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ABSTRACT1
For networks originated from dependent populations, methods to test network dif-2
ferentiation between the two populations are generally designed incorporating the3
nature of dependence. Doing so potentially complicates the inferencing process with4
heavy computing burden. Through simulations, we assess the value of using compos-5
ite likelihood to carry out network comparisons under different statuses of population6
dependency. We apply the method to real-life epigenetic data and assess epigenetic7
network stability over time.8
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1. Introduction12

Epigenetics encapsulates environmental influences and life changes and regulates gene13

functions. One commonly studied epigenetic modification mechanism is DNA methyla-14

tion. DNA methylation (DNA-m) is the process of chemical modification of the DNA15

base, usually the addition of a methyl (CH3) group at 5'-carbon of pyrimidine ring of16

cytosine nucleotide to the DNA to form 5-methylcytosine. Although most studies focus17

on features of individual CpG sites, joint activities among CpGs have been recognized,18

and the value of such joint activities on phenotypic characteristics has been suggested19

[1]. In this article, we focus on such activities, from the perspective of networks formed20

by CpG methylation sites.21

Networks display the inter-connectivity of a set of entities, e.g., CpG sites, and are22

useful in understanding the relationship between these entities referred to as nodes. The23

connectivity of nodes (e.g., CpGs) in a network is indicated by the presence of an edge24

or lack thereof. Edges transmit details about the links between the nodes. Networks are25

generally classified as directed or undirected or a combination of the two. A directed26

network is one in which the edges indicating the connections between two nodes carry27

signals that drive the activities from one (parent) to the other (child). On the other28
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hand, an undirected network is one that simply depicts an association or conditional29

dependence between two nodes without an implied flow or direction of relationship. Our30

focus in this work is on undirected Gaussian networks such that the connections between31

nodes of a network are determined by a covariance matrix or a precision matrix inferred32

based on observed variables (nodes) following a multivariate normal distribution.33

Undirected Gaussian network structures between different conditions such as disease34

status (independent networks) or at different time points (dependent networks) can be35

differentiated. Methods to compare between independent networks have been proposed36

in multiple studies. Gill et al. [2] suggested a procedure based on genetic associations37

or interaction between genes to globally test differential undirected gene networks. An-38

other approach to globally test network differentiation was proposed by Xia et al. [3],39

designed based on estimating difference in precision matrices between two differential40

undirected networks [4]. The work by Städler et al. [5] was under a framework similar to41

Zhao et al. [4]. A method to compare two graphs by comparing multivariate two-sample42

means on known graphs using Hotelling’s T 2-tests was proposed by Jacob et al. [6]. More43

recently, He et al. [7], built upon inference of Gaussian graphic modeling and asymp-44

totic normality of precision matrix components, proposed a test statistic to efficiently45

compare two precision matrices. Approaches comparing between covariance matrices46

can also be applied to compare agreement between two Gaussian undirected networks47

constructed using precision matrices, e.g., the works by Cai et al. [8] and Chang et al.48

[9]. To our knowledge, methods to compare dependent networks, on the other hand, are49

relatively limited except for the manifest-data likelihood (MDL) method proposed by50

Zhang et al. [10]. MDL has the ability to infer the underlying shared network between51

different time points as well as edges showing differentiation. However, the scalability52

of the approach when the number of nodes is large, limited its scope of application.53

This is potentially due to the complexity of the modeling to address dependence while54

comparing networks. To this end, we propose a simplified approach aiming to enhance55

computational efficiency. In particular, we adopt the concept of composite likelihood56

for this purpose.57

Composite likelihood (CL) is an inference function obtained by summing individual58

component log-likelihood objects, regardless of their dependence status. The composite59

likelihood function is unbiased because each component in the function is a conditional60

density [11]. Irrespective of the nature of dependence among the individual components,61

each individual term in the summation is a valid log-likelihood, although a composite62

likelihood may be for a misspecified model. Its high efficiency, particularly, computation-63

wise and in modeling the joint distribution in high-dimensional response, as well as its64

robustness to model misspecification makes it appealing [11]. Composite likelihood-65

based methods have been proposed with varying applications, e.g., to infer ancestry66

probability in genetic studies [12], or to estimate genetic and environmental covariance in67

genome-wide association studies [13]. For more on composite likelihood-based methods,68

readers are referred to [11,14–18]. In this article, we simplify Zhang et al.’s MDL method69

by use of composite likelihood and examine the potential of this simplification in the70

comparison of undirected Gaussian networks, dependent or independent.71

The remainder of this paper is outlined as follows. Section 2 introduces the proposed72

method. In section 3, simulations to demonstrate and evaluate the composite likelihood-73

based approach are discussed, and we also compare our approach with the MDL via the74

simulated data. In section 4, we apply the method to real-life epigenetic data and assess75

epigenetic network stability over time. Finally, in section 5, we discuss and summarized76

our work.77
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2. Methods78

Let X1,n1×P and X2,n2×P represent two multivariate data sets with sample sizes n179

and n2, respectively, measured on P variables in two populations such that the data80

are complete and have no missing values. These two populations could be dependent or81

independent. Without loss of generality, we assume the data are centered. Let vec-82

tor X1i of length P denote data for subject i, i = 1, . . . , n1, from population 183

and assume X1i ∼ N(0, Σ1), where Σ1 is the covariance matrix of X1i. Similarly,84

X2i ∼ N(0, Σ2), i = 1, . . . , n2. We define Ωk = Σ−1
k , a precision matrix under popula-85

tion k, k = 1, 2. Denote X1. = {X11, . . . , X1n1} and X2. = {X21, . . . , X2n2}. When86

X1i and X2i are independent, the joint likelihood of Ωk, is defined as,87

L(Ω1, Ω2) =
2∏

k=1
p(Xk.|Ωk) (1)

=
2∏

k=1

nk∏
i=1

p(Xki|Ωk)

=
2∏

k=1
(2π)−P (nk/2)det (Ωk)nk/2

exp
(

−
2∑

k=1

(
nk

2

)
tr(Σ̂X(k,k)Ωk)

)
,

where Σ̂X(1,1) and Σ̂X(2,2) are the sample covariance matrices for populations 1 and88

2, respectively. Note that (1) becomes a composite or pseudo likelihood when the two89

populations are dependent, in which case the likelihood focuses on each population90

without accounting for the dependence between them. In the remainder of this article,91

we simply call (1) a composite likelihood.92

The graph structures for the two populations can be concluded using Ω1 and Ω293

via binary adjacency matrices G1 and G2, respectively. An entry of 1 in Gk, k = 1, 2,94

denotes a connected edge and its corresponding entry of Ωk is non-zero. An entry of 0 in95

Gk indicates a disconnected edge in a graph, and Ωk is zero at that entry. It is assumed96

that a self-loop does not exist in any of the graphs, i.e., the diagonals of the adjacency97

matrices are all 0’s.98

2.1. Graphs differentiation between two populations99

Network structures under different conditions can be identical or differential. To facili-100

tate a comparison between networks for different populations, we introduce an indicator101

variable η with η = 1 denoting two graphs being identical and η = 0 two graphs being102

differential. When the underlying two graphs are identical, Ω1 = Ω2 = Ωc, and conse-103

quently, G1 = G2 = Gc. To incorporate both situations, we define Ω(k) = (1−η)Ωk+ηΩc,104

and G(k) = (1 − η)Gk + ηGc, with both Ω(k) and G(k) dependent on η. Consequently,105
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likelihood (1) is revised to106

2∏
k=1

nk∏
i=1

p(Xki|Ωk, η) =
2∏

k=1
(2π)−P (nk/2)det

(
Ω(k)

)nk/2

exp
(

−
2∑

k=1

(
nk

2

)
tr(Σ̂X(k,k)Ω(k))

)
,

and the focus is on inferring η, and corresponding graph parameters Ω(k) and G(k).107

2.2. Inference on graph differentiation status between two conditions108

Let ω
(k)
(m1,m2) denote a unique entry of Ω(k) at (m1, m2) such that m1 ≤ m2 = 1, . . . , P .109

Following the definition of Ω(k), we have ω
(k)
(m1,m2) = (1 − η)ωk,(m1,m2) + ηωc,(m1,m2).110

Similarly, let g
(k)
(m1,m2) denote an entry of G(k) at (m1, m2), and we have g

(k)
(m1,m2) =111

(1 − η)gk,(m1,m2) + ηgc,(m1,m2), m1 ≤ m2 = 1, . . . , P . At (m1, m2), g(k)
(m1,m2) = 1 if112

nodes m1 and m2 are connected, i.e., the corresponding entry of Ω(k) is non-zero, and113

g(k)
(m1,m2) = 0 otherwise. Let Θ denote a collection of graphical parameters along with114

the network differentiation status parameter η, Θ = {ω(k), g(k), η, k = 1, 2}, where ω(k)115

and g(k) denote vectors composed of ω
(k)
(m1,m2) and g

(k)
(m1,m2), respectively. We propose a116

fully Bayesian approach to draw inferences on these parameters.117

Prior distributions. For network constructions, we utilize established prior distri-118

butions as in Zhang et al. [10]. We assign the spike-and-slab prior distribution [19–21]119

to each ω
(k)
(m1,m2) with m1 ̸= m2,120

p(ω(k)
(m1,m2)|g

(k)
(m1,m2)) = g

(k)
(m1,m2)N(0, ν2

1,k) + (1 − g
(k)
(m1,m2))N(0, ν2

0,k),

conditional on Ω(k) ∈ M+ with M+ denoting a space of positive definite matrices.121

Hyper-parameters ν2
1,k and ν2

0,k are the variances in the two respective normal distri-122

butions. The spike component, represented by the Gaussian distribution N(0, ν2
0,k), is123

crucial for controlling sparsity, and the hyperparameter ν2
0,k, reflect the expected spar-124

sity of a graph. Here, we use the same hyperparameters for the two populations, i.e.125

ν2
1,k = ν2

1 and ν2
0,k = ν2

0 , assuming comparable sparsity in networks between the two126

populations. With a large ν2
1 , the corresponding normal prior distribution is a vague127

prior distribution, allowing a wide range of edge strength for each population. With ν2
1128

fixed and ν2
0 selected based on sparsity level, we are able to control the overall sparsity129

level in the two populations while allowing the two populations to have different number130

of edges.131

For parameters ω
(k)
(m1,m2) with m1 = m2 = m, its prior, p(ω(k)

(m,m)), is assumed to be132

an exponential distribution with parameter λ. We set λ = 1 as suggested by Wang et133

al. [22].134

Bernoulli probability mass function with prior parameter π denoting our a priori135

belief of two nodes being connected was used for the components in g(k), p(g(k)
(m1,m2)) =136

π
g

(k)
(m1,m2)(1 − π)1−g

(k)
(m1,m2) , m1 ̸= m2. We set π = O(2/(P − 1)) based on a common137
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assumption on the expected number of edges, O(P ), for sparse graphs [22,23]. Finally,138

we assume a Bernoulli distribution with hyperparameter 0.5 for the prior mass function139

of η. We proposed this non-informative prior, as in most situations, we do not have140

prior knowledge regarding network similarity. If we believe in any particular status over141

the other, then an informative prior is preferred to reflect our prior belief and benefit142

posterior inference, especially when the sample size is small and signal in the data is143

weak.144

The joint posterior distribution and its computation. Based on (1) and the145

defined prior distributions, we define the joint posterior distribution of Θ as146

p(Θ|X) ∝
2∏

k=1
p(Xk.|Ω(k), η)p(Ω(k)|η, g(k))p(g(k)|η)p(η). (2)

We draw posterior inferences of Θ through Markov Chain Monte Carlo (MCMC)147

simulations. In particular, we implement the Gibbs sampler to draw samples from the148

full conditional posterior distribution of each parameter derived from (2). In the follow-149

ing, we present these full conditional posterior distributions. We use (·) to represent a150

collection of other parameters upon which a parameter is conditioned.151

We begin with the conditional posterior probability of η, the key parameter for net-152

work differentiation and a fundamental parameter for subsequent graph structure infer-153

ence. From (2), we have154

p(η = 1|(·), X) ∝
2∏

k=1
p(Xk.|Ωc, η = 1, gc)p(η = 1). (3)

Following a comparable argument as in Zhang et al. [10], under the composite likelihood155

framework, it can be shown straightforwardly that156

p(η = 1|(·), X) ≈ [1 + exp{log(b) − log(a) + λ(n1, n2)}]−1 ≡ pλ(η = 1|(·)),

λ(n1, n2) = 1
2(|E| log(n) − |E1| log(n1) − |E2| log(n2)),

(4)

where n = n1 + n2, |E| represents the number of edges in an inferred network under the157

condition that η = 1 and |Ek|, k = 1, 2, is the number of edges in an inferred network158

under the condition of η = 0. We define a and b as,159
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a =
2∏

k=1
p(Xk.|Ωc, η = 1)

=
2∏

k=1
(2π)−P (nk/2)det (Ωc)nk/2 exp

(
−

2∑
k=1

(
nk

2

)
tr(Σ̂X(k,k)Ωc)

)
,

b =
2∏

k=1
p(Xk.|Ωk, η = 0)

=
2∏

k=1
(2π)−P (nk/2)det (Ωk)nk/2 exp

(
−

2∑
k=1

(
nk

2

)
tr(Σ̂X(k,k)Ωk)

)
.

(5)

Based on (2), the full conditional posterior distributions of parameters in Ω(k) can be160

derived,161

p(ω(k)
(m1,m2)|(·), X) ∝

2∏
k=1

p(Xk.|Ω(k), η)p(ω(k)
(m1,m2)|η, g

(k)
(m1,m2)),

p(ω(k)
(m,m)|(·), X) ∝

2∏
k=1

p(Xk.|Ω(k), η)p(ω(k)
(m,m)|λ),

where m = 1, . . . , P, m1 < m2, m1, m2 = 1, . . . , P.162

Similarly, the conditional posterior distributions of the parameters in graph structures163

G(k) can be derived,164

p(g(k)
(m1,m2)|(·), X) ∝

2∏
k=1

p(Xk.|Ω(k), η)p(ω(k)
(m1,m2)|η, g

(k)
(m1,m2))p(g(k)

(m1,m2)).

Hyper-parameters ν0 and ν1, ν0 < ν1, define the sparsity of a graph a priori. At a165

fixed value of ν1, the inclusion or exclusion of an edge can be controlled with varying166

values of ν0 where larger values of ν0 leads to the inclusion of a smaller number of edges,167

and on the other hand, smaller values of ν0 leads to the inclusion of a larger number of168

edges. The selection of ν0 is crucial to the estimate of underlying graphs. In this article,169

we follow the suggestion of Zhang et al. [10] and choose the value of ν0 based on a170

pre-specified level of sparsity. It was suggested that the starting value of ν0 needs to be171

small. Here, we set ν0 = 0.02.172

3. Simulations173

Through simulations, our goal is to evaluate the robustness of the composite-likelihood-174

based approach in network comparisons with respect to different statuses of dependence175

between two populations.176
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3.1. Network structures and settings177

To assess the method, we consider two situations of relationships between two pop-178

ulations: independence between two populations (S1), and dependence between two179

populations (S2). For each situation, the networks for the two populations are either180

truly identical or truly differential.181

S1. Chain graphs, G1 and G2, are generated for each population independently, fol-182

lowing the idea of Fan et al. [24]. We create a covariance matrix with a covariance183

structure of auto-regressive process of order one for each network. In a covari-184

ance matrix, the diagonal entries are 1’s and an off-diagonal entry {m1, m2 =185

1, . . . , P, m1 ̸= m2} is defined as exp{−a|sm1 − sm2 |} with sm1 − sm1−1
i.i.d.∼186

Unif(0.5,1), m1 = 2, . . ., P , and s1 < s2 < · · · < sP , where a is a parameter187

that determines the magnitude of link between two nodes and was set at a = 0.1.188

Based on this method, the partial correlations resulting from the precision ma-189

trices vary between −0.4 and 0.9. For networks that are truly identical, the same190

precision matrix is applied to generate data for each population using multivariate191

normal distribution with mean zero.192

To generate differential networks, a chain graph for population 1 is defined as193

above with corresponding precision matrix Ω1. For the second population, the194

precision matrix Ω2 is formulated by forcing P
2 − 1 consecutive entries of Ω1 to be195

zero, we then generate data from each precision matrix for each population using196

multivariate normal with mean zero.197

S2. When generating two dependent networks, for identical networks, we first use the198

method in S1 to generate two identical but independent chain networks, G1 and199

G2. To introduce dependence, we also generate a network, G0, shared between the200

two populations. The shared network is a nearest-neighbor network and generated201

according to Li and Gui [25]. The generation of the shared network uses pairwise202

distances between nodes, with each node generated from a Uniform distribution203

on a [0, 1] × [0, 1] space. We identified t nearest neighbors using the pairwise204

distances, where we set t = 2 in our simulations. Then, entries in the precision205

matrix for each pair of connected nodes are generated based on the algorithm by206

Li and Gui [25]. The diagonal entries are 1 in the resulting precision matrix while207

the off-diagonal entries vary between -0.2 and 0.2 denoting low partial correlation208

between the nodes. The data from the shared network were then added to the data209

corresponding to G1 and G2 to introduce dependence between the two populations.210

For differential networks, the network for one population is a chain network211

(G1) plus the shared network (G0), and for the other population, it is only the212

shared network. The shared graph is a nearest neighbor network as described213

above under this dependent situation (S2).214

For each of the above four settings, the number of nodes is set at P = 10 and P = 30. To215

demonstrate finite sample properties, different sample sizes, n1 = n2 = n = 50, 100, 200216

and 500 are considered. For each case, we generate 100 Monte Carlo (MC) replicates to217

address sampling error.218

To evaluate the convergence of posterior sampling, we ran four chains with diffused219

starting values on multiple randomly selected MC replicates. After noticing fast conver-220

gence (Figure B.1 in the Appendix as an illustration), for each of the 100 MC replicates,221

we run 1,000 iterations, of which 700 iterations were used as burn-in, and the last 300222

used to draw the inferences.223

Model performances are assessed using four statistics, 1) empirical power (EP) of224
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correct detection with respect to network comparison (identical or differential), 2) me-225

dian proportion of true positives for edge connection (TP; sensitivity) in a network, 3)226

median proportion of true negatives (TN; specificity) of a network, and 4) median pro-227

portion of correct connections (CC) of edges. Correct connections combines information228

from both sensitivity and specificity, and identifies edges with observed edge connection229

statuses (connected or not connected) that is consistent with the true underlying net-230

work structure. We also provide 95% empirical credible interval for each of the model231

comparison statistics except for power.232

3.2. Performance of the method233

3.2.1. Findings when two populations are independent234

We first discuss findings when the underlying two populations are independent. With 10235

nodes (Table 1), when two networks are either truly identical or truly differential, the236

powers to detect the underlying truth are high, at 100% for all sample sizes. Regarding237

the quality of the inferred graphs, the proportions of true positives, true negatives, and238

consequently, the overall correct connections are all high, regardless of the sample size239

or the underlying network differentiation status. In Table 1 and throughout the findings240

in this section, there is a pattern of slightly decreased proportions of true negatives as241

sample sizes increase, e.g., 1.0 at n = 50 vs. 0.875 at n = 500 for identical networks,242

which means more edges are falsely identified. This phenomenon is due to finite sample243

properties analogous to what is commonly observed in hypothesis testing; as sample244

size becomes large, there is a higher chance to reject the null hypothesis, even if the245

null is true.246

When increasing the number of nodes to P = 30, similar patterns as described above247

are observed (Table 2). That is, the powers to detect the underlying truth are 100% for248

all sample sizes, irrespective of the underlying truth. The proportions of TP, TN, and249

CC are also high and comparable to those in Table 1.250

Overall, when the two populations are independent, for all the settings considered, the251

patterns observed on the assessment of network differentiation and network inferences252

are as expected, since population independence fits the underlying assumption in the253

construction of the composite likelihood. The next subsection discusses results when254

underlying two populations are truly dependent.255

3.2.2. Findings when two populations are dependent256

In this subsection, we use figures to describe the patterns when comparing findings257

across different sample sizes and different number of nodes. Corresponding tables are in258

the Appendix (Table A.1 and Table A.2).259

When two networks are from two dependent populations, the composite likelihood-260

based method is promising with respect to the power of detecting underlying network261

differentiation status (Figures 1A and 2A), irrespective of the number of nodes. In262

particular, when two networks are truly identical, the powers are high at or close to263

100% for all sample sizes and different numbers of nodes, P = 10 and P = 30 (Figure264

1A). When the underlying two networks are differential, the method shows high power,265

at 100% for all sample sizes when P = 30. The power statistics are also 100% for larger266

sample sizes, when P = 10, although the power is average for smaller sample sizes (46%267

and 48% for n = 50 and n = 100, respectively) (Figure 2 A).268

Another robust finding is the high proportions of true negatives even when the sam-269
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Table 1. Simulation results for independent networks with 10 nodes.

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P=10 nodes, |EX1 | = |EX2 | = 9 edges)
50 100 1.0 (0.889, 1.0) 1.0 (0.958, 1.0) 0.989 (0.950, 1.0)

100 100 1.0 (0.915, 1.0) 0.986 (0.937, 1.0) 0.989 (0.944, 1.0)
200 100 1.0 (0.915, 1.0) 0.958 (0.882, 1.0) 0.967 (0.844, 1.0)
500 100 1.0 (0.915, 1.0) 0.875 (0.791, 0.944) 0.900 (0.822, 0.956)
Underlying truth: differential networks (P=10 nodes, |EX1 | = 9, |EX2 | = 7 edges)
50 100 X1: 1.0 (0.889, 1.0) 1.0 (0.958, 1.0) 1.0 (0.944, 1.0)

X2: 1.0 (0.60, 1.0) 1.0 (0.963, 1.0) 0.989 (0.933, 1.0)
100 100 X1: 1.0 (0.889, 1.0) 1.0 (0.944, 1.0) 0.989 (0.956, 1.0)

X2: 1.0 (0.9, 1.0) 1.0 (0.968, 1.0) 0.989 (0.972, 1.0)
200 100 X1: 1.0 (0.889, 1.0) 0.972 (0.909, 1.0) 0.967 (0.928, 1.0)

X2: 1.0 (0.9, 1.0) 0.988 (0.950, 1.0) 0.989 (0.950, 1.0)
500 100 X1: 1.0 (0.889, 1.0) 0.861 (0.792, 0.944) 0.889 (0.828, 0.944)

X2: 1.0 (0.9, 1.0) 0.975 (0.913, 1.0) 0.978 (0.922, 1.0)

Table 2. Simulation results for independent networks with 30 nodes.

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P = 30 nodes, |EX1 | = |EX2 | = 29 edges)
50 100 0.983 (0.931, 1.0) 0.998 (0.991, 1.0) 0.997 (0.988, 1.0)

100 100 0.983 (0.948, 1.0) 0.994 (0.991, 1.0) 0.995 (0.991, 0.999)
200 100 0.983 (0.948, 1.0) 0.992 (0.983, 0.998) 0.991 (0.983, 0.997)
500 100 0.983 (0.948, 1.0) 0.968 (0.956, 0.980) 0.969 (0.957, 0.980)
Underlying truth: differential networks (P = 30 nodes, |EX1 | = 29, |EX2 | = 27 edges)
50 100 X1: 0.983 (0.931, 1.0) 0.998 (0.993, 1.0) 0.997 (0.99, 1.0)

X2: 0.967 (0.867, 1.0) 0.998 (0.995, 1.0) 0.997 (0.992, 1.0)
100 100 X1: 0.983 (0.948, 1.0) 0.998 (0.991, 1.0) 0.997 (0.99, 0.999)

X2: 1.0 (0.933, 1.0) 0.998 (0.993, 1.0) 0.998 (0.993, 1.0)
200 100 X1: 0.983 (0.939, 1.0) 0.993 (0.985, 0.999) 0.992 (0.984, 0.998)

X2: 1.0 (0.933, 1.0) 0.996 (0.991, 1.0) 0.996 (0.99, 0.999)
500 100 X1: 0.983 (0.939, 1.0) 0.969 (0.956, 0.981) 0.971 (0.958, 0.982)

X2: 1.0 (0.933, 1.0) 0.989 (0.981, 0.996) 0.989 (0.98, 0.996)

ple size is small (Figures 1C and 2C). Together with the relatively lower proportions270

of true positives (Figures 1B and 2B), the findings indicate the conservativeness of the271

method when claiming an edge. For the proportions of true positives, although they are272

lower than those observed when underlying populations are independent, they increase273

as the sample sizes increase. The high proportions of true negatives and relatively rea-274

sonable proportions of true positives result in overall acceptable proportions of correct275

connections (Figures 1D and 2D).276

Here, we would like to delve a little deeper into the relatively low proportions of true277

positives when two populations are dependent. We use the setting when two graphs278

are truly differential as an example to lay out our discussion. Recall that the networks279

represented by X1 are a combination of G1 (unique network) and G0 (shared network)280

while the networks by X2 are G0 only. We observe that the proportions of true positives281

for networks corresponding to X2 are higher than those for graphs corresponding to282

X1. This phenomenon is likely due to the scenarios implemented to simulate dependent283

networks since the assumed underlying truth G1+G0 for X1, and thus lower proportions284
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Figure 1. Model assessment statistics when two dependent networks are identical. When
P = 10, the number of edges are G0=9 and G1=G2=9. When P = 30, the number of
edges of G0=26 and G1=G2=29.

of true positives are concluded for networks corresponding to X1. However, given the285

increased proportions of true positives for X2 with G0 as the underlying truth, we286

expect the proposed approach has a strong potential to correctly infer the underlying287

true graph determined by Ω1 +Ω0, which is likely not a simple addition of G1 and G0. In288

addition, this observation leads to an interesting direction of future work while enjoying289

the simplicity and robustness of the composite likelihood framework. That is, when two290

populations are potentially dependent, to what extent we are able to learn the shared291

network.292

3.2.3. Comparison of the performance of CL and MDL293

Via simulations, to further assess the performance of the composite likelihood (CL)-294

based approach, we compare the findings with those from the MDL approach in Zhang295

et al. [10] The simulated data are the 100 Monte Carlo replicates based on the settings296

outlined in Section 3.1 at n = 50 and the same statistics (power, proportions of TP,297

TN, and CC) are used to compare the two approaches.298

Results for the CL-based approach (or CL for simplicity) are in Table 1 (P = 10)299

and Table 2 (P = 30) with n = 50 and the results for MDL-based methods (or MDL300

for simplicity) are in Table 3 (independent populations) and Table 4 (dependent popu-301
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Figure 2. Model assessment statistics when two dependent networks are differential.
When P = 10, the number of edges of G1 = 9, and that of G0 = 9. When P = 30, the
number of edges of G1 = 29, and that of G0 = 26.

lations).302

When two networks are independent, regardless of the number of nodes and net-303

work differentiation status (identical or differential), the CL-based method outperforms304

the MDL-based approach (Tables 1 and 2). The power to detect the underlying dif-305

ferentiation status under CL is always at least as high as that from the MDL-based306

approach (Tables 1 and 2). With respect to network construction based on CL, most307

statistics (the median proportions of TP, TN and CC) are higher than 0.95 and all308

statistics are higher than 0.85; overall, these statistics are much better than those from309

the MDL-based approach.310

Under the situation of two dependent populations, with P = 10, when the two311

networks are truly identical, CL shows a much higher power than MDL to detect the312

underlying truth of network differentiation, 100% from CL (Figure 1A and Appendix313

Table A.1) vs 20% from MDL (the first row of Table 4)). When the two networks314

are truly differential, MDL outperforms CL, 100% for MDL (second row of Table 4))315

and 46% for CL (2A). However, as seen in Figure 2A, the power of CL to detect the316

underlying truth quickly increases as sample sizes increase. When P = 30, regardless317

of the network differentiation status (identical or differential), the power of CL is much318

higher than that from MDL when the two networks are identical and comparable to319

that from MDL for differential networks.320
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As for graph inference under the situation of dependent populations, the proportions321

of TP and CC from CL are relatively lower than those from MDL, leading to relatively322

higher proportions of TN under CL. The underlying cause of such phenomena is likely323

to be the same as that noted for the situation when two populations are independent,324

i.e., MDL has the capacity to address shared networks. This point is especially clearer325

when we look at the graph inference statistics for X2. The underlying true graph for326

X2 is G0, the shared graph. As shown in Figure 2, even at n = 50, the inferences of the327

graph for X2 from CL are better than those for X1. However, this is not the case for328

MDL as seen in Table 4 when two networks are differential. The much lower proportions329

of TP and higher proportions of TN from MDL for X2 compared to those for X1 are330

actually as expected, simply because the true graph on top of the shared graph G0 is331

an empty graph. On the other hand, the graph inference statistics for X1 from MDL332

overall outperform those from CL at n = 50, which indicates a better fit of MDL for333

graph inferences when two populations are potentially dependent.334

Table 3. Select comparative results for independent networks using the MDL method

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P = 10 nodes, |EX1 | = |EX2 | = 9 edges)
50 96 1.0 (0.778, 1.0) 0.833 (0.012, 0.988) 0.867 (0.209, 0.991)
Underlying truth: differential networks (P = 10 nodes, |EX1 | = 9, |EX2 | = 7 edges)
50 85 X1: 1.0 (0.828, 1.0) 0.833 (0.056, 0.972) 0.867 (0.244, 0.978)

X2: 1.0 (0.8, 1.0) 0.9 (0.05, 1.0) 0.911 (0.156, 1.0)
Underlying truth: identical networks (P = 30 nodes, |EX1 | = |EX2 | = 27 edges)
50 95 0.966 (0.897, 1.0) 0.443 (0.007, 0.581) 0.474 (0.073, 0.605)
Underlying truth: differential networks (P = 30 nodes, |EX1 | = 29, |EX2 | = 27 edges)
50 99 X1: 0.966 (0.897, 1.0) 0.438 (0.008, 0.605) 0.476 (0.074, 0.627)

X2: 1.0 (0.867, 1.0) 0.602 (0.012, 0.728) 0.616 (0.046, 0.737)

Table 4. Select comparative results for dependent networks using the MDL method

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P = 10 nodes, |EX1 | = |EX2 | = 29 edges)
50 20 0.5 (0.167, 0.75) 0.879 (0.758, 0.97) 0.778 (0.644, 0.889)
Underlying truth: differential networks (P = 10 nodes, |EX1 | = 9, |EX2 | = 7 edges)
50 100 X1: 0.412 (0.294, 0.578) 0.857(0.0, 0.964) 0.688 (0.578, 0.8)

X2: 0.111 (0.0, 0.222) 0.972 (0.0, 1.0) 0.8 (0.733, 0.822)
Underlying truth: identical networks (P = 30 nodes, |EX1 | = 29, |EX2 | = 27 edges)
50 16 0.404 (0.308, 0.962) 0.950 (0.110, 0.971) 0.880 (0.212, 0.908)
Underlying truth: differential networks (P = 30 nodes, |EX1 | = 29, |EX2 | = 27 edges)
50 99 X1: 0.389 (0.315, 0.919) 0.953 (0.136, 0.971) 0.880 (0.265, 0.909)

X2: 0.038 (0.0, 1.0) 0.972 (0.101, 0.995) 0.915 (0.179, 0.938)

3.3. Comparison of computing times between CL and MDL335

To examine the efficiency of the proposed CL approach in network comparison, data336

simulated under scenario S2 with n = 50, 100, 200, 500, and P = 10 are used. The time337

spent in one iteration is recorded and compared to that of MDL. Regardless of the338
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sample size, the CL approach only needs less than one-third of the computing time,339

compared to if dependency is incorporated into the calculations as in the MDL method340

(Figure 3A and 3B).341

Figure 3. Computing times of CL vs. MDL. (A) shows the times for independent graphs
with 10 nodes. (B) shows the times for dependent graphs with 10 nodes.

4. Application to real-life data342

4.1. Background of the data343

The study was motivated by the potentially joint activities among CpG sites and changes344

of such activities over time, as noted in the introduction section. By applying the pro-345

posed method (CL) to DNA-m at certain CpG sites, we demonstrate the performance346

of CL and compare the results with those from MDL [10].347

DNA-m data measured in a birth cohort established in 1989-1990 on the Isle of Wight,348

United Kingdom, are analyzed [26]. In particular, DNA-m at 22 CpG sites at ages 10,349

18, and 26 years examined in Zhang et al. [10] are included in this study and we compare350

network differentiation between ages 10 and 26 (n=171) using the CL-based approach.351

During adolescence, children experience substantial changes mentally and physically,352

and we expect to observe network differentiation between these two ages.353

We use the methods proposed in Section 2.2 to draw inferences on the parameters of354

the model, including network comparisons. To tune ν0 based on sparsity level, following355

our assumption, the lower bound on the number of edges is set at O(P )=22, and the356

upper bound is relaxed to the number of possible edges from 22 nodes, i.e., 231 as357

the upper bound. To draw posterior inferences, in total, 1,000 iterations are run in the358

Gibbs sampler with 500 as burn-in iterations. Running longer chains does not change359

our conclusion, indicating potential convergence.360

4.2. Results361

With the CL-based approach, the estimated probability that the networks are differen-362

tial between ages 10 and 26 is 0.994, strongly supporting network changes from pre- to363

post-adolescence. Most of the 16 edges identified at age 10 years were kept at age 26364

years with new edges detected at age 26 years within (e.g., gene GFI1 ) and between365
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Table 5. The 22 CpG sites considered from IOW Cohort

Chr Gene CpG CpG Index
1 GFI1 cg06338710 1

cg09662411 2
cg09935388 3
cg10399789 4
cg12876356 5
cg14179389 6
cg18146737 7
cg18316974 8

5 AHRR cg05575921 9
6 HLA-DPB2 cg11715943 10
7 CNTNAP2 cg25949550 11

ENSG00000225718 cg04598670 12
MYO1G cg04180046 13

cg12803068 14
cg19089201 15

8 EXT1 cg03346806 16
14 TTC7B cg18655025 17
15 CYP1A1 cg05549655 18

cg11924019 19
cg18092474 20
cg22549041 21

21 RUNX1 cg12477880 22
Note: “Chr” denotes the chromosome location of CpG

genes (Figure 4), indicating potential impact of adolescence transition on epigenetic366

activities.367

On the other hand, the long duration between these two ages may also contribute to368

the detected network differentiation. That is, with more than 15 years apart from pre-369

adolescence to post-adolescence, epigenetic changes following adolescence transition are370

likely to be more pronounced, thus making it easier for the CL-based approach to detect371

such changes. To evaluate this postulation, we assess network differentiation between372

ages 10 and 18 years (n = 325). The estimated probability of network differentiation373

is 0.102, suggesting that it is more likely that the two networks are identical rather374

than differential. This finding differs from that in Zhang et al. but is consistent with375

our postulation and the results of our simulations. The CL-based approach overall has376

lower power compared to MDL when two dependent networks are truly differential.377

At age 18 years, changes in epigenetic activities with respect to age 10 are potentially378

not as prominent and established as that at age 26 years, and thus the CL- but not379

ML-based approach has difficulty to detect such differentiation. However, when two380

populations are dependent, the CL is superior to the MDL approach as demonstrated381

by our extensive simulations.382

5. Discussion and conclusion383

This work proposes a composite likelihood (CL)-based approach to compare networks384

between two populations that could be dependent or independent. The CL-based ap-385

proach is designed based on the method proposed by Zhang et al. [10], which is par-386

ticularly for dependent networks. Simulations and real-data applications are applied to387

demonstrate and evaluate the CL-based method.388

Simulations demonstrate that the method is powerful in detecting the underlying389

truth when two networks are under independent conditions, irrespective of the graphs’390
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Figure 4. Networks estimated at ages 10 and 26 years, respectively. (A) Age 10 years
(16 edges). (B) Age 26 years (22 edges). The thick, darker lines indicate links that are
different between the two networks.

differential status. This is as expected and fits the underlying assumption of the proposed391

approach. When two networks are from two dependent populations, the potential of the392

composite likelihood approach to detect underlying network differentiation is high and393

comparable overall to the situation when two populations are independent, except for394

dependent graphs with a relatively small number of nodes and relatively small sample395

sizes.396

When comparing the performances of the CL- and MDL-based methods, particularly397

when networks are from two independent populations, the CL-based method outper-398

forms MDL in terms of both the power of detecting network differentiation and the399

quality of graph constructions. Under the situation of two dependent populations, when400

the two networks are identical, compared to the MDL-based method, the CL-based ap-401

proach has a much higher power to detect the underlying truth of network differentiation402

even when the sample size is small. When the two networks are truly differential, spar-403

sity level of a graph seems to affect the performance of the CL-based approach. Sparsity404

level is defined as the number of edges divided by the number of possible edges; the405

smaller the number, the higher the sparsity level is. The CL-based approach has a lower406

power compared to the MDL-based method when sample size is small if networks are407

less sparse, e.g., when the number of nodes is 10, the sparsity levels of the two networks408

are 9/45=0.2 and 18/45=0.4, respectively. However, when the sparsity level is relatively409

high (e.g., at P = 30, the sparsity levels are 0.06 and 0.13 for the two networks), the410

power of detecting underlying differentiation is extremely high and consistent with that411

from the MDL-based method. This is understandable, since the CL-based approach412

does not consider shared background as in the MDL and more noise is introduced into413

the comparison when network sparsity level is low (less sparse), consequently causing414

difficulty to differentiate between two networks if sample sizes are small. Notably, such415

inferiority is substantially reduced when the sample size is increased.416

Our real data applications support the findings in simulations. That is, when two417

dependent networks are truly differential, the MDL-based approach is more powerful418

to detect the underlying truth compared to the CL-based method, in that CL was able419

to detect network changes between ages 10 and 26 but not between 10 and 18 years.420

These real data applications, accompanied by findings in the simulations, indicate that421
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the CL-based method has its value in the detection of underlying network differentia-422

tion. Since CL requires stronger “signal” when underlying dependent networks are truly423

differential, if CL concludes a high probability of network differentiation, then it is very424

likely that the finding reveals the underlying truth. As such, when two populations are425

independent, we would still suggest the CL method over the MDL approach due to its426

computing efficiency. When two populations are dependent, the CL method can be used427

as a “screening” technique; if CL shows two networks are differential, then the MDL428

can be utilized to obtain more detailed information including assessment of network429

differentiation, estimate of shared network, along with the different network structures430

unique to each population. An effort to improve the power of the CL-based method when431

two populations are dependent, while maintaining its computing efficiency, is certainly432

along the line of future work.433

In our method, we focus on a non-informative prior for graph comparison in order to434

be as objective as possible. However, when the sample size is small and/or the signal in435

the data is likely to be weak, non-informative priors may cause difficulty to differentiate436

between two graphs even if the two networks are truly differential. In such situations,437

prior knowledge or belief will be highly appreciated and benefit posterior inferences. This438

consideration of prior distribution assignment is also applicable to graph constructions.439

Furthermore, as noted in our simulations, the proposed CL-based approach has diffi-440

culty to handle underlying shared graphs between two dependent populations. Since the441

focus of our work is on detecting network differentiation, addressing the role of shared442

graphs is not within the scope of the present study. However, it can be a promising443

future research direction under the framework of composite likelihood. If successful, we444

do not have to rely on complex modeling for dependence between populations and will445

achieve both computing efficiency and graph inference with sound quality. One way is446

to incorporate a modeling explicitly for the shared graph between two populations using447

composite likelihood, but a careful design is needed to model the networks in the two448

populations on top of the shared graphs.449
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Appendix514

A. Model assessment statistics for dependent networks515

Table A.1. Simulation results for dependent networks with 10 nodes

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P=10 nodes, |EX1 | = |EX2 | = 9 edges)
50 100 0.167 (0.167, 0.333) 1.0 (0.970, 1.0) 0.778 (0.756, 0.817)

100 100 0.333 (0.167, 0.417) 1.0 (0.970, 1.0) 0.778 (0.756, 0.817)
200 100 0.5 (0.333, 0.5) 1.0 (0.970, 1.0) 0.856 (0.816, 0.867)
500 100 0.5 (0.458, 0.583) 1.0 (0.970, 1.0) 0.867 (0.844, 0.889)
Underlying truth: differential networks (P=10 nodes, |EX1 | = 9, |EX2 | = 9 edges)
50 46 X1: 0.117 (0.059, 0.235) 1.0 (0.964, 1.0) 0.667 (0.633, 0.7)

X2: 0.222 (0.111, 0.444) 1.0 (0.972, 1.0) 0.844 (0.805, 0.889)
100 48 X1: 0.25 (0.14, 0.25) 1.0 (0.966, 1.0) 0.722 (0.689, 0.733)

X2: 0.444 (0.222, 0.667) 1.0 (0.972, 1.0) 0.878 (0.839, 0.922)
200 100 X1: 0.235 (0.132, 0.294) 1.0 (0.973, 1.0) 0.711 (0.667, 0.733)

X2: 0.556 (0.333, 0.778) 1.0 (0.972, 1.0) 0.9 (0.867, 0.933)
500 100 X1: 0.294 (0.235, 0.353) 0.982 (0.947, 1.0) 0.711 (0.683, 0.750)

X2: 0.889 (0.5, 1.0) 1.0 (0.972, 1.0) 0.967 (0.933, 1.0)

Table A.2. Simulation results for dependent networks with 30 nodes

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (P=30 nodes, |EX1 | = |EX2 | = 29 edges)
50 93 0.115 (0.077, 0.154) 0.997 (0.993, 1.0) 0.892 (0.885, 0.897)

100 98 0.231 (0.173, 0.269) 0.995 (0.989, 0.999) 0.902 (0.895, 0.91)
200 100 0.269 (0.24, 0.327) 0.997 (0.991, 1.0) 0.911 (0.904, 0.917)
500 100 0.298 (0.269, 0.327) 0.999 (0.994, 1.0) 0.915 (0.91, 0.92)
Underlying truth: differential networks (P=30 nodes, |EX1 | = 29, |EX2 | = 29 edges)
50 100 X1: 0.056 (0.019, 0.093) 0.997 (0.992, 1.0) 0.88 (0.874, 0.887)

X2: 0.231 (0.115, 0.346) 0.998 (0.994, 1.0) 0.951 (0.944, 0.957)
100 100 X1: 0.148 (0.093, 0.185) 0.993 (0.988, 0.999) 0.889 (0.88, 0.897)

X2: 0.423 (0.308, 0.577) 0.995 (0.991, 0.999) 0.962 (0.953, 0.973)
200 100 X1: 0.204 (0.153, 0.269) 0.993 (0.988, 0.998) 0.894 (0.886, 0.905)

X2: 0.769 (0.615, 0.885) 0.999 (0.995, 1.0) 0.983 (0.976, 0.993)
500 100 X1: 0.241 (0.204, 0.269) 0.997 (0.991, 1.0) 0.903 (0.896, 0.913)

X2: 0.942 (0.826, 1.0) 0.999 (0.995, 1.0) 0.994 (0.987, 1.0)
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B. Trace plots assessing convergence516

Figure B.1. Trace plots of posterior samples for the diagonal elements of a precision ma-
trix (Ω1) with 10 nodes. (A) corresponds to the first diagonal element. (B) corresponds
to the second diagonal element, and so on.
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