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A B S T R A C T 

Following a binary neutron star (BNS) merger, the transient remnant is often a fast spinning, differentially rotating, 
magnetized hypermassive neutron star (HMNS). This object is prone to the magnetorotational instability (MRI) which drives 
magnetohydrodynamic turbulence that significantly influences the HMNS global dynamics. A key consequence of turbulence is 
the outward transport of angular momentum which impacts the remnant’s stability and lifetime. Most numerical simulations of 
BNS mergers are unable to resolve the MRI due to its inherently small wavelength. To overcome this limitation, subgrid models 
have been proposed to capture the effects of unresolved small-scale physics in terms of large-scale quantities. We present the first 
implementation of our MHD-Instability-Induced Turbulence (MInIT) model in global Newtonian simulations of MRI-sensitive, 
differentially rotating, magnetized neutron stars. Here, we show that by adding the corresponding turbulent stress tensors to the 
momentum equation, MInIT successfully reproduces the angular momentum transport in neutron stars driven by small-scale 
turbulence. 
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 I N T RO D U C T I O N  

ultimessenger observations of binary neutron star (BNS) mergers 
rovide the most direct evidence that stellar compact mergers, where 
t least one of the binary companions is a neutron star (NS),
ay be progenitors of the central engines that power gamma-ray 

ursts (GRBs) (A. I. MacFadyen & S. E. Woosley 1999 ; M. Ruiz
t al. 2016 ; B. P. Abbott et al. 2017b , c ). They also give strong
bservational support to theoretical proposals linking BNS mergers 
ith production sites for r-process nucleosynthesis and kilonovae 

D. Eichler et al. 1989 ; L.-X. Li & B. Paczynski 1998 ; B. D. Metzger
t al. 2010 ). Moreover, they can be used as standard sirens to give an
ndependent measure of the expansion of the Universe (B. F. Schutz 
986 ; S. Nissanke et al. 2010 ; B. P. Abbott et al. 2017a ), and help
ut tight constraints on the equation of state (EOS) of matter at
upranuclear densities (see e.g. B. Margalit & B. D. Metzger 2017 ;

. Shibata et al. 2017 ; L. Rezzolla, E. R. Most & L. R. Weih 2018 ;

. Ruiz, S. L. Shapiro & A. Tsokaros 2018 , and references therein).
After merger, the system settles down into a new configuration. The 
erger outcome strongly depends on the total mass of the system and

n the EOS considered (see e.g. A. L. Piro, B. Giacomazzo & R. Perna
017 ; S. Bernuzzi 2020 ; N. Sarin & P. D. Lasky 2021 , for reviews).
f the total mass of the remnant is somewhat larger than the mass of a
tationary non-rotating NSs [Tolman–Oppenheimer–Volkoff (TOV) 
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olutions with mass MTOV ], the system may go through a phase in
hich a transient post-merger object forms, a so-called hypermassive 
eutron star (HMNS), supported against gravitational collapse by 
apid differential rotation and thermal pressure. 1 The maximum mass 
f these remnants depends on the EOS (T. W. Baumgarte, S. L.
hapiro & M. Shibata 2000 ; M. Shibata et al. 2006 ; A. Bauswein,
. W. Baumgarte & H. T. Janka 2013 ; A. L. Piro et al. 2017 ; L. R.
eih, E. R. Most & L. Rezzolla 2018 ; P. L. Espino & V. Paschalidis

019 ). The HMNS may survive for several tens (or even hundreds)
f milliseconds, undergoing oscillations and magnetohydrodynamic 
MHD) instabilities, and ejecting mass that forms a disc around 
he bulk of the star. Both the rotational profile and the disc mass
epend on the EOS (e.g. W. Kastaun & F. Galeazzi 2015 ) and the
ass ratio of the binary system (e.g. S. Bernuzzi 2020 ). Massive NS

emnants, apart from being differentially rotating, are characterized 
y strong magnetic fields (up to B ∼ 1016 G, e.g. K. Kiuchi et al.
014 ; C. Palenzuela et al. 2022 ). Such large values are the result
f amplification periods both during and after merger, due to MHD
nstabilities such as the Kelvin–Helmholtz instability (KHI), when 
he NSs are merging (e.g. M. Anderson et al. 2008 ; Y. T. Liu et al.
008 ; K. Kiuchi et al. 2015 ; C. Palenzuela et al. 2022 ), and the
agnetorotational instability (MRI), during the post-merger phase 
 Temperatures in BNS mergers may be ∼ 100 MeV and the inclusion of 
hermal effects in the EOS is needed (A. Perego, S. Bernuzzi & D. Radice 
019 ; P. Hammond, I. Hawke & N. Andersson 2021 ). 

is is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any medium,

http://orcid.org/0000-0002-8766-1156
http://orcid.org/0000-0001-5664-1382
http://orcid.org/0000-0003-4293-340X
http://orcid.org/0000-0001-6650-2634
http://orcid.org/0000-0002-7532-4144
mailto:m.miravet-tenes@soton.ac.uk
https://creativecommons.org/licenses/by/4.0/


2 M. Miravet-Tenés et al.

M

(  

K
 

p  

h  

v  

f  

1  

M  

M  

o  

a  

(  

C  

S  

p  

(  

F  

d  

e  

p  

a  

m  

o  

M  

a  

K  

T  

M  

r  

g  

o  

2  

s  

i  

s
 

T  

i  

L  

2  

o  

a  

2  

g  

s  

b  

t  

e
 

m  

s  

m  

t  

r  

m  

s  

a  

a  

(  

2  

I  

a  

o  

t  

n  

s  

w  

r  

i  

s  

c  

b
 

N  

M  

T  

i  

s  

t  

t  

m  

t  

l  

i  

c  

a  

t  

g  

R  

w  

K  

t  

m  

b  

t
 

s  

N  

d  

f  

d  

t  

e  

a  

i  

l  

M
 

t  

s  

e  

i  

a  

F  

h  

L

2

W  

t  

e  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/545/3/staf2081/8340377 by guest on 12 January 2026
e.g. K. Kiuchi et al. 2014 , 2018 , 2024 ; M. Ruiz et al. 2016 ; T.
awamura et al. 2016 ). 
Once support against gravity by rapid rotation and thermal

ressure diminishes, the remnant eventually collapses to a black
ole. Damping of differential rotation comes from magnetic and
iscous dissipation, i.e. angular momentum transport, that may arise
rom instabilities such as the MRI (S. A. Balbus & J. F. Hawley
998 ; S. L. Shapiro 2000 ; M. D. Duez et al. 2004 , 2006 , 2020 ;
. Shibata & Y.-I. Sekiguchi 2005 ; D. M. Siegel et al. 2013 ; B.
argalit et al. 2022 ). It is also worth mentioning that the stability

f protoneutron stars, which also exhibit rapid differential rotation
t birth, can be also influenced by the development of the MRI
e.g. S. Akiyama et al. 2003 ; M. Obergaulinger et al. 2006 ; P.
erdá-Durán et al. 2008 ; T. Rembiasz et al. 2016a , b ; A. Reboul-
alze et al. 2021 ). Ionized rotating fluids with angular frequency
rofiles decreasing outwards are particularly unstable to the MRI
E. P. Velikhov 1959 ; S. Chandrasekhar 1960 ; S. A. Balbus & J.
. Hawley 1991 ) when threaded by a weak magnetic field in the
irection perpendicular to the shear. Seed perturbations can grow
xponentially on time-scales close to the rotational period. These
erturbations take the form of the so-called ‘channel modes’, which
re pairs of vertically stacked layers in which the velocity and the
agnetic field perturbations have radial and azimuthal components

f (sinusoidally) alternating polarity. These modes have associated
axwell and Reynolds stresses that lead to outward transport of

ngular momentum (J. Goodman & G. Xu 1994 ; M. E. Pessah, C.-
. Chan & D. Psaltis 2006 ; M. E. Pessah & C.-k. Chan 2008 ).
he MRI possesses a critical wavelength, λMRI ≈ 2 πvA / � (e.g.
. Shibata 2015 ), which scales with the Alfvén speed vA and the

otation frequency of the fluid �, and corresponds to the fastest
rowing mode. In the context of BNS mergers, simulations focus
n solving this mode (D. M. Siegel et al. 2013 ; K. Kiuchi et al.
018 ; R. Ciolfi et al. 2019 ; K. Kiuchi et al. 2024 ). However, this
patial scale is typically of the order of only tens of metres, making
t challenging to resolve the MRI in numerical simulations of BNS
ystems. 

The exponential growth of the instability eventually terminates.
he laminar MRI channel flows can be unstable against parasitic

nstabilities (PIs) (J. Goodman & G. Xu 1994 ; H. N. Latter, P.
esaffre & S. A. Balbus 2009 ; P. Lesaffre, S. A. Balbus & H. Latter
009 ; M. Miravet-Tenés & M. E. Pessah 2025 ) that can be of KH
r tearing mode type, depending on the value of kinematic viscosity
nd resistivity, i.e. non-ideal effects (M. E. Pessah & J. Goodman
009 ; M. E. Pessah 2010 ). These secondary instabilities initially
row slowly, but eventually they evolve faster than the MRI modes,
ince their growth rate is exponential to the MRI amplitude. When
oth primary and secondary instabilities reach a similar amplitude,
he channel modes are disrupted and the MRI saturates (T. Rembiasz
t al. 2016a , b ), leading to a turbulent regime. 

Numerical simulations of astrophysical systems such as BNS
ergers, neutron star–black hole (NSBH) mergers, and core-collapse

upernovae are inherently challenging due to the complex and
ultifaceted physics involved. One key issue is capturing small-scale

urbulence (e.g. D. Radice & I. Hawke 2024 ). The prohibitive spatial
esolution required to resolve all scales prevents general relativistic
agnetohydrodynamics (GRMHD) simulations from properly de-

cribing the turbulence triggered by MHD instabilities. An emerging
lternative is the use of large-eddy simulations (LES), which have
lready been employed to simulate both BNS and NSBH mergers
B. Giacomazzo et al. 2015 ; D. Radice 2020 ; C. Palenzuela et al.
022 ; R. Aguilera-Miret, D. Viganò & C. Palenzuela 2022 ; M. R.
zquierdo et al. 2024 ). This approach aims to model, through the
NRAS 545, 1–11 (2026)
pplication of a subgrid closure, the small-scale turbulence in terms
f resolved quantities. More precisely, LES provide a closure for
he turbulent stress tensors, which appear in the spatially filtered
on-linear mean-field MHD equations. The approach of LES is very
imilar to that of the Reynolds-averaged Navier–Stokes equations,
here flow quantities are decomposed into their time-averaged and

apidly fluctuating components. In this approach, only the mean flow
s resolved, as opposed to the rapidly varying fluctuations which are
ubject to a closure model (O. Reynolds 1895 ; P. Y. Chou 1945 ). In
ontrast, LES are able to capture the largest turbulent spatial scales,
ut not the entire inertial range of scales. 

In M. Miravet-Tenés et al. ( 2022 , 2024 ), we presented a new
ewtonian subgrid model for MHD turbulence triggered by the
RI and the KHI, the dominant MHD instabilities in BNS mergers.

he model, dubbed MHD-Instability-Induced-Turbulence (MInIT),
s based on evolution equations for the turbulent kinetic energy den-
ities. These equations are built using phenomenological arguments
hat are physically motivated. The turbulent densities are connected
o the stress tensors through certain calibrated coefficients. This
odel allows handling delays in the growth of the instability and

he decay of turbulence, and it has been calibrated by fully resolved
ocal numerical simulations. Moreover, it has been adapted to the
nstabilities that are key drivers of turbulence in BNS mergers, in
ontrast to other models already applied to LES, which are only
ble to partially capture the magnetic field amplification driven by
he KHI, but do not show any evidence of MRI development. The
radient model employed in, e.g. C. Palenzuela et al. ( 2022 ) and
. Aguilera-Miret et al. ( 2025 ), seems to provide promising results
hen dealing with partially resolved turbulence, as in the case of the
HI, since the model seems to extrapolate the turbulent cascade to

he unresolved small scales. However, there is no evidence that this
odel is able to capture the impact of subgrid turbulence triggered

y the MRI, because this instability is expected to fully develop in
he unresolved scales. 

In this work, we use the MInIT model in global Newtonian
imulations of MRI-sensitive, differentially rotating, magnetized
Ss and evaluate its capability to accurately resolve the MRI
ynamics. We focus on the angular momentum transport arising
rom the inclusion of subgrid terms in the momentum equation,
eferring to a future work the effect of the subgrid scales on
he expected magnetic field amplification after MRI saturation. By
xploring different rotational frequencies, magnetic field strengths,
nd initial values of the turbulent energy densities, we study their
mpact on the angular momentum transport time-scale in simu-
ations that lack enough spatial resolution to directly resolve the

RI. 
This paper is organized as follows: in Section 2 we introduce

he mean-field MHD equations with the inclusion of the turbulent
tresses. We describe in Section 3 the closure model for turbulence we
mploy in the simulations. The numerical methodology is discussed
n Section 4 and the results are showcased in Section 5 . Conclusions
re drawn in Section 6 , along with prospects for future research.
inally, Appendix A discusses the effect numerical dissipation might
ave in our simulations. Unless otherwise stated we employ cgs units.
atin indices run from 1 to 3. 

 MEAN-FIELD  M H D  E QUAT I O N S  

e start by briefly reviewing the Newtonian ideal MHD equa-
ions which form the mathematical framework for our study. These
quations couple the different variables of a plasma, such as the gas
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ressure, the mass density, the velocity, and the magnetic field. We 
an express this system of equations as 

 t ρ + ∇j 

[
ρvj 

] = 0 , (1) 

 t p
i + ∇j 

[
pi vj + P� δ

ij − bi bj 
] = f i , (2) 

 t e� + ∇j 

[
( e� + P� ) v

j − bi vi b
j 
] = f j vj , (3) 

 t 
� b = −c � ∇ × � E , (4) 

j b
j = 0 , (5) 

here ρ is the mass density, vi are the components of the fluid 
elocity, bi are the magnetic field components, pi = ρvi is the 
omentum density, P� = Pgas + b2 / 2 is the total pressure, e� = 

int + ρv2 / 2 + b2 / 2 is the total energy density, and f i is an ex-
ernal force density, which, in this case, corresponds to gravity, 
i = −ρ∇i � . The gravitational potential � is computed as 

 ( r) = −4 π
∫ ∞ 

0 
d r ′ r ′ 2 ρ

| r − r ′ | , (6) 

here r is the radial spherical coordinate. By applying the mean- 
eld MHD formalism (F. Krause & K. Rädler 1980 ; M. Miravet-
enés et al. 2022 , 2024 ), the above system of equations can be
xpressed in terms of resolved and subgrid-scale terms. If we assume 
hat the behaviour of a given field A is solved for a certain length
cale l, we can introduce a spatial filter that acts on that scale. The
esidual between filtered and unfiltered fields will be the turbulent 
ontribution 

A′ = A − Ā , (7) 

here the bar symbol denotes the filtering/averaging operator and the 
rime symbol is used to identify the turbulent field. This operation 
atisfies the Reynolds averaging rules and can be either a spatial 
ltering, as in our case, or a temporal averaging, acting on a time-
cale τ (P. Charbonneau 2013 ). By introducing this decomposition 
n the MHD equations, which are non-linear, and after applying the 
ltering operation to the equations, additional terms with products 
f turbulent quantities will appear. By construction, the average of 
he turbulent contribution is zero. Thus, the only possible turbulent 
erms arising in the mean-field equations are the averaged products 
f two or more unresolved variables. Following M. Miravet-Tenés 
t al. ( 2022 , 2024 ) we consider only fluctuations of the velocity and
agnetic fields. Therefore, the filtered products of these unresolved 

ariables can be represented by 

¯
ij = b′ 

i b
′ 
j , (8) 

¯
ij = v′ 

i v
′ 
j , (9) 

¯
ij = v′ 

i b
′ 
j − v′ 

j b
′ 
i , (10) 

hich correspond to the Maxwell, Reynolds, and Faraday turbulent 
tress tensors, respectively. Linear combinations of these terms will 
ppear as effective source terms in the mean-field version of the 
ystem ( 1 )–( 5 ). 

Since the aim of this work is to solely study angular momentum
ransport, we will focus on the mean-field form of the momentum 

quation, 

t p̄
i + ∇j 

[
ρ̄v̄i v̄j +

(
P̄� + 1 

2 
Tr {M̄ }

)
δij − b̄i b̄j + ρ̄R̄ij − M̄ij 

]
= f̄ i , 

(11) 
here the trace of the Maxwell stress can be regarded as a turbulent
agnetic pressure. Density perturbations are neglected, i.e. ρ̄ = ρ, 
hich leaves the continuity equation unchanged. For the sake of 

implicity we do not include any subgrid term in the energy and
nduction equations. Therefore, we do not expect a turbulent dynamo 
hat exponentially amplifies the large-scale magnetic field. A study of 
he effect of the MRI turbulent dynamo in the large-scale dynamics
s deferred to future work. 

 T H E  MI NI T  M O D E L  F O R  T H E  M R I  

he turbulent stress tensors that appear in equation () need a closure
elation, i.e. they need to be connected to the resolved variables in
rder to write the system of equations as a closed system amenable
o be solved numerically. In the MInIT subgrid model (M. Miravet-
enés et al. 2022 ) the closure relation is obtained by introducing a
ew quantity, the turbulent kinetic energy density, with an evolution 
quation of the form 

 t eturb + ∇j (v̄j eturb ) = S turb , (12) 

here S turb comprises source terms that depend on the specific kind 
f MHD turbulence under consideration. In the context of this work,
he dominant MHD instability, and the one that will develop subgrid
urbulence, is the MRI. As shown in M. Miravet-Tenés et al. ( 2022 ),
he secondary PIs are responsible for the saturation of the MRI.
herefore, we need two evolution equations to account for the two

nstabilities, the MRI and the PI: 

 t eMRI + ∇j (v̄j eMRI ) = 2 γMRI eMRI − 2 γPI ePI , (13) 

 t ePI + ∇j (v̄j ePI ) = 2 γPI ePI − STD . (14) 

In the ideal MHD case, the explicit form of the MRI growth rate
f the fastest-growing mode, γMRI , is (S. A. Balbus & J. F. Hawley
992 ; M. Obergaulinger et al. 2009 ) 

MRI = q 

2 
� , (15) 

here � is the angular frequency of the fluid and q is known as the
hear parameter 

 ≡ −d ln �

d ln r 
. (16) 

Correspondingly, the growth rate of the PIs can be expressed as
M. E. Pessah 2010 ; M. Miravet-Tenés et al. 2022 ) 

PI = σkMRI 

√ 

2 eMRI 

ρ̄
, (17) 

ith σ = 0 . 27 (M. E. Pessah 2010 ) and kMRI being the wavenumber
f the fastest growing MRI mode (T. Rembiasz et al. 2016a ), 

MRI =
√ 

1 − (2 − q)2 

4 

�

v̄Az 
, (18) 

here v̄Az = b̄z /
√ 

ρ̄ is the vertical component of the Alfvén velocity. 
n practice, since the vertical and poloidal components of the 
agnetic field are very similar in our simulations, we will use the

atter to avoid divisions by zero at certain points of the domain. The
rowing term for the PI in equation ( 14 ), i.e. the source term with
ositive sign, acts as a sink for the MRI energy in equation ( 13 ), since
he secondary instabilities feed off the main one. The sink term from
quation ( 14 ), STD , represents the dissipation of the turbulent kinetic
nergy into thermal energy at the end of the Kolmogorov scale, i.e.
MNRAS 545, 1–11 (2026)
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he inertial range of scales (L. D. Landau & E. M. Lifshitz 1987 ; M.
iravet-Tenés et al. 2022 ). It is given by 

TD = C
e

3 / 2 
PI √ 

ρ̄λ
, (19) 

here C = 8 . 6, a value empirically found in M. Miravet-Tenés
t al. ( 2022 ), and λ = min [ 
, λMRI ], with 
 the numerical cell
ize and λMRI the wavelength of the fastest growing MRI mode,
MRI = 2 π/kMRI . 
The stress tensors are linked to these turbulent energy densities

hrough constant proportionality coefficients, 

¯
ij ( t, r ) = αMRI 

ij eMRI ( t, r ) + αPI 
ij ePI ( t, r ) , (20) 

¯
ij ( t, r ) = 

1 

ρ̄( t, r ) 

(
βMRI 

ij eMRI ( t, r ) + βPI 
ij ePI ( t, r )

)
, (21) 

¯
ij ( t, r ) = 

γ PI 
ij √ 

ρ̄( t, r ) 
ePI ( t, r ) , (22) 

hich are either obtained from theoretical arguments (in the case of
he MRI coefficients; M. E. Pessah & C.-k. Chan 2008 ) or calibrated
sing numerical box simulations (for the PI coefficients; M. Miravet-
enés et al. 2022 ). The dominant contributions responsible for
ngular momentum transport in the momentum equation are the
ylindrical � φ components of the Maxwell and Reynolds stresses.
ere, the quantity � corresponds to the cylindrical radius, i.e.

he distance to the rotation axis, � = r sin θ . The coefficients
orresponding to the MRI components are 

MRI 
�φ = 1 − 4 /q , (23) 

MRI 
�φ = 1 , (24) 

hile the calibrated parasitic coefficients are αPI 
�φ = −1 . 4 and βPI 

�φ =
0 . 8. Uncertainties (standard deviation) in these quantities arise

rom both the spatial and time averages performed over the simulation
ata in M. Miravet-Tenés et al. ( 2022 ). The rest of the coefficients
an be found in M. Miravet-Tenés et al. ( 2022 ). 

 N U M E R I C A L  APPROACH  

.1 Initial models 

he differentially rotating initial equilibrium models are computed
sing the Newtonian version of the code described in H. Dim-
elmeier, J. A. Font & E. Muller ( 2002 ), based on Hachisu’s self-

onsistent field method (H. Komatsu, Y. Eriguchi & I. Hachisu 1989 ).
he rotation law of the equilibrium model is given by 

( � ) = �c 

1 + � 2 

A2 

, (25) 

here A is a positive constant and �c is the value of �, the angular
requency, at the coordinate centre (H. Komatsu et al. 1989 ). In all
ur simulations, we set A = 5 km. In the limit where A → ∞ , the
tar becomes a rigid rotator. The initial values of the turbulent energy
ensities of the MRI and the PI will be a fraction of the total kinetic
nergy density (see Section 5.3 ). 

Regarding the EOS, a polytropic relation between the pressure P 

nd the rest-mass density ρ is employed for the initial equilibrium
onfiguration: 

 = Kργ , (26) 

ith γ = 2 and K = 145529 . 19 g−1 cm5 s−2 . This means that the
nitial system has zero temperature. In the evolution, we use a hybrid
NRAS 545, 1–11 (2026)
pproach by adding a thermal component to the polytropic EOS via
n ideal-gas-like EOS (H. T. Janka, T. Zwerger & R. Moenchmeyer
993 ; T. Zwerger & E. Mueller 1997 ): 

th = ( �th − 1) εth , (27) 

here �th = 1 . 33 and εth is the thermal energy density. Initially, both
th and Pth should be zero in the absence of shocks (H. T. Janka et al.
993 ), so it is natural to build an initial model at zero temperature. 
A dipolar magnetic field is implemented as in Y. Suwa et al. ( 2007 ),

ith the following components of the effective vector potential (in a
pherical coordinate system), 

r = 0 , (28) 

θ = 0 , (29) 

φ = 

b̄0 

2 

r3 
0 

r3 + r3 
0 

� × max (0 , ( ρ − ρcut ) /ρmax ) , (30) 

here r0 and b̄0 are model constants, the latter being the value of the
agnetic field at the centre of the star. In all our initial models we

et r0 = 12 km, being the equatorial radius of the star Req ≈ 18 . 5
m (see Table 1 ). The last factor in the expression for Aφ is included
o (initially) keep the magnetic field confined inside the star (Z. B.
tienne et al. 2012 ; M. Ruiz, A. Tsokaros & S. L. Shapiro 2021 ). The
utoff density ρcut is a free parameter that confines the magnetic field
ithin ρ > ρcut . We set ρcut to 10 per cent of the initial maximum
ensity, which corresponds to an equatorial radial distance of roughly
7 km for all simulations. 
The polytropic EOS in equation ( 26 ) leads to a very steep density

rofile at the surface of the star. In order to deal with the vacuum
egion surrounding the star we use a low-density atmosphere, as
ustomary in these kind of simulations, where the hydrodynamical
ariables are not evolved (see section 3.4. from H. Dimmelmeier et al.
002 ). The threshold value of the mass density to characterize the
tmosphere is set to ρatm 

= 109 g cm−3 , which is roughly five orders
f magnitude smaller than the initial central density of the star (see
able 1 ). The rapid decrease of the density with the radial distance
an lead to numerical instabilities at the interphase between the star
nd the atmosphere. In order to prevent that from happening, we add
n exponential radial decay of the density profile that smooths the
ransition to the atmosphere, for densities below a given threshold
alue ρthresh , atm 

, 

( r.θ ) = max 
(
ρthresh , atm 

exp 
[ r − ratm 

( θ ) 


r 

] 
, ρatm 

)
. (31) 
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Figure 1. Radial equatorial profile of the initial mass density with (solid line) 
and without (dashed line) the exponential decay at low values. The profiles 
are identical for density values above ρthresh , atm 
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oth ρthresh , atm 

and 
r are freely specifiable parameters. The quantity 
atm 

is the radius at which ρ = ρthresh , atm 

. Fig. 1 shows this density
rofile (in blue) as compared to that without the exponential decay 
indicated by the red curve). Table 1 summarizes our sample of initial
odels, reporting the maximum mass density, ρmax , the equatorial 

adius, Req , the central rotation frequency, �c , the total angular 
omentum, J , and the strength of the initial poloidal magnetic 
eld, b̄0 . For all models we fix the gravitational mass of the star to

grav = 2 . 60 M�. Moreover, the value of ρthresh , atm 

that we employ
orresponds to 5 × 1012 g cm−3 , which is more than two orders of
agnitude smaller than ρmax . 

.2 Numerical evolution 

.2.1 General considerations 

he initial models reported in Table 1 are evolved using the 
ENUS code (M. Obergaulinger 2008 ) which solves the ideal MHD 

quations in their conservative form using finite-volume methods. 
he simulations are performed using the Harten–Lax–van Leer 

HLL) flux formula (A. Harten, P. D. Lax & B. v. Leer 1983 ), a
iecewise Parabolic Method (PPM) reconstruction for cell interfaces 
P. Colella & P. R. Woodward 1984 ), and a third order Runge–
utta time integrator (C.-W. Shu & S. Osher 1988 ). For the spatial
rid, the code employs spherical polar coordinates ( r, θ, φ) and
xial symmetry with respect to the rotation axis is assumed. The 
umber of grid cells is ( Nr , Nθ, Nφ) = (468 , 180 , 1), with r ∈ [0 , 50]
m and θ ∈ [0 , π ] rad. Since the MInIT coefficients are computed
n cylindrical coordinates in M. Miravet-Tenés et al. ( 2022 ), a
hange of basis from cylindrical to spherical coordinates is required. 
urthermore, the angular frequency � and the shear q are computed 
rom the angular velocity vφ . For the radial direction we use boundary 
onditions that ensure regularity at the geometric singularity of the 
rigin and employ a constant extrapolation at the outer edge of the
rid. Regarding the polar direction, conditions adapted to the polar 
xis are used. 

.2.2 Implementation of the MInIT model 

n order to solve equations ( 13 ) and ( 14 ), the code employs high-
esolution shock-capturing schemes for the transport terms on the 
eft-hand side, as done for the other MHD quantities. As the source
erms can be stiff, we treat them in an operator-split manner using
n implicit integration, similarly to what O. Just, M. Obergaulinger 
 H. T. Janka ( 2015 ) did to deal with neutrino schemes. 
After the transport of angular momentum, the shear parameter q 

ends to zero in certain regions of the star. Moreover, there might be
egions that are not unstable to the MRI, which correspond to the
ases with q < 0 or q > 4 (M. Obergaulinger et al. 2009 ). For q < 0
he fluid is stable and for q > 4 the fluid is subject to large-scale
hear instabilities, that can be resolved numerically without the need 
f a subgrid model. As can be seen from equation ( 18 ), the MRI
avenumber becomes imaginary for those values of q. For q → 0

nd q → 4, the MRI wavelength tends to infinity. This implies that
t some value of q close enough to 0 or 4, λMRI > 
 . In such cases,
MRI is replaced by 
 and therefore we substitute kMRI in equation 
 17 ) by k = 2 π/
 , as done for the turbulent Kolmogorov term in
quation ( 19 ). Moreover, since the MRI is not expected to develop
or q ≤ 0 and q ≥ 4, we set γMRI to zero in those cases. 

The flattening of the rotational profile of the star as a result of
ngular momentum transport can also lead to some issues when 
omputing the MRI contribution of the Maxwell stress tensor, since 
he αMRI 

ij coefficients depend on 1 /q. To solve this potential issue,
e set αMRI 

ij to zero when q ≤ 10−3 . This should not be problematic,
ince we expect eMRI and ePI to decay when q → 0. 

 RESULTS  

ncluding turbulent energy densities in the simulations introduces 
n interplay with large-scale quantities, influencing the evolution of 
oth. In the following we test the impact of different initial values
f both large-scale and small-scale quantities on the evolution of the
RI and, consequently, on the large-scale dynamics of the star. 

.1 Dependence on the central rotation frequency 

rom equations ( 15 ) and ( 17 ) it follows that the rotation frequency
has a direct impact on the growth of the turbulent energy densities

f the MInIT model. Fig. 2 depicts the time evolution of the average
f these quantities over a sphere of radius r = 4 km, for different
alues of the initial central rotation frequency, given by the models
1B3 , R2B3 , and R3B3 from Table 1 . We choose such a low value
f r to also depict the turbulence decay, which mainly happens in
he central regions of the star. The initial values of eMRI and ePI 

re chosen to be 10−10 ekin (0) and 10−11 ekin (0), respectively. We will 
MNRAS 545, 1–11 (2026)
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xplore in Section 5.3 the impact of different initial values of these
uantities on the simulations. To evolve these quantities only at the
tellar interior, we set eMRI (0) = ePI (0) = 0 for ρ < 0 . 1 ρmax , which
orresponds to a radius of ∼ 17 km, as mentioned before. 

As expected, models with larger central rotation frequency, i.e.
arger angular momentum, show a more rapid growth of both the

RI and PI energy densities. However, the saturation amplitude of
oth quantities is approximately the same, regardless of the value
f the rotation frequency. Thus, the only difference between the
urbulent energy densities for different rotation velocities is the time
t which they saturate, which may have an impact on the time-scale
f the angular momentum transport. Moreover, after t ≈ 40 ms, all
he saturated turbulent energy densities start decaying, due to the
ransport of angular momentum that stabilizes the central region of
he star against the MRI. 

The development of the MRI has an impact on the large-scale
ynamics of the NS. In Fig. 3 we showcase the equatorial radial
rofiles of the angular frequency of the star. Solid lines correspond
o simulations that incorporate the MInIT model while dashed lines
o those not including it. Quite distinctly, MRI turbulence leads to
he flattening of the profile in the inner regions of the star, expanding
utwards with time. Hence, the effect of the turbulent stress tensors
n the momentum equation is the transport of angular momentum
adially outwards. This is observed for all initial models of our sample
ith different rotation frequencies. Fig. 3 also displays a slight

ncrease of the angular frequency at larger radial distances, where
ngular momentum is being transported. We note that despite the
ashed curves also show a decrease of the central angular frequency,
his is purely due to numerical dissipation (see Appendix A for
etails), and not to the effect of MRI-resolved turbulence. We have
hecked this by running a simulation with the same spatial resolution
ut without magnetic fields, observing the same behaviour on the
otational profile. 

Fig. 4 shows the contour of the MRI turbulent kinetic energy
ensity, eMRI , for the model R3B3 , at t = { 2 . 5 , 7 . 5 , 25 , 75 } ms. There
xists a rapid growth during the first 7.5 ms of the simulation, where
MRI grows several orders of magnitude (from ∼ 1026 to ∼ 1029 

rg cm−3 for � up to ∼ 10 km). After saturation, and when the
edistribution of angular momentum sets in (see Fig. 3 ) eMRI starts
ecaying at low values of the cylindrical radial coordinate, � . The
ylindrical symmetry is due to the choice of rotation law (see equation
5 ), which depends on � . The turbulence decay can be understood
y looking at Fig. 5 , where radial profiles of q are depicted for
 = { 1 , 25 , 50 , 75 } ms, as in Fig. 3 . As the angular frequency profile
attens, the shear parameter is reduced until the region transitions to
igid rotation, i.e. q → 0. When this happens, the MRI is no longer
ctive in that region and the turbulence generated by this instability
an only decay. 

.2 Dependence on the magnetic field strength 

e also study the effect of the magnetic field strength on the evolution
f the MRI and the PI, and on the global dynamics. We employ
hree different values of the central poloidal magnetic field, b̄0 =
 3 . 5 , 7 , 10 } × 1013 G, corresponding to the models R3B1 , R3B3 ,
nd R3B5 from Table 1 , respectively. It is useful to study the effect of
ifferent initial poloidal fields on the evolution of the turbulent energy
ensities, since the magnetic field explicitly appears in equation ( 18 ).
We compare in Fig. 6 the temporal evolution of the turbulent

nergies using different initial magnetic field strengths, b̄0 , and
eeping the initial angular frequency from the model R3B3 and
he initial MRI energy density amplitude to eMRI (0) /ekin (0) = 10−10 ,
NRAS 545, 1–11 (2026)
nd ePI (0) /ekin (0) = 10−11 . Although eMRI evolves with the same
ate, ePI grows faster for smaller values of b̄0 . This is explained
y the dependence of the parasitic growth rate from equation ( 17 )
ith b̄0 . The fact that ePI grows faster leads to an earlier saturation
f the energy densities at a lower amplitude for b̄0 = 3 . 5 × 1013 G.
his result is consistent with the findings made by M. Obergaulinger
 2008 ) and T. Rembiasz et al. ( 2016b ), who claimed that the MRI
mplification factor, defined as 

 ≡
√ 

M̄ rφ( tsat ) 

b̄0 
, (32) 

as a very weak dependence on the initial poloidal magnetic field.
his translates in a linear dependence between

√ 

M̄ rφ( tsat ) and b̄0 , as
epicted in Fig. 7 . In this case, we show the maximum values of the
quare root of the averaged rφ component from the Maxwell stress
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Figure 4. Contour plot of the turbulent kinetic energy density of the MRI, eMRI . Each panel stands for different times t = { 2 . 5 , 7 . 5 , 25 , 75 } ms. After a rapid 
growth during the first ∼ 10 ms through all the stellar domain, the energy density starts decaying at the inner region of the star, due to the transport of angular 
momentum from the centre. The blue dashed line stands for the isocontour of the mass density ρ at 10 per cent of its central value. 

Figure 5. Radial equatorial profiles of the shear parameter at different 
times, corresponding to the simulation labelled with R3B3 . Due to angular 
momentum transport, q tends to 0 (dashed line) as time increases. 

Figure 6. Time evolution of the turbulent energy densities, eMRI (solid) and 
ePI (dashed) averaged over a radius of r = 4 km. We depict simulations with 
different initial poloidal magnetic field amplitudes at the centre of the star. 
The central initial rotation frequency is fixed to 7500.03 Hz. 

Figure 7. Absolute values at saturation of the square root of the rφ

component of the Maxwell stress tensor, averaged over a radius of r = 8 
km, as a function of the initial poloidal field amplitude. The crosses stand 
for the saturated values from simulations R3B1 , R3B2 , R3B3 , R3B4 , and 
R3B5 . The dashed line represents the linear fit. 
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ensor, over a radius of r = 8 km, for five different values of the
nitial poloidal magnetic field (see Table 1 ). These maximum values
learly grow linearly with the poloidal field amplitude, b̄0 . In Fig. 8
e see the impact of the different choices of the initial magnetic field
n the angular frequency of the NS. It can be seen that, after the first

10 ms, the maximum value of the equatorial angular frequency, 
max , starts decaying faster in those simulations with a larger poloidal
agnetic field, once the MRI reaches its largest amplitude. We note

hat the oscillations in the central rotation frequency at early times
re due to the inclusion of the exponential decay of the density
rofile, which alters the equilibrium state of the NS. Even though
here is a slight decay of �max in the simulations without the MInIT
odel (grey lines) due to numerical dissipation (see Appendix A ),

his decay is much less pronounced than the rest of simulations which
nclude the subgrid model. As mentioned above, since we have not
ncluded the subgrid terms in the induction equation, we do not
xpect any large-scale magnetic field amplification triggered by the 
RI dynamo. Therefore, the poloidal magnetic field, which is the 
MNRAS 545, 1–11 (2026)
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M

Figure 8. Time evolution of the maximum value of the angular frequency 
for simulations with the MInIT model that have different initial poloidal 
magnetic field amplitudes. The grey overlapping lines depict the results from 

the same three simulations without including the MInIT model. 
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omponent entering in equations ( 13 ) and ( 14 ) through γPI , remains
early constant during the simulation. 

.3 Dependence on the initial amplitudes of the turbulent 
nergy densities 

e have the freedom to choose the initial value of the turbulent
nergy densities, eMRI (0) and ePI (0). The growth time-scale and
aturation amplitude of the MRI might also be sensitive to the
hoice of these quantities. From the local analytical results from
. Miravet-Tenés & M. E. Pessah ( 2025 ) and the numerical results

rom T. Rembiasz et al. ( 2016b ), we should not expect a noticeable
ifference in the saturation amplitude of the instability. To test this,
e employ simulation R3B3 from Table 1 with different choices of

MRI (0) and ePI (0), expressed as a fraction of the initial large-scale
inetic energy density, ekin (0). 
Fig. 9 depicts the time evolution of the turbulent energy densities

or different initial amplitudes. The left panel shows different choices
f eMRI (0), fixing ePI (0) at 10−11 ekin (0), whereas in the right panel we
eep eMRI (0) fixed at 10−7 ekin (0). We can observe in the left panel that
hoosing a different value of eMRI (0) leads to a different saturation
NRAS 545, 1–11 (2026)

igure 9. Time evolution of the turbulent energy densities, eMRI (solid) and ePI (da
nitial turbulent energy densities, eMRI (0) and ePI (0). In the left panel we keep ePI (0) fi
n all cases, we use the same initial data as in simulation R3B3 from Table 1 . 
ime. Larger values of the initial MRI energy density lead to a more
apid growth of the parasitic energy density and therefore to an
arlier saturation. Nevertheless, the saturation amplitude of the MRI
emains mostly insensitive to the choice of eMRI (0). In the right panel
f Fig. 9 we see that simulations employing different values of ePI (0)
aturate at almost the same time. The maximum MRI amplitude is
lightly different (larger for lower amplitudes of the initial parasitic
nergy density, cf. M. Miravet-Tenés & M. E. Pessah 2025 ), but
fter saturation all simulations reach the same MRI and PI values.
hese results lead to the conclusion that, assuming that the turbulent
nergy densities should be several orders of magnitude smaller than
he large-scale kinetic energy density, the choice of their initial values
hould not have an important impact on the large-scale dynamics. 

 DI SCUSSI ON  

he lack of spatial resolution in current numerical simulations of
NS mergers (and core–collapse supernovae) prevents the develop-
ent of the MRI during the post-merger phase. This undermines the

redibility of the simulations as the MRI can play a crucial role in the
volution of the remnant. Angular momentum transport drives the
ystem toward rigid rotation, at which point the HMNS is expected to
ollapse into a black hole. The characteristic time-scale for angular
omentum transport is estimated to be of O(100) ms, though it

epends on the remnant’s rotational profile (K. Hotokezaka et al.
013 ). Hence, the BNS remnant is expected to undergo collapse to
 black hole within roughly O(100) ms after merger, although in
xtreme cases, collapse can also occur much earlier. This time-scale
as direct implications for the associated kilonova that produces r-
rocess nucleosynthesis, which powers electromagnetic emission.
oreover, the collapse of the HMNS is required for the launch of a
RB (e.g. M. Ruiz et al. 2016 ; A. Murguia-Berthier et al. 2017 ),
eaning that accurate simulations capable of reliably capturing

he lifetime of the remnant are essential for interpreting gamma-
ay detections from such mergers. Conversely, simulations that fail
o incorporate turbulent effects may produce artificially long-lived
emnants that cannot generate sufficiently powerful outflows to drive
 GRB. 

The use of LES can help capture the impact of the small-
cale turbulence on the overall dynamics of the system. In this
ork we have presented results from simulations of differentially
shed) averaged over a radius of r = 8 km. We show different choices of the 
xed to 10−11 ekin (0), whereas in the right panel we set eMRI (0) = 10−7 ekin (0). 

est on 12 January 2026
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otating, magnetized NSs including the MInIT subgrid model we 
rst presented in M. Miravet-Tenés et al. ( 2022 ). With the addition of

he evolution equations of the turbulent energy densities for the MRI
nd the PI from the MInIT model, we have been able to compute the
urbulent stress tensors responsible for turbulent angular momentum 

ransport, i.e. the Maxwell and Reynolds stresses. We have observed 
hat their inclusion in the momentum equation of the fluid has an
mpact on the global dynamics of the NS, leading to a net transport
f angular momentum radially outwards, which reduces the rotation 
requency of the star in its central regions. Moreover, in the regions
here the rotational profile flattens, the turbulent energy densities and 

herefore the turbulent stresses, decay, as one would expect when the 
uid loses its differential rotation. 
Our results show that the evolution of the turbulent energy densities 

s sensitive to the rotation frequency of the star and to the strength
f the poloidal magnetic field. Although the saturation amplitude of 
he energies is very similar, different choices of the central rotation 
requency of the NS lead to different growth rates of the MRI,
hich results in different saturation times. Regarding the amplitude 
f the initial magnetic field, its choice has a direct impact on the
rowth of the PI, resulting in a larger parasitic growth rate for lower
agnetic field amplitudes. Thus, stronger poloidal fields lead to a 

arger saturation amplitude, as previously noted by T. Rembiasz et al. 
 2016a , b ) and M. Miravet-Tenés & M. E. Pessah ( 2025 ), which in
urn produces a more effective angular momentum transport. 

The MInIT model also needs a value of the initial amplitudes 
f the turbulent energies. Assuming that these quantities will be 
 small fraction of the initial large-scale kinetic energy, we have 
erformed several simulations with different choices of these initial 
alues. Although they impact the saturation time of the instability, 
he saturation amplitude remains the same. Therefore, the effect of 
he choice of the initial amplitude of the turbulent energies on the
rowth of the MRI is somewhat similar to that produced by different
alues of the central rotation frequency of the NS. One might think
his could be an issue, since eMRI (0) and ePI (0) are free parameters of
he model. Nevertheless, their impact is fairly low as this just delays
aturation by a few milliseconds. 

It is important to point out that this work should be regarded as a
romising test of the MInIT model in global simulations of isolated 
Ss. However, there are a number of assumptions that should be 

elaxed in future work. On the one hand, the setup of the simulations
s far from being realistic: we enforced axisymmetry, employed 
ewtonian dynamics, used a cold polytropic EOS with an ideal- 
as-like part for the thermal contribution, and adopted a rotation law 

hich, although widely employed in the literature, departs from those 
nferred from simulations for BNS merger remnants (M. Hanauske 
t al. 2017 ; P. Iosif & N. Stergioulas 2022 ; M. Cassing & L. Rezzolla
024 ). Those are all aspects that need to be considered in future
pplications of the model. Furthermore, the most immediate step to 
ake to improve the model is the implementation of the Faraday 

tress tensor in the induction equation for the magnetic field, which 
ight induce an effective dynamo. This could also have an impact on

he evolution of the MRI itself after saturation. In addition, it would
e advisable to conduct a comparison between low-resolution simu- 
ations including the MInIT model and high-resolution simulations 
ble to capture the MRI unaided by a subgrid model, and in three
imensions. In this regard we note that since our simulations are 
xisymmetric, the associated MRI would be quantitatively different 
rom the one expected in 3D (M. Obergaulinger et al. 2009 ), which
s the one used to calibrate the MInIT model in M. Miravet-Tenés
t al. ( 2022 ). However, in order to run a 3D simulation that fully
esolves the MRI, we would need enough spatial resolution to cover 
t least 10 grid cells per MRI wavelength. As an illustrative example,
he simulation R3B3 , with b̄0 = 7 × 1013 G, has a radial resolution
f 107 m, whereas λMRI is found to be ∼ 10 m through almost the
hole stellar interior. The total CPU time of the simulation was
300 h. To fully resolve the MRI in 3D, we would need to add

he azimuthal dimension and increase the resolution by a factor 100
n each direction, which would increase the CPU time by a factor

108 , requiring ∼ 106 yr of CPU time. 
Finally, the use of Newtonian physics and dynamics is a major

imitation of our current approach. In BNS mergers (and also core–
ollapse supernovae) the space–time metric deviates strongly from 

he flat metric, and the fluid velocity can become relativistic in
ome regions. Therefore, a more realistic approach would be the 
erformance of fully general-relativistic LES, as done in, e.g. B. 
iacomazzo et al. ( 2015 ), D. Radice ( 2020 ), C. Palenzuela et al.

 2022 ), and R. Aguilera-Miret et al. ( 2025 ). Nevertheless, most of
hese works solely focus on the turbulent magnetic field amplification 
y the KHI and are unable to capture the effects of the MRI in
he post-merger phase. Moreover, they lack the ability to handle 
he dependence of the saturation amplitude on the magnetic field 
mplitude, the relation between the rotation frequency and the growth 
hase, or the decay of turbulence in MRI-stable regions. Another key
ssue is that subgrid models applied to GRMHD simulations of BNS
ergers are covariant with respect to transformations in the spatial 

oordinates, but not when it comes to general space–time coordinate 
ransformations (M. D. Duez et al. 2020 ; D. Radice & I. Hawke
024 ). Non-covariant closures can introduce coordinate-independent 
rtefacts in the simulations, since the averaging applied to a single
oliation can inherit the dependencies of that space–time slice. For 
hat purpose, it is important to develop a covariant approach (M. D.
uez et al. 2020 ; T. Celora et al. 2021 , 2024a , b ) that would allow

he MInIT model to be used in general–relativistic simulations. We 
lan to report on those extensions of the model in future work. 
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PPEN D IX  A :  N U M E R I C A L  DISSIPATION  

he discretization of partial differential equations for numerical 
olutions inevitably introduces numerical dissipation, which affects 
he evolution of the system. This phenomenon is well understood and,
mong other consequences, leads to a reduction in kinetic energy. 
s illustrated in Fig. 8 , numerical dissipation may also explain the

eduction in the maximum rotation frequency observed in MHD 

imulations that exclude MInIT (grey lines). 
To test this hypothesis, we performed two additional simulations 

ith finer spatial resolutions: Res2 , with a grid ( Nr , Nθ, Nφ) =
576 , 252 , 1), and Res3 , with (720,360,1). For comparison, we also
nclude the baseline simulation already used in this work, R3B3 
labelled here as Res1 ), with ( Nr , Nθ, Nφ) = (468 , 180 , 1). Fig. A1
emonstrates that higher spatial resolution reduces the decline of the 
aximum equatorial angular frequency over time. However, a decay 

emains, indicating that kinetic energy is still dissipated through grid 
iscretization. The time evolution of �max is qualitatively consistent 
cross all runs, with maximum relative differences of ∼ 3 per cent 
etween Res2 and Res3 , and ∼ 5 per cent between Res1 and 
es3 . 

igure A1. Time evolution of the maximum value of the angular frequency,

max , at the equator for the simulation R3B3 , with three different spatial
esolutions. The simulation with the largest resolution, Res3 , shows a slower
ecay of �max compared to the simulations with a lower resolution. 
The Author(s) 2025. 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
igure A2. Time evolution of the maximum value of the angular frequency,

max , at the equator for the simulation R3B3 , with (blue) and without (red)
agnetic fields. The evolution is identical in both cases, except for late times

 t > 60 ms), where the higher numerical viscosity of the magnetized case
eads to a larger decay of �max . 

A fully convergent simulation with negligible numerical dissi- 
ation would show no decrease in �max . In practice, however, 
he limited resolution and the out-of-equilibrium initial conditions 
arising from modified density profiles) prevent complete conver- 
ence. Still, the small relative differences across resolutions give 
s confidence that the results from Res1 remain qualitatively 
obust. 

One could argue that the decrease in �max might have a physical
rigin, perhaps due to the action of a partially resolved MRI.
his is excluded by construction: the chosen spatial resolution 
nsures that the cell size is roughly ten times larger than the
avelength of the fastest growing MRI mode, λMRI = 2 π/kMRI (see 

quation 18 ). We further confirm this by performing a simulation
ithout magnetic fields. In Fig. A2 , we show the equatorial time

volution of �max for simulation R3B3 from Table 1 , both with
blue) and without (red) magnetic fields. The two curves are in-
istinguishable up to t ≈ 60 ms, when they diverge slightly. This
inor discrepancy arises because numerical viscosity is gener- 

lly higher in MHD simulations than in purely hydrodynamical 
nes. 
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