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ABSTRACT

For networks originated from dependent populations, methods to test network dif-
ferentiation between the two populations are generally designed incorporating the
nature of dependence. Doing so potentially complicates the inferencing process with
heavy computing burden. Through simulations, we assess the value of using compos-
ite likelihood to carry out network comparisons under different statuses of population
dependency. We apply the method to real-life epigenetic data and assess epigenetic
network stability over time.

KEYWORDS
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1. Introduction

Epigenetics encapsulates environmental influences and life changes and regulates gene
functions. One commonly studied epigenetic modification mechanism is DNA methyla-
tion. DNA methylation (DNA-m) is the process of chemical modification of the DNA
base, usually the addition of a methyl (CH3) group at 5'-carbon of pyrimidine ring of
cytosine nucleotide to the DNA to form 5-methylcytosine. Although most studies focus
on features of individual CpG sites, joint activities among CpGs have been recognized,
and the value of such joint activities on phenotypic characteristics has been suggested
[1]. In this article, we focus on such activities, from the perspective of networks formed
by CpG methylation sites.

Networks display the inter-connectivity of a set of entities, e.g., CpG sites, and are
useful in understanding the relationship between these entities referred to as nodes. The
connectivity of nodes (e.g., CpGs) in a network is indicated by the presence of an edge
or lack thereof. Edges transmit details about the links between the nodes. Networks are
generally classified as directed or undirected or a combination of the two. A directed
network is one in which the edges indicating the connections between two nodes carry
signals that drive the activities from one (parent) to the other (child). On the other
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hand, an undirected network is one that simply depicts an association or conditional
dependence between two nodes without an implied flow or direction of relationship. Our
focus in this work is on undirected Gaussian networks such that the connections between
nodes of a network are determined by a covariance matrix or a precision matrix inferred
based on observed variables (nodes) following a multivariate normal distribution.

Undirected Gaussian network structures between different conditions such as disease
status (independent networks) or at different time points (dependent networks) can be
differentiated. Methods to compare between independent networks have been proposed
in multiple studies. Gill et al. [2] suggested a procedure based on genetic associations
or interaction between genes to globally test differential undirected gene networks. An-
other approach to globally test network differentiation was proposed by Xia et al. [3],
designed based on estimating difference in precision matrices between two differential
undirected networks [4]. The work by Stédler et al. [5] was under a framework similar to
Zhao et al. [4]. A method to compare two graphs by comparing multivariate two-sample
means on known graphs using Hotelling’s T2-tests was proposed by Jacob et al. [6]. More
recently, He et al. [7], built upon inference of Gaussian graphic modeling and asymp-
totic normality of precision matrix components, proposed a test statistic to efficiently
compare two precision matrices. Approaches comparing between covariance matrices
can also be applied to compare agreement between two Gaussian undirected networks
constructed using precision matrices, e.g., the works by Cai et al. [§] and Chang et al.
[9]. To our knowledge, methods to compare dependent networks, on the other hand, are
relatively limited except for the manifest-data likelihood (MDL) method proposed by
Zhang et al. [I0]. MDL has the ability to infer the underlying shared network between
different time points as well as edges showing differentiation. However, the scalability
of the approach when the number of nodes is large, limited its scope of application.
This is potentially due to the complexity of the modeling to address dependence while
comparing networks. To this end, we propose a simplified approach aiming to enhance
computational efficiency. In particular, we adopt the concept of composite likelihood
for this purpose.

Composite likelihood (CL) is an inference function obtained by summing individual
component log-likelihood objects, regardless of their dependence status. The composite
likelihood function is unbiased because each component in the function is a conditional
density [I1]. Irrespective of the nature of dependence among the individual components,
each individual term in the summation is a valid log-likelihood, although a composite
likelihood may be for a misspecified model. Its high efficiency, particularly, computation-
wise and in modeling the joint distribution in high-dimensional response, as well as its
robustness to model misspecification makes it appealing [II]. Composite likelihood-
based methods have been proposed with varying applications, e.g., to infer ancestry
probability in genetic studies [12], or to estimate genetic and environmental covariance in
genome-wide association studies [I3]. For more on composite likelihood-based methods,
readers are referred to [ITJI4HIS]. In this article, we simplify Zhang et al's MDL method
by use of composite likelihood and examine the potential of this simplification in the
comparison of undirected Gaussian networks, dependent or independent.

The remainder of this paper is outlined as follows. Section 2 introduces the proposed
method. In section 3, simulations to demonstrate and evaluate the composite likelihood-
based approach are discussed, and we also compare our approach with the MDL via the
simulated data. In section 4, we apply the method to real-life epigenetic data and assess
epigenetic network stability over time. Finally, in section 5, we discuss and summarized
our work.
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2. Methods

Let X1, xp and Xy ,,xp represent two multivariate data sets with sample sizes nq
and ng, respectively, measured on P variables in two populations such that the data
are complete and have no missing values. These two populations could be dependent or
independent. Without loss of generality, we assume the data are centered. Let vec-
tor Xq; of length P denote data for subject i, ¢ = 1,...,n1, from population 1
and assume Xi; ~ N(0,%1), where ¥ is the covariance matrix of Xy;. Similarly,
X9 ~ N(0,%3),i = 1,...,n2. We define ), = E,;l, a precision matrix under popula-
tion k, k = 1,2. Denote X1 = {X11,..., X1, } and Xo = {Xo1,..., Xopn,}. When
X1; and X; are independent, the joint likelihood of €2, is defined as,

L(0,Q) = [[p(Xel%) (1)
k=1

= 11 ﬁp(in!Qk)

k=11i=1

2
= JJ@n) "D det ()™
k=1

exp <— i (n;) tr@xw,m%)) ;

k=1

where & x(1,1) and )y X(2,2) are the sample covariance matrices for populations 1 and
2, respectively. Note that becomes a composite or pseudo likelihood when the two
populations are dependent, in which case the likelihood focuses on each population
without accounting for the dependence between them. In the remainder of this article,
we simply call a composite likelihood.

The graph structures for the two populations can be concluded using 2; and €,
via binary adjacency matrices G1 and (s, respectively. An entry of 1 in Gy, k = 1,2,
denotes a connected edge and its corresponding entry of €2 is non-zero. An entry of 0 in
G indicates a disconnected edge in a graph, and € is zero at that entry. It is assumed
that a self-loop does not exist in any of the graphs, i.e., the diagonals of the adjacency
matrices are all 0’s.

2.1. Graphs differentiation between two populations

Network structures under different conditions can be identical or differential. To facili-
tate a comparison between networks for different populations, we introduce an indicator
variable  with 7 = 1 denoting two graphs being identical and n = 0 two graphs being
differential. When the underlying two graphs are identical, 2y = Q5 = €2, and conse-
quently, G; = G = G,. To incorporate both situations, we define Q%) = (1—n)Qx+n€,
and G = (1 — 1)Gy + nG., with both Q*) and G*) dependent on 7. Consequently,
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likelihood is revised to

1)

i :jg

2

ng/2

p(XulOum) = [J(@m) P det ()™
k=1

2
n N
exp <— > (;) tY(EX(k,k)Q(k))> :
k=1
and the focus is on inferring 7, and corresponding graph parameters Q*) and G*).

2.2. Inference on graph differentiation status between two conditions

Let wéfrzl ms) denote a unique entry of Q*) at (m1, mg) such that my < my =1,...,P.
Following the definition of Q®*), we have w((m)l ma) = = (1 = 0)Wk,(m1,ma) + MWe,(m1,ms)-
(k) (k)

(m1,mz2) (m1,ma) —
(1 = 1) Gk (mrsma) + Mey(mama)s M1 < my = 1,..., P. At (my,mg), g®, ) = 1if
nodes my and ms are connected, i.e., the corresponding entry of Q*) is non-zero, and
g(k)(ml ms) = 0 otherwise. Let © denote a collection of graphical parameters along with

Similarly, let g denote an entry of G*) at (mq,my), and we have g

the network differentiation status parameter n, © = {w(k), g® k=1, 2}, where w)
and g®) denote vectors composed of w((frzl ms) and g((frzl ma)’ respectively. We propose a

fully Bayesian approach to draw inferences on these parameters.

Prior distributions. For network constructions, we utilize established prior distri-

butions as in Zhang et al. [I0]. We assign the spike- and slab prior distribution [T9H2T]
(k)

to each Wimy ma)

with my 7& ma,

k (k
i) ol ) =gt N0 + (1= gl IN(0,12),

conditional on Q®) e M* with M™T denoting a space of positive definite matrices.
Hyper-parameters V%k and V&k are the variances in the two respective normal distri-
butions. The spike component, represented by the Gaussian distribution N (0, V&k), is
crucial for controlling sparsity, and the hyperparameter 1/37,{, reflect the expected spar-
sity of a graph. Here, we use the same hyperparameters for the two populations, i.e.
Vik = v? and yg’k = 12, assuming comparable sparsity in networks between the two
populations. With a large v?, the corresponding normal prior distribution is a vague
prior distribution, allowing a wide range of edge strength for each population. With 2
fixed and 1 selected based on sparsity level, we are able to control the overall sparsity
level in the two populations while allowing the two populations to have different number
of edges.
gfn)l’mm with my = mo = m, its prior, p(wgfn),m)
an exponential distribution with parameter \. We set A = 1 as suggested by Wang et
al. [22].

Bernoulli probability mass function with prior parameter = denoting ou(r a priori
k

) —

g(ml ,m2)

For parameters w ), is assumed to be

belief of two nodes being connected was used for the components in g, p(

*) _®
mImima) (1 — ) "9mma) my % my. We set 7 = O(2/(P — 1)) based on a common
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assumption on the expected number of edges, O(P), for sparse graphs [22/23]. Finally,
we assume a Bernoulli distribution with hyperparameter 0.5 for the prior mass function
of 1. We proposed this non-informative prior, as in most situations, we do not have
prior knowledge regarding network similarity. If we believe in any particular status over
the other, then an informative prior is preferred to reflect our prior belief and benefit
posterior inference, especially when the sample size is small and signal in the data is
weak.

The joint posterior distribution and its computation. Based on and the
defined prior distributions, we define the joint posterior distribution of © as

p(O1X) o [T p(X & |2®  )p(QP |0, g™)p(g™ 1n)p(n). (2)
k=1

We draw posterior inferences of © through Markov Chain Monte Carlo (MCMC)
simulations. In particular, we implement the Gibbs sampler to draw samples from the
full conditional posterior distribution of each parameter derived from . In the follow-
ing, we present these full conditional posterior distributions. We use (-) to represent a
collection of other parameters upon which a parameter is conditioned.

We begin with the conditional posterior probability of 1, the key parameter for net-
work differentiation and a fundamental parameter for subsequent graph structure infer-
ence. From 7 we have

2

p(77 = 1‘(),X) X Hp(Xk-|QCa77 = 17gc)p(77 = 1)' (3)
k=1

Following a comparable argument as in Zhang et al. [I0], under the composite likelihood
framework, it can be shown straightforwardly that

p(n=1|(-), X) = [1 + exp{log(b) — log(a) + A(n1,n2)}] 7" = p*(n = 1|()),

1 (4)
Alny,n2) = S (|E|log(n) — [E1|log(n1) — | E2|log(ne)),

where n = nj +ns, |E| represents the number of edges in an inferred network under the
condition that n = 1 and |Eg|, k = 1,2, is the number of edges in an inferred network
under the condition of n = 0. We define a and b as,
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Based on , the full conditional posterior distributions of parameters in Q*) can be
derived,

2
k k
pwi) (), X) kUl P(X 5k 12® )pwin) o0 g ),
2

(@it (), X) oc [T (X 1Q® mp(wih) 1),

k=1

where m=1,..., P, my <mgy, my,mg=1,..., P.
Similarly, the conditional posterior distributions of the parameters in graph structures
G®) can be derived,

2

k k
PG (). X) gp<xk.|9<k>,n>p<w(ml [T G s PG )

Hyper-parameters vy and vy, vy < vy, define the sparsity of a graph a priori. At a
fixed value of vy, the inclusion or exclusion of an edge can be controlled with varying
values of 1y where larger values of 1 leads to the inclusion of a smaller number of edges,
and on the other hand, smaller values of 1 leads to the inclusion of a larger number of
edges. The selection of 1 is crucial to the estimate of underlying graphs. In this article,
we follow the suggestion of Zhang et al. [I0] and choose the value of vy based on a
pre-specified level of sparsity. It was suggested that the starting value of 1y needs to be
small. Here, we set vy = 0.02.

3. Simulations
Through simulations, our goal is to evaluate the robustness of the composite-likelihood-

based approach in network comparisons with respect to different statuses of dependence
between two populations.



177

178
179
180

181

182
183
184

185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214

215
216
217
218
219
220
221
222
223

224

3.1. Network structures and settings

To assess the method, we consider two situations of relationships between two pop-
ulations: independence between two populations (S1), and dependence between two
populations (S2). For each situation, the networks for the two populations are either
truly identical or truly differential.

S1. Chain graphs, G; and Gs, are generated for each population independently, fol-
lowing the idea of Fan et al. [24]. We create a covariance matrix with a covariance
structure of auto-regressive process of order one for each network. In a covari-
ance matrix, the diagonal entries are 1’s and an off-diagonal entry {mj, ms =

1,...,Pmy # ma} is defined as exp{—al|sm, — Smy|} With S, — Sm,—1 g
Unif(0.5,1), my = 2,..., P, and 51 < s; < --- < sp, where a is a parameter

that determines the magnitude of link between two nodes and was set at a = 0.1.
Based on this method, the partial correlations resulting from the precision ma-
trices vary between —0.4 and 0.9. For networks that are truly identical, the same
precision matrix is applied to generate data for each population using multivariate
normal distribution with mean zero.

To generate differential networks, a chain graph for population 1 is defined as
above with corresponding precision matrix ;. For the second population, the
precision matrix €25 is formulated by forcing g — 1 consecutive entries of {21 to be
zero, we then generate data from each precision matrix for each population using
multivariate normal with mean zero.

S52. When generating two dependent networks, for identical networks, we first use the
method in S1 to generate two identical but independent chain networks, G; and
G>. To introduce dependence, we also generate a network, GGy, shared between the
two populations. The shared network is a nearest-neighbor network and generated
according to Li and Gui [25]. The generation of the shared network uses pairwise
distances between nodes, with each node generated from a Uniform distribution
on a [0,1] x [0,1] space. We identified ¢ nearest neighbors using the pairwise
distances, where we set £ = 2 in our simulations. Then, entries in the precision
matrix for each pair of connected nodes are generated based on the algorithm by
Li and Gui [25]. The diagonal entries are 1 in the resulting precision matrix while
the off-diagonal entries vary between -0.2 and 0.2 denoting low partial correlation
between the nodes. The data from the shared network were then added to the data
corresponding to G; and G5 to introduce dependence between the two populations.

For differential networks, the network for one population is a chain network
(G1) plus the shared network (Gy), and for the other population, it is only the
shared network. The shared graph is a nearest neighbor network as described
above under this dependent situation (S2).

For each of the above four settings, the number of nodes is set at P = 10 and P = 30. To
demonstrate finite sample properties, different sample sizes, n; = ny = n = 50, 100, 200
and 500 are considered. For each case, we generate 100 Monte Carlo (MC) replicates to
address sampling error.

To evaluate the convergence of posterior sampling, we ran four chains with diffused
starting values on multiple randomly selected MC replicates. After noticing fast conver-
gence (Figure in the Appendix as an illustration), for each of the 100 MC replicates,
we run 1,000 iterations, of which 700 iterations were used as burn-in, and the last 300
used to draw the inferences.

Model performances are assessed using four statistics, 1) empirical power (EP) of
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correct detection with respect to network comparison (identical or differential), 2) me-
dian proportion of true positives for edge connection (TP; sensitivity) in a network, 3)
median proportion of true negatives (TN; specificity) of a network, and 4) median pro-
portion of correct connections (CC) of edges. Correct connections combines information
from both sensitivity and specificity, and identifies edges with observed edge connection
statuses (connected or not connected) that is consistent with the true underlying net-
work structure. We also provide 95% empirical credible interval for each of the model
comparison statistics except for power.

3.2. Performance of the method

3.2.1. Findings when two populations are independent

We first discuss findings when the underlying two populations are independent. With 10
nodes (Table , when two networks are either truly identical or truly differential, the
powers to detect the underlying truth are high, at 100% for all sample sizes. Regarding
the quality of the inferred graphs, the proportions of true positives, true negatives, and
consequently, the overall correct connections are all high, regardless of the sample size
or the underlying network differentiation status. In Table[l|and throughout the findings
in this section, there is a pattern of slightly decreased proportions of true negatives as
sample sizes increase, e.g., 1.0 at n = 50 vs. 0.875 at n = 500 for identical networks,
which means more edges are falsely identified. This phenomenon is due to finite sample
properties analogous to what is commonly observed in hypothesis testing; as sample
size becomes large, there is a higher chance to reject the null hypothesis, even if the
null is true.

When increasing the number of nodes to P = 30, similar patterns as described above
are observed (Table. That is, the powers to detect the underlying truth are 100% for
all sample sizes, irrespective of the underlying truth. The proportions of TP, TN, and
CC are also high and comparable to those in Table

Overall, when the two populations are independent, for all the settings considered, the
patterns observed on the assessment of network differentiation and network inferences
are as expected, since population independence fits the underlying assumption in the
construction of the composite likelihood. The next subsection discusses results when
underlying two populations are truly dependent.

3.2.2. Findings when two populations are dependent

In this subsection, we use figures to describe the patterns when comparing findings
across different sample sizes and different number of nodes. Corresponding tables are in
the Appendix (Table and Table .

When two networks are from two dependent populations, the composite likelihood-
based method is promising with respect to the power of detecting underlying network
differentiation status (Figures and ), irrespective of the number of nodes. In
particular, when two networks are truly identical, the powers are high at or close to
100% for all sample sizes and different numbers of nodes, P = 10 and P = 30 (Figure
). When the underlying two networks are differential, the method shows high power,
at 100% for all sample sizes when P = 30. The power statistics are also 100% for larger
sample sizes, when P = 10, although the power is average for smaller sample sizes (46%
and 48% for n = 50 and n = 100, respectively) (Figure [2[ A).

Another robust finding is the high proportions of true negatives even when the sam-
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Table 1. Simulation results for independent networks with 10 nodes.

n  EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)
Underlying truth: identical networks (P=10 nodes, [Ex,| = [Ex,| = 9 edges)

50 100 1.0 (0.889, 1.0) 1.0 (0.958, 1.0) 0.989 (0.950, 1.0)
100 100 1.0 (0.915, 1.0)  0.986 (0.937, 1.0)  0.989 (0.944, 1.0)
200 100 1.0 (0.915, 1.0)  0.958 (0.882, 1.0)  0.967 (0.844, 1.0)
500 100 1.0 (0.915, 1.0)  0.875 (0.791, 0.944)  0.900 (0.822, 0.956)

Underlying truth: differential networks (P=10 nodes, [Ex,| =9, [Ex,| = 7 edges)

50 100 X;:1.0 (0.889, 1.0) 1.0 (0.958, 1.0) 1.0 (0.944, 1.0)
X5:1.0 (0.60, 1.0) 1.0 (0.963, 1.0 0.989 (0.933, 1.0)
100 100 X;:1.0 (0.880, 1.0) 1.0 (0.944, 1.0) 0.989 (0.956, 1.0)
X5:1.0 (0.9, 1.0) 1.0 (0.968, 1.0) 0.989 (0.972, 1.0)
200 100 X;: 1.0 (0.889, 1.0) 0.972 (0.909, 1.0)  0.967 (0.928, 1.0)
X5:1.0 (0.9, 1.0) ~ 0.988 (0.950, 1.0 0.989 (0.950, 1.0)
500 100 X;: 1.0 (0.889, 1.0) 0.861 (0.792, 0.944) 0.889 (0.828, 0.944)
X5:1.0 (0.9, 1.0) ~ 0.975 (0.913,1.0) ~ 0.978 (0.922, 1.0)

Table 2. Simulation results for independent networks with 30 nodes.

n EP
(%)

TP
(95% EI)

TN
(95% EI)

CC
(95% EI)

Underlying truth: identical networks (P = 30 nodes, [Ex, | =

[Ex,] = 29 edges)

50 100 0.983 (0.931, 1.0)  0.998 (0.991, 1.0) 0.997 (0.988, 1.0)
100 100 0.983 (0.948, 1.0)  0.994 (0.991, 1.0) 0.995 (0.991, 0.999)
200 100 0.983 (0.948, 1.0)  0.992 (0.983, 0.998) 0.991 (0.983, 0.997)
500 100 0.983 (0.948, 1.0)  0.968 (0.956, 0.980) 0.969 (0.957, 0.980)

Underlying truth: differential networks (P = 30 nodes, [Ex,| = 29, [Ex,| = 27 edges)

50 100 X;:0.983 (0.931,1.0) 0.998 (0.993, 1.0)  0.997 (0.9, 1.0)
X5:0.967 (0.867, 1.0)  0.998 (0.995, 1.0)  0.997 (0.992, 1.0)
100 100 X;:0.983 (0.948, 1.0) 0.998 (0.991, 1.0)  0.997 (0.99, 0.999)
X5:1.0 (0.933, 1.0) ~ 0.998 (0.993,1.0)  0.998 (0.993, 1.0)
200 100  X;:0.983 (0.939, 1.0) 0.993 (0.985, 0.999)  0.992 (0.984, 0.998)
X,:1.0 (0.933, 1.0) ~ 0.996 (0.991, 1.0) ~ 0.996 (0.99, 0.999)
500 100 X;:0.983 (0.939, 1.0)  0.969 (0.956, 0.981) 0.971 (0.958, 0.982)
X,:1.0 (0.933, 1.0) ~ 0.989 (0.981, 0.996) 0.989 (0.98, 0.996)

ple size is small (Figures and [2C). Together with the relatively lower proportions
of true positives (Figures [IB and [2B), the findings indicate the conservativeness of the
method when claiming an edge. For the proportions of true positives, although they are
lower than those observed when underlying populations are independent, they increase
as the sample sizes increase. The high proportions of true negatives and relatively rea-
sonable proportions of true positives result in overall acceptable proportions of correct
connections (Figures[[D and 2D).

Here, we would like to delve a little deeper into the relatively low proportions of true
positives when two populations are dependent. We use the setting when two graphs
are truly differential as an example to lay out our discussion. Recall that the networks
represented by X; are a combination of Gy (unique network) and Gy (shared network)
while the networks by X5 are G only. We observe that the proportions of true positives
for networks corresponding to Xo are higher than those for graphs corresponding to
X;. This phenomenon is likely due to the scenarios implemented to simulate dependent
networks since the assumed underlying truth G; 4+ G for X7, and thus lower proportions
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Figure 1. Model assessment statistics when two dependent networks are identical. When
P = 10, the number of edges are Go=9 and G;=G2=9. When P = 30, the number of
edges of Gp=26 and G1=G>=29.

of true positives are concluded for networks corresponding to X;. However, given the
increased proportions of true positives for X5 with Gy as the underlying truth, we
expect the proposed approach has a strong potential to correctly infer the underlying
true graph determined by €21 + g, which is likely not a simple addition of G1 and Gy. In
addition, this observation leads to an interesting direction of future work while enjoying
the simplicity and robustness of the composite likelihood framework. That is, when two
populations are potentially dependent, to what extent we are able to learn the shared
network.

3.2.3. Comparison of the performance of CL and MDL

Via simulations, to further assess the performance of the composite likelihood (CL)-
based approach, we compare the findings with those from the MDL approach in Zhang
et al. [T0] The simulated data are the 100 Monte Carlo replicates based on the settings
outlined in Section at n = 50 and the same statistics (power, proportions of TP,
TN, and CC) are used to compare the two approaches.

Results for the CL-based approach (or CL for simplicity) are in Table [I| (P = 10)
and Table [2[ (P = 30) with n = 50 and the results for MDL-based methods (or MDL
for simplicity) are in Table [3| (independent populations) and Table 4| (dependent popu-
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Figure 2. Model assessment statistics when two dependent networks are differential.
When P = 10, the number of edges of G; = 9, and that of Gog = 9. When P = 30, the
number of edges of G; = 29, and that of Gy = 26.

lations).

When two networks are independent, regardless of the number of nodes and net-
work differentiation status (identical or differential), the CL-based method outperforms
the MDL-based approach (Tables 1] and . The power to detect the underlying dif-
ferentiation status under CL is always at least as high as that from the MDL-based
approach (Tables [1] and . With respect to network construction based on CL, most
statistics (the median proportions of TP, TN and CC) are higher than 0.95 and all
statistics are higher than 0.85; overall, these statistics are much better than those from
the MDL-based approach.

Under the situation of two dependent populations, with P = 10, when the two
networks are truly identical, CL shows a much higher power than MDL to detect the
underlying truth of network differentiation, 100% from CL (Figure and Appendix
Table vs 20% from MDL (the first row of Table [])). When the two networks
are truly differential, MDL outperforms CL, 100% for MDL (second row of Table )
and 46% for CL ) However, as seen in Figure , the power of CL to detect the
underlying truth quickly increases as sample sizes increase. When P = 30, regardless
of the network differentiation status (identical or differential), the power of CL is much
higher than that from MDL when the two networks are identical and comparable to
that from MDL for differential networks.
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As for graph inference under the situation of dependent populations, the proportions
of TP and CC from CL are relatively lower than those from MDL, leading to relatively
higher proportions of TN under CL. The underlying cause of such phenomena is likely
to be the same as that noted for the situation when two populations are independent,
i.e., MDL has the capacity to address shared networks. This point is especially clearer
when we look at the graph inference statistics for X5. The underlying true graph for
X3 is Gy, the shared graph. As shown in Figure |2, even at n = 50, the inferences of the
graph for Xs from CL are better than those for X;. However, this is not the case for
MDL as seen in Table[d] when two networks are differential. The much lower proportions
of TP and higher proportions of TN from MDL for X5 compared to those for X; are
actually as expected, simply because the true graph on top of the shared graph GO is
an empty graph. On the other hand, the graph inference statistics for X; from MDL
overall outperform those from CL at n = 50, which indicates a better fit of MDL for
graph inferences when two populations are potentially dependent.

Table 3. Select comparative results for independent networks using the MDL method

n EP TP TN CC

(%) (95% EI) (95% EI) (95% EI)
Underlying truth: identical networks (P = 10 nodes, [Ex, | = [Fx,] = 9 edges)
50 96 1.0 (0.778,1.0)  0.833 (0.012, 0.988) 0.867 (0.209, 0.991)

Underlying truth: differential networks (P = 10 nodes, [Ex,| = 9, [Ex,| = 7 edges)
50 85 X;:1.0 (0.828,1.0)  0.833 (0.056, 0.972) 0.867 (0.244, 0.978)

X5: 1.0 (0.8, 1.0) 0.9 (0.05, 1.0) 0.911 (0.156, 1.0)
Underlying truth: identical networks (P = 30 nodes, [Ex, | = [Ex,| = 27 edges)
5 95 0.966 (0.897, 1.0) 0.443 (0.007, 0.581) 0.474 (0.073, 0.605)

Underlying truth: differential networks (P = 30 nodes, [Ex,| = 29, [Ex,| = 27 edges)
50 99  X;:0.966 (0.897, 1.0) 0.438 (0.008, 0.605) 0.476 (0.074, 0.627)
Xo: 1.0 (0.867, 1.0) 0.602 (0.012, 0.728) 0.616 (0.046, 0.737)

Table 4. Select comparative results for dependent networks using the MDL method

n EP TP TN CC

(%) (95% EI) (95% EI) (95% EI)
Underlying truth: identical networks (P = 10 nodes, [Ex, | = [Fx,] = 29 edges)
50 20 0.5 (0.167, 0.75) 0.879 (0.758, 0.97)  0.778 (0.644, 0.889)

Underlying truth: differential networks (P = 10 nodes, [Ex,[ = 9, [Ex,| = 7 edges)
50 100  Xi:0.412 (0.294, 0.578) 0.857(0.0, 0.964)  0.688 (0.578, 0.8)

X,:0.111 (0.0, 0.222) ~ 0.972 (0.0, 1.0) 0.8 (0.733, 0.822)
Underlying truth: identical networks (P = 30 nodes, [Ex, | = 29, [Fx,| = 27 edges)
50 16 0.404 (0.308, 0.962) 0.950 (0.110, 0.971) 0.880 (0.212, 0.908)

Underlying truth: differential networks (P = 30 nodes, [Ex,| = 29, [Ex,| = 27 edges)
50 99  X;:0.389 (0.315, 0.919) 0.953 (0.136, 0.971) 0.880 (0.265, 0.909)
X5:0.038 (0.0, 1.0) 0.972 (0.101, 0.995) 0.915 (0.179, 0.938)

3.3. Comparison of computing times between CL and MDL

To examine the efficiency of the proposed CL approach in network comparison, data
simulated under scenario S2 with n = 50, 100, 200, 500, and P = 10 are used. The time
spent in one iteration is recorded and compared to that of MDL. Regardless of the
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sample size, the CL approach only needs less than one-third of the computing time,
compared to if dependency is incorporated into the calculations as in the MDL method

(Figure 3]A and BB).
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Figure 3. Computing times of CL vs. MDL. (A) shows the times for independent graphs
with 10 nodes. (B) shows the times for dependent graphs with 10 nodes.

4. Application to real-life data

4.1. Background of the data

The study was motivated by the potentially joint activities among CpG sites and changes
of such activities over time, as noted in the introduction section. By applying the pro-
posed method (CL) to DNA-m at certain CpG sites, we demonstrate the performance
of CL and compare the results with those from MDL [I0].

DNA-m data measured in a birth cohort established in 1989-1990 on the Isle of Wight,
United Kingdom, are analyzed [26]. In particular, DNA-m at 22 CpG sites at ages 10,
18, and 26 years examined in Zhang et al. [10] are included in this study and we compare
network differentiation between ages 10 and 26 (n=171) using the CL-based approach.
During adolescence, children experience substantial changes mentally and physically,
and we expect to observe network differentiation between these two ages.

We use the methods proposed in Section to draw inferences on the parameters of
the model, including network comparisons. To tune vy based on sparsity level, following
our assumption, the lower bound on the number of edges is set at O(P)=22, and the
upper bound is relaxed to the number of possible edges from 22 nodes, i.e., 231 as
the upper bound. To draw posterior inferences, in total, 1,000 iterations are run in the
Gibbs sampler with 500 as burn-in iterations. Running longer chains does not change
our conclusion, indicating potential convergence.

4.2. Results

With the CL-based approach, the estimated probability that the networks are differen-
tial between ages 10 and 26 is 0.994, strongly supporting network changes from pre- to
post-adolescence. Most of the 16 edges identified at age 10 years were kept at age 26
years with new edges detected at age 26 years within (e.g., gene GFI1) and between
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Table 5. The 22 CpG sites considered from IOW Cohort

Chr Gene CpG CpG Index

1 GFI1 cg06338710 1
cg09662411 2

cg09935388 3

cg10399789 4

cg12876356 5

cgl14179389 6

cgl18146737 7

cgl18316974 8

5 AHRR cg05575921 9
6 HLA-DPB2 cgl1715943 10
7 CNTNAP2 ¢g25949550 11
ENSG00000225718  cg04598670 12
MYO1G cg04180046 13
cg12803068 14

cg19089201 15

8 EXT1 cg03346806 16
14 TTC7B cg18655025 17
15 CYP1A1 cg05549655 18
cg11924019 19

cg18092474 20

€g22549041 21

21 RUNXI1 cg12477880 22

Note: “Chr” denotes the chromosome location of CpG

genes (Figure [, indicating potential impact of adolescence transition on epigenetic
activities.

On the other hand, the long duration between these two ages may also contribute to
the detected network differentiation. That is, with more than 15 years apart from pre-
adolescence to post-adolescence, epigenetic changes following adolescence transition are
likely to be more pronounced, thus making it easier for the CL-based approach to detect
such changes. To evaluate this postulation, we assess network differentiation between
ages 10 and 18 years (n = 325). The estimated probability of network differentiation
is 0.102, suggesting that it is more likely that the two networks are identical rather
than differential. This finding differs from that in Zhang et al. but is consistent with
our postulation and the results of our simulations. The Cl-based approach overall has
lower power compared to MDL when two dependent networks are truly differential.
At age 18 years, changes in epigenetic activities with respect to age 10 are potentially
not as prominent and established as that at age 26 years, and thus the CL- but not
ML-based approach has difficulty to detect such differentiation. However, when two
populations are dependent, the CL is superior to the MDL approach as demonstrated
by our extensive simulations.

5. Discussion and conclusion

This work proposes a composite likelihood (CL)-based approach to compare networks
between two populations that could be dependent or independent. The CL-based ap-
proach is designed based on the method proposed by Zhang et al. [10], which is par-
ticularly for dependent networks. Simulations and real-data applications are applied to
demonstrate and evaluate the CL-based method.

Simulations demonstrate that the method is powerful in detecting the underlying
truth when two networks are under independent conditions, irrespective of the graphs’
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Figure 4. Networks estimated at ages 10 and 26 years, respectively. (A) Age 10 years
(16 edges). (B) Age 26 years (22 edges). The thick, darker lines indicate links that are
different between the two networks.

differential status. This is as expected and fits the underlying assumption of the proposed
approach. When two networks are from two dependent populations, the potential of the
composite likelihood approach to detect underlying network differentiation is high and
comparable overall to the situation when two populations are independent, except for
dependent graphs with a relatively small number of nodes and relatively small sample
sizes.

When comparing the performances of the CL- and MDL-based methods, particularly
when networks are from two independent populations, the CL-based method outper-
forms MDL in terms of both the power of detecting network differentiation and the
quality of graph constructions. Under the situation of two dependent populations, when
the two networks are identical, compared to the MDL-based method, the CL-based ap-
proach has a much higher power to detect the underlying truth of network differentiation
even when the sample size is small. When the two networks are truly differential, spar-
sity level of a graph seems to affect the performance of the CL-based approach. Sparsity
level is defined as the number of edges divided by the number of possible edges; the
smaller the number, the higher the sparsity level is. The CL-based approach has a lower
power compared to the MDL-based method when sample size is small if networks are
less sparse, e.g., when the number of nodes is 10, the sparsity levels of the two networks
are 9/45=0.2 and 18/45=0.4, respectively. However, when the sparsity level is relatively
high (e.g., at P = 30, the sparsity levels are 0.06 and 0.13 for the two networks), the
power of detecting underlying differentiation is extremely high and consistent with that
from the MDL-based method. This is understandable, since the CL-based approach
does not consider shared background as in the MDL and more noise is introduced into
the comparison when network sparsity level is low (less sparse), consequently causing
difficulty to differentiate between two networks if sample sizes are small. Notably, such
inferiority is substantially reduced when the sample size is increased.

Our real data applications support the findings in simulations. That is, when two
dependent networks are truly differential, the MDL-based approach is more powerful
to detect the underlying truth compared to the Cl.-based method, in that CL was able
to detect network changes between ages 10 and 26 but not between 10 and 18 years.
These real data applications, accompanied by findings in the simulations, indicate that
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the CL-based method has its value in the detection of underlying network differentia-
tion. Since CL requires stronger “signal” when underlying dependent networks are truly
differential, if CL concludes a high probability of network differentiation, then it is very
likely that the finding reveals the underlying truth. As such, when two populations are
independent, we would still suggest the CL method over the MDL approach due to its
computing efficiency. When two populations are dependent, the CL method can be used
as a “screening” technique; if CL shows two networks are differential, then the MDL
can be utilized to obtain more detailed information including assessment of network
differentiation, estimate of shared network, along with the different network structures
unique to each population. An effort to improve the power of the CL-based method when
two populations are dependent, while maintaining its computing efficiency, is certainly
along the line of future work.

In our method, we focus on a non-informative prior for graph comparison in order to
be as objective as possible. However, when the sample size is small and/or the signal in
the data is likely to be weak, non-informative priors may cause difficulty to differentiate
between two graphs even if the two networks are truly differential. In such situations,
prior knowledge or belief will be highly appreciated and benefit posterior inferences. This
consideration of prior distribution assignment is also applicable to graph constructions.

Furthermore, as noted in our simulations, the proposed CL-based approach has diffi-
culty to handle underlying shared graphs between two dependent populations. Since the
focus of our work is on detecting network differentiation, addressing the role of shared
graphs is not within the scope of the present study. However, it can be a promising
future research direction under the framework of composite likelihood. If successful, we
do not have to rely on complex modeling for dependence between populations and will
achieve both computing efficiency and graph inference with sound quality. One way is
to incorporate a modeling explicitly for the shared graph between two populations using
composite likelihood, but a careful design is needed to model the networks in the two
populations on top of the shared graphs.
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Appendix

si5. A. Model assessment statistics for dependent networks

Table A.1. Simulation results for dependent networks with 10 nodes

n  EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)
Underlying truth: identical networks (P=10 nodes, [Ex,| = [Ex,| = 9 edges)
50 100 0.167 (0.167, 0.333) 1.0 (0.970, 1 0) 0.778 (0.756, 0.817)
100 100 0.333 (0.167, 0.417) 1.0 (0.970, 1.0) 0.778 (0.756, 0.817)
200 100 0.5 (0.333, 0.5) 1.0 (0.970, 1.0) 0.856 (0.816, 0.867)
500 100 0.5 (0.458, 0.583) 1.0 (0.970, 1.0)  0.867 (0.844, 0.889)
Underlying truth: differential networks (P=10 nodes [Ex,] =9, [Ex,| = 9 edges)
50 46 X;:0.117 (0.059, 0.235) 1.0 (0.964, 1. 0) 0.667 (0.633, 0.7)
X5:0.222 (0.111, 0.444) 1.0 (0.972, 1.0)  0.844 (0.805, 0.889)
100 48  X;:0.25 (0.14, 0.25) 1.0 (0.966, 1.0)  0.722 (0.689, 0.733)
Xo: 0.444 (0.222, 0.667) 1.0 (0.972, 1.0)  0.878 (0.839, 0.922)
200 100 X;:0.235 (0.132, 0.294) 1.0 (0.973, 1.0)  0.711 (0.667, 0.733)
X»: 0.556 (0.333, 0.778) 1.0 (0.972, 1.0) 0.9 (0.867, 0.933)
500 100 X;:0.294 (0.235, 0.353) 0.982 (0.947, 1.0) 0.711 (0.683, 0.750)
X,: 0.889 (0.5, 1.0) 1.0 (0.972,1.0) ~ 0.967 (0.933, 1.0)

Table A.2. Simulation results for dependent networks with 30 nodes

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)
Underlying truth: identical networks (P=30 nodes, [Ex,| = [Ex,| = 29 edges)
50 93 0.115 (0.077, 0.154)  0.997 (0.993, 1.0)  0.802 (0.885, 0.897)
100 98 0.231 (0.173, 0.269)  0.995 (0.989, 0.999) 0.902 (0.895, 0.91)
200 100 0.269 (0.24, 0.327)  0.997 (0.991, 1.0) 0.911 (0.904, 0.917)
500 100 0.298 (0.269, 0.327)  0.999 (0.994, 1.0) 0.915 (0.91, 0.92)
Underlying truth: differential networks (P=30 nodes, [Ex, [ = 29, [Ex,| = 29 edges)
50 100 Xi:0.056 (0.019, 0.093) 0.997 (0.992, 1.0) " 0.88 (0.874, 0.887)
Xo:0.231 (0.115, 0.346)  0.998 (0.994, 1.0)  0.951 (0.944, 0.957)
100 100 X,:0.148 (0.093, 0.185) 0.993 (0.988, 0.999) 0.889 (0.88, 0.897)
X, 0.423 (0.308, 0.577)  0.995 (0.991, 0.999)  0.962 (0.953, 0.973)
200 100  X;:0.204 (0.153, 0.269) 0.993 (0.988, 0.998) 0.894 (0.886, 0.905)
X5:0.769 (0.615, 0.885)  0.999 (0.995, 1.0) 0.983 (0.976, 0.993)
500 100 X;:0.241 (0.204, 0.269) 0.997 (0.991, 1.0) 0.903 (0.896, 0.913)
X,:0.942 (0.826, 1.0)  0.999 (0.995, 1.0)  0.994 (0.987, 1.0)
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B. Trace plots assessing convergence
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Figure B.1. Trace plots of posterior samples for the diagonal elements of a precision ma-
trix (£21) with 10 nodes. (A) corresponds to the first diagonal element. (B) corresponds

to the second diagonal element, and so on.
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