wider range of protection in sup- | Might cause problem to the en-

Locking ply chain tire design flow, leading to unac-
ceptable financial burden

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

50 Resilience to Multiple Attacks
eFPGA- High resilience against gate- | High overhead caused by FPGA
based targeted attacks insertion; harder to implement
Locking

Table 3.1: Merits and Drawbacks of Locking Strategies

Among these approaches, Point-Function Based (PFB) logic locking stands out as the
most balanced technique. Although it may not offer the strongest resilience against all
forms of attacks, it effectively defends against SAT attacks and other threats. PFB logic
locking is relatively easy to implement and has a minimal impact on the design’s overall

performance, making it one of the most practical and well-rounded options available.

3.1.1.1 Vulnerability of PFB

However, Point-Function Based (PFB) logic locking also has its limitations.

There are two countermeasures for mitigating SAT attacks: increasing the number of
iterations or extending the duration of each iteration. PFB logic locking adopts the first
strategy, aiming to increase the overall computing time required for the SAT attack.
Functionally, PFB logic locking incorporates a judgment module into ICs. For each
input pattern, only one or a small number of incorrect keys will cause the circuit to
malfunction; in other cases, incorrect keys do not result in erroneous outputs. Since
each iteration of a SAT attack can only eliminate the keys that cause output errors for
a specific input pattern, each iteration discards only a small number of incorrect keys.
Consequently, this significantly prolongs the time required for a SAT attack to succeed,

thereby enhancing the ICs’ security.

The locking mechanism of three PFB logic locking strategies: SARlock, Anti-SAT and
SFLL are shown in Figure 3.1. The figure clearly shows that the structures of the three
presented Point-Function Based (PFB) logic locking techniques are highly similar. In
each case, the functionality of the logic locking is provided by a locking block, represented
by the light blue box in the diagram. This locking block receives both the circuit’s input

bits and the key bits as inputs.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 51

Within the locking block, a validation mechanism, which can be temporarily referred
to as "mechanism V,” is applied. The purpose of this mechanism is to ensure that for
each input pattern, only one or a very limited number of incorrect keys will result in
erroneous outputs. In other words, "mechanism V” is designed to maintain the security
of the circuit by minimizing the number of input patterns that can identify and eliminate

multiple incorrect keys during SAT attacks.

By focusing on restricting the effectiveness of incorrect keys to as few input patterns
as possible, PFB logic locking enhances its resilience against attacks. This approach is
central to PFB’s effectiveness, as it complicates the attacker’s ability to identify cor-
rect keys through systematic testing of inputs. Thus, the core principle behind these
techniques is to create a mechanism that restricts the propagation of errors, making it

extremely difficult for attackers to use distinguishing input patterns (DIPs) to break the

locking.

E Protected Circuit
L >
2 8
.'_E“ g l(/ IN ?=K

(a) SARLock
g Protected Circuit
oL o
28
f—E"§ |,</ g(IN, k1) AND g(IN, k5)

(b) AntiSAT
E Protected Circuit
Hl B
v o
E5 | k | HDON,K)?=h1
cs | » ’

(c) SFLL-HD

Fi1cURE 3.1: PFB locking with Different Validation Mechanisms

As illustrated in Figure 3.1, the defensive strength of PFB locking relies on its locking
block, each operating based on a specific mechanism. These mechanisms confer inher-

ent structural or parameter characteristics upon the locking block, which can easily be

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
52 Resilience to Multiple Attacks

exploited by attackers to develop targeted attacks. For instance, SARLock, which gener-
ates function distortion based on the equality of input and key, cannot resist approximate
attacks [15]. Similarly, Anti-SAT’s flip gate, which produces a high ABS value, becomes
vulnerable to SPS attacks [0]. Likewise, the high sensitivity value generated by the pro-
tected input cube in SFLL renders it susceptible to sensitive attacks, potentially leading

to the leakage of the secure key [7].

However, these attacks are only effective against their respective PFB locking tech-
niques, as they exploit the properties specific to each locking mechanism. This raises
the question: Could a PFB technique employing a variable or dynamic locking

mechanism, rather than a fixed one, circumvent these types of attacks?

Optimistically, the attacks mentioned earlier specifically target individual PFB (SAR-
Lock vs bypass attack; Anti-SAT vs SPS attack; SFLL vs sensitivity attack) locking
strategies rather than the entire class of PFB techniques. They exploit structural weak-
nesses unique to each PFB implementation. Therefore, in theory, if a new PFB locking
strategy is developed based on an entirely novel validation mechanism, existing attacks
that target specific PFB vulnerabilities should become ineffective against it. However,

can this truly be considered a definitive solution?

Unfortunately, it would be highly unlikely. Introducing a new validation mechanism may
simply initiate a familiar cycle: a new locking strategy is developed, research papers are
published, and attackers then analyse the specific structure and validation mechanism,
eventually finding its weaknesses within weeks, thereby breaking its defences. This cy-
cle is almost inevitable with PFB locking strategies that rely on a single validation
mechanism. Such a mechanism often reveals specific structural vulnerabilities that at-
tackers can exploit. Once these weaknesses are identified, all products that employ this

particular locking strategy risk losing their protection.

This brings us to an important question: if relying on a single validation mecha-
nism inherently poses security risks, what about PFB locking strategies that
use multiple validation mechanisms? By incorporating diverse mechanisms, these
strategies may be able to distribute the locking validation across different structural

components, potentially making it more challenging for attackers to identify and exploit

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 53

a single point of weakness. A multi-mechanism approach could introduce a level of un-
predictability and complexity, thereby enhancing resilience and reducing the likelihood

of universal vulnerabilities that affect all implementations of the locking strategy.

Untrusted Insider Additionally, one of the advantages of logic locking is its broad
protection scope, extending from the logic synthesis stage to the final end-user. However,
the initial design phase remains uncovered, as designers are responsible for integrating
logic locking into the design. Expanding the scope of protection to include the design

phase would significantly enhance the overall security of the system.

Traditional logic locking approaches presume the trustworthiness of the design house.
However, in practical scenarios, the risk of rouge insider within the design house itself
cannot be disregarded. Currently, none of the logic locking techniques sufficiently ad-
dress this type of insider threat. Due to this threat, the victim IC could be compromised
from the very beginning of the supply chain, potentially affecting every stage from IC

design to manufacture.

3.2 Contribution

In this thesis, I introduced Dynamic Logic Locking (DLL) with a Zero-Knowledge
Implementation (ZeKi) as a novel approach to address the security concerns mentioned
above. ZeKi utilizes a dynamic locking mechanism that diverges from conventional tech-
niques, such as PFB logic locking, by employing randomly generated locking blocks to
counter SAT attacks and other attacks targeting logic locking. Unlike traditional meth-
ods that rely on locking blocks based on singularly specific mechanisms, DLL generates
locking blocks using a unique mechanism for each design, thereby eliminating specific
structural vulnerabilities targeted by attackers. Additionally, the dynamic generation of
locking blocks enables hardware designers to achieve zero-knowledge locking implemen-
tation, as they are not required to access the knowledge of the locking block’s structure
or secret key bits. ZeKi can effectively resist attacks, even if they originate from within
the design house. This further enhances the confidentiality and security of the protected

circuit. This chapter will concentrate on the work of Zeki in the combinational circuit.

The contributions of ZeKi are listed below.

54

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks

. I propose Zero-Knowledge Implementation of Dynamic Logic Locking (ZeKi, DLL),

which effectively safeguards IP from multiple attacks, including sensitisation at-
tacks, SAT attacks, and structural attacks, ML-based attack, bypass attack and ap-
proximate attack. ZeKi also enables hardware designers to achieve zero-knowledge
logic locking implementation, further enhancing the security of logic locking pro-

tection.

. I present successful implementations of DLL in various benchmarks, demonstrating

the feasibility and practicality of integrating generated logic locking into digital

designs.

. T also provide a comprehensive evaluation of the resistance capabilities of ZeKi’s

DLL against various attacks, as well as the power and area overhead incurred by

DLL in protected designs.

3.3 Working Principle of Zeki

Zeki mainly consists of three components: the insertion of SLL locking gates, which

ensures that the circuit has a sufficiently high Output Error Rate (OER); the Key

Verification Unit, which guarantees that the circuit will generate the correct output

when the correct key is input; and the DLL block, which provides resilience against

SAT attacks and other types of attacks. In the subsequent part of this section, I will

elaborate on the working principles of these three components.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

Resilience to Multiple Attacks

95

Input

Protected Circuit

Key Verification Unit

SLL

Key-bit

DLL Block

) >

Output

FIGURE 3.2: Main Architecture of Zeki

3.3.1 Dynamic Logic Locking

Dynamic Logic Locking (DLL) is proposed as a solution to overcome the limitations of

PFB while providing enhanced resistance against SAT and other attacks. The locking

block, which serves as the core component of PFB, can be regarded as a function. This

function should ensure that each input pattern leads to output corruption for a small

number of incorrect keys. Theoretically, as long as these criteria are met without causing

excessive overhead or adverse effects on the design, the locking block does not need to

adhere to a specific structure. DLL is precisely designed based on these principles.

o Protected
S o circuit
2 gl

g & Point
£ = " function
- circuit

T

Mechanism A = Functiqn—s?ripped
o = circuit
. L
. —
) g § Random
. £ E locking
Mechanism N i@ K .
mechanism

(a) Point-function based logic locking (single

locking mechanism)

(b) DLL(random locking
mechanism)

FIGURE 3.3: Conventional PFB locking(a) vs DLL(b)

) >

Unlike applying a locking block of the same structure to all designs, DLL incorporates

a randomly generated locking block for each unique design, as shown in Figure 3.3.

Hardware designers only need to specify the length of the key bits and the desired level

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
56 Resilience to Multiple Attacks

of output corruption to ensure that the randomly generated locking block meets their
security requirements. Due to the utilisation of a dynamic locking block, DLL exhibits

two distinctive characteristics:

1. Absence of specific structural vulnerabilities: The lack of a fixed structure
eliminates specific structural vulnerabilities that may arise in the locking block of
Point function-based logic locking techniques. This enhances the overall security
of DLL by making it impossible for attackers to break the protection by finding

vulnerability of single locking mechanism.

2. Protection against cross-design attacks: Even if an attacker identifies weak-
nesses in a protected design, they cannot exploit these vulnerabilities to attack
other designs. This is because the locking block for each protected design is unique
and differs from one another. Consequently, the security of different designs re-

mains intact even if one design is compromised.

3. Zero-knowledge locking: Due to randomly generated locking mechanism, the
IP designers do not need to know its specifics, making ZeKi the first known logic
locking technique that operates without locking knowledge. This extends the pro-

tection of the design flow to stages before logic synthesis, enhancing overall security.

In the subsequent sections of this chapter, I will demonstrate the working principle of
DLL and its resilience against attacks. DLL primarily comprises three key components:

inserted key gates, a locking block (DLL block in figure 3.2), and a mask.

The core component of ZeKi that enhances logic locking security is the Dynamic Logic
Locking (DLL) technique. The locking block (DLL block in figure 3.2) in DLL consists
of two primary components. The first is the mask, which connects to the key-bit input.
Its primary function is to ensure that the circuit operates correctly when the correct key
is inputted. The second part, referred to as the locking block for simplicity, is designed
to ensure that the circuit exhibits a malfunction when an incorrect key is inputted. This
component is crucial for DLL’s resilience against SAT attacks, sensitisation attacks, and

structural attacks.

PFB logic locking employs locking blocks to validate a predefined relationship between

the input and key-bits, determining whether the circuit should produce an erroneous

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 57

output. This ’validation operation’ checks for the uniqueness or near-uniqueness of the
key concerning the input, ensuring that the protected circuit generates incorrect outputs
for only one or a few incorrect keys for each input pattern, thereby enhancing resistance
to SAT attacks. Take SARLock as an example, where the flip bit indicates whether

functional corruption will be generated:

flip = (input|0 : 8] == key|0 : 8]) A (key! = correctkey)

In this case, SARLock has a 9-bit input and a 9-bit key, with the predefined relationship
being bitwise equality between the two. The incorrect key disrupts the output only when

this condition is met. This mechanism can be equivalently represented as:

flip = (input[0 : 2] = key|[0 : 2])A
(input[3 : 5] = key[3 : 5])A

(input[6 : 8] = keyl6 : 8]) A (key! = correctkey)

In the formula above, the input/key sequence is divided into three groups of 3-bit chunks.
Each block performs a bitwise equality check, and the overall validation is successful only

when all three groups satisfy this condition.

Both operations are equivalent. Thus, it can be concluded that the validation func-
tion for a set of input/key can be broken down into a sum of validation operations of
shorter input/key sequences. If these subdivided bit sequences simultaneously meet the

validation operation, then the original input/key satisfies the validation operation.

Upon further consideration, it becomes apparent that the validation operations for each
group in a logic locking mechanism do not need to be identical. The critical requirement
is maintaining the uniqueness of the input/key relationship. Additionally, the number
of bits allocated to each group does not need to be equal; it is sufficient if their total

equals the length of the original input/key sequence. See the following example:

flip = (input[0 : 1] = key[0 : 1]) A (input[2]! = key[2])
A (input[3 : 5] = keyl4 : 5][3])(shift — 1 — bit)A

(input[6 : 8] + key[6 : 8] == 5) A (key! = correctkey)

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
58 Resilience to Multiple Attacks

This principle underpins the workings of DLL, which randomly generates its locking
mechanism. DLL divides the key/input sequence into several smaller chunks of 2-bit or
3-bit, shown in Figure 3.4. These chunks are then subjected to distinct random valida-
tion operations. The circuit only malfunctions when all these validation operations are
simultaneously satisfied. This mechanism allows a fixed-length key to generate countless

variations of validation operations, achieving dynamic logic locking.

Flip Signal
)\

\

e
N

|Va|iadation op1| |Va|iadation op2| |Va|iadation op3

Ko | Ks | Ke

FIGURE 3.4: DLL breaks input/key sequence into chunks and assigns different valida-
tion operations to them.

m(

DLL generates locking blocks that exhibit significant randomness in both functionally
and structurally. Functionally, even for a 2-bit input/key chunk, there are 24 different
validation operations that can ensure the uniqueness of the input/key relationship. For
a 3-bit chunk, the possibilities increase even further. Structurally, even with identical
validation operations, they can be implemented using various combinations of logic gates,

as shown in Figure 3.5.

D DD DI

A=

b

@

F1GURE 3.5: Different implementation for XOR operation

Thanks to the locking blocks mechanism, DLL can not only perform high resilience to
SAT attack as PFB but also avoid suffering from structural attacks targeting its inherent

structure or parameter characteristics. In addition, the circuit is also modified to ensure

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 59

that the primary output is influenced by a few randomly selected input bits and the
flip signal, which prevents attackers from removing the locking block by setting the flip
signal to a constant value. Ultimately, the flip signal generated by the locking block
is connected to the design output. When an incorrect key and its corresponding input
are applied to the circuit, the flip signal contaminates the final output, indicating the

presence of output corruption.

3.3.2 Strong Logic Locking (SLL) Insertion

In this section, the insertion of SLL (strong logic locking) will be explained. Before the
explanation of SLL insertion, however, the concept of OER will be introduced. Out-
put Error Rate (OER) is closely related to the Output Corruption (OC) metric.
While OC measures the average Hamming distance between the reference and observed
outputs, OER quantifies the proportion of input patterns that result in incorrect out-
puts. Unlike OC, which accounts for the number of incorrect output bits, OER simply

considers whether any of the M output bits are incorrect.

In the context of logic locking, the output error rate (OER) is a critical parameter. If
the OER is too low, it means that even if an incorrect key is input into the circuit, the
primary output is unlikely to exhibit errors. This significantly reduces the effectiveness
of logic locking and allows malicious attackers, who may not have high accuracy require-
ments in their attacks, to exploit ICs they have illegally obtained. To defend against
SAT (Satisfiability) attacks, many PFB (Point-function based) logic locking techniques
adopt a strategy of increasing the number of iterations. This approach primarily focuses
on reducing the effectiveness of DIP (Distinguishing input pattern), meaning that each
DIP only generates output distortion for a single incorrect key. However, this strategy

can result in the OER of a locked circuit becoming too low.

To prevent this issue and improve the overall OER of the locked circuit, Zeki integrates
Strong Logic Locking (SLL) key-gates into the circuit. The number of key-bits dedicated

to SLL is determined by user-defined parameters, allowing flexibility in the design.

Lsrr = Lin * Rsrr

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
60 Resilience to Multiple Attacks

During the implementation of logic locking, Zeki randomly selects Lgyz, of the key-bits
from all available key-bits to serve as the SLL key-bits. These selected key-bits are used
simultaneously in the Dynamic Logic Locking (DLL) block and as the key for the SLL

gates.

By combining DLL and SLL, Zeki ensures that the protected circuit not only achieves
high SAT resilience, but also maintains a sufficiently high OER, thereby preventing
the issues associated with low output error rates. This dual approach strengthens the

security of the circuit while preserving the integrity of its functionality.

3.3.3 Key Verification Unit

The incorporation of SLL (Strong Logic Locking) ensures that the protected circuit
attains a sufficiently high OER (Output Error Rate). Meanwhile, the DLL (Dynamic
Logic Locking) endows the circuit with defences against various attacks. Nevertheless,
it should not be overlooked that it is of paramount importance to guarantee that the
circuit can generate the correct output when the correct key is input. In Zeki, the Key

Verification Unit (KVU) undertakes this crucial task.

To further enhance the security of the overall defence mechanism, the KVU solely utilizes
the circuit’s primary inputs rather than key-bits as its inputs. This approach effectively
thwarts malicious external attackers from pinpointing the location of the KVU via key-

bits, thereby precluding attacks such as removal attacks.

Based on the description of the working principle of the DLL in section 3.3.1, in order
to withstand SAT attacks, for each input pattern, only one incorrect key will trigger an
erroneous output. Similarly, for a correct key, there exists a corresponding input pattern
that will prompt the DLL block to output a flip signal, resulting in output distortion of
the circuit. In light of this fact, when the input is the input pattern I; corresponding
to the correct key, the KVU intervenes to prevent the DLL block from generating the
flip signal, thus ensuring that the circuit does not produce output distortion when the

correct key is input.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 61

Protected Circuit

I I I DLL Block
|

1, ! 1

4 — / -

FiGUurE 3.6: Key Verification Unit

Flip Signal
T

Y Ty NN
I, K

L Ky I Ky I3 Kj 4

Ficure 3.7: DLL Block of Key Verification Unit

Taking the Figure 3.6 and Figure 3.7 as an example, in this Zeki, according to the
structure of the DLL block in Figure 3.7, if the correct key is ’0000’, the input pattern
that generates the flip signal is ’1100’. As depicted in the Figure 3.6, the KVU of the
circuit will generate a flip signal when the input pattern is ’1100’ to prevent the DLL

block from corrupting the circuit output.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
62 Resilience to Multiple Attacks

3.3.4 Zero-Knowledge Locking Strategy

ZeKi is the first technique to achieve ’zero-knowledge locking’ in logic locking. In pre-
vious logic locking techniques, although participants in the design flow post-logic syn-
thesis were unaware of the locking information, personnel within the design house were
informed. Moreover, once a logic locking technique was published, attackers could ma-
liciously analyse its structural weaknesses for exploitation. However, ZeKi eliminates
these risks. Since its locking blocks are randomly generated for each individual product,
even personnel within the design house lack pertinent information, making it impossi-
ble for attackers to identify structural weaknesses in DLL based on existing knowledge.
Therefore, the random locking block generation mechanism effectively realises ’zero-
knowledge locking’. This approach fosters a higher level of trust and security throughout

the product’s lifecycle. Figure 3.8 illustrates the ’zero-knowledge’ concept.

n 5 ~N s N
ZeKi [Flow chart of logic locking Other Locking strategies
implementation - g

Only step where

participation of G@ ‘ Designer input bit length = Need designer to input
designer is needed

Key-bit kept secret q q . .
until activation of cell | € Automatically generate key-bit B | Designer decides the correct key

(N\
No designers involved | ¢g Randomly select primary input bit =

interfere with locking block

Need designer to input

No designers involved; pu (" Locking block generated in random m) | Designer will have a full knowledge
Structure of IocAkmg base of the structure of locking block
unknown to designer

No designers involved « Implement Iogic |ocking » Participation of designers is

needed in some locking strategies

FIGURE 3.8: Implementation flow: ZeKi versus Other Logic Locking

As shown in figure 3.8, in the process of ZeKi’s DLL, the only input required from
the designer is the key-bit length for the lock. All other procedures will be carried
out automatically, which means the potential rouge insider has no access to the detail
of locking block structure, primary input selected for locking or the correct key value,

which effectively proves the implementation of ’zero-knowledge locking’.

As discussed in Section 1.1.1.4, hardware designers can perform verification without
revealing the secret key by using encrypted simulation modules compliant with

the IEEE 1735 [35] standard for IP encryption, or by employing formal equivalence

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 63

checking tools such as Cadence Conformal or Synopsys Formality. These approaches
enable secure verification within the supply chain while maintaining zero-knowledge

locking.

3.4 Implementation of Zeki

3.4.1 Parameter Input

Before applying Zeki to the product, the designer must first input some basic parameters.

1. Key-bit length: This refers to the number of key bits included in Zeki. Typically,
64-bit or 128-bit key lengths are the standard choices. However, if the circuit is
small or if higher security is required, the designer may adjust the key-bit length

accordingly, either by decreasing or increasing it.

2. c¢: To ensure the output corruption rate of the locked circuit, that is, the rate at
which sufficient primary output bits produce erroneous results when an incorrect
key is provided, the circuit will use a combination of SLL (strong logic locking)
and Zeki blocks. A portion of the key bits will be used as the key input for the
SLL. The designer can adjust the proportion of these key bits relative to the total
key-bit length, with the default value set at 25

3.4.2 Implementation Flow of Zeki

1. Generate a Key Sequence:

The first step is to randomly generate a key sequence that matches the specified

key-bit length.

2. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-
bit length, the number of SLL gates to be inserted, denoted as Sy, is calculated.
From this, Sy key-bits are randomly selected to serve as inputs for the SLL gates.
According to the selected key values, and following the principles of Strong Logic
Locking (SLL), XOR or XNOR locking gates are inserted into the circuit.

64

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks

. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,
and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical
relationship, such as relationship a and relationship b. These validation logic
relationships are predefined in the Zeki validation logic library, which is part of
the tool’s functionality. The library provides a variety of logic relationships, which
are randomly chosen during the generation of the Dynamic Logic Locking (DLL)
block.

. Generate Correct Key and DLL Block:

Using the validation logic calculated from the generated key-bit and input-bit
combinations, the correct key is derived. Based on this, the DLL block is generated

and connected to the fan-in of the protected circuit’s output.

. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-
ated using the same random logic method as the DLL generation. This verification
unit is connected to the flip signal of the DLL output, ensuring that when the cor-

rect key is input, the circuit will not produce incorrect results.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 65

3.5 Experiment Results and Discussion

3.5.1 Experimental Setup

The experiments were carried out on an 8 core M1 Mac processor with 8GB of RAM.
Combinational benchmarks from EPFL combinational suite [127] and ITC99 suite [128]
and the combinational benchmarks from parts of sequential benchmark circuits from the
ISCAS89 [129] were locked in the experiments. To evaluate Zeki on a larger benchmark,
a new benchmark named sha256x10 was created in this work by instantiating ten parallel
SHA-256 modules. This composite design contains over 500,000 logic gates. Table 3.2
presents data on circuits; the number of gates in the benchmarks ranges from 3,448 to
510,190, demonstrating a diverse array of circuit sizes. MiniSAT [130] was utilized as an
SAT solver to implement SAT attacks. The Synopsys Design Compiler was used in this
project to determine the area and power overhead introduced by DLL, and the Global
Foundries 65nm LPe library is used in the simulation. I implemented ZeKi using Python
scripts to automatically lock benchmark circuits via the DLL approach, which required
between 1.3 and 161.7 seconds to process and lock each circuit across all benchmarks, as
shown in table 3.2. The subsequent subsections provide an evaluation of attack resilience

and DLL overhead.

TABLE 3.2: Benchmarks and corresponding time consumption to implement Zeki

Benchmark | Input Number | Output Number | Gate Number | ZeKi Running Time (s)

b21 522 512 20,027 6.7

b18 3,357 3,343 111,421 32.2
$38354x 38 304 11,448 4.2
$38417x 28 106 8,709 3.2
s15850x 7 150 3,448 1.3
sha256 678 258 51,019 15.2

sha256x10 6780 2580 510,190 161.7

3.5.2 Resilience Against Multiple Attacks

Before delving into further details, I describe the terminology used in the remainder of

the paper.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
66 Resilience to Multiple Attacks

3.5.2.1 SAT attack resilience

As discussed in Chapter 2, there are two ways to mitigate the threat from the SAT attack:
increasing the average execution time for each iteration and increasing the number of
iterations, and Zeki takes the latter approach to achieve SAT resilience. The same

approach is also taken by PFB logic locking to achieve maximum iteration number for

SAT attack.

RLL(RANDOM LOGIC LOCKING)(A)
20

18 —4—515850x —8—b21 —A—b18 —*—sha256 —¥—sha256x10

e 16
w
4]
s 14
2
Z 12
o
a 10
¢ —
6
11 12 KEY SIZE 13 14
SFLL-HDO(B)
214 —4—515850x —@—b21 —A—b18 —¢-sha256 —H—sha256x10
1
= 213
o0
=
5 912
2 2
o
) 211
210
11 12 KEY SIZE 13 14
DYNAMIC LOGIC LOCKING(DLL)(C)
214 ~4—515850x ~#—b21 -—k—b18 -—>¢sha256 -——sha256x10
13
e 2
[+2]
$ 512
P4
o
5 211
210

11 12 KEY SIZE 13 14

FIGURE 3.9: SAT attack simulation on design locked with (a) RLL[9], (b) SFLLI[3],
(¢c)ZeKi’s DLL.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 67

Definition 1 If a technique, denoted as L, requires at least % iterations of a SAT attack

to be compromised when using a k-bit key, indicating that the difficulty of breaking it
is exponentially related to the key length, then L is considered k-secure relative to SAT

attacks.

The resilience analysis of the SAT attack is shown in Figure 3.9, which compares SAT
attacks between DLL and other logic locking strategies. This experiment selected Ran-
dom Logic Locking (RLL) and SFLL-HDO [3] as reference techniques for DLL, as they

exhibit the highest resistance to SAT attacks.

I sample protected designs with key lengths of 11, 12, 13, and 14 bits, albeit shorter
than typical real-world key sizes, usually 128 or 64 bits. This limitation was due to
computational and time constraints. However, it should be noted that the underlying
principles for SAT attack resilience comparison remain consistent across varying key

lengths.

Figure 3.9 illustrates that conventional logic locking, such as RLL in Figure 7.a, has low
SAT attack resilience, showing limited improvement even with increased key lengths.
Conversely, SAT resilient methods of PFB logic locking like SFLL-HDO (Figure 7.b)
demonstrate exponential growth in the required iterations of SAT attacks as key lengths
increase. Similarly, DLL, as seen in Figure 7.c, also shows an exponential increase in SAT
resilience with increasing key lengths. A successful SAT attack on DLL necessitates 2¥
Deterministic Independent Pairs (DIPs), where k is the key length, thereby confirming

its k-secure status against SAT attacks.

TABLE 3.3: Benchmarks and corresponding SAT-solver Running Time

Benchmark | Gate number | SAT-solver(MiniSAT) Running Time (s)

b21 20027 2.12

b18 111421 10.4
538354x 11448 0.6
s38417x 8709 0.22
s15850x 2448 0.13
sha256 51019 6.78
sha256x10 510190 77.3

In this project, the time consumption of the SAT solver (MniSAT) to complete a single
iteration is also simulated. In the experiment, the Verilog netlist files of various bench-

marks used in this study are duplicated to form a Miter circuit in CNF format, which

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
68 Resilience to Multiple Attacks

is then used in the SAT attack. The Miter circuit is subsequently loaded into the SAT
solver for evaluation. As demonstrated in Table 3.3, circuits with higher complexity
(i.e., a greater number of gates) result in longer solving times. For instance, consider
s15850x, the least time-consuming circuit. The average cracking time for this circuit is
approximately 0.13 seconds per attack. Based on this, an attacker attempting to break a
32-bit key (noting that 64- or 128-bit keys are more common in practice) would require
approximately 17.7 years to crack the secret key using the SAT attack. For circuits
with higher complexity, the required time would be considerably longer. Thus, it can

be concluded that DLL effectively achieves SAT-resilience.

3.5.2.2 Sensitisation attack resilience

The Sensitisation attack, initially proposed in [10], involves sensitising key bits to the
output of the circuit to deduce their values. However, if the relationship between a key
bit and the circuit’s output is influenced by other key bits, preventing it from being
easily sensitised, it is termed ”pair-wise” as discussed in section 2.2.3. This designation

effectively thwarts the sensitisation attack.

Definition 2 In a locked circuit, if £% key gates are pairwise secure, meaning the circuit
is k-secure against sensitisation attacks, with the ideal scenario being 100-secure. When
a circuit is 100-secure against sensitisation attack, all of its key-bits will not able to be

propagated to the primary output bit by controlling input of the circuit.

In DLL, the gates within the locking block can be considered key-gates. Due to the
interdependence of the outputs of all key-gates in DLL, attackers cannot sensitise key
bits by controlling the input and observing the output. Consequently, all gates in the
DLL locking block are effectively 'pair-wise’ related to each other, rendering the system

k-secure against sensitisation attacks.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks

69

Prepare key gate
list of the circuit

Yes Pairwise
secure

key gate
Is all key +1

gate tested

Non- Calculate the proportion of
Identify all logic gates along the fan-in paths of pairwise pairwise secure key gates in
the selected key gate K1, as well as the circuit's secure key the entire circuit.
primary inputs. Similarly, identify all logic gates gate +1
along the fan-out paths and the circuit's primary
outputs.

there exists an
input pattern
that causes the
output to reflect
the key bit of K1,

none of these
gates or circuit

1/0 elements
contain other key
gates or key bit

The selected portion (including the gates Construct a Miter circuit using two identical sub-
and I/0 elements) is treated as a sub- circuits. Use a SAT solver to check whether, for the key
circuit and converted into a CNF file. Other bit Kx of the key gate Kx, there exists an input pattern
key gate in the sub-circuit is referred as Kx that causes the output to reflect the key bit of K1.

FIGURE 3.10: Process diagram of sensitisation attack resilience simulation

In order to prove this, an experiment is designed and implemented in this project, the

process of which is shown in Figure 3.10. This simulation is implemented on circuit

locked by DLL and RLL, the result shows different sensitisation attack resilience

of

the two strategies. Figure 3.11 illustrates the percentage of 'pair-wise’ gates in DLL,

achieving 100-secure against sensitisation attacks. Conversely, Random Logic Locking

(RLL) exhibits only a limited number of pair-wise key gates against sensitisation attacks.

On average, DLL performs six times better than RLL.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
70 Resilience to Multiple Attacks

Zekivs RLL in terms of sensitization attack
resilience

0

s38417x $38354x b18 sha256 sha256x10

OZeki ORLL

Jiry -
o a
o o

PERCENTAGE OF KEY GATE
THAT IS PAIR-WISE SECURED
o)
o

FIGURE 3.11: ZeKi sensitisation attack resilience vs RLL[9]

3.5.2.3 Structural attack resilience.

Structural attacks exploit inherent weaknesses in certain logic locking techniques, par-
ticularly those using PFB. The SAT resilience of PFB is achieved through locking blocks
with a consistent topological structure, which remains unchanged even as the number of
key-bits and the block’s size increases. This uniformity allows attackers to exploit vul-
nerabilities in the locking block’s structure, rendering all products using that technique
susceptible. For example, Anti-SAT’s locking block is vulnerable to SPS attacks [6] due
to its output gate’s excessive signal skew. Similarly, SFLL [3] is susceptible to sensitive
attacks that detect key-bits through sensitive input pattern values [5]. The issue can be
addressed by DLL, as it generates a random locking mechanism each time. This results

in significant variations among the locking blocks of different products.

Definition 3 From this inference, it follows that the greater the variability in the locking
blocks of a logic locking technique, the less likely they are to exhibit a common structural
weakness, thereby harder to break. In the structural attacks resistance testing, I first
locked a selected benchmark with a locking block named LB(0. I then executed 100
separate lockings on the benchmark, generating additional locking blocks labeled LB1-
LB100. When the same input is fed to the locking block, LB0’s output is compared with
the outputs of LBI1-LBN, and the average Hamming distance (HDM) is calculated. The
value of x is determined by calculating 100*HDM/OutputLength %, which defines the
technique’s security level against structural attacks as x-secure, where the ideal value

is 100-secure. In this experiment, Anti-SAT and SFLL were used as references. The

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 71

average secure value of DLL-generated locking blocks exceeded 80, while both Anti-SAT
and SFLL had secure values of 0.

Zeki structural resilience vs SARLock and SFLL
°Z\° measured in Hamming distance in %
g 150 O Zeki
<Zt 100 100 100 100 100 100
&5 100
fa)
O
E 50
=
= 0 0 0 0 0 0 0 o0 0 © 0 O
<Ii 0
s38417x s38354x b21 b18 sha256 sha256x10

FIGURE 3.12: ZeKi structural attack resilience comparison with SARLock[4] and
SFLL[3]

In this thesis, a comparative analysis was conducted on the resilience of DLL against
structural attacks in Figure 3.12. DLL utilises random generation for its locking blocks,
creating significant variability in the locking blocks for each design. This approach
has shown to be highly effective in simulations, with DLL achieving over 80-secure
resilience in the simulation results against structural attacks across different benchmarks.
This level of randomness of the generated locking block makes it extremely difficult to
find common inherent structural or parameter characteristics of the DLL locking block,

making it highly resilient to structural attacks.

3.5.3 Power, Delay, and Area overhead

Results from Figure 4.4 indicate that a 128-bit key significantly increases overhead in
smaller benchmarks as S38417x (11.1% power, 12.2% area overheads) but is less in larger
benchmarks, e.g., b21 benchmark with 2.1% power, and 1.7% area overheads; sha256x10
benchmark with 0.13% power, and 0.15% area overheads. In larger benchmarks, power
and area overheads remain below 10% for 128-bit key. From the overhead data it can
be found that DLL’s overhead is linearly related to the number of key bits. Overall, the
average power and area overhead is 2.4% and 2.46% respectively for a 64-bit key; and

5.1% and 5.45% for 128-bit key.

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with

72 Resilience to Multiple Attacks
12 1141
g 10 0128-bit EA64-bit
a 7.8
5 8
I
G 6 5 5.1
3 3.9
o 4 2.4
w
¥] mE]
013 0.078
g :] Cdre= —
538417x 538354x b18 sha256 sha256x10 AVG
15
;\3 12.2 B1128-bit E64-bit
a
5 10 8.8 53
I
5 5.45
3 5 4.5 a1 4.5 i
4 0.9 113 068
< : 0.15 0.069 D
0 — e —_—
s38417x $38354x b21 b18 sha256 sha256x10 AVG

FicUrRE 3.13: Power, and Area overhead of DLL protected circuit with 64-bit and
128-bit key

3.6 Summary

In summary, this chapter introduced a ZeKi which generate Dynamic Logic Locking
(DLL) security circuit by 'Zero-Knowledge’ Implementation. ZeKi’s DLL demonstrated
resilience against SAT attacks and other mainstream attacks targeting logic locking
while maintaining lowest power and area overhead. The security performance of ZeKi
has achieved 1 to 89 times than the state-of-the-art logic locking techniques depend-
ing on different attacks and locking structures. By employing a dynamic locking block,
ZeKi ensures that each circuit is protected with a randomly generated and unique lock-
ing mechanism, thereby enhancing overall security and reducing the risk of attacks ex-
ploiting specific vulnerabilities. It enables hardware designers to achieve zero-knowledge
locking for their designs, further strengthening the confidentiality. Overall, the proposed
ZeKi logic locking tool contributes to advancing logic locking techniques and effectively

protects integrated circuits.

Attacks on logic locking can be categorized into two types based on the attacker’s ac-
cess to a functional IC: oracle-based and oracle-less attacks. Current research, including
this thesis, predominantly focuses on oracle-based attacks. In the threat model for
oracle-based attacks, it is assumed that attackers have access to two critical entities: A
functional IC: Attackers can readily acquire a functional IC from the market. During
the attack process, this functional IC provides valid input/output pairs as golden refer-

ences; A gate-level netlist file of the locked circuit: This file is obtained through

Chapter 3 ZeKi: A Zero-Knowledge Dynamic Logic Locking Implementation with
Resilience to Multiple Attacks 73

reverse engineering or from an untrusted foundry.

Chapter 4

ZeKi: The Sequential version

In the previous chapter, we introduced the fundamental principles and implementation
flow of Zeki, focusing primarily on its application to combinational circuits. While the
previous chapter concentrated on combinational logic, it is important to note that in
the IC industry, the majority of products utilise sequential circuits, ranging from micro-
processors to memory units and communication devices. (While combinational circuits
are those where the output is purely dependent on the current inputs, sequential cir-
cuits involve memory elements (such as flip-flops or latches) that store state information,
making their outputs dependent not only on the current inputs but also on the circuit’s

past history.)

In fact, Zeki can also be applied to sequential circuits. The ability to apply Zeki to
sequential circuits expands its utility, allowing designers to implement security features
across a wider range of applications. In this chapter, we will explore the operational

principles and implementation flow of Zeki when applied to sequential circuits.

Two approaches of Zeki implementation will be introduced in this chapter ZekiA and
ZekiB, the first approach is relatively simple by placing the entire locking block in the
last stage of the sequential circuit and placing the entire Key verification unit in the first
stage. In the second approach, locking block and Key verification unit will be randomly
put in different stages in the sequential circuit to make it harder for malicious attackers

to trace the inserted gates of Zeki.

In this chapter the power and area overhead of Zeki will also be given.

75

76 Chapter 4 ZeKi: The Sequential version

Parts of this chapter are based on our previously published work [126]. Some text and

figures are reused with permission.

4.1 Implementation of SLL

This chapter will introduce two approaches of Zeki sequential implementation, however,
in both strategies, SLL (Strong Logic Locking) is inserted in the same manner. In the
insertion process of SLL, corresponding key-bits are first selected, and then logic gate in
the circuit are randomly selected. And then SLL gates are inserted in the circuit. The

working flow of this implementation is listed as follows:

1. Randomly select K gates from all the gates, where K corresponds to the key-bit

length.

2. For each selected gate, determine the position K, where the output key-gate will

be inserted.

3. Rename the output of each key-gate to match the name of key-gate input 1 (e.g.,
KGiy).

4. Based on the value of the key-bit, insert the corresponding key-gate at the selected
position K. If the key-bit value is 0, insert an XOR gate; if the key-bit value is 1,
insert an XNOR gate. One input of the key-gate will be the node renamed in the
previous step, the other input will be the key-bit, and the output will correspond
to the original node before renaming. The output will have the original name of

the node at position K.
5. Add the new node to the wire list.

6. Add the new key-bit to the input list.

Chapter 4 ZeKi: The Sequential version 77

Ld

LpE

[4:

FIGURE 4.1: Add SLL(strong logic locking) to Sequential Circuit

4.2 ZekiA: Implement Zeki in Sequential Circuit in Single
Stage

ZekiA is a foundational version of Zeki implemented on sequential circuits. In ZekiA, in
addition to the previously mentioned SLL (Strong Logic Locking), which is distributed
across all stages, the DLL (Dynamic Logic Locking) block and the key verification unit
are placed within a single stage. Both the DLL block and the key verification unit are
positioned in the final stage, the stage closest to the primary output, to ensure that the
flip signal can directly impact the output. The circuit’s primary and key-bit signals are

fed directly into these two blocks.

The detailed implementation flow of ZekiA is as follows:

1. Parsing Netlist

The first step is to parse the netlist of sequential circuit, and the process of this
is similar to combinational circuit but with extra information the flip-flop list and
the stage attribution. All the gate and wire variables will be labeled which stage

they belong to.

78

Chapter 4 ZeKi: The Sequential version

2. Generate a Key Sequence:

Randomly generate a key sequence that matches the specified key-bit length.

. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-
bit length, the number of SLL gates to be inserted, denoted as Sy, is calculated.
From this, Sy key-bits are randomly selected to serve as inputs for the SLL gates.
According to the selected key values, and following the principles of Strong Logic
Locking (SLL), XOR or XNOR locking gates are inserted into the circuit. In this
step the program also need to make sure inserted SLL key-gates belong to the

same stage to avoid sequential problem.

. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,
and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical
relationship, such as relationship a and relationship b. These validation logic
relationships are predefined in the Zeki validation logic library, which is part of
the tool’s functionality. The library provides a variety of logic relationships, which
are randomly chosen during the generation of the Dynamic Logic Locking (DLL)
block.

. Generate Correct Key and DLL Block:

Using the validation logic calculated from the generated key-bit and input-bit

combinations, the correct key is derived. Based on this, the DLL block is generated

Chapter 4 ZeKi: The Sequential version 79

and connected to the fan-in of the protected circuit’s output. In sequential circuit,
the output of DLL block is connected to the input of primary output flip-flop, and
the DLL block is put in the final stage to decrease the overall number of flip-flops.

9. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-
ated using the same random logic method as the DLL generation. This verification
unit is connected to the flip signal of the DLL output, ensuring that when the cor-
rect key is input, the circuit will not produce incorrect results. In sequential circuit,
the key verification unit is put in the final stage, which is the stage closest to the

primary output.

—) "

(a)

DLL+Key
Verification
Unit
| |

Primary Input Key-bit

(b)

FIGURE 4.2: (a) Original Circuit; (b) Circuit Locked with ZekiA

80 Chapter 4 ZeKi: The Sequential version

4.3 ZekiB: Implement Zeki in Sequential Circuit in Mul-
tiple Stages

Implementing Zeki in a single stage of a sequential circuit is straightforward and min-
imizes the risk of errors. However, this approach has its drawbacks. Since both the
DLL (Dynamic Logic Locking) block and the key verification unit are placed within a
single stage, it becomes easier for attackers to identify and target these locking blocks.
This centralized placement of the blocks also reduces randomness, which contradicts the

dynamic nature of Zeki, thereby undermining its intended security purpose.

To address this issue, an alternative approach, ZekiB, allows users to distribute the DLL
block and key verification unit across multiple stages of the circuit. The initial steps of
ZekiB’s implementation mirror those of ZekiA, beginning with the insertion of SLL and
the generation of DLL blocks and the key verification unit using a random validation
formula. Once these blocks are created, the system traverses the gates starting from
the block’s output and moving towards its input. The system then randomly assigns
whether the gate, along with its fan-out, should belong to the same stage. This process
ensures that the DLL block and key verification unit are distributed randomly across

various stages of the circuit.

The implementation flow of ZekiB is as follows:

1. Parsing Netlist

The first step is to parse the netlist of sequential circuit, and the process of this
is similar to combinational circuit but with extra information the flip-flop list and
the stage attribution. All the gate and wire variables will be labeled which stage

they belong to.

2. Generate a Key Sequence:

Randomly generate a key sequence that matches the specified key-bit length.

3. Generate SLL Locking Gates:

Based on the SLL key-bit rate (the rate of SLL gates to be inserted) and the key-
bit length, the number of SLL gates to be inserted, denoted as Sy, is calculated.

From this, Sy key-bits are randomly selected to serve as inputs for the SLL gates.

Chapter 4 ZeKi: The Sequential version 81

According to the selected key values, and following the principles of Strong Logic
Locking (SLL), XOR or XNOR locking gates are inserted into the circuit. In this
step the program also need to make sure inserted SLL key-gates belong to the

same stage to avoid sequential problem.

4. Randomly Group Key-bits:

The key-bits in the generated key sequence are randomly grouped, either into pairs

or triples.

5. Randomly Select Input Bits and Group Them:

Next, input bits, which are primary inputs of the circuit, are randomly selected,
and these input bits are grouped in the same manner as the key-bits (into pairs or

triples).

6. Map Key-bit Groups to Input-bit Groups:

The randomly grouped key-bits and input bits are then mapped one-to-one, cre-

ating corresponding pairs or triplets for further processing.

7. Define Logic Relationships for Validation:

Each pair or triplet of key-bit and input-bit is assigned a corresponding logical
relationship, such as relationship a and relationship b. These validation logic
relationships are predefined in the Zeki validation logic library, which is part of
the tool’s functionality. The library provides a variety of logic relationships, which
are randomly chosen during the generation of the Dynamic Logic Locking (DLL)
block.

8. Generate Correct Key and DLL Block:
Using the validation logic calculated from the generated key-bit and input-bit
combinations, the correct key is derived. Based on this, the DLL block is generated.
9. Create Key Verification Unit:

Using the correct key derived in the previous step, a key verification unit is gener-
ated using the same random logic method as the DLL generation. This verification
unit is connected to the flip signal of the DLL output, ensuring that when the cor-

rect key is input, the circuit will not produce incorrect results.

82 Chapter 4 ZeKi: The Sequential version

10. Locate DLL block and Key Verification Unit in Stages

Select all the output gates in DLL block and Key Verification Unit and locate
them to the last stage of the circuit, which is the closest stage to the primary
output, and name this group of gates G1. Use random number generator planted
in software to decided whether the gates whose fan-out gates are included in G1,
and name this group of gates G2. Repeat this procedure until all the gates in DLL
block and key verification unit are located to their stages. Add DLL block and
key verification Unit to the circuit according to the stage location and connect the

output flip signal to the primary output of circuit.

04

DLL+Key

]4 Verification
Unit
DLL+Key Pri I| K |b't
Verification rimary Input el
Unit
I I
Primary Input Key-bit
(b)

FIGURE 4.3: (a) Original Circuit; (b) Circuit Locked with ZekiB

Compared to ZekiA, ZekiB exhibits higher uncertainty, which in turn enhances over-

all security. The increased unpredictability makes it more challenging for attackers to

Chapter 4 ZeKi: The Sequential version 83

trace the specific characteristics of the locking block. However, ZekiB also introduces
a greater number of flip-flops, leading to additional overhead. This trade-off requires
designers to carefully select between the different solutions based on their specific needs

and application requirements.

In the context of logic locking and integrated circuit (IC) design, ZekiB’s higher uncer-
tainty is advantageous in countering attacks such as reverse engineering and hardware
trojans. However, the additional flip-flops introduce complexity and may impact per-
formance, particularly in terms of power consumption and circuit area. As a result,
designers must consider the balance between security and performance, choosing the
appropriate locking scheme based on the security threat level and the constraints of the

target system.

4.4 Power, Delay, and Area overhead

Figure 4.4 shows the overhead caused by Zeki in both combinational benchmarks (b21,
b18) and sequential benchmarks(s15850x, s38354x...), where ZekiA is used as implemen-

tation approach for sequential benchmarks in Figure (a) and (b), and ZekiB is used in

(©).

Results from Figure 4.4 indicate that a 128-bit key significantly increases overhead in
smaller benchmarks as S15850x (18.5% power, 17.2% area overheads) but is less in
larger benchmarks, e.g., b21 benchmark with 2.1% power, and 1.7% area overheads.
In larger benchmarks, power and area overheads remain below 10% for 128-bit key.
Sequential circuits show reduced time overhead due to distributed locking block and
mask components, with time overheads under 3% for all 128-bit key configurations.
DLL’s overhead is linearly related to the number of key bits. Zeki in benchmarks in
Figure 4.4 (a) and (b) is implemented by ZekiB for sequential circuit, while in Figure 4.4
(c), ZekiA is used. It is obvious ZekiA introduces much lower overhead in both power and
area for all the sequential benchmarks compared to its counterpart. Overall, the average
power and area overhead is 4.27% and 4.48% respectively for a 64-bit key; and 9.2% and
9.28% for 128-bit key. Because LUTSs and flip-flops are not used in the implementation of

84

Chapter 4 ZeKi: The Sequential version

ZeKi’s locking blocks, the area overhead is significantly lower compared to LUT/FPGA-

based locking strategies or those with high overhead, as shown in Table 4.1. It achieved

the lowest area and power overhead compared to the state-of-the-art locks.

20

Power Overhead (%)

064-bit [0128-bit

H DH DH = Ils

0 —/
b

20

- ol
21 b18

$15850x §38354x s38417x 5§35932x AVG

()

Area Overhead (%)

O64-bit
0128-bit

] o DH Al o

0 —
b

-l
21 b18

s15850x $38354x $38417x $35932x AVG

(b)

Power Overhead (%) 128-bit

15

10

zﬂﬂ 0 o

O Power OArea

s$15850x

s$38354x s38417x s$35932x

(©

i

FIGURE 4.4: Power, and Area overhead of DLL protected circuit with 64-bit and 128-
bit key: (a) Power Overhead; (b) Area Overhead; (c¢) Power and Area Overhead of
ZekiB Implemented Benchmarks

TABLE 4.1: Area and Power Overhead

Locking Strategy | Cross-lock [131] | Logic locking with Camouflage [132] | RTLock[133] | ZeKi (64-Bit Key)
Area 18.6% 31.78% 19.88% 4.27%
Power 14.42% 26.52% 2.2% 4.48%

Chapter 4 ZeKi: The Sequential version 85

4.5 Summary

This chapter extends the ZeKi logic locking strategy from combinational circuits to
sequential circuits, addressing a broader range of practical applications in integrated
circuit (IC) design. Two implementation approaches are proposed: ZeKiA, which places
the Dynamic Logic Locking (DLL) block and key verification unit within a single stage of
the sequential circuit, and ZeKiB, which distributes these components across multiple
stages to enhance resistance against structural attacks and improve security through

increased randomness.

Both implementations incorporate Strong Logic Locking (SLL) to insert key-gates through-
out the design. ZeKiA offers simplicity and lower overhead, while ZeKiB introduces
higher security at the cost of additional flip-flops and increased complexity. The chap-
ter outlines the detailed implementation flows for both approaches and discusses the

trade-offs between security and design overhead.

Experimental results demonstrate that ZeKi maintains low area and power overhead
across a variety of combinational and sequential benchmarks. Specifically, ZeKi achieves
average overheads of 4.27% (area) and 4.48% (power) with a 64-bit key, significantly out-
performing existing state-of-the-art locking strategies, as shown in table 4.1. Overheads
remain acceptable even with 128-bit keys, especially for large-scale benchmarks, show-

casing ZeKi’s scalability and practicality for real-world sequential circuit protection.

Because the gate number of locking block is regardless of the gate number of circuit
to be locked, the gate number Zeki brings can be considered as constant on some level.
However, as Zeki applies dynamic logic locking mechanism, the locking block is generated
randomly, the gate number also changes with different implementation, but at the same

order of magnitude.

Chapter 5

LockLab

Despite its potential, the adoption of logic locking has been slow, partly due to the lack
of integration with standard IC design flows and the complexity of existing algorithms.
Automating the logic locking process and integrating it into existing design tools are

crucial steps toward wider adoption.

This chapter presents two software tools developed to automate logic locking: Lockit
and LockLab. Lockit is a Python-based tool that implements the Stripped Functionality
Logic Locking with Hamming Distance (SFLL-HD) algorithm [3] to perform locking
on gate-level netlists. LockLab extends this by supporting multiple locking strategies
and simulating various attack methodologies, providing a comprehensive platform for

designers to implement and evaluate logic locking techniques.

In the course of this PhD project I designed LockLab, an automated logic locking simula-
tion tool. LockLab facilitates the seamless application of various logic locking techniques
to circuit netlists, as well as the simulation of different attacks on locked circuits. This
tool offers significant convenience for designers employing logic locking in their work, as

well as for students learning about logic locking concepts.

LockLab was inspired by Lockit, an automation tool designed for SFLL (Strong Fault
Logic Locking) insertion, for which I served as the second author. The introduction of
Lockit greatly simplified processes related to the implementation and testing of SFLL,
including integrating SFLL into netlist files and performing subsequent security tests.
With Lockit, users could easily insert SFLL into circuits that required protection or
testing, significantly improving the efficiency of these tasks.

87

88 Chapter 5 LockLab

During my exploration of various logic locking techniques, I encountered a recurring
issue: many of the logic locking methods that needed testing either lacked available
software tools or, if tools existed, they were no longer maintained or usable due to
various reasons. Furthermore, no simple, user-friendly automated simulation tools were
available that could handle multiple logic locking schemes and simulate corresponding
targeted attacks. I developed LockLab to fill this gap. LockLab aims to provide an
easy-to-use, flexible, and comprehensive solution for logic locking simulation and attack
testing. Besides automatic SFLL implementation (the main function of Lockit), Locklab
can also achieve multiple logic locking strategies implementation and attack simulation

which are listed below:

1. Logic Locking Insertion: LockLab can automatically insert logic locking into Verilog-
format netlist files, with the output files preserving the same format as the original.
Users can choose from a range of logic locking techniques, including RLL (Reverse
Engineering Logic Locking), FLL (Functional Logic Locking), SLL (Strong Logic
Locking), SARLock, AntiSAT, Andtree, SFLL, and Zeki. The resulting files can

be used for subsequent design iterations or for functional testing in related fields.

2. Attack Simulation: Once logic locking is applied to a circuit, LockLab can simulate
various types of attacks on the locked circuit, including SAT (Satisfiability) attacks,
SPS (Single Point of Secret) attacks, sensitization attacks, brute-force attacks, and
an assessment of Al attack feasibility. LockLab provides detailed results, including
the total time required for the attack and whether the key has been successfully
cracked. Additionally, it verifies whether the attacked key or the modified circuit

maintains the original circuit’s functionality.

Parts of this chapter are based on our previously published work [10,]. Some text

and figures are reused with permission.

5.1 Contributions

LockLab, a novel software tool introduced by this work specifically is developed to

address the limitations in the current landscape of logic locking implementation. The

Chapter 5 LockLab 39

source code of LockLab is shown in Appendix A. The contributions of this software are

outlined as follows:

1. Multi-Strategy Logic Locking Implementation: The tool provides the capability
to implement a wide variety of gate-level logic locking strategies: RLL, FLL, SLL,
Zeki, AntiSAT, SARlock, and SFLL. This allows hardware designers to evaluate
different locking techniques on their circuit designs without the need for extensive

manual intervention.

2. Comprehensive Attack Simulations: The software is designed to simulate multiple
attacks including SAT attack, SPS attack, Sensitization attack and evaluate Al-
based attack availability on the locked circuits, enabling users to test the resilience
of their designs against various threat models. By simulating real-world attack

scenarios, the tool allows for a more robust evaluation of the circuit’s security.

By addressing the challenges and limitations in the current state of logic locking tools,
LockLab provides a comprehensive solution that enhances the security design process
while remaining easy to use and versatile for both logic locking learners and researchers.
Learners of logic locking or hardware security can generate netlist of circuit locked
with different locking strategies by LockLab. They can compare the original circuit
and locked circuit netlist to learn the difference between the two. In addition, they
can run functional tests on the generated locked circuit. Power, area and other post-
synthesis simulations can also be done to the generated netlist file to see the overhead
introduced. For researchers, not only can they do the tests on locked circuits generated
as introduced, but also can they test different attacks on locked circuit on LockLab to

test their resilience against various attacks.

The remainder of this chapter will introduce and discuss LockLab’s setup before simu-
lation, basic operation, output formats, as well as the design principles and workflow of

its different modules.

5.2 Introduction to LockLab

The GUI(Graphical User Interface) of LockLab is shown in figure 5.1, which is user-

friendly.

90 Chapter 5 LockLab

Lockiab — O X
Locking Attack

netlist file name |b18.w run

key sequence 1111 DDEI'L'I'E'

Locklab - O X
Locking Attack

Sensitization attack
netlist file SAT attack run
SPS
key sequ Al-based attack

FIGURE 5.1: GUI of LockLab

For attack simulations specifically, users must save the names of the key-gates and key-
bits in a CSV file and place it in the same directory as LockLab. This file facilitates the

identification and tracking of key-related components during the simulation.

After each simulation, LockLab generates a corresponding output.log file that summa-
rizes and compares the original file, the newly generated file, or the attack results. This
log file serves as a detailed record of the simulation process and its outcomes, providing

critical insights for evaluation and debugging.

Typically, the output.log includes the following information:

1. Name of the original file
2. Name of the newly generated file
3. Total number of logic gates in the original circuit

4. Total number of logic gates in the newly generated circuit

Chapter 5 LockLab

91

5.

10.

11.

12. Additional details relevant to the simulation

Locking strategy used

. Type of attack performed

Key sequence

. List of key-gates
. Whether the attack was successful

The key derived from the attack (if successful)

Total runtime

The inclusion of this comprehensive data ensures that users can analyze the effectiveness

of the logic locking strategy and assess the resilience of the locked circuit against different

types of attacks. A detailed example of the output log structure is provided below.

Example of Output Log File

file name: b18.v

new file name: bl8locked.v
locking strategy: RLL

attack strategy:

original gate number: 111421
new gate number: 111433
key-gate number: 12

key-bit sequence: 000000111111

other:

5.3 Netlist Parsing

I build a parser for Locklab to understand verilog netlist file. Before each simulation

start, the netlist file will be parsed before used by LockLab to organize its data. In

terms of Parsing, LockLab takes similar approach with Lockit|

The process of netlist parsing, as illustrated in Figure 5.2, is designed to extract es-

sential elements from a netlist—such as gates, registers, wires, inputs, and outputs—to

92 Chapter 5 LockLab

construct a graph-based representation of the circuit. This representation facilitates

further analysis and manipulation.

The parsing process begins by dividing the netlist into segments using semicolons as de-
limiters. These segments typically fall into categories: those that contain comprehensive

lists of inputs, outputs, or wires, and those that describe individual gates or registers.

Each segment is subsequently broken down into smaller tokens using delimiters such
as spaces, commas, parentheses, and newlines. However, the parsing of gate inputs
and outputs is handled with special care to ensure their relationships are accurately
preserved. These tokens serve as the foundation for identifying the key attributes of the

netlist.

The module name of the circuit to be locked is extracted from the segment that begins
with the keyword module. The string following this keyword is assigned as the module’s
name, which also serves as the name of the graph. Segments starting with input, output,
or wire provide lists of input, output, and wire names, respectively. Each name is
represented as a node in the graph and is assigned a type attribute corresponding to its

classification.

The remaining segments contain descriptions of individual gates and state elements.
For each gate, the second token in the segment acts as a unique identifier and is used
as the node’s name in the graph. The first token identifies the gate or state element
type, which is validated against a predefined list obtained from the technology file. This
token is stored as the gate attribute, while a type attribute is assigned based on its
classification. The subsequent tokens in the segment describe the connections between
the gate and various wires, inputs, and outputs. These connections are used to define
the edges in the graph, and the tokens collectively form a pinout attribute, detailing the

gate’s connectivity.

5.4 Verilog-CNF Transfermation

LockLab is able to transfer netlist file of a cricuit in Verilog into CNF file, which can be
recognised and solved by SAT-solver. This approach not only plays a significant role in

SAT attack simulation, as discussed in 2.3, but also enables LockLab to automatically

Chapter 5 LockLab 93

Netlist

Segments separated
with semicolon

“ “ “ “ State E|ements

FIGURE 5.2: Parsing process of the netlist [10]

test the function correctness of generated locked circuit. The working principle of this

operation will be explained in the following part of this section.

5.4.1 CNF transfer

In general, SAT solver takes Boolean formula in CNF (conjunctive normal form). In

simple terms, a formula in CNF is a conjunction of disjunction of literals.[134]

Conjunction: can be understood as AND.

Disjunction: can be understood as OR.

Literal: a variable or its negation.

Clause: disjunction of literals. CNF is formed by conjunction of clauses.

The following is a example of CNF formula:

T = ((la+ b+le)&(a+1b+1e)&e) (5.1)

In order for a CNF form to be satisfied, all the disjunction clauses must be satisfied. In
recent decades powerful SAT solvers have been developed. [135, 136] Before applying
SAT solver to the circuit, the researcher must use Tseitin transformation to transform

the netlist into CNF. [137]

94 Chapter 5 LockLab

TABLE 5.1: CNF formulas for AND, NAND, OR, NOR, INV, BUFFER gates generated
using the Tseitin transformation [8]

Gate type Gate function Py
AND y = AND (wy,...,wj) H 1 (wi +-y)| - (1w+)
NAND | y = NAND (uwy, ..., w;) 1‘[L (w; + y) (T —w; + y>
OR y=OR (wy,...,w;) _ (rwi+y) (Z 1wz y)
NOR | y=NOR(wi,...,w;) L Cwi+)| (Shywi+y)
NOT y = NOT (w) (y + wl) (Y + _‘wl)
BUFFER y = BUFFER (w1) (—y +wi) - (y + —w1)

5.4.2 Tseitin Transformation

For the SAT-solver to solve CircuitSAT problem, Tseitin transformation transfers circuit
netlist to CNF where both input and output port serve as literals. Tseitin transformation
achieves this by generating CNF for individual logic gates in the circuit. The formula

below is an example of AND2 gate transformation.

z & a&b

z = a&eb)&(a&b = 2)

lz+ a)&(1z + b)&(z+'a+'b)

= (
(12 + a&eb)&(!(aked) + 2) (5.2)
(
(

lz+ a)(z + b)(z+!a+!b)

The Tseitin transformation then puts together the entire circuit as a conjunction of CNF

clauses of all the individual logic gates.

During the conversion of the netlist file into a CNF file, each gate is transformed ac-
cording to its corresponding Tseitin transformation formula, as illustrated in the table

5.1

Once all logic gates have been transformed into CNF, they are placed alongside each

other, as shown in figure 5.3, to serve as constraints for the SAT solver.

Chapter 5 LockLab 95

(A+!D)(B+!D)(D+!A+!B)
A -
(C+E)(!C+!E) D F

B—

(F+!D)(F+!E)(!F+D+E)

FI1GURE 5.3: Application of the Tseitin transformation to a circuit with three gates

Within this framework, all circuit nodes, along with the input and output bits, are
treated as literals. After these transformations are completed, the original Verilog gate-
level netlist is converted into a ’.cnf’ file, as demonstrated in the code example below,
where each number represents a literal and each line represets a single clause in CNF.

This file is then ready for use in SAT-solver-based analysis.

p cnf 63 31
10

-34 2 0
-34 3 0

-2 -3 34 0
-35 4 0
-35 5 0

5.5 Locked circuit Self-test

When users apply a locking strategy to a netlist file using LockLab, the tool automati-
cally performs a functionality test on the generated locked circuit netlist. This ensures
that when the correct key is applied, the locked circuit produces outputs identical to the

original circuit. The detailed procedure for this functionality test is as follows:

1. Merge Netlists: The netlist of the original circuit and the locked circuit are

combined into a single file.

96

Chapter 5 LockLab

. Share Primary Inputs: The inputs of both circuits are converted into wires,

and a new input list is added to the combined netlist, allowing both circuits to

share the same primary inputs.

. Compare Outputs: The output bits of the two circuits are paired and connected

to 2-input XOR gates. The outputs of these XOR gates are then fed into an N-

input OR gate.

. Transform to CNF': The new combined circuit is converted into a CNF file, and

a constraint is added to ensure that the correct key sequence results in the output

of the N-input OR gate being 0.

. Generate Input Patterns: A set of 100 random input patterns is generated as

constraints. The CNF file is then solved using a SAT solver. If solutions are found
for all 100 patterns, the locked circuit is deemed functionally correct. Otherwise,

it is considered faulty.

If the results indicate that the locked circuit is not functionally equivalent to the original

circuit when the correct key is applied, the locking process is deemed unsuccessful. In

such cases, the system automatically retries the locking process. If the process fails three

consecutive times, the locking procedure terminates, and the results are logged in the

output.log file.

This functionality significantly enhances the usability of LockLab by eliminating the need

for external hardware simulation tools, such as ModelSim, for validating the netlist’s

functionality. Additionally, users are not required to manually write testbench files,

simplifying the overall workflow.

1. Selection of an Input Cone to Lock SFLL-HD locks a single input cone,

selecting the largest cone by default or one matching the user-specified key size. If
the cone is larger than the key size, only a subset of inputs equal to the key size is
protected. The cone must exceed the Hamming distance H; otherwise, users must
adjust H. The algorithm identifies logic cone outputs recursively, grouping module
outputs, state element inputs, and preceding wires, with recursion terminating at

module inputs or state elements.

Chapter 5 LockLab 97

5.6 Implementation of logic locking strategies

5.6.1 Random Logic Locking (RLL)

is one of the most basic forms of logic locking. LockLab supports the insertion of RLL
into a netlist, generating output files that are ideal for learning purposes or for use as
benchmark references when comparing others, more advanced locking strategies. In RLL
XOR and XNOR gates are inserted in the circuit based on the corresponding key-bit to
randomly selected position in the protected circuit. The working flow of Random logic

locking is shown in the flowchart:

Prepare Implementation
gate list finished

All key gate

Selectrandom gate .
inserted

Change the name of Set output signal of
output signal of the gate key gate

Add wire signal and key
Add key gate input to wire list and input
list

FI1GURE 5.4: Working Flow of RLL in LockLab

The time consumption of RLL insertion on different benchmarks: b21(20027 gates),
b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure
5.5, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.

98 Chapter 5 LockLab

Execution Time of RLL

Unit:second Ob21 @Ob18 Hs38417x E1s15850x

35
30
25
20
15
10

3 DHE: Dﬂmm H m [1o

16-bit 32-bit 64-bit 128-bit

FIGURE 5.5: Execution Time of RLL

5.6.2 Fault-based Logic Locking (FLL)

In FLL (Fault-based Logic Locking), key-gates are strategically inserted at positions in
the circuit that maximize the output corruption rate caused by an incorrect key. To
achieve this, the fault impact is calculated for each gate, which is a numerical value
derived from a combination of the gate’s fan-in and fan-out. The fault impact serves as
a metric for evaluating the effectiveness of a key-gate insertion position in terms of its
potential to disrupt the circuit’s functionality. By targeting gates with the highest fault
impact, FLL increases the likelihood that an incorrect key will cause significant distortion
in the circuit’s output, thereby enhancing the circuit’s security against unauthorized
access or tampering. The working flow of Fault-based logic locking is shown in the

flowchart:

Chapter 5 LockLab

99

Prepare input
list

Create 11 gate list

Create fan-in list for |1 gates

Create 12 gate list

Create fan-in list for 12 gates

Create IN gate list

Create fan-in list for IN gates

Fan-in of
all gates
calculated

Create fan-out list for O2 gates

Prepare output
list

Create O1 gate list

Create fan-out list for O1 gates

Create O2 gate list

Create ON gate list

Create fan-out list for ON gates

Fan-out of
all gates
calculated

Fault-analysis
based logic locking
finished

Enough
gate
inserted

Insert key gate to the
gate with maximum FI

Calculate Fl for each
gate

FI1GURE 5.6: Working Flow of FLL in LockLab

The time consumption of FLL insertion on different benchmarks: b21(20027 gates),
b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure
5.7, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.

100 Chapter 5 LockLab

Execution Time of FLL

Unit:second Ob21 Obis Ds38417x Ds15850x

70
60 —
50
40
30
20

12 |:1|_||:n:. DHDm |_| I [1o

16-bit 32-bit 64-bit 128-bit

FIGURE 5.7: Execution Time of FLL

5.6.3 Strong Logic Locking (SLL)

SLL (Strong Logic Locking) is a locking strategy designed to defend against sensitiza-
tion attacks. It achieves this by ensuring that all inserted key-gates are pairwise-secure,
meaning that each key-gate is mutually protected, preventing one key-gate from be-
ing "muted” or bypassed by another. This pairwise security mechanism ensures that
malicious attackers cannot exploit sensitization attacks to extract confidential informa-
tion from the locked circuit. By maintaining the interdependence of the key-gates, SLL
strengthens the integrity of the circuit, making it more resilient to attempts at reverse
engineering and unauthorized access. The working flow of Strong logic locking is shown

in the flowchart

Chapter 5 LockLab 101

Prepare
gate list

Select random gate

More than 2
Key-gate
existin Both fan-out
fan-in gates have
only 1 fan-out

Insert key gate output
connected to shared fan-
out

How many
fan-out?

Insert key gates to all Insert key gates output
its input bits connected to the other 2
fan-out

All key gate Implementation
inserted finished

F1GURE 5.8: Working Flow of SLL in LockLab

The time consumption of SLL insertion on different benchmarks: b21(20027 gates),
b18(111421 gates), s38417x(8709 gates), and s15850x(3448 gates) are shown in Figure
5.9, it can be seen that the overall running time increases as key-bit length and logic

gate number in the circuit.

102 Chapter 5 LockLab

Execution Time of SLL

unit:second Ob21 Ob18 Hs38417x EIs15850x
120
100
80
60
40

22 |3|_||::.=. DHD: |_| I [[

16-bit 32-bit 64-bit 128-bit

FIGURE 5.9: Execution Time of SLL

5.6.4 SARLock

SARLock is one of the earliest locking strategies proposed to counter SAT (Satisfiability)
attacks. SARLock significantly increases the number of iterations required for a SAT
attack by ensuring that each Distinguishing Input Pattern (DIP) can eliminate only a
single incorrect key. This approach effectively raises the difficulty of cracking the pro-
tected circuit, thereby enhancing its resilience against SAT-based attacks. By limiting
the impact of each input pattern on the key space, SARLock forces attackers to explore
a much larger key space, making it more computationally expensive and time-consuming
to break the lock. The working flow of LockLab for SARLock simulation is shown in
the flowchart:

Chapter 5 LockLab 103

Parsing Netlist Generate Output

Log File

Randomly Select K
Primary Input

Link Flip Signal to
Add Key-bits to Input Output
List

Insert XOR Gates into Connect the XOR
Netlist Gate to AND Gate

F1GURE 5.10: Working Flow of SARLock Simulation in LockLab

The execution time of SARlock simualtion is as Figure 5.11 shows, it can be seen that the
overall execution time of SARlock increases as key-bit length grows. Another significant
source of execution time is netlist parsing. In the simulation result benchmark b18 has
total gate number of 111421, and s15850x has 3480. From the figure it can be seen
that the total gate number of protected circuit does cause extra execution time, but not

significant.

Unit:second SARlock Execution Time
4.5

4
Obl8 Os15850x

16-bit 32-bit 64-bit 128-bit

FIGURE 5.11: Execution Time of SARLock Simulation in LockLab

104 Chapter 5 LockLab

5.6.5 AntiSAT

Anti-SAT is another post-SAT locking strategy after the propose of SARLock, which
performs higher output corruption rate than SARLock. The working flow of Anti-SAT

attack is shown in the flowchart:

Generate output

Parsing Netlist)
file

Randomly Select K
Primary Input
Link Flip Signal to
Add Key-bits to Input Output

List

Insert XOR Gates into Connect the XOR
Netlist Gate to AND Gate

FIGURE 5.12: Working Flow of Anti-SAT Simulation in LockLab

The execution time of Anti-SAT simualtion is as Figure 5.13 shows, it can be seen that
the overall execution time of SARlock increases as key-bit length and overall logic gate

number in the circuit grow.

Anti-SAT Attack Simulation Execution Time
50

40 Ob18 [Os15850x

30

20

10

0
unit: second 16-bit 32-bit 64-bit 128-bit

FIGURE 5.13: Execution Time of Anti-SAT Simulation in LockLab

Chapter 5 LockLab 105

5.6.6 SAT attack

LockLab is able to effectively simulate SAT attacks on a input protected circuit, as
SAT is one of the most critical attacks against logic locking, understanding its impact is
crucial. Users simply need to provide the netlist file of the circuit they wish to analyze.
The software automatically detects the circuit’s input and output bits, streamlining the
simulation process. However, the key bits need to be manually inputted by the user.
These key bits should be placed in a CSV file, which must be stored along with the
Verilog netlist file in the ’datafile’ folder located within the root directory of LockLab.

As highlighted in the previous section, the initial step in launching a SAT attack involves
converting the gate-level netlist file into a CNF (Conjunctive Normal Form) file, which
is then used by the SAT solver to initiate the attack simulation. This step ensures the

attack framework can operate efficiently on the locked circuit.

5.6.6.1 SAT-solver and Output File

LockLab implement SAT attack using an open-source tool named "MiniSAT’, which is
effecient and easy to use. After the attacking process is finished, an output file will
be generated storing the output data. In the output file the following data are stored:
whether the attack is successed, time consumption (in second), iteration number of the
attack, average time consumption per iteration, all the key-bits and its corresponding

key-bit in the original Verilog netlist file are listed.

5.6.6.2 Working Flow of SAT Attack

The working flow of SAT attak in LabLock is as follows:

1. Parse the Netlist

The first step is to parse the netlist of the locked circuit. This involves extract-
ing the structure and components of the circuit, such as gates, connections, and
input/output pins, which are essential for performing the subsequent analysis and

attack simulations.

2. Input Key Input List

106

Chapter 5 LockLab

Prior to conducting a SAT attack simulation, the user must provide the list of key
inputs. This list contains the key bits that are used in the locked circuit, which

are critical for generating the constraints needed for the SAT solver.

. Construct a Miter Circuit

The next step is to construct a Miter circuit by combining two identical locked
circuits. These two circuits share the same primary input, and their outputs are
compared. The outputs of the two circuits are XORed bit by bit, and all XOR
gate outputs are then fed into an N-input OR gate, which generates a diff signal.
This signal will indicate any discrepancies between the outputs of the two circuits,

which is crucial for evaluating the success of the attack.

. Convert Verilog to CNF File

After generating the Miter circuit, it is converted into a Conjunctive Normal Form
(CNF) file. CNF is a standard format used for encoding logical formulas, which is

necessary for solving satisfiability problems using SAT solvers.

. Generate a Random Input Pattern as the DIP

A random DIP (Distinguishing Input Pattern) is generated, which is used to dif-
ferentiate between the correct and incorrect keys. The DIP is then converted into
a constraint that can be incorporated into the CNF file, adding complexity to the
SAT attack.

. Apply Constraints to the CNF File

An additional constraint is applied to the Miter circuit’s CNF file, which ensures
that the keys used in the two protected circuits cannot be identical. This constraint
is added to the CNF formula to make the attack more challenging by eliminating

the possibility of the two circuits using the same key.

. Input the CNF File with Constraints into MiniSAT

The CNF file, now containing the constraints, is input into MiniSAT[130], a SAT
solver. If a solution is found, proceed to Step 8. If no solution is found, proceed

to Step 9.

. Add new constrain

Chapter 5 LockLab 107

If a solution is found in Step 7, repeat Steps 1-6 to generate a new CNF file with
additional constraints. The CNF file from the previous step is also incorporated
into the new CNF file, applying the relevant input pattern and requiring the two
key inputs to be identical as an additional constraint. Proceed to Step 7 to resolve

the updated CNF file.

9. Modify the Constraints

If no solution is found in Step 7, modify the constraints in the CNF file to require
the two key inputs to be identical. Use MiniSAT to solve the modified CNF, and

the output will provide the correct key.

10. Output the Log File

Finally, output the log file, which contains the results of the SAT attack simulation,
including whether the key was successfully found, the time taken for the attack,

and any relevant details about the attack process. Additional Context:

5.6.7 SPS (Signal Probability Skew) Attack

LockLab can also allow users to simulate SPS attack, a kind of gate-level structure
attack, which aims to find the gate with the largest ADS(Absolute difference of the
probability skew). In PFB locking blocks such as AntiSAT [2, , 139], the logic gate
with the highest ADS is often the locking gate that produces the flip signal. SPS attack
helps the malicious attacker to locate that gate and mute the output flip signal, disabling

the protection provided by the locking block.

The working flow of SPS attack is shown in the flow chart:

108 Chapter 5 LockLab

Parsing Netlist Generate Output
Log File
Identify All Locking
Gates with Primary
Inputs as Fan-In

Select the Gate with
the Maximum ADS

and Modify the
QOutput

Calculate the Signal
Probability Skew

Calculate the Signal
Probability Skew for All Fan-In
Gates

Select Gates and
Calculate ADS

All gate Yes
calculated?

F1cURE 5.14: Working Flow of SPS Attack Simulation in LockLab

The execution time of SARlock simualtion is as Figure 5.11 shows, it can be seen that the
overall execution time of SARlock increases as key-bit length grows. Another significant
source of execution time is netlist parsing. In the simulation result benchmark b18 has
total gate number of 111421, and s15850x has 3480. From the figure it can be seen
that the total gate number of protected circuit does cause extra execution time, but not

significant.

Unit: d ; i i i
nit-secon SPS Attack Simulation Execution Time

80

Ob18 Os15850x
60

40

20

16-bit 32-bit 64-bit 128-bit

FIGURE 5.15: Execution Time of SPS Attack Simulation in LockLab

Chapter 5 LockLab 109

5.6.8 Sensitization Attack

The implementation is shown in the flow chart:

Generate output
file

Parsing Netlist

Generate fan-in and
fan-out list

Randomly Select a Key- All key-
Gate and Isolate Its Sub- gate
Circuit inserted

Convert the Sub-
Circuitinto a CNF File

Modify Constraints

M:rgelz CCNF Flles_ a:(nd When No Solution Is
pply Constraints Found

Find Find
Solution Solution

Isolate sub-graph for
selected key gate

FIGURE 5.16: Working Flow of Sensitization Attack Simulation in LockLab

The execution time of Sensitization attack simualtion is as Figure 5.17 shows, it can be
seen that the overall execution time of sensitization attack increases as key-bit length and
overall logic gate number grow. In the simulation netlist of two benchmarks, b18 (111421
gates) and s15850x (3480 gates) are first locked with RLL and attack by sensitization

attack.

110 Chapter 5 LockLab

Unit:second Sensitization Attack Simulation Execution Time

200
Ob18 [Os15850x
150
100
50
0 | |

16-bit 32-bit 64-bit 128-bit

FIGURE 5.17: Execution Time of Sensitization Attack Simulation in LockLab

5.6.9 Al-based Attack Evaluation

Al-based attacks are among the fastest-growing threats to logic locking in recent years.
Due to the rapid advancements in artificial intelligence (AI), Al-based attacks are ex-
pected to become a key research area in the future of hardware security. Currently,
the primary Al-based attacks, such as Snapshot [119] and Sail [117, 118], target locking
strategies like RLL (Random Logic Locking) and SLL (Strong Logic Locking), which
rely on individual key-gates, rather than strategies like Anti-SAT and SFLL that are
based on locking blocks. These Al-based attacks focus on inserting a single key-gate
into a locked circuit, then learning the variations caused by the insertion of an unknown
gate. By analyzing these changes, the Al model learns the synthesis tool’s rules to infer

the optimal placement of key-gates in the protected circuit.

Although LockLab does not directly simulate Al-based attacks, it can be used to eval-
uate a locked circuit’s resistance to such attacks. This evaluation is achieved through
assessing the positioning of the key-gates, thereby determining the overall resilience of

the protected circuit to Al-based attacks.

The workflow for evaluating Al-based attack resistance is shown in the flow chart:

Chapter 5 LockLab 111

Unit:second Al-based Attack Evaluation Execution Time
20

Ob18 Os15850x

15

10

16-bit 32-bit 64-bit 128-bit

FIGURE 5.18: Execution Time of Al-based Attack Evaluation in LockLab

The execution time of Al-based Attack Evaluation in LockLab is as Figure 5.18 shows,
it can be seen that the overall execution time increases as key-bit length and overall gate
number grow. It can be seen that for the locking stratetgies that protect circuit with
locking block, the key-gate often mixed with other inserted key-gates, which makes it
harder for Al-based attack to distinguish the inserted key-gate. On the other hand, for
approaches such as RLL or FLL which protect the circuit by single key-gates, Al-based
attack has much higher threat.

Al-based Attack Resilience

90.00%

80.00%

70.00% Ob18 [s15850x

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00% L 1

RLL FLL SARLock Anti-SAT

F1GURE 5.19: Al-based Attack reslience of RLL, FLL, SARLock, and Anti-SAT

112 Chapter 5 LockLab

5.6.10 Zeki implementation

LockLab can also implement Zeki on netlist file, the time consumption of different bench-
marks with gate number ranging from 3k to 500k are shown in the table 5.2. And the

detailed implementation working flow as explained in chapter 3.

TABLE 5.2: Benchmarks and corresponding time consumption to implement Zeki

Benchmark | Input Number | Output Number | Gate Number | ZeKi Running Time (s)

b21 522 512 20,027 6.7

b18 3,357 3,343 111,421 32.2
$38354x 38 304 11,448 4.2
$38417x 28 106 8,709 3.2
s15850x e 150 3,448 1.3
sha256 678 258 51,019 15.2

sha256x10 6780 2580 510,190 161.7

5.7 Summary

In this chapter, I introduced LockLab, an automated tool designed to facilitate the
implementation and evaluation of logic locking techniques for IC industry and can also be
used for educational purpose. LockLab enables users to apply various locking strategies
including RLL, FLL, SLL, Anti-SAT, SFLL, Zeki and SARLock, and offers an easy-
to-use platform for testing the resistance of locked circuits against common attacks,

including SAT-based, sensitization attack, SPS attack, and Al-based attacks evaluation.

The benchmarks used in the simulation has gate number ranging from 3k to 500k, and
the simulation time consumption never exceed 200 second, so it is safe to say that

Locklab is an effective tool.

LockLab provides users with a simple and intuitive automated tool for simulating a
wide range of locking strategies and attacks. The tool features a clean and user-friendly
interface (UT), making it easy to use. After each simulation, LockLab generates a detailed
output log file, which allows users to review the results, including whether the newly

inserted key-gates have been successfully applied or whether an attack was successful.

Upon inserting the locking mechanism into the circuit’s netlist, LockLab also offers an

automatic verification function. This function checks whether the circuit’s functionality

Chapter 5 LockLab 113

remains intact when the correct key is applied, and whether the circuit produces out-
put corruption when an incorrect key is provided. This process helps ensure that the
logic locking mechanism is effectively securing the circuit while maintaining its intended

operation under normal conditions.

The chapter outlined the detailed functionality of LockLab, including its ability to parse
netlist files, insert key-gates, and perform functionality tests on the locked circuits to

ensure that they maintain their intended output under correct key inputs.

Through these features, LockLab provides significant value for both academic and indus-
trial users. For researchers, it serves as an educational tool for studying the fundamentals
of logic locking and the impact of different strategies on circuit security. For engineers
and designers, it offers a practical solution for testing and refining logic locking tech-
niques to protect intellectual property (IP) from reverse engineering and unauthorized

access.

Furthermore, LockLab’s integration of automated testing and simulation reduces the
need for external hardware simulators and manual testbench writing, significantly stream-
lining the verification process. By making the evaluation of logic locking more efficient
and accessible, LockLab contributes to the ongoing effort to enhance hardware security

in an era of increasing threats to integrated circuit design and hardware piracy.

As the IC industry continues to evolve with emerging attack methods and advanced
reverse engineering techniques, tools like LockLab will play a crucial role in ensuring
that hardware security remains a priority in the design and manufacturing processes.
Future enhancements to LockLab, such as improved Al-based attack simulations and the
incorporation of new locking strategies, will further strengthen its capabilities and help
safeguard the integrity of semiconductor designs in a rapidly advancing technological

landscape.

Chapter 6

Conclusions

6.1 Reflective Summary

This project focuses on two main objectives: the development of Dynamic Logic Locking
and Zero-Knowledge Logic Locking through Zeki, and the creation of a simulation tool

capable of supporting various gate-level locking strategies and attacks.

In contrast to traditional logic locking strategies, Zeki does not rely on a single locking
mechanism. Instead, it employs a dynamic locking mechanism. For the circuit to be
protected, Zeki randomly generates locking blocks based on different validation mecha-
nisms, thus avoiding the structural vulnerabilities inherent in single-mechanism locking.
Additionally, the dynamic nature of the locking mechanism further enhances isolation
between different protected products. Even if an attacker successfully breaches one
product’s defence, they cannot use the same strategy to compromise other products, as

each product’s locking mechanism is uniquely generated.

Moreover, Zeki is the first logic locking strategy to implement zero-knowledge locking.
Zero-knowledge logic locking takes security a step further by ensuring that no one,
not even those with physical access to the locked circuit, can discern the key or the
details of the locking mechanism. By minimizing the exposure of sensitive design details,
this strategy strengthens defence against internal threats such as insider attacks, where
trusted personnel might attempt to compromise the circuit’s security. This approach,
combined with the random generation of locking blocks, significantly reduces the threat
from insider attacks, as no one knows the details of the locking blocks.

115

116 Chapter 6 Conclusions

LockLab is a gate-level logic locking and attack simulation tool based on the concept
behind Lockit. It allows users to insert various logic locking strategies into netlist files
or simulate different types of attacks on locked circuits. The process is simple and user-
friendly, making it highly convenient for researchers and students in the logic locking

field. This tool greatly facilitates the study and exploration of logic locking techniques.

6.2 Main Contributions

6.2.1 Chapter 3

This chapter provides a comprehensive explanation of the motivation, operational princi-
ples, and implementation flow of Zeki. It compares the working principles of various PFB
(Point-Function Based) locking validation formulas, from which the common character-
istics of these strategies are derived. Using these characteristics, the chapter introduces
the dynamic locking block, a randomly generated validation mechanism in Zeki. To fur-
ther enhance the output corruption rate, SLL (Strong Logic Locking) is incorporated,
along with a Key Verification Unit that also relies on a random mechanism to verify the

correctness of the key.

Additionally, Zeki has been evaluated through various simulations, demonstrating its
exceptional resilience against a range of attacks, including SAT attacks, SPS attacks,

and sensitisation attacks.

6.2.2 Chapter 4

Given that the majority of products in the IC industry are based on sequential circuits
rather than combinational circuits, Zeki has been adapted to include a version suitable
for sequential circuits. This section discusses the implementation of Zeki in sequential
circuits and evaluates the overhead incurred by Zeki in both combinational and sequen-

tial circuit benchmarks.

Chapter 6 Conclusions 117

6.2.3 Chapter 5

The chapter also introduces LockLab and Lockit. Lockit, which I co-authored as the
second author, is an SFLL (Strong Fault Logic Locking) automation tool described in
my published paper. Building on this idea, I later developed LockLab. While Lockit
primarily focuses on the SFLL locking strategy, LockLab offers users the flexibility to
apply seven different logic locking strategies (RLL, FLL, SLL, Anti-SAT, SARLock,
SFLL, and Zeki) to Verilog-format netlist files. Furthermore, LockLab enables the sim-
ulation of SAT attacks, sensitisation attacks, SPS attacks, and even Al-based attack
evaluations. LockLab also features a user-friendly GUI and provides clear output logs

after simulations, making it an accessible and valuable tool for researchers and learners

in the field.

6.3 Limitations and Future Work

While the contributions of this thesis mark significant progress in the field, there are

important limitations and directions for future exploration:

e Overhead for small designs: Zeki’s area and logic overhead becomes dispro-
portionately large for small-scale circuits (typically below 1,000 gates). The 64-bit
and 128-bit locking blocks, while secure, can introduce more than 10% overhead

in such designs, making them less practical for resource-constrained applications.

e Benchmark limitations: The current evaluation is based on established aca-
demic benchmarks (e.g., ITC’99, MCNC), which are relatively small and out-
dated. Future work should explore Zeki’s scalability and performance on modern
industrial-scale circuits, especially those derived from open-source SoC platforms

or RISC-V cores.

e Abstraction level: LockLab currently operates at the gate-level. Integrating
support for High-Level Synthesis (HLS) would align better with modern design

practices and facilitate early-stage locking exploration.

e Hybrid and advanced locking: Future versions of Zeki may integrate with

other advanced locking paradigms such as FSM-based locking, embedded FPGA

118

Chapter 6 Conclusions

6.4

(eFPGA) security primitives, or runtime reconfigurable locking mechanisms, to

provide broader protection coverage.

Achievement of Objectives

. To design a novel, dynamic logic locking mechanism.

This PhD project introduces ZeKi, a logic locking technique that generates Dy-
namic Logic Locking (DLL) security circuits through a zero-knowledge implemen-
tation. By employing a dynamic locking block, ZeKi ensures that each circuit is
protected using a randomly generated and unique locking mechanism, thereby en-
hancing security and mitigating the risk of structural attacks. It enables hardware
designers to implement logic locking without disclosing sensitive information, thus
strengthening confidentiality. Overall, the proposed ZeKi framework contributes
to the advancement of logic locking techniques and offers effective protection for

integrated circuits.

. To reduce the risk of insider threats by minimizing key exposure.

The mechanism of ZeKi allows hardware designers to implement logic locking on
protected circuits without revealing any locking information, including the secure
key, locking block structure, key-bit arrangement, or locking mechanism—achieving
true zero-knowledge locking. ZeKi’s zero-knowledge property ensures that no party
involved in the design or verification process gains access to the locking key or

mechanism, significantly reducing the risk of insider threats.

. To develop a practical simulation platform for logic locking research.

LockLab, a novel software tool developed in this work, addresses current limitations
in logic locking research by providing a practical simulation environment. The tool
allows users to apply multiple logic locking strategies to gate-level netlist files,
including RLL, FLL, SLL, ZeKi, Anti-SAT, SARLock, and SFLL. In addition,
it supports the simulation of various attacks, such as SAT attacks, SPS attacks,

sensitisation attacks, and the evaluation of Al-based attack methodologies.

. To ensure that the proposed locking strategy provides strong resilience

against a broad range of attacks.

Chapter 6 Conclusions 119

This PhD work extensively evaluates the resilience of ZeKi against a range of
attack types, including SAT attacks, sensitisation attacks, and structural attacks,
using a diverse set of benchmark circuits. ZeKi demonstrates exponential resilience
against SAT attacks, meaning that the number of DIPs (Distinguishing Input Pat-
terns) required by an attacker grows exponentially with key length. In terms of
sensitisation attacks, all logic gates introduced by ZeKi are ’pairwise-secured’, a
configuration defined in this thesis as '100-secure’, ensuring that sensitisation at-
tacks cannot compromise the circuit. For structural attacks, ZeKi uses randomly
generated locking blocks, introducing significant variability across designs. Simu-
lation results show that ZeKi achieves over 80% structural security across different

benchmarks, validating its robustness.

5. To evaluate the performance of the proposed mechanism.

ZeKi’s performance has been evaluated using benchmark suites including ISCASS85,
ITC99, EPFL, and OpenCores, covering circuits with gate counts ranging from
3,000 to over 100,000. To test scalability on larger designs, a custom benchmark
named sha256x10 was created by parallelizing ten SHA-256 modules, resulting in

a circuit with over 500,000 logic gates.

Although the overhead introduced by ZeKi is more noticeable in smaller circuits
(e.g., S15850x with 18.5% power and 17.2% area overhead), it becomes significantly
lower in larger circuits. For example, in the b21 benchmark, ZeKi incurs only 2.1%
power and 1.7% area overhead. Compared to LUT/FPGA-based logic locking
methods and other high-overhead approaches, ZeKi achieves the lowest area and
power overhead among state-of-the-art techniques. These results demonstrate not

only ZeKi’s efficiency but also its excellent scalability for larger designs.

6.5 Final Remarks and Broader Impact

This thesis contributes to the ongoing evolution of logic locking by introducing Zeki,
a zero-knowledge, dynamic locking framework that prioritizes both structural unpre-
dictability and minimal key exposure. Through the development of LockLab, it also
provides the research community with a powerful and accessible platform for simulating

diverse locking strategies and attacks.

120 Chapter 6 Conclusions

Together, these contributions demonstrate that logic locking can be made both more
secure and more adaptable to the complex needs of modern IC design. Although limita-
tions remain, especially in overhead for small designs, the proposed methods represent a
step toward scalable and trustworthy hardware protection. Future work can build upon
this foundation by integrating Zeki with emerging paradigms such as reconfigurable

logic, post-quantum security primitives, and high-level synthesis flows.

The broader implication of this work lies in reinforcing the security of the semiconductor

supply chain in an era of increasing globalization and design outsourcing.

Appendix A

Source code of LockLab

#!/user/bin/env python3
-i- coding: UTF-8 -*x-i-

import re
import random
import copy

import readverilog

def read_user(filename):

user_in = [None] * 3

with open(filename, ’r’) as f:
user_in[0] = (str(f.readline())).strip(’\n’)
user_in[1] = int(f.readline())

user_in[2] = list((str(f.readline()).strip(’\n’)))

if len(user_in[2]) == user_in[1]:
print (’length fit’)

else:
print (’length not fit?)

return user_in

output key input name list
def key_inputs(key_no):
key_input_name = [Nonel] * key_mno
for ki in range(key_no):
key_input_name [ki] = str(’keybit’ + str(ki + 1))

return key_input_name

output key wire name list

121

122 Appendix A Source code of LockLab

def key_points(key_no):

key_point_name = [None] * key_no
for ki in range(key_no):
key_point_name [ki] = str(’keypoint’ + str(ki))

return key_point_name

HAHHHAHBRHRARH

def modi_module(circuitl, filename, key_input_name):

#
#
#
#

module_symbol = circuitl.inputlist + circuitl.outputlist

with open(filename, ’a+’) as f1:
print (’module output opened successfully’)
i2 =1
fl.write(’module ’ + circuitl.name + °> (’)
for 11 in module_symbol:
if i2 == 1:
fl.write(1l1)
elif (i2 > 9) and (i2 % 10 == 1):
fl.write(’,’ + ’\n’ + 11)
else:
f1.write(’,’ + 11)
i2 += 1

f1.write(’,’ + ’\n\n’)

i3 =1

for 12 in key_input_name:

fl.write(12)
elif (i3 > 9) and (i3 % 10 =

1):
fl.write(’,’ + ’\n’ + 12)
else:
fl.write(’,’ + 12)
i3 += 1
f1.write(’);’ + ’\n\n\n’)

print (’module list output finished’)

filenamel is the name of netlist file
filename2 is the name of output file
key_input_name is the list of key input name

In is the end line number after reading of module finished

def modi_input (input_symbol, filenamel, key_input_name):

with open(filenamel, ’a+’) as f2:
print (’input opened successfully’)
i1 =1
f2.write(’input)

for 1 in input_symbol:

Appendix A Source code of LockLab 123

if (i1 > 9) and (i1l % 10 == 0):
f2.write(l + ?,’ + ’\n’)
else:
f2.write(1 + 2,?)
il += 1

f2.write(’\n’)

i2 =1

for 11 in key_input_name:

f2.write(11)
elif (i2 > 9) and (i2 % 10 == 1):
f2.write(’,’ + ’\n’ + 11)
else:
f2.write(’,’ + 11)
i2 += 1
f2.write(’;’ + ’\n\n\n’)

print (’input list finished’)

def modi_wire(wire_symbol, filename, key_gate_name):
with open(filename, ’a+’) as f2:
print (’wire opened successfully’)
i1t =1
f2.write(’wire)
for 1 in wire_symbol:
if (i1 > 9) and (il % 10 == 0):
f2.write(1l + ’,’ + ’\n’)
else:
f2.write(1l + 2,?)
il += 1

f2.write(’\n’)

i2 =1

for 11 in key_gate_name:

f2.write(11)
elif (i2 > 9) and (i2 % 10 =

1):
f2.write(’,’ + ’\n’ + 11)
else:
f2.write(’,’ + 11)
i2 += 1
f2.write(’;’ + ’\n\n\n’)

print (’wire list finished’)

def modi_output (output_symbol, filename):

with open(filename, ’a+’) as f2:

124

Appendix A Source code of LockLab

print (’output opened successfully’)
i2 =1
f2.write(’output)
for 11 in output_symbol:
if i2 == 1:

f2.write(11)

elif (i2 > 9) and (i2 % 10 == 1):
f2.write(’,’ + ’\n’ + 11)
else:
f2.write(’,’ + 11)
i2 += 1
f2.write(’;’ + ’\n\n\n’)

print (’output list finished’)

def write_gate(filename, gate_list):
with open(filename, ’a+’) as f:
for gl in gate_list:
f.write(gl)

f.write(’\n’ + ’endmodule’)

HARBHBARHBAAHBRARHBRABBARHBRAHBARHBAABHBRAFBAAABRARBBAABBARHBRAHBAR BB RSHH

def modi_gate(userin, keynamelist, keywirelist,

randnolist = []

print (gate_data)

for ir in range (userin[1]):

while 1:

gate_symbol, gate_data, input_symbol):

temprand = random.randint (0, len(gate_data) - 1)

if gate_datal[temprand] [3][0] not in input_symbol:

randnolist.append(temprand)
break

ranlen = set(randnolist)

if len(ranlen) != len(randnolist):

return ’’, 1

print (randnolist)
keygatelist = []

for gr in range(userin[1]):

keyinput = copy.deepcopy(gate_datalrandnolist[gr]][3][0])

gate_data[randnolist[gr]][3][0] = keywirelist[gr]

if userin[2][gr]l == ’0’:
gatetype = ’xor’

elif userin[2][gr] == ’1°:

Appendix A Source code of LockLab 125

gatetype = ’xnor’
else:
print (’gatetype error’)

gatetype = ’xor’

keygatelist.append([gatetype + ’> ’ + ’keygate’ + str(gr) + > (’ + keywirelist[gr] +

>, ’ + keynamelist[gr] + ’, ’ + keyinput + ’);’])

newlist = []
for ggl in gate_data:
inlist = 7’
for il in gg1[3]1:
inlist += ’, ’> + il

newlist.append ([ggi[0] + > °> + ggi[1] + > > + °> (> + ggi[2] + inlist + ’);°1)

newlist += keygatelist
print(newlist [10])

print (newlist [-1])

newtxt = ’\n’
for nnl in newlist:

newtxt = newtxt + nni[0] + ’\n’

return newtxt, O

def unill (userfile, filein, fileout):

userin = read_user (userfile)

print (userin)

keynamelist = key_inputs(userin[1])

keywirelist = key_points(userin[1])

readlinel = modi_module(filein, fileout, userin[0][:-2], keynamelist)
readline2, input_symbol = modi_input(filein, fileout, keynamelist, readlinel)
readline3, output_symbol = modi_output(filein, fileout, readline2)

readline4, wire_symbol = modi_wire(filein, fileout, keywirelist, readline3)

gate_no, gate_symbol, gate_data = read_gate(filein, readline4)

keygatelist, failflag = modi_gate(userin, keynamelist, keywirelist, gate_symbol, gate_data,

if not failflag:

write_gate(fileout, keygatelist)

return input_symbol, output_symbol, wire_symbol, gate_symbol, failflag

126 Appendix A Source code of LockLab

import z3

import benchmarks
import circuit

import dip_finder
import sat_model

import oracle_runner

class SatAttack:

"""The main class for conducting the SAT attack."""

def __init__(self, locked_filename, unlocked_filename):
self.locked_filename = locked_filename
self .unlocked_filename = unlocked_filename
self.iterations = 0

def run(self):
"""Run the SAT attack."""

print ("Reading in locked circuit...")

self .nodes, self.output_names = benchmarks.read_nodes (self.locked_filename)

print ("Reading in unlocked circuit...")

self.oracle_ckt = benchmarks.read_ckt(self.unlocked_filename)

key_inputs = [node.name for node in self.nodes.values() if node.type == "Key Input"]
primary_inputs = [node.name for node in self.nodes.values() if node.type == "Primary Input"]

print ("\n# Primary Inputs: %i" % (len(primary_inputs)))

print ("# Key Inputs: %i" % (len(key_inputs)))

finder = dip_finder.DipFinder(self.nodes, self.output_names)
runner = oracle_runner.OracleRunner (self.oracle_ckt)
oracle_io_pairs = []

while finder.can_find_dip():
dip = finder.find_dip()
oracle_output = runner.run(dip)

finder.add_constraint (dip, oracle_output)

oracle_io_pairs.append ((dip, oracle_output))

self.iterations += 1

key = self._find_key(oracle_io_pairs, key_inputs)

expected_key = benchmarks.get_expected_key(self.locked_filename)

Appendix A Source code of LockLab 127

#print ("\nExpected key: ¥%s" % (self._key_string(expected_key)))
#print ("Found key: %s" % (self._key_string(key)))

print ("\nChecking for circuit equivalence...\n")
self._check_key (key)
if self._check_key(key):

print ("Locked and unlocked circuits match")
else:

print ("Key found does not match oracle")
def _find_key(self, oracle_io_pairs, key_names):

nnn

Find a key that satisfies all DIPs found during the SAT attack.

This key will be in the set of correct keys.

oracle_io_pairs: array of dip/output pairs in the form of (dip, output)

returns: key that satisfies all dip constraints

nnn

s = z3.Solver ()

for io_pair in oracle_io_pairs:

dip = io_pair [0]

output = io_pair [1]
constraint_ckt = circuit.Circuit.specify_inputs(dip, self.nodes, self.output_names)
output_constraints = [constraint_ckt.outputs()[name] == output[name] for name in out

s.add (xoutput_constraints)

s.check ()
model = s.model ()
key = sat_model.extract_from_model(model, key_names, completion=True)

return key

def _check_key(self, key):
Check that the key returned from the SAT attack is correct. It
does this by creating a miter circuit with a locked version
and an oracle. If the diff signal returned from the miter circuit

cannot be True, then the circuits are equivalent.

key: the key returned from the SAT attaack

nnn

locked_ckt = circuit.Circuit.specify_inputs(key, self.nodes, self.output_names)

miter = circuit.Circuit.miter(locked_ckt, self.oracle_ckt)

user_in = [None] x 3

with open(filename, ’r’) as f:

user_in [0] (str(f.readline())) .strip(’\n’)

user_in [1] int (f.readline ())

user_in[2] = list((str(f.readline()).strip(’\n’)))

print (’Locking key: ’+str(user_in[2]))

from node import Node

from token_type import TokenType

class Parser ():

def parse(self, tokenizer):

nnn

Parses circuit nodes given a list of tokens from an input verilog file.

128 Appendix A Source code of LockLab
s = z3.Solver ()
s.add(miter.outputs () ["diff"] == True)
return s.check() == z3.unsat
def _key_string(self, key):
ordered_names = sorted(key.keys(), key=lambda name: str(name[8:]))
key_string = ""
for name in ordered_names:
if key[namel:
key_string += "1"
else:
key_string += "O"
return key_string
def read_user(filename):

tokenizer: Tokenizer object for the Verilog input file

returns: the nodes of the circuit, the names of the output nodes

nnn

self .outputs = []

self .nodes = {}

while True:

token_type = tokenizer.get_token_type ()

Appendix A Source code of LockLab 129
if token_type == TokenType.EOF:
break
elif token_type == TokenType.INPUT:
self._parse_inputs (tokenizer)
elif token_type == TokenType.OUTPUT:
self . _parse_outputs (tokenizer)
elif token_type == TokenType.WIRE:
self._parse_wires (tokenizer)
elif token_type == TokenType.AND:
self . _parse_gate (tokenizer, "And")
elif token_type == TokenType.XOR:
self . _parse_gate (tokenizer, "Xor")
elif token_type == TokenType.OR:
self . _parse_gate (tokenizer, "Or")
elif token_type == TokenType.NOT:
self._parse_gate(tokenizer, "Not")
elif token_type == TokenType.NAND:
self . _parse_gate (tokenizer, "Nand")
elif token_type == TokenType.XNOR:
self . _parse_gate (tokenizer, "Xnor")
elif token_type == TokenType.NOR:
self . _parse_gate(tokenizer, "Nor")
else:
tokenizer.skip_token ()
return self.nodes, self.outputs
def _parse_inputs(self, tokenizer):
W
Parses input nodes, both key and primary inputs
tokenizer: the Tokenizer object with the verilog input
waun
tokenizer.skip_token() # input token
while True:
This check is NOT robust and could be improved probably
if "key" in tokenizer.id_value():
self .nodes[tokenizer.id_value ()] = Node(tokemnizer.id_value(), [I1,
else:
self .nodes [tokenizer.id_value()] = Node(tokenizer.id_value(), [],

tokenizer.skip_token ()

if tokenizer.get_token_type() ==
tokenizer.skip_token ()

break

else:

TokenType . SEMICOLON :

"Key Input")

"Primary Input

130

Appendix A Source code of LockLab

def

def

def

tokenizer.skip_token ()

_parse_outputs (self, tokenizer):

nnn

Parses output nodes

tokenizer: the Tokenizer object with the verilog input

nnn

tokenizer.skip_token() # output token

while True:
self.outputs.append(tokenizer.id_value())
self .nodes [tokenizer.id_value ()] = Node(tokenizer.id_value(),

tokenizer.skip_token ()

if tokenizer.get_token_type() == TokenType.SEMICOLON:
tokenizer.skip_token ()
break

else:

tokenizer.skip_token ()

_parse_wires (self, tokenizer):

nnn

Parses wire nodes

tokenizer: the Tokenizer object with the verilog input

nnn

tokenizer.skip_token() # wire token

while True:

if tokenizer.get_token_type() == TokenType.SEMICOLON:
tokenizer.skip_token() # semicolon
break

elif tokenizer.get_token_type() == TokenType.COMMA:
tokenizer.skip_token() # comma

elif tokenizer.get_token_type() == TokenType.LEFT_BRACKET:
self._parse_bus (tokenizer)

else:

self . _parse_single_wire(tokenizer)

_parse_bus (self, tokenizer):

Parses wire nodes that are buses

tokenizer: the Tokenizer object with the verilog input
tokenizer.skip_token() # left bracket

low_number = tokenizer.int_value()

1,

"Qutput")

Appendix A Source code of LockLab 131

tokenizer.skip_token() # low number
tokenizer.skip_token() # colon
high_number = tokenizer.int_value()
tokenizer.skip_token() # high value
tokenizer.skip_token() # right bracket
bus_name = tokenizer.id_value ()

tokenizer.skip_token() # bus name

for i in range(high_number - low_number + 1):

wire_name = bus_name + "__index" + str(i)

self .nodes[wire_name] = Node(wire_name, [], "Wire")

def _parse_single_wire(self, tokenizer):

nnn

Parses a single wire node

tokenizer: the Tokenizer object with the verilog input
nmnn
self .nodes [tokenizer.id_value()] = Node(tokenizer.id_value(), [], "Wire")

tokenizer.skip_token ()

def _parse_gate(self, tokenizer, gate_type):

nnn

Parses a gate node

tokenizer: the Tokenizer object with the verilog input
nnn

tokenizer.skip_token() # gate token
tokenizer.skip_token() # gate identifier token

tokenizer.skip_token() # left paren token

output_name = self._parse_id(tokenizer)

tokenizer.skip_token() # comma

inputs = []
while True:
if tokenizer.get_token_type() == TokenType.RIGHT_PAREN:

tokenizer.skip_token() # right paren

break
elif tokenizer.get_token_type() == TokenType.IDENTIFIER:
input_name = self._parse_id(tokenizer)

inputs.append(input_name)

elif tokenizer.get_token_type() == TokenType.COMMA:
tokenizer.skip_token () # comma

else:

print ("Error: unexpected token type + tokenizer.get_token_type ())

raise

132 Appendix A Source code of LockLab

tokenizer.skip_token() # semicolon

self .nodes [output_name].inputs = inputs

self .nodes [output_name].type = gate_type

def _parse_id(self, tokenizer):

W

Parses an identifier name

tokenizer: the Tokenizer object with the Verilog input

nnn

id_name = tokenizer.id_value ()

tokenizer.skip_token() # id

if tokenizer.get_token_type() == TokenType.LEFT_BRACKET:
tokenizer.skip_token() # left bracket
index = tokenizer.int_value ()
tokenizer.skip_token () # number
tokenizer.skip_token() # right bracket
return id_name + "__index" + str(index)

else:
return id_name

from z3 import *

class CircuitBuilder ():

def

def

build_miter (self, cktO, cktil):

nnn

Builds a miter circuit z3 representation from two smaller circuits.

cktO: the first half of the miter circuit

cktl: the second half of the miter circuit

returns: a miter circuit z3 representation

W

output_xors = [Xor (cktO.outputs () [name], cktl.outputs()[name]) for
diff = Or (*output_xors)

return {"diff": diff}

name in cktO.outputs ()]

build(self, nodes, output_names, key_suffix = "", spec_inputs = None):

nnn

Builds a circuit z3 representation from a list of nodes in the circuit.

nodes: the nodes in the circuit
output_names: the names of the output nodes

key_suffix: suffix to apply to all key names

Appendix A Source code of LockLab 133

spec_inputs: inputs to be replace by a value

returns: a z3 representation for the outputs of the circuit
corresponding to the nodes passed in

win

self.visited_nodes = []

self.inputs = []

self .specified_inputs = spec_inputs

outputs = {}

for name in output_names:

outputs [name] = self._build_node(nodes, name, key_suffix)

return outputs, self.inputs

def _build_node(self, nodes, name, key_suffix):

nnn

Returns the z3 representation for a single node.

nodes: a list of all nodes in the circuit
name: the name of the node to build
key_suffix: the suffix to apply to key names

nnn

node = nodes[name]

if name in self.visited_nodes:

return node.z3_repr

self.visited_nodes.append(name)

if node.type == "Key Input":
self._build_key(node, name, key_suffix)
elif node.type == "Primary Input":
self._build_input (node, name)
else:
fanin = [self._build_node(nodes, child_name, key_suffix) for child_name in node.inpu

self._build_gate(node, fanin)

return node.z3_repr

def _build_gate(self, node, fanin):

nnn

Sets the z3 representation for a logic gate node.

node: the node to find the z3 representation for
fanin: the input nodes the the node

win

if node.type == "And":

node.z3_repr = And(*fanin)

134 Appendix A Source code of LockLab

elif node.type == "Xor":
node.z3_repr = Xor (xfanin)
elif node.type == "Or":
node.z3_repr = Or(*xfanin)
elif node.type == "Not":
node.z3_repr = Not(*fanin)
elif node.type == "Nand":

node.z3_repr = Not(And(*fanin))

elif node.type == "Xnor":

node.z3_repr Not (Xor (*xfanin))
elif node.type == "Nor":

node.z3_repr = Not(Or(*fanin))
else:

print ("Unknown node type " + str(mnode))

raise

def _build_key(self, node, name, key_suffix):

nnn

Sets the z3 representation for a key input node

node: the node to find the z3 representation for
name: the name of the key
key_suffix: the suffix to apply to the key

nnn

key_name = name + key_suffix

if self.specified_inputs is not None and name in self.specified_inputs:
node.z3_repr = self.specified_inputs[key_name]

else:
self.inputs.append(key_name)

node.z3_repr = Bool(key_name)

def _build_input(self, node, name):

nnn

Sets the z3 representation for a primary input node

node: the node to find the z3 representation for

name: the name of the key

if self.specified_inputs is not None and name in self.specified_inputs:
node.z3_repr = self.specified_inputs[name]

else:
self.inputs.append(name)

node.z3_repr = Bool(name)

Bibliography

1]

Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security of
logic encryption algorithms. In 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 137-143. IEEE, 2015.

Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic locking.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38:199-207, 2019.

Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan Rajendran, and Ozgur Sinanoglu. Provably-secure logic lock-

ing: From theory to practice. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 1601-1618, 2017.

Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran, and Ozgur

Sinanoglu. Sarlock: Sat attack resistant logic locking. In 2016 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), pages 236-241,

2016.

Joseph Sweeney, Marijn J Heule, and Lawrence Pileggi. Sensitivity analysis of

locked circuits. EPiC Series in Computing, 73, 2020.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Ra-
jendran. Removal attacks on logic locking and camouflaging techniques. IEEE

Transactions on Emerging Topics in Computing, 8:517-532, 2020.

Hadi Mardani Kamali, Kimia Zamiri Azar, Farimah Farahmandi, and Mark Tehra-

nipoor. Advances in logic locking: Past, present, and prospects. Cryptology ePrint

Archive, 2022.

135

136

BIBLIOGRAPHY

8]

[13]

[14]

[15]

[17]

Muhammad Yasin, Jeyavijayan Rajendran, and Ozgur Sinanoglu. Trustworthy

Hardware Design: Combinational Logic Locking Techniques. Springer Interna-

tional Publishing, 2020.

Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. Epic: Ending piracy

of integrated circuits. In 2008 Design, Automation and Test in Europe, pages

1069-1074, 2008.

Nemanja Kajtez, Yue Zhang, and Basel Halak. Lockit: A logic locking automation
software. Electronics, 10:2817, 11 2021.

Bicky Shakya, Mark M Tehranipoor, Swarup Bhunia, and Domenic Forte. In-
troduction to hardware obfuscation: Motivation, methods and evaluation. In

Hardware Protection through Obfuscation, pages 3—32. Springer, 2017.

Mohammad Tehranipoor and Cliff Wang. Introduction to hardware security and

trust. Springer New York, NY, 2011.

Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on hardware
security: Models, methods, and metrics. Proceedings of the IEEE, 102(8):1283—
1295, 2014.

Prashanth Mohan, Oguz Atli, Joseph Sweeney, Onur Kibar, Larry Pileggi, and
Ken Mai. Hardware redaction via designer directed fine grained efpga insertion.
In 2021 Design, Automation and Test in Europe Conference and Exhibition, pages

1186-1191, Feb 2021.

Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on hardware
security: Models, methods, and metrics. Proceedings of the IEEE, 102:1283-1295,
2014.

Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mohammad Tehra-
nipoor. Trustworthy hardware: Identifying and classifying hardware trojans.

Computer, 43:39-46, 2010.

Michael S. Hsiao, Mainak Banga, and Seetharam Narasimhan. Hardware trojan
attacks: Threat analysis and countermeasures. Proceedings of the IEEE, 102:1229-
1247, 2014.

BIBLIOGRAPHY 137

18]

[19]

23]

[24]

[26]

R Naveenkumar and NM Sivamangai. Hardware trojans detection and prevention

techniques review. Wireless Personal Communications, 136(2):1147-1182, 2024.

Fangzhou Wang, Qijing Wang, Lilas Alrahis, Bangqi Fu, Shui Jiang, Xiaopeng
Zhang, Ozgur Sinanoglu, Tsung-Yi Ho, Evangeline FY Young, and Johann Knech-
tel. Trolloc: Logic locking and layout hardening for ic security closure against

hardware trojans. arXiv preprint arXiv:2405.05590, 2024.

Karen Goertzel. Integrated circuit security threats and hardware assurance coun-

termeasures. CrossTalk, 26:33-38, 2013.

Randy Torrance and Dick James. The state-of-the-art in semiconductor reverse
engineering. In Proceedings of the 48th Design Automation Conference, pages

333-338, 2011.

Ujjwal Guin, Daniel DiMase, and Mohammad Tehranipoor. Counterfeit integrated

circuits: Detection, avoidance, and the challenges ahead. Journal of Electronic

Testing, 30:9-23, 2 2014.

Ujjwal Guin, Ke Huang, Daniel DiMase, John M. Carulli, Mohammad Tehra-
nipoor, and Yiorgos Makris. Counterfeit integrated circuits: A rising threat in

the global semiconductor supply chain. Proceedings of the IEEE, 102:1207-1228,

8 2014.

Andrew E. Caldwell, Hyun-Jin Choi, Andrew B. Kahng, Stefanus Mantik, Miodrag
Potkonjak, Gang Qu, and Jennifer L. WongAuthors. Effective iterative techniques

for fingerprinting design ip. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 23:208-215, 2004.

Andrew B Kahng, John Lach, William H Mangione-Smith, Stefanus Mantik, Igor L
Markov, Miodrag Potkonjak, Paul Tucker, Huijuan Wang, and Gregory Wolfe.
Watermarking techniques for intellectual property protection. In Proceedings of

the 35th annual Design Automation Conference, pages 776-781, 1998.

Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh Karri. Secu-

rity analysis of integrated circuit camouflaging. In Proceedings of the 2013 ACM

SIGSAC conference on Computer and communications security. ACM Press, 2013.

138

BIBLIOGRAPHY

[27]

[28]

[29]

[31]

33]

[35]

Muhammad Liman Gambo and Ahmad Almulhem. Zero trust architecture: A

systematic literature review. arXiv preprint arXiv:2503.11659, 2025.

Richard Wayne Jarvis and Michael G Mclntyre. Split manufacturing method for
advanced semiconductor circuits, March 27 2007. US Patent 7,195,931.

Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara. Securing
computer hardware using 3d integrated circuit technology and split manufacturing
for obfuscation. In 22nd USENIX Security Symposium (USENIX Security 13),
pages 495-510, 2013.

Domenic Forte, Swarup Bhunia, and Mark M. Tehranipoor. Hardware Protection

Through Obfuscation. Springer Series in Advanced Microelectronics. Springer

Cham, Cham, Switzerland, 2017.

Yujie Wang, Pu Chen, Jiang Hu, and Jeyavijayan JV Rajendran. Routing pertur-
bation for enhanced security in split manufacturing. In 2017 22nd Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 605-510. IEEE, 2017.

Kun Yang, Ulbert Botero, Haoting Shen, Domenic Forte, and Mark Tehranipoor.
A split manufacturing approach for unclonable chipless rfids for pharmaceuti-
cal supply chain security. In 2017 Asian hardware oriented security and trust

symposium (AsianHOST), pages 61-66. IEEE, 2017.

Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian
Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel Gaillardon,
and Ramesh Karri. Exploring efpga-based redaction for ip protection. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages
1-9, Nov 2021.

Bo Hu, Jingxiang Tian, Mustafa Shihab, Gaurav Rajavendra Reddy, William
Swartz, Yiorgos Makris, Benjamin Carrion Schaefer, and Carl Sechen. Functional
obfuscation of hardware accelerators through selective partial design extraction
onto an embedded fpga. In Proceedings of the 2019 on Great Lakes Symposium
on VLSI, pages 171-176, 2019.

IEEE Standards Association. IEEE Standard for Encrypted Electronic Design In-
tellectual Property (IP) — IEEE 1735-2014. https://standards.ieee.org/ieee/
1735/6000/, 2014. DOI: https://doi.org/10.1109/IEEESTD.2014.6893771.

https://standards.ieee.org/ieee/1735/6000/
https://standards.ieee.org/ieee/1735/6000/
https://doi.org/10.1109/IEEESTD.2014.6893771

BIBLIOGRAPHY 139

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M Tehranipoor. Fortis: a com-
prehensive solution for establishing forward trust for protecting ips and ics. ACM
transactions on design automation of electronic systems (TODAES), 21(4):1-20,
2016.

Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z

Pan. Provably secure camouflaging strategy for ic protection. IEEE transactions on

computer-aided design of integrated circuits and systems, 38(8):1399-1412, 2017.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Logic
encryption: A fault analysis perspective. In 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 953-958. IEEE, 2012.

Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic encryption. IEEE
Transactions on Computers, 64:410-424, 2015.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Se-

curity analysis of logic obfuscation. Proceedings - Design Automation Conference,

pages 83-89, 2012.

Muhammad Yasin, Jeyavijayan Jv Rajendran, Ozgur Sinanoglu, and Ramesh

Karri. On improving the security of logic locking. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 35:1411-1424, 2016.
SLL.

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
Circuit obfuscation and oracle-guided attacks: Who can prevail? In Proceedings

of the Great Lakes Symposium on VLSI 2017, pages 357-362, 2017.

Whitesitt. J. Eldon. Boolean algebra and Its applications. DOVER publications,
2013.

Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. Sat-based image

computation with application in reachability analysis. In International Conference

on Formal Methods in Computer-Aided Design, volume 1954, pages 354-371.

Springer, 2000.

140

BIBLIOGRAPHY

[45]

[46]

[50]

[51]

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier Jin.

Appsat: Approximately deobfuscating integrated circuits. Proceedings of the 2017

IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2017, pages 95-100, 2017.

Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan Rajendran. What to lock? functional and

parametric locking. In Proceedings of the Great Lakes Symposium on VLSI 2017,

pages 351-356, 2017.

Abhrajit Sengupta, Mohammed Nabeel, Muhammad Yasin, and Ozgur Sinanoglu.
Atpg-based cost-effective, secure logic locking. Proceedings of the IEEE VLSI Test

Symposium, 2018-April:1-6, 2018.

Abhrajit Sengupta, Mohammed Nabeel, Nimisha Limaye, Mohammed Ashraf, and
Ozgur Sinanoglu. Truly stripping functionality for logic locking: A fault-based

perspective. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 39(12):4439-4452, 2020.

Quan Chen, Ahmed M Azab, Guruprasad Ganesh, and Peng Ning. Privwatcher:
Non-bypassable monitoring and protection of process credentials from memory cor-

ruption attacks. In Proceedings of the 2017 ACM on Asia Conference on Computer

and Communications Security, pages 167-178, 2017.

James C. Candy and Gabor C. Temes. Multirate Filter Designs Using Comb
Filters. IEEE, 2009.

Jean-Philippe Diguet, Samuel Evain, Romain Vaslin, Guy Gogniat, and Emmanuel
Juin. Noc-centric security of reconfigurable soc. In First International Symposium

on Networks-on-Chip (NOCS’07), pages 223-232. IEEE, 2007.

Nadia Creignou and Hervé Daudé. Sensitivity of boolean formulas. European

Journal of Combinatorics, 34:793-805, 7 2013.

Rajat Subhra Chakraborty and Swarup Bhunia. Harpoon: An obfuscation-

based soc design methodology for hardware protection. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28:1493-1502, 10

2009.

BIBLIOGRAPHY 141

[54]

[56]

[59]

[61]

Jaya Dofe and Qiaoyan Yu. Novel dynamic state-deflection method for gate-level

design obfuscation. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 37(2):273-285, 2017.

Travis Meade, Zheng Zhao, Shaojie Zhang, David Pan, and Yier Jin. Revisit
sequential logic obfuscation: Attacks and defenses. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1-4. IEEE, 2017.

Avinash R Desai, Michael S Hsiao, Chao Wang, Leyla Nazhandali, and Simin Hall.

Interlocking obfuscation for anti-tamper hardware. In Proceedings of the eighth

annual cyber security and information intelligence research workshop, pages 14,

2013.

Shervin Roshanisefat, Hadi Mardani Kamali, Kimia Zamiri Azar, Sai
Manoj Pudukotai Dinakarrao, Naghmeh Karimi, Houman Homayoun, and Avesta
Sasan. Dfssd: Deep faults and shallow state duality, a provably strong obfuscation
solution for circuits with restricted access to scan chain. In 2020 IEEE 38th VLSI
Test Symposium (VTS), pages 1-6. IEEE, 2020.

Leon Li, Shuyi Ni, and Alex Orailoglu. Janus: Boosting logic obfuscation scope
through reconfigurable fsm synthesis. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 292-303. IEEE, 2021.

Leon Li and Alex Orailoglu. Janus-hd: Exploiting fsm sequentiality and synthesis
flexibility in logic obfuscation to thwart sat attack while offering strong corruption.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1323-1328. IEEE, 2022.

Yigiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly efficient
method for extracting fsms from flattened gate-level netlist. In Proceedings of
2010 TEEE international symposium on circuits and systems, pages 2610-2613.
IEEE, 2010.

Shervin Roshanisefat, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. Rane: An open-source formal de-obfuscation attack for reverse engineering

of logic encrypted circuits. In Proceedings of the 2021 on Great Lakes Symposium

on VLSI, pages 221-228, 2021.

142

BIBLIOGRAPHY

[62]

[64]

[67]

[68]

[69]

Yinghua Hu, Yuke Zhang, Kaixin Yang, Dake Chen, Peter A Beerel, and Pierluigi
Nuzzo. Fun-sat: Functional corruptibility-guided sat-based attack on sequential
logic encryption. In 2021 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pages 281-291. IEEE, 2021.

Akashdeep Saha, Hrivu Banerjee, Rajat Subhra Chakraborty, and Debdeep
Mukhopadhyay. Oracall: An oracle-based attack on cellular automata guided logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(12):2445-2454, 2021.

Rajit Karmakar, Suman Sekhar Jana, and Santanu Chattopadhyay. A cellu-
lar automata guided obfuscation strategy for finite-state-machine synthesis. In
Proceedings of the 56th Annual Design Automation Conference 2019, pages 1-6,
2019.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing, 1(2):146-160, 1972.

Travis Meade, Shaojie Zhang, and Yier Jin. Netlist reverse engineering for high-
level functionality reconstruction. In 2016 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 655-660. IEEE, 2016.

Niladri Bhattacharjee, Viktor Havel, Suruchi Kumari, Nima Kavand,
Jorge Navarro Quijada, Akash Kumar, Thomas Mikolajick, and Jens Trommer.
Dynamic reconfigurable security cells based on emerging devices integrable in fdsoi
technology. In 2024 Design, Automation & Test in Europe Conference & FExhibition
(DATE), pages 1-6. IEEE, 2024.

Armin Darjani, Nima Kavand, and Akash Kumar. Flip-lock: A flip-flop-based
logic locking technique for thwarting ml-based and algorithmic structural attacks.

In Proceedings of the Great Lakes Symposium on VLSI 2024, pages 185-191, 2024.

Marc D Riedel and Jehoshua Bruck. The synthesis of cyclic combinational circuits.

In Proceedings of the 40th annual Design Automation Conference, pages 163-168,

2003.

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.

Cyclic obfuscation for creating sat-unresolvable circuits. In Proceedings of the

Great Lakes Symposium on VLSI 2017, pages 173-178, 2017.

BIBLIOGRAPHY 143

[71]

73]

[75]

[76]

[78]

Amin Rezaei, You Li, Yuanqi Shen, Shuyu Kong, and Hai Zhou. Cycsat-
unresolvable cyclic logic encryption using unreachable states. In Proceedings of
the 24th Asia and South Pacific Design Automation Conference, pages 358-363,
2019.

Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. Srclock: Sat-
resistant cyclic logic locking for protecting the hardware. In Proceedings of the

2018 on Great Lakes Symposium on VLSI, pages 153-158, 2018.

Shervin Roshanisefat, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. Sat-hard cyclic logic obfuscation for protecting the ip in the manufacturing
supply chain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(4):954-967, 2020.

Amin Rezaei, Yuanqgi Shen, Shuyu Kong, Jie Gu, and Hai Zhou. Cyclic locking
and memristor-based obfuscation against cycsat and inside foundry attacks. In

2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 85-90. IEEE, 2018.

Pei-Pei Chen, Xiang-Min Yang, Yu-Cheng He, Yung-Chih Chen, Yi-Ting Li, and
Chun-Yao Wang. Looplock 3.0: A robust cyclic logic locking approach. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
594-599. IEEE, 2024.

Yeganeh Aghamohammadi and Amin Rezaei. Lipstick: Corruptibility-aware and
explainable graph neural network-based oracle-less attack on logic locking. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
606-611. IEEE, 2024.

Xiang-Min Yang, Pei-Pei Chen, Hsiao-Yu Chiang, Chia-Chun Lin, Yung-Chih
Chen, and Chun-Yao Wang. Looplock 2.0: An enhanced cyclic logic locking ap-
proach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 41(1):29-34, 2021.

Hsiao-Yu Chiang, Yung-Chih Chen, De-Xuan Ji, Xiang-Min Yang, Chia-Chun
Lin, and Chun-Yao Wang. Looplock: Logic optimization-based cyclic logic locking.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2178-2191, 2019.

144

BIBLIOGRAPHY

[79]

[81]

[83]

[84]

[87]

[83]

Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack on cyclic logic
encryptions. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 49-56. IEEE, 2017.

Yuangi Shen, You Li, Amin Rezaei, Shuyu Kong, David Dlott, and Hai Zhou.
Besat: Behavioral sat-based attack on cyclic logic encryption. In Proceedings of

the 24th Asia and South Pacific Design Automation Conference, pages 657662,

2019.

Kaveh Shamsi, David Z Pan, and Yier Jin. Icysat: Improved sat-based at-
tacks on cyclic locked circuits. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1-7. IEEE, 2019.

Kevin Lopez and Amin Rezaei. K-gate lock: Multi-key logic locking using input

encoding against oracle-guided attacks. In Proceedings of the 30th Asia and South

Pacific Design Automation Conference, pages 794-800, 2025.

Wei Zeng, Azadeh Davoodi, and Rasit Onur Topaloglu. Obfusx: Routing obfus-
cation with explanatory analysis of a machine learning attack. In Proceedings of

the 26th Asia and South Pacific Design Automation Conference, pages 548-554,

2021.

Dongrong Zhang, Miao He, Xiaoxiao Wang, and Mark Tehranipoor. Dynamically
obfuscated scan for protecting ips against scan-based attacks throughout supply

chain. In 2017 IEEE 35th VLSI Test Symposium (VTS), pages 1-6. IEEE, 2017.

Rajit Karmakar, Santanu Chatopadhyay, and Rohit Kapur. Encrypt flip-flop: A

novel logic encryption technique for sequential circuits. arXiv preprint, 2018.

Rajit Karmakar, Harshit Kumar, and Santanu Chattopadhyay. Efficient key-gate
placement and dynamic scan obfuscation towards robust logic encryption. IEEE

Transactions on Emerging Topics in Computing, 9(4):2109-2124, 2019.

Seetal Potluri, Aydin Aysu, and Akash Kumar. Seql: Secure scan-locking for ip

protection. In 2020 21st International Symposium on Quality Electronic Design

ISQED), pages 7-13. IEEE, 2020.

Levent Aksoy, Muhammad Yasin, and Samuel Pagliarini. Kratt: Qbf-assisted

removal and structural analysis attack against logic locking. In 2024 Design,

BIBLIOGRAPHY 145

[90]

[91]

[92]

[94]

[95]

Automation & Test in Europe Conference & Exhibition (DATE), pages 1-6. IEEE,
2024.

Nimisha Limaye, Abhrajit Sengupta, Mohammed Nabeel, and Ozgur Sinanoglu.
Is robust design-for-security robust enough? attack on locked circuits with re-
stricted scan chain access. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1-8. IEEE, 2019.

Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
On designing secure and robust scan chain for protecting obfuscated logic. arXiv

preprint, 2020.

Ujjwal Guin, Ziqi Zhou, and Adit Singh. Robust design-for-security architecture

for enabling trust in ic manufacturing and test. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 26(5):818-830, 2018.

Nimisha Limaye, Emmanouil Kalligeros, Nikolaos Karousos, Irene G Karybali, and
Ozgur Sinanoglu. Thwarting all logic locking attacks: Dishonest oracle with truly

random logic locking. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 40(9):1740-1753, 2020.

Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
Scramble: The state, connectivity and routing augmentation model for building
logic encryption. In 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 153-159. IEEE, 2020.

M Sazadur Rahman, Adib Nahiyan, Fahim Rahman, Saverio Fazzari, Kenneth
Plaks, Farimah Farahmandi, Domenic Forte, and Mark Tehranipoor. Security as-
sessment of dynamically obfuscated scan chain against oracle-guided attacks. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 26(4):1-27,

2021.

Lilas Alrahis, Muhammad Yasin, Nimisha Limaye, Hani Saleh, Baker Mohammad,
Mahmoud Al-Qutayri, and Ozgur Sinanoglu. Scansat: Unlocking static and dy-
namic scan obfuscation. IEEE Transactions on Emerging Topics in Computing,

9(4):1867-1882, 2019.

146

BIBLIOGRAPHY

[96]

[97]

[99]

[100]

[101]

[102]

[103]

[104]

Nimisha Limaye and Ozgur Sinanoglu. Dynunlock: Unlocking scan chains ob-

fuscated using dynamic keys. In 2020 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 270-273. IEEE, 2020.

Yang Xie and Ankur Srivastava. Delay locking: Security enhancement of logic

locking against ic counterfeiting and overproduction. In Proceedings of the 54th

Annual Design Automation Conference 2017, pages 1-6, 2017.

Grace Li Zhang, Bing Li, Bei Yu, David Z Pan, and Ulf Schlichtmann. Timing-
camouflage: Improving circuit security against counterfeiting by unconventional

timing. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 91-96. IEEE, 2018.

Joseph Sweeney, V Mohammed Zackriya, Samuel Pagliarini, and Lawrence Pileggi.

Latch-based logic locking. In 2020 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 132-141. IEEE, 2020.

Kimia Zamiri Azar, Hadi Mardani Kamali, Shervin Roshanisefat, Houman Homay-
oun, Christos P Sotiriou, and Avesta Sasan. Data flow obfuscation: A new

paradigm for obfuscating circuits. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 29(4):643-656, 2021.

Mark Sazadur Rahman, Rui Guo, Hadi M Kamali, Fahim Rahman, Farimah
Farahmandi, Mohamed Abdel-Moneum, and Mark Tehranipoor. O’clock: lock the
clock via clock-gating for soc ip protection. In Proceedings of the 59th ACM/IEEE

Design Automation Conference, pages 775-780, 2022.

Zhao Qi Jiang, Wen Jia Li, Zhi Xia Xu, Hua Wei Tang, Meng Wang, Jie Chang,
Hui Feng Ma, Yu Xiang Li, Zheng Zhu, Chun Ying Guan, et al. Photonic spin-
hall logic devices based on programmable spoof plasmonic metamaterial. Laser &

Photonics Reviews, 18(8):2301371, 2024.

Paul R Genssler, Lilas Alrahis, Ozgur Sinanoglu, and Hussam Amrouch. Hdcircuit:
Brain-inspired hyperdimensional computing for circuit recognition. In 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1-2. IEEE,
2024.

Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan JV Rajendran. Sfll-hls:
Stripped-functionality logic locking meets high-level synthesis. In 2019 IEEE/ACM

BIBLIOGRAPHY 147

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

International Conference on Computer-Aided Design (ICCAD), pages 1-4. IEEE,

2019.

Christian Pilato, Francesco Regazzoni, Ramesh Karri, and Siddharth Garg.
Tao: Techniques for algorithm-level obfuscation during high-level synthesis. In

Proceedings of the 55th Annual Design Automation Conference, pages 1-6, 2018.

Christian Pilato, Animesh Basak Chowdhury, Donatella Sciuto, Siddharth Garg,
and Ramesh Karri. Assure: Rtl locking against an untrusted foundry. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(7):1306-1318,

2021.

Michael Zuzak, Yuntao Liu, and Ankur Srivastava. A resource binding approach
to logic obfuscation. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 235-240. IEEE, 2021.

Md Rafid Muttaki, Roshanak Mohammadivojdan, Mark Tehranipoor, and
Farimah Farahmandi. Hlock: Locking ips at the high-level language. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 79-84. IEEE, 2021.

Nimisha Limaye, Animesh B Chowdhury, Christian Pilato, Mohammed TM
Nabeel, Ozgur Sinanoglu, Siddharth Garg, and Ramesh Karri. Fortifying rtl lock-
ing against oracle-less (untrusted foundry) and oracle-guided attacks. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 91-96. IEEE, 2021.

Chandan Karfa, TM Abdul Khader, Yom Nigam, Ramanuj Chouksey, and Ramesh
Karri. Host: Hls obfuscations against smt attack. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 32-37. IEEE, 2021.

Luca Collini, Ramesh Karri, and Christian Pilato. A composable design space
exploration framework to optimize behavioral locking. In 2022 Design, Automation

& Test in Europe Conference & Exhibition (DATE), pages 1359-1364. IEEE, 2022.

Gourav Takhar, Ramesh Karri, Christian Pilato, and Subhajit Roy. Holl: Program

synthesis for higher order logic locking. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 3-24. Springer,
2022.

148

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Bo Hu, Jingxiang Tian, Mustafa Shihab, Gaurav Rajavendra Reddy, William
Swartz, Yiorgos Makris, Benjamin Carrion Schaefer, and Carl Sechen. Functional
obfuscation of hardware accelerators through selective partial design extraction

onto an embedded fpga. In Proceedings of the 2019 on Great Lakes Symposium

on VLSI, pages 171-176, 2019.

Prashanth Mohan, Oguz Atli, Joseph Sweeney, Onur Kibar, Larry Pileggi, and
Ken Mai. Hardware redaction via designer-directed fine-grained efpga insertion.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1186-1191. IEEE, 2021.

Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian
Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel Gaillardon,
and Ramesh Karri. Exploring efpga-based redaction for ip protection. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages
1-9. IEEE, 2021.

Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian
Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel Gaillardon, and
Ramesh Karri. Not all fabrics are created equal: Exploring efpga parameters for

ip redaction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

2023.

Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. Sail: Machine
learning guided structural analysis attack on hardware obfuscation. In 2018 Asian

Hardware Oriented Security and Trust Symposium (AsianHOST), pages 5661,

2018.

Prabuddha Chakraborty, Jonathan Cruz, Abdulrahman Alaql, and Swarup Bhu-
nia. Sail: Analyzing structural artifacts of logic locking using machine learning.

IEEE Transactions on Information Forensics and Security, 16:3828-3842, 2021.

Dominik Sisejkovic, Farhad Merchant, Lennart M Reimann, Harshit Srivastava,
Ahmed Hallawa, and Rainer Leupers. Challenging the security of logic locking
schemes in the era of deep learning: A neuroevolutionary approach. ACM Journal

on Emerging Technologies in Computing Systems (JETC), 17(3):1-26, 2021.

BIBLIOGRAPHY 149

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Lilas Alrahis, Satwik Patnaik, Faiq Khalid, Muhammad Abdullah Hanif, Hani
Saleh, Muhammad Shafique, and Ozgur Sinanoglu. Gnnunlock: Graph neural
networks-based oracle-less unlocking scheme for provably secure logic locking. In
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 780-785. IEEE, 2021.

Lilas Alrahis, Satwik Patnaik, Muhammad Abdullah Hanif, Muhammad Shafique,
and Ozgur Sinanoglu. Untangle: Unlocking routing and logic obfuscation using
graph neural networks-based link prediction. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1-9. IEEE, 2021.

Lilas Alrahis, Satwik Patnaik, Muhammad Shafique, and Ozgur Sinanoglu.
Muxlink: Circumventing learning-resilient mux-locking using graph neural
network-based link prediction. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 694-699. IEEE, 2022.

Armin Darjani, Nima Kavand, Shubham Rai, and Akash Kumar. Thwarting gnn-

based attacks against logic locking. IEEE Transactions on Information Forensics

and Security, 2024.

Dominik Sisejkovic, Farhad Merchant, Lennart M Reimann, and Rainer Leupers.
Deceptive logic locking for hardware integrity protection against machine learning
attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(6):1716-1729, 2021.

Kimia Zamiri Azar, Hadi Mardani Kamali, Farimah Farahmandi, and Mark Tehra-

nipoor. Understanding Logic Locking. Springer, 2024.

Yue Zhang, Basel Halak, and Haoyu Wang. Zeki: A zero-knowledge dynamic logic

locking implementation with resilience to multiple attacks. In 2024 IEEE 37th

International System-on-Chip Conference (SOCC), pages 1-6, 2024.

Luca Amart, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl

combinational benchmark suite. Hypotenuse, 256(128):214335, 2015.

Computer Engineering Research Center (CERC), University of Texas at Austin.
1tc’99 benchmarks documentation — introduction. https://www.cerc.utexas.

edu/itc99-benchmarks/bendocl.html, 1999.

https://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html
https://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html

150

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

F. Brglez et al. Combinational profiles of sequential benchmark circuits. In IEEE

ISCAS, page 1929-1934. IEEE, 1989.

Niklas Eén and Niklas Sorensson. Minisat sat solver — introduction. http://

minisat.se/, 2003.

Kaveh Shamsi, Meng Li, David Z. Pan, and Yier Jin. Cross-lock dense layout-
level interconnect locking using cross-bar architectures. In Proceedings of the
2018 Great Lakes Symposium on VLSI (GLSVLSI), pages 147-152. ACM, May
2018.

Satwik Patnaik, Mohammed Ashraf, Ozgur Sinanoglu, and Johann Knechtel. Ob-
fuscating the interconnects: Low-cost and resilient full-chip layout camouflaging.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(12):4466-4481, 2020.

Md Rafid Muttaki, Shuvagata Saha, Hadi M Kamali, Fahim Rahman, Mark Tehra-
nipoor, and Farimah Farahmandi. Rtlock: Ip protection using scan-aware logic

locking at rtl. In 2023 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1-6. IEEE, 2023.

Paul Jackson and Daniel Sheridan. Clause form conversions for boolean circuits.

In Holger H. Hoos and David G. Mitchell, editors, Theory and Applications of

Satisfiability Testing, pages 183-198, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

Armin Biere. Lingeling, Plingeling, and Treengeling Entering the SAT Competition
2013. In Proceedings of SAT Competition 2013, pages 51-52, 2013.

Niklas Sorensson and Niklas Een. MiniSat v1.13: A SAT solver with conflict-clause

minimization. In Theory and Applications of Satisfiability Testing — SAT 2005,

volume 3569 of Lecture Notes in Computer Science, pages 502-518. Springer, 2005.

G S Tseitin. On the Complexity of Derivation in Propositional Calculus. Springer
Berlin Heidelberg, 1983.

Jingbo Zhou and Xinmiao Zhang. Generalized sat-attack-resistant logic locking.

IEEE Transactions on Information Forensics and Security, 16:2581-2592, 2021.

http://minisat.se/
http://minisat.se/

BIBLIOGRAPHY 151

[139] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur Srivas-

tava. Strong anti-sat: Secure and effective logic locking. In 2020 21st International

Symposium on Quality Electronic Design (ISQED), pages 199-205. IEEE, 2020.

