

A Composite Likelihood Approach to Gaussian Network Differentiation with Application to Epigenetics

James Adefisoye, PhD¹, S Hasan Arshad, PhD^{2,3} and Hongmei Zhang, PhD¹

¹Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA

²Allergy and Clinical Immunology Department, University of Southampton, Southampton, U.K.

³The David Hide Asthma and Allergy Research Centre, Isle of Wight, U.K.

ARTICLE HISTORY

Compiled October 10, 2025

ABSTRACT

For networks originated from dependent populations, methods to test network differentiation between the two populations are generally designed incorporating the nature of dependence. Doing so potentially complicates the inferencing process with heavy computing burden. Through simulations, we assess the value of using composite likelihood to carry out network comparisons under different statuses of population dependency. We apply the method to real-life epigenetic data and assess epigenetic network stability over time.

KEYWORDS

Undirected network, dependent network comparisons, network differentiation, MCMC, Bayesian methods, DNA methylation, composite likelihood.

1. Introduction

Epigenetics encapsulates environmental influences and life changes and regulates gene functions. One commonly studied epigenetic modification mechanism is DNA methylation. DNA methylation (DNA-m) is the process of chemical modification of the DNA base, usually the addition of a methyl (CH₃) group at 5'-carbon of pyrimidine ring of cytosine nucleotide to the DNA to form 5-methylcytosine. Although most studies focus on features of individual CpG sites, joint activities among CpGs have been recognized, and the value of such joint activities on phenotypic characteristics has been suggested [1]. In this article, we focus on such activities, from the perspective of networks formed by CpG methylation sites.

Networks display the inter-connectivity of a set of entities, e.g., CpG sites, and are useful in understanding the relationship between these entities referred to as nodes. The connectivity of nodes (e.g., CpGs) in a network is indicated by the presence of an edge or lack thereof. Edges transmit details about the links between the nodes. Networks are generally classified as directed or undirected or a combination of the two. A directed network is one in which the edges indicating the connections between two nodes carry signals that drive the activities from one (parent) to the other (child). On the other

29 hand, an undirected network is one that simply depicts an association or conditional
30 dependence between two nodes without an implied flow or direction of relationship. Our
31 focus in this work is on undirected Gaussian networks such that the connections between
32 nodes of a network are determined by a covariance matrix or a precision matrix inferred
33 based on observed variables (nodes) following a multivariate normal distribution.

34 Undirected Gaussian network structures between different conditions such as disease
35 status (independent networks) or at different time points (dependent networks) can be
36 differentiated. Methods to compare between independent networks have been proposed
37 in multiple studies. Gill et al. [2] suggested a procedure based on genetic associations
38 or interaction between genes to globally test differential undirected gene networks. An-
39 other approach to globally test network differentiation was proposed by Xia et al. [3],
40 designed based on estimating difference in precision matrices between two differential
41 undirected networks [4]. The work by Städler et al. [5] was under a framework similar to
42 Zhao et al. [4]. A method to compare two graphs by comparing multivariate two-sample
43 means on known graphs using Hotelling's T^2 -tests was proposed by Jacob et al. [6]. More
44 recently, He et al. [7], built upon inference of Gaussian graphic modeling and asymp-
45 totic normality of precision matrix components, proposed a test statistic to efficiently
46 compare two precision matrices. Approaches comparing between covariance matrices
47 can also be applied to compare agreement between two Gaussian undirected networks
48 constructed using precision matrices, e.g., the works by Cai et al. [8] and Chang et al.
49 [9]. To our knowledge, methods to compare dependent networks, on the other hand, are
50 relatively limited except for the manifest-data likelihood (MDL) method proposed by
51 Zhang et al. [10]. MDL has the ability to infer the underlying shared network between
52 different time points as well as edges showing differentiation. However, the scalability
53 of the approach when the number of nodes is large, limited its scope of application.
54 This is potentially due to the complexity of the modeling to address dependence while
55 comparing networks. To this end, we propose a simplified approach aiming to enhance
56 computational efficiency. In particular, we adopt the concept of composite likelihood
57 for this purpose.

58 Composite likelihood (CL) is an inference function obtained by summing individual
59 component log-likelihood objects, regardless of their dependence status. The composite
60 likelihood function is unbiased because each component in the function is a conditional
61 density [11]. Irrespective of the nature of dependence among the individual components,
62 each individual term in the summation is a valid log-likelihood, although a composite
63 likelihood may be for a misspecified model. Its high efficiency, particularly, computa-
64 tion-wise and in modeling the joint distribution in high-dimensional response, as well as its
65 robustness to model misspecification makes it appealing [11]. Composite likelihood-
66 based methods have been proposed with varying applications, e.g., to infer ancestry
67 probability in genetic studies [12], or to estimate genetic and environmental covariance in
68 genome-wide association studies [13]. For more on composite likelihood-based methods,
69 readers are referred to [11,14–18]. In this article, we simplify Zhang et al.'s MDL method
70 by use of composite likelihood and examine the potential of this simplification in the
71 comparison of undirected Gaussian networks, dependent or independent.

72 The remainder of this paper is outlined as follows. Section 2 introduces the proposed
73 method. In section 3, simulations to demonstrate and evaluate the composite likelihood-
74 based approach are discussed, and we also compare our approach with the MDL via the
75 simulated data. In section 4, we apply the method to real-life epigenetic data and assess
76 epigenetic network stability over time. Finally, in section 5, we discuss and summarized
77 our work.

78 **2. Methods**

79 Let $\mathbf{X}_{1,n_1 \times P}$ and $\mathbf{X}_{2,n_2 \times P}$ represent two multivariate data sets with sample sizes n_1
80 and n_2 , respectively, measured on P variables in two populations such that the data
81 are complete and have no missing values. These two populations could be dependent or
82 independent. Without loss of generality, we assume the data are centered. Let vec-
83 tor \mathbf{X}_{1i} of length P denote data for subject i , $i = 1, \dots, n_1$, from population 1
84 and assume $\mathbf{X}_{1i} \sim N(0, \Sigma_1)$, where Σ_1 is the covariance matrix of \mathbf{X}_{1i} . Similarly,
85 $\mathbf{X}_{2i} \sim N(0, \Sigma_2)$, $i = 1, \dots, n_2$. We define $\Omega_k = \Sigma_k^{-1}$, a precision matrix under popula-
86 tion k , $k = 1, 2$. Denote $\mathbf{X}_{1\cdot} = \{\mathbf{X}_{11}, \dots, \mathbf{X}_{1n_1}\}$ and $\mathbf{X}_{2\cdot} = \{\mathbf{X}_{21}, \dots, \mathbf{X}_{2n_2}\}$. When
87 \mathbf{X}_{1i} and \mathbf{X}_{2i} are independent, the joint likelihood of Ω_k , is defined as,

$$\begin{aligned} \mathcal{L}(\Omega_1, \Omega_2) &= \prod_{k=1}^2 p(\mathbf{X}_{k\cdot} | \Omega_k) \\ &= \prod_{k=1}^2 \prod_{i=1}^{n_k} p(\mathbf{X}_{ki} | \Omega_k) \\ &= \prod_{k=1}^2 (2\pi)^{-P(n_k/2)} \det(\Omega_k)^{n_k/2} \\ &\quad \exp \left(-\sum_{k=1}^2 \left(\frac{n_k}{2} \right) \text{tr}(\hat{\Sigma}_{X(k,k)} \Omega_k) \right), \end{aligned} \quad (1)$$

88 where $\hat{\Sigma}_{X(1,1)}$ and $\hat{\Sigma}_{X(2,2)}$ are the sample covariance matrices for populations 1 and
89 2, respectively. Note that (1) becomes a composite or pseudo likelihood when the two
90 populations are dependent, in which case the likelihood focuses on each population
91 without accounting for the dependence between them. In the remainder of this article,
92 we simply call (1) a composite likelihood.

93 The graph structures for the two populations can be concluded using Ω_1 and Ω_2
94 via binary adjacency matrices G_1 and G_2 , respectively. An entry of 1 in G_k , $k = 1, 2$,
95 denotes a connected edge and its corresponding entry of Ω_k is non-zero. An entry of 0 in
96 G_k indicates a disconnected edge in a graph, and Ω_k is zero at that entry. It is assumed
97 that a self-loop does not exist in any of the graphs, i.e., the diagonals of the adjacency
98 matrices are all 0's.

99 **2.1. Graphs differentiation between two populations**

100 Network structures under different conditions can be identical or differential. To facil-
101 itate a comparison between networks for different populations, we introduce an indicator
102 variable η with $\eta = 1$ denoting two graphs being identical and $\eta = 0$ two graphs being
103 differential. When the underlying two graphs are identical, $\Omega_1 = \Omega_2 = \Omega_c$, and conse-
104 quently, $G_1 = G_2 = G_c$. To incorporate both situations, we define $\Omega^{(k)} = (1-\eta)\Omega_k + \eta\Omega_c$,
105 and $G^{(k)} = (1-\eta)G_k + \eta G_c$, with both $\Omega^{(k)}$ and $G^{(k)}$ dependent on η . Consequently,

106 likelihood (1) is revised to

$$\prod_{k=1}^2 \prod_{i=1}^{n_k} p(\mathbf{X}_{ki} | \Omega_k, \eta) = \prod_{k=1}^2 (2\pi)^{-P(n_k/2)} \det \left(\Omega^{(k)} \right)^{n_k/2} \exp \left(-\sum_{k=1}^2 \left(\frac{n_k}{2} \right) \text{tr}(\hat{\Sigma}_{X(k,k)} \Omega^{(k)}) \right),$$

107 and the focus is on inferring η , and corresponding graph parameters $\Omega^{(k)}$ and $G^{(k)}$.

108 2.2. Inference on graph differentiation status between two conditions

109 Let $\omega_{(m_1, m_2)}^{(k)}$ denote a unique entry of $\Omega^{(k)}$ at (m_1, m_2) such that $m_1 \leq m_2 = 1, \dots, P$.
110 Following the definition of $\Omega^{(k)}$, we have $\omega_{(m_1, m_2)}^{(k)} = (1 - \eta)\omega_{k, (m_1, m_2)} + \eta\omega_{c, (m_1, m_2)}$.
111 Similarly, let $g_{(m_1, m_2)}^{(k)}$ denote an entry of $G^{(k)}$ at (m_1, m_2) , and we have $g_{(m_1, m_2)}^{(k)} =$
112 $(1 - \eta)g_{k, (m_1, m_2)} + \eta g_{c, (m_1, m_2)}$, $m_1 \leq m_2 = 1, \dots, P$. At (m_1, m_2) , $g_{(m_1, m_2)}^{(k)} = 1$ if
113 nodes m_1 and m_2 are connected, i.e., the corresponding entry of $\Omega^{(k)}$ is non-zero, and
114 $g_{(m_1, m_2)}^{(k)} = 0$ otherwise. Let Θ denote a collection of graphical parameters along with
115 the network differentiation status parameter η , $\Theta = \{\boldsymbol{\omega}^{(k)}, \mathbf{g}^{(k)}, \eta, k = 1, 2\}$, where $\boldsymbol{\omega}^{(k)}$
116 and $\mathbf{g}^{(k)}$ denote vectors composed of $\omega_{(m_1, m_2)}^{(k)}$ and $g_{(m_1, m_2)}^{(k)}$, respectively. We propose a
117 fully Bayesian approach to draw inferences on these parameters.

118 **Prior distributions.** For network constructions, we utilize established prior distri-
119 butions as in Zhang et al. [10]. We assign the spike-and-slab prior distribution [19–21]
120 to each $\omega_{(m_1, m_2)}^{(k)}$ with $m_1 \neq m_2$,

$$p(\omega_{(m_1, m_2)}^{(k)} | g_{(m_1, m_2)}^{(k)}) = g_{(m_1, m_2)}^{(k)} N(0, \nu_{1,k}^2) + (1 - g_{(m_1, m_2)}^{(k)}) N(0, \nu_{0,k}^2),$$

121 conditional on $\Omega^{(k)} \in \mathcal{M}^+$ with \mathcal{M}^+ denoting a space of positive definite matrices.
122 Hyper-parameters $\nu_{1,k}^2$ and $\nu_{0,k}^2$ are the variances in the two respective normal distri-
123 butions. The spike component, represented by the Gaussian distribution $N(0, \nu_{0,k}^2)$, is
124 crucial for controlling sparsity, and the hyperparameter $\nu_{0,k}^2$, reflect the expected spar-
125 sity of a graph. Here, we use the same hyperparameters for the two populations, i.e.
126 $\nu_{1,k}^2 = \nu_1^2$ and $\nu_{0,k}^2 = \nu_0^2$, assuming comparable sparsity in networks between the two
127 populations. With a large ν_1^2 , the corresponding normal prior distribution is a vague
128 prior distribution, allowing a wide range of edge strength for each population. With ν_1^2
129 fixed and ν_0^2 selected based on sparsity level, we are able to control the overall sparsity
130 level in the two populations while allowing the two populations to have different number
131 of edges.

132 For parameters $\omega_{(m_1, m_2)}^{(k)}$ with $m_1 = m_2 = m$, its prior, $p(\omega_{(m,m)}^{(k)})$, is assumed to be
133 an exponential distribution with parameter λ . We set $\lambda = 1$ as suggested by Wang et
134 al. [22].

135 Bernoulli probability mass function with prior parameter π denoting our a priori
136 belief of two nodes being connected was used for the components in $\mathbf{g}^{(k)}$, $p(g_{(m_1, m_2)}^{(k)}) =$
137 $\pi^{g_{(m_1, m_2)}^{(k)}} (1 - \pi)^{1 - g_{(m_1, m_2)}^{(k)}}$, $m_1 \neq m_2$. We set $\pi = \mathcal{O}(2/(P - 1))$ based on a common

138 assumption on the expected number of edges, $\mathcal{O}(P)$, for sparse graphs [22,23]. Finally,
 139 we assume a Bernoulli distribution with hyperparameter 0.5 for the prior mass function
 140 of η . We proposed this non-informative prior, as in most situations, we do not have
 141 prior knowledge regarding network similarity. If we believe in any particular status over
 142 the other, then an informative prior is preferred to reflect our prior belief and benefit
 143 posterior inference, especially when the sample size is small and signal in the data is
 144 weak.

145 ***The joint posterior distribution and its computation.*** Based on (1) and the
 146 defined prior distributions, we define the joint posterior distribution of Θ as

$$p(\Theta|\mathbf{X}) \propto \prod_{k=1}^2 p(\mathbf{X}_k|\Omega^{(k)}, \eta) p(\Omega^{(k)}|\eta, \mathbf{g}^{(k)}) p(\mathbf{g}^{(k)}|\eta) p(\eta). \quad (2)$$

147 We draw posterior inferences of Θ through Markov Chain Monte Carlo (MCMC)
 148 simulations. In particular, we implement the Gibbs sampler to draw samples from the
 149 full conditional posterior distribution of each parameter derived from (2). In the follow-
 150 ing, we present these full conditional posterior distributions. We use (\cdot) to represent a
 151 collection of other parameters upon which a parameter is conditioned.

152 We begin with the conditional posterior probability of η , the key parameter for net-
 153 work differentiation and a fundamental parameter for subsequent graph structure infer-
 154 ence. From (2), we have

$$p(\eta = 1|(\cdot), \mathbf{X}) \propto \prod_{k=1}^2 p(\mathbf{X}_k|\Omega_c, \eta = 1, \mathbf{g}_c) p(\eta = 1). \quad (3)$$

155 Following a comparable argument as in Zhang et al. [10], under the composite likelihood
 156 framework, it can be shown straightforwardly that

$$\begin{aligned} p(\eta = 1|(\cdot), \mathbf{X}) &\approx [1 + \exp\{\log(b) - \log(a) + \lambda(n_1, n_2)\}]^{-1} \equiv p^\lambda(\eta = 1|(\cdot)), \\ \lambda(n_1, n_2) &= \frac{1}{2}(|E| \log(n) - |E_1| \log(n_1) - |E_2| \log(n_2)), \end{aligned} \quad (4)$$

157 where $n = n_1 + n_2$, $|E|$ represents the number of edges in an inferred network under the
 158 condition that $\eta = 1$ and $|E_k|$, $k = 1, 2$, is the number of edges in an inferred network
 159 under the condition of $\eta = 0$. We define a and b as,

$$\begin{aligned}
a &= \prod_{k=1}^2 p(\mathbf{X}_{k.} | \Omega_c, \eta = 1) \\
&= \prod_{k=1}^2 (2\pi)^{-P(n_k/2)} \det(\Omega_c)^{n_k/2} \exp\left(-\sum_{k=1}^2 \left(\frac{n_k}{2}\right) \text{tr}(\hat{\Sigma}_{X(k,k)} \Omega_c)\right), \\
b &= \prod_{k=1}^2 p(\mathbf{X}_{k.} | \Omega_k, \eta = 0) \\
&= \prod_{k=1}^2 (2\pi)^{-P(n_k/2)} \det(\Omega_k)^{n_k/2} \exp\left(-\sum_{k=1}^2 \left(\frac{n_k}{2}\right) \text{tr}(\hat{\Sigma}_{X(k,k)} \Omega_k)\right).
\end{aligned} \tag{5}$$

160 Based on (2), the full conditional posterior distributions of parameters in $\Omega^{(k)}$ can be
161 derived,

$$\begin{aligned}
p(\omega_{(m_1, m_2)}^{(k)} | (\cdot), \mathbf{X}) &\propto \prod_{k=1}^2 p(\mathbf{X}_{k.} | \Omega^{(k)}, \eta) p(\omega_{(m_1, m_2)}^{(k)} | \eta, g_{(m_1, m_2)}^{(k)}), \\
p(\omega_{(m, m)}^{(k)} | (\cdot), \mathbf{X}) &\propto \prod_{k=1}^2 p(\mathbf{X}_{k.} | \Omega^{(k)}, \eta) p(\omega_{(m, m)}^{(k)} | \lambda),
\end{aligned}$$

162 where $m = 1, \dots, P$, $m_1 < m_2$, $m_1, m_2 = 1, \dots, P$.

163 Similarly, the conditional posterior distributions of the parameters in graph structures
164 $G^{(k)}$ can be derived,

$$p(g_{(m_1, m_2)}^{(k)} | (\cdot), \mathbf{X}) \propto \prod_{k=1}^2 p(\mathbf{X}_{k.} | \Omega^{(k)}, \eta) p(\omega_{(m_1, m_2)}^{(k)} | \eta, g_{(m_1, m_2)}^{(k)}) p(g_{(m_1, m_2)}^{(k)}).$$

165 Hyper-parameters ν_0 and ν_1 , $\nu_0 < \nu_1$, define the sparsity of a graph a priori. At a
166 fixed value of ν_1 , the inclusion or exclusion of an edge can be controlled with varying
167 values of ν_0 where larger values of ν_0 leads to the inclusion of a smaller number of edges,
168 and on the other hand, smaller values of ν_0 leads to the inclusion of a larger number of
169 edges. The selection of ν_0 is crucial to the estimate of underlying graphs. In this article,
170 we follow the suggestion of Zhang et al. [10] and choose the value of ν_0 based on a
171 pre-specified level of sparsity. It was suggested that the starting value of ν_0 needs to be
172 small. Here, we set $\nu_0 = 0.02$.

173 3. Simulations

174 Through simulations, our goal is to evaluate the robustness of the composite-likelihood-
175 based approach in network comparisons with respect to different statuses of dependence
176 between two populations.

177 **3.1. Network structures and settings**

178 To assess the method, we consider two situations of relationships between two pop-
179 ulations: independence between two populations (S1), and dependence between two
180 populations (S2). For each situation, the networks for the two populations are either
181 truly identical or truly differential.

182 S1. Chain graphs, G_1 and G_2 , are generated for each population independently, fol-
183 lowing the idea of Fan et al. [24]. We create a covariance matrix with a covariance
184 structure of auto-regressive process of order one for each network. In a covari-
185 ance matrix, the diagonal entries are 1's and an off-diagonal entry $\{m_1, m_2 =$
186 $1, \dots, P, m_1 \neq m_2\}$ is defined as $\exp\{-a|s_{m_1} - s_{m_2}|\}$ with $s_{m_1} - s_{m_1-1} \stackrel{i.i.d.}{\sim}$
187 $\text{Unif}(0.5, 1)$, $m_1 = 2, \dots, P$, and $s_1 < s_2 < \dots < s_P$, where a is a parameter
188 that determines the magnitude of link between two nodes and was set at $a = 0.1$.
189 Based on this method, the partial correlations resulting from the precision ma-
190 trices vary between -0.4 and 0.9 . For networks that are truly identical, the same
191 precision matrix is applied to generate data for each population using multivariate
192 normal distribution with mean zero.

193 To generate differential networks, a chain graph for population 1 is defined as
194 above with corresponding precision matrix Ω_1 . For the second population, the
195 precision matrix Ω_2 is formulated by forcing $\frac{P}{2} - 1$ consecutive entries of Ω_1 to be
196 zero, we then generate data from each precision matrix for each population using
197 multivariate normal with mean zero.

198 S2. When generating two dependent networks, for identical networks, we first use the
199 method in S1 to generate two identical but independent chain networks, G_1 and
200 G_2 . To introduce dependence, we also generate a network, G_0 , shared between the
201 two populations. The shared network is a nearest-neighbor network and generated
202 according to Li and Gui [25]. The generation of the shared network uses pairwise
203 distances between nodes, with each node generated from a Uniform distribution
204 on a $[0, 1] \times [0, 1]$ space. We identified t nearest neighbors using the pairwise
205 distances, where we set $t = 2$ in our simulations. Then, entries in the precision
206 matrix for each pair of connected nodes are generated based on the algorithm by
207 Li and Gui [25]. The diagonal entries are 1 in the resulting precision matrix while
208 the off-diagonal entries vary between -0.2 and 0.2 denoting low partial correlation
209 between the nodes. The data from the shared network were then added to the data
210 corresponding to G_1 and G_2 to introduce dependence between the two populations.

211 For differential networks, the network for one population is a chain network
212 (G_1) plus the shared network (G_0), and for the other population, it is only the
213 shared network. The shared graph is a nearest neighbor network as described
214 above under this dependent situation (S2).

215 For each of the above four settings, the number of nodes is set at $P = 10$ and $P = 30$. To
216 demonstrate finite sample properties, different sample sizes, $n_1 = n_2 = n = 50, 100, 200$
217 and 500 are considered. For each case, we generate 100 Monte Carlo (MC) replicates to
218 address sampling error.

219 To evaluate the convergence of posterior sampling, we ran four chains with diffused
220 starting values on multiple randomly selected MC replicates. After noticing fast conver-
221 gence (Figure B.1 in the Appendix as an illustration), for each of the 100 MC replicates,
222 we run 1,000 iterations, of which 700 iterations were used as burn-in, and the last 300
223 used to draw the inferences.

224 Model performances are assessed using four statistics, 1) empirical power (EP) of

225 correct detection with respect to network comparison (identical or differential), 2) me-
226 dian proportion of true positives for edge connection (TP; sensitivity) in a network, 3)
227 median proportion of true negatives (TN; specificity) of a network, and 4) median pro-
228 portion of correct connections (CC) of edges. Correct connections combines information
229 from both sensitivity and specificity, and identifies edges with observed edge connection
230 statuses (connected or not connected) that is consistent with the true underlying net-
231 work structure. We also provide 95% empirical credible interval for each of the model
232 comparison statistics except for power.

233 **3.2. Performance of the method**

234 *3.2.1. Findings when two populations are independent*

235 We first discuss findings when the underlying two populations are independent. With 10
236 nodes (Table 1), when two networks are either truly identical or truly differential, the
237 powers to detect the underlying truth are high, at 100% for all sample sizes. Regarding
238 the quality of the inferred graphs, the proportions of true positives, true negatives, and
239 consequently, the overall correct connections are all high, regardless of the sample size
240 or the underlying network differentiation status. In Table 1 and throughout the findings
241 in this section, there is a pattern of slightly decreased proportions of true negatives as
242 sample sizes increase, e.g., 1.0 at $n = 50$ vs. 0.875 at $n = 500$ for identical networks,
243 which means more edges are falsely identified. This phenomenon is due to finite sample
244 properties analogous to what is commonly observed in hypothesis testing; as sample
245 size becomes large, there is a higher chance to reject the null hypothesis, even if the
246 null is true.

247 When increasing the number of nodes to $P = 30$, similar patterns as described above
248 are observed (Table 2). That is, the powers to detect the underlying truth are 100% for
249 all sample sizes, irrespective of the underlying truth. The proportions of TP, TN, and
250 CC are also high and comparable to those in Table 1.

251 Overall, when the two populations are independent, for all the settings considered, the
252 patterns observed on the assessment of network differentiation and network inferences
253 are as expected, since population independence fits the underlying assumption in the
254 construction of the composite likelihood. The next subsection discusses results when
255 underlying two populations are truly dependent.

256 *3.2.2. Findings when two populations are dependent*

257 In this subsection, we use figures to describe the patterns when comparing findings
258 across different sample sizes and different number of nodes. Corresponding tables are in
259 the Appendix (Table A.1 and Table A.2).

260 When two networks are from two dependent populations, the composite likelihood-
261 based method is promising with respect to the power of detecting underlying network
262 differentiation status (Figures 1A and 2A), irrespective of the number of nodes. In
263 particular, when two networks are truly identical, the powers are high at or close to
264 100% for all sample sizes and different numbers of nodes, $P = 10$ and $P = 30$ (Figure
265 1A). When the underlying two networks are differential, the method shows high power,
266 at 100% for all sample sizes when $P = 30$. The power statistics are also 100% for larger
267 sample sizes, when $P = 10$, although the power is average for smaller sample sizes (46%
268 and 48% for $n = 50$ and $n = 100$, respectively) (Figure 2 A).

269 Another robust finding is the high proportions of true negatives even when the sam-

Table 1. Simulation results for independent networks with 10 nodes.

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P=10$ nodes, $ E_{X_1} = E_{X_2} = 9$ edges)				
50	100	1.0 (0.889, 1.0)	1.0 (0.958, 1.0)	0.989 (0.950, 1.0)
100	100	1.0 (0.915, 1.0)	0.986 (0.937, 1.0)	0.989 (0.944, 1.0)
200	100	1.0 (0.915, 1.0)	0.958 (0.882, 1.0)	0.967 (0.844, 1.0)
500	100	1.0 (0.915, 1.0)	0.875 (0.791, 0.944)	0.900 (0.822, 0.956)
Underlying truth: differential networks ($P=10$ nodes, $ E_{X_1} = 9$, $ E_{X_2} = 7$ edges)				
50	100	X_1 : 1.0 (0.889, 1.0) X_2 : 1.0 (0.60, 1.0)	1.0 (0.958, 1.0) 1.0 (0.963, 1.0)	1.0 (0.944, 1.0) 0.989 (0.933, 1.0)
100	100	X_1 : 1.0 (0.889, 1.0) X_2 : 1.0 (0.9, 1.0)	1.0 (0.944, 1.0) 1.0 (0.968, 1.0)	0.989 (0.956, 1.0) 0.989 (0.972, 1.0)
200	100	X_1 : 1.0 (0.889, 1.0) X_2 : 1.0 (0.9, 1.0)	0.972 (0.909, 1.0) 0.988 (0.950, 1.0)	0.967 (0.928, 1.0) 0.989 (0.950, 1.0)
500	100	X_1 : 1.0 (0.889, 1.0) X_2 : 1.0 (0.9, 1.0)	0.861 (0.792, 0.944) 0.975 (0.913, 1.0)	0.889 (0.828, 0.944) 0.978 (0.922, 1.0)

Table 2. Simulation results for independent networks with 30 nodes.

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P = 30$ nodes, $ E_{X_1} = E_{X_2} = 29$ edges)				
50	100	0.983 (0.931, 1.0)	0.998 (0.991, 1.0)	0.997 (0.988, 1.0)
100	100	0.983 (0.948, 1.0)	0.994 (0.991, 1.0)	0.995 (0.991, 0.999)
200	100	0.983 (0.948, 1.0)	0.992 (0.983, 0.998)	0.991 (0.983, 0.997)
500	100	0.983 (0.948, 1.0)	0.968 (0.956, 0.980)	0.969 (0.957, 0.980)
Underlying truth: differential networks ($P = 30$ nodes, $ E_{X_1} = 29$, $ E_{X_2} = 27$ edges)				
50	100	X_1 : 0.983 (0.931, 1.0) X_2 : 0.967 (0.867, 1.0)	0.998 (0.993, 1.0) 0.998 (0.995, 1.0)	0.997 (0.99, 1.0) 0.997 (0.992, 1.0)
100	100	X_1 : 0.983 (0.948, 1.0) X_2 : 1.0 (0.933, 1.0)	0.998 (0.991, 1.0) 0.998 (0.993, 1.0)	0.997 (0.99, 0.999) 0.998 (0.993, 1.0)
200	100	X_1 : 0.983 (0.939, 1.0) X_2 : 1.0 (0.933, 1.0)	0.993 (0.985, 0.999) 0.996 (0.991, 1.0)	0.992 (0.984, 0.998) 0.996 (0.99, 0.999)
500	100	X_1 : 0.983 (0.939, 1.0) X_2 : 1.0 (0.933, 1.0)	0.969 (0.956, 0.981) 0.989 (0.981, 0.996)	0.971 (0.958, 0.982) 0.989 (0.98, 0.996)

ple size is small (Figures 1C and 2C). Together with the relatively lower proportions of true positives (Figures 1B and 2B), the findings indicate the conservativeness of the method when claiming an edge. For the proportions of true positives, although they are lower than those observed when underlying populations are independent, they increase as the sample sizes increase. The high proportions of true negatives and relatively reasonable proportions of true positives result in overall acceptable proportions of correct connections (Figures 1D and 2D).

Here, we would like to delve a little deeper into the relatively low proportions of true positives when two populations are dependent. We use the setting when two graphs are truly differential as an example to lay out our discussion. Recall that the networks represented by X_1 are a combination of G_1 (unique network) and G_0 (shared network) while the networks by X_2 are G_0 only. We observe that the proportions of true positives for networks corresponding to X_2 are higher than those for graphs corresponding to X_1 . This phenomenon is likely due to the scenarios implemented to simulate dependent networks since the assumed underlying truth $G_1 + G_0$ for X_1 , and thus lower proportions

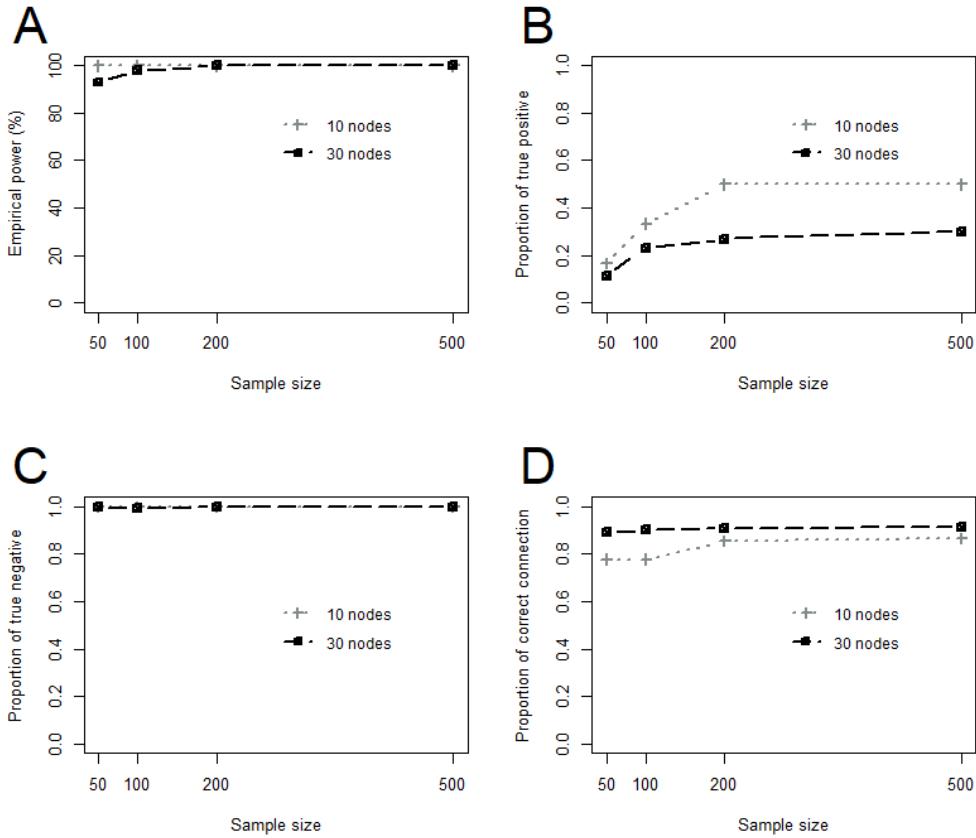


Figure 1. Model assessment statistics when two dependent networks are identical. When $P = 10$, the number of edges are $G_0=9$ and $G_1=G_2=9$. When $P = 30$, the number of edges of $G_0=26$ and $G_1=G_2=29$.

285 of true positives are concluded for networks corresponding to X_1 . However, given the
 286 increased proportions of true positives for X_2 with G_0 as the underlying truth, we
 287 expect the proposed approach has a strong potential to correctly infer the underlying
 288 true graph determined by $\Omega_1 + \Omega_0$, which is likely not a simple addition of G_1 and G_0 . In
 289 addition, this observation leads to an interesting direction of future work while enjoying
 290 the simplicity and robustness of the composite likelihood framework. That is, when two
 291 populations are potentially dependent, to what extent we are able to learn the shared
 292 network.

293 *3.2.3. Comparison of the performance of CL and MDL*

294 Via simulations, to further assess the performance of the composite likelihood (CL)-
 295 based approach, we compare the findings with those from the MDL approach in Zhang
 296 et al. [10] The simulated data are the 100 Monte Carlo replicates based on the settings
 297 outlined in Section 3.1 at $n = 50$ and the same statistics (power, proportions of TP,
 298 TN, and CC) are used to compare the two approaches.

299 Results for the CL-based approach (or CL for simplicity) are in Table 1 ($P = 10$)
 300 and Table 2 ($P = 30$) with $n = 50$ and the results for MDL-based methods (or MDL
 301 for simplicity) are in Table 3 (independent populations) and Table 4 (dependent popu-

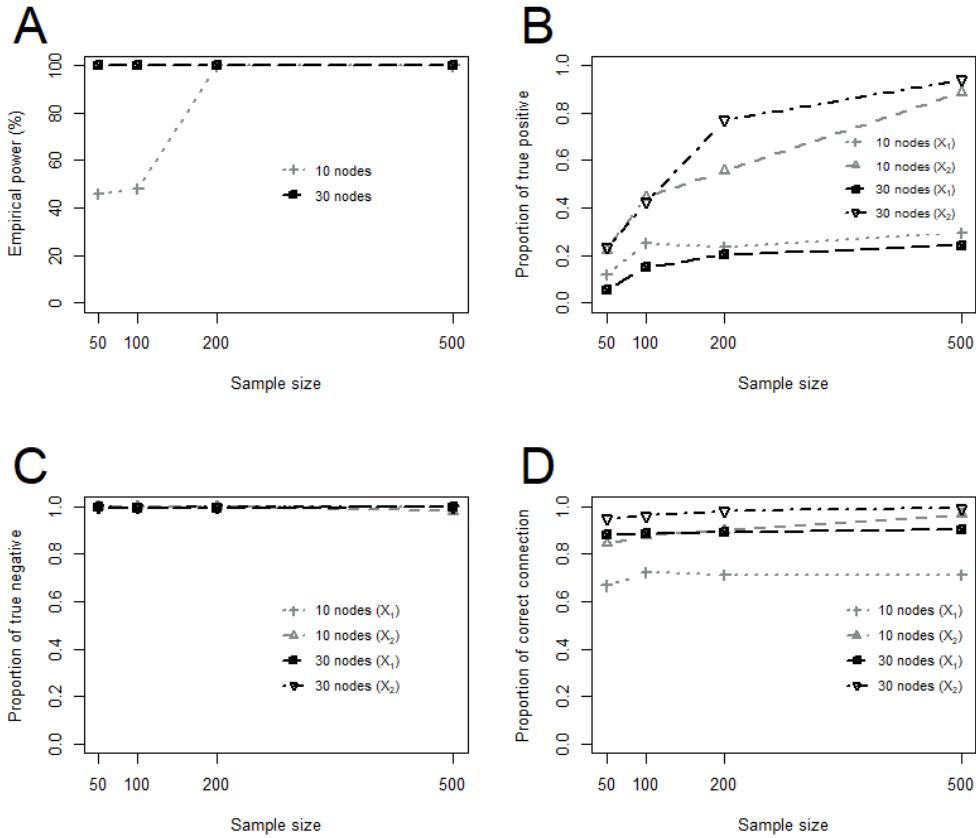


Figure 2. Model assessment statistics when two dependent networks are differential. When $P = 10$, the number of edges of $G_1 = 9$, and that of $G_0 = 9$. When $P = 30$, the number of edges of $G_1 = 29$, and that of $G_0 = 26$.

302 lations).

303 When two networks are independent, regardless of the number of nodes and net-
 304 work differentiation status (identical or differential), the CL-based method outperforms
 305 the MDL-based approach (Tables 1 and 2). The power to detect the underlying dif-
 306 ferentiation status under CL is always at least as high as that from the MDL-based
 307 approach (Tables 1 and 2). With respect to network construction based on CL, most
 308 statistics (the median proportions of TP, TN and CC) are higher than 0.95 and all
 309 statistics are higher than 0.85; overall, these statistics are much better than those from
 310 the MDL-based approach.

311 Under the situation of two dependent populations, with $P = 10$, when the two
 312 networks are truly identical, CL shows a much higher power than MDL to detect the
 313 underlying truth of network differentiation, 100% from CL (Figure 1A and Appendix
 314 Table A.1) vs 20% from MDL (the first row of Table 4)). When the two networks
 315 are truly differential, MDL outperforms CL, 100% for MDL (second row of Table 4))
 316 and 46% for CL (2A). However, as seen in Figure 2A, the power of CL to detect the
 317 underlying truth quickly increases as sample sizes increase. When $P = 30$, regardless
 318 of the network differentiation status (identical or differential), the power of CL is much
 319 higher than that from MDL when the two networks are identical and comparable to
 320 that from MDL for differential networks.

321 As for graph inference under the situation of dependent populations, the proportions
 322 of TP and CC from CL are relatively lower than those from MDL, leading to relatively
 323 higher proportions of TN under CL. The underlying cause of such phenomena is likely
 324 to be the same as that noted for the situation when two populations are independent,
 325 i.e., MDL has the capacity to address shared networks. This point is especially clearer
 326 when we look at the graph inference statistics for X_2 . The underlying true graph for
 327 X_2 is G_0 , the shared graph. As shown in Figure 2, even at $n = 50$, the inferences of the
 328 graph for X_2 from CL are better than those for X_1 . However, this is not the case for
 329 MDL as seen in Table 4 when two networks are differential. The much lower proportions
 330 of TP and higher proportions of TN from MDL for X_2 compared to those for X_1 are
 331 actually as expected, simply because the true graph on top of the shared graph G_0 is
 332 an empty graph. On the other hand, the graph inference statistics for X_1 from MDL
 333 overall outperform those from CL at $n = 50$, which indicates a better fit of MDL for
 334 graph inferences when two populations are potentially dependent.

Table 3. Select comparative results for independent networks using the MDL method

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P = 10$ nodes, $ E_{X_1} = E_{X_2} = 9$ edges)				
50	96	1.0 (0.778, 1.0)	0.833 (0.012, 0.988)	0.867 (0.209, 0.991)
Underlying truth: differential networks ($P = 10$ nodes, $ E_{X_1} = 9$, $ E_{X_2} = 7$ edges)				
50	85	X_1 : 1.0 (0.828, 1.0) X_2 : 1.0 (0.8, 1.0)	0.833 (0.056, 0.972) 0.9 (0.05, 1.0)	0.867 (0.244, 0.978) 0.911 (0.156, 1.0)
Underlying truth: identical networks ($P = 30$ nodes, $ E_{X_1} = E_{X_2} = 27$ edges)				
50	95	0.966 (0.897, 1.0)	0.443 (0.007, 0.581)	0.474 (0.073, 0.605)
Underlying truth: differential networks ($P = 30$ nodes, $ E_{X_1} = 29$, $ E_{X_2} = 27$ edges)				
50	99	X_1 : 0.966 (0.897, 1.0) X_2 : 1.0 (0.867, 1.0)	0.438 (0.008, 0.605) 0.602 (0.012, 0.728)	0.476 (0.074, 0.627) 0.616 (0.046, 0.737)

Table 4. Select comparative results for dependent networks using the MDL method

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P = 10$ nodes, $ E_{X_1} = E_{X_2} = 29$ edges)				
50	20	0.5 (0.167, 0.75)	0.879 (0.758, 0.97)	0.778 (0.644, 0.889)
Underlying truth: differential networks ($P = 10$ nodes, $ E_{X_1} = 9$, $ E_{X_2} = 7$ edges)				
50	100	X_1 : 0.412 (0.294, 0.578) X_2 : 0.111 (0.0, 0.222)	0.857 (0.0, 0.964) 0.972 (0.0, 1.0)	0.688 (0.578, 0.8) 0.8 (0.733, 0.822)
Underlying truth: identical networks ($P = 30$ nodes, $ E_{X_1} = 29$, $ E_{X_2} = 27$ edges)				
50	16	0.404 (0.308, 0.962)	0.950 (0.110, 0.971)	0.880 (0.212, 0.908)
Underlying truth: differential networks ($P = 30$ nodes, $ E_{X_1} = 29$, $ E_{X_2} = 27$ edges)				
50	99	X_1 : 0.389 (0.315, 0.919) X_2 : 0.038 (0.0, 1.0)	0.953 (0.136, 0.971) 0.972 (0.101, 0.995)	0.880 (0.265, 0.909) 0.915 (0.179, 0.938)

335 3.3. Comparison of computing times between CL and MDL

336 To examine the efficiency of the proposed CL approach in network comparison, data
 337 simulated under scenario S2 with $n = 50, 100, 200, 500$, and $P = 10$ are used. The time
 338 spent in one iteration is recorded and compared to that of MDL. Regardless of the

339 sample size, the CL approach only needs less than one-third of the computing time,
 340 compared to if dependency is incorporated into the calculations as in the MDL method
 341 (Figure 3A and 3B).

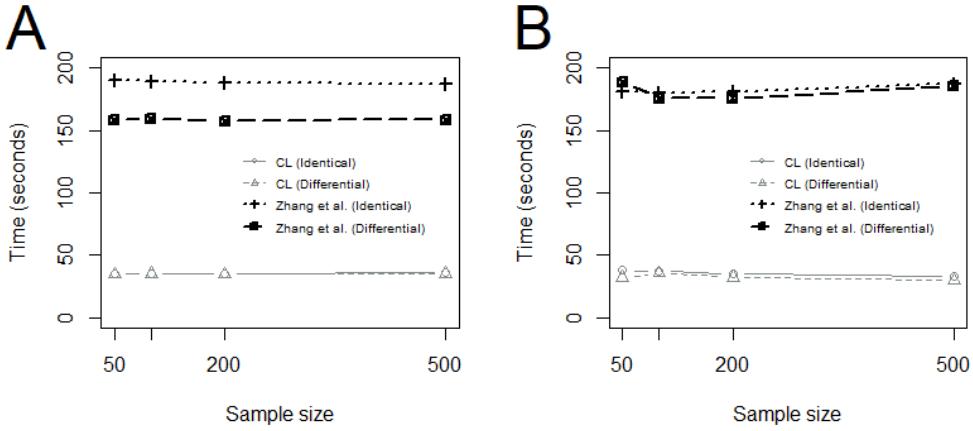


Figure 3. Computing times of CL vs. MDL. (A) shows the times for independent graphs with 10 nodes. (B) shows the times for dependent graphs with 10 nodes.

342 4. Application to real-life data

343 4.1. Background of the data

344 The study was motivated by the potentially joint activities among CpG sites and changes
 345 of such activities over time, as noted in the introduction section. By applying the pro-
 346 posed method (CL) to DNA-m at certain CpG sites, we demonstrate the performance
 347 of CL and compare the results with those from MDL [10].

348 DNA-m data measured in a birth cohort established in 1989-1990 on the Isle of Wight,
 349 United Kingdom, are analyzed [26]. In particular, DNA-m at 22 CpG sites at ages 10,
 350 18, and 26 years examined in Zhang et al. [10] are included in this study and we compare
 351 network differentiation between ages 10 and 26 ($n=171$) using the CL-based approach.
 352 During adolescence, children experience substantial changes mentally and physically,
 353 and we expect to observe network differentiation between these two ages.

354 We use the methods proposed in Section 2.2 to draw inferences on the parameters of
 355 the model, including network comparisons. To tune ν_0 based on sparsity level, following
 356 our assumption, the lower bound on the number of edges is set at $\mathcal{O}(P)=22$, and the
 357 upper bound is relaxed to the number of possible edges from 22 nodes, i.e., 231 as
 358 the upper bound. To draw posterior inferences, in total, 1,000 iterations are run in the
 359 Gibbs sampler with 500 as burn-in iterations. Running longer chains does not change
 360 our conclusion, indicating potential convergence.

361 4.2. Results

362 With the CL-based approach, the estimated probability that the networks are differen-
 363 tial between ages 10 and 26 is 0.994, strongly supporting network changes from pre- to
 364 post-adolescence. Most of the 16 edges identified at age 10 years were kept at age 26
 365 years with new edges detected at age 26 years within (e.g., gene *GFI1*) and between

Table 5. The 22 CpG sites considered from IOW Cohort

Chr	Gene	CpG	CpG Index
1	<i>GFI1</i>	cg06338710	1
		cg09662411	2
		cg09935388	3
		cg10399789	4
		cg12876356	5
		cg14179389	6
		cg18146737	7
		cg18316974	8
5	<i>AHRR</i>	cg05575921	9
6	<i>HLA-DPB2</i>	cg11715943	10
7	<i>CNTNAP2</i> <i>ENSG00000225718</i>	cg25949550	11
		cg04598670	12
		cg04180046	13
		cg12803068	14
8	<i>MYO1G</i>	cg19089201	15
		cg03346806	16
		cg18655025	17
14	<i>EXT1</i> <i>TTC7B</i>	cg05549655	18
		cg11924019	19
		cg18092474	20
		cg22549041	21
21	<i>RUNX1</i>	cg12477880	22

Note: "Chr" denotes the chromosome location of CpG

366 genes (Figure 4), indicating potential impact of adolescence transition on epigenetic
367 activities.

368 On the other hand, the long duration between these two ages may also contribute to
369 the detected network differentiation. That is, with more than 15 years apart from pre-
370 adolescence to post-adolescence, epigenetic changes following adolescence transition are
371 likely to be more pronounced, thus making it easier for the CL-based approach to detect
372 such changes. To evaluate this postulation, we assess network differentiation between
373 ages 10 and 18 years ($n = 325$). The estimated probability of network differentiation
374 is 0.102, suggesting that it is more likely that the two networks are identical rather
375 than differential. This finding differs from that in Zhang et al. but is consistent with
376 our postulation and the results of our simulations. The CL-based approach overall has
377 lower power compared to MDL when two dependent networks are truly differential.
378 At age 18 years, changes in epigenetic activities with respect to age 10 are potentially
379 not as prominent and established as that at age 26 years, and thus the CL- but not
380 ML-based approach has difficulty to detect such differentiation. However, when two
381 populations are dependent, the CL is superior to the MDL approach as demonstrated
382 by our extensive simulations.

383 5. Discussion and conclusion

384 This work proposes a composite likelihood (CL)-based approach to compare networks
385 between two populations that could be dependent or independent. The CL-based
386 approach is designed based on the method proposed by Zhang et al. [10], which is par-
387 ticularly for dependent networks. Simulations and real-data applications are applied to
388 demonstrate and evaluate the CL-based method.

389 Simulations demonstrate that the method is powerful in detecting the underlying
390 truth when two networks are under independent conditions, irrespective of the graphs'

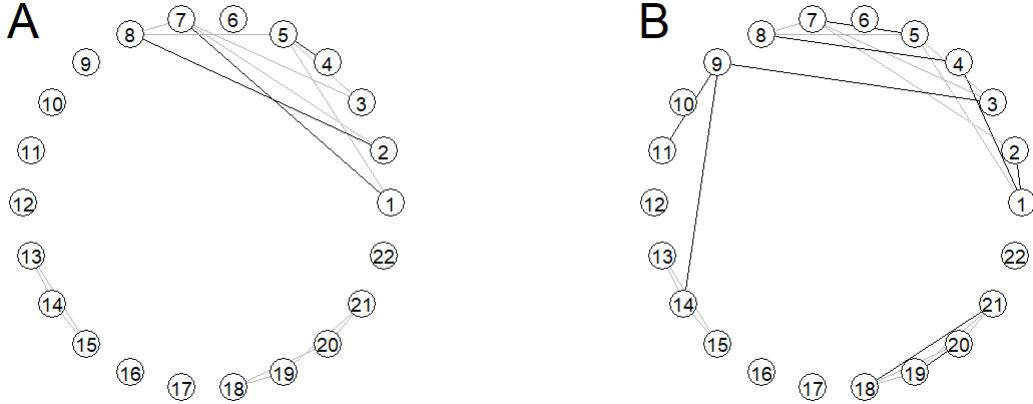


Figure 4. Networks estimated at ages 10 and 26 years, respectively. (A) Age 10 years (16 edges). (B) Age 26 years (22 edges). The thick, darker lines indicate links that are different between the two networks.

391 differential status. This is as expected and fits the underlying assumption of the proposed
 392 approach. When two networks are from two dependent populations, the potential of the
 393 composite likelihood approach to detect underlying network differentiation is high and
 394 comparable overall to the situation when two populations are independent, except for
 395 dependent graphs with a relatively small number of nodes and relatively small sample
 396 sizes.

397 When comparing the performances of the CL- and MDL-based methods, particularly
 398 when networks are from two independent populations, the CL-based method outper-
 399 forms MDL in terms of both the power of detecting network differentiation and the
 400 quality of graph constructions. Under the situation of two dependent populations, when
 401 the two networks are identical, compared to the MDL-based method, the CL-based ap-
 402 proach has a much higher power to detect the underlying truth of network differentiation
 403 even when the sample size is small. When the two networks are truly differential, spar-
 404 sity level of a graph seems to affect the performance of the CL-based approach. Sparsity
 405 level is defined as the number of edges divided by the number of possible edges; the
 406 smaller the number, the higher the sparsity level is. The CL-based approach has a lower
 407 power compared to the MDL-based method when sample size is small if networks are
 408 less sparse, e.g., when the number of nodes is 10, the sparsity levels of the two networks
 409 are $9/45=0.2$ and $18/45=0.4$, respectively. However, when the sparsity level is relatively
 410 high (e.g., at $P = 30$, the sparsity levels are 0.06 and 0.13 for the two networks), the
 411 power of detecting underlying differentiation is extremely high and consistent with that
 412 from the MDL-based method. This is understandable, since the CL-based approach
 413 does not consider shared background as in the MDL and more noise is introduced into
 414 the comparison when network sparsity level is low (less sparse), consequently causing
 415 difficulty to differentiate between two networks if sample sizes are small. Notably, such
 416 inferiority is substantially reduced when the sample size is increased.

417 Our real data applications support the findings in simulations. That is, when two
 418 dependent networks are truly differential, the MDL-based approach is more powerful
 419 to detect the underlying truth compared to the CL-based method, in that CL was able
 420 to detect network changes between ages 10 and 26 but not between 10 and 18 years.
 421 These real data applications, accompanied by findings in the simulations, indicate that

422 the CL-based method has its value in the detection of underlying network differentiation.
423 Since CL requires stronger “signal” when underlying dependent networks are truly
424 differential, if CL concludes a high probability of network differentiation, then it is very
425 likely that the finding reveals the underlying truth. As such, when two populations are
426 independent, we would still suggest the CL method over the MDL approach due to its
427 computing efficiency. When two populations are dependent, the CL method can be used
428 as a “screening” technique; if CL shows two networks are differential, then the MDL
429 can be utilized to obtain more detailed information including assessment of network
430 differentiation, estimate of shared network, along with the different network structures
431 unique to each population. An effort to improve the power of the CL-based method when
432 two populations are dependent, while maintaining its computing efficiency, is certainly
433 along the line of future work.

434 In our method, we focus on a non-informative prior for graph comparison in order to
435 be as objective as possible. However, when the sample size is small and/or the signal in
436 the data is likely to be weak, non-informative priors may cause difficulty to differentiate
437 between two graphs even if the two networks are truly differential. In such situations,
438 prior knowledge or belief will be highly appreciated and benefit posterior inferences. This
439 consideration of prior distribution assignment is also applicable to graph constructions.

440 Furthermore, as noted in our simulations, the proposed CL-based approach has diffi-
441 culty to handle underlying shared graphs between two dependent populations. Since the
442 focus of our work is on detecting network differentiation, addressing the role of shared
443 graphs is not within the scope of the present study. However, it can be a promising
444 future research direction under the framework of composite likelihood. If successful, we
445 do not have to rely on complex modeling for dependence between populations and will
446 achieve both computing efficiency and graph inference with sound quality. One way is
447 to incorporate a modeling explicitly for the shared graph between two populations using
448 composite likelihood, but a careful design is needed to model the networks in the two
449 populations on top of the shared graphs.

450 **Acknowledgment**

451 The authors are thankful to the High Performance Computing at the University of
452 Memphis.

453 **Funding**

454 This work is supported by NIAID/NIH R21AI175891 and R01AI121226.

455 **References**

456 [1] Hotta K, Kitamoto A, Kitamoto T, et al. Identification of differentially methylated region
457 (dmr) networks associated with progression of nonalcoholic fatty liver disease. *Scientific
458 reports*. 2018;8(1):1–11.

459 [2] Gill R, Datta S, Datta S. A statistical framework for differential network analysis from
460 microarray data. *BMC bioinformatics*. 2010;11(1):1.

461 [3] Xia Y, Cai T, Cai TT. Testing differential networks with applications to the detection of
462 gene-gene interactions. *Biometrika*. 2015;102(2):247–266.

463 [4] Zhao SD, Cai TT, Li H. Direct estimation of differential networks. *Biometrika*. 2014;
464 101(2):253–268.

465 [5] Städler N, Dondelinger F, Hill SM, et al. Molecular heterogeneity at the network
466 level: high-dimensional testing, clustering and a tcga case study. *Bioinformatics*. 2017;
467 33(18):2890–2896.

468 [6] Jacob L, Neuvial P, Dudoit S. More power via graph-structured tests for differential
469 expression of gene networks. *The Annals of Applied Statistics*. 2012;:561–600.

470 [7] He H, Cao S, Zhang Jg, et al. A statistical test for differential network analysis based on
471 inference of gaussian graphical model. *Scientific reports*. 2019;9(1):1–8.

472 [8] Cai T, Liu W, Xia Y. Two-sample covariance matrix testing and support recovery in high-
473 dimensional and sparse settings. *Journal of the American Statistical Association*. 2013;
474 108(501):265–277.

475 [9] Chang J, Zhou W, Zhou WX, et al. Comparing large covariance matrices under weak
476 conditions on the dependence structure and its application to gene clustering. *Biometrics*.
477 2017;73(1):31–41.

478 [10] Zhang H, Huang X, Arshad H. Comparing dependent undirected gaussian networks.
479 *Bayesian Analysis*. 2022;1(1):1–26.

480 [11] Varin C, Reid N, Firth D. An overview of composite likelihood methods. *Statistica Sinica*.
481 2011;:5–42.

482 [12] Zhang H, Stern H. Assessment of ancestry probabilities in the presence of genotyping
483 errors. *Theoretical and Applied Genetics*. 2006;112:472–482.

484 [13] Gao B, Yang C, Liu J, et al. Accurate genetic and environmental covariance estima-
485 tion with composite likelihood in genome-wide association studies. *PLoS genetics*. 2021;
486 17(1):e1009293.

487 [14] Varin C. On composite marginal likelihoods. *Asta advances in statistical analysis*. 2008;
488 92(1):1–28.

489 [15] Larribe F, Fearnhead P. On composite likelihoods in statistical genetics. *Statistica Sinica*.
490 2011;:43–69.

491 [16] Lindsay BG. Composite likelihood methods. *Comtemporary Mathematics*. 1988;
492 80(1):221–239.

493 [17] Besag J. Spatial interaction and the statistical analysis of lattice systems. *Journal of the
494 Royal Statistical Society: Series B (Methodological)*. 1974;36(2):192–225.

495 [18] Besag J. Statistical analysis of non-lattice data. *Journal of the Royal Statistical Society
496 Series D: The Statistician*. 1975;24(3):179–195.

497 [19] George EI, McCulloch RE. Variable selection via Gibbs sampling. *Journal of the American
498 Statistical Association*. 1993;88:881–889.

499 [20] Ishwaran H, Rao JS. Spike and slab gene selection for multigroup microarray data. *Journal
500 of the American Statistical Association*. 2005;100(471):764–780.

501 [21] Ishwaran H, Rao JS. Spike and slab variable selection: Frequentist and Bayesian strategies.
502 *The Annals of Statistics*. 2005;33:730–773.

503 [22] Wang H, et al. Scaling it up: Stochastic search structure learning in graphical models.
504 *Bayesian Analysis*. 2015;10(2):351–377.

505 [23] Jones B, Carvalho C, Dobra A, et al. Experiments in stochastic computation for high-
506 dimensional graphical models. *Statistical Science*. 2005;:388–400.

507 [24] Fan J, Feng Y, Wu Y. Network exploration via the adaptive lasso and scad penalties. *The*

508 annals of applied statistics. 2009;3(2):521.

509 [25] Li H, Gui J. Gradient directed regularization for sparse gaussian concentration graphs,
510 with applications to inference of genetic networks. Biostatistics. 2006;7(2):302–317.

511 [26] Arshad SH, Holloway JW, Karmaus W, et al. Cohort profile: The isle of wight whole
512 population birth cohort (iowbc). International journal of epidemiology. 2018;47:1043–
513 1044.

Appendix

515 A. Model assessment statistics for dependent networks

Table A.1. Simulation results for dependent networks with 10 nodes

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P=10$ nodes, $ E_{X_1} = E_{X_2} = 9$ edges)				
50	100	0.167 (0.167, 0.333)	1.0 (0.970, 1.0)	0.778 (0.756, 0.817)
100	100	0.333 (0.167, 0.417)	1.0 (0.970, 1.0)	0.778 (0.756, 0.817)
200	100	0.5 (0.333, 0.5)	1.0 (0.970, 1.0)	0.856 (0.816, 0.867)
500	100	0.5 (0.458, 0.583)	1.0 (0.970, 1.0)	0.867 (0.844, 0.889)
Underlying truth: differential networks ($P=10$ nodes, $ E_{X_1} = 9$, $ E_{X_2} = 9$ edges)				
50	46	X_1 : 0.117 (0.059, 0.235) X_2 : 0.222 (0.111, 0.444)	1.0 (0.964, 1.0)	0.667 (0.633, 0.7)
100	48	X_1 : 0.25 (0.14, 0.25) X_2 : 0.444 (0.222, 0.667)	1.0 (0.972, 1.0)	0.844 (0.805, 0.889)
200	100	X_1 : 0.235 (0.132, 0.294) X_2 : 0.556 (0.333, 0.778)	1.0 (0.973, 1.0)	0.711 (0.667, 0.733)
500	100	X_1 : 0.294 (0.235, 0.353) X_2 : 0.889 (0.5, 1.0)	0.982 (0.947, 1.0) 1.0 (0.972, 1.0)	0.711 (0.683, 0.750) 0.967 (0.933, 1.0)

Table A.2. Simulation results for dependent networks with 30 nodes

n	EP (%)	TP (95% EI)	TN (95% EI)	CC (95% EI)
Underlying truth: identical networks ($P=30$ nodes, $ E_{X_1} = E_{X_2} = 29$ edges)				
50	93	0.115 (0.077, 0.154)	0.997 (0.993, 1.0)	0.892 (0.885, 0.897)
100	98	0.231 (0.173, 0.269)	0.995 (0.989, 0.999)	0.902 (0.895, 0.91)
200	100	0.269 (0.24, 0.327)	0.997 (0.991, 1.0)	0.911 (0.904, 0.917)
500	100	0.298 (0.269, 0.327)	0.999 (0.994, 1.0)	0.915 (0.91, 0.92)
Underlying truth: differential networks ($P=30$ nodes, $ E_{X_1} = 29$, $ E_{X_2} = 29$ edges)				
50	100	X_1 : 0.056 (0.019, 0.093) X_2 : 0.231 (0.115, 0.346)	0.997 (0.992, 1.0) 0.998 (0.994, 1.0)	0.88 (0.874, 0.887) 0.951 (0.944, 0.957)
100	100	X_1 : 0.148 (0.093, 0.185) X_2 : 0.423 (0.308, 0.577)	0.993 (0.988, 0.999) 0.995 (0.991, 0.999)	0.889 (0.88, 0.897) 0.962 (0.953, 0.973)
200	100	X_1 : 0.204 (0.153, 0.269) X_2 : 0.769 (0.615, 0.885)	0.993 (0.988, 0.998) 0.999 (0.995, 1.0)	0.894 (0.886, 0.905) 0.983 (0.976, 0.993)
500	100	X_1 : 0.241 (0.204, 0.269) X_2 : 0.942 (0.826, 1.0)	0.997 (0.991, 1.0) 0.999 (0.995, 1.0)	0.903 (0.896, 0.913) 0.994 (0.987, 1.0)

516 B. Trace plots assessing convergence

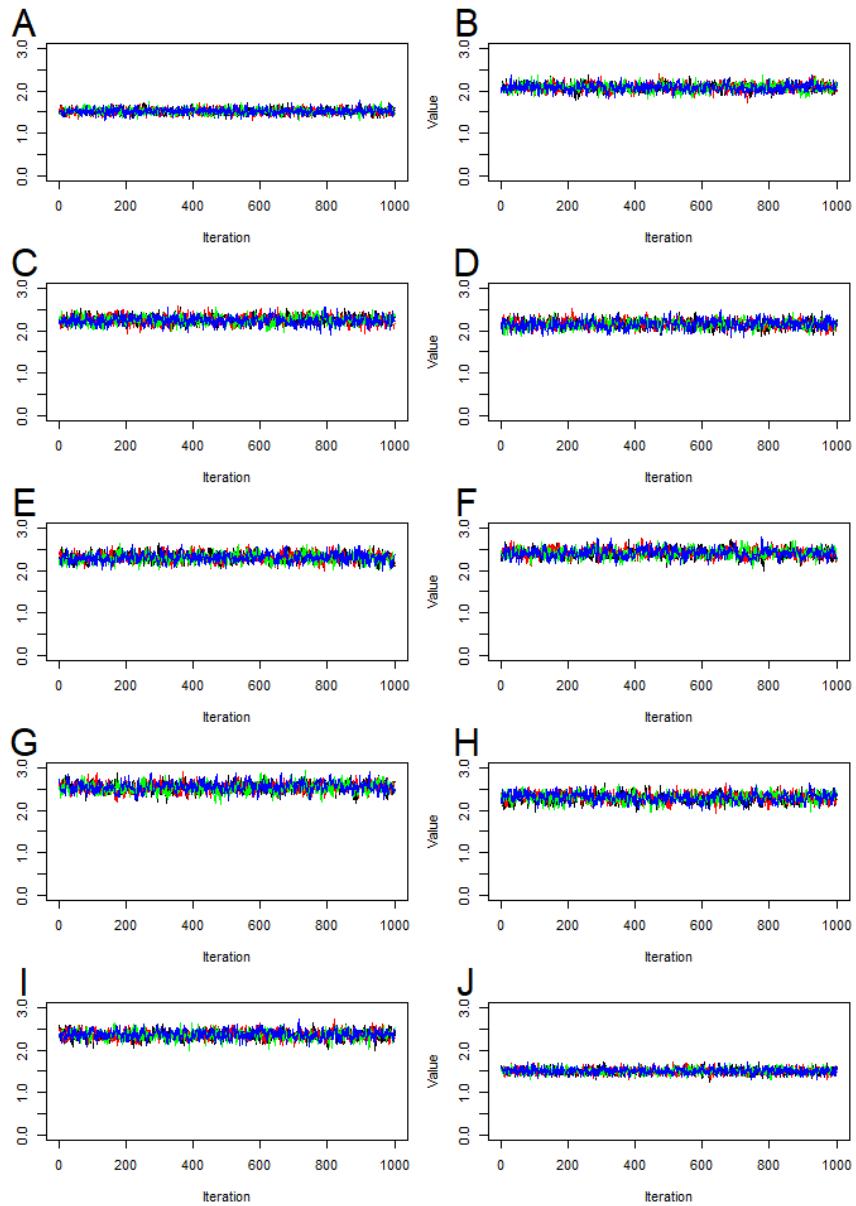


Figure B.1. Trace plots of posterior samples for the diagonal elements of a precision matrix (Ω_1) with 10 nodes. (A) corresponds to the first diagonal element. (B) corresponds to the second diagonal element, and so on.