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ABSTRACT

Following a binary neutron star (BNS) merger, the transient remnant is often a fast spinning, differentially rotating,
magnetized hypermassive neutron star (HMNS). This object is prone to the magnetorotational instability (MRI) which drives
magnetohydrodynamic turbulence that significantly influences the HMNS global dynamics. A key consequence of turbulence is
the outward transport of angular momentum which impacts the remnant’s stability and lifetime. Most numerical simulations of
BNS mergers are unable to resolve the MRI due to its inherently small wavelength. To overcome this limitation, subgrid models
have been proposed to capture the effects of unresolved small-scale physics in terms of large-scale quantities. We present the first
implementation of our MHD-Instability-Induced Turbulence (MInIT) model in global Newtonian simulations of MRI-sensitive,
differentially rotating, magnetized neutron stars. Here, we show that by adding the corresponding turbulent stress tensors to the
momentum equation, MInIT successfully reproduces the angular momentum transport in neutron stars driven by small-scale

turbulence.
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1 INTRODUCTION

Multimessenger observations of binary neutron star (BNS) mergers
provide the most direct evidence that stellar compact mergers, where
at least one of the binary companions is a neutron star (NS),
may be progenitors of the central engines that power gamma-ray
bursts (GRBs) (A. I. MacFadyen & S. E. Woosley 1999; M. Ruiz
et al. 2016; B. P. Abbott et al. 2017b, c). They also give strong
observational support to theoretical proposals linking BNS mergers
with production sites for r-process nucleosynthesis and kilonovae
(D. Eichler et al. 1989; L.-X. Li & B. Paczynski 1998; B. D. Metzger
et al. 2010). Moreover, they can be used as standard sirens to give an
independent measure of the expansion of the Universe (B. F. Schutz
1986; S. Nissanke et al. 2010; B. P. Abbott et al. 2017a), and help
put tight constraints on the equation of state (EOS) of matter at
supranuclear densities (see e.g. B. Margalit & B. D. Metzger 2017;
M. Shibata et al. 2017; L. Rezzolla, E. R. Most & L. R. Weih 2018;
M. Ruiz, S. L. Shapiro & A. Tsokaros 2018, and references therein).

After merger, the system settles down into a new configuration. The
merger outcome strongly depends on the total mass of the system and
on the EOS considered (see e.g. A. L. Piro, B. Giacomazzo & R. Perna
2017; S. Bernuzzi 2020; N. Sarin & P. D. Lasky 2021, for reviews).
If the total mass of the remnant is somewhat larger than the mass of a
stationary non-rotating NSs [Tolman—Oppenheimer—Volkoff (TOV)
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solutions with mass Mroy], the system may go through a phase in
which a transient post-merger object forms, a so-called hypermassive
neutron star (HMNS), supported against gravitational collapse by
rapid differential rotation and thermal pressure.' The maximum mass
of these remnants depends on the EOS (T. W. Baumgarte, S. L.
Shapiro & M. Shibata 2000; M. Shibata et al. 2006; A. Bauswein,
T. W. Baumgarte & H. T. Janka 2013; A. L. Piro et al. 2017; L. R.
Weih, E. R. Most & L. Rezzolla 2018; P. L. Espino & V. Paschalidis
2019). The HMNS may survive for several tens (or even hundreds)
of milliseconds, undergoing oscillations and magnetohydrodynamic
(MHD) instabilities, and ejecting mass that forms a disc around
the bulk of the star. Both the rotational profile and the disc mass
depend on the EOS (e.g. W. Kastaun & F. Galeazzi 2015) and the
mass ratio of the binary system (e.g. S. Bernuzzi 2020). Massive NS
remnants, apart from being differentially rotating, are characterized
by strong magnetic fields (up to B ~ 10'° G, e.g. K. Kiuchi et al.
2014; C. Palenzuela et al. 2022). Such large values are the result
of amplification periods both during and after merger, due to MHD
instabilities such as the Kelvin—Helmholtz instability (KHI), when
the NSs are merging (e.g. M. Anderson et al. 2008; Y. T. Liu et al.
2008; K. Kiuchi et al. 2015; C. Palenzuela et al. 2022), and the
magnetorotational instability (MRI), during the post-merger phase

ITemperatures in BNS mergers may be ~ 100 MeV and the inclusion of
thermal effects in the EOS is needed (A. Perego, S. Bernuzzi & D. Radice
2019; P. Hammond, I. Hawke & N. Andersson 2021).
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(e.g. K. Kiuchi et al. 2014, 2018, 2024; M. Ruiz et al. 2016; T.
Kawamura et al. 2016).

Once support against gravity by rapid rotation and thermal
pressure diminishes, the remnant eventually collapses to a black
hole. Damping of differential rotation comes from magnetic and
viscous dissipation, i.e. angular momentum transport, that may arise
from instabilities such as the MRI (S. A. Balbus & J. F. Hawley
1998; S. L. Shapiro 2000; M. D. Duez et al. 2004, 2006, 2020;
M. Shibata & Y.-I. Sekiguchi 2005; D. M. Siegel et al. 2013; B.
Margalit et al. 2022). It is also worth mentioning that the stability
of protoneutron stars, which also exhibit rapid differential rotation
at birth, can be also influenced by the development of the MRI
(e.g. S. Akiyama et al. 2003; M. Obergaulinger et al. 2006; P.
Cerdd-Durdn et al. 2008; T. Rembiasz et al. 2016a, b; A. Reboul-
Salze et al. 2021). Ionized rotating fluids with angular frequency
profiles decreasing outwards are particularly unstable to the MRI
(E. P. Velikhov 1959; S. Chandrasekhar 1960; S. A. Balbus & J.
F. Hawley 1991) when threaded by a weak magnetic field in the
direction perpendicular to the shear. Seed perturbations can grow
exponentially on time-scales close to the rotational period. These
perturbations take the form of the so-called ‘channel modes’, which
are pairs of vertically stacked layers in which the velocity and the
magnetic field perturbations have radial and azimuthal components
of (sinusoidally) alternating polarity. These modes have associated
Maxwell and Reynolds stresses that lead to outward transport of
angular momentum (J. Goodman & G. Xu 1994; M. E. Pessah, C.-
K. Chan & D. Psaltis 2006; M. E. Pessah & C.-k. Chan 2008).
The MRI possesses a critical wavelength, Ayrr & 2mva/ Q2 (e.2.
M. Shibata 2015), which scales with the Alfvén speed v, and the
rotation frequency of the fluid €2, and corresponds to the fastest
growing mode. In the context of BNS mergers, simulations focus
on solving this mode (D. M. Siegel et al. 2013; K. Kiuchi et al.
2018; R. Ciolfi et al. 2019; K. Kiuchi et al. 2024). However, this
spatial scale is typically of the order of only tens of metres, making
it challenging to resolve the MRI in numerical simulations of BNS
systems.

The exponential growth of the instability eventually terminates.
The laminar MRI channel flows can be unstable against parasitic
instabilities (PIs) (J. Goodman & G. Xu 1994; H. N. Latter, P.
Lesaffre & S. A. Balbus 2009; P. Lesaffre, S. A. Balbus & H. Latter
2009; M. Miravet-Tenés & M. E. Pessah 2025) that can be of KH
or tearing mode type, depending on the value of kinematic viscosity
and resistivity, i.e. non-ideal effects (M. E. Pessah & J. Goodman
2009; M. E. Pessah 2010). These secondary instabilities initially
grow slowly, but eventually they evolve faster than the MRI modes,
since their growth rate is exponential to the MRI amplitude. When
both primary and secondary instabilities reach a similar amplitude,
the channel modes are disrupted and the MRI saturates (T. Rembiasz
et al. 20164, b), leading to a turbulent regime.

Numerical simulations of astrophysical systems such as BNS
mergers, neutron star—black hole (NSBH) mergers, and core-collapse
supernovae are inherently challenging due to the complex and
multifaceted physics involved. One key issue is capturing small-scale
turbulence (e.g. D. Radice & I. Hawke 2024). The prohibitive spatial
resolution required to resolve all scales prevents general relativistic
magnetohydrodynamics (GRMHD) simulations from properly de-
scribing the turbulence triggered by MHD instabilities. An emerging
alternative is the use of large-eddy simulations (LES), which have
already been employed to simulate both BNS and NSBH mergers
(B. Giacomazzo et al. 2015; D. Radice 2020; C. Palenzuela et al.
2022; R. Aguilera-Miret, D. Vigano & C. Palenzuela 2022; M. R.
Izquierdo et al. 2024). This approach aims to model, through the
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application of a subgrid closure, the small-scale turbulence in terms
of resolved quantities. More precisely, LES provide a closure for
the turbulent stress tensors, which appear in the spatially filtered
non-linear mean-field MHD equations. The approach of LES is very
similar to that of the Reynolds-averaged Navier—Stokes equations,
where flow quantities are decomposed into their time-averaged and
rapidly fluctuating components. In this approach, only the mean flow
is resolved, as opposed to the rapidly varying fluctuations which are
subject to a closure model (O. Reynolds 1895; P. Y. Chou 1945). In
contrast, LES are able to capture the largest turbulent spatial scales,
but not the entire inertial range of scales.

In M. Miravet-Tenés et al. (2022, 2024), we presented a new
Newtonian subgrid model for MHD turbulence triggered by the
MRI and the KHI, the dominant MHD instabilities in BNS mergers.
The model, dubbed MHD-Instability-Induced-Turbulence (MInIT),
is based on evolution equations for the turbulent kinetic energy den-
sities. These equations are built using phenomenological arguments
that are physically motivated. The turbulent densities are connected
to the stress tensors through certain calibrated coefficients. This
model allows handling delays in the growth of the instability and
the decay of turbulence, and it has been calibrated by fully resolved
local numerical simulations. Moreover, it has been adapted to the
instabilities that are key drivers of turbulence in BNS mergers, in
contrast to other models already applied to LES, which are only
able to partially capture the magnetic field amplification driven by
the KHI, but do not show any evidence of MRI development. The
gradient model employed in, e.g. C. Palenzuela et al. (2022) and
R. Aguilera-Miret et al. (2025), seems to provide promising results
when dealing with partially resolved turbulence, as in the case of the
KHI, since the model seems to extrapolate the turbulent cascade to
the unresolved small scales. However, there is no evidence that this
model is able to capture the impact of subgrid turbulence triggered
by the MRI, because this instability is expected to fully develop in
the unresolved scales.

In this work, we use the MInIT model in global Newtonian
simulations of MRI-sensitive, differentially rotating, magnetized
NSs and evaluate its capability to accurately resolve the MRI
dynamics. We focus on the angular momentum transport arising
from the inclusion of subgrid terms in the momentum equation,
deferring to a future work the effect of the subgrid scales on
the expected magnetic field amplification after MRI saturation. By
exploring different rotational frequencies, magnetic field strengths,
and initial values of the turbulent energy densities, we study their
impact on the angular momentum transport time-scale in simu-
lations that lack enough spatial resolution to directly resolve the
MRIL

This paper is organized as follows: in Section 2 we introduce
the mean-field MHD equations with the inclusion of the turbulent
stresses. We describe in Section 3 the closure model for turbulence we
employ in the simulations. The numerical methodology is discussed
in Section 4 and the results are showcased in Section 5. Conclusions
are drawn in Section 6, along with prospects for future research.
Finally, Appendix A discusses the effect numerical dissipation might
have in our simulations. Unless otherwise stated we employ cgs units.
Latin indices run from 1 to 3.

2 MEAN-FIELD MHD EQUATIONS

We start by briefly reviewing the Newtonian ideal MHD equa-
tions which form the mathematical framework for our study. These
equations couple the different variables of a plasma, such as the gas
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pressure, the mass density, the velocity, and the magnetic field. We
can express this system of equations as

%p +Vj[pv'] =0, M
o, p + V;[p'v) + P8V —b'b] = f, @
diex + Vj[(en + PYV = buib’] = flu, @)
05 = —c¥ x £, @
ijj =0, (5)

where p is the mass density, v’ are the components of the fluid
velocity, b' are the magnetic field components, p’ = pv’ is the
momentum density, P, = Py + b?/2 is the total pressure, e, =
ein + pv?/2 4+ b*/2 is the total energy density, and f' is an ex-
ternal force density, which, in this case, corresponds to gravity,
fi = —pV,;®. The gravitational potential ® is computed as
o0

O(r) = —471’/ dr’r’zip
0

r=r

(6)

where r is the radial spherical coordinate. By applying the mean-
field MHD formalism (F. Krause & K. Radler 1980; M. Miravet-
Tenés et al. 2022, 2024), the above system of equations can be
expressed in terms of resolved and subgrid-scale terms. If we assume
that the behaviour of a given field A is solved for a certain length
scale /, we can introduce a spatial filter that acts on that scale. The
residual between filtered and unfiltered fields will be the turbulent
contribution

A=A—-A, @)

where the bar symbol denotes the filtering/averaging operator and the
prime symbol is used to identify the turbulent field. This operation
satisfies the Reynolds averaging rules and can be either a spatial
filtering, as in our case, or a temporal averaging, acting on a time-
scale 7 (P. Charbonneau 2013). By introducing this decomposition
in the MHD equations, which are non-linear, and after applying the
filtering operation to the equations, additional terms with products
of turbulent quantities will appear. By construction, the average of
the turbulent contribution is zero. Thus, the only possible turbulent
terms arising in the mean-field equations are the averaged products
of two or more unresolved variables. Following M. Miravet-Tenés
et al. (2022, 2024) we consider only fluctuations of the velocity and
magnetic fields. Therefore, the filtered products of these unresolved
variables can be represented by

M;j = b;b};, ®)
R,‘j = U;U}, (9)
Flj = vl’b;- — v}b;, (10)

which correspond to the Maxwell, Reynolds, and Faraday turbulent
stress tensors, respectively. Linear combinations of these terms will
appear as effective source terms in the mean-field version of the
system (1)—(5).

Since the aim of this work is to solely study angular momentum
transport, we will focus on the mean-field form of the momentum
equation,

. . _ 1 _ .. . .. . _.
ap +V; [ﬁrﬂﬁf + (P. + gTr{M}) 8V —b'b + pRY — M| = ',

an
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where the trace of the Maxwell stress can be regarded as a turbulent
magnetic pressure. Density perturbations are neglected, i.e. p = p,
which leaves the continuity equation unchanged. For the sake of
simplicity we do not include any subgrid term in the energy and
induction equations. Therefore, we do not expect a turbulent dynamo
that exponentially amplifies the large-scale magnetic field. A study of
the effect of the MRI turbulent dynamo in the large-scale dynamics
is deferred to future work.

3 THE MINIT MODEL FOR THE MRI

The turbulent stress tensors that appear in equation () need a closure
relation, i.e. they need to be connected to the resolved variables in
order to write the system of equations as a closed system amenable
to be solved numerically. In the MInIT subgrid model (M. Miravet-
Tenés et al. 2022) the closure relation is obtained by introducing a
new quantity, the turbulent kinetic energy density, with an evolution
equation of the form

dewr + Vj(0jewmn) = S™°, (12)

where ™™ comprises source terms that depend on the specific kind
of MHD turbulence under consideration. In the context of this work,
the dominant MHD instability, and the one that will develop subgrid
turbulence, is the MRI. As shown in M. Miravet-Tenés et al. (2022),
the secondary Pls are responsible for the saturation of the MRI.
Therefore, we need two evolution equations to account for the two
instabilities, the MRI and the PI:

Oremrr + Vj(Djemr1) = 2 Ymri emrr — 2 V1 €pr (13)

Orepr + V;(Ujep) = 2 yprepr — St - (14)

In the ideal MHD case, the explicit form of the MRI growth rate
of the fastest-growing mode, yuri, is (S. A. Balbus & J. F. Hawley
1992; M. Obergaulinger et al. 2009)

YR = %sz (15)

where 2 is the angular frequency of the fluid and ¢ is known as the
shear parameter

dln Q

= - . 16
1 dInr (16)

Correspondingly, the growth rate of the PIs can be expressed as
(M. E. Pessah 2010; M. Miravet-Tenés et al. 2022)

2e
ver = ok ;““ : 17)

with o = 0.27 (M. E. Pessah 2010) and kyg; being the wavenumber
of the fastest growing MRI mode (T. Rembiasz et al. 2016a),

2—q)? Q
kMRI:\/I_Q_iy (18)
4 VUAz

where vy, = b././p is the vertical component of the Alfvén velocity.
In practice, since the vertical and poloidal components of the
magnetic field are very similar in our simulations, we will use the
latter to avoid divisions by zero at certain points of the domain. The
growing term for the PI in equation (14), i.e. the source term with
positive sign, acts as a sink for the MRI energy in equation (13), since
the secondary instabilities feed off the main one. The sink term from
equation (14), Stp, represents the dissipation of the turbulent kinetic
energy into thermal energy at the end of the Kolmogorov scale, i.e.
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the inertial range of scales (L. D. Landau & E. M. Lifshitz 1987; M.
Miravet-Tenés et al. 2022). It is given by
S1p = € (19)
D R

where C = 8.6, a value empirically found in M. Miravet-Tenés
et al. (2022), and A = min[A, Apgri], with A the numerical cell
size and Aypgrr the wavelength of the fastest growing MRI mode,
AMRI = 277 /kmri-

The stress tensors are linked to these turbulent energy densities
through constant proportionality coefficients,

Mij(t,r) = Ol,-I)I-IRI emri(t, r) + Ol[l;-l epi(t, 1), (20)

5 1 MRI PI

R;;(t, r) = 5, 1) (ﬁij emri(f, 1) + .3,'/' epi(t, r)) , 21

_ Yo

Fit,r) = ——L—=enl(t,r), (22)
pt,r)

which are either obtained from theoretical arguments (in the case of
the MRI coefficients; M. E. Pessah & C.-k. Chan 2008) or calibrated
using numerical box simulations (for the PI coefficients; M. Miravet-
Tenés et al. 2022). The dominant contributions responsible for
angular momentum transport in the momentum equation are the
cylindrical @ ¢ components of the Maxwell and Reynolds stresses.
Here, the quantity o corresponds to the cylindrical radius, i.e.
the distance to the rotation axis, @ = rsinf. The coefficients
corresponding to the MRI components are

avst=1-4/q, (23)
oy =1, (24)
while the calibrated parasitic coefficients are o, = —1.4and g}, =

—0.8. Uncertainties (standard deviation) in these quantities arise
from both the spatial and time averages performed over the simulation
data in M. Miravet-Tenés et al. (2022). The rest of the coefficients
can be found in M. Miravet-Tenés et al. (2022).

4 NUMERICAL APPROACH

4.1 Initial models

The differentially rotating initial equilibrium models are computed
using the Newtonian version of the code described in H. Dim-
melmeier, J. A. Font & E. Muller (2002), based on Hachisu’s self-
consistent field method (H. Komatsu, Y. Eriguchi & I. Hachisu 1989).
The rotation law of the equilibrium model is given by

@?”’
A2

Qo) =

where A is a positive constant and €2, is the value of €2, the angular
frequency, at the coordinate centre (H. Komatsu et al. 1989). In all
our simulations, we set A = 5 km. In the limit where A — o0, the
star becomes a rigid rotator. The initial values of the turbulent energy
densities of the MRI and the PI will be a fraction of the total kinetic
energy density (see Section 5.3).

Regarding the EOS, a polytropic relation between the pressure P
and the rest-mass density p is employed for the initial equilibrium
configuration:

P=Kp”, (26)

with y =2 and K = 145529.19 g~! cm® s~2. This means that the
initial system has zero temperature. In the evolution, we use a hybrid
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Table 1. Summary of the initial models. All stars have the same gravitational
mass Mgray = 2.60 Mg. The columns report the label of the model, the
maximum mass density, omax, the equatorial radius, Req, the central rotation
frequency, 2., the total angular momentum, J, and the strength of the initial
poloidal magnetic field, bo.

Label Pmax Req Qe J l;o
(10 gem™)  km)  (s7H  (10¥gem?s™h) (101 G)

R1B3 7.90 18.53  2887.85 3.12 7.00
R2B3 7.80 18.58  4922.76 532 7.00
R3B3 7.61 18.70  7500.03 8.12 7.00
R3B5 7.61 18.70  7500.03 8.12 10.00
R3B4 7.61 18.70  7500.03 8.12 8.50
R3B2 7.61 18.70  7500.03 8.12 5.00
R3B1 7.61 18.70  7500.03 8.12 3.50

approach by adding a thermal component to the polytropic EOS via
an ideal-gas-like EOS (H. T. Janka, T. Zwerger & R. Moenchmeyer
1993; T. Zwerger & E. Mueller 1997):

P = Ty — Déw, 27

where I', = 1.33 and €y, is the thermal energy density. Initially, both
€, and Py, should be zero in the absence of shocks (H. T. Janka et al.
1993), so it is natural to build an initial model at zero temperature.

A dipolar magnetic field is implemented as in Y. Suwa et al. (2007),
with the following components of the effective vector potential (in a
spherical coordinate system),

A =0, (28)
Ag = 0, (29)
4, =07 x max(0, ( )/ D) (30)
= = w X(U, — Pcu max ) »
Y P — P/ P

where r( and b, are model constants, the latter being the value of the
magnetic field at the centre of the star. In all our initial models we
set ro = 12 km, being the equatorial radius of the star R, ~ 18.5
km (see Table 1). The last factor in the expression for A is included
to (initially) keep the magnetic field confined inside the star (Z. B.
Etienne et al. 2012; M. Ruiz, A. Tsokaros & S. L. Shapiro 2021). The
cutoff density p.y is a free parameter that confines the magnetic field
within p > peyr. We set poy to 10 per cent of the initial maximum
density, which corresponds to an equatorial radial distance of roughly
17 km for all simulations.

The polytropic EOS in equation (26) leads to a very steep density
profile at the surface of the star. In order to deal with the vacuum
region surrounding the star we use a low-density atmosphere, as
customary in these kind of simulations, where the hydrodynamical
variables are not evolved (see section 3.4. from H. Dimmelmeier et al.
2002). The threshold value of the mass density to characterize the
atmosphere is set to pym = 10° gecm™, which is roughly five orders
of magnitude smaller than the initial central density of the star (see
Table 1). The rapid decrease of the density with the radial distance
can lead to numerical instabilities at the interphase between the star
and the atmosphere. In order to prevent that from happening, we add
an exponential radial decay of the density profile that smooths the
transition to the atmosphere, for densities below a given threshold
value Pthresh,atm»

r—= ratm(e)
p(r.6) = max (pthrcsh,atm exp [T] s palm) . 3D
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Figure 1. Radial equatorial profile of the initial mass density with (solid line)
and without (dashed line) the exponential decay at low values. The profiles
are identical for density values above pihresh,atm-

Both pgresh.am and A, are freely specifiable parameters. The quantity
ram 1S the radius at which p = Phresh atm. Fig. 1 shows this density
profile (in blue) as compared to that without the exponential decay
(indicated by the red curve). Table 1 summarizes our sample of initial
models, reporting the maximum mass density, pmax, the equatorial
radius, Ry, the central rotation frequency, 2., the total angular
momentum, J, and the strength of the initial poloidal magnetic
field, by. For all models we fix the gravitational mass of the star to
Moy = 2.60 Mg. Moreover, the value of pgpyresh,am that we employ
corresponds to 5 x 10'2 gecm™3, which is more than two orders of
magnitude smaller than pp,y.

4.2 Numerical evolution

4.2.1 General considerations

The initial models reported in Table 1 are evolved using the
AENUS code (M. Obergaulinger 2008) which solves the ideal MHD
equations in their conservative form using finite-volume methods.
The simulations are performed using the Harten-Lax—van Leer
(HLL) flux formula (A. Harten, P. D. Lax & B. v. Leer 1983), a
Piecewise Parabolic Method (PPM) reconstruction for cell interfaces
(P. Colella & P. R. Woodward 1984), and a third order Runge—
Kutta time integrator (C.-W. Shu & S. Osher 1988). For the spatial
grid, the code employs spherical polar coordinates (r, 6, ¢) and
axial symmetry with respect to the rotation axis is assumed. The
number of grid cells is (N, Ny, Ny) = (468, 180, 1), withr € [0, 50]
km and 6 € [0, ] rad. Since the MInIT coefficients are computed
in cylindrical coordinates in M. Miravet-Tenés et al. (2022), a
change of basis from cylindrical to spherical coordinates is required.
Furthermore, the angular frequency €2 and the shear ¢ are computed
from the angular velocity v,. For the radial direction we use boundary
conditions that ensure regularity at the geometric singularity of the
origin and employ a constant extrapolation at the outer edge of the
grid. Regarding the polar direction, conditions adapted to the polar
axis are used.

4.2.2 Implementation of the MInIT model

In order to solve equations (13) and (14), the code employs high-
resolution shock-capturing schemes for the transport terms on the
left-hand side, as done for the other MHD quantities. As the source
terms can be stiff, we treat them in an operator-split manner using
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an implicit integration, similarly to what O. Just, M. Obergaulinger
& H. T. Janka (2015) did to deal with neutrino schemes.

After the transport of angular momentum, the shear parameter g
tends to zero in certain regions of the star. Moreover, there might be
regions that are not unstable to the MRI, which correspond to the
cases with g < 0 or g > 4 (M. Obergaulinger et al. 2009). Forg < 0
the fluid is stable and for ¢ > 4 the fluid is subject to large-scale
shear instabilities, that can be resolved numerically without the need
of a subgrid model. As can be seen from equation (18), the MRI
wavenumber becomes imaginary for those values of g. For ¢ — 0
and ¢ — 4, the MRI wavelength tends to infinity. This implies that
at some value of g close enough to 0 or 4, Aprr > A. In such cases,
Amri 1s replaced by A and therefore we substitute kyg; in equation
(17) by k =2m/A, as done for the turbulent Kolmogorov term in
equation (19). Moreover, since the MRI is not expected to develop
for ¢ < 0and g > 4, we set yumg; to zero in those cases.

The flattening of the rotational profile of the star as a result of
angular momentum transport can also lead to some issues when
computing the MRI contribution of the Maxwell stress tensor, since
the of*! coefficients depend on 1/g. To solve this potential issue,
we set a}\j’.[RI to zero when ¢ < 1073, This should not be problematic,
since we expect eygy and epy to decay when g — 0.

5 RESULTS

Including turbulent energy densities in the simulations introduces
an interplay with large-scale quantities, influencing the evolution of
both. In the following we test the impact of different initial values
of both large-scale and small-scale quantities on the evolution of the
MRI and, consequently, on the large-scale dynamics of the star.

5.1 Dependence on the central rotation frequency

From equations (15) and (17) it follows that the rotation frequency
2 has a direct impact on the growth of the turbulent energy densities
of the MInIT model. Fig. 2 depicts the time evolution of the average
of these quantities over a sphere of radius r = 4 km, for different
values of the initial central rotation frequency, given by the models
R1B3, R2B3, and R3B3 from Table 1. We choose such a low value
of r to also depict the turbulence decay, which mainly happens in
the central regions of the star. The initial values of eygr; and ep;
are chosen to be 107'%,;,(0) and 10~ ¢, (0), respectively. We will

________

M}E 10264
[}
T~
j=10)
3,
= 102
E
© —— RI1B3
10224 —— R2B3
R3B3
0 20 40 60 80 100 120

t [ms]

Figure 2. Time evolution of the turbulent energy densities, emgy (solid lines)
and epy (dashed lines), averaged over a radius of » = 4 km. Different colours
represent different central initial rotation frequencies.
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6 M. Miravet-Tenés et al.

explore in Section 5.3 the impact of different initial values of these
quantities on the simulations. To evolve these quantities only at the
stellar interior, we set epri(0) = epr(0) = 0 for p < 0.1pyax, Which
corresponds to a radius of ~ 17 km, as mentioned before.

As expected, models with larger central rotation frequency, i.e.
larger angular momentum, show a more rapid growth of both the
MRI and PI energy densities. However, the saturation amplitude of
both quantities is approximately the same, regardless of the value
of the rotation frequency. Thus, the only difference between the
turbulent energy densities for different rotation velocities is the time
at which they saturate, which may have an impact on the time-scale
of the angular momentum transport. Moreover, after r ~ 40 ms, all
the saturated turbulent energy densities start decaying, due to the
transport of angular momentum that stabilizes the central region of
the star against the MRI.

The development of the MRI has an impact on the large-scale
dynamics of the NS. In Fig. 3 we showcase the equatorial radial
profiles of the angular frequency of the star. Solid lines correspond
to simulations that incorporate the MInIT model while dashed lines
to those not including it. Quite distinctly, MRI turbulence leads to
the flattening of the profile in the inner regions of the star, expanding
outwards with time. Hence, the effect of the turbulent stress tensors
in the momentum equation is the transport of angular momentum
radially outwards. This is observed for all initial models of our sample
with different rotation frequencies. Fig. 3 also displays a slight
increase of the angular frequency at larger radial distances, where
angular momentum is being transported. We note that despite the
dashed curves also show a decrease of the central angular frequency,
this is purely due to numerical dissipation (see Appendix A for
details), and not to the effect of MRI-resolved turbulence. We have
checked this by running a simulation with the same spatial resolution
but without magnetic fields, observing the same behaviour on the
rotational profile.

Fig. 4 shows the contour of the MRI turbulent kinetic energy
density, emgi, for the model R3B3,atr = {2.5, 7.5, 25, 75} ms. There
exists a rapid growth during the first 7.5 ms of the simulation, where
emr1 grows several orders of magnitude (from ~ 10% to ~ 10%¥
ergem™ for @ up to ~ 10 km). After saturation, and when the
redistribution of angular momentum sets in (see Fig. 3) emg; starts
decaying at low values of the cylindrical radial coordinate, @ . The
cylindrical symmetry is due to the choice of rotation law (see equation
25), which depends on . The turbulence decay can be understood
by looking at Fig. 5, where radial profiles of ¢ are depicted for
t = {1, 25, 50, 75} ms, as in Fig. 3. As the angular frequency profile
flattens, the shear parameter is reduced until the region transitions to
rigid rotation, i.e. ¢ — 0. When this happens, the MRI is no longer
active in that region and the turbulence generated by this instability
can only decay.

5.2 Dependence on the magnetic field strength

We also study the effect of the magnetic field strength on the evolution
of the MRI and the PI, and on the global dynamics. We employ
three different values of the central poloidal magnetic field, by =
{(3.5,7, 10} x 1013 G, corresponding to the models R3B1, R3B3,
and R3B5 from Table 1, respectively. It is useful to study the effect of
different initial poloidal fields on the evolution of the turbulent energy
densities, since the magnetic field explicitly appears in equation (18).

We compare in Fig. 6 the temporal evolution of the turbulent
energies using different initial magnetic field strengths, by, and
keeping the initial angular frequency from the model R3B3 and
the initial MRI energy density amplitude to eygi(0)/ein(0) = 10719,
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Figure 3. Radial equatorial profiles of the angular frequency, €2, for several
initial central values: 2887.85 Hz (top), 4922.76 Hz (middle), 7500.03 Hz
(bottom). Each colour represents different times, indicated in the legend at
the top. The solid curves correspond to simulations incorporating the MInIT
model while the dashed ones correspond to simulations without it. For t = 1
ms, both solid and dashed curves overlap, because the MRI is still developing.

and ep(0)/exin(0) = 10°1. Although epg; evolves with the same
rate, ep; grows faster for smaller values of bo. This is explained
by the dependence of the parasitic growth rate from equation (17)
with by. The fact that ep| grows faster leads to an earlier saturation
of the energy densities at a lower amplitude for by = 3.5 x 103 G.
This result is consistent with the findings made by M. Obergaulinger
(2008) and T. Rembiasz et al. (2016b), who claimed that the MRI
amplification factor, defined as

vV M rg (tsat)
bo

has a very weak dependence on the initial poloidal magnetic field.

This translates in a linear dependence between v/ M ré (sar) and by, as

depicted in Fig. 7. In this case, we show the maximum values of the
square root of the averaged r¢ component from the Maxwell stress

A= , (32)
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Figure 4. Contour plot of the turbulent kinetic energy density of the MRI, eymry. Each panel stands for different times t = {2.5, 7.5, 25, 75} ms. After a rapid
growth during the first ~ 10 ms through all the stellar domain, the energy density starts decaying at the inner region of the star, due to the transport of angular
momentum from the centre. The blue dashed line stands for the isocontour of the mass density p at 10 per cent of its central value.
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Figure 5. Radial equatorial profiles of the shear parameter at different
times, corresponding to the simulation labelled with R3B3. Due to angular
momentum transport, g tends to O (dashed line) as time increases.
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Figure 6. Time evolution of the turbulent energy densities, emry (solid) and
epr (dashed) averaged over a radius of r = 4 km. We depict simulations with
different initial poloidal magnetic field amplitudes at the centre of the star.
The central initial rotation frequency is fixed to 7500.03 Hz.

VIMI, (tar) [x 104 G
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Figure 7. Absolute values at saturation of the square root of the r¢
component of the Maxwell stress tensor, averaged over a radius of r = 8
km, as a function of the initial poloidal field amplitude. The crosses stand
for the saturated values from simulations R3B1, R3B2, R3B3, R3B4, and
R3B5. The dashed line represents the linear fit.

tensor, over a radius of r = 8 km, for five different values of the
initial poloidal magnetic field (see Table 1). These maximum values
clearly grow linearly with the poloidal field amplitude, b,. In Fig. 8
we see the impact of the different choices of the initial magnetic field
on the angular frequency of the NS. It can be seen that, after the first
~ 10 ms, the maximum value of the equatorial angular frequency,
Qmax, starts decaying faster in those simulations with a larger poloidal
magnetic field, once the MRI reaches its largest amplitude. We note
that the oscillations in the central rotation frequency at early times
are due to the inclusion of the exponential decay of the density
profile, which alters the equilibrium state of the NS. Even though
there is a slight decay of €2« in the simulations without the MInIT
model (grey lines) due to numerical dissipation (see Appendix A),
this decay is much less pronounced than the rest of simulations which
include the subgrid model. As mentioned above, since we have not
included the subgrid terms in the induction equation, we do not
expect any large-scale magnetic field amplification triggered by the
MRI dynamo. Therefore, the poloidal magnetic field, which is the
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Figure 8. Time evolution of the maximum value of the angular frequency
for simulations with the MInIT model that have different initial poloidal
magnetic field amplitudes. The grey overlapping lines depict the results from
the same three simulations without including the MInIT model.

component entering in equations (13) and (14) through ypj, remains
nearly constant during the simulation.

5.3 Dependence on the initial amplitudes of the turbulent
energy densities

We have the freedom to choose the initial value of the turbulent
energy densities, eygri(0) and ep(0). The growth time-scale and
saturation amplitude of the MRI might also be sensitive to the
choice of these quantities. From the local analytical results from
M. Miravet-Tenés & M. E. Pessah (2025) and the numerical results
from T. Rembiasz et al. (2016b), we should not expect a noticeable
difference in the saturation amplitude of the instability. To test this,
we employ simulation R3B3 from Table 1 with different choices of
emri(0) and epy(0), expressed as a fraction of the initial large-scale
kinetic energy density, e, (0).

Fig. 9 depicts the time evolution of the turbulent energy densities
for different initial amplitudes. The left panel shows different choices
of eyr1(0), fixing epr(0) at 10~ ¢y, (0), whereas in the right panel we
keep epri(0) fixed at 1077 ¢y, (0). We can observe in the left panel that
choosing a different value of eygri(0) leads to a different saturation

time. Larger values of the initial MRI energy density lead to a more
rapid growth of the parasitic energy density and therefore to an
earlier saturation. Nevertheless, the saturation amplitude of the MRI
remains mostly insensitive to the choice of epg;(0). In the right panel
of Fig. 9 we see that simulations employing different values of ep;(0)
saturate at almost the same time. The maximum MRI amplitude is
slightly different (larger for lower amplitudes of the initial parasitic
energy density, cf. M. Miravet-Tenés & M. E. Pessah 2025), but
after saturation all simulations reach the same MRI and PI values.
These results lead to the conclusion that, assuming that the turbulent
energy densities should be several orders of magnitude smaller than
the large-scale kinetic energy density, the choice of their initial values
should not have an important impact on the large-scale dynamics.

6 DISCUSSION

The lack of spatial resolution in current numerical simulations of
BNS mergers (and core—collapse supernovae) prevents the develop-
ment of the MRI during the post-merger phase. This undermines the
credibility of the simulations as the MRI can play a crucial role in the
evolution of the remnant. Angular momentum transport drives the
system toward rigid rotation, at which point the HMNS is expected to
collapse into a black hole. The characteristic time-scale for angular
momentum transport is estimated to be of O(100) ms, though it
depends on the remnant’s rotational profile (K. Hotokezaka et al.
2013). Hence, the BNS remnant is expected to undergo collapse to
a black hole within roughly O(100) ms after merger, although in
extreme cases, collapse can also occur much earlier. This time-scale
has direct implications for the associated kilonova that produces r-
process nucleosynthesis, which powers electromagnetic emission.
Moreover, the collapse of the HMNS is required for the launch of a
GRB (e.g. M. Ruiz et al. 2016; A. Murguia-Berthier et al. 2017),
meaning that accurate simulations capable of reliably capturing
the lifetime of the remnant are essential for interpreting gamma-
ray detections from such mergers. Conversely, simulations that fail
to incorporate turbulent effects may produce artificially long-lived
remnants that cannot generate sufficiently powerful outflows to drive
a GRB.

The use of LES can help capture the impact of the small-
scale turbulence on the overall dynamics of the system. In this
work we have presented results from simulations of differentially

ep1(0)/exin(0) = 1071
ep1(0)/exin(0) = 1077
ep1(0)/exin(0) = 1078

107
N S
fal 1027_
g
~
o0
2, 1025_
2 10
© enri(0)/exin(0) = 10~
1074 exri(0)/exin(0) = 1077
exri(0)/€xin(0) = 1077

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 9. Time evolution of the turbulent energy densities, emry (solid) and epy (dashed) averaged over a radius of = 8 km. We show different choices of the
initial turbulent energy densities, emr1(0) and epy(0). In the left panel we keep epy(0) fixed to 10~ 11 ekin(0), whereas in the right panel we set emri(0) = 10_7ekin(0).

In all cases, we use the same initial data as in simulation R3B3 from Table 1.
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rotating, magnetized NSs including the MInIT subgrid model we
first presented in M. Miravet-Tenés et al. (2022). With the addition of
the evolution equations of the turbulent energy densities for the MRI
and the PI from the MInIT model, we have been able to compute the
turbulent stress tensors responsible for turbulent angular momentum
transport, i.e. the Maxwell and Reynolds stresses. We have observed
that their inclusion in the momentum equation of the fluid has an
impact on the global dynamics of the NS, leading to a net transport
of angular momentum radially outwards, which reduces the rotation
frequency of the star in its central regions. Moreover, in the regions
where the rotational profile flattens, the turbulent energy densities and
therefore the turbulent stresses, decay, as one would expect when the
fluid loses its differential rotation.

Our results show that the evolution of the turbulent energy densities
is sensitive to the rotation frequency of the star and to the strength
of the poloidal magnetic field. Although the saturation amplitude of
the energies is very similar, different choices of the central rotation
frequency of the NS lead to different growth rates of the MRI,
which results in different saturation times. Regarding the amplitude
of the initial magnetic field, its choice has a direct impact on the
growth of the PI, resulting in a larger parasitic growth rate for lower
magnetic field amplitudes. Thus, stronger poloidal fields lead to a
larger saturation amplitude, as previously noted by T. Rembiasz et al.
(20164a, b) and M. Miravet-Tenés & M. E. Pessah (2025), which in
turn produces a more effective angular momentum transport.

The MInIT model also needs a value of the initial amplitudes
of the turbulent energies. Assuming that these quantities will be
a small fraction of the initial large-scale kinetic energy, we have
performed several simulations with different choices of these initial
values. Although they impact the saturation time of the instability,
the saturation amplitude remains the same. Therefore, the effect of
the choice of the initial amplitude of the turbulent energies on the
growth of the MRI is somewhat similar to that produced by different
values of the central rotation frequency of the NS. One might think
this could be an issue, since epr1(0) and ep;(0) are free parameters of
the model. Nevertheless, their impact is fairly low as this just delays
saturation by a few milliseconds.

It is important to point out that this work should be regarded as a
promising test of the MInIT model in global simulations of isolated
NSs. However, there are a number of assumptions that should be
relaxed in future work. On the one hand, the setup of the simulations
is far from being realistic: we enforced axisymmetry, employed
Newtonian dynamics, used a cold polytropic EOS with an ideal-
gas-like part for the thermal contribution, and adopted a rotation law
which, although widely employed in the literature, departs from those
inferred from simulations for BNS merger remnants (M. Hanauske
etal. 2017; P. Iosif & N. Stergioulas 2022; M. Cassing & L. Rezzolla
2024). Those are all aspects that need to be considered in future
applications of the model. Furthermore, the most immediate step to
make to improve the model is the implementation of the Faraday
stress tensor in the induction equation for the magnetic field, which
might induce an effective dynamo. This could also have an impact on
the evolution of the MRI itself after saturation. In addition, it would
be advisable to conduct a comparison between low-resolution simu-
lations including the MInIT model and high-resolution simulations
able to capture the MRI unaided by a subgrid model, and in three
dimensions. In this regard we note that since our simulations are
axisymmetric, the associated MRI would be quantitatively different
from the one expected in 3D (M. Obergaulinger et al. 2009), which
is the one used to calibrate the MInIT model in M. Miravet-Tenés
et al. (2022). However, in order to run a 3D simulation that fully
resolves the MRI, we would need enough spatial resolution to cover

Subgrid modelling of MRI-driven turbulence 9

at least 10 grid cells per MRI wavelength. As an illustrative example,
the simulation R3B3, with by = 7 x 103 G, has a radial resolution
of 107 m, whereas Ay is found to be ~ 10 m through almost the
whole stellar interior. The total CPU time of the simulation was
~ 300 h. To fully resolve the MRI in 3D, we would need to add
the azimuthal dimension and increase the resolution by a factor 100
in each direction, which would increase the CPU time by a factor
~ 103, requiring ~ 10° yr of CPU time.

Finally, the use of Newtonian physics and dynamics is a major
limitation of our current approach. In BNS mergers (and also core—
collapse supernovae) the space—time metric deviates strongly from
the flat metric, and the fluid velocity can become relativistic in
some regions. Therefore, a more realistic approach would be the
performance of fully general-relativistic LES, as done in, e.g. B.
Giacomazzo et al. (2015), D. Radice (2020), C. Palenzuela et al.
(2022), and R. Aguilera-Miret et al. (2025). Nevertheless, most of
these works solely focus on the turbulent magnetic field amplification
by the KHI and are unable to capture the effects of the MRI in
the post-merger phase. Moreover, they lack the ability to handle
the dependence of the saturation amplitude on the magnetic field
amplitude, the relation between the rotation frequency and the growth
phase, or the decay of turbulence in MRI-stable regions. Another key
issue is that subgrid models applied to GRMHD simulations of BNS
mergers are covariant with respect to transformations in the spatial
coordinates, but not when it comes to general space—time coordinate
transformations (M. D. Duez et al. 2020; D. Radice & I. Hawke
2024). Non-covariant closures can introduce coordinate-independent
artefacts in the simulations, since the averaging applied to a single
foliation can inherit the dependencies of that space—time slice. For
that purpose, it is important to develop a covariant approach (M. D.
Duez et al. 2020; T. Celora et al. 2021, 2024a, b) that would allow
the MInIT model to be used in general-relativistic simulations. We
plan to report on those extensions of the model in future work.
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APPENDIX A: NUMERICAL DISSIPATION

The discretization of partial differential equations for numerical
solutions inevitably introduces numerical dissipation, which affects
the evolution of the system. This phenomenon is well understood and,
among other consequences, leads to a reduction in kinetic energy.
As illustrated in Fig. 8, numerical dissipation may also explain the
reduction in the maximum rotation frequency observed in MHD
simulations that exclude MInIT (grey lines).

To test this hypothesis, we performed two additional simulations
with finer spatial resolutions: Res2, with a grid (N,, Ny, Ny) =
(576, 252, 1), and Res 3, with (720,360,1). For comparison, we also
include the baseline simulation already used in this work, R3B3
(labelled here as Res1), with (N,, Ny, Ny) = (468, 180, 1). Fig. Al
demonstrates that higher spatial resolution reduces the decline of the
maximum equatorial angular frequency over time. However, a decay
remains, indicating that kinetic energy is still dissipated through grid
discretization. The time evolution of ., is qualitatively consistent
across all runs, with maximum relative differences of ~ 3 per cent
between Res2 and Res3, and ~ 5 per cent between Resl and
Res3.

— Resl
1 —— Res2
”“ Res3

0 50 60 70 8
t [ms]

0 0 20 30

Figure Al1. Time evolution of the maximum value of the angular frequency,
Qmax, at the equator for the simulation R3B3, with three different spatial
resolutions. The simulation with the largest resolution, Res3, shows a slower
decay of Qmax compared to the simulations with a lower resolution.

© The Author(s) 2025.
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Figure A2. Time evolution of the maximum value of the angular frequency,
Qmax, at the equator for the simulation R3B3, with (blue) and without (red)
magnetic fields. The evolution is identical in both cases, except for late times
(t > 60 ms), where the higher numerical viscosity of the magnetized case
leads to a larger decay of Qmax.-

A fully convergent simulation with negligible numerical dissi-
pation would show no decrease in Q.. In practice, however,
the limited resolution and the out-of-equilibrium initial conditions
(arising from modified density profiles) prevent complete conver-
gence. Still, the small relative differences across resolutions give
us confidence that the results from Resl remain qualitatively
robust.

One could argue that the decrease in 2, might have a physical
origin, perhaps due to the action of a partially resolved MRI.
This is excluded by construction: the chosen spatial resolution
ensures that the cell size is roughly ten times larger than the
wavelength of the fastest growing MRI mode, Apri = 27 /kmrr (see
equation 18). We further confirm this by performing a simulation
without magnetic fields. In Fig. A2, we show the equatorial time
evolution of Q. for simulation R3B3 from Table 1, both with
(blue) and without (red) magnetic fields. The two curves are in-
distinguishable up to ¢t =~ 60 ms, when they diverge slightly. This
minor discrepancy arises because numerical viscosity is gener-
ally higher in MHD simulations than in purely hydrodynamical
ones.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 545, 1-11 (2026)

920z Arenuer z| uo1sanb Aq 2/€0¥£8/180ZIEIS/E/SHS/PI0IME/SEIUL/WOO dNO"dlWapede//:sdny Wolj papeojumoq


http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1093/mnrasl/slx178
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 MEAN-FIELD MHD EQUATIONS
	3 THE MINIT MODEL FOR THE MRI
	4 NUMERICAL APPROACH
	5 RESULTS
	6 DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: NUMERICAL DISSIPATION

