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Abstract—The evolution of next-generation wireless networks
demands intelligent, adaptive, and explainable decision-making
for robust communication in dynamic environments. This paper
presents ENWAR 2.0, the first agentic large language model
(LLM) framework integrating adaptive retrieval-augmented
generation (RAG) and chain-of-thought (CoT) reasoning into
situation-aware and explainable wireless network management.
ENWAR 2.0 introduces two specialized agents: a transformer-
fusion (TransFusion)-based beam prediction agent and an envi-
ronment perception agent, both of which fuse multi-modal sen-
sory inputs—including camera, LiDAR, radar, and GPS—from
the DeepSense6G dataset. The beam prediction agent enables
infrastructure-to-vehicle (I2V) target-in-the-loop beam tracking
and real-time adaptation based on dynamic environmental con-
ditions. In contrast, the environment perception agent provides
situation-aware reasoning and justifications for beam decisions.
Unlike its predecessor, ENWAR 1.0, which relied on static
knowledge bases (KBs) and text-only LLMs, ENWAR 2.0 is
designed for CoT reasoning, leverages LLaMa3.2-3B/LLaMa3.1-
8B/LLaMa3.3-70B for text-generation, the multi-modal capabil-
ities of LLaMa 3.2, and employs LlamaIndex for fine-grained,
dynamic context retrieval, eliminating retrieval ambiguities and
enhancing response relevance. Numerical results show that the
beam prediction agent achieves up to 90.0% Top-3 accuracy
at t + 3, effectively predicting optimal beam selections three
time steps ahead. Overall, ENWAR 2.0 achieves state-of-the-art
performance, with up to 89.7%/83.5% interpretation/perception
correctness, 81.6%/80.9% faithfulness, and 89.9%/88.2% rele-
vancy. In comparison, the baseline pretrained LLaMa3 models
without adaptive RAG achieves up to 80.3%/77.3% correctness,
and the baseline without RAG performs significantly worse at
67.1%/64.8%. Additionally, ENWAR 2.0 reduces processing time
by over 100% relative to the baseline, while its adaptive RAG
improves performance by up to 13.7% compared to static RAG.

I. INTRODUCTION

GENERATIVE artificial intelligence (AI) is poised to
transform 6G and future wireless networks by enabling

systems that can produce, adapt, and interpret vast amounts
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A conference version of this work focusing on the beam prediction agent
is submitted to IEEE ICC’26 [1].

of data [2]. Central to this shift are large language models
(LLMs), which are transformer-based architectures proficient
in diverse tasks, from natural language understanding to deci-
sion support [3]. LLMs operate by learning statistical patterns
from massive text corpora and can generate, summarize,
or analyze language, code, or structured data in response
to user prompts. They predict the following, most likely
words or tokens in a sequence, enabling them to answer
questions, provide explanations, and integrate diverse sources
of knowledge. Their scalability and adaptability make them
well-suited for next-generation networks’ complex, dynamic
environments, supporting zero-touch network and service man-
agement (ZSM) through rapid decision-making and resource
optimization [4].

However, future wireless systems face challenges absent
in legacy networks. Higher frequencies and massive antenna
arrays demand rapid beam alignment, proactive blockage
mitigation, and seamless handovers to maintain reliable links.
Traditional cloud-centric or heuristic methods often fail to
meet these stringent needs, particularly in dense urban settings.

A crucial enabler for addressing these challenges is multi-
modal integrated sensing and communication (ISAC), which
fuses inputs from sensors such as cameras, GPS, LiDAR, and
radar to build fine-grained, real-time environment views. This
fusion supports envisioning digital twins (DTs), near-real-time
digital network state replicas that enable optimized decision-
making and advance situational awareness and ZSM goals [5].

LLMs offer strong potential to bridge multi-modal sensing
with wireless tasks, but conventional text-focused models often
struggle with real-world data [6]. Simply extending them to
multi-modal inputs does not guarantee domain-specific accu-
racy, as generic correlations and outdated knowledge can cause
hallucinations or imprecise responses. Two primary strate-
gies address these issues: fine-tuning and retrieval-augmented
generation (RAG). While fine-tuning is resource-intensive,
recent parameter efficient fine-tuning (PEFT) methods reduce
adaptation overhead [7].

By contrast, RAG provides a cost-effective solution by
integrating targeted knowledge bases (KBs) into the gener-
ation process. RAGs enhance contextual relevance, reduces
token overhead, and improves inference efficiency. Retrieving
only relevant context avoids repetitive preprocessing, lowers
energy costs, and ensures concise, coherent responses without
unnecessary token consumption [8].
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With these motivations, we previously introduced EN-
WAR 1.0, an ENvironment-aWARe RAG-based multi-
modal LLM framework [9]. While it successfully integrated
domain-specific retrieval with raw sensory data to provide
environment-aware insights, it remained primarily a retrieval
system unable to perform downstream wireless tasks or offer
reasoning-driven decision support.

This gap underscores the need for novel agentic, reasoning-
driven LLM frameworks for 6G networks. Embedding spe-
cialized agents, such as analytical models, ML components,
or optimization algorithms, into the LLM pipeline enables
dynamic orchestration of complex wireless functions [10].
Reasoning is equally essential for trust and transparency:
when paired with multi-modal sensing, agentic LLMs can
interpret rich environmental data (e.g., traffic density, obstacle
locations, mobility patterns), infer network states, and explain
their actions in human-interpretable terms. Even as ZSM
reduces human involvement, explainability is vital for fairness,
accountability, and human oversight [11].

Motivated by these needs, we present ENWAR 2.012, an
advanced framework that extends LLM-based intelligence with
agentic capabilities and chain-of-thought (CoT) reasoning. It
introduces two specialized agents: a beam prediction agent,
enabling target-in-the-loop beam tracking between vehicles
and the roadside unit (RSU), and an environment perception
agent, which provides real-time reasoning and justifications for
beam decisions. Together, these agents exemplify how ENWAR
2.0 bridges AI-driven automation with human interpretability,
positioning it as a foundation for trustworthy, explainable AI
in future 6G networks.

II. RELATED WORK AND MAIN CONTRIBUTIONS

This section provides an overview of related work within
wireless networks and LLMs, and outlines the main contribu-
tions of our proposed approach. Additionally, for a complete
tabular summary of related works, please refer to App. A3.

A. Related Work

Recent research has explored diverse LLM-based frame-
works for wireless communications, including RAG, question-
answering (Q&A) training, instruction tuning, and multi-
agent collaboration. RAG enhances LLM outputs by retrieving
domain-specific knowledge from curated KBs, improving re-
sponse accuracy [9], [12]–[14]. Q&A training fine-tunes LLMs
with telecom-specific datasets to aid spectrum management
and protocol understanding [15]. Instruction tuning further
refines responses for telecom tasks but demands large curated
datasets and significant computation [16], [17]. Multi-agent
LLM systems have also emerged for task decomposition and
decision-making in wireless networks [18]–[21]. However,
most of these methods focus on query-based interactions rather
than real-time decision-making.

1Enwar is a common name in Turkic and Arabic cultures, meaning
enlightened, insightful, and intellectual; herein referring to a multi-modal
LLM providing deep situational and contextual insights into the environment.

2ENWAR 2.0’s code is available at https://github.com/anazar99/Enwar2.0
3Appendices are in the supplemental file provided with the submission.

Beyond static knowledge, recent work explores retrieval-
augmented strategies for real-time, bandwidth-efficient com-
munication in multi-agent and multi-modal vehicular networks
[22], [23]. These approaches combine multi-modal data, se-
mantic retrieval, and reinforcement learning to improve task
efficiency, lower bandwidth use, and support user interactions.

Despite recent advancements, existing LLM frameworks
for wireless networks face several key limitations. A major
challenge is the lack of structured reasoning and explainabil-
ity. Current LLMs function as black-box models, generating
responses based on statistical correlations rather than explicit
inference. This opacity is problematic in wireless decision-
making, where network operators require interpretable justifi-
cations for AI-driven actions [11], [24], [25]. Without clear
reasoning mechanisms, LLMs risk producing unreliable or
suboptimal decisions in dynamic network environments.

Recent work has integrated LLMs and foundation models
into wireless systems to boost adaptability and intelligence.
For example, the Large Wireless Model, a transformer pre-
trained on wireless channel data, generates contextualized
embeddings that improve various communication and sensing
tasks, especially in data-scarce scenarios [26]. In security, Gao
et al. develop a BERT-based RF fingerprinting framework for
6G IoT networks, using self-supervised pretraining and distil-
lation to robustly authenticate devices even under challenging
conditions like multipath fading and Doppler shifts [27].

Another critical limitation lies in handling large-scale op-
timization problems. While LLMs are effective in pattern
recognition, they struggle with NP-hard tasks such as beam
alignment and resource allocation [12], [18]–[21]. Standard
LLM approaches lack the mathematical rigor required for opti-
mal solutions, necessitating hybrid models that combine LLM-
driven insights with specialized optimization solvers. One such
approach introduced an LLM-driven wireless communication
paradigm that translates user natural language requests into
structured queries and optimization tasks, enabling adaptive,
user-centric system behavior through a prototype semantic
communication system [28].

Most LLM architectures remain fundamentally text-based,
limiting their ability to handle multi-modal wireless tasks that
demand real-time analysis of sensory data like LiDAR, radar,
and camera feeds [12], [20], [29], [30]. Although early multi-
modal LLM efforts exist, practical implementations are still
rare and lack support for real-time, data-driven network opti-
mization. Additionally, RAG-based LLMs rely on static KBs
that quickly become outdated, risking inaccurate recommen-
dations in dynamic wireless environments [9]. Dynamically
updating these KBs is crucial to ensure decisions reflect the
latest standards and policies. These challenges underscore the
need for new LLM frameworks with integrated reasoning,
optimization, and multi-modal capabilities, motivating the
development of ENWAR 2.0.

B. Main Contributions

To the best of the authors’ knowledge, ENWAR 2.0 is
the first agentic LLM framework to integrate RAG, CoT
reasoning, and multi-modal ISAC for situation-aware wireless

https://github.com/anazar99/Enwar2.0
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network management. Unlike prior studies that either (i)
applied generic LLMs with static knowledge bases or (ii) used
multi-modal fusion solely for beam prediction, ENWAR 2.0
uniquely integrates adaptive RAG, CoT reasoning, and agen-
tic multi-modal perception within a single framework. This
combination enables real-time high-accuracy beam prediction
and situation-aware justifications, going beyond accuracy-only
baselines to provide interpretable, reasoning-driven wireless
decision support.

Additionally, unlike ENWAR 1.0, which relied on single-
modality LLMs and pre-embedded multi-modal data with
static explanations in an offline KB, ENWAR 2.0 dynami-
cally extracts relevant data and structures prompts in real-
time, eliminating retrieval ambiguities and redundant ex-
planations caused by overlapping textual data. It leverages
models from the LLaMa 3 family—including LLaMa3.2-3B,
3.1-8B, and 3.3-70B—to enable flexible deployment across
various resource budgets. LLaMa3.2-3B is a lightweight,
efficient variant of LLaMa 3.1, while LLaMa3.3-70B offers
enhanced capabilities and reasoning over earlier 70B versions.
LLaMa3.2-Vision-11B, an inherently multi-modal model, also
handles image-to-text conversion, supporting seamless visual
input processing. These choices allow ENWAR 2.0 to balance
performance, scalability, and computational efficiency without
relying on external models for non-textual data. ENWAR 2.0’s
key improvements and main contributions are as follows:
✓ Wireless Multi-Modal, Agentic LLM: ENWAR 2.0 in-

troduces specialized multi-modal agents (beam prediction
and perception) natively integrated into the LLM pipeline
for reasoning-driven decision support for situation-aware
perception and grounded beam prediction.

✓ CoT Reasoning for Explainability: ENWAR 2.0 em-
ploys CoT reasoning to refine responses using real-time
multi-modal sensory data iteratively. This structured rea-
soning process breaks down complex network scenarios
into logical steps, ensuring well-justified and interpretable
decisions without storing ground truths in the KB.

✓ Efficient RAG with LlamaIndex: Replacing ENWAR
1.0’s LangChain4-based retrieval, Enwar 2.0 employs
adaptive5 for finer-grained indexing, chunking, and adap-
tive retrieval. This granularity optimizes context selection
and ensures that only the most relevant information
informs response generation, improving efficiency and
contextual accuracy.

✓ Adaptive KB for Dynamic Environments: LlamaIndex
also enables real-time KB updates, eliminating reliance
on static, pre-curated knowledge. This change enables
ENWAR 2.0 to remain responsive to evolving network
conditions, ensuring up-to-date and contextually relevant
decision-making.

Combining these advancements with specialized agents
yields significant performance gains:
✓ TransFusion-Based Beam Prediction Agent: ENWAR

2.0 fully exploits multi-modal sensory data through a
robust beam prediction agent that uses specialized feature

4https://python.langchain.com/docs/
5https://docs.llamaindex.ai/en/stable/

extraction, pre-fusion techniques, and transformers. Nu-
merical results show the agent achieves a Top-3 prediction
accuracy of up to 90.0% and an average power loss (APL)
of -0.009552 dB at t+3, enabling precise beam selection
three steps ahead in dynamic environments.

✓ Situation-Aware Grounding, Reasoning, and Expla-
nation: ENWAR 2.0 advances interpretability through
its environment perception agent, delivering situation-
aware reasoning and justifications for beam decisions. To
quantify this, we introduce two novel key performance
indicators (KPIs): (1) Interpretation, assessing how ef-
fectively ENWAR 2.0 explains beam choices based on
multi-modal data and dynamic vehicular contexts, and
(2) Perception, evaluating its analysis of environmental
factors like potential object overlap and obstructions, and
traffic density.
We evaluate retrieval strategies by comparing adaptive
RAG, static RAG, and full context injection without
RAG across LLaMa3.2-3B, 3.1-8B, and 3.3-70B models.
Adaptive RAG updates the KB with new sensory data for
relevant retrieval, while static RAG relies on a fixed KB
with full preemptive knowledge. Full context injection
simultaneously processes all data in the prompt, leading
to high computational load and reduced accuracy.
Numerical results highlight the benefits of adaptive
RAG: ENWAR 2.0 achieves up to 89.7%/83.5% inter-
pretation/perception correctness, 81.6%/80.9% faithful-
ness, and 89.9%/88.2% relevancy, outperforming static
and non-adaptive RAG by as much as 13.7%. Baseline
pretrained LLaMa3 models without RAG achieve only up
to 68.6% interpretation and 67.2% perception correctness.
Full prompt injection without RAG suffers from higher
latency and reduced interpretability, confirming the in-
efficiencies of excessive context injection. Additionally,
ENWAR 2.0 improves efficiency, producing responses in
1.26 seconds compared to 2.67 seconds for the baseline
without RAG.

C. Paper Organizations

The rest of the paper is organized as follows: Sec. III
provides a high-level overview of ENWAR 2.0’s framework;
Sec. IV and Sec. V provides a breakdown components and
functionality of the agents; Sec. VI and VII describe the
offline and online pipeline of ENWAR 2.0, respectively; Sec.
VIII evaluates the performance of ENWAR 2.0, and Sec. IX
concludes the paper with a few remarks.

III. AN OVERVIEW OF ENWAR 2.0 FRAMEWORK

As illustrated in Fig. 1, this work considers a millimeter
wave (mmWave) infrastructure-to-vehicle (I2V) scenario that
consists of two main units: The former unit is a vehicle
equipped with a uniform linear array (ULA) comprising M
antennas and a GPS receiver. The latter unit is a RSU (i.e.,
base station (BS)) with a single receive antenna and multiple
sensing capabilities, including a camera, radar, and LiDAR.
Let h(t)∈CM×1 denote the channel between the vehicle and
the RSU at time t. The ULA is associated with a predefined

https://python.langchain.com/docs/
https://docs.llamaindex.ai/en/stable/
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Fig. 1. Illustration of the system model.

beamforming codebook F = {fi}Qi=1, where fi ∈ CM×1

is the ith codeword (i.e., beam) and Q = |F | = OM
represents the codebook size after applying an oversampling
factor O. Denoting ι(t) as the selected codeword/beam index
for transmission of data symbol x(t) ∈ C, then the received
signal at time t is given by

y(t) = fHι(t)h(t)x(t) + n(t), (1)

where n(t) ∼ NC(0, σ
2) is the complex Gaussian noise.

To achieve optimal connectivity, RSU aims to select the
beamforming vector that maximizes the received power:

⋆
ι(t) = argmax

i∈[1,Q]

|fHi h(t)|2. (2)

However, real-time computation of
⋆
ι(t) by exhaustive beam

sweeping is impractical for large search spaces, especially in
fast-changing vehicular environments with dynamic obstacles
blocking the mmWave communications [31]. To address this
challenge, the RSU functions as an LLM user, leveraging real-
time multi-modal sensor measurements to construct prompts
for the following wireless tasks:

1) Target-in-the-Loop Beam Tracking: The RSU contin-
uously requests beam predictions,

⋆
ι(t+ k), where k

depends on the inference time, for a vehicle as it moves
within the coverage area.

2) Human-Interpretable Reasoning: At certain intervals, a
human-in-the-loop module may request situation-aware,
grounded, and reasoned explanations for the selected
beams.

ENWAR 2.0 achieves these objectives through two interlinked
pipelines, as depicted in Fig. 2 and detailed below.

A. Offline Pipeline: KB Formation

The offline pipeline establishes a domain-specific KB by
processing multi-modal data streams following below steps:
A⃝ Agentic inference drawing employs two specialized agents
that operate in parallel to convert multi-modal sensory data
into semantically rich textual representations, simultaneously

perceiving the wireless environment and predicting the best set
of beams. Upon receiving new data, raw data preprocessing
[c.f Sec. IV-A] takes place to ensure the integrity and consis-
tency of timestamped multi-modal sensory data, which is vital
for accurate beam prediction and reliable system inference.
To that end, each modality is subjected to domain-specific
preprocessing routines to maintain consistency across modal-
ities and mitigate errors introduced by noisy measurements.
After that, both agents initiate their respective processes in
real-time, ensuring that perception and beam prediction occur
concurrently for seamless, low-latency inference.

1) The environment perception agent [c.f. Sec. IV] receives
data from diverse sensor modalities, each of which
undergoes preprocessing suitable for its nature: LiDAR
point clouds and radar signals are typically clustered
to refine object detection and extract relevant features,
while images are resized and masked to eliminate super-
fluous details before object detection models (e.g., You
Only Look Once (YOLO)) identify various entities, e.g.,
vehicles, pedestrians, cyclers, etc. GPS data is also trans-
lated into textual form, providing spatial information that
locates and contextualizes moving objects. The goal is
to convert all sensor information into unified textual
descriptions (e.g., “a vehicle stopped at a pedestrian
crossing”) that reflect the underlying environment in a
form amenable to LLMs.

2) The beam prediction agent [c.f. Sec. V] employs a
specialized transformer-fusion (TransFusion) model with
cross-modality attention mechanisms to fuse information
on object positions, trajectories, and physical obstacles,
to provide a set of Top-k beam predictions. Each beam
is characterized by key properties such as center angle
and angular width. These properties are also converted
into textual descriptions that are processed downstream.

B Offline Knowledge Base Formation leverages LlamaIndex
to arrange environmental and beam-related textual information
for inclusion in the KB by following below steps:

• Information combination merges relevant descriptions of
both environmental dynamics, e.g., detected objects, their
velocities, and positions, and beam-related insights, e.g.,
beam center angles, and angular widths. We refer readers
to App. B for an example of information combination.

• Data chunking segments these consolidated text into con-
textually coherent, and equal-sized chunks that conform
to tokenization constraints. For instance, radar or LiDAR
data can be segmented by object clusters, while GPS logs
can be partitioned based on time intervals.

• Embedding vectorizes each data chunk using a general
text embeddings (GTE) model to capture semantic rela-
tions. The resulting embeddings allow different modal-
ities (e.g., radar- or camera-based descriptions) to be
mapped into a unified semantic space, enabling ENWAR
2.0 to effectively cross-reference data from heteroge-
neous sources. Strict token and embedding length align-
ment is maintained to ensure that the multi-modal content
remains consistent and interpretable within LLMs.

Next, LlamaIndex stores these vectorized representations in
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Fig. 2. Two primary pipelines of ENWAR 2.0 workflow: i) offline pipeline is responsible for KB generation involving steps A⃝- B⃝, and ii) online pipeline
incorporates real-time process of response generation, comprising of steps 1⃝- 5⃝. ENWAR 2.0 utilizes LlamaIndex for steps B , 2 , 3 , and 4 .

a domain-specific KB by employing similarity search frame-
works such as Facebook AI Similarity Search (FAISS) [32],
which facilitate efficient indexing and retrieval of embeddings,
even in large-scale or high-dimensional datasets.

B. Online Pipeline: Retrieval Augmented Generation

To retrieve contextually relevant information, update KB,
and guide LLM responses, the Online Pipeline leverages the
RAG in real-time following the below five steps, of which
steps 2 - 4 are implemented by using LlamaIndex.
1⃝ Agentic inference drawing mirrors the procedures described
in step- A⃝ of the offline pipeline but exploits the real-time
multi-modal sensory data.
2 Online KB formation and prompt interpretation follows
the footprints of step- B to update KB with the current
embeddings. Unlike the offline pipeline, this step involves
prompt interpretation. In addition to automated beam tracking
request coming from ZSM, ENWAR 2.0 also allows human-
in-the-loop interventions, which may occasionally demand
explanations based on a flagging mechanism. As exemplified
in App. C, the time-stamped prompt is vectorized so that it
can be matched against the KB, which is explained next.
3 Semantic search exploits the vectorized prompt to query
the FAISS-indexed repository, generating a set of relevant text
chunks that provide historical or contextual information. This
retrieval process is powered by semantic similarity compu-
tations that identify potentially valuable correlations among
environmental factors, past beam performance, and user-
specific objectives. By leveraging the embeddings available in
the repository, ENWAR 2.0 rapidly locates the most suitable
knowledge segments for the ongoing scenario.

4 Result Ranking filters and prioritizes the top-p percentile
(e.g., p = 95) of retrieved chunks to ensure only the most
contextually relevant information is used. This improves re-
sponse coherence, reduces unnecessary token consumption,
and preserves high-priority data even when nearing the LLM’s
context window limit. The selected vectorized results are then
decoded into text to form a context, as illustrated in App. B.

5⃝ Response generation begins with constructing a final
prompt template [c.f. App. D], which includes a predefined
task description, retrieved context from step- 4 [c.f.App. B],
and the user query [c.f. App. C]. The LLM then generates
responses by incorporating environmental observations, beam
properties, and historical insights. Using top-p sampling or
similar techniques, it balances diversity and precision to ensure
responses are contextually rich and non-repetitive.

At this stage, ENWAR 2.0 selects the most suitable beams
and explains its reasoning. For instance, it can justify decisions
based on angular alignment, beam power levels, or real-time
sensor updates affecting mobility. By fusing multi-modal data
with RAG, ENWAR 2.0 enhances situational awareness and
supports informed decision-making. Further details on the
RAG framework are provided in Sec. VII.

IV. ENVIRONMENT PERCEPTION AGENT

This section presents the design and processes involved in
ENWAR 2.0’s environment perception agent. By leveraging
real-world sensor data from the DeepSense6G dataset [33],
[34], the agent constructs a holistic understanding of the
environment to facilitate robust beam prediction and situation-
aware reasoning. Specifically, we utilize Scenarios 31–34,
which provide synchronized data streams, including GPS
coordinates for a vehicle and a RSU in communication, camera
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frames, LiDAR point clouds, and radar scans. In the rest of
this section, we first delineate the data preprocessing steps,
then explain how environmental perceptions are inferred from
various sensor modalities.

A. Data Preprocessing
DeepSense6G offers diverse sensors that capture the en-

vironment from multiple perspectives. Ensuring the integrity
and consistency of these data streams is vital for accurate
beam prediction and reliable system inference. To that end,
each modality is subjected to domain-specific preprocessing
routines. Each data source undergoes careful timestamping
and preprocessing procedures before being incorporated into
ENWAR 2.0 to maintain consistency across modalities and
mitigate errors introduced by noisy measurements.

1) Image Preprocessing: All camera frames are resized to
a resolution of 256× 256, and pixel values are normalized to
stabilize subsequent feature extraction.

2) GPS Preprocessing: GPS data is calibrated to account
for vertical, horizontal, and position dilution of precision
(DoP) measurements, correcting biases that may arise from
satellite geometry or signal noise. After calibration, motion-
related features such as displacement, speed, directional angle,
and acceleration are extracted. Additionally, angular velocity
and curvature information is derived to capture both turning
and linear motion patterns.

3) LiDAR Preprocessing: To handle the high density of
LiDAR point clouds, a voxel-grid downsampling procedure
is applied to reduce the volume of points while preserving
spatial structure [35]. A random sample consensus (RANSAC)
plane-fitting algorithm then identifies and removes ground-
plane points, leaving only points associated with obstacles or
objects of interest [35]. Outliers are removed by statistical
analysis, as described in Sec. IV-D. The remaining 3D points
are normalized by centering them around the origin and scaling
them to fit within a unit cube.

4) Radar Preprocessing: Radar scans typically include
clutter and spurious reflections. To address this, a Gaussian-
based noise filter enhances valid targets by removing low-
intensity points. Outliers are eliminated via statistical analysis,
as detailed in Sec. IV-E, to isolate reliable reflections from
moving and static objects. Finally, the cleaned radar data is
normalized through max-min normalization.

B. Camera Perception
1) Image-Based Object Detection: To extract high-level

semantics from images, ENWAR 2.0 employs YOLO, a real-
time object detection system that produces bounding boxes,
confidence scores, and class labels (e.g., vehicles or pedes-
trians). The confidence threshold is set to 0.5, discarding
bounding boxes with lower scores to reduce false detections.
Each bounding box is represented by coordinates, (x, y, w, h),
where x and y are the bounding box’s center coordinates,
and w and h are the bounding box’s height and width. This
representation is then assigned a class label. These outputs
are converted into textual descriptions that are integrated into
the RAG pipeline. This transformation ensures ENWAR 2.0
provides comprehensive and visually context-rich responses.

2) Image-to-Text for Enhanced Explainability: Beyond
bounding boxes, ENWAR 2.0 augments scene understanding
with descriptive text generated from images. Specifically, the
first image in each five-image sequence is passed to a multi-
modal LLM optimized for vision-language tasks. Using the
first image ensures that the description reflects the environ-
ment at the start of the sampling period, which is generally
stable within the sample intervals. An instructional prompt
guides the vision model to provide contextually relevant scene
descriptions (e.g., “a white sedan waiting at a crosswalk”),
thereby improving the interpretability of the sensed envi-
ronment. Incorporating these descriptive captions into the
system’s KB furnishes valuable contextual cues that can clarify
beam decisions and environment-aware reasoning.

C. GPS Perception

Position data from the vehicle (Unit 2) and the RSU (Unit 1)
is used to calculate their relative distance and bearing angle.
Latitude and longitude measurements are calibrated before
being processed by a long short-term memory (LSTM)-based
GPS network (detailed in Section V). This network predicts
future trajectories, capturing projected distance and bearing
over time. By converting current and forecasted GPS data into
textual descriptions (e.g., “vehicle at 35.1236, -80.9421 at a
bearing of 43.31° with speed 10km/h”), ENWAR 2.0 easily
incorporates positional information into the RAG framework,
and facilitates alignment with other sensor modalities and
supports high-level situational inference.

D. LiDAR Perception

Clustering in LiDAR point clouds is done via density-
based spatial clustering of applications with noise (DBSCAN),
which groups 3D points into meaningful objects and filters
out noise. Algorithmic parameters, such as ϵlidar = 0.75 and
min_sampleslidar = 5, determine the maximum separation
between points within a cluster and the minimum cluster size,
respectively. These parameters were selected by plotting a k-
distance graph, where the distance to the k-th nearest neighbor
for each data point is calculated with k = min_sampleslidar,
and the point of maximum curvature in this plot represents
a good value for ϵlidar. Each identified cluster is translated
into a bounding box with estimated dimensions and location.
These bounding box coordinates, along with cluster metadata
(e.g., point density), are compiled into textual summaries (for
instance, “large object spanning 2.3m in length at 45° to the
LiDAR”). In addition to providing environmental context, this
structured textual data helps ENWAR 2.0 refine its understand-
ing of the physical layout surrounding the RSU, supporting
more accurate beam direction decisions.

E. Radar Perception

Radar perception begins by filtering raw scans with an
intensity threshold to eliminate weak reflections. Detected
points are then grouped into clusters using DBSCAN, config-
ured through ϵradar = 2.5 and min_samplesradar = 2. These
parameters were selected similarly to the parameter selection
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Fig. 3. TransFusion beam prediction model architecture.

in LiDAR Perception. Each cluster’s average range, velocity,
and angular span are calculated to characterize the detected
object in radar coordinates. Transforming these radar clusters
into text (e.g., “cluster at range 15m, velocity 2m/s”) enhances
ENWAR 2.0’s capacity to integrate spatiotemporal data across
modalities. Correlating radar measurements with LiDAR or
camera detections further enriches multi-modal awareness and
can reveal inconsistencies, such as an undetected object in
other modalities but present in radar scans.

V. BEAM PREDICTION AGENT

ENWAR 2.0 employs the TransFusion architecture to pre-
dict optimal beam selections by integrating multi-modal sen-
sory inputs. This model enhances accuracy and adaptabil-
ity in dynamic wireless environments by processing diverse
data sources through a structured pipeline. As illustrated in
Fig. 3, the agent follows these steps: 1⃝ specialized encoders
extract high-dimensional features from preprocessed multi-
modal data; 2⃝ extracted features are then fused into a unified
representation, enabling cross-modality interaction; 3⃝ the
fused data passes through a transformer block, leveraging
multi-head self-attention to capture complex dependencies;
and 4⃝ the output layer assigns scores to potential beam

directions. This pipeline ensures robust and reliable beam
predictions. To analyze the contribution of each modality, these
steps are repeated for different modality combinations. The
following sections provide a detailed explanation of each stage.
1⃝ Feature Extraction: The first step in the model is to

extract features from the multi-modal inputs. The extracted
features represent high-dimensional, modality-specific insights
essential for understanding the environment and predicting
optimal beams.

Image Features: The Camera Encoder processes im-
age sequences through convolutional layers and an LSTM
network. The preprocessed images are transformed into a
tensor and reshaped, then passed through three consecutive
convolutional layers with a ReLU activation function following
each layer. After the final convolutional layer, the output tensor
is reshaped into a flattened vector sequence. These flattened
features are then fed into an LSTM network layer, which
processes the temporal dependencies across the sequence. The
LSTM generates 128 hidden states for each time step, and the
hidden state from the last time step is used as the final encoded
representation. This representation captures the spatial features
from the convolutional layers and the temporal dependencies
modeled by the LSTM network.

GPS Features: The GPS Encoder takes preprocessed
GPS data and encodes temporal dependencies using an LSTM
network. Preprocessed and derived GPS features are then
concatenated and normalized using a feature scaler trained
on the entire dataset to ensure consistency and minimize
variability. The resulting normalized feature vector is then
passed into a two-layer LSTM network, which processes the
input sequence to capture temporal dependencies. At each time
step, the LSTM generates 128 hidden states, with the final
hidden state representing the learned temporal features of the
sequence. This hidden state is passed through a fully connected
layer to produce the final encoded GPS representation.

LiDAR Features: The PointNet Encoder extracts spa-
tial and temporal features from point cloud data, leveraging
both convolutional layers and recurrent processing. At each
time step t in the sequence, the corresponding point cloud
frame is processed through three 1D convolutional layers with
kernel size 1 and ReLU activations. Max-pooling is then
applied across all points in the cloud to aggregate features into
a fixed-dimensional representation. The sequence of spatially
encoded frames is passed through an LSTM network with
128 hidden states to model temporal dependencies across
consecutive LiDAR frames. The last hidden state of the LSTM
captures both spatial and motion-aware features, forming the
final encoded representation of the LiDAR sequence. This
integration of CNN-based feature extraction with LSTM-based
temporal modeling enables the network to learn meaningful
spatiotemporal patterns from the evolving point cloud data.

Radar Features: The Radar Encoder processes radar
data by combining fully connected layers for spatial feature
extraction with an LSTM network for capturing temporal
dependencies similar to the PointNet architecture [36]. At
each time step t in the sequence, the radar input tensor is
flattened and passed through three fully connected layers with
ReLU activations to extract frame-wise features. the sequence
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of extracted radar features is passed through an LSTM network
with 128 hidden states, which models temporal dependencies
across consecutive radar frames. The last hidden state of the
LSTM serves as the final encoded representation, capturing
both the spatial structure of individual frames and the temporal
evolution of radar reflections over time.

2⃝ Early Fusion: An important design choice in the
TransFusion architecture is to decouple the initial feature ex-
traction from the cross-modal reasoning by performing feature
fusion prior to transformer processing. Each sensor modality
produces features with distinct statistical properties, dimen-
sionalities, and temporal characteristics. Directly feeding these
heterogeneous outputs into a transformer would require the
model to simultaneously handle feature extraction and cross-
modal alignment, increasing the learning burden and train-
ing instability. Instead, TransFusion adopts a staged strategy:
modality-specific encoders first transform raw sensor inputs
into structured, modality-aligned feature embeddings. These
embeddings are then fused into a single, unified representation
before being processed by the transformer.

By presenting the transformer with a fused, high-
dimensional feature vector, the architecture allows the trans-
former to focus solely on modeling complex dependencies and
interactions across modalities without being overwhelmed by
low-level modality-specific noise or structural mismatches [1].
This pre-fusion strategy reduces computational complexity,
improves model convergence, and ensures that cross-modal
relationships are fully captured for more accurate and stable
beam prediction performance.

The Fusion Layer concatenates the outputs from all
modality-specific encoders into a unified feature vector. This
fused vector is then processed through two fully connected
layers with dropout regularization to promote generalization.
The first fully connected layer applies a linear projection
followed by a ReLU activation function, capturing higher-level
feature interactions. Dropout is applied to prevent overfitting,
and the output is further refined by a second fully connected
layer with another ReLU activation. The resulting fused repre-
sentation effectively integrates spatial, semantic, temporal, and
motion information from all modalities, providing a compact
and rich input to the downstream Transformer Block for
sequence-level reasoning and final beam prediction.
3⃝ Transformer Block: The Transformer Block uses

fused feature representation to model cross-modal interactions
and capture long-range dependencies across the input se-
quence. The fused input first passes through a multi-head self-
attention mechanism, which allows the model to dynamically
weigh the importance of different features across modalities
and time steps. The transformer comprises four attention
heads, each with 512 hidden dimensions, supported by two-
layer normalization stages and two dropout layers (dropout
rate = 0.1) to enhance generalization and stabilize training. The
outputs of the attention heads are aggregated and combined
with the original input via a residual connection, followed by
layer normalization and dropout to maintain training stability
and prevent overfitting.

Following attention, the output is processed through a
position-wise feed-forward network consisting of two fully

connected layers separated by a ReLU activation. The feed-
forward output is then combined with the attention output
via residual connection, followed by another round of nor-
malization and dropout. This hierarchical processing allows
the Transformer Block to capture complex cross-modal
dependencies, align modality-specific features, and generate a
transfused representation that encodes joint spatial, temporal,
and semantic relationships for accurate beam prediction.
4⃝ Output Layer: The Output Layer services as the final
component of the model, responsible for predicting the beam
scores across all possible beam directions. The input to the
output layer is the processed transfused feature representation
obtained from the Transformer Block, passed through a
fully connected layer that maps the input vector to a score
for each of the Q beam indices. The output assigns a score
for each beam, where higher scores indicate higher beam
suitability. This scoring mechanism enables the system to
identify and prioritize the optimal beam direction based on the
fused multi-modal sensory data and the modeled interactions
within the transformer block.

VI. OFFLINE PIPELINE: KNOWLEDGE-BASE GENERATION

With data preprocessing and agents delineated in the pre-
vious two sections, this section focuses on the remaining
components of the offline pipeline and explains how KBs are
generated.

A. Information Combination

A core innovation of ENWAR 2.0 lies in its ability to
seamlessly integrate processed multi-modal information from
both the environment and beam prediction agent into a uni-
fied textual format, enabling effective storage, retrieval, and
reasoning within the KB. A detailed example of a full KB
entry, i.e. information combination, is shown in App. B. After
pre-processing explained in Sec. IV, we populate the KB by
meticulously identifying a total of 150 scenes/samples, each
representing a comprehensive multi-modal snapshot of the
environment with scenarios showing unobstructed communi-
cations (e.g., scenes in Fig. 4), a busy environment (e.g., scenes
in Fig. 5), and obstructed communications (e.g., scenes in Fig.
6). These samples are composed of the following elements:

1) Timestamp: Each sample is assigned a unique identifier
and a sequential index corresponding to its timestamp/tag,
which ensures precise organization within the KB, preventing
contextual collisions and ensuring accurate data retrieval.

2) Network Environment Description: A high-level textual
summary of the communication devices of interest within the
environment and the multi-modal input sampling period is
appended at the beginning of each KB entry.

3) Camera Detections: Each sample consists of five con-
secutive images, processed using YOLO-based object detec-
tion to detect and classify objects such as vehicles, pedestrians,
and obstacles. Detected bounding boxes, confidence scores,
and class labels are converted into textual descriptions, captur-
ing each detected object’s spatial extent and semantic meaning.
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4) Image-to-Text Descriptions: Scene-level descriptions
generated by the LLaMA3.2-Vision model for the first image
of each sequence. These natural language descriptions capture
high-level visual insights, such as “a pedestrian waiting to
cross the road” or “a vehicle merging into traffic,” providing
a semantic overview of the scene.

5) GPS Coordinates: Five consecutive GPS samples pro-
vide precise positional data for the receiver vehicle. Each
timestamp is transformed into textual descriptions that include
the vehicle’s latitude, longitude, distance, and bearing relative
to the RSU. These details serve as a fixed spatial reference for
other modalities.

6) LiDAR Detections: Five consecutive point clouds are
processed using DBSCAN to extract object clusters, which
are then converted into textual data. These descriptions detail
detected clusters’ dimensions, spatial locations, and relation-
ships, facilitating robust 3D spatial reasoning.

7) Radar Detections: Five consecutive radar scans are
analyzed to extract object clusters, including their ranges,
velocities, and angular properties. The processed radar data
is then converted into textual descriptions, capturing temporal
and spatial dynamics.

8) Beam Properties: Textual representations of the Top-
k predicted beams, including attributes such as beam center
angle, angular width, estimated beamwidth (calculated based
on vehicle trajectory), and real-time received beam power.
These descriptions enable detailed interpretability of beam
predictions regarding the dynamic environment.

By transforming this rich multi-modal data into a unified
textual format, ENWAR 2.0 provides a robust foundation for
its RAG framework. The KB is the cornerstone for efficient
retrieval, enabling contextual reasoning and dynamic decision-
making in complex, wireless network environments.

B. Data Chunking
To efficiently handle the multi-modal data within the

constraints of embedding models and LLMs, ENWAR 2.0
segments the transformed textual data into equal-sized and
manageable chunks. This chunking process ensures that the
data is consistently embedded into the GTE model. Consider
a preprocessed and transformed textual dataset of size L. This
dataset is divided into smaller chunks of size C. To maintain
continuity and prevent loss of meaning between chunks, each
chunk overlaps with the next by Coverlap characters. This over-
lapping ensures that the segments are connected, preserving
the context and meaning across the chunks. For ENWAR 2.0’s
chunking process, the following parameters were selected:
C = 800 and Coverlap = int(C/10) = 80. For example, if
the original dataset is divided into chunks of 800 characters
with an overlap of 80 characters, the first chunk would
contain characters 1 to 800, the second chunk would contain
characters 721 to 1600, and repeats for all chunks. This method
ensures that important information is not lost between chunks,
maintaining high fidelity and contextual accuracy across all
modalities. This configuration balances preserving contextual
continuity and keeping retrieval efficient, as smaller chunks
risk fragmentation while larger chunks increase redundancy
and slow down indexing.

C. Embedding

Once chunked, the textual data is processed using a
GTE model, which converts each chunk into dense, high-
dimensional vector embeddings, encoding the semantic mean-
ing of the text in a machine-readable format. The embedding
model first tokenizes the input text into subword units, which
are then mapped to numerical representations. These token
representations are passed through a deep neural network,
typically a transformer-based architecture, which captures con-
textual relationships and semantic meaning. The final output
is a fixed-size vector embedding that encapsulates the most
salient information from the text.

Alignment across modalities is achieved during the tok-
enization and embedding stages, where padding ensures uni-
form tokenized chunk lengths and consistent semantic repre-
sentation. For simplicity, final embedded vector with padding
is matched to the GTE model’s maximum token size. This
uniformity allows LLMs to handle redundancy, conflicts, and
synergies effectively. These embeddings are then stored in the
KB facilitated by LLaMaIndex for retrieval. This integrated
approach facilitates robust, conflict-free sensing and a unified
understanding of the environment. By analyzing transformed
and integrated data, the LLM resolves discrepancies, identifies
shared patterns, and utilizes the strengths of each modality

VII. ONLINE PIPELINE: ADAPTIVE KNOWLEDGE-BASE
FORMATION AND RETRIEVAL AUGMENTED GENERATION

This section outlines the adaptive KB formation and RAG
processes introduced in Sec. III-B, providing relevant exam-
ples to illustrate their implementation.

A. Adaptive Knowledge-Base Formation

In order to update the KB, ENWAR 2.0’s online pipeline
leverages LlamaIndex that follows the same offline KB gen-
eration steps on the current multi-modal sensory data and
corresponding beam predictions. Notice that KB is updated
independent of user prompts, ensuring that ENWAR 2.0 contin-
uously refines its understanding of the environment. Addition-
ally, the adaptive KB provides an inherent historical record,
capturing network behavior over time and enabling the LLM
to refine its responses dynamically. This historical awareness,
either through explicit KB entries or adaptive prompting,
allows ENWAR 2.0 to maintain response consistency and
adjust its level of numerical detail based on prior interactions,
improving both interpretability and reasoning.

B. Prompt Processing

When a user prompt is received, it is vectorized and em-
bedded, then used in the semantic search process, as explained
in the next section, to compare against entries in the KB.
While user prompts can reference any stored KB entry, our
deployment, by default, assumes that the user is inquiring
about the most recent entry, applying a recency tag to stream-
line retrieval. Since the KB updates dynamically with each
new multi-modal input, user prompts inherently align with the
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Fig. 4. Visualization of ENWAR 2.0’s best case scenario response with perfect top-1 beam alignment, situation-aware reasoning and explanation, and a tabular
summary of situation-aware environment sensing, perception, reasoning, and prediction.

latest contextual information unless explicitly specified other-
wise. A timestamp associated with each KB entry ensures that
ENWAR 2.0 maintains relevance in its responses, accurately
referencing stored scenarios while allowing for flexibility in
historical data retrieval as inferred from the prompt itself (an
example is seen in App. C).

C. Semantic Search

Once the user prompt is vectorized and embedded, EN-
WAR 2.0 conducts a semantic search to retrieve the most

relevant information from its domain-specific KB within the
RAG framework. This search targets contexts linked to the
prompt’s timestamp stored in FAISS. By computing semantic
similarity between the prompt and stored embeddings, ENWAR
2.0 efficiently identifies matching entries. FAISS accelerates
vector similarity searches through hierarchical indexing and
clustering, maintaining low latency even as data scales. As
detailed in the following subsection, the top-ranked, contextu-
ally aligned results are then selected for further processing.
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D. Result Ranking

To ensure the relevance and quality of retrieved data,
ENWAR 2.0 employs a refined result-ranking mechanism that
prioritizes results based on their section headers and semantic
alignment with the user prompt. This approach guarantees that
only the most contextually relevant portions of the KB are used
in generating responses, improving their clarity and precision.
The ranking process employs top-p percentile relevance filter-
ing, where p = 95 is consistently applied. In the context of
RAG, this means retaining only the top 95% most relevant
results based on their semantic similarity scores with the user
prompt. FAISS’s hierarchical indexing optimizes the ranking
process by sorting and scoring entries based on semantic
similarity. These similarity scores are calculated using cosine
similarity between the embedded vector representation of the
prompt and the entries stored in the KB. Entries in the bottom
5% of similarity scores are excluded, which helps minimize
noise and ensures a focused and high-quality response.

This top-p ranking mechanism provides several advantages.
By excluding less relevant entries, the system avoids diluting
the response with marginally related or irrelevant content,
thereby preserving the contextual alignment between the user
query and the retrieved data. This approach also scales ef-
ficiently for large KBs containing millions of embeddings,
narrowing the search space to only the most relevant subset. As
a result, the system can maintain low computational overhead
without sacrificing precision. Furthermore, focusing on high-
relevance data enhances interpretability, ensuring the final
response remains clear, concise, and actionable, facilitating
informed decision-making and better user understanding.

E. Response Generation

In ENWAR 2.0, once the top-ranked results (i.e., embed-
dings) from the semantic search are retrieved, they provide the
critical contextual foundation for the LLM to generate accurate
and contextually relevant responses. These retrieved results,
aligned with the user’s prompt, enable the LLM to construct
coherent and informed outputs tailored to specific scenarios.

At this point, the next step is crafting a final prompt
template, as illustrated in step- 5⃝ of Fig. 2. To this aim,
retrieved embeddings are first transformed into textual format
using a decoder, yielding the context [c.f. App. B] necessary
for the prompt template. The prompt template also includes
a predefined task description and instruction with the user
prompt [cf. App. C]. An example of the final version of a
template is shown in App. D]. This template guides the LLM
to accurately analyze the wireless environment and generate
network insights and reasoning based on the relevant extracted
information.

To ensure the LLM effectively utilizes retrieved KB entries,
ENWAR 2.0 uses a structured approach that ties response
generation to predefined instructional tasks. The retrieval
mechanism supplies the most relevant context. In parallel,
the LLM follows explicit reasoning patterns and a response
template that maps retrieved data to explain beam selection,
trajectory alignment, and environmental conditions. The user
prompt, retrieved entries, and task instructions collectively

shape responses, ensuring interpretability and relevancy. This
predefined task design was refined iteratively to deliver con-
sistent, reliable outputs without depending on explicit ground
truths, as demonstrated by our evaluation metrics and response
examples.

The LLM processes a prompt template that includes the
user prompt and the most relevant retrieved KB contexts.
Chunking the combined prompt at this stage is unnecessary,
given the LLM’s larger context window compared to the
GTE model. The input flows through the LLM’s internal
architecture, where its generative abilities synthesize coherent,
contextually relevant responses. Leveraging deep language
modeling and pattern recognition, the LLM draws logical
connections between retrieved data and the user prompt,
enabling it to infer meaningful insights beyond direct retrieval.
This capability allows the LLM to generate detailed environ-
mental representations, identifying entities like vehicles and
pedestrians, localizing them, and explaining their interactions.
Response generation is guided by task-specific reasoning and
predefined instructions, ensuring structured, explainable, and
contextually relevant outputs that support interpretability and
decision-making. Further details on our response generation
taxonomy are provided in App. E.

Figs. 4-6 visually demonstrate ENWAR 2.0’s response gen-
eration across different levels of performance, showcasing its
adaptability, situation-aware reasoning, grounding, and human-
interpretable explainability capabilities6. For visualization pur-
poses, the ground truth contexts are also included in these
figures; however, in real-time deployment, ENWAR 2.0 oper-
ates without access to ground truth validation data, making
its ability to infer and justify beam selections solely based on
multi-modal inputs a key strength of the system.

Fig. 4 illustrates ENWAR 2.0’s best-case scenario, where
perfect top-1 beam alignment is achieved alongside precise
situation-aware reasoning and detailed tabular summaries of
perception and beam prediction outcomes. A detailed version
of the best-case scenario response is found in App. F. Beyond
providing environmental descriptions, ENWAR 2.0 excels in
reasoning and inference. For instance, it can predict potential
vehicle interactions or assess how environmental conditions,
such as high traffic density or signal interference, influ-
ence network performance. This capability is demonstrated
in Fig. 5, which compares single-modality and full-modality
responses. Fig. 5 highlights how ENWAR 2.0 leverages multi-
modal data integration to improve perception and beam pre-
diction performance significantly. Specifically, ENWAR 2.0
reasons that the Top-3 beam is the best choice given the
criteria within the scenario and justifies its reasoning, and
in multi-modality, it perceives and explains the environment
while noting perfect beam alignment in ENWAR 2.0’s analysis.
A detailed version of this scenario with modality comparisons
and its response is given in App. G.

6Note on Visualization Scaling: For clarity, the polar graph tick intervals
are kept small (e.g., 97.63, 97.68, 97.8). Although the real beamwidth is about
6 degrees, angular distances are overscaled to better show vehicle trajectories
and beam alignment, while the beamwidth is visually minimized to highlight
alignment precision.
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Fig. 5. Visualization and comparison of ENWAR 2.0’s performance with GPS-only sensing and beam prediction to multi-modality situation-aware environment
sensing, reasoning, and prediction.

ENWAR 2.0 demonstrates robust inference capabilities even
in challenging scenarios where beam alignment is affected
by environmental obstructions and noisy sensor data. This
challenge is evident in Fig. 6, which illustrates a highly
dynamic environment with multiple obstacles disrupting the
beam selection process. Despite these challenges, ENWAR 2.0
effectively interprets the scene, identifying limitations in beam
alignment and offering alternative explanations for network
conditions. By analyzing the contextual information from the
sensor inputs, ENWAR 2.0 provides insight into why certain
beam selections may be unreliable while suggesting viable ad-
justments to maintain network connectivity. A detailed version
of this scenario and its response is shown in App. H.

Moreover, the generated responses align closely with user-
defined tasks or objectives. In ENWAR 2.0, this means pro-
viding actionable insights, such as explaining the alignment
of beam properties with the vehicle trajectory or justifying
beam selections in the context of environmental constraints.
For instance, in Fig. 4, the system provides a clear and detailed
explanation of why a particular beam was selected, based on
its center angle, width, and power in relation to the predicted

vehicle trajectory. Additionally, it perceives the environment
and the vehicle’s actions fully with respect to the dynamic
occurrences of the environment, along with a tabular summary
of all the situation-aware environment perception information.
Prompts and responses showing these capabilities and CoT
reasoning are provided in App. I.

VIII. EVALUATION OF ENWAR 2.0
This section evaluates ENWAR 2.0, focusing on its beam

prediction accuracy and capability for situation-aware re-
sponses. The beam prediction agent is tested across multi-
ple multi-modal sensor configurations, while ENWAR 2.0’s
interpretability is assessed through its justifications for beam
selections based on environmental perception. The following
subsections describe the evaluation methods, results, and in-
sights into how ENWAR 2.0 integrates beam prediction and
explainability for AI-driven network management.

A. Evaluation of Beam Prediction Agent

In order to comprehensively assess the agent’s ability to
predict optimal beams effectively, we consider three KPIs:
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Fig. 6. Worst case scenario of ENWAR 2.0’s performance where the ground truth and predicted beams do not align with the vehicle due to poor conditions;
however, ENWAR 2.0 shows impressive response on alternate beam steering schemes.

• Top-k Accuracy measures the proportion of cases where
the ground truth beam appears within the Top-k predicted
beams across the evaluation dataset.

• APL quantifies the power loss associated with selecting
a non-optimal beam and is defined as:

PL[dB] = 10 log10

(
p′

p

)
, (3)

where p′ is the highest-power beam among the Top-k
predictions, and p is the ground truth beam power.

• Distance-based accuracy (DBA) score evaluates the di-
rectional accuracy of beam predictions and is defined as:

DBA =
1

K
(Y1 + Y2 + · · ·+ YK) , (4)

where

YK = 1− 1

N

N∑
n=1

min
1≤k≤K

min

(
|ŷn,k − yn|

∆
, 1

)
,

ŷn,k is the k-th most likely beam for input sequence n,
and yn is the ground truth beam for sequence n.

To illustrate ENWAR 2.0’s target-in-the-loop beam tracking,
Fig. 7 depicts the time evolution of APL throughout a session,
which is defined as the period during which a vehicle remains

within the BS’s coverage area. Initially, as the vehicle enters
the RSU’s view, APL is high due to suboptimal beam align-
ment. As the vehicle moves within range, ENWAR 2.0 accu-
rately predicts the optimal beams, minimizing APL to near-
zero levels. However, as the vehicle exits the coverage area,
APL rises again, reflecting the system’s natural limitations in
tracking beyond the RSU’s predictive range.

ENWAR 2.0’s evaluation demonstrates the significant impact
of multi-modal sensor fusion on beam prediction accuracy,
where carefully selected modality combinations yield substan-
tial performance gains. A latency-aware lookahead strategy
ensures real-time beam adaptation based on inference time.
Given an input sampling period of 100ms and a sequence
length of 500ms (five samples), configurations exceeding
200ms of inference time predict t+3, those between 100ms and
200ms predict t+ 2, and configurations below 100ms predict
t+1. The accuracy values presented in this section correspond
to the t+3 prediction accuracy. Although t + 1 predictions
yield slightly higher accuracy across all configurations, their
longer inference latency would exceed the input capture win-
dow, making them impractical for real-time deployment. This
measure ensures that even the configuration with the longest
inference time (using all modalities) completes predictions
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TABLE I
BEAM PREDICTION AGENT PERFORMANCE SUMMARY [M = 16, Q = 64] FOR PREDICTING THE BEAM AT t+ 3

Modality Inference Top-1 Top-3 Top-5
Combination Time (ms) Accuracy APL DBA Accuracy APL DBA Accuracy APL DBA

camera gps lidar 200 77.8% -0.02981 84.7% 90.0% -0.009552 92.8% 93.4% -0.006611 95.2%
camera radar lidar 212.8 77.4% -0.03133 84.1% 89.8% -0.009970 92.3% 93.0% -0.006810 94.9%

camera radar gps lidar 220 76.2% -0.04025 82.3% 88.7% -0.01016 90.2% 91.4% -0.007003 92.7%
camera lidar 197.4 73.6% -0.07158 80.9% 82.4% -0.01670 86.3% 89.1% -0.007715 90.0%

camera radar gps 203.1 70.1% -0.09937 78.7% 80.6% -0.02080 81.2% 86.3% -0.009831 89.1%
camera radar 172.7 64.2% -0.1725 74.2% 79.0% -0.02793 80.7% 84.1% -0.01092 88.4%
camera gps 149.3 63.7% -0.1790 74.0% 76.3% -0.02847 80.5% 82.4% -0.01641 87.3%

radar gps lidar 188 57.3% -0.2073 72.8% 74.8% -0.03625 78.1% 80.6% -0.01901 84.9%
camera only 122.6 53.9% -0.2313 71.5% 72.1% -0.04001 77.4% 77.3% -0.02773 82.2%

radar gps 145.3 49.4% -0.3310 70.3% 67.9% -0.1281 74.0% 74.8% -0.07443 79.3%
gps lidar 153.2 43.7% -0.3748 67.1% 67.8% -0.1355 73.6% 74.3% -0.07910 79.2%

radar lidar 170.9 41.7% -0.3900 65.1% 65.2% -0.1591 73.0% 70.1% -0.09052 77.6%
radar only 133.1 37.3% -0.4111 63.4% 61.0% -0.1630 72.1% 67.8% -0.09819 75.6%
lidar only 145 35.2% -0.7201 61.6% 59.4% -0.1809 68.5% 66.2% -0.1006 69.9%
gps only 87.4 31.4% -0.7641 61.3% 58.3% -0.2377 67.7% 65.0% -0.1054 68.3%
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Fig. 7. Time-series analysis of beam APL per time instance within a session
(pass) for three sessions. The figure illustrates the characteristic pattern of
APL: high values when the vehicle enters the base station’s view, a drop to
near-zero levels as optimal beams are predicted within range, and a subsequent
rise in APL as the vehicle exits the coverage area.

before the next sequence is available.
As shown in Table I, the highest Top-3 accuracy of 90.0% is

achieved by the camera gps lidar configuration, emphasizing
the critical role of combining spatial, depth, and semantic per-
ception for precise beam alignment. Similarly,configurations
incorporating radar, such as camera radar lidar (89.8%) and
camera radar gps (80.6%), highlight the value of motion
tracking in enhancing beam selection under dynamic condi-
tions. Camera data consistently emerges as the most influential
modality, while LiDAR and radar provide valuable comple-
mentary depth and motion information.

Notably, despite incorporating all modalities, the cam-
era radar gps lidar configuration achieves a slightly lower
Top-3 accuracy of 89.8% compared to camera gps lidar. This
reduction in accuracy can be attributed to the increased model
complexity introduced by redundant or partially overlapping
features across modalities, which may lead to optimization
challenges during training and introduce additional noise
when certain features conflict or saturate the model capacity.

Such behavior is consistent with prior observations in multi-
modal learning, where adding excessive modalities can lead to
feature redundancy and representational conflicts that hinder
generalization. This observation highlights that while adding
more modalities generally enhances beam selection, excessive
fusion may not always yield proportional gains, emphasizing
the importance of selective, task-aware modality integration to
balance prediction performance and computational efficiency.

Ultimately, camera data remains the top contributor to
accurate beam prediction, with LiDAR and radar serving as
important enhancers in constructing a robust, real-world AI-
driven beam prediction system.

B. Evaluation of ENWAR 2.0 Response Generation

1) Enwar 2.0 Setup: To evaluate the performance of
ENWAR 2.0, we utilized models from the LLaMa3 fam-
ily: Llama3.2-3B/LLaMa3.1-8B/LLaMa3.3-70B for text-based
tasks and LLaMa3.2-Vision-11B for image-to-text process-
ing. The models were deployed on an A100 GPU equipped
with 40GB of VRAM. LLaMa3.2-Vision-11B fully utilized
8GB of VRAM, LLaMa3.2-3B required 3.4GB, LLaMa3.1-
8B utilized 16GB, and LLaMA3.3-70B required 32GB of
VRAM. LLaMa3.2 is a lightweight version of LLaMa3.1, and
LLaMa3.3-70B is the upgraded version LLaMa3.1-70B. All
models support a maximum context length of 128k tokens. For
deployment considerations and system limitations of ENWAR
2.0, we refer the readers to App. K.

Pretrained LLMs can be deployed with configurable hy-
perparameters influencing their generation capabilities and
interpretive performance. For ENWAR 2.0, we selected
hyperparameters tailored to support multi-modal percep-
tion tasks, balancing interpretability, creativity, concise-
ness, and response relevancy. Specifically, we selected
max_new_tokens = 4096 to allow sufficiently long re-
sponses for detailed reasoning; temperature=0.5 to mod-
erate output diversity while maintaining factual precision; and
repetition_penalty=1.15 to reduce redundant phrases
and encourage concise, varied responses. These settings were
chosen after preliminary ablation tests and align with best
practices reported in prior LLM-driven reasoning frameworks,
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providing stable performance across diverse scenarios while
avoiding excessive verbosity or hallucinations.

To improve retrieval granularity, LlamaIndex was integrated
with FAISS, providing more fine-grained control over data
selection and ensuring high relevancy during inference. The
GTE model, stella_en_400M_v5 [37] with a maximum
token size of 8192, was used to generate embeddings. To
maintain semantic coherence across segments, text chunking
was applied using a size of 800 characters and an 80 character
overlap for minimal information loss across chunk boundaries.

On average, the extracted multi-modal data, including all
sensor inputs and associated beam properties, amounted to
≈ 20k tokens. With RAG, this number was reduced to ≈13k
tokens per user prompt by retrieving only the most relevant
context before integrating it into the final prompt template.

For benchmarking purposes, off-the-shelf pretrained ver-
sions of each textual model (denoted as Vanilla LLaMa)
were used as a baseline without RAG capabilities. In this
baseline, the entire 20k tokens were directly injected into
the prompt template without using RAG capabilities, relying
solely on learning from real-time data. Our second baseline
(static, non-adaptive RAG) involved preemptively appending
all data samples into the KB to evaluate whether having full,
static knowledge alters performance. This comparison allowed
for a clear assessment of the improvements gained from the
relevance-based retrieval process in ENWAR 2.0.

2) Evaluation Dataset Creation: A comprehensive evalu-
ation of ENWAR 2.0 was conducted using a diverse, multi-
modal dataset to assess both its predictive performance and
interpretability. To analyze the system’s ability to effectively
integrate and leverage multi-modal data, 15 distinct modality
permutations were designed. A total of 150 carefully curated
samples were selected to construct a dedicated KB for each
permutation, resulting in a total of 15 specialized KBs (2250
total samples). These samples encompassed a wide range of
real-world scenarios, ensuring diverse contextual representa-
tions across different sensor configurations.

Each sample consisted of multi-modal input streams where
combinations of GPS, LiDAR, radar, and camera data, were
varied to assess their contribution to contextual understanding
and predictive performance. The embedding storage and in-
dexing processes enabled efficient real-time retrieval, ensuring
that the KBs remained optimized for speed and accuracy.
The dataset was then preprocessed and transformed into a
textual format suitable for RAG-based processing, following
the methodology outlined in Section VII-A.

To assess the interpretability of ENWAR 2.0, a set of 50
manually crafted validation Q&A pairs was developed for
each of the 15 modality combinations, resulting in a total of
750 evaluation pairs. Half of the questions were designed to
follow the interpretation category, and the other half follows
the perception category, which will be explained in the next
subsection. Each question, ≈ 200 tokens in length, was de-
signed to probe ENWAR 2.0’s reasoning behind beam selection
decisions. The questions examined factors such as: “Why a
particular beam was selected among the Top-k predictions” or
“How multi-modal inputs, such as object detection, trajectory
alignment, and spatial awareness, contributed to the deci-

sion.” The corresponding answers served as benchmarks for
evaluating ENWAR 2.0’s explanatory capabilities, providing a
structured basis for measuring the system’s ability to generate
accurate, coherent, and contextually grounded explanations.
Examples of these questions can be found in Apps. F-J.

3) Performance Criteria and KPIs: The evaluation ques-
tions were presented to ENWAR 2.0, which generated expla-
nations for situation-aware environment reasoning and beam
predictions. The evaluation focused on two primary criteria:

• Beam Interpretation assesses ENWAR 2.0’s ability to
justify its beam selection based on beam properties and
the dynamic scene conditions. It measures how effectively
the model links its predictions to factors such as trajectory
alignment, signal strength, and spatial coverage.

• Environmental Perception evaluates ENWAR 2.0’s ability
to interpret the surrounding environment, focusing on the
analysis of object detections, overlaps, traffic density, and
their influence on network performance. Perception as-
sesses how well the model infers the reasons for a beam’s
performance under specific environmental conditions.

The performance of ENWAR 2.0 was assessed using both
general benchmarks and domain-specific evaluation frame-
works. While standard benchmarks such as General Language
Understanding Evaluation (GLUE) and Massive Multitask
Language Understanding (MMLU) provide a general measure
of LLM capabilities, including answer relevancy, factual cor-
rectness, and hallucination detection, these are insufficient for
domain-specific tasks involving RAG-based frameworks.

To ensure a thorough evaluation of both interpretability and
perception, we defined the following KPIs: 1) faithfulness eval-
uates the consistency of responses with the retrieved context,
2) correctness assesses the factual correctness and semantic
similarity of generated responses, and 3) answer relevancy
measures the semantic alignment of ENWAR 2.0’s responses
with the user’s prompt and context to ensure the ability
to generate contextually relevant situation-aware environment
reasoning and beam prediction responses. We refer readers
to ENWAR 1.0 and the LlamaIndex documentation7 for their
mathematical formulation [9].

4) Evaluation of Interpretation and Perception: The per-
formance of ENWAR 2.0 was evaluated against baselines us-
ing KPIs that measure interpretation, perception, faithfulness,
and relevancy. Results show that adaptive RAG significantly
improves correctness and contextual accuracy by leveraging
the most recent multi-modal inputs while maintaining retrieval
efficiency.

Understanding how modality combinations affect beam pre-
diction and environmental perception is critical for robust
reasoning in dynamic scenarios. As shown in Fig. 8, visual
sensor-based configurations consistently enhance scores across
all KPIs, highlighting their importance for capturing semantic
and spatial features essential for accurate beam alignment and
justification.

Adaptive RAG further amplifies these gains, consistently
outperforming static retrieval across all metrics. Dynamically
updating the KB aligns retrieval with evolving environments,

7https://docs.llamaindex.ai/en/stable/

https://docs.llamaindex.ai/en/stable/
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Fig. 8. KPI comparison of ENWAR 2.0 across various modality combinations (C: camera, G: GPS, L: LiDAR, R: radar) using LLaMa3.2-3B, 3.1-8B, and
3.3-70B under different RAG strategies. Bars indicate evaluation performance: the lightest bars show ENWAR 2.0, mid-transparency bars represent static and
non-adaptive RAG (static RAG), and the darkest bars depict vanilla LLaMa without RAG, which does not report relevancy or faithfulness metrics.

reducing irrelevant context and improving precision. In con-
trast, the static and non-adaptive RAG suffers from lower
correctness due to outdated or less relevant information. While
additional modalities benefit, adaptive RAG alone delivers
substantial improvements, underscoring its critical role in real-
time AI-driven wireless systems.

Faithfulness and relevancy are not reported for baselines
without RAG (Vanilla LLaMa). In Fig. 8, transparent bars
show adaptive RAG performance, while opaque bars show
static retrieval. The observed improvements validate adap-
tive RAG as a key mechanism for ensuring accurate and
contextually relevant responses while minimizing retrieval
inefficiencies.

The evaluation highlights the substantial impact of adaptive
RAG in improving interpretation and perception accuracy
across different modality configurations. As seen in the results,
adaptive RAG consistently enhances response correctness,
faithfulness, and relevancy by dynamically retrieving the most
recent and contextually relevant KB entries, reducing informa-
tion overload and improving response precision. This subsec-
tion discusses the results from the perspective LLaMa3.3-70B.

The camera-based configurations consistently outperform
other sensor combinations, emphasizing the importance of
visual perception for semantic and spatial scene understand-
ing. The camera radar lidar gps configuration achieves the
highest interpretation correctness (89.7%) and perception cor-
rectness (83.5%) with adaptive RAG, demonstrating the effec-
tiveness of multi-modal fusion. The removal of adaptive RAG
results in a performance drop to 81.6% and 78.5%, highlight-
ing the critical role of adaptive retrieval in maintaining real-
time environmental awareness.

Lower-performing configurations, such as radar gps and
gps lidar, experience significant drops in correctness without
adaptive RAG, emphasizing the limitations of static knowl-
edge retrieval when dealing with dynamic environments. For
instance, the gps lidar configuration drops from 74.2% to
69.3% in interpretation correctness and from 74.7% to 67.1%
in perception correctness, illustrating how adaptive retrieval
improves accuracy by ensuring that the system references only
the most relevant and recent environmental data.

Beyond correctness, adaptive RAG improves faithfulness
and relevancy, reducing hallucinations and enhancing response
alignment with real-world conditions. Across all configura-
tions, adaptive retrieval increases interpretation and percep-
tion faithfulness by 9.1% and 9.5%, and interpretation and
perception relevancy by 13.7% and 13.2%, ensuring that beam
justifications remain grounded in factual, scenario-specific data
rather than outdated or redundant information.

These results validate the effectiveness of adaptive RAG in
optimizing real-time network decision-making. By prioritizing
recent environmental updates and filtering out extraneous
information, ENWAR 2.0 achieves superior interpretability, re-
duced retrieval inefficiencies, and enhanced response accuracy,
making it more robust in dynamic wireless environments.

5) Benchmarking with Vanilla LLaMa: The Vanilla LLaMa
baselines achieved only 68.6% interpretation correctness and
67.2% perception correctness using all modality extractions on
LLaMa3.3-70B; substantially lower than ENWAR 2.0. This gap
underscores the benefit of RAG, which selectively retrieves
only the most relevant KB contexts instead of injecting all
data into the prompt. By filtering out irrelevant information,
ENWAR 2.0 boosts correctness while reducing computational
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TABLE II
ENWAR 2.0 KEY TIME INDICATORS

Process Time
Off-the-Shelf Llama3.3-70B prompt with approx. 20k Tokens 2.67s

Llama3.2-Vision Image-To-Text (per frame) 2.34s
Off-the-Shelf Llama3.1-8B prompt with approx. 20k Tokens 2.44s
Off-the-Shelf Llama3.2-3B prompt with approx. 20k Tokens 2.38s

Llama3.3-70B w/RAG prompt with approx. 13k Tokens 1.26s
Llama3.1-8B w/RAG prompt with approx. 13k Tokens 1.18s
Llama3.2-3B w/RAG prompt with approx. 13k Tokens 1.12s

stella GTE vectorization (150 samples=500mb) 400ms
Beam Prediction Inference (worst case) 220ms

FAISS retrieval 50ms
LiDAR DBSCAN 16.3ms
Radar DBSCAN 12.8ms

YOLO Camera Detections (per frame) 5ms
GPS Processing < 1ms

overhead and latency, demonstrating the effectiveness of RAG-
enabled retrieval for real-time network decision-making.

Based on the KPIs summarized in Table II, the total
processing time for ENWAR 2.0 is 4.35 seconds, significantly
outperforming the baseline Vanilla LLaMa, which requires
5.77 seconds for preprocessing and response generation. A
significant portion of this processing time stems from the
image-to-text generation step, which provides additional scene
descriptions for the LLM. While this step enhances envi-
ronmental context, the primary contribution to beam predic-
tion accuracy is modality extractions and object detections
(e.g., LiDAR clustering, radar processing, and GPS trajectory
estimation). Image-to-text generation can be considered an
optional step, particularly in scenarios where rapid inference
is prioritized over detailed scene descriptions.

This efficiency gain holds despite the extra steps introduced
by the RAG pipeline, such as preprocessing, embedding gen-
eration, retrieval, and response generation. The key driver is
reduced token processing. Vanilla LLaMa handles full prompts
of about 20k tokens, including multi-modal data, beam prop-
erties, and a 200-token user input, whereas RAG-enabled
ENWAR 2.0 processes only 13k contextually relevant tokens
plus the same 200-token prompt. This 7k token reduction
lightens the computational load and accelerates inference.

6) Normalized Gains with Larger LLMs: While scaling
to larger LLMs like Llama3.1-8B and Llama3.3-70B yields
higher KPI metrics, the marginal benefits diminish rapidly rel-
ative to model size, as seen in Fig. 9. The average normalized
gains per billion parameters drop from 24.9 for Llama3.2-3B,
9.47 for Llama3.1-8B, and just 1.09 for Llama3.3-70B. More-
over, larger models introduce significantly longer inference
times; for instance, Llama3.3-70B requires 1.26 seconds per
RAG prompt, compared to only 1.12 seconds for Llama3.2-
3B. Thus, although larger models offer slight performance
improvements, they come at a considerable computational
cost, making smaller models more practical for real-time
deployments in ENWAR 2.0.

7) Computational and Deployment Considerations and
Limitations: ENWAR 2.0 delivers real-time multi-modal beam
prediction and situation-aware reasoning but faces challenges
such as inference latency, memory demands, and scalable re-
trieval efficiency. Although deployed at BSs with stable power,

Fig. 9. KPI efficiency per billion parameters (pBp)

larger LLMs substantially increase computational and energy
costs, motivating future work on model compression and adap-
tive scaling. The framework integrates a TransFusion-based
beam prediction agent, an environment perception agent, and
an adaptive RAG pipeline for explainable decision-making.
Beam prediction operates with a latency between 100–220ms,
maintaining real-time network performance. While currently
evaluated in a single-user context, the system is designed for
multi-user scalability, with FAISS indexing enhancing retrieval
speed. Still, distributed retrieval architectures and caching
will be essential for larger deployments. Limitations include
diminishing returns from excessive modality fusion, reliance
on high-quality sensor inputs, and the potential for increased
retrieval latency as KBs expand. Additional computational and
deployment details are provided in App. K.

IX. CONCLUSION

ENWAR 2.0 is the first system to integrate LLMs, RAG, and
agentic beam prediction for next-generation wireless networks,
uniting situation-aware environmental perception with explain-
able AI-driven beam selection. Unlike conventional systems
that address beam prediction or environmental perception in
isolation, ENWAR 2.0 holistically fuses both, ensuring that
decisions are contextually grounded and interpretable. It mit-
igates hallucinations and outdated information by integrating
real-time multi-modal sensory data and leveraging RAG for
relevant historical and contextual retrieval. Our new evalua-
tion metrics—interpretation and perception—demonstrate the
system’s capability to predict optimal beams while providing
meaningful justifications that enhance transparency and trust.
Experimental results show ENWAR 2.0 achieves a Top-3 beam
prediction accuracy of 90.0% at t + 3, with interpretation
correctness up to 89.7% and perception correctness of 83.5%,
maintaining faithfulness and relevancy up to 81.6% and 89.9%.
Beyond beamforming, ENWAR 2.0 signals a move toward AI-
native, proactive decision-making in 6G networks, enabling
intelligent, adaptive, and self-optimizing wireless systems.
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