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Abstract—When a sound field is reproduced by an Ambisonic
system with a number of loudspeakers greater than the minimum
required by the order of the input Ambisonic signals, a ring-
shaped region (in 2D) or spherical shell (in 3D) is generated
wherein the average sound pressure level is lower than the
desired target. This phenomenon, already observed by Solvang in
2008, is further analysed in this work and explained in terms of
truncation error, spatial aliasing (related to the chosen Ambisonic
decoder), and energy of the radial functions. It is then shown that
the same phenomenon is the cause of high-frequency energy loss
occurring in the binaural reproduction of Ambisonic material
when the HRTF is sampled with a high-density grid, as already
observed by Bernschütz et al.

Index Terms—Spatial Audio, Higher Order Ambisonics (HOA),
Binaural Audio, HRTF, Spatial Aliasing.

I. INTRODUCTION

H IGHER-Order Ambisonics (HOA) is an increasingly
popular and flexible spatial audio technique, covering a

full end-to-end audio capture, transmission and reproduction
approach [1]. HOA relies on the representation of the sound
field by means of a basis of orthogonal functions; in 3D these
functions are the spherical harmonics [2], whilst in 2D they
are the circular harmonics [3], [4]. The coefficients for the
series expansion are referred to as Higher Order Ambisonics
(HOA) signals, which are thus a scene-based representation of
the sound field. In practice, the otherwise infinite expansions
must be truncated to a finite order N , which leads to an error
bound of validity for the representation. This follows the well-
known N = kr rule, where k is the wavenumber and r is the
radial distance from the origin of the expansion [5].

A number of methods exist for reproduction of the HOA
signals using either loudspeakers or headphones (binaural
reproduction), although many similarities exist between these
two categories. The reproduction over loudspeakers requires
the definition of a decoder that processes the HOA input
to generate a set of loudspeaker signals, which may be
played back directly over a loudspeaker array. The problem of
defining suitable decoders has been the topic of research for a
considerable period of time. One commonly used approach for
both loudspeaker arrays and binaural reproduction is the clas-
sic Mode-Matching Decoder 1 (also known as pseudoinverse
decoder, and fundamentally equivalent to the basic decoder
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1For special sampling schemes such as uniform sampling of a circle, or t-

design sampling scheme of a sphere, the mode-matching decoder is equivalent
to the sampling decoder, defined in [1, Sec. 4.9.1]

introduced in [6]), that utilises a pseudoinverse approach to
ensure the expansion coefficients of the reproduced sound field
match those of the target sound field (defined by the input
HOA signals) [1, p.73] [2].

However, an issue arises with this decoder when consid-
ering the relationship between the number of reproduction
loudspeakers L and the truncation order N . For an exact
solution (that is the expansion coefficients of the reproduced
sound field exactly match those of input HOA signals up to
order N ) the condition L ≥ (2N + 1) for the 2D scenario,
and L ≥ (N + 1)2 for 3D, must be satisfied. In 2008
Solvang published an excellent piece of work that analysed
the “spectral impairment” in Ambisonics reproduction using
a mode-matching decoder for the 2D case [7]. The issue of
spectral impairment emerges from using more loudspeakers
than the minimum required for an exact solution. Solvang
recognised three regions when using L > (2N + 1):

• kr < N : the sound field is reproduced accurately.
• N < kr < L − N : spectral impairment will occur and

the sound intensity will be reduced.
• L − N < kr: spatial aliasing will occur and cause a

different kind of spectral impairment.
In the region where N < kr < L−N the SPL drops due to
the mismatch between the order of the input HOA signals and
that maximal controllable order of the loudspeaker array. In
the present work, this region is informally referred to as the
ring of silence. Whilst not strictly silence, the name is coined
from the fact that in this region the sound field is dominated
by the reproduction of orders N → L −N , whose energy is
minimised by the decoder, as will be shown later.

A similar issue has been noted in the literature when using
the psuedoinverse approach for binaural reproduction of HOA
signals, for example in the work by Bernschütz et al. [8]. It
is assumed that the Head-Related Transfer Function (HRTF)
is sampled using a finite but dense grid of source positions.
The binaural encoding process can be interpreted either as the
decoding of the HOA signals to a virtual loudspeaker array
(where the transducer positions correspond to the HRTF grid
points) [9], [10], or as the convolution of the HOA signals with
the spherical harmonic coefficients of the HRTF (estimated
from the measurements on the grid discussed above) [10], [11].
It is also shown in this case that, when the HOA signal order is
lower than that used for the HRTF representation, a reduction
of energy in the high-frequency region is observed.

The mitigation approach to minimise this high frequency
roll-off suggested by Bernschütz et al. is to spatially downsam-
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ple the HRTF to a lower density grid, that uses the minimum
number of sampling points L matching the input HOA order
(N = (L + 1)2 in this 3D case). This introduces spatial
aliasing above order N . Whilst this is a form of spectral
impairment itself due to incorrect reproduction of the HRTF,
it is perceptually less problematic in terms of SPL than the
alternative of a high frequency roll-off. A further problem with
this approach is that the additional information from the dense
sampling of the HRTF is discarded.

The high-frequency roll-off issue caused by order trunca-
tion is also analysed in the work by Ben-Hur et al. [12],
wherein the authors provide a thorough analysis of the spatial
aliasing artefacts and propose a solution based on diffuse-
field equalisation. The roll-off depends on the direction of
the virtual sound source and more strongly affects sources on
the mid-sagittal plane. As illustrated, for example, in Fig. 5a
below, the reproduced field energy is lowest along the direction
perpendicular to the plane-wave propagation, corresponding to
the listener’s interaural axis when the source is in front of or
behind the listener. This also implies that the high-frequency
roll-off is less problematic for sources positioned to the far
left or right of the listener.

Beyond the Mode-Matching Decoder, several other Am-
bisonics decoding approaches have been proposed in the lit-
erature. For Ambisonic audio reproduction over loudspeakers,
these include HOA weighting schemes like the max-rE and in-
phase decoders [6], the Energy-Preserving Decoder [13], the
All-Round Decoder [14], and data-dependent decoders based
on sparse recovery strategies [15, p.49].

Specifically for binaural reproduction, methods have been
developed to address the high-frequency roll-off while lever-
aging densely sampled HRTFs, as well as to mitigate the
effects of spatial aliasing [16]–[18]. These approaches typi-
cally preprocess the phase of the HRTF data prior to spherical
harmonic coefficient estimation. This is often based on the
psychoacoustic assumption that high-frequency localisation
is primarily determined by the HRTF magnitude, allowing
the phase to be ignored or simplified at high frequencies.
While this leads to incorrect phase reproduction at those
frequencies, it improves the reproduction of magnitude and
spatial fidelity. Consequently, such methods reduce the re-
quired spherical harmonic order by effectively compressing
the relevant information into lower-order coefficients. Such
approaches often perform time alignment of the HRTFs [19],
[20], alter the phase, as in the Mag-LS approach [21], [22],
remove information based on model HRTFs [23], or apply
other HRTF preprocessing strategies [23]–[26].

In this work, a thorough mathematical analysis of the ring
of silence is presented, focussing specifically on the Mode-
Matching Decoder. The main contributions are:

• A mathematical formulation of the ring of silence is
derived, generalising the expression proposed by Solvang
for circular arrays of uniformly spaced loudspeakers [7]
to more general two-dimensional and three-dimensional
loudspeaker layouts. We explain the underlying causes of
this phenomenon and demonstrate its connection to the
pseudoinverse HOA decoder. Furthermore, we derive an-
alytical expressions for the bounds of the ring of silence,

which are exact for orthogonal loudspeaker configurations
and approximate for sufficiently uniform non-orthogonal
layouts. In the special case of a uniform circular array, our
results reduce to those originally presented by Solvang.

• The expression of the binaural signals due to the HRTF-
based rendering of a HOA signal is derived in the second
part of this work. The proposed formulation shows that
the high-frequency roll-off is equivalent to the ring of
silence presented in the first part of the paper, even
though the radial functions are different. This provides the
mathematical explanation of the phenomenon observed
by Bernschütz et al. [8].

• The consistent formulation used for the ring of silence
for loudspeaker reproduction (first point above) and for
binaural reproduction (second point) demonstrates that
the HOA spectral impairment and the high-frequency roll-
off observed in binaural reproduction are in fact due to
the same causes, related to spatial aliasing and to the
choice of a minimum-norm solution for the HOA decoder
(mode-matching decoder) and for the estimation of the
HRTF spherical harmonic coefficients.

• The results derived analytically are validated by experi-
mental measurements carried out in an anechoic environ-
ment.

• Python code is provided to reproduce the results in this
work2.

The paper is organised as follows: the second section
introduces the mathematical tools used in this work to describe
sound fields and HOA. The concept of the ring of silence
is presented in the following section. The roles of the HOA
order, of the loudspeaker layout and of the spatial aliasing
matrix are analysed, and lead to the formulation of the inner
and outer bound of the ring of silence. The results are demon-
strated by means of numerical simulations and experimental
measurements. In the third section two methods for binaural
reproduction of HOA material are presented and shown to
be equivalent. In the light of this result, the ring of silence is
investigated in the context of binaural audio reproduction with
the support of numerical simulations based on experimental
data. The conclusions of this work are drawn in the final
section, together with some suggestions for future work.

II. SOUND FIELD MODEL

We assume the sound field to be reproduced can be rep-
resented as a superposition of plane waves. In the frequency
domain, with a ejωt time dependence, the field at a point r is
given by [27, p. 46]

p(r) =

∫
ŷ∈S

ejkr·ŷ q(ŷ) dS (1)

where k is the wave number and ŷ is the plane wave direction
of arrival, identified by a point on S. The latter is the S2
unitary sphere for the three-dimensional case (3D) and the S1
unitary sphere (i.e. a circle with unitary radius) for the two-
dimensional case (2D). ŷ is therefore identified by a single
angle ϕ in 2D and by the elevation angle θ ∈ [−π/2, π/2]

2https://github.com/jacobhollebon/ring-of-silence

https://github.com/jacobhollebon/ring-of-silence
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and azimuth angle ϕ ∈ [0, 2π) in 3D. ejkr·ŷ indicates the field
due to a plane wave with unitary amplitude and arriving from
direction ŷ. q(ŷ) is the plane wave density function (PWD),
defined over S. The PWD can be represented in terms of a
(generalised) Fourier series. In 2D this is

q(ϕ) =

∞∑
n=0

1∑
m=0

Ψnm(ϕ)bnm (2)

with

Ψnm(ϕ) =


cos(nϕ)/

√
π if n > 0 and m = 0

sin(nϕ)/
√
π if n > 0 and m = 1

(1−m)/
√
2π if n = 0

(3)

whilst in 3D

q(θ, ϕ) =

∞∑
n=0

n∑
m=−n

Ψnm(θ, ϕ)bnm (4)

with Ψnm(θ, ϕ) = Y m
n (θ, ϕ), the spherical harmonics, which

may be defined using a real or complex representation [1],
[28]. Hereafter we will use the following compact notation
that encompasses both the 2D and 3D case:

q(ŷ) =

∞∑
n=0

∑
m

Ψnm(ŷ)bnm (5)

wherein the limits of the second sum are implicitly defined
and depend on whether the field is defined in 2D or 3D. The
functions Ψnm are orthonormal on their domain of definition
and are hereafter also referred to as the basis functions. The
subscript nm can be treated as a single index when using
it to define elements of a matrix or of a vector. In 3D, this
indexing follows the common Ambisonics Channel Number
(ACN) ordering [1, p. 68]. The coefficients bnm are defined
by the well-known Fourier analysis equation [28, p. 192]

bnm =

∫
ŷ∈S

Ψ∗
nm(ŷ)q(ŷ)dS (6)

where (.)∗ is the conjugate operator. bnm are therefore the
spatial Fourier series coefficients that describe the PWD.

The sound field p(r) can also be expressed in terms of the
basis functions Ψnm. To that end, we use the Jacobi-Anger
expansion of a plane wave [29, p. 32], that is

ejkr·ŷ =

∞∑
n=0

∑
m

Rn(kr)Ψ
∗
nm(ŷ)Ψnm(r̂) (7)

where r = ||r|| , r̂ = r/r, and Rn are the so-called radial
functions, given by

Rn(kr) =

{
jn 2π Jn(kr) in 2D
jn 4π jn(kr) in 3D

(8)

where Jn(kr) and jn(kr) are Bessel functions and spherical
Bessel functions, respectively. Combining this equation with
(1) and using the orthogonality of the basis functions yields

p(r) =

∞∑
n=0

∑
m

Rn(kr)Ψnm(r̂)bnm. (9)

It is noteworthy that each spatial Fourier coefficient of the
PWD, bnm, affects one and only one of the sum terms of
equation (9). This means that the (generalised) spatial Fourier
transform diagonalises the plane wave expansion integral (1).
This can be regarded as an extension of the well-known
convolution theorem. Plots of the radial functions are available
in the literature, for example [28, pp. 119, 195].

The energy of the radial functions of different orders is
greater around the first maximum of the function, occurring
when n ≈ kr. This spatial selectivity of the radial functions
implies that low order contribute mainly to the field energy for
small kr values, and higher order to greater values of kr. This
will be crucial to explain the existence of the ring of silence.

A. Target Sound Field and Truncation Error

In the context of sound field reproduction we define the
target sound field, pT , and the reproduced field pR. Both fields
can be defined in terms of the spatial Fourier series coefficients
of the corresponding PWD.

We define the HOA signals (in the frequency domain) as
the coefficients bnm that describe the target sound field and
that are fed as input to the sound reproduction system. The
number of HOA signals must be finite for obvious practical
reasons, meaning that the target field can only be described
by a finite amount of information. The choice is usually made
to represent the target sound field with all coefficients bnm up
to a maximum order N , which defines the HOA order, above
which the HOA signals are not defined.

Assuming that the original (subscript O) sound field is given
by an infinite series of the form

pO(r) =

∞∑
n=0

∑
m

Rn(kr)Ψnm(r̂)bnm (10)

its representation pT in terms of a finite number of HOA
signals provides a truncated series, given by

pT (r) =

N∑
n=0

∑
m

Rn(kr)Ψnm(r̂)bnm = pO(r)− ϵT (r) (11)

where ϵT is the truncation error

ϵT (r) =

∞∑
n=N+1

∑
m

Rn(kr)Ψnm(r̂)bnm. (12)

As the radial functions Rn(kr) are proportional to Bessel
functions, the truncation error is small for kr < N , which
is a well-known rule-of-thumb for HOA [5]. The energy, and
hence the SPL, of pT drops when kr > N as a consequence
of the truncation error (see also [12]). This generates the inner
boundary of the ring of silence, due to the fact that the number
of HOA signals is limited. It can also be simply deduced that
the averaged energy of the truncated field, ET (r), is the energy
of the original field minus the energy of the truncation error.

B. Reproduced Sound Field

The Fourier coefficients of the reproduced field are denoted
by the symbol b̃nm and should ideally match to the corre-
sponding target field coefficients bnm, but will in general be
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different. For a loudspeaker array with L transducers, where
the sound field generated by the ℓ-th loudspeaker can be
modelled as a single plane wave arriving from direction ŷℓ

and driven by signal gℓ, the plane wave density function for
the reproduced field is given by

q(ŷ) =

∞∑
n=0

∑
m

Ψnm(ŷ)b̃nm =

L∑
ℓ=1

δ(ŷ − ŷℓ) gℓ (13)

where δ(ŷ) is the Dirac delta. Combining the equation above
with (6) we obtain

b̃nm =

∫
S

L∑
ℓ=1

δ(ŷ − ŷℓ) gℓΨ
∗
nm(ŷ)dS =

L∑
ℓ=1

gℓΨ
∗
nm(ŷℓ).

(14)
In the case of HOA, the loudspeaker signals, vector g, are

given by the product of the HOA signal vector b of the target
sound field with a decoding matrix D, namely

gℓ =
N∑

n=0

∑
m

bnmDℓ,nm (15)

where N is the HOA signal order used for the representation.
In vector notation this is

g = Db (16)

The PWD Fourier coefficients of the reproduced field are
given by combing the results above as

b̃nm =

N∑
ν=0

∑
µ

Anm,νµbνµ. (17)

or, with matrix notation, b̃ = Ab. Anm,νµ is an element of
the ∞×N spatial aliasing matrix A, defined as

Anm,νµ =

L∑
ℓ=1

Ψ∗
nm(ŷℓ)Dℓ,νµ. (18)

N is the total number of HOA signals, which is 2N + 1 for
the 2D case and (N + 1)2 for 3D. Matrix A will play an
important role in what follows. The coefficients b̃nm are the
aliased version of the HOA signals bnm. In an ideal case we
would have that b̃nm = bnm. However, whilst any practical
system will always deal with a finite number of HOA signals
bnm, the Fourier coefficients representing the reproduced field,
b̃nm, are not bounded to a finite order because the loudspeaker
distribution is not continuous and therefore the PWD is not a
smooth function.

As above, combining equations (1) and (7), and using the
orthogonality property of the basis functions Ψnm we obtain

pR(r) =

∞∑
n=0

∑
m

Rn(kr)Ψnm(r̂)b̃nm. (19)

The aliasing error is

ϵA(r) =

∞∑
n=0

∑
m

Rn(kr)Ψnm(r̂)

N∑
ν=0

∑
µ

(δnm,νµ−Anm,νµ)bνµ

(20)
where δnm,νµ is the Kronecker delta. Combining all the results
above we obtain the expression of the reproduced field

pR(r) = pO(r)− ϵT (r)− ϵA(r). (21)

III. ALIASING ERROR AND THE RING OF SILENCE

We will now study the effect of the structure of the spatial
aliasing error. This depends on the spatial aliasing matrix A,
which is in turn defined by the number and arrangement of
the loudspeakers and by the Ambisonics decoding matrix D.
We start by defining matrix Y , whose columns are the basis
functions Ψnm evaluated at the L loudspeaker positions. Thus,
for the 3D case,

Y N =

Y00(θ1, ϕ1) . . . YNN (θ1, ϕ1)
...

. . .
...

Y00(θL, ϕL) . . . YNN (θL, ϕL)

 . (22)

An analogous definition holds for the 2D case. The subscript
N indicates the maximum order of the basis functions included
in the matrix.

We make two important simplifying assumptions on the
decoding matrix D:

1) The number of HOA signals is smaller than, or equal to
the number of loudspeakers L. That is L ≥ (2N + 1)
or L ≥ (N + 1)2 in 2D and 3D, respectively.

2) The Ambisonics decoder is a Mode-Matching Decoder,
designed as the pseudoinverse of matrix Y H

N , namely

D = (Y H
N )† := Y N (Y H

NY N )−1. (23)

This is consistent with the definition provided in reference [1,
Sec. 4.9.2], apart from a normalisation factor 3. The choice
was made not to include any regularisation, for the sake of
simplicity.

Crucially, if the two assumptions above are satisfied, the
decoder equation corresponds to the minimum-norm solution
of an under-determined system of linear equations. In practice,
this means that the decoder will ensure the array will

1) provide an accurate reconstruction of the terms bnm up
to order N and, therefore, of the corresponding terms
of equation (9);

2) minimise the energy of the higher order components of
the PWD and of the sound field.

This means that, in 3D, the Mode-Matching Decoder will
minimise the energy of L − (N + 1)2 linear combinations
of basis functions of order greater than N . These are the
degrees of freedom of the system that the array could control
but is not asked to control. As a consequence of the minimum
norm solution, the energy of these unused degrees of freedom
is forced to zero. Mathematically speaking, the decoder will
generate a PWD that has zero projection on the null-space of
matrix Y H

N , which is indeed a space of dimension L−(N+1)2

(in 3D, and assuming the matrix is full-rank) 4. This concept
is the fundamental cause of the ring of silence.

It should be noted that the above considerations would no
longer be valid if a different decoder design strategy were used,

3The apparent difference between eq.(23) and the correspodning definition
in [1, Eq.(4.40)] is due to the different definition of matrix Y N . The one
used in this work is consistent with that provided in [27, Eq.(3.29)]

4The nullspace of Y H
N is given by all possible combinations g0 of loud-

speaker signals that generate a sound field with no energy in the coefficients
b̃nm corresponding to the first N orders, i.e. Y H

Ng0 = 0.
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for example approaches that promote sparsity of the solution
(such as compressive sensing) instead of its energy.

We have established that the Ambisonic Mode-Matching
Decoder will minimise the energy of some components of the
reproduced sound field, associated to the nullspace of Y H

N .
We now want to demonstrate that most of the energy of these
components is contained in a bounded region of space (indeed,
the ring of silence). In order to do that, we shall investigate
the representation of the nullspace of Y H

N in terms of the
basis functions Ψnm. A rigorous way to achieve that would
be to calculate a basis for the nullspace and then compute the
spatial Fourier analysis, equation (6), of each basis vector. As
exciting as this analysis may be, it is not part of this work
and is recommended as a task for future research. We will
instead focus the analysis on the simple but representative case
of orthogonal sampling schemes, and will then demonstrate
numerically that the conclusions extend qualitatively to more
general scenarios.

We define the orthogonality matrix as

B = Y H
∞Y N . (24)

Each element of this matrix defines the inner product
between two vectors corresponding to a pair of basis functions
Ψnm,νµ sampled at the loudspeaker positions ŷℓ. We then
consider simple cases of loudspeaker arrangements that ensure
the sampled basis functions Ψnm are orthogonal up to a given
order. Under these conditions, and using the N3D convention
for the spherical harmonic functions [1, p. 120],

Bnm,νµ =


L/(α2π) if nm = νµ and n ≤ Nmax

0 if nm ̸= νµ and n ≤ Nmax

βnm,νµ if n > Nmax

(25)

where α = 1 in 2D and α = 2 in 3D, βnm,νµ are complex
scalars and Nmax a natural number that depends on the
array and on the HOA order N . Nmax is the order above
which higher-order basis functions are aliased down into lower
orders. Examples of these orthogonal sampling schemes in 2D
are circular arrays with L ≥ 2N+1 loudspeakers and uniform
angular separation (UCA) or, in 3D, a spherical t-design array
[27, p. 68].

For a UCA matrix YN is strictly related to the Discrete-Time
Fourier Transform (DTFT) [30]. Because of the periodicity of
the Fourier coefficients, it holds that Nmax = L − N − 1.
For the 3D t-design, the inner product of two sampled spher-
ical harmonics of order n and n′, respectively, satisfies the
orthogonality relation if n + n′ ≤ t [31]. For this reason,
Nmax = t − N . This theoretical result is confirmed by
numerical simulations.

We then assume that N < Nmax (where N is the order of
the decoder). Then the spatial aliasing error matrix is

A = Y H
∞D = Y H

∞Y N (Y H
NY N )−1. (26)

For orthogonal sampling schemes such as UCA’s or t-designs
with suitably large L, we see that Y H

NY N = L/(α2π)I,
where I is the identity matrix, and the aliasing matrix is
thereofore proportional to the orthogonality matrix, namely
A = B α2π/L.
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Fig. 1: Aliasing matrix for a Uniform Circular Array (UCA)
with L = 13, N = 2, Nmax = 10.

This results indicates that the spatial aliasing matrix can be
subdivided in three sub-matrices:

1) The first N rows, up to order N (2N + 1 rows in 2D
and (N + 1)2 in 3D), define an identity matrix.

2) The rows from order N+1 to order Nmax are all zeros.
This is the central result that explains the existence of
the ring of silence.

3) Rows corresponding to n > Nmax define spatial aliasing
relations with a more complex pattern, caused by the
lack of orthogonality of the sampled basis functions
Ψnm of order n ≤ N with sampled basis functions of
order n > Nmax.

These three regions of matrix A can be clearly observed in
Figs. 1 and 2, illustrating examples of spatial aliasing matrices
for a UCA with L = 13 (Fig. 1) and for a spherical t-design
[27] with t = 12 and L = 84 (Fig. 2a), all with N = 2. Note
that the matrices have been rotated by 90◦ counterclockwise
for better visualisation.

As a consequence of the structure of the spatial aliasing
matrix, equation (17) yields

b̃nm =


bnm if n ≤ N

0 if N < n ≤ Nmax∑N
ν=0

∑
µ Anm,νµbνµ if n > Nmax

. (27)

This means that the sound field components of the repro-
duced field will be identical to those of the target field up to
order N , will thereafter be zero up to order Nmax, and finally
above order Nmax they will be aliased versions of the first N
orders.

These three regions of matrix A are rigorously defined for
orthogonal sampling schemes. Fig. 2b represents matrix A
for a spherical equal area sampling scheme with L = 49 and
N = 2 [32]. This configuration is nearly uniform but not
orthogonal. It can be clearly observed that the first region (n ≤
N ) is well defined. However, since Nmax is not defined for
this sampling scheme, there is no sharp boundary between the
second and third regions of the ring. Instead, a gradual onset
of spatial aliasing artefacts is observed as n increases. This
behaviour highlights the critical role of the sampling scheme in
the occurrence of the ring of silence and suggests the potential
for designing specialised sampling strategies to minimise this
phenomenon.
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Fig. 2: Aliasing matrices for (a) Spherical t-design sampling with t = 12, L = 84, N = 2, Nmax = 10 (b) Equal area
spherical sampling with L = 49, N = 2.

We now introduce the expression of the sound field energy
averaged over a circle or sphere with radius r, which is

E(kr) =
1

α2πrα

∫
r̂∈S

|p(r̂)|2rαdS

=
1

α2π

∞∑
n=0

∑
m

|Rn(kr)bnm|2 (28)

The above formula is a result of the orthogonality of the basis
functions and is, in fact, the Parseval relation. The Fourier
coefficients appearing in the average energy formula will be
b̃nm in the case of the reproduced field.

In light of this formula, of the spatial selectivity of the radial
functions Rn(kr) explained above, and of the result illustrated
by equation (27), we deduce that the reproduced sound field
will have an energy dip in the kr interval dominated by the
contribution of the orders N < n ≤ Nmax. This is the ring of
silence.

Fig. 3 shows the average energy of the sound field repro-
duced by the same loudspeaker arrays as presented in Figs. 1
and 2 (UCA, spherical t-design, and spherical equal area
sampling). In all cases, the target field is a plane wave sound
field impinging from direction ϕt = 0◦, θt = 0◦, represented
by an N = 2 order HOA signal. The continuous horizontal line
represents the average original sound field, which is 0dB for
the considered plane wave. The dash-dotted line corresponds
to the original sound field truncated to the N -th order. It can be
clearly seen that the energy progressively reduces at kr = N
(first vertical dashed line), which defines the inner boundary of
the ring of silence. The dotted line show the average energy of

the sound field reproduced by the array under consideration.
It can be clearly seen that, for the circular array and for the
t-design, the energy increases again at kr = Nmax+1 (second
vertical dashed line). This defines the outer boundary of the
ring of silence.

For the circular array, the results are consistent with the
analytical results presented by Solvang [7]. For the array
with spherical equal area sampling, Nmax is not defined,
but a behaviour similar to the spherical t-design array can
be observed: the average energy decreases after kr = N
and then increases again after approximately kr = 10. This
demonstrates that the ring of silence concept can be extended
to arrays that do not exactly satisfy the orthogonality condition
defined by equation (27).

A. Measurements

Measurements in anechoic conditions were performed to
verify the results presented above. For simplicity, the analysis
was restricted to the 2D scenario using the UCA with L = 13.
The array consisted of Genelec 8020C loudspeakers, the
impulse responses of which were measured using a linear
microphone array. The microphone array consisted of 15
B&K type 4189 omnidirectional microphones with 0.037 m
separation between each microphone, shown in Fig. 4a. This
microphone spacing results in a spatial aliasing frequency of
approximately 4600 Hz, corresponding to the point at which
the microphone spacing equals a half wavelength. The array
was rotated through 360 degrees to capture impulse responses
from each loudspeaker to all positions of the sound field
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Fig. 3: Average energy for arrays with N = 2. (a) UCA, L = 13, Nmax = 10 (b) Spherical t-design, L = 84, t = 12, Nmax =
10 (c) Spherical equal area sampling, L = 49. The vertical dashed lines indicate N and Nmax + 1 (not defined for (c)).

over a circular region. Post-processing including frequency-
dependent windowing as described in [33] was performed to
ensure fully anechoic conditions.

As previously explained, the target field due to a plane wave
impinging from direction ϕT = 0◦, θT = 0◦, represented by
an N = 2 order HOA signal, was utilised to define the loud-
speaker signals. The sound field at the measured positions was
then simulated using the measured impulse responses. Fig. 4b
and 4c show the average energy across the circle at 3000 Hz
and 4000 Hz, respectively, and as a function of the radial
distance from the centre of the coordinate system (coinciding
with the centre of both loudspeaker and microphone arrays).
Notably the x axis differs from the previous results, as it is
now across radial distance, for a fixed frequency and therefore
fixed wave number. These frequencies were chosen to ensure
both the radial boundaries of the ring of silence, defined by the
N = kr rule of thumb for both N and Nmax + 1, fell within
the area sampled by the microphone array. A similar trend to
the simulations is observed, where the energy of the field is
approximately correct before the limit defined by r = N/k
and then the energy drops within the ring of silence region,
defined by N/k ≤ r ≤ (Nmax + 1)/k. At larger radii, the
energy grows again due to spatial aliasing, as expected.

It is should be emphasised that, for the case of a single
plane wave, the ring of silence is observed when considering
the radial variation of the acoustic field averaged over a circle
or a sphere. In this specific case, when observing the field on
a plane perpendicular to the wavefront (e.g. x− y plane if the
plane wave propagates in the x direction), the energy is not
uniform across a circle of given radius, therefore in practice
the region of space with an energy dip that we refer to as
the ring of silence will not be an annulus or spherical shell.
The actual energy measured radially out from the array centre
varies due to a number of factors, most importantly the angle
between the observation point and the plane wave direction
of propagation. The effect on the energy (not averaged over
a circle) due to varying this angle using the measured data
at 4000 Hz is shown in Fig. 5a. Here it is notable that, for
an incident single plane wave arriving from 0◦ (direction of
x axis), when increasing the observation angle from 0◦ to
90◦ (y axis) the drop in energy due to the ring of silence is

progressively more pronounced. Due to symmetry, the effect
of the ring of silence will then decrease again transitioning
from 90◦ to 180◦. In contrast, when analysing the sound field
on a plane parallel to the wavefront (e.g. y − z plane for a
wave propagating in the x direction) the ring of silence will
appear as an annular region (not shown in the figure).

Notably, however, most practical sound fields (particularly
those measured using microphone arrays) do not consist of a
single plane, but instead of a summation of multiple and often
incoherent plane waves. This is the case, for example, for a
diffuse sound field, which is of much relevance in practical 3D
audio applications. Under this scenario, if these plane waves
sum incoherently (i.e multiple independent sources) a low-
energy region will be observed, the shape of which resembles
an annulus or spherical shell, thus justifying the choice of
the name “ring of silence”. This is demonstrated in Fig. 5b,
where the sound field now consists of 6 incoherent plane waves
incident with angular directions equally distributed across a
circle. With comparison to Fig. 5a this sound field exhibits
the ring of silence in a considerably more uniform manner.

IV. BINAURAL REPRODUCTION

We now consider the case of binaural reproduction of HOA
signals. For a frequency ω, the binaural signals are

pL/R =

∫
ŷ∈S

HL/R(ŷ)q(ŷ)dS (29)

where HL/R(ŷ) is either the left-ear or right-ear HRTF for a
plane wave arriving from direction ŷ. The subscript L/R is
hereafter omitted to simplify the notation.

The HRTF can be represented by its Fourier series

H(ŷ) =

∞∑
n=0

∑
m

Ψ∗
nm(ŷ)Hnm (30)

Hnm =

∫
ŷ∈S

H(ŷ)Ψnm dS. (31)

Note that, without loss of rigour or generality, the Fourier
series is expressed in terms of the complex conjugate of
the basis functions Ψnm, in order to simplify the following
mathematical manipulation. The binaural signal can also be
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Fig. 4: Average energy from measured data for a UCA with L = 13, Nmax = 10 and N = 2. The vertical dashed lines
indicate the radial distances corresponding to N and Nmax + 1, using the N = kr rule. (a) Picture of the microphone array
(b) 3000 Hz (c) 4000 Hz.
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Fig. 5: Measured energy at 4000 Hz reproduced by a UCA
with L = 13, Nmax = 10 and N = 2. The dashed lines
indicate the circles with radii corresponding to N and Nmax+
1, using the N = kr rule. (a) Single plane wave incident
from 0◦ (b) 6 incoherent plane waves incident with a uniform
circular distribution.

expressed in terms of the spatial Fourier coefficients of the
PWD, as

p =

∞∑
n=0

∑
m

Hnmbnm. (32)

This result is derived from equation (29), analogously to
equation (9) with Hnm instead of Rnm(kr)Ψnm(r̂).
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Fig. 6: Energy of the KU100 HRTF Fourier coefficients,
summed over all m’s for each given n.

Fig. 6 shows the energy of the coefficients Hnm as a
function of ka, where a = 0.1 m is the notional radius of
the head. The HRTF is that of a Neumann KU100 dummy
head, as provided by the TH Köln 2702 point Lebedev grid
measurement [34]. Each line shows the sum of the energy of
all orders with same n and different m, i.e. En =

∑
m |Hnm|2,

normalised by the total HRTF energy. It can be observed that,
similarly to the free-field radial functions Rnm, high-order
coefficients do not contribute to small ka values, hence a
truncation error can be expected if the series in equation (30)
is truncated, as reported in the relevant scientific literature [8],
[10]. The relative energetic contribution of each order decays
with ka shortly after it has reached its peak, with lower orders
decaying before higher orders, but differently than Rnm. This
has consequences on the outer boundary of the ring of silence,
as will be shown later.

A. Two HOA-to-Binaural Decoding Methods

We will refer here to two established methods from the
literature for reproducing HOA signals over headphones, both
of which, as will be shown later, are directly or indirectly
based on the Mode-Matching Decoder. As mentioned in the
introductory section of this paper, other, more modern HOA-
to-binaural decoding strategies have been developed, but these
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are not included in this work. The first method consists in
decoding the HOA signals to obtain the driving signals of
a virtual array of L loudspeakers arranged in the far field
at angual positions {ŷ1, . . . , ŷL}, and then convolving these
signals with the HRTF corresponding to each loudspeaker [9],
[10]. In this case, the PWD Fourier coefficients are identical
to those in equation (17). The binaural signal is therefore

p =

∞∑
n=0

∑
m

Hnm

N∑
ν=0

∑
µ

Anm,νµbνµ (33)

which in matrix form reads

p = hTAb. (34)

The second method is derived from equation (32) and
consists of multiplying (convolving in time domain) each HOA
signal with the corresponding HRTF Fourier coefficient, then
summing the results [10], [11]. In mathematical terms:

p =

N∑
n=0

∑
m

H̃nmbnm. (35)

In this case, it is assumed that the Fourier coefficients are
estimated up to the HOA signal order N . The sum is therefore
truncated to order N and the HRTF Fourier coefficients H̃nm

are estimated and may be corrupted by spatial aliasing if the
sampling scheme is not sufficiently dense.

Measured HRTF data is often provided as samples
H(ŷℓ), ℓ = 1, . . . , L over a grid of L points arranged
over a sphere or circle. To show the equivalence between the
two methods discussed here, we will now assume that these
sampling positions ŷℓ are the same as those of the virtual
loudspeaker positions used in the first method introduced
above. If the Hnm are estimated from this sampled data, the
coefficients may be computed with a least-squares estimation
(again avoiding the use of regularisation) as [11]

h̃
T
= [(Y ∗

N )†x]T = xTY N (Y H
NY N )−1 (36)

where xT = [H(ŷ1), . . . ,H(ŷL)]. Coefficients up to order N
are estimated and it is assumed that their number is equal to,
or smaller than the number of sampling points L - hence the
finite order of matrix Y N . Again, if the sampling scheme is
not sufficiently dense, the estimated H̃nm may be corrupted
by spatial aliasing.

In view of equation (30), the estimated HRTF Fourier
coefficients are related to the original ones by

h̃
T
= hTY H

∞Y N (Y H
NY N )−1 = hTA (37)

where h and h̃ are the vectors of true coefficients Hnm and
estimated coefficients H̃nm, respectively. The spatial aliasing
matrix A introduced above is the same as in equation (26).
This HOA decoder design is related to the process of estimat-
ing the HRTF Fourier coefficients, with the HRTF playing the
role of the PWD and the HRTF sampling points the role of
the loudspeakers. Combining equations (35) and (37) yields

p =

N∑
ν=0

∑
µ

bνµ

∞∑
n=0

∑
m

Aνµ,nmHnm (38)

and in matrix form
p = hTAb. (39)

This is identical to equation (34), thus proving that the two
methods are in fact equivalent if the HRTF is sampled at
the same spatial positions as those of the loudspeakers of
the virtual array. The equivalence of the two methods may
be also understood by observing that equation [35] represents
the sound field reproduced by an array of virtual spatially-
low-passed loudspeakers, that is an array where each source
generates a sound field limited to order N (and possibly
including spatial aliasing artefacts).

The results presented above rely on the assumption that the
maximum order of the estimated HRTF Fourier coefficients
Hnm is the same as the order of the HOA signals to be
reproduced, i.e. that the order N in eq. (35) is the same as in
eq. (36). It may be the case, however, that the order N of the
HRTF Fourier coefficients is greater than the order N ′ of the
HOA signal (but the total number of HRTF coefficients is still
smaller than L), in which case the coefficients Hnm with order
N ′ < n ≤ N would be estimated but not used in equation
(35). This situation is equivalent to imposing bnm = 0 for
N ′ < n ≤ N , that is extending vector b by adding zero entries
for the last N − N ′ orders. The results presented above will
therefore still be valid.

The equivalence between these two methods was already
investigated in the literature, most notably with the joint
sampling theory presented by Ben-Hur et al. in [10]. The
results presented in that work are extended by the derivation
presented in this section, which demonstrates that the two
methods are equivalent even if the sampling scheme used
to estimate H̃nm for the second method is not sufficiently
dense to accurately represent the HRTF, thus breaking the joint
sampling condition [10, eq. (13)]5, as long as this sampling
scheme is consistent with the the virtual loudspeaker positions
used in the first method. The reproduced binaural signal will
be inaccurate due to spatial aliasing and truncation errors, but
these errors will be the same in the two methods.

B. The Ring of Silence in Binaural Audio

We calculate the energy of p for a plane wave target, repre-
sented by N -th order HOA signals, and we average that over
all possible incoming directions. The HOA signals for a target
plane wave coming from direction ŷ are bnm(ŷ) = Ψ∗

nm(ŷ).
Considering equation (35), the reproduced binaural signal is

p(ŷ) =

N∑
n=0

∑
m

H̃nmΨ∗
nm(ŷ). (40)

The averaged energy is thus

EB =
1

α2π

∫
ŷ∈S

|p(ŷ)|2dS =
1

α2π

N∑
n=0

∑
m

|H̃nm|2. (41)

Note that this is proportional to the energy of the binaural
signal for an isotropic diffuse field.

5NL < Nh in the notation used in [10]
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Fig. 7: Average HRTF energy for N = 2. The vertical dashed lines indicate N and Nmax + 1 (not defined for (c)). (a) UCA
with L = 13, Nmax = 10 (b) Spherical t-design with L = 84, t = 12, Nmax = 10 (c) Spherical equal area sampling with
L = 49.

Fig. 7 shows the average energy of the binaural signal
computed using the same three loudspeaker arrays (in this
case virtual arrays) introduced for previous figures. Note that
the ka axis is linear, for better visualisation. The plots show
the energy of the reference, order-truncated, and reproduced
signals. It can be clearly seen that the energy starts decaying
when ka = N , for both the truncated and reproduced signals,
which again sets the inner bound of the ring of silence.
This is consistent with the high-frequency spectral impairment
observed by Bernshutz et al. [8]. The energy of the reproduced
signals increases again when kr > Nmax + 1, but not as
markedly as for the free-field case (Fig. 3) because of the
different energetic decay of Hnm and Rnm (see Fig. 6). Note
that, for the binaural reproduction case, the ring of silence is in
fact a frequency band of silence, i.e. an interval on the domain
ka, as opposed to a region of space, as in the free-field case.

These results clearly show therefore that the ring (or band)
of silence phenomenon occurs also for binaural reproduction
of HOA material, and it can be explained with the very
same mathematical arguments introduced for the analogous
phenomenon occurring in loudspeaker reproduction.

The results presented here bring to light the relation between
the ring of silence, the order of the HOA signals to be
reproduced, the order of the HRTF expansion, and its sampling
scheme. More specifically, the bounds of the ring of silence
discussed in Section III, and hence the “thickness” of the ring,
are shown to be related to the difference between the order of
the chosen HRTF sampling scheme and the order of the HOA
signals. This result shares some relevant aspects with the joint
sampling theory presented in [10].

V. CONCLUSIONS
It has been shown that, when reproducing HOA signals over

a loudspeaker array with a Mode-Matching Decoder, a ring-
shaped region with lower SPL is generated, informally referred
to as the ring of silence. It has been shown mathematically
that this phenomenon is a consequence of the structure of
the spatial aliasing matrix, which depends on the loudspeaker
arrangement and on the chosen HOA decoder. The ring of
silence occurs because the energy of a range of “modes” of the

reproduced sound field (from n > N to n ≤ Nmax) is set to
zero by the popular minimum-norm HOA decoder. Formulae
for the inner and outer boundaries of the ring of silence
have been derived, which are exact for orthogonal sampling
schemes, and provide indicative bounds for approximately
uniform layouts. For the special case of a uniform circular
array, the results obtained coincide with those presented by
Solvang [7] and are demonstrated theoretically and using
measurements. The results presented in this work also encom-
pass more generic loudspeaker arrangements, including three-
dimensional setups.

A phenomenon analogous to the ring of silence has been
shown to occur also when rendering HOA signal binaurally
and using decoding strategy related to the Mode-Matching
Decoder. A frequency has been identified above which the
average energy decreases, and then increases again above
a given higher frequency. Formulae for these two regions
have been derived mathematically. The high-frequency energy
roll-off of HOA signals decoded to binaural was previously
reported in the literature, including in the work by Bernshutz
et al. [8]. It has been shown that this phenomenon is the
same as that of the ring of silence occurring in loudspeaker
reproduction.

This work has also highlighted the relation between the
ring of silence and the minimum-norm solution used for the
HOA decoder’s design and for the estimation of the HRTF
spherical harmonic coefficients. This finding suggests that a
different choice of decoder or spherical harmonics estimation
method may prevent the occurrence of this phenomenon
or alleviate its severity. Preliminary results obtained by the
authors indicate that the ring of silence effect is mitigated
when using a decoding strategy based on compressive sensing
for Ambisonics rendering over loudspeaker, similar to the
approach proposed by Jin at al. [15, p. 49]. Likewise, binaural
Ambisonics rendering using the Mag-LS decoding method
appears to significantly reduce the occurrence of the ring of
silence. Further investigation into this topic is suggested as
future work.

It has been shown that the ring of silence is intimately
related to the structure of the spatial aliasing matrix, which
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in turn depends on the chosen loudspeaker (or virtual loud-
speaker) arrangement. This observation suggests that specific
sampling arrangement (i.e., sampling schemes) could be de-
signed to reduce the ring of silence. Further investigation into
this possibility is proposed as future research.

Finally, all results presented in this work are based on
theoretical derivations and validated by objective measure-
ments; however, further validation via subjective listening
experiments is recommended.

VI. ACKNOWLEDGMENTS

The authors would like to thank Mr Yueheng Li for his
assistance with numerical simulations.

REFERENCES

[1] F. Zotter and M. Frank, Ambisonics. A Practical 3D Audio Theory for
Recording, Studio Production, Sound Reinforcement, and Virtual Reality.
Springer International Publishing, 2019, vol. 19.

[2] M. A. Poletti, “Three-dimensional surround sound systems based on
spherical harmonics,” J. Audio Eng. Soc, vol. 53, no. 11, pp. 1004–1025,
2005.

[3] J. Daniel and S. Moreau, “Further study of sound field coding with
higher order Ambisonics,” in Audio Eng. Soc. Convention 116, 2004.

[4] J. Bamford, “An analysis of ambisonic sound systems of first and second
order,” Ph.D. dissertation, University Of Waterloo, 1995.

[5] D. B. Ward and T. D. Abhayapala, “Reproduction of a plane-wave sound
field using an array of loudspeakers,” IEEE Trans. Audio Speech Lang.
Process., vol. 9, no. 6, pp. 697–707, 2001.

[6] J. Daniel, J.-B. Rault, and J.-D. Polack, “Ambisonics encoding of other
audio formats for multiple listening conditions,” in Audio Eng. Soc.
Convention 105, no. 4795, 1998.

[7] A. Solvang, “Spectral impairment of two-dimensional higher order
Ambisonics,” J. Audio Eng. Soc, vol. 56, no. 4, pp. 267–279, 2008.

[8] B. Bernschütz, A. Giner, C. Pörschmann, and J. Arend, “Binaural
reproduction of plane waves with reduced modal order,” Acta Acustica
united with Acustica, vol. 100, no. 5, pp. 972–983, 2014.

[9] M. Noisternig, A. Sontacchi, T. Musil, and R. Holdrich, “A 3d am-
bisonic based binaural sound reproduction system,” in Audio Eng. Soc.
Conference: 24th International Conference: Multichannel Audio, The
New Reality, 2003.

[10] Z. Ben-Hur, J. Sheaffer, and B. Rafaely, “Joint sampling theory and
subjective investigation of plane-wave and spherical harmonics formu-
lations for binaural reproduction,” Appl. Acoust., vol. 134, pp. 138–144,
2018.

[11] B. Rafaely and A. Avni, “Interaural cross correlation in a sound field
represented by spherical harmonics,” J. Acoust. Soc. Am., vol. 127, no. 2,
pp. 823–828, 2010.

[12] Z. Ben-Hur, F. Brinkmann, J. Sheaffer, S. Weinzierl, and B. Rafaely,
“Spectral equalization in binaural signals represented by order-truncated
spherical harmonics,” J. Acoust. Soc. Am., vol. 141, pp. 4087–4096,
2017.

[13] F. Zotter, H. Pomberger, and M. Noisternig, “Energy-preserving am-
bisonic decoding,” Acta Acust. united Acust., vol. 98, no. 1, pp. 37–47,
2012.

[14] F. Zotter and M. Frank, “All-round ambisonic panning and decoding,”
J. Audio Eng. Soc., vol. 60, pp. 807–820, november 2012.

[15] V. Pulkki, S. Delikaris-Manias, and A. Politis, Eds., Parametric Time–
Frequency Domain Spatial Audio. Wiley, 2017.

[16] F. Brinkmann and S. Weinzierl, “Comparison of head-related transfer
functions pre-processing techniques for spherical harmonics decom-
position,” in AES International Conference on Audio for Virtual and
Augmented Reality (AVAR), Redmond, WA, USA, august 2018.

[17] I. Engel, D. F. M. Goodman, and L. Picinali, “Assessing hrtf prepro-
cessing methods for Ambisonics rendering through perceptual models,”
Acta Acust., vol. 6, p. 4, 2022.
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