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Abstract. The family of optimization problems with value function objectives includes the min-
max programming problem and the bilevel optimization problem. In this paper, we derive necessary
optimality conditions for this class of problems. The main focus is on the case where the functions
involved are nonsmooth and the constraints are the very general operator constraints.
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1. Introduction. An optimization problem with value function objective is a
problem of the form

minimize ψ(x) subject to x ∈ X (1.1)

where X ⊆ Rn denotes the feasible set and ψ is the optimal value function of the
parametric optimization problem to

minimize
y

F (x, y) subject to y ∈ K(x) (1.2)

with K denoting a certain set-valued mapping from Rn to Rm while F is a real-valued
function on Rn×Rm. If we replace the minimization in the latter problem by a max-
imization, problem (1.1) becomes the well-known minmax optimization problem, see
e.g. [21]. If instead, one setsK to represent the solution/argminimum set-valued map-
ping of another optimization problem, then (1.1) results to the optimistic formulation
of the bilevel optimization problem [2]:

minimize φo(x) subject to x ∈ X
where φo(x) := min

y
{F (x, y)| y ∈ S(x)}

S(x) := {y ∈ K(x)| f(x, y) ≤ φ(x)}
φ(x) := min

y
{f(x, y)| y ∈ K(x)}.

(1.3)

It should however be mentioned that originally, the bilevel optimization problem con-
sist to

”minimize
x

” F (x, y) subject to x ∈ X, y ∈ S(x). (1.4)

But with the ambiguity (marked by the brackets) that occur in handling this problem
when S is not a single-valued mapping, the concepts of optimistic and pessimistic
reformulation have been considered in the literature, see [2] for details on these refor-
mulations. The optimistic reformulation is given in (1.3) whereas the pessimistic one
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is obtained by replacing the value function φo in the latter problem by the maximiza-
tion value function

φp(x) := max
y

{F (x, y)| y ∈ S(x)}. (1.5)

As far as the optimistic formulation of the bilevel optimization problem is concerned,
the model mostly investigated is the following one:

minimize
x,y

F (x, y) subject to x ∈ X, y ∈ S(x). (1.6)

This essentially consist of shifting the difficulty, which lies in the inclusion y ∈ S(x),
to the constraint, whereas it is situated in the objective function when dealing with
the initial formulation (1.3).

Unfortunately, a local optimal solution of problem (1.6) may not correspond to a
local optimal solution of (1.3), cf. [2, 4]. This is a major drawback when one intends
to solve the original optimistic problem (1.3) by solving the auxiliary problem (1.6)
given that these problems are both nonconvex.

In [9], the static minmax optimization problem

min
x∈X

max
y∈Y

F (x, y)

was first transformed into a semi-infinite programming problem

minimize z subject to x ∈ X
and F (x, y) ≤ z, ∀y ∈ Y

and then latter converted to an optimization problem with finitely many constraints,
in order to investigate necessary optimality conditions. Such a process is also made
to push the difficulty in a minmax program to the constraints.

Recently though, the minmax program, the optimistic and pessimistic bilevel
programs have been considered respectively in [24], [8] and [7], as they are, that is
optimization problems with value functions objectives. For the minmax program, this
is not new as demonstrated for example by the approach in [21, Chapter 9]. More
precisely, in [24, 8, 7], the generalized differentiation tools of Mordukhovich [13] were
used to derive necessary optimality conditions for the aforementioned problems. A
great literature exist on the bilevel optimization problem in its classical/auxiliary
form (1.6), see e.g. [2, 4, 5, 6, 16, 22] and references therein for recent results. As for
the minmax optimization problem, a number of results and references can be found
in [21, 9, 24].

In the line of the works in [24] and [8, 7] respectively, we also treat the minmax,
optimistic and pessimistic bilevel programs as optimization problems with value func-
tion objectives. Though acknowledging the fact that (1.3) is a special case of the
simplest albeit general optimization problem with value function objective (1.1), it
seems more reasonable to focus our attention to the former problem, considering the
much more complicated structure of its objective function. Moreover, problem (1.3)
appears to provide for a unified framework to derive necessary optimality conditions
for the minmin, minmax, optimistic and pessimistic bilevel optimization problems.
To see this, first note that if one sets the lower level objective function f in (1.3) to
be a given constant everywhere, then the lower level value function φ would also be
the same constant. Hence, (1.3) reduces to a problem of minimizing a classical/simple
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optimal value function. A similar observation can be made for the minmax problem
as contained in the pessimistic bilevel program.

As for the pessimistic bilevel program itself, let us recall the following obvious
interplay

φp(x) = −φop(x), for all x ∈ X (1.7)

between the maximization and minimization value functions, with φp given in (1.5)
while φop is defined as

φop(x) := min
y

{−F (x, y)| y ∈ S(x)}. (1.8)

Since we will be using the generalized differentiation tools of Mordukhovich [13] to
analyze problem (1.3), equality (1.7) implies that the basic subdifferential of φp can
be obtained from that of φop by means of the following convex hull property

co ∂(−ψ)(x) = −co ∂ψ(x)

provided ψ is a given function which is Lipschitz continuous near x. Here ”co” stands
for the convex hull of the set in question whereas ∂ψ denotes the basic/Mordukhovich
subdifferential that will be defined in the next section.

For these reasons, our first focus in this paper will be the following optimistic
formulation of the bilevel optimization problem, where the upper- and lower-level
problems are constrained by the very general operator-type constraints:

(Po)



minimize φo(x) subject to x ∈ X
where X := Ω1 ∩ ψ−1

1 (Λ1)
φo(x) := min

y
{F (x, y)| y ∈ S(x)}

S(x) := {y ∈ K(x)| f(x, y) ≤ φ(x)}
φ(x) := min

y
{f(x, y)| y ∈ K(x)}

K(x) := {y| (x, y) ∈ Ω2 ∩ ψ−1
2 (Λ2)}

where Ω1 ⊆ Rn, Λ1 ⊆ Rk, Ω2 ⊆ Rn × Rm and Λ1 ⊆ Rp are closed sets. The upper
and lower level objective functions F : Rn × Rm → R and f : Rn × Rm → R
whereas ψ2 : Rn → Rp and ψ1 : Rn × Rm → Rk. All these functions are assumed
to be continuous throughout the paper. The upper- and lower-level constraints are
determined by the inclusions x ∈ Ω1∩ψ−1

1 (Λ1) and (x, y) ∈ Ω2∩ψ−1
2 (Λ2), respectively.

Such constraints structures, called operator constraints in [13], are in fact very general.
One can easily check that they contain most of the constraint structures usually
considered in optimization. The special value function

φo(x) := min
y

{F (x, y)| y ∈ S(x)}, (1.9)

is called a two-level value function considering the nature of the constraint set S(x)
which is the solution set of a second optimization problem, namely the lower level
problem

min
y

{f(x, y)| y ∈ K(x)}.

In the next section, we present the tools from variational analysis that will be
used in this paper. We essentially introduce the Mordukhovich normal cone, sub-
differential and coderivative and some of the related properties that are needed in



4

the subsequent sections. In Section 3, we study the variational properties (that is,
the sensitivity analysis) of the two-level value function φo (1.9) and deduce neces-
sary optimality conditions of the optimistic and minmin optimization problems. The
constraint qualification (CQ) mostly used here is the fairly weak calmness condition
related to set-valued mappings since most of the well-known CQs can not be satisfied
for the parametric problem associated to the two-level value function (1.9). Nec-
essary optimality conditions for the minmax and pessimistic optimization problems
are investigated in Section 4. It should be mentioned that our main focus is on the
case where the functions involved in the aforementioned problems are nonsmooth. In
[8, 7] the functions are assumed to be smooth, hence the generalized equation and
Karush-Kuhn-Tucker reformulations are also investigated whereas here we only con-
sider the (lower-level) optimal value reformulation marked by the presence of φ in
(Po). Furthermore, the constraints in [8, 7] are simple inequality constraints. Clearly,
this implies that the work in this paper completes those of [8, 7, 24].

2. Tools from variational analysis. The material presented here is essentially
taken from [13]. Also see [20]. We start with the Kuratowski-Painlevée outer/upper
limit of a set-valued mapping Ψ : Rn ⇒ Rm, which is defined at a point x as

Limsup
x→x

Ψ(x) := {v ∈ Rm|∃xk → x, vk → v with vk ∈ Ψ(xk) as k → ∞}. (2.1)

For an extended real-valued function ψ : Rn → R := (−∞,∞], the Fréchet subdiffer-
ential of ψ at x ∈ domψ := {x ∈ Rn| ψ(x) <∞} is given by

∂̂ψ(x) :=
{
v ∈ Rn|lim inf

x→x

ψ(x)− ψ(x)− ⟨v, x− x⟩
∥x− x∥

≥ 0
}

whereas the basic/limiting/Mordukhovich subdifferential of ψ is the Kuratowski-

Painlevée upper limit of the set-valued mapping ∂̂ψ at x:

∂ψ(x) := Limsup
x→x

∂̂ψ(x).

If ψ is convex, then ∂ψ(x) reduces to the subdifferential in the sense of convex analysis,
that is

∂ψ(x) := {v ∈ Rn|ψ(x)− ψ(x) ≥ ⟨v, x− x⟩,∀x ∈ Rn}. (2.2)

For a local Lipschitz continuous function, ∂ψ(x) is nonempty and compact. Moreover,
its convex hull is the subdifferential of Clarke, that is, one can define the Clarke
subdifferential ∂ψ(x) of ψ at x by

∂ψ(x) := co ∂ψ(x) (2.3)

where ”co” stands for the convex hull of the set in question. Thanks to this link
between the Mordukhovich and Clarke subdifferentials, we have the following convex
hull property which plays and important role in this paper:

co ∂(−ψ)(x) = −co ∂ψ(x). (2.4)

For this equality to hold, ψ should be Lipschitz continuous near x.
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We now introduce the basic/limiting/Mordukhovich normal cone to a set Ω ⊆ Rn
at one of its points x

NΩ(x) := Limsup
x→x (x∈Ω)

N̂Ω(x) (2.5)

where N̂Ω(x) denotes the prenormal/Fréchet normal cone to Ω at x defined by

N̂Ω(x) :=
{
v ∈ Rn| lim sup

x→x(x∈Ω)

⟨v, x− x⟩
∥x− x∥

≤ 0
}

and ”Limsup” stands for the Kuratowski-Painlevée upper limit defined in (2.1).
A set-valued mapping Ψ : Rn ⇒ Rm will be said to be inner semicompact at a

point x, with Ψ(x) ̸= ∅, if for every sequence xk → x with Ψ(xk) ̸= ∅, there is a
sequence of yk ∈ Ψ(xk) that contains a convergent subsequence as k → ∞. It follows
that the inner semicompactness holds whenever Ψ is uniformly bounded around x,
i.e. there exists a neighborhood U of x and a bounded set Ω ⊂ Rm such that

Ψ(x) ⊆ Ω, for all x ∈ U.

The mapping Ψ is inner semicontinuous at (x, y) ∈ gphΨ if for every sequence xk → x
there is a sequence of yk ∈ Ψ(xk) that converges to y as k → ∞. Obviously, if Ψ is
inner semicompact at x with Ψ(x) = {y}, then Ψ is inner semicontinuous at (x, y).
In general though, the inner semicontinuity is a property much stronger than the
inner semicompactness and it is a necessary condition for the Lipschitz-like property
to hold. If Ψ has a close graph, Ψ is Lipschitz-like around (x, y) if and only if the
following coderivative/Mordukhovich criterion holds [13]:

D∗Ψ(x, y)(0) = {0}. (2.6)

For (x, y) ∈ gphΨ := {(x, y) ∈ Rn × Rm|y ∈ Ψ(x)}, the coderivative of Ψ at (x, y) is
a homogeneous mapping D∗Ψ(x, y) : Rm ⇒ Rn, defined at v ∈ Rm by

D∗Ψ(x, y)(v) := {u ∈ Rn|(u,−v) ∈ NgphΨ(x, y)}. (2.7)

Here, NgphΨ denotes the basic normal cone (2.5) to gphΨ. Finally, let us mention
the calmness property that will also be useful in this paper. The set-valued mapping
Ψ will be said to be calm at some point (x, y) ∈ gphΨ, if there exist neighborhoods
U of x, V of y, and a constant κ > 0 such that

Ψ(x) ∩ V ⊆ Ψ(x) + κ∥x− x∥B, for all x ∈ U

with B denoting the unit ball in Rm. Ψ is automatically calm at (x, y), if it Lipschitz-
like around the same point. Further details on sufficient conditions ensuring the
calmness property can be found in [12] and references therein.

3. The optimistic bilevel programming problem. Our basic aim in this
section is to derive necessary optimality for the optimistic formulation (Po) of the
bilevel programming problem (1.4). To proceed, we first study the sensitivity analysis
of the two-level optimal value function φo (1.9). The necessary optimality conditions
would then be deduced by a well-known result of [13]. To conclude this section, we
will show how to deduce necessary optimality conditions of a problem to minimize
a classical value function by means of the results obtained for (Po). As constraint
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qualifications to compute basic normal cones or subdifferentials, we will impose the
calmness of the following set-valued mappings:

ΦX(u) := {x ∈ Ω1|ψ1(x) + u ∈ Λ1},
ΦK(u) := {(x, y) ∈ Ω2|ψ2(x, y) + u ∈ Λ2},
ΦS(u) := {(x, y) ∈ gphK| f(x, y)− φ(x) + u ≤ 0}.

(3.1)

The set-valued mapping ΦX (resp. ΦK) (resp. ΦS) is automatically calm at a point
of its graph provided Ω1 and Λ1 (resp. Ω2 and Λ2) (resp. gphK) are polyhedral and
ψ1 (resp. ψ2) (resp. f and φ) is affine linear in its variables [18]. The lower-level
value function φ is affine linear if, for example, the set-valued mapping K is defined
by a system of affine linear equalities and/or inequalities while f is affine linear.

In order to obtain the Lipschitz continuity of the lower and the two-level value
functions, respectively, the following additional conditions could be needed:[

(x∗, 0) ∈ ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y), with u ∈ NΛ2(ψ2(x, y))
]
=⇒ x∗ = 0, (3.2)

(x∗, 0) ∈ r∂(f − φ)(x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)
r ≥ 0, u ∈ NΛ2(ψ2(x, y))

}
=⇒ x∗ = 0. (3.3)

As it will be clear in the proof of Theorem 3.2, they are sufficient conditions for the
coderivative criterion (2.6) to hold for the set-valued mappings K(x) := {y| (x, y) ∈
Ω2 ∩ ψ−1

2 (Λ2)} and S(x) := {y ∈ K(x)| f(x, y) ≤ φ(x)}, respectively, provided the
corresponding calmness conditions above are satisfied. Further details on these types
of conditions and more generally on the development of coderivatives can be found in
[13, 20]. It is important to mention that the basic/Mangasarian-Fromovitz CQ is not
satisfied for the constraint structure y ∈ S(x) described by S when the above lower-
level optimal value function reformulation is in consideration [5]. However, condition
(3.3) can be satisfied, in particular, in the framework provided in the next proposition
taken from [8].

Proposition 3.1 (validity of qualification condition (3.3)). Let f : Rn×Rm → R
and g : Rm → Rp be two convex and continuously differentiable functions. Consider
the value function

φ(x) := min
y

{f(x, y)| g(y) ≤ 0}.

Let (x, y) ∈ gphS := {(x, y)| g(y) ≤ 0, f(x, y) ≤ φ(x)} and assume that φ(x) < ∞
while u⇒ {y| g(y) + u ≤ 0} is calm at (0, y). Then, CQ (3.3) holds at (x, y).

To complete the list of assumptions mostly used in this section, we mention the
inner semicompactness or semicontinuity of the following solution set-valued mapping:

So(x) := argmin
y

{F (x, y)| y ∈ S(x)} = {y ∈ S(x)|F (x, y) ≤ φo(x)}. (3.4)

In the next result, we first derive the sensitivity analysis of the two-level value function
φo when all the functions involved are locally Lipschitz continuous and the solution
set-valued mapping So is inner semicompact.

Theorem 3.2 (sensitivity analysis of the two-level value function under inner
semicompactness). Consider the two-level value function φo (1.9), where the functions
f, ψ2 and F are Lipschitz continuous near (x, y), y ∈ S(x) and (x, y), y ∈ So(x),
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respectively. Assume that the sets Ω2 and Λ2 are closed and the set-valued mapping
ΦK (resp. ΦS) is calm at (0, x, y), y ∈ S(x) (resp. (0, x, y), y ∈ So(x)). Also let So
be inner semicompact at x and CQs (3.2) and (3.3) be satisfied at (x, y), y ∈ S(x)
and (x, y), y ∈ So(x), respectively. Then, φo is Lipschitz continuous around x and
one has the following upper estimate of its basic subdifferential:

∂φo(x) ⊆
∪

y∈So(x)

∪
u∈NΛ2 (ψ2(x,y))

∪
r≥0

{
x∗

∣∣(
x∗ + r

∑n+1
s=1 vsx

∗
s, 0

)
∈ ∂F (x, y) + r∂f(x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y),∑n+1

s=1 vs = 1 and for all s = 1, . . . , n+ 1 :
vs ≥ 0, us ∈ NΛ2

(ψ2(x, ys)), ys ∈ S(x),

(x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys)
}
.

Proof. Since So is inner semicompact at x, one has from [17, Theorem 7 (ii)] that

∂φo(x) ⊆
∪

y∈So(x)

{
x∗ +D∗S(x, y)(y∗)| (x∗, y∗) ∈ ∂F (x, y)

}
(3.5)

taking into account the Lipschitz continuity of F near (x, y), y ∈ So(x). Now, let us
note that gphK = ΦK(0). Hence, applying [12, Theorem 4.1], one gets

NgphK(x, y) = NΦK(0)(x, y) ⊆
∪

u∈NΛ2 (ψ2(x,y))

{
∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)

}
, (3.6)

for y ∈ S(x), since Ω2 and Λ2 are closed, ψ2 is Lipschitz continuous near (x, y) and
the set-valued mapping ΦK is calm at (0, x, y). An upper bound for the coderivative
of K then results from the definition of the coderivative

D∗K(x, y)(y∗) ⊆
∪

u∈NΛ2 (ψ2(x,y))

{
x∗

∣∣ (x∗,−y∗) ∈ ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)
}
.

(3.7)
From this inclusion, it is clear, taking into account the homogeneity of the coderivative,
that CQ (3.2) is a sufficient condition for the coderivative criterion to hold for the
set-valued mapping K at (x, y), y ∈ S(x). Combining the latter fact with the inner
semicompactness of S (obtained from that of So since So(x) ⊆ S(x) for all x ∈ X),
one gets the Lipschitz continuity of the lower-level value function φ near x, cf. [14,
Theorem 5.2 (ii)].

Repeating the above process of estimating the coderivative ofK on the lower-level
solution set-valued mapping S, one can also observe that gphS = ΦS(0). Hence, for
y ∈ So(x), Ω2 and Λ2 being closed, we have

NgphS(x, y) = NΦS(0)(x, y) ⊆
∪
r≥0

{
r∂(f − φ)(x, y) +NgphK(x, y)

}
, (3.8)

considering the calmness of ΦS at (x, y), the Lipschitz continuity of f, ψ2 and φ near
(x, y), y ∈ S(x) and x, respectively, cf. [12, Theorem 4.1]. Combining (3.6) and
(3.8), the definition of the coderivative yields the following upper estimate for the
coderivative of S:

D∗S(x, y)(y∗) ⊆
∪

u∈NΛ2 (ψ2(x,y))

∪
r≥0

{
x∗

∣∣ (x∗,−y∗) ∈ r∂(f − φ)(x, y)+

∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)
}
.

(3.9)
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With this inclusion, it is now clear, also taking into account the homogeneity of
the coderivative set-valued mapping, that in addition to the other assumptions of the
theorem, the fulfilment of CQ (3.3) at (x, y) implies the satisfaction of the coderivative
criterion for S at the same point. Hence, the two-level value function φo is also
Lipschitz continuous near x, cf. [14, Theorem 5.2 (ii)].

The presence of the lower-level value function φ in the right-hand-side of inclusion
(3.9) gives room for a further description of the upper bound ofD∗S(x, y)(y∗) in terms
of problem data. Hence, recall that by a combination of inclusion (3.7) and the inner
semicompactness of S (due to that of So), one has

∂φ(x) ⊆
∪

y∈S(x)

∪
u∈NΛ2 (ψ2(x,y))

{
x∗

∣∣(x∗, 0) ∈ ∂f(x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)
}
.

(3.10)
Since φ is Lipschitz continuous near x, we have

∂(−φ)(x) ⊆ co ∂(−φ)(x) = −co ∂φ(x), (3.11)

where the last equality follows from the convex hull property (2.4). Applying Carathéo-
dory’s well-known theorem on the evaluation of the convex hull of a set in finite di-
mension, one gets the following upper estimate of the basic subdifferential of −φ,
while considering inclusions (3.10) and (3.11)

∂(−φ)(x) ⊆
{
−
∑n+1
s=1 vsx

∗
s

∣∣∑n+1
s=1 vs = 1 and for all s = 1, . . . , n+ 1 :

vs ≥ 0, us ∈ NΛ2(ψ2(x, ys)), ys ∈ S(x),

(x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys)
}
.

(3.12)

Inserting this inclusion in (3.9), one gets the following fully detailed upper bound of
the coderivative of the solution set-valued mapping S:

D∗S(x, y)(y∗) ⊆
∪
r≥0

∪
u∈NΛ2 (ψ2(x,y))

{
x∗

∣∣(
x∗ + r

∑n+1
s=1 vsx

∗
s,−y∗

)
∈ r∂f(x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y),∑n+1

s=1 vs = 1 and for all s = 1, . . . , n+ 1 :
vs ≥ 0, us ∈ NΛ2(ψ2(x, ys)), ys ∈ S(x),

(x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys)
}
.

Finally, we have the upper estimate of the basic subdifferential of the two-level value
function φo in the theorem by a combination of the latter inclusion and the one in
(3.5).

The convex combination in the upper bound of ∂φo obtained in this theorem
can be avoided. One way, that we consider in the next result, is to assume that
the functions involved in the lower-level problem are convex. The second possibility,
studied in Theorem 3.5, is to replace the inner semicompactness of So (3.4) in the
above theorem by the stronger inner semicontinuity. A third approach consist in
allowing one to have the difference rule ∂(ψ1 − ψ2)(x) ⊆ ∂ψ1(x) − ∂ψ2(x) for the
basic subdifferential. According to the work in [15], this may require that the Fréchet
subdifferential of ψ2 be nonempty in a neighborhood of x. The latter case is out of
the scope of this paper. Further discussion on this issue can also be found in [4].

In the next result, we still impose the inner semicompactness of the set-valued
mapping So (3.4), but we assume that all the functions involved in the two-level value
function φo are instead fully convex, that is, convex in both variables (x, y).
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Theorem 3.3 (sensitivity analysis of the two-level value function with convex
initial data). Consider the two-level value function φo (1.9), where the functions
f, ψ2 := g and F are fully convex (that is, convex in (x, y)) and the sets Ω2 :=
Rn × Rm and Λ2 := Rp−. Assume the set-valued mapping ΦK (resp. ΦS) is calm
at (0, x, y), y ∈ S(x) (resp. (0, x, y), y ∈ So(x)). Also let x ∈ dom φ, where So is
inner semicompact and let CQ (3.3) be satisfied at (x, y), y ∈ So(x). Then, φo is
Lipschitz continuous around x and one has the following upper estimate of its basic
subdifferential:

∂φo(x) ⊆
∪

y∈So(x)

∪
(r,β)∈Λo(x,y)

∪
γ∈Λ(x,y)

{
∂xF (x, y) + r

(
∂xf(x, y)− ∂xf(x, y)

)
+∑p

i=1 βi∂xgi(x, y)− r
∑p
i=1 γi∂xgi(x, y)

}
.

where the multiplier sets Λ(x, y) and Λo(x, y) are given respectively as:

Λ(x, y) := {γ| 0 ∈ ∂yf(x, y) +
∑p
i=1 γi∂ygi(x, y)

γi ≥ 0, γigi(x, y) = 0, i = 1, . . . , p}, (3.13)

Λo(x, y) := {(r, β)| 0 ∈ ∂yF (x, y) + r∂yf(x, y) +
∑p
i=1 βi∂ygi(x, y)

r ≥ 0, βi ≥ 0, βigi(x, y) = 0, i = 1, . . . , p}. (3.14)

Proof. The proof is essentially the same as that of Theorem 3.2. However, let us
notice that with

φ(x) = min
y

{f(x, y)| g(x, y) ≤ 0},

the functions f and g being fully convex, φ is convex and one has the following
estimate of its subdifferential

∂φ(x) ⊆
∪

γ∈Λ(x,y)

{
∂xf(x, y) +

p∑
i=1

γi∂xgi(x, y)
}
, (3.15)

for y ∈ S(x), taking into account the calmness of the set-valued mapping ΦK at
(0, x, y), cf. e.g. the proof of Theorem 4.1 in [24]. Moreover, φ is Lipschitz continuous
near x, as a convex function with x ∈ domφ.

The second observation to make is that, φ being convex, inclusion (3.11) becomes

∂(−φ)(x) ⊆ −∂φ(x). (3.16)

Combining (3.5), (3.15) and (3.16), one has the upper estimate of the basic subdiffer-
ential of φo in the corollary, while taking into account the decomposition formula

∂ψ(x, y) ⊆ ∂xψ(x, y)× ∂yψ(x, y)

which is valid for the functions F, f, and g since they are all fully convex.
In [3], a simple bilevel programming problem is defined as the optimization prob-

lem to

minimize F (y) subject to y ∈ S := argmin{f(u)| g(u) ≤ 0}. (3.17)
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Obviously, perturbing this problem on the left- and-right-hand-sides yields our two-
level value function φo (1.9). In the next result, we derive the sensitivity analysis of
the simple bilevel programming problem in the case of left-hand-side perturbation.

Proposition 3.4 (variational analysis of the value function of a simple bilevel
programming problem). Consider the two-level value function φo (1.9), where for all
x ∈ X, S(x) := S := argmin{f(y)| g(y) ≤ 0} with the functions f , g and F convex
in y and (x, y), respectively. Let x ∈ dom φo, then φo is Lipschitz continuous around
this point and for y ∈ So(x), we have:

∂φo(x) ⊆ ∂xF (x, y).

Proof. Under the assumptions of the proposition, φo is Lipschitz continuous near
x. Moreover, proceeding as in the proof of Theorem 4.1 in [24], take y ∈ So(x), then
for u ∈ ∂φo(x), (x, y) is a solution of the problem

min
x,y

{F (x, y)− ⟨u, x⟩| (x, y) ∈ Rn × S}.

Applying [13, Proposition 5.3], the optimality condition of the latter problem is ob-
tained as

(u, 0) ∈ ∂F (x, y) +NRn×S(x, y).

Since F is fully convex, this implies the following inclusions

u ∈ ∂xF (x, y) and 0 ∈ NS(y).

Note that 0 ∈ NS(y) is always true. Hence, the result.
Reconsidering the two-level value function φo (1.9) in the case of right- and left-

hand-side perturbations, we now derive its sensitivity analysis when the functions
involved are locally Lipschitz continuous while So (3.4) is inner semicontinuous. For
this, the calmness of the set-valued mapping K (3.1) will be replaced by the stronger
dual form of the Mangasarian-Fromovitz constraint qualification in terms of Clarke’s
subdifferential:[

0 ∈
p∑
i=1

γi∂gi(x, y), γi ≥ 0, γigi(x, y) = 0, i = 1, . . . , p
]
=⇒ γi = 0, i = 1, . . . , p.

(3.18)
Theorem 3.5 (sensitivity analysis of the two-level value function under the inner

semicontinuity). Consider the two-level value function φo (1.9), where the functions
f, ψ2 := g and F are Lipschitz continuous near (x, y). Assume that the sets Ω2 :=
Rn × Rm and Λ2 := Rp− and the set-valued mapping ΦS is calm at (0, x, y). Also let
So be inner semicontinuous at (x, y) and CQs (3.3) and (3.18) be satisfied at (x, y).
Then, φo is Lipschitz continuous around x and one has the following upper estimate
of its basic subdifferential:

∂φo(x) ⊆
∪
r≥0

{
x∗

∣∣ (x∗ + rx∗φ, 0) ∈ ∂F (x, y) + r∂f(x, y) +
∑p
i=1 βi∂gi(x, y),

(x∗φ, 0) ∈ ∂f(x, y) +
∑p
i=1 γi∂gi(x, y),

βi ≥ 0, βigi(x, y) = 0, i = 1, . . . , p,

γi ≥ 0, γigi(x, y) = 0, i = 1, . . . , p
}
.
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Proof. The first thing to note is that since So(x) ⊆ S(x), for all x ∈ X, S is inner
semicontinous at (x, y), considering the fact that the latter property is assumed to
also hold for So. In addition to CQ (3.18), it follows from [16, Theorem 5.9] that

∂φ(x) ⊆
{
u| (u, 0) ∈ ∂f(x, y) +

∑p
i=1 γi∂gi(x, y),

for i = 1, . . . , p, γi ≥ 0, γigi(x, y) = 0
}
.

(3.19)

Furthermore, considering CQ (3.2), the lower-level value function φ is Lipschitz con-
tinuous near x. On the other hand, applying [17, Theorem 7 (i)], one has

∂φo(x) ⊆
{
x∗ +D∗S(x, y)(y∗)| (x∗, y∗) ∈ ∂F (x, y)

}
(3.20)

taking into account the Lipschitz continuity of F near (x, y) and the inner semiconti-
nuity of So at the same point. Considering the Lipschitz continuity of φ near x, one
has from inclusion (3.9) that

D∗S(x, y)(y∗) ⊆
∪
r≥0

{
x∗

∣∣ (x∗ + rx∗φ,−y∗) ∈ r∂f(x, y) +
∑p
i=1 βi∂gi(x, y),

(x∗φ, 0) ∈ ∂f(x, y) +
∑p
i=1 γi∂gi(x, y),

βi ≥ 0, βigi(x, y) = 0, i = 1, . . . , p,

γi ≥ 0, γigi(x, y) = 0, i = 1, . . . , p
}

(3.21)
while considering the convex hull property (3.11). Combining (3.20) and (3.21), one
has the upper bound of ∂φo(x) in the result. The Lipschitz continuity of the two-level
value function φo is obtained as in the proof of Theorem 3.2, cf. [14, Theorem 5.2
(i)].

Remark 3.6 (Comments on the sensitivity analysis results of the two-level value
function). We provide some possible links between the results above and also relation-
ships with previous work.

(i) If we assume that in the right-hand-side of the inclusion in Theorem 3.2 one
has So(x) = {y}, S(x) = {y} and the multiplier u in the upper estimate (3.10) of
∂φ(x) is unique, then all the upper bounds of ∂φo(x) obtained in Theorems 3.2, 3.3
and 3.5 coincide, provided that the functions are subdifferentially regular and the sets
Ω2 and Λ2 are adjusted accordingly.

(ii) If we assume that all the functions involved in the two-level value function φo
(1.9) are continuously differentiable, while setting Ω2 := Rn ×Rm and Λ2 := Rp−, the
upper bounds that we get for ∂φo in Theorems 3.2 and 3.5 are exactly the same as
those obtained in [8, Theorem 5.9]. This will induce the same observation when the
necessary optimality conditions of the optimistic bilevel programming problem (Po)
are considered in Corollary 3.7.

(iii) Note that for the upper bounds of the basic subdifferential of φo (1.9) in
Theorems 3.2, 3.3 and 3.5, CQ (3.3) is in fact not necessary. The latter condition
comes into play only to obtain the Lipschitz continuity of the aforementioned two-level
value function.

For the rest of this section, we focus our attention on deriving necessary optimality
conditions for the original optimistic formulation of the bilevel programming problem
(Po). Necessary optimality for an optimization problem with a classical value function
objective will be discussed as well.

Corollary 3.7 (optimality conditions for the original optimistic bilevel pro-
gramming problem). Let x be a local optimal solution of (Po), where ψ1 is Lipschitz
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continuous near x and the sets Ω1 and Λ1 are closed. Furthermore, let the set-valued
mapping ΦX be calm at (0, x). Then, the following assertions hold:

(i) Let all the assumptions of Theorem 3.2 be satisfied. Then, there exist y ∈
So(x), (α, u, r) ∈ Rk+p+1, (us, vs) ∈ Rp+1 and ys ∈ S(x), x∗s ∈ Rn with s = 1, . . . , n+
1 such that:

(
r

n+1∑
s=1

vsx
∗
s, 0

)
∈ ∂F (x, y) + r∂f(x, y) + ∂⟨u, ψ2⟩(x, y) +

NΩ2(x, y) +
[
∂⟨α,ψ1⟩(x) +NΩ1(x)

]
× {0}, (3.22)

for s = 1, . . . , n+ 1, (x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys), (3.23)

for s = 1, . . . , n+ 1, vs ≥ 0,
n+1∑
s=1

vs = 1, (3.24)

for s = 1, . . . , n+ 1, us ∈ NΛ2(ψ2(x, ys)), (3.25)

u ∈ NΛ2(ψ2(x, y)), (3.26)

r ≥ 0, α ∈ NΛ1(ψ1(x)). (3.27)

(ii) Let all the assumptions of Theorem 3.3 be satisfied. Then, there exist y ∈
So(x), α, β, γ and r such that we have condition (3.27) together with the following
relationships to be satisfied:

0 ∈ ∂xF (x, y) + r
(
∂xf(x, y)− ∂xf(x, y)

)
+

p∑
i=1

βi∂xgi(x, y)−

r

p∑
i=1

γi∂xgi(x, y) + ∂⟨α, ψ1⟩(x) +NΩ1(x), (3.28)

0 ∈ ∂yF (x, y) + r∂yf(x, y) +

p∑
i=1

βi∂ygi(x, y), (3.29)

0 ∈ ∂yf(x, y) +

p∑
i=1

γi∂ygi(x, y), (3.30)

for i = 1, . . . , p, βi ≥ 0, βigi(x, y) = 0, (3.31)

for i = 1, . . . , p, γi ≥ 0, γigi(x, y) = 0. (3.32)

(iii) Let all the assumptions of Theorem 3.5 be satisfied. Then, there exist x∗,
α, β, γ and r such that we have relationships (3.27) and (3.31)–(3.32) (where y := y)
together with the following conditions to hold:

(rx∗, 0) ∈ ∂F (x, y) + r∂f(x, y) +

p∑
i=1

βi∂gi(x, y) +[
∂⟨α, ψ1⟩(x) +NΩ1(x)

]
× {0}, (3.33)

(x∗, 0) ∈ ∂f(x, y) +

p∑
i=1

γi∂gi(x, y). (3.34)

Proof. Under the assumptions of either (i), (ii) or (iii), the two-level value function
φo (1.9) is Lipschitz continuous near x. Hence, since X := Ω1 ∩ ψ−1(Λ1) is closed,
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one has from [13, Proposition 5.3] that

0 ∈ φo(x) +NX(x). (3.35)

Under the calmness of the set-valued mapping ΦX at (0, x), we have from [12, Theorem
4.1] that

NX(x) ⊆
∪{

∂⟨α, ψ1⟩(x) +NΩ1(x)|α ∈ NΛ1(ψ1(x))
}
. (3.36)

Combining (3.35) and (3.36) on the one hand and Theorem 3.2, Theorem 3.3 and
Theorem 3.5, respectively, on the other, one gets the result.

If the assumptions of Remark 3.6 (i) are satisfied, the optimality conditions in
Corollary 3.7 (i), (ii) and (iii) all coincide. Also note that since the optimality condi-
tions of Corollary 3.7 (ii) depend on the couple (x, y), where So is inner semicontin-
uous, one should obtain further stronger optimality conditions in this case, provided
the number of points (x, y) ∈ gphSo, where this property holds grows while making
sure the other assumptions are also satisfied at these points [8]. It is also worth men-
tioning that the Lipschitz continuity of the two-level value function (1.9) is needed in
the above result mostly to make sure that ∂φo(x) ̸= ∅. If we are sure that the latter
is satisfied for a given problem, CQ (3.3) can be dropped, provided for instance that
there is no upper level constraint, that is, X := Rn.

Remark 3.8 (comparison with previous works on the optimality conditions of
the optimistic bilevel program). Consider the original optimistic bilevel optimization
problem (Po) where Ω1 := Rn, Λ := Rk−, Ω := Rn × Rm and Λ := Rp−, then the
optimality conditions obtained in Corollary 3.7 (i), (ii) and (iii) are exactly those
derived in [4, Theorem 5.1], [4, Theorem 4.1] and [16, Theorem 6.4], respectively,
while using the auxiliary/classical optimistic bilevel programming problem (1.6). The
same observation can be made in the case of smooth functions, cf. Remark 3.6 (ii).
In the latter framework, a result similar to Corollary 3.7 (i) can also be found in
[5, 23]. The only thing missing in the optimality conditions of [4, 5, 16, 23] is the
condition that y ∈ So(x). On the CQs, the assumptions used in Corollary 3.7 are
parallel to those of the aforementioned works. In [4, 16, 23] the partial calmness is
used as CQ. We replace it here by the calmness of the set-valued mapping ΦS, which
implies the satisfaction of the partial calmness, cf. Proof of Theorem 4.10 in [5]. The
upper- and lower-level regularity conditions also used in [4, 16] imply the fulfilment of
the calmness of the set-valued mappings ΦX and ΦK that we impose in Corollary 3.7.
Furthermore, CQ (3.2) is satisfied provided the lower-level regularity holds. The reader
is referred to [4, 5, 16, 23] and references therein for the definitions and discussions
on the partial calmness, the upper- and lower-level regularity conditions. The only
assumption in Corollary 3.7 that could be seen as additional as compared to those used
in the aforementioned papers is CQ (3.3), which is needed in our result to guaranty
the Lipshitz continuity of the two-level value function φo (1.9) and hence ensuring
that ∂φo(x) ̸= ∅. If we are sure that the latter condition is satisfied, as it happens in
many non-Lipschitzian cases [13, 17, 20], then CQ (3.3) becomes superfluous.

Remark 3.9 (what do we gain using the original optimistic model (Po) to derive
necessary optimality conditions for the bilevel program?). As observed in the previous
remark, the necessary optimality conditions obtained in Corollary 3.7 are the same as
those derived in [4, 5, 16, 23] while using the auxiliary/classical model (1.6), provided
it is imposed in the latter case that y ∈ So(x). As mentioned in the Introduction,
the first motivation to investigate the original optimistic problem (Po) separately is
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that it is not locally equivalent to the auxiliary problem (1.6). This may well pose a
problem while solving the bilevel problem especially when considering sufficient opti-
mality conditions. Furthermore, as it will be clear in the next section, the another
major advantage considering (Po) is that the results in Theorem 3.2, Theorem 3.3
and Theorem 3.5 can readily be applied to derive necessary optimality conditions for
the pessimistic bilevel optimization problem (Pp). Last but not least, it is worth men-
tioning that the results on the sensitivity analysis of the two-level value function φo
(1.9) obtained above can directly be applied to derive the sensitivity analysis of the
value function of classical optimistic problem (1.6).

In problem (Po), if we set the lower-level objective function to be a constant, that
is f(x, y) := c for all (x, y) ∈ Rn × Rm, then the lower-level optimal value function
is also a constant, namely φ(x) = c for all x ∈ X. Hence, (Po) becomes a simple
problem to minimize a classical value function:

(P )


minimize φo(x) subject to x ∈ X
where X := Ω1 ∩ ψ−1

1 (Λ1)
φo(x) := min

y
{F (x, y)| y ∈ K(x)}

K(x) := {y| (x, y) ∈ Ω2 ∩ ψ−1
2 (Λ2)}.

Clearly, this means that (P) is contained in (Po). No special work needs to be done
for the sensitivity analysis of the value function φo in its current form

φo(x) := min
y

{F (x, y)| y ∈ K(x)}. (3.37)

A great number of publications can be found in the literature on this topic. See e.g.
[1, 10, 11, 19], when y ∈ K(x) is replaced by the usual functional inequality and/or
equality structure. For more general constraint structures, the notion of coderivative
was used in [14, 17] to investigate the sensitivity analysis of φo (3.37). The only point
we would like to make here is that the sensitivity analysis of a classical optimal value
function φo (3.37) can be deduced from that of a two-level value function φo (1.9).
Thus necessary optimality conditions for an optimization problem with minimization
value function can be deduced from those of the optimistic bilevel optimization prob-
lem (Po). The thing to do is deleting all the terms referring to the lower-level objective
function f and value function φ from the basic subdifferential of the two-level value
function (1.9) in Theorem 3.2, Theorem 3.3 and Theorem 3.5 (resp. the optimality
conditions in Corollary 3.7). The assumptions insuring the Lipschitz continuity of φo
(3.37) also have to be adjusted accordingly. Practically, for the upper bound of ∂φo in
Theorem 3.2, this would mean setting f to a constant and x∗s = 0, for s = 1, . . . , n+1
and deleting all the set of conditions:

n+1∑
s=1

vs = 1 and for all s = 1, . . . , n+ 1 :

vs ≥ 0, us ∈ NΛ2(ψ2(x, ys)), ys ∈ S(x),

(x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys).

The basic subdifferential of the classical value function φo (3.37) then follows as

∂φo(x) ⊆
∪

y∈So(x)

∪
u∈NΛ2 (ψ2(x,y))

{
x∗

∣∣
(
x∗, 0

)
∈ ∂F (x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)

}
,
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provided ψ2 and F are Lipschitz continuous near (x, y), y ∈ So(x), the sets Ω2,Λ2

are closed and the set-valued mapping ΦK is calm at (0, x, y), y ∈ So(x), while So is
inner semicompact at x. It should be reminded here that the value of the set-valued
mapping So corresponding to φo (3.37) is

So(x) := argmin
y

{F (x, y)| y ∈ K(x)}. (3.38)

If in addition CQ (3.2) is satisfied at (x, y), y ∈ So(x), then φo (3.37) is Lipschitz
continuous near x. This result was obtained in [14, 17], where instead of the calm-
ness of the set-valued mapping K, the stronger basic/Mangasarian-Fromovitz CQ is
assumed. This seems to suggest that the tow-level value function (1.9) can be seen as
a kind of extension of the usual notion of value function.

From the above observations, it results that if x is a local optimal solution of
(P) and the aforementioned assumptions are satisfied, then there exist y ∈ So(x),
(α, u) ∈ Rk+p such that:(

0, 0
)
∈ ∂F (x, y) + ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y) +

[
∂⟨α, ψ1⟩(x) +NΩ1(x)

]
× {0},

α ∈ NΛ1(ψ1(x)), u ∈ NΛ2(ψ2(x, y)),

provided the set-valued mapping ΦX is calm at (0, x). Similar observations can be
made for φo (3.37) in the frameworks of Theorem 3.3 and Theorem 3.5 (resp. Corollary
3.7 (ii) and (iii)).

We now conclude this section by considering the case where φo (3.37) is convex.
Such a framework can not be thought of while dealing with the original optimistic
bilevel problem (Po) since the two-level value function φo (1.9) cannot be convex,
except the lower-level problem is a nonperturbed convex optimization problem, see
Proposition 3.4. This leads to necessary and sufficient optimality conditions for prob-
lem (P).

Theorem 3.10 (necessary and sufficient optimality conditions for the minmin
problem in the convex case). Consider problem (P), where F and ψ2 := g are all
continuously differentiable and fully convex (that is, convex in (x, y)) while ψ1 := G
is a convex function. Assume that Λ1 := Rp−, Ω2 := Rn × Rm, Λ2 := Rp− and there
exists x̃ such that Gj(x̃) < 0, j = 1, . . . , k. Furthermore consider x ∈ domφo, where
So is inner semicompact and there exists ỹ with gi(x, ỹ) < 0, i = 1, . . . , p. Then, x is
an optimal solution of (P) if and only if for any y ∈ So(x), there exists (α, β) ∈ Rk+p
such that:

0 ∈ ∇xF (x, y) +

p∑
i=1

βi∇xgi(x, y) +

k∑
j=1

αj∂Gj(x), (3.39)

∇yF (x, y) +

p∑
i=1

βi∇ygi(x, y) = 0, (3.40)

for i = 1, . . . , p, βi ≥ 0, βigi(x, y) = 0, (3.41)

for j = 1, . . . , k, αj ≥ 0, αjGj(x) = 0. (3.42)

Proof. Under the conditions on the sets Ω2 and Λ2, the value function φo (3.37)
takes the form

φo(x) = min
y

{F (x, y)| gi(x, y) ≤ 0, i = 1, . . . , p}. (3.43)
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This function is convex since F and g are fully convex. Moreover, it is Lipschitz
continuous near x, since x ∈ domφo. Taking into account the fact that the functions
Gj , j = 1, . . . , k are convex, problem (P) is a convex optimization problem. Hence,
from a well-known fact in convex optimization, x is an optimal solution of (P) if
and only if we have inclusion (3.35). In this case φo is given in (3.43) while X :=
{x|Gj(x) ≤ 0, j = 1, . . . , k}. Thus we have

NX(x) =
∪{ k∑

j=1

αj∂Gj(x)
∣∣αj ≥ 0, αjGj(x) = 0, j = 1, . . . , k

}
(3.44)

given that there exists x̃ with Gj(x̃) < 0, j = 1, . . . , k. It remains to note that since F
and g are all continuously differentiable and fully convex, while S is inner semicompact
at x and there exists ỹ such that gi(x, ỹ) < 0, i = 1, . . . , p, one has

∂φo(x) =
∪

β∈Λ(x,y)

{
∇xF (x, y) +

p∑
i=1

βi∇xgi(x, y)
}
, (3.45)

for all y ∈ So(x), cf. [21, Theorem 6.6.7]. Here, Λ(x, y) denotes the set of multipliers
β such that conditions (3.40) and (3.41) are satisfied. The result follows from a
combination of equations (3.35), (3.44) and (3.45).

4. The pessimistic bilevel programming problem. In this section, we con-
sider the following pessimistic formulation of the bilevel optimization problem (1.4):

(Pp)



minimize φp(x) subject to x ∈ X
where X := Ω1 ∩ ψ−1

1 (Λ1)
φp(x) := max

y
{F (x, y)| y ∈ S(x)}

S(x) := {y ∈ K(x)| f(x, y) ≤ φ(x)}
φ(x) := min

y
{f(x, y)| y ∈ K(x)}

K(x) := {y| (x, y) ∈ Ω2 ∩ ψ−1
2 (Λ2)}

which is obtained by replacing the minimization two-level value function (1.9) in (Po)
by the maximization two-level value function φp (1.5). Considering the relationship
(1.7) between the maximization and minimization two-level value functions, the Lips-
chitz continuity of φp (1.5) can be obtained from that of φop (1.8) by using the results
of the previous section. The basic subdifferential of φp can also be derived from that
of φop by means of the convex hull property (2.4). Proceeding with the latter op-
eration, one should however have in mind that in the convexification process of the
upper bound of ∂φop, the subdifferential of the lower-level value function φ can be kept
unchanged. To make this point more clear, we provide a constructive way to deduce
the sensitivity analysis of the maximization two-level value function φp (1.5) in the
next result. The assumptions that we make are those of Theorem 3.2, Theorem 3.3
and Theorem 3.5, respectively, applied to the minimization two-level value function
φop (1.8), while replacing the solution set-valued mapping So (3.4) by its analog Spo :

Spo (x) := argmin
y

{−F (x, y)| y ∈ S(x)} = {y ∈ S(x)|F (x, y) + φop(x) ≥ 0}. (4.1)

Theorem 4.1 (sensitivity analysis of the maximization two-level value function).
Consider the maximization two-level value function φp (1.5). Then, we have the
following assertions:
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(i) Let all the assumptions of Theorem 3.2 be satisfied for the two-level value
function φop (1.8) with the set-valued mapping So (3.4) replaced by Spo (4.1). Then,
the maximization two-level value function φp (1.5) is Lipschitz continuous near x and
we have:

∂φp(x) ⊆
{
−
∑n+1
t=1 ηtx

∗
t

∣∣∑n+1
t=1 ηt = 1 and for all t = 1, . . . , n+ 1 :

ηt ≥ 0, rt ≥ 0, ut ∈ NΛ2(ψ2(x, yt)), yt ∈ Spo (x),

(x∗t + rt
∑n+1
s=1 vsx

∗
s, 0) ∈ ∂(−F )(x, yt) + rt∂f(x, yt)+

∂⟨ut, ψ2⟩(x, yt) +NΩ2(x, yt),∑n+1
s=1 vs = 1 and for all s = 1, . . . , n+ 1 :

vs ≥ 0, us ∈ NΛ2(ψ2(x, ys)), ys ∈ S(x),

(x∗s, 0) ∈ ∂f(x, ys) + ∂⟨us, ψ2⟩(x, ys) +NΩ2(x, ys)
}
.

(ii) Let all the assumptions of Theorem 3.3 be satisfied for the two-level value
function φop (1.8) with the set-valued mapping So (3.4) replaced by Spo (4.1). Then,
the maximization two-level value function φp (1.5) is Lipschitz continuous near x and
we have:

∂φp(x) ⊆
{
−
∑n+1
t=1 ηtx

∗
t

∣∣∑n+1
t=1 ηt = 1 and for all t = 1, . . . , n+ 1 :

ηt ≥ 0, (rt, β
t) ∈ Λo(x, yt), γ ∈ Λ(x, yt), yt ∈ Spo (x),

x∗t ∈ ∂x(−F )(x, yt) + rt
(
∂xf(x, yt)− ∂xf(x, yt)

)
+∑p

i=1 β
t
i∂xgi(x, yt)− rt

∑p
i=1 γi∂xgi(x, yt)

}
.

where Λ(x, yt) and Λo(x, yt) are given in (3.13) and (3.14), respectively.
(iii) Let all the assumptions of Theorem 3.5 be satisfied for the two-level value

function φop (1.8) with the set-valued mapping So (3.4) replaced by Spo (4.1). Then,
the maximization two-level value function φp (1.5) is Lipschitz continuous near x and
we have:

∂φp(x) ⊆
{
−
∑n+1
t=1 ηtx

∗
t

∣∣∑n+1
t=1 ηt = 1 and for all t = 1, . . . , n+ 1 :

(x∗t + rtx
∗
φ, 0) ∈ ∂(−F )(x, y) + rt∂f(x, y) +

∑p
i=1 β

t
i∂gi(x, y),

ηt ≥ 0, rt ≥ 0, βti ≥ 0, βtigi(x, y) = 0, i = 1, . . . , p,

(x∗φ, 0) ∈ ∂f(x, y) +
∑p
i=1 γi∂gi(x, y),

γi ≥ 0, γigi(x, y) = 0, i = 1, . . . , p
}
.

Proof. The Lipschitz continuity of φp follows obviously from Theorem 3.2, Theo-
rem 3.5 and Theorem 3.3, respectively, while considering equality (1.7). For the upper
bound of ∂φp in (i), note from the proof of Theorem 3.2 that

∂φop(x) ⊆
∪

y∈Sp
o (x)

∪
u∈NΛ2 (ψ2(x,y))

∪
r≥0

{
x∗

∣∣ (x∗, 0) ∈ ∂(−F )(x, y)+

r∂f(x, y) + r∂(−φ)(x)× {0}+ ∂⟨u, ψ2⟩(x, y) +NΩ2(x, y)
}
.

Applying the convex hull property (2.4), we get

∂φp(x) ⊆ −co ∂φop(x).

For x∗ ∈ co ∂φop(x), one has from Carathédory’s theorem that there exist x∗t , t =

1, . . . , n+1 such that x∗ =
∑n+1
t=1 ηtx

∗
t , with

∑n+1
t=1 ηt = 1 and for t = 1, . . . , n+1, we
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have yt ∈ Spo (x), ηt ≥ 0, rt ≥ 0, ut ∈ NΛ2(ψ2(x, yt)) and

(x∗t , 0) ∈ ∂(−F )(x, yt) + rt∂f(x, yt) + rt∂(−φ)(x)× {0}+
∂⟨ut, ψ2⟩(x, yt) +NΩ2(x, yt).

The latter inclusion implies the existence of x∗φ ∈ co ∂φ(x) such that

(x∗t + rtx
∗
φ, 0) ∈ ∂(−F )(x, yt) + rt∂f(x, yt) + ∂⟨ut, ψ2⟩(x, yt) +NΩ2(x, yt).

Considering the upper estimate of ∂φ(x) in (3.10), the result of (i) follows. The proofs
of (ii) and (iii) follow in a similar way. However, in the latter cases, the upper bounds
of co ∂φ(x) should instead be deduced from (3.15) and (3.19), respectively.

As first consequence of this result, we derive necessary optimality conditions for
the pessimistic bilevel programming problem (Pp).

Corollary 4.2 (optimality conditions for the pessimistic bilevel programming
problem). Let x be a local optimal solution of (Pp), where ψ1 is Lipschitz continuous
near x and the sets Ω1 and Λ1 are closed. Furthermore, let the set-valued mapping
ΦX be calm at (0, x). Then, the following assertions hold:

(i) Let all the assumptions of Theorem 4.1 (i) be satisfied. Then, there exist
yt ∈ Spo (x), ηt, rt, ut with t = 1, . . . , n+ 1 and ys ∈ S(x), vs, us with s = 1, . . . , n+ 1
such that relationships (3.23)-(3.25) and (3.27) (where r := rt) together with the
following conditions are satisfied:

n+1∑
t=1

ηtx
∗
t ∈ ∂⟨α,ψ1⟩(x) +NΩ1

(x), (4.2)

for t = 1, . . . , n+ 1, (x∗t + rt

n+1∑
s=1

vsx
∗
s, 0) ∈ ∂(−F )(x, yt) + rt∂f(x, yt) +

∂⟨ut, ψ2⟩(x, yt) +NΩ2(x, yt), (4.3)

for t = 1, . . . , n+ 1, ηt ≥ 0,
n+1∑
t=1

ηt = 1, (4.4)

for t = 1, . . . , n+ 1, ut ∈ NΛ2(ψ2(x, yt)). (4.5)

(ii) Let all the assumptions of Theorem 4.1 (ii) be satisfied. Then, for y ∈ S(x),
there exist γ and yt ∈ Spo (x), ηt, rt, β

t with t = 1, . . . , n + 1 such that relationships
(3.27) (with r := rt), (3.30) (with y := yt), (3.32) (with y := yt), (4.2) and (4.4),
together with the following conditions are satisfied:

for t = 1, . . . , n+ 1, x∗t ∈ ∂x(−F )(x, yt) + rt
(
∂xf(x, yt)− ∂xf(x, y)

)
+

p∑
i=1

βti∂xgi(x, yt)− rt

p∑
i=1

γi∂xgi(x, y), (4.6)

for t = 1, . . . , n+ 1, 0 ∈ ∂yF (x, yt) + rt∂yf(x, yt) +

p∑
i=1

βti∂ygi(x, yt), (4.7)

for t = 1, . . . , n+ 1; i = 1, . . . , p, βti ≥ 0, βtigi(x, yt) = 0. (4.8)

(iii) Let all the assumptions of Theorem 4.1 (iii) be satisfied. Then, there exist
ηt, rt, ut with t = 1, . . . , n + 1 such that that relationships (3.27) (with r := rt),
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(3.32) (with y := y), (3.34), (4.2) and (4.4), together with the following conditions are
satisfied:

for t = 1, . . . , n+ 1, (x∗t + rtx
∗
φ, 0) ∈ ∂(−F )(x, y) + rt∂f(x, y) +

p∑
i=1

βti∂gi(x, y),

for t = 1, . . . , n+ 1; i = 1, . . . , p, βti ≥ 0, βtigi(x, y) = 0, i = 1, . . . , p.

Proof. Combination of (3.35) (where φo is replaced by φp), (3.36) and the inclu-
sions in Theorem (4.1) (i), (ii) and (iii), respectively.

Remark 4.3 (the pessimistic bilevel programming problem in the smooth case).
If we assume that all the functions involved in the pessimistic bilevel programming
problem (Pp) are continuously differentiable while setting Ω1 := Rn, Λ1 := Rk−,
Ω2 := Rn × Rm and Λ2 := Rp−, the optimality conditions obtained in [7] are re-
covered by applying Corollary 4.2 . In the latter paper, where only smooth functions
are considered, the generalized equation and Karush-Kuhn-Tucker reformulations of
the pessimistic bilevel programming problem are also investigated. These two approach
lead to optimality conditions which are completely different from those obtained here.

Remark 4.4 (the minmax programming problem). Another consequence of The-
orem 4.1 is that, analogously to the discussion in the previous section, the sensitiv-
ity analysis of the classical maximization value function φp(x) := max

y
{F (x, y)| y ∈

K(x)} can also be obtained from that of the maximization two-level value φp (4.1),
by simply deleting the terms referring to the lower-level objective function and value
function while adjusting the assumptions. Proceeding like this in Corollary 4.2 while
setting Ω1 := Rn, Λ1 := Rk−, Ω2 := Rn×Rm and Λ2 := Rp−, we recover the optimality
conditions of the minmax programming problem derived in [24].
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